
The Integral Hodge Conjecture and

Universality of the Abel-Jacobi Maps

by

Fumiaki Suzuki
B.S., University ot Tokyo, 2013
M.S., University of Tokyo, 2015

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Mathematics

in the Graduate College of the
University of Illinois at Chicago, 2020

Chicago, Illinois

Defense Committee:
Lawrence Ein, Chair and Advisor
Izzet Coşkun
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SUMMARY

The rational Hodge conjecture states that rational Hodge classes are algebraic. This long-

standing heavily studied conjecture has remained widely open since it was proposed in the

nineteen fifties. In contrast, the integral Hodge conjecture is known to fail in general. To

better understand the rational Hodge conjecture, it is important to ask how the integral Hodge

conjecture can fail.

In this thesis, we prove that there exists a pencil of Enriques surfaces defined over Q with

non-algebraic integral Hodge classes of non-torsion type. This gives the first example of a

threefold with trivial Chow group of zero-cycles on which the integral Hodge conjecture fails. As

an application, we construct a fourfold which gives the negative answer to a classical question

posed by Murre on the universality of the Abel-Jacobi maps in codimension three.

This thesis is based on the papers [35] and [45], the first of which is joint with John Christian

Ottem.
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CHAPTER 1

INTRODUCTION

A smooth complex projective variety X is both algebraic and complex analytic: in addition

to being an algebraic variety, it is a Kähler manifold. This fact allows us to define two natural

filtrations on the Betti cohomology group H i(X,A) with coefficient A = Q or Z: one is the

coniveau filtration

N rH i(X,A) = Ker

(
H i(X,A)→ lim−→

Z⊂X
H i(X − Z,A)

)
,

where Z ⊂ X runs through all codimension ≥ r closed algebraic subsets of X; the other is the

Hodge filtration

F rH i(X,A) = H i(X,A) ∩ (H i,0(X)⊕ · · · ⊕Hr,i−r(X)),

where

H i(X,C) =
⊕
i=j+k

Hj,k(X)

is the Hodge decomposition. In the special case of r = p and i = 2p, these respectively amount

to the classes of algebraic subvarieties

H2p
alg(X,A)

1
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and the Hodge classes

Hdg2p(X,A) = H2p(X,A) ∩Hp,p(X).

The rational Hodge conjecture states that rational Hodge classes are algebraic, or equivalently,

we have

H2p
alg(X,Q) = Hdg2p(X,Q).

While a remarkable piece of evidence was given by Cattanni-Deligne-Kaplan [12], who proved that

Hodge loci are algebraic, this long-standing heavily studied conjecture has remained widely open

since it was proposed in the nineteen fifties. Another version of the rational Hodge conjecture

formulated by Grothendieck [23] in the nineteen sixties, which states that the coniveau filtration

N rH i(X,Q) is the largest sub Hodge structure of the Hodge filtration F rH i(X,Q), again seems

far from being resolved.

In contrast, certain integral analogues of the rational Hodge conjecture are known to fail in

general. The main purpose of this thesis is to study how such analogues can fail and to provide

new counterexamples.

1.1 A pencil of Enriques surfaces with non-algebraic integral classes

For a smooth complex projective variety X, we denote by CHp(X) the Chow group of

codimension p cycles and by H2p(X,Z) the Betti cohomology group of degree 2p. The image

H2p
alg(X,Z) ⊆ H2p(X,Z) of the cycle class map clp : CHp(X)→ H2p(X,Z) is contained in the

group Hdg2p(X,Z) ⊆ H2p(X,Z) of integral Hodge classes. The integral Hodge conjecture is

the statement that these two subgroups of H2p(X,Z) coincide. While this statement holds for
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p = 0, 1 and dimX, it is known that it can fail in general. The first counterexample was given by

Atiyah-Hirzebruch [1], who constructed a projective manifold admitting a non-algebraic degree

four torsion class. Later, a different type of counterexample was constructed by Kollár [2, p.

134, Lemma], who proved that for certain high degree hypersurfaces X ⊂ P4, the generator of

H4(X,Z) = Z is not algebraic. This means that the natural inclusion

H4
alg(X,Z)/ tors ⊂ Hdg4(X,Z)/ tors

can be strict. Since then, many other examples of non-algebraic integral Hodge classes have

been found, both of torsion type [43; 5] and of non-torsion type [14; 46; 17].

In Chapter 2, we study Enriques surface fibrations over curves and show that they can admit

non-algebraic integral Hodge classes of non-torsion type.

Theorem 1.1.1 (with J. C. Ottem). There exists a pencil of Enriques surfaces defined over Q

such that the cohomology groups H i(X,Z) are torsion-free for all i and the inclusion

H4
alg(X,Z) ( Hdg4(X,Z)

is strict.

One can compare Theorem 1.1.1 with the result of Benoist–Ottem [5], which showed that

the integral Hodge conjecture can fail on products S ×C for an Enriques surface S and curve C

of genus at least one. In those examples, the non-algebraic classes in question are 2-torsion, but

the integral Hodge classes are algebraic modulo torsion classes by the Künneth formula.
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Theorem 1.1.1 also relates to certain questions concerning rational points of algebraic varieties.

In a letter to Grothendieck, Serre asked whether a projective variety over the function field of a

curve always has a rational point if it is O-acyclic, that is, H i(Y,OY ) = 0 for all i > 0. This

question was answered negatively by Grabber–Harris–Mazur–Starr [19], who constructed an

Enriques surface without rational points over the function field of a complex curve. Later, more

explicit constructions of such Enriques surfaces were given by Lafon [26] and Starr [44].

According to [44], Esnault expected that the Enriques surfaces of [19] and [26] would satisfy

a stronger property that every closed point has even degree over the base field. If that were the

case, it would give a pencil of Enriques surfaces with non-algebraic integral Hodge classes of

non-torsion type (this follows from [14, Theorem 7.6]). In fact, this observation was the starting

point of the joint work with J. C. Ottem.

Another feature of our example is that it has a trivial Chow group of zero-cycles. Indeed,

Bloch–Kas–Lieberman [9] proved that CH0(S) = Z for any Enriques surface S, and from this

one deduces that the same holds for any pencil of Enriques surfaces (see Lemma 2.1.4). To our

knowledge, this is the first example of a threefold with trivial Chow group of zero-cycles on

which the integral Hodge conjecture fails (see [14, Subsection 5.7] for a threefold constructed by

Colliot-Thélène and Voisin which conjecturally satisfies this condition). We emphasize that it

is not a priori obvious that such a threefold should exist. For instance, typical examples with

trivial Chow groups of zero-cycles are given by rationally connected varieties while the integral

Hodge conjecture holds on rationally connected threefolds by a result of Voisin [48].
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1.2 The Abel-Jacobi map is not always universal

Let V be a smooth complex projective variety. We denote by Ap(V ) ⊂ CHp(V ) the subgroup

of cycles algebraically equivalent to zero. We recall that a homomorphism φ : Ap(V )→ A to an

abelian variety A is called regular if for any smooth connected projective variety S with a base

point s0 and for any codimension p cycle Γ on S × V , the composition

S → Ap(V )→ A, s 7→ φ(Γ∗(s− s0))

is a morphism of algebraic varieties (this definition goes back to the work of Samuel [40]). An

important example of such homomorphisms is the following. We consider the Abel-Jacobi map

AJp : CHp(V )hom → Jp(V ),

where CHp(V )hom ⊂ CHp(V ) is the subgroup of cycle classes homologous to zero, and

Jp(V ) = H2p−1(V,C)/(H2p−1(V,Z(p)) + F pH2p−1(V,C))

is the p-th Griffiths intermediate Jacobian (see [49, Section 12] for the definition and properties

of the Abel-Jacobi maps). The image Jpa (V ) ⊂ Jp(V ) of the restriction of the Abel-Jacobi map

AJp to Ap(V ) is an abelian variety, and the induced map

ψp : Ap(V )→ Jpa (V ),
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which we also call Abel-Jacobi, is regular [22][29]. A classical question of Murre [33, Section

7][21, p. 132] asks whether the Abel-Jacobi map ψp : Ap(V ) → Jpa (V ) is universal among all

regular homomorphisms φ : Ap(V )→ A, that is, whether every such φ factors through ψp (see

[52] for another universality question from a different perspective). It is true for p = 1 by the

theory of the Picard variety, for p = dimV by the theory of the Albanese variety, and for p = 2

as proved by Murre [32][34] using the Merkurjev-Suslin theorem [31].

Meanwhile, the following theorem was proved by Walker [54] as an application of the theory

of the Lawson homology and the morphic cohomology: the Abel-Jacobi map ψp factors as

J(Np−1H2p−1(V,Z(p)))

πp

��
Ap(V )

ψ̃p
66

ψp
// Jpa (V )

,

where J(Np−1H2p−1(V,Z(p))) is the intermediate Jacobian for the mixed Hodge structure given

by the coniveau filtration Np−1H2p−1(V,Z(p))1, πp is a natural isogeny, and ψ̃p is a surjective

regular homomorphism (we will call the homomorphism ψ̃p the Walker map). Consequently, if

the Abel-Jacobi map ψp is universal, then the kernel

Ker(πp) = Coker
(
H2p−1(V,Z(p))tors → (H2p−1(V,Z(p))/Np−1H2p−1(V,Z(p)))tors

)

1We denote by Z(m) the Hodge structure of Tate (2πi)m ·Z, which is a pure Hodge structure of weight
−2m. We keep track of Tate twists in Chapter 3 and Appendix.
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is trivial, or equivalently, the sublattice

Np−1H2p−1(V,Z(p))/ tors ⊂ H2p−1(V,Z(p))/ tors

is primitive.

In Chapter 3, we use the formalism of decomposition of the diagonal [11] to prove an analogue

of the Roitman theorem [37, Theorem 3.1] for the Walker maps.

Theorem 1.2.1. Let V be a smooth projective variety such that CH0(V ) is supported on a

three-dimensional closed subset. Let p ∈ {3, dimV − 1} . Then the restriction

ψ̃p|tors : Ap(V )tors → J(Np−1H2p−1(V,Z(p)))tors

is an isomorphism. Moreover the Walker map ψ̃p is universal.

Remark 1.2.2. There is an abelian fourfold V such that A3(V ) has infinite l-torsion elements

for all prime numbers l [47] (see also [41; 38]). Therefore the assumption on CH0(V ) is essential.

Then we apply Theorem 1.2.1 to prove the following theorem on the integral Hodge conjecture

and the primitivity of the lattice of the coniveau filtration.

Theorem 1.2.3. Let W be a smooth projective variety such that CH0(W ) is supported on a

surface and the inclusion

H4
alg(W,Z(2))/ tors ( Hdg4(W,Z)/ tors
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is strict. Then there exists an elliptic curve E such that the sublattice

N2H5(W × E,Z(3))/ tors ⊂ H5(W × E,Z(3))/ tors

is not primitive.

Remark 1.2.4. A “homology counterpart” of Theorem 1.2.3 also holds. See Theorem 3.2.3.

Finally, we apply Theorem 1.2.3 to the pencil of Enriques surfaces of Theorem 1.1.1 to prove

that the Abel-Jacobi map is not universal in general. This settles Murre’s question.

Corollary 1.2.5 (with J. C. Ottem). Let X be the pencil of Enriques surfaces of Theorem

1.1.1. Then there exists an elliptic curve E such that the Abel-Jacobi map

ψ3 : A3(X × E)→ J3
a (X × E)

is not universal: it factors as

J(N2H5(X × E,Z(3)))

π3

��
A3(X × E)

ψ̃3
55

ψ3
// J3
a (X × E)

,

where the Walker map ψ̃3 is surjective regular, and the natural isogeny π3 has non-zero kernel,

or equivalently, the sublattice

N2H5(X × E,Z(3)) ⊂ H5(X × E,Z(3))
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is not primitive.

Remark 1.2.6. The Walker map ψ̃3 in the statement is universal by Theorem 1.2.1.

Remark 1.2.7. In fact, we have N2H5(X × E,Q(3)) = H5(X × E,Q(3)) as a consequence of

decomposition of the diagonal [11]. In other words, J3
a (X × E) = J3(X × E) (see [33, Lemma

4.3]).



CHAPTER 2

A PENCIL OF ENRIQUES SURFACES WITH NON-ALGEBRAIC

INTEGRAL HODGE CLASSES

We prove Theorem 1.1.1.

This chapter is organized as follows. In Section 2.1, we study the geometry of the pencils of

Enriques surfaces appearing in Theorem 1.1.1. These are defined as the rank one degeneracy loci

of maps of vector bundles on P1 × P2 × P2. In particular, we compute their integral cohomology

groups and Chow groups of zero-cycles. In Section 2.2, we prove the main theorem, using a

specialization argument.

We work over the complex numbers throughout.

This chapter is based on the paper [35] (Ottem, J. C., Suzuki, F. : A pencil of Enriques

surfaces with non-algebraic integral Hodge classes, Math. Ann. (2020)).

2.1 Geometry of pencils of Enriques surfaces

In this thesis, a pencil of Enriques surfaces will mean a smooth complex threefold X with a

fibration X → P1 over P1 whose general fibers are Enriques surfaces. In the course of the proof

of Theorem 1.1.1, we will give a few explicit constructions of such threefolds. We start with the

construction of the Enriques surfaces themselves.

10
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We will fix the following notation1:

- PA = PP2×P2(O(2, 0)⊕O(0, 2)), E1 = PP2×P2(O(2, 0)), E2 = PP2×P2(O(0, 2))

- PB = PP2×P2(O(1, 0)⊕O(0, 1)), F1 = PP2×P2(O(1, 0)), F2 = PP2×P2(O(0, 1))

- PC = P(H0(PB,O(1))), P1 = P(H0(P2 × P2,O(1, 0))), P2 = P(H0(P2 × P2,O(0, 1))).

These spaces are related as follows. We can regard P1 and P2 as disjoint planes in the five-

dimensional projective space PC via the idetification

H0(PB,O(1)) = H0(P2 × P2,O(1, 0))⊕H0(P2 × P2,O(0, 1)).

Then the projective bundle PB is identified with the blow-up of PC along the union of P1 and

P2 with the exceptional divisors F1 and F2. Moreover, there is a natural involution ι on PC

induced by the involution on H0(PB,O(1)) with the (±1)-eigenspaces H0(P2 × P2,O(1, 0)) and

H0(P2 × P2,O(0, 1)), respectively. The involution ι lifts to an involution on PB, and we have

PA = PB/ι. Thus there is a double cover PB → PA over P2 × P2, which is ramified along Fi,

and the divisors Fi are mapped isomorphically onto Ei for i = 1, 2.

The projective models of the Enriques surfaces are defined as follows. On P2 × P2, we

consider a map of vector bundles

u : O⊕3 → O(2, 0)⊕O(0, 2).

1We use Grothendieck’s notation for projective bundles: for a vector bundle E , P(E) paramterizes
one-dimensional quotients of E .
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Let S be the rank one degeneracy locus of u.

Lemma 2.1.1. If u is general, then S is an Enriques surface.

Proof. Since the vector bundle O(2, 0)⊕O(0, 2) is globally generated, S is smooth of dimension

two by the Bertini theorem for degeneracy loci.

To show that S is an Enriques surface, we will describe its K3 cover T . The map u defines

a global section s of O(1)⊕3 on the projective bundle PA. When u is generic, the zero set

Z(s) ⊂ PA maps isomorphically onto S via the bundle projection PA → P2 × P2.

On the other hand, the map u also defines a global section of O(2)⊕3 on PB invariant under

the action of ι. Indeed, as (q∗OPB
(2))ι = (q∗q

∗OPA
(1))ι = OPA

(1), where q : PB → PA = PB/ι

is a natural projection, we have a natural identification

H0(PB,O(2))ι = H0(PA,O(1)) = H0(P2 × P2,O(2, 0)⊕O(0, 2)).

Let T ⊂ PB denote the zero set of this section. When u is general, we have S ∩Ei = T ∩Fi = ∅,

so T maps isomorphically to a smooth intersection of three quadrics in PC via the blow-down

map PB → PC . In particular, T is a K3 surface. Again since T ∩ Fi = ∅, the composition

PB → PA → P2 × P2 restricts to an étale double cover T → S. Hence S is an Enriques

surface.

Remark 2.1.2. The proof of Lemma 2.1.1 shows that the construction of Enriques surfaces

introduced above coincides with a classical one from [4, Example VIII.18].
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We will now use a variant of the above construction to construct pencils of Enriques surfaces.

On P1 × P2 × P2, we consider a map of vector bundles

v : O⊕3 → O(1, 2, 0)⊕O(1, 0, 2).

Let X be the rank one degeneracy locus of v.

Lemma 2.1.3. If v is general, then X is a pencil of Enriques surfaces by the first projection

X → P1. Moreover, we have H i(X,OX) = 0 for all i > 0.

Proof. Since the vector bundle O(1, 2, 0) ⊕ O(1, 0, 2) is globally generated, X is smooth and

dimX = 3 by the Bertini theorem for degeneracy loci. Moreover, X is connected since it is

defined by three equations of tridegree (2, 2, 2). The resolution of the ideal sheaf IX of X in

P1 × P2 × P2 has the form

0→ O(−3,−4,−2)⊕O(−3,−2,−4)→ O(−2,−2,−2)⊕3 → IX → 0.

From this it follows that H i(X,OX) = 0 for all i > 0.

We assume that v is general in what follows.

Lemma 2.1.4. The degree homomorphism deg : CH0(X)→ Z is an isomorphism.

Proof. Let C ⊂ X be a smooth curve which is a complete intersection of very ample divisors.

Then CH0(X) is supported on C. This follows from the fact that any class in CH0(X) is

represented by a zero-cycle supported on a union of smooth fibers of the first projection X → P1
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by the moving lemma, and that the Chow group of zero-cycles on any given Enriques surface is

trivial due to Bloch–Kas–Lieberman [9].

We consider a natural homomorphism φ : Ker(deg) → Alb(X) induced by the Albanese

map. Since CH0(X) is supported on a curve, the decomposition of the diagonal [11] implies

that Ker(φ) is torsion. Moreover Ker(φ) is torsion-free by the Roitman theorem [37]. Hence we

have Ker(φ) = 0 and φ is an isomorphism. In our situation, Alb(X) = 0 since H1(X,OX) = 0

by Lemma 2.1.3. Therefore Ker(deg) = 0. The proof is complete.

To study the geometric properties of the threefold X in more detail, it will be convenient to

involve its double cover. Recalling the construction above, we get a diagram

P1 × PB //

��

P1 × PA

��
P1 × PC P1 × P2 × P2

,

where P1 × PB → P1 × PA is the quotient by the involution ι (which acts as before on PB and

as the identity on the first factor) and P1 × PB → P1 × PC is the blow-up of P1 × PC along the

union of P1 × P1 and P1 × P2. Restricting to X, we get the following diagram

Y //

��

X ′

'
��

Ymin X

.

The varieties appearing in this diagram can be described as follows. The map v induces a global

section of O(1, 1)⊕3 on P1 × PA as well as global sections of O(1, 2)⊕3 on P1 × PB and P1 × PC
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which are invariant under the action of ι; the varieties X ′, Y, Ymin are the zero sets of these

sections. By generality, X ′, Y, Ymin are smooth threefolds; X ′ is mapped isomorphically onto X,

so we can identify X ′ with X; Y is a double cover of X ′ = X; and Ymin is a minimal model of

Y . Note that Y and Ymin are K3 surface fibrations via the first projection.

An easy computation shows that each of the intersections Ymin ∩ (P1 × Pi) consists of twelve

points yi,1, · · · , yi,12. Then the map Y → Ymin is the blow-up of Ymin along yi,j whose exceptional

divisors Fi,j are the components of Y ∩ (P1×Fi). Moreover the double cover Y → X is ramified

along Fi,j which are mapped isomorphically onto Ei,j , the components of X ∩ (P1 × Ei).

Lemma 2.1.5. The threefold X has Kodaira dimension one.

Proof. Let S be the class of a fiber of the first projection X → P1. It is straightforward to

compute that

2KX = 2S +
2∑
i=1

12∑
j=1

Ei,j .

As the normal bundles NEi,j/X = OP2(−2) are negative, we obtain that κ(X) = 1.

Lemma 2.1.6. The Hodge numbers of X are given by h0,0(X) = h3,3(X) = 1, h1,1(X) =

h2,2(X) = 26, h1,2(X) = h2,1(X) = 45, and hp,q(X) = 0 otherwise.

Proof. We first compute the Picard number ρ(X). Using the Lefschetz hyperplane section

theorem, Ymin has Picard number two, so ρ(Y ) = ρ(Ymin) + 24 = 26. Moreover, the action of ι

on the Picard group of Y is trivial, so also ρ(X) = 26.
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We next compute the Betti numbers bi(X). It is straightforward to compute the topological

Euler characteristic χtop(X) = c3(TX) = −36. Obviously b0(X) = b6(X) = 1. Moreover,

b1(X) = b5(X) = 0 and b2(X) = b4(X) = ρ(X) = 26 using Lemma 2.1.3. Therefore b3(X) = 90.

Now the computation of the Hodge numbers are immediate using Lemma 2.1.3 again.

We next study the topology of X. We fix the following notation:

- Xmin = Ymin/ι;

- Y ◦ = Ymin − {yi,j}i,j ;

- X◦ = Y ◦/ι;

- Vi,j ⊂ Y , a small ball around yi,j ;

- Ui,j = Vi,j/ι.

We have Ymin = Y ◦ ∪
(⋃

i,j Vi,j

)
and Xmin = X◦ ∪

(⋃
i,j Ui,j

)
.

Lemma 2.1.7. The threefold X is simply connected, and the cohomology groups H i(X,Z) are

torsion-free for all i.

Proof. By the universal coefficient theorem, it is enough to prove that π1(X) = 0 and H3(X,Z)

is torsion-free.

We first prove that π1(X) = 0. We have a natural pushout diagram

π1(Ui,j ∩X◦) //

��

π1(X◦)

��
π1(Ui,j) // π1(Xmin)

.
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By Lefschetz, Y and hence Y ◦ is simply connected. So since the quotient map π : Y ◦ → X◦ is

étale, we have π1(X◦) = Z/2. The neighborhood Ui,j ⊂ X is homotopic to the affine cone over

a Veronese surface, so we have π1(Ui,j) = 0. Finally, since the map Vi,j ∩ Y ◦ → Ui,j ∩X◦ is

homotopic to the universal covering map (C3−0)→ (C3−0)/±, we have π1(Ui,j∩X◦) = Z/2. In

fact, this cover is induced by the restriction of π to Vi,j ∩Y ◦, so the map π1(Ui,j ∩X◦)→ π1(X◦)

is non-zero, hence an isomorphism. From the pushout diagram above, we then get π1(Xmin) = 0.

Resolving a finite cyclic quotient singularity does not change the fundamental group ([25,

Theorem 7.8]), so we also get π1(X) = 0.

We next prove that H3(X,Z) is torsion-free. The long exact sequence for cohomology groups

with supports gives ⊕
i,j

H3
Ei,j

(X,Z)→ H3(X,Z)→ H3(X◦,Z).

Since H3
Ei,j

(X,Z) = H3(Ei,j ,Z) = 0, the group H3(X,Z) injects into H3(X◦,Z). In particular,

we are reduced to showing that H3(X◦,Z) is torsion-free.

Since X◦ is the quotient of Y ◦ by the group 〈ι〉 ' Z/2, we can apply the Cartan–Leray

spectral sequence

Ep,q2 = Hp(Z/2, Hq(Y ◦,Z))⇒ Hp+q(X◦,Z)

to compute the cohomology groups of X◦. We need to compute Hq(Y ◦,Z) for 0 ≤ q ≤ 3 and

the action of ι on these groups. Since Y ◦ is obtained from Ymin by removing finitely many

points, we have an identification Hq(Y ◦,Z) = Hq(Ymin,Z). Clearly H0(Ymin,Z) = Z. By the

Lefschetz hyperplane theorem, H1(Ymin,Z) = 0, and the groups H2(Ymin,Z) and H3(Ymin,Z)
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are torsion-free. Moreover, the action of ι on Hq(Ymin,Z) is trivial for 0 ≤ q ≤ 2. Since the

group cohomology Hp(Z/2,Z) = 0 for p odd, it follows that Ep,3−p2 = 0 for p 6= 0. Therefore

there is an injection

H3(X◦,Z) ↪→ E0,3
2 = H0(Z/2, H3(Y ◦,Z)) = H3(Y ◦,Z)ι,

where the right hand side is torsion-free. This completes the proof.

2.2 Failure of the integral Hodge conjecture for pencils of Enriques surfaces

We are now ready to prove our main result in this chapter:

Theorem 2.2.1. There exists a map of vector bundles on P1 × P2 × P2

O⊕3 → O(1, 2, 0)⊕O(1, 0, 2)

defined over Q such that the rank one degeneracy locus X is a pencil of Enriques surfaces such

that the cohomology groups H i(X,Z) are torsion-free for all i and there is a strict inclusion

H4
alg(X,Z) ( Hdg4(X,Z).
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Proof. We set P1 × P2 × P2 = ProjC[S, T ] × ProjC[X0, X1, X2] × ProjC[Y0, Y1, Y2]. Fix a

sufficiently large prime number p. We consider a map of vector bundles as above given by the

matrix

M =

 P1 Q1 R1

SP2 + pP3 SQ2 + pQ3 SR2 + pR3

 ,

where P1, Q1, R1 (resp. P2, Q2, R2; P3, Q3, R3) are general tri-homogeneous polynomials of

tri-degree (1, 2, 0) (resp. (0, 0, 2); (1, 0, 2)) over Q. The degeneracy locus X is a pencil of

Enriques surfaces defined by the 2× 2-minors of M . The torsion-freeness of the cohomology

groups follows from Lemma 2.1.7, so it remains to prove that the integral Hodge conjecture does

not hold on X.

The closed subscheme defined by P1 = Q1 = R1 = 0 is a disjoint union of twelve components

E1,1, . . . , E1,12 isomorphic to P2. We note that this union is defined over Q, even though each

Ei,j may not be. First we prove that for a given algebraic one-cycle α on X, we have

deg(α/P1) ≡ α ·

 12∑
j=1

E1,j

 mod 2. (2.1)

We use a specialization argument. We spread out XQ over a valuation ring R with the maximal

ideal containing p. The ideal of the flat closure of XQ in (P1 × P2 × P2)R is generated by the

2× 2-minors of M and

F = det


P1 Q1 R1

P2 Q2 R2

P3 Q3 R3

 .
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The specialization over Fp consists of two components: one is a pencil of Enriques surfaces X̃0

defined by the 2× 2-minors of the matrix

N =

 P1 Q1 R1

P2 Q2 R2

 ;

the other is defined by S = F = 0. It is straightforward to check that X̃0 is smooth.

The closed subscheme defined by P1 = Q1 = R1 = 0 is again a disjoint union of twelve

components E1,1, . . . , E1,12 isomorphic to P2 and disjoint from the fiber over S = 0 by the

generality of P1, Q1, R1. We prove that for a given one-cycle α0 on the specialization over Fp,

we have

deg(α0/P1) ≡ α0 ·

 12∑
j=1

E1,j

 mod 2. (2.2)

We may assume that α0 is supported on X̃0. Let D1 be the Cartier divisor on X̃0 defined by

P1 = 0. Since D1 is of type (1, 2, 0), we have

deg(α0/P1) ≡ α0 ·D1 mod 2.

On the other hand, we have

D1 = D2 +

12∑
j=1

E1,j ,
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where D2 is the Cartier divisor on X̃0 defined by P2 = 0. Indeed, expanding the 2× 2-minors of

N , it is easily seen that the identity holds on each of the open subsets P2, Q2, R2 6= 0; these open

subsets form an open cover of X̃0 by the generality of P2, Q2, R2. Since D2 is of type (0, 0, 2),

we have

α0 ·D1 ≡ α0 ·

 12∑
j=1

E1,j

 mod 2.

The congruence (2.2) follows, so does the congruence (2.1) by the specialization homomorphism

[18, Section 20.3].

The Hodge structure of H4(X,Z) is trivial since we have H2(X,OX) = 0 by Lemma 2.1.3.

The proof of the theorem is reduced to proving that there exists a class β ∈ H4(X,Z) = H2(X,Z)

such that

deg(β/P1) = ±1, β ·

 12∑
j=1

E1,j

 = 0;

such β is not algebraic according to the congruence (1). Since E1,1, . . . , E1,12 are the images

of F1,1, . . . , F1,12 under the double cover Y → X, it is enough to prove that there exists

γ ∈ H4(Y,Z) = H2(Y,Z) such that

deg(γ/P1) = ±1, γ ·

 12∑
j=1

F1,j

 = 0;

the class β will be the push-forward of γ. By the Lefschetz hyperplane section theorem, the

push-forward H2(Ymin,Z)→ H2(P1,Z) is surjective. Let γmin ∈ H4(Ymin,Z) = H2(Ymin,Z) be
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an element mapped to a generator of H2(P1,Z). Then the pullback γ ∈ H4(Y,Z) of γmin satisfies

the desired property. The proof is complete.

Remark 2.2.2. The specialization used in the proof of Theorem 2.2.1 deserves a few more

comments. The specialization consists of two components: X̃0 defined by the 2× 2-minors of

N , and R defined by S = F = 0. The component X̃0 is smooth, and it is a pencil of Enriques

surfaces by the first projection X̃0 → P1. On the other hand, R has isolated singularities, and a

smooth model R of R is another pencil of Enriques surfaces with a small contraction R→ R

contracting P1s over the singular points of R. In addition, X̃0 and R intersect in a fiber over

S = 0, and the intersection is an Enriques surface Z in P2 × P2.

Remarkably, both of the components X̃0 and R are rationally connected: the projections

X̃0 ↪→ P1 × P2 × P2 pr2−−→ P2, R ↪→ P1 × P2 × P2 pr3−−→ P2

are conic bundles, therefore this follows from [20, Corollary 1.3]. In particular, the integral

Hodge conjecture holds on X̃0 and R by a result of Voisin [48]. As a consequence, H2(X̃0,Z)

and H2(R,Z) are generated by algebraic cycles.

It turns out, however, that this is not the case for the union X̃0 ∪R. A key point here is the

subtle difference between the Mayer-Vietoris sequence for homology groups and Chow groups.

For the homology groups, we have an exact sequence

H2(X̃0,Z)⊕H2(R,Z)→ H2(X̃0 ∪R,Z)→ H1(Z,Z) = Z/2→ 0.
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For the Chow groups, on the other hand, we obviously have a surjection

CH1(X̃0)⊕ CH1(R) � CH1(X̃0 ∪R)

(see also [18, Example 1.8.1]). It follows that H2(X̃0 ∪R,Z) is not generated by algebraic cycles.

A small modification of the above arguments yields a generalization of Theorem 2.2.1 to

higher dimensions:

Theorem 2.2.3. For a given positive integer n, there exists a map of vector bundles on

P1 × P2n × P2n

O⊕(2n+1) → O(1, 2, 0)⊕O(1, 0, 2)

defined over Q such that the rank one degeneracy locus X is a smooth (2n + 1)-fold with a

fibration over P1 whose general fibers are 2n-folds M with H i(M,OM ) = 0 for all i > 0 and

universal Calabi-Yau double covers N →M such that

(i) H i(X,OX) = 0 for all i > 0;

(ii) κ(X) = 1;

(iii) X is simply connected, and the cohomology group H3(X,Z) is torsion-free;

(iv) the inclusion H2,alg(X,Z) ( Hdg2(X,Z) is strict.



CHAPTER 3

THE ABEL-JACOBI MAP IS NOT ALWAYS UNIVERSAL

We prove Theorem 1.2.1, 1.2.3 and Corollary 1.2.5.

This chapter is organized as follows. In Section 3.1, we study regular homomorphisms on

the torsion subgroup Ap(V )tors. Then we prove Theorem 1.2.1 and its corollary. In Section

3.2, we prove a proposition on non-algebraic integral Hodge classes of non-torsion type and

non-zero torsion algebraic cycles in the Abel-Jacobi kernel. Then we prove Theorem 1.2.3 and

its “homology counterpart”. Corollary 1.2.5 follows immediately from Theorem 1.2.1 applied

to the pencil of Enriques surfaces of Theorem 2.2.1. We end the section by explaining how to

produce counterexamples to Murre’s question in higher dimensions and for other values of p.

We work over the complex numbers throughout.

This chapter is based on the papers [35] (Ottem, J. C., Suzuki, F. : A pencil of Enriques

surfaces with non-algebraic integral Hodge classes, Math. Ann. (2020)) and [45] (Suzuki, F.: A

remark on a 3-fold constructed by Colliot-Thélène and Voisin, Math. Res. Lett. 27 (2020), no1,

301–317).

3.1 Regular homomorphisms on the torsion subgroup Ap(V )tors

Lemma 3.1.1. Let V be a smooth projective variety and φ : Ap(V )→ A be a surjective regular

homomorphism. Assume that the restriction φ|tors : Ap(V )tors → Ators is an isomorphism. Then

φ is universal.

24
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Proof. First we prove the existence of a universal regular homomorphism φ0 : Ap(V ) → A0.

By Saito’s criterion [39, Theorem 2.2] (see also [34, Proposition 2.1]), it is enough to prove

dimB ≤ dimA for any surjective regular homomorphism ψ : Ap(V )→ B. Such a homomorphism

ψ restricts to a surjection ψ|tors : Ap(V )tors → Btors. Indeed, by [39, Proposition 1.2] (see also

[34, Lemma 1.6.2] and [27, Chapter III, Proposition 1]), there exists an abelian variety C and

Γ ∈ CHp(C × V ) such that the map

C → Ap(V ), s 7→ Γ∗(s− s0)

is a homomorphism of groups and the composition

C → Ap(V )→ B, s 7→ ψ(Γ∗(s− s0))

is an isogeny; it follows that the restriction Ctors → Btors is a surjection, so is ψ|tors. By

assumption, we have Ap(V )tors
∼= Ators. Then we have

dimB =
1

2
co-rankBtors ≤

1

2
co-rankAtors = dimA.

The existence follows.

The map φ0 should be surjective since the image of a regular homomorphism is an abelian

variety [34, Lemma 1.6.2]. Thus φ0 restricts to a surjection φ0|tors : Ap(V )tors → (A0)tors by
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a similar argument as above. The induced map A0 → A is surjective and restricts to an

isomorphism (A0)tors
∼= Ators, therefore it is an isomorphism. The proof is done.

We review the Bloch-Ogus theory on the coniveau spectral sequence [10]. For a smooth

projective variety V , we define Hq(Z(r)) to be the Zariski sheaf on V associated to the presheaf

U 7→ Hq(U,Z(r)). Then the E2 term of the coniveau spectral sequence is given by

Ep,q2 = Hp(V,Hq(Z(r)))⇒ N•Hp+q(V,Z(r)),

and we have Ep,q2 = 0 if p > q [10, Corollary 6.2, 6.3]. We also have

Ep,q2 = 0 if (p, q) 6∈ [0,dimV ]× [0,dimV ].

Indeed, this follows from the fact that a smooth affine variety of dimension d has the homotopy

type of a CW complex of real dimension d.

Let fp : Hp−1(V,Hp(Z(p)))→ H2p−1(V,Z(p)) be the edge homomorphism.
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Lemma 3.1.2. There is a short exact sequence1:

0 → Hp−1(V,Kp)⊗Ql/Zl

→ Ker
(
fp ⊗Ql/Zl : Hp−1(V,Hp(Z(p)))⊗Ql/Zl → Np−1H2p−1(V,Z(p))⊗Ql/Zl

)
→ Ker

(
ψ̃p|l- tors : Ap(V )l- tors → J(Np−1H2p−1(V,Z(p)))l- tors

)
→ 0

for any smooth projective variety V and any prime number l, where Kp is the Zariski sheaf on

X associated to the Quillen K-theory.

Proof. We use the Bloch map λpl : CHp(V )l- tors → H2p−1(V,Ql/Zl(p)) [7] (see also [13]). By

the construction of the Bloch map and [30, Theorem 5.1], we have a commutative diagram with

exact rows:

0 // Hp−1(V,Kp)⊗Ql/Zl //

��

Hp−1(V,Hp(Z(p)))⊗Ql/Zl //

fp⊗Ql/Zl

��

Ap(V )l- tors
//

−λpl
��

0

0 // H2p−1(V,Z(p))⊗Ql/Zl // H2p−1(V,Ql/Zl(p))

.

We prove that it induces another commutative diagram:

0 // Hp−1(V,Kp)⊗Ql/Zl //

��

Hp−1(V,Hp(Z(p)))⊗Ql/Zl //

fp⊗Ql/Zl

��

Ap(V )l- tors
//

−λ̃pl
��

0

0 // Np−1H2p−1(V,Z(p))⊗Ql/Zl Np−1H2p−1(V,Z(p))⊗Ql/Zl // 0

.

1For an abelian group G and a prime number l, we denote by Gl- tors the subgroup of l-primary torsion
elements of G.
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It is enough to prove the image of Hp−1(V,Kp)⊗Ql/Zl in Np−1H2p−1(V,Z(p))⊗Ql/Zl is zero.

This follows by observing that Hp−1(V,Kp)⊗Ql/Zl is divisible and

Ker
(
Np−1H2p−1(V,Z(p))⊗Ql/Zl → H2p−1(V,Z(p))⊗Ql/Zl

)
= Coker

(
H2p−1(V,Z(p))l- tors → (H2p−1(V,Z(p))/Np−1H2p−1(V,Z(p)))l- tors

)

is finite. We prove that λ̃p coincides with the restriction ψ̃p|l- tors. In commutative triangles

Np−1H2p−1(V,Z(p))⊗Ql/Zl

��
Ap(V )l- tors

λ̃pl (resp. ψ̃p|l- tors)
33

λpl (resp. ψp|l- tors)
// H2p−1(V,Z(p))⊗Ql/Zl

,

λ̃pl (resp. ψ̃p|l- tors) is the unique lift of λpl (resp. ψp|l- tors) since Ap(V )l- tors is l-divisible [10,

Lemma 7.10]. Therefore it is enough to prove that λpl coincides with ψp|l- tors. This follows from

[7, Proposition 3.7]. The proof is done by the snake lemma.

Proof of Theorem 1.2.1. The second statement follows from the first one by Lemma 3.1.1.

We prove that ψ̃3|tors is an isomorphism. By Lemma 3.1.2, it is enough to prove that

Ker(f3) = Im
(
H0(V,H4(Z(3)))→ H2(V,H3(Z(3)))

)

is torsion. The group H0(V,H4(Z(3))) is torsion by [14, Proposition 3.3 (i)] (it is actually zero

as a consequence of the Bloch-Kato conjecture, see [14, Theorem 3.1]), so the result follows.
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Let d = dimV . We prove that ψ̃d−1|tors is an isomorphism. By Lemma 3.1.2, it is enough to

prove that

Ker(fd−1) = Im
(
Hd−4(V,Hd(Z(d− 1)))→ Hd−2(V,Hd−1(Z(d− 1)))

)

is torsion. The group Hd−4(V,Hd(Z(d− 1))) is torsion by [14, Proposition 3.3 (ii)], so the result

follows.

Corollary 3.1.3. Under the assumptions of Theorem 1.2.1, the following are equivalent:

(i) the Abel-Jacobi map ψp is universal;

(ii) the sublattice Np−1H2p−1(V,Z(p))/ tors ⊂ H2p−1(V,Z(p))/ tors is primitive;

(iii) the restriction ψp|tors : Ap(V )tors → Jpa (V )tors is an isomorphism.

Proof. It is enough to prove that (ii) and (iii) are equivalent. By Theorem 1.2.1, we have an

isomorphism

Ker (πp) ∼= Ker(ψp|tors : Ap(V )tors → Jpa (V )tors) .

The result follows.

3.2 Non-algebraic integral Hodge classes of non-torsion type and non-zero torsion

cycles in the Abel-Jacobi kernel

Inspired by the work of Soulé and Voisin [43], we prove:



30

Proposition 3.2.1. Let W be a smooth projective variety such that the sublattice

H2p
alg(W,Z(p))/ tors ⊂ Hdg2p(W,Z)/ tors

is not primitive. Then there exists a smooth elliptic curve E such that the restriction

ψp+1|tors : Ap+1(W × E)tors → Jp+1
a (W × E)tors

is not an isomorphism.

Remark 3.2.2. The assumption of Proposition 3.2.1 for p = 2 is satisfied by Kollár’s example

[2, p.134, Lemma] (see also [43, Section 2]). It is a very general hypersurface in P4 of degree l3

for a prime number l ≥ 5. When it contains a certain smooth degree l curve, the same conclusion

follows from [43, Theorem 4]. The details are given in [43, Section 4].

Proof of Proposition 3.2.1. We define

Z
2p

(W ) = Coker
(
H2p(W,Z(p))tors → Hdg2p(W,Z)/H2p

alg(W,Z(p))
)
.

Then we have the following exact sequence:

0→ Z
2p

(W )tors → H2p
alg(W,Z(p))⊗Q/Z→ Hdg2p(W,Z)⊗Q/Z.



31

We have Z
2p

(W )tors 6= 0 by the assumption. Let α ∈ Z2p
(W )tors be a non-trivial element; we

use the same notation for its image in H2p
alg(W,Z(p)) ⊗ Q/Z. Let α̃ ∈ CHp(W ) ⊗ Q/Z be an

element which maps to α via the surjection

clp ⊗Q/Z : CHp(W )⊗Q/Z→ H2p
alg(W,Z(p))⊗Q/Z.

Let k ⊂ C be an algebraically closed field such that tr . degQ k < ∞ and both W and α̃ are

defined over k. Let E be a smooth elliptic curve such that j(E) 6∈ k. We fix one component

Q/Z of CH1(E)tors = (Q/Z)2, and we identify α̃ with an element in CHp(W ) ⊗ CH1(E)tors.

By the Schoen theorem [41, Theorem 0.2], the image β of α̃ by the exterior product map

CHp(W )⊗ CH1(E)tors → CHp+1(W × E)

is non-zero. Then β ∈ Ap+1(W × E)tors. We prove

β ∈ Ker
(
ψp+1 : Ap+1(W × E)→ Jp+1

a (W × E)
)
.

It is enough to prove that β is in the kernel of the cycle class map of the Deligne cohomology:

clp+1
D : CHp+1(W × E)→ H2p+2

D (W × E,Z(p+ 1)).
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The composition of clp+1
D with the exterior product map factors through

clpD ⊗ cl
1
D : CHp(W )⊗ CH1(E)tors → H2p

D (W,Z(p))⊗H2
D(E,Z(1))tors.

Now it is enough to prove that α̃ is in the kernel of this map. Since we have an extension

0→ Jp(W )→ H2p
D (W,Z(p))→ Hdg2p(W,Z)→ 0

and the complex torus Jp(W ) is divisible, we have an isomorphism

H2p
D (W,Z(p))⊗H2

D(E,Z(1))tors
∼= Hdg2p(W,Z)⊗H2

D(E,Z(1))tors.

The proof is done by the choice of α̃.

Proof of Theorem 1.2.3. For any smooth projective curve E, the group CH0(W×E) is supported

on a 3-dimensional closed subset. The proof is done by applying Corollary 3.1.3 for p = 3 to

V = W × E and Proposition 3.2.1 for p = 2.

The same arguments yield a “homology counterpart” of Theorem 1.2.3:

Theorem 3.2.3. Let W be a smooth projective variety such that CH0(W ) is supported on a

surface and the inclusion

H2,alg(W,Z(1))/ tors ( Hdg2(W,Z)/ tors
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is strict. Then there exists a smooth elliptic curve E such that the sublattice

N2H3(W × E,Z(1))/ tors ⊂ H3(W × E,Z(1))/ tors

is not primitive.

Proof of Corollary 1.2.5. Let X be the pencil of Enriques surfaces of Theorem 2.2.1. We have

CH0(X) = Z by Lemma 2.1.4. Moreover, the cohomology group H4(X,Z) is torsion-free and

the inclusion H4
alg(X,Z) ( Hdg4(X,Z) is strict by Theorem 2.2.1. Now the assertion follows by

applying Theorem 1.2.3 to W = X. The proof is complete.

Finally, we explain how to produce counterexamples to Murre’s question in higher dimensions

and for other values of p. We take X and E as in Corollary 1.2.5, and let d ≥ 4. Then, on the

d-fold X × E × Pd−4, for all 3 ≤ p ≤ d− 1, the sublattice

Np−1H2p−1(X × E × Pd−4,Z(p)) ⊂ H2p−1(X × E × Pd−4,Z(p))

is not primitive (this follows from the formula [3, Theorem 3.1] for the Bloch-Ogus spectral

sequence [10] under taking the product with a projective space). In particular, for all 3 ≤ p ≤ d−1,

the Abel-Jacobi map

ψp : Ap(X × E × Pd−4)→ Jpa (X × E × Pd−4)

is not universal.
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APPENDIX

SOME FUNDAMENTAL RESULTS

This chapter is organized as follows. In Section A.1, we give a direct proof of a theorem of

Walker on the factorization of the Abel-Jacobi maps. In Section A.2, we discuss stable birational

invariants related to our problems. In Section A.3, we prove the Roitman theorem for the Walker

maps by using the formalism of decomposition of the diagonal.

We work over the complex numbers throughout.

Section A.2 and A.3 are based on the paper [45] (Suzuki, F.: A remark on a 3-fold constructed

by Colliot-Thélène and Voisin, Math. Res. Lett. 27 (2020), no1, 301–317).

A.1 Factorization of the Abel-Jacobi maps

We give a direct proof of the following theorem of Walker, which was originally proved as an

application of the theory of the Lawson homology and the morphic cohomology.

Theorem A.1.1 ([54]). For a smooth projective variety X, the Abel-Jacobi map ψp factors as

J(Np−1H2p−1(X,Z(p)))

πp

��
Ap(X)

ψ̃p
55

ψp
// Jpa (X)

,
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APPENDIX (Continued)

where J(Np−1H2p−1(X,Z(p))) is the intermediate Jacobian for the mixed Hodge structure given

by the coniveau filtration Np−1H2p−1(X,Z(p)), πp is a natural isogeny, and ψ̃p is a surjective

regular homomorphism.

Remark A.1.2. The Walker map ψ̃p is the uniques lift of the Abel-Jacobi map ψp. This follows

from the fact that Ap(X) is divisible [10, Lemma 7.10] and Ker(πp) is finite.

Before beginning the proof, we review the construction of the Abel-Jacobi maps using mixed

Hodge structures [24] (the reader can consult [15; 16] for basic knowledge about mixed Hodge

structures).

For a mixed Hodge structure (H,W•, F
•), we define its intermediate Jacobian J(H) as the

extension group

J(H) = Ext1
MHS(Z(0), H)

in the abelian category MHS of mixed Hodge structures. If H is pure of weight −1, then J(H)

is isomorphic to a complex torus

HC/(HZ + F 0HC).

For a smooth projective variety X, the cohomology group H2p−1(X,Z(p)) has a pure Hodge

structure of weight −1, therefore we have Jp(X) = J(H2p−1(X,Z(p))). On the other hand, for
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a codimension p closed subset Y ⊂ X, the long exact sequence for cohomology groups with

supports gives a short exact sequence1

0→ H2p−1(X,Z(p))→ H2p−1(X − Y,Z(p))→ ZpY (X)hom → 0.

This is a short exact sequence of mixed Hodge structures, where ZpY (X)hom has the trivial Hodge

structure. Then the boundary map in the long exact sequence for ExtiMHS(Z(0),−) determines

a map

ZpY (X)hom → Jp(X).

Now we take the direct limit about all codimension p closed subsets of X to obtain a map

Zp(X)hom → Jp(X).

This coincides with the Abel-Jacobi map AJp defined by using currents.

1For a variety X, we denote by Zp(X) the group of codimension p cycles on X and by Zp(X)rat (resp.
Zp(X)alg, Zp(X)hom) the subgroup of cycles rationally equivalent to zero (resp. algebraically equivalent
to zero, homologous to zero) on X. For a codimension p closed subset Y ⊂ X, we denote by Zp

Y (X)
the subgroup of cycles supported on Y ; the groups Zp

Y (X)rat, Z
p
Y (X)alg, and Zp

Y (X)hom are accordingly
defined.
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Proof of Theorem A.1.1. First we construct the Walker map. Let X be a smooth projective

variety X. For a codimension p closed subset Y ⊂ X, the long exact sequence for cohomology

groups with supports gives

0 // H2p−1(X,Z(p)) //

f

��

H2p−1(X − Y,Z(p)) //

��

ZpY (X)hom
//

��

0

0 // lim−→Z∈Zp−1 H
2p−1(X − Z,Z(p)) lim−→Z∈Zp−1 H

2p−1(X − Y − Z,Z(p)) // 0 // 0

,

where Zp−1 is the set of codimension p− 1 closed subsets of X. By the snake lemma, we have

an exact sequence

0→ Np−1H2p−1(X,Z(p))→ Np−1H2p−1(X − Y,Z(p))→ ZpY (X)hom
δY−→ Coker(f).

We prove that Ker(δY ) = ZpY (X)alg. We have a commutative diagram with exact rows and

columns

lim−→(Y,Z)∈Zp/Zp−1 H
2p−1
Z−Y (X − Y,Z(p))

��

lim−→(Y,Z)∈Zp/Zp−1 H
2p−1
Z−Y (X − Y,Z(p))

∂
��

H2p−1(X,Z(p)) // lim−→Y ∈Zp H
2p−1(X − Y,Z(p)) //

��

lim−→Y ∈Zp H
2p
Y (X,Z(p)) = Zp(X)

��
H2p−1(X,Z(p))

f // lim−→Z∈Zp−1 H
2p−1(X − Z,Z(p)) // lim−→Z∈Zp−1 H

2p
Z (X,Z(p))

,

where Zp is the set of codimension p closed subsets of X and Zp/Zp−1 is the set of pairs

(Y,Z) ∈ Zp×Zp−1 such that Y ⊂ Z. Then the result follows from the diagram and the fact that
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the image of the map ∂ is the subgroup Zp(X)alg ⊂ Zp(X) [10, Theorem 7.3]. As a consequence,

we have a short exact sequence

0→ Np−1H2p−1(X,Z(p))→ Np−1H2p−1(X − Y,Z(p))→ ZpY (X)alg → 0.

This is a short exact sequence of mixed Hodge structures, where Np−1H2p−1(X,Z(p)) has a

pure Hodge structure of weight −1 and ZpY (X)alg has the trivial Hodge structure. Then the

boundary map in the long exact sequence for ExtiMHS(Z(0),−) determines a map

ψ̃pY : ZpY (X)alg → J(Np−1H2p−1(X,Z(p)),

where J(Np−1H2p−1(X,Z(p))) is a complex torus. Now we take the direct limit to obtain a map

ψ̃p : Zp(X)alg → J(Np−1H2p−1(X,Z(p))),

which we call the Walker map.

Next we establish several basic properties of the Walker map ψ̃p.

Lemma A.1.3. We have a commutative diagram

Zp(X)alg
ψ̃p
//

� _

��

J(Np−1H2p−1(X,Z(p)))

πp

��
Zp(X)hom

AJp
// Jp(X)

,
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where πp is induced by the inclusion Np−1H2p−1(X,Z(p)) ⊆ H2p−1(X,Z(p)).

Proof. We have a commutative diagram of short exact sequences of mixed Hodge structures

0 // Np−1H2p−1(X,Z(p)) //

��

Np−1H2p−1(X − Y,Z(p)) //

��

ZpY (X)alg
//

��

0

0 // H2p−1(X,Z(p)) // H2p−1(X − Y,Z(p)) // ZpY (X)hom
// 0

for any codimension p closed subset Y ⊂ X. The assertion follows by applying ExtiMHS(Z(0),−)

and taking the direct limit.

Lemma A.1.4. Let C be a smooth projective curve and Γ be a codimension p cycle on C ×X

each of whose components dominates C. Then we have a commutative diagram:

Z1(C)hom
AJ1

//

Γ∗
��

J1(C)

Γ∗
��

Zp(X)alg
ψ̃p
// J(Np−1H2p−1(X,Z(p)))

.

Proof. We freely use the fact that the Betti cohomology and the Borel-Moore homology form a

Poincaré duality theory with supports (see [3; 10] for the axioms). Let πC : C ×X → C (resp.

πX : C×X → X) be the projection to C (resp. X). For a codimension one closed subset Y ⊂ C,

setting Y ′ = π−1
C (Y ), we have a commutative diagram

0 // H1(C,Z(1)) //

(πC)∗

��

H1(C − Y,Z(1)) //

(πC)∗

��

Z1
Y (C)hom

//

(πC)∗

��

0

0 // H1(C ×X,Z(1)) // H1(C ×X − Y ′,Z(1)) // Z1
Y ′(C ×X)hom

// 0

. (A.1)
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Similarly, setting G = Supp(Γ) and Y ′′ = Y ′ ∩G, we have a commutative diagram

0 // H1(C ×X,Z(1)) //

∪Γ
��

H1(C ×X − Y ′,Z(1)) //

(∪Γ)′

��

Z1
Y ′(C ×X)hom

//

∪Γ
��

0

0 // H2p+1(C ×X,Z(p+ 1)) // H2p+1(C ×X − Y ′′,Z(p+ 1)) // Zp+1
Y ′′ (C ×X)hom

// 0

,

where, letting i : G − Y ′′ → X × C − Y ′ be a closed immersion and denoting by HBM
∗ the

Borel-Moore homology, the middle vertical map (∪Γ)′ is the composition

H1(C ×X − Y ′,Z(1))
i∗−→ H1(G− Y ′′,Z(1))

∩(Γ|G−Y ′′ )−−−−−−−→ HBM
2 dimG−1(G− Y ′′,Z(dimG− 1))

i∗−→ HBM
2 dimG−1(C ×X − Y ′′,Z(dimG− 1)) = H2p+1(C ×X − Y ′′,Z(p)).

Since the images of the vertical maps are supported on G, we have another commutative diagram

0 // H1(C ×X,Z(1)) //

∪Γ
��

H1(X × C − Y ′,Z(1)) //

(∪Γ)′

��

Z1
Y ′(C ×X)hom

//

∪Γ
��

0

0 // NpH2p+1(C ×X,Z(p+ 1)) // NpH2p+1(C ×X − Y ′′,Z(p+ 1)) // Zp+1
Y ′′ (C ×X)alg

// 0

.(A.2)

Finally, setting Y ′′′ = πX(Y ′′) and letting j : X × C − π−1
X (Y ′′′) → X × C − Y ′′ be an open

immersion, we have a commutative diagram

0 // H2p+1(C ×X,Z(p+ 1)) //

(πX)∗
��

H2p+1(X × C − Y ′′,Z(p+ 1)) //

(πX)∗j∗

��

Z2p+1
Y ′′ (C ×X)hom

//

(πX)∗
��

0

0 // H2p−1(X,Z(p)) // H2p−1(X − Y ′′′,Z(p)) // ZpY ′′′(X)hom
// 0

,
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which restricts to

0 // NpH2p+1(C ×X,Z(p+ 1)) //

(πX)∗
��

NpH2p+1(X × C − Y ′′,Z(p+ 1)) //

(πX)∗j∗

��

Z2p+1
Y ′′ (C ×X)alg

//

(πX)∗
��

0

0 // Np−1H2p−1(X,Z(p)) // Np−1H2p−1(X − Y ′′′,Z(p)) // ZpY ′′′(X)alg
// 0

.(A.3)

By the diagrams (A.1), (A.2), and (A.3), we have a commutative diagram

0 // H1(C,Z(1)) //

Γ∗
��

H1(C − Y,Z(1)) //

(πX)∗j∗(∪Γ)′(πC)∗

��

Z1
Y (C)hom

//

Γ∗
��

0

0 // Np−1H2p−1(X,Z(p)) // Np−1H2p−1(X − Y ′′′,Z(p)) // ZpY ′′′(X)alg
// 0

.

This is a commutative diagram of mixed Hodge structures. The assertion follows by applying

ExtiMHS(Z(0),−) and taking the direct limit.

Corollary A.1.5. The Walker map ψ̃p factors through Ap(X). Moreover we have a commutative

diagram

Ap(X)
ψ̃p

//
� _

��

J(Np−1H2p−1(X,Z(p)))

πp

��
CHp(X)hom

AJp
// Jp(X)

.

Proof. By Lemma A.1.4, we have a commutative diagram

⊕
Γ Z

1(P1)hom
(AJ1) //

(Γ∗)

��

⊕
Γ J

1(P1) = 0

(Γ∗)
��

Zp(X)alg
ψ̃p

// J(Np−1H2p−1(X,Z(p)))

,
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where Γ runs through all codimension p cycles on P1 ×X with the components dominating P1.

Since the image of the left vertical map is the subgroup Zp(X)rat ⊂ Zp(X), the first assertion

follows. The second assertion is immediate by using Lemma A.1.3.

The source of the Walker map ψ̃p will be Ap(X) in the following.

Lemma A.1.6. The Walker map ψ̃p is functorial for correspondences.

Proof. The result follows from an argument similar to that of Lemma A.1.4 and the moving

lemma.

Corollary A.1.7. The Walker map ψ̃p is surjective. Moreover J(Np−1H2p−1(X,Z(p))) is an

abelian variety.

Proof. Let Z ⊂ X be a closed subset of codimension p− 1 such that the natural map

H2p−1
Z (X,Z(p))→ H2p−1(X,Z(p))

induces a surjection

H2p−1
Z (X,Z(p))→ Np−1H2p−1(X,Z(p)).

By the right exactness of the intermediate Jacobian functor J(−) [6], we have a surjection

J(H2p−1
Z (X,Z(p)))→ J(Np−1H2p−1(X,Z(p))). (A.4)
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Let Z̃ be a resolution of Z and Z̃i be the components of Z̃. An easy computation shows that

the natural map ⊕
i

H1(Z̃i,Z(1))→ H2p−1
Z (X,Z(p))

is an injection with the cokernel having the trivial Hodge structure. This induces a surjection

⊕
i

J1(Z̃i)→ J(H2p−1
Z (X,Z(p))). (A.5)

Then we combine (A.4) and (A.5) to obtain a surjection

⊕
i

J1(Z̃i)→ J(Np−1H2p−1(X,Z(p))),

which coincides with the map induced by the graphes Γi of Z̃i → Z → X. By Lemma A.1.6, we

have a commutative diagram

⊕
iCH

1(Z̃i)hom
AJ1∼=

((Γi)∗)

��

⊕
i J

1(Z̃i)

((Γi)∗)
����

Ap(X)
ψ̃p

// J(Np−1H2p−1(X,Z(p)))

.

The results follow.

Corollary A.1.8. The Walker map ψ̃p is regular.
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Proof. By Lemma A.1.6, we have a commutative diagram

CHdimS(S)hom
AJdimS

//

Γ∗
��

JdimS(S)

Γ∗
��

Ap(X)
ψ̃p

// J(Np−1H2p−1(X,Z(p)))

for any smooth projective variety S and codimension p cycle Γ on S ×X. Now the result is

immediate using the Albanese map.

It remains to show that the natural map

πp : J(Np−1H2p−1(X,Z(p)))→ Jp(X)

has finite kernel. It is straightforward to compute that

Ker(πp) = Coker
(
H2p−1(X,Z(p))tors → (H2p−1(X,Z(p))/Np−1H2p−1(X,Z(p)))tors

)
.

The result immediately follows.
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A.2 Stable birational invariants

Let X be a smooth projective variety. By Lemma 3.1.1, the Abel-Jacobi map ψp is universal

if the restriction ψp|tors : Ap(X)tors → Jpa (X)tors is an isomorphism. We recall the factorization

of the Abel-Jacobi map ψp due to Walker [54]:

J(Np−1H2p−1(X,Z(p)))

πp

��
Ap(X)

ψ̃p
55

ψp
// Jpa (X)

.

The kernel

Ker(πp) = Coker
(
H2p−1(X,Z(p))tors → (H2p−1(X,Z(p))/Np−1H2p−1(X,Z(p)))tors

)

is trivial if and only if the sublattice

Np−1H2p−1(X,Z(p))/ tors ⊂ H2p−1(X,Z(p))/ tors

is primitive.

Lemma A.2.1. The groups Ker(ψ3|tors), Ker(ψd−1|tors), Ker(π3), and Ker(πd−1), where d =

dimX, are stable birational invariants of smooth projective varieties X.

Remark A.2.2. A related result is proved by Voisin [51, Lemma 2.2].

Proof of Lemma A.2.1. For each group, it is enough to check
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(i) the invariance under the blow-up along a smooth subvariety;

(ii) the invariance under taking the product with Pn.

By the formulas under these operations for the Chow groups and the Deligne cohomology

groups (resp. the coniveau spectral sequence and the integral cohomology groups) and by their

compatibility with the cycle class maps (resp. the differentials and the edge homomorphisms),

(i) and (ii) are reduced to the triviality of the groups Ker(ψi|tors) and Ker(πi) for i ≤ 2 and

i = dimY on a smooth projective variety Y . The triviality of Ker(ψ2|tors) (resp. Ker(ψdimY |tors))

follows from the Roitman theorem for codimension 2-cycles due to Murre [34, Theorem 10.3]

(resp. the Roitman theorem [37, Theorem 3.1]). The triviality of Ker(π2) (resp. Ker(πdimY ))

follows from the universality of ψ2 (resp. ψdimY ). The rest is clear. The proof is done.

Corollary A.2.3. Let X be a smooth projective stably rational variety. Let p ∈ {3, dimX − 1}.

Then Ker(ψp|tors) = Ker(πp) = 0. Therefore the Abel-Jacobi map ψp is universal and the

sublattice

Np−1H2p−1(X,Z(p))/ tors ⊂ H2p−1(X,Z(p))/ tors

is primitive.

For a smooth projective variety X, let Z2p(X) = Hdg2p(X,Z)/H2p
alg(X,Z(p)) be the defect

of the integral Hodge conjecture in degree 2p. We define

Z
2p

(X) = Coker
(
H2p(X,Z(p))tors → Z2p(X)

)
.
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Then Z
2p

(X)tors = 0 if and only if the sublattice

H2p
alg(X,Z(p))/ tors ⊂ Hdg2p(X,Z)/ tors

is primitive.

Lemma A.2.4. The groups Z
4
(X) and Z

2d−2
(X), where d = dimX, are stable birational

invariants of smooth projective varieties X.

Remark A.2.5. The groups Z4(X) and Z2d−2(X), where d = dimX, are stable birational

invariants of smooth projective varieties X [50][53] and related to the unramified cohomology

groups [14].

Proof of Lemma A.2.4. The proof is reduced to the triviality of the groups Z
2
(Y ) and Z

2 dimY
(Y )

on a smooth projective variety Y . The triviality of Z
2
(Y ) follows from the Lefschetz (1, 1)-

theorem. The triviality of Z
2 dimY

(Y ) is clear. The proof is done.

We recall the following question (see [14, Subsection 5.6]):

Question A.2.6. Let X be a smooth projective rationally connected variety. Is the group Z
4
(X)

trivial? Equivalently, is the inclusion H4
alg(X,Z(2))/ tors ⊂ Hdg4(X,Z)/ tors strict?

The negative answer to this question would provide us with another example to which we

can apply Theorem 1.2.3. There is a unirational fourfold X constructed by Schreieder [42] with

Z4(X) 6= 0, that is, the integral Hodge conjecture fails in degree four on X. The fourfold X is a
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smooth model of a conic bundle Y over P3. It is hard to analyze Z
4
(X) while the construction

of Y is explicit.

A.3 Decomposition of the diagonal and the Roitman theorem for the Walker maps

A smooth projective variety with CH0(X) supported on a proper closed subset admits a

decomposition of the diagonal due to Bloch [8] and Bloch-Srinivas [11]. This result is generalized

by Paranjape [36] and Laterveer [28]. We follow Laterveer’s formulation here. Let X be a

smooth projective variety of dimension d. For non-negative integers r and s, we consider the

following condition: CHi(X)Q is supported on an (i + r)-dimensional closed subset for any

0 ≤ i ≤ s. We call this condition Lr,s. Assume that Lr,s holds for X. Then X admits a

generalized decomposition of the diagonal [28, Theorem 1.7] (see also [36, Proposition 6.1]):

there exist closed subsets V0, · · · , Vs and W0, · · · ,Ws+1 of X with dimVj ≤ j + r (j = 0, · · · , s)

and dimWj ≤ d− j (j = 0, · · · , s+ 1) such that we have a decomposition

∆X = ∆0 + · · ·+ ∆s + ∆s+1

in CHd(X ×X)Q, where ∆j is supported on Vj ×Wj (j = 0, · · · , s) and ∆s+1 is supported on

X ×Ws+1.

For a smooth projective variety Y , let Ep,q2 (Y ) = Hp(Y,Hq(Z)). For the action of correspon-

dences on the coniveau spectral sequence, we refer the reader to [14, Appendice A].

Lemma A.3.1. Let X be a smooth projective variety of dimension d such that Lr,s holds for

X. Then Ep,q2 (X) is torsion if p+ r < q and p < s+ 1, or if p+ r < q and q > d− s− 1.
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p

q

s+ 1

q = p
q = p+ r

p

q

d− s− 1
q = p
q = p+ r

Remark A.3.2. The case s = 0 is [14, Proposition 3.3 (i)(ii)].

Proof of Lemma A.3.1. We may assume that the inequalities about the dimensions of Vj ,Wj

are equal. Let N be a positive integer such that

N∆X = N∆0 + · · ·+N∆s +N∆s+1 ∈ CHd(X ×X).

Let Ṽj(j = 0, · · · , s) and W̃j(j = 0, · · · , s+1) be resolutions of Vj and Wj , and ∆̃j be d-cycles on

Ṽj×W̃j pushed forward to cj∆j for some positive integer cj . We may assume that c0 = · · · = cs+1.

Let N ′ = N · c0. We prove N ′ · Ep,q2 (X) = 0 if p + r < q and p < s + 1, or if p + r < q and

q > d− s− 1.

For 0 ≤ j ≤ s, we prove that

(i) (N ′∆j)∗ = 0 if (p, q) 6∈ [j, j + r]× [j, j + r];

(ii) (N ′∆j)
∗ = 0 if (p, q) 6∈ [d− j − r, d− j]× [d− j − r, d− j].
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We have a commutative diagram

Ep,q2 (X)

��

(N ′∆j)∗ // Ep,q2 (X)

Ep,q2 (Ṽj)

��

Ep−j,q−j2 (W̃j)

OO

Ep,q2 (Ṽj × W̃j)
∪(N∆̃j)// Ep+r,q+r2 (Ṽj × W̃j)

OO

.

To prove (i), it is enough to observe that Ep,q2 (Ṽj) = 0 if p > j + r or q > j + r, and

Ep−j,q−j2 (W̃j) = 0 if p < j or q < j. Similarly, we have a commutative diagram

Ep,q2 (X)

��

(N ′∆j)∗ // Ep,q2 (X)

Ep,q2 (W̃j)

��

Ep+r−d+j,q+r−d+j
2 (Ṽj)

OO

Ep,q2 (Ṽj × W̃j)
∪(N∆̃j) // Ep+r,q+r2 (Ṽj × W̃j)

OO

.

To prove (ii), it is enough to observe that Ep,q2 (W̃j) = 0 if p > d − j or q > d − j, and

Ep+r−d+j,q+r−d+j
2 (Ṽj) = 0 if p < d− r − j or q < d− r − j.

For ∆s+1, we prove that

(iii) (N ′∆s+1)∗ = 0 if (p, q) 6∈ [s+ 1, d]× [s+ 1, d];

(iv) (N ′∆s+1)∗ = 0 if (p, q) 6∈ [0, d− s− 1]× [0, d− s− 1].
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We have a commutative diagram

Ep,q2 (X)

��

(N ′∆s+1)∗ // Ep,q2 (X)

Ep−s−1,q−s−1
2 (W̃s+1)

OO

Ep,q2 (X × W̃s+1)
∪(N∆̃s+1)// Ep+d−s−1,q+d−s−1

2 (X × W̃s+1)

OO

.

To prove (iii), it is enough to observe that Ep−s−1,q−s−1
2 (W̃s+1) = 0 if p < s+ 1 or q < s+ 1.

Similarly, we have a commutative diagram

Ep,q2 (X)

��

(N ′∆s+1)∗ // Ep,q2 (X)

Ep,q2 (W̃s+1)

��

Ep,q2 (X × W̃s+1)
∪(N∆̃s+1)// Ep+d−s−1,q+d−s−1

2 (X × W̃s+1)

OO
.

To prove (iv), it is enough to observe that Ep,q(W̃s+1) = 0 if p > d− s− 1 or q > d− s− 1.

The proof is done by (i), (ii), (iii) and (iv).

Theorem A.3.3. Let X be a smooth projective variety of dimension d such that L3,s holds for

X. Let p ∈ [3, s+ 3] ∪ [d− s− 1, d− 1]. Then the restriction

ψ̃p|tors : Ap(X)tors → J(Np−1H2p−1(X,Z(p)))tors
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is an isomorphism. Moreover the Walker map ψ̃p is universal.

Remark A.3.4. The case s = 0 is Theorem 1.2.1.

Proof of Theorem A.3.3. The second statement follows from the first one by Lemma 3.1.1.

We prove that the restriction ψ̃p|tors is an isomorphism. By Lemma 3.1.2, it is enough to

prove that Ker(fp) is torsion. By Lemma A.3.1, the groups

Ep−3,p+1
2 (X), · · · , E0,2p−2

2 (X)

are torsion, so the result follows.
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