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Abstract

Quantum Chromodynamics (QCD) predicts various extraordinary phases of matter whose

underlying physics is described by the strong interaction. Identifying the QCD phase dia-

gram, of which a critical point serves as the landmark, is one of the fundamental open

subjects in modern physics. The properties of the QCD phase transitions and criticality

can be studied by the relativistic heavy-ion collision experiments at various laboratory ac-

celerator facilities, where a strongly interacting primordial matter is expected to form in

extreme conditions on an event-by-event basis. Fluctuations are therefore indispensable for

describing such stochastic process and become rather crucial for understanding the universal

behavior when the system approaches the critical point. In this thesis, we will discuss the

current methodology and challenge of discovering the QCD critical point, with an emphasis

on the recent progress in quantifying the fluctuation-driven phenomena both in and out of

equilibrium. The state-of-the-art formalism we developed constitutes an integral part of

the theoretical framework for interpreting the experimental results from the ongoing RHIC

Beam Energy Scan Program.
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That’s too simple to be true. It’s an interesting idea, but Nature isn’t that simple.

Niels Bohr, 1958
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Summary

In this dissertation thesis, we review and formulate the theory of fluctuations which is

expected to be employed in the ongoing relativistic heavy-ion collision experiments. We

begin with a review of the path integral formalism of classical field theory and its alter-

native approach, the effective action, where all fluctuations are incorporated via the renor-

malization group analysis. Provided the basic concepts, we analyze the fluctuations in a

dichotomous description, i.e., fluctuations which are in equilibrium and out of equilibrium,

static and dynamic, critical and non-critical, Gaussian and non-Gaussian, perturbative and

non-perturbative, local and non-local, etc. In this thesis, special attention is paid to the

hydrodynamic fluctuations and critical fluctuations, both of which are crucial for describing

the evolution of the strongly interacting fluid droplet transiting the QCD critical point. We

establish the general hydro-kinetic framework for the non-equilibrium hydrodynamic (ther-

mal) fluctuations, and accommodate it in the vicinity of the critical point. Besides the QCD

critical point, we also analyze the equilibrium fluctuations that is non-perturbative near

the Lee-Yang critical point. Based on the universality argument our conclusions and their

phenomenological consequences could be connected and identified in the realistic scenarios.
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Chapter 1

Introduction

1.1 Overview

It has been known for about half century that our nature is governed by four fundamen-

tal forces: gravitational, electromagnetic, weak and strong interaction. After a persistent

development in the half century since the milestone work by Gross, Wilczek, Pilitzer [7, 8]

and Fritzsch, Gell-Mann, Leutwyler [9], physicists nowadays believe that Quantum Chromo-

dynamics (QCD), as an essential ingredient of the Standard Model, has been a fundamental

theory for strong interactions (see Sec. 1.4.1 for review). QCD is managed to provide a

framework consisting of two aspects: first, how the majority of the visible matters is made of

in our Universe, and second, how those matters interact themselves. Although QCD success-

fully describes the building blocks of matters and their dynamic interactions at the applicable

scale the theory itself claims, not too much is well understood about the equilibrium and

non-equilibrium properties of hot and dense matters whose underlying physics is described

by strong interaction. Such matters are expected to occur in the early age of Universe, the

core of compact star and in recent decades in ground-based laboratory facilities (Fig. 1.1).

Nevertheless, there are two basic properties charactering the strong interaction: asymptotic

freedom and confinement. The former predicts the existence of the most primordial state of
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(a) (b)

Figure 1.1: (a) The chronology of early Universe (NASA/WMAP) and (b) the inner structure
of the compact star (R. Schulze).

matter – Quark-gluon plasma (QGP), and the latter indicates a world of confining hadrons

that is familiar to our daily life. It was then recognized that various models based on QCD

predict a transition from the hadronic phase to the QGP phase [10, 11, 12].

Understanding the phases of matters and the ubiquitous transition phenomena between

them have always been a fundamental scientific question the human beings quested in the

history. The phase transition of liquids and gases, had been an underlying principle to

promote the First Industrial Revolution and affects our daily experience. Why is this phases

of QCD matter also important? Of course, the answer is more than simply “because it

was there” (Leigh Mallory), it, to some extent, also provides us a universal description of

phases of strongly interacting system, the lesson we learned and the method we developed

from which, shall be very likely to shed light for us to understand many other puzzling

phenomena from condensed matter physics [13, 14, 15, 16] to string theory [17, 18, 19, 20],

and some of which might even play an important role for our future lifestyles.

Steven Weinberg once said in an interview, that “by knowing the story behind our the-

ories, we, as physicists, can feel part of a great historical progression. That sense of motion

keeps us at our desks and in our laboratories” [21]. In fact, it might be surprising that the
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scientific languages we are using in our studies are not something the human beings knew

very well even several decades earlier. The journey of the exploration on phase transitions

is such an example, it really began not too long ago in the history of science. The earliest

known pursuit was probably performed in 1822 by Cagniard de la Tour, who discovered con-

tinuous transition from liquid to vapor and observed the critical temperature by heating and

compressing certain liquids in his cannon barrel experiments [22]. Similar phenomena was

also discovered for carbon dioxide by Thomas Andrews in 1869, who introduced the term

“critical point”. Four years later (1873), in the thesis for doctoral degree Van der Waals

wrote an equation of state (EOS) with a critical point of the liquid-gas phase transition [23].

At the beginning of the twentieth century, Marian Smoluchowski discovered the density

fluctuations in the gas phase (1904) and soon realized the relation between density fluctua-

tions and criticality in the study of critical opalescence (1908). Inspired by Smoluchowski’s

explanation, Albert Einstein provided a quantitative formula for the light scattering due

to the density fluctuations in 1910. In the first half of twentieth century, a mathematical

model of ferromagnetism was studied by Ising (1925) and Onsager (1944) and turned out to

be a widely-used important model in modern physics [24, 25]. In 1937, Landau developed

the mean-field theory of phase transitions and critical phenomena [26]. The theory beyond

mean-field approximation, as a part of the renormalization group theory, is developed by

Kandanoff, Wilson, Fisher, et al., during the second half of the twentieth century [27, 28,

29, 30] (see also Sec. 2.6).

As a consequence of renormalization, it is quite natural to realize that different critical

phenomena can be categorized into various universality classes. The universality of critical

phenomena makes the knowledge of the well-studied theory, for instance, the Ising model

or, more broadly, φ4 field theory, important to the study of a wide range of phenomena [31]

from Curie points in magnets and liquid-gas transitions, to the cosmologically relevant phase

transition in the gauge-Higgs sector of the Standard model [32], and the phase diagram of

QCD at finite density studied in heavy-ion collisions [10, 11, 12]. Nowadays, although very

much is known about the phases of liquid and gas, yet still very little about the phases of
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strongly interacting matter, especially at finite temperatures and densities, in contrast to

those of hot plasma for high temperature (early Universe) and the cold quark matter for high

density (core of superdense stars), of which we have a better understanding. Fortunately,

the matters at various temperatures and densities can be produced in laboratory facilities by

the experiments of the ultra-relativistic nucleus-nucleus collisions, i.e., heavy-ion collisions

(HIC) [33]. A basic stages of HIC is illustrated in Fig. 1.2. The particle accelerators are ideal

incubators of copies of our “early Universe”, “superdense stars” and most remarkably, the

smallest, most vortical primordial fluid created on earth. Since the record of its first head-

on collisions, Relativistic Heavy Ion Collider (RHIC) in Brookhaven National Laboratory

(BNL) achieved fruitful experimental results and significantly promoted our understanding

of quark matters. By tuning the beam energies, the created matters would experience the

strong interacting phases at different temperatures and densities, leaving its footprint in the

QCD phase diagram. Therefore, the accelerator facilities provide us a versatile approach to

study the strongly interacting matters and their phase transitions (see Sec. 1.5.2 for review).

However, the price we have to pay is that, unlike Cagniard de la Tour who could “seat

down” and manipulate his apparatus patiently, the droplets created in heavy-ion collisions

survive in a extremely short lifetime (about 10 fm/c), during which the non-equilibrium and

non-homogeneous media expand and freeze out dramatically fast. Thus, the non-equilibrium

dynamics are essential to understand the phases of matter created in heavy-ion collisions.

The dynamics for critical phenomena is reviewed in Chap. 3.

The main results presented in this thesis are parts of the theoretical framework for in-

terpreting the experimental results from the RHIC Beam Energy Scan (BES) program. In

particular, we will focus on the QGP evolution which is well described by the perfect hydro-

dynamics, whose theoretical prediction is consistent with the BES-I results (e.g., the elliptic

flow discussed in Sec. 1.5.2). In heavy-ion collisions, the relativistic evolution of the strongly

interacting matter can be described by the hydrodynamics reasonably and unreasonably

well. Besides, the typical system size is large enough to be treated hydrodynamically but

small enough for hydrodynamic fluctuations to be important and directly observable via
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Figure 1.2: The basic stages of a heavy-ion (Pb-Pb) collision event in a nutshell (Wei Li).

event-by-event measurements. Thus, a hydrodynamic framework with fluctuations is in de-

mand. Moreover, the fluctuations near the critical point are likely to explain the relevant

BES-I results by comparing with their theoretical prediction based on static equilibrium as-

sumption (Sec. 1.5.2). However, it is an intriguing hint rather than the smoking gun for the

triumph of discovering a critical point, because the non-equilibrium hydrodynamic evolution

with memory effect (e.g., Fig. 1.19), which could potentially change the prediction based on

equilibrium theory even qualitatively, hasn’t yet been taken into account. Furthermore, it is

still not clear how one could treat the non-perturbative and non-equilibrium process occurred

along with the first-order phase transition in heavy-ion collisions. Thus, as an integral part

of the solution to answer those questions, this thesis consists of two major ingredients: first,

a general systematic framework of hydrodynamics with non-equilibrium fluctuations and

critical slowing down, which is essential for the comparison to experiment (Chap. 2 and 3);

and second, a better understanding of the analyticity of the critical equation of state based

on universality, which is not only indispensable for the system of hydrodynamic equations

to be closed, but also conducive to the understanding of first-order phase transitions from a

profound perspective (Chap. 4).

Motivated by the heavy-ion collision experiments, the dynamics of charge fluctuations

was recently studied by Ref. [34, 35, 36, 37]. However, in a hydrodynamic flow charge fluc-
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tuations are not independent of other hydrodynamic modes (such as energy and momentum

density fluctuations). A well-known example is that, due to the convection of hydrodynamic

fluid, the dynamical universality class of QCD critical point is ascribed to Model H instead

of Model B [38]. Moreover, as this thesis will discuss, these fluctuation modes couple with

each other and all play important roles as long as the system approaches the critical point.

Hydro+ [39], a hydrodynamic framework incorporate only one such mode, is thus signifi-

cantly extended. Based on a few simplifications and approximations which is convenient for

numerical implementation, we would be able to understand how the framework of Hydro+

(and possibly its extension) is visualized in realistic scenarios such as heavy-ion collisions

[40, 41, 42].

A systematic treatment of hydrodynamic fluctuations can be dated back to 1950s by

Landau and Lifshitz, based on the stochastic Langevin dynamics. The stochastic formalism

of hydrodynamic fluctuations was studied for a relativistic fluid since last decades [43, 44,

45, 46], again, largely motivated by the progressive heavy-ion collision experiments. In the

stochastic sector, dealing with the divergences from the noise is inevitable and troublesome.

On the other hand, a complimentary formalism was pioneered by Andreev in 1970s in a non-

relativistic context [47]. Unlike the Landau-Lifshitz formalism, the variables this formalism

dealt with are all deterministic. By performing a renormalization procedure, all divergences

coming from the noise are absorbed into the bare hydrodynamic variables, and the resulting

deterministic equations are cutoff independent and therefore simulation friendly. In recent

years, the deterministic (also referred to as hydro-kinetic) approach was studied for a rel-

ativistic fluid subject to the symmetry of boost-invariance [48, 49, 50], and was partially

generalized to a neutral fluid with arbitrary background in Ref. [1]. In Chap. 2, we present

such a general systematic formalism describing dynamics of fluctuations in an arbitrary rela-

tivistic hydrodynamic fluid. To be more specific, we derive a deterministic evolution equation

for the fluctuation modes which nontrivially matches the kinetic equation for phonons prop-

agating on an arbitrary background including relativistic inertial and Coriolis forces due to

acceleration and vorticity of the flow. We introduce a concept of confluent connection which



CHAPTER 1. INTRODUCTION 7

takes into account the relativity of “equal time” in the definition of the equal-time corre-

lator of fluctuations. Feedback of fluctuations modifies hydrodynamic coefficients including

viscosities and conductivity. We then perform necessary renormalization of short-distance

singularities to obtain cutoff independent deterministic equations suitable for efficient nu-

merical implementation. Notwithstanding, the formalism presented in Ref. [1] is yet still

inadequate for its implementation near the critical point, since the conserved charges play

an important role due to the critical slowing down. In a following work, Ref. [2], we accom-

modate a U(1) charge in the hydro-kinetic theory and implement it in the vicinity of a critical

point. In Chap. 3, we discuss this implementation with the critical dynamics. Focusing on

the critical mode we show how this general formalism matches existing Hydro+ description

of fluctuations near the QCD critical point [39] and nontrivially extends it inside and out-

side of the critical region. The last part of the thesis, Chap. 4, focuses on the equilibrium

properties of the QCD critical point. In this chapter, we address a number of outstanding

questions associated with the analytic properties of the universal equation of state of the

φ4 theory, which describes the ubiquitous critical behavior in the same universality class of

Ising model and QCD. We discuss the relation between the spinodal points and Lee-Yang

edge singularities in and beyond the mean-field approximation. The non-perturbative nature

of Lee-Yang points is described by φ3 interaction, which can be analyzed by the functional

renormalization process for the equilibrium fluctuations.

Before we discuss these topics in detail, in the remaining part of Chap. 1, we will re-

view the relevant theoretical fundamentals and selected experimental results related to the

fluctuations and criticality in heavy-ion collisions. Form the modern point of view, we are

living in an “effective” world, where all our descriptions of the world rely on the scales we

have reached, and the information from the underlying physics characterized by the micro-

scopically short-distance fluctuations, are encoded in the low energy observables already.

The bridge of the microscopic quantum theory and macroscopic effective theory, is known

as renormalization. We will discuss Wilson’s basic idea of renormalization group in Sec. 2.6.

The renormalization procedure could be performed by integrating out fluctuations in the
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momentum-shell slides successively, or do it once analytically if feasible, relying on the va-

lidity of perturbation analysis. By introducing an infrared (IR) regulator, it is plausible to

identify a scale-dependent Wilsonian effective action, such that all fluctuations beyond the

scale parameter are already integrated out. Such formalism does not rely on the perturba-

tive scheme and is therefore very convenient for studying the non-perturbative fluctuations

(Sec. 4.1.1). In Sec. 1.2.3, we introduce the concept of the one-particle-irreducible (1PI) ef-

fective action, whose minimum directly provides the expectation value of the quantum field.

Moreover, it serves as a connection from the Euclidean field theory to the statistic mechanics,

a puzzling duality that helps us to study the phase transitions in a field-theoretic language.

Following this we extend the concept to n-particle-irreducible (nPI) effective action and limit

our discussion to the 2PI case, which will be used in Sec. 3.1 to understand how the two-point

fluctuations correlators drive the system out of equilibrium (decrease the entropy from its

maximum). We will also briefly discuss the critical fluctuations, both in equilibrium and out

of equilibrium, in Gaussian approximation and beyond Gaussian approximation (Sec. 1.3).

In particular, we illustrate the basic idea that how to connect the fluctuations of the critical

modes to the measurable observables, and finally present the relevant intriguing results from

RHIC BES program, being a part of the motivation to perform the research this thesis will

discuss. It is nevertheless worthwhile to emphasize that the most important concept intro-

duced in Chap. 1, the effective action. We will soon see how it plays its crucial role in each

topic of this thesis.

In this thesis, we adopt the natural unit kB = c = ~ = 0 if not specified. We are trying

to keep the notation convention and minimize their conflicts. However, when such a conflict

occurs, we believe it shall be understood in the context where it appears unambiguously.
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1.2 Fluctuations and Field Theory

1.2.1 Classical Field Theory

The equilibrium physics of a system is completely determined by the partition function

(Wick-rotated generating function) for one or a few fluctuating fields, say, φ(x), considered

as the deviation from the background field φ̄. In response to an external source J(x) the

partition function is written as

Z[J ] = eW[J ] =

∫
Dφ exp

{
−S[φ(x)] +

∫
ddxJ(x) · φ(x)

}
, (1.1)

where an unimportant prefactor Z0 = e−S[φ̄] is phased out by normalization and

S[φ(x)] =

∫
ddxL(φ(x), ∂µφ(x)) =

∫
ddx

[
1

2
Z(∂µφ)2 + U(φ(x)) + . . .

]
(1.2)

is the Euclidean d-dimensional classical action defined by the spacetime integration of the

classical Lagrangian (density) L, which is assumed to be local and translation invariant in

spacetime. It could be expanded in powers of φ and its gradients to arbitrary high orders.

In particular, the classical potential is formulated in a series

U(φ(x)) = λ1φ+
1

2
λ2φ

2 +
1

3!
λ3φ

3 +
1

4!
λ4φ

4 + . . . (1.3)

where only the first few terms, which will be primarily discussed in this thesis, are presented.

From the viewpoint of renormalization group (RG) theory (Sec. 2.6), it is sufficient to keep

finite amount of terms that are infrared relevant. Note that φ itself could have components

φi satisfying an internal O(N) symmetry where i = 1, . . . , N . It is of particular interest to

consider two special limits when N = 1 and N → ∞, in which cases φN model reduces to

the Ising model and the spherical model respectively. These two models will be analyzed

later in Chap. 4.

The expectation value of an operator O(φ) is defined by a average with all microscopic

(quantum) configuration

〈O〉 =

∫
DφO(φ)e−S[φ]

∫
Dφ e−S[φ]

(1.4)
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where e−S[φ] = e−
∫
ddxL(φ) is analogous to the probability for a given field configuration φ(x),

i.e., the partition function of a microscopic canonical ensemble in statistic mechanics. We

will come back to this in Sec. 1.2.3.

Let’s take a closer look of each terms in the classical action. First, we should notice

that the overall prefactor of the effective action is redundant and could be chosen freely.

A common way to fix this degree of freedom is to rescale φ by absorbing the factor Z in

the kinetic term, in another word, one usually chooses the normalization Z = 1, thus the

effective action is left with less parameters. Among those parameters, the linear parameter λ1

vanishes by definition if the classical potential is expanded around an extreme; the quadratic

parameter λ2 ≡ m2 defines the mass of the field and is interpreted as the curvature of the

potential at the extreme; λn with n ≥ 3 are non-Gaussian interaction terms, a theory in the

absence of which is called free field theory. The free field theory can be readily handled by

performing the Gaussian-like path integration. However, a general analytic evaluation of the

path integral with interactions usually relies on the cumulant expansion of small parameters

(formulated by Feynman diagrams).

The equation of motion (EOM) is given by

δS[φ(x)]

δφ(x)
=
∂L(x)

∂φ(x)
− ∂µ

∂L(x)

∂(∂µφ(x))
= J(x). (1.5)

Substitute Eq. (1.2) and (1.3) (setting Z = 1 and neglecting higher order terms) into the

above equation we obtain

∂2φ(x) =
δU(φ(x))

δφ(x)
− J(x). (1.6)

If the Lagrangian L is invariant up to a four-divergence Kµ under an infinitesimal defor-

mation of the field configuration

φ(x)→ φ(x) + αδφ(x), L(x)→ L(x) + α∂µKµ(x), (1.7)

where α is an infinitesimal parameter, the Noether’s Theorem states that there exists a

conserved current

J µ(x) =
∂L(x)

∂(∂µφ(x))
δφ(x)−Kµ(x), (1.8)
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also referred to as the Noether current, associated with this continuous symmetry and sat-

isfying the conservation law

∂µJ µ = 0 . (1.9)

The Noether’s Theorem can also be generalized to an infinitesimal spacetime transformation

xµ → xµ − aµ, such that

φ(x)→ φ(x+ a) = φ(x) + aµ∂µδφ(x), L(x)→ L(x+ a) = L(x) + aµ∂µL(x), (1.10)

compare to Eq. (1.8) the conserved current in this case is

J µ(x) = aνT
µν(x), (1.11)

where

T µν =
∂L(x)

∂(∂µφ(x))
∂νφ(x)− gµνL(x) (1.12)

is the stress-energy tensor, also referred to as the energy-momentum tensor since it is associ-

ated with the symmetry of spacetime translation. Provided the Lagrangian in Eq. (1.2) the

stress energy tensor is

T µν(x) = ∂µφ∂νφ− gµν
[

1

2
(∂λφ)2 + U(φ)

]
. (1.13)

The well-known stress-energy tensor for ideal hydrodynamics reads

T µν = (ε+ p)uµuν + pgµν . (1.14)

1.2.2 Renormalization Group Theory

In Sec. 1.1, what do we mean by “effective” when we refer to an effective field theory?

From the modern point of view, an effective field theory is a low-energy and long-distance

proxy of a bare theory defined at an ultraviolet (UV) scale with respect to certain symmetries.

The connection of the two theories describing physics at different scales are renormalization.

It is a coarse-graining procedure managed to integrate out the ultraviolet degree of free-

doms, namely, the large-momentum fluctuations. The ultraviolet contributions are usually
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divergent, and a sensible low-energy effective theory relies on the cancellation of all such

ultraviolet divergence and the physical observables must be independent of the fake ultra-

violet scales. There are several different renormalization procedures, let’s firstly review the

momentum-shell method that is initially developed by Kadanoff and Wilson [27, 28, 29].

φ4 Theory

Wilson’s approach is based on the path integral representation of the generating func-

tionalW [J ], originally defined at an ultraviolet scale Λ which is much larger than any energy

scales of practical interest, i.e.,

Z[J ] = eW[J ] =

∫
[Dφ]|k|<Λ exp

{
−S[φ(x),Λ] +

∫
ddxJ(x) · φ(x)

}
, (1.15)

where

e−S[φ(x),Λ] =

∫
[Dφ]|k|>Λe

−S[φ(x)]. (1.16)

Let’s for simplicity consider a massive φ4 theory subject to a Z(2) symmetry, defined at scale

Λ as

S[φ(x)] =

∫
ddxL =

∫
ddx

[
1

2
(∂µφ)2 +

1

2
λ2Λ2φ2 +

1

4!
λ4Λ4−dφ4 + . . .

]
, (1.17)

where all the coefficients are rescaled by Λ such that they are dimensionless. A typical shape

of the potential U(φ) is plotted in Fig. 1.3. Treating terms other than the first (kinetic) term

as perturbation, the action upon a single momentum-shell integration over k ∈ [bΛ,Λ] reads

S[φ(x)] =

∫
ddxL

=

∫
ddx

[
1

2
(1 + ∆Z)(∂µφ)2 +

1

2
(λ2 + ∆λ2)Λ2φ2 +

1

4!
(λ4 + ∆λ4)Λ4−dφ4 + . . .

]

=

∫
ddx′

[
1

2
(∂′µφ

′)2 +
1

2
λ′2Λ2φ′

2
+

1

4!
λ′4Λ4−dφ′

4
+ . . .

]
, (1.18)

where in the last line we have introduced

x′ = xb , k′ = k/b , φ′ = [b2−d(1 + ∆Z)]1/2φ ,

λ′2 = (λ2 + ∆λ2)(1 + ∆Z)−1b−1, λ′4 = (λ4 + ∆λ4)(1 + ∆Z)−2bd−4. (1.19)
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The rescaled action S, defined with a lower energy cutoff (bΛ) beyond which all high-energy

fluctuations are integrated out, is referred to as the Wilsonian effective action1. In such coarse

graining process, all coupling constants in the above expressions alter as a consequence of

both rescaling and higher-order corrections. Successive integrations could be performed all

the way down to a typical infrared scale (e.g., mass or external momentum), as long as the

shifted effective coupling λ′ remains small in order for perturbation theory to work. The

transformation of Lagrangian becomes continuous when b→ 1, and such process is referred

to as the renormalization group (RG). All the large-momentum fluctuations (including loop

corrections) are absorbed into the effective couplings at tree level. The consequence of

which is that the coupling is running, described by the RG equations (β functions). Note,

however, the momentum-shell integration performed iteratively could be instead performed

all at once if one sends b → 0, which is technically simple. The price one needs to pay

is that the integration might have ultraviolet divergences but one gets rid of the awkward

slice integration with artificial parameter b. The two approaches should nevertheless be

equivalent.

If we start with a massless free-field Lagrangian where all coupling constants vanish, i.e.,

L0 =
1

2
(∂µφ)2, (1.20)

the Lagrangian will remain the same upon rescaling since there is no contribution from

the interactions. This corresponds to a Gaussian fixed point (free-field fixed point) of the

renormalization group flow. If we turn on the λ4 coupling constant for the φ4 interaction

and take into account the leading loop contribution, after one iteration we find at d < 4 that

λ′4 = bd−4λ4

(
1− 3λ4

2

∫

bΛ≤|k|<Λ

Kdk
d−1dk

(k2)2

)
= bd−4λ4

(
1− 3Kd(b

d−4 − 1)Λd−4

2(4− d)
λ4

)
, (1.21)

where

Kd =
Sd

(2π)d
=

2

(4π)d/2Γ(d/2)
(1.22)

1Note that the Wilsonian effective action is different from the 1PI effective action introduced in Sec. 1.2.3,
see discussion thereby.
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(a) λ2 > 0 (b) λ2 = 0 (c) λ2 < 0

Figure 1.3: Various potentials U(φ) for a φ4 theory with λ4 > 0 and different values of λ2.
By tuning the parameter λ2 ∼ t ∼ T − Tc, one may arrive at the critical point of U(φ), see
Sec. 1.3. The source term λ1 (or magnetic field H in Ising model) is tuned or set to zero
already. The red and green points are the local minimum and maximum of the potential
respectively.

is the loop factor and Sd is the surface area of the unit sphere in d dimensions, in particular,

Kd=4 = 1/(8π)2. The effects of rescaling and higher-order corrections compensate each other,

implying that there exists another fixed point of the renormalization group flow, referred to

as the Wilson-Fisher fixed point [30]. Like all other quantum field theories (QFT) of physical

interests, this fixed point approaches to the Gaussian fixed point at a specific limit, in this

case d→ 4. In this limit the theory is weakly coupled and free-field like, thus the perturbation

theory based on Feynman diagram analysis shall works.

Expand Eq. (1.21) in double series of ε = 4 − d and λ4, one finds the corresponding

renormalization group equation (β function defined in Eq. (1.29)) for λ4 up to second order

to be

β(λ4) =
∂λ4

∂ log b
= −ελ4 +

3

2
λ2

4 , (1.23)

where we have absorbed the loop factor Kd into the coupling constant λ4, by taking the

substitution λ4 → λ4/Kd effectively. Such absorption makes the RG equations more succinct.

When d ≥ 4 (ε ≤ 0) the β function is positive, predicting the coupling flows to zero at infrared

scales. On the other hand, when d < 4 (ε > 0), the β function has a nontrivial zero, the
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Wilson-Fisher fixed point, which is given by the solution of β(λ∗4) = 0, i.e.,

λ∗4 =
2

3
ε . (1.24)

It is more tricky to deal with renormalized correlation functions, where the cutoff is sent

to infinity and thus the renormalization conditions are in demand to define the theory at

certain (arbitrary) renormalization scale µ. Let’s consider the renormalized n-point functions

of the form

G(n)(x1, x2, . . . , xn;µ, {λi}) ≡ 〈φ(x1)φ(x2) . . . φ(xn)〉, (1.25)

where λi = λ2, λ4, . . . represents a set of coupling constants. The computation of G(n)

originating from the fixed bare action relies on the renormalization scale µ. If we perform a

shift

µ→ µ+ δµ, (1.26)

correspondingly we need the following adjustment

λi → λi + δλi , φ→ (1 + δη)φ , dG(n) → (1 + nδη)dG(n), (1.27)

giving rise to the Callan-Symanzik equation

[
µ
∂

∂µ
+ β(λi)

∂

∂λi
+ nγ({λi})

]
G(n)(µ, λ) = 0 , (1.28)

where β(λi) and γ({λi}) are functions describing the RG evolution rate of coupling λ and

field strength normalization Z1/2 respectively. They are defined by

β(λi) = µ
∂

∂µ
λi , γ({λi}) =

µ

2

∂

∂µ
logZ , (1.29)

where µ ∂
∂µ

is precisely ∂
∂ log b

with b = µ/Λ. The β function for d → 4 can be generically

written as

β(λi) = (−[λi] + γλi)λi , (1.30)

where [λi] and γλi ≡ γλi are respectively the mass dimension and γ function associated with

{λi}, the former comes from the dimensionless rescaling and the latter describes the RG
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evolution rate. For λi = λ4 this equation turns out to be the β function given by Eq. (1.23).

In the absence of fluctuations (d > dc = 4), γλ4 = 0, the only solution is the trivial Gaussian

fixed point λ4 = 0, the relevance against which classifies the operators Oλi associated with

λi into three categories:

[λi] > 0 , Oλi is relevant (super-renormalizable) ;

[λi] = 0 , Oλi is marginal (renormalizable) ;

[λi] < 0 , Oλi is irrelevant (non-renormalizable) . (1.31)

We shall emphasize the relevance of an operator has its meaning when a particular fixed

point is specified, otherwise it is by default referred to the Gaussian fixed point, for example,

at d < 4 we say the φ4 operator is relevant (against Gaussian fixed point) but it is however

irrelevant against the Lee-Yang fixed point (see Chap. 4). In the presence of fluctuations

(d < dc = 4), as we discussed before, the competition of [λ4] and γλ4 gives rise to the

Wilson-Fisher fixed point λ∗4. For λi = λ2, we have

β(λ2) = µ
∂

∂µ
λ2 = (−2 + γλ2)λ2 , (1.32)

with the solution

λ2(µ) = λ2(Λ)

(
Λ

µ

)2−γλ2
. (1.33)

At long distances Λ/µ increase and the mass term becomes more and more important in the

Lagrangian. The criterion for mass term to be important is given by

λ2(µ ∼ ξ−1) ∼ 1 , (1.34)

which defines the correlation length at the Wilson-Fisher fixed point,

ξ ∼ λ−ν2 ∼ m−2ν (1.35)

where we have used λ2(Λ) = m2/Λ2 and

ν−1 = 2− γλ2(λ∗4) . (1.36)

We will discuss more about the massless limit λ2 → 0 in Sec. 1.3, where the fluctuations

that φ4 theory describes becomes critical.
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φ3 Theory

The extreme of an action (or the potential in the homogeneous case) is usually referred

as to the saddle point. For a given field configuration there might be more than one saddle

point around which we can perform a perturbative series expansion. Different perturbation

series are typically associated with different sectors (excitations) of the field theory. We

have analyzed in a nutshell the renormalization of φ4 theory satisfying a Z(2) symmetry

(λ1 = λ3 = 0). The framework can be generally applied to other field theories, among those

a particular interest will be given to the φ3 theory. It is somewhat related to the φ4 theory

being discussed. As we shall see in Sec. 4, when we consider the φ4 theory in the presence of

an external field (Fig. (1.4)), or analytically continue the φ4 theory into the complex plane,

where there are saddle points or critical points around which the φ3 theory becomes more

relevant. In other words, such saddle points can be reached by tuning relevant parameters

or shifting the field configuration from the original saddle point (e.g., the minimum of a φ4

potential, see Fig. 1.4).

(a) λ1 = 0 (b) 0 < λ1 < λLY
1

3Φ

4

U~

U~Φ

(c) λ1 = λLY
1

Figure 1.4: φ3 potential at the Lee-Yang point obtained by tuning the parameter λ1 (mag-
netic field) and keeping λ2 < 0. Note there is only one independent relevant parameter for
φ3 theory. In another word, for any given λ2, by tuning λ1 one can always arrive at the Lee-
Yang point which is described by the non-unitary φ3 theory. An alternative and equivalent
approach to arrive at a φ3 theory is by shifting the field, as discussed in the context. Again,
the red and green points are respectively the local minimum and maximum of the potential
while the magenta point is the Lee-Yang (spinodal) point, which appears when the minimum
and maximum point collides with each other.
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Let’s begin with the classical Lagrangian defined in d-dimensional Euclidean space, i.e.,

L(φ(x)) =

∫
ddx

[
1

2
(∂µφ)2 + U(φ)

]
=

∫
ddx

[
1

2
(∂µφ)2 + λ1φ+

1

2
λ2φ

2 +
1

4!
λ4φ

4

]
, (1.37)

where we absorbed the dimension scale factor Λ of each term for simplicity. The classical

field φ is already considered as a fluctuation field on top of a background which is irrelevant

here. The critical points are defined by the following two conditions

U ′(φ) = λ1 + λ2φ+
1

3!
λ4φ

3 = 0 , (1.38)

U ′′(φ) = λ2 +
1

2
λ4φ

2, (1.39)

which gives

φLY =

(
−2λ2

λ4

)1/2

, λLY
1 ≡ λ1(φLY) = −2λ2

3
φLY = −2λ2

3

(
−2λ2

λ4

)1/2

. (1.40)

This critical point is referred to as the Lee-Yang point associated with the Lee-Yang edge

singularity. For both λ2 > 0 and λ4 > 0 (corresponding to high temperature phase of φ4

theory), λLY
1 is purely imaginary, in accordance with the Lee-Yang theorem [51, 52]. If we

consider a field shift φ→ φ+ ∆φ where ∆φ is space independent, we obtain

L(φ(x)) =

∫
ddx

[
1

2
(∂µφ)2 +

1

2

(
λ2 +

1

2
λ4(∆φ)2

)
φ2 +

1

3!
(λ4∆φ)φ3 +

1

4!
λ4φ

4

+

(
λ1 + λ2∆φ+

1

3!
λ4(∆φ)3

)
φ

]
, (1.41)

where the field φ is the shifted one. When ∆φ = φLY, the linear and quadratic term vanishes.

We then can expand the Lagrangian around the Lee-Yang point, it can be obtained by

applying the substitution ∆φ→ ∆φ+ φLY in Eq. (1.41) and expand in φ− φLY:

L(φ(x)) =

∫
ddx

[
1

2
(∂µφ)2 +

1

2
g (φ− φLY)φ2 +

1

3!
(g + λ4(φ− φLY))φ3 +

1

4!
λ4φ

4

+
(
λ1 − λLY

1

)
φ+O

(
(φ− φLY)2

)]
, (1.42)

where a cubic coupling g breaking the Z(2) symmetry emerges and is defined by

g = λ4φLY = (−2λ2λ4)1/2. (1.43)
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Alternatively, one can expand the Lagrangian in the vicinity of the local minimum where

the linear term in Eq. (1.41) vanishes, one obtain

L(φ(x)) =

∫
ddx

[
1

2
(∂µφ)2 +

(
g(λ1 − λLY

1 )

2

)1/2

φ2 +
1

3!

(
g + λ4

(
2(λ1 − λLY

1 )

g

)1/2
)
φ3

+
1

4!
λ4φ

4 +O(λ1 − λLY
1 )

]
. (1.44)

Eq. (1.42) and (1.44) are related by the mean-field equation of state for the Lee-Yang points:

λ1 − λLY
1 =

1

2
g(φ− φLY)2. (1.45)

Effectively, one can define the mass term

m2 = g(φ− φLY) =
(
2g(λ1 − λLY

1 )
)1/2

. (1.46)

Unlike the φ4 theory, mass is not an independent relevant variable. Given that λ4 is irrelevant

[53], a missive φ3 theory would be sufficient to describe the Lee-Yang edge singularities.

Below we shall sketch the main feature of the φ3 theory, based on the terse expression

L(φ(x)) =

∫
ddx

[
1

2
(∂µφ)2 + λ1Λ

d+2
2 φ+

1

2
λ2Λ2φ2 +

1

3!
λ3Λ

6−d
2 φ3

]
. (1.47)

Similar to what we have done for φ4 theory, we need to take into account the contribution

of cubic fluctuations to the free-field theory. Indeed, all the tricks we played with φ4 theory

shall be straightforwardly applied to φ3 theory. However, unlike the φ4 theory to which

the perturbative renormalization theory applies when ε = 4 − d is small, for φ3 theory the

perturbative calculation can be handled only if ε′ = 6−d is small. In this limit, the β function

(Eq. (1.30)) for cubic coupling λ3 is obtained by taking into account the contribution from

its lowest-order (triangle) loop diagram:

β(λ3) = −ε
′

2
λ3 −

3

4
λ3

3, (1.48)

where we have once again absorbed the loop factor Kd into the coupling constant λ3, i.e.,

λ2
3 → λ2

3/Kd. The solution of this equation gives rise to another nontrivial fixed point, the
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Lee-Yang fixed point:

λ∗3 =

(
−2ε′

3

)1/2

, (1.49)

which is imaginary as long as ε′ is real. Clearly, the results obtained from perturbative

RG can not be trusted at d = 3 (ε′ = 3), thus a non-perturbative approach, which will be

discussed in Sec. 4.1.1, is in demand.

1.2.3 Effective Action

We have discussed the basic idea of renormalization group theory in two naive examples,

φ3 and φ4 scaler theory. From these examples we see how the fluctuations of microscopic

degrees of freedom can be handled systematically in order to get into a macroscopic effec-

tive description in the formulation of Wilsonian effective action. As the field strength and

coupling constants are renormalized by these fluctuations, the expectation value of the field,

〈φ〉, is altered as well. The evaluation of the path integral of QFT is in general not that easy.

Thus it is convenient to introduce an effective action [54, 55], that can provide us the exact

value of 〈φ〉 at its stationary point. In another words, we are seeking an alternative, classical

approach to solve the quantum problem. The effective action is different from the classical

action by the corrections from quantum and thermal fluctuation. It is also distinguished

from the Wilsonian effective action introduced in Sec. 2.6, since it incorporates fluctuations

from all energy scales and thus is scale independent2. To some extent, the renormalization

is managed to obtain a well-defined, finite effective action by adjusting a finite set of pa-

rameters and counter terms in the classical action. The effective action, as we will see soon,

plays an essential role in connecting the quantum field theory and statistic mechanics.

2However, it is still possible to introduce a scale-dependent effective action, combining the spirit of the
1PI effective action and Wilsonian effective action, see Sec. 4.1.1 for details.
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Equilibrium (1PI) Effective Action

The effective action is mathematically defined by the Legendre transform of the generat-

ing functional W [J ] (cf. Eq. (1.1))

Γ[ϕ] ≡ sup
J

∫
d4xJ(x)ϕ(x)−W [J ] (1.50)

where

ϕ(x) = 〈φ(x)〉J =
δW [J ]

δJ(x)
=
δlogZ[J ]

δJ(x)
=

∫
Dφ e−

∫
L−Jφφ(x)∫

Dφ e−
∫
L−Jφ (1.51)

is the expectation value (order parameter) of φ in the presence of the source J . The field φ

could be vectors or spinors but we consider scalers here as it’s sufficient for the scope of this

thesis. The effective action satisfies the equation of motion

δΓ[ϕ]

δϕ(x)

∣∣∣
ϕ=〈φ〉J

= J(x). (1.52)

Like Eq. (1.5), this equation tells us that in the absence of the source current J , the expec-

tation value of the classical field, 〈φ〉, is given by the stationary point of Γ. In this sense, the

effective action Γ[ϕ] is analogous to the classical action S[φ]. However, Γ[ϕ] is designed to

incorporate both thermal and quantum fluctuations already by performing the path integral

calculation, and hence more convenient and straightforward for practical purpose. Similar

to what we have done on S[φ], we can alternatively expand the effective action in powers of

momentum, read off in the position space as

Γ[ϕ(x)] =

∫
ddxLeff(ϕ(x), ∂µϕ(x)) =

∫
ddx

[
1

2
(∂µϕ(x))2 − Ueff(ϕ(x)) + . . .

]
, (1.53)

where Leff is the (1PI) effective Lagrangian and Ueff is the effective potential3. The solution of

Eq. (1.52) will be independent on x if we consider Lorentz-invariant vacuum state, therefore

the kinetic terms vanish in such case and the effective action, as an extensive quantity, should

3At tree level the effective potential coincides with the classical potential. Thus he subscript “eff” may
be dropped later in this thesis if there is no risk to cause confusion.
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be proportional to the effective potential, i.e., Γ(ϕ) ∝ −Ueff(ϕ). Eq. (1.52) then reduces to

∂Ueff(ϕ)

∂ϕ

∣∣∣
ϕ=〈φ〉J

= −J. (1.54)

This is the condition to determine the expectation value of φ in the presence of external

source J . The relation between J and ϕ (and other possible relevant variables) is known as

the equation of state (EOS) in condensed matter physics.

Indeed, introducing Γ[ϕ] has its advantage in the sense the generating function W [J ]

may be calculated as a sum of tree (0PI, i.e., diagrams are disconnected by cutting any

internal lines) diagrams as if the action were Γ[ϕ] instead of S[φ], since all 1PI diagrams

are already collected in Γ[ϕ] as sub-diagrams. In terms of the effective action Γ[ϕ] we can

rewrite Eq. (1.1) as

Z[J ] = eW[J ] =

∫

tree

Dϕ exp

{
−Γ[ϕ(x)] +

∫
ddxJ(x) · ϕ(x)

}
, (1.55)

where ϕ is considered as an external field and only connected tree diagrams are involved in

the calculation of W [J ]. At the stationary point ϕ = 〈φ〉J , we obtain exactly

Z[J ] = eW[J ] = exp

{
−Γ[ϕ(x)] +

∫
ddxJ(x) · ϕ(x)

}

ϕ=〈φ〉J
, (1.56)

Similar to W [J ] serves as the the generating function of the connected correlation func-

tions,
δnW [J ]

δJ(x1) . . . δJ(xn)
= 〈φ(x1) . . . φ(xn)〉c = G(n), (1.57)

the effective action also serves as the generating function of the one-particle-irreducible (1PI)

amputated correlation functions (proper vertices),

δnΓ[ϕ]

δϕ(x1) . . . δϕ(xn)
= 〈φ(x1) . . . φ(xn)〉1PI = Γ(n). (1.58)

Note G(n) and Γ(n) are related, in the case of two-point function as an example,

G(2)(J) =
(
Γ(2)[ϕ]

)−1
. (1.59)
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Provided Eq. (1.58) the effective action could be written in a Taylor series

Γ[ϕ] =
∞∑

n=2

1

n!

∫
ddx1 . . . d

dxn ϕ(x1) . . . ϕ(xn) Γ(n)(x1, . . . , xn). (1.60)

Assume ϕ to be homogeneous for simplicity, the Callan-Symanzik equation for Γ(ϕ) ∝
−Ueff(ϕ) reads4 [

µ
∂

∂µ
+ β(λi)

∂

∂λi
− γ({λi})ϕ

∂

∂ϕ

]
Γ(µ, {λi}) = 0 , (1.61)

where ϕ ∂
∂ϕ

counts the number of powers of ϕ in Γ[ϕ] or Ueff(ϕ). The solution of Eq. (1.61)

will be discussed in Sec. 1.3.

For a miraculously deep reason, the classical statistic physics in d-dimensional space is

dual to the Euclidean quantum field theory defined in d-dimensional spacetime ((d − 1)-

dimensional space). If we consider the Ising theory where magnetization is linearly coupled

to the external magnetic field H, the partition function is given by

Z(H) = e−βG(H) =

∫
D[φ]e−β

∫
x(H[φ]−Hφ) (1.62)

where the Hamiltonian density H[φ] multiplied by β = 1/T is dual to the classical action S
and the field φ is linearly coupled to the external magnetic field H dual to the source term

J . The Gibbs free energy5

G(H) = −β−1 logZ(H) (1.63)

multiplied by β plays the role of the generating functionW [J ], and the Helmholtz free energy

is obtained by the Legendre transform

F (M) = sup
H

(G(H) +HM) =
∑

n

F (n)

n!
Mn, (1.64)

where

M = 〈φ〉H = −∂G(H)

∂H
= β−1∂logZ(H)

∂H
=

∫
x
D[φ] e−β

∫
(H−Hφ)φ(x)∫

x
D[φ] e−β

∫
(H−Hφ)

(1.65)

4Notice the sign change in front of γ(λ) compared to the Callan-Symanzik equation for G(n).
5The terminology might be different in different context. Sometimes Gibbs free energy is also termed

grand (canonical) potential or even Helmholtz free energy. Although each of these terminologies has clear
definition in condensed matter physics, the use of their names seems to be not rigorous in field theory.
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is the magnetization analogous to the classical field ϕ. Thus F (M) is analogous to the

effective action Γ[ϕ] and one can introduce the probability charactering the configuration of

M ,

P (M) ∼ (Z(H))N = exp [−Nβ(F (M)−HM)] , (1.66)

where N is an extensive quantities (e.g., total degrees of freedom or the volume of the

system) that goes to infinity at thermodynamic limit. The most stable thermodynamical

state is reached when P is maximized, in the thermodynamic limit, it is realized at the saddle

point satisfying
∂F (M)

∂M
= H . (1.67)

In a stochastic system, the general configuration could deviate the mostly probable state and

the fluctuation analysis is discussed in Sec.1.4.3. The dual relations of statistic mechanics

and (scaler) quantum field theory are summarized in Tab. 1.1.

Statistic Mechanics Quantum Field Theory

M ϕ

H J

F (M) Γ[ϕ]

G(H) W [J ]

Table 1.1: Analogous quantities in statistic mechanics and scaler quantum field theory, the
± sign and β factors are neglected.

Before conclude this subsection, we shall discuss a bit on the evaluation of W [J ] or Γ[ϕ],

a challenging problem as one needs to sum over infinitely many Feynman diagrams. In most

cases, one can only evaluate the path integral by using the steepest-descent method (saddle-

point approximation) around the stationary point φs, which is the solution of the equation

of motion, Eq. (1.5). Treat φs as a background field and expand the action up to quadratic

order in fluctuation δφ = φ− φs, one obtains, by performing the Gaussian integration, that

W [J ] = S[φs] + Jφs −
1

2
Tr log

[
∂2 − U ′′(φs)

]
+ . . . (1.68)
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from which one finds the Coleman-Weinberg effective action (and potential) (using ϕ ≈ φs

at leading order and ϕ is space independent)

Γ[ϕ] = S[ϕ]− 1

2
Tr log

[
∂2 − U ′′(ϕ)

]
+ . . .

= S[ϕ] +
1

2

∫
ddx

∫
ddk

(2π)4
log
[
k2 + U ′′(ϕ)

]
+ . . .

= V
[
U (0) + U (1) + . . .

]
(1.69)

where U (0) = S[ϕ]/V and

U (1) =
1

2

∫
ddk

(2π)4
log

[
k2 + U ′′(ϕ)

k2

]
≈ U ′′(ϕ)2

64π2
log[U ′′(ϕ)] + . . . (1.70)

is the one-loop correction and the all divergent terms are canceled by renormalization counter

terms. The effective potential is understood as the expectation value of energy density (per

unite volume) for a state in which the expectation value of the field is ϕ = 〈φ〉. It shall be

a convex function, i.e., U ′′(ϕ) ≥ 0, in order to have a one-to-one map between conjugate

variables of the Legendre transform. However, this condition is not always satisfied. Notice

that U (1) vanishes if U ′′(ϕ) = 0. Furthermore, if U ′′(ϕ) < 0, U(ϕ) develops imaginary parts

[56], associated with the Lee-Yang cut which will be discussed formally in Chap. 4. The

imaginary part of the effective potential is interpreted as half of the probability of decay per

unit volume and time [57].

Non-equilibrium (nPI) Effective Action

In equilibrium, the effective action Γ = Γ1PI[ϕ] only depends on the average of the field,

ϕ = 〈φ〉J , as a consequence of the single Legendre transform given by Eq. (1.50). This is no

longer true in the non-equilibrium situation, in which case the properties of the system also

rely on multi-point functions G(n) = 〈φ(x1) . . . φ(xn)〉c that is independent of ϕ. Thus the
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effective action shall become a functional of all independent variables, i.e.,6

ΓnPI[ϕ,Gn] = sup
J,{Kn}

(∫

x

Jϕ+

∫

x1,...xn

∞∑

n=2

1

n!
KnG

(n) −WnPI[J, {Kn}]
)
, (1.71)

obtained from infinitely many Legendre transforms of the extended n-particle-irreducible

(nPI) generating function WnPI[J, {Kn}], subject to the condition

δWnPI[J, {Kn}]
δJ

= ϕ , (1.72a)

δWnPI[J, {Kn}]
δKn

=
1

n!
G(n). (1.72b)

The equations of motion for the effective action is thus

δΓnPI[ϕ,G
(n)]

δϕ
= J , (1.73a)

δΓnPI[ϕ,G
(n)]

δGn

=
1

n!
Kn , (1.73b)

where J and Kn are the sources conjugate to ϕ and G(n) respectively. Let’s consider the

simplest case, the 2PI effective action (2PI entropy functional) Γ2PI = S2 following Ref. [39]:

S2[ϕ,G(2)] = Γ2PI[ϕ,G
(2)] = sup

J,K2

(
Jϕ+

1

2
〈φK2φ〉 −W2PI[J,K2]

)
. (1.74)

Unfortunately, the exact W2PI and therefore Γ2PI is not known, however, one can evaluate it

using the saddle-point approximation as we did to obtain Eq. (1.68). Thus

W2PI[J,K2] ≈ S0[ϕ] + Jϕ+
1

2
ϕK2ϕ+

1

2
log detG(2), (1.75)

where S0[ϕ] is the classical equilibrium entropy. Substituting this expression into Eq. (1.74)

and use 〈φK2φ〉 = TrK2G
(2) + ϕK2ϕ, we obtain

S2[ϕ,G(2)] ≈ S0[ϕ] +
1

2
Tr
(
logG(2) + S ′′0G

(2) + 1
)
, (1.76)

6Here we consider the single scaler field, an extension to multi-field theory shall be straightforward.
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where −G(2) = (S ′′0 +K2)−1. In the absence of K2, this expression reduces to Eq. (1.69), i.e.,

S1[ϕ] ≈ S0[ϕ] +
1

2
Tr log(−S ′′0 ). (1.77)

Thus we can express S2 in terms of S1 as

S2[ϕ,G(2)] = S1[ϕ] +
1

2
Tr
(
log(−S ′′0G(2)) + S ′′0G

(2) + 1
)
. (1.78)

One can check S2 ≤ S1 and S2 is maximized at S2|K2=0 = S1.

The expression of S2 can be understood as following: the logarithmic term describe

the uncertainty of the system as the Boltzmann entropy does, since
√
G(2) is the width

of distribution P (φ) accounting the number of all microscopic states; the remaining terms

vanish when K2 = 0, and therefore describes the “force” K2 driving the system away from

equilibrium state characterized by S0, i.e., 〈S〉 = S0 −K2G
(2) < S0 where K2 = − ∂S2

∂G(2) . See

Fig. 1.5 for an illustration of its formulation in hydrodynamics with a slow mode (Hydro+),

where G(2) ∼ Wmm ∼ Nmm (see Chap. 2).

Note, when ϕ and G(2) has space dependence, the trace becomes an integration of the

continuous variable x. Furthermore, one can decompose the two-point function as a sum

of all the wavenumber components, i.e., G(2)(x) ∼
∫
q
N (2)(x, q), thus in terms of N (2)(x, q)

Eq. (1.78) is modified to

S2[ϕ,N (2)] = S1[ϕ] +
1

2

∫
d3xd3q

(2π)3

(
log(−S ′′0 (x, q)N (2)(x, q)) + S ′′0 (x, q)N (2)(x, q) + 1

)

= S1[ϕ] +
1

2

∫
d3xd3q

(2π)3

(
log

N (2)(x, q)

N
(2)
(eq)(x, q)

− N (2)(x, q)

N
(2)
(eq)(x, q)

+ 1

)
, (1.79)

where we have introduced the equilibrium two-point function in phase space, i.e., N
(2)
(eq)(x, q) =

−S ′′0 (x, q)−1. Eq. (1.79) does not depend on the normalization of the two point function G(2)

or N (2). It serves as a bridge for us to establish the connection between the hydro-kinetic

theory and Hydro+ formalism in Sec. 3.1 (cf. Eq. (3.9)).

We shall keep in mind that path integral formulation in QFT describes spacetime dy-

namics at zero temperature while partition function in statistic mechanics describes finite
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Wmm
1/2

<m>

Non-eq

Eq

m

P(m) 

Figure 1.5: The probability distribution for a given stochastic variable m. The dashed curve
and solid curve describe the equilibrium and non-equilibrium distribution respectively. The
non-equilibrium distribution is different from the equilibrium one due to the 2PI effective
action (entropy). The width of the distribution W

1/2
mm is broadened since more microscopic

independent degree of freedoms are generated. However, the price to pay is that the peak of
the distribution is shifted with an decreasing maximum entropy. This is because of the fact
that the probability is summed to unity,

∫
m
P (m) = 1.

temperature equilibrium thermodynamics which is time-independent. To combine both as-

pects and establish a time-dependent finite temperature non-equilibrium field theory, one

needs to evoke the Schwinger-Keldysh (SK) formalism [58]. Formulating our theory dis-

cussed in Chap. 2 in SK formalism shall be an exciting task, however it is beyond the scope

of this thesis. Related developments can be found in Ref. [59, 60, 61].
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1.3 Critical Fluctuations

1.3.1 Equilibrium Critical Fluctuations

It has long been known that the various critical phenomena could be categorized into

certain universality classes, both statically and dynamically. This classification only depends

on the a few properties of the system, such as symmetry (number of field components N),

dimension d, and the presence or absence of the conservation law, regardless of the disparity

of the microscopic physics which might be complicated. This long-standing miracle in history

is turned out to be nothing but a natural consequence of the renormalization group theory.

Let’s firstly focus on the equilibrium fluctuations discussed generically in Sec. 1.2. In

statistic mechanical interpretation, the bare mass parameter is related to the reduced tem-

perature t by

λ2(Λ) ∼ t ≡ T − Tc
Tc

, (1.80)

where Tc is the critical temperature that is model dependent. According to Eq. (1.35), we

have, however, the universal scaling relation which is model independent:

ξ ∼ t−ν . (1.81)

We say the equilibrium fluctuation becomes critical when we tune λ2 → 0 (T → Tc), as

illustrated in Fig. 1.3. This is a particularly simple example since the only relevant parameter

(to the fixed point of physical interests) is the mass parameter λ2, in the absence of other

possible relevant parameters such as the magnetic field parameter λ1 for all d or cubic

coupling constant λ3 at d < 6. Those relevant parameters, if present, must also be tuned

together with λ2 in order for the RG flow approaching the fixed point. During such running

of flow, all irrelevant parameters gradually approach their fixed-point values. It is possible

that there exists a region in which the relevant parameters remain small but all irrelevant

parameters die out or approach their fixed-point values. This region is called the scaling

region, where the correlation function can be expressed generically in its scaling form. For
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example solving Eq. (1.28) for G(2) one finds in the scaling region that

G(2)(x;µ, λ2) ∼ 1

|x|d−2+η
f(λ2(|x|µ)1/ν), (1.82)

where

η = 2γλ4(λ
∗
4), (1.83)

ν is given by Eq. (1.36), f(x) is a scaling function which falls exponentially at large distances:

f(λ2(|x|µ)1/ν) ∼ e−λ
ν
2µ|x| = e−m|x|, (1.84)

where we have identified λν2µ = m = ξ−1.

In the critical region where the RG flow passes around the Wilson-Fisher fixed point but

all relevant parameters are still small, the solution of Eq. (1.61) can be generically written

in terms of certain universal scaling functions

Ueff = ϕ2d/(d−2)f(ϕµ−(d−2)/2, λ4 = λ∗4) = ϕ1+δg(λ2ϕ
−1/β). (1.85)

According to the correspondence of statistic mechanics (Ising theory) and scaler quantum

field theory (Tab. 1.1), the analogous expression of Eq. (1.85) in Ising theory is

F (M, t) = M1+δg(tM−1/β) = tβ(1+δ)h(Mt−β), (1.86)

and

H =
∂F (M, t)

∂M
= tβδh′(Mt−β). (1.87)

Similar expressions are summarized in Tab. 1.2.

The critical exponents satisfy a set of useful scaling laws:

Fisher scaling law : γ = (2− η)ν (1.88a)

Josephson scaling law : νd = 2− α (1.88b)

Rushbrooke scaling law : α + 2β + γ = 2 (1.88c)

Widom scaling law : γ = β(δ − 1) (1.88d)
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Thermodynamic Quantities Notation Scaling

Free energy F orG |t|β(1+δ)

Specific heat CV |t|α

Magnetization M |t|β

Magnetic field H |t|βδ

Correlation length ξ |t|−ν

Susceptibility χT |t|−γ

Table 1.2: Critical scaling of thermodynamic quantities.

which can be readily derived from thermodynamic relations. Among those critical exponents

ν and η are more fundamental since they are directly related to γλ2(λ
∗
4) and γλ4(λ

∗
4) by

Eq. (1.36) and (1.83) respectively. A field-theoretic calculation for O(N) model gives

η =
(N + 2)

2(N + 8)2
ε2 +O(ε3), ν−1 = 2− N + 2

N + 8
ε− (N + 2)(13N + 44)

2(N + 8)3
ε2 +O(ε3). (1.89)

The other critical exponents could be obtained by using the scaling laws given by Eq. (1.88),

the results are

α =
(4−N)

2(N + 8)
ε− (N + 2)2(N + 28)

4(N + 8)3
ε2 +O(ε3), (1.90a)

β =
1

2
− 3

2(N + 8)
ε+

(2N2 + 5N + 2)

2(N + 8)3
ε2 +O(ε3), (1.90b)

δ = 3 + ε+
(N2 + 14N + 60)

2(N + 8)2
ε2 +O(ε3), (1.90c)

γ = 1 +
(N + 2)

2(N + 8)
ε+

(N + 2)(N2 + 22N + 52)

4(N + 8)3
ε2 +O(ε3). (1.90d)

When d ≥ 4, these results reduces to their mean-field values predicted by Landau’s theory,

simply by setting ε = 0.

The equilibrium thermodynamic fluctuations are important to describe the phase tran-

sition phenomena in statistic system. Given a Gibbs free energy G({Hi}) (or generating

action W) where {Hi} is a set of relevant parameters including external sources as well as
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relevant coupling constants, the order of phase transition is determined by the analyticity

of Mi = −∂G/∂Hi where Mi is conjugate to Hi. If Mi is discontinuous (continuous), the

phase transition is first (second) order7. First order phase transition can be also identified if

two local minima of the effective potential are degenerate while the curvatures at the min-

ima are still positive, the degenerate ground states are separated by a potential barrier. In

contrast, second order phase transition is identified if the global minimum just develops two

or more degenerate minima and the curvature remains zero, corresponding to the infinitely

large correlation length associated with a fixed point. The fixed point is lying in the multi-

dimensional critical hyper-surface expanded only by all irrelevant parameters (coefficients of

irrelevant operators against fixed point). The RG flow in the full multi-dimensional space

expanded by all parameters will terminate ultimately at such fixed point, if it starts from

certain initial value of the relevant parameters at ultraviolet scale which define the critical

point.

So far we are working with Euclidean space at d = 4− ε by dimension continuation. We

shall still emphasize that our results rely on the perturbative analysis where the relevant

quartic coupling constant at long distances are still small (of order ε). Although there

might be no qualitatively differences, the perturbative renormalization theory fails in our

real world where d = 3 (ε = 1). We will discuss the non-perturbative renormalization

approach in Sec. 4.1.1.

1.3.2 Non-Gaussian Fluctuations

The Gaussian fluctuations are characterized by evaluating the two point functions in the

saddle-point (mean-field) approximation in the thermodynamic limit:

G(2)(x1, x2) = 〈φ(x1)φ(x2)〉 =
T

4π|x1 − x2|
exp

[
−|x1 − x2|

ξ

]
, (1.91)

7In Ising theory Mi is the magnetization, whose analyticity is shown in Fig. 1.10.
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where T is restored by absorbing β in the Hamiltonian H. This result is consistent with that

given by Eq. (1.82) and (1.84) in the Gaussian limit (η = 0) and d = 3. Upon the Fourier

transform it corresponds to the free-field propagator

W (2)(q) =
T

m2 + q2
=

Tξ2

1 + (qξ)2
, (1.92)

where m = ξ−1 = U ′′(〈φ〉)1/2 and q is the wavenumber conjugate to x1 − x2. The second-

order phase transitions occur when U ′′(〈φ〉) = 0 tuned by the critical value of relevant

parameters, indicating that the correlation length ξ is divergent in thermodynamic limit.

Notice that when talking about the divergence of fluctuations near the critical point, one

means a collective phenomenon involving the correlated fluctuations of infinitely many degree

of freedom in the correlated volume ξ3 which is infinitely large, rather than a common

misunderstanding that the magnitude of fluctuations is divergent. In fact, one can introduce

the extensive quantity

φV ≡
∫
d3xφ(x), (1.93)

and the (square) magnitude of fluctuations could be measured by the second moment of

which as

κ2[φV ] = 〈φ2
V 〉 = V

∫
d3x〈φ(x)φ(0)〉 ≈ V Tξ2, (1.94)

where in the last step we present the mean-field results by substitute Eq. (1.91) into the

above expression. It can be thought as the q = 0 wavenumber mode of W (2), i.e.,

κ2[φV ] = 〈φ2
V 〉 = VW (2)(q = 0) ≈ V Tξ2, (1.95)

obtained straightforwardly from Eq. (1.92). In the case the correlation length ξ is much

smaller compare to the inhomogeneity scale of the system (such as the hydro-kinetic theory

discussed in Chap. 2), Eq. (1.91) could be approximated as a delta function, i.e.,

G(2)(x1, x2) = lim
ξ→0

T

4π|x1 − x2|
exp

[
−|x1 − x2|

ξ

]
≈ Tξ2δ(3)(x1 − x2), (1.96)

such that the space integration of which is normalized to the same result of Eq. (1.94). A

more systematic analysis for the non-equilibrium two-point functions for multi-variables are

discussed in Chap. 2.
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As we mentioned in Sec. 2.6, from our RG analysis we realize for d = 3 non-Gaussian

fluctuations are also relevant. Thus, non-Gaussian fluctuations that vanish in the free-field

theory has to be taken into account in two aspects. First, the expressions for two-point

functions need to be modified accordingly, e.g., the critical exponent η (cf. Eq. (1.82)),

albeit very small, has to be restored in Eq. (1.91) and Eq. (1.92):

G(2)(x1 − x2) ∼ 1

|x1 − x2|d−2+η
exp

[
−|x1 − x2|

ξ

]
, W (2)(q) ∼ ξ2−η

1 + (qξ)2−η , (1.97)

where the expression W (2)(q) is approximated in its asymptotic form at large qξ [62]. This

modification is negligible if one considers a system where the correlation length is not to large

(such as the case of heavy-ion collisions). Second, what matters more is the non-Gaussian

fluctuations themselves, to which the above analysis are extended as [63]

κ2[φV ] = 〈φ2
V 〉 = V Tξ2, (1.98a)

κ3[φV ] = 〈φ3
V 〉 = λ3V T

2ξ6 = λ̃3V T
3/2ξ9/2, (1.98b)

κ4[φV ] = 〈φ4
V 〉c = 〈φ4

V 〉 − 3〈φ2
V 〉2 = V T 3(3(λ3ξ)

2 − λ4)ξ8 = V T 2(3λ̃2
3 − λ̃4)ξ7, (1.98c)

where the subscript “c” means connected, since the disconnected diagrams 〈φ2
V 〉2 are sub-

tracted. We also used λ3 = λ̃3T (Tξ)−3/2 and λ4 = λ̃4(Tξ)−1 from RG scaling analysis where

λ̃3 and λ̃4 are rescaled dimensionless coupling constants8. κn are the connected cumulants of

the distribution Z = exp[−βH[φ]]. The corresponding diagrammatic representation is illus-

trated in Fig. 1.6. The message Eq. (1.98) convey to us is that the higher-order cumulants

are more sensitive to the correlation length and thus the critical point.

Sometimes it is more convenient to introduce a set of normalized intensive quantities

(cumulants), following the conventional notation:

σ2 = κ2, Sσ =
κ3

κ2

, κσ2 =
κ4

κ2

. (1.99)

8Note here we follow the convention of Ref. [63] that only H[φ] instead of βH[φ] are expanded in φ, i.e.,
H[φ] = 1

2 (∇φ)2 + 1
2m

2φ2 + 1
3!λ3φ

3 + 1
4!λ4φ

4, thus the mass dimension counting for the coupling constants is
different from those for βH[φ].
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Figure 1.6: The diagrammatic representation of equilibrium non-Gaussian cumulants (cf.
Eq. (1.98)), adapted from Ref. [64]. The solid circle stands for the field φ(x), and the open
circle (vertex) for the coupling constant of φn attached by n legs. The waving line is the
zero wavenumber (q = 0) propagator m−1 = ξ2.

(a) (b) (c)

Figure 1.7: Illustration of the second (a), third (b) and fourth (c) moments of a distribution.
In (a) curves of Gaussian distribution with different widths are presented. In (b) and (c),
red curves are for negative values while the blue curves for the positive, both describe the
deviation from a Gaussian distribution represented by the dashed curves.

Here σ2, S and κ are referred to as the variance, skewness and kurtosis, which measures the

width, asymmetry and tailedness (flatness) of a distribution respectively (Fig. 1.7). This

normalization (ratio of extensive quantities) eliminates the dependence of extensive quanti-

ties such as participant numbers and volumes. Thus the normalized intensive quantities are

independent of the particle number or volume fluctuations.

The field φ is understood as one or a set of order parameters near the critical point.

The fluctuations of φ are not directly measurable by the heavy-ion collision experiments. In

Sec. 1.5.2 we will discuss its connection to experimental observables. In the case of QCD

critical point which is believed to reside at high baryon density regime, in large part the

order parameters are characterized by the conserved baryon charges. The above analysis also

applies if one identifies φ ∼ δn/n, the ratio of baryon density fluctuation to its background.

For a systematic and general treatment of non-Gaussian fluctuations for conserved charges,
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see Ref. [65].

1.3.3 Non-equilibrium Dynamics of Critical Fluctuations

Now let’s turn to the dynamic critical fluctuations. The central ideas of the modern

theory of dynamic critical phenomena was systematically summarized by Hohenberg and

Halperin in their insightful introductory review [66].

Following the Hamiltonian field theory, we introduce the momentum density conjugate

to φ as

π(x) ≡ ∂L
∂φ̇(x)

. (1.100)

The Hamiltonian density is nothing but the Legendre transform of the Lagrangian density,

i.e.,

H(π, φ) ≡ π(x)φ̇(x)− L =
1

2
π2 +

1

2
(∇φ)2 + U(φ) (1.101)

where in the second equality we have used Eq. (1.2) and therefore π = φ̇. It is subject to

the Hamiltonian equations

φ̇ =
δH(π, φ)

δπ
= {φ,H}, π̇ = −δH(π, φ)

δφ
= {π,H}, (1.102)

where we have introduced the Poisson bracket

{O,H} =
∂O
∂φ

∂H
∂π
− ∂O
∂π

∂H
∂φ

. (1.103)

Similarly we can define (W [J ]→ −βG[J ], Γ[ϕ]→ βF [ϕ], S[φ]→ βH[φ])

Z[J ] = e−βF [ϕ]+
∫
ddxJ ·ϕ =

∫
Dφ exp

{
−βH[φ(x)] +

∫
ddxJ(x) · φ(x)

}
. (1.104)

Let’s interpret ϕ ≡ {ϕi} as a set of real macroscopic variables describing the system at long

distances and times, separated from other variables whose typical scales are fast in times

or short in distances. In other words, ϕ is a subset of a complete microscopic variables

whose time evolution is described by the deterministic equations. Examples of variables ϕ

could be the long-wavelength components of the conserved quantities or the long-wavelength
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fluctuations of the order parameters for a phase transition. At the macroscopic scales,

the time evolution of ϕ is instead described phenomenologically by a first-order stochastic

differential equation:

∂tϕ̆a = {ϕ̆a, βF [ϕ̆]} = −Mab
δ(βF [ϕ̆])

δϕ̆b
+ ξa , (1.105)

where Mab = Dab + Ωab is the kinetic coefficient and is decomposed into the symmetric part

Dab = Dba and anti-symmetric part Ωab = −Ωba. ξa is the fluctuating force that ensures

the equilibration of the system. Its two-point correlation is assumed to be a Gaussian

distribution:

〈ξa(x)ξb(x
′)〉 = 2Dabδ

(d)(x− x′). (1.106)

The fact that the amplitude of the noise correlator is precisely set by Dab is not a coincidence.

It is determined by the fluctuation-dissipation theorem which will be detailed later. All fast

degrees of freedom (the microscopic forces) are subsumed in random noise, thus ϕ(t+ ∆t) is

not completely determined by ϕ(t), at each time slice, the noise gives rise to a random kick

and the value of ϕ is characterized by the probability distribution P (ϕ, t), whose dynamic

evolution is described by Fokker-Plank equations.

In the case of single variable ϕ, Ωab vanishes and we have

∂tϕ̆ = −Dδ(βF [ϕ̆])

δϕ̆
+ ξ , (1.107)

where we have used the breve accent ˘ to distinguish a stochastic quantity from its ensemble

average. We shall emphasize that Eq. (1.105) or (1.107) is a phenomenological equation

manifested near equilibrium. Nonetheless, it captures the universal long-wavelength physics

which can be classified into several dynamic universality classes. If D ∼ γ where γ is a

relaxation coefficients, Eq. (1.107) describes the dynamics of a non-conservative variable,

which is referred to as Model A. While if D ∼∇ · (γ∇), Eq. (1.107) becomes a conservation

equation describing the diffusion dynamics of a conserved variable, referred to as Model B.

If Dab is a matrix coupling multiple conserved variables, as the case of hydrodynamics where

transverse momenta couple to a conserved critical mode, the model is known as Model H.
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It describes the dynamical universality of systems from liquid-gas phase transition to QCD

critical point [38]. For other dynamical models see Ref. [67].

Similar to the way we dealt with effective action in Eq (1.53), we can expand the free

energy as

βF [ϕ(x)] =

∫
ddx

[
1

2
(∇ϕ(x))2 +

1

2
m2ϕ(x)2 + . . .

]
, (1.108)

where we neglect the non-Gaussian parts for a moment and the integration on x is purely

spatial (as a consequence that the d-dimensional space in classical statistic mechanics is dual

to the d-dimensional Euclidean spacetime in quantum field theory). Substituting the above

expression into the single variable equation, Eq. (1.107), and linearizing it near δϕ = ϕ̆−ϕ,

one finds

∂tδϕ(x) = −D
(
m2 −∇2

)
δϕ(x) + ξ(x), (1.109)

and its expression upon the Fourier transforms

ϕ̃(q) =

∫
d3xe−iq·xϕ(x), ξ̃(q) =

∫
d3xe−iq·xξ(x) (1.110)

reads

∂tδϕ̃(q) = −δϕ̃(q)

τq
+ ξ̃, (1.111)

where

τ−1
q = D(q)(m2 + q2). (1.112)

In Model A, D(q) ∼ γ which is independent of q, thus one can introduce a relaxation time

τ0 ∼ (m2γ)−1 for the homogeneous (zero-wavenumber) component of ϕ, which diverges as

m2 ∼ t ∼ T − Tc → 0. The effect that the relaxation time diverges near the critical point

is called the critical slowing down. The q-dependent relaxation time τq is smeared when

t→ 0 due to q 6= 0. However, as we shall see in Chap. 3, for typical q ∼ ξ−1 where ξ is the

correlation length, Eq. (1.112) indicates τq∼ξ−1 ∼ ξ2, thus the effect of critical slowing down

remains and plays an important role in the dynamical description of critical fluctuations.

In model B, the effect of critical slowing down is even more significant, since in this case
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D(q) ∼ γq2, thus τq∼ξ−1 ∼ ξ4. In Model H for d = 3, the conductivity λ ∼ ξxλ ≈ ξ1 is

divergent due to the convection of the fluid, therefore γ ∼ λ/χT ∼ ξ−1 and hence τq∼ξ−1 ∼ ξ3.

If we take into account the non-Gaussian fluctuations in Eq. (1.53), we have to adopt

the dynamical renormalization group theory. Similar to the idea of static renormalization

group discussed in Sec. 2.6, the exponents of ξ in relaxation time shall be modified beyond

free-field approximation. In general, the relaxation time can be put into the scaling form

τq = t−yFτ (qξ(t)) = t−zνFτ (qt
−ν). (1.113)

where where y and z are the dynamic critical exponents to be determined and Fτ (x) satisfies

the conditions

Fτ (x)→ constant, x→ 0,

Fτ (x)→ x−y/ν , x→∞.
(1.114)

The large-x behavior is determined such that Fτ (x→∞) does not depend on t in the scaling

region, which would also implies z = y/ν. When we take the mean-field value y = 1 and

z = 2, the scaling is consistent with Eq. (1.112) where D ∼ γ.

Dynamical Model Description z
Model A non-conserved fields 2 + cη
Model B conserved fields 4− η
Model H conserved field with fluid 4− η − xλ

Table 1.3: Summary of several dynamical universality class models discussed in this thesis.
c ≈ 0.7(1− 1.7ε), xλ ≈ ε.

1.4 QCD Phase Diagram and Critical Point

1.4.1 Review of QCD

The classical Lagrangian density of QCD can be written as

LQCD = ψ̄αf
(
i /Dαβ −mfδαβ

)
ψβf −

1

4
F a
µνF

µν
a , (1.115)
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where ψαf (α = 1, ..., Nc) with flavor indexed by f = (u, d, s, c, t, b) is the quark field in the

fundamental representation of SUc(Nc), while

F a
µν = ∂µA

a
ν − ∂νAaµ − gfabcAbµAcν (1.116)

is the field strength tensor of Yang-Mills (gluon) field Aaµ (a = 1, ..., N2
c − 1) in the adjoint

representation of SUc(Nc), where g is the dimensionless coupling constant of QCD and fabc

is the totally anti-symmetric structure constant. In the case of QCD Nc = 3 however we still

keep Nc here without loss of generality. The kinetic term for quarks is defined by

/D ≡ γµDµ, Dµ ≡ ∂µ + igT aAaµ. (1.117)

where γµ is the Dirac matrix, T a (a = 1, ..., N2
c −1) is the Hermitian generator of the SUc(Nc)

group satisfying the Lie algebra

[
T a, T b

]
= ifabcT c, (1.118)

In the fundamental representation, T a is written by the Nc ×Nc matrices ta, which reduces

to the Pauli matrices for Nc = 2 and to the Gell-Mann matrices for Nc = 3 respectively (up

to a factor of 1/2). The generator ta satisfies

Tr(tatb) =
1

2
δab, (tata)ij = CFδij with CF =

N2 − 1

2N
. (1.119)

In the adjoint representation, T a is instead written by the (N2
c − 1) × (N2

c − 1) matrices

(T a)bc = −ifabc satisfying

Tr(T aT b) = Nδab, (T aT a)bc = CAδbc with CA = Nc. (1.120)

Introducing Aµ ≡ taAaµ and Fµν ≡ taF a
µν , the field strength tensor can be written more

compactly as

Fµν = ∂µAν − ∂νAµ + ig [Aµ, Aν ] = − i
g

[Dµ, Dν ] . (1.121)

The classical equation of motions are obtained from Eq. (1.115):

Dirac equation:
(
i /D −m

)
ψf = 0,

Yang-Mills equation: [Dµ, F
µν ] = gjν ,

(1.122)
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here jµ = tajµa and jµa = ψ̄fγ
µtaψf .

In the spirit of Wilson’s renormalization group discussed in Sec. 2.6, one can compute

the β function for the coupling constant g in the perturbative regime:

β(g) = µ
∂

∂µ
g = − 1

(4π)2

(
11− 2

3
Nf

)
g3 + . . . , (1.123)

the corresponding solution of which in terms of the fine structure constant αs(µ) is

αs(µ) =
g2

4π
=

4π
(
11− 2

3
Nf

)
log
(

µ2

Λ2
QCD

) + . . . (1.124)

where ΛQCD ≈ 200 MeV is the QCD scale parameter determined from experiments. Clearly,

the β function is negative for Nf ≤ 16. Thus, αs decreases as µ increases, known as the

ultraviolet asymptotic freedom. In this regime perturbative calculation is reliable and can be

used in the hard process such as deep-inelastic scattering. In contrast, αs increases as µ de-

creases, a behavior known as the infrared slavery. This means at low-energy, the underlying

QCD action is non-perturbative and the QCD vacuum is confined, thus alternative effective

approaches are in demand. Indeed, due to the strong coupling, nonlinearity of gluon inter-

action, color confinement and many-body effect, it is difficult to describe the QCD matters

directly from the deceptively simple-looking first principle QCD Lagrangian. The alterna-

tive effective approaches include the bag model, chiral perturbation theory, lattice QCD,

Nambu-Jona-Lasinio (NJL) model, etc. In particular, in the vicinity of QCD critical point,

we could construct an effective model based on NJL model and the Ginzburg-Landau-Wilson

paradigm to describe the critical phenomena.

Before we conclude this subsection let’s take a second look of Eq. (1.115) from the view-

point of symmetry. First, the terms constructed in Eq. (1.115) are such that they are

invariant under the SUc(Nc) gauge transformation, in other words all terms violating the

gauge invariance are prohibited9. Second, in the massless limit (m = 0), Eq. (1.115) is also

9Nevertheless, the famous QCD θ term, albeit gauge-invariant, violets the CP-symmetry and causes the
strong CP problem, and hence is not presented here. Furthermore, the auxiliary fields fixing the gauge are
also not taken into account.
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invariant under the SUL(Nf ) × SUR(Nf ) chiral transformation. Although the chiral sym-

metry is not exact since quark is massive, it remains a good approximation as long as the

running mass m� ΛQCD manifested in the short-distance scales. The spontaneous breaking

and restoration of chiral symmetry in vacuum distinct two different phases in the QCD phase

diagram, as discussed in the next subsection.

1.4.2 QCD Phase Diagram

A phase diagram characterizes and distinguishes the equilibrium states of a thermo-

dynamic system provided certain independent thermodynamic variables. The choice of

independent variables is arbitrary but tricky. In the most well-known example, the two-

dimensional phase diagram of liquid and gas, if temperature T and pressure p is provided

at fixed total particle numbers N = nV , the corresponding thermodynamic equilibrium

state (phase) are uniquely determined, thus T and p are convenient variables to distinct the

phases of water. This is due to the fact that given temperature T and pressure p at fixed

N , the thermodynamic equilibrium state is such that it minimizes the Gibbs free energy

G = G(T, p) = E − TS + PV = µN , whose natural variables are T and p, reflected by the

fundamental thermodynamic equations dG = V dp − SdT at fixed N . By natural variables

it means by taking derivative of a thermodynamic quantity as a function of which deter-

mines all the thermodynamic properties of the system. The phase boundaries where phase

transition occurs are one-dimensional lines corresponding to the coexistence of two phases

(say phase A and phase B with density nA and nB respectively). As a consequence, if one

instead chooses n and T as the phase diagram variables, given T and p fixed, there might be

infinitely many coexistence states, with density a linear combination of nA and nB, occurs in

the phase diagram expanded by n and T (see, for example, Fig. 4.11). Therefore, in the case

we are interested in the coexistence region and beyond, n and p shall be more convenient

variables, although we need to pay the price that the one-to-one correspondence between

the thermodynamic variables and equilibrium states is lost. More generally speaking, we
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could consider the extended generating functionalW [{Ji}], where {Ji} is a set of source-like

external fields, such as temperature, chemical potential, (quark) mass, coupling constant

and so on. Consequently, the dimensionality of the phase diagram increases as we consider

more and more relevant parameters.

Figure 1.8: The QCD phase diagram in T − µ plane [68].

In the case of QCD phase diagram in two dimensions, the two phase diagram variables are

commonly chosen to be temperature T and baryon chemical potential µ = µB, the natural

variables of grand potential (Landau free energy) Ω = Ω(T, µ) = E − TS − µN = −pV
which is minimized in thermal and chemical equilibrium, since dΩ = −SdT −Ndµ at fixed

volume V . The partition function is read off as

Z =

∫
D[A,ψ, ψ̄]e−SQCD[A,ψ,ψ̄] = Tr e−β(ĤQCD−µN̂) = e−βΩ(T,µ,V ) = eβP (T,µ)V , (1.125)

where

SQCD[A,ψ, ψ̄] =

∫
ddx

(
LYM + ψ̄αf

(
i /Dαβ − (mf − µfγ0)δαβ

)
ψβf

)

=

∫
ddx

(
LQCD(mf = 0)−mf ψ̄fψf + µf ψ̄fγ0ψf

)
, (1.126)
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and µf = µB/3 is the chemical potential of each quark flavor, conjugate to the baryon density

n = 〈ψ̄γ0ψ〉. From this expression it is clear that mf serves as a relevant parameters that

could extend the dimensionality of the QCD phase diagram. Indeed, the nature of phase

transition is sensitive to the quark masses (as indicated by Columbia plot [69]), and our real

world chooses the typical values of quark mass for which we are living in a particular “slice”

of the multi-dimensional space of the QCD phase diagram (Fig. 1.9).

Figure 1.9: The QCD phase diagram in T − µ −mud plane (Frithjof Karsch, University of
Bielefeld). Here, Tc (red point) is the critical transition temperature in the chiral limit (do
not confused by the critical temperature for the QCD critical point, which is also denoted
by Tc in this thesis); Tpc (yellow point) is the pseudo critical transition temperature of QCD
with massive (up and down) quarks; the dark-red point is the tri-critical point described
by φ6 theory; the blue point is the QCD critical end point that we mainly focus on in this
thesis. The QCD phase diagram depicted in Fig. 1.8 is the slice partially bounded by the
dashed lines, tuned by the physical quark masses. The dashed curves indicate the crossover
transition, while the solid lines are lines of second-order phase transitions. The gray surface
is a hyper-surface of first-order phase transition points.

As we mentioned, it is difficult to study the critical point from the the classical QCD

action. Alternatively, an elaborate effective action is provided by Pisarski and Wilczek [70].
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The classical QCD Lagrangian could have the following broad symmetry:

SUc(Nc)× UB(1)× UA(1)× SUL(Nf )× SUR(Nf ), (1.127)

where SUc(Nc)× UB(1) is intact but UA(1)× SUL(Nf )× SUR(Nf ) could be broken for the

chiral symmetry breaking. Pisarski and Wilczek then constructed their effective action based

on the symmetry and stability by keeping the lowest dimensional relevant operators:

LPW =
1

2
Tr ∂Φ†∂Φ +

m2

2
Tr Φ†Φ +

g1

4!
(Tr Φ†Φ)2 +

g2

4!
Tr(Φ†Φ)2

− c

2
(det Φ + det Φ†)− 1

2
Trh(Φ + Φ†), (1.128)

where the last two terms are for axial anomaly and quark mass respectively,

Φij =
1

2
ψ̄i(1 + γ5)ψj ∼

N2
f−1∑

f=0

Φata (1.129)

is a color-singlet complex, Nf ×Nf matrix. In the presence of axial anomaly and Nf = 2 (up

and down quarks), one can show that the effective Lagrangian turns to a φ4 model subject

to O(4) symmetry:

LPW =
1

2
(∂φ)2 +

m2 − c
2

φ2 +
g1 + g2/2

4!
(φ2)2, (1.130)

where φ = (〈ψ̄ψ〉, 〈ψ̄iγ5τψ〉) is a four-component vector field made up of the quark conden-

sate singlet 〈ψ̄ψ〉 and pion triplet 〈ψ̄iγ5τψ〉. τ denotes the Pauli matrices.

As we have mentioned in the previous subsection, the QCD phase diagram shall reflect the

fundamental properties of QCD: the spontaneous chiral symmetry breaking (restoration) and

confinement (deconfinement). Once quarks acquire their current masses by the electroweak

symmetry breaking, both of them are valid only in an approximate level, therefore strictly

speaking there is no good order parameter to distinguish the two phases quantitatively. How-

ever, assuming the two properties are exact, it is possible to choose the thermal expectation
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value of quark condensate10

〈ψ̄ψ〉





= 0 restoration phase subject to SUL(Nf )× SUR(Nf );

6= 0 breaking phase subject to SUV(Nf )
(1.131)

as one sector of the order parameters to measure the phase transition11. For Nf = 2,

the vacuum symmetry is approximately broken to SUV(2), the Goldstone bosons associated

with such symmetry breaking are loosely portrayed as pions assigned to an isospin triplet,

〈ψ̄iγ5τψ〉). Since the symmetry breaks only approximately, pions, unlike ordinary Goldstone

bosons, acquire finite masses. Thus the O(4) symmetry is broken to O(1) or Z(2) near

the critical point. Moreover, regardless of whether the symmetry is exact or not, we shall

emphasize that the order parameter could be one or a set of long-wavelength fluctuations near

the critical point associated to the second-order phase transitions. Unlike other systems (e.g.,

ferromagnet system where the order parameter is magnetization M), the order parameter of

QCD critical point is hard to determine, it is a combination of

• chiral condensate fluctuations: ψ̄ψ − 〈ψ̄ψ〉;

• baryon density fluctuations: ψ̄γ0ψ − 〈ψ̄γ0ψ〉;

• hydrodynamic fluctuations: T µν − 〈T µν〉;

and so on. All of which have the correlation lengths diverging in the same order of magnitude

near the critical point. Following the convention, we shall call the mixed order parameters

σ field in this thesis.

10Although the chiral condensate 〈ψ̄ψ〉 formed near the Dirac sea is analogous to the cooper pair 〈ψψ〉
formed near the Fermi surface. However, the quark and anti-quark only condensate at strong coupling, while
a cooper pair of quarks is preferred at large density of states in the weak coupling, the latter is known as
the color superconducting phase highlighted in Fig. 1.8.

11The choices of order parameter are not unique, other possible choices are for example Wilson/Polyakov
loop for the confinement and deconfinement.
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We are now in the right position to construct the effective model for describing the phase

transition in terms of the order parameter σ. The partition function is (cf. Eq. (1.56))

Z = exp[−βG[J ]] = exp[−βH[σ] +

∫

x

Hσ] (1.132)

where the Hamiltonian (Landau functional) are expanded around the expectation value in

thermal average 〈σ〉
H[σ] =

∫
ddx

∑

n

λn(σ − 〈σ〉)n. (1.133)

The Z(2) symmetry require that odd-order terms vanishes and the minimum order required

for capturing the second-order phase transition is n = 4, thus we shall employ a φ4 theory and

all corresponding discussion and results in Sec. 1.2 shall be straightforwardly applied here.

Since both the QCD critical point and Ising critical point are described by the universality

class of φ4 theory, it is therefore feasible to map the critical equation of state of Ising theory,

which is well known, to the case of QCD where the critical equation of state is much more

difficult to construct.

1.4.3 Mapping from Ising Theory to QCD

The fluctuation of magnetizations in Ising theory is described by the probability intro-

duced in Eq. (1.66), where the free energy is described by the φ4 theory

F (M) =
1

2
tM2 +

1

4!
uM4. (1.134)

If we simply identify φ = M and therefore φV = NδM (cf. Eq. (1.93)), then the Gibbs free

energy

G(H) = sup
M

F (M)−HM =
∞∑

n=2

κn
n!
Hn (1.135)

serves as a generating function of the cumulant

κn = 〈φnV 〉 = −NT
(
∂nG(H)

∂Hn

)

T

= −NT
(
∂n−1M(H)

∂Hn−1

)

T

. (1.136)
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For example,

κ2 = 〈φ2
V 〉 = N2〈(δM)2〉 = TNχ−1

T (1.137)

where χ−1
T =

(
∂2F
∂M2

)
T

=
(
∂H
∂M

)
T

is the isothermal susceptibility, which vanishes when

F ′′(M) = 0. Thus, the equilibrium cumulants could be completely determined by the equa-

tion of state M = M(H).

The analytic expression for M(H) is already cumbersome in the mean-field approxima-

tion, and becomes unmanageable when fluctuations are taken into account. In certain limit,

the equation of state manifests itself in a scaling form, where the contribution of fluctuations

are resumed into the critical exponents, however, such scaling function can not be applied

uniformly to the whole critical region but only a particle regime (see Sec. 4.2.3 for instance).

This problem is controllably solved by introduce the Josephson-Schofield (JS) Parametric

Representation in the small ε = 4−d limit. In this representation one introduces two param-

eters, R and θ, which mimic role of radial distance and polar angle near the critical point

(as a origin). Then, any thermodynamic quantity Φ can be parametrized in terms of two

parameters R and θ in the general form near the critical point [71, 72, 73],

Φ(R, θ) = Φ̄0R
xφ(θ), (1.138)

where Φ̄ is the normalization constant, x is a appropriate critical exponent, and φ(θ) is

a scaling function to be determined by the thermodynamic relations. We leave the detail

discussion to Sec. 4.2.3 and Appendix 4.2.3 when exploring the analyticity of the Ising

equation of state.

Since, as we mentioned in the previous subsection, the critical points of Ising theory and

QCD can be described the same universality class of Z(2) symmetry. Thus, it is possible to

map the critical mode as well as critical equation of state of Ising model to that of QCD:

M 7−→ σ , GIsing(t,H) 7−→ PQCD(T, µ). (1.139)

The map is assumed to be a linear coordinate variables transform

(R, θ) 7−→ (t,H) 7−→ (T, µ) (1.140)
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Figure 1.10: A particular example of the non-universal map from Ising variables (t,H) to
the QCD coordinate (µ, T ).

and depend on a set of non-universal parameters, such as the location of critical point, the

size of the critical region and the mapping angles. A particular map is depicted in Fig. 1.10.

Recently, a family of lattice-QCD based equations of state with a Ising critical point is

constructed and some of the non-universal parameters are able to be constrained. We refer

the readers to Ref. [74, 75].

Once all the non-universal input is fixed, the map is uniquely determined. The equi-

librium cumulants as a function of the relevant coordinate variables are also determined.

Fig. 1.11 shows an example how the kurtosis κ4 are mapped from the Ising coordinate to

the QCD coordinate.

We shall keep in mind that the map presented in Fig. 1.11 is between the equilibirum

cumulants, which can be completely determined by the equilibrium partition function of the

thermodynamic system. In a non-equilibrium process like heavy-ion collisions, the thermo-

dynamic variables do not equilibrate fast enough compared to the typical fireball expansion

or quenching rate, thus the static map such like Fig. 1.11 does not suffice to provide all

the information needed to match the experimental results. In other words, the dynamic
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t
H

t

H

T
μ

Figure 1.11: Mapping kurtosis κ4 from (t,H) coordinate to (µ, T ) coordinate, adapted from
Ref. [64]. The cumulant is negative (red) around the crossover side and positive along the
first-order phase transition line.

evolution of cumulants incorporate the correct dynamic universal behavior of QCD criti-

cal point [38], has to be studied. Remember, the cumulants are basically the moments of

partition (probability distribution) and thus can be directly calculated from the generating

function. Unlike the stationary case where the distribution is determined by its thermo-

dynamic equilibrium when entropy is maximized, the distribution function would acquire

a time dependence described by the Fokker-Planck equations out of equilibrium. A simple

model for a non-conserved zero-momentum critical mode is studied in Ref. [76] and the re-

sults presented in Fig. 1.19 indicate a significant memory effect of the cumulant evolution.

Without a more realistic and systematic study of the non-equilibrium contribution to the

final fluctuations measures, any sound conclusion would be considered unauthentic.

1.5 Heavy-Ion Collision Experiment

1.5.1 Connection to Experimental Observables

As we point out in Sec. 1.3, heavy-ion collision experiments do not directly measure

the critical mode and its fluctuations. What the experiment do measure, however, are the
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momenta and other quantum numbers (charge, baryon number, strangeness, spin, etc.) of

detected particles (protons, pions, etc.), on an event-by-event basis. Notwithstanding, the

critical mode does couple to the detected particles, through the coupling the critical mode

would influence the experimental observables of the measurable particles.

Since the experiments do not measure the spatial correlations of fluctuations, we have to

translate the spatial correlation to the momentum space. The range of correlation in mo-

mentum space is determined by the momentum distribution (momentum width) of particles

within the correlated spatial volume ξ3. In the Bjorken-like expansion of heavy-ion collisions,

the typical correlation range in spatial rapidity is ∆ηcorr ≈ ξ/τf ∼ 0.1 − 0.3 where τf ∼ 10

fm is the freezeout time and ξ ∼ 1 − 3 fm is the freezeout correlation length near the crit-

ical point. Provided the Boltzmann distributions in momentum space of a non-relativistic

particle with mass m,

f(p) ∼ exp

[
− p2

2mT

]
, (1.141)

the momentum thermal spread width is read off as ∆p =
√
mT , corresponding to a typical

correlation range in kinematic rapidity ∆ycorr = O(1) for protons, which is much larger than

the correlation range in spatial rapidity, i.e., ∆ycorr � ∆ηcorr. Therefore, ∆ycorr is in contrast

not sensitive to the correlation length ξ as the cumulants do. Nevertheless, the magnitude

of momentum correlations is directly related to the correlation length.

At freezeout, the particles are described by the phase-space distribution function, say

fA(x) where the subscript A labels the momentum p and a set of conserved quantum num-

bers distinguishing the species of the particles. The spatial distribution is blind to the ex-

perimental apparatus and thus it’s more convenient to introduce the one-particle momentum

distribution function12

nA =

∫
d3xfA(x), (1.142)

12The one-particle momentum distribution at freezeout is given by the Cooper-Frye formula. The spatial
integration is over a particlization hypersurface Σµ, i.e.,

∫
d3x ∼

∫
Σ
dΣµp

µ. For simplicity we would bypass
this delicate freezeout prescription.
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whose event average is defined by

ρA ≡
dN

d3pA
= 〈nA〉 (1.143)

and thus the average of the fluctuation δnA = nA−〈nA〉 vanishes by definition, i.e., 〈δnA〉 = 0.

What we are interested in are of course the multi-particle correlations. The event average of

two-particle distribution function is similarly defined by

ρAB ≡
dN

d3pAd3pB
= 〈nAnB〉 − δAB〈nA〉, (1.144)

where the second term in the last equality eliminates the double counting of pair particles

with exactly the same momentum and quantum numbers. Introducing

〈δnAδnB〉 = 〈nAnB〉 − 〈nA〉〈nB〉 =

∫
d3xAd

3xB〈δfA(xA)δfB(xB)〉, (1.145)

the two-particle correlation function are convenient to expressed by

CAB = ρAB − ρAρB = 〈δnAδnB〉 − δAB〈nA〉. (1.146)

The inclusive conserved quantities (multiplicity number), such as the total charge13

Q =

∫

A

qA nA, (1.147)

are simply the integration over all relevant quantum numbers A which is experimental visible

within certain acceptance ranges. The multiplicity in each event Q fluctuates around its

average measured by

δQ = Q− 〈Q〉, 〈Q〉 =

∫

A

qA 〈nA〉. (1.148)

Thus the multiplicity distribution can be characterized by the cumulants. For example, the

second-order cumulant is

κ2[Q] = 〈(δQ)2〉 =

∫

A

∫

B

qAqB〈δnAδnB〉. (1.149)

13The results for total particle numbers N are obtained by setting the quantum number qA to unity. The
results for particular conserved quantities are obtained by specifying the integration acceptance A.
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In realistic case, the measurable multi-particle correlation functions such as CAB are con-

tributed from many sources, such as the initial fluctuations, flow-induced correlations, jets,

etc. However, among the various sources the critical fluctuations are particularly extractable,

in a sense it only relies on the critical region affecting a small beam energy scan interval.

For this reason we will only consider how the critical fluctuations step in and change the

scenario.

The critical mode σ is consider as a classical field serving as a slowly varying background of

the free measurable particles such as pions π [77], whose one-particle phase-space distribution

reads

fA =
1

eβEA ∓ 1
(1.150)

where + and − sign are for fermions and bosons respectively and EA = EA(p;σ) now also

depends on the critical mode σ. Thus, expanding the above expression to linear order in

δσ, one obtains the fluctuation of the one-particle phase-space distribution incorporating the

contribution from the critical mode:

δfA(x) = δf
(free)
A (x) +

∂fA
∂σ

δσ(x) = δf
(free)
A (x)− βgA

γA
fA(1± fA)δσ(x), (1.151)

where gA = ∂mA(σ)
∂σ

is a coupling constant of the σππ interaction (which gives rise to the

σ-dependence of pion mass, i.e., mA = m + gAσ), γA = ∂mA
∂EA

is the Lorentz factor of the

particle, and we have used

∂fA
∂σ

= −β∂EA(σ)

∂σ
fA(1± fA). (1.152)

The two-particle phase-space correlation at freezeout is obtain by using Eq. (1.151) and

(1.96), with the help of 〈δfAδfB〉 = 〈fA〉δAB according to the Poisson distribution manifested

for the uncorrelated gas:

〈δfAδfB〉 =

(
δAB〈fA〉+ Tξ2∂fA

∂σ

∂fB
∂σ

)
δ(3)(xA − xB). (1.153)

Accordingly Eq. (1.145),

〈δnAδnB〉 = δAB〈nA〉+

∫
d3xTξ2∂nA

∂σ

∂nB
∂σ

, (1.154)
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where the first terms is the trivial Poisson distribution. Using Eq. (1.149), one can obtain

the second-order cumulant which is presented below together with its generalization to the

non-Gaussian cases:

κ2[Q] = 〈(δQ)2〉 =

∫

A

q2
A〈nA〉+

∫
d3xTξ2

(∫

A

qA
∂fA
∂σ

)2

, (1.155a)

κ3[Q] = 〈(δQ)3〉 =

∫

A

q3
A〈nA〉+

∫
d3xλ̃3T

3/2ξ9/2

(∫

A

qA
∂fA
∂σ

)3

, (1.155b)

κ4[Q] = 〈(δQ)4〉c =

∫

A

q4
A〈nA〉+

∫
d3x(̃3λ̃2

3 − λ̃4)T 2ξ7

(∫

A

qA
∂fA
∂σ

)4

. (1.155c)

A diagrammatic interpretation is given in Fig. 1.12. Eq. (1.155) says the non-Gaussian

cumulants of fluctuations are more sensitive to the critical point in a sense they depend on

the correlation length ξ with a larger power, i.e., κn[Q] ∼ ξ
5n−6

2 .

Figure 1.12: Diagrammatic representation of κ3[Q] (left) and κ4[Q] (right) in Eq. (1.155),
adapted from Ref. [63]. The wavy line represents the propagator of σ field, i.e., 1/m2

σ ∼ ξ2,
cross circle stands for the insertion of charges qA, integrated by

∫
A

of the loop with the blue
points for the insertion ∂/∂σ, the black points unattached with the loop are the vertices of
the σ field (i.e., open circles in Fig. 1.6).

In order to enhance the contribution from the critical mode, a few remarks are attached

here: first, since it is usually assumed that gA ∝ mA as in the sigma model, the contribution

of the critical mode is much significant for heavier particles, therefore, compare to pions, the

strength of the critical signal is less significant than protons, for which the above analysis

shall also apply; second, remember the measurable quantities are sensitive to the acceptance

window, including the momentum rapidity ranges and selected quantum numbers of particles.
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It has been show in Ref. [78] that the extension of rapidity accpetance coverage would

significantly increase the magnitude of the critical fluctuation signatures; third, since the

positive and negative charges cancel the critical contribution from each other, the critical

contribution to cumulants of positive-definite quantities are typically larger than that of such

quantities as net charges.

1.5.2 Heavy-Ion Collisions and Beam Energy Scan

Unlike the early Universe or the core of compact stars, which we can only analyze based on

the remnant information from the Big Bang or the astronomic observation of the remote stars,

the Earth-based accelerator facilities provide an ideal incubator for controllable events of

nucleus-nucleus collisions. The ongoing and upcoming experiments are performed at facilities

include: Relativistic Heavy Ion Collider (RHIC) at BNL in New York, USA; the Super Proton

Synchrotron (SPS) and Large Hadron Collider (LHC) at CERN in Geneva, Switzerland; the

High Acceptance Di-Electron Spectrometer (HADES) and Facility for Antiproton and Ion

Research (FAIR) at GSI in Darmstadt, Germany; the Multi Purpose Detector (MPD) at

NICA in Dubna, Russia; the High Intensity Heavy-Ion Accelerator Facility (HIAF) at IMP

in Huizhou, China. The study in this thesis are tightly related to the RHIC Beam Energy

Scan (BES) Program. Before we arrive there, let’s take a brief review of the experimental

results from RHIC and LHC.

In heavy-ion experiment, the bulk properties of the created matters are characterized by

the particle yields at given acceptance ranges in momentum and other quantum numbers.

From the spectra and yields one can extract the system properties at its freezeout moment.

For instance, the temperature and collective flow velocity at kinetic freezeout can be ex-

tracted by the so-called blast-wave model, in which a blue-shifted radial flow velocity profile

is provided. Furthermore, the temperature and chemical potential at chemical freezeout can

be identified based on the thermal analysis of particle yields and the Hadron Resonance Gas

(HRG) model. Both work remarkably well in comparing to the experimental results.
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(a) (b)

Figure 1.13: (a) The Relativistic Heavy Ion Collider (RHIC) in Brookhaven, New York,
United States (Brookhaven National Laboratory) and (b) the High-Intensity Heavy Ion
Accelerator Facility (HIAF) in Huizhou, Guangdong, China (Institute of Modern Physics,
Chinese Academy of Sciences).

Figure 1.14: The relativistic nucleus-nucleus collisions and the production of QGP (adapted
from Ref. [79]).

Although the beam energy and direction is well controlled by the accelerator in the

fixed laboratory frame (LF), the collision event happens in a random location with different

orientation of the reaction plane, ΨR, which is spanned by the beam direction and impact

parameter of the incoming nuclei. The beam direction is naturally identified as the azimuthal

axis of the reaction plane. Since the collision is not initially in a symmetric patten in real



CHAPTER 1. INTRODUCTION 57

space geometry, we would expect an azimuthal asymmetry of the particles yields in the final

momentum distribution. Such azimuthal asymmetry could be analyzed by the Fourier series

decomposition in the azimuthal angle φ relative to the reaction plane ΨR:

dN

dφ
=
N

2π

(
1 +

∞∑

i=1

2vn cos (n(φ−ΨR))

)
, vn =

1

N

∫
dφ
∂N

∂φ
cos (n(φ−ΨR)) (1.156)

where the Fourier coefficients of nth harmonics, vn, describe the bulk and deformation

of the azimuthal momentum distribution and are also referred as the collective flow pa-

rameters. One can further introduce the multi-particle correlation function, e.g., v2
n =

〈cos (n(φ1 − φ2))〉, independent of the reaction plane ΨR which is not known a priori. The

first harmonic, v1, represents a dipole deformation describing the preferred emission direction

of particles. The slope of v1 in rapidity is referred to as the directed flow14, which vanishes in

the mid-rapidity region due to the geometric symmetry. Moreover, the energy dependence

of the directed flow near mid-rapidity exhibits a non-monotonic behavior (see Fig. 1.15 and

Ref. [80, 81]), where there exists a minimum is referred to as the softest point collapse of the

flow and serves as a possible signature of a first-order phase phase transitions. The second

harmonics, v2, referred to as the elliptic flow, is the quadrupole deformation and describes

how the system responds to the initial geometric asymmetry in momentum space. More

specifically, the anisotropy of pressure gradients gives rise to the significant elliptic flow in

off-central collisions. Such observation serves as a smoking gun of the formation of a strongly

coupled quark-gluon plasma.

From the experimental results of bulk properties and collectivity, one already observes

non-monotonic behavior and possible hints for a phase transition. To have a sound conclu-

sion one needs to consider a better observables more sensitive to the phase transition, the

fluctuations. As we discussed in Sec. 1.3 and Sec. 1.5.1, one of the ideal observables sensitive

the critical point is the cumulants of the multiplicity distribution of measurable particles.

14Note here vn could also have momentum and rapidity dependence, in which case it only describes the
azimuthal momentum distribution at given momentum and rapidity bin.
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Figure 1.15: The collision energy dependence of the directed flow (v1) slop parameter near
mid-rapidity for protons, anti-protons and net-protons measured by the STAR collabora-
tion, along with UrQMD calculations subject to the same cuts and fit conditions [80]. The
produced particles such as anti-protons are supposed to behave monotonically. In contrast,
protons and net protons are sensitive to the stopping effect, and the observed minimum for
which resembles the predicted “softest point collapse” of flow.

In the context of the RHIC BES phase I, these particles (quantum numbers) are net pro-

tons, net charges and net kaons, approximating the conservation of baryon numbers, charge

numbers and strangeness numbers. The charge numbers can be characterized by the pion

numbers since pion is the most abundant charged particles. The proxies of baryon numbers

and strangeness numbers, although not conserved, are net-proton and net-kaon numbers

respectively. All these proxies of conserved quantum numbers exhibit qualitatively similar

results (Fig. 1.16) [82, 83], however, among which the net-proton numbers shall give rise to

more significant critical contribution since the proton has larger mass compared to kaons
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and pions, see Sec. 1.5.1 for detailed discussion. Fig 1.17 shows the energy dependence of

the fourth-order cumulant ratio κ4/κ2 = κσ2 and third-order cumulant ratio κ3/κ2 = Sσ for

net-protons in Au-Au collisions at different centralities [84]. This is an “intriguing hint” for

the existence of the QCD critical point.

2 Jochen Thäder / Nuclear Physics A 00 (2018) 1–4

obtained susceptibility ratios, where the volume and temperature dependent terms cancel. In the absence of
a critical point, the hadron resonance gas model [8] suggests that the �2 values will be close to unity and
have a monotonic dependence on

p
sNN [9] following the Poisson expectation.

2. Analysis Details

The STAR (Solenoidal Tracker At RHIC) detector at Brookhaven National Laboratory has a large uni-
form acceptance at mid-rapidity and excellent particle identification capabilities. The main detectors used
in these analyses are the Time Projection Chamber (TPC) [10] and the Time-Of-Flight detector (TOF) [11].
As the main tracking device, the TPC provides full azimuthal acceptance for tracks in the pseudo-rapidity
region |⌘|<1. In addition, it provides charged particle identification via the measurement of the specific en-
ergy loss dE/dx. The TOF detector provides a similar acceptance as the TPC and its velocity information is
used for particle identification via the mass-squared, m2. The analyses have been carried out event-by-event
using minimum-bias events, rejecting piled-up and other background events such as beam-pipe interactions
using the TOF information and other global observables. Only events with a reconstructed primary vertex
position in the fiducial region |vz|<30 cm (<50 cm for 7.7 GeV) and |vr |<1 cm were considered. All tracks
are required to have a minimum length of 20 hits in the TPC to allow for a good two-track separation.
In order to reduce the contamination from secondary charged particles, only primary particles have been
selected, requiring a distance of closest approach (DCA) to the primary vertex of less than 1 cm.
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Fig. 1. Uncorrected raw event-by-event net-particle multiplicity distributions for Au+Au collisions at
p

sNN = 14.5 GeV for �NCh
(left panel), �NK (middle panel) and �NP (right panel) for 0-5% top central (black circles), 30-40% central (red squares), and 70-80%
peripheral collisions (blue stars).

The net-particle quantities are formed event-by-event as, �NCh = Npos�Nneg, �NK = NK+ �NK� , and
�NP=Np�Np. The measurements of the identified particles have been carried out within the rapidity range
of |y|<0.5 and in the transverse momentum range of 0.2< pT (GeV/c)<1.6 for kaons and 0.4< pT (GeV/c)<
2.0 for protons. The kaons (protons) have been identified using only the TPC dE/dx information below pT<
0.4 GeV/c (pT<0.8 GeV/c) and a combination of TPC and TOF information above. Charged particles have
been measured within the pseudo-rapidity range of |⌘| < 0.5 and 0.2 < pT (GeV/c) < 2.0, while the protons
below pT<0.4 GeV/c have been rejected to reduce the influence of spallation protons. The centrality classes
are bin-width corrected values [12] from Glauber model fits to the the total charged particle multiplicity
distribution (0.5 < |⌘| < 1.0), except for net-kaons (net-protons) for which the total multiplicity of pions
and protons (pions and kaons) within |⌘| < 1.0 was used. For illustration purposes only, Fig. 1 shows the
uncorrected event-by-event net-particle multiplicity distributions for Au+Au collisions at

p
sNN = 14.5 GeV

for �NCh, �NK, and �NP in three centrality intervals. The widest distribution is observed for the �NCh and
the narrowest for �NK.

Figure 1.16: Event-by-event net-particle multiplicity distributions for Au+Au collisions at√
sNN = 14.5 GeV for net-charge ∆NCh (left), net-kaon ∆NK (middle) and net-proton ∆NP

(right) for 0− 5% top central (black circles), 30− 40% central (red squares), and 70− 80%
peripheral (blue stars) collisions [82].

The approach to obtain the above experiment results is called beam energy scan. By

tuning the beam energy
√
sNN , the evolution of the created matters could be mapped to

a particular trajectory in various regions of the QCD phase diagram, terminated at the

freezeout curve parametrized by [85]

T (µ) = a− bµ2 − cµ4, (1.157)

where a ≈ 0.166 GeV, b ≈ 0.139 GeV−1 and c ≈ 0.053 GeV−3, and the energy dependence of
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Moments of Net-Proton and Net-Charge Multiplicity Distributions at STAR Xiaofeng Luo

6 10 20 100 200

2
σ 

κ

0

1

2

3

4

< 2 (GeV/c),|y|<0.5
T

0.4<p

Au+Au Collisions
Net-proton

0-5%
5-10%
30-40%
70-80%

6 10 20 100 200
σ

S 
0

0.2

0.4

0.6

0.8

1

STAR Preliminary

 (GeV)NNsColliding Energy 

Figure 3: (Color online) Energy dependence of efficiency corrected cumulant ratios κσ2 = C4/C2 and
Sσ =C3/C2 of net-proton distributions in Au+Au collisions at different centralities (0∼ 5%,5∼ 10%,30∼
40%,70∼ 80%).

(0∼ 5%,5∼ 10%,30 ∼ 40%,70 ∼ 80%). For peripheral (70 ∼ 80%) and mid-central (30∼ 40%)
collisions, the κσ 2 values are close to unity and the Sσ show strong monotonic increase when
the energy decreases. For 0 ∼ 5% most-central collisions, the values of κσ 2 are close to unity at
energies above 39 GeV, while below 39 GeV, they start to deviate from unity and show significant
deviation below unity around 19.6 and 27 GeV. Finally, they shows a strong increase and stay above
unity at 7.7 GeV. The Sσ at 0∼ 5% centrality bin shows a large drop at 7.7 GeV. One may note that
we only have statistical errors shown in the figure, which are still large due to limited statistics. The
systematical errors, which are dominated by the efficiency correction and the particle identification,
are being studied.

Large acceptance is crucial for fluctuations of conserved quantities in heavy-ion collisions
to probe the QCD phase transition and critical point. The signals for the phase transition and/or
CP will be suppressed with small acceptance. In the Fig. 4, we show the energy dependence
of efficiency corrected κσ 2 =C4/C2 and Sσ /Skellam of net-proton distributions with various pT
and rapidity range for 0 ∼ 5% most central Au+Au collisions. The Skellam baseline assumes the
protons and anti-protons distribute as independent Poisson distributions. It is constructed from the
efficiency-corrected mean values of the protons and anti-protons. It is expected to represent the
thermal statistical fluctuations of the net-proton number [24]. The κσ 2 and Sσ /Skellam are to be
unity for Skellam baseline as well as in the Hadron Resonance Gas model. In the two upper panels
of Fig. 4, when we gradually enlarge the pT or rapidity acceptance, the values of κσ 2 show a small
changes close to unity at energies above 39 GeV, while below 39 GeV, more pronounced structure
is observed for a larger pT or rapidity acceptance. In the two lower panels of Fig. 4, when we

7

Figure 1.17: The collision energy dependence of the cumulant ratio κ4/κ2 = κσ2 (left) and
κ3/κ2 = Sσ (right) for net-protons in Au-Au collisions at different centralities measured by
the STAR collaboration. A non-monotonic behavior is seen in the most central collisions
(filled-circles) [84].

the baryon chemical potential can be parameterized as

µ(
√
sNN) =

d

1 + e
√
sNN

(1.158)

where d ≈ 1.308 GeV and e ≈ 0.273 GeV−1. The coefficients a, b, c, d, e are phenomenological

parameters determined by the thermal model of particle yields. The amount of entropy

increase as
√
sNN but the net baryon numbers are fixed by the initial nuclei.

If the beam energy
√
sNN is in the LHC ranges (above 2.76 TeV), after the incoming nuclei

collides with each other, very few baryon charges are doped in the central rapidity region in

a hot medium with high temperature, thus the chemical potential, which is locally defined

in this region, are quite small and becomes even smaller when the collisions is peripheral
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T
μ

Figure 1.18: Theoretical prediction of equilibrium kurtosis κ4(
√
sNN) along the freezeout

line (dashed green line). Figures are adapted from Ref. [86] and [64].

(with fewer baryon numbers at mid-rapidity). On the other hand, when
√
sNN falls into

the RHIC ranges (200-27 GeV for BES phase I and 19.6-7.7 GeV for BES phase II) and

the collision is more central-like, more baryon charges are doped at mid-rapidity (known as

the baryon stopping) and the local chemical potential is larger but the temperature drops.

A few representative trajectory for the system evolution with various beam energies are

drawn in Fig. 1.8. By varying the beam energies, the representative trajectory may possibly

pass the QCD critical point and the associated first-order phase transition line. Thus,

one would expect that the basic thermodynamic properties of the created matters should

change nontrivially, such as possible non-monotonic behavior of the observables (presented

in Fig. 1.15 and 1.17) as function of
√
sNN emerges at freezeout. Fig. 1.18 shows a theoretic

prediction of the kurtosis κ4(
√
sNN) provided a freezeout line.

As we discussed in the previous subsection, the non-equilibrium dynamics would change

the equilibrium cumulant distribution in the phase diagram. In a simplified model discussed

in Ref. [76], the authors demonstrate that, depending on non-universal parameters (e.g.,

the relaxation rate of critical fluctuations), the cumulants can differ significantly from their

equilibrium expectations. Fig. 1.19 shows that memory effects persist even for trajectories

that skirt the edge of the critical regime. One can imagine that, with a more realistic

and delicate setup, the beam energy or chemical potential dependence of the experimental
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Figure 1.19: Contour plot of equilibrium (a) and non-equilibrium kurtosis K ≡ κ = κ4/κ
2
2

with different non-universal phenomenological inputs (b) and (c) adapted from Ref. [76].
The K > 0 region is colored in red and the K < 0 region in blue, in the opposite convention
of Fig. 1.11. The white arrow represents the evolution trajectory of system while the green
dashed line represents the freezeout surface.

measures discussed in this subsection would also receive a qualitative change. Attempts are

made on this subject in order to provide the quantitative prediction for the upcoming BES

phase II results [65].

Before we conclude this section, we address several remarks. First, it is noteworthy that

the cumulant of multiplicity distribution of conserved quantity is not the unique proposed

experimental measures of the critical point. Other suggestions can be found in, for exam-

ple, Ref. [87, 88, 89, 90, 91]. Second, it is important to keep in mind that there are many

other sources that do contribute to the fluctuation measures in heavy ion collisions. In the

event-by-event collisions, we have to take into account all of those stochastic fluctuations

emerging at each stage of each event. In this thesis, we focus more on the fluctuation in the

fireball evolution process that can be described hydrodynamically and argue that they are

more sensitive to the critical point. However, in order to establish a quantitative framework

for interpreting the experiment results, it is insufficient to neglect the beam-energy-scan

dependence of other fluctuation sources. For instance, before the onset of hydrodynamic

fluctuations, initial fluctuations already emerge. At each collision event, the impact pa-

rameter and hence the size of the created fireball varies. In other words, the volume of

the system fluctuates on a event-by-event basis. The volume fluctuations can be character-
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ized by the participant number Npart subject to the baryon number conservation. Besides

that, the initial geometry also fluctuates and can be characterized by the Fourier component

of the azimuthal asymmetry [92]. Furthermore, the partonic distribution of initial sources

(Color-Glass Condensate, CGC) in the wounded nucleons fluctuates in the transverse plane

[93]. The initial fluctuations will propagate in the process of the QGP evolution and the

hadronization stages. After the freezeout, the hadronic phases (jets) still evolve stochasti-

cally, in the propagating process of fluctuations, the existing fluctuations could be washed

out and additional sources of fluctuations could be created. Finally, the fluctuations are

encoded in the observables collected by the detector. The detection efficiency, acceptance

and data analysis gives rise to further fluctuations and statistic uncertainties. Although we

argue that these fluctuations are not as sensitive as the hydrodynamic (thermal) fluctuations

to the critical point, they nevertheless provide the background that can be used to extract

the critical signature quantitatively. For example, the initial fluctuations have larger correla-

tion range in rapidity than the thermal fluctuations (similar to the primordial fluctuations of

CMB); the geometry fluctuations may be more significant in the collective flow measurement

than in the multiplicity cumulant; etc. Nevertheless, we will focus on the hydrodynamic fluc-

tuations in this thesis. In the following chapters, we will provide a systematic formalism for

describing the hydrodynamic fluctuation, and discuss its implementation in the vicinity of

the (QCD) critical point.
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Chapter 2

Hydrodynamic Fluctuations

This chapter contains materials published in

• X. An, G. Basar, M. Stephanov and H.-U. Yee, Relativistic Hydrodynamic Fluctuations,

Phys. Rev. C 100 no. 2, (2019) 024910, arXiv:1902.09517 [hep-th] [1]. Copyright

(2019) by the American Physical Society (APS).

• X. An, G. Basar, M. Stephanov and H.-U. Yee, Fluctuation dynamics in a relativistic

fluid with a critical point, accepted by Phys. Rev. C, arXiv:1912.13456 [hep-th] [2].

Copyright (2020) by the American Physical Society (APS).

• X. An, Fluctuation dynamics in a relativistic fluid with a critical point, accepted by

Nucl. Phys. A, arXiv:2003.02828 [hep-th] [3]. Copyright (2020) by authors.

The subject of hydrodynamic fluctuations is particularly relevant to heavy-ion collisions.

The system size L is not astronomically large compared to the typical microscopic scale,

`mic, (factor 10 at most is a typical scale separation).1 As a result, fluctuations are large

enough to be easily observable in experiments. In addition, since the leading corrections

1In the context of heavy-ion collisions, `mic ∼ 1/T ∼ 1 fm, while the typical hydrodynamic gradient scale
is set by the (transverse) size of the nucleus L ∼ R ∼ 10 fm.
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to hydrodynamics are due to the nonlinear feedback of fluctuations, we cannot afford to

neglect them – a luxury one is used to in ordinary fluid dynamics. Fluctuations are even

more important when enhanced by critical phenomena.

From the modern point of view, hydrodynamics is a systematic expansion in spatial

gradients. More precisely, it is the expansion of constitutive equations for stress tensor

(and conserved current). The expansion parameter is the ratio of a typical hydrodynamic

wavenumber k = 1/L to a microscopic scale, say temperature T , or inverse scattering length,

or, generically, 1/`mic. In this view, the ideal, non-dissipative (i.e., reversible) hydrodynamics

is the truncation of this expansion at lowest (zeroth) order. At first order in gradients (i.e., at

order k1 or, more precisely, (k`mic)
1) one recovers standard Landau-Lifshitz or Navier-Stokes

hydrodynamics. It is the following order in this expansion that concerns us here. That

order is not k2, but rather is k3/2 (or kd/2 in d-dimensions). Such non-analytic behavior in

k and, therefore, nonlocal contributions come from fluctuations in hydrodynamics. Thus

it is essential to understand the physics of hydrodynamic fluctuations to faithfully describe

physics of heavy-ion collisions.2

Furthermore, in addition to modifying hydrodynamic equations by effectively nonlocal

contributions, the fluctuations themselves are measured in heavy-ion collision experiments.

In particular, one of the most fundamental questions these experiments aim to answer is the

existence and location of the critical point on the QCD phase diagram [94, 64]. The signature

of this phenomenon is a certain non-monotonic behavior of event-by-event fluctuation mea-

sures when the parameters of the collision (such as
√
sNN) is varied in order to “scan” QCD

phase diagram [10, 95] (Sec. 1.5.2). This non-monotonic behavior presented in Fig. 1.17 is

driven by critical phenomena and thus predictable without being able to determine QCD

equation of state at finite density (still an unsolved theoretical problem).

2Second order (k2) corrections could be dominant instead of fluctuations in special cases, where fluc-
tuations are suppressed, as in some large-N theories. Also for dimensions greater than 4, fluctuations are
parametrically smaller than k2 terms. This work shall be concerned with the generic hydrodynamics in three
spatial dimensions, relevant for QCD fireball evolution in heavy-ion collisions, among other applications.
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The existing predictions for critical behavior rely significantly on the assumption of local

thermal equilibrium. However, near the critical point, the equilibrium is increasingly difficult

to achieve due to critical slowing down and a finiteness of expansion time. Essentially, this

limitation determines the magnitude of the observable signatures of the critical point [95,

96]. Therefore the ability to describe the dynamical evolution of fluctuations during the

fireball evolution, in particular, in the proximity the critical point is crucial. The goal of this

chapter is to provide such a description.

One of the recent advances towards this goal has been the introduction of Hydro+ in

Ref. [39], with a recent numerical implementation in a simplified setup reported in Ref. [41,

42]. Focusing on the mode responsible for the critical slowing down, identifying it with the

fluctuation correlator of the slowest hydrodynamic mode, the authors of Ref. [39] proposed

the evolution equation which describes the relaxation of this non-hydrodynamic mode to

equilibrium. Extending hydrodynamics by addition of such a mode one is then able to

broaden the range of applicability of hydrodynamics near the critical point and describe

the dominant mode of critical fluctuations at the same time. The crucial ingredient of this

formalism is a non-equilibrium entropy of fluctuations derived in Ref. [39].

We approach this problem from a different direction. We start with the general for-

malism of relativistic hydrodynamic fluctuations introduced earlier in Ref. [1] for neutral

(chargeless) fluids and extend it to include a crucial ingredient – baryon charge density.

QCD critical point, if it exists, is located at finite baryon density. The approach we pur-

sue, in which the two-point correlators of hydrodynamic variables play the role of additional

non-hydrodynamic variables, has been introduced and developed recently in the context of

heavy-ion collisions, but limited to special types of flow such as longitudinal boost-invariant

expansion in Refs. [48, 49, 50]. In a more general but non-relativistic case this approach

was pioneered by Andreev in the 1970’s [47]. The approach is often referred to as ‘hydro-

kinetic’ to acknowledge the similarity between the two-point correlators and the distribution

functions in kinetic theory. In particular, the dynamics of the correlators of the pressure

fluctuations is essentially equivalent to the kinetics of the phonon gas. This physically intu-
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itive picture was the original source of this formalism [97, 48] and was rigorously derived in

general relativistic context in Ref. [1].

The hydro-kinetic approach should be also contrasted with the traditional stochastic

hydrodynamics where the noise is introduced into hydrodynamic equations as in Refs. [98,

43]. From this point of view, the ‘hydro-kinetic’ approach could also be called ‘deterministic’,

as it replaces stochastic equations with deterministic equations for the evolution of correlation

functions. Of course, the two approaches solve the same system of stochastic equations, but

in complementary ways. The advantage of the deterministic approach is that it allows

one to deal with the problem of the “infinite noise”: the noise amplitude needs to become

infinitely large as the hydrodynamic cell size is sent to zero, even though the physical effect

of the noise is finite due to its averaging out in a medium whose properties vary slowly

in space and time. The effect of the infinite (or more precisely cutoff dependent) noise

can be absorbed into renormalization of hydrodynamic equations – a procedure which can

be performed analytically in the deterministic approach. This avoids having to deal with

numerical cancellations which would otherwise be necessary in a direct implementation of

stochastic equations.

Near the critical point the deterministic approach we develop here, although different from

Hydro+ in Ref. [39], nevertheless leads to the description of fluctuations in terms of two-

point correlators as in Hydro+. In this thesis we verify that in the limit of large correlation

length the two approaches exactly match. This is a nontrivial check of the validity of both

approaches. Furthermore, since the deterministic approach is more general it allows us to

extend the Hydro+ approach both closer to the critical point and further away from the

critical point to describe also ordinary, noncritical fluctuations.

2.1 Hydrodynamics and Thermodynamics

Hydrodynamics [99], or more broadly, the fluid mechanics [100, 101], a classical subject

studied by human beings since ancient times, is rejuvenated in recent years [100, 101]. A
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major impetus of this renaissance comes from the rapid progress of the study on physics of

heavy-ion collisions, both in theory and experiment. The increasing body of experimental

evidence that relativistic hydrodynamics is describing the evolution of the expanding fireball

created in these collisions motivates technical developments as well as a closer look at many

fundamental theoretical concepts in hydrodynamics.

Indeed, hydrodynamics is a long wavelength effective theory providing the framework to

describe dynamic system across difference scales, from the large-scale structure of the Uni-

verse, to the small system created by colliding high-energy particles. Its broad application

is rooted in the widely-accepted assumption that, hydrodynamics concerns itself with the

motion of a continuous medium, where the element of the fluid is referred to as the hydro-

dynamic cell. In other words, hydrodynamics does not concern the ultraviolet degrees of

freedom in specific scenarios beyond the scale of the hydrodynamic cell. Thus, regardless of

whatever scenario one is considering, the fundamental equations of hydrodynamics can be

always written generically as one or a set of conservation equations in the following form:

∂

∂t
ψ +∇ · flux[ψ] = 0 . (2.1)

It says that the amount of the conserved quantity, ψ = ψ(t,x), can only change by the

flux flowing into or out of a given volume. The way how the flux depend on the conserved

quantity, flux = flux[ψ], is called the constitutive relations. Example of such conserved

quantities and flux could be energy, momentum and charge. In this thesis, we will focus

on the system subject to the conservation of energy, momentum and U(1) charge, and the

extension of which to a broader system of conservation laws shall be straightforward.

In relativistic hydrodynamics, the conservation equations for energy, momentum and

U(1) charge could be written in a covariant form

∂µT
µν = 0 , (2.2a)

∂µJ
µ = 0 , (2.2b)
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where T µν and Jµ are the energy-momentum tensor and charge current vector respectively.

Since there are three conservation laws (respect to energy, momentum and charge) taken into

account, there are five independent fundamental hydrodynamic variables (two scalers and one

vector with three components), served as conserved quantities in hydrodynamic equations.

The choice of the five hydrodynamic variables are not unique, however. A natural choice

would be the two natural variables of local equilibrium entropy density, i.e., energy density

ε, charge density n, as well as the fluid velocity uµ. Thus

T µν = T µν(ε, n, u), Jµ = Jµ(ε, n, u). (2.3)

Eq. (2.2b) is a scaler equation describing the conservation of charge density, while Eq. (2.2b)

is a vector equation, which can be contracted by the longitudinal and transverse projection.

The longitudinal equation

uν∂µT
µν = 0 (2.4)

describes the conservation of energy density while the transverse equation (also referred to

as the Euler equation)

∆µν∂λT
λν = 0 (2.5)

describes the conservation of momentum density, where ∆µν ≡ gµν + uµuν is the standard

spatial projection operator to the spatial hypersurface orthogonal to u, i.e., ∆µνu
µ = 0.

The constitutive relations in Eq. (2.3) are organized as an expansion in powers of spatial

gradients, and are decomposed into the ideal part (zeroth order in gradients) and gradient

part. The ideal part could be obtained by applying Lorentz transformation

uµ = Λµ
λu

λ , gµν = Λµ
λΛ

ν
κg

λκ (2.6)

from the local rest frame (LRF) where u = (1,0), i.e.,

T µνLRF(ε, n) = diag(ε, p(ε, n), p(ε, n), p(ε, n)) , JµLRF(n) = (n,0) (2.7)

are defined in thermodynamic equilibrium and p(ε, n) is the pressure given by the equation

of state and satisfying Pascal’s Law. Namely,

T µνideal = Λµ
λΛ

ν
κT

λκ
LRF = ε uµuν + p(ε, n)∆µν , Jµideal = Λµ

λJ
λ
LRF = nuµ . (2.8)
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Since in the local rest frame the system is in equilibrium, the hydrodynamic variables

defined in such frame shall know about the thermodynamic laws. What information can

we extract from thermodynamics? Remember, one of the reasons we choose ε and n as

hydrodynamic variables is that they are natural variables of entropy density (entropy per

volume)

s = βw − αn , (2.9)

i.e., the first law of thermodynamics:

ds = βdε− αdn . (2.10)

The pressure can be obtained by the Legendre transformation of entropy density with respect

to ε and n,

βp = s− βε+ αn , (2.11)

and accordingly Eq. (2.10) becomes the Gibbs-Duhem relation

dp = −w
β
dβ +

n

β
dα = sdT + ndµ , (2.12)

where w is the enthalpy density defined by

w ≡ ε+ p = Ts+ µn , (2.13)

and temperature T as well as chemical potential µ are defined via derivatives of entropy

density s

β ≡
(
∂s

∂ε

)

n

=
1

T
, α ≡ −

(
∂s

∂n

)

ε

=
µ

T
. (2.14)

Substitute Eq. (2.8) into Eq. (2.4), (2.5) and (2.2b), one obtains the conservation equa-

tions for ideal hydrodynamics:

u · ∂ε = −wθ , u · ∂uµ ≡ aµ = − 1

w
∂⊥µp , u · ∂n = −nθ . (2.15)

Eq. (2.9), (2.10) together with (2.15) imply that the entropy is conserved:

u · ∂s = −sθ . (2.16)
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If we introduce the entropy per charge

m ≡ s

n
, (2.17)

Eq. (2.15) and (2.16) give

u · ∂m = 0 . (2.18)

The conservation of entropy is not an independent conservation laws in ideal hydrodynamics,

and it breaks down when the system dissipate energy in the presence of gradients. Note, once

the equilibrium thermodynamics are given in the local rest frame, the thermodynamics in

any frame is established as well, and the terms zeroth order in gradients are unambiguously

determined. The terms first-order in gradients, however, are subject to the convention of

frame choice. In fact, there is no unambiguous definition of thermodynamic variables out of

equilibrium in the presence of gradients. Assume the system is not far from equilibrium, then

the non-equilibrium corrections could be expressed approximately in terms of the gradients

of the equilibrium thermodynamic variables defined in the local rest frame. Therefore, a

frame transformation would not only result in a change of the local equilibrium state, but

also the gradient corrections. Among various choices, there are two widely-used frames, the

Landau frame and the Eckart frame, that are local rest frames defined such that the energy

flow and charge flow vanish in which respectively. Once the frame is chosen, the velocity

uµ is also unambiguously defined. Landau frame is more appropriate for application to the

central rapidity region where the baryon density is small. Hydrodynamics, of course, does

not rely on the frame choice. In this thesis, without specification we will use Landau frame.

Without loss of generality, we write

T µν(ε, n, u) = T µνideal(ε, n, u) + Πµν(ε, n, u),

Jµ(ε, n, u) = Jµideal(ε, n, u) + νµ(ε, n, u),
(2.19)

where the ideal part is given by Eq. (2.8), and

sµ(ε, n, u) = sµideal(ε, n, u) + σµ(ε, n, u), (2.20)
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where

sµideal(ε, n, u) = Λµ
λs
λ
LRF = s(ε, n)uµ , sµLRF(ε, n) = (s(ε, n),0). (2.21)

The dissipative terms are completely vanish in the local rest frame by definition, i.e.,

T µνuµ = εuν , Jµuµ = −n , sµuµ = −s . (2.22)

The so-called Landau’s matching conditions given by Eqs. (2.22) define three Lorentz invari-

ants, i.e., ε, n and s, and imply the following constraints,

Πµνuµ = 0 , νµuµ = 0 , σµuµ = 0 , (2.23)

hold in any frame. It states that the dissipative terms must be transverse (spatial).

The local entropy is no longer conserved in the presence of the dissipation induced by

external perturbations. The second law of thermodynamics require

∂µs
µ ≥ 0 . (2.24)

Using Eq. (2.19), (2.20), (2.22), (2.23) we find from Eq. (2.4) that

∂µs
µ ≡ ∂µ(suµ − ανµ) = −νµ∂µα− βΠµν∂µuν = −νµ∂µα−

1

2
βΠµν (∂µuν + ∂νuµ) , (2.25)

where in the second equality we have used the symmetric property Πµν = Πνµ. Eq. (2.25) to-

gether with Eq. (2.23) uniquely determines the dissipative terms of first-order hydrodynamics

in Landau frame:

Πµν(ε, n, u) = −2η(ε, n)

(
θµν − 1

d
∆µνθ

)
− ζ(ε, n)∆µνθ , (2.26a)

νµ(ε, n, u) = −λ(ε, n)∂µ⊥α(ε, n) , (2.26b)

σµ(ε, n, u) = −α(ε, n)νµ(ε, n, u) , (2.26c)

where

θµν ≡ 1

2
(∂µ⊥u

ν + ∂ν⊥u
µ) , θ ≡ θµµ ≡ ∂ · u , ∂µ⊥ ≡ ∆µν∂ν , (2.27)
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and the coefficients of the gradient terms, (η, ζ, λ), known as the transport coefficients, are

shear viscosity, bulk viscosity and charge conductivity respectively. They are assumed be

functions of (equilibrium) thermodynamic variables, ε and n in our choice. According to

Eq. (2.24), (2.26) and (2.27), they must be positive semidefinite:

η ≥ 0 , ζ ≥ 0 , λ ≥ 0 . (2.28)

In this thesis, we only truncate the hydrodynamical expansion to first order in spatial

gradients of hydrodynamic variables. However, one should keep in mind that the first-order

hydrodynamics fails to satisfying the requirement of causality and stability. To solve this

problem, one needs to go beyond the first order and consider theories developed by Israel

and Stewart [102].

2.2 Stochastic Fluctuating Hydrodynamics

2.2.1 Hydrodynamic Fluctuations and Stochastic Noises

Since we are describing a thermal system, the hydrodynamic variables (operators) are

stochastic – fluctuating between members of the statistical ensemble describing our system

(in heavy-ion collisions – between collision events). However, due to macroscopic averag-

ing (coarse graining) involved in their construction they behave as classical (commuting)

stochastic variables. In other words, fluctuations at scales shorter than b are averaged out,

i.e., the ultraviolet degrees of freedom are suppressed. In this sense, Λ = 1/b plays the

role of the ultraviolet (wave-vector) cutoff. The suppressed fluctuations involve the thermal

(classical) and quantum parts, whereas the quantum fluctuations are negligible compared to

classical fluctuations. The precise condition for that is that the quantum uncertainty of the

energy due to finite characteristic time of the evolution of these variables is much smaller

than their typical thermal energy, T . The fastest evolving degrees of freedom after coarse

graining are sound modes with wave-length b. Their frequency cs/b must therefore be much
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b 

Figure 2.1: The separation of hydrodynamic scales illustrated on top of the Japanese wood-
block print, The Great Wave off Kanagawa (Katsushika Hokusai, 1830). The fluid is coarse
grained such that each pixel represents a hydrodynamic cell of width b. The hydrodynamic
variables, defined as local functions of the hydrodynamic cells, fluctuate at the scale of
y ≥ b, which is much less than the typical inhomogeneous scale (wavelength L) of the fluid
background.

smaller than T , i.e., b � cs/T . In framework of hydro-kinetic theory, the scale hierarchy

would be3

k, γq2/cs � q < Λ� T or L� y > b� `mic. (2.29)

For illustration purpose we depict the scale separation in Fig. 2.1.

Throughout the thesis we will use the breve accent ˘ to distinguish a stochastic quantity

from its ensemble average, following the conventions in Ref. [1]. Let us refer to the stochastic

hydrodynamic variables defined via coarse-graining as ψ̆(t,x). The ensemble average of the

3In heavy-ion collisions these scales are not perfectly separated, and “much greater” would typically
mean “greater by a factor of 2− 3”. The window of scales underlying hydrodynamic description is between
the microscopic time scale set by temperature, 1/T ∼ 1 fm/c, and the typical evolution time scale set by the
typical (transverse) size of the system (e.g., gold nucleus), L ∼ 5 fm: τev = L/cs ∼ 10 fm/c, where we took
cs ∼ 0.5c. The local equilibration (diffusion) scale can be estimated as `eq ∼

√
τev/T ∼ 3 fm. A reasonable

hydrodynamic cell size (cutoff) could be chosen to be between cs/T and `eq, i.e., b ∼ 1− 2 fm.



CHAPTER 2. HYDRODYNAMIC FLUCTUATIONS 75

variable ψ ≡ 〈ψ̆〉 obeys Eq. (2.1) which is deterministic, while the fluctuating variable ψ̆

itself obey a equation which has to be stochastic:

∂

∂t
ψ̆ +∇ · (flux[ψ̆] + noise) = 0 , (2.30)

where the stochastic constitutive relations are given by flux[ψ̆] + noise, with a noise term

involved. In relativistic hydrodynamics, this relations read

T̆ µν = T µν(ε̆, n̆, ŭ) + S̆µν , J̆µ = Jµ(ε̆, n̆, ŭ) + Ĭµ, (2.31)

where T µν(ε̆, n̆, ŭ) and Jµ(ε̆, n̆, ŭ) are the same functions given by Eq. (2.19), but evaluated

by the stochastic hydrodynamic variables. As a matter of fact, all expressions discussed

in Sec. 2.1 shall hold in fluctuating hydrodynamics except that the constitutive relations

Eq. (2.3) are replaced by the stochastic ones given by Eq. (2.31), and at the same time the

hydrodynamic variables, ε̆, n̆ and ŭ (instead of ε, n and u), are fluctuating. This is due to

the fact that, the fluctuations between different members of the macrocanonical ensemble of

the given thermal system, are sourced (driven) by random noises (S̆µν , Ĭµ). The spatial scale

of UV degrees of freedom resulting in the noise are much smaller than the hydrodynamic

cells, therefore the noise are assumed to be white, sampled over a Gaussian distribution with

an amplitude determined by the fluctuation-dissipation theorem,

〈S̆µν(x)〉 = 〈Ĭλ(x)〉 = 0 , 〈S̆µν(x)Ĭλ(x′)〉 = 0 , 〈Ĭµ(x)Ĭν(x′)〉 = 2λ∆µνδ(4)(x− x′) ,

〈S̆µν(x)S̆λκ(x′)〉 = 2T

[
η (∆µκ∆νλ + ∆µλ∆νκ) +

(
ζ − 2

3
η

)
∆µν∆λκ

]
δ(4)(x− x′) ,

(2.32)

where λ, T, η and ζ here assumed be functions of averaged thermodynamic variables. Generi-

cally speaking, the noise amplitude also depends on the fluctuating hydrodynamic variables,

however, the feedback of the fluctuations to the noise amplitude is in higher order of gradi-

ents and thus are neglected here. The fluctuation-dissipation theorem relates systematic and

random part of microscopic forces. It quantifies the general relation between the response of

a given system to an external perturbation and the internal fluctuation of the system in the
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absence of that perturbation [103]. We will show later how our formalism reproduces this

relations.

The stochastic hydrodynamic equation (cf. Eq. (2.2))

∂µT̆
µν = 0 , ∂µJ̆

µ = 0 , (2.33)

together with constitutive relations Eq. (2.31), determine the evolution of the system. In

principle, it is possible to numerically solve the stochastic equation with some coarse-graining,

or wave vector cutoff Λ, which regularizes the infinite amplitude of the noise arising from the

δ(4)(x− x′) term. However, as we already mentioned in the introduction, the results would

depend sensitively on the cutoff Λ due to nonlinearities of hydrodynamic equations. We will

come back to this problem later.

Since we have the freedom to choose an independent pair of scalar variables arbitrarily,

we use this freedom to keep our calculations and resulting equations relatively simple. We

find the following set of variables particularly convenient:

m̆ ≡ m(ε̆, n̆) and p̆ ≡ p(ε̆, n̆) , (2.34)

where the entropy per charge m(ε, n) and pressure p(ε, n) are defined by Eq. (2.17) and

(2.11). This choice simplifies our calculations because the fluctuations of m and p are sta-

tistically independent in equilibrium and correspond to two eigenmodes of linearized ideal

hydrodynamic equations. We shall denote the ensemble averages of these variables by simply

removing the accent, i.e.,

m ≡ 〈m̆〉 , p ≡ 〈p̆〉 , u ≡ 〈ŭ〉 . (2.35)

Having defined variables m and p as average values (one-point functions) of primary vari-

ables in Eqs. (2.35) we shall now define other deterministic variables, which appear in our

equations, such as ε and n as functions of m and p obtained via equation of state:

ε ≡ ε(m, p) , n ≡ n(m, p) . (2.36)
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Note that, due to nonlinearities in these relationships, ε 6= 〈ε̆〉 and n 6= 〈n̆〉.
In order to describe the evolution of these deterministic quantities we shall perform the

ensemble average on the stochastic equations. Although this eliminates the noise terms,

because of the nonlinearities in the constitutive equations the averaged equations cannot be

simply obtained by substituting stochastic variables by their averages. We shall describe the

effect of these nonlinearities on the evolution of average values (i.e., one-point functions in

Eq. (2.35)) in Sec. 2.6. These effects, to lowest order in the magnitude of the fluctuations,

are given in terms of the two-point functions. Our goal in Sec. 2.5 will be to derive evolution

equation for these correlators. We should also keep in mind that these two-point functions

are of interest in their own right, since they describe the magnitude of the fluctuations and

correlations which, in heavy-ion collisions, are measurable.

2.2.2 Linearized Hydrodynamic Equations

In this section we derive the stochastic hydrodynamic equations linearized in deviations

of the stochastic variables from their average values in Eq. (2.35):

m̆ = 〈m̆〉+ δm , p̆ = 〈p̆〉+ δp , ŭµ = 〈ŭµ〉+ δuµ . (2.37)

To linear order, the fluctuations of m̆ and p̆ are simply related to fluctuations of ε̆ = ε(m̆, p̆)

and n̆ = n(m̆, p̆) by a linear transformation with coefficients given by thermodynamic deriva-

tives. We shall use the following intuitive short-hand notations for these derivatives:

dε = εmdm+ εpdp , dn = nmdm+ npdp (2.38)

whose exact definitions are given in Appendix B. Similarly, we find it useful to express the

fluctuations of the thermodynamic function ᾰ = α(ε̆, n̆) defined in Eq. (2.10) in terms of δm

and δp and define corresponding coefficients:

dα = αmdm+ αpdp . (2.39)
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Of course, due to nonlinearities in the equation of state the relationship between fluctuations

of (ε̆, n̆, ᾰ) and (m̆, p̆) is nonlinear, and we shall deal with this in Section 2.6 where we consider

the second order terms in the fluctuation expansion.

Now we are ready to expand the constitutive equations to linear order in fluctuations:

T̆ µν ≈ T µν(ε, n, u) + εmu
µuνδm+ ( gµν + (1 + εp)u

µuν) δp+ w (uµδuν + uνδuµ)

−η(∂µ⊥δu
ν + ∂ν⊥δu

µ)−
(
ζ − 2

3
η

)
∆µν∂ · δu+ S̆µν ,

J̆µ ≈ Jµ(ε, n, u) + nmu
µδm+ npu

µδp+ nδuµ − λαm∂µ⊥δm− λαp∂µ⊥δp+ Ĭµ. (2.40)

The equations of motion for both the background and the fluctuations are obtained by

substituting Eq. (2.40) into Eq. (2.33). By definition, Eq. (2.37), one-point averages of

fluctuations vanish, 〈δm〉 = 〈δp〉 = 〈δu〉 = 0. Therefore, upon averaging the equations of

motion, 〈∂µT̆ µν〉 = 〈∂µJ̆µ〉 = 0, we obtain

∂µT
µν(ε, n, u) = 0 , ∂µJ

µ(ε, n, u) = 0 , (2.41)

At leading order in gradients, this gives us equations of ideal hydrodynamics, Eq. (2.15),

which we shall use in the following calculations below. Here aµ ≡ u · ∂uµ is the fluid

acceleration. Inserting Eqs. (2.41) back into the original stochastic equations, Eqs. (2.33),

we obtain the linearized equations of motion for the fluctuations. To present these equations

compactly we introduce the relaxation/diffusion coefficients

γη ≡
η

w
, γζ ≡

ζ

w
, γλ = −λαmw

Tn2
, γp = λc2

sα
2
pTw . (2.42)

We also use the thermodynamic relation,

w

n
d
(n
w

)
= − 1

w

(
1− αp

αm
Tn

)
dp− Tn

αmw
dα , (2.43)

and express our equations in terms of gradients of p and α. With the help of above ex-

pressions, we find, after some amount of algebra, the following equations of motion for our
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fluctuating variables:

u · ∂δm =− 1

αm
(αpwaν + ∂⊥να) δuν + γλ∂

2
⊥ δm+

αp
αm

γλ∂
2
⊥ δp−

1

Tn
∂µuνS̆

µν +
w

Tn2
∂µĬ

µ,

u · ∂δp =− c2
sεmθ(1− ˙εm)δm−

(
1 + c2

s + 2ċs
)
θδp− w

[
c2
s∂⊥ν − (1− c2

s)aν
]
δuν

+
αm
αp
γp∂

2
⊥ δm+ γp∂

2
⊥ δp− Ṫ ∂µuνS̆µν − c2

sαpTw ∂µĬ
µ,

u · ∂δuµ =− εmaµ
w

δm− 1

w

(
∂⊥µ +

1 + c2
s

c2
s

aµ

)
δp− (−uµaν + ∂⊥νuµ − c2

s∆µνθ)δu
ν

+

[
γη∆µν∂

2
⊥ +

(
γζ +

1

3
γη

)
∂⊥µ∂⊥ν

]
δuν − 1

w
∆µν∂λS̆

λν .

(2.44)

We also introduced a useful notation “dot” for the operation defined as:

Ẋ =

(
∂ logX

∂ log s

)

m

=
s

X

(
∂X

∂s

)

m

(2.45)

for a given thermodynamic quantity X. Note that since this operation is a logarithmic

derivative it satisfies

(XY )˙ = Ẋ + Ẏ . (2.46)

This operator appears in our equations because, to leading order (ideal hydrodynamics),

(u · ∂)m = 0 and (u · ∂)(logX) = −Ẋθ.
The quantity Ṫ , similarly to coefficients defined in Eqs. (2.38) and (2.39), involves second

order thermodynamic derivatives, i.e., second derivatives of the entropy s(ε, n). Since there

are only three independent second-order thermodynamic derivatives, all such quantities can

be expressed in terms of three independent ones. We find that a convenient choice, making

equations most transparent, at this stage of the calculation, is αm, αp defined in Eq. (2.39)

and

c2
s ≡

(
∂p

∂ε

)

m

. (2.47)

In the intermediate steps of the following calculations, we shall sometimes use other second

derivatives also, if necessary, in order to keep our expressions as simple as we can. At the end,

to express our final results, we shall switch to another set, cs, cp and Ṫ , which contains more
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commonly used second-order derivatives. The quantity Ṫ is not common, but it appears

naturally and makes equations more transparent and concise. It also has a reasonably

simple meaning, in particular, in a neutral fluid and also in a conformal fluid, where Ṫ = c2
s

(see Tab. D.1 in Appendix D). If desired, it can be traded for a more common quantity,

such as cv, using Eq. (D.8). Converting second-order derivatives defined in Eqs. (2.38)

and (2.39) into different independent sets is easily accomplished via the relations below (see

also Appendix B):

εm = (Tn)2αp = Tn

(
1− Ṫ

c2
s

)
, nm =

(αpTn− 1)Tn2

w
= − Ṫ Tn

2

c2
sw

,

εp = c−2
s , np =

n

c2
sw

, αm = − w

cpT
.

(2.48)

The quantities ċs and ε̇m involve third-order thermodynamic derivatives (i.e., third deriva-

tives of a s(ε, n)).

Another commonly known quantity we shall find useful in what follows is the heat con-

ductivity coefficient

κ ≡
( w
Tn

)2

λ (2.49)

in terms of which the diffusion coefficient is simply

γλ =
κ

cp
. (2.50)

We introduce a collective notation for the fluctuating modes,

φA ≡ (Tnδm, δp/cs, wδuµ) , (2.51)

where normalization of the modes is chosen to make resulting matrix equations simpler and

more symmetric. Indeed, one can introduce the heat energy density defined as [104]

q̆h = ε̆− w

n
n̆ (2.52)

such that

δqh = q̆h − qh = Tnδm (2.53)
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where qh ≡ 〈q̆h〉 = −p (but q̆h 6= p̆ = ε̆− w̆ unless δ(w/n) = 0). Eq. (2.52) and (2.52) provide

the physical meaning of the fluctuating mode φm, which is less obvious than those of φp and

φµ. With Eq. (2.51) we can now write the above equations for the linearized fluctuations

(Eq. (2.44)) in a compact matrix form,

u · ∂φA = −
(
L + D + K

)
AB
φB − ξA , (2.54)

where L, D, and K are 6 × 6 matrix operators. The operators L and D are the ideal and

dissipative terms, respectively, K contains the corrections due to the first-order gradients of

background flow, and six-vector ξA denotes the random noise. Explicitly

L ≡




0 0 0

0 0 cs∂⊥ν

0 cs∂⊥µ 0


 ,

D ≡




−γλ∂ 2
⊥ (csαpTn)−1γp∂

2
⊥ 0

csαpTnγλ∂
2
⊥ −γp∂ 2

⊥ 0

0 0 −γη∆µν∂
2
⊥ − (γζ + 1

3
γη)∂⊥µ∂⊥ν


 ,

K ≡




(1 + Ṫ )θ 0 Tn
αm

(
αpaν + 1

w
∂⊥να

)

csαp(1− ˙εm)Tnθ (1 + c2
s + ċs)θ

(
2− (αpTn)2

αm

)
csaν − csαpT 2n2

αmw
∂⊥να

αpTnaµ
1+c2s
cs
aµ + ∂⊥µcs −uµaν + ∂⊥νuµ + ∆µνθ



,

ξ ≡
(
−w
n
∂λĬ

λ, csαpTw∂λĬ
λ, ∆µκ∂λS̆

λκ
)
. (2.55)

Equation (2.54) for linearized fluctuations provides the foundation for the fluctuation evo-

lution equations for the two-point correlation functions, derived in the next section. This is

the building block for the evolution equation of the higher-point functions.
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2.3 Deterministic Fluctuating Hydrodynamics

2.3.1 Nonlinear Fluctuations

The physical effects of fluctuations on hydrodynamic flow manifest themselves through

two-point functions and also high-point functions. This is because, by definition, the first

order fluctuations average to zero (i.e. 〈φA(x)〉 = 0 via Eq. (2.37)) and the leading order

corrections to 〈T̆ µν〉 and 〈J̆µ〉 come from the second order terms in the fluctuation expansion

(i.e. the two-point functions) whose time evolution equation we derive in this section. Our

strategy is to use equations of motion for linearized fluctuations, Eq. (2.54), to derive an

evolution equation for the “equal-time” two-point correlation function of fluctuations, ob-

tained by averaging over the statistical ensemble generated by the stochastic noises. How

these two-point functions modify the hydrodynamic flow, in other words the feedback of

fluctuations on background flow, will be discussed in Section 2.6.

In addition to the one-point functions of fluctuations, φA = ψ̆A − ψA, the two-point

correlation functions (correlators) are defined by

GAB(x, y) ≡ 〈φA(x+)φB(x−)〉 , (2.56)

which are ensemble averaged products at two spacetime points

x± = x± y/2 , (2.57)

where x = (x++x−)/2 is the midpoint position and y = x+−x− is the separation. In general,

the correlator GAB could be evaluated with fluctuations not only at different space points,

but also different times. However, solving equations with such non-equal-time correlator is

more challenging due to the causality issue. Thus it is more convenient to study the equal-

time correlator first. The definition of equal-time correlator, e.g., GAB(x, y), depends on the

frame of reference. In the laboratory frame, all observers agree with a unique time t, which

is globally defined, and the correlator read off as

GAB(x,y) ≡ 〈φA(t,x+)φB(t,x−)〉 , (2.58)
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with two three-dimensional space points

x± = x± y/2 . (2.59)

However, in the case of a generic relativistic hydrodynamic flow, the concept of “equal time”

is no longer obvious. In such relativistic flow, the most natural choice of the frame of

reference, is the comoving frame, i.e., the rest frame of the fluid that is locally different in

different spacetime points. There is no well-defined global unique time as in the laboratory

frame. We will discuss this issue in more detail later.

However, The concepts of “equal-time” and “spatial” y coordinates we invoke when

defining GAB(x, y) and its Wigner transformation in the above discussion become nontrivial

in a general background of relativistic flow. Both concepts require choosing a frame of

reference. The most natural choice – the local rest frame (i.e., comoving frame) of the

fluid, characterized by the (average) fluid velocity uµ(x) – varies point to point with x. The

change of the frame from point to point is responsible for changing the values of various

vector components of hydrodynamic fluctuations φA, such as δuµ, entering in the definition

of GAB in Eq. (2.56). This variation is purely kinematic (Lorentz boost) and has nothing

to do with the local dynamics of fluctuations that we are interested in. In Sec. 2.4 we will

define a measure of fluctuations and a measure of its changes with space and time to be

independent of such mundane kinematic effects, by introducing the notions of “confluent

correlator” and “confluent derivative”.

In a static homogeneous equilibrium state of the fluid, the correlator is translationally

invariant, i.e., depends only on the separation y and not on the midpoint position x. Further-

more, because equilibrium correlation length is shorter than the coarse grained resolution of

hydrodynamics, the equilibrium equal-time correlation function is essentially a delta function

of the separation vector y with the magnitude determined by the the well-known functions

of average thermodynamic variables (e.g., ε and n).

Furthermore, not only the local thermodynamic conditions, and thus equilibrium magni-

tude of fluctuations, slowly vary in spacetime, but also the fluctuations themselves are driven
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out of equilibrium. Therefore, not only the fluctuation correlator depends slowly on x, but

it also acquires nontrivial y dependence, beyond the equilibrium delta function. It is crucial

that the scale of that y dependence is short compared to the scale of the dependence on x.

The estimate of the y-dependence scale can be made by observing that the equilibration

of fluctuations of hydrodynamic variables is a diffusive process (since the variables obey

conservation equations). This means that the scale of equilibration `∗ is the diffusion length

during time interval characteristic of the evolution. For the reciprocal quantities such as

fluctuation wavenumber q∗ ≡ 1/`∗ and the frequency csk of the sound, one obtains γq2
∗ ∼ csk

and thus q∗ =
√
csk/γ � k. In other words, `∗ � L ≡ 1/k. This separation of scales

of y and x dependence of the correlation function, or between characteristic wavenumbers

q of the fluctuations and k of the background will be used to systematically organize our

calculations and results in the form of an expansion in k/q � 1 as well as k`mic � 1. Note

that, for the characteristic wavenumbers of the fluctuations and the background, the ratio

k/q ∼ (k`mic)
1/2. In other words, this expansion is controlled by a power of the same small

parameter as the hydrodynamic gradient expansion itself.

With this separation of scales in mind, it is convenient to work with the Wigner transform

of GAB(x, y), that is essentially the Fourier transform with respect to (spatial components of)

y, which we shall label as WAB(x, q). Since q corresponds to the wave vector of fluctuating

modes that contribute to GAB, it is similar in concept to the momentum of a particle in

quantum mechanics. In this quantum mechanical analogy, the Wigner transform would be

the (matrix valued) phase-space distribution of the fluctuation modes or a density matrix

in phase space, (x, q), in an effective kinetic theory of fluctuation quanta. The evolution

equation of WAB(x, q), which is derived in this section, closely resembles a Boltzmann-type

kinetic equation for the fluctuation degrees of freedom that are, in the case of hydrodynamics,

phonons. In this thesis we present a set of equations for relativistic hydrodynamics with a

conserved charge, which contains additional nontrivial features compared to the results for a

neutral fluid presented in Ref. [1]. Some of these features, such as the existence of the slow

scalar mode, play an important role in the critical dynamics near the QCD critical point
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which we discuss in Section 3.2.

2.3.2 Nonlinear Feedback

Hydrodynamics describes the evolution of the average values, or one-point functions, of

hydrodynamic variables, such as ε, n, u, or more precisely, by our choice, m, p, u. The

equations governing this evolution are obtained by averaging conservation equations (2.33).

However, the evolution of the one-point functions is affected by the feedback from the higher-

point functions. This is because energy momentum-tensor and charge current are nonlinear

functions of the fluctuating variables, m̆, p̆ and ŭ, as follows from the constitutive relations,

Eq. (2.3), as well as the equation of state. In order to calculate the contribution of the two-

point functions, we begin by expanding the energy-momentum tensor 〈T µν〉 and the charge

current 〈Jµ〉 given in Eq. (2.3), up to quadratic order in the fluctuating variables φA. Upon

averaging over the ensemble, the linear terms in φA vanish by definition, 〈φA〉 = 0, and only

the two-point function contributions, expressed in terms of

〈φA(x)φB(x)〉 = GAB(x, y = 0) ≡ GAB(x) , (2.60)

remain. Here A ∈ (m, p, 0, 1, 2, 3). The mixed index A ∈ (m, p, 0, 1, 2, 3) is raised and lowered

by the ”metric”, diag(1, 1,−1, 1, 1, 1). However the object uA is not a vector, rather an array

that conveniently combines scalar and vector modes, expressed in the collective notation as

uA ≡ (0, 0, uµ) . (2.61)

Expanding the (bare) equation of state up to second order in fluctuations leads to

ε(m̆, p̆) = ε(m, p) + εmδm+ εpδp+
1

2
εmm(δm)2 + εmpδmδp+

1

2
εpp(δp)

2 + . . . ,

n(m̆, p̆) =n(m, p) + nmδm+ npδp+
1

2
nmm(δm)2 + nmpδmδp+

1

2
npp(δp)

2 + . . . ,
(2.62)

where the coefficients of linear terms were already defined in Eq. (2.38). The coefficients of

bilinear terms are third order thermodynamic derivatives and are defined similarly (see Ap-

pendix B, Eqs. (B.10)). Similarly to expressions for second-order thermodynamic derivatives
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in terms of three independent ones cs, cp and Ṫ in Eq. (2.48), the third order thermodynamic

derivatives can be also expressed in terms of two independent third order derivatives ċp and

ċs as4

εmm = −Tn
2

c2
scp

(
1− ċp + Ṫ − c2

s +
2cpT Ṫ

w

(
1− Ṫ

c2
s

))
, εpp = − 2ċs

c4
sw

,

nmm = − Tn3

c2
scpw

(
1− ċp + Ṫ − 2cpT Ṫ

c2
sw

)
, npp = −(c2

s + 2ċs)n

c4
sw

2
.

(2.63)

As a result, we obtain the following expansion for 〈T µν〉 and 〈Jµ〉:

〈T̆ µν(x)〉 = T µν(ε, n, u) +
εmm

2T 2n2
uµuνGmm(x) +

εppc
2
s

2
uµuνGpp(x) +

1

w
Gµν(x)

+
εm
wTn

(
Gmµ(x)uν +Gmν(x)uµ

)
+
cs(1 + εp)

w

(
Gpµ(x)uν +Gpν(x)uµ

)
, (2.64a)

〈J̆µ(x)〉 = Jµ(ε, n, u) +
nmmu

µ

2T 2n2
Gmm(x) +

c2
snppu

µ

2
Gpp(x) +

nm
wTn

Gmµ(x) +
csnp
w

Gpµ .

(2.64b)

where we neglected the fluctuations of the viscous part Πµν and νµ, which are parametrically

smaller than the terms kept in the above expansion5. It should be noted that not all six

variables φA are independent since, due to normalization ŭ · ŭ = −1, we have a constraint

uAφA = 0. Correspondingly,

uA(x+)GAB(x, y) = GAB(x, y)uB(x−) = 0 . (2.65)

These constraints follow from the orthogonality uµ(x±)δuµ(x±) = 0 and relate different

vector components of GAB(x, y) in a y-dependent way.

The mixed term, Gmp(x) ∼ 〈δmδp〉, is dropped because it is a rapidly oscillating com-

ponent of G whose contribution vanishes after time averaging, as explained in Sec. 2.5.2.

4Note that there are four independent third order derivatives (four independent third order derivatives
of entropy), but only two are needed in Eqs. (2.63). We do not need expressions for εmp and nmp because
they will drop out upon time averaging, as described below.

5We rely on γq ∼ q/T � 1, according to Eq. (2.29), where q is the typical wave vector of the fluctuations.
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Furthermore, we neglect the fluctuations of the viscous part Πµν relying on the scale hierar-

chy γq ∼ q/T � 1. The two point functions GAB(x) given by solutions of fluctuation kinetic

equations are nontrivial functionals of the background gradients and contain both local and

nonlocal terms which are associated with renormalization and long-time tails respectively.

2.3.3 A First Look of the Dynamics of Feedback

We start with the evolution equation for the two-point function GAB(x, y) defined in

Eq. (2.56), and choose y to be spatial in the frame u(x). The time evolution of GAB(x, y) is

obtained by

u(x) · ∂ GAB(x, y) ≡ ∂t〈φA(x+)φB(x−)〉

= lim
δt→0

1

δt
〈φA(x+ + δt)φB(x− + δt)− φA(x+)φB(x−)〉

= lim
δt→0

1

δt
〈(∂tφA(x+))φB(x−)δt+ φA(x+)(∂tφB(x−))δt+ (∂tφA(x+))(∂tφB(x−))δt2〉

= 〈(∂tφA(x+))φB(x−)〉+ 〈φA(x+)(∂tφB(x−))〉

+ lim
δt→0

1

δt

∫ u·x++δt

u·x+
u · dx′

∫ u·x−+δt

u·x−
u · dx′′〈ξA(x′)ξB(x′′)〉, (2.66)

where we introduce δt ≡ u(x) · δx and ∂t ≡ u(x) · ∂
∂x

for a moment to shorten the expression.

We also adopt a rule that the derivative operator, ∂, always acts on the first argument of

the function, such as x in G(x, y), or x± in φ(x±). Derivative with respect to the second

argument, if there is any, will be labeled explicitly. We have used 〈ξ(x′)φ(x′′)〉 = 0 since

the noise and fluctuation are uncorrelated at the same time. Next, we convert the time

derivatives in the RHS of (2.66) into spatial derivatives. In order to do so we have to expand

u(x) = u(x±) ∓ 1
2
y · ∂u(x) and use the evolution equation for the one point function, Eq.

(2.54). To perform the resulting averaging in the RHS of Eq. (2.66) we need to know the

average of the two-point function of the noise, which can be calculated using the definition

in Eq. (2.55) and Eq. (2.32):

〈ξA(x′)ξB(x′′)〉 = 2QABδ
(4)(x′ − x′′) , (2.67)
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where

Q = Tw




α−1
m γλ∂

2
⊥ (csαpTn)−1γp∂

2
⊥ 0

(csαpTn)−1γp∂
2
⊥ −γp∂ 2

⊥ 0

0 0 −
(
γη∆µν∂

2
⊥ +

(
γζ + 1

3
γη
)
∂⊥µ∂⊥ν

)



.

(2.68)

Proceeding from Eq. (2.66) along these steps we arrive at

u · ∂GAB(x, y) =− (L(y) +
1

2
L + D(y) + K + Y)AC G

C
B(x, y)

− (−L(y) +
1

2
L + D(y) + K + Y)BCG

C
A (x, y)

+ 2Q(y)
ABδ

3(y⊥) , (2.69)

where the superscript (y) on an operator indicates that the derivatives within that operator

act on y, the second argument of GAB(x, y). For example,

L(y) ≡




0 0 0

0 0 cs(x)∂
(y)
⊥ν

0 cs(x)∂
(y)
⊥µ 0


 . (2.70)

The matrix Y,

Y ≡




∆λκ 0 0

0 (1− c2
s)∆λκ csuν∆λκ

0 csuµ∆λκ ∆µν∆λκ − c2
s∆µλ∆νκ




1

2
y · ∂uλ∂(y)κ

⊥ +
1

2cs
y · ∂csL(y), (2.71)

results from the y-dependence in u(x±) and cs(x
±). Note that in deriving Eq. (2.69),

we neglected higher order terms in y, based on the scale separation between background

wavenumber k and fluctuation wavenumber q: (∂u)y ∼ (∂cs)y ∼ k/q � 1.

Although we obtained Eq. (2.69) directly from the linearized equations by a brute-forth

calculation, it is somewhat ugly, since we are considering each fluctuation separately as if

they didn’t know each other. However, the fluctuations are evolving on top of the fluid, one

might then ask, is it possible to manipulate the equation adjusted by the fluid, such that the
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equation has a more crispy formulation? The answer is yes, and the way of manipulating the

dynamic equations for multi-point functions adjusted by the fluid is called confluentization.

As we shall soon see in the next section, the process of confluentization is more subtle than

it might appear at first sight. However, after such a sophisticated adjustment, we would

finally be able to arrive at a beautiful result.

2.4 Confluentization in Relativistic Flow

In this section we introduce several ingredients needed to translate equation (2.69) into

an equation for the appropriately defined Wigner function. In Eq. (2.56) we defined the

equal-time correlator of hydrodynamic variables as a function of the mid-point x and the

separation vector y as GAB(x, y) ≡ 〈φA(x+ y/2)φB(x− y/2)〉, where the domain of y is the

three-dimensional plane orthogonal to u(x), i.e., y is purely spatial in the local rest frame

at x. We would like to define a partial derivative of this object with respect to x. When

taking a partial derivative it is important to specify what quantities are held fixed and what

quantities change with x and how. There are two elements of the correlator GAB(x, y) which

make this a nontrivial question: the indices AB and the variable y.

First, we would like the derivative to express how components AB of GAB are changing

with respect to the local rest frame u(x), rather than with respect to an arbitrary fixed

laboratory frame. Since u(x) itself changes from point to point with the flow of the fluid we

shall introduce a derivative which accounts for that change.

Second, and this is crucial for relativistic hydrodynamics, we want an x-derivative which

keeps y “fixed”. But in what frame should the components of y be fixed? If we keep

components of y fixed in an arbitrary fixed laboratory frame, the variation of x will, in

general, violate the condition u(x) · y = 0, i.e., the correlator will not remain an equal-time

correlator. Therefore, as we vary x, we need to keep components of y in the local rest frame

fixed as the frame itself, u(x), changes with x.

We shall consider the two above elements separately and then combine them in the
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derivative which takes into account the fluid flow as described above. We shall refer to such

a derivative as confluent in order to distinguish it from an ordinary covariant derivative in

differential geometry of which it is reminiscent. In particular, the confluent derivative is

similar to covariant derivative in the sense that its action depends on the type of the object

it acts upon.

The key to defining these new concepts is a parallel transport or, equivalently a connec-

tion, that takes care of the change of u(x) between two points, say, x and x+ ∆x.

2.4.1 Confluent Derivative of One-point Function

Let us first consider the action of the confluent derivative on the hydrodynamic fluctuation

field φA(x). These variables transform covariantly under Lorentz boosts (six components of

φA contain two scalars and a four-vector according to Eq. (2.51)). It is natural to define a

derivative which measures the changes of the hydrodynamic variables with respect to the

local rest frame defined by flow velocity u. I.e., we are not interested in the changes between

φA(x + ∆x) and φA(x) which are simply due to the difference in the local velocity u, i.e.,

induced by boost transformation from frame u(x) to u(x + ∆x). In other words, we are

interested in the “internal” state of the variables, not affected by frame choice. Let us

introduce the boost which maps u(x+ ∆x) to u(x) by Λ(∆x): 6

Λ(∆x)u(x+ ∆x) = u(x) . (2.72)

In principle, this boost is not unique. Nonetheless, we propose to use the most natural choice

– a pure boost without a spatial rotation in the local rest frame of u(x). Note that the boost

in Eq. (2.72) is defined for arbitrary ∆x. The explicit form of the infinitesimal boost defined

by Eq. (2.72) is given by

Λ ν
µ (∆x) = δ ν

µ + δΛ ν
µ (∆x) = δ ν

µ − uµ∆uν + uν∆uµ , (2.73)

6Strictly speaking Λ is also a function of x and should be denoted by Λ(∆x, x). For notational simplicity
we drop the x argument.
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where

∆uµ ≡ uµ(x+ ∆x)− uµ(x) = ∆xλ(∂λu
µ) . (2.74)

The confluent derivative (denoted by ¯) we described could be constructed by boosting the

variable φ(x+ ∆x) in the same way as u in Eq. (2.72) before comparing to φ(x), i.e.,7

∆x · ∇̄φ(x) = Λ(∆x)φ(x+ ∆x)− φ(x). (2.75)

This boost is depicted by Fig. 2.2. With respect to such a derivative, by design, the flow

vector field u(x) is “constant”:

∇̄µuν = 0 , (2.76)

according to Eqs. (2.72) and (2.75).

“Confluent” quantities

• “Confluent” quantities: correlators and derivatives adjusted by the fluid.
XA, et al, 1902.09517

derivative: @
⇤��! @̄

• The “confluent” Wigner function

W (x, q) ⌘
Z

y

e�iq·y Ḡ(x, y) .

satisfies a “confluent” evolution equation. click

Xin An (UIC) Fluctuations and Criticality in Heavy-Ion Collisions UIUC Interview 6/17

x

x + �x

u(x)

u(x + �x)

⇤(�x)

�(x)

⇤(�x)�(x + �x)

�(x + �x)

Figure 2.2: Schematic illustration of the confluent derivative for a Lorentz vector (one-point
fluctuation φµ). In order to compare the “internal” difference of φµ(x + ∆x) and φµ(x) at
different spacetime points, we boost φµ(x+∆x) (solid green arrow) from the local rest frame
at x+ ∆x to the local rest frame at x, the frame defines φµ(x).

7Fermi-Walker transport along a world-line is constructed in a similar way, in which case ∆x is dis-
placement along the particle’s trajectory. In our case ∆x can point in any direction, not necessarily along
u.
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Eq. (2.75) defines the action of the confluent derivative on a Lorentz-covariant hydrody-

namic field φA(x). Substitute Eq. (2.73) into Eq. (2.75), we obtain

(Λ(∆x)φ)µ = φµ − uµ(∆u · φ) + ∆uµ(u · φ) , (2.77)

and the explicit expression for the derivative acting on a Lorentz vector reads

∇̄λφµ = ∂λφµ − ω̄νλµφν , (2.78)

where the connection associated with the boost created by flow gradients is given by

ω̄νλµ = uµ∂λu
ν − uν∂λuµ . (2.79)

Note that this connection is antisymmetric with respect to µν, reminiscent of a spin con-

nection. In a sense, it is a spin connection for the tangent space spanned by hydrodynamic

variables φA at point x. In that sense confluent derivative is the covariant derivative for the

connection given by flow gradients in Eq. (2.79). To unify equations we can extend the range

of indices to accommodate the full six-dimensional space of variables and write

∇̄λφA = ∂λφA − ω̄BλAφB , (2.80)

including the case when A or B is m or p. The corresponding connection is, of course, zero,

since φm = Tnδm and φp = δp/cs are scalars.

2.4.2 Confluent Derivative of Equal-time Two-point Function

We now introduce the second element of the confluent derivative which comes into play

when we consider its action on a two-point function. The most important issue for us here

is the definition of the “equal time” in the equal-time correlator. To focus on it, we shall

consider the action of the confluent derivative on a Lorentz scalar component of G (e.g, Gmm

and Gpp). Since G is the same in any frame, the connection term in Eq. (2.78) vanishes, thus

we can focus on understanding how to define a partial x derivative at “fixed” y. This is not

straightforward, as the following expression illustrates:

∆x · ∂G(x, y) = G(x+ ∆x, y)−G(x, y) . (2.81)
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In G(x+ ∆x, y) the orthogonality condition u(x+ ∆x) · y = 0 is, in general, false, given

u(x) · y = 0 (2.82)

is true: vector y spatial in the frame u(x) is not spatial in u(x + ∆x) (see Fig. 2.3). To

preserve the relationship between u and y we need to transform vector y by the same boost

that takes u(x) to u(x + ∆x), i.e., Λ−1(∆x), according to Eq. (2.72). We can then define a

derivative at “fixed” y as

∆x · ∇̄G(x, y) = G(x+ ∆x,Λ(∆x)−1y)−G(x, y) . (2.83)

Figure 2.3: Schematic illustration of the Lorentz boost (represented here by an ordinary
rotation) of point separation vector y needed to keep the point separation purely spatial in
the local rest frame at a new point ∆x, given u(x+ ∆x) = Λ(∆x)−1u(x).

In order to write confluent derivative in Eq. (2.83) in terms of partial derivatives with

respect to x we must specify what variables are held fixed while we vary x. We cannot keep

components of yµ in a given laboratory frame fixed, since y must actually change (by boost, as

in Fig. 2.3). We could keep components of ya, a = 1, 2, 3, in the fluid’s local rest frame fixed.

To implement such a derivative we must introduce a basis triad ea(x) (a = 1, 2, 3) of four-

vectors orthogonal to u(x) at each point. The choice of the three fields ea(x) is arbitrary

and different choices are related by local SO(3) rotations, subject to ea(x) · u(x) = 0. A

convenient explicit example is given in Appendix C.1.
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It is important to note that the vector Λ−1(∆)y in the definition of the confluent derivative

in Eq. (2.83) is independent of the choice of the local triad ea. This means that, in general,

one should expect that the components of Λ−1(∆)y in local frame are different from those of

y due to a possible rotation of the local basis triad between points x and x + ∆x. In other

words, not only ea(x + ∆x) 6= ea(x) but, in general, also (Λ(∆x)e)a(x + ∆x) 6= ea(x), in

contrast to Eq. (2.72) (see Appendix C.1). Therefore, partial derivative with respect to x at

ya fixed will not alone capture the derivative defined in Eq. (2.83). We need to subtract the

effect of the change of the basis triad ea(x). This can be achieved by introducing additional

connection, ω̊aµb, in the tangent space so that eµa is “confluently constant”:

∇̄λe
µ
a ≡ ∂λe

µ
a + ω̄µλνe

ν
a − ω̊cλaeµc = 0 , (2.84)

The second term in Eq. (2.84) accounts for the boost of ea as the one in Eq. (2.78) and

illustrated in Fig. 2.3, while the last term accounts for the additional rotation in the tangent

space.

Equation (2.84) can be solved for the connection ω̊aλb by multiplying by dual basis vector

ebµ such that ec · eb = δbc:

ω̊bλa = ebµ∂λe
µ
a , (2.85)

where we used the definition of ω̄ connection in Eq. (2.79) and u · eb = u · ea = 0. In Ap-

pendix C.1 we provide a simple explicit example of the local triad ea with the corresponding

connection.

Now we can express the confluent derivative in Eq. (2.83) in terms of the partial x-

derivative at ya fixed:

∇̄µG = ∂µG− ω̊bµa ya
∂

∂yb
G . (2.86)

In other words, and this is important for applications, the partial x-derivative ∂µG in

Eq. (2.86) is taken at fixed ya, i.e., ∂µy
a = 0, and the boost needed to keep y = ea(x)ya

orthogonal to u(x) is taken care of by ea. The last term in Eq. (2.84) subtracts the effect of
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possible additional rotation of the arbitrarily chosen local triad ea.
8

2.4.3 Confluent Correlator and Wigner Function

In Sec. 2.4.2 we have defined the confluent derivative of a scaler two-point correlator. Now

let’s turn to a general case: define confluent derivative of a tensor so that the derivative obeys

the Leibniz product rule. This is straightforward for a product like φA(x)φB(x), but is not so

for the correlatorGAB, because it contains a product of two fields in different spacetime points

x+ and x−. More specifically, the “raw” definition of the two-point correlatorGAB, Eq. (2.56),

satisfies the projection constraints Eq. (2.65). It prevents us from cleanly separating x

and y dependence and performing Wigner transform. In order to address this issue we

shall introduce confluent two-point correlator ḠAB which will allow us to define a confluent

derivative obeying the Leibniz rule in a straightforward way.

To achieve this we shall follow the same logic that led us to Eq. (2.75) and take into

account the change of the flow velocity between the two points x+ and x−. Therefore, we

shall define a “confluent correlator” by boosting both variables φA(x+y/2) and φB(x−y/2)

into the rest frame at the midpoint, x, i.e,

ḠAB(x, y) = Λ C
A (y/2) Λ D

B (−y/2)GCD(x, y) , (2.87)

where Λ C
A (∆x) = Λ ν

µ (∆x) when AC = µν, and an identity transformation otherwise. A

schematic illustration of this quantity is provided by Fig. 2.4.

Substituting Eq. (2.73) and (2.74) into Eq. (2.87), we obtain a more specific expression

ḠAB(x, y) = GAB(x, y)− 1

2
uAy · ∂uCGCB(x, y) +

1

2
uBy · ∂uCGAC(x, y) . (2.88)

8The last term in Eq. (2.86) can be made more familiar if we Taylor expand G =∑∞
n=0

∑
a1,...,an

Ga1,...,any
a1 . . . yan and consider each coefficient Ga1,...,an(x) as a rank-n tensor in the tan-

gent space. Then the last term in Eq. (2.86) generates the appropriate connection terms, one for each index.
To see also that the last term serves to eliminate the effect of the basis rotation, note that ∇̄λya = ∂λy

a = 0
because the connection term, which would arise because ya is a vector, is canceled by the last term in
Eq. (2.86).
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Confluent correlator

Same for the two-point function:

Ḡ(x, y) = ⇤(y/2) G(x, y)⇤(�y/2)T

and

r̄µḠAB = @µḠAB � !̄C
µAḠCB � !̄C

µBḠAC � !̊b
µa ya @

@yb
ḠAB .

The last connection appears because we need a local triad ea to define
“y-fixed”. This tetrad, in general, rotates and we need

r̄�eµ
a ⌘ @�eµ

a + !̄µ
�⌫e

⌫
a � !̊c

�ae
µ
c = 0 .

We then define the Wigner transform WAB(x, q) of ḠAB(x, y).

M. Stephanov Fluctuations in Relativistic Fluids and Hydro+ UC 2019 18 / 22

Figure 2.4: Schematic illustration of the confluent correlator.

As a result, the confluent correlator, in contrast to Eq. (2.65), satisfies a simpler orthogonality

condition which involves u(x) only (i.e., the constraints are independent of y):

uA(x)ḠAB(x, y) = uB(x)ḠAB(x, y) = 0 . (2.89)

As discussed later, this allows us to meaningfully perform the Wigner transformation of this

object with respect to y coordinates without affecting the constraint.

Now combining all the ingredients given by Eqs. (2.75), (2.83) and (2.87) we define the

action of the confluent derivative on a two-point equal-time correlator in the following way:

∆x · ∇̄ḠAB(x, y) = Λ(∆x) C
A Λ(∆x) D

B ḠCD(x+ ∆x,Λ(∆x)−1y)− ḠAB(x, y) . (2.90)

This expression may be more useful for numerical integration of equations we derive, where

derivatives need to be discretized. The expression which is used in analytical manipulations

is obtained by Taylor expanding in ∆x, and it combines Eqs. (2.78) and (2.86):

∇̄µḠAB = ∂µḠAB − ω̄CµAḠCB − ω̄CµBḠAC − ω̊bµa ya
∂

∂yb
ḠAB , (2.91)

where the connection, ω̄νλµ, arises from the Lorentz boost acting on indices A and B, whereas

the internal SO(3) connection, ω̊bλa, refers to an additional SO(3) rotation which is not

captured by the pure boost.

We can now define the Wigner transform of the equal-time correlator ḠAB(x, y) on the

locally spatial hyper-surface u(x)·y = 0, by integrating over the three-dimensional hyperplane
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normal to u(x) at each point x. The integral can be expressed explicitly as the integral over

coordinates ya, in which form it can be practically evaluated in numerical applications, or,

more formally, as an integral over y constrained to a plane by u(x) · y = 0 condition, i.e.,

∫
d3ya =

∫
d4y δ(u · y) . (2.92)

Thus we arrive at the definition of the confluent Wigner function:

WAB(x, q) ≡
∫
d4y δ(u(x) · y) e−iq·y ḠAB(x, y) , (2.93)

and obeys

uA(x)WAB(x, q) = WAB(x, q)uB(x) = 0 . (2.94)

Note that, although the wave vector q is a four-vector, WAB depends only on its projection

on the hyper-plane defined by

u(x) · q = 0 . (2.95)

In other words, due to the delta-function constraint the Wigner function WAB(x, q) does

not depend on the component of q along u (energy/frequency in local rest frame), and we

only need three independent components for vector q. In order to eliminate the redundant

component along u(x) we can impose the constraint Eq. (2.95), similar to the gauge condition

in gauge field theories. Using the triad basis we already introduced above for vector y (see also

Appendix C.1), we could express four-vector qµ in terms of its three independent components

qa as

qµ = eaµ(x)qa , (2.96)

with an internal three-vector q = {qa} ∈ R3, and consider W (x, q) as a function of q:

W (x, q) ≡ W (x, q = ea(x)qa) . (2.97)

Because the constraint Eq. (2.95) depends on u(x), a meaningful derivative of WAB(x, q)

with respect to x should be then defined with a parallel transport of q by Λ(∆x) from

Eq. (2.72) to maintain the constraint. We shall also use the same transport to eliminate the
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purely kinematic effect of the boost on the vector components of variables φA. This leads to

the notion of “confluent derivative”, ∇̄µWAB(x, q), which we define as

∆xµ∇̄µWAB(x, q) ≡ Λ(∆x) C
A Λ(∆x) D

B WCD(x+ ∆x,Λ(∆x)−1q)−WAB(x, q) . (2.98)

It is straightforward to see that ∇̄µWAB(x, q) is equal to the Wigner transformation of the

confluent derivative ∇̄µḠAB(x, y) similarly defined by Eq. (2.90). Thus, by using the rules

of the Fourier transform to replace ya → i∂/∂qa and ∂/∂yb → iqb, from Eq. (2.91) we

immediately obtain the expression for the confluent x derivative of the Wigner function at

q = eaqa fixed: 9

∇̄µWAB(x, q) = ∂µWAB − ω̄CµAWCB − ω̄CµBWAC + ω̊bµa qb
∂

∂qa
WAB , (2.99)

where we also took into account ω̊aµa = 0. The partial derivative ∂µ in Eq. 2.99 is to be

taken at fixed q, not fixed q. To simplify notations below, we will use WAB(x, q) (instead

of WAB(x, q)), with understanding that it is a function of x and q given by Eq. (2.97).

Furthermore, we shall also use the following expression involving derivatives with respect to

components of q:
∂

∂qλ
≡ eλa(x)

∂

∂qa
. (2.100)

2.5 Relativistic Dynamics of Hydrodynamic

Fluctuations

2.5.1 Fluctuation Evolution Equations

The two-point functions WAB(x, q) can be viewed as degrees of freedom additional to

the hydrodynamic fields ψA (i.e., m, p and u) in ways similar to phase-space distribution

9One can introduce Wab(x, q) by WAB = eaAe
b
BWab, so that the confluent derivative of Wab involves only

the SO(3) connection ω̊. In other words, ω̄ reduces to a SO(3) connection when it acts on WAB . It is a
simple matter of choice to work with Wab(x, q) or with WAB .
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functions in kinetic theory. This is not just a vague similarity. A certain linear combination

of WAB(x, q) can be quantitatively interpreted as phonon distribution function satisfying

Boltzmann equation for a particle with momentum q and energy E = cs|q| as will be shown

in Section 2.7. Regardless of this interpretation, these additional degrees of freedom satisfy a

coupled differential (matrix) equation which we call somewhat loosely the “fluctuation kinetic

equation” or simply ”kinetic equation”. The kinetic equations have to be supplemented by

the usual hydrodynamic field equations of motion (with fluctuation feedback), ∂µ〈T µν〉 = 0,

to obtain a closed set of equations (somewhat similar to Vlasov equations) to be solved

simultaneously. In this section we derive these fluctuation kinetic equations, i.e., equations

for WAB.

Having introduced the necessary mathematical tools, we return to Eq. (2.69) for GAB and

use it to derive the evolution equation for the Wigner function defined in the previous section.

The crux of this derivation is expressing the equation for WAB in terms of the confluent

derivatives, which have a clear physical meaning as the derivatives in the co-moving frame.

Both definitions of the Wigner functions and of the confluent derivative bring additional

terms, but they also lead to many nontrivial cancellations.

Our goal is to express the evolution equation of Wigner function by Eq. (2.69). To

proceed, we first project Eq. (2.99) onto the time-like direction u(x):

u · ∇̄WAB(x, q) = u · ∂ WAB − uA(u · ∂uC)WCB − uB(u · ∂uC)WAC + (ebµu · ∂eµa)qb
∂

∂qa
WAB ,

(2.101)

where we have used the orthogonal condition Eq. (2.89). The tricky part arises from the

first term on the RHS of Eq. (2.101), u · ∂WAB(x, q), where WAB is obtained by a Wigner

transformation of ḠAB(x, y), defined by Eq. (2.93) where the constraint δ(u(x) · y) and

transformation kernel e−iq·y = e−ie
µ
b (x)eaµ(x)qbya as part of the integrand are not “constant”
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when ∂(x) applies, thus,

u · ∂ WAB = u · ∂
∫
d4y δ(u · y)e−iq·yḠAB(x, y)

=

∫
d4y

(
δ(u · y)e−iq·yu · ∂ + u · ∂ (δ(u · y)) e−iq·y + δ(u · y)u · ∂

(
e−iq·y

))
ḠAB(x, y)

=

∫
d4y δ(u · y)e−iq·y

(
u · ∂ + yλ(u · ∂uλ)u · ∂(y) + (eµau · ∂ebµ)qb

∂

∂qa

)
ḠAB(x, y),

(2.102)

where we have used u · ∂(y)e−iq·y = 0 due to Eq. (2.95). Substitute Eq. (2.102) back into

Eq. (2.101), one immediately finds the last term in each equation cancels with the help of

Eq. (2.93). Eq. (2.101) now reads

u · ∇̄WAB(x, q)

=

∫
d4y δ(u · y)e−iq·y

{(
u · ∂ + yλ(u · ∂uλ)u · ∂(y)

)
ḠAB − uA(u · ∂uC)ḠCB − uB(u · ∂uC)ḠAC

}

≈
∫
d4y δ(u · y)e−iq·y

{(
u · ∂ + yλ(u · ∂uλ)u · ∂(y)

)
GAB

−uA
(
u · ∂uC +

1

2
(y · ∂uC)u · ∂

)
GCB − uB

(
u · ∂uC − 1

2
(y · ∂uC)u · ∂

)
GAC

}

(2.103)

where Eq. (2.88) is used and terms leading order in background gradients (in wave-vector k)

are kept.

Given Eq. (2.103), from Eq. (2.69) and its partner equation

u · ∂(y)GAB(x, y) ≈ −1

2
L(y)
AC G

C
B(x, y)− 1

2
L(y)
BCG

C
A (x, y) (2.104)

whose leading order terms are sufficient for our calculation, one finds, after a rather lengthy

and tedious algebraic manipulations, that

u · ∇̄W (x, q) = −
[
iL(q),W

]
−
[

1

2
L̄ + D(q) + K′,W

}
+ 2Q(q) + (∂⊥λuµ)qµ

∂W

∂qλ

+
1

2

(
aλ +

∂⊥λcs
cs

){
L(q),

∂W

∂qλ

}
+

∂

∂qλ

(
[
λ,W} −

1

4
[Hλ, [L

(q),W ]]

)
,

(2.105)
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where [A,B] = AB−BA and {A,B} = AB+BA are the usual matrix (anti-) commutators,

while a new notation is introduced for the “quasi-commutator” which appears naturally in

this context:

[A,B} ≡ AB +BA† . (2.106)

In the expression for the (anti-, quasi-) commutators, the usual matrix multiplication rules

are assumed and the derivatives are assumed to act on W . The matrices that appear in

Eq. (2.105) read

L(q) ≡ cs




0 0 0

0 0 qν

0 qµ 0


 , L̄ ≡ cs




0 0 0

0 0 ∇̄⊥ν
0 ∇̄⊥µ 0


 ,

D(q) ≡




γλq
2 −(csTnαp)

−1γpq
2 0

−csTnαpγλq2 γpq
2 0

0 0 γη∆µνq
2 +

(
γζ + 1

3
γη
)
qµqν


 ,

Q(q) ≡ Tw




−α−1
m γλq

2 −(csαpTn)−1γpq
2 0

−(csαpTn)−1γpq
2 γpq

2 0

0 0
(
γη∆µνq

2 +
(
γζ + 1

3
γη
)
qµqν

)



,

K′ ≡ K + ∆K, ∆K ≡ −θ
2
1− 1

2




0 0 0

0 0 csaν + ∂⊥νcs

0 csaµ + ∂⊥µcs −2uµaν



,


λ ≡ c2
s




0 0 0

0 ωκλq
κ 0

0 0 ωµλqν


 , Hλ ≡ cs




0 0 0

0 0 ∂νuλ

0 ∂µuλ 0


 , (2.107)

where matrices L(q) and L̄ are propagating operator linear in q and k respectively, D(q) is the

dissipative operator quadratic in q, 2Q(q) is the source for random noise, K′ (with K defined

in Eq. (2.55)), 
λ and Hλ encode the terms proportional to the gradients of the background
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flow, including the fluid vorticity

ωµν ≡
1

2
(∂⊥µuν − ∂⊥νuµ) . (2.108)

and its symmetric partner θµν defined in Eq. (2.27).

Equation (2.105) is a linear equation in W but inhomogeneous due to the source term

2Q(q). In a static uniform background where gradient terms vanishes, the balance between

terms involving Q(q) and D(q) gives the equation for the equilibrium value for the Wigner

function:

−
[
iL(q),W (0)

]
−
[
D(q),W (0)

}
+ 2Q(q) = 0 , (2.109)

which is a fluctuation-dissipation relation discussed in Sec. 2.2.1. This equation is solved by

W (0) = Tw




cpT/w 0 0

0 1 0

0 0 ∆µν


 , (2.110)

where we used Eq. (2.48): α−1
m = −cpT/w. Eq. (2.110), taken together with Eq. (2.51), is

in agreement with the well-known thermodynamic expectation values: V 〈(δm)2〉 = cp/n
2,

V 〈(δp)2〉 = c2
sTw, V 〈(δu)2〉 = T/w and 〈δmδp〉 = 〈δmδu〉 = 〈δpδu〉 = 0, where V is the

volume of the system.

Note that, within the order of approximation we are working, we can further use the

ideal hydrodynamic equation waµ = −∂⊥µp to eliminate the time-like derivatives of velocity,

i.e., aµ, on the right-hand side of Eq. (2.105). This may be useful for numerical solution of

the equations which would require solving for time evolution of u(x) simultaneously.

2.5.2 Hydro-kinetic Equations

The matrix L(q) in the RHS of the kinetic equation Eq. (2.105) gives the dominant

contribution since it is of order of q whereas the remaining terms are either order k or

γq2 both of which are assumed to be much smaller than q according to our hierarchy of
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scales in Eq. (2.29). Therefore, some of the components of WAB(x, q) oscillate fast with

a characteristic frequency ω ∼ L(q) ∼ csq. This separation of time scales leads to a new

effective description of the system where the fast components of WAB are eliminated by

time averaging and only slow modes remain. We can use this separation of time scales to

introduce (in addition to spatial coarse graining at scale b described in the Introduction)

averaging over time intervals of order bt such that10

csk � b−1
t � csq . (2.111)

The slow components of WAB that survive time averaging correspond to effective distribution

functions in a Boltzmann-like kinetic theory of fluctuations. Note that this is also similar to

how we diagonalize a quantum density matrix to identify the particle distribution functions

starting from quantum field theory.

To identify the fast components, we express the kinetic equation in the basis where L(q)

is diagonal. L(q) has six eigenvalues:

λ± = ±cs|q| , λm = λT1,T2 = λ‖ = 0 , (2.112)

corresponding to six eigenvectors ψA where A = m,+,−, T1, T2, ‖. We arrange the eigen-

vectors to form an orthogonal transformation matrix

ψA
A =




1 0 0 0 0 0

0 1/
√

2 −1/
√

2 0 0 0

0 q̂/
√

2 q̂/
√

2 t(1) t(2) u


 , (2.113)

where q̂ = q/|q| is the unit vector along q and t(1) and t(2) are two transverse unit vectors

that satisfy

t(i) · t(j) = δij , t(i) · q̂ = 0 , t(i) · u = 0 . (2.114)

10Following our estimates for heavy-ion collisions in Footnote 3, a reasonable choice for bt would lie
between `eq/cs ∼ 6 fm/c and τev ∼ 10 fm/c.
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In other words t(1), t(2) and q̂ span the spatial hyperplane orthogonal to u,

t(1)
µ t(1)

ν + t(2)
µ t(2)

ν + q̂µq̂ν = ∆µν . (2.115)

The basis vectors in Eq. (2.113) correspond to the eigenmodes of ideal hydrodynamic equa-

tions. Their eigenvalues in Eq. (2.112) correspond to one diffusive mode, a pair of sound

modes with positive and negative frequency, and two degenerate transverse momentum

modes. The last zero mode, associated with the eigenvector (0, 0, u), is a consequence of

the orthogonality condition Eq. (2.89) and is not a physical fluctuation mode. The trans-

verse dyad t(i)(x, q) are degenerate and the basis in this two-dimensional subspace is not

unique, yet subject to a SO(2) rotations that are local in both x and q spaces. This local

freedom will bring about additional connections in the confluent derivatives, after we project

WAB onto the slow components. A convenient explicit choice for t(i) is given in Appendix

C.2.

We can now transform the kinetic equation (2.105) into the diagonal basis of L(q) by

the orthogonal transformation M → ψTMψ 11 and express the equation in terms of new

variables:

WAB = ψAAWABψ
B
B . (2.116)

The spurious components WA‖, W‖B, and W‖‖ vanish automatically due to the constraint,

Eq. (2.94), and effectively we are left with 5× 5 matrix WAB. In the diagonal basis, we have

[L(q),W ]AB = (λA − λB)WAB , (2.117)

which means that the fourteen modes with λA 6= λB are the fast modes. They average out

on the coarse grained time scale bt and thus can be neglected. The remaining eleven modes

are not all independent. In particular,

W++(x, q) = W−−(x,−q) ≡ WL(x, q) (2.118)

11Note that since there are derivatives with respect to x and q in Eq. (2.105), one needs to use ψT dMψ =
d(ψTMψ) + [ψT dψ, ψTMψ].
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is the longitudinal mode associated with sound fluctuations. The remaining diffusive modes

form a 3 × 3 matrix and obey WAB(x, q) = WBA(x,−q), i.e., only six of these modes

are independent. These seven independent components, WL and WAB, (A,B = m,T1, T2),

constitute the degrees of freedom in the new effective kinetic description of fluctuations. Note

that the 3× 3 block of WAB ≡ Ŵ (A,B = m,T1, T2) still contains off-diagonal components,

which reflects the fact that the three modes of A = m,T1, T2 are degenerate and can mix

with each other.

The kinetic equation for the surviving slow components follows straightforwardly from

Eq. (2.105). The sound fluctuation mode completely decouples from other components and

satisfies

(u+ csq̂) · ∇̄WL = −γLq2(WL − Tw) +
(
(csaµ + ∂⊥µcs) |q|+ (∂⊥µuν)q

ν + 2c2
sq
λωλµ

) ∂WL

∂qµ

−


(1 + c2

s + ċs)θ + θµν q̂
µq̂ν +

1 +
(

2− (αpTn)2

αm

)
c2
s

cs
q̂ · a− csαpT

2n2

αmw
q̂ · ∂α


WL , (2.119)

where the sound damping coefficient γL is given by

γL = γζ +
4

3
γη + γp , (2.120)

and γζ , γη and γp are defined by Eq. (2.42). Here, the confluent derivative of WL is defined

as

∇̄µWL ≡ ∂µWL + ω̊aµbqa
∂WL

∂qb
, (2.121)

consistent with the fact that WL behaves as a Lorentz scalar. Defining

NL ≡
WL

cs|q|w
, (2.122)

such that its equilibrium value, N
(0)
L = T/cs|q|, is equal to what one would expect for the

distribution function of “phonons” with the dispersion relation ω = cs|q|, Eq. (2.119) can be
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recast into the form that resembles a Boltzmann kinetic equation for phonons,

LL[NL] ≡
(

(u+ csq̂) · ∇̄ −
(
(csaµ + ∂⊥µcs) |q|+ (∂⊥µuν)q

ν + 2c2
sq
λωλµ

) ∂

∂qµ

)
NL

= −γLq2

(
NL −

T

cs|q|

)
. (2.123)

Remarkably, the advection operator LL[NL] is precisely equal to the Liouville operator

in the relativistic kinetic theory of massless (quasi-) particles which can be identified as

phonons propagating in a flowing fluid. Their dispersion relation can be written as an on-

shell condition gµνeff (x)qµqν = 0 in terms of an effective spacetime dependent inverse metric

gµνeff (x) = −uµuν +c2
s∆

µν that gives the dispersion relation of sound waves ω = cs(x)|q| in the

local rest frame of the fluid (see Sec. 2.7 for the derivation). It should be emphasized that

the Liouville operator LL[NL] in Eq. (2.123) emerges after ∂⊥α terms vanish due to rather

nontrivial cancellations. Equally striking is the simplicity of the collision (relaxation) term

in the RHS of Eq. (2.123), emerging after cancellation of all the background gradient terms

in Eq. (2.119).

The diffusive and transverse shear modes, contained in 3×3 matrix Ŵ , satisfy the matrix

equation

u · ∇̄Ŵ = −
{
D̂, Ŵ − Ŵ (0)

}
+ (∂⊥µuν)q

ν∇µ
(q)Ŵ −

[
K̂, Ŵ

}
, (2.124)

where

D̂ ≡


γλ 0

0 δijγη


 q2, Ŵ (0) ≡ Tw




cpT

w
0

0 δij


 ,

K̂ ≡




1
2
(1 + 2Ṫ )θ Tn

αm

(
αpa · t(j) + 1

w
t(j) · ∂⊥α

)

αpTna · t(i) 1
2
θ δij + t

(i)
µ t(j) · ∂uµ


 , i = 1, 2 .

(2.125)

Here we introduced a covariant q-derivative that takes into account the rotation of the basis

t(i)(x, q) of the transverse modes in q space:

∇µ
(q)Ŵ ≡

∂Ŵ

∂qµ
+
[
ω̂µ, Ŵ

]
, where ω̂ijµ ≡ t(i)ν

∂

∂qµ
t(j)ν , ω̂mmµ = ω̂miµ = ω̂imµ = 0 . (2.126)
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The confluent derivative in Eq. (2.124) also includes additional SO(2) connection ̂̊ωijµ ≡
t
(i)
ν ∂µt

(j)ν , associated with the x-dependence of the basis vectors t(i):

∇̄µŴ ≡ ∂µŴ + ω̊aµb qa∇b
(q)Ŵ +

[
̂̊ωµ, Ŵ

]
. (2.127)

In Appendix C.2 we propose a simple and intuitive choice for the t(i) basis suitable for

applications, and compute corresponding connections ω̂ijµ and ̂̊ωijµ .

Introducing the rescaled variables

Nmm ≡
Wmm

nT 2
, Nm(i) ≡

Wm(i)

nT
, N(i)(j) ≡

W(i)(j)

n
, (2.128)

and also a Liouville-like operator,

L[Ŵ ] ≡
(
u · ∇̄ − (∂⊥µuν)q

ν∇µ
(q)

)
Ŵ , (2.129)

we can simplify Eq. (2.124) substantially:

L[Nmm] =− 2γλq
2
(
Nmm −

cp
n

)
− n

w
t(i) · ∂m

(
N(i)m +Nm(i)

)
, (2.130a)

L[Nm(i)] =− (γη + γλ)q
2Nm(i) − ∂νuµt(i)µ t(j)ν Nm(j) −

n

w
t(j) · ∂mN(j)(i) +

αpT
2n

w
t(i) · ∂pNmm ,

(2.130b)

L[N(i)(j)] =− 2γηq
2

(
N(i)(j) −

Tw

n
δij

)
− ∂νuµ

(
t(i)µ t

(k)
ν N(k)(j) + t(j)µ t(k)

ν N(i)(k)

)

+
αpT

2n

w
∂µp

(
t(i)µ Nm(j) + t(j)µ N(i)m

)
, (2.130c)

where αp = (1− Ṫ /c2
s)/Tn, given by Eq. (2.48).

The kinetic equations for fluctuations, Eqs. (2.119) and (2.124), are the main results in

this section. By considering these equations together with the conservation equation for the

energy-momentum tensor, including nonlinear feedback from the fluctuations presented in

Eq. (2.64), we obtain a closed system of equations that determines the dynamics of both

the background flow and the fluctuation correlators self-consistently. These equations can be

then applied to numerical studies of fluctuations in hydrodynamically evolving systems, such
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as heavy-ion collisions. In order for this program to work in practice, we need to deal with

the singularity of Gµν(x) which is manifested in the ultraviolet divergence of the the wave-

vector integral relating WAB to GAB. To eliminate the resulting unphysical cutoff dependence

we shall absorb ultraviolet divergent contributions of fluctuations into renormalization of a

finite number of physical parameters that define first order viscous hydrodynamics, i.e. the

equation of state and transport coefficients. The remaining part of fluctuation contributions

is physical, well-defined and not suffer from short-distance ambiguity (i.e., insensitive to the

cutoff). In Sec. 2.6, we describe in detail how this renormalization procedure is carried out

analytically.

2.5.3 Hydro-kinetic Equations for Bjorken Flow

The purpose of this section is to compare our equations with the ones for a particular

case of Bjorken flow derived in Ref. [49].

The first observation we need to make is that the definition of the equal-time correlator

in Ref. [49] is subtly different. The Bjorken flow allows us to define a hypersurface globally

which is orthogonal to the flow four-vector u(x) at each point: the constant proper-time

surface τ = const. It is then natural to define “equal time” correlator in such a way that

points x± lie on the same proper-time hypersurface as x. The difference with our definition is

subtle because our equal-time hyperplane is tangential to the equal-τ hypersurface at point

x and the difference is of order y2, due to the curvature of the surface. This difference does

lead to a subtle change in the last term in Eq. (2.105), which is necessary to make this

equation agree with Ref. [49].

To describe this in more detail, let us consider a definition of the equal-time correlator

which is slightly different from ours, but will coincide with τ = const for Bjorken flow. It is

possible to define a hypersurface orthogonal to flow if the flow is conservative, i.e., uµ = ∂µτ

(as is the case for the Bjorken flow, for example). In general it is not possible, however, one

can perform a Helmholtz decomposition into conservative (potential) and purely vortical
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flow: uµ = ∂µτ + vµ, where ∂ · v = 0 (see Fig. 2.5 for illustration). We will not be interested

in doing this globally since we only need to describe the surface near a given point x to

quadratic order in y. Thus we Taylor expand u to linear order in ∆x:

uµ(x+ ∆x) = uµ(x) +
1

2
(∂µuν + ∂νuµ)∆xν +

1

2
(∂µuν − ∂νuµ)∆xν . (2.131)

The last term is purely vortical, while the first two terms are potential, i.e.,

τ(x+ ∆x) = τ(x) + u ·∆x+
1

2
∂µuν∆x

µ∆xν . (2.132)

We can then define equal-time correlator in such a way that points x and x± = x± y/2 lie

on the same curved surface τ = const. Using 3-dimensional vector y in the tangent plane to

u(x) to parameterize points on such a surface, we can write explicitly

x±λ = xλ ±
yλ
2

+
1

8
uλθµνy

µyν , (2.133)

where y · u(x) = 0 and the last term describes the curvature of the surface. Using this

definition of x± instead of Eq. (2.57) will change the definition of the ”equal-time” correlator

and of the Wigner function.

In what follows in this section we shall use that modified definition, but retain the same

notation for simplicity. Due to the modification described above, we must replace L(y) defined

in Eq. (2.70) by

L(y) → L(y) − 1

4
yλ�λu · ∂(x), (2.134)

where

�λ ≡
cs
2


 0 θνλ

θµλ 0


 . (2.135)
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As a consequence, Eq. (2.69) and (2.105) are modified and take the form

u · ∂GAB(x, y) = −
(
L(y) +

1

2
L + Q(y) + K + Y

)

AC

GC
B(x, y)

−
(
−L(y) +

1

2
L + Q(y) + K + Y

)

BC

G C
A (x, y)

+
1

4

(
(yλ�λ)ACu · ∂GC

B(x, y)− (yλ�λ)BCu · ∂G C
A (x, y)

)
+ 2TwQ(y)

ABδ
3(y⊥)

(2.136)

and

u · ∇̄W (x, q) = −
[
iL(q),W

]
−
[

1

2
L̄ + D(q) + K′,W

}
+ 2Q(q) + (∂⊥λuµ)qµ

∂W

∂qλ

+
1

2

(
aλ +

∂⊥λcs
cs

){
L(q),

∂W

∂qλ

}
+

∂

∂qλ

(
[
λ,W} −

1

4
[
λ, [L

(q),W ]]

)
,

(2.137)

respectively, where


λ ≡ Hλ − �λ = cs


 0 ωνλ

ωµλ 0


 . (2.138)

Note, that the only change compared to Eq. (2.105) is in the double commutator term.12 For

the Bjorken flow, aµ = ωµν = ∂⊥cs = 0, and all the terms on the second line in Eq. (2.137)

vanish.

To complete the comparison, for the boost-invariant flow, we perform the coordinate

transformation from (t, x, y, z) to (τ, x, y, Y ) given by t = τ coshY, x = x, y = y, z =

τ sinhY , where τ is the proper time and Y is the space-time rapidity. One can easily check

that for the Bjorken flow u · ∇̄ = ∂τ , θ = 1/τ , aµ = ωµν = 0. Thus Eq. (2.137) is reduced to

∂τW (x; q) = −
[
iL(q),W

]
−
{

1

2
L̄ + Q(q) + K′,W

}
+ 2Q(q) +

1

τ
W +

qz
τ

∂W

∂qz
. (2.139)

12This is consistent with the fact that upon diagonalization and time-averaging over faster modes this
term drops completely. Indeed, the scale of time-averaging, bt is much longer than the typical time-like
separation between the plane tangent to u and the τ = const defined by Eq. (2.133), which is of order
(∂u)y2 ∼ k/q2 � 1/q, compared to bt � 1/q according to Eq. (2.111).



CHAPTER 2. HYDRODYNAMIC FLUCTUATIONS 111

Figure 2.5: Left: Illustration of the surface orthogonal to the conservative flow u at each
point. Boost is represented by ordinary rotation, preserving angles, for clarity. Right: The
same is not possible for non-conservative flow, i.e., for nonzero vorticity. However, it is
possible to make the normal vector to the surface (not shown) and the flow vector u (shown)
at the same point be different by a purely vortical vector: vµ = ∂µτ −uµ, such that ∂ ·v = 0.

Since qY = τqz where qY is the wave vector conjugate to Y , we defineWB(x; qY ) = W (x; qz)/τ

to take into account the change in the measure of the momentum integration. Using

∂τW (x; qz) = ∂τW (x; qz)
∣∣∣
qY
−∂W (x; qz)

∂qz
(∂τqz)

∣∣∣
qY

= ∂τ [τWB(x; qY )]+
qz
τ

∂W (x; qz)

∂qz
, (2.140)

we obtain

∂τWB(x; qY ) = −
[
iL(q),WB

]
−
{

1

2
L̄ + Q(q) + K′,WB

}
+

2Q(q)

τ
, (2.141)

where the last two terms in Eq. (2.139) were eliminated by the momentum rescaling. Simi-

larly, one can check that our Eqs. (2.123) and (2.124), rewritten in terms of WB, will reduce

to Eq. (A7) in Ref. [49] exactly.

2.6 Renormalization of Hydrodynamics

In this section we discuss two aspects of the fluctuation feedback: (i) the renormalization

of the variables, the equation of state and the transport coefficients as well as (ii) the time

lagged hydrodynamic response, falling off as a power of time, known as “long-time tails”, or,

equivalently, non-analytic frequency dependence of the response at low frequencies.



CHAPTER 2. HYDRODYNAMIC FLUCTUATIONS 112

2.6.1 Renormalization of Hydrodynamic Variables

The locality of the noise in stochastic hydrodynamics is manifested by the delta func-

tions in Eqs. (2.32). In the coarse-grained picture, this singularity is smeared out and the

amplitude of the noise is proportional to b−3/2 where b is the size of the fluid cell. That

means taking b → 0 requires infinitely large noise. The fluid cell must be larger than the

microscopic correlation length, say T−1 or ξ whichever larger, for hydrodynamic description

to be valid, but it is otherwise arbitrary. And because it is arbitrary, the physical results

obtained from hydrodynamic equations cannot depend on the cutoff b.

The infinite (delta function) noise has its counterpart in our deterministic approach – the

singularities appear as infinite contributions to GAB(x), which arise as ultraviolet divergences

in the integrals over the fluctuation wave-vector q in Eq. (2.154). Introducing the UV cutoff

Λ = 1/b, we expect that these Λ dependent terms must be separated analytically and

absorbed into the renormalized variables, equation of state and transport coefficients in

order for the physics to be cutoff independent.

This renormalization procedure has been by now well understood in both non-relativistic

hydrodynamics [47] and relativistic hydrodynamics without conserved charge [49, 1] or in

some special cases, such as, e.g., conformal fluids, [50]. In this section, we complete this line

of developments by performing the renormalization of hydrodynamics of arbitrary fluid with

conserved charge in arbitrary backgrounds.

It must be kept in mind that, while Λ is an ultraviolet cutoff from the perspective of the

scale of fluctuations, q, it is still considered small compared to the microscopic scales, T or

ξ−1 (see Eq. (2.29)). Taking the feedback term GAB/w in Eq. (2.64) as an example, one finds

even the most dominant ultraviolet divergent contribution to GAB/w ∝ Λ3T is still a small

correction to the average background variables that are of order T 4. However, in practical

numerical simulations, where this separation of scales in not ideal, these corrections will

introduce a noticeable cutoff dependence. Therefore, the elimination of the cutoff dependence

via renormalization is not only a matter of principle, but also an issue of practical importance.
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The first issue one need to address is, how to define the local rest frame in deterministic

fluctuating hydrodynamics? This ambiguity of frame choices already emerges in ideal hydro-

dynamics (i.e., without turning on the gradient terms). Although this ambiguity is unlike

the way we deal with the ambiguity of frame choices due to the non-equilibrium correction

to ideal hydrodynamics in first-order gradients, which is discussed in Sec. 2.1, it share similar

spirit: one needs to adjust the definition of physical variables observed in certain frames to

preserve the Landau’s matching conditions given by Eq. (2.22). It is obvious that according

to Eq. (2.64), the matching conditions is no longer valid, i.e., 〈T̆ µν 〉uν 6= εuµ, 〈J̆µ〉uµ 6= −n,

etc. Thus, we need to identify the physical, or “renormalized”, fluid velocity uR and the

physical local energy and charge densities (εR, nR) which are determined by the matching

condition

− 〈T̆ µν 〉uνR = εRu
µ
R , (2.142a)

− 〈J̆µ〉uRµ = nR . (2.142b)

in terms of the “bare” variables u, ε and n. Another important issue one should notice is

that, although the fluctuating fluid velocity is properly normalized (i.e. ŭ · ŭ = −1), the

average velocity, u ≡ 〈ŭ〉, is not since

u · u = −1− 〈δu · δu〉 = −1− 1

w2
Gµ
µ(x) . (2.143)

In other word, we define uR such that it is not only subject to the matching condition (2.142),

but also normalized to unity, u2
R = −1. Taking these two issues into account and expanding
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uR to first order in GAB, we obtain 13

uµR ≡ uµ + δRu
µ =

uµ + εm
w2Tn

Gmµ(x) + cs(1+εp)

w2 Gpµ(x)√
1 +Gµ

µ(x)/w2

≈ uµ +
εm

w2Tn
Gmµ(x) +

1 + c2
s

csw2
Gpµ(x)− uµ

2w2
Gν
ν(x) . (2.144)

Once the local physical fluid velocity is properly defined, we can similarly introduce

εR ≡ ε+ δRε , nR ≡ n+ δRn , (2.145)

where the fluctuation corrections to local rest frame energy and charge densities are derived

from Eqs. (2.142):

δRε =
1

w
Gµ
µ(x) +

εmm
2T 2n2

Gmm(x) +
c2
sεpp
2

Gpp(x) , (2.146a)

δRn =
n

2w2
Gµ
µ(x) +

nmm
2T 2n2

Gmm(x) +
c2
snpp
2

Gpp(x) . (2.146b)

In terms of the εR, nR and uR, we have now the following expressions for 〈T̆ µν〉 and 〈J̆µ〉:

〈T̆ µν(x)〉 = εRu
µ
Ru

ν
R + p(ε, n)∆µν

R + Πµν +
1

w
Gµν(x) , (2.147a)

〈J̆µ(x)〉 = nRu
µ
R + νµ − n

w2
Gmµ(x)− csn

w2
Gpµ(x) . (2.147b)

where ∆µν
R ≡ gµν + uµRu

ν
R. The transformation to physical variables is not yet complete in

Eqs. (2.147a) and (2.147b) – the “bare” values ε and n still appear in, e.g., p(ε, n), which

will need to be expressed in terms of physical εR and nR. We shall do this below.

After establishing the expressions for physical energy and charge densities, our next goal

is to determine the physical values of pressure and transport coefficients. Their physical

values differ from their “bare values” that appear in the constitutive relations Eq. (2.8) and

Eq. (2.26) due to fluctuations. The fluctuations contain local terms that are zeroth order

13This expansion is based on the assumption that the two-point function contributions are parametrically
smaller than the corresponding bare quantities, due to Λ � min(T, ξ−1), according to the scale hierarchy
Eq. (2.29). Because of this separation of scales, bare quantities that multiply GAB can be simply replaced
by their renormalized values.
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(nonvanishing for homogeneous backgrounds) and first order in gradients. We shall denote

these as G
(0)
AB(x) and G

(1)
AB(x) respectively. The former contributes to the physical value of

the pressure and the latter contributes to the physical values of the transport coefficients.

The remaining parts of GAB(x), denoted by G̃(x)AB, are higher order in gradients (in fact,

as we shall see, they are nonlocal functionals of hydrodynamic variables):

GAB(x) = G
(0)
AB(x) +G

(1)
AB(x) + G̃AB(x) , (2.148)

where the superscripts ‘(0)’ and ‘(1)’ denote the terms that are zeroth order and first order

in gradient expansion14. Similarly since δRε and δRn in Eq. (2.146) are linear combinations

of GAB(x), these quantities can be also expanded:

δRε = δ
(0)
R ε+ δ

(1)
R ε+ δ̃Rε , δRn = δ

(0)
R n+ δ

(1)
R n+ δ̃Rn , (2.149)

where expressions for δ
(0)
R (ε, n), δ

(1)
R (ε, n) and δ̃R(ε, n) are the same as δR(ε, n) in Eq. (2.146)

with GAB replaced with G
(0)
AB, G

(1)
AB and G̃AB respectively.

By substituting this gradient expansion, Eqs. (2.148) and (2.149) into Eqs. (2.147a)

and (2.147b) we can identify the physical values of pressure and transport coefficients by

collecting terms zeroth order in gradients into physical (renormalized) pressure pR and terms

first order in gradients into physical (renormalized) values of kinetic coefficients:

〈T̆ µν(x)〉 = εRu
µ
Ru

ν
R + pR∆µν

R + Πµν
R + T̃ µν , (2.150a)

〈J̆µ(x)〉 = nRu
µ
R + νµR + J̃µ. (2.150b)

where the zeroth-order terms in gradient expansion transverse to uR are given by

pR(εR, nR)∆µν
R = p(ε, n)∆µν

R +
1

w
Gµν (0)(x)

=

(
p(εR, nR)−

(
∂p

∂ε

)

n

δ
(0)
R ε−

(
∂p

∂n

)

ε

δ
(0)
R n

)
∆µν
R +

1

w
Gµν (0)(x) , (2.151)

14Note that G
(0)
AB(x) still depends on x via terms such as w(x) however it does not contain any gradient

terms such as ∂µu or ∂µα and it does not vanish in a homogeneous background. G
(1)
AB(x) terms are explicitly

linear in gradients and do vanish in a homogeneous background.
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and the first-order terms are given by

Πµν
R = Πµν −

((
∂p

∂ε

)

n

δ
(1)
R ε+

(
∂p

∂n

)

ε

δ
(1)
R n

)
∆µν +

1

w
Gµν (1)(x) , (2.152a)

νµR = νµ − n

w2
Gmµ(1)(x)− csn

w2
Gpµ(1)(x) . (2.152b)

The remaining, i.e., higher-order in gradients (and nonlocal), contributions to constitutive

equations are given by

T̃ µν =−
((

∂p

∂ε

)

n

δ̃Rε+

(
∂p

∂n

)

ε

δ̃Rn

)
∆µν +

1

w
G̃µν(x)

=
1

2w

(
(1− ċp)

w

cpT
G̃mm(x) +

(
c2
s − Ṫ + 2ċs

)
G̃pp(x)−

(
c2
s + Ṫ

)
G̃λ
λ(x)

)
∆µν

+
1

w
G̃µν(x) , (2.153a)

J̃µ =− n

w2
G̃mµ(x)− csn

w2
G̃pµ(x) . (2.153b)

Let us now work out the explicit expressions for the physical pressure and transport

coefficients. As usual, due to contribution of short-wavelength fluctuations the coincident

point correlators such as GAB(x) ≡ GAB(x, 0) are divergent. These divergences fall into

two classes which are leading and sub-leading respectively. The leading singularity is ap-

parent even in static homogeneous equilibrium, since within our coarse-grained resolution

G
(0)
AB(x, y) ∼ δ(3)(y) (i.e., correlation length is negligible) and thus G

(0)
AB(x, 0) is undefined. Of

course, this is an artifact of neglecting the finiteness of coarse-graining scale b = 1/Λ. The

sub-leading singularity, though less obvious, reflects the feedback of non-equilibrium fluctu-

ations at the short-wavelength scale. These two divergences are easier to disentangle using

the Wigner transform of GAB(x, y), i.e., Fourier transform with respect to y: WAB(x, q) that

we define in Eq. (2.93). With the help of Eq. (2.88), the inverse Wigner transformation from

the q-space to y-space reads

GAB(x) ≡ GAB(x, y = 0) = ḠAB(x, y = 0) =

∫
d3q

(2π)3
WAB(x, q) . (2.154)
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W

q

W (0)

q
*

Figure 2.6: A schematic curve of W (x, q) (in red color) that manifests the decomposition
given by Eq. (2.155). W (0) is the equilibrium value (blue dashed line) achieved at large q.
The gradient expansion at small k/γq2 gives rise to the part linear in gradient, W (1). The

remaining part W̃ , in large part from the contributions of wavenumber modes around q∗,
is the long-time tails discussed in Sec. 2.6.2. The feedback contributions from the small-q
modes are suppressed by the phase space integration.

The corresponding decomposition of Eq. (2.148) in phase space is given by (see also

Fig. 2.6)

WAB(x, q) = W
(0)
AB(x, q) +W

(1)
AB(x, q) + W̃AB(x, q) . (2.155)

The zeroth-order contribution G
(0)
AB follows from the equilibrium solution to the fluctuation

evolution equations given by Eq. (2.110)15. Since W (0) does not depend on q, the integration

over q is divergent. We regularize this integral by the wavenumber cutoff q < Λ.

G
(0)
AB(x) =

∫
d3q

(2π)3
W (0)(x, q) =

Λ3

6π2
diag

(
cpT

2, Tw, Tw∆µν

)
. (2.156)

15The expression of W
(0)
AB (and G

(0)
AB) depends on the frame choice. In the local rest frame defined by the

renormalized velocity uR, all relevant variables in Eq. (2.110) shall be renormalized accordingly to keep the

form of W
(0)
AB intact. However, as we shall see below, the non-renormalized expression of W

(0)
AB is sufficient

for our demand since it already appears as the correction to the bare quantities. Thus, the “correction of a
correction” is in higher orders according to our scale hierarchy Eq. (2.29).
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Though the tensor part of the two-point function, G(0)µν(x) appearing in Eq. (2.151) is

cutoff-dependent, it is proportional to ∆µν
R , and thus is absorbed into the definition of the

physical (renormalized) pressure. Combining this contribution with the contributions from

the terms containing δ
(0)
R ε and δ

(0)
R n in Eq. (2.151) we find for the renormalized, i.e., physical,

pressure (renormalized equation of state):

pR(εR, nR) = p(εR, nR) +
1− 3

(
1− εm

2Tn

)
c2
s

3w
G(0)µ

µ

+
c2
sw

2T 3n4
(nmεmm − εmnmm)G(0)

mm +
c4
sw

2Tn2
(nmεpp − εmnpp)G(0)

pp

= p(εR, nR) +
2− 3

(
c2
s + Ṫ

)

6w
G(0)µ

µ +
1− ċp
2cpT

G(0)
mm +

c2
s − Ṫ + 2ċs

2w
G(0)
pp

= p(εR, nR) +
TΛ3

6π2

(
(1− c2

s − 2Ṫ + ċs) +
1

2
(1− ċp)

)
. (2.157)

where we used

nmεmm − εmnmm =
T 2n4

c2
scpw

(1− ċp) , nmεpp − εmnpp =
Tn2

c4
sw

2
(c2
s − Ṫ + 2ċs) , (2.158)

which can be derived by using Eq. (2.48) and (2.63). This procedure of defining the physical

pressure that combines “bare” pressure with the effects of equilibrium fluctuations is similar

to the standard renormalization procedure in quantum field theory. Having performed the

renormalization of hydrodynamic variables and the equation of state, in what follows, for

notational simplicity, we will drop the subscript R on hydrodynamic variables εR, nR and

uR and thermodynamic functions such as pR.

We now turn to the first-order terms in the gradient expansion given by Eq. (2.152). Since

these terms are linear in gradients, they must be combined with the “bare” transport terms

into the physical transport terms. It may seem that this procedure, similar to renormalization

of pressure, is guaranteed to succeed. It indeed does, but this is not trivial because not all

gradient (transport) terms are allowed by second law of thermodynamics. The fact that only

those that are allowed arise from fluctuation emerges after delicate cancellations and is a

nontrivial test of the conceptual validity of the framework we develop.
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In the presence of background gradients, WAB(x, q) deviates from the equilibrium q-

independent value given by Eq. (2.110). This Wigner function is a solution to Eq. (2.105)

– a linear differential equation with coefficients linear in the gradients of velocity. As such,

WAB is a nonlocal functional of those gradients. The fact that allows us to remove diver-

gences by redefining physical parameters (as in quantum field theories) is that the divergent

contributions are simply local functions of the velocity gradients.

To derive the expressions for W
(1)
AB(x, q), we begin with inserting the decomposition

Eq. (2.155) into our main kinetic equation given in Eqs. (2.123) and (2.130). This substitu-

tion leads to an equation for W
(neq)
AB (x, q) which we then expand to first order in gradients of

the background flow. Because the kinetic equation already contains gradients of the leading

term W
(0)
AB(x), we can use the ideal equations of motion to convert the time derivatives into

spatial derivatives:

u · ∂(Tw) = −
(

1 + c2
s + Ṫ

)
Twθ , u · ∂(cpT

2) = −cpT 2(ċp + 2Ṫ )θ ,

∂⊥µ(Tw) = −Tw


1 + 2c2

s

c2
s

+

(
1− Ṫ

c2
s

)2
cpT

w


 aµ − T 2n

(
1 +

(
1− Ṫ

c2
s

)
cpT

w

)
∂⊥µα .

(2.159)

In deriving these, we use thermodynamic relations given in Appendix B. Keeping only the

terms that are linear in background gradients, the equations for W
(1)
AB can be solved as

W
(1)
L (x, q) =

Tw

γLq2

(
(Ṫ − ċs)θ − θµν q̂µq̂ν +

csTn

w
q̂ · ∂α

)
,

W (1)
mm(x, q) =

cpT
2

2γλq2
(ċp − 1) θ , W

(1)
(i)m(x, q) = W

(1)
m(i)(x, q) =

cpT
3n/w

(γη + γλ)q2
t(i) · ∂α ,

W
(1)
(i)(j)(x, q) =

Tw

2γηq2

((
c2
s + Ṫ

)
θ δij − 2θµνt(i)µ t

(j)
ν

)
.

(2.160)

Note that these expressions are given in the (A,B) basis where L(q) is diagonal and we need
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to convert them back into the (A,B) basis:

WAB = ψA
AWABψ

B
B =




Wmm Wmp Wmν

Wpm Wpp Wpν

Wµm Wµp Wµν




=




Wmm 0 Wm(j)t
(j)
ν

0 1
2
(W++ +W−−) 1

2
(W++ −W−−)q̂ν

W(i)mt
(i)
µ

1
2
(W++ −W−−)q̂µ

1
2
(W++ +W−−)q̂µq̂ν +W(i)(j)t

(i)
µ t

(j)
ν


 ,

(2.161)

which finally gives W
(1)
AB(x, q) in components,

W (1)
mm(x, q) =

cpT
2

2γλq2
(ċp − 1) θ , W (1)

pp (x, q) =
Tw

γLq2

(
(Ṫ − ċs)θ − θµν q̂µq̂ν

)
,

W (1)
mµ(x, q) = W (1)

µm(x, q) =
cpT

3n/w

(γη + γλ)q2
t(i)µ t

(i) · ∂α , W (1)
pµ (x, q) = W (1)

µp (x, q) =
csT

2n

γLq2
q̂µq̂ · ∂α ,

W (1)
µν (x, q) =

Tw

γLq2

(
(Ṫ − ċs)θ − θλκq̂λq̂κ

)
q̂µq̂ν +

Tw

2γηq2

((
c2
s + Ṫ

)
θ ∆̂µν − 2θλκ∆̂λµ∆̂κν

)
,

(2.162)

where ∆̂µν =
∑2

i=1 t
(i)
µ t

(i)
ν = ∆µν − q̂µq̂ν . With the help of the integrals

∫
d3q

(2π)3

1

q2
=

Λ

2π2
,

∫
d3q

(2π)3

q̂µq̂ν
q2

=
Λ

6π2
∆µν ,

∫
d3q

(2π)3

q̂λq̂κq̂µq̂ν
q2

=
Λ

30π2
(∆λκ∆µν + ∆λµ∆κν + ∆λν∆κµ),

(2.163)

the corresponding G
(1)
AB(x) are given by

G(1)
mm(x) =

cpT
2Λ

4π2γλ
(ċp − 1) θ , G(1)

pp (x) = − TwΛ

6π2γL

(
1− 3Ṫ + 3ċs

)
θ , (2.164a)

G(1)
mµ(x) =

(cpT
3n/w)Λ

3π2(γη + γλ)
∂⊥µα , G(1)

pµ (x) =
csT

2nΛ

6π2γL
∂⊥µα , (2.164b)

G(1)
µν (x) = − TwΛ

6π2γL

((
1

5
− Ṫ + ċs

)
θ∆µν +

2

5
θµν

)
− TwΛ

60π2γη

(
(2− 10(c2

s + Ṫ ))θ∆µν + 14θµν

)
.

(2.164c)

Finally we substitute the above expressions for G(1) into Eq. (2.152). The resulting contri-

butions are linear in the gradients and have the same form as “bare” viscous terms in Πµν
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and diffusion term in νµ. Therefore they can be absorbed into the definitions of viscosities

η, ζ and conductivity λ. After straightforward computation, we obtain the renormalized

transport coefficients as

ηR = η +
TΛ

30π2

(
1

γL
+

7

2γη

)
, (2.165a)

ζR = ζ +
TΛ

18π2

(
1

γL
(1− 3Ṫ + 3ċs)

2 +
2

γη

(
1− 3

2
(Ṫ + c2

s)

)2

+
9

4γλ
(1− ċp)2

)
, (2.165b)

λR = λ+
T 2n2Λ

3π2w2

(
cpT

(γη + γλ)w
+

c2
s

2γL

)
. (2.165c)

A couple of comments are in order. First, all the gradients appearing in the expansion of G(1)

are matched by the gradients appearing in the first-order terms in the constitutive equations,

Πµν and νµ. For Πµν , this is a simple consequence of the fact that, by construction, Πµν

involves all gradients allowed by Lorentz symmetry, so nothing else could have appeared in

Eqs. (2.164a) or (2.164c). However, this is less trivial in the case of the corrections to νµ. This

is because there are two linearly independent gradient terms allowed by Lorentz symmetry

alone, e.g., ∂µα and ∂µp, and, naively, any their linear combination could have appeared in

the expression for G(1) in Eqs. (2.164b). However, precisely ∂µα appears in Eqs. (2.164b),

which allows us to absorb the fluctuation contribution into λR. Any other linear combination

would require additional kinetic coefficient to absorb it. However, according to Eq. (2.26b)

and discussions thereby, the second law of thermodynamics only allows the gradient ∂µα

to appear in νµ in order to guarantee the semi-positivity of entropy production rate. The

way this constraint is respected by fluctuation contributions appears to be highly nontrivial,

relying on delicate cancellations that result in rather elegant thermodynamic identities given

by Eq. (2.158). Of course, we can view this as one of the many nontrivial checks of the

consistency of this approach and the validity of the calculations.

Second, in a similarly remarkable deference to the second law of thermodynamics mani-

fested in delicate cancellations, the correction to the bulk viscosity given in Eq. (2.165b) is

nonnegative, consistent with Eq. (2.28). Also, as expected, but similarly achieved through
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nontrivial cancellations, the fluctuation corrections vanish in the conformal limit, where

c2
s = 1/3 and ε = 3p, when bulk viscosity must vanish.

2.6.2 Long-time Tails

After all constitutive equations are expressed in terms of the physical, i.e., renormalized,

variables, pressure and transport coefficients, the remaining contributions, denoted by T̃ µν

are cutoff independent. This is very similar to renormalization in quantum field theory,

and it works for a similar reason – the locality of the first-order hydrodynamics (similar to

the locality of quantum field theory Lagrangian). On a more technical level, the gradient

expansion in WAB is accompanied by the expansion in 1/q2. This can be traced back to the

power-counting scheme in which k ∼ q2. The terms of order k2 are accompanied by 1/q4

leading to convergent integrals in G̃AB.

Thus, expressed in terms of physical quantities, the constitutive equations (2.150) do

not contain UV divergences which could lead to cutoff dependence. Together with the

conservation equations

∂µ〈T̆ µν(x)〉 = 0 , (2.166a)

∂µ〈J̆µ(x)〉 = 0 , (2.166b)

and the fluctuation evolution equations (2.123) and (2.124), they now form a closed set of

cutoff-independent, deterministic equations that describe the evolution of the background

flow, including the feedback of the fluctuating modes W̃ .

In principle this coupled system of equations can be solved numerically and nonlocal ef-

fects of long-time tails in an arbitrary background can be studied. We leave such a numerical

study for future work. Instead, for the remainder of this section we will describe important

analytical properties of the long-time tails in simple backgrounds by solving the fluctuation

evolution equations (2.123).
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A quick look at the evolution equations, (2.124) and (2.123) leads to the following “im-

pressionistic” expression for the non-equilibrium part of the Wigner function:

W (neq) ≡ W −W (0) ∼ ∂f

γq2 + i(u+ v) · k + ∂f
(2.167)

where v = ±csq̂ or 0 depending on which mode we are considering and γ and ∂f are schematic

notations for the relaxation rate coefficients and terms linear in background gradients re-

spectively. Note that k ∼ ∂ and u · k = ω is the frequency. After subtracting the term linear

in the background gradients, which is absorbed into the definitions of renormalized transport

coefficients, we obtain a schematic expression for the finite part of the Wigner function:

W̃ ∼ ∂f

γq2 + i(u+ v) · k + ∂f
− ∂f

γq2
∼ (u+ v) · k
γq2 + i(u+ v) · k + ∂f

∂f

γq2
. (2.168)

This procedure could be viewed a a subtraction scheme that regulates the phase-space in-

tegral of the fluctuation modes where the local (and instantaneous) short distance term is

subtracted. The integration over q leads to G̃ ∼ k1/2∂f/γ3/2 ∼ k3/2 which is a nonlocal func-

tional of the gradients [47]. Notice that k3/2 in terms of gradient expansion lies in between k

(first order, viscous terms) and k2 (second order terms) After Fourier transformation these

terms lead to power-law corrections which correspond to the long-time tails.

To be more quantitative, let us consider a special case and focus on the non-analytic ω

dependence, by taking spatial k to zero for simplicity. This means that we only keep the

k dependence for the background gradient term ∂f that is in the numerator of Eq. (2.167)

which is consistent with the order of gradient expansion that we are working with. In

other words we are looking at the frequency dependence of the transport coefficients. From

Eq. (2.168) we see that the frequency dependence can be expressed as

W̃ (x, q) = W (1)(x, q )
∣∣∣
γq2→γq2−iω

−W (1)(x, q) . (2.169)

The contribution of the two-point functions to the constitutive relation for the charge current

is given in Eq. (2.153b). We can calculate the relevant W̃ (x, q) by using the substitution,
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Eq. (2.169), in Eq. (2.162). By plugging the resulting expression into Eq. (2.153b), we obtain

λ(ω)∂µ⊥α ≡λ∂µ⊥α +
n

w2
G̃mµ(x) +

csn

w2
G̃pµ(x)

=λ∂µ⊥α + iω
cpT

3n2

w3
∂ν⊥α

∫

q

∆µν − q̂µq̂ν
((γη + γλ)q2 − iω)(γη + γλ)q2

+ iω
c2
sT

2n2

w2
∂ν⊥α

∫

q

q̂µq̂ν
(γLq2 − iω)γLq2

,

from which we find the frequency dependent conductivity, λ(ω), to be

λ(ω) =λ− ω1/2T
2n2

w2

(1− i)
6
√

2π

(
cpT

(γη + γλ)3/2w
+

c2
s

2γ
3/2
L

)
. (2.170)

Here, λ denotes the renormalized value of the zero frequency conductivity. This result is

consistent with the already known result for the special case of a conformal, boost invariant

plasma with conserved charge given in Eq. (50b) in Ref. [50].

The frequency dependent viscosities can be computed in the same way. The fluctuation

contributions to the viscous tensor is:

Πµν(ω) ≡ −2η(ω)

(
θµν − 1

3
∆µνθ

)
− ζ(ω)θ∆µν

≡ Πµν +
1

w
G̃µν(x)

+
1

2w

(
(1− ċp)w
cpT

G̃mm(x) +
(
c2
s − Ṫ + 2ċs

)
G̃pp(x)−

(
c2
s + Ṫ

)
G̃λ
λ(x)

)
∆µν ,

(2.171)

where Πµν stands for Πµν(ω = 0). After substituting the ω dependence in Eq. (2.169) in

Eq. (2.171) we obtain

Πµν(ω) = Πµν + iωT

∫

q





(
(Ṫ − ċs)θ − θλκq̂λq̂κ

)
q̂µq̂ν

(γLq2 − iω)γLq2
+

(
c2
s + Ṫ

)
θ ∆̂µν − 2θλκ∆̂µ

λ∆̂ν
κ

(2γηq2 − iω)2γηq2





+
iωT

2
∆µν

∫

q



−

(1− ċp)2θ

(2γλq2 − iω)2γλq2
+

(
c2
s − Ṫ + 2ċs

)(
(Ṫ − ċs)θ − θµν q̂µq̂ν

)

(γLq2 − iω)γLq2

−
(
c2
s + Ṫ

)

(Ṫ − ċs)θ − θλκq̂λq̂κ

(γLq2 − iω)γLq2
+

2
(
c2
s + Ṫ

)
θ − 2θλκ∆̂λκ

(2γηq2 − iω)2γηq2







(2.172)
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from which find the frequency dependent viscosities,

η(ω) = η − ω1/2T
(1− i)
60
√

2π

(
1

γ
3/2
L

+
7

(2γη)3/2

)
,

ζ(ω) = ζ − ω1/2T
(1− i)
36
√

2π

[
1

γ
3/2
L

(
1− 3Ṫ + 3ċs

)2

+
4

(2γη)3/2

(
1− 3

2
(Ṫ + c2

s)

)2

+
9

2(2γλ)3/2
(1− ċp)2

]
.

(2.173)

Here, η and ζ denote the renormalized values of the zero frequency viscosities.

The experimental observation of long-time tails can be found in Ref. [105, 106].

2.7 Phonon Interpretation of the Hydro-kinetic

Equation

2.7.1 Phonon Kinetic Equation

Consider a classical particle whose motion is described in terms of the space-time vector

xµ and 4-momentum pµ with dispersion relation given by some condition F (p) = 0. For

example, for a massive particle in vacuum F = p2 − m2. A phonon dispersion relation is

given by p0 = E(p) ≡ cs|p| in the rest frame of the fluid. This can be represented by

F+(p) = p · u+ E(p⊥), (2.174)

where u is the the 4-velocity of the fluid rest frame E = cs|p⊥| and

pµ⊥ = pµ + (p · u)uµ. (2.175)

The classical action can be then written as

S =

∫
( p · dx− λF+ dτ ) (2.176)

where λ is a Lagrange multiplier. Variation of the action is given by:

δS =

∫ [
δpµ

(
dxµ − λ∂F+

∂pµ
dτ

)
+ δxµ

(
−dpµ − λ∂F+

∂xµ
dτ

)
− δλF+dτ

]
(2.177)
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Classical trajectory is then given by equations of motion

ẋµ =
∂F+

∂pµ
= uµ + vµ (2.178)

where dot denotes d/(λdτ) (or one can use reparametrization invariance to set λτ to equal

coordinate time x0 in frame u) and

vµ =
∂E

∂pµ
= ∆µ

ν

∂E

∂p⊥ν
= csp̂

µ
⊥ , (2.179)

(where we used ∂p⊥ν/∂pµ = ∆µ
ν ) as well as

ṗµ = −∂F+

∂xµ
= −pν∂µuν − ∂µE (2.180)

together with the condition F+ = 0. We consider local properties of the fluid to be varying

(sufficiently slowly) in space and time. I.e., uµ = uµ(x), as well as E = E(x, p⊥), which in

the case of a phonon means cs = cs(x).

The corresponding Liouville operator acting on a function N (x, p) is given by

L[N ] ≡ ẋµ
∂N
∂xµ

+ ṗµ
∂N
∂pµ

. (2.181)

Note that L[F+] = 0. This property is important because it allows us to restrict the 8-

dimensional phase space to the 7-dimensional subspace defined by F+ = 0, i.e., to consider

functions of the form

N = δ(F+)N(x, p⊥) , (2.182)

where N is the usual phase-space distribution function (of 7 variables only). In other words

L[δ(F+)N ] = δ(F+)L[N ].

In order to write the kinetic equation in terms of the distribution function N(x, p⊥)

we need to express x derivatives in L[N ] at fixed p (∂/∂xµ in Eq. (2.181)) in terms of x

derivatives at fixed p⊥. These derivatives are not the same because the relationship between

p and p⊥ depends on x (via u(x) in Eq. (2.175)). One finds

∂N

∂xµ
= ∇̄µN + (∂µp⊥ν)

∂N

∂p⊥ν
, (2.183)
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where we denoted by ∇̄µ the x derivative at p⊥ fixed 16. Correspondingly, the last term in

Eq. (2.180) should be written as

∂µE = ∇̄µE + (∂µp⊥ν)v
ν . (2.184)

Similarly, the p derivatives at fixed x should be expressed as p⊥ derivatives

∂N

∂pµ
= ∆µ

ν

∂N

∂p⊥ν
. (2.185)

Substituting Eqs. (2.178), (2.180), (2.184), (2.183) and (2.185) into Eq. (2.181) we find

L[N ] = (u+ v) · ∇̄N −
[
p⊥ν∂⊥µu

ν + ∇̄⊥µE + vν(∂⊥µp⊥ν − ∂⊥νp⊥µ)− (u · ∂)p⊥µ
] ∂N

∂p⊥µ
.

(2.186)

Finally, using ∂µp⊥ν = −E∂µuν + uν∂µ(p · u), we can write the Liouville operator as

L[N ] = (u+ v) · ∇̄N −
[
E(aµ + 2vνωνµ) + p⊥ν∂⊥µu

ν + ∇̄⊥µE
] ∂N

∂p⊥µ
(2.187)

The expression in the square brackets is (the negative of) the force acting on the phonon. 17

The two terms in parentheses multiplied by E are easily recognized as the inertial force

due to acceleration a and the Coriolis force due to rotation ωµν , respectively. The force

−p⊥ν∂⊥µuν is easier to understand by considering isotropic Hubble-like expansion, i.e., such

that ∂⊥µuν = H∆ν
µ, where H is the rate of expansion (Hubble constant). This term then

describes the rescaling of the momentum p⊥ (stretching of the sound wave) due to expansion

of the background medium, leading to the “red shift” of the phonon spectrum, similar to the

photon red shift in the expanding universe. The last term is the force due to the dependence

of energy on the location of the phonon via the coefficient cs in its dispersion relation:

− ∇̄⊥µE = ∂⊥µcs|p⊥| . (2.188)

16A more explicit definition involves projections pa of p⊥ on the local triad p⊥µ = eaµpa, in terms of which

∇̄µN = ∂µN + ω̊aµbpa∂N/∂pb (cf. Eqs. (2.84), (2.85) and (2.99)). The projections pa are kept fixed while
taking x derivative, and connection term accounts for the rotation of the basis triad ea(x) which changes p⊥
while pa is fixed. Similarly, p⊥ derivatives at fixed x are more explicitly written as ∂/∂p⊥µ = eµa ∂/∂pa (cf.
Eq. (2.100)).

17One can also obtain this expression by taking the spatial projection of the rate of change of p⊥, i.e., the
force is ∆ν

µṗ⊥ν , and using equations of motion (2.178) and (2.180) together with Eq. (2.175).
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Remarkably, upon changing the notation for the phonon momentum

p⊥ → q , (2.189)

the Liouville operator in Eq. (2.187) with E = cs|p⊥| is identical to the one in Eq. (2.123)

obtained using completely different (but apparently complementary) considerations. The

two signs in front of cs in Eq. (2.123) correspond to positive and negative frequency sound

waves, or positive/negative energy solutions of the condition

F+F− ≡ (p · u)2 − E2 = 0, (2.190)

where F± = (p · u)± E and the positive energy solution is given by F+ = 0 in Eq. (2.174).

Curiously, for linear dispersion, E = cs|p⊥|, the condition in Eq. (2.190) can be written

as gµνpµpν = 0 using flow induced effective “metric tensor” gµν = −uµuν + c2
s∆

µν . Since

d(F+F−) = F−dF+ +F+dF− and δ(F ) = δ(F+)/F−+δ(F−)/F+, we see that the equations of

motion localized on the F+ = 0 surface are given by Eqs. (2.178) and (2.180) up to rescaling

of proper time. On the other hand, the equations of motion with the constraint F+F− = 0

are given by

ẋµ =
1

2

∂(F+F−)

∂pµ
= gµνpν , ṗµ = −1

2

∂(F+F−)

∂xµ
= −1

2
(∂µg

αβ)pαpβ , (2.191)

from which one can derive the “geodesic” equation of motion by taking additional time

derivative to the first equation and using these equations once more. From this point of view

the forces in Eq. (2.187) can be viewed as “gravitational” forces.

Perhaps even more remarkably than the matching of the Liouville operators in Eqs. (2.187)

and (2.123), the identification

W±(x, q) = cs|q|wN±(x, q) (2.192)

leads to nontrivial cancellation of the whole second line in Eq. (2.123) (i.e., of all terms

proportional to the background gradients θµν and aµ times W±) leaving simply the relaxation

term in Eq. (2.123):

L±[N±] = −γLq2(N± − T/E) , (2.193)
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where L± are different by the sign in front of cs in Eq. (2.123). Note that the equilibrium

value of N±, N
(0)
± = W

(0)
± /(cs|p⊥|w), equals T/E as expected for the low-energy limit of the

phonon Bose-Einstein distribution function.

In contrast to Eqs. (2.123) for longitudinal modes which reduces to a simple form Eq. (2.193)

upon rescaling given by Eq. (2.192), Eq. (2.124) for transverse modes cannot be simplified

in this way. This may be related to the fact that there is no quasiparticle interpretation for

these non-propagating, diffusive modes.

2.7.2 Phonon Contributions to Stress-Energy Tensor

It is also remarkable that certain contributions of the fluctuations to stress-energy tensor

can be related directly to the stress-energy tensor of the phonon gas via Eq. (2.192). This

provides a justification to the two-fluid picture (hydrodynamic fluid plus gas of phonons)

which guided the original approach by Andreev [97].

Let us start with the expression for the stress tensor for one particle moving along a

trajectory specified by x(τ):

T µν(1)(x) =

∫
dτ

1

2
(pµẋν + pν ẋµ)δ4(x− x(τ)). (2.194)

This means for a gas of such particles with distribution functions N+(x, p⊥) we have (’s’ for

’sound’):

T µν(s) (x) =

∫

p⊥

1

2
(pµẋν + pν ẋµ)N+(x, p⊥). (2.195)

Using equation of motion ẋ = u+ v (Eq. (2.178)) we obtain:

T µν(s) =

∫

p⊥

[
Euµuν +

1

2
((pµ⊥ + Evµ)uν + (µ↔ ν)) +

1

2
(pµ⊥v

ν + (µ↔ ν))
]
N+ . (2.196)

Using now E = cs|p⊥| and vµ = csp̂
µ
⊥ for the phonon, we find:

T µν(s) =

∫

p⊥

[
cs|p⊥|uµuν +

1 + c2
s

2
(pµ⊥u

ν + (µ↔ ν)) + cs|p⊥| p̂µ⊥p̂ν⊥
]
N+ . (2.197)

The first term gives the contribution of the phonon gas to the energy density:

ε(s) = −T µν(s)uµuν =

∫

p

cs|p⊥|N+ . (2.198)



CHAPTER 2. HYDRODYNAMIC FLUCTUATIONS 130

This matches exactly the contribution of the sound mode fluctuations, i.e., W± terms in

Eq. (2.161), to the energy density in Eq. (2.146) when we identify (as in Eq. (2.192))

cs|p⊥|N+ = W+/w and use the relation W−(x, q) = W+(x,−q).
Similarly, the last term in Eq. (2.197) gives the contribution of the phonon gas to the

pressure:

p(s) =
1

3
T µν∆µν =

1

3

∫

p⊥

cs|p⊥|N+ . (2.199)

This matches exactly the contribution of the sound mode fluctuations (W± terms in Eq. (2.161))

to the pressure given by the last term in Eq. (2.151).

2.8 Discussion

In this chapter, we present the deterministic approach to fluctuation hydrodynamics for

an arbitrary relativistic fluid carrying conserved U(1) charge. In QCD the relevant charge

is the baryon number. Our ultimate goal is practical – a formalism which would allow to

simulate heavy-ion collisions with dynamical effects of fluctuations, especially relevant for the

QCD critical point search. We would like to emphasize that, despite its practical aim, this

formalism is based on a systematic and controllable expansion, similar to the effective field

theory formalism in quantum field theory. The expansion parameter in hydrodynamics is

the ratio of the wavenumber k = 1/L associated with background flow and density gradients

to a microscopic scale which sets the scale of hydrodynamic coefficients and which we denote

1/`mic. This allows us to view hydrodynamics as an effective theory.

Instead of directly solving stochastic hydrodynamic equations, we convert them into a

hierarchy of equations for equal-time correlation functions, which we truncate at two-point

correlators. This truncation is controlled by the same expansion parameter as the gradient

expansion in hydrodynamics. One can see how the relevant power counting emerges by

considering the effects of fluctuations on the constitutive equations for stress tensor (or

conserved current). In stochastic hydrodynamics the noise is local, i.e., it is only correlated
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inside a hydrodynamic cell, as reflected in the delta function value of the two-point noise

correlator in Eq. (2.32). This locality is the source of short-distance singularities, similar to

ultraviolet singularities in quantum field theories. Hydrodynamics is regulated by finiteness

of the cell size, which we denote by b � `mic, equivalent to wavenumber cutoff Λ = 1/b.

As a function of this regulator, the square variance of the noise in each cell is proportional

to Λ3 – the regulated value of the delta function. This is, of course, the source of the

cutoff dependent contribution to renormalized pressure in Eq. (2.157) and, as such, is not of

physical relevance.

The physically consequential contribution comes from the fluctuations whose relaxation

time is comparable to the evolution time of the background. Correspondingly, this scale,

characterized by wavenumber q∗, can be estimated by the condition γq2
∗ ∼ csk. The effect

of these fluctuations is the delayed or nonlocal response to perturbations of the background

(such as long-time tails) and cannot be simply absorbed by renormalization of the local

hydrodynamic parameters such as pressure or transport coefficients. Since q∗ � Λ, the

noise on these longer distance scales, `∗ = 1/q∗, averages out and the magnitude of the

fluctuations is effectively reduced by a factor (b3/`3
∗)

1/2 = (q∗/Λ)3/2 – the inverse of the square

root of the number of uncorrelated cells in a region of linear size `∗ – the familiar random

walk factor. Therefore the physically relevant magnitude of the fluctuations, obtained by

averaging over scales `∗ is given by Λ3/2 × (q∗/Λ)3/2 ∼ q
3/2
∗ ∼ k3/4. It is cutoff independent,

of course. Therefore, the two-point correlator of these fluctuations contributes at order

k3/2, suppressed compared to first-order gradients, but more important than second order

gradients. Similarly, the contribution of n-point functions, due to higher order nonlinearities

in the constitutive equations, would come at order k3n/4 One can see that the hierarchy

of higher-point contributions is controlled by a power of k, or more precisely, a power of

dimensionless parameter k`mic = `mic/L� 1.

The equations we derive form a closed set of deterministic equations which can be solved

numerically. The one-point functions (averaged values of hydrodynamic variables) obey con-

servation equations (2.166). The constitutive equations (2.150) contain contributions T̃ µν
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and J̃µ which are given in terms of the subtracted two-point functions G̃ in Eqs. (2.153). The

unsubtracted two-point functions G are evaluated at coinciding points and therefore contain

short-range singularities. When unsubtracted G are expressed in terms of the wavenumber

integrals of the Wigner functions Eq. (2.154), these singularities appear as ultraviolet di-

vergences which need to be subtracted. The unsubtracted Wigner functions are obtained

by solving equations (2.123) and (2.130), rescaling according to Eqs. (2.122) and (2.128)

and substituting into the matrix in Eq. (2.161). The subtraction of terms of zero and first

order in gradients, W (0) and W (1), given by Eqs. (2.110) and (2.162) respectively, can be

done analytically, and either before or after solving equations (2.123) and (2.130), depending

on numerical efficiency. The resulting solutions to one-point and two-point equations will

describe evolution of the average hydrodynamic variables, their fluctuations, as well as the

feedback of the fluctuations on the evolution of average quantities.

As usual, numerical implementation of relativistic hydrodynamic equations is hindered

by well-known causality and stability issues which, in ordinary hydrodynamics without fluc-

tuations, can be addressed by adding non-hydrodynamic degrees of freedom with relaxation

dynamics, as reviewed in Ref. [101] (see also interesting recent developments in Refs. [107,

108, 109]). In a nutshell, the approach amounts to modification of the equations in the do-

main (characterized by large gradients) where hydrodynamic description is not applicable.

As such these modifications are inconsequential from the point of view of physics, but make

the equations mathematically well-posed and suitable for numerical implementation [110].

The hydrodynamic equations we obtained in this work will require a similar treatment before

they can be implemented numerically. It is reasonable to expect that the approaches which

work for non-fluctuating hydrodynamics will also work in this case. The additional equa-

tions for the Wigner functions introduced in our formalism describe relaxation (as opposed

to relativistically problematic diffusion) and, as such, should not lead to causality/stability

problems. Moreover, it is also reasonable to expect that the relaxation dynamics of fluctu-

ations could improve (if not solve) the stability problems, similar to the way relaxational

dynamics of fluxes in Israel-Stewart approach achieve this. We expect that these issues will
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be addressed by future research.
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Chapter 3

Dynamics of Critical Fluctuations

This chapter contains materials published in

• X. An, G. Basar, M. Stephanov and H.-U. Yee, Relativistic Hydrodynamic Fluctuations,

Phys. Rev. C 100 no. 2, (2019) 024910, arXiv:1902.09517 [hep-th] [1]. Copyright

(2019) by the American Physical Society (APS).

• X. An, G. Basar, M. Stephanov and H.-U. Yee, Fluctuation dynamics in a relativistic

fluid with a critical point, accepted by Phys. Rev. C, arXiv:1912.13456 [hep-th] [2].

Copyright (2020) by the American Physical Society (APS).

• X. An, Fluctuation dynamics in a relativistic fluid with a critical point, accepted by

Nucl. Phys. A, arXiv:2003.02828 [hep-th] [3]. Copyright (2020) by authors.

In the preceding chapter we saw that kinetic coefficients, ζ, η and λ receive contributions

from fluctuations. These contributions are dominated by the fluctuations at the cutoff scale

Λ and therefore depend on the cutoff.

In this chapter we consider the physics of fluctuations at the critical point. The main

feature of the critical point is that the equilibrium correlation length of the fluctuations, ξ,

becomes infinite. To maintain the separation between the hydrodynamic scales L ∼ k−1 and

microscopic scales, such as ξ, we must limit the domain of applicability of hydrodynamic
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description to wave-vectors k � ξ−1. However, as emphasized in Ref. [39], this does not

mean that hydrodynamics applies until k ∼ ξ−1. Instead, hydrodynamics breaks down

before k reaches that limitation. Hydrodynamics breaks down when the frequency of the

fastest hydrodynamic mode (the sound, with ω ∼ csk) reaches the rate of the relaxation of

the slowest non-hydrodynamic mode. Near the critical point this rate vanishes much faster

than ξ−1.

The slowest non-hydrodynamic variable at the critical point is the fluctuation of the

slowest hydrodynamic mode (diffusive mode m), given by Nmm. The relaxation rate depends

on q and equals 2γλq
2 for q � ξ−1. Because the contribution of the fluctuations to pressure

and kinetic coefficient is UV divergent, it is dominated by the modes near the cutoff, which

in the case of the critical point is effectively Λ ∼ ξ−1. Thus the characteristic rate of non-

hydrodynamic relaxation, Γξ, is of order γλξ
−2. Together with the fact that γλ vanishes as a

power of ξ, i.e., to a good approximation γλ ∼ ξ−1, 1 we find that the hydrodynamic breaks

down already when the frequency reaches ω ∼ ξ−3. For the sound modes this corresponds

to k ∼ ξ−3, much earlier than ξ−1.

To extend hydrodynamics past k ∼ ξ−3 we need to include the slowest non-hydrodynamic

mode, which is the idea behind Hydro+ [39]. In our notations this mode (or modes, labeled

by index q) is Nmm. In this section we intend to show that in the regime k > ξ−3 our

formalism reproduces Hydro+. This is a nontrivial check because Hydro+ formalism was

derived in Ref. [39] using a completely different approach by considering a generalized entropy

which depends on the non-hydrodynamic variables (2PI entropy).

The formalism of Hydro+, while extending ordinary hydrodynamics beyond the scales

k ∼ ξ−3, in turn, also breaks down well before k reaches k ∼ ξ−1. The breakdown occurs

1This can be easily estimated from Eq. (2.165c). The contribution of fluctuations which dominates at
the critical point is in the term proportional to cp, i.e., λR ∼ Λcp. Given that cp ∼ ξ2 and Λ ∼ ξ−1, we find
λ ∼ ξ1 and γλ ∼ λ/cp ∼ ξ−1. We neglected the critical exponent ηx (cp ∼ ξ2−ηx) and the divergence of the
shear viscosity η ∼ ξxη (an error of less than 10%). Taking those into account, we would obtain the exact
relation for the exponent xλ, defined by λ ∼ ξxλ : xλ = d− 2−xη − ηx (cf. Ref. [66]). Since Γξ ∼ γλξ−2, the
standard dynamical critical exponent z defined as Γξ ∼ ξ−z is related to xλ as z = 4− ηx − xλ.
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when the frequency reaches the relaxation rate Γ′ξ of the next-to-slowest nonhydrodynamic

mode. This mode (or modes) are the fluctuations of velocity transverse to the wave-vector.

This relaxation rate is of order γηq
2 at q � ξ−1. Again, the dominant contribution comes

from modes at q ∼ ξ−1 and, since γη to a good approximation can be treated as finite at

the critical point [66], Hydro+ breaks down when frequency reaches ω ∼ Γ′ξ ∼ ξ−2, which

for the sound modes corresponds to k ∼ ξ−2. Near the critical point this scale is still much

lower than ξ−1.

In our formalism the next-to-slowest modes responsible for the breakdown of Hydro+

are Nm(i) and N(i)(j) (normalized Wigner functions obeying Eqs. (2.130b) and (2.130c)).

Therefore, within our formalism we can extend Hydro+ beyond its limit at k ∼ ξ−2. In

Section 3.2 we shall describe how to do that. Prior to that, in Section 3.1, we shall verify

that in the regime where Hydro+ is applicable, it is in agreement with our more general

formalism.

3.1 Hydro+

While the framework of hydrodynamics for describing an ideal (non-dissipative) system

is well known, the presence of the gradients brings the system out of equilibrium, or more

precisely, the non-equilibrium hydrodynamic variables shall be approximated by the gradient

expansion series, with an expansion parameter characterized by Knudsen number which

satisfies Kn ∼ `mic/L ≤ 1 2, a constraint for near-equilibrium hydrodynamics (cf. Sec. 2.1).

Such constraint manifested in the ordinary hydrodynamics is not always applicable in a

realistic system, one such case is what we are considering here: a fluid with a critical point.

Let’s consider the bulk viscous term in Eq. (2.26a), where the non-equilibrium correction to

pressure is proportional to the bulk viscosity ζ. Away from the critical point, ζ ∼ `mic is much

smaller than L, however, due to the critical slowing down, ζ diverges near the critical point

2Recently a frame work of far from equilibrium hydrodynamics is established.
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as ξ3, manifesting the breakdown of gradient expansion since Kn � 1. The non-equilibrium

corrections of fluctuations to the background quantities (such as pressure) also demand a

dynamic description for their relaxation processes responsible for the critical slowing-down.

Such corrections should be considered as an consequence of adding an additional mode (or

modes labeled by q) of an extended hydrodynamic framework called Hydro+.

The main ingredient of Hydro+ is the entropy density s(+) of the system in partial

equilibrium state where a non-hydrodynamically slow variable ϕ, or more generally, a set of

variables ϕq indexed by a discrete or continuous index q is not equal to the equilibrium value

ϕ
(0)
q (ε, n) for given ε and n. For brevity of notations we shall denote such a set of variables

by a bold letter, similar to a vector with components ϕq:

ϕ ≡ {ϕq} . (3.1)

The equations of motion for ϕ describe relaxation to equilibrium (maximum of s(+)) accom-

panied, in general, by dilution due to expansion:

u · ∂ϕ = −Fϕ −Aϕθ . (3.2)

Second law of thermodynamics requires (Fϕ)q =
∑

q′ γqq′πq′ with semi-positive-definite γ

where πq is the thermodynamic “force” defined, as usual, via

ds(+) = β(+)dε− α(+)dn− π · dϕ , (3.3)

where π ·ϕ =
∑

q πqϕq. The coefficient Aϕ in Eq. (3.2) describes the response of the variable

ϕ to the expansion or compression of the fluid (since θ = ∂ · u is the expansion rate). 3

The hydrodynamic variables ε and u obey, as usual, equations of the energy-momentum

conservation. The equation of state enters into constitutive equations

T µν = εuµuν + p(+)∆
µν + Πµν (3.4)

3For comparison, we can also cast evolution of hydrodynamic variables or, in general, any function of
ε and n, in the form of Eq. (3.2). In this case Fϕ = 0 and Aϕ = ϕϕ̇. For example, for charge density n:
An = n, since ṅ = 1, – the density changes proportionally with inverse volume, while for the ratio m = s/n,
Am = 0, since ṁ = 0.
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via pressure p(+) which, as a function of ε, n, and ϕ, is given by the Legendre transform of

s(+):

β(+)p(+) = s(+) − β(+)ε+ α(+)n+ π ·Aϕ . (3.5)

This relationship between pressure and entropy is dictated by the second law of thermody-

namics [39].

Near equilibrium, the deviation of the entropy s(+)(ε, n, ϕ) from the equilibrium value

s(ε, n) is quadratic in π, since entropy is maximized in equilibrium. The deviation of pressure

p(+) from equilibrium p is linear in π,

p(+) = p+ pπ · π +O(π2) . (3.6)

The coefficient pπ can be expressed (see Appendix B in Ref. [39]) using Eqs. (3.3) and (3.5),

in terms of the equilibrium value of ϕ at given ε and n, which we denote by ϕ(0)(ε, n), as

βpπ = −w
(
∂ϕ(0)

∂ε

)

n

−n
(
∂ϕ(0)

∂n

)

ε

+Aϕ = −s
(
∂ϕ(0)

∂s

)

m

+Aϕ = −ϕ(0)(ϕ(0))˙ +Aϕ . (3.7)

We wish to show that the constitutive equations in Hydro+ with generalized pressure p(+) are

in agreement with the equations we derived by expanding to quadratic order in fluctuations,

such as Eq. (2.150).

Application of the Hydro+ approach near the critical point consists of considering the

two-point correlation function of the slowest mode (m ≡ s/n): ϕ ∼ 〈δmδm〉. Essentially,

using our notations

ϕq(x) = Nmm(x, q) . (3.8)

Due to the reparametrization invariance of Hydro+ (see Appendix C in Ref. [39]), either

choice, Nmm or Wmm, different by a normalization factor in Eq.(2.128), will lead to the same

result. The choice of Nmm is convenient because in this case the compression coefficient

vanishes: Aϕ = 0 (see Eq. (2.130a)).

In order to find non-equilibrium correction to Hydro+ pressure in Eq. (3.6) we need to

use the expression for the non-equilibrium contribution to entropy, Eq. (1.79), rewritten here
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as

s(neq) ≡ s(+) − s =
1

2

∫

q

(
log

Nmm

N
(0)
mm

− Nmm

N
(0)
mm

+ 1

)
(3.9)

to determine π:

πq ≡ −
∂s(+)

∂ϕq
=

1

2

(
1

N
(0)
mm

− 1

Nmm

)
=

1

2

(
N (0)
mm

)−2
N (neq)
mm +O(N (neq)

mm )2 , (3.10)

where

N (neq)
mm ≡ Nmm −N (0)

mm . (3.11)

The equilibrium value N
(0)
mm of Nmm also determines the value of pπ via equation (3.7) with

ϕ(0) replaced by N
(0)
mm and Aϕ = 0. Putting this together we find, to linear order in N

(neq)
mm ,

p(neq) ≡ p(+)−p = −T
2

∫

q

(
N (0)
mm

)−1
Ṅ (0)
mmN

(neq)
mm =

nT

2cp
(1− ċp)

∫

q

N (neq)
mm =

1− ċp
2cpT

G(neq)
mm (3.12)

where we used N
(0)
mm = cp/n, which follows from Eq. (2.110) and (2.128) (and can be seen in

Eq. (2.130a)) together with the property of the log-derivative, Eq. (2.46).

We should compare this to the non-equilibrium contribution to pressure from Nmm (which

is dominant near critical point due to being proportional to cp) in Section 2.6:

p(neq) =

(
∂p

∂ε

)

n

(δRε− δ(0)
R ε) +

(
∂p

∂n

)

ε

(δRn− δ(0)
R n) =

1− ċp
2cpT

G(neq)
mm , (3.13)

which is similar to equilibrium contribution (renormalization of static pressure) found in

Eq. (2.157) with index ‘(0)’ replaced by ‘(neq)’. One can see that Hydro+ reproduces these

non-equilibrium contributions exactly. We emphasize that this is a very nontrivial cross-

check, involving an elaborate thermodynamic identity for third derivatives of entropy in

Eq. (2.158). This is in contrast to Ref. [39], where Hydro+ formalism emerged via a very

different route, starting from the derivation of the non-equilibrium entropy functional s(+)

in Eq. (3.9).
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3.2 Hydro++

3.2.1 Equations for Hydro++

Since, as we already discussed above, the fluctuation contributions are dominated by

the modes near the cutoff Λ, and for critical fluctuations the role of this cutoff is played

by ξ−1, the contributions responsible for the breakdown of ordinary hydrodynamics and of

Hydro+ are dominated by fluctuations at scale q ∼ ξ−1. These modes themselves cannot be

described by ordinary hydrodynamics. The dynamics of these modes is essentially nonlinear

and nonlocal (often referred to as mode-coupling phenomenon). However, this dynamics is

universal in the sense of universality of dynamical critical phenomena and is described by

model H in the classification of Ref. [66]. We shall, therefore, use the known results from

this universality class to describe the dynamics of these fluctuation modes.

Near the critical point, where the correlation length ξ greatly exceeds all other micro-

scopic scales, the description simplifies due to (static and dynamic) scaling. That means

the relaxation rates, even though no longer polynomial in q, as in the hydrodynamic regime

where gradient expansion applies, depend on the q and ξ via functions of only the dimension-

less combination qξ (times a power of ξ). Furthermore, these functions (and the powers of

ξ) are universal, i.e., independent of the microscopic composition or properties of the system

close to the critical point in a given universality class. The universality class relevant for our

discussion is that of model H, defined in Ref. [66] as dynamic universality class of liquid-gas

phase transitions.

As we already said, the fluctuation kinetic equations, such as (2.130), do not apply in the

regime qξ ∼ 1 as they are. However, a modification of these equations, to match the known

results from model H is possible and shall be described below. We must emphasize, that

unlike the formalism derived in the preceding sections, which was exact to a certain order

in a systematic expansion, here our out goal is to provide the formalism which reproduces

the physics of critical point fluctuations correctly, but not necessarily exactly. For once,
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the exact description would at a minimum require exact solution to model H, which is not

available. Our approximation is essentially equivalent to a one-loop approximation intro-

duced by Kawasaki in Ref. [111], which is known to be in good quantitative agreement with

experimental data [66]. Similarly to Hydro+ formalism, the purpose of the new extended

formalism, which we shall refer to as Hydro++ in this thesis, is to provide a practical way

of simulating the dynamics near the critical point, e.g., in heavy-ion collisions.

There are two main modifications required. First of all, we need to modify equation for

Nmm to make sure that the equilibrium correlation function has finite correlation length ξ.

Thus, the delta-function approximation in Eq. (1.96) at ξ � L is no longer valid, and one

has to use the Yukawa form given by Eq. (1.97), i.e., N
(0)
mm(x, q) must depend on momentum

q. We shall express this as

N (0)
mm =

cp(q)

n
(3.14)

where we defined function cp(q) in such a way that cp(0) = cp is the usual thermodynamic

quantity (heat capacity at constant pressure). In this work we adopt the simple approxima-

tion for the momentum dependence provided by Eq. (1.97):

cp → cp(q) =
cp

1 + (qξ)2
. (3.15)

This is known as Ornstein-Zernike form and is consistent with other approximations we are

making.4 A more sophisticated form and a better approximation to the exact correlation

function (which is not known exactly as of this writing5) can be used if necessary, see Ref. [39].

The second essential modification is required to correctly describe relaxation rate of the

slowest non-hydrodynamic mode, Nmm. The critical contribution, ∼ ξ−1 dominates near the

critical point. It is given in terms of the Kawasaki function

K(x) =
3

4x2

[
1 + x2 +

(
x3 − x−1

)
arctanx

]
= 1 +O(x2) . (3.16)

4Such as cp ∼ ξ2 instead of cp ∼ ξ2−ηx .
5It is the correlation function of the 3d Ising model.
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Such modification results from the nonlocal contribution of the gradient ∂⊥α to the conduc-

tivity λ, i.e.,

∂µ⊥α(x)→ ∂µ⊥α(x, q) =

∫
d3ye−iq·y

e−|y|/ξ

4π|y|ξ2
∂µ⊥α(x+ y), (3.17)

which reduces to ∂µ⊥α by replacing the Yukawa kernel by the delta function. In other words,

the feedback of the charge conduction due to the perturbative source ∂⊥α is no longer local,

instead, it is a superposition of all contributions of such sources from the correlated volume

ξ3 around x. As a consequence, the expression W
(1)
m(i) and W

(1)
mµ given by Eq. (2.160) and

(2.162) shall be modified accordingly and finally (cf. Eq (2.164))

G(1)
mµ(x) =

(cpT
3n/w)Λ

3π2(γη + γλ)
∂⊥µα ,

G(1)
mµ(x) =

∫
d3q

(2π)3
W (1)
mµ(x, q) =

∫
d3q

(2π)3
W

(1)
m(i)t

(i)
µ

=

∫
d3q

(2π)3

cpT
3n/w

γηq2
t(i)µ

∫
d3ye−iq·y

e−|y|/ξ

4π|y|ξ2
t(i) · ∂α(x+ y)

=
cpT

3n

γηw

∫
d3qd3p

(2π)6

∆µν − q̂µq̂ν
q2(1 + (pξ)2)

∫
d3yei(p−q)·y∂ν⊥α(x+ y)

=
cpT

3n

γηw

∫
d3qd3p

(2π)6
ei(q−p)·x

i(q − p)ν(∆µν − q̂µq̂ν)
q2(1 + (pξ)2)

α̃(q − p)

=
cpT

3n

γηw

∫
d3pd3q

(2π)6
eip·x

i(pµ − q̂ · pq̂µ)

(1 + ((p+ q)ξ)2)q2
α̃(p)

=
cpT

3n

γηw

∫
d3p

(2π)3
eip·x

∫
d3q

(2π)3

q2 − (q · p̂)2

(1 + ((p+ q)ξ)2)q4
ipµα̃(p)

=
cpT

3n

γηw

∫
d3p

(2π)3
eip·xipµα̃(p)

∫
dq

(2π)3

q2

1 + (qξ)2

∫
dΩ
|q × p̂|2
(q − p)4

=
cpT

3n

γηw

∫
d3p

(2π)3
eip·xipµα̃(p)

∫ ∞

0

dq

(2π)3

q2

1 + (qξ)2

π

p2

[
q2 + p2

2qp
ln

(
q + p

q − p

)2

− 2

]

=
cpT

3n

6πγηwξ

∫
d3p

(2π)3
eip·x

K(pξ)

1 + (pξ)2
ipµα̃(p) =

cpT
3n

6πγηwξ

∫
d3p

(2π)3
eip·xKλ(pξ)ipµα̃(p)

=
cpT

3n

6πγηwξ

∫
d3

(
x′

ξ

)
K̃λ

(
x− x′
ξ

)
∂⊥µα(x′),

(3.18)



CHAPTER 3. DYNAMICS OF CRITICAL FLUCTUATIONS 143

where we have introduced

Kλ(x) =
K(x)

1 + x2
(3.19)

identified as the weight kernel of the nonlocal contribution to G
(1)
mµ(x) and hence λ:

λ(q) ≈λ0 +
n

w2

cpT
3n

6πηξ
Kλ(qξ) (3.20)

where we have neglected the contribution from G
(1)
pµ (x), which is less dominant compare to

the contribution from G
(1)
mµ(x) near the critical point. Meanwhile, we also keep the noncritical

contribution λ0. Using γλ = κ/cp, we also have similar expression for the heat conductivity:

κ(q) ≈ κ0 +
cpT

6πηξ
Kλ(qξ) . (3.21)

The latter increases with ξ as κ ∼ ξ (in Kawasaki approximation). Finally, we can write for

the q-dependent rate

Γ(q) ≡ 2γλ(q)q
2 = 2

κ(q)

cp(q)
q2 = 2

(
κ0

cp(q)
+

T

6πηξ
K(qξ)

)
q2. (3.22)

Note that at small q, i.e., qξ � 1, the rate is given by twice the diffusion rate γλq
2.

With these two modifications, the equations for Hydro++ we propose read:

L[Nmm] =− 2γλ(q)q
2

(
Nmm −

cp(q)

n

)
− n

w
t(i) · ∂m

(
N(i)m +Nm(i)

)
, (3.23a)

L[Nm(i)] =− (γη + γλ(q)) q
2Nm(i)

− ∂νuµt(i)µ t(j)ν Nm(j) −
n

w
t(j) · ∂mN(j)(i) + Tn

(
1

cp(q)
t(i) · ∂m+

T

w
t(i) · ∂α

)
Nmm ,

(3.23b)

L[N(i)(j)] =− 2γηq
2

(
N(i)(j) −

Tw

n
δij

)

− ∂νuµ
(
t(i)µ t

(k)
ν N(k)(j) + t(j)µ t(k)

ν N(i)(k)

)
+
αpT

2n

w
∂µp

(
t(i)µ Nm(j) + t(j)µ N(i)m

)
,

(3.23c)

where again, αp = (1− Ṫ /c2
s)/Tn. The function γλ(q) is defined in Eq. (3.22). The presence

of function cp(q), defined in Eq. (3.15), in Eq. (3.23b) ensures important property of Nm(i) in
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equilibrium – proportionality to ∂α, which follows from the second law of thermodynamics

as we already discussed in connection with Eq. (2.130b). 6 Other terms may also contain

“formfactors”, i.e., functions of qξ, which could be determined from a more detailed calcu-

lation of three-point functions in model-H. We leave such and similar refinements to future

work. It is likely that given the general degree of applicability of hydrodynamics in heavy-ion

collisions these will be beyond the experimentally relevant precision.

Eq. (3.23a) describes relaxation of the slowest non-hydrodynamic mode, Nmm, to equi-

librium given by Eq. (3.14). Of course, the equilibrium value depends on how one defines

Nmm (or normalize φm ∼ δm). Here we have chosen the most convenient rescaling to sim-

plify our final equations (cf. (2.128)). The corresponding equation used in Ref. [39, 40, 42],

are identical to ours except the difference of the definition (normalization factor) of Nmm.

However, one can argue that, as long as the equation for Nmm is applied in the vicinity of

a critical point, this difference is sub-leading compared to the blowing-up of the equilibrium

values of Nmm. More specifically, since N
(0)
mm ∼ cp ∼ ξ2, the LHS of Eq. (3.23a) is dominated

by a term like u · ∂cp ∼ cpċpθ. It is much large than the gradient terms like cpθ aroused from

the different normalization of Nmm, and the enhancement factor is given by ċp ∼ ξ3/2. The

conclusion for a generic two-point functions NAB is similar if N
(0)
AB is singular near the critical

point. Namely, the gradient terms in the equation for NAB generated from rescaling are al-

ways less important by a factor of Ṅ
(0)
AB than the most singular terms, thus the normalization

of Nmm does not matters near the critical point. Provided such fact, Eq. (3.23a) would be

identical to the corresponding Hydro+ equation in Ref. [39], but for the last term describing

the coupling to next-to-slowest mode, Nm(i). Again, because cp ∼ ξ2 diverges at the critical

point, and furthermore, the relaxation rate for Nm(i) is parametrically faster than Nmm by

a factor of ξ, this term is indeed much smaller than the first term sufficiently close to the

critical point. However, if we want to interpolate Hydro+ description close to the critical

6Heuristically, one can obtain Eq. (3.23b) from Eq. (2.130b) by preforming substitution of cp according
to Eq. (3.15)
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point with dynamics of fluctuations away from the critical point this term has to be kept.

In summary, the general hydro-kinetic formalism presented in Chap. 2 provides a sys-

tematic description of fluctuating hydrodynamics away from the critical point, as long as the

scale hierarchy is hold. Near the critical point, the implementation of our general formalism

is more subtle, however. The main feature in the critical region is that, the equilibrium

correlation length ξ, which is microscopically small away from the critical point, becomes

macroscopically large in the thermodynamic limit as the system approach the critical point.

Thus, the scale hierarchy we have used in hydro-kinetic theory breaks down, and the nonlo-

cal effect is significant at the fluctuation scale. Due to the critical slowing down illustrated

below Eq. (1.112), we have Γλ ∼ ξ−3 � Γη ∼ ξ−2, thus different modes in Eqs. (2.130) may

relax with parametrically different rates, and compete with the background evolution rate

ω in different scenarios. As depicted by Fig. 3.1, in the long wavelength limit ω � Γλ . Γη,

manifested away from the critical point, most wavenumber modes equilibrate rapidly com-

pared to ω, therefore ordinary hydrodynamics (Hydro) is sufficient to describe the system.

As the system approaches the critical point (ξ increases), ω will first fall into the window

Γλ . ω � Γη where hydrodynamics breaks down and Hydro+ applies [39], thus the slowest

mode Nmm associated with Γλ has to be taken into account (see Eq. (2.130a)). Hydro++,

however, nontrivially extends the applicability of Hydro+ further to Γλ � Γη . ω, i.e.,

closer to the critical point, such that the whole set of equations in (2.130) must be involved.

Nonetheless, we shall emphasis that Hydro++ is limited by ω � ξ−1, since the nonlocality

at scale ω ∼ ξ−1 is not negligible and an extended formalism is still plausible.

3.2.2 Frequency Dependence of Transport Coefficients

Let us discuss physics described by Eqs. (3.23) which is pertinent to the breakdown of

Hydro+ and its crossover to Hydro++.

We can use Eqs. (3.23) to determine the critical contribution λξ to the conductivity λ

and verify it diverges as ξ → ∞. Following the procedure of renormalization described in
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ξ  ~ω
-3

Hydro

Hydro+
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ξ  ~ω
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ξ  ~ω
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T

μ

Figure 3.1: A schematic plot of the vicinity of the critical end point (blue point) in the T −µ
plane of the QCD phase diagram. The contours of the equilibrium correlation length ξ sepa-
rate several distinct regimes characterized by frequency ω. See text for detailed illustration.

Section 2.6 we now find that W
(1)
mµ, i.e., the part of Wmµ linear in gradients, is given by

Eq. (2.162) with a simple substitution cp → cp(q). This, in turn, makes the integral of W
(1)
mµ,

G
(1)
mµ(x), finite. The cutoff is now essentially given by 1/ξ, instead of Λ. This means that

instead of Eq. (2.164) we find, using cp(q) in Eq. (3.15), Λ → π/(2ξ). Substituting this

result into equation (2.165c) for the renormalized conductivity we find a contribution to

renormalized conductivity which diverges with ξ:

λξ =

(
Tn

w

)2
cpT

6πηξ
∼ ξ1 (3.24)

– a well-known result [66]. We used the fact that cp ∼ ξ2. In particular, since γλ ∼ λ/cp ∼ ξ−1

we neglected γλ compared to γη ∼ ξ0. Denoting the noncritical contribution to conductivity

by λ0 we can write the total physical conductivity as

λ = λ0 + λξ = λ0 +

(
Tn

w

)2
cpT

6πηξ
=

(
Tn

w

)2(
κ0 +

cpT

6πηξ

)
. (3.25)

Note that the relaxation rate Γ(q) in Eq. (3.22) at q = 0 matches twice the relaxation

rate of the diffusive mode, γλ = κ/cpq
2, as it should since this is the relaxation rate of the

corresponding two-point function.
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In the Hydro+ formulation in Ref. [39] the value of conductivity was given directly by

Eq. (3.24). In our more general approach, which we refer to as Hydro++, the divergent

value of the conductivity is generated “dynamically” via the contribution of the fluctuation

mode Wm(i) (via Gmµ(x)) to the constitutive equation for the current in Eq. (2.147b). The

value of λ = λ0 in Eq. (2.26b) is finite as ξ → ∞. This is similar to the way divergence of

bulk viscosity with ξ → ∞ is generated in Hydro+ (and, by extension, also in Hydro++),

see Ref. [39]. Similarly to Hydro+, which describes frequency dependence of bulk viscosity

(and sound speed) Hydro++ describes the frequency dependence of the kinetic coefficient

λ. We shall consider it below.

Hydro++ allows us to see how Hydro+ breaks down when k (or, more precisely, the

sound frequency ω = k/cs at this wave number) exceeds a value of order ξ−2. This happens

because the characteristic relaxation rate of the mode W
(1)
mi responsible for λξ contribution

also vanishes as ξ →∞:

Γ′ξ ≡ γηq
2
∣∣∣
qξ=1
∼ ξ−2. (3.26)

This is next-to-slowest relaxation rate, after the characteristic relaxation rate of Wmm, given

by7 8

Γξ ≡ 2γλq
2|qξ=1 ∼ ξ−3 . (3.27)

As discussed in Ref. [39], when the evolution rate (or sound frequency) ω exceeds Γξ the

mode Wmm is no longer able to relax to its equilibrium value which is responsible for the

divergence of the bulk viscosity. Therefore, the divergent contribution to the bulk viscosity is

“switched off” for ω > Γξ. Similarly, when the evolution rate (or sound frequency) ω exceeds

Γ′ξ, the next to slowest mode, Wmµ, is no longer able to relax to its zero-frequency value given

7More precisely, Γξ ∼ ξxλ−4+ηx = ξ−z and Γ′ξ ∼ ξxη−2 = ξz+d−8 (see also footnote 1).
8Since the bulk viscosity is proportional to the longest microscopic relaxation time, vanishing Γξ is

responsible for the divergence of the the bulk viscosity ζ ∼ c2s/Γξ ∼ ξz−α/ν . In the Kawasaki approximation
ζ ∼ ξ3. Since ζ is the coefficient of the gradient expansion, the expansion breaks down at kξ3 ∼ 1, which is
an alternative way to see that ordinary hydrodynamics breaks down at this scale.
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in Eq. (2.162). As a result, the contribution of Wmµ to the current in Eq. (2.147b) “switches

off”. This behavior and corresponding scales are illustrated in Fig. 3.2.

Hydro Hydro+ Hydro++

Log scale

Figure 3.2: Frequency dependence of transport coefficients ζ(ω) and λ(ω) in the vicinity
of a critical point, where the divergence of ξ leads to several distinct regimes characterized
by frequency ω (or corresponding wavenumber k = ω/cs). The crossover from ordinary
hydrodynamics (Hydro) to Hydro+ is marked by the fall-off of ζ(ω) at ω ∼ Γξ ∼ ξ−3, while
the Hydro+ itself breaks down at ω ∼ Γ′ξ ∼ ξ−2 as signaled by the fall-off of λ(ω), when the
crossover to Hydro++ regime occurs. Of course, in ordinary hydrodynamics both transport
coefficients are constants independent of frequency (dashed line), while in Hydro+, which
does describe the fall-off of ζ(ω), the coefficient λ is still a constant. Hydro++ describes the
fall-off of both ζ(ω) and λ(ω).

We can further quantify this description by considering the dependence of W
(1)
mµ on

frequency following the same procedure as in Sec. 2.6.2. Combining the substitution in

Eq. (2.169) with the substitution (3.15) in Eqs. (2.153b) and (2.162) we find for frequency-

dependent leading critical contribution to conductivity:

λξ(ω) = λξ(0)Fλ
(
ω/Γ′ξ

)
, (3.28)
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where

Fλ(y) =
2

π

∫ ∞

0

dxx2

(x2 − iy)(1 + x2)
=

1

1 +
√
y/i

. (3.29)

We do not need to regularize and subtract a divergence, as we did in Sec. 2.6.2, because the

divergence is tamed by the fall-off of cp(q) at large q.

At small ω � Γ′ξ Eq. (3.28) reproduces the power-law non-analytic dependence charac-

teristic of the long-time tails in Eq. (2.170): λξ(ω) − λξ(0) ∼ λξ(0)ω1/2. Not surprisingly,

since, compared to Sec. 2.6.2, we only changed the nature of the cutoff Λ. At large ω we

find λξ(ω) ∼ ω−1/2 with no ξ dependence as expected from scaling behavior characterizing

this regime. 9 The dependence of λξ on ω described by Eqs. (3.28) and (3.29) corresponds

to the physics we anticipated – the large critical contribution “switches off” when ω & Γ′ξ.

It may also be helpful to note that while real part of λξ(ω) corresponds to (frequency-

dependent) conductivity, its imaginary part (divided by ω) is the electric permittivity.

One can also understand frequency dependence as a time-delayed medium response to

gradient of density, i.e., ∂α. The diffusive current induced by the gradient is given by

Jξ(t) = λξ

∫ t

−∞
dt′Γ′ξF̃λ

(
Γ′ξ(t− t′)

)
∂α(t′) . (3.30)

The delay is given by the Fourier transform of Fλ(y):

F̃λ(ỹ) =

√
1

πỹ
− eỹerfc

(√
ỹ
)
. (3.31)

As a function of t − t′ it has a characteristic width given by 1/Γ′ξ ∼ ξ2 and becomes delta

function in the limit ξ → 0 corresponding to instantaneous response. At large t− t′ it falls

off as (t− t′)−3/2 typical of the long-time hydrodynamic tails.

The discussion of the frequency dependence of conductivity here carries many similari-

ties to the discussion of the bulk viscosity in Ref. [39]. For completeness, let us present the

9As before (see footnote 1), the exact value of the scaling exponent in λξ(ω) ∼ ω−1/2 differs slightly
from the rational value −1/2. The exact value in model H following from dynamic scaling −xλ/(2 −
xη) = −(4− η − z)/(d+ 2− z) is approximately −1/2 in the Kawasaki approximation we are using, which
corresponds to z ≈ 3 and ηx ≈ 0.
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calculation of the leading critical contribution to the bulk viscosity in Hydro++, which, of

course, gives the same result as Hydro+. Near the critical point the leading contribution

of fluctuations to the bulk viscosity comes from G
(1)
mm in Eq. (3.13). In Hydro++ the corre-

sponding W
(1)
mm is given in Eq. (2.160), with the substitution of cp with cp(q) as in Eq. (3.15),

as well as γλ with γλ(q) according to Eq. (3.22). As a result we obtain for the leading critical

contribution to bulk viscosity:

ζξ(ω) =
3

π
η ξ̇2Fζ

(
ω

Γξ

)
, (3.32)

where we used ċp = 2ξ̇ (according to scaling cp ∼ ξ2) and Γξ = T/(3πηξ3) (according to

Eqs. (3.27) and (3.24)). We introduced

Fζ(y) =

∫ ∞

0

dxx2

(x2K(x)− iy)(1 + x2)2
. (3.33)

This is a known result in Kawasaki approximation [111, 39].10 At ω = 0 Eq. (3.32) gives

ζξ(0) ∼ ξ3 (according to the scaling of ξ̇ ∼ ξ3/2). This large critical contribution is “switched

off” via function Fζ when ω > Γξ.
11

The resulting behavior is illustrated in Fig. 3.2 together with the behavior of λ(ω).

3.3 Discussion

With the hydro-kinetic equations we derived in Chap. 2, we can now describe the essential

features of the hydrodynamic evolution near the QCD critical point. The critical phenomena

are originating from the divergence of the correlation length ξ. The phenomenon of the

most consequence for hydrodynamics is the critical slowing down. Since it is caused by the

10As we already discussed, Kawasaki approximation only gives a good approximation to the correct scaling
behavior. To match the exact scaling behavior on would need a more elaborate choice of the substitution in
Eq. (3.15), see e.g., Refs.[111, 112, 39].

11The large ω asymptotics ζξ(ω) ∼ ω−1 in Kawasaki approximation is close to the exact asymptotics
ω−1+α/(zν).
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fluctuations of the slowest diffusive mode out of equilibrium, our formalism is ideally suited

to accommodate and describe this phenomenon. The formalism of Hydro+ introduced earlier

in Ref. [39] is based on the same observation and adds the two-point correlation function

of the diffusive mode to hydrodynamics to describe critical slowing down. The approach

in the present paper is very different from the derivation in Ref. [39], therefore, the exact

agreement between the results is a nontrivial check on the validity of both derivations.

Since, our present approach is more general, we can now connect Hydro+ description

of critical fluctuations to description of ordinary fluctuations away from the critical point.

Because the validity of Hydro+ is limited by the relaxation rate of the next-to-slowest mode,

and this mode, absent in Hydro+, is now a part of our description, we are able to extend the

validity of hydrodynamic description closer to the critical point than Hydro+. We propose

a set of equations, which we call Hydro++ which could accomplish this. It should be kept

in mind that, unlike the systematic approach taken in the rest of the paper, the Hydro++

equations (3.23) are an attempt to interpolate between the description of fluctuations out-

side of the critical regime and the known properties of the fluctuations in the critical, scaling

regime described by model H (in the standard classification of Ref. [66]). While the hydro-

dynamic description still works for the background gradients for which k`mic ∼ kξ � 1, it

breaks down for critical fluctuations, for which qξ ∼ 1. This means that the coefficients

become non-polynomial in q and that the theory becomes fully nonlinear and the truncation

to two-point functions is no longer, strictly speaking, controllable. However, it is known

from the studies of model H that the results obtained in one-loop (Kawasaki) approximation

are in good quantitative agreement with experiment [66]. Therefore we propose a set of

equations (3.23) which incorporate the model H physics at the corresponding level of ap-

proximation. This approach is similar to the one taken in the derivation of Hydro+ and

extends the region of applicability closer to the critical point. More precisely, while Hydro+

breaks down at k ∼ ξ−2, the validity of Hydro++ extends to k ∼ ξ−1. The physical phe-

nomenon which leads to breakdown of Hydro+ is the frequency dependence of (i.e., time-lag

of) conductivity, which is described by the next-to-slowest mode in Hydro++.
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Once the fluctuation hydrodynamics in the deterministic approach is implemented in

a fully functional hydrodynamic code, the extension to full Hydro++ approach should be

straightforward and will allow eventual comparison with heavy-ion collision experiments not

only near, but also away from the critical point. However, additional developments are

needed to make this comparison more impactful. First of all, it should be straightforward

to generalize this approach to multiple conserved charges. In the case of QCD, of course,

fluctuations of isospin are a primary candidate. We have not included these fluctuations in

our description because they are not exhibiting singularities near the critical point, unlike

the baryon number fluctuations, which lead to signatures of the QCD critical point [113].

Furthermore, the approach must be extended to description of non-Gaussian fluctuations,

which are related to most sensitive signatures of the critical point (Sec. 1.3 and 1.5.2).

This means going beyond two-point correlators considered in this thesis. It would also be

interesting and important for comparison with experiment to consider the extension of this

approach to the fluctuations near the first-order phase transition, which is, of course, an

inseparable part of the physics near a critical point. We defer these and other pertinent

developments to future work.
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Chapter 4

Fluctuations and Spinodal Points

This chapter contains materials published in

• X. An, Mesterhazy and M. Stephanov, Functional renormalization group approach

to the Yang-Lee edge singularity, JHEP 07 (2016) 041, arXiv:1605.06039 [hep-th]

[4]. Copyright (2016) by the International School for Advanced Studies (SISSA) and

Springer.

• X. An, Mesterhazy and M. Stephanov, On spinodal points and Lee-Yang edge singu-

larities, J. Stat. Mech. 033207 (2018), arXiv:1707.06447 [hep-th] [5]. Copyright (2017)

by the International School for Advanced Studies (SISSA) and IOP Publishing (IOP).

• X. An, Mesterhazy and M. Stephanov, Critical fluctuations and complex spinodal

points, PoS CPOD2017 (2018) 040 [6]. Copyright (2018) by authors.

4.1 Non-perturbative Approach to Lee-Yang Edge

Singularities

With the pioneering work of Lee and Yang a new perspective on the properties of sta-

tistical systems was established by pointing out the importance of the distribution of zeros
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of the partition function [51, 52]. Expressed in terms of an external parameter, which we

shall denote by z, the partition function Z = Z(z) of a finite system can in general be

expressed in terms of its roots zα in the complex plane, i.e., we may write Z =
∏

α(z − zα).

Their significance appears in the thermodynamic limit, V → ∞, when they coalesce along

one-dimensional curves that separate different infinite volume behaviors of the partition

function.1 These curves can be viewed as cuts that distinguish different branches of the free

energy (or grand canonical potential)

Ω = −β−1 logZ = −β−1V

∫
dθg(θ) log [z − z(θ)] , (4.1)

where g(θ) corresponds to the normalized density of zeros (
∫

dθg(θ) = 1) on a curve

parametrized as z(θ) and β = 1/T is the inverse temperature. Clearly, once the location of

the zeros, or cuts they coalesce into, z(θ), and the distribution g(θ) is known, in principle, all

thermodynamic properties of the system can be calculated. This has led to numerous efforts

to determine g(θ) for a wide range of lattice models via numerical methods [114, 115, 116,

117] and also experimentally [118, 119, 120]. Besides providing a rigorous basis to study the

thermodynamic properties of finite lattice systems, such attempts have also helped to eluci-

date features of fundamental theories. Drawing on the principle of universality they have led

to important insights into the phase diagram of strongly-interacting matter at nonvanishing

baryon densities [121, 122, 123].

Typically, for lattice spin models at temperature T and external field H the natural

variable in terms of which the partition function is a polynomial is z = exp (−2βH). The

zeros of Z(z) are commonly referred to as Lee-Yang or Yang-Lee zeros. In particular, for the

ferromagnetic Ising model one finds these zeros distributed along the unit circle z = exp(iθ),

where θ = 2iβH and H is imaginary. This has been proven rigorously and is known as

the Lee-Yang circle theorem [52, 124, 125, 126, 127, 128, 129, 130, 131]. Depending on the

1In principle, the zeros may accumulate on a dense set in parameter space, which must not necessarily
be one dimensional. However, such a scenario is not relevant to this work.
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temperature one may distinguish different scenarios: In the low-temperature region of the

Ising model (T < Tc), the set of zeros crosses the positive real z-axis at z = 1 (θ = 0), which

indicates the presence of a first-order phase transition as one traverses the ReH = 0 axis

from positive to negative real H (or vice versa). On the other hand, in the high-temperature

region (T > Tc) one observes a finite gap in the distribution g(θ) = 0 for |θ| < θg that

closes as T → T+
c [114, 115]. Thus, for T > Tc the free energy is analytic along the real H

axis. However, at the edge of the gap θ = ±θg, corresponding to imaginary values of the

magnetic field H = ±i|Hc(T )|, the distribution of zeros exhibits non-analytic behavior, i.e.,

g(θ) ' (|θ| − θg)σ, for |θ| & θg, characterized by the exponent σ [116]. As pointed out by

Fisher [132] this behavior can be identified with a thermodynamic singularity that yields a

divergence in the isothermal susceptibility χT = (∂M/∂H)T ∼ |H −Hc(T )|σ−1, where M is

the magnetization. Thus, the Lee-Yang edge singularity at nonvanishing imaginary values

of the field is similar to a conventional second order phase transition [132, 133].

In contrast to the well-known φ4 field theory that describes the critical point of the

Ising model at T = Tc and H = 0, the field theory at the Lee-Yang edge point, the φ3

theory, admits no discrete reflection symmetry and is therefore characterized by only one

independent (relevant) exponent. In two dimensions the corresponding universality class

has been identified with that of the simplest nonunitary conformal field theory (CFT), the

minimal model M2,5, with central charge c = −22/5 [134]. This allowed to exploit conformal

symmetry in two dimensions to calculate the scaling exponent σ(d = 2) = −1/6, which

has been confirmed with remarkable accuracy by series expansions [135, 136], as well as

by comparing with experimental high-field magnetization data [118, 119]. Furthermore,

using integral kernel techniques it is possible to establish the exact result σ(d = 1) = −1/2

[132, 133]. On the other hand, most of our knowledge in the region 2 < d < 6 relies

on appropriately resummed results from the ε = 6 − d expansion [137, 138, 139], strong-

coupling expansions [140], Monte Carlo methods [141, 142], and conformal bootstrap [143].

Note that in contrast to the Ising critical point (described by φ4 theory), the upper critical

dimension of the Lee-Yang edge point (described by φ3 theory) is dc = 6 and therefore,
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fluctuations are important even above dimension d = 4.

Recently, there has been renewed interest in the Lee-Yang edge point for which the

RG β functions to four-loop order in the ε expansion were determined in Ref. [139] and

the corresponding critical exponents (obtained from constrained Padé approximants) were

compared to estimates from other methods. In light of these developments, we examine the

critical scaling properties of the Lee-Yang edge with the non-perturbative functional RG

[144, 145] for dimensions 3 ≤ d ≤ 6. In contrast to the ε expansion, the functional RG does

not rely on the expansion in a small parameter and is therefore ideally suited to investigate

the critical behavior of the Lee-Yang edge away from dc = 6. However, care must be taken

to address possible systematic errors that arise from the truncation of the infinite hierarchy

of flow equations. We will address these issues in the following subsections and show that

that these errors are under control and comment on the quality of different truncations.

The outline of this section is as follows: First, in Sec. 4.1.1, we give an overview of

the non-perturbative functional RG and the truncations employed in this work. In Sec.

4.1.2 we discuss the scaling properties of the critical equation of state and the mean-field

theory at the Lee-Yang edge singularity. In Sec. 4.1.3 we consider the general properties

of RG flow trajectories and in particular their infrared behavior. In Secs. 4.1.5 – 4.1.6 we

summarize our results for the critical exponents at the Lee-Yang edge singularity and analyze

the expected systematic errors for the truncations employed in this work. Finally we compare

our estimates for the critical exponents to recent data from Refs. [139] and [143].

4.1.1 Non-perturbative Functional Renormalization Group

In Chap. 1, we have summarized the main idea of the renormalization group theory,

in the perturbative regime. The perturbative renormalization theory claims its validity

in certain particular limit, for instance, φ3 theory near d = 6, or φ4 theory near d = 4,

none of which manifests at d = 3 quantitatively. Thus we need to introduce alternatively

the non-perturbative approach to resolve this problem, one of which is the non-perturbative
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functional renormalization group (FRG) theory 2, a renormalization group scheme that relies

on a truncation of a hierarchy of flow equations derived from an exact flow equation for the

scale-dependent effective action. As its name implies, this renormalization group theory is

applies to the non-perturbative regime, and deals with the functional fields. It is worth

to emphasize that there exist functional renormalization group which is perturbative, and

non-perturbative renormalization which is not formulated in the functional path integral.

Nevertheless, FRG is commonly specified to a non-perturbative theory.

Unlike Wilson’s perturbative renormalization group theory where the short-distance fluc-

tuations are integrate out either progressively or at once, FRG introduces a family of partition

functions labeled by the renormalization group scale parameter k:

Zk(J) = eWk[J ] =

∫
Dφ exp

{
−S[φ]−∆Sk[φ] +

∫
ddxJ(x) · φ(x)

}
, (4.2)

where the additional term (cf. Eq. (1.1)),

∆Sk[φ] =
1

2

∫
ddx ddy φ(x)Rk(x, y)φ(y) =

1

2

∫
ddq

(2π)d
φ(−q)Rk(q)φ(q), (4.3)

is a quadratic functional where the regulator Rk plays the role of a scale-dependent mass in

order to regularize the theory in the infrared (suppress the low-energy fluctuations), in the

sense that Rk(q) is suppressed for |q| � k and is of order k2 for |q| � k.3 The generating

functional of one-particle irreducible (1PI) diagrams (cf. Eq. (4.4))

Wk[J ] = log

∫
Dφ exp

{
− S −∆Sk +

∫
ddx J(x) · φ(x)

}
, (4.4)

corresponds to the scale-dependent Gibbs free energy

Gk[J ] = −β−1 logZk[J ] (4.5)

2Other non-perturbative approaches are also well studied, such as the Schwinger-Dyson equations ap-
proach.

3Here k and q are somewhat similar to the wavenumber scales introduced in Chap. 2, in a sense that
k acts as a regularization (background homogeneity) scale for fluctuations such that fluctuations in larger
distances (q . k) are suppressed, consequently only small-distances fluctuations (q & k) contribute to the
correlation functions obtained from the effective action Γk, which is precisely the region the fluctuating
hydrodynamics is taking care of.
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in statistic physics according to Tab. 1.1. It is more convenient to introduce the scale-

dependent effective action [144, 145]

Γk[ϕ(x)] = sup
J

(∫
ddxJ(x)ϕ(x)−Wk

)
−∆Sk, (4.6)

obtained from the functional Legendre transform ofWk[J ] with respect to the external source

J = J(x), which is slightly modified to include the subtraction of ∆Sk, and

ϕ =
δWk[J ]

δJ
(4.7)

is the scalar field expectation value (for reviews see, e.g., Refs. [146, 147, 148, 149, 150]).

As discussed in Sec. 1.2.3, the effective action is related to the n-point one-particle-

irreducible correlators (cf. Eq. (1.58)),

δnΓk[ϕ]

δϕ(x1) . . . δϕ(xn)
= 〈φ(x1) . . . φ(xn)〉1PI = Γ

(n)
k , (4.8)

while the generating function generates the n-point connected correlation functions by

δnWk[J ]

δJ(x1) . . . δJ(xn)
= 〈φ(x1) . . . φ(xn)〉c = G

(n)
k . (4.9)

One can express the connected correlation function by the effective vertex Γ
(n)
k . For instance,

the two-point correlator can be expressed by

G
(2)
k [J ] =

(
Γ

(2)
k [ϕ] +Rk

)−1

. (4.10)

In this thesis, we again consider a classical action S of a single-component scalar field

S[φ] =

∫
ddx

{
1

2
(∂φ)2 + UΛ(φ)

}
, (4.11)

and the explicit expression of classical potential UΛ is specified in Sec. 4.1.2. In particular,

the regulator function

Rk(x, y) = Rk(−2x)δ
(d)(x− y) (4.12)

where 2 ≡ ∂µ∂µ, is chosen in such a way that it leads to a decoupling of infrared modes. We

require that

lim
k→0

Rk = 0 and lim
Λ→∞

Rk=Λ =∞, (4.13)
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where Λ is a characteristic scale that regularizes the theory in the ultraviolet and can formally

be sent to infinity. In effect, this defines a one-parameter family of theories (0 ≤ k ≤ Λ),

which interpolates between the classical action, S = limk→Λ Γk, and the full 1PI effective

action, Γ = limk→0 Γk. Thus, the scale-dependent regulator function Rk induces a func-

tional RG flow between these two limits, described by the flow equation, also known as the

Wetterich’s equation:

∂

∂s
Γk =

1

2

∫
ddq

(2π)d
∂Rk(q)

∂s

[
Γ

(2)
k (ϕ; q) +Rk(q)

]−1

, (4.14)

where s = log(k/Λ) is a dimensionless scale parameter, and

δ(d)
( n∑

i=1

qi
)
Γ

(n)
k (ϕ; q1, q2, . . . , qn−1) ≡ (2π)(n−1)d δnΓk[ϕ]

δϕ(q1)δϕ(q2) · · · δϕ(qn)
(4.15)

is obtained by the Fourier transform of Eq. (4.8). In principle, we may choose any (suf-

ficiently smooth) regulator that satisfies the above limiting properties. For details of our

implementation and necessary requirements imposed on the regulator function see Secs.

4.1.3 – 4.1.6.

Eq. (4.14) for the scale-dependent effective action Γk is exact, from which one can also

obtain the flow equations for n-point scale-dependent vertices Γ
(n)
k by using Eq. (4.8). All

those flow equations can be presented in terms of Feynman diagrams, illustrated in Tab. 4.1.

It is straightforward to see that the functional RG flow equations only involve one-loop

diagrams, simplifying the calculation significantly.

Clearly, an exact solution for the full functional flow is not feasible in practice, so one

has to rely on suitable approximations of Eq. (4.14). Here, we comment on the nature of

our truncation and discuss its limitations. We use a truncated expansion in derivatives for

the scale-dependent effective action [151, 152]

Γk[ϕ] =

∫
ddx

{
Uk(ϕ) +

1

2
Zk(ϕ)(∂ϕ)2 +

1

2
W1,k(ϕ)(2ϕ)2

+
1

2
W2,k(ϕ)(∂ϕ)2 2ϕ+

1

2
W3,k(ϕ)

[
(∂ϕ)2

]2
}
, (4.16)
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Flow
Equations

Diagrammatic Representation

∂
∂s

Γk

∂
∂s

Γ
(1)
k

∂
∂s

Γ
(2)
k

∂
∂s

Γ
(3)
k

∂
∂s

Γ
(4)
k

Table 4.1: Diagrammatic representation of the functional RG flow equations for the scale-
dependent effective action Γk and the n-point 1PI vertices Γ

(n)
k generated from the n-th

order functional derivatives of Γk. The double line represents the regularized propagator
G(2) defined in Eq. (4.10). The cross vertex stands for the insertion of ∂sRk, while the black
verticies with n legs for Γ(n).

where Uk is the scale-dependent effective potential, and the scale-dependent functions Zk and

Wa,k, a = 1, 2, 3, parametrize the contributions to order ∂4 (up to total derivative terms).

Furthermore, for each of these functions, we employ a finite series expansion in the fluctuation

δϕk = ϕ− ϕ̄k around a field configuration ϕ̄k, which is assumed to be homogeneous in space

(cf. Sec. 4.1.3). In effect, this corresponds to an ansatz for Γk that includes only a finite set of

independent operators, each of which is parametrized by a single parameter or coupling that

is field independent, e.g., Zk(ϕ)(∂ϕ)2 =
(
Z̄

(0)
k + Z̄

(1)
k δϕk + . . .

)
(∂ϕ)2, and Z̄

(n)
k ≡ Z

(n)
k (ϕ̄k),

n ∈ N, and similar expansions apply to Uk and Wa,k. The canonical dimensions of these

parameters are displayed in Tab. 4.2. Clearly, above dimension d = 2, Z̄
(n)
k and W̄

(n)
a,k are
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Operator Coupling Canonical dimension

δϕn Ū (n) dim Ū (n) = d− n(d− 2)/2

δϕn(∂ϕ)2 Z̄(n) dim Z̄(n) = −n(d− 2)/2

δϕn (2ϕ)2 W̄
(n)
1 dim W̄

(n)
1 = −2− n(d− 2)/2

δϕn(∂ϕ)2 2ϕ W̄
(n)
2 dim W̄

(n)
2 = −[d+ 2 + n(d− 2)]/2

δϕn
[
(∂ϕ)2

]2
W̄

(n)
3 dim W̄

(n)
3 = −d− n(d− 2)/2

Table 4.2: Operators and canonical dimension of associated parameters and couplings that
appear in the expansion of Γk (cf. Eq. (4.16)). Note that we drop the RG scale index k, since
the canonical dimensions are defined at the Gaussian fixed point of the RG β functions.

irrelevant (cf. Eq. (1.31)) as far as a counting of canonical dimensions goes, but this is not

sufficient to conclude that this is also the case at a nontrivial (i.e., non-Gaussian) fixed point

of the RG β functions. Indeed, one of the objectives of this work is to investigate their effect

at the Lee-Yang edge point as well as on RG trajectories that approach this scaling solution

in the IR. We should point out that similar truncations of the scale-dependent effective action

were considered also in Refs. [153, 154, 155, 156] to establish the critical exponents at the

Ising critical point. Here, we study the scaling properties of Eq. (4.16) in the presence of

a nonvanishing external field, when the discrete reflection symmetry ϕ ↔ −ϕ of the Ising

model is explicitly broken and the system is tuned to the Lee-Yang edge critical point.

The flow equations for Uk, Zk, and Wa,k, a = 1, 2, 3, are derived from the exact functional

flow equation for Γk (cf. Eq. (4.14)) by applying functional derivatives and projecting them
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onto the appropriate momentum contributions, i.e.,

∂

∂s
Uk =

∂

∂s
Γk[ϕ]|ϕ=const. , (4.17a)

∂

∂s
Zk = lim

p→0

∂

∂p2

∂

∂s
Γ

(2)
k (ϕ; p), (4.17b)

∂

∂s
W1,k = lim

p→0

∂

∂(p2)2

∂

∂s
Γ

(2)
k (ϕ; p), (4.17c)

∂

∂s
W2,k =

1

2
lim
pi→0

∂

∂(p1 ·p2)2

∂

∂s
Γ

(3)
k (ϕ; p1, p2), (4.17d)

∂

∂s
W3,k = −1

4
lim
pi→0

[
∂

∂(p2 ·p3)
− 1

2

∂

∂(p1 ·p2)
− 1

2

∂

∂(p1 ·p3)

]
∂

∂p2
1

∂

∂s
Γ

(4)
k (ϕ; p1, p2, p3), (4.17e)

where p·q ≡ pµqµ. The corresponding RG flow equations for the field-independent parameters

Z̄
(n)
k and W̄

(n)
a,k can be derived from Eqs. (4.17a) – (4.17e) by suitable differentiation and

successive projection onto the reference field configuration ϕ̄k that enters the series expansion.

The RG flow equations display the following chain of dependencies

Uk ← {Zk,W1,k} ← {W2,k,W3,k} ← . . . , (4.18)

where the ellipsis denotes higher order contributions that we have chosen to neglect in our

ansatz, Eq. (4.16). That is, the RG flow equation for the scale-dependent effective potential

Uk depends on the quantities Zk and W1,k, but is independent of W2,k and W3,k etc. We

exploit this structure explicitly by truncating the hierarchy Eq. (4.18) at the second level,

i.e., we set W2,k = W3,k = 0 in Eq. (4.16), while Uk, Zk, and Wk ≡ W1,k are expanded to

some finite order in δϕk. Note that the order of the employed expansion might be different

for each of these coefficients. Similar approximations have led to reasonable estimates of the

critical scaling exponents at the Ising critical point [155, 156] and we expect that this is also

the case for the Lee-Yang edge critical point, which shall be manifested in the next section.
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4.1.2 Critical Equation of State and Mean-field Scaling

Prediction

Here, we consider a classical φ4 potential of the following form

UΛ =
1

2
tΛφ

2 +
1

4!
λΛφ

4 + hΛφ, (4.19)

with a nonvanishing coupling to a symmetry-breaking field hΛ, and tΛ ∼ T −Tc, with Tc the

critical temperature at the Ising critical point. Upon integration of the RG flow equations

(4.17a) – (4.17c) down from the cutoff scale Λ to the IR, the parameters and couplings of the

classical potential acquire a scale dependence. In fact, the corresponding scale-dependent

effective potential Uk for 0 ≤ k < Λ will typically include a large number of fluctuation-

induced interactions. The full effective potential is obtained only when the scale parameter

k is sent to zero and all modes have been integrated out, i.e., U = limk→0 Uk.

In order to arrive at a critical point in the IR the relevant parameters of the classical action

need to be tuned to their respective critical values, while all other parameters or couplings

are kept constant. That is, in the case of the Lee-Yang edge critical point, we fix λΛ, |hΛ| > 0,

and tune tΛ to its critical value tΛ,c = tΛ,c(hΛ) > 0, for which Ū (1) ≡ limk→0 Ū
(1)
k = 0 and

Ū (2) ≡ limk→0 Ū
(2)
k = 0 in the IR limit. At the Lee-Yang edge critical point, the first and

second derivative are evaluated at a nonvanishing, imaginary field expectation value ϕ̄. In

the critical domain, the equation of state satisfies the scaling form

U ′(ϕ) = δϕ|δϕ|δ−1f
(
δtΛ|δϕ|−1/β

)
, (4.20)

where δϕ = ϕ − ϕ̄ and f = f(x) is a universal, dimensionless scaling function, which

is uniquely defined up to normalization. The critical exponents β and δ characterize the

asymptotic scaling behavior of the magnetization ϕ for vanishing U ′(ϕ) = δh and δtΛ =

tΛ − tΛ,c, respectively. Here, the parameter δh ∼ H −Hc, measures the deviation from the

critical field strength Hc = ±i|Hc(T )|, and T > Tc for the range of values of δtΛ studied in

this work.
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Before we go on to consider the solution of the RG flow equations (4.17a) – (4.17c), we

discuss the mean-field scaling prediction. Since there is no scale dependence in this case, we

simply drop the k (or Λ) index on all parameters. It is useful to express the potential in

terms of an expansion in field differences δφ = φ − φ̄ around a reference field configuration

φ̄, which is defined such that U ′(φ̄) = 0. According to the strategy outlined above, we fix

|h| > 0 and inquire about possible critical points, by imposing in addition the condition that

U ′′(φ̄) = 0. Following Sec. 1.2 where we introduced φ3 theory, we derive two independent

scaling solutions for parameter t and h respectively, identify as

tc =
λ

2

(
±i3h

λ

)2/3

, hc = ±iλ
3

(
2tc
λ

)3/2

, (4.21)

where we assume that tc > 0, and the value of hc is already derived as Eq. (1.40). Near

the critical point U ′(φ) satisfies the scaling form (4.20) with δ = 2 and β = 1. Other

critical exponents that characterize the power-law singularities of various thermodynamic

quantities can be determined via scaling relations [157]. That is, in the absence of fluctuations

the anomalous dimension vanishes, η = 0, and we obtain the following scaling exponents:

α = −1, γ = 1, ν = 1/2, and νc = 1/4. Note that the exponent α is negative and therefore,

at the mean-field level, the specific heat does not diverge at the Lee-Yang edge point.

4.1.3 Solving the RG Flow Equations

To solve the RG equations we specify the classical action S =
∫

ddx
{

1
2
(∂φ)2 + UΛ(φ)

}
,

which is defined in terms of the short-distance potential UΛ, and integrate the flow equations

down to s → −∞. The classical potential is given in Eq. (4.19) and the coefficients that

parametrize the kinetic contribution to the action are ZΛ = 1 and WΛ = 0.

We use a truncated series expansion for the scale-dependent effective potential Uk as well

as for the field-dependent renormalization factors Zk and Wk (0 ≤ k ≤ Λ). Such a strategy

is often sufficient to extract the leading or subleading critical scaling behavior [159, 160,

155, 161, 156]. The employed expansion is organized around a nonvanishing, imaginary, and
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Figure 4.1: Critical exponents σ = 1/δ and νc as a function of Euclidean dimension d for
different truncations of the scale-dependent effective action Γk, as specified by the set of
integers (nU , nZ , nW ) (cf. Sec. 4.1.3). The data for the truncation (4, 2, 1) lies almost exactly
on top of that for (4, 2, 0). Shown in comparison are results from the one- and two-loop ε
expansion [158, 132] as well as high-temperature series expansion data (d = 3) [132, 133].
We observe that the numerical accuracy of the functional RG results improves significantly
as one goes to higher orders in the derivative and field expansion, respectively.

homogeneous field configuration ϕ̄k, which depends on the scale parameter k, and is defined

in the following way: 1) At the cutoff scale Λ, ϕ̄k=Λ = φ̄Λ is a solution to U ′′Λ(φ̄Λ) = τ , and

2) the scale derivative of Ū
(2)
k ≡ U ′′k (ϕ̄k), evaluated at ϕ̄k = ϕ̄+ χ̄k, satisfies

d

ds
Ū

(2)
k =

∂

∂s
Ū

(2)
k + Ū

(3)
k

dχ̄k
ds

= 0, (4.22)

resulted from the fact that, although the imaginary field expectation value ϕ̄ associated with

the Lee-Yang edge point is scale independent, the RG flow changes the average configuration

of ϕ̄k at scale k (therefore dϕ̄k/ds = dχ̄k/ds), such that the condition U
(2)
k (ϕ̄k) = τ is

maintained for any 0 ≤ k ≤ Λ. Note that limk→0 χ̄k = 0, i.e., limk→0 ϕ̄k = ϕ̄, only when

τ = 0 and the system has been tuned to criticality. In other words, different initial values

of τ may result in limk→0 ϕ̄k 6= ϕ̄ after RG running. Clearly, conditions 1) and 2) fix one

parameter of the model Ū
(2)
k = τ , at the expense of introducing another scale-dependent
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quantity, the field configuration χ̄k, for which we obtain

dχ̄k
ds

= −
(
Ū

(3)
k

)−1 ∂

∂s
Ū

(2)
k . (4.23)

Note that the corresponding set of flow equations requires that |Ū (3)
k | > 0 for all 0 ≤ k ≤ Λ.

This does not hold true in the vicinity of the Ising critical point and therefore, the chosen

expansion point is not adequate to investigate the scaling properties for critical points on

the ϕ↔ −ϕ symmetry axis (H = 0).

Since Eq. (4.22) fixes the second derivative of the scale-dependent effective potential at

all scales, the expansion of the scale-dependent effective potential reads

Uk = Ū
(0)
k + Ū

(1)
k δϕk +

1

2
τ δϕ2

k +

nU∑

n=3

1

n!
Ū

(n)
k δϕnk . (4.24)

Here, the sum runs up to some finite integer value nU , which defines our truncation for

the scale-dependent effective potential with the prescribed expansion point. The coefficients

Ū
(n)
k , n ∈ N, are related to the couplings and parameters of the classical potential at the

short-distance cutoff Λ, i.e.,

Ū
(0)
Λ = φ̄Λ

[
hΛ +

1

12
(5tΛ + τ)φ̄Λ

]
, Ū

(1)
Λ = hΛ +

1

3
(2tΛ + τ)φ̄Λ,

Ū
(2)
Λ = τ, Ū

(3)
Λ =

1

6
λΛφ̄Λ, Ū

(4)
Λ = λΛ, Ū

(n>4)
Λ = 0. (4.25)

Similarly, the expansions for Zk and Wk read

Zk =

nZ−1∑

n=0

1

n!
Z̄

(n)
k δϕnk , (4.26a)

Wk =

nW−1∑

n=0

1

n!
W̄

(n)
k δϕnk , (4.26b)

with Z̄
(0)
Λ = 1, Z̄

(n)
Λ = 0 for n > 0, and W̄

(n)
Λ = 0 for n ∈ N. We define Zk ≡ 0 if nZ = 0

and Wk ≡ 0 if nW = 0. In the following, we denote these type of series truncations in short

by the set of integers (nU , nZ , nW ). nU is considered as a free parameter, while nZ and nW

are chosen such that maxnZ dim Z̄
(nZ)
k ≤ dim Ū

(nU )
k and maxnW dim W̄

(nW )
k ≤ dim Ū

(nU )
k in
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d = 6 dimensions. This choice defines what we consider to be consistent truncations (see

Sec. 4.1.5).

Substituting Eqs. (4.24) – (4.26b) back into (4.17a) – (4.17c) we obtain a finite set of flow

equations for the coefficients of the series expansion. In this work, we consider expansions

of order up to (nU , nZ , nW ) = (7, 5, 0) and (5, 3, 2), which yields a coupled set of partial

differential equations of up to 12 and 10 parameters, respectively. The Lee-Yang scaling

solution is identified by inspecting the behavior of the first and second derivatives of the

effective potential, which should satisfy Ū (1) = Ū (2) = 0, while Im Ū (2n) = Re Ū (2n+1) = 0,

for n ∈ N. Note that all of these coefficients are defined at a reference field configuration ϕ̄

(where limk→0 χ̄k = 0), which is imaginary, corresponding to the imaginary magnetic field

Hc = ±i|Hc(T )|, with T > Tc.

We introduce the following short-hand notation for the renormalization factor Z̄k ≡
Z

(0)
k (ϕ̄k), which satisfies Z̄k ∼ (k/Λ)−η at the critical point. Starting from a set of initial

values for the parameters and coupling constants in the classical action, which are tuned to

their critical values, we may therefore define the anomalous dimension by the corresponding

value in the IR (cf. Eq. (1.29) and (1.83)):

η = − lim
k→0

∂

∂s
ln Z̄k. (4.27)

Note that the anomalous dimension at the Lee-Yang edge critical point is negative for all

values of 1 ≤ d < 6.

4.1.4 Critical Scaling Exponents and Hyperscaling Relations

The critical exponents at the Lee-Yang edge critical point are extracted by a stability

analysis of the scaling solution with respect to perturbations with those operators included

in our ansatz Eq. (4.16). That is, for any finite truncation of the scale-dependent effective

action, we obtain a finite set critical exponents corresponding to the eigenvalues λn of the
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stability matrix,

γmn =
∂βm

(
{ḡ∗,l}l∈I

)

∂ḡn,k
, (4.28)

which is evaluated at the fixed point of the RG β functions, βm ≡ ∂ḡm,k/∂s, i.e.,

βm
(
{ḡ∗,n}n∈I

)
= 0. (4.29)

The β functions are derived for the dimensionless, renormalized parameters and couplings of

the model, ḡn,k, n ∈ I = {1, 2, . . . , nU+nZ+nW}, which are given by ḡ1,k = k−(d+2)/2Z̄
−1/2
k Ū

(1)
k ,

ḡ2,k = k(2−d)/2Z̄
1/2
k χ̄k , etc. We order the eigenvalues λn, n = 1, 2, . . ., according to their

values in d = 6 dimensions, where they are identical to the canonical dimension of the pa-

rameters and couplings associated with the operators that appear in Γk, e.g., λ1(d = 6) =

dim Ū (1) ≥ λ2(d = 6) = dim χ̄ ≥ . . .. Of course, as the eigenvalues are analytically continued

to dimensions below d = 6, this ordering might change.
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Figure 4.2: Anomalous dimension η for different truncations of the scale-dependent effective
action in d = 3, 4, and 5 dimensions.

We observe that the largest eigenvalue λ1 ≡ 1/νc satisfies the following scaling relation

1/νc = (d+ 2− η)/2, (4.30)



CHAPTER 4. FLUCTUATIONS AND SPINODAL POINTS 169

and therefore, the critical exponent νc is determined completely in terms of the anomalous

dimension η. The Lee-Yang edge critical point is known to exhibit another hyperscaling

relation, which follows from the equation of motion of the φ3 theory [162] and can be written

as

λ1 + λ2 = d, (4.31)

with λ2 ≡ 1/ν, from which we obtain

1/ν = (d− 2 + η)/2. (4.32)

Furthermore, from scaling and hyperscaling relations, one can derive

σ =
1

δ
=
d− 2 + η

d+ 2− η , (4.33)

and β = 1, independent of dimension [137]. Note, however, that for any finite truncation of

Γk scaling relations between critical exponents need not necessarily be satisfied and therefore

should be checked explicitly. This applies to both Eq. (4.32) and to Eq. (4.33). Taking Eq.

(4.32) for example, one may define the relative difference ∆λ2/[(d − 2 + η)/2] = 2λ2/(d −
2 + η) − 1 as an indicator for the quality of the employed truncation at the Lee-Yang edge

fixed point. We observe that the relative error in the scaling relation (4.32) increases with

smaller dimensions. For both the (7, 5, 0) and (5, 3, 2) truncations, we obtain a 15% error

in d = 5 dimensions, a 60 − 70% error in d = 4 dimensions etc. This is an indication

that the considered series expansions are not fully converged yet. Nevertheless, since we

expect these scaling relations to hold for high enough orders, we employ Eq. (4.32) in the

following to determine the exponent ν, keeping in mind that the corresponding estimates

will be associated with an error that is likely to decrease only when higher-order truncations

are considered. In particular, the above numbers suggest that to reach a given precision, one

will need to account for an increasing number of operators in Γk in lower dimensions.

The scaling properties of the Lee-Yang edge are completely determined by the anomalous

dimension η. Therefore, we may use Eqs. (4.30) and (4.33) to calculate the critical exponents

νc and σ. Our results are summarized in Fig. 4.1 where we show the overall performance
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Critical exponent d = 3 d = 4 d = 5

η −0.586(29) −0.316(16) −0.126(6)

σ 0.0742(56) 0.2667(32) 0.4033(12)

νc 0.3581(19) 0.3167(8) 0.2807(2)

Table 4.3: Numerical values for the anomalous dimension η and critical exponents σ, νc in
d = 3, 4, and 5 dimensions. Here, we show our best estimates with errors to account for
possible systematic effects (see Sec. 4.1.6). These values were obtained with an exponential
regulator (α = 1) (cf. Eq. (4.36)) and the truncation of the type (7, 5, 0).

of different truncations in the range 3 ≤ d ≤ 6 at the example of σ and νc, contrasted

against the one- and two-loop ε expansion. In Fig. 4.2 we show the values for η in d = 3, 4,

and 5 dimensions for all truncations employed in this work, and our best estimates for the

critical exponents η, νc, and σ are reported in Tab. 4.3. These values were obtained with

the (7, 5, 0) truncation for which, in contrast to the (5, 3, 2) truncation, the values of η seem

to be reasonably close to their asymptotic values that are reached in the infinite nU and nZ

limit (cf. Fig. 4.2). That is, we observe that larger orders of the finite field expansion are

necessary to reach the asymptotic scaling exponents and it seems that this order increases

for dimensions well below the upper critical dimension dc = 6, which is consistent with our

previous observation on the validity of scaling relations.

In Tab. 4.3 and 4.4 we account for a systematic bias due to our choice of the IR regulator

(see Sec. 4.1.6 for an in depth discussion of this issue). We remark that the difference in

the values of the anomalous dimension between different high-order truncations is typically

larger than that obtained for the critical exponents σ and νc, which is reflected in the errors

for these quantities (cf. Tab. 4.3). This effect has also been observed with other methods

and may be attributed to the scaling relations (4.30) and (4.33) that yield a smaller error

for the exponents νc and σ (see, e.g., Ref. [139]).

Comparing our estimates for the critical exponent σ from FRG to available data on the

Lee-Yang edge critical scaling exponents provided in Ref. [139], cf. Tab. 4.4, we find that

our values lie within the error bounds provided by other methods, e.g., Refs. [140, 141, 142].
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Dimension functional RG Ref. [139] Ref. [140] Ref. [141] Ref. [142] Ref. [143]

d = 3 0.0742(56) 0.0785 0.0747 0.076(2) 0.0877(25) 0.080(7) 0.085(1)

d = 4 0.2667(32) 0.2616 0.2584 0.258(5) 0.2648(15) 0.261(12) 0.2685(1)

d = 5 0.4033(12) 0.3989 0.3981 0.401(9) 0.402(5) 0.40(2) 0.4105(5)

Table 4.4: Different estimates for the critical exponent σ (as compiled in Ref. [139]) in-
cluding results from the constrained three- and four-loop ε′ expansion [139], strong-coupling
expansion [140], Monte Carlo methods [141, 142], and conformal bootstrap [143]. The values
obtained from the functional RG, with an exponential regulator (α = 1) and truncation of
the type (7, 5, 0), lie within error bars of Refs. [140, 141, 142], and are slightly larger the val-
ues provided by constrained Padé approximants of three- and four-loop ε′ expansion results
[139], but are smaller than those obtained by conformal bootstrap methods [143].

They lie slightly above the values obtained from constrained Padé approximants of three-

and four-loop ε expansion results [139], but are in general smaller than those values obtained

from a recent conformal bootstrap analysis [143]. Considering the fact, that our numerical

implementation of the RG flow equations is not overly sophisticated (limiting the truncations

that can be considered to a relatively small number of operators) it is quite remarkable that

our present results are competitive with other data in the literature.

4.1.5 Relevance of Composite Operators and Quality of Finite

Truncations

We observe that certain truncations of the scale-dependent effective action, of the type

(nU , 0, 0), nU > 3, are inadequate to investigate the Lee-Yang scaling behavior. In fact, for

these truncations, the Lee-Yang fixed point is unstable below d ≈ 5.6.4 This is certainly

surprising and in conflict with other available data [140, 141, 142, 143, 139]. However, this

4We remark that this observation depends on the choice of the IR regulator. While the Lee-Yang edge
fixed point is unstable for the smooth exponential regulator (4.36) (α = 1), this is not the case for the
optimized Litim regulator [163, 164]. However, the latter is not immediately applicable at higher orders in
the derivative expansion.
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behavior can be understood by examining the effect of operator insertions at the level of the

one-loop ε′ = 6− d expansion, as considered in Refs. [165, 53].

In particular, we consider the renormalization of quartic operators at the Lee-Yang fixed

point. This requires the simultaneous renormalization of all operators that carry the same

canonical dimension as δϕ4
k, which mix under renormalization [166]. In d = 6−ε′ dimensions

these operators can be listed as follows (up to total derivative contributions)

A1,k = δϕ4
k/4!, (4.34a)

A2,k = kε/2δϕk (∂δϕk)
2 /2, (4.34b)

A3,k = kε (2δϕk)
2 /2. (4.34c)

Note that they simply correspond to particular contributions in the finite series expansion of

Uk(ϕ), Zk(ϕ)(∂ϕ)2, and Wk(ϕ) (2ϕ)2, respectively, around the homogeneous field expecta-

tion value ϕ̄k. Different truncations of the scale-dependent effective action are distinguished

by either including or neglecting some of these operators, (4.34a) – (4.34c). The (nU , 0, 0)-

type truncations, for instance do not include operators A2,k and A3,k, while truncations of

the type (nU , nZ , 0) do not include A3,k.

Treating the operators (4.34a) – (4.34c) on an equal footing, both A2,k and A3,k turn out

to be more relevant in d < 6 dimensions than the quartic interaction A1,k. Indeed, from a

one-loop calculation [165, 53], we obtain the following eigenvalues of the stability matrix:

λ4 = −2, λ5 = −2−ε′/9, and λ6 = −2−19ε′/9. Each of them corresponds to a different linear

combination of operators (4.34a) – (4.34c). One can show that the dominant contribution

to λ4 comes from A3,k, for λ5 it is the operator A2,k, and for λ6 it is A1,k that contributes

the most. Thus, one might conclude that any truncation that includes only the quartic

interaction A1,k is ill-defined, as it neglects the more relevant contributions, namely A2,k and

A3,k. Interestingly, it is sufficient to consider truncations of the type (nU , nZ , 0) to stabilize

the Lee-Yang edge fixed point. While (nU , 0, 0)-type truncations, nU > 3, fail to produce

a Lee-Yang edge fixed point below d ≈ 5.6, the (nU , nZ , 0) truncations allow us to identify

the corresponding scaling solution all the way down to d = 3 (cf. Fig. 4.1). In general, we
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expect that the scale-dependent effective action needs to respect the properties of the theory

under simultaneous renormalization of operators with the same canonical dimension. This is

important to define consistent truncations that are adequate to describe the Lee-Yang edge

critical point.

4.1.6 Residual Regulator Dependence and Principle of Minimal

Sensitivity

To determine the critical scaling properties of a given model, we may in principle choose

any regulator function Rk = Rk(q) as long as it satisfies the appropriate limiting behavior

limk→0Rk = 0 and limΛ→∞Rk=Λ = ∞. Indeed, if an exact solution to the functional flow

equation for Γk were available, the calculated observables should not depend on the way we

choose to regularize the theory in the IR and therefore must be independent of the regulator.

However, in practice, we are bound to consider truncations of the coupled infinite set of flow

equations. This yields a finite set of RG equations for which one observes a residual regulator

dependence [167]. To investigate this effect, we define a one-parameter family of functions

Rα,k = αRk, (4.35)

with α > 0, and consider the α dependence of the critical exponents. We employ the

following set of exponential regulators

Rexp
α,k =

αZ̄kq
2

exp(q2/k2)− 1
, (4.36)

for this analysis.5 One may identify an optimal value of α, which is determined by the

principle of minimum sensitivity [155]. It states that the value of any given observable that

is least sensitive to changes in α can be considered the best estimate for that quantity. Since

by virtue of scaling relations all critical exponents at the Lee-Yang edge critical point can be

5Note that the regulator should be sufficiently smooth in momentum space if higher order approximations
in the derivative expansion are considered (see, e.g., Ref. [155]).
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d = 3 d = 4 d = 5

η(α = 1) −0.3270 −0.2542 −0.1498

η(α = αopt) −0.3340 −0.2587 −0.1500

Relative error 2.1% 1.7% 1.3%

Table 4.5: Anomalous dimension η = η(α) at the Lee-Yang point in d dimensions, evaluated
for the (deformed) exponential regulator Rexp

α,k(q) = αZ̄kq
2 [exp(q2/k2)− 1]

−1
with α > 0.

The optimal value of α depends on the dimension, i.e., αopt = αopt(d) (cf. Fig. 4.3). The
shown values were obtained using a truncation of the scale-dependent effective action Γk
defined by the index set (4, 2, 0).

expressed in terms of the anomalous dimension η, we apply this criterion to η = η(α), i.e.,

to find the optimal value, we require that

η′(α = αopt) = 0. (4.37)

In Tab. 4.5 we compare the values of η(α) evaluated for α = 1 as well as α = αopt in different

dimensions and determine the relative error ∆η/η(αopt) ≡ [η(1)− η(αopt)] /η(αopt). Largely

independent of dimension, the anomalous dimension evaluated at α = 1 seems to be slightly

overestimated with a relative error of approximately 3%. From this comparison we conclude

that η(α = 1) is typically already a good approximation to the optimal value η(αopt).
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In principle, αopt might depend on the dimension. Indeed, as shown in Fig. 4.3, the

optimal value of α shifts to larger values when the dimension d is lowered and eventually

stabilizes around α ≈ 1.7. Although the value of αopt increases, the relative error in η

remains roughly constant. At this point, we remark that below d = 4 an ambiguity appears:

η(α) develops a second extremum, a local maximum, for α < 1 (cf. Fig. 4.3). However, we

do not consider this solution to be physical and define αopt(d) as the analytically continued

local minimum from d = 6− ε′.
Since the search for fixed points of the RG β functions becomes quite demanding numer-

ically for higher-order truncations, we use this information to limit our calculations to the

case α = 1 and estimate the corresponding systematic error in η(α = 1) at the 3− 5% level

(within the considered one-parameter family of regulators). This systematic effect in the

estimation of the anomalous dimension has been accounted for and is indicated explicitly as

a systematic error in the summary of our results in Tab. 4.3 and 4.4.
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Figure 4.3: Rescaled anomalous dimension η(α)/|η(αopt)| shown as a function of α. Different
curves correspond to data obtained in d = 3, 4, and 5 dimensions, respectively. The optimal
value αopt for which the critical exponent i s least sensitive to changes in the deformation
parameter, i.e., η′(α = αopt) = 0, shifts to larger values as the dimension d is lowered. The
displayed values were obtained for a truncation of the scale-dependent effective action Γk of
the type (4, 2, 0).
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4.2 Spinodal Points and Lee-Yang Edge Singularities

Owing to universality and scaling, the equation of state sufficiently close to the critical

point, i.e., in the scaling region, can be characterized by a universal function of a single

argument, a scale-invariant combination of two relevant variables – the magnetic field and

the temperature. Determining this function is a well-posed mathematical problem which to

this day, however, remains unsolved, at least in the analytically exact sense. Nevertheless, a

lot is known about the equation of state [31]. This includes celebrated exact results, such as

the Onsager solution of the two-dimensional Ising model in the absence of the magnetic field

[25] or the Lee-Yang theorem regarding the distribution of zeros of the partition function

in the complex plane of the magnetic field variable [51, 52]. The equation of state near the

upper critical dimension, d = 4, is also understood in terms of the perturbative Wilson-

Fisher fixed point using the ε = 4 − d expansion [168, 169, 170, 171, 172]. Furthermore,

there are numerous numerical studies based on the high-temperature series expansion [173,

174], perturbative field-theory expansions [73], Monte Carlo lattice simulations [175, 176,

177, 178, 179], the exact renormalization group [180], as well as the truncated free-fermion

space approach [181].

In this thesis we focus on the analytic properties of the universal equation of state in

the scaling regime near the Ising critical point as a function of a complex magnetic field H.

Two notable facts will guide our discussion. The first is Lee and Yang’s observation that the

singularities in the complex magnetic field plane terminate two (complex conjugate) branch

cuts, which according to the Lee-Yang theorem [52], must lie on the imaginary axis. These

branch points, or Lee-Yang edge singularities, “pinch” the real axis as the temperature T

approaches its critical value Tc from above, resulting in a singularity on the real axis at

zero magnetic field – the Ising critical point. The second is the observation by Fisher that

the thermodynamic singularity at the Lee-Yang edge point corresponds to the critical point

in the φ3 theory [132] (reviewed in Sec. 2.6). The upper critical dimension of this theory

is six, which means that below this dimension the critical exponent σ that characterizes
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the vanishing of the discontinuity at the Lee-Yang branch point is not simply given by its

mean-field value 1/2. This includes the case d = 4 − ε, where the Ising equation of state

is believed to be described by mean-field theory with corrections suppressed by ε. Here, we

address the apparent contradiction between the conclusions of Fisher’s analysis and the ε

expansion around d = 4.

Analyticity of the equation of state allows one to connect high- and low-temperature

domains near the critical point [182, 183]. In particular, using the mean-field equation of state

one can show that the Lee-Yang edge singularities, which reside on the imaginary magnetic

field axis, are analytically connected to singularities that limit the domain of metastability –

so-called spinodal singularities [184, 185, 186]. The latter reside on another Riemann sheet

reachable by analytic continuation through the branch cut along the real magnetic field

axis, describing the first-order phase transition at zero magnetic field. The position of these

singularities on the real axis, however, is an artifact of the mean-field approximation. In

fact, in 4− ε dimensions the position of the spinodal point shifts into the complex plane by

an amount of order ε2. We analyze this phenomenon in the framework of the ε expansion

employing parametric representations of the equation of state [71, 187, 188, 72]. Our goal

is to confront the extended analyticity conjecture advanced by Fonseca and Zamolodchikov

[181], which states that the complexified spinodal point is the nearest singularity to the real

axis of the magnetic field.

The outline of this section is as follows: In Sec. 4.2.1 we review the properties of the mean-

field equation of state of the scalar φ4 theory, and introduce the Lee-Yang edge singularities

with their low-temperature image – the spinodal points. Next, in Sec. 4.2.2, we discuss the

limitations of the mean-field approximation. In particular, we derive the Ginzburg criterion

which quantifies the breakdown of mean-field theory near the Lee-Yang edge singularities.

Thereafter, in Sec. 4.2.3, we employ the ε = 4 − d expansion and examine the nature of

the complex-field singularities in the framework of parametric representations of the Ising

equation of state. In Sec. 4.2.4 we consider the same problem from the point of view of the

O(N)-symmetric φ4 theory in the large-N limit. We argue that they are consistent with the
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extended analyticity conjecture put forward by Fonseca and Zamolodchikov and discuss the

difficulty of establishing the latter rigorously in the ε expansion.

4.2.1 Critical Equation of State and the Mean-field

Approximation

The scalar φ4 theory in d dimensions can be defined by the Euclidean action in Eq. 1.2,

which is rewritten here following the notation convention of Ref. [5] :

S =

∫
ddx

[
1

2
(∂µφ)2 +

r0

2
φ2 +

u0

4!
φ4 − h0φ

]
. (4.38)

The expectation value of the field φ, 〈φ〉 = ϕ, can be found by using Eq. (1.51) with the

source replaced by h0 here. The relation between the expectation value 〈φ〉 and the bare

parameters r0 and h0 (and, generally, also u0 as well as the ultraviolet cutoff) defines the

equation of state.

More specifically, we are interested in the critical point of this theory, i.e., the point in

the parameter space where the correlation length ξ, measured in units of the cutoff scale,

diverges. This point can be reached at h0 = 0, by tuning r0 → rc for any given u0. In fact,

below the upper critical dimension, i.e., d < 4, the effective coupling runs into an infrared

fixed point, the Wilson-Fisher fixed point and, as a result, the dependence on the coupling u0

and the cutoff disappears – the equation of state becomes a relation between three variables:

〈φ〉, h0, and r0.

The critical φ4 theory provides a universal description of critical phenomena in many

physically different systems such as liquid-gas or binary fluid mixtures or spin systems such

as uniaxial ferromagnets. For the latter, the parameter h0 can be mapped onto the applied

external magnetic field, i.e., h0 ∼ H, while

t ≡ r0 − rc, (4.39)

is proportional to the deviation of the temperature from the critical (Curie) point, i.e.,

t ∼ T − Tc (see also Sec. 1.3).
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In terms of conveniently rescaled variables Φ =
√
u0/6φ and H =

√
u0/6h0, the action

Eq. (4.38) takes the form

S =
6

u0

∫
ddx

[
1

2
(∂µΦ)2 + V (Φ)

]
, (4.40)

with the potential

V (Φ) =
r0

2
Φ2 +

1

4
Φ4 −HΦ. (4.41)

It is clear from Eq. (4.40) that for small u0 fluctuations are suppressed and the path integral

defining the partition function of the theory can be evaluated in the saddle-point, or mean-

field, approximation. In this approximation the expectation value of the field, 〈Φ〉 = M , is

a coordinate-independent constant that minimizes the potential (4.41), i.e.,

V ′(M) = −H + r0M +M3 = 0. (4.42)

The correlation length ξ is defined in terms of the second derivative of the (effective)

potential V at its minimum and, in the mean-field case, it is given by

ξ−2 = V ′′(M) = r0 + 3M2. (4.43)

The Ising critical point, ξ →∞, is reached at H = M = r0 = 0, and therefore

t = r0. (4.44)

The implicit (multivalued) function M(t,H) defined by Eq. (4.42) represents the mean-field

equation of state of the φ4 theory (or Ising model).

It is clear from Eq. (4.43) that above the critical temperature of the Ising model, i.e.,

for t = r0 > 0, the correlation length is finite for all real values of H. However, solving for

V ′(M) = V ′′(M) = 0, we find points on the imaginary axis, where ξ →∞ for t > 0:

MLY = ± 1√
3
it1/2 and HLY = ± 2

3
√

3
it3/2. (4.45)

For t > 0, these branch points of M(H), known as Lee-Yang (LY) edge singularities, ter-

minate cuts that lie on the imaginary H axis (according to the Lee-Yang theorem [51, 52]).

They pinch the real H axis as the temperature T approaches its critical value Tc, i.e., t→ 0.
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Figure 4.4: (a) The mean-field Ising equation of state M(H) and (b) the corresponding
effective potential V (M) at H = 0 in the low-temperature phase (T < Tc). The analytic
continuation of the stable branch (dashed curve) is bounded by the spinodal points (red).
The straight line connecting the two minima of the effective potential is determined by the
Maxwell construction.

On the other hand, below the critical temperature, t < 0, the mean-field approximation

predicts that the correlation length, given by Eq. (4.43), diverges at real values of M and H.

These so-called spinodal points are located on the metastable branch and limit the domain

of metastability [184, 185, 186], as shown in Fig. 4.4 (and Fig. 1.4 as well).

An important property of the critical equation of state is scaling6 [189, 184]: The relation

between M , t, and H is invariant under simultaneous rescaling of these variables according

to their scaling dimensions

t→ λt, H → λβδH, and M → λβM, (4.46)

where β and δ are standard critical exponents. The mean-field equation of state in Eqs.

(4.42), (4.44) scales with exponents

β =
1

2
and δ = 3 (mean field). (4.47)

Scaling implies that the equation of state can be expressed as a relation between only two

scaling-invariant variables. Depending on the choice of these variables it may be represented

6Generally, scaling is a consequence of the coupling u0 running into an IR fixed point.



CHAPTER 4. FLUCTUATIONS AND SPINODAL POINTS 181

w

principal (t > 0)

w

metastable
t < 0 H < 0( , )

stable
t < 0 H > 0( , )

Figure 4.5: Analytic continuation t → −t from the principal, i.e., high-temperature sheet
(left panel) to the low-temperature sheet (right panel) of the mean-field scaling function
z(w) in Eq. (4.52) with w ∼ Ht−3/2. Starting from H > 0 and t > 0, keeping H > 0 and |t|
fixed we rotate the phase arg t from 0 to −π and trace the corresponding movement of the
variable w along the shown circular path. The principal sheet features a pair of Lee-Yang
branch cuts along the imaginary w axis, which terminate in the Lee-Yang edge singularities.
Going through the cut we enter the metastable low-temperature branch (H < 0, t < 0). One
reaches the stable branch (H > 0, t < 0) when arg t = −π. From there one can also reach
metastable branch H < 0 by rotating argH from 0 to ±π, which changes argw by ±π.

in several different ways. For example, we may express the equation of state in the Widom

scaling form [189]

y = f(x), with x ∼ tM−1/β and y ∼ HM−δ, (4.48)

where symbols ‘∼’ reflect arbitrary normalization constants which can be chosen to bring

the function f(x) into canonical form. Here, we express the mean-field scaling function f(x)

as

f(x) = 1 + x, (4.49)

with the scaling-invariant variables defined as

x = tM−1/β and y = HM−δ. (4.50)

However, the analytic properties as a function of H at fixed t are more manifest in another

representation of the scaling equation of state

w = F (z), with w ∼ Ht−βδ and z ∼Mt−β. (4.51)
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Again, the normalization constants in Eqs. (4.51) can be chosen to achieve a conventional

(canonical) form for the equation of state. We choose to express the mean-field scaling

function F (z) in the following form

F (z) = z(1 + z2), (4.52)

with the variables

w = Ht−βδ and z = Mt−β. (4.53)

The inverse of the (mean-field) function F (z), i.e., z(w), is multivalued and has three

Riemann sheets associated with the high- and low-temperature regimes of the mean-field

equation of state (Fig. 4.6). The principal sheet, which represents the equation of state

M(H) for t > 0, features two branch points. They are located on the imaginary axis in the

complex w plane

wLY = ± 2i

3
√

3
, (4.54)

and correspond to the Lee-Yang edge singularities at imaginary values of the magnetic field

H, cf. Eqs. (4.45).

Going under either one of the associated branch cuts, e.g., by following the path shown

in Fig. 4.5, one arrives on the secondary sheet, which corresponds to the metastable branch

of the equation of state at t < 0. The same branch point in Eq. (4.54) viewed from this

sheet represents the spinodal point located at real negative H. To arrive on the stable t < 0

branch, i.e., H > 0, one has to follow the circular path further in the anticlockwise direction,

as shown in Fig. 4.5 (right). We conclude that, in the mean-field approximation, the spinodal

points and the Lee-Yang edge singularities are manifestations of the same singularities of

the scaling equation of state z(w).

4.2.2 Beyond the Mean-field Approximation

The mean-field approximation relies on the smallness of the coupling u0. As we discussed

in Sec. 2.6, this is justifiable for d ≥ 4, where the coupling runs into the Gaussian IR
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(a) (b)

Figure 4.6: The Riemann sheet of Im z(w) in the complex w plane for the mean-field φ4

theory subject to O(1) symmetry (a), and for the spherical model, i.e., the large-N limit of
a O(N) theory (b). The red line stands for the Lee-Yang cut while the magenta line for the
Goldstone cut.

fixed point and becomes arbitrary small as ξ → ∞. For d < 4, according to Eq. (1.24),

the Wilson-Fisher fixed-point value of the coupling, uWF
0 = O(ε), is also small as long as

ε = 4− d� 1. However, for the most interesting case d = 3 the theory is non-perturbative

and we cannot rely on the mean-field approximation. We would like to address the following

question: What happens with the spinodal points and Lee-Yang edge singularities in this

case? We shall begin with general considerations and later consider the case of small ε.

Langer cut and Fonseca-Zamolodchikov conjecture

According to the Lee-Yang theorem [51, 52] the singularities of the Ising model, and

thus, by universality, of the φ4 theory, must be located on the imaginary axis of H. Thus

the result of the mean-field theory that the Lee-Yang edge singularities (and their associated

cuts) are on the imaginary axis holds in general.7

7The theorem applies to singularities on physical stable branches of the function M(H) (both below and
above critical temperature) and thus cannot constrain the position of the spinodal singularities which are



CHAPTER 4. FLUCTUATIONS AND SPINODAL POINTS 184

What happens to the spinodal singularities away from mean-field? As we discussed, the

scaling equation of state z(w) describes both high- and low-temperature branches of M(H),

which correspond to primary and secondary Riemann sheets of the variable w. The Lee-Yang

edge singularities are described by wLY, which lie on the imaginary w axis because w ∼ Ht−βδ

and for t > 0 the value of H at the singularity, HLY, is imaginary. Thus analyticity and

scaling imply that there must also be singularities on the low-temperature branch t < 0, at

values of H given by:

Hsp ∼ wLY t
βδ = ∓|wLY t

βδ|e±iπ(βδ−3/2), t < 0, (4.55)

where the different signs correspond to the two (complex conjugate) values of wLY and to

the two possible directions of rotation from t to −t = e±iπt. Thus, in general, the spinodal

points Hsp are displaced from the (negative) real H axis by a phase

∆φ = π

(
βδ − 3

2

)
, (4.56)

where βδ > 3/2 below the upper critical dimension, i.e., for d < 4 (cf. Eq. (4.67)), and

βδ = 3/2 for d ≥ 4.

In order to understand the position of the points described by Eq. (4.55) it is important

to take into account another property of the equation of state in the low-temperature domain

– the Langer cut [190]. It is well-known that the Ising equation of state is weakly singular

at H = 0 for t < 0, due to the presence of an essential singularity [191, 184, 192] associated

with the decay of the metastable vacuum [193, 194, 195]. The rate of this decay gives the

imaginary part of the free energy F(t,H) for H on the metastable branch at t < 0 and, since

M = ∂F/∂H, also the imaginary part of the magnetization M(t,H). Near d = 4, it takes

the form (for w � 1)

ImM(t,H) ∼ exp

(
− const

u0|w|3
)
, (4.57)

located on the metastable branch.
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demonstrating that there is an essential singularity, which is non-perturbative in u0. Not

only is this singularity absent in the mean-field equation of state, but it cannot be seen at

any finite order of the ε expansion. The imaginary part of M is discontinuous (changes sign

by Schwarz reflection principle) across the real axis of H on the metastable branch, which

corresponds to a cut, known as the Langer cut [190].

This cut can be reached from the stable low-temperature branch (H > 0, t < 0) by

rotating H along a semicircle in the complex H plane, such that H → −H. Thus, its

location in the complex w plane should be as shown in Fig. 4.7. If we translate Fig. 4.7 into

the H plane, using w ∼ Ht−βδ (with t < 0), we find that the spinodal point can be found

under the Langer cut as shown in Fig. 4.8, assuming, of course, that we start from the stable

H > 0 branch. It is therefore natural to expect that the spinodal singularity (which is also

the Lee-Yang edge singularity) is the closest singularity to the real axis (i.e., to the Langer

cut). This is the essence of the “extended analyticity” conjecture put forward by Fonseca

and Zamolodchikov [181]. Here, our goal is to see what one can say about the singularities

of the equation of state and the validity of the conjecture using the ε expansion as well as

large-N limit of the O(N)-symmetric φ4 theory.

Lee-Yang edge singularities and Ginzburg criterion

As we discussed in Sec. 4.2.1, the mean-field (saddle-point) approximation is controlled

by the quartic coupling u0. For d < 4, in the scaling regime, the coupling is given by the

IR (Wilson-Fisher) fixed-point value of order ε = 4 − d. This means that the true scaling

equation of state should approach the mean-field one as ε → 0. However, this approach is

not uniform, especially, at the Lee-Yang edge singularities, which are the focus of this study.

The issue was first raised by Fisher, who observed that the singular behavior near the

Lee-Yang point is described by a φ3 theory [132]. This theory has an IR fixed point, albeit

somewhat formally, since it occurs at imaginary values of the cubic coupling. The exponents

(anomalous dimensions) can be calculated by an expansion around the upper critical dimen-
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Figure 4.7: Analytic continuation t → −t from the principal, i.e., high-temperature sheet
(top left panel) to the low-temperature sheet (top right panel) and the following successive
processes (from bottom right panel to left) of the scaling function z(w) of the Ising theory as
conjectured by Fonseca and Zamolodchikov, where w ∼ Ht−βδ, while keeping the magnetic
field H > 0 fixed at d = 4 − ε. After analytic continuation the metastable branch H < 0
can be accessed by rotating H clockwise in the complex plane, while keeping t < 0 fixed.
The line representing the Langer cut is rotated away from imaginary axis by an angle ∆φ,
cf. Eq. (4.56).

sion d = 6 of the φ3 theory where the theory becomes perturbative in terms of ε′ = 6 − d.

However, the φ3 theory is non-perturbative in d = 4. In particular, the singular behavior in

the vicinity of the Lee-Yang point

M −MLY ∼ (H −HLY)σ, (4.58)

is characterized by the exponent σ ≈ 0.26 in d = 4 [143, 139, 4, 196], which differs signifi-

cantly from the mean-field result σ = 1/2.

We appear to be facing a paradox. On the one hand, mean-field theory should become
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Figure 4.8: The Fonseca-Zamolodchikov conjecture for t < 0, illustrated in the complex
H plane. The line along the negative real H axis represents the Langer cut. The second
cut on the ancillary sheet is the Lee-Yang cut, which is associated with the Lee-Yang edge
singularity. The latter is expected to be the nearest singularity under the Langer cut.

valid as d → 4. On the other hand, this approximation fails to account for the correct

exponent at the Lee-Yang point in the same limit. There is no contradiction, of course.

The reason that mean-field theory becomes precise for d → 4 is that the importance of

fluctuations diminishes as the fixed-point value of the coupling vanishes at d = 4. However,

at any given value of ε (and t), the magnitude of the fluctuations themselves increase as

we approach the Lee-Yang points, since the correlation length ξ diverges at those points.

In other words, the (squared) magnitude of fluctuations is proportional to the isothermal

susceptibility M ′(H), which diverges as H → HLY.

We are, therefore, led to seek a condition, similar to the Ginzburg criterion in the theory

of superconductors [197], which determines how close the Lee-Yang edge singularity can be

approached before mean-field theory breaks down. Even though the critical exponents, such

as σ, cannot be determined reliably in the mean-field approximation, the domain of the

validity of that approximation can be.

At the Lee-Yang point H = HLY the mean-field potential Eq. (4.41) takes the following

form (cf. Eq. (1.42))

V (Φ)|H=HLY
=
t2

12
+

1√
3
it1/2(Φ−MLY)3 +

1

4
(Φ−MLY)4. (4.59)
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It describes a massless φ3 theory with imaginary cubic coupling (t > 0). When H 6= HLY a

quadratic (mass) term appears. Expanding in H −HLY we find (cf. Eq. (1.44))

V (Φ) =
t2

12
+ (−3t)1/4(H −HLY)1/2(Φ−MLY)2 +

1√
3
it1/2(Φ−MLY)3 +

1

4
(Φ−MLY)4 + . . . ,

(4.60)

where we show only the leading-order contribution to each of the coefficients and the ellipsis

denotes the subleading terms. From Eq. (4.60) we can determine the correlation length,

given by Eq. (4.43), for small H −HLY. The result can be written in the following scaling

form

ξ−2 = t
[
2(−3)1/4(w − wLY)1/2 + . . .

]
, (4.61)

where w and wLY are given by (4.53) and (4.54), respectively. This analysis relies on the

mean-field approximation and, therefore, assumes that fluctuations can be neglected.

The relative importance of fluctuations, is determined by the quartic coupling u0, which

is most evident in Eq. (4.40), where u0 controls the applicability of the saddle-point approx-

imation to the path integral. In 4 − ε dimensions, this coupling runs to the Wilson-Fisher

fixed point in the IR, i.e., u0 → uWF
0 = O(ε) and therefore a mean-field (saddle-point) analy-

sis is justified for sufficiently small ε. How small ε, or u0, should be, however, depends on the

value of the scaling-invariant variable w. For a generic value away from wLY the condition

is simply ε � 1. However, as w → wLY the correlation length diverges, fluctuations are

enhanced, and the condition on ε becomes more restrictive.

As w → wLY, the relative importance of fluctuations is controlled by the most relevant

coupling, the cubic coupling g3, which can be read off as the coefficient of the (Φ−M)3 term

in Eq. (4.60), i.e., g3 ∼ i(u0t)
1/2. Note that a factor

√
u0 must be included in order to restore

the canonical normalization of the field, Φ =
√
u0/6φ. The mass dimension of the cubic

coupling g3 is (6− d)/2 and thus its relative importance is determined by the dimensionless

combination g̃3 ≡ g3ξ
(6−d)/2 which, according to Eq. (4.61), is given by

g̃3 ∼ ũ
1/2
0 |w − wLY|−(6−d)/8 + . . . , (4.62)
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where ũ0 ≡ u0t
(d−4)/2 = u0t

−ε/2. The mean-field analysis is applicable near the Lee-Yang

edge singularity only as long as g̃3 � 1.8 For 0 < ε� 1, this yields the following requirement

|w − wLY| � ε2, (4.63)

where we replaced u0 with its IR fixed-point value uWF
0 ∼ ε. Eq. (4.63) is the Ginzburg

criterion that determines the size of the critical region around the Lee-Yang point. It is in a

similar spirit of the criterion for the correlation size (cf. Eq. (1.34)) where the dimensionless

mass term is of order 1. Inside this region the mean-field approximation breaks down and

the correct scaling near that point is given by the fixed point of the φ3 theory, which is

non-perturbative in d = 4. One can also say that a typical condition for the mean-field

approximation to apply, ε� 1, is not sufficient near the Lee-Yang points, where a stronger

condition becomes necessary: Eq. (4.63).

It is instructive to consider also the case 4 < d < 6. The critical behavior simplifies as

the scaling is now controlled by the Gaussian IR fixed point. However, we cannot simply

set the coupling u0 to zero since the action becomes singular in this limit (cf. Eq. (4.40)).

In other words, for d > 4, the coupling u0 is a dangerously irrelevant variable [198]. In this

case the equation of state depends on u0 in addition to the variables t and H. Repeating

the arguments leading to Eq. (4.62) we conclude that, for 4 < d < 6, no matter how small

the coupling u0 is, the mean-field approximation will break down sufficiently close to the

Lee-Yang point with the Ginzburg criterion given by

|w − wLY| � (ũ0)4/(6−d). (4.64)

Finally, for d ≥ 6 the variable w is not constrained by the Ginzburg criterion, and the

condition ũ0 � 1 is sufficient for mean-field theory to apply for all w. This corresponds to

8The basic idea of the Ginzburg criterion is to compare the tree-level amplitude, or coupling, g3 in our
case, to the one-loop contribution. The latter stems from a triangle diagram, which is IR divergent when
ξ →∞. By counting dimensions (kd from the loop integral and k6 from the denominators) it is easy to see
that the loop integral diverges as ξ6−d. Thus, we need to compare g3 to (g3)3ξ6−d, or equivalently g2

3ξ
6−d

to 1.



CHAPTER 4. FLUCTUATIONS AND SPINODAL POINTS 190

the fact that d = 6 is the upper critical dimension of the φ3 theory, and the exponent σ in

Eq. (4.58) takes the mean-field value 1/2 for d ≥ 6 in accordance with [132].

4.2.3 Singularities in the ε Expansion

Critical equation of state at d = 4− ε

In this section we shall review the known results on the ε expansion of the equation of

state relevant for our discussion.

Since the fixed-point value of the coupling u0 is small near d = 4, the equation of state

can be calculated perturbatively in ε = 4 − d [168, 169, 170, 171, 172]. In terms of the

rescaled variables t, M , and H, one finds to order ε2 [170, 171]9

H

M
= t+

u

8
r
[
1 + ln(r)− ε

4
ln2(r)

]
− u2

64
r
[
4 + π2 − 8λ− ln2(r)

]

+ M2

{
1− 3

32
u2

[
6 +

1

2
π2 − 4λ+ 3 ln(r) +

1

2
ln2(r)

]}
, (4.65)

which reproduces the mean-field equation of state Eq. (4.42) with Eq. (4.44) when u → 0.

Here, the parameter u denotes the (Wilson-Fisher) fixed-point value of the conveniently

normalized quartic coupling 10, i.e.,

u = uWF
0

Sd
(2π)d

πε

sin(πε/2)
=

4

3
ε

(
1 +

7

54
ε

)
+O(ε3), (4.66)

where Sd is the area of the unit sphere in d dimensions introduced in Eq. (1.22) and

λ = (1/9) (3Ψ′(1/3)− 2π2) involves the first derivative of the digamma function Ψ(z) =

d/dz ln Γ(z). The inverse isothermal susceptibility r = (∂H/∂M)t is a function of the vari-

9While the equation of state is known to order ε3 [170, 171, 172], for our purposes it is sufficient to
consider only contributions up to order ε2. We comment on some features specific to the ε3 result (in
particular related to parametric representation of the equation of state) in Appendix E.2.

10Note that the Wilson-Fisher fixed-point value for the quartic coupling here is different from the one
given by Eq. (1.24), a consequence of different definition after the loop factor is absorbed. Our final results
and conclusions shall be independent of the normalization or definition used, thus we follow the convention
of Ref. [5].
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ables t and M , i.e., r = r(t,M), and therefore Eq. (4.65) constitutes a relation between t,

M , and H.

As mentioned at the beginning of this section, in the scaling region, Eq. (4.65) can be

written in a scaling form, in terms of scale-invariant combinations of two relevant variables.

Among various choices it is more convenient for our work to write Eq. (4.65) in terms of

the scaling variables w ∼ Ht−βδ and z ∼ Mt−β, i.e., w = F (z). Expressing the critical

exponents β and δ to order ε2, the “gap” exponent is given by

βδ =
3

2
+

1

12
ε2 +O(ε3), (4.67)

and the series expansion in ε of the scaling function F (z) reads

F (z) = F0(z) + F1(z)ε+ F2(z)ε2 +O(ε3), (4.68)

with

F0(z) = z + z3, (4.69a)

F1(z) =
1

6

[
−3z3 +

(
z + 3z3

)
L(z)

]
, (4.69b)

F2(z) =
1

648

[
−150z3 + 2(25z − 6z3)L(z) + 9(z + 9z3)L2(z)

]
, (4.69c)

and L(z) = ln [1 + 3z2].11 Note that the mean-field equation of state (4.52) is recovered in

the limit ε → 0. Here, the normalization of the scaling variables w and z in Eq. (4.51) is

chosen in such a way that the two lowest order terms in the Taylor expansion

F (z) = z + z3 +
∞∑

n=2

F2n+1z
2n+1, (4.70)

are fixed and coefficients F2n+1 = O(ε), for all n ≥ 2.

11Note at the Lee-Yang point, the argument of the logarithmic function vanishes. An imaginary part,
which is analyzed by Weinberg and Wu [56], develops when the argument is negative and is associated with
the cut terminating at the Lee-Yang edge singularity.
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Since the singularities of the equation of state are associated with a diverging correlation

length, the equation of state must be analytic away from the Ising critical point located at

t = M = H = 0. Thus, if any one of these parameters is set to a nonzero value, the relation

between the other two must be analytic. This translates into the following two properties

of F (z) often referred to as Griffiths’ analyticity [199]. First, for fixed t > 0, we find that

F (z) ∼ H is an analytic function of z ∼ M in the vicinity of z = 0, which should also be

odd under reflection H → −H and M → −M . This is easily seen in the explicit expressions

for F (z) in Eqs. (4.69). Second, for fixed M > 0 we find that the function z−δF (z) ∼ H

must be an analytic function of the variable z−1/β ∼ t in the vicinity of t = 0 (z = ∞).

The behavior of F (z) at large z is not manifest in Eqs. (4.69) since the ε expansion of this

function does not converge uniformly, due to the presence of large logarithms.

In this case, it is better to introduce the scaling variables x ∼ tM−1/β and y ∼ HM−δ (as

in Eq. (4.48)), and express the equation of state Eq. (4.65) as the Widom scaling function

y = f(x) [73], whose ε expansion is convergent when x→ 0 (corresponding to z ∼ x−β →∞).

However, in this representation the analyticity at large x (corresponding to small z) is

obscured, again due to lack of convergence of the ε expansion.

Thus it would be useful to have a representation of the equation of state where the

analyticity is manifest in both regimes, i.e., a representation for which the ε expansion

converges uniformly. The so-called parametric representations [71, 187], reviewed below, are

designed to fulfill this requirement.

Parametric equation of state

As we discussed in the previous section and also in Sec. 1.4.3, the problem with repre-

sentations using the pairs of scaling variables such as w and z, or y and x, is that the two

points z = 0 and x ∼ z−1/β → 0, where each of them is analytic, correspond to infinitely

separated points z = 0 and z = ∞ (and similarly for x). This problem can be addressed

by introducing a new scaling variable, θ, by means of a nonlinear variable transformation



CHAPTER 4. FLUCTUATIONS AND SPINODAL POINTS 193

(t,M)→ (R, θ):

t = Rk(θ), (4.71)

M = Rβm(θ), (4.72)

with analytic functions k(θ) and m(θ), chosen such that the two points x ∼ tM−1/β = 0 and

z ∼ Mt−β = 0 are placed at positions θ = 1 and θ = 0, respectively. The simplest choice

satisfying these conditions is

k(θ) = 1− θ2 and m(θ) = m̄θ, (4.73)

also known as the linear parametric model (LPM) [71, 188]. Here, m̄ is a normalization

constant, which can be chosen to bring the equation of state into canonical form (e.g., see

Eq. (4.70)).

In the parametric representation, the equation of state becomes a relationship between

H and the parameters R and θ, i.e.,

H = Rβδh(θ), (4.74)

where h(θ) is an odd function of θ (since θ ∼M is an odd variable under reflection M → −M ,

H → −H).

While R scales as the reduced temperature t, the variable θ is invariant under rescaling

in Eq. (4.46). Therefore, the scaling variables w and z can be expressed in terms of θ alone,

i.e.,

z ∼Mt−β ∼ θ(1− θ2)−β and w ∼ Ht−βδ ∼ h(θ)(1− θ2)−βδ. (4.75)

Inserting these expressions into the equation of state w = F (z) one can determine the

function h(θ) (as well as the normalization constant m̄) order by order in the ε expansion

[73].12

12Similarly, one could also use the equation of state in the form y = f(x) with the scaling variables
x ∼ θ−1/β(1− θ2) and y ∼ θ−δh(θ) to determine h(θ).
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In this section, we shall carefully examine the parametric representation obtained by

matching equation of state to order ε2. Our goal is to determine the location of singularities

and their uncertainty due to higher orders of ε expansion. To focus on relevant features

we present the results in the minimal form necessary for the argument, and collect explicit

expressions needed for the derivation in Appendix E.1 and E.2.

It is known that to order ε2 the function h(θ) is given by a cubic polynomial [168, 170,

171]

h(θ) = h̄(θ + h3θ
3), (4.76)

where h̄ is a normalization parameter. As we shall see, the number of singularities is de-

termined by the order of this polynomial while their positions are related to the coefficient

h3 which can be determined by matching to equation of state (4.70). For ε = 0 (mean-field

equation of state), h3 = −2/3.

In order to study the dependence of our results on ε we shall expand h3 in ε. To this

end we adopt the historical notation of Refs. [71, 188, 170, 171] and express h3 in terms of

parameter b defined by h(θ = b) = 0, i.e., the closest zero to θ = 0. Obviously,

h3 = − 1

b2
. (4.77)

The coefficients of the ε expansion of b2

b2 =
3

2
+ b1ε+ b2ε

2 +O(ε2). (4.78)

cannot be determined by matching at order ε2 (or ε3 for that matter, cf. Appendix E.2).

It is a common choice [170, 171] to set b1 = 0, but it is not necessary and we shall allow

this parameter to have an arbitrary real value. It will be helpful for understanding the ε

dependence of our results.

We shall now study the singularities that arise in the linear parametric representation

in order to infer the analytic properties of the scaling equation of state. Specifically, we

examine the equation of state to order ε2 in the form w = F (z), represented parametrically
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using Eqs. (4.75). This allows us to directly access the singularities in the complex w plane

by examining the rescaled inverse isothermal susceptibility, given by

rt−γ ∼ F ′(z) =
w′(θ)

z′(θ)
, (4.79)

whose zeros correspond to the branching points of the multivalued function z(w).

In terms of the linear parametric representation, Eqs. (4.71) – (4.74) and Eq. (4.76), the

scaling variables z and w are given by

z =
z̄ θ

(1− θ2)β
and w =

w̄(θ + h3θ
3)

(1− θ2)βδ
, (4.80)

where the normalization parameters z̄ and w̄, determined by matching the parametric model

to the canonical equation of state Eq. (4.70) to order ε2, are needed below to find the position

of singularities to that order and are given by Eqs. (E.2). Substituting into Eq. (4.79) we

arrive at the following expression for the inverse susceptibility

F ′(θ) =
w̄

z̄
(1− θ2)−γ

1 + (2βδ + 3h3 − 1) θ2 + (2βδ − 3)h3θ
4

1− (1− 2β)θ2
, (4.81)

where the scaling exponents β, γ, and δ, as well as the parameters h3, w̄ and z̄ should be

expanded to order ε2.

If we set ε = 0 and use the mean-field critical exponents, β = 1/2, γ = 1, and βδ = 3/2,

we observe that the only zeros of F ′(θ) = (1−θ2)−1 lie at complex infinity (in the θ plane). Of

course, this is consistent with the mean-field result, which is easily confirmed by examining

the limit |θ| → ∞ in Eqs. (4.80), i.e., lim|θ|→∞w(θ) = ±2i/(3
√

3), and comparing with

Eq. (4.54).

At nonzero ε, however, the structure of the singularities of Eq. (4.81) becomes more

complicated. Now, the polynomial in the numerator has four zeros. There are also two

zeros in the denominator, giving rise to two poles. In addition, there are two branch-point

singularities at θ = ±1. Since w(θ = 1) = z(θ = 1) =∞ the latter can be seen to correspond

to the behavior F (z) ∼ zδ (and, therefore, F ′(z) ∼ zγ/β) at large z, required by Griffiths’

analyticity. The four zeros and two poles on the other hand, occur at finite, albeit large,

values of θ2 = O(ε−1). We shall now focus on these finite w singularities.
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Since F ′(θ) is an even function of θ it is convenient to consider its singularities as a

function of θ2. The numerator of Eq. (4.81) vanishes at two distinct values θ2
n, which we

label by indices n = 1, 2. These solutions can be expanded in powers of ε where the leading

contribution appears at order ε−1, i.e.,

θ2
n =

cn
ε

[1 +O(ε)] . (4.82)

Substituting θn into Eq. (4.80), wn ≡ w(θn), and expanding in ε we get

wn = ±2i (−ĉn)
3
2
−βδ

3
√

3

{
1 +

[
ω(2)(cn, b1) +

1

12
ln ε

]
ε2 +O(ε3)

}
, (4.83)

where ĉn ≡ cn/|cn|. Remarkably, only the leading-order coefficient of θ2
n, cn, appears in this

expression.13 The coefficient cn is a function of b1 and for the two solutions θ2
n, n = 1, 2, we

obtain

cn = 3

(
2b1 + (−1)n

√
1 + 4b2

1

)
, n = 1, 2, (4.84)

with c1 < 0 and c2 > 0 for all real values of b1. Note that the absolute value of wn is

determined by ω(2)(cn(b1), b1) – a function of b1 (see Eq. (E.3)) while the dependence on n

appears only via cn in Eq. (4.84). Nontrivially, there are no O(ε) terms in Eq. (4.83) (they

cancel) and there is no dependence on b2 to this order.

Inserting the coefficient c1 into (4.83), we find

w1 = ± 2i

3
√

3

{
1 +

[
ω(2)(c1, b1) +

1

12
ln ε

]
ε2 +O(ε3)

}
, (4.85)

which corresponds to the pair of Lee-Yang edge singularities (cf. Eq. (4.54)). As in the

mean-field case they are located on the imaginary axis in accordance with Lee-Yang theorem.

However, comparing with the mean-field result, we observe that its absolute value receives

corrections of order ε2, which depend on the parameter b1. Since b1 cannot be determined

at this order of the ε expansion, practically, the position of the singularity also cannot be

13This happens because the leading corrections to the mean-field value of w are εθ−2 and θ−4, while
θ−2
n ∼ ε.
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Figure 4.9: We show the position of the two zeros w1 and w2 (solid points) and single pole
w0 (open circle) of the parametrically represented inverse isothermal susceptibility F ′(z) at
order O(ε2) in the complex w plane (b1 6= 0). Note, only the singularities in the upper half
of the complex w plane are shown.

established to precision of order ε2. This agrees with our earlier observation in Sec. 4.2.2

that the non-perturbative domain around the Lee-Yang edge singularities has size O(ε2),

according to Ginzburg criterion Eq. (4.63).

The second pair of singularities, w2, is located off the imaginary axis:

w2 = ± 2i

3
√

3
(−1)

3
2
−βδ
{

1 +

[
ω(2)(c2, b1) +

1

12
ln ε

]
ε2 +O(ε3)

}
. (4.86)

One can easily see that they lie precisely where we expect the Langer cut (see Fig. 4.7). But

what is their significance? Before answering this question, let us first consider the poles of

F ′(z), which can be obtained by solving

1− (1− 2β) θ2 = 0. (4.87)

The solution θ2 to this equation, which we label by the index n = 0, can be also expanded

in powers of ε. The corresponding leading coefficient c0 (cf. Eq. (4.82)) is given by

c0 = 3, (4.88)

and according to Eq. (4.83), we find

w0 = ± 2i

3
√

3
(−1)

3
2
−βδ
{

1 +

[
ω(2)(c0, b1) +

1

12
ln ε

]
ε2 +O(ε3)

}
. (4.89)
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The position of the singularities w0, w1, and w2, is shown schematically in Fig. 4.9 in

the upper half of the complex w plane and for a generic value of b1, according to Eq. (E.3).

We observe that w0 and w2 lie on the same ray, which corresponds to the Langer cut of the

exact equation of state. The distance between these points is given by

w2 − w0 = O(ε2), (4.90)

and depends on the value of b1. For the common and particular choice b1 = 0, when c2 = c0,

the two points coincide and the zero and the pole cancel each other to order ε2.

It is also important to note that both w0 and w2 (on the Langer cut) are within distance

O(ε2) from the Lee-Yang edge singularity, since βδ−3/2 = O(ε2). Therefore, according to the

Ginzburg criterion in Eq. (4.63), these singularities and their position are non-perturbative.

This is in agreement with the fact that we cannot determine the parameter b1 within the ε

expansion to establish their position. Furthermore, as we show in Appendix E.2, extending

the linear parametric model to next order, ε3, leads to terms in wn that contribute at order

ε2 (in addition to the expected ε3 contribution). Thus, the procedure based on matching

to increasing orders of the ε expansion does not converge in the usual sense. In spite of

this, it is still tempting to speculate that the sequence of (alternating) zeros and poles line

up along the ray at angle ∆φ relative to the imaginary axis and will eventually coalesce

into the Langer cut – a purely non-perturbative feature, which cannot be reproduced at any

finite order of ε expansion. In fact, such a scenario is common in rational-function (Padé)

approximations of functions with branch cuts.14

Summarizing, we see that the Ginzburg criterion (4.63) sets the limit on the information

that can be gained about the Lee-Yang edge singularities. The precision that we can reach,

ε2, is not sufficient to study the region between the Lee-Yang edge singularity and the

14The experience with Padé approximations suggests a guiding principle for constructing improved para-
metric representations: The choice of (polynomial) functions h(θ) and m(θ) should be such that the rank of
polynomials in the numerator and the denominator in Eq. (4.81) increase at the same rate.
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Langer cut, which is necessary to test the Fonseca-Zamolodchikov conjecture. Nevertheless,

the results we find are nontrivially consistent with the conjecture.

4.2.4 Singularities in the O(N)-symmetric φ4 Theory

An alternative point of view on the question of extended analyticity and the nature of

singularities in the complex H plane can be obtained by studying the generalization of the

φ4 theory to the N -component theory with O(N) global symmetry. This generalization is a

well-known tool to study non-perturbative aspects of the theory. The finite-N cases describe

the critical behavior of, e.g, the Heisenberg model (N = 3), the XY-model (N = 2), and, of

course, the Ising model (N = 1). On the other hand, in the N →∞ limit the O(N) model

describes the critical behavior of the exactly solvable spherical model [200, 201].

Similar to Eq. (4.38), the O(N) theory is defined by the Euclidean action

S =

∫
ddx

[
1

2
(∂µφ)2 +

r0

2
φ2 +

u0

4!
(φ2)2 − h0 · φ

]
. (4.91)

Here, φ is a (real) N -component vector field and the external magnetic field h0 has the

same dimensionality. In the presence of a nonvanishing h0 the expectation value of φ, 〈φ〉,
is directed along the former. Due to the O(N) invariance of the theory we may choose an axis

along the vector h0 and define the equation of state as a relationship between the projections

〈φ〉, h0 of 〈φ〉 and h0 onto that direction, similar to the N = 1 case in Sec. 4.2.1.

We are interested in analytic properties of the universal equation of state, which describes

the critical behavior of the φ4 theory associated with the spontaneous breaking of the O(N)

symmetry. However, since there can be no spontaneous symmetry breaking of continuous

symmetries in d ≤ 2 [202, 203], we shall limit our analysis to dimensions d > 2.

When h0 = 0 the critical point is reached by tuning r0 to its critical value, i.e., t =

r0− rc → 0. In this limit, and for d < 4 the quartic coupling u0 runs into the O(N) Wilson-

Fisher fixed point in the infrared, i.e., u0 → uWF
0 [204, 205] and therefore the critical equation

of state becomes independent of the bare coupling u0 as well as the ultraviolet cutoff. A

systematic expansion in powers of 1/N , yields a fixed-point value with uWF
0 ∼ O(1/N) [205,
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206]. But this does not necessarily mean that the equation of state of the O(N) model

reduces to the mean-field result in the limit N → ∞. Indeed, the tree-level action for

the longitudinal field φ receives a nontrivial contribution from integrating out the N − 1

transverse-field degrees of freedom (which, for t < 0, correspond to the massless Goldstone

modes associated with the spontaneous breaking of the O(N) symmetry) [205]. Both the

tree-level action, proportional to 1/u0 ∼ O(N) (as in Eq. (4.40)), as well as the one-loop

contribution of the N − 1 transverse-field modes are of order N . We may therefore apply

the saddle-point approximation in the large-N limit.

We shall first consider the infinite-N case, or the spherical model, and then briefly com-

ment on 1/N corrections below. As in Sec. 4.2.1 we introduce the rescaled field variables

M =
√
u0/6 〈φ〉 and H =

√
u0/6h0 and employ the scaling variables w = Ht−βδ and

z = Mt−β etc.

In the N →∞ limit the critical exponents are known [205]

β =
1

2
, γ =

2

d− 2
, and δ =

d+ 2

d− 2
, for 2 < d < 4, (4.92)

and take their mean-field values for d ≥ 4. The scaling equation of state w = F (z) is

determined in terms of the scaling function

F (z) = z(1 + z2)γ. (4.93)

In d ≥ 4 dimensions, where the critical exponent γ = 1, this agrees with the mean-field

equation of state Eq. (4.52), as should be expected.

The imaginary part of the inverse function z(w) is plotted in Fig. 4.6. The branching

points of z(w) correspond to solutions of F ′(z) = 0. We find two (pairs of) such solutions

z2 = −1 and z2 = − 1

1 + 2γ
, (4.94)

which map onto

w = 0 and w = ±i(2γ)γ(1 + 2γ)−βδ, (4.95)

in the complex w plane.
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Figure 4.10: (a) Equation of stateM(H) of the three-dimensional O(N) model in theN →∞
limit and (b) the corresponding effective potential V (M) at H = 0 in the low-temperature
phase (T < Tc). The dashed curve illustrates the analytic continuation of the stable branch
(solid curve). In addition to the spinodal singularities at nonvanishing H, the presence of
massless Goldstone modes induces singularities on the coexistence line (T < Tc and H → 0).

The w 6= 0 solutions lie on the imaginary w axis. In fact, for d = 4 they are identical to

the Lee-Yang edge singularities in Eq. (4.45). Thus, for t > 0, we can identify these solutions

with the pair of Lee-Yang edge singularities at imaginary H. For t < 0, they lie on the real

H axis for d ≥ 4, while they are shifted off the real H axis by an angle15

∆φ = π
4− d
d− 2

> 0, for 2 < d < 4, (4.96)

as expected, cf. Eq. (4.56).

But what is the meaning of the solution at w = 0 (i.e., H = 0) in Eq. (4.95)? Since

z2 = −1 and M ∼ zt1/2, this singularity corresponds to real M only for t < 0. It is located

at the origin (H = 0) of the low-temperature sheet and is associated with a branch cut along

the negative real H axis.

To understand the significance of this singularity and the associated branch cut, we

illustrate the equation of state M(H) in Fig. 4.10 for t < 0 and d = 3. Unlike the N = 1

15Note, the angular displacement ∆φ is of order ε and not ε2 as in the Ising-like (N = 1) case (cf. Sec.
4.2.2).
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case there is no metastable regime (compare with Fig. 4.4). This can be understood as a

consequence of the fact that, when H changes sign (relative to M), the effective potential

as a function of φ develops directions with negative curvature (i.e., the Goldstone bosons

become tachyonic). This means that the false vacuum is classically unstable and, since

there is no tunneling involved in the decay of the false vacuum, there is also no exponential

suppression of the imaginary part, unlike the N = 1 case. That is, instead of the essential

(and very weak) singularity (cf. Eq. (4.57)) the equation of state with N > 1 has a power-

law singularity [204, 205, 207, 208] which comes from the IR-divergent contributions of the

Goldstone bosons [207, 209]. Similar to the Langer cut in the Ising case, the N > 1 equation

of state for 2 < d < 4 has a “Goldstone cut” branching off from the origin and going along

the real H axis on the unstable branch (H < 0 in our convention), with discontinuity given

by16

ImM ∼ H(d−2)/2, for H → 0, t < 0. (4.97)

Furthermore, from Fig. 4.10, we see that, for T < Tc, the Lee-Yang edge singularities

must lie on another (unphysical) branch of the equation of state M(H). These singularities

can be reached in the complex H plane by going under the Goldstone cut onto an ancillary

Riemann sheet. In fact, the situation is very similar to the conjectured scenario shown in

Fig. 4.8, where we observed a similar analytic structure of the equation of state.17 The

low-temperature singularities located off the Goldstone cut for d < 4 are very similar to the

spinodal points. In fact, they become the spinodal points at d = 4 when the equation of

state (4.93) takes the mean-field form (4.52).

Since there are no singularities in the equation of state Eq. (4.93) apart from the ones

given by Eqs. (4.95), we conclude that the Fonseca-Zamolodchikov scenario is realized in the

16The coefficient of this singularity vanishes at N = 1 [207].
17Interestingly, the analytic structure of the scaling equation of state of the three-dimensional spherical

model is also remarkably similar to that of the planar Ising model coupled to two-dimensional quantum
gravity [210, 211, 212].
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O(N) model in the N →∞ limit.

To complete our analysis, we finally comment on the 1/N corrections to the scaling

function (4.93). Since the leading-order contribution to ∆φ in Eq. (4.96) is already O(1/N0),

we observe that 1/N corrections cannot change the conclusion that there are no singularities

at real (nonzero) H, provided that the only effect of these corrections is to shift the position

of the singularities already present in the N →∞ limit.

The 1/N corrections can be expressed in terms of momentum integrals whose explicit

form is not particularly illuminating (see Refs. [205, 206] for details). For simplicity we

shall consider only d = 3, which is also the case that is most relevant for applications.

In three dimensions, we find that the aforementioned momentum integrals yield only two

branch points at z2 = −1 and z2 = −1/5, which coincide with the same singularities already

found in the N → ∞ limit, cf. Eq. (4.94), while the position of the corresponding points

in the complex w plane is shifted by an amount of order 1/N .18 This is consistent with

our expectation that the 1/N corrections only modify the position of the singularities (as

determined in the N →∞ limit) and suggests that no new singularities appear at finite N .19

4.3 Discussion

In Chap. 4, we have examined the critical scaling properties of the Lee-Yang edge, or φ3,

theory in dimensions 3 ≤ d ≤ 6. We find that the obtained values for the critical exponents

are in good agreement with previous results obtained in d = 3 dimensions using high-

temperature series expansions [133], the three- and four-loop ε expansion around d = 6 [137,

18At order 1/N the value of ∆φ, which controls the position of the spinodal points in the complex w (or
H plane) is given by ∆φ = π

(
βδ − 3

2

)
= π − 28/(πN) +O(1/N2) in d = 3 dimensions, where we have used

Eq. (4.56) and critical exponents β and δ from Ref. [213, 205].
19Note that the position of the singularities in the complex w plane can be calculated reliably to order 1/N ,

even though higher-order corrections become non-perturbative. Indeed, the Ginzburg criterion (see Eq. (4.62)
or (4.64)) with u0 = O(1/N) imposes a constraint on the applicability of the saddle-point approximation
around the Lee-Yang point, which reads |w − wLY| � N−4/(6−d) (in agreement with Ref. [214]). This
demonstrates that the non-perturbative region is smaller than 1/N for d > 2.
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138] as well as other methods [140, 141, 142, 143]. Our estimates for the critical exponent σ

are slightly larger than the values obtained from constrained Padé approximants for three-

and four-loop ε expansion results [139], and generally lie below those from a conformal

bootstrap analysis [143]. We expect that truncations at higher orders in the derivative

and field expansion will improve our estimates for the critical exponents. However, more

elaborate numerical treatment is necessary to study such truncations.

We observe that derivative interactions have an important effect on the stability of the

scaling solution and need to be taken into account properly in the framework of the non-

perturbative FRG. We have shown that the stability of nontrivial fixed point associated

to the Lee-Yang edge singularity is sensitive to the insertion of operators that mix under

renormalization. This might seem surprising since a similar behavior is not observed in

applications of the functional RG to establish the scaling behavior at the Ising critical point.

However, comparing our results with a stability analysis at the fixed point to one-loop order

in the ε′ = 6 − d expansion provides a qualitative explanation for the observed lack of

stability of the Lee-Yang edge fixed point for (nU , 0, 0)-type truncations (nU > 3) of the

scale-dependent effective action.

Based on mean-field arguments, one expects another thermodynamic singularity in the

low-temperature phase of the Ising model (T < Tc) with exactly the same critical exponents

as those of the Lee-Yang edge point – the spinodal singularity. The corresponding critical

point appears on the metastable branch of the free energy and is usually associated with

the classical limit of metastability. However, its existence (beyond mean-field) as well as

its scaling properties have been subject to some debate [215, 216, 217, 218]. The relation

between the Lee-Yang edge point and the spinodal singularity [219, 181] are discussed in

Sec. 4.2.

We firstly studied the relationship between singularities of the universal scaling equation

of state of the φ4 theory above and below the critical temperature. Above the critical

temperature Lee-Yang edge singularities, by the Lee-Yang theorem, lie on the imaginary

magnetic field axis and limit the domain of analyticity around the origin H = 0. On
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the other hand, below the critical temperature, there are singularities associated with the

point where the metastable state becomes locally unstable and its decay occurs via spinodal

decomposition.

In the mean-field approximation to the equation of state, H = tM +M3, these spinodal

points are related to the Lee-Yang edge singularities. In terms of the scaling variable w =

Ht−βδ, they are essentially the same singularities. These singularities occur at imaginary w

and, for t > 0, they correspond to imaginary H, i.e., the Lee-Yang points. For t < 0, however,

they correspond to real H on the metastable branch (since in the mean-field approximation:

βδ = 3/2 and i(−1)3/2 = −1).

Since βδ 6= 3/2 for d < 4, one naturally has to ask the question if the spinodal singularities

on the real H axis exist at all. The analyticity of equation of state as a function of w would

require the low-temperature manifestation of the Lee-Yang points to be points off the real

axis by a phase ∆φ = π(βδ − 3/2). Fonseca and Zamolodchikov put forward a conjecture

that these are the closest singularities to the real H axis. Our aim here was to test this

conjecture in the small-ε and large-N regimes.

We have used a uniform approximation to the equation of state based on parametric

representations, which are especially convenient to study the equation of state in the whole

complex plane of w using the ε expansion. However, the vicinity of the Lee-Yang singularity

is special in that the ε expansion must break down. In fact, there is an apparent paradox,

identified first by Fisher [132], which is most acute in 4 < d < 6. The equation of state is

expected to be mean-field-like in this case, yet, near the Lee-Yang point the critical behavior

must be given by nontrivial critical exponents of the φ3 theory. For d < 4 the equation of

state must approach the mean-field form as ε → 0, yet this cannot be true near the Lee-

Yang point because the φ3 theory is non-perturbative at d = 4. We identify and quantify the

solution to this apparent paradox. We show that the ε expansion must break down and the

equation of state becomes non-perturbative in the (Ginzburg) region around the Lee-Yang

point whose radius is proportional to ε2 as ε→ 0.

We have considered the parametric representation to order ε2 (and ε3, see Appendix) and
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have shown that the singularities we find are consistent with the Fonseca-Zamolodchikov

conjecture (for a range of parameters controlling the form of the parametric representation).

However, we have also confirmed that the expansion breaks down near the Lee-Yang edge

singularities in a way consistent with the derived Ginzburg criterion. In particular, the order

ε3 contribution modifies the results obtained at order ε2 also at order ε2! In other words,

the behavior near the singularities (including their position) is non-perturbative at order ε2.

Since the distance between the Lee-Yang edge singularity at t < 0 (i.e., the spinodal point)

from the real axis is itself of order βδ−3/2 = O(ε2) we conclude that the ε expansion cannot

be used to confirm or invalidate the Fonseca-Zamolodchikov conjecture.

We point out that the equation of state of the O(N)-symmetric φ4 theory satisfies the

Fonseca-Zamolodchikov conjecture in the large-N limit. In particular, for d < 4 there are

no singularities on the metastable branch of the real H axis. Instead the singularities can

be found off the real axis, and are, in fact, the Lee-Yang branching points, as predicted by

extended analyticity. We have checked that (at least in d = 3) this result is not affected by

the leading 1/N corrections. Although the Fonseca-Zamolodchikov conjecture for the Ising

critical equation of state is difficult to prove using the analytic methods considered, we can

conclude that it is nontrivially consistent with the various systematic approximations to the

equation of state beyond the mean-field level.

The absence of singularities on the real H axis (except for the branch point at H = 0

associated with the Langer cut) could have implications for the behavior of systems under-

going cooling past the first-order phase transition (see, e.g., Refs. [220, 221, 222, 223]). In

particular, it could prove important for the understanding of the experimental signatures

of the first-order phase transition separating hadron gas and quark-gluon plasma phases of

QCD associated with the QCD critical point, which is being searched for using the beam

energy scan heavy-ion collision experiments.

It is important to realize that in the region of the parameter space where the spinodal

singularities occur the equation of state is not, strictly speaking, defined in the usual sense as

a property of the system in thermal equilibrium, due to the finite lifetime of the metastable
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state (Fig. 4.11). It is, however, defined mathematically by analytic continuation from

the regime of thermodynamic stability. Many properties of the equation of state in the

metastable region, such as the imaginary part and the discontinuity on the Langer cut are

clearly reflecting dynamics of the system associated with the decay of the metastable state.

Also the absence of the spinodal singularities at real H can be related to metastability: the

presence of a thermodynamic singularity requires the correlation length to diverge and the

equilibration to such a critical state requires infinite time, which is impossible due to the

finite lifetime of the metastable state.

Spinodal region

[An-Mesterhazy-MS]

Fonseca-Zamolodchikov conjecture: spinodal point is off the real axis
of H.

Spinodal singularity is an artefact of the mean field approximation.

No thermodynamics in the metastabe/unstable region.

Question: What is the meaning of EOS?
M. Stephanov QCD CP, fluctuations and hydrodynamics Trento 2017 28 / 28

Figure 4.11: The phase diagram of the ferromagnetic system in the T − n plane. The
left panel is phase diagram for a mean-field theory where there are distinct boundaries of
the stable, metastable and unstable phase, separated by the coexistence curve (solid) and
spinodal curve (dashed) respectively. However, such boundaries are dimmed beyond mean-
field approximation when fluctuations are taken into account.

It is also interesting to note that the decay rate of the metastable state, which is con-

trolled by the (small) coupling u0 (see Eq. (4.57)) is no longer exponentially suppressed at

the spinodal point. Moreover, for small ũ0, the nucleation rate near the spinodal point has

the asymptotic form exp[−const(w − wLY)(6−d)/4/ũ0] [224, 218]. Therefore exponential sup-

pression disappears in the same region as defined by the Ginzburg criterion in Eq. (4.64).

This is to be expected since the fluctuations leading to the decay become important in that

region. The fact that the shift of the spinodal singularity into the complex H-plane is also
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due to fluctuation contribution to the “gap” exponent βδ suggests that the shift is related

to metastability. It would be interesting to establish a more quantitative relation between

this phenomenon and the Fonseca-Zamolodchikov conjecture.

We point out that our analysis is not complete, since the ε expansion fails to capture

certain non-perturbative aspects of the universal Ising equation of state, most notably the

Langer cut [190]. However, as we shall see, other important questions can nevertheless be

addressed within such an approach. One has to bear in mind also that our results apply to the

scaling region where the universal behavior is observed. However, many of the conclusions,

such as those pertaining to the Langer cut, associated metastability and the shift of the

spinodal point into the complex H-plane due to fluctuations should, arguably, remain true

outside the scaling region.

We hope that the insights our study provides will contribute to a more complete picture

of the φ4 theory. In particular, our work could help develop better parametrizations of the

equation of state by taking into account its correct analytic properties. The knowledge of the

complex singularities of the equation of state is also important for determining the position

of the QCD critical point using lattice Taylor expansion methods [123].
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Chapter 5

Conclusion and Outlook

The aim of the thesis is trying to provide a self-contained materials for understanding the

study of fluctuations in heavy-ion collision experiment, closely related to the QCD critical

point. In this thesis, we attempt to combine and connect the work originally presented in

Ref. [1, 2, 4, 5], under a macroscopic perspective as they are expected to be an integral

part of the endeavor for discovering the QCD critical point. In addition, we provide more

conceptual and technical details that are not presented in the original articles. We hope that

what have been summarized and discussed in this thesis may be able to shed light on the

future development of this subject.

In Chap. 1, we briefly reviewed the methodology and challenge of discovering the QCD

critical point, with an emphasis on the theoretical tools which are necessary and sufficient

for us to introduce the following-up discussion in this thesis. There are, however, many other

studies on this subject, readers who are interested in may consult review articles and books

such as Ref. [14, 33, 225, 59, 61, 64, 226, 227, 228, 229], to list just a few.

In Chap. 2, we present the state-of-the-art formalism describing dynamics of thermal

fluctuations in an arbitrary relativistic hydrodynamic flow carrying baryon charge. We

firstly introduce a concept of confluent connection which takes into account the relativity

of “equal time” and the boost-related changes in the definition of the equal-time correlators
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and the covariant derivatives. Employing this concept, we derive a deterministic evolution

equation for the fluctuation modes, among which the sound mode decouples and nontrivially

matches the kinetic equation for phonons propagating on an arbitrary background including

relativistic inertial and Coriolis forces due to acceleration and vorticity of the flow. We also

describe the procedure of renormalization of short-distance singularities which eliminates

cutoff dependence, allowing efficient numerical implementation of these equations [1]. The

long-time tails resulted from the remaining finite parts are calculated in frequency space.

In Chap. 3, we discussed the implementation of the hydrodynamic framework introduced

in Chap. 2 near the critical point. Focusing on the critical modes we show that this general

formalism matches existing Hydro+ description of fluctuations near the QCD critical point

[39] and nontrivially extends it inside and outside of the critical region [1]. As the fireball

evolution approaches the critical point or variates toward smaller system, not only the slowest

mode but also other modes relaxing parametrically slower than the bulk evolution rate, shall

be taken into account as independent non-hydrodynamic variables giving feedback to the

bulk evolution. The contexts presented in Chap. 2 and 3 are reviewed by Ref. [3].

Chap. 4 turns to the equilibrium aspect of the QCD phase diagram. Recently a family

of lattice-QCD-based equation of state with an Ising-type critical point is established [74],

yet very little is known about the critical equation of state itself. Following the fixed-point

theory of a general O(N) effective Lagrangian, the QCD critical point falls into the Ising

(φ4) universality class. We studied the analytic properties of the universal scaling equation

of state of the φ4 theory in both small ε = 4− d and large N limit. By using the Josephson-

Schofield representation beyond mean-field approximation, we identified the Langer cut on

the real axis associated with a weak essential singularity in the spirit of Padé approximation.

We showed that the spinodal points, as the low-temperature images of the Lee-Yang edge

singularities, are shifted from the real axis due to fluctuations, and are nevertheless the

nearest singularities under the Langer cut, in agreement with the Fonseca-Zamolodchikov

Conjecture. The vicinity of the Lee-Yang edge singularity is described by φ3 theory, which

is non-perturbative even for d & 4. We derived the Ginzburg criterion that determines the
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size of the non-perturbative region where mean-field theory breaks down [5]. Furthermore,

to determine the scaling properties of the Lee-Yang edge singularity, we applied the non-

perturbative renormalization group approach by introduce a scale-dependent effective action

in 3 ≤ d ≤ 6. Keeping higher-order derivatives the results are in good agreement with other

approaches in particular limits [4]. Our work implies that the dynamical description of the

decay of metastable phase is underdeveloped. The major ideas and results of Chap. 4 are

also reviewed by Ref. [6].

The work presented in this this paves the way for a comprehensive and quantitative un-

derstanding of the fluctuations in heavy-ion collisions, in particular those sensitive to the

critical point. The studies could also be applied and extended to the subjects of cosmol-

ogy, ultracold atomic Fermi gases and so on, in certain limits and scenarios. Focusing on

the heavy-ion collision experiments, our results are an essential ingredient of the theoreti-

cal framework for interpreting the experimental results from the RHIC Beam Energy Scan

Program. To accomplish such framework, among those possible developments pointed out

in the discussion section of each chapters, we shall emphasize a few of them. For instance,

it would be beneficial to extend our formalism by including higher-point functions that are

more sensitive to the critical point, and connect it to the freezeout kinetics and observables.

Moreover, it would be worthwhile to consider its accommodation to the first-order phase

transition line and associated complex singularities, providing a more complete picture of

fireball evolution in high baryon density region. These studies are deferred to future work.
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Appendix A

Reduction to Non-relativistic

Hydrodynamics

Although in this thesis we are mostly focusing on the relativistic hydrodynamic fluctua-

tions, our results shall be readily reduced to the non-relativistic case. In the appendix, we

offer a concise summary of the reduction of ideal relativistic hydrodynamics in the co-moving

frame to its non-relativistic format in the laboratory frame.

The relativistic energy-momentum tensor is defined by Eq. (2.8), where all thermody-

namic variables are defined in the local rest frame, except the velocity uµ defining the frame

itself. In the co-moving frame and laboratory frame, it reads respectively

uµLRF = (1,0) , uµLF = γ(1,v) , (A.1)

where v is the velocity measure in the laboratory frame, γ is the Lorentz factor. uµLF is

simply obtained from uµLRF by a boost from the local rest frame. In the non-relativistic limit

v � 1 where v ≡ |v| should be thought as v/c with c = 1,

γ ≡
(
1− v2

)− 1
2 = 1 +

1

2
v2 +O(v4). (A.2)

Similarly, the thermodynamic variables in the laboratory frame are related to those in the
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co-moving frame by the Lorentz factor as

s̄ = γs , ε̄ = γ2(ε+ pv2) , w̄ = γ2w , n̄ = γn ,

p̄ = p , T̄ = T/γ , µ̄ = µ/γ . (A.3)

The constitutive relations in the laboratory frame are accordingly

T̄ 00 ≡ ε̄ ≡ γ2w − p , T̄ 0i ≡ π̄i ≡ w̄vi ≡ γ2wvi , T̄ ij ≡ w̄vivj + pδij ≡ γ2wvivj + pδij ,

J̄0 ≡ n̄ ≡ γn , J̄ i ≡ n̄vi ≡ γnvi . (A.4)

In addition, we decompose the energy density as

ε = ρ(1 + e) (A.5)

where ρ is the proper mass (rest energy) density per unit volume measured in the co-moving

(proper) frame and e is the (non-relativistic) internal energy density (per unit mass). The

relativistic equation of continuity for ρ is

∂µ(ρuµ) = 0. (A.6)

The proper mass density measured in the laboratory frame is

ρ̄ = γ2ρ, (A.7)

satisfying the equation of continuity

∂tρ̄+ ∂i(ρ̄v
i) = 0. (A.8)

Correspondingly, we define

ε̄ = ρ̄(1 + ē), w̄ = ε̄+ p = ρ̄(1 + ē) + p. (A.9)

In the non-relativistic limit the rest energy is dominant, i.e.,

ρ ∼ ρ̄ ∼ O(1), p ∼ e ∼ ē ∼ O(v2), w ∼ w̄ = ρ̄+O(v2). (A.10)
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Therefore up to different truncation orders of v, we have

T̄ ij = w̄vivj + pδij = ρ̄vivj + pδij +O(v4).

T̄ 0i = w̄vi =

(
ρ̄+

1

2
ρ̄v2 + p

)
vi +O(v4) = ρ̄vi +O(v3).

T̄ 00 = w̄ − p =

(
ρ̄+

1

2
ρ̄v2 + p

)
− p+O(v4) =

(
ε̄+

1

2
ρ̄v2

)
+O(v4) = ρ̄+O(v2).

(A.11)

To obtain the momentum density and energy flux density, we need to expand T 0i up to the

first and third order respectively.

Expand ∂µT
µ0 = 0 up to second and fourth order, and ∂µT

µj = 0 up to third order, we

obtain the conservation of density, energy and momentum respectively, i.e.,

∂tT
00 + ∂iT

i0 = 0 =⇒





∂tρ̄+ ∂i(ρ̄v
i) +O(v2) = 0,

∂t

(
ε̄+

1

2
ρ̄v2

)
+ ∂i

[(
w̄ +

1

2
ρ̄v2

)
vi
]

+O(v4) = 0.
(A.12)

∂tT
0j + ∂iT

ij = 0 =⇒ ∂t
(
ρ̄vj
)

+ ∂i
(
ρ̄vivj + pδij

)
+O(v3) = 0. (A.13)

Note the equation of energy conservation expanded up to O(v) has the same form of

∂µj
µ = 0 =⇒ ∂tρ̄+ ∂i(ρ̄v

i) = 0, (A.14)

which is exact without expansion, so they are indeed independent equations.

The equations for non-relativistic hydrodynamics are boost invariant, i.e., under the

boost vi → vi + ui where ui is a constant velocity, the equations are invariant if we identify

∂t′ = ∂t + ui∂i:

∂tρ+ ∂i[ρ(vi + ui)] = ∂t′ρ+ ∂i(ρv
i) = 0,

∂t
(
ρvj
)

+ ∂i
[
ρ(vi + ui)vj + pδij

]
= ∂t′

(
ρvj
)

+ ∂i
[
ρvivj + pδij

]
= 0,

∂t

(
ε+

1

2
ρ(v + u)2

)
+ ∂i

[(
w +

1

2
ρ(v + u)2

)
(vi + ui)

]

= ∂t′

(
ε+

1

2
ρv2

)
+ ∂i

[(
w +

1

2
ρv2

)
vi
]

= 0,

(A.15)

where in the last equation we have used the first equation and the Euler’s equation

∂ip+ ρ
[
∂t + (vj + uj)∂j

]
vi = 0. (A.16)
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Appendix B

Fundamental Thermodynamic

Relations

The thermodynamic derivatives appearing in Eq. (2.38) and (2.39), i.e.,

dε = εmdm+ εpdp , dn = nmdm+ npdp , dα = αmdm+ αpdp , (B.1)

are defined in the standard notation

εm ≡
(
∂ε

∂m

)

p

, εp ≡
(
∂ε

∂p

)

m

, nm ≡
(
∂n

∂m

)

p

,

np ≡
(
∂n

∂p

)

m

, αm ≡
(
∂α

∂m

)

p

, αp ≡
(
∂α

∂p

)

m

.

(B.2)

To obtain the relations of the second order thermodynamic coefficients, Eq. (2.48), we begin

with the thermodynamic relations coming from the first law of thermodynamics (Eq. (2.10)):

dε = Tndm+
w

n
dn , dp =

w

T
dT + Tndα , d

(w
n

)
= Tdm+

1

n
dp , (B.3)

from which we obtain
(
∂ε

∂m

)

n

=

(
∂p

∂α

)

T

= Tn ,

(
∂ε

∂n

)

m

=
w

n
,

(
∂n

∂m

)

ε

= −Tn
2

w
,

(
∂α

∂T

)

p

= − w

T 2n
,

(
∂T

∂p

)

m

= −nm
n2

.

(B.4)
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Therefore

εm =

(
∂ε

∂m

)

n

+

(
∂ε

∂n

)

m

(
∂n

∂m

)

p

= Tn
(

1 +
nmw

Tn2

)

= (Tn)2

((
∂α

∂p

)

T

+

(
∂α

∂T

)

p

(
∂T

∂p

)

m

)
= (Tn)2αp .

(B.5)

Noting that

Ṫ =
n

T

(
∂T

∂n

)

m

=
n

T

(
∂ε

∂n

)

m

(
∂T

∂p

)

m

(
∂p

∂ε

)

m

= −c
2
snmw

Tn2
= c2

s

(
1− εm

Tn

)
= c2

s (1− αpTn) ,

(B.6)

we obtain

εm = Tn

(
1− Ṫ

c2
s

)
, αp =

1

Tn

(
1− Ṫ

c2
s

)
, (B.7)

demonstrating the first identity in Eq. (2.48). Likewise, the remaining nontrivial identities

in Eq. (2.48) are obtained by using Eq. (B.4) and turn out to be

nm =

(
∂n

∂m

)

ε

+

(
∂n

∂ε

)

m

(
∂ε

∂m

)

p

=
n

w
(εm − Tn) =

Tn2

w
(Tnαp − 1) = − Ṫ Tn

2

c2
sw

,

np =

(
∂n

∂ε

)

m

(
∂ε

∂p

)

m

=
n

c2
sw
, αm =

(
∂α

∂T

)

p

(
∂T

∂m

)

p

= − w

nT 2

(
∂T

∂m

)

p

= − w

cpT
.

(B.8)

Throughout the above derivation, we have used the definition

c2
s ≡

(
∂p

∂ε

)

m

, cp ≡ Tn

(
∂m

∂T

)

p

. (B.9)

Similarly, the third order derivatives appearing in Eq. (2.62) are defined by

εmm ≡
(
∂2ε

∂m2

)

p

, εpp ≡
(
∂2ε

∂p2

)

m

, nmm ≡
(
∂2ε

∂m2

)

p

, npp ≡
(
∂2ε

∂p2

)

m

. (B.10)

Note that the mixed third order derivatives are not presented here as they are not relevant

in our calculation. The results presented in Eq. (2.63) can be derived straightforwardly from

the known expression of second order thermodynamic derivatives given above. We leave this

exercise to the reader.
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Appendix C

Local Confluent Triad and Basis

C.1 A Local Confluent Triad

In order to describe the separation vector y (for example, to enable numerical solution

of the equations for fluctuation correlators) we need to introduce a basis triad eaµ(x) for the

tangent plane orthogonal to u(x) at each point x. The basis is arbitrary and here we shall

propose a simple and intuitive choice of ea(x). We choose a (lab) frame ů and a fixed triad

(a = 1, 2, 3) satisfying e̊a · e̊b = δba and e̊a · ů = e̊b · ů = 0. For simplicity we shall consider an

orthogonal triad, equivalent to its dual, ea = ea.

We can then define ea(x) by a finite boost from ů to u(x). The resulting triad vectors at

point x are given by explicit algebraic formulas:

ea = e̊a + (u+ ů)
u · e̊a

1− u · ů . (C.1)

One can check that ea · u = 0 and ea · eb = δab .

Corresponding spin connection is given by Eq. (2.85)

ω̊bµa ≡ ebν∂µe
ν
a = ebνe

λ
a [̊uν∂µuλ − ůλ∂µuν ] (1− u · ů)−1 . (C.2)

In terms of the confluent connection defined in Eq. (2.79) one can express spin connection
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as

ω̊bµa =
ω̄νµλe̊

b
ν e̊
λ
a

1− u · ů . (C.3)

For certain flow configurations u(x) it may be possible to find a choice of triad fields

ea(x) which makes the spin connection ω̊ vanish. This requires integrability of Eq. (2.84)

with ω̊ = 0, which means that the change of vector ea obtained by integrating Eq. (2.84)

with ω̊ = 0 between two points should not depend on the path, i.e.,

∮
dxλω̄µλνe

ν
a = 0. (C.4)

Using Stokes theorem we see that this is possible if curvature associated with connection ω̄µλν

vanishes. Using Eq. (2.79), we find:

R̄αβ
µ
ν = ∂αω̄

µ
βν + ω̄µαλω̄

λ
βν − (α↔ β) = ∂αuν∂βu

µ − ∂βuν∂αuµ . (C.5)

One might say that R̄αβ
µ
ν = 0 means ω̄µλν is a “pure gauge” connection.

A nontrivial example of flow with ω̄µλν 6= 0 but R̄αβ
µ
ν = 0 is the Bjorken flow. In this

case our proposed choice of ea(x) in Eq. (C.1) provides a rotationless (i.e., ω̊ = 0) triad field.

C.2 A Basis in the Space Orthogonal to q̂ and u and

Monopole Connection

A basis in the space orthogonal to q̂ and u (cf. Eq. (2.115)) can be obtained easily by

rotating the local confluent basis ea in such a way that one of the vectors, say e3, lines up

with q̂. The result is given by

t(i) = ei − (e3 + q̂)
q̂ · ei

1 + q̂ · e3

, i = 1, 2, (C.6)

satisfying t(i) · t(j) = δij and t(i) · q̂⊥ = t(i) · u = 0.

Since t(i) depends on x (to maintain u(x) · t(i) = 0) as well as on q (to keep q̂ · t(i) = 0),

there are two types of connections in Eq. (2.124) defined by Eqs. (2.127) and Eqs. (2.126).
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Applying these definitions to our choice of t(i) in Eq. (C.6) we find for the x-derivative

connection in Eq. (2.127)

̂̊ωijλ = ω̊iλj − (ω̊iλ3q̂ · ej + ω̊3
λj q̂ · ei)(1 + q̂ · e3)−1 , (C.7)

where the connection ω̊aλb is defined by Eq. (2.85).

For the q-derivative connection, using definition in Eq. (2.126), one obtains

ω̂ijµ =
q̂λ(eiλe

j
µ − ejλeiµ)

|q|+ q · e3

=
eλ3(t

(i)
µ t

(j)
λ − t

(j)
µ t

(i)
λ )

|q|+ q · e3

= εij
εµλνσe

λ
3u

ν q̂σ

|q|+ q · e3

. (C.8)

The last expression can be easily recognized as the connection describing a monopole at

q = 0 and Dirac string along −e3. The corresponding curvature 1

R̂ij
µν = ∂(q)

µ ω̂ijν − ∂(q)
ν ω̂ijµ = −(tiµt

j
ν − tjµtiν)
|q|2 = εij

εµνσλu
λq̂σ

|q|2 . (C.9)

is the field of a monopole with charge 1 (twice the amount of Berry curvature monopole

charge for spin-1/2 fermion). The singularity at q = 0 is associated with the ambiguity of q̂

at q = 0.

1Because the space spanned by t(i) is two-dimensional the connection is abelian, i.e., [ω̂µ, ω̂ν ] = 0.
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Appendix D

Comparison to Known Results

Our new results can be compared to some existing results in the literature for several

special cases.

A charged fluid studied in Ref. [50] is (i) conformal and (ii) undergoes a boost-invariant

(Bjorken) expansion. Thermodynamic functions of a conformal fluid satisfy Ṫ = c2
s = 1/3,

εm = αp = ċs = 0, ċp = 1 as summarized in Table D.1. The boost-invariant flow implies that

aµ = ωµν = 0 and spatial gradients of background scalar fields vanish (e.g., ∂⊥µα = 0). Under

these conditions our results are significantly simplified. Since in a boost-invariant Bjorken

flow, the charge does not diffuse due to the absence of background gradients forbidden by

boost-invariance, in order to generate the dissipative (ohmic) charge current, one needs to

apply an external electric field to the system. Adding such a source term is indispensable

for obtaining such important results as renormalized or frequency-dependent conductivity

in Ref. [50]. We find that except for a few minor typos, our Eqs. (2.165a) and (2.165c)

for renormalized transport coefficients, as well as Eq. (2.170) and (2.173) for frequency-

dependent transport coefficients, reduce to Eq. (51) and (50) in Ref. [50] respectively. Notice

that ζ = 0 in conformal fluid.

Despite this agreement with Ref. [50], there are still some mismatches. For example, our

Eq. (2.54) would have matched Eq. (62) in [50] in the absence of source term, if it wasn’t for
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the last term ∼ 1/τ in Eq. (64a), which should be ∼ (1 + c2
s)/τ according to our results.

To compare one of the key results of our paper, Eqs. (2.130), to Ref. [50] we need to

rescale our Wigner functions, somewhat similarly to Eq. (2.128),

NB
mm ≡

Wmm

τ
, NB

(i)(j) ≡
W(i)(j)

τ
, (D.1)

where τ is the Bjorken proper time coordinate, and express the unit vectors in spherical

coordinates

q̂ = (0, sin θ cosφ, sin θ sinφ, cos θ) , (D.2)

t(1) = (0,− sinφ, cosφ, 0) , t(2) = (0, cos θ cosφ, cos θ sinφ,− sin θ) . (D.3)

Then, our equations read

∂τN
B
mm = −2γλq

2

(
NB
mm −

cpT
2

τ

)
− 2 + 2Ṫ

τ
NB
mm ,

∂τN
B
m(1) = −(γη + γλ)q

2NB
m(1) −

2 + Ṫ

τ
NB
m(1) ,

∂τN
B
m(2) = −(γη + γλ)q

2NB
m(2) −

2 + Ṫ + sin2 θ

τ
NB
m(2) ,

∂τN
B
(1)(1) = −2γηq

2

(
NB

(1)(1) −
Tw

τ

)
− 2

τ
NB

(1)(1) ,

∂τN
B
(2)(2) = −2γηq

2

(
NB

(2)(2) −
Tw

τ

)
− 2(1 + sin2 θ)

τ
NB

(2)(2) . (D.4)

The equations for NB
(1)(1) and NB

(2)(2) match those in Ref. [50]. The remaining equations,

although very similar, do not match completely. We believe our results are correct but do

not have a definitive explanation for these disagreements.

Unlike the chargeless fluid in Ref. [1], the charged fluid in the present paper can be taken

to non-relativistic limit, where it can be compared with Ref. [47, 230]. The most glaring

omission in Ref. [47, 230] are the Gm(i) components of the correlators. It appears they were

omitted based on the observation that their equilibrium values vanish. They do, but they

are not zero out of equilibrium and are essential, for example, for describing the dominant

critical contribution to conductivity as discussed in Section 3.2.2.



APPENDIX D. COMPARISON TO KNOWN RESULTS 222

To compare the equations for remaining components of WAB, we need to rescale our

variables as

NA
mm ≡

Wmm

n2T 2
, NA

(i)(j) ≡
W(i)(j)

wn
. (D.5)

Omitting Wm(i) terms as in Ref. [47, 230] we find

L[NA
mm] =− 2γλq

2

(
NA
mm −

cA
p

n

)
+ θNA

mm ,

L[NA
(i)(j)] =− 2γηq

2

(
NA

(i)(j) −
T

n
δij

)
+ (1 + c2

s)θN
A
(i)(j)

− (θµν − ωµν)
(
t(i)µ t

(k)
ν NA

(k)(j) + t(j)µ t(k)
ν NA

(i)(k)

)
,

where the specific heat per mass is cA
p ≡ cp/n. This would agree nicely with Ref. [230] in

the non-relativisitic limit (c2
s � 1) if we also follow Ref. [230] and impose NA

ij ∼ δij which

will eliminate ωµν term. Similar to the omission of Gm(i), the assumption G(i)(j) ∼ δij was

apparently made by neglecting off-equilibrium contribution to this correlator.

Our equation (2.123) for sound fluctuations completely matches the Boltzmann equa-

tion given in Ref. [47] in the non-relativistic limit, where the γp = λc2
sα

2
pTw, appearing in

Eq. (2.120) is replaced by its non-relativistic limit

γNR
p = κ

(
1

cv
− 1

cp

)
. (D.6)

Indeed, since in our units the speed of light is 1, for a non-relativistic fluid c2
s � 1 (see also

Table D.1),

(Tn)2α2
p =

(
1− Ṫ

c2
s

)2

≈ Ṫ 2

c4
s

=
w

c2
sT

(
1

cv
− 1

cp

)
, (D.7)

where in writing ‘≈’ we used c2
s � Ṫ (see Table D.1) and expressed Ṫ in terms of cv, cp and

cs:

Ṫ 2 =
c2
sw

T

(
1

cv
− 1

cp

)
, cv ≡

(
∂ε

∂T

)

n

. (D.8)
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thermodynamic
quantities

definition conformal fluid non-relativistic
ideal gas
(T �M)

scaling power
of ξ at critical

point

c2
s

(
∂p
∂ε

)
m

1/3 γT/M −α/ν

cp
(
Tn∂m
∂T

)
p

cp γn/(γ − 1) 2− η

Ṫ
(
∂ log T
∂ log s

)
m

1/3 γ − 1 −α/ν

ċs

(
∂ log cs
∂ log s

)
m

0 (γ − 1)/2 (1− α)/ν

ċp

(
∂ log cp
∂ log s

)
m

1 1 (1− α)/ν

Table D.1: The behavior of thermodynamic coefficients used in the paper in different limits.
For non-relativistic ideal gas γ = cp/cv > 1 denotes adiabatic constant and M the molecule
mass.
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Appendix E

Details of the Parametric Equation of

State

E.1 Parametric Equation of State at Order ε2

For completeness, and for possible future use, in this Appendix we collect the results

which are represented schematically in Sec. 4.2.3. In particular, they show explicit depen-

dence (or independence) of expansion coefficients on (arbitrary at this order of ε) parameters

b1 and b2. To obtain the complete expression for wn in Eq. (4.83) up to O(ε2) one needs to

expand each quantity in Eq. (4.81) up to sufficient order. In particular, we need:

h3 = − 1

b2
= −2

3
+

4b1

9
ε+

1

9

(
−8b2

1

3
+ 4b2

)
ε2 +O(ε3), (E.1)

and the normalization parameters in Eqs. (4.80):

z̄ =
1√
3

[
1 +

1

6
(4b1 − 1) ε+

1

648

(
229 + 45π2 − 360λ− 144b1(2 + 3b1) + 432b2

)
ε2 +O(ε3)

]
,

(E.2a)

w̄ =
1√
3

[
1 +

2b1

3
ε+

1

24

(
7 + π2 − 8λ− 8b1(1 + 2b1) + 16b2

)
ε2 +O(ε3)

]
. (E.2b)
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Substituting Eqs. (E.1) and (E.2) into Eq. (4.80) and using the ansatz for θn, Eq. (4.82), we

obtain Eq. (4.83), where O(ε) terms cancel and the O(ε2) coefficient

ω(2)(cn, b1) =
1

24

(
7 + π2 − 8λ− ln |cn|2 − 8b1(1 + 2b1)

)
− 3

8c2
n

− b1

cn
, (E.3)

is independent of the parameter b2.

E.2 Parametric Equation of State at Order ε3

Here, we consider the extended linear parametric model, i.e., Eqs. (4.71) – (4.74), in

order to examine the robustness of our conclusions at O(ε2). In particular, we will show how

the O(ε2) terms in |wn| are modified by introducing the O(ε3) contributions, which again

demonstrates the non-perturbative nature of the problem.

In the extended model,

h(θ) = h̄(θ + h3θ
3 + h5θ

5), (E.4)

where h̄ is an appropriate normalization constant. In contrast to the parametric model of

Sec. 4.2.3, the inclusion of a fifth-order contribution in θ is necessary to match to the equation

of state at order ε3 [170, 171]. The coefficients h3 and h5 are given by

h3 = −1− eε3

b2

= −2

3
+

4b1

9
ε+

1

9

(
−8b2

1

3
+ 4b2

)
ε2 +

2

81

(
8b3

1 − 24b1b2 + 18b3 + 27e
)
ε3 +O(ε4), (E.5)

h5 = −eε
3

b4
= −4

9
eε3 +O(ε4), (E.6)

with the parameter

e =
1

48

(
1 + 2λ− 4ζ(3)− 16b2

1

)
, (E.7)

which is negative for all real-valued b1, and

b2 =
3

2
+ b1ε+ b2ε

2 + b3ε
3 +O(ε4), (E.8)
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Figure E.1: The parameters cn, n = 1, 2, 3 as a function of b1. We observe a critical value
b1 ≈ 0.552 above which all solutions θ2

n, n = 1, 2, 3, are real.

expanded in powers of ε. The significance of these parameters becomes clear if we factor

decompose Eq. (E.4) to the following form

h(θ) = h̄θ
[
1− (θ/b)2

][
1 + eε3(θ/b)2

]
, (E.9)

i.e., b and e are related to the zeros of h on the coexistence line (t < 0, H → 0). Note, while

θ = ±b stays finite in the limit ε→ 0, θ = ±b/
√
−eε3 diverges in the same limit.

To order ε3, the extended linear parametric representation depends on three real-valued

parameters b1, b2, and b3. These parameters cannot be fixed by matching to the equation

of state alone [171], which parallels the behavior we have already observed with the order

ε2 parametric model (cf. Sec. 4.2.3). Essentially, we therefore obtain a three-parameter

family of extended linear models that we employ in the following to study the complex-field

singularities of the equation of state.

At order ε3 we find that the (rescaled) inverse susceptibility is given by

F ′(θ) =
w̄

z̄
(1− θ2)−γ

1 + (2βδ + 3h3 − 1) θ2 + [(2βδ − 3)h3 + 5h5] θ4 + (2βδ − 5)h5θ
6

1− (1− 2β)θ2
,

(E.10)

where the exponents β, γ, and δ, as well as the normalization constants w̄ and z̄, should be

expanded to order ε3 (for details we refer to [170, 171]). The zeros of this function, which
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w1
w2

w3

Δϕ

w

Figure E.2: We show the distribution of the zeros w1, w2, and w3 (solid points) and pole w0

(open circle) of the parametrized inverse isothermal susceptibility F ′(z) up to O(ε3). Here,
b1 & 0.552, such that all singular points align either along the Lee-Yang cut (situated on the
imaginary w axis) or the Langer cut (along the dashed line). Note, only the singularities in
the upper half of the complex w plane are shown.

we consider in terms of θ2, can be found by solving for the roots of the numerator and can

be determined in closed form.

We find three distinct (pairs of) zeros, θ2
n, which we label by n = 1, 2, 3. It is sufficient

to use the ansatz Eq. (4.82) with the leading-order coefficient given by

cn =
1

24e

[
1 + ζn + (1− 288b1e)ζ

−1
n

]
, n = 1, 2, 3, (E.11)

and

ζn = (−1)(2/3)(n−1)

[
1− 432b1e− 7776e2 +

√
(1− 432b1e− 7776e2)2 − (1− 288b1e)

3

]1/3

,

(E.12)

a function of b1 only. In Fig. E.1 we illustrate the real-valued coefficients cn in the range of

parameters −2 ≤ b1 ≤ 2. Note that there is a “critical” value of b1 ≈ 0.552 above which all

values of cn are real – this has interesting implications as we show below.

As in Appendix. E.1, we finally obtain

wn =± 2i (−ĉn)
3
2
−βδ

3
√

3

×
{

1 +

[
1

24

(
7 + π2 − 8λ+ ln

ε2

c2
n

− 8b1(1 + 2b1)

)
− 3

8c2
n

− b1

cn
+

2ecn
3

]
ε2 +O(ε3)

}
,

(E.13)
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where we keep terms up to O(ε2) to compare with Eq. (4.83) and Eq. (E.3). It is clear

that the O(ε2) term of the absolute value is modified by the term with parameter e, which

appears at O(ε3) in the extended h(θ) (see Eq. (E.5)). However, the additional corrections to

the absolute value do not affect the phases of the corresponding singularities in the complex

w plane.

The above results lead to the following picture, which depends on the parameter b1: If

b1 & 0.552, two points w1 and w3 are imaginary and thus distribute along the Lee-Yang cut,

while another point is located on the Langer cut, i.e., ŵ2 = ±i(−1)3/2−βδ. At b1 ≈ 0.552

the two zeros w1 and w3 collide and move off the imaginary axis, into the complex w plane,

while w2 remains on the Langer cut. On the other hand, from Eq. (E.10), we also obtain a

pole, θ2
0, determined by the same equation as Eq. (4.87), albeit with the critical exponent

β expanded to order ε3. Thus, this pole is displaced from the imaginary axis and located

along the Langer cut, i.e., ŵ0 = ±i(−1)3/2−βδ (see Fig. E.2).

Summarizing, it appears that the free parameters b1, b2, and b3 can be chosen in such

a way that the zeros and poles of the inverse isothermal susceptibility F ′(z) align either

on the Lee-Yang and/or the Langer cut. If b1 & 0.552, there are always singular points

located on the Lee-Yang cut, which we might identify with the Lee-Yang edge singularities.

This observation supports our earlier suspicion on the nature of rational approximations of

functions with a branch cut.
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[107] Fábio S. Bemfica, Marcelo M. Disconzi, and Jorge Noronha. “Causality and existence

of solutions of relativistic viscous fluid dynamics with gravity”. In: Phys. Rev. D 98.10

(2018), p. 104064. doi: 10.1103/PhysRevD.98.104064. arXiv: 1708.06255 [gr-qc].
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