
Generalization of a Machine Learning Classifier of CAN Bus Signals

BY

ANDREA TRICARICO
B.S., Politecnico di Milano, Milan, Italy, 2017
M.S., Politecnico di Milano, Milan, Italy, 2020

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2020

Chicago, Illinois

Defense Committee:

Prof. Rigel Gjomemo, Chair and Advisor

Prof. Ugo A. Buy

Prof. Stefano Zanero, Politecnico di Milano

ACKNOWLEDGMENTS

I want to thank my parents, for always supporting and never stopped believing in me.

AT

ii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Modern automotive vehicles . 1
1.2 CAN network and possible attacks 2
1.3 Security studies of modern vehicles 3
1.4 Contributions of this work . 4

2 BACKGROUND AND MOTIVATION 6
2.1 Controller Area Network . 6
2.1.1 Physical Layer . 7
2.2 CAN packets . 8
2.2.1 Normal packets . 12
2.2.2 Diagnostic packets . 12
2.2.3 ISO-TP . 13
2.2.4 DBC files . 15
2.2.5 OBD-II . 16
2.3 Automotive security . 19
2.3.1 Attack surfaces . 19
2.3.2 Causes of lack of security . 20
2.4 State of the art of CAN packets reverse engineering 22
2.4.1 READ: Reverse Engineering of Automotive Data Frames . . 25
2.4.2 LibreCAN: Automated CAN Message Translator 29
2.5 Goals and Challenges . 31
2.5.1 Goals . 31
2.5.2 Challenges . 32

3 APPROACH . 33
3.1 Introduction . 33
3.2 Dataset creation . 34
3.3 Dataset exploration and Manual reverse engineering of the signals 36
3.4 Identification of different signals inside the data frames 38
3.4.1 Two’s Complement . 42
3.5 Time series preprocessing . 45
3.5.1 Deal with imbalanced data . 46
3.6 Deep Learning Model . 48
3.7 Evaluation . 51

4 EXPERIMENTAL VALIDATION . 54

iii

TABLE OF CONTENTS (continued)

CHAPTER PAGE

4.1 Goals . 54
4.2 Dataset . 55
4.3 Experimental Setup . 57
4.3.1 Hardware . 57
4.3.2 Software . 61
4.4 Performance Evaluation . 65
4.4.1 Comparison with the related works 65
4.4.2 Performance metrics . 66
4.4.3 Results analysis . 69
4.4.3.1 Speed signal classifier . 70
4.4.3.2 RPM signal classifier . 72
4.4.3.3 Steering wheel angle signal classifier 72
4.4.4 Final considerations on the results 75
4.5 Choice of the vehicles to train the model 76

5 LIMITATIONS & FUTURE WORKS 79
5.1 Limitations . 79
5.2 Future Works . 80

6 CONCLUSIONS . 81

CITED LITERATURE . 83

VITA . 87

iv

LIST OF TABLES

TABLE PAGE
I List of UDS services . 14
II Confusion Matrix. 53
III Dataset composition according to vehicle type 57
IV List of experiments per vehicle . 60
V Training and testing sets for each test. 70
VI Confusion Matrix of the outcomes of the Speed Signal classification 71
VII Metrics of the Speed Signal Classifier 71
VIII Confusion Matrix of the outcomes of the RPM Signal classification 72
IX Metrics of the RPM Signal Classifier 72
X Confusion Matrix of the outcomes of the Steering wheel angle Sig-

nal classification . 74
XI Metrics of the Steering wheel angle Signal Classifier 74

v

LIST OF FIGURES

FIGURE PAGE
1 CAN 2.0 A data frame structure . 10
2 CAN 2.0 B data frame structure . 10
3 Layout of the payload of a CAN packet in the DBC files 11
4 OBD-II standard Port . 18
5 Phases of the READ algorithm . 27
6 Overall architecture . 33
7 Screenshot of cansniffer, highlighted in red the bits that have changed 37
8 Plotting of speed signals and RPM of the Alfa Romeo Giulia in the

first experiment . 38
9 Example of Magnitudes and Bitflips of ID 0EE Alfa Romeo Giulia . 42
10 Heatmap representation where each cell value represents the magni-

tude of that bit-flip rate in that bit position, the signals identified are
highlighted. 43

11 Plots of the signal of the steering wheel angle of the Opel Corsa
decoded as Unsigned integer and then as a Two’s complement number 44

12 Deal with imbalanced data of the training set. 47
13 LSTM classifiers . 50
14 Recorded path travelled in the last driving session of the Alfa Romeo

Giulia . 58
15 Recorded path travelled in the last driving session of the Alfa Romeo

Giulia . 59
16 CANtact board . 61
17 ELM 327 . 62
18 Connection to the vehicle . 63
19 Steering wheel signals of Alfa Romeo Giulia (blue signal), Opel Corsa

(orange signal) and Piaggio Porter Maxi (green signal). 73
20 Results of tests on different vehicles with models trained with an

increasing numbers of vehicles - Speed Signal 78
21 Results of tests on different vehicles with models trained with an

increasing numbers of vehicles - RPM Signal 78

vi

LIST OF ABBREVIATIONS

RKE Remote Keyless Entry

LSTM Long Short-Term memory

RNN Recurrent Neural Networks

CAN Controller Area Network

DLC Data Length Code

OBD On-Board Diagnostics

UDS Unified Diagnostic Service

ECU Electronic Control Unit

CRC Cyclic Redundancy Check

NN nearest neighbor

DTW Dynamic Time Warping

OVA one-versus-all

AVA all-versus-all

RPM Revolutions per minute

CANH CAN high

CANL CAN low

PCI Protocol Control Information

vii

LIST OF ABBREVIATIONS (continued)

OBD-II PIDs On-board diagnostics Parameter IDs

NIST National Institute of Standards and Technology

ROC Receiver Operating Characteristic

IDS Intrusion Detection Systems

SOF Start of Frame

UDS Unified diagnostic services

SRR Substitute Remote Request

IDE Identifier extension bit

RTR Remote Transmission Request

DLC Data Length Code

CRC Cyclic Redundancy Check

ACK Acknowledgement

EOF End of Frame

IMU Inertial Measurement Unit

viii

SUMMARY

In the last decades, the automotive field has evolved considerably. Modern cars are composed

of a complex network of Electronic Control Units (ECUs). These ECUs are small computing

units that elaborate data captured from different sensors and then perform actions throw ac-

tuators. They can optimize a variety of different actions performed by the driver (e.g. the fuel

injection during acceleration) and activate safety mechanisms. Moreover, in the latest years,

manufacturers have introduced new functionalities, like autonomous driving features and the

possibility to control the car remotely, which require a complex network of computing units

inside the vehicle.

All the ECUs are connected with an in-vehicle network which is usually designed following

the CAN bus protocol developed by Bosch in the ’80s (which is the de-facto standard for the

internal networks of modern vehicles). This protocol is particularly suitable to design real-time

networks that are simple and cheap.

The security against external attacks was not a problem at that time because the vehicles

were not accessible from the external world. However, in the last years, more and more cars

have introduced features to connect the vehicle to external devices (like the smartphone of the

driver) and networks (like the Internet). These changes have considerably increased the attack

surface and the lack of security in the CAN bus protocol is becoming a serious problem.

Many studies have demonstrated that it is possible, for an attacker, to gain control of some

vehicle’s functionalities through the injection of malicious packets in the CAN bus and that this

ix

SUMMARY (continued)

can be done even remotely exploiting vulnerabilities of the computing units that are connected

to external devices.

Unfortunately, manufacturers are still not paying enough attention to the security of the in-

vehicles networks and they rely on a security-by-obscurity paradigm (keeping secret the detailed

specification about the logic inside the ECUs and the syntax of the packets).

Researchers that study the security of modern vehicles and their vulnerabilities have to

manually reverse engineer the packets sent from the ECUs to understand their internal logic

and find their vulnerabilities.

In this work, we propose a new approach to the reverse engineering of CAN bus packets to

reduce the effort and time needed for this process.

We analyze directly the raw logs that the researchers collect from their vehicles during a

driving session. We extract the different signals that are encoded in the recorded sequence of

CAN packets and process them.

We then use a machine learning classifier based on LSTM networks (a type of recurrent

neural network particularly suited for the analysis of time-series) to find some specific physical

signals without any prior knowledge on the vehicle architecture and without performing long

experiments on the vehicle.

In our evaluation phase, we demonstrate that this model can drastically reduce the time

needed to reverse engineer messages and signals of a vehicle without its proprietary specification.

We then explain how to collect a suitable dataset to train the model and make it able to

generalize the knowledge to classify signals of unknown vehicles.

x

CHAPTER 1

INTRODUCTION

1.1 Modern automotive vehicles

Talking about means of transportation, cars (and in general road vehicles) are one of the

main ways that people use to move. We use cars almost every day, we think to them as mere

mechanical vehicles and we expect them to be reliable.

The fact is that, nowadays, cars are not simple mechanical machines anymore. As time

passes, vendors equip cars with new functionalities and technologies. Today’s cars have lots of

computing units that are all connected to offer services to the driver (things like infotainment

or even autonomous driving functionalities), collect data from different sensors and perform

physical actions after receiving some specific inputs.

Modern cars can have more than 100 Electronic Control Units (ECUs) and they are all

connected thanks to one or more networks that are present in the car. There are different

protocols for the design of these internal networks but the de facto standard protocol is the

Controller Area Network (CAN). This protocol has been developed by Bosch [1] in 1986. The

focus of Bosch in the design of this protocol was on providing a system that was able to transmit

safety messages (e.g. those to activate the airbag in case of collision).

1

2

1.2 CAN network and possible attacks

The CAN network is composed of a bus that connects all the ECUs in a vehicle. Each mes-

sage sent on the bus contains different information retrieved by some sensors and/or commands

sent from a computing unit to another. The messages are broadcasted from the sender to every

Electronic Control Unit (ECU) connected to the bus line.

The engineers at Bosch needed a system that was simple, cheap but also able to respect

strict real-time requirements and the Controller Area Network (CAN) protocol meets all these

requirements. The security against an external attacker was not a problem at that time because

the cars were not connected to anything else, this has caused a lack of attention to common

protection mechanisms that we have in other sensitive networks which are exposed to the world.

Following the improvement of technology, even the computing units inside the cars have be-

come more and more advanced. The more computing power and cheap connections technology

led to install new computing units that are complex and connected to external devices or even

to the internet using the broadband cellular network. Modern cars have Bluetooth to connect

mobile smartphones to the infotainment of the vehicle and, with some cars, it is also possible

to take control of some vehicle’s functionalities with the use of the vendor’s app that connects

to the car using an internet connection.

Now that the isolation is not effective anymore, the lack of security (e.g. authentication,

encryption, access control) is becoming a serious threat for vehicles and people that uses them.

The two main problems are:

• the new complexity of the computing units makes them more vulnerable to attacks

3

• the connection to the external world makes possible, and sometimes very easy, for an

attacker to connect to the internal network of a vehicle and perform malicious actions

sending some engineered packet to trick the ECUs.

1.3 Security studies of modern vehicles

There are lots of different studies where researchers were able to exploit all these computing

units inside commercial vehicles to gain control of some parts of the vehicle and to make them

perform actions (unwanted by the driver and that can be very dangerous) just by the injection

of some particular instruction in the car network, even remotely [2].

To prevent these dangerous attacks it is necessary to study and increase the security of these

machines. One of the main problems that the researchers face when they study the possible

attacks and the security of modern vehicles is to understand the internal architecture of the

vehicle that they are testing. The internal network of a vehicle is composed of more than one

hundred ECUs that broadcast messages on the CAN bus. But the code of the ECUs is not

publicly available and then, for the researches, it is impossible to understand the meaning of

the messages that flow in the bus. In the definition of the CAN standard, it is only specified

the general structure of a CAN packet, but it is up to each manufacturer to decide how to

encode the data inside the data frames and the logic that rules the exchange of information

and commands between different computing units.

One of the most difficult parts of studies of the security of a vehicle is the preliminary

phase in which the researchers have to reverse engineer the data frames that the ECUs sends

to understand how they behave and how it is possible to trick them to do malicious actions.

4

Car manufacturers rely on the security by obscurity [3] approach, they think that making

the design and the implementation of their vehicles secret is a good method to obtain a secure

product. Unfortunately, that is completely wrong, and even the National Institute of Standards

and Technology (NIST) recommend an open design approach and discourage this practice

”System security should not depend on the secrecy of the implementation or its components”[4].

Manufacturers should move from the current security by obscurity to a secure by design [5]

approach.

The current lack of public specification about the vehicle’s architecture for both attackers

and researchers makes long and difficult the initial study of a vehicle. The great effort needed

can discourage researchers and white hats [6] but for an attacker, it might be worth it.

1.4 Contributions of this work

The goal of our work is to reduce the effort needed to reverse engineer the internal architec-

ture of a vehicle without the secret information in posses of the manufacturer. The tricky part

of this process is to understand how each different unit sends and receives data and commands.

Both attackers and researchers focus on how each information is encoded in each packet

because understanding how each piece of data and each command is encoded:

1. helps to understand the logic inside the different units that elaborate those packets.

2. makes possible to send fake information to exploit some vulnerabilities in the computing

units and to make them do malicious actions.

This reverse-engineering process is long and difficult to do by scratch. Until now the state-

of-art studies on reverse engineering of CAN packets are focused on the unsupervised analysis

5

of the packet’s traces and the use of statistical analysis to process the logs of the messages

recorded from the CAN bus. This is not sufficient, these processing steps can’t classify a signal

encoded in a CAN packet without external information recorded by the researchers during the

recording of the packets (which make longer and more difficult this phase).

We want to investigate the possibility to create a general machine learning classifier that

can be trained with a group of vehicles and then can be used by researchers directly on raw

logs from the CAN bus on different vehicles. With such a model it would be possible to find

the signals very quickly and with minimal effort.

CHAPTER 2

BACKGROUND AND MOTIVATION

2.1 Controller Area Network

All the ECUs inside a vehicle need to communicate with each other to exchange data

collected from the different sensors and make it possible to send commands to the actuators.

Many different protocols can be used for the design of the internal network of vehicles but the

CAN bus [7] has become the de facto standard for the majority of commercial vehicles and it

gives the specification for a network that supports real-time systems and communication where

different packets can have different priorities. The CAN bus protocol gives the specifications

for the first two levels of the standard Open Systems Interconnection model (OSI model), the

physical and data link layer.

In the CAN bus, all packets are broadcast to all the ECUs of the network. A CAN message

does not have routing information like a receiver or a destination field, it only has an ID field.

An ECU, upon receiving a message, reads the ID of the packet and, from that, it will understand

if it has to process the packet or not.

A vehicle can have more than only one network, even with different protocols. But for

commercial cars, it is common to have one or two (one for low-frequency messages and the

other for high-frequency ones) internal CAN bus networks. If a car has two different CAN

buses it usually uses them to separate low priority messages (e.g. for the infotainment systems)

6

7

from the critical ones that are related to the driving functionalities. This is not always true and

there can be some ECUs connected to both networks that work as a bridge [8]: it is possible

to exploit those ECUs to gain the access to the inner network from the one connected to the

external world.

2.1.1 Physical Layer

A CAN bus is composed of two or more nodes (the ECUs in the vehicle) connected by a two-

wire bus. The wire buses are needed to transmit data bits using differential wired-AND signals:

the transmission of data is done using two signals CAN high (CANH) and CAN low (CANL).

To send a logic 0 bit CANH is set higher than CANL and to send a logic 1 bit CANH is set

lower or equal to CANL.

The most common ISO standards that are used are:

1. ISO 11898-2 [9]: it is the standard for the high-speed CAN (the one used to connect all

the safety-related ECUs). It is able to reach a transfer rate of 1 Mbit/s (it can reach 5

Mbit/s on CAN-FD [10] protocol in the newest vehicles). In modern cars, the transfer

rate used in the high-speed bus is usually 500 kbit/s. The recessive voltage is 2.5V (to

send a 1 logical bit) and the dominant voltage (to send a 0 logical bit) is 3.5V for CANH

and 1.5 for CANL

2. ISO 11898-3 [11]: it is the standard for the low-speed and fault-tolerant CAN, with a

transfer rate of 125 kbit/s and that uses larger voltage swings.

8

2.2 CAN packets

There are 4 different types of packets in the CAN standard protocol: Data frames, Remote

frames, Error frames, and Overload frames.

1. Data frames: normal information exchange between the ECUs. These can be further

divided in normal CAN messages and diagnostic CAN messages.

2. Remote frames: usually data are transmitted by each ECU periodically with a certain fre-

quency but an ECU can use remote frames to request data from a source, this mechanism

is rarely used.

3. Error frames: these frames are sent by an ECU upon the detection of an error in the

network.

4. Overload frames: are used from an ECU to signal to the others that it is overloaded.

For our scope, we will focus our attention on the data frame packets.

The latest version of the CAN protocol published by Bosch is CAN2.0, it reports two

different formats for the data frames: one with an 11-bit identifier (CAN2.0A) and the other

with a 29-bit identifier(CAN2.0B). Every vehicle that respects the standard must accept the

packets formatted following the CAN2.0A and it is up to the vendors to decide to implement

the extended version too[12].

The structure of the CAN packet (data link layer) is described in Figure 1 for the CAN2.0A

format and in Figure 2 for the CAN2.0B format:

• Start of Frame (SOF)

9

• Identifier (ID): unique identifier which also represents the priority of the message, 11 bits

or 29 bits (11+18)

• Substitute Remote Request (SRR)

• Remote Transmission Request (RTR): muse be 0 for Data frames and 1 Remote frames

reference.

• Identifier extension bit (IDE): must be 0 for standard format and 1 for extended format

(29-bit for ID)

• r1,r0: reserved bits

• Data Length Code (DLC): number of bytes in the data field (0–8 bytes)

• Data field: 0-8 bytes of actual data contained in the packet

• Cyclic Redundancy Check (CRC): error-detecting code

• CRC delimiter

• Acknowledgement (ACK) field

• ACK delimiter

• End of Frame (EOF)

The data field of the CAN packet contains 0 to 8 bytes of information sent by the ECU.

The data is encoded in different ways depending on the particular vendors and the specif

vehicle. This is one of the main problems that make it so hard to understand the meaning of

the information that flows in the CAN bus without prior knowledge. The data field contains

10

S
O
F

1

Identifier
(ID)

11 bits

R
T
R

1

I
D
E

1

r0

1

Data

0-64 bits

D
L
C

4

CRC

15 bits

CRC
del.

1 bit

A
C
K

1

ACK
del.

1 bit

E
O
F

7

Figure 1: CAN 2.0 A data frame structure

S
O
F

1

Identifier
(ID A)

11 bits

R
T
R

1

I
D
E

1

r0

1

Data

0-64 bits

D
L
C

4

CRC

15 bits

CRC
del.

1 bit

A
C
K

1

ACK
del.

1 bit

E
O
F

7

r1

1

S
R
R

1

Extended Identifier
(ID B)

18 bits

Figure 2: CAN 2.0 B data frame structure

11

0 1 2 3 4 5 6 7

0
Engine
rpm

6 5 4 3 2 1 0

1
15 14 13 12 11 10 9 8

2
GPS
latitude

22 21 20 19 18 Wheel
speed

16

3
31 30 29 28 27 26 25 24

4
39 38 37 36 35 34 Wheel

speed
32

5
47 46 45 44 43 42 41 40

6
55 54 53 52 51 50 49 48

7
63 62 GPS

longitud
.

60 59 58 57 56

Figure 3: Layout of the payload of a CAN packet in the DBC files

information related to the physical world like data from sensors and commands for the actuators

but also unused bits and sequences of data used by the internal logic of the network.

12

2.2.1 Normal packets

The first category of data frames comprises the normal packets exchanged between the

ECUs of the vehicle. At the application layer, these packets contain only the ID and the

payload (sequence of bits in the data field).

Our dataset is a collection of messages of this category and, for our work, we use only this

type of messages because these are the easiest to collect from a vehicle: it is just needed to

connect a computer to the CAN bus and record every message that flows in the internal network

(remember that all messages are broadcasted to all the nodes connected to the bus).

2.2.2 Diagnostic packets

Diagnostic CAN messages are designed for the communication between the diagnostic tools

used by mechanics and the ECUs of the vehicle.

Diagnostic packets follow the specifications of the ISO-TP (see 2.2.3) protocol (we have not

found the use of the protocol in CAN packets captured during our experiments). After the

extraction of the ISO-TP header, the format of the actual data sent with diagnostic packets is

described by the Unified diagnostic services (UDS) protocol and standardized in the ISO 14229

[13]. A list of available services is described in Table I.

These messages are more powerful than the normal ones and, to avoid that someone misuses

them, the ECUs will usually ignore these messages if the car is moving at a certain speed.

Unfortunately, Miller and Valasek showed [2] that for an attacker is possible to forge a fake

speed signal and then enforce the ECUs to process the diagnostic packets even when it should

be not possible.

13

Moreover, to do sensitive actions, it is necessary to authenticate to the ECU using the

Security Access service. Sadly, even in this case, Miller and Valasek found many problems in

their vehicles [2] because this access control mechanism is often not implemented in a right and

robust way. For example in one of the ECUs the seed sent for the authentication is always

the same and then the answer to authenticate is the same too and it is just necessary to sniff

someone performing authentication or do a brute-force attack.

An example of the power of this kind of packets is the use of the services of ”Input Output

Control”. With these services it is possible (after an authentication step) to send custom input

to the ECU (instead of the real ones from its sensors) and monitor the response. This service

is usually needed my mechanics to test if the responses to the input are correct but it is quite

obvious how critical this feature is if an attacker can access it when someone is driving the car.

2.2.3 ISO-TP

The payload of each message contains 0 to 8 bytes of data but it is possible to send sequences

of data longer than eight bytes thanks to the standard ISO 15765-2 (called also ISO-TP) [14]

that describe how to use CAN packets to send payloads of arbitrary length. In this standard the

first nibble (4 bits) of the data field is used to define the Protocol Control Information (PCI)

type, this information is then used by the ECUs to control the flow of packets and to reconstruct

the original payload that was sent. The possible values of the PCI are:

• 0 for single-frame packets, those that contain the entire payload in the data field on that

message.

• 1 for the first packet of a sequence that contains the different parts of a payload.

14

Service ID Service

0x10 Diagnostic Session Control

0x11 ECU Reset

0x14 Clear Diagnostic Information

0x19 Read DTC Information

0x22 Read Data By Identifier

0x23 Read Memory By Address

0x27 Security Access

0x28 Communication Control

0x2A Read Data by Periodic ID

0x2E Write Data By Identifier

0x2F Input Output Control By Identifier

0x30 Input Output Control By Local Identifier

0x31 Routine Control

0x34 Request Download

0x35 Request Upload

0x36 Transfer Data

0x37 Transfer Exit

0x3D Write Memory By Address

0x3E Tester Present

0x83 Access Timing Parameters

0x84 Secured Data Transmission

0x85 Control DTC Setting

0x86 Response On Event

0x87 Link Control

TABLE I: List of UDS services

15

• 2 for all the consecutive packets of a sequence, for these packets the second nibble of bits

is used as index inside the sequence.

• 3 for flow-control-frames, these packets are used as ACK of the first packet of a sequence.

ID = 127 DLC = 8 Data = 1A 13 56 BC 98 23 56 08

ID = 127 DLC = 8 Data = 30 00 00 00 00 00 00 00

ID = 127 DLC = 8 Data = 21 BB CC DD 12 34 56 78

ID = 127 DLC = 8 Data = 22 90 AB DF EG 46 53 76

Following the ISO-TP protocol the actual payload sent with this sequence of packets is:

A 13 56 BC 98 23 56 08 BB CC DD 12 34 56 78 90 AB DF EG 46 53 76

2.2.4 DBC files

What is used by the ECUs to decode each frame is the information that is collected in the

DBC files of a vehicle.

The DBC files [15] of a vehicle (also called Communication Database for CAN) are the CAN

message translation tables. For completeness, it is correct to point out that there are also other

types of translation tables but the de facto standard is DBC.

In the DBC it is possible to find all the information needed to decode the information in

the data frames, as it showed in Figure 3.

For each possible ID, they explain:

16

• which ECU is the sender of that packet and which are the ECUs that will receive (and

process) it

• the length of the data section of the packet

• the separation in blocks of the data section:

– start bit of the block

– length in bits of the block

– multiplicative factor

– offset

– encoding method (e.g. two’s complement; representation with big-endian or little-

endian)

– max/min value

– unit of measurement

In the DBC are listed all the signals sent by each unit connected to the internal network of

the vehicle and each signal has its start bit and end bit (start + length) because in each CAN

message it is possible to have more than one single signal (as it is shown in Figure 3 where each

color describe a different signal in that particular message).

2.2.5 OBD-II

The On-Board Diagnostics (OBD)-II is a protocol used to make available to owners of the

vehicles and technician emission-related information of the vehicle.

17

It is mandatory by law, for every vehicle produced after 1996, to implement the On-board

diagnostics Parameter IDs (OBD-II PIDs) (which are standardized by the SAE J1979[16]) and

to make that accessible through the standard port described in the SAE J1939 [17] which is

showed in Figure 4. The only exception is electric cars which are not mandated to implement an

OBD-II port and to support the OBD-II protocol (even if some of them implement it anyway).

With an OBD-II connector, it is possible to use the OBD-II PIDs codes to request standard-

ized information from different ECUs. It is possible to use connectors with a built-in interpreter,

like the ELM 327 [18], which can be used to send periodically request of information and then

logs the answers.

The information available using this protocol is mainly emission-related and includes vehicle

speed, engine speed, air-flow, internal temperatures among others.

This is a very small subset of the information available in the CAN bus but, differently to

the correspondent signals sent normally inside the bus, the answers to the OBD-II PIDs are

standardized (and equal for every vehicle) and they can be interpreted by anyone without the

DBC files of the vehicle.

The OBD-II port is connected to the CAN bus because the OBD-II PIDs requests are sent

using the normal bus in addition to the normal CAN packets. For this reason, this port is used

not only to make requests using the homonymous protocol but as a standard way to connect

to the CAN bus (to sniff the traffic and inject messages).

18

Figure 4: OBD-II standard Port

19

2.3 Automotive security

In this section, we want to give an overview of the researches that have demonstrated the

fragility and lack of security in the internal architectures of our vehicles.

2.3.1 Attack surfaces

As well discussed by Checkoway et al. [19], an attacker can reach the internal network of a

vehicle in different ways but these can be categorized in three different sets:

1. indirect physical access: the attacker can reach the internal network of our car using

a physical intermediary. A physical device can be connected to the OBD-II port [20],

which is present in all the vehicles by law, thanks to a temporary access to the vehicles.

Otherwise, an attacker can reach the internal network using a counterfeit or malicious

component sold online (FM radio) or infecting a device of the car’s owner that will be

connected to the car (an MP3 player, a CD, a USB drive).

2. short-range wireless access: this can be achieved mainly with the Bluetooth technology

that is now used in the majority of vehicles to connect the smartphone to the car to

reproduce music or to control the car from the manufacturer’s mobile app. Other possible

short-range wireless accesses uses two technologies that are present in almost every recent

vehicle Remote Keyless Entry (RKE) (used to remotely open the doors, turn on light and

other small actions) and RFID-based technology (used to implement tags inside the car

keys that deactivate the vehicle immobilizers).

3. long-range wireless access: this category can be divided into broadcast channels and ad-

dressable channels. The former is accessible by sending messages using networks like GPS

20

or FM radio frequencies. In the latter, the access is possible thanks to the connectivity

that many vehicles have using the mobile broadband network to connect to the internet

their remote telematics systems.

An evident example that proves that the internal network of a car is accessible by external

devices is given by all the automotive companion apps [21] that can send messages to remote

control the vehicle (e.g. unlock the car and starting the engine) or by the software inside many

OBD-II dongles that send OBD-II PIDs [22] to the CAN bus (but that can be counterfeit to

send malicious packets too).

In some vehicles there is no a single internal network, it is common to have two different

CAN buses: one high-frequency bus for safety-critical ECUs and the other for infotainment

and other less critical features. The safety-critical bus is usually isolated from the outside,

even if this has not usually done for security reasons but to improve bandwidth and integration

[19]. Besides, even in those cases where the safety-critical network is not connected to other

external networks, there is always one (or more) ECU which is connected to both the networks to

support the exchange of messages between the all the ECUs and work as logical bridges between

networks [19] [23]. Then it is possible to send malicious messages to safety-critical computing

units by accessing the infotainment system and then infect the ECU that is connected to both

the buses.

2.3.2 Causes of lack of security

If we think about the automotive field it is quite easy to understand the causes behind the

lack of security in modern vehicles. The first one is, as we pointed out previously, that the

21

base design of modern vehicles still relies on an architecture developed decades ago when the

systems were secure because of their isolation and the complexity was much lower.

As suggested by Checkoway et al. [19] the lack of interest by manufacturers is caused by

the absence of significant adversarial pressure. We have not seen many cases in which the

vulnerabilities have bees exploited to make attacks that were a threat to the driver of the car.

Until now almost all cyber-attacks had as a goal the car theft [24] and not the health of the

driver.

The majority of the vulnerabilities found so far were at the interface boundaries between

pieces of code developed by distinct companies [19]. This is a common problem in computer sci-

ence but in the automotive field, it can cause a serious problem even because car manufacturers

outsource the production of the computing units and then only integrate them in their vehicle:

with this paradigm, different manufacturers do not have access to the code in the different units

and it is very difficult to test the security of the vehicles as a whole after the integration of the

different units.

Moreover, even when security measures are implemented we have seen that often it has been

done in a wrong way that makes them ineffective (e.g. the security access control for diagnostic

actions in some units, see 2.2.2).

Miller and Valasek have carried out different researches [8] [23] intending to get the eyes of

car manufacturers on these problems. Unfortunately, car manufacturer underestimated all the

problems because many experiments were conducted using an indirect/direct physical access

to the vehicle and, in that case, there are many other attacks, not related to the injections of

22

malicious messages in the car bus, which are much easier and dangerous (e.g. tampering with

the brakes of the vehicle). To show the importance of focusing the attention to the attacks that

can be carried out by exploiting vulnerabilities of the CAN bus and doing that remotely, Miller

and Valasek showed [2] that it is possible, not only in theory, to send packets to an internal

ECU of a car remotely, without physical access to the vehicle.

To understand the importance and the gravity of the situation, we report here some attacks

that different studies have proved to be feasible:

• Change the speed and Revolutions per minute (RPM) displayed to the driver (which can

make the driver accelerate and underestimate his real speed).

• Cause denial of service in the CAN bus that can cause a shut-down of the vehicle (which

can cause an immediate loss of assistance in the steering).

• Make small adjustments to the steering of the wheels (that can be very dangerous if the

car is moving at high speed)

• Slow down and completely stop the car exploiting the pre-collision system

We also need to understand that, with the new autonomous driving features of modern cars,

these problems can only become worse (if manufacturers will not focus on security during the

design phase).

2.4 State of the art of CAN packets reverse engineering

Many researchers have focused their work on finding countermeasures of possible attacks

to the CAN bus, in particular, many Intrusion Detection Systems (IDS) have been proposed

23

in recent years [25]. To carry out many of these researches and evaluate their results the

researchers must understand the internal architecture of the vehicles used in the experiments

and to do so it is necessary to reverse engineer the packets that are sent and received from the

ECUs connected to the CAN bus.

In this section, we describe the existing works on the reverse engineering of CAN commu-

nications.

In the last years, researches proposed different methods that can be of some help during the

reverse engineering process of CAN packets, which is important in those situations where the

DBCs files are not available. Unfortunately, there is still no truly resolutive approach to this

problem.

Wen et al. described and implemented CanHunter[21], a system that can reverse engineer

CAN commands analyzing the car’s companion app. As we have discussed, modern vehicles

have incremented their connections to the external world to give to the drivers more function-

alities, examples of this are all the companion apps that vendors make available for the modern

smartphone and that can be connected to the car to make them execute different actions trig-

gering them remotely from the app. Wen at al. have described a system that reverses engineer

the companion app of a vehicle to retrieve the CAN bus messages used to trigger the possible

actions. The limitations of this work are that only a few vendors have already produced com-

panion apps for their cars and, even if the app exists, the commands sent from the app are just

a little fraction of the possible signals sent and received in the car’s network.

24

Another source of possible information is the data that can be extracted using the OBD-II PIDs.

The ACTT algorithm [26] developed by Verma et al. extracts extra signals using that protocol

and then uses them to find the corresponding signals in the CAN bus. This work is mainly

limited by the very small number of the signals that are standardized in OBD-II PIDs, more-

over, the work has been evaluated on old vehicles that have much fewer signals in the internal

network respect to newer ones.

Young et al. [27] suggested a very different approach. They proposed to use a machine

learning classifier to group messages which are strongly related to each other.

1. The first step of their work is the reverse engineering of signals correlated to the speed and

the action of the brake system by monitoring the changes of the bits in CAN messages

during acceleration and the activation of the brakes.

2. In the second step, they used a hierarchical clustering algorithm to group together similar

sequences of signals (using Euclidean distance as distance metric).

3. Finally the results of the hierarchical clustering are visualized to the researchers using a

dendrogram that should then determine the right number of clusters. The label assigned

to each cluster is determined by the labels assigned in the first step to some of the IDs.

This model has many limitations, mainly in the first step. The authors of the work have tested

their algorithm against three different logs of CAN messages that do not represent a generic

modern vehicle (a simulated dataset with just 10 different IDs; an old tractor; logs from a

vehicle positioned on a treadmill in a lab to simulate a real drive). In a real situation, there

25

are too many changes in the bits of the CAN data frames during every action (many of them

changes randomly even when the vehicle is still and no action is performed). Anyway, this

work shows that machine learning models can be applied with good results to the sequences of

packets recorded from the CAN bus.

2.4.1 READ: Reverse Engineering of Automotive Data Frames

The READ algorithm [28], developed by Marchetti and Stabili, processes raw CAN logs

to find the boundaries of the different signals enclosed in each CAN packet. Moreover, it can

recognize physical signals and label some data blocks inside the packets which are used by the

ECUs as control mechanisms. These results are obtained without any prior knowledge about

the different signals inside the sequences of packets in input and then it can be applied with no

extra work to any vehicle.

The algorithm analyzes the packets sent in the CAN bus as an ordered sequence of payloads

grouped by the ID of the correspondent packets and then observes the evolution of their bits

over time. The raw logs of sniffed packets from the CAN bus are a sequence of data frames

ordered by timestamps (which is added from the computer that records them), so they have

to be grouped by their IDs in different sequences (still ordered by timestamps). The different

sequences can be then processed by the algorithm in parallel, the processing of one sequence is

not influenced by the others.

The boundaries of the signals and the labels are assigned using two types of metadata

calculated for each sequence (identified by an ID) at the beginning: the bit-flip rate and the

26

magnitude arrays with a length equal to the number of bits in each sequence (determined by

the value of the DLC field).

The bit-flip rate is calculated by counting the number of bit-flips that occur in the sequence

(how many times each bit change from 0 to 1 and vice-versa in consecutive packets) and then

dividing these values by the number of data frames that compose the sequence.

The magnitude array is then obtained from the bit-flip rate array applying the equa-

tion Equation 2.1 to any bit-flip b.

magnitude(b) = dlog10 (b)e (2.1)

Then the algorithm is divided into two phases. It uses the magnitude array to find a

preliminary list of boundaries between the bits positions in the sequences and, in the second

phase, it uses the bit-flip rates to find the final boundaries and to assign a label to each of them.

The overall process of the READ algorithm is represented in Figure 5.

The first phase of the algorithm identifies the preliminary boundaries using only the magni-

tude array of each sequence. A preliminary boundary is identified by a drop in the magnitude

of two consecutive bit positions, this is done because this drop of the magnitude shows that a

less significant bit of a signal (with a high magnitude because it changes many times during the

change of values of the signal) is followed by the most significant bit of another signal (which

will change much less) or by a constant / multi-value signal.

27

CAN packets payloads

PreProcessing
Phase

Bit-flip rate arrays Magnitude arrays

Pahse 2

Pahse 1

Preliminary signal boundaries

Final signal boundaries

Figure 5: Phases of the READ algorithm

28

In the second phase, the algorithm looks for two types of information that manufacturers

include inside the payload of the packets to implements a simple security mechanism against

basic attacks: counters and CRCs.

• Counters are, as the name suggests, counters that identify the order of the messages with

the same ID, they help the nodes to order the packets and identify retransmissions. They

are identified by a magnitude of the bit position corresponding to the least significant bit

equals to zero and a bit-flip rate that doubles at each position from the most significant

bit to the least one.

• CRCs are error detecting messages used to find errors in the bit transmitted in safety-

related frames. These signal have the same goals of the CRC field in the CAN packet

structure 2.2 but they are not the same thing: they coexist and the one that is included in

the payload is computed following proprietary (and secret) rules, on the other hand, the

CRC field uses a check that is calculated following the public standard. Marchetti and

Stabili found from empirical studies that a CRC signal is identified by a magnitude equal

to 0 for each bit position and the bit-flip rate of its bits follows a Gaussian distribution

centered in 0.5.

By applying these empirical results the READ algorithm can find and label counters and CRCs,

after removing these signals it outputs the final boundaries of the physical signals.

29

2.4.2 LibreCAN: Automated CAN Message Translator

The approach adopted by LibreCAN [29] is not a simple analysis of CAN messages but it

is a structured design of how to collect data from the vehicles during the experiments and how

to use all these data in the following analysis.

The approach uses a different source of data:

1. raw logs of CAN packets.

2. information collected using the OBD-II PIDs.

3. Inertial Measurement Unit (IMU) data collected using the sensors of a gyroscope in a

smartphone

The first step of this approach uses a slightly modified version of the READ algorithm

(2.4.1) to extract the different signals from the data frames.

In the first phase of the process, they run an xcorr (normalized cross-correlation) for each

signal from those collected from the IMU sensors and OBD-II PIDs with all the signals extracted

from the CAN bus. The CAN signals with a high correlation value (they decided a threshold

that maximizes precision and recall) are labeled as kinematic-related signals in the CAN bus.

Moreover, for those signals with a very high correlation value, it is possible to match the CAN

signal to the one from the smartphone or the PIDs and then we can find the offset and the

multiplier of the signal (as mentioned in section 2.2.4, the CAN signals do not encode absolute

values but a signal with a linear relation to the real value determined by an offset and a

multiplier).

30

The second phase aims to find the signals of body-related events (e.g. opening/closing of

doors and windows, heating). To recognize these signals, a 3-stage filtering process is applied

to snippets of the recorded data from the CAN bus (where the researchers do actions to trigger

each different event).

The three stages consist of:

1. filtering out from the event snippet all the sequences of messages with the same ID where

the bits remained constant during the event.

2. filtering out all the messages with ID and payload that match a couple of ID-payload of

the messages present in a snippet of CAN data recorded when no body-related event was

taking place.

3. filtering out all the signals found during the first phase (that should be related to kinematic

signals).

This work shows the most recent approach to reverse engineering of CAN signals and to the

labeling each different ID with the corresponding signal.

This work, unlike READ, cannot be applied directly to raw CAN logs but it needs to collect

data from different sources (OBD-II PIDs and IMU data) and it requires more complicated

experiments to collect different snippets for each body-related event. Moreover, the paper is

not clear enough on some steps and it does not explain how the labeling of the real kinematic

signals is done because:

• OBD-II PIDs contain only a very small fraction of the kinematic signals of the CAN bus

31

• it is not specified how the IMU data from the gyroscope of a smartphone are processed

and used and how can they be used to label a specific signal of the CAN bus.

2.5 Goals and Challenges

In this section, we want to explain which are the main goals of our work and how we want

to overcome the state-of-art shortcomings

2.5.1 Goals

Our main goal is to improve the tools and modern approaches to the reverse engineering of

CAN communications. We want to suggest to the researches a better approach that can reduce

the time needed to manually reverse engineer the internal architecture of their vehicles.

We want to achieve this goal without asking them to perform long and tedious experiments

and without the use of external pieces of hardware required to collect additional data (e.g.

external IMU sensors).

Our approach suggests using a trained machine learning model that just needs as input

the logs of the CAN bus of the vehicles. In this way the collection of these logs can be done

during a normal driving session, the data can be collected by common operators that do not

have specific knowledge and old CAN logs can be analyzed without repeating the experiments

in particular conditions.

The suggested model uses a statistical algorithm (slight modification of [28]) to preprocess

the packets recorded from the internal network of the vehicle and a supervised machine learning

model to label the IDs of some important signals flows in the vehicles internal network. Doing

32

this, we do not need special equipment for collecting the data and need the input needed

includes only the raw logs of the CAN packets.

2.5.2 Challenges

The security by obscurity paradigm of modern vehicles makes difficult to reverse engineer the

signals encoded in the data frames of a generic vehicle. This process, without the information

provided by the DBC files from the vendor, is very long and it should be done for every different

vehicle because different vehicles have different architectures and implementations.

The biggest challenge we face is that we have to create a dataset to train and evaluate our

model without the use of any prior information, we do not have the DBC files of the vehicles

used in our experiments.

Moreover, our goal is to understand if a machine learning classifier can be trained using

a set of vehicles and then used to classify signals in different vehicles with logs recorded in

different conditions. This is a very tricky step, in the other works that we have presented([29],

[26], [27]) the data used to label the CAN signals was collected from the same vehicle of the

CAN signals and during the same driving experiment. In our work, we have to overcome this

limitation because our model needs to be as generic as possible and we want the researcher to

use a pre-trained model to classify the signals in their vehicles with no extra effort.

CHAPTER 3

APPROACH

3.1 Introduction

Our objective is to create a model that directly analyzes CAN logs. In this section, we

describe our research and the steps that are necessary for the creation of such a model (see

Figure 6).

We start by explaining how to collect the dataset to train and test the model. The dataset

is created by collecting only raw logs (formatted appropriately), which means a mere record of

CAN packets sniffed from the bus.

Following the creation of the dataset, we describe how and which algorithms we have used

to extract the different signals from the list of messages (each message can have multiple signals

inside) and how we have cleaned the data from useless metadata (CRCs and counters).

Removing those, we remain with a time series for each experiment and each signal. We

preprocess these time series and then use a part of them to train our model.

Data
collection

Signal
extraction

Time	series
preprocessing

LSTMs

Labelled
signals

Figure 6: Overall architecture

33

34

Finally, we describe the machine learning architecture used for our model and discuss the

evaluation process.

The steps to create the machine learning classifier are:

1. Dataset creation

2. Dataset exploration [30] and Manual reverse engineering of the signals

3. Identification of different signals inside the data frames

4. Preprocessing

5. Training of the deep learning model

6. Evaluation

3.2 Dataset creation

To train and evaluate our model we need logs of data frames from different vehicles and

vendors. It is important to have very different vehicles in the dataset to be able to train a

model that can be as general as possible and not fit on one particular vehicle or manufacturer.

Moreover, it is necessary to test the model against a test-set that can be considered as generic

as possible. One of the main problems of other researches in this area is the lack of available

vehicles for experiments and evaluations.

As we have discussed in section 2.4, some previous work did not have reliable data for their

experiments and that led to problems in the evaluation phase.

Even in the lucky case, in which researchers have a partnership with a specific vendor for the

use of DBC files, it can be a problem to evaluate the work accurately because the evaluation is

35

usually done using only vehicles of the same vendors [29] and this does not allow to understand

how their results will translate in different settings.

To create a good dataset that can be considered generic and representative of a variety of

different vehicle it is necessary to collect data from different vehicles, produced from different

manufacturers. This is necessary because similar vehicles from the same manufacturers will

probably have some components in common and this will lead to having a bias of the machine

learning model that will learn only how that specific set of components represents the signals.

The input data of our model is composed of recorded sequences of the CAN packets that

flow in the CAN bus network during a generic driving session. Since we want a model that

can be used from the researcher on data collected during a generic experiment and we do not

want to force them to follow a particular track for the collection of their data, we collect the

data used to train and test the model with many city/highway driving sessions, in different

conditions and with different tracks.

As we will explain in detail in the next sections and similarly to what is done in the READ

algorithm [28], our model analyzes how the bits change from one message to the next one. This

process can have slightly different results depending on the driving conditions, then we also

repeat the data collection from some of our vehicles doing more than one driving session with

each of them.

During the driving, we sniff all the data frames that flow in the internal network of the

vehicle. The data that is recorded from the CAN bus contains a sequence of packets and the

timestamps of our computer when it received each packet.

36

Our dataset can be represented as a table in which each row is a recorded CAN packet and

the columns are:

• Vehicle

• Driving session in which the packets has been recorded

• ID of the packet

• CAN bus line (if we have found more than one CAN bus line in the vehicle)

• Timestamp

• Length (in bytes) of the data frame’s payload

• Actual payload

To make the data easier to store and access, the dataset is divided into different tables

(saved in csv format) grouping the messages by vehicle and by driving session.

3.3 Dataset exploration and Manual reverse engineering of the signals

Data exploration is always the first step in data science, it is the preliminary exploration of

the dataset which is done to identify the most relevant characteristics of the collected data. It

helps to understand the right preprocessing steps and it exploits the ability of the researchers

of recognizing patterns not captured by automatic algorithms.

During the driving sessions, we visualize how bits change in each frame (identified by an ID)

in real-time (see Figure 7) and take note of those that change accordingly with the movements

of the vehicle. We now have a set of possible signals, which are identified by the couple (ID,

37

Figure 7: Screenshot of cansniffer, highlighted in red the bits that have changed

bit positions), that seems related to the physical signals that we were looking for (speed of the

vehicle and RPM)

Find the signal of the steering wheel angle is much easier, we just turn on the vehicle

(without turning on the engine) and we move the steering wheel: we plot all the bits changing

during this experiment (which are only a fraction of those that change during a real drive with

the engine turned on) and we take notes of those IDs where the bits change with behavior that

follows our movements.

To confirm our manual reverse engineering done during the driving sessions, we then plot

the signals found and check our hypothesis by exploring the set of signals and the relationship

between them. For example in Figure 8 it is shown the plot of:

38

Figure 8: Plotting of speed signals and RPM of the Alfa Romeo Giulia in the first experiment

1. the 4 signals of the speed of the wheels

2. the signal of the speed of the vehicle (which has a frequency lower than the others)

3. the signal of the RPM

After manual reverse engineering, we can confirm that some trucks do not have a signal for

the steering wheel angle in the CAN bus.

3.4 Identification of different signals inside the data frames

In this section, we explain how to obtain the different signals recorded by the ECUs of a

vehicle starting from the packets sniffed during the driving experiments.

39

The log of CAN messages, for each driving of a vehicle, is the sequence of sniffed packets

ordered by their timestamps. To record the packets we use candump. The recorded CAN

packets look like:

(1580823978.993305) can0 546 [8] 8F CE 80 00 00 00 00 00

(1580823978.993499) can0 0DE [6] 1B A1 97 D0 08 F8

(1580823978.993747) can0 0FC [8] 0C E8 C0 02 00 3E 8F 4B

(1580823978.993873) can0 2FA [3] 10 05 63

(1580823978.994167) can0 5A5 [8] 7F FC 00 00 00 00 40 00

(1580823978.994346) can0 41A [7] C6 CF 74 90 A2 84 E0

(1580823978.994907) can0 0EE [8] 00 00 00 00 00 00 0A D8

Starting from these sequences we then group the packets by their ID in smaller sub-

sequences.

As discussed in section 2.2, in each packet are usually encoded information regarding more

than one single signal. It is then necessary to divide the sequences of packets with the same ID

in traces that correspond to the same signal, separating the sequence of bits of the payloads in

sub-blocks (one for each signal encoded in a packet).

Looking at how the bits change in the data frames it is possible to analyze the internal

structure and try to divide the different signals that are contained in a unique packet. This is

suggested by Marchetti and Stabili[28] and our procedure is a slightly modified version of the

READ algorithm that we discuss in detail in [30].

40

To chose how to group the bits in a trace we calculate two arrays of values: BitFlip and

Magnitude. Each element ith of the arrays is the value calculated with the bits in the ith

position in the data frame. We calculate the bitflip b as the count of times in which a bit

change value from one packet to the next one divided by the number of packets in the trace.

The magnitude is calculated with the equation Equation 3.1 (it differs from the original one

because of the use of floor instead of ceiling):

magnitude(b) =

−∞ b ≤ 0

blog10 (b)c otherwise

(3.1)

We use magnitudes and bitflips to find the start and end of blocks of bits that contain different

signals in each data frame.

To separate these blocks, the traces go through a two-step process.

In the first step, we produce a set of preliminary boundaries for the data-block using as

delimiter those positions where the bitflip is 0 (when we find a sequence of one or more bits

that has never changed value it is should be a signal separator and constant signals are dropped).

Then we look at the array of magnitudes: when we find a drop in the value of the magnitude

we put a delimiter there because these drops are the consequences of the presence of a less

significant bit of one signal that is followed by the most significant one of another signal.

The blocks found so far are still not clean signals: they can include extra metadata because

of some näıve safety mechanism implemented by vendors like CRCs and counters, described in

detail in section 2.4.1.

41

In the second step, we analyze the preliminary delimiters of blocks that we have found so far

and find and drop the sequences of bits that are recognized as CRCs or counters. A sequence

of bits is considered a counter if the bitflip rate double at each position (going from the most to

the least significant bit) and it is considered a CRCs if the magnitudes of all the bits positions

are 0s and the bitflip rates follows a Gaussian distribution with the center in 0.5.

The sequences of resulting blocks of bits are those that represent a physical signal and that

we analyze in the following sections.

With respect to the original READ algorithm we have used floor function instead of the

ceiling one because this makes us able to separate those bitflips that change constantly. How-

ever, a deeper study on the heuristic used to split the payloads of the packets in separate blocks

could find a more accurate function.

An evident example of this inaccuracy of the magnitude function has been found in the

recognition of the 4 signals of the wheel speed in the Alfa Romeo Giulia. By exploring the

signals in the Giulia we have found that the 4 signals of the speed of the wheels are in the

packets with ID 0EE and the blocks should be (the start and end bits change be slightly different

because some bits can be constant just because in our experiments we have not reached a speed

high enough):

{start-idx: 2, end-idx: 12}

{start-idx: 15, end-idx: 25}

{start-idx: 28, end-idx: 38}

42

Figure 9: Example of Magnitudes and Bitflips of ID 0EE Alfa Romeo Giulia

{start-idx: 41, end-idx: 51}

But the algorithm can find only the first three because the magnitude does not change

between the bit position 51 and the following one. Even if the bitflip rate of the bit in position

52 is lower the difference is not enough to have a drop in the magnitudes. This is shown in

Figure 9.

3.4.1 Two’s Complement

The time series that compose our dataset, that we have after the identification and sep-

aration of data blocks in the different packets, are identified by ID-CanLine-Variable-Vehicle-

Experiment (where ”variable” indicate the specific data block between those identified in the

previous step). As they are, some of these time series, are not ready to be processed by the

deep learning model and need a further processing step.

43

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

5A6

5A7

5A8

5AD

5AE

5E0

736

738

73A

73C

73E

7C8

7CA

Var. Type
Crc Halfword Binary Nibble Byte Word

0.00

0.02

0.04

0.06

0.08

0.10

Figure 10: Heatmap representation where each cell value represents the magnitude of that
bit-flip rate in that bit position, the signals identified are highlighted.

The time series that we retrieve from the CAN bus are binary sequences, the values encoded

in these sequences are, usually, unsigned integers but that is not always the case.

As the first step, we convert our binary values (interpreted as unsigned-int) into decimal

integers.

During our experiments, we have observed that some signals are encoded using Two’s com-

plement, in particular those signals with a physical value which is zero centered (e.g. the

steering angle position). In these cases, we observe different changes in the sign of the values

along with the time series. Those time series values (in two’s complement and zero centered)

after the conversion of their values from binary to decimal integer have a behavior similar to

square waves because of the sign changes: the negative values are converted in very high posi-

tive numbers (depending on the length of the binary number) because the last bit is 1 and the

44

Figure 11: Plots of the signal of the steering wheel angle of the Opel Corsa decoded as Unsigned
integer and then as a Two’s complement number

positive number are converted in much smaller numbers because the most significant bit is 0.

We need to find and convert properly these time series because the square waves are a wrong

representation and the original behavior of the signal is not correctly represented.

We look for two’s complement time series by searching for changes in sign in the binary

number. To do so we count how many times the first x bits of a time series changes from all

1s to all 0s, if the counter exceeds a certain threshold (for us it was 5) then the sequences are

recognized as a two’s complement encoding and it converted from binary to integer in the right

way.

Figure 11 shows the plots of the steering angle position signal of the Opel Corsa, the first

plot is the signal interpreted as unsigned integers and the same signal but with the correct

decoding.

45

3.5 Time series preprocessing

Our model has to find patterns in the behavior of the time series that we have produced in

our experiments.

Exploring our dataset we noticed that a fair number of time series and in particular those

that seem directly related to the movements of the vehicles have long sequences of 0s, these

sequences were probably caused in the moments in which the car was still or even when the

engine was turned off. The frequency of packets is very high (in particular for those sensors

that send information related to the driving). These sequences are a great problem for the

classification, the neural network labels them incorrectly because of the absence of any pattern

in them. So we remove those sequences from the time series in the dataset.

The time series, as they are now, have two problems caused by their length. A single time

series has the data of an entire experiment with the vehicle, which is a relatively long drive

where many different behaviors have been registered (e.g. city driving followed by a highway

driving) and different traffic conditions along the same drive can make difficult the learning

process of the neural networks. To avoid this problem we split our long time series into smaller

pieces, in this way we have signals that were captured during a smaller period of time and

so it is more likely that the driving conditions were more uniform along that time. Splitting

the time series in smaller sequences is also the first step to mitigate the problem of having a

strongly imbalanced dataset, we will talk about this problem soon. Moreover, using shorter

input sequences in our neural network makes the training phase much faster and it helps a lot

the model during the training process.

46

3.5.1 Deal with imbalanced data

In the CAN bus, there are usually more than 100 signals (and the number increase as the

technology improves) and our goal is to find a specific signal among all the others. In our

dataset, we have just a sample of each signal for each driving experiment.

Learning with an imbalanced dataset is a common problem in lots of different applications

of machine learning. The imbalanced data problem refers to those situations where the positive

examples (those of a particular signal that we are searching) are outnumbered by the negative

ones [31]. If a machine learning model is trained with a great number of negative examples

will just learn to predict always negative because it is the easiest way to minimize the error in

predictions. To deal with this problem we try to make our training dataset more balanced with

two common techniques: over-sampling (with SMOTE) and under-sampling (see Figure 12).

SMOTE (Synthetic Minority Over-sampling Technique) [32] is a particular over-sampling

technique that generates new synthetic examples of the minority class, in our case the signals

that we want to recognize. Common over-sampling techniques consist of just train the model

using as input a dataset with more copies of some examples of the minority class, in this way the

model cannot reduce the error predicting only the majority class. On the other hand, SMOTE

creates new samples and does not repeat the existing ones. To do so, SMOTE takes k random

nearest neighbors (in our case k=5) of the samples in the minority class and then the synthetic

samples are picked by choosing points in the segments that join the samples in those K-NNs.

47

Generating new samples of
minority class with SMOTE

Original dataset

Random undersampling of
majority class

Final dataset

Figure 12: Deal with imbalanced data of the training set.

After over-sampling we apply a random under sampler to the majority class (all the other

signals in the dataset). As suggested by Chawla et all [32] the use of sub-sampling after SMOTE

improves the performances of the classifier. Our dataset is strongly unbalanced, then we use

both techniques to increment the ratio of the samples in the minority class over the samples

in the majority class but we decide not to reach a balanced dataset because this leads to

overfitting too much with SMOTE on the signals of our experiments. To avoid over-fitting we

apply SMOTE to reach a ratio (number of minority class samples over the number of majority

class samples) of 0.25 and then under-sampling the majority class to reach a ratio of 0.4.

48

3.6 Deep Learning Model

Our main goal is to find an easy and quick solution to find a specif car signal among all the

others. We want to achieve this by just looking at the time series without any prior knowledge

on the specific car and external data (DBCs or data recorded during the experiment by other

devices like in [29] or [21]). We have preprocessed CAN logs to produce a dataset of time series

and we want to classify them.

A common and difficult to beat approach is to use 1-nearest neighbor (NN) [33] using

Dynamic Time Warping (DTW) as distance function [34]. But unfortunately, this approach

can’t create a generalized model for different vehicles (as we explained, all the vehicles have a

different and secret representation of data in their networks) and for data collected in different

ways (different tracks and driving behaviors).

We use a deep learning algorithm that can be trained using a group of different vehicles.

The resulting model can be then used to classify the same signals in other vehicles receiving as

input only the logs of the CAN bus messages (preprocessed as we have described in the previous

chapters).

Deep neural networks [35] are now commonly used for classification problems and Recurrent

Neural Networkss (RNNs) (they are based on the work of Rumelhart [36]) can handle time series

data thanks to internal loops in their architecture that are used as a sort of internal memory.

The internal memory of RNNs is used to take into account the behavior of the data in input

along with the different time instants. We use Long Short-Term memorys (LSTMs) [37] which

are a particular evolution of the common RNN architecture that can deal with the vanishing and

49

exploding gradient problems [38]. LSTMs are particularly suited for time series classification

([39], [40]), moreover Saleh et al. [41] already applied them in the automotive area for the

classification of driving behavior with good results.

We use one LSTM network for each signal that we want to find because we prefer to have

different binary classification problems rather than a single multi-class classification problem

than can be easily created with an one-versus-all (OVA) or all-versus-all (AVA) approach. The

reason behind this choice are:

• in a multi-class classification problem, errors in one of the underlying binary classifiers

can compromise the entire prediction [31]

• we prefer to have results with different confidences for each signal. This work aims to

give to researchers help in the reverse engineering process so we think that it’s better to

give them all the results for each signal because even false positive or signals that are

predicted as the negative class but with a result that is just a bit lower of the threshold

can be useful (e.g. if the classifier of the RPM finds another signal that behaves similarly

then this information can be useful to understand what signal it is). Moreover, it is easier

to analyze the results of many binary classifiers rather than the results of a multi-class

one.

To classify the three signals that we have labeled in our dataset, we train three different LSTMs

(see Figure 13).

50

LSTM signal 1

Processed time-series
LSTM signal 2

LSTM signal 3

Probabilities
for each target signal

Figure 13: LSTM classifiers

51

We feed each LSTM binary-classifier with all the processed time series that represent our

CAN signals. Each classifier gave us, in output for each input signal, the probability that the

signal is the target signal that the classifier is trained to classify.

The final output that we want to obtain from our model is a subset of the set of CAN

signals, identified from the recorded messages of a vehicle, for each target signal that our model

can classify. These subsets should contain a small number of signals (compared to the original

dataset) that the researchers will manual inspect to find the right signals.

To obtain the subset, for each target signal, we select the signals to which the correspondent

LSTM has assigned a high probability. By default, the threshold to select the signals is 0.5 but

this can be then lowered by the researchers if during the manual inspection it is not possible to

find the signals they were looking for.

In our preprocessing step we have split the time series in smaller sequences and then our

LSTMs will return a probability for each sub-sequence. The final label assigned to each original

signal is obtained by merging all the labels assigned by the model to the corresponding sub-

sequences with the majority voting rule.

3.7 Evaluation

For the evaluation of the model’s results we split the initial dataset in a training-set and a

test-set using different vehicles for the two sets.

The vehicles that we used:

• are very different from each other (we have commercial trucks of very different sizes and

functionalities, a city car and a sporty car).

52

• have been produced by different vendors.

• have produced data for the experiment in different driving settings.

Splitting the data collected with these vehicles make us confident that the results that we

obtain can be generalized to other vehicles and in other experimental settings.

We take into consideration different metrics to evaluate the results of our model. In our

problem we cannot rely on accuracy (Equation Equation 3.2).

accuracy =
number of samples classified correctly

total number of samples
(3.2)

Our goal is to find few signals among more than 100 signals that flow in the car internal network,

this means that if our model will predict every input as the negative class (which include almost

all the signals in the dataset) the accuracy will be very close to 1 even in those cases where it

is unable to find our signals.

First of all, it is necessary to look at the confusion matrix, Table II, which represents all

the possible outcomes of a classification problem. Using the values of True Positive (TP), True

Negative (TN), False Positive (FP) and False Negative (FN) we can introduce other metrics that

suits well our problem: Precision (Equation Equation 3.3), Recall (Equation Equation 3.4),

False Positive Rate and True Positive Rate.

Precision =
TP

TP + FP
(3.3)

Recall =
TP

TP + FN
(3.4)

53

Actual Class
Target Signal Other Signal

Predicted Class
Target Signal True Positive False Positive
Other Signal False Negative True Negative

TABLE II: Confusion Matrix.

Precision measures how many samples, between those retrieved by the model, are of the

class that we were looking for. Recall, on the other hand, measures how many samples of the

target class are classified correctly.

Finding exactly only the target signals is almost impossible, we already explained the reasons

that make signals of different vehicles so different but we have also many signals of the same

vehicle that are highly correlated with each other and this makes it difficult for a machine

learning classifier to distinguish them.

Considering that we cannot reach the perfect classifier and that we will have misclassifica-

tions, we decide to focus on the Recall metric and to reduce those signals of the target class that

are not classified correctly. Then we prefer to have a higher number of False Positive rather

than a high number of False Negative.

This model can be used to select a small group of signals (TP+FP), among the entire CAN

log, that has to be explored [30] that researches can then analyze to find the target signals. If

we have a high number of FN this cannot be done because the researchers will always need to

look to the entire dataset because many target signals will be part of the False Negative group.

CHAPTER 4

EXPERIMENTAL VALIDATION

4.1 Goals

With our work, we aim to show that:

1. our model can find the target signals used to train the model. We focus on the Recall

value and we care less about Precision and False Positive Rate.

2. the procedure to collect the necessary data that has to be given as input to our tool is

simple and does not require great effort and prior knowledge.

3. the tool is relatively quick in the classification (we don’t care much about the time required

for the training phase) and help researchers reducing the time required in the reverse

engineering process.

The first goal is the one that arises the greatest difficulties in the evaluation. Unfortunately,

we miss ground truth, we don’t have the DBCs files of the vehicles that we used to collect our

data and this means that we cannot translate the entire set of signals in the CAN bus. So we

can validate our model only against the signals that we have manually reverse engineered, we

are very confident of those signals but unfortunately, we cannot understand the label of the

other signals. That means that we cannot derive any conclusion about the False Positive signals

(we can’t say how much they are related to the original signal that we were searching).

54

55

In modern vehicles, many signals are directly correlated like the pedals positions and the

actions triggered by that (change in the gas flow, brakes, etc..) but without the ground truth,

we cannot include these types of considerations in our evaluation. Moreover, even the algorithm

[28] that we used in the identification is not perfect, for example, we found that it was not able

to find all the counters and it has not recognized some important signals, and even here the

DBCs files would have been precious.

4.2 Dataset

The creation of this dataset has two main goals:

1. to provide us a dataset to train and test our model and that contains vehicles with very

different characteristics.

2. to provide to future researches an additional dataset to evaluate their models.

We made this dataset publicly available [30].

The dataset is composed of CAN bus data logged during different driving conditions. We

collect logs from five vehicles, produced by five different vendors. The vehicles have a very

different design (and we then expect that also the behavior and design of their ECUs is not too

similar): two of them are cars and the other three are commercial trucks:

• Alfa Romeo Giulia

• Opel Corsa

• Mitsubishi Fuso Canter

• Isuzu M55

56

• Piaggio Porter Maxi

Table III and Table IV describe the different vehicles and test done.

For training and evaluating our model we use only the data from the tests that include a

driving session (see the description column in Table IV).

The dataset is composed of data extracted from five different vehicles but, for the two cars,

we have more than one driving session. This has been done because, as it is evident from the

column ”IDs” in Table IV), in each session the sniffed packets can be different because not all

the events have been triggered every time. Moreover, repeating the driving sessions can lead

also to some slightly different results in the identification of the boundaries of each signal in

the CAN packets: to recognize these boundaries we analyze bitflips and magnitudes of each

bit position, then the results of that process can have small variations in very different driving

sessions. Unfortunately, doing different driving tests was not possible with the three trucks.

We have monitored each session to explore the recorded signals and double-check our manual

reverse engineering comparing the signals with the events and the path traveled (in every instant

of time). To record the sessions we have used an app installed in a smartphone[42], Figure 14

shows the track followed during the last driving session and Figure 14 shows the statistics of

that session.

To train our dataset we have manually reverse engineered three signals (vehicle speed, engine

speed, and steering wheel angle) and then, for each vehicle and each signal, we have recorded

in the dataset:

• ID of the packet that contains the signal

57

ID Vehicle Type

C-1 Alfa Romeo Giulia Veloce Car

C-2 Opel Corsa Car

T-1 Mitsubishi Fuso Canter Commercial Truck

T-2 ISUZU M55 Commercial Truck

T-3 Piaggio Porter Maxi Commercial Truck

TABLE III: Dataset composition according to vehicle type

• Start bit of the data-block of the signal

• End bit of the data-block of the signal

4.3 Experimental Setup

4.3.1 Hardware

To collect the data from the different vehicles (see Table III) we use common tools and

open-source software. The necessary pieces of hardware to connect a laptop to the vehicles are

a CANtact board (Figure 16) and a standard CAN connector (Figure 4). A ELM327 interface

Figure 17 and the ”OBD Auto Doctor” software have been used to collect the OBD-II PIDs

that we used as help during the manual reverse engineering phase.

The CANtact [43] is a board that works as an interface between the CAN bus and a

computer. It connects to the computer using the USB port and to the CAN bus using the

standard OBD-II port or by direct wire access to the bus. The CANtact is an open-source

project and both the firmware and hardware are publicly available, it is a low cost and cross-

platform and these are the reason that makes it the perfect choice for these experiments.

58

Figure 14: Recorded path travelled in the last driving session of the Alfa Romeo Giulia

59

Figure 15: Recorded path travelled in the last driving session of the Alfa Romeo Giulia

60

Vehicle
Experiment time

IDs Frames Description
Date Start End

C-1 2018-07-26 15:15:58 15:35:20 77 3,062,691 city driving

C-1 2018-07-26 15:46:13 15:48:32 76 364,863 city driving

C-1 2018-07-26 15:49:10 15:49:23 76 33,005 brake tests

C-1 2018-07-26 15:50:29 16:10:54 83 3,227,315 city driving

C-1 2018-07-26 16:10:57 16:20:16 83 1,473,625 city driving

C-1 2018-07-26 16:20:20 16:30:59 83 1,684,769 city driving

C-1 2018-07-26 16:53:17 17:10:31 83 2,723,484 city driving

C-1 2019-02-01 16:31:01 16:40:58 82 1,569,776 city driving

C-1 2019-02-01 15:18:55 16:30:36 88 10,942,747 city driving

C-1 2020-02-04 13:46:18 14:18:15 88 5,113,676 city driving

C-2 2019-10-02 08:54:16 09:22:40 78 3,467,855 city driving

C-2 2020-02-13 13:45:35 14:15:00 78 3,592,112 city driving

T-1 2019-02-20 16:04:06 16:35:04 31, 47* 1,798,602* city driving

T-2 2019-11-08 14:51:57 15:07:43 22 498,721 city driving

T-2 2019-11-08 14:34:33 14:43:20 22 263,269 not moving

T-3 2019-11-08 11:48:56 12:14:58 23 1,729,623 city driving

T-3 2019-11-08 11:16:55 11:23:42 19 2,795,321 not moving 1

T-3 2019-11-08 12:57:48 13:42:52 23 2,795,321 not moving 2

* For this experiment, there are included both can0 and can1 lines.

TABLE IV: List of experiments per vehicle

61

Figure 16: CANtact board

4.3.2 Software

The software used to connect to the CAN bus is part of the CAN Utils library [44] which

is open-source and it is included in the Linux kernel. In particular, we used two tools of the

library: candump and cansniffer.

As first step, it is necessary to create a network interface with the command slcand

[options] <tty> [CAN interface], we used the options -o -c -s6. The most important

option is the last one that depends on the frequency of the bus in the vehicle (-s6 is for a

frequency of 500kbit/s, which is the most common one).

62

Figure 17: ELM 327

63

Figure 18: Connection to the vehicle

64

Candump is used to display and dump all the packets that flow in the bus. When the network

interface is up (ifconfig <CAN interface> up) we can start logging the CAN packets with

Candump with the command candump -ta <CAN interface> > <output file>. The option

-ta is necessary to save the POSIX timestamp for each packet. A data frame collected in this

way has the following structure:

(<timestamp> canLine ID [length in bytes] <actual data>

For example:

(1573208215.472159) can0 300 [8] 64 00 00 00 00 00 00 00

Cansniffer has been used as help during the manual reverse engineering of our target sig-

nals. We have stressed our vehicles in many experiments to recreate strange behavior in the

signals that we wanted to find, during these experiments we used cansniffer with the command

cansniffer <Can interface> -c -B that shows in real time only the data frames where the

bits are changing. Doing this it was possible, repeating some action different times, to select

groups of ID and bits that seem to change accordingly to our actions (and then exploring them

looking at the logs of the packets).

65

4.4 Performance Evaluation

In this section, we want to present the results obtained with our model and analyze how

this approach can help the researchers in comparison to the other approaches proposed in the

state-of-art (see section 2.4).

4.4.1 Comparison with the related works

Up to now, the best results in reverse engineering of CAN packets have been obtained from

the READ algorithm [28] and the approach proposed by LibreCAN [29].

The READ algorithm is the base of the phase in which we identify the different signals

encoded in the CAN packets and we have proposed different analyses and graphical representa-

tions of the results of that phase in [30]. In our paper, we have implemented a framework that

easily extrapolates the boundaries of the different signals and shows statistical information in

a graphic representation.

In this work, starting from the results that are possible to obtain with an algorithm like

READ, we want to enrich the information that can be extrapolated from the logs of CAN

messages by labeling specific signals in the logs.

LibreCAN [29] is the only work in the state-of-art with a similar idea and approach. The

first phase of the algorithm, like in our case, uses a modified version of READ to identify the

boundaries of the signal starting from the raw logs.

A direct comparison between our work and the LibreCAN algorithm does not make much

sense because the goals of the two works are different:

66

• we want to study the feasibility of a completely automatic model that can analyze directly

raw logs of CAN messages and, from these, it can give the most complete analysis to

researchers that can then use them in the reverse engineering process. The model that we

propose, after being trained, will be then able to classify signals of even unknown vehicles.

• the LibreCAN paper does not aim to create a model that can directly classify CAN signal,

it is a guide to a different approach to manual reverse engineering of CAN messages that

explain to researchers how to carry out the data collection from each vehicle and how to

set up the experiments. This approach leads to repeat every step for each vehicle that

needs to be studied.

We do not take into consideration the work of Young et al. [27] in this section because of

the evident limitations discussed in section 2.4.

4.4.2 Performance metrics

To understand in deep the results of our model we use different performance metrics.

First of all, it is important to understand that there are two possible kinds of binary clas-

sification problems[31]:

1. X versus Y, these are common classification problems like classifying a set of images as

cats or dogs pictures. In this kind of situation, we usually want to maximize accuracy

(Equation Equation 3.2).

2. X versus not-X, in this case, the classification problem is focused on spotting all the

X-samples. In this kind of problem, the focus is not on the classification of the two classes

67

anymore, but the important thing is to find all the samples of one of the two classes. A

good example of this problems are medical tests: if we are testing a patient for a virus

infection we want to be sure that he has not the virus (even making some errors and saying

that he has the virus when it is not true) more than classifying him as healthy when that

is not true. Moreover, in this case, we usually have to deal with imbalanced data (when

the samples of one class outnumber the samples in the other class) and accuracy is not a

good metric anymore. We have to use other metrics like recall (Equation Equation 3.4)

and/or precision (Equation Equation 3.3).

Our problem is an evident ”X versus not-X” case, we want to find a signal (which can be the

speed of the vehicle or another physical signal present in the CAN bus) among all the possible

signals that are registered by the ECUs of a vehicle.

Since is almost impossible to create a perfect classifier, we have to decide where to focus

our attention and which is the metric that is more relevant to us.

Our objective is to give help to the researchers in the reverse engineering work but we cannot

replace them, the human intervention at the end is still needed and then our results are just a

further help for the humans to make the process easier.

Then we have to take into consideration the four possible outcomes of our classification

process, well described in the confusion matrix represented in Table II, that is trying to find

a target signal among the entire set of signals that flows in the CAN bus. Then the possible

outcomes are:

1. True Positive (TP): the signal is classified correctly as the signal that we were looking for

68

2. True Negative (TN): the signal is correctly recognized as not one of the target signals

3. False Positive (FP): the signal is classified incorrectly as one of the target signals when it

is not

4. False Negative (FN): the signal is not classified as the target signals when it is

We want to be able to select a smaller set of possible signals from which the researchers

have to pick the correct signal that they are looking for, to reduce the effort needed.

In this perspective, our goal is to filter as many signals as possible from the set of possible

signals where we are looking for a specific signal but without removing accidentally the target

signal because in this case the researchers will not find the target signal among the selected

set and they will need to analyze all the possible signals (and this means that our tool has not

made the process faster).

We should, therefore, focus on having a very low number of false negative outcomes and this

is well captured by the recall metric. After that, we evaluate our model using false positive

rate (see Equation Equation 4.1) and the F1 score to understand how much can we reduce the

set of possible signals (the number of false positive outcomes extends the time needed to the

researchers to find the right signal between those selected by the model).

FalsePositiveRate =
FP

FP + TN
(4.1)

The F1 score is a popular metric to visualize in a unique number the quality of the solution

by leveraging recall and precision (this is also called the balanced f-score) and it is defined as

69

described in Equation Equation 4.2. The values of the F1 score in our tests are low because

this metric leverages recall and precision (and not the false positive rate). Both Precision and

False Positive Rate are metrics that measure the quality of a model looking at the number of

false positive samples. The difference is that the former compares them to the number of true

positives and the latter to the number of true negatives. In our case, the classification will

always have a very small number of true positive samples for each signal (in many cases only

one signal) and the majority of the cases will be true negative samples.

Moreover, we want to measure how much the model can decrease the number of signals

that the researchers have to inspect manually. Therefore, we want to compare the number of

misclassified signals, that they have to eliminate from the final set given by our model, with the

number of all signals that they should have eliminated from the entire set of signals without

applying our model.

F1 =
2× Precision×Recall

Precision + Recall
(4.2)

4.4.3 Results analysis

We have tested our model with a cross-validation approach: we have done three different

tests, separating training and testing sets each time in different ways. To avoid over-fitting, we

have grouped the data by vehicle and used, every time, complementary sets of vehicles to train

and then test the model. In this way, we are sure that the input signals of the training phase

do not have some correlation with those in the testing set.

70

Test Training Set Testing Set

Test 1: Speed-RPM C1,T1,T2 C2,T3

Test 1: Steering Angle C1,C2 T3

Test 2: Speed-RPM C2,T1,T3 C1,T2

Test 2: Steering Angle C1,T3 C2

Test 3: Speed-RPM C1,T1,T3 C2,T2

Test 3: Steering Angle C2,T3 C1

TABLE V: Training and testing sets for each test.

Training and testing sets for each test are described in Table VI.

The classifiers for the speed and RPM signals have been trained with the same sets of signals

in each test. For the classifier of the steering angle position signal a different choice has been

made because this signal was not present in the CAN bus of the Mitsubishi Fuso Canter (T1)

and of the Isuzu M55 (T2).

4.4.3.1 Speed signal classifier

The outcomes of the speed signal classifier for each test are shown in Table VI.

Except for the last test, all the speed signals have been correctly classified and we have

only a few false positive samples (10 on average). The third test is the one that had the worst

results, in this case, we had 5 false negative samples.

Since, in most cases, researchers know if a signal should be present in the CAN bus when

they do not find the target signal in the set found by the model they should lower the threshold

used to classify the signals. We have then reported the results obtained in the same test but

lowering the threshold.

71

Actual Class
Target Signal Other Signal

Predicted Class Target Signal 9 7
Test 1 Other Signal 0 134

Predicted Class Target Signal 7 24
Test 2 Other Signal 0 178

Predicted Class Target Signal 1 1
Test 3 Other Signal 5 179

Predicted Class Target Signal 5 15
Test 3* Other Signal 1 165

* The results of Test 3 but lowering the threshold of classification.

TABLE VI: Confusion Matrix of the outcomes of the Speed Signal classification

Test Recall F1 score False Positive Rate

Test 1 1.0 0.72 4.96%

Test 2 1.0 0.37 11.88%

Test 3 0.17 0.25 0.55%

Test 3* 0.83 0.38 8.33%
* The results of Test 3 but lowering the threshold of classification.

TABLE VII: Metrics of the Speed Signal Classifier

Inspecting the misclassified signals, we found that some of them are very easy to detect

through human inspection (some of them are just counters that were not recognized from the

READ algorithm and others have a very strange behavior which cannot be mistaken for the

signal of the speed) and then the selection of the right signals in the subset proposed by the

model should be easy and fast.

The metrics for this classifier in each test are summarized in Table VII.

72

Actual Class
Target Signal Other Signal

Predicted Class Target Signal 2 7
Test 1 Other Signal 0 141

Predicted Class Target Signal 2 50
Test 2 Other Signal 0 157

Predicted Class Target Signal 2 25
Test 3 Other Signal 0 159

TABLE VIII: Confusion Matrix of the outcomes of the RPM Signal classification

Test Recall F1 score False Positive Rate

Test 1 1.0 0.36 4.96%

Test 2 1.0 0.07 24.14%

Test 3 1.0 0.138 13.58%

TABLE IX: Metrics of the RPM Signal Classifier

4.4.3.2 RPM signal classifier

The outcomes of the RPM signal classifier for each test are shown in Table VIII.

The results for this signal were pretty good and, in all the tests, we have no false negative

samples.

The metrics for this classifier in each test are summarized in Table IX.

4.4.3.3 Steering wheel angle signal classifier

The outcomes of the Steering Wheel Angle signal classifier for each test are shown in Table X.

73

0 25000 50000 75000 100000 125000 150000 175000 200000

5000

0

5000

10000

Figure 19: Steering wheel signals of Alfa Romeo Giulia (blue signal), Opel Corsa (orange signal)
and Piaggio Porter Maxi (green signal).

As we have just explained, these tests were a bit different because we do not have this signal

on all the vehicles. Then the sets used to train and test the model are smaller.

In Figure 19 we have plotted the three steering signals in the three vehicles that we have.

From the plots, it is evident that in the Piaggio Porter Maxi (T3) and the Opel Cosa(C2) the

internal representation of the ”Steering wheel angle” is almost the same.

The model is then able to recognize easily the signals (and with just a very small number

of false positive) of the two vehicles which use a similar representation of the signal. But it has

problems recognizing the signal in the Alfa Romeo Giulia (C1): in the third test, in order to

reach a recall of 1, it was necessary to set a lower threshold and we have reached a false positive

rate of 30% in that case. This difficulty is due to the limited number of vehicles available for

this signal. The same model trained with a greater variety of vehicles would have performed

better.

The metrics for this classifier in each test are summarized in Table XI.

74

Actual Class
Target Signal Other Signal

Predicted Class Target Signal 1 2
Test 1 Other Signal 0 33

Predicted Class Target Signal 1 5
Test 2 Other Signal 0 108

Predicted Class Target Signal 0 2
Test 3 Other Signal 1 134

Predicted Class Target Signal 1 41
Test 3* Other Signal 0 95

* The results of Test 3 but lowering the threshold of classification.

TABLE X: Confusion Matrix of the outcomes of the Steering wheel angle Signal classification

Test Recall F1 score False Positive Rate

Test 1 1.0 0.5 5.74%

Test 2 1.0 0.286 4.42%

Test 3 0.0 0.0 1.47%

Test 3* 1.0 0.05 30.14%
* The results of Test 3 but lowering the threshold of classification.

TABLE XI: Metrics of the Steering wheel angle Signal Classifier

75

4.4.4 Final considerations on the results

These results show that our model can be of great help to the researchers in the classification

of the signals of the CAN bus because it can, from the entire set of signals that flows in the

internal network of a vehicle, select a much smaller subset of candidates and then reduce the

time needed for this work in their research.

We have applied this model just to the signals that we have found manually but we have

found no reasons to not extend, in the future, this model with other signals (hopefully with the

help of the DBCs files of the vehicles used for the training phase).

The results obtained are also limited by the number of only five vehicles used in the exper-

iment (three in the case of the steering signal) which cannot be used all together to train the

model to avoid over-fitting and then invalidate the results of the testing phase.

Moreover, we have worked mixing cars and trucks which have a very different internal

network: in two of the trucks one of the target signals is not even present and the number of

IDs (as shown in Table IV) and number of signals in the trucks is much lower than in the cars

(which have much more computing units in their network).

Thanks to this we have shown that a generalized model can be obtained even working with

very different vehicles but, probably, even better results can be obtained training and then

using the model with vehicles more similar to each other.

76

4.5 Choice of the vehicles to train the model

In this section, we want to analyze the results obtained training the model with different

sets of vehicles to understand how the choice of the training set impacts the ability of the model

to classify the signals.

The results change a lot depending on the differences between the vehicles in the training

set and the vehicles in the test set.

A great example of this is the case of the classification of the Steering Wheel angle signal

(see section 4.4.3.3). The results for that signal are very high for the first two tests: in those

tests, in the training sets, there was a vehicle where the signal was represented in a similar way

to the one in the test set. In the third case, instead, the results were lower because of the great

difference between the vehicles in the training and testing sets.

We have then done various experiments combining all possible training sets for the clas-

sification of the Speed and RPM signals, without considering the possibility of lowering the

threshold of classification. The results are summarized in Figure 20 for the Speed signal and in

Figure 21 for the RPM signal.

We have 5 vehicles, then, we can train the model with 1, 2, 3 or 4 vehicles. For each number

of vehicles used in the training phase, we have experimented with each possible combination of

the vehicles chosen for the training.

The final results are obtained by averaging the values of each metric obtained by testing

the models with different vehicles grouping the tests by the number of vehicles in the training

sets.

77

As we can see in the graphs reported in Figure 20 and Figure 21, as expected, the higher

the number of vehicles in the training set the better the results obtained from the model.

We have reached the best results training the model with all the vehicles but the one used

to test the model, but it is important to note that the results vary a lot for each choice of the

training set. As we have seen in the previous section, the number of false positive can rise a lot

or it can be necessary to lower the classification threshold if none of the vehicles used in the

training set has a signal that is encoded similarly as the one that we want to classify.

We have chosen to use very different vehicles for our work (trucks and cars with very different

characteristics) to put ourselves in the worst-case scenario and prove that the model can be

used as help even in these cases. But to have the best results it is very important to train the

model with vehicles as similar as possible to those to which we want to apply the model.

Another important factor is the number of driving sessions done with each vehicle used to

train the model. As we can see in Table VII and Table IX, the tests with the best results are

those in which we have the Alfa Romeo Giulia in the training sets. That is related to the much

higher number of driving sessions done with that vehicle, this helps the model to do not focus

on particular driving behaviors and generalize better.

78

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Number of vehicles in training set

0.2

0.4

0.6

0.8

1.0

recall
auc
fpr

Figure 20: Results of tests on different vehicles with models trained with an increasing numbers
of vehicles - Speed Signal

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Number of vehicles in training set

0.2

0.4

0.6

0.8

1.0

recall
auc
fpr

Figure 21: Results of tests on different vehicles with models trained with an increasing numbers
of vehicles - RPM Signal

CHAPTER 5

LIMITATIONS & FUTURE WORKS

5.1 Limitations

The lack of available DBC files of the vehicles under study, which are industrial secrets, led

to the main limitations of this work:

1. We have a limited set of signals that we were able to reverse engineer manually from all

the vehicles (speed signal, engine rotation speed, steering wheel angle). With the DBCs

files that describe the locations of all the signals in the CAN packets it would have been

possible to train and test our model with many other different signals.

2. The lack of ground truth leads us to be less precise in the construction of the dataset.

Our ground truth has been obtained by manual reverse engineering of the signals in our

vehicles. Although we tried to be as precise as possible, there’s still room for human error

and no solution to double-check its correctness.

3. Without a translating table for the entire set of packets, it is impossible to understand

the reasons behind misclassifications (both false positives and false negatives). With

a complete ground truth, it would have been possible to derive more conclusions (for

example it would have been possible to understand what are the relations between the

target signals and those that are incorrectly classified).

79

80

5.2 Future Works

Our main limitation can be overcome in future work with a partnership with a vehicle man-

ufacturer that provides new vehicles with the corresponding DBCs files. With the translation

tables, we will be able to study the misclassifications and improve the model for those cases.

Moreover, it will be possible to research other signals that this model can classify.

During the identification of different signals inside the data frames we use a slightly modified

version of the READ [28] algorithm, this uses the magnitude function to find the boundaries

between different features. This function has been chosen empirically and it sometimes fails in

finding the correct boundaries or even finding different results in different driving logs of the

same vehicle. A deeper study is necessary to investigate if a better function can be used to split

the variables inside a single frame.

CHAPTER 6

CONCLUSIONS

Security researchers have started to study the vulnerabilities of in-vehicle networks but

their work is made difficult by the security-by-obscurity paradigm adopted by the automotive

industry.

Since researchers often do not have access to the complete specifications of their vehicles

(described in the DBCs files), in this work, we have presented a solution to speed up the reverse

engineering process of CAN packets.

At first, we collected a detailed dataset of CAN packets and made it publicly available [30]

in order to help researchers in the future to train and test their works (which is particularly

useful for machine learning models).

We then proposed to apply a machine learning classification model to the labeling of different

CAN signals. Our main goal is to make the process simple and the model fast to use. To

accomplish this, we proposed a model that can classify signals of a generic vehicle taking as

input directly the logs of CAN packets sniffed during a normal driving session, without prior

knowledge on the vehicle and without the need for further data collected with external devices

during the driving sessions.

The proposed model processes directly the CAN packets collected from a vehicle, identifies

the different signals encoded in them and then selects only a small subset of possible signals

using LSTM networks where the researchers can find the target signal they were looking for.

81

82

Using a trained model like this it is possible to reduce the effort and time needed to reverse

engineer the messages and signals of a vehicle without the proprietary specification of the

in-vehicle network.

Future works may involve using DBC files to expand the set of possible target signals that

the model can classify.

In conclusion, the main contribution of this work is a methodology that enables a fast

and partially automated classification of signals from generic and unknown vehicles. It can

be trained using labeled signals from different vehicles and then is able to classify signals of

vehicles completely different from those used in the training phase without prior knowledge

about them.

As far as we know, this is the first approach that produces a model that can analyze and

label signals of unknown vehicles using as input only recorded packets from the CAN bus.

CITED LITERATURE

1. CAN in Automation: History of can technology.

2. Miller, C. and Valasek, C.: Remote exploitation of an unaltered passenger vehicle. Black
Hat USA, 2015:91, 2015.

3. Wikipedia contributors: Security through obscurity — Wikipedia, the free encyclopedia,
2020. [Online; accessed 24-March-2020].

4. Scarfone, K., Jansen, W., and Tracy, M.: Guide to general server security. NIST Special
Publication, 800(s 123), 2008.

5. Wikipedia contributors: Secure by design — Wikipedia, the free encyclopedia, 2019. [On-
line; accessed 24-March-2020].

6. Wikipedia contributors: White hat (computer security) — Wikipedia, the free encyclope-
dia, 2020. [Online; accessed 24-March-2020].

7. Robert Bosch GmbH: Can specification, 1991.

8. Miller, C. and Valasek, C.: Adventures in automotive networks and control units. Def Con,
21:260–264, 2013.

9. ISO, I.: 11898-2, road vehicles controller area network (can) part 2: High-speed medium
access unit. International Organization for Standardization, 2003.

10. Robert Bosch GmbH: Can with flexible data-rate specification version 1.0, 2012.

11. Standard, I.: 11898-3: Road vehicles–controller area network (can)–part 3: Low-
speed, faulttolerant, medium-dependent interface. International Organization for
Standardization (www. iso. org), 2006.

12. Wikipedia contributors: Can bus — Wikipedia, the free encyclopedia, 2020. [Online;
accessed 11-March-2020].

83

84

CITED LITERATURE (continued)

13. ISO: Iso 14229-3:2012 road vehicles — unified diagnostic services (uds) — part 3: Unified
diagnostic services on can implementation (udsoncan). International Organization
for Standardization, 2012.

14. ISO: Iso 15765-2:2016 road vehicles — diagnostic communication over controller area net-
work (docan) — part 2: Transport protocol and network layer services. International
Organization for Standardization, 2016.

15. CSS Electronics: Can dbc file - convert data in real time (wireshark, j1939), 2020.

16. Standard, S.: Sae j1979: E/e diagnostic test modes. Vehicle EE Systems Diagnostics
Standards Committee. SAE International, 2002.

17. Prasad, B., Tang, J.-J., and Luo, S.-J.: Design and implementation of sae j1939 vehi-
cle diagnostics system. In 2019 IEEE International Conference on Computation,
Communication and Engineering (ICCCE), pages 71–74. IEEE, 2019.

18. ELETRONICS, E.: Elm327 obd to rs232 interpreter. ELM Electronics Datasheets, 2015.

19. Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S., Koscher,
K., Czeskis, A., Roesner, F., Kohno, T., and Others: Comprehensive experimental
analyses of automotive attack surfaces. In USENIX Security Symposium, volume 4,
pages 447–462. San Francisco, 2011.

20. Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy, D.,
Kantor, B., Anderson, D., Shacham, H., and Others: Experimental security analysis
of a modern automobile. In 2010 IEEE Symposium on Security and Privacy, pages
447–462. IEEE, 2010.

21. Wen, H., Zhao, Q., Chen, Q. A., and Lin, Z.: Automated Cross-Platform Reverse Engi-
neering of CAN Bus Commands From Mobile Apps.

22. Wikipedia contributors: Obd-ii pids — Wikipedia, the free encyclopedia, 2020. [Online;
accessed 23-March-2020].

23. Miller, C. and Valasek, C.: A survey of remote automotive attack surfaces. black hat USA,
2014:94, 2014.

24. Jupp, E.: Stolen in seconds: keyless new cars that fail security tests, Aug 2019.

85

CITED LITERATURE (continued)

25. Nova, D. H.: Literature Review : Intrusion Detection Systems for CAN networks.

26. Verma, M., Bridges, R., and Hollifield, S.: ACTT: Automotive CAN tokenization
and translation. In 2018 International Conference on Computational Science and
Computational Intelligence (CSCI), pages 278–283. IEEE, 2018.

27. Young, C., Svoboda, J., and Zambreno, J.: Towards Reverse Engineering Controller Area
Network Messages Using Machine Learning.

28. Marchetti, M. and Stabili, D.: READ: Reverse engineering of automotive data frames.
IEEE Transactions on Information Forensics and Security, 14(4):1083–1097, 2018.

29. Pesé, M. D., Stacer, T., Campos, C. A., Newberry, E., Chen, D., and Shin, K. G.: Li-
breCAN: Automated CAN Message Translator. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pages 2283–

2300, 2019.

30. Zago, M., Longari, S., Tricarico, A., Carminati, M., Pérez, M. G., Pérez, G. M., and Zanero,
S.: ReCAN–Dataset for reverse engineering of Controller Area Networks. Data in
brief, 29:105149, 2020.

31. III, H. D.: A Course in Machine Learning. 2017.

32. Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P.: Smote: synthetic
minority over-sampling technique. Journal of artificial intelligence research, 16:321–
357, 2002.

33. Lines, J. and Bagnall, A.: Time series classification with ensembles of elastic distance
measures. Data Mining and Knowledge Discovery, 29(3):565–592, 2015.

34. Bagnall, A., Lines, J., Bostrom, A., Large, J., and Keogh, E.: The great time series
classification bake off: a review and experimental evaluation of recent algorithmic
advances. Data Mining and Knowledge Discovery, 31(3):606–660, 2017.

35. Heaton, J.: Ian goodfellow, yoshua bengio, and aaron courville: Deep learning, 2018.

36. Rumelhart, D. E., Hinton, G. E., and Williams, R. J.: Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

86

CITED LITERATURE (continued)

37. Hochreiter, S. and Schmidhuber, J.: Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

38. Pascanu, R., Mikolov, T., and Bengio, Y.: On the difficulty of training recurrent neural
networks. In International conference on machine learning, pages 1310–1318, 2013.

39. Karim, F., Majumdar, S., Darabi, H., and Chen, S.: Lstm fully convolutional networks for
time series classification. IEEE access, 6:1662–1669, 2017.

40. Huybrechts, T., Vanommeslaeghe, Y., Blontrock, D., Van Barel, G., and Hellinckx,
P.: Automatic reverse engineering of CAN bus data using machine learning
techniques. In International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing, pages 751–761. Springer, 2017.

41. Saleh, K., Hossny, M., and Nahavandi, S.: Driving behavior classification based on sensor
data fusion using lstm recurrent neural networks. In 2017 IEEE 20th International
Conference on Intelligent Transportation Systems (ITSC), pages 1–6. IEEE, 2017.

42. Geo tracker - gps tracker.

43. Evenchick, E.: CANtact, Jan 2017.

44. Linux Kernel: Can utils, Feb 2018.

45. Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., and Muller, P.-A.: Deep learn-
ing for time series classification: a review. Data Mining and Knowledge Discovery,
33(4):917–963, 2019.

46. Wikipedia contributors: On-board diagnostics — Wikipedia, the free encyclopedia, 2020.
[Online; accessed 27-March-2020].

47. Tricarico, A.: A Long Short-Term Memory based approach for reverse engineering and
classification of CAN signals. 2020.

VITA

NAME Andrea Tricarico

EDUCATION

Master of Science in Computer Science, University of Illinois at
Chicago, USA

Master of Science in Computer Science and Engineering, Apr 2020,
Polytechnic of Milan, Italy (110/110)

Bachelor’s Degree in Computer Science and Engineering, Sep 2017,
Polytechnic of Milan, Italy (106/110)

LANGUAGE SKILLS

Italian Native speaker

English Full working proficiency

SCHOLARSHIPS

Spring 2019 Research Assistantship (RA) position (20 hours/week) with full tuition
waiver plus monthly stipend

TECHNICAL SKILLS

Languages Expert in Java, competent in Python and SQL, basic knowledge of C

Software Unity3D, Anaconda, Android Studio, Intellij, Pycharm, NS-3, Linux,
UML (StarUML)

WORK EXPERIENCE AND PROJECTS

2020-Present Software Engineer at Bending Spoons

2019 CODE@FLOW: a challenge engineered by Flow Traders in Amsterdam
to get to experience the developer life in the trading industry. One-
week event with high-tech discussions with specialists at Flow Traders
in software development and trading and experiencing challenging cases
based on real-life situations in the trading industry.

Research Assistant at UIC: Research Assistant for the professor Jon
Solworth to apply Machine Learning to the anonymity network Fasor

87

88

VITA (continued)

Android Projects: Five small Android applications to explore the main
concepts and components of the Android OS, focusing on services, frag-
ments, broadcast receivers and applications with multiple threads.

2018 Replicated Data Storage: Distributed Systems project. Implementa-
tion of a replicated data storage. The system provides a causal consis-
tency model. Implemented using Java.

Data Mining Project: Project done in collaboration with the Bip com-
pany in Milan. The goal of the project is to provide a working forecast
model that can be used by retailers to optimize promotions and ware-
house stocks.

PixelVR: Virtual reality project using Unity3D and the HTC Vive. Im-
plementation of a virtual reality work environment where it is possible
for the user to create 3D models made of voxels. Presentation of the
project, video and code: https://atrica2.people.uic.edu/Project3/.

Collaborative Robotics Modeling: Apply formal methods, in particular
the TRIO language, to model the behavior of a robot in an industry
where it has to work in collaboration with humans focusing on both
the productivity of the robot and the safety of humans.

2017 ATHENS project at Universidad Politcnica de Madrid: Completed a
merit-based program, organized by a network of European universities.
The course was based on physical computing, providing fundamental
skills in Arduino programming

LorenzoThePST: Complete Java implementation of the board-game
Lorenzo il Magnifico. Including all the features of the board-game,
a command line interface, a graphical interface and the possibility to
play it with many players in a LAN (using RMI - Remote Method
Invocation).

