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SUMMARY

Sufficient dimension reduction (SDR) reduces the data dimensionality without specifying

a regression model. Since it was first introduced by Li, 1991, SDR has been popular and

many SDR methods have been proposed and studied (Cook and Weisberg, 1991; Xia et al.,

2009; Li and Wang, 2007; Lee et al., 2013). Among those methods, we focus on Sliced Inverse

Regression (SIR) and Sliced Average Variance Estimation (SAVE), which are inverse-moment

based methods (details in Section 1.1). Those methods work well with continuous responses,

but not with binary cases due to the limited number of levels of the response, which is reviewed

and studied in Sections 1.2 and 3.1. In order to solve the issue, Shin et al., 2014 have proposed

a solution for SDR methods on binary data called Probability Enhanced SDR (PRE-SDR). The

PRE-SDR works well under a binary dataset. But it becomes time-consuming when a dataset

is large, e.g., N > 104, because of its computational intensity (details in Sections 1.3 and 5.3).

In this thesis, motivated by the existing solution and its limitation on large data, we in-

vestigate and improve the SIR and SAVE from different perspectives. Firstly, we incorporate

an online algorithm, which helps to reduce the usage of computer memory when a dataset is

large. The general idea of this method is to scan the data chunk by chunk, calculate inter-

mediate statistics, and combine intermediate results to get the final result. We develop online

algorithms for SIR and SAVE and show that the online method’s result is the same as it cal-

culated from using the full data at once. Besides, we enhance those algorithms with a parallel

computation framework so that it could process multiple chunks at the same time. Simulation
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SUMMARY (Continued)

results suggest that the online algorithm reduces the computational time at least by 3-5 times

compared with the original methods.

Secondly, we propose a novel SDR approach, named as Mean Representative approach

(MRDR), for binary responses. The main idea is to partition the data into blocks, calculate

representatives for each block, and use the representatives as our new dataset for the following

SDR analysis. By converting a block of data points into a representative data point, the corre-

sponding binary responses become continuous, and the size of the data is reduced significantly

because the number of the block is much smaller than the original observations. Therefore, the

proposed representative approach provides an ideal solution for large data dimension reduction

and can be incorporated with the classical SDR approaches naturally. The details of MRDR are

introduced and discussed in Chapters 1 and 3. We study the asymptotic properties of MRDR

in Chapter 4 and show that the proposed approach can recover the central subspace better

than SIR and SAVE. Besides, we also discuss the optimal choice of the number of blocks in

Section 4.3. The simulation studies in Chapter 5 verify the advantage of the proposed method

over the original SIR and SAVE in estimating the central subspace and demonstrates the time

efficiency compared to PRE-SIR. In the end, we apply the proposed method on the Electrical

Grid Stability (EGS) data and simulated data based on the EGS data. The result shows the

advantage of the proposed method over the several existing methods on sufficient dimension

reduction with large data.
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CHAPTER 1

INTRODUCTION

In this chapter, we introduce the background of sufficient dimension reduction (SDR) and

two commonly used SDR methods, which are SIR and SAVE. In order to have a better under-

standing of how SDR methods work under the binary response, we also review two models for

binary response data, which is latent variable model and link function model. Then we briefly

discuss the issue of SDR methods under the binary response. Next, we review the existing

solution for the issue and its limitations. In the end, we introduce our proposed solutions for

big data.

1.1 Sufficient dimension reduction

Sufficient dimension reduction is based a model-free assumption (see details in Cook and

others, 2007), which is

Y|X
d
= Y|ηTX, (1.1)

where X ∈ Rp, and η = (η1, . . . , ηd) ∈ Rp×d. Under the Equation (1.1), the conditional

distribution of Y given X is identical with the conditional distribution of Y given ηTX. Moreover,

if the joint distribution of X and Y exists, then condition Equation (1.1) is equivalent to

Y |= X|ηTX, (1.2)

1
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which means X and Y are conditional independent, after we fix d linear combinations of

(ηT1X, . . . , η
T
dX). All of those conditions conveys the idea that ηTX carries all the informa-

tion of Y. So if we want to fit a model between X and Y, we can focus on ηTX instead of

the original X, and by doing that we achieve the dimension reduction. Therefore, the goal of

SDR method is to estimate the d linear combinations, η. However, η itself is not identifiable,

because any column transformation of η will still satisfy Equation (1.2). That is

Y|X
d
= Y|ηTX⇒ Y|X

d
= Y|(ηA)TX,

where A is a d× d non-singular matrix. Fortunately, the linear space spanned by η: Span(η)

is identifiable because it is invarinate of column transformation. Cook and others, 2007 further

defined

Y |= X|PS(η)X, S(η) = η(ηTη)−1ηT , (1.3)

where S is the column space of the matrix η and is named dimension-reduction space (drs).

Now the goal of SDR methods becomes to estimate S. However, S may also not be unique.

Actually if S ⊂ S1, then S1 is also a dimension-reduction space. In order to get the well defined

target, Cook, 2009 has defined the smallest drs, which is

SY|X = ∩Sdrs,
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where SY|X is named Central Subspace. Under mild conditions (see details in Cook, 1994), SY|X

is unique and itself is a drs. Therefore, the final target of SDR methods is to recover partially

or even fully the SY|X.

Linearity and constant variance conditions

To estimate SY|X, most SDR methods rely on two conditions of the distribution X. One is

the linearity condition, which assumes that

E(X|ηTX) is a linear function of ηTX. (1.4)

A sufficient and necessary condition for the condition Equation (1.4) is

E
(
X|ηTX

)
− E(X) = PT

SY|X(ΣX)(X − E(X)), (1.5)

where Var(X) = ΣX and PSY|X
= η

(
ηTΣXη

)−1
ηTΣX which is the projection matrix of SY|X

under the ΣX inner product, or ΣXSY|X. Based on this condition, we may interpret the linear-

ity condition as that the conditional expectation is actually a linear operation. For constant

variance condition, it assumes

Var(X|ηTX) = C, (1.6)

where C is a constant matrix. Note that a sufficient condition of linearity condition is that

X has an elliptically contoured distribution and a sufficient condition for both linearity and

constant variance condition is the multivariate normal distribution (see details in Li, 1991).
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1.1.1 Methods for estimating the central subspace

Sliced inverse regression(SIR)

In (Li, 1991), the authors have found the connection between the inverse moment and the

SY|X. Inverse moments refers to the moments of the conditional distribution of X given Y. The

inverse version of Equation (1.1) is

X|(Y,ηTX)
d
= X|ηTX. (1.7)

Under the conditional independence Equation (1.7) and linearity Equation (1.4), we have

E(X|Y) − E(X) = E
[
E
(
X|Y,PSY|X

X
)
|Y
]
− E(X) b/c Equation (1.7)

= E
{

PT
SY|X(ΣX)[X − E(X)]|Y

}
b/c Equation (1.5)

= PT
SY|X(ΣX)[E(X|Y) − E(X)] (1.8)

This fact shows that the centered conditional expectation of X is exact same after projecting

it into the a subspace ΣXSY|X. That means E(X|Y) − E(X) ∈ ΣXSY|X ⊆ Rp. Let’s define the

candidate matrix of SIR, MSIR, as conditional variance,

MSIR = var[E(X|Y)] = E
[
[E(X|Y) − E(X)][E(X|Y) − E(X)]T

]
.
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Based on the Equation (1.8), Li has shown that Span(MSIR) ⊆ ΣXSY|X ⇒ Σ−1
X Span(MSIR) ⊆

SY|X. Therefore, we define

SSIR := Σ−1
X Span(MSIR). (1.9)

We can use eigenvalue decomposition to Σ−1
X Span(MSIR) to find a basis of the central subspace:

MSIRηi = λiΣXηi, i = 1, . . . , d, (1.10)

where λi is the ith largest eigenvalue of MSIR and ηi is the corresponding eigenvector. Not that

d = dim(SY|X) and also is the non-zero eigenvalues of MSIR.

E(X|Y) estimation by slicing

The next questions is how to estimate the MSIR and ΣX. Since we assume n >> p, ΣX can be

estimated by the sample covariance Σ̂X =
∑N
i

1
N−1(Xi−X̄)(Xi−X̄)T , where X̄ = 1

N

∑N
i (Xi), is

the sample mean of X. For estimating MSIR, we need to estimate the E(X|Y) first. Li proposed

a slicing method to calculate the conditional expectations. The steps are following:

1. Split the data in to H slices based on their responses, Y ∈ R. The H slices are non-overlap

intervals, Ih, h = 1, . . . , H, so that Ih ∩ Ih ′ = ∅, ∀j 6= h ′ and ∪hIh = R. Let Ỹi = h if Yi is

in the hth slices, h = 1, . . . , H.

2. Average all the Xi’s within each slice, X̄h =
∑Nh

i Xi

Nh
, where Nh is the total observations

in the slice h.
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3. Let fi =
Nh
N ,

M̂SIR =

H∑
h=1

fh
(
Xh − X

) (
Xh − X

)T
Remark 1.1.1. Choice of H

Let 1Ih(Yi) be the indicator function of Ih. Then we have E(X̄h) = E(X|Ỹ = h) = E(X|1Ih(Yi) =

1). Since σ(1Ih(Y)) ⊆ σ(Y), h = 1, . . . , H , σ(E(X|Ỹ)) ⊆ σ(E(X|Y))??. Therefore, we have

SỸ|X ⊆ SY|X. When h is large enough, we will have SỸ|X = SY|X. In (Li, 1991), the authors

have shown that H = 10− 20 should be large enough.

After we get M̂SIR based on the slicing procedure, we can estimate a basis of SY|X via Equa-

tion (1.10), and define the sample version of Equation (1.9) as

SSIR = Span(η̂1, . . . , η̂d) = Span(η̂SIR), (1.11)

where η̂SIR = η̂1, . . . , η̂d. Since SIR only uses the first inverse moment, it runs fast and efficient.

But SIR has an issue when estimating a direction which is symmetric with origin, for example,

Y = X21 + ε.

Sliced Average Variance Estimation (SAVE)

Motivated by SIR and its limitation, Cook and Weisberg, 1991 developed SAVE which uses

the second inverse moment to estimate the central subspace. Similar with SIR, SAVE is based

on the sliced response Ỹ. It not only uses the first inverse moment but also the second inverse

moment, which is Var(X|Ỹ). The candidate matrix of SAVE is MSAVE = (ΣX − Var(X|Ỹ))2.

Based on the linearity and constant variance conditions, we have Span(MSAVE) ⊆ ΣXSY|X,
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which means that the conditional covariance is also related to the central subspace. Then the

population version of central subspace estimated by SAVE is

SSAVE := Σ−1
X Span(MSAVE). (1.12)

Similar with SIR, we need to take the eigenvalue decomposition to find the directions,

MSAVEηi = λiΣXηi, i = 1, . . . , d, (1.13)

To estimate the candidate matrix MSAVE, we also need to split the data into slices on Y and let

M̂SAVE =

H∑
h=1

fh

(
Σ̂X − Σ̂X|h

)2
,

where Σ̂X|h = 1
Nh−1

∑Nh

i (Xi− X̄h)(Xi− X̄h)
T , for all the observations in the slice h. The sample

version of Equation (1.12) is

SSAVE = Span(η̂1, . . . , η̂d) = Span(η̂SAVE), (1.14)

where η̂SAVE = (η̂1, . . . , η̂d).

Structural dimension

Another component of SDR methods is to estimate the structural dimension of SY|X, d. In

general, there are four different ways to decide the d, which are sequential tests, bootstrap,

BIC-type test, and sparse eigenvalue decomposition test. A review of those methods could be
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found in (Ma and Zhu, 2013). Here, we only briefly introduce the sequential test, which is

widely used for SDR methods based on inverse moments.

Sequential test of eigenvalues

For the SDR methods based on inverse regression, to decide the number of d is equivalent

to detect the non-zero eigenvalues. Therefore, a sequential test is composed of a sequential

hypothesis tests about eigenvalues of the candidate matrix. The null hypothesis is H0 : λ
(i) = 0,

where λ(i) is the ith largest eigenvalue of the candidate matrix. The alternative hypothesis of

ith test is H1 : λ(i) > 0. Then, we estimate d as d̂ = i, when we reject ith test but fail to

reject (i + 1)th test. Different SDR methods have different sequential tests. For instance, Li,

1991 have proposed a chi-square test for SIR and Cook and Ni, 2005 have proposed a similar

weighted chi-square test. A comprehensive review about the sequential test can be found in

(Bura and Yang, 2011).

1.2 Binary response

1.2.1 Models for binary response

There are two commonly used models for binary response. Both of them involve the con-

ditional probability G(X) = P(Y = 1|X). One is the link function model, which connects

the G(X) and X via a link function. The other one is the latent model which uses a latent

continuous variable (see details in Gelman et al., 2013 P410). The reason we review those

two models is that each model has its own advantage, so we use different models for different

sections. For latent model, it is straightforward for interpretation and data simulation because

of its continuous latent variable. For the link function model, since it models the G(X) directly,
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it is more convenient for asymptotic study. Moreover, those two models are equivalent to each

other in certain conditions. Therefore, we use the latent variable model for simulation studies

and the link function model for theory discussion. Note that most of SDR methods only have

few assumptions about the model, so they are model-free methods. In binary context, the

model-free property is equivalent to assume an arbitrary structure of the G(x). In this thesis,

although we need to add certain regular conditions for the function G(x), they are reasonably

mild conditions, so that we still keep the same model-free philosophy as the SDR does.

Latent variable model

In the latent model, we assume that there exists a latent variable Y∗, which is related to

covariates and an error term by a function f. In order to have a binary response, we classify

the latent variable into two groups by a cut off value. Let Y∗ as the latent response and Y as

the observed binary response,

Y =


0 Y∗ − θ ≤ 0

1 Y∗ − θ > 0

or Y = sign(Y∗ − θ),

Where θ is the cutoff value and sign(x) =


0 x ≤ 0

1 x > 0

is the indicator function for positive

values.

Y∗ = f(X, ε),
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Where ε is a random variable. Thus, we have

G(X) = P(Y = 1|X) = P(Y∗ > θ|X).

If we restrict the additive error structure of f, then we have

Y∗ = H(X) + ε⇒ Y = sign(H(X) + ε− θ),

where H : Rp → R1. Let Fε be the distribution function of ε, then we have,

G(X) = P(Y∗ > θ|X)

= P(H(X) + ε > θ|X)

= P(ε > −H(X) − θ)

= 1− Fε(−H(X) − θ).

Link function model

The link function model assumes that the conditional probability is related to the covariates

by a link function. Similar with the generalized (linear) model, we have

g(E(Y|X)) = H(X)⇒ E(Y|X) = G(X) = g−1(H(X)),
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where g : R → R is invertible the link function and H : Rp → R1 is same as the one in latent

variable model and G = g−1 ◦H.

Equivalence of those two models

Under certain conditions, those two models are equivalent.

• Model I: Y = sign(Y∗ − θ), where Y∗ = H(X) + ε, and ε follows some distribution

function Fε.

• Model II: E(Y|X) = g−1(H(X)).

Note that in the sufficient dimension reduction setting, we also assume that H depends on

X only through d linear combination, ηTX. Therefore, the specific form of H will be

H(X) = H(ηTX) = H(ηT1X, . . . , η
T
dX).

Based on the latent variable model, we have

Glatent(X) = 1− Fε(−H(X) − θ),

Based on the link function model, we have

Glink(X) = g−1(H(X)).
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If we assume that those two models are identical to each other,

Glatent(x) = Glink(x)⇒ g−1(x) = 1− Fε(−x− θ).

For example, if we assume θ = 0 and ε is symmetric, then we could further simplify the relation,

g−1(x) = 1− Fε(−x)

= Fε(x)

So we can have Fε(·) = g−1(·).

1.2.2 Issue of binary response

In general, the issue of binary data analysis comes from the limited information contained

in the two-level response. For the SDR methods, the binary response reduces the information

contained in the inverse moments, so it is challenging to recover the central subspace based on

the inverse moments. The SDR methods based on the first inverse moment is affected the most

by the binary response because they can only detect at most one basis of the central basis.

The SDR method based on the second moment is not as bad as the first moment, but we find

certain situations in which that method may not work well. We will review and discuss this

issue with more details Section 3.1.
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1.3 Existing solution and its limitations

1.3.1 Probability-enhanced SDR methods (PRE-SDR)

In (Shin et al., 2014), the authors proposed a probability-enhanced SDR method to overcome

the issue caused by binary responses. The main idea is to slice the data based on G(X) = P(Y =

1|X) instead of Y ∈ {0, 1}. Since G(X) is continuous, the inverse moments calculated via G(X)

should contain more information than the moments calculated by binary responses. First of

all, let’s recall a lemma in (Shin et al., 2014)[1], which is an important property of SY|X when

Y is binary.

Lemma 1.3.1. (Shin et al., 2014)[1]

SY|X = SG(X)

Basically, the Lemma 1.3.1 indicates the central subspace of Y and G(X) are identical, which

verifies the advantage of using G(X).

Slicing via WSVM

Although the P(Y = 1|X = x) can be used for dimension reduction and it contains more

information than a binary response, it is not available in most of the cases and needs to be

estimated. However, based on the slicing procedure, we don’t need to estimate the exact

conditional probability for each observation. What we need is their relative order. Therefore,

(Shin et al., 2014) have proposed three different slicing methods based on the Weight Support

Vector Machine (WSVM). In this thesis, we only review one of them named PRE-SIR1, which
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is also recommended by the authors. Note that in the rest of the thesis, we write it as PRE-SIR.

The slicing procedure of PRE-SIR is following: Based on a fixed grid 0 < π1 < · · · < πh < · · · <

πH−1 < 1, we fit the WSVM repeatedly. The hth slice is defined as

I
(h)
PRE := S

(h)
PRE\S

(h−1)
PRE , h = 1, . . . , H,

where πh, h = 1 . . . , H are the weights for different slices and l̂h(·) is the WSVM solution of slice

h and S
(l)
PRE =

{
i : l̂πh (xi) < 0

}
for h = 1, 2, · · · , H− 1. After have the slices I

(h)
PRE, h = 1 . . . , H,

we could apply the SDR methods such as SIR and SAVE from Section 1.1.

1.3.2 Limitations of PRE-SDR

Time consuming

Shin’s method can work well on moderate dataset, e.g N < 1000 and p < 30. However, it

could be slow when N > 104. One reason is that PRE needs to run WSVM’s algorithm repeat-

edly for determining the index for each slice, which could be around 10 − 20 times. Moreover,

it also needs to tune several parameters in order to have better performance (see details in

Shin et al., 2014). Besides, WSVM itself is computationally intensive. For instance, the time

complexity of WSVM could be about O(n2) or even O(n3) for certain kernels. Therefore, this

method is not scalable with large data.

Another limitation of the method is how to determine the structural dimension. For the

PRE-SDR method, it uses cumulative ratios of the eigenvalues for choosing the dimension d.

It selects the first d largest eigenvalues based on a pre-specified cutoff value. It is a convenient
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ad-hoc procedure to decide the d and works well in many cases. However, the cutoff ratio may

be varied for different situations, so the choice of cutoff value may have a significant influence

on the final result. Based on the simulation studies, the cutoff ratio is sensitive to N and p, so

in order to detect the correct number of directions, we need to choose the cutoff value carefully

for different data set.

1.4 Proposed big data solutions for SDR methods

Motivated by the existing solution and its limitation on big data, we develop two related

solutions of SDR methods on big data. One solution aims to solve the computational issues

caused by large data set, which is the online algorithms for SIR and SAVE. The online algorithm

can work with large data that the original SDR methods cannot handle. More details can be

found in Chapter 2. Another solution aims to take advantage of the huge amount of information

provided by large data. More specifically, we establish a procedure to efficiently summarize

information from the original data and, at the same time, reduce the sample size. It can be

shown that the summarized information can improve the performance of SDR methods on

binary response. See details in Chapters 3 and 4. Note that there are efforts that have been

made in improving the performance of SDR methods on large data. For instance, Kevin, 2014

has uploaded an on-going paper on SDR methods in big data. However, we do not find any

published or finished version of it. Therefore, we decide to work in this direction and try to

make our contribution to it.



CHAPTER 2

AN ONLINE ALGORITHM FOR SIR AND SAVE

In this chapter, we introduce online algorithms for both SIR and SAVE to overcome com-

puter memory shortage caused by big data. The main idea is to divide original data into chunks

and then calculate the sufficient statistics for each chunk, in the end, aggregate all the statistics

together to get the final result for SIR and SAVE. One advantage of the algorithm is that its

result is as same as the result of using the full dataset at once. Another advantage is that it can

run in a parallel computation framework, which reduces the running time of the SDR method

for a large data set. The details of the algorithm could be found in Sections 2.2 and 2.3.

2.1 Online algorithm

For big data analysis, one of the issues is that the computer may not be able to load all the

data into its memory. Therefore, it is impossible to apply any dimension reduction methods

on the data. A solution to reduce the usage of memory is the online algorithm. The “online”

algorithm refers to an algorithm that can process its input piece by piece. Zhang and Yang,

2016 has proposed an algorithm for principal component analysis (PCA) with big data. The

general idea of the algorithm is to divide the data into smaller sub-datasets (chunks), which

can be handled by our computer, and then calculate the intermediate results for each block, in

the end, combine all the intermediate results to get the final result. The intermediate results

are recorded as sufficient statistics for the method. Motivated by the idea of processing data

16
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by chunks, we drive the sufficient statistics and develop online algorithms for SIR and SAVE,

so that they can work with any big data.

Before we go to the details of the algorithms, let us introduce some notations. Assume that

the X is a N×p matrix. The N observations have been split into L chunks randomly. We have

X =



X1

...

Xl

...

XL


,

Where Xl is Nl × p matrix and Nl is total number of observations in chuck l. Alternatively,

recall in Section 1.1, we could also split the data into slices based on their response,

X =



X1

...

Xh

...

XH


,



18

Xh is Nh × p matrix and Nh is total number of observations in slice h. For each chuck of data

it may contain observations from different slices, thus we have

Xh =



Xh1

Xh2

...

XhL


or Xl =



X1l

X2l

...

XHl


,

where XT
hl is a Nhl × p matrix and Nhl is the number of observations in the hth slice within

chunk l. The goal of the online algorithm is to sequentially load Xl into a computer and calculate

the result for SIR and SAVE. Note that we assume we have generated the index of slices based

on Y, which is a vector.

2.2 An online algorithm for SIR

2.2.1 Calculate MSIR by block

Recall that the candidate matrix of SIR (Equation (1.11))

M̂SIR =

H∑
h=1

f̂h
(
X̄h − X̄

) (
X̄h − X̄

)T
and SSIR = Σ̂

−1
X Span(M̂SIR).

Based on the equation above, we only need several statistics to calculate MSIR, which are

(i) X̄h, the sample averages for slice h, h = 1, . . . , H

(ii) X̄, the overall sample mean

(iii) Σ̂X the sample covariance
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(iv) f̂h proportion for each slice.

Since those four statistics are straightforward, we can calculate by scan the data chunk by

chunk.

Calculate X̄h by chunks

Based on the layout of X mentioned in Section 2.1, the X̄h could be rewritten as following:

X̄h = XTh
1Nh

Nh

=
1

Nh

[
XT
h1 . . . XT

hL

]

1Nh1

...

1NhL


=

1

Nh

L∑
l=1

(XT
hl1Nhl

),

where 1n is a vector of n 1 ′s, Xh is a Nh × p matrix, which is all the observations in slices h

and Nh1 is the number of observations in chunk l and slice h.
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Calculate X̄ by chunks

Similar with the X̄h, we could get overall mean by scanning data by chunk

X̄ = XT
1N

N

=
1

N

[
XT
11 . . . XT

HL

]

1N11

...

1NHL


=
1

N

H∑
h=1

L∑
l=1

(XT
hl1Nhl

),

Calculate Σ̂X by chunks

Σ̂X =
1

N− 1
(

N∑
i=1

XiX
T
i −NX̄X̄

T
)

=
1

N− 1
(

H∑
h=1

L∑
l=1

(XT
hlXhl) −NX̄X̄

T
)

Calculate f̂h by chunks

f̂h =
Nh
N

=

∑
lNhl∑H

h=1

∑L
l=1Nhl

.
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2.2.2 Sequential test of SIR by block

In (Li, 1991), the authors proposed a chi-square test to decide the structural dimension

estimated by SIR. Based on the test, the only statistic we need is the eigenvalues of M̂SIR, λi,

and the slice number Nh. After we get the candidate matrix by the online algorithm, we have

already got the eigenvalues and the observations for each slice. Therefore, the output of the

online algorithm can be used for the sequential test of SIR directly.

2.2.3 Algorithm for SIR

Sufficient Statistics of SIR: CSIR

Based on the previous section, we do not keep all the data to get the candidate matrix. It

is enough to store several statistics for each slice. Those statistics are

CSIR = {CNh
=
∑
l

Nhl, CSh =
∑
l

(XT
hl1Nhl

), CXh
=
∑
l

(XT
hlXhl), h = 1, . . . H.} (2.1)
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Algorithm 1 An online Algorithm of SIR

1: procedure (Calculate M̂SIR and η̂SIR)

2: Input: Xl

3: Output: η̂SIR

4: Let CNh
, CSh , CXh

be scalars, vectors and matrices with all initial values as zero

5: for for lth chunk of data do

6: for for hth slice of the chunk data do Update

7: CNh
= CNh

+Nhl,

8: CSh = CSh + XT
hl1Nhl

,

9: CXh
= CXh

+ XT
hlXhl

10: end for

11: end for

12: Calculate M̂SIR based Section 2.2.1

13: Calculate η̂i, i = 1, . . . , d based on Equation (1.11)

14: Select the d η̂i’s based on the sequential test

15: Calculate η̂SIR

16: end procedure

2.3 An online algorithm for SAVE

Similar to SIR, we also develop an online algorithm for SAVE.
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2.3.1 Calculate MSAVE by block

Recall the candidate matrix of SAVE is

M̂SAVE =

H∑
h=1

f̂h

(
Σ̂X − Σ̂X|h

)2
,

Based on the equation above, we only need several statistics to calculate MSIR, which are

(i) Σ̂X|h the sample covariance for slice h, h = 1, . . . , H

(ii) Σ̂X the sample covariance

(iii) f̂h proportion for each slice.

Calculate Σ̂X|h by chunks

Since we have discussed how to calculate Σ̂X and f̂h in Section 2.2.1, we only focus calculate

the slice covariance matrix.

Σ̂X|h =
1

Nh − 1

Nh∑
i

(Xi − X̄h)(Xi − X̄h)
T

=
1

Nh − 1
(

Nh∑
i

(XiX
T
i ) −NhX̄hX̄

T
h)

=
1

Nh − 1
(

L∑
l=1

XT
hlXhl −NhX̄hX̄

T
h),

where X̄
T
h = 1

Nh
XT
h1Nh

= 1
Nh

∑L
l=1XT

hl1Nhl
.
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2.3.2 Sequential test of SAVE by block

There are several large-sample tests available for SAVE. Compared to SIR’s test, those

sequential tests of SAVE are more complicated and not straightforward to be calculated by

the piece-by-piece fashion. Therefore, we choose a marginal dimension test from (Cook and

others, 2004) because the test is straightforward and its statistics can be calculated based on

the online algorithm. However, the procedure is quite tedious, which involves calculate a 3

dimension array for each slice. More details could be found in (Cook and others, 2004).

2.3.3 Algorithm for SAVE

Sufficient Statistics of SIR: CSAVE

The sufficient statistics for SAVE are actually same as SIR

CSAVE = {CNh
=
∑
l

Nhl, CSh =
∑
l

(XT
hl1Nhl

), CXh
=
∑
l

(XT
hlXhl), h = 1, . . . H.} (2.2)
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Algorithm 2 An online Algorithm of SAVE

1: procedure (Calculate M̂SAVE and η̂SAVE)

2: Input: Xl, l = 1 . . . , L

3: Output: η̂SAVE

4: Let CNh
, CSh , CXh

be scalars, vectors and matrices with all initial values as zero

5: for for lth chunk of data do

6: for for hth slice of the chunk data do Update

7: CNh
= CNh

+Nhl,

8: CSh = CSh + XT
hl1Nhl

,

9: CXh
= CXh

+ XT
hlXhl

10: end for

11: end for

12: Calculate M̂SAVE based Section 2.3.1

13: Calculate ηi, i = 1, . . . , d based on Equation (1.14)

14: Select the d ηi’s based on the marginal dimension test

15: Calculate η̂SAVE

16: end procedure
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2.4 Simulation result

In this section, we compare the empirical computational times between the SIR and SAVE’s

original algorithm and the online algorithm. We record the running times under different

combination of N and p, where (n, p) ∈ {104, 105, 106, 107}×{6, 10, 20}. As for the algorithms, we

compare the original SDR algorithms, online algorithms that load the data chunks sequentially

(donated as SIR online seq and SAVE online seq) and online algorithms which load five chunks

simultaneously (donated as SIR online 5 and SAVE online 5). Table I reports the running time

for different methods. In general, the sequential online algorithm shows little advantage over

the original algorithm because of its additional steps for scanning data and aggregating results.

The difference between the online and original algorithms becomes obvious when N and p is

large. To further speed up the computation, we adapt the parallel computation framework to

the online algorithm. Based on the result, it can reduce the running time significantly when N

is large. For instance, the parallel online algorithm of SAVE runs seven times faster than the

original algorithm when N = 107 and p = 20.
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TABLE I: EMPIRICAL COMPUTATIONAL TIME FOR ONLINE ALGORITHM

p logn SIR SAVE SIR online seq SIR online 5 SAVE online seq SAVE online 5

6

4 0.00 0.00 0.00 0.00 0.01 0.00
5 0.01 0.02 0.02 0.00 0.01 0.00
6 0.22 0.26 0.18 0.05 0.15 0.05
7 2.43 3.62 1.61 0.53 1.75 0.53

10

4 0.00 0.00 0.00 0.00 0.00 0.00
5 0.03 0.03 0.03 0.01 0.03 0.01
6 0.44 0.57 0.27 0.07 0.30 0.07
7 3.77 5.40 3.74 0.94 3.64 0.80

20

4 0.01 0.01 0.01 0.00 0.01 0.00
5 0.07 0.08 0.05 0.02 0.05 0.02
6 0.99 1.23 0.68 0.18 0.64 0.19
7 8.93 14.02 6.00 1.83 6.57 1.89

Empirical computational time (in minutes) calculated from 100 independent iterations.
The machine equips Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz and 32GB memory



CHAPTER 3

MEAN REPRESENTATIVE APPROACH FOR SDR (MRDR)

After solving the computational obstacle caused by large data, another interesting question

to answer is how we could take advantage of the vast amount of information provided by the

massive data. Motivated by Shin’s method and its also limitations, we propose a representative

approach for estimating the central space for binary response. The proposed method is also

based on conditional probability (G(X)) to enrich the information of the binary response.

Nevertheless, it estimates G(X) thought the Mean Representative (MR), which is an efficient

summary of the original data. The main idea of the MR approach is to partition the data into

several blocks based on its covariates. Then it calculates the sample mean of X and Y for each

block, which we call the representatives. After summarizing those representatives, we could

use them to estimate the central subspace via SDR methods. One advantage of our proposed

approach is that it can naturally work with large data (i.e., N > 104) because of the partition

steps largely reduce the data size. In order to have a better understanding of the proposed

method, we first discuss the issue of SDR under binary in Section 3.1. Then we describe the

proposed method in Sections 3.2.2 and 3.2.

28
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3.1 Inverse regression on binary response

Before introducing the proposed method, we would like to discuss how a binary response

fails inverse-regression SDR methods with more details. We first review the key results of the

inverse regression on binary responses from (Cook and Lee, 1999).

In (Cook and Lee, 1999), the properties of SDR methods when the response is binary have

been studied. The authors have shown that the inverse moments of a binary response tends

to contain less information of the central subspace than a continuous response. Therefore,

the SDR methods’ results based on inverse regression are likely to be smaller than the central

subspace. The followings are discussion about the first and second inverse moments for binary

responses.

Let X be the standardized covariates, so that E(X) = 0 and Var(X) = Ip. Let ν =

E(X|Y = 1) − E(X|Y = 0) and ∆ = Var(X|Y = 1) − Var(X|Y = 0). It can be shown that the

first inverse moments (E(X|Y = 1), E(X|Y = 0)) are linear functions of ν and second moments

(Var(X|Y = 1), Var(X|Y = 0)) are linear functions of (ν,∆). That means all the information

that the first and second moments can provide for the SY|X is contained in S(ν) and S(∆).

3.1.1 Limitation of SIR under binary response

For SDR methods which relies on the first moment, the performance of those methods

is highly affected by the binary response. Because all the information of central subspace

carried by the first inverse moment is equivalent to S(ν). Therefore, we end up with only one
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independent basis for the candidate matrix of the first-inverse moment based SDR methods,

M1st. That is

SM1st
= S(Ê(X|Y = 1) − Ê(X|Y = 0)) = S(ν).

Based on the result of (Cook and Lee, 1999), it can be shown that

SSIR = SM1st
= S(ν),

where ν is just a vector. Therefore, it’s obvious that SIR can only find one direction at most.

3.1.2 Limitation of SAVE under a binary response

For methods use the second inverse moment, we have

SM2nd
= S(∆),

where SM2nd
is the central subspace (in population level) of SDR methods using the second

inverse moment, which has more information about the central subspace compared to the first

inverse moment. In certain cases ((Cook and Lee, 1999)), we could have S(ν) = S(∆) = SY|X,

which means we could recover the central subspace via ∆ itself. However, in other situations, the

binary response still affects the S(∆). For example, it is possible that ∆ = 0 or rank(S(∆)) <

rank(SY|X). In both situations, we cannot recover the full central subspace based on the second

moment. That is, S(∆) ⊂ SY|X. Note that the influence of a binary response is smaller for

the higher-order inverse moments than the lower-order moments. Therefore, the SDR methods
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based on higher moments should work better for the binary response. However, the methods

using higher-order moment are more complicated and time-consuming than the lower-moments

based methods. In practice, considering the computational efficiency under large datasets, we

focus on the methods that use up to the second moments, like SAVE. We will discuss the details

in the following sections and chapters.

In (Cook and Lee, 1999), we have

SSAVE = S(ν,∆).

Moreover, if the conditional distribution of Y given X is normal, then we can have

SSAVE = SY|X.

With linearity and constant variance conditions (Cook and Lee, 1999), Cook has proved that

SAVE can recover the central subspace better than several other SDR methods such as SIR,

principal Hessian direction(PHD,Li, 1992), and Difference of Covariance (DOC). Therefore,

SAVE seems to be a good candidate for dimension reduction under binary response. However,

even for SAVE, it may be suffered from limited information provided by the binary responses

in certain situations. We discuss our findings of those situations in the following sections.
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Joint distribution of X and Y

We assume the joint distribution of Y and X exists and the joint distribution has a density

fX,Y(x, y), which can be written as marginal multiply conditional density as the following:

fX,Y(x, y) = fX(x)fY|X(y|x) = fY(y)fX|Y(x|y)

Since Y is a binary response, we have

fY|X(y = 1|X = x) = G(x), fY|X(y = 0|X = x) = 1−G(x),

Therefore, we have

fX,Y(x, y = 1) = fX(x)G(x), fX,Y(x, y = 0) = fX(x)(1−G(x))

The conditional distribution on Y is,

fX|Y(x|y) =
fX,Y(x, y)

fY(y)
=


fX(x)G(x)∫
fX(x)G(x)dx

, y = 1

fX(x)(1−G(x))∫
fX(x)(1−G(x))dx

, y = 0

When ∆ = 0

∆ = Var(X|Y = 1) − Var(X|Y = 0) = 0⇒ Var(X|Y = 1) = Var(X|Y = 0)
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So we have,

S(∆,ν) = S(ν),

which means that SAVE can only, at most, find one direction which is same as the ν. Based

on the decomposition of the variance term,

Var(X|Y = 1) − Var(X|Y = 0) = E(X2|Y = 1) − E(X|Y = 1)2 − E(X2|Y = 0) + E(X|Y = 0)2,

a sufficient condition for ∆ = 0 is

E(X2|Y = 1) = E(X2|Y = 0) and E(X|Y = 1) = E(X|Y = 0),

Next, we apply the joint distribution

E(X|Y = 1) = E(X|Y = 0)⇒ ∫ xfX|Y(x|y = 1)dx =

∫
xfX|Y(x|y = 0)dx

⇒ ∫ xfX(x)G(x)dx∫
fX(x)G(x)dx

=

∫
xfX(x)(1−G(x))dx∫
fX(x)(1−G(x))dx

E(X2|Y = 1) = E(X2|Y = 0)⇒ ∫ x2fX|Y(x|y = 1)dx =

∫
x2fX|Y(x|y = 0)dx

⇒ ∫ x2fX(x)G(x)dx∫
fX(x)G(x)dx

=

∫
x2fX(x)(1−G(x))dx∫
fX(x)(1−G(x))dx
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After some algebra, we have

∫
fX(x)G(x)dx∫

fX(x)(1−G(x))dx
=

∫
xfX(x)G(x)dx∫

xfX(x)(1−G(x))dx
=

∫
x2fX(x)G(x)dx∫

x2fX(x)(1−G(x))dx
(3.1)

One sufficient condition of Equation (3.1) is

fX(−x) = fX(x) and G(−x) = 1−G(x). (3.2)

Plug in the Equation (3.2) into Equation (3.1), we have

∫
fX(x)G(x)dx =

∫
fX(−x)(G(−x))dx =

∫
fX(x)(1−G(x))dx∫

xfX(x)G(x)dx =

∫
−xfX(−x)(G(−x))dx =

∫
xfX(x)(1−G(x))dx∫

x2fX(x)G(x)dx =

∫
x2fX(−x)(1−G(−x))dx =

∫
x2fX(x)(1−G(x))dx.

The condition fX(x) = fX(−x) is equivalent to X
d
∼ −X. Under the latent variable model

introduced in Section 1.2, G(x) = 1−Fε(−H(x)) = Fε(H(x)) with a symmetric distributed ε. If

we further assume that H(−x) = −H(x), then we have G(x) = 1−Fε(−H(x)) = 1−Fε(H(−x)) =

1 − G(−x). Therefore, a more specific sufficient condition for ∆ = 0 is X follows a symmetric

distribution and H(x) is an odd function.
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When ∆ 6= 0, but ∆ is not full rank

Let assume X has following properties,

X =


x1

...

xp

 xi |= xj, ∀i 6= j E(X) = 0.

So the conditional covariance between Xi and Xj will be,

Cov(xi,xj|Y = 1) = E(xixj|Y = 1) − E(xi|Y = 1)E(xj|Y = 1)

=

∫
xixjfX|Y(x, y = 1)dx −

∫
xifX|Y(x, y = 1)dx

∫
xjfX|Y(x, y = 1)dx

=

∫
xixj

fX(x)G(x)∫
fX(x)G(x)dx

dx −

∫
xi

fX(x)G(x)∫
fX(x)G(x)dx

dx

∫
xj

fX(x)G(x)∫
fX(x)G(x)dx

dx

=
1

p

(∫
xixjfX(x)G(x)dx −

∫
xifX(x)G(x)dx

∫
xjfX(x)G(x)dx

)
,

where p =
∫
fX(x)G(x)dx. We have similar result for Y = 0

Cov(xi,xj|Y = 0) = E(xixj|Y = 0) − E(xi|Y = 1)E(xj|Y = 0)

=
1

(1− p)

(∫
xixjfX(x)(1−G(x))dx −

∫
xifX(x)(1−G(x))dx

∫
xjfX(x)(1−G(x))dx

)
=

1

(1− p)

(
−

∫
xixjfX(x)G(x)dx −

∫
xifX(x)G(x)dx

∫
xjfX(x)G(x)dx

)
.
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If we further assume that p = 1− p = 0.5, we have

∆ij = Cov(xi,xj|Y = 1) − Cov(xi,xj|Y = 0) =
2

p

∫
xixjfX(x)G(x)dx.

Next, Let’s take some baby steps to find situations where the conditional covariates are same

for some covariates but different for others, so that we could have a ∆ which is not full rank.

Note that those conditions are some sufficient conditions under which the performance of SAVE

will be affected by the binary response.

For H(x), we assume that only ηTx matters

H(x) = H(ηTx).

To simply the situation, we let η = (e1, . . . , ed), where ei is an element vector with its ith

element as 1 and other elements as 0. Therefore, we have

ηTx = (x1, . . . ,xd), where d < p,

where xi, i ∈ {1, . . . , d} are first d element of x If we also assume a symmetric distribution for

Fε, then we have

G(x) = Fε(H(η
Tx)).
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If xi is not in {x1, . . . ,xd}, then the ∆ij = 0 ∀ j 6= i. That is

∆ij =
2

p

∫
xixjfX(x)G(x)dx

=
2

p

∫
xifXi

(xi)dx

∫
xj
∏
j 6=i
fXi

(xi)G(η
Tx)dx

= 0

Therefore, we could show that the rank(∆) ≤ d. If rank(∆) = d, we still have potential to

recover the whole central subspace. But if 0 < rank(∆) < d, then we can only recover part of

the central subspace by using the ∆. A sufficient situation for 0 < rank(∆) < d is

∃ i < d ∀ j, such that ∆ij = 0.

For example, let G(x) = (x1)
2 · sin(x2) · exp(x3), then the true direction of the central subspace

is x1,x2,x3, so d = 3. However, it can be shown that rank(S(∆,ν)) = 2 < 3 because the

sin(x2) is an odd function. Therefore, SAVE can only find 2 directions at the most. Besides,

since (x1)
2 is symmetric with 0, SIR also can only find 2 directions. The details of this case

can be found in Section 5.3.

3.2 Proposed approach

3.2.1 Motivation

All of this issues we mentioned before is caused by the limited information of the inverse

regression on binary response. Shin et al., 2014 has proved that if we use the conditional
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probability, G(X), to replace the binary response, then the issue are solved. The justification of

using G(X) is the identity between the central subspace of Y|X and G(X)|X, which is mentioned

in Section 1.3. The identity of the central subspaces can be explained in the following way.

Based on the assumption of SDR, we have

Y = f(X, ε) = f(ηT1X, . . . , η
T
dX, ε),

where f is an arbitrary function connecting Y and X. We assume that f depends X via the d

linear combinations, η. After we transform the binary response into its conditional probability,

we have

P(Y = 1|X) = G(X) = G(ηT1X, . . . , η
T
dX).

The identity of central subspaces implies that the G(X) depends on X through same d linear

combinations as Y does. Therefore, G(X) contains the same information of central subspace as

Y does.

An ideal situation to recover the central subspace is to observe the pair (G(X),X) instead

of (Y,X). However, in most of the cases, G(X) is not available and has to be estimated, Ĝ(X).

Intuitively, we want Ĝ(X) and G(X) to be as close as possible so that SDR methods can have

a good estimation of the central subspace. There are many methods to estimate the Ĝ(X), but

we have two requirements on those methods.

1. The method has to be a non-parametric method because SDR methods have few assump-

tions on the model structure,
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2. It can work with massive data sets because of the needs of the large data application.

Those two requirements seem to be contradicted because most of the non-parametric methods

are time-consuming when the sample size is large. However, based on the philosophy of SDR,

we can estimate the η efficiently well as long as the observations can reflect the structure of

G(·) correctly. Therefore, we may only need a few pairs of (Ĝ(X),X) with high quality so that

we could use them to recover the central subspace. Moreover, the estimated pairs need not

even be the observed points. Motivated by this fact, we develop our proposed method, which

will be discussed in detail in the next section.

3.2.2 Representative approach

The Representative approach has two steps, which are the partition step and the summary

step. The goal of this method is to extract useful information from the original data, meanwhile

reduces the sample size. The advantage of our approach is that it can naturally work with

massive data. For the partition step, it reduces the total number of observations from N to K,

where K is the number of total blocks and K � N. For the summary step, we select one or

more statistics that summarize the information based on our interests, which is (Ĝ(X),X) in

our case.

Partition step

The goal of this step is to divide data into blocks based on the similarity of X. There are

different definitions of similarity which serves for different research interests. In this paper, we
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are interested in estimating G(x) for a given x. So intuitively, we define the similarity of two

points as the euclidean distance.

d(x1,x2) =

√√√√ p∑
j=1

(x1j − x2j)2,

where xi = (xi1, . . . xip)
T . Ideally, all the observations inside each block are close to each other.

Partition methods

Many methods are available for partitioning the data. One straightforward method is the

binning method. The general idea of this method is to split the original data into small and

equal size multi-dimensional intervals (rectangular, cube) so that all the points within each

interval will be close to each other. This method is also named as equal-wide binning method.

This method is simple and easy to apply, but it may have a disadvantage when data points

are not evenly distributed. That is, it could end up with intervals with few or even no points

inside, which affects the performances of the following summary step. Besides, it may not work

well when p is large. For example, if we split the data into two intervals for each dimension,

then we will end up with 2p blocks. An alternative method is the equal-frequency binning

method, which guarantees that each block contains the same number of observations. However,

the shape of the multi-dimensional intervals could vary a lot for different data set, which is not

preferred.

K-means is a commonly used method of cluster analysis. The goal of this method is to

find K groups so that all the points within each block will have the smallest average Euclidean
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distance, where the number of K is pre-specified. Compared to the previous methods, K-means

does not guarantee equal-width or equal-frequency blocks. However, its blocks are in-between

of those two situations. That is, most of its blocks have similar numbers of observations and

volume sizes. Besides, K-means algorithm is easy to use and runs relatively fast. Since we only

need to estimate the boundaries of the blocks and do not require the algorithm to converge, its

time complexity can be O(NKp), which is linear with N and p.

Notations of partition

Let the feature space partition: Bk, k = 1, . . . , K such that ∪kBk = X ⊂ Rp. Let vk =
∫
Bk
dx

be the volume of block Bk. For the corresponding sample partition, we may assume that

X is compact (finite and bounded) such that its complement in Rp is a negligible set with

probability less than ε > 0. For the samples we have the index partition: Ik, k = 1, . . . , K.

∪kIk = I = {1, . . . ,N}. Let Nk = |Ik|. When a feature space partition {Bk, k = 1, . . . , K} exists,

the index partition can be defined as Ik = {i | xi ∈ Bk}, k = 1, . . . , K.

Summary step

In this step, we calculate the representatives for each block. A representative is a summary

statistic of all the observations inside a block. For instance, let xi, yi’s are observations such

that i ∈ IBk , the representatives are

xR = s(xi), and yR = s(yi),
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where s is a summary function. Based on different goals, we could use different summary

functions. In (Li and Yang, 2018), the authors have evaluated and compared several different

summary functions, such as mean, median and middle point function. They have suggested to

use the mean function as the summary function for regression problem. Let s(x) =
∑N

i xi

N , then

xR = s(xi) = x̄k, and yR = S(yi) = ȳk, , ∀i ∈ IBk ,

where x̄k and ȳk are the averages of observations in the block k and named as the Mean

Representatives (MR).

3.2.3 Mean Representative for G(X) estimation

Assumed we have spited the data into K blocks Bk, k = 1, . . . , K. Let the volume of a block

be vk =
∫
Bk
dx. Given Y is a binary random variable, the MR of Y is the estimator of a

conditional probability, which can be written as

E(Ȳk) = P(Yi = 1|Xi ∈ Bk).

On the other hand, the MR of X will be the estimator of the conditional mean of X that are

restricted in Bk,

E(X̄k) = E(Xi|Xi ∈ Bk).
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Besides, those MRs are actually consistent estimator of the conditional expectations. That is

given a partition Bk, k = 1, . . . , K, we have

Ȳk
P−→ P(Yi = 1|Xi ∈ Bk) and X̄k

P−→ E(Xi|Xi ∈ Bk), k = 1, . . . , K.

The choice of the number of blocks

Recall in Section 3.2.1, we want to have pairs of observations like (G(X),X), so that we

could use them to estimate the linear directions via SDR methods. After the partition and

summary steps, we transform the binary response into continuous variable, so we have the

pairs of MRs, (Ȳk = Ĝ(X̄k), X̄k). However, we still need to be careful before applying the SDR

methods on the MRs. Because the G(X̄k) are not necessarily close to Ȳk in most of cases.

Actually, the consistency property of MRs indicates

Ȳk −G(X̄k)
P−→ c, as N→∞,

where c is a non-zero constant.

In order to achieve a better approximation between Ȳk and G(X̄k), we define the number

of blocks K as a function of N and p, which is notated as KN and requires KN → ∞, KN
N →

0, as N → ∞. For the simplicity, we assume a power structure between KN and N. Under

some regular conditions, we have shown that the best choice of KN is

KN = CKN
p/(p+4), (3.3)



44

where cK is a constant. Note that KN could be large when N is large, which may increase the

computational time of the partition step. Therefore, in practice, we may set

KN = max(CKN
p/(p+4), Kr),

where Kr is the largest number of clusters that can be handled by a computer. More details of

clustering method are in Section 7.2.1. Moreover, under the Equation (3.3), we have

Ȳk −G(X̄k)
P−→ 0, as N→∞.

which we will discuss with details in Chapter 4.

3.2.4 Mean representative approach for SDR methods (MRDR)

The application of MR on the SDR methods is straightforward. The procedure of MRDR-

SDR are the following:

1. Apply the K-means method on predictors to partition the data into KN blocks, IB1 , . . . , IBKN
,

where KN = CKN
p/(p+4).

2. Calculate the MRs for all non-empty blocks. That is x̄k, ȳk, k = {1, . . . , KN}, where KN

is the number of blocks when sample size is N. In this step, we transform the binary

responses into continuous values between 0 and 1.

3. Apply SDR methods on KN MRs to estimate a basis of SY|X.
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Structural dimension estimation based on MRs

For the MRDR method, we directly adopt the tests or procedures to detect the structural

dimension from the original SDR methods. Since the MRs are the sample averages, we expect

the test statistics based on MRs should maintain similar properties as the test statistics cal-

culated based on original data. Moreover, simulation results show that the large sample tests

work well with MRs, especially for SIR. Note that SAVE’s test is sensitive to the choice of slices

number H, so we need to be careful to choose the numbers of slices and clusters for SAVE.

Tuning parameters of partitioning and slicing

One of the parameters is the constant Ck from Equation (3.3). The large CK, the more

blocks we will end up with, but the less point inside each block. Based on our simulation study,

we suggest just set the CK = 1. Since the K-means method does not control the number of

observations for each block, some of the blocks may contain only few points in them. That

means their mean representatives tend to have large variability. Therefore, we recommend

removing some of the small blocks. For example, we could remove the first smallest 5% blocks.

More details of choosing Ck are discussed in Section 4.3.

For the slicing procedure, we need to select the number of slice H. The number of H is

affected by the number of MRs. In order to have H slices with size NH, we need the number

of unique values of MRs for Y is more than H. Besides, the number of KN is large enough, so

that KN/H ≈ NH. We suggest to control the H or KN and modify the other value to satisfy a

pre-specified restriction. Different SDR methods have different requirements on H. Based on

our simulations, we find out that MRDR-SIR will not affect a lot by the number of H or KN,
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which is consistent with the property of SIR because of its simplicity. However, MRDR-SAVE

is sensitive to the choice of H and NK. In (Li et al., 2007), the authors have shown that SAVE is

very sensitive to the number of slices. They have suggested NH = 20 based on their simulation

studies. Based on our simulation studies on a large dataset, we suggest that NH = 100.



CHAPTER 4

ASYMPTOTIC PROPERTIES OF MEAN REPRESENTATIVE

In this chapter, we study the asymptotic distributions of X̄k, Ȳk and Ȳk − G(X̄k). In

Section 4.1, we study the asymptotic properties of the mean representatives assuming that the

partition is not related to the sample size N, which we call fixed partition. Then, in Section 4.2,

we assume the partition is shrinking. When N increases, the number of blocks (Nk) increases,

and the volume of each block decreases. Under the shrinkage partition, we prove that the

mean representative becomes a better estimation of the conditional probability than when the

partition is fixed. Besides, we also discuss a possible optimal relation between Nk and N in

Section 4.3.

4.1 Fixed partition

In this section, we consider the situation when a feature partition is given and fixed. The

covariates X1, . . . ,XN are iid from a distribution function F on Rp.

In this case, given the kth block Bk, we denote the kth block sample size Nk =
∑N
i=1 1Xi∈Bk .

In order to avoid trivial cases, we assume the kth block probability pk =
∫
Bk
F(dx) > 0.

Denote Zi = 1Xi∈Bk , i = 1, . . . ,N. Then Z1, . . . , ZN are iid from Bernoulli(pk), Nk =∑N
i=1 Zi, and the kth representative

X̄k =

∑N
i=1XiZi∑N
i=1 Zi

, Ȳk =

∑N
i=1 YiZi∑N
i=1 Zi

47



48

In order to find the asymptotic distribution of the kth representative, we denote Vi =

(Zi, ZiX
T
i )
T = Zi(1,X

T
i )
T ∈ Rp+1. Assuming X1, . . . ,XN are iid from a multivariate distribution

with mean µ ∈ Rp and covariance Σ ∈ Rp×d, then V1, . . . ,VN are iid with mean µv = pk(1,µ
T
k)
T

and covariance

Σv =

 pk(1− pk) pk(1− pk)µ
T
k

pk(1− pk)µk pk(1− pk)µkµ
T
k + pkΣk

 =
1− pk
pk

µvµ
T
v + pk

 0 0

0 Σk



where µk = p−1k
∫
Bk

xF(dx) and Σk = p−1k
∫
Bk

xxTF(dx) − µkµ
T
k are the mean and variance of

Xi restricted to block Bk (i.e., with probability measure p−1k F on Bk).

Besides, to make sure that the random vector V has a non-degenerate distribution, we need

to check if the covariance matrix is positive-definite.

Lemma 4.1.1. Suppose Σ is positive definite. Then Σv is positive definite if and only if

0 < pk < 1 and Σk is positive definite.

Note that Σk is not positive definite only if there exist a nonzero vector a ∈ Rp and a

constant b ∈ R, such that, if Xi ∈ Bk, then aTXi = b almost surely. A special case is Xij ≡ c

for some j given Xi = (Xi1, . . . , Xid)
T ∈ Bk.

Proof of Lemma 4.1.1: For any b ∈ R and a ∈ Rp,

(−b,aT )Σv

 −b

a

 = pk(1− pk) · (aTµk − b)2 + pk · aTΣka (4.1)
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The conclusions can be obtained using the fact that Σv is positive definite if and only if (4.1)=0

always implies a = 0 and b = 0. 2

4.1.1 Asymptotic distribution of X̄k

In this section, we consider the cases when F has a density f. Then pk =
∫
BK
f(x)dx. In

this case, Σv must be positive definite.

According to the multivariate central limit theorem (see, for example, Theorem 5 in (Fer-

guson, 1996)),

√
N(V̄ − µv)

D−→ Np+1(0,Σv)

as N→∞, where V̄ = N−1
∑N
i=1Vi .

Denote the map M : Rp+1 → Rp such that M((z,uT )T ) = u/z, where z ∈ R and u ∈ Rp.

Then M(V̄) =
∑N
i=1 ZiXi/

∑N
i=1 Zi = X̄k and M(µv) = µk . It can be verified that the gradient

of M at µv is ∇M(µv) = p
−1
k (−µk, Ip)

T , where Ip is the identity matrix of order d.

According to the multivariate Delta method (see, for example, Theorem 7 in (Ferguson,

1996)),

√
N(M(V̄) −M(µv))

D→ Np

(
0,∇M(µv)

T · Σv · ∇M(µv)
)
= Np(0, p

−1
k Σk)

as N→∞.

Theorem 4.1.1. Suppose Σ is positive definite, pk ∈ (0, 1), and F has a density. Then

√
N(X̄k − µk)

D−→ Np(0, p
−1
k Σk)
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as N→∞.

4.1.2 Asymptotic distribution of Ȳk

In this section, we consider the asymptotic distribution of Ȳk =
∑N
i=1 YiZi/

∑N
i=1 Zi as N

goes to infinity. Similar to the procedure for X̄k, we define Wi = Zi(1, Yi)
T , i = 1, . . . ,N. Then

W1, . . . ,WN are iid with mean µw = pk(1, µg)
T and covariance

Σw =

 pk(1− pk) pk(1− pk)µg

pk(1− pk)µg pkµg(1− pkµg)

 =
1− pk
pk

µwµ
T
w +

 0 0

0 pkµg(1− µg)



where µg = p
−1
k

∫
Bk
G(x)F(dx) ∈ [0, 1], since G(x) = P(Yi = 1 | Xi = x) ∈ [0, 1].

Since |Σw| = p
2
k(1−pk)µg(1−µg), then Σw is positive definite if and only if 0 < µg < 1. Note

that µg = 0 indicates G(x) = 0 almost surely given x ∈ Bk, while µg = 1 indicates G(x) = 1

almost surely within Bk. Both are trivial cases.

When Σw is positive definite, the multivariate central limit theorem implies

√
N(W̄ − µw)

D−→ N2(0,Σw)

where W̄ = N−1
∑N
i=1Wi .

Similar to Section 4.1.1, we denote the map M : R2 → R such that M((z, u)T ) = u/z.

Then M(W̄) =
∑N
i=1 YiZi/

∑N
i=1 Zi = Ȳk and M(µw) = µg . The gradient of M at µw is

∇M(µw) = p
−1
k (−µg, 1)

T , and ∇M(µw)
T · Σw · ∇M(µw) = p

−1
k µg(1− µg).

According to the multivariate Delta method, we obtain the theorem of Ȳk as follows:
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Theorem 4.1.2. Suppose 0 < pk < 1 and 0 < µg < 1. Then Σw is positive definite and

√
N(Ȳk − µg)

D−→ N
(
0, p−1k µg(1− µg)

)

as N→∞.

4.1.3 Asymptotic distribution of Ȳk −G(X̄k)

In this section, we consider the asymptotic distribution of Ȳk−G(X̄k) as N goes to infinity.

Similar to the procedures for X̄k and Ȳk, we define Ui = Zi(1, Yi,X
T
i )
T ∈ Rp+2, i = 1, . . . ,N.

Then U1, . . . ,UN are iid with mean µu = pk(1, µg,µ
T
k)
T and covariance

Σu =
1− pk
pk

µuµ
T
u + pk


0 0 0

0 µg(1− µg) ΣTxg

0 Σxg Σk



where Σxg = p
−1
k

∫
Bk

xG(x)F(dx) − µgµk ∈ Rp.

In order to investigate when Σu is positive definite, we consider an arbitrary u = (−b,−c,aT )T ∈

Rp+2 with b, c ∈ R and a ∈ Rp. It can be verified that

uTΣuu = pk(1− pk)
(
aTµk − cµg − b

)2
+

∫
Bk

{[
aTx − cG(x)

]
−
(
aTµk − cµg

)}2
F(dx)

+ c2
∫
Bk

G(x)[1−G(x)]F(dx)
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Note that Σu is positive definite always implies Σw and Σv are positive definite. Then the

positive definiteness of Σu implies 0 < pk < 1, 0 < µg < 1 and the positive definiteness of

Σk. However, those conditions are not sufficient for the positive definiteness of Σu. Below is a

counterexample.

Example 4.1.1. Suppose Xi = (Xi1, . . . , Xid)
T has independent components. Each of Xi2, . . . , Xid

follows N(0, 1), while Xi1 is discrete within Bk such that P(Xi1 = c0) = p0 > 0 and P(Xi1 = c1) =

pk − p0 > 0, c0 6= c1. Suppose further G(x) ≡ 0 if x = (c0, xi2, . . . , xid)
T ∈ Bk and G(x) ≡ 1 if

x = (c1, xi2, . . . , xid)
T ∈ Bk. It can be verified that if 0 < pk < 1, then µg = (pk−p0)/pk ∈ (0, 1)

and Σk is positive definite. However, uTΣuu = 0 if u = (−c0, c0−c1, 1, 0, . . . , 0)
T ∈ Rp+2. That

is, Σu is not positive definite.

Lemma 4.1.2. Suppose P (Xi ∈ {x ∈ Bk | 0 < G(x) < 1}) > 0. Then Σu is positive definite if

and only if 0 < pk < 1 and Σk is positive definite.

Proof of Lemma 4.1.2: We only need to prove the “if” part. Note that the assumption

P (Xi ∈ {x ∈ Bk | 0 < G(x) < 1}) > 0 implies
∫
Bk
G(x)[1 − G(x)]F(dx) > 0. Since 0 < pk < 1,

then uTΣuu = 0 implies b = aTµk − cµg, c = 0, and aTXi = aTµk almost surely in Bk. Since

Σk is positive definite, we must have a = 0 and then b = 0. Thus, Σu is positive definite. 2

Lemma 4.1.3. Suppose F has a density. Then Σu is positive definite if and only if 0 < pk < 1

and 0 < µg < 1.
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Proof of Lemma 4.1.3: We only need to show the “if” part. Since 0 < pk < 1, then

uTΣuu = 0 implies (i) b = aTµk − cµg; (ii) c2
∫
Bk
G(x)[1 − G(x)]F(dx) = 0; and (iii) aTXi =

aTµk − cµg + cG(Xi) almost surely in Bk.

If c 6= 0, then (ii) implies G(Xi) ∈ {0, 1} almost surely in Bk. Due to 0 < µg < 1, if we

denote Bk0 = {x ∈ Bk | G(x) = 0} and Bk1 = {x ∈ Bk | G(x) = 1}, then P(Xi ∈ Bk0) > 0, P(Xi ∈

Bk1) > 0, and P(Xi ∈ Bk \ (Bk0∪Bk1)) = 0. Combining with (iii), we get (iv) aTx = aTµk− cµg

if x ∈ Bk0 and aTx = aTµk − cµg + c if x ∈ Bk1. Since a can not be zero here, (iv) implies

Bk0 ∪ Bk1 has Lebesgue measure zero and then pk =
∫
Bk
f(x)dx =

∫
Bk0∪Bk1 f(x)dx = 0, where

f is the density of F. The contradiction implies c = 0.

Combining with (iii), c = 0 implies aTXi = aTµk almost surely in Bk, which violates the

existence of the density f unless a = 0. After all, we must have c = 0, a = 0 and then b = 0.

Thus, Σu is positive definite. 2

When Σu is positive definite, the multivariate central limit theorem implies

√
N(Ū − µu)

D−→ Np+2(0,Σu)

where Ū = N−1
∑N
i=1Ui .
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We denote the map M : Rp+2 → R such that M((z, v,uT )T ) = v/z − G(u/z) with z, v ∈ R

and u ∈ Rp. Then M(Ū) = Ȳk −G(X̄k) and M(µu) = µg −G(µk). The gradient of M at µu is

∇M(µu) = p
−1
k

(
µTk · ∇G(µk) − µg, 1,−∇G(µk)T

)T
, and

∇M(µu)
T · Σu · ∇M(µu) = p

−1
k

(
µg(1− µg) − 2∇G(µk)TΣxg +∇G(µk)TΣk∇G(µk)

)

denoted by σ2ygx .

According to Lemma 4.1.3 and the multivariate Delta method, we obtain the theorem as

follows:

Theorem 4.1.3. Suppose 0 < pk < 1, 0 < µg < 1, and F has a density. Then

√
N
[(
Ȳk −G(X̄k)

)
− (µg −G(µk))

] D−→ N
(
0, σ2ygx

)

as N→∞.

As a direct conclusion by Theorem 4.1.3, as N goes to infinity,

Ȳk −G(X̄k)
P−→ µg −G(µk) = p

−1
k

∫
Bk

G(x)F(dx) −G

(
p−1k

∫
Bk

xF(dx)

)
(4.2)

which is typically nonzero unless G is linear or Xi is a constant almost surely within Bk.

4.2 Shrinking partition

When the block Bk is fixed as N→∞, according to Theorem 4.1.1, Ȳk −G(X̄k) converges

to a nonzero constant (4.2) unless G is linear or Xi is a constant almost surely within Bk.
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In this section, we consider the asymptotic distribution of ȲkN − G(X̄kN) on a sequence of

shrinking blocks BkN as N goes to infinity. More specifically, (1) the number of blocks KN →∞
as N → ∞; (2) 1 ≤ kN ≤ KN and BkN ’s are nested, that is, BkN ⊇ BkN+1

for all N; (3) the

blocks are shrinking, that is, the sizes of blocks δkN = maxx1,x2∈BkN ‖x1 − x2‖→ 0 as N→∞,

where ‖ · ‖ stands for Euclidean distance; (4) the blocks are not trivial, that is, each block BkN

contains an open ball Bε(x) = {x ′ ∈ Rp | ‖x ′ − x‖ < ε} for some x ∈ Rp and ε > 0.

As a matter of mathematical facts, if a sequence of blocks satisfies the above conditions, then

there exists a single point x0 ∈ Rp such that limN→∞ B̄kN = {x0} as a limit of sets, where B̄kN is

the closure of BkN . Actually, {x0} = ∩NB̄kN . Note that it is possible that x0 /∈ BkN for each N.

From the last two conditions we also know that the volumes of the blocks vkN =
∫
BkN

dx > 0

for each N and limN→∞ vkN = 0.

Let x0 = (x01, . . . , x0p)
T . We first consider a simplified block type BkN =

∏p
j=1[x0j, x0j+hN),

where hN = ch ·N−1/(pr) for some ch > 0 and r > 1. Then the volume vkN = h
p
N = c

p
h ·N

−1/r

and the number of blocks KN ≈ cK ·N1/r for some cK > 0. On average, the number of points

nkN in BkN is about cn ·N1−1/r for some cn > 0. Note that both KN and nkN go to infinity as

N goes to infinity.
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Given N and BkN ⊆ Rp, we define Ui = Zi(1, Yi,X
T
i )
T ∈ Rp+2, i = 1, . . . ,N, where Zi =

1Xi∈BkN . Then U1, . . . ,UN are iid with mean µu = pk(1, µg,µ
T
k)
T and covariance

Σu =
1− pk
pk

µuµ
T
u + pk


0 0 0

0 µg(1− µg) ΣTxg

0 Σxg Σk



where pk =
∫
BkN

F(dx), µg = p
−1
k

∫
BkN

G(x)F(dx), µk = p
−1
k

∫
BkN

xF(dx), Σxg = p
−1
k

∫
BkN

xG(x)F(dx)−

µgµk ∈ Rp, and Σk = p
−1
k

∫
BkN

xxTF(dx) − µkµ
T
k.

4.2.1 Asymptotic distribution of Ȳk −G(X̄k)

In this section, we consider the cases when F has a density f. According to Lemma 4.1.3,

Σu is positive definite if and only if 0 < pk < 1 and 0 < µg < 1.

We assume 0 < pk < 1, 0 < µg < 1 and f ∈ C2, that is, the first two derivatives of f

exist and are continuous. We denote ∇f(x) ∈ Rp be the gradient of f at x ∈ Rp. Then in a

neighborhood of x0 we have a multivariate Taylor series expansion

f(x) = f(x0) + (x − x0)
T∇f(x0) +O(‖x − x0‖2)
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For the simplified block type BkN =
∏p
j=1[x0j, x0j+hN) with hN = ch ·N−1/(pr) for some ch > 0

and r > 1, if f(x0) > 0, it can be verified that

pk = c
p
h · f(x0) ·N

− 1
r +

1

2
c
p+1
h · 1T∇f(x0) ·N− 1

r
(1+ 1

p
) +O(N− 1

r
(1+ 2

p
))

pk(1− pk) = c
p
h · f(x0) ·N

− 1
r +

[
1

2
c
p+1
h · 1T∇f(x0) − c2dh · f(x0)2 · 1p=1

]
N

− 1
r
(1+ 1

p
)

+O(N− 1
r
(1+ 2

p
))

µg = G(x0) +
1

2
ch · 1T∇G(x0) ·N− 1

rp +O(N− 2
rp )

µk = x0 +
1

2
ch · 1 ·N− 1

rp +O(N− 2
rp )

µg(1− µg) = G(x0)[1−G(x0)] +
1

2
ch[1− 2G(x0)] · 1T∇G(x0) ·N− 1

rp +O(N− 2
rp )

Σxg = O(N− 2
rp )

Σk = O(N− 2
rp )

as N→∞. Therefore,

µu = c
p
hf(x0) · µu1 ·N

− 1
r +

1

2
c
p+1
h · µu2 ·N

− 1
r
(1+ 1

p
) +O(N− 1

r
(1+ 2

p
))

Σu = c
p
hf(x0) · Σu1 ·N

− 1
r +

1

2
c
p+1
h · Σu2 ·N− 1

r
(1+ 1

p
) +O(N− 1

r
(1+ 2

p
))

where

µu1 =


1

G(x0)

x0

 , µu2 =


1T∇f(x0)

1T [f(x0)∇G(x0) +G(x0)∇f(x0)]

f(x0)1 + 1T∇f(x0)x0
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Σu1 =


1 G(x0) xT0

G(x0) G(x0) G(x0)x
T
0

x0 G(x0)x0 x0x
T
0

 , Σu2 =

σ
(u2)
11 σ

(u2)
21 (σ

(u2)
31 )T

σ
(u2)
21 σ

(u2)
22 (σ

(u2)
32 )T

σ
(u2)
31 σ

(u2)
32 σ

(u2)
33



σ
(u2)
11 = 1T∇f(x0) − 2cp−1h f(x0)

2 · 1p=1

σ
(u2)
21 = 1T [f(x0)∇G(x0) +G(x0)∇f(x0)] − 2cp−1h f(x0)

2G(x0) · 1p=1

σ
(u2)
31 = f(x0)1 + 1T∇f(x0)x0 − 2cp−1h f(x0)

2x0 · 1p=1

σ
(u2)
22 = 1T [f(x0)∇G(x0) +G(x0)∇f(x0)] − 2cp−1h f(x0)

2G(x0)
2 · 1p=1

σ
(u2)
32 = 1T [f(x0)∇G(x0) +G(x0)∇f(x0)]x0 + f(x0)G(x0)1

−2cp−1h f(x0)
2G(x0)x0 · 1p=1

σ
(u2)
33 = 1T∇f(x0)x0xT0 + f(x0)(x01T + 1xT0 ) − 2c

p−1
h f(x0)

2x0x
T
0 · 1p=1



59

Fixing N, recall that U1, . . . ,UN are iid with mean µu ∈ Rp+2 and covariance Σu ∈

R(p+2)×(p+2). When Σu is positive definite, we denote the map M : Rp+2 → R such that

M((z, v,uT )T ) = v/z−G(u/z) with z, v ∈ R and u ∈ Rp. Then M(Ū) = Ȳk −G(X̄k) and

M(µu) = µg −G(µk) = O(N
−2/(rp))

∇M(µu) = p−1k [µTk∇G(µk) − µg, 1, −∇G(µk)T ]T

σ2ygx = ∇M(µu)
T · Σu · ∇M(µu)

= p−1k

(
µg(1− µg) − 2∇G(µk)TΣxg +∇G(µk)TΣk∇G(µk)

)
=

G(x0)[1−G(x0)]

c
p
hf(x0)

·N
1
r

+
f(x0)[1− 2G(x0)]1

T∇G(x0) −G(x0)[1−G(x0)]1T∇f(x0)
2c
p−1
h f(x0)2

·N
1
r
(1− 1

p
)

+O(N
1
r
(1− 2

p
))

If we further denote ∇2f(x) ∈ Rp×d be the Hessian matrix of f at x ∈ Rp and assume that

f ∈ C3, then in a neighborhood of x0

f(x) = f(x0) + (x − x0)
T∇f(x0) +

1

2
(x − x0)

T · ∇2f(x0) · (x − x0) +O(‖x − x0‖3)
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If f(x0) > 0, it can be verified that

pk = c
p
h · f(x0) ·N

− 1
r +

1

2
c
p+1
h · 1T∇f(x0) ·N− 1

r
(1+ 1

p
)

+
1

8
c
p+2
h [1T∇2f(x0)1 +

1

3
tr(∇2f(x0))] ·N− 1

r
(1+ 2

p
) +O(N− 1

r
(1+ 3

p
))

µg = G(x0) +
1

2
ch · 1T∇G(x0) ·N− 1

rp

+
1

24
c2h

[
3 · 1T∇2G(x0)1 + tr(∇2G(x0)) +

2

f(x0)
∇f(x0)T∇G(x0)

]
·N− 2

rp

+O(N− 3
rp )

µk = x0 +
1

2
ch · 1 ·N− 1

rp +
1

12
c2h

1

f(x0)
∇f(x0) ·N− 2

rp +O(N− 3
rp )

M(µu) = µg −G(µk) =
1

24
c2h · tr(∇2G(x0)) ·N

− 2
rp +O(N− 3

rp )

µu = c
p
hf(x0) · µu1 ·N

− 1
r +

1

2
c
p+1
h · µu2 ·N

− 1
r
(1+ 1

p
)

+
1

24
c
p+2
h · µu3 ·N

− 1
r
(1+ 2

p
) +O(N− 1

r
(1+ 3

p
))

as N→∞, where

µu3 =


3 · 1T∇2f(x0)1 + tr(∇2f(x0))

µu3b

tr(∇2f(x0))x0 + 2∇f(x0) + 3 · 1T∇2f(x0)1 · x0 + 6 · 1T∇f(x0)1


µu3b = f(x0)tr(∇2G(x0)) +G(x0)tr(∇2f(x0)) + 2∇f(x0)T∇G(x0)

+3f(x0)1
T∇2G(x0)1 + 3G(x0)1

T∇2f(x0)1 + 6 · 1T∇f(x0) · 1T∇G(x0)
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Theorem 4.2.1. Let Ui = Zi(1, Yi,X
T
i )
T , i = 1, . . . ,N, where Zi = 1Xi∈BkN . Suppose

X1, . . . ,XN are iid with density f ∈ C3, f(x0) > 0, and G ∈ C3. If r < 1+ 6/p, then

N
1
2
(1+ 1

r
)(Ū − µN)

D−→ Np+2(0, c
p
hf(x0)Σu1)

where Ū = N−1
∑N
i=1Ui and µN = cphf(x0)µu1·N

− 1
r+ 1

2c
p+1
h µu2·N

− 1
r
(1+ 1

p
)+ 1

24c
p+2
h µu3·N

− 1
r
(1+ 2

p
).

It should be noted that Σu1 is degenerated with rank 2 if G(x0) ∈ (0, 1) or rank 1 if

G(x0) ∈ {0, 1} (see Lemma 4.2.1).

Proof of Theorem 4.2.1: Let ZN = N
1
2
(1+ 1

r
)(Ū − µN) = N

− 1
2
(1− 1

r
)∑N

i=1(Ui − µN). Let ϕZN

and ϕN be the characteristic functions of ZN and Ui − µN, respectively. Then

ϕZN
(t) = ϕ∑N

i=1(Ui−µN)(t ·N
− 1

2
(1− 1

r
)) = ϕN(t ·N− 1

2
(1− 1

r
))N

On the other hand, for t = (t1, t2, t
T
3 )
T ∈ Rp+2,

ϕN(t) = Eeit
T (Ui−µN)

= e−it
TµN · EeitTUi

= e−it
TµN · E

(
E
(
eit

TUi | Xi

))
= e−it

TµN · E
(
eiZi(t1+tT3Xi)E

(
eit2ZiYi | Xi

))
= e−it

TµN · E
(
eiZi(t1+tT3Xi)

[
1−G(Xi) +G(Xi)e

it2Zi

])
= e−it

TµN

[
1− pk + e

it1

∫
BkN

eit
T
3x
[
1−G(x) +G(x)eit2

]
f(x)dx

]
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Since f ∈ C3 and G ∈ C3, with the Taylor expansions of f and G in a neighborhood of x0, we

can verify that

ϕN(t ·N− 1
2
(1− 1

r
))

=
(
1− itTµN ·N− 1

2
(1− 1

r
) +O(N−1− 1

r )
)
·
(
1+ itTµN ·N− 1

2
(1− 1

r
)

−
1

2
c
p
hf(x0)t

TΣu1t ·N−1 +O(N− 1
2
(1+ 1

r
)− 3

rp ) +O(N−1− 1
rp ) +O(N−1− 1

2
(1− 1

r
))

)
= 1−

1

2
c
p
hf(x0) · t

TΣu1t ·N−1 +O(N− 1
2
(1+ 1

r
)− 3

rp ) +O(N−1− 1
rp ) +O(N−1− 1

2
(1− 1

r
))

as N goes to infinity. If r < 1+ 6/p, then − 1
2(1+

1
r ) −

3
rp < −1, which implies

lim
N→∞ϕZN

(t) = lim
N→∞ϕN(t ·N− 1

2
(1− 1

r
))N = exp

{
−
1

2
tT · cphf(x0)Σu1 · t

}

That is, ZN
D−→ Np+2(0, c

p
hf(x0)Σu1), as N goes to infinity. 2

The condition r < 1 + 6/p in Theorem 4.2.1 can be further extended. Actually, if, for

example, r < 1 + 8/p, from the proof of Theorem 4.2.1, the Taylor expansion of 1 − pk +

eit1
∫
BkN

eit
T
3x
[
1−G(x) +G(x)eit2

]
f(x)dx can be extended to items at orderN− 1

2
(1+ 1

r
)− 3

rp with

the leftover O(N− 1
2
(1+ 1

r
)− 4

rp ). In this case, by updating µN with an additional item at order

N
− 1

r
(1+ 3

p
), the same asymptotic normal distribution still holds.

Lemma 4.2.1. The rank of Σu1 is 2 if G(x0) ∈ (0, 1) or 1 if G(x0) ∈ {0, 1}. More specifically,
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(1) The eigenvalues of Σu1 are

λ1, λ2 =
1

2

{
1+ xT0x0 +G(x0)±

[(
1+ xT0x0 −G(x0)

)2
+ 4(1+ xT0x0)G(x0)

2

]1/2}

λ3 = · · · = λp+2 = 0, where λ1 > λ2 ≥ 0, and λ2 = 0 if and only if G(x0) ∈ {0, 1}.

(2) If λ 6= 0, an eigenvector corresponding to it is

(1,
λG(x0)

λ−G(x0)[1−G(x0)]
, xT0 )

T

(3) The collection of eigenvectors of 0, or the null space of Σu1, is {(−xT0u, 0, uT )T ∈ Rp+2 |

u ∈ Rp} if G(x0) ∈ (0, 1); or {(−G(x0)v − xT0u, v, uT )T ∈ Rp+2 | u ∈ Rp, v ∈ R} if

G(x0) ∈ {0, 1}.

Proof of Lemma 4.2.1: In order to find the eigenvalues of Σu1, we consider the determinant

f(λ) = |λIp+2 − Σu1|. By row operations, f(λ) is equal to the determinant of


λ− 1 −G(x0) −xT0

−λG(x0) λ−G(x0)[1−G(x0)] 0T

−λx0 0 λIp


4
=

 A B

C D
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where A ∈ R2×2, B ∈ R2×d, C ∈ Rp×2, and D ∈ Rp×d. If λ 6= 0, by Schur’s determinant

identity

f(λ) = |D| · |A − BD−1C|

= λp ·
{
λ2 − [1+ xT0x0 +G(x0)]λ+ (1+ xT0x0)G(x0)[1−G(x0)]

}
(4.3)

Apparently, (4.3) is true as well if λ = 0. Then the eigenvalues listed in (1) can be obtained by

solving f(λ) = 0. The eigenvectors listed in (2) and (3) can be verified as well. 2

Corollary 4.2.1. Under the conditions of Theorem 4.2.1, if r ∈ (1, 1+ 2/p),

N
1
2
(1+ 1

r
)(Ū − µN1)

D−→ Np+2(0, c
p
hf(x0)Σu1)

where µN1 = c
p
hf(x0)µu1 ·N

− 1
r . If r = 1+ 2/p, then

N
1
2
(1+ 1

r
)(Ū − µN1)

D−→ Np+2(
1

2
c
p+1
h µu2, c

p
hf(x0)Σu1)

If r ∈ (1+ 2/p, 1+ 4/p), then

N
1
2
(1+ 1

r
)(Ū − µN2)

D−→ Np+2(0, c
p
hf(x0)Σu1)
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where µN2 = c
p
hf(x0)µu1 ·N

− 1
r + 1

2c
p+1
h µu2 ·N

− 1
r
(1+ 1

p
). If r = 1+ 4/p, then

N
1
2
(1+ 1

r
)(Ū − µN2)

D−→ Np+2(
1

24
c
p+2
h µu3, c

p
hf(x0)Σu1)

Proof of Corollary 4.2.1: From Theorem 4.2.1, we have

N
1
2
(1+ 1

r
)(Ū − µN)

D−→ Np+2(0, c
p
hf(x0)Σu1)

Note that

N
1
2
(1+ 1

r
)(Ū − µN) = N

1
2
(1+ 1

r
)(Ū − cphf(x0)µu1 ·N

− 1
r )

−
1

2
c
p+1
h µu2 ·N

1
2
(1− 1

r
)− 1

rp −
1

24
c
p+2
h µu3 ·N

1
2
(1− 1

r
)− 2

rp

If r < 1+ 2/p, then 1
2(1−

1
r ) −

1
rp < 0 and thus 1

2(1−
1
r ) −

2
rp < 0. By Slutsky’s Theorem (see,

for example, Theorem 1.5 in (DasGupta, 2008)), we get

N
1
2
(1+ 1

r
)(Ū − cphf(x0)µu1 ·N

− 1
r )

D−→ Np+2(0, c
p
hf(x0)Σu1)

If r < 1+ 4/p, then 1
2(1−

1
r ) −

2
rp < 0. By Slutsky’s Theorem, we get

N
1
2
(1+ 1

r
)(Ū − cphf(x0)µu1 ·N

− 1
r −

1

2
c
p+1
h µu2 ·N

− 1
r
(1+ 1

p
))
D−→ Np+2(0, c

p
hf(x0)Σu1)
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Actually, if r = 1+ 2/p, then 1
2(1−

1
r ) −

1
rp = 0 and 1

2(1−
1
r ) −

2
rp < 0. By Slutsky’s Theorem,

we get

N
1
2
(1+ 1

r
)(Ū − cphf(x0)µu1 ·N

− 1
r )

D−→ Np+2(
1

2
c
p+1
h µu2, c

p
hf(x0)Σu1)

If r = 1+ 4/p, then 1
2(1−

1
r ) −

2
rp = 0. By Slutsky’s Theorem, we get

N
1
2
(1+ 1

r
)(Ū − cphf(x0)µu1 ·N

− 1
r −

1

2
c
p+1
h µu2 ·N

− 1
r
(1+ 1

p
))
D−→ Np+2(

1

24
c
p+2
h µu3, c

p
hf(x0)Σu1)

2

Theorem 4.2.2. Suppose X1, . . . ,XN are iid with density f ∈ C3, f(x0) > 0, and G ∈ C3. If

1 < r < 1+ 6/p, then

N
1
2
(1− 1

r
)

[
Ȳk −G(X̄k) −

1

24
c2h · tr(∇2G(x0)) ·N

− 2
rp

]
D−→ N

(
0,
G(x0)[1−G(x0)]

cdhf(x0)

)
(4.4)

Proof of Theorem 4.2.2: Under the conditions of Theorem 4.2.1, let Ū ′ = N1/rŪ, µ ′N1 =

cdhf(x0)µu1, and ∆N = 1
2c
d+1
h µu2 ·N

− 1
rp + 1

24c
d+2
h µu3 ·N

− 2
rp . Then N1/rµN = (µ ′N+∆N) and for

r < 1+ 6/p,

N
1
2
(1− 1

r
)(Ū ′ − µ ′N −∆N)

D−→ Nd+2(0, c
d
hf(x0)Σu1) (4.5)
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Recall that M(w) = v/z − G(u/z) for w = (z, v,uT )T ∈ Rd+2, z > 0. Let δ = 1
2c
d
hf(x0) > 0.

According to the mean-value theorem (see, for example, Chapter 4 of (Ferguson, 1996)), for

|w − µ ′N1| < δ, we have z > 1
2c
d
hf(x0) > 0 and

M(w) =M(µ ′N1) +

∫ 1
0

∇M(µ ′N1 + s(w − µ ′N1))
Tds · (w − µ ′N1)

∇M(µ ′N1 + s(w − µ ′N1)) = ∇M(µ ′N1) +

∫ 1
0

∇2M(µ ′N1 + us(w − µ ′N1))du · s(w − µ ′N1)

Then for |Ū ′ − µ ′N1| < δ,

M(Ū ′) = M(µ ′N1) +

∫ 1
0

∇M(µ ′N1 + s(Ū
′ − µ ′N1))

Tds · (Ū ′ − µ ′N1)

= M(µ ′N1) +

∫ 1
0

∇M(µ ′N1 + s(Ū
′ − µ ′N1))

Tds · (Ū ′ − µ ′N1 −∆N)

+

∫ 1
0

∇M(µ ′N1 + s(Ū
′ − µ ′N1))

Tds ·∆N

= M(µ ′N1) +

∫ 1
0

∇M(µ ′N1 + s(Ū
′ − µ ′N1))

Tds · (Ū ′ − µ ′N1 −∆N)

+ ∆TN

∫ 1
0

∫ 1
0

s∇2M(µ ′N1 + us(Ū
′ − µ ′N1))

Tduds · (Ū ′ − µ ′N1 −∆N)

+ ∇M(µ ′N1)
T∆N +∆TN

∫ 1
0

∫ 1
0

s∇2M(µ ′N1 + us(Ū
′ − µ ′N1))

Tduds ·∆N

Since M(Ū ′) = M(Ū) = Ȳk − G(X̄k), M(µ ′N1) = 0, ∇M(µ ′N1) = [cdhf(x0)]
−1(−G(x0) +

xT0∇G(x0), 1, −∇G(x0)T )T and ∇M(µ ′N1)
T∆N = 1

24c
2
h[tr(∇2G(x0)) + 3 · 1T∇2G(x0)1] ·N

− 2
rp ,

it can be verified that

N
1
2
(1− 1

r
)

[
Ȳk −G(X̄k) −

1

24
c2h · tr(∇2G(x0)) ·N

− 2
rp

]
= A1 +A2 +A3 +A4 +A5 (4.6)
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where

A1 =

∫ 1
0

∇M(µ ′N1 + s(Ū
′ − µ ′N1))

Tds ·N
1
2
(1− 1

r
)(Ū ′ − µ ′N1 −∆N)

A2 = ∆TN

∫ 1
0

∫ 1
0

s∇2M(µ ′N1 + us(Ū
′ − µ ′N1))duds ·N

1
2
(1− 1

r
)(Ū ′ − µ ′N1 −∆N)

A3 =

[
1

4
c2d+2h µTu2

∫ 1
0

∫ 1
0

s∇2M(µ ′N1 + us(Ū
′ − µ ′N1))duds · µu2 +

1

8
c2h1

T∇2G(x0)1
]

· N
1
2
(1− 1

r
)− 2

rp

A4 =
1

48
c2d+3h µTu2

∫ 1
0

∫ 1
0

s∇2M(µ ′N1 + us(Ū
′ − µ ′N1))duds · µu3 ·N

1
2
(1− 1

r
)− 3

rp

A5 =
1

576
c2d+4h µTu3

∫ 1
0

∫ 1
0

s∇2M(µ ′N1 + us(Ū
′ − µ ′N1))duds · µu4 ·N

1
2
(1− 1

r
)− 4

rp

Due to (4.5), we have Ū ′ − µ ′N − ∆N
D→ 0 or equivalently Ū ′ − ∆N

D→ µ ′N. Since ∆N
P→ 0, we

obtain Ū ′
D→ µ ′N, which implies P(|Ū ′−µ ′N| < δ)→ 1. As a continuous function of Ū ′, we have

∫ 1
0

∇M(µ ′N1 + s(Ū
′ − µ ′N1))ds

D−→ ∫ 1
0

∇M(µ ′N1 + s(µ
′
N1 − µ

′
N1))ds = ∇M(µ ′N1)

According to (4.5) and ∇M(µ ′N1)
T · cdhf(x0)Σu1 · ∇M(µ ′N1) = [cdhf(x0)]

−1G(x0)[1−G(x0)],

A1
D−→ ∇M(µ ′N1)

T ·Nd+2(0, cdhf(x0)Σu1)
D
= N

(
0,
G(x0)[1−G(x0)]

cdhf(x0)

)

Similarly, as a major component of A2, A3, A4 and A5,

∫ 1
0

∫ 1
0

s∇2M(µ ′N1 + us(Ū
′ − µ ′N1))duds

D−→ ∫ 1
0

∫ 1
0

s∇2M(µ ′N1)duds =
1

2
∇2M(µ ′N1)
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Since ∆N
P→ 0, we have A2

P→ 0 as N goes to infinity. If r < 1 + 6/p, then 1
2(1 −

1
r ) <

3
rp and

A4
P→ 0, A5

P→ 0.

As for A3, we need to apply the mean-value theorem to each entry of ∇2M(µ ′N1 + us(Ū
′ −

µ ′N1)) and get

∇2M(µ ′N1 + us(Ū
′ − µ ′N1))ij

= ∇2M(µ ′N1)ij +

d+2∑
l=1

us

∫ 1
0

∂3M

∂wi∂wj∂wl
(µ ′N1 + tus(Ū

′ − µ ′N1))dt(Ū
′ − µ ′N1)l

where (·)ij denotes the (i, j)th entry of a matrix and (·)l denotes the lth component of a vector.

Since 1
4c
2d+2
h µTu2 ·

1
2∇

2M(µ ′N1) · µu2 = − 1
8c
2
h1
T∇2G(x0)1, then A3 = 1

4c
2d+2
h VT

N(Ū
′ − µ ′N1) ·

N
1
2
(1− 1

r
)− 2

rp = A6 +A7, where VN = (VN1, . . . , VN,d+2)
T ,

VNl =

d+2∑
i=1

d+2∑
j=1

(µu2)i(µu2)j

∫ 1
0

∫ 1
0

∫ 1
0

us2
∂3M

∂wi∂wj∂wl
(µ ′N1 + tus(Ū

′ − µ ′N1))dtduds

A6 =
1

4
c2d+2h VT

N ·N
1
2
(1− 1

r
)(Ū ′ − µ ′N1 −∆N) ·N

− 2
rp

A7 =
1

4
c2d+2h VT

N∆N ·N
1
2
(1− 1

r
)− 2

rp

Since VN is a continuous function of Ū ′, then VN
D→ V = (V1, . . . , Vd+2)

T with

Vl =
1

6

d+2∑
i=1

d+2∑
j=1

(µu2)i(µu2)j
∂3M

∂wi∂wj∂wl
(µ ′N1)
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As N goes to infinity, A6
P→ 0 due to N− 2

rp → 0. If r < 1 + 6/p, then 1
2(1 −

1
r ) −

2
rp <

1
rp and

∆N ·N
1
2
(1− 1

r
)− 2

rp → 0. Then A7
P→ 0 and thus A3

P→ 0. After all, the conclusion follows from

(4.6). 2

Similar as in Theorem 4.2.1, the condition r < 1 + 6/p in Theorem 4.2.2 can be further

extended. Actually, if, for example, r < 1+8/p, then µN in Theorem 4.2.1 needs to be updated

with an additional item at order N− 1
r
(1+ 3

d
), and ∆N in the proof of Theorem 4.2.2 needs an

additional item at order N− 3
rp . Applying the mean value theorem to A4 and A7, we will obtain

items at order N− 1
2
(1− 1

r
)− 3

d , which will affect the left hand side of (4.4). Actually, by adding an

item at N− 3
rp inside the brackets of its left hand side, (4.4) still holds.

Similar as the proof for Corollary 4.2.1, we obtain the corollary below:

Under the same conditions of Theorem 4.2.2, if 1 < r < 1+ 4/p, then

N
1
2
(1− 1

r
)
[
Ȳk −G(X̄k)

] D−→ N

(
0,
G(x0)[1−G(x0)]

cdhf(x0)

)

If r = 1+ 4/p, then

N
1
2
(1− 1

r
)
[
Ȳk −G(X̄k)

] D−→ N

(
1

24
c2h · tr(∇2G(x0)),

G(x0)[1−G(x0)]

cdhf(x0)

)
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4.3 The choice of KN

According to Theorem 4.2.2, when 1 < r < 1+ 6/p, in terms of leading terms,

E[Ȳk −G(X̄k)] ∼
1

24
c2htr(∇2G(x0)) ·N− 2

rp

Var(Ȳk −G(X̄k)) ∼
G(x0)[1−G(x0)]

cdhf(x0)
·N−(1− 1

r
)

Therefore,

E([Ȳk −G(X̄k)]
2) =

(
E[Ȳk −G(X̄k)]

)2
+ Var(Ȳk −G(X̄k))

∼
1

576
c4h[tr(∇2G(x0))]2 ·N

− 4
rp +

G(x0)[1−G(x0)]

cdhf(x0)
·N−(1− 1

r
)

Let δ(r) = max{−4/(rp),−(1 − 1/r)} be the order of the leading term of E([Ȳk − G(X̄k)]
2). It

can be verified that

δ(r) =



−(1− 1
r ) if 1 < r < 1+ 4

p

− 4
p+4 if r = 1+ 4

p

− 4
rp if r > 1+ 4

p

Then δ(r) attains its minimum −4/(p+4) at r = 1+4/p. Note that the optimal decreasing rate

is the same as the decreasing rate of a MSE used in the kernel density estimation (see details in

Prakasa Rao, 1983 P182). The identical decreasing rate of the MSEs verifies our result and also

shows the connection between mean representative approach and kernel density estimation.

Recall that hN = chN
−1/(rp) leads to a block volume vk ∼ N

−1/r. If the blocks are roughly of

the same size, then the total number of blocks K ∼ N1/r. In general, we assume that with finer
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blocks (that is, K is large or r is small), the bias E([Ȳk−G(X̄k)]) is negligible compared with the

variance of Ȳk−G(X̄k), while when K is small or r is large, the mean square error is dominated

by the bias E([Ȳk − G(X̄k)]). The optimal rate for the number of blocks is K ∼ Nd/(p+4). Or

equivalently, the optimal number of observations in each block is nk ∼ N/K = N4/(p+4).

For general regression problems, K ∼ N1/r blocks or mean representatives may be used for

estimating the parameters of interests, say, β. For typical applications, Var(β̂) ∼ O(Nδ(r)/K) =

O(Nδ(r)−1/r). Note that δ(r) − 1/r = max{−(p + 4)/(rp),−1} attains its minimum −1 at

r ∈ (1, 1 + 4/p]. Since smaller r indicates more blocks or more mean representatives, we

recommend r = 1 + 4/p again for minimizing the computational cost while keeping the same

level of estimation accuracy.

When r = 1 + 4/p, we actually have E([Ȳk − G(X̄k)]
2) = ζ(ch) ·N−4/(p+4) + O(N−5/(p+4)),

where

ζ(ch) =
1

576
[tr(∇2G(x0))]2 · c4h +

G(x0)[1−G(x0)]

f(x0)
· c−ph

It can be verified that the best ch which minimizes ζ(ch) is

ch =

(
144 · p ·G(x0)[1−G(x0)]
f(x0)[tr(∇2G(x0))]2

) 1
p+4

Technically speaking, the partitions getting from the k-means may not stratify the con-

ditions for our CLT results. We use k-means since it is a popular clustering algorithm and

easy to implement with our representative approach. Given the number of clusters specified

by our theoretical study, a k-means clustering algorithm often provides us reasonable results
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under our simulation setups. Exploring other types of clustering algorithm is important toward

improving our representative approach but out of the scope of this dissertation study. We plan

to investigate it in our future research.



CHAPTER 5

SIMULATION STUDY

In this chapter, we compare the performance of the proposed approach with other methods

under four different simulation setups. Since the target is to estimate a subspace, the evaluation

criteria are different from other statistical methods, i.e., linear regression. In general, we are

interested in two properties of a dimension reduction method. One is the structural dimension

d. The other one is the distance measurements between estimated and true central subspaces.

The details of the evaluation procedure are in Section 5.1. The results for different cases are in

Section 5.3. Besides, we also discuss the running time for each SDR method in Section 5.4.

5.1 Evaluation criteria

5.1.1 Structural dimension determination

For SIR and SAVE, we use their own large sample tests (Li, 1991 and Shao et al., 2007)

to estimate the d. For PLS, we adopted an eigenvalue selection procedure based on cross-

validation. For PRE, we select the first d directions based on the cumulative ratio of those

eigenvalues. For MRDR, we consider the procedure of MR calculation as a pre-process of the

original data, so we use the same procedure to determine the d as the original SDR method.

Therefore, we adopt the sequential tests from SIR and SAVE. Based on the simulation, the tests

can work well for MRDR-SIR. But for MRDR-SAVE, it tends to have type-I error inflation when

74
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N and p is large because SAVE is more complicated than SIR and sensitive to the choice of

slice H.

5.1.2 Distance measurement of two linear spaces

The distances between two linear spaces is the distance between two basis, which are actually

two matrices. Let Ap×nand Bp×m be two basis of two linear space. We adopt the Frobenius

norm between Span(A) and Span(B) as the distance measurement.

Frobenius norm

F = ‖PB − PA‖F,

where PA = A(ATA)−1A and ‖A‖F =
√∑

i

∑
j a
2
ij is the Forbenius norm. The range of F is

[0,+∞] and smaller value of F indicates a stronger correlation between Span(A) and Span(B).

Note that F equals to 0 only when Span(A) = Span(B). Even though Span(A) ⊂ Span(B),

F will not be equal to zero.

5.1.3 Two comparison strategies

d is known

At first, we assume that the number of true directions d is known, so we measure the

distances between the first dth estimated basis and the true basis to evaluate the performance

of each SDR method. For each simulation setup, we not only record the distant measurements

but also their sample variances which provides us a sense about how reliable the results are.
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d is unknown

To mimic the real data analysis, we also assume that d is unknown. Therefore, we need to

first estimate the total number of directions and select first d directions as an estimated basis

of the central subspace. After we have the estimation of the central space, we could calculate

the distance of the estimated subspace and the true space.

We use the power and type-I error to evaluate the performance of direction test. In general,

for each active direction (which is the column of a basis of the SY|X), we use the power to see if

a test can successfully reject its null hypothesis. On the other hand, for non-active directions,

we use the type-I to see if a test can stay with its null hypothesis. In this thesis, the significant

level is 0.05 and let d̂ as the estimated number of direction.

The distance measurement will be dependent on the d̂. Therefore, the performance of the

dimension detecting will have influences on the distance result. That is, if we miss the active

directions or select some non-active directions, then frobenius will be large.

5.2 Simulation setup

We use the latent model for generating the simulation data. The model is

Yi = sign{H(Xi) + εi},

where H : Rp → R
1. Four different structures of H are considered. They are the following:

• H1(x) = x1
0.5+(x2+1)2

• H2(x) = sin(x1)
exp(x2)
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• H3(x) = x21 + |x2|
1/2

• H4(x) = (x1)
2 · sin(x2) · exp(x3).

For each H, we consider several different combination of N and p, (N,p) ∈ {103, 104, 105, 106}×

{6, 10, 20}. For all the simulation setups, we have εi ∼ N(0, 1) and Xi ∼ N(0p, Ip). Based on the

discussion in Section 1.2, G(X) = 1− Fε(−H(X)) = Fε(H(X)). The dimension reduction meth-

ods used for comparison are SIR, SAVE, Partial Least Square (PLS) (Wold, 1975), PRE-SIR

and MRDR-SIR and MRDR-SAVE. For the PRE method, there are three different approaches.

We use the PRE-SIR1 which is recommended by the authors based on its simplicity. Note that

the true space for H1, H2, H3, is (e1, e2) and for H4 is (e1, e2, e3).

5.3 Simulation result

Recall from Section 3.1, the influence of the binary response is different for different inverse

moments. Therefore, we compare SDR methods based on what inverse moment they use. In

Section 5.3.1, we focus on the results of SDR methods based on the first moment, which are

SIR, PRE-SIR, and MRDR-SIR. In the Section 5.3.2, we compare the results for SAVE and

MRDR-SAVE.

5.3.1 First inverse moment

In this section, we evaluate the performance of the first-moment based SDR methods. The

models we consider are H1, H2 and H4. We skip the H3 because both of its directions are

symmetric with zero so that it cannot be found by the first- inverse-moment methods. Based

on the simulation results, we show that the MRDR method can improve the performance of

SIR dramatically in terms of dimension detection and distance measurement.
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First of all, given d is known, Table II reports the Frobenius norm (F) of different methods.

MRDR-SIR out-performances other methods when N becomes large except for model H4, which

will be discussed at the end of this section. Note that for a fixed N, the distance of PRE is smaller

than MRDR’s. However, they cannot handle the large data very well, see details in Section

5.4. On the contrary, the MRDR method can use the information of large data efficiently, so

the distances of MRDR-SIR keeps decreasing when N increases.

Next, we assume the structural dimension is unknown, so we need to estimate d and then a

basis of the central subspace. In terms of structural dimension estimation, the MRDR method

can work well with the original sequential test of SIR. Table III records the direction test of

SDR methods. We adopt the format of the direction test table from (Li and Wang, 2007). We

use the power of a direction test when its corresponding direction is from the central space,

and we use the type-I error of a direction test if the direction under testing is not from the

central space. Based on the result, MRDR-SIR’s test has high power for active directions and

lower type-I error for the non-active directions. For sample size is small, N = 103, PRE-SIR

can estimate the structural dimension well with the recommended cutoff ratio, but it may not

work well for a larger sample size N = 104. A more detailed discussion is in Section 5.3.1.

For the model H4, since x21 is symmetric with the origin, which MRDR-SIR can not detect.

Therefore, it can only find two directions among the (e1, e2, e3). If we fixed d̂ = 3, then MRDR-

SIR will add a third eigenvector into the η̂MRDR−SIR, which is not related to the true subspace

and therefore affects the distance result in Table II. However, the F distance is improved if we
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estimate the d̂ instead of using the d = 3. The reason is that the direction test of MRDR-SIR

selects the first two directions, which can estimate well by MRDR-SIR.

Comparison between MRDR-SIR and PRE-SIR

According to Table II, if the true structural dimension is known, PRE-SIR provides a smaller

distance measurement than MRDR-SIR given the same moderate N. The main reason is that

MRDR needs a bigger sample size to achieve the same level of accuracy as PRE’s because of

the representative calculation. Nevertheless, the distance difference between those two methods

becomes smaller when N increases. When the sample size is relatively large, say, N ≥ 105,

PRE-SIR becomes time-consuming, while MRDR-SIR can still handle the data well, and its

distance can be further reduced due to the larger sample size. Therefore, the simulation results

demonstrate that our MRDR method is in favor of a larger sample size and also benefits from

it.

In practice, the structural dimension is typically unknown, so we will have to estimate the

dimension d first. According to Table III, MRDR can detect the active directions with higher

power via the large sample test of SIR given a relatively large sample size, say N = 104 or 105.

For PRE-SIR, it can also estimate the structural dimension accurately with a moderate sample

size, say 103. For a larger sample size, it seems that the cutoff ratio needed for PRE-SIR might

need certain adjustments.

In order to have a better comparison of these two methods in terms of structural dimension

estimation, we use an adaptive cutoff ratio for PRE-SIR to choose the dimension d. The

direction test results and distance measurement can be found in Table V and Table VI. Based
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on our results, PRE-SIR may have a better performance with the adaptive cutoff ratio, especially

when N = 103, which also shows an advantage of PRE-SIR when N is small. However, the

cutoff ratio seems related to both N and p. When N and p are large, it becomes quite sensitive.

So one may need to choose the cutoff ratio carefully for different datasets. Compared with

PRE-SIR, the simulation results suggest that MRDR-SIR has a more stable direction detection

procedure. Although it does not work well for small datasets, when the sample size is large

enough, it can estimate the structural dimension correctly.

5.3.2 Second inverse moment

In this section, we investigate and compare the performance of MRDR-SAVE and SAVE.

We also list the results of PLS as a reference. The models we consider are H1, H3 and H4.

We skip the results of H2 because it is very similar to H1’s. Recall in Section 3.1, the central

subspace estimated by SAVE is larger than other SDR methods’, so it should have had a

better performance. However, in practice, SAVE does not demonstrate an obvious advantage

over other methods. The main reason is that it needs a large sample size to get an accurate

estimation and is sensitive to the number of slices (see details in Li et al., 2007). Despite these

issues, we show that SAVE and MRDR-SAVE still have the potentials to out-performance other

methods when the sample size is large enough.

Table VII reports the distance measurement for those three models given the structural

dimension d. Since the sample size is relatively large in our simulation setups, SAVE and

MRDR-SAVE do have a good performance in terms of F distance. Under the model H4, SAVE

is affected by the binary response in terms of recovering the structural dimension and F distance.
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Since MRs provide more information than the binary response, the performance MRDR-SAVE

is improved compared to the original SAVE. For model H1 and H3, SAVE is a little better

than MRDR-SAVE. Because if SAVE itself can recover the central subspace under the binary

response, then MRDR-SAVE will become less efficient for having the “additional” partition

step. However, based on the results, the difference between MRDR-SAVE and SAVE becomes

smaller when N increases, which suggests that even if the original SDR can recover the full

central subspace, MRDR methods are at least as good as the original SDR methods when N is

large.

Since sequential test of SAVE is not very stable and sensitive to the choice of slice, when

we assume d is unknown we observe some mixed results. In Table VIII, we find that SAVE

fails to detect all directions of the structural dimension for H1, but the MRDR-SAVE can find

all of them. However, when N and p is large, the direction test of MRDR- SAVE becomes

unstable. That is, it tends to select all the directions as significant. Therefore, in Table VIII

and Table IX, the advantage of MRDR-SAVE in model H4 becomes less significant. This issue

is because of SAVE’s sensitivity to the choice of the number of slices.

5.4 Computation efficiency

As we mentioned before, the scalability with massive data is an advantage of the proposed

method, which is demonstrated by Table X. In the table, we record running time (in minutes)

of different SDR methods. For each method, we try different combinations of N = {104, 105, 106}

and p = {6, 10, 20}. In general, the computational time of a method increases with the increase

of N and p. However, the increase rate based on N and p varies from one method to another.
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Based on the simulation, SIR, SAVE and PLS are fast and efficient even when N and p are

large. The reason is mainly that their algorithms only involve linear operations. Note that the

running time of SAVE increases faster than SIR because of the second-moment estimation. As

for the PRE method, its running time is relatively large, so we only run four different simulation

setups to demonstrate its computational intensity. For instance, when N = 50000, p = 10, the

running time of PRE-SIR for one iteration is about 38 hours. The main reason is that the PRE

method needs to solve the WSVM repeatedly, which becomes time-consuming when N is large.

For the MRDR method, it runs much faster compared to the PRE method. If we only consider

the running times on MRs, they are even faster than the original SAVE and SIR. Note that the

computational time MRDR is dominated by the partition procedure. Recall in Section 3.2.2,

we use K-means for partition with time complexity is up to O(pN1+(p/p+4)). Note that it is

faster than O(N2), but still could be improved. There are solutions available to reduce further

the running time of K-means, which we will discuss in Chapter 7.



83

TABLE II: FROBENIUS DISTANCE GIVEN D FOR THE FIRST MOMENT

model p logn MRDR-SIR PRE-SIR SIR PLS

H1

6

3 1.08(0.06) 0.63(0.06) 1.23(0.05) 1.24(0.04)
4 0.3(0.01) 0.22(0.01) 1.27(0.03) 1.24(0.04)
5 0.1(0) . 1.27(0.03) 1.26(0.03)
6 0.04(0) . 1.21(0.05) 1.23(0.04)

10

3 1.28(0.03) 0.91(0.06) 1.32(0.01) 1.35(0.01)
4 0.42(0.01) 0.38(0.04) 1.31(0.02) 1.34(0.01)
5 0.11(0) . 1.32(0.02) 1.33(0.01)
6 0.04(0) . 1.32(0.01) 1.32(0.01)

20

3 1.45(0.01) 1.19(0.03) 1.37(0) 1.44(0)
4 0.82(0.02) 0.65(0.06) 1.37(0) 1.39(0)
5 0.22(0) . 1.37(0) 1.37(0)
6 0.06(0) . 1.38(0) 1.37(0)

H2

6

3 0.96(0.09) 0.52(0.05) 1.21(0.05) 1.24(0.04)
4 0.22(0.01) 0.18(0.01) 1.28(0.03) 1.24(0.04)
5 0.08(0) . 1.29(0.02) 1.26(0.03)
6 0.03(0) . 1.25(0.04) 1.23(0.04)

10

3 1.2(0.05) 0.8(0.06) 1.32(0.01) 1.35(0.01)
4 0.31(0.01) 0.3(0.02) 1.31(0.02) 1.34(0.01)
5 0.09(0) . 1.33(0.02) 1.33(0.01)
6 0.03(0) . 1.33(0.01) 1.32(0.01)

20

3 1.41(0.01) 1.05(0.03) 1.38(0) 1.43(0)
4 0.62(0.01) 0.49(0.04) 1.38(0) 1.39(0)
5 0.16(0) . 1.37(0) 1.37(0)
6 0.05(0) . 1.38(0) 1.37(0)

H4

6

3 1.5(0.05) 1.29(0.06) 0.64(0.26) 1.52(0.04)
4 1.25(0.05) 1.13(0.1) 0.44(0.31) 1.54(0.05)
5 1.25(0.05) . 0.42(0.39) 1.53(0.03)
6 1.31(0.02) . 0.48(0.44) 1.52(0.02)

10

3 1.77(0.02) 1.62(0.02) 0.89(0.22) 1.8(0.01)
4 1.42(0.02) 1.37(0.02) 0.61(0.35) 1.77(0.02)
5 1.34(0.01) . 0.49(0.41) 1.76(0.02)
6 1.34(0.01) . 0.46(0.42) 1.73(0.02)

20

3 1.99(0.01) 1.84(0.01) 1.13(0.16) 1.94(0.01)
4 1.73(0.01) 1.55(0.01) 0.82(0.31) 1.9(0)
5 1.42(0) . 0.75(0.43) 1.89(0)
6 1.39(0) . 0.58(0.46) 1.88(0.01)

Frobenius norm (its sample variance in parentheses) between the η̂ and η based on 100 independent iterations
logn: log(N)
. means missing because a method’s running time for each iteration is larger than 1 day or memory shortage
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TABLE III: DIRECTION TEST FOR THE FIRST MOMENT

model p test MRDR-SIR PRE-SIR PLS

H1

6

logn 3.00 4.00 5.00 6.00 3.00 4.00 3.00 4.00 5.00 6.00

0D vs 1D 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1D vs 2D 0.06 0.99 1.00 1.00 0.16 0.00 1.00 1.00 1.00 1.00
2D vs 3D 0.00 0.01 0.02 0.00 0.00 0.00 0.77 0.67 0.51 0.50
3D vs 4D 0.00 0.00 0.00 0.00 0.00 0.00 0.48 0.28 0.24 0.28

10

0D vs 1D 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1D vs 2D 0.12 1.00 1.00 1.00 0.23 0.00 1.00 1.00 1.00 1.00
2D vs 3D 0.00 0.02 0.00 0.01 0.00 0.00 0.83 0.69 0.53 0.64
3D vs 4D 0.00 0.00 0.00 0.00 0.00 0.00 0.49 0.36 0.30 0.32

20

0D vs 1D 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1D vs 2D 0.03 0.67 1.00 1.00 0.68 0.00 1.00 1.00 1.00 1.00
2D vs 3D 0.01 0.00 0.07 0.02 0.17 0.00 0.92 0.73 0.59 0.54
3D vs 4D 0.00 0.00 0.00 0.00 0.01 0.00 0.52 0.39 0.32 0.25

H2

6

0D vs 1D 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1D vs 2D 0.18 1.00 1.00 1.00 0.30 0.11 1.00 1.00 1.00 1.00
2D vs 3D 0.03 0.01 0.01 0.00 0.00 0.00 0.74 0.59 0.54 0.53
3D vs 4D 0.00 0.00 0.00 0.00 0.00 0.00 0.35 0.27 0.27 0.28

10

0D vs 1D 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1D vs 2D 0.15 1.00 1.00 1.00 0.34 0.01 1.00 1.00 1.00 1.00
2D vs 3D 0.02 0.07 0.03 0.00 0.00 0.00 0.83 0.71 0.50 0.55
3D vs 4D 0.00 0.00 0.00 0.00 0.00 0.00 0.45 0.43 0.22 0.31

20

0D vs 1D 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1D vs 2D 0.06 0.99 1.00 1.00 0.73 0.00 1.00 1.00 1.00 1.00
2D vs 3D 0.00 0.00 0.06 0.06 0.19 0.00 0.92 0.74 0.57 0.48
3D vs 4D 0.00 0.00 0.00 0.00 0.03 0.00 0.52 0.45 0.29 0.25

H4

6

0D vs 1D 0.72 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1D vs 2D 0.04 0.78 1.00 1.00 0.25 0.00 1.00 1.00 1.00 1.00
2D vs 3D 0.02 0.02 0.01 0.00 0.00 0.00 0.71 0.59 0.49 0.48
3D vs 4D 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.30 0.25 0.28

10

0D vs 1D 0.79 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1D vs 2D 0.05 0.72 1.00 1.00 0.10 0.00 1.00 1.00 1.00 1.00
2D vs 3D 0.00 0.01 0.04 0.01 0.00 0.00 0.68 0.57 0.57 0.52
3D vs 4D 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.35 0.25 0.21

20

0D vs 1D 0.86 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1D vs 2D 0.05 0.20 1.00 1.00 0.53 0.00 1.00 1.00 1.00 1.00
2D vs 3D 0.00 0.02 0.06 0.06 0.05 0.00 0.88 0.70 0.56 0.43
3D vs 4D 0.00 0.00 0.00 0.00 0.02 0.00 0.46 0.39 0.35 0.23

Direction test based 100 on independent iterations.
Since the true space is (e1, e2) for model H1 and H2, we report the power of the first two direction tests and
type-I error for the rest of tests. Similarly, we report the power of for first three test for H4. The significant
level is 0.05.
For simplicity, we report only the first four test results for each simulation.
logn: log(N)
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TABLE IV: FROBENIUS DISTANCE BASED ON TEST FOR FIRST MOMENT

model p logn MRDR-SIR PRE-SIR SIR PLS

H1

6

3 1.04(0.01) 0.93(0.04) 1.02(0) 1.59(0.1)
4 0.31(0.02) 1(0) 1(0) 1.5(0.09)
5 0.12(0.02) . 1(0) 1.44(0.06)
6 0.04(0) . 1(0) 1.43(0.09)

10

3 1.11(0.01) 0.95(0.03) 1.04(0) 1.79(0.1)
4 0.43(0.02) 1(0) 1(0) 1.65(0.1)
5 0.11(0) . 1(0) 1.57(0.08)
6 0.05(0.01) . 1(0) 1.6(0.07)

20

3 1.15(0.01) 1.19(0.03) 1.08(0) 1.97(0.13)
4 0.88(0.02) 1.01(0) 1.01(0) 1.78(0.14)
5 0.28(0.04) . 1(0) 1.67(0.1)
6 0.08(0.02) . 1(0) 1.62(0.09)

H2

6

3 1.04(0.02) 0.82(0.1) 1.02(0) 1.54(0.09)
4 0.23(0.01) 0.9(0.08) 1(0) 1.47(0.1)
5 0.09(0.01) . 1(0) 1.47(0.07)
6 0.03(0) . 1(0) 1.42(0.08)

10

3 1.09(0.01) 0.88(0.05) 1.04(0) 1.78(0.11)
4 0.36(0.04) 0.99(0.01) 1(0) 1.67(0.11)
5 0.11(0.03) . 1(0) 1.53(0.06)
6 0.03(0) . 1(0) 1.56(0.08)

20

3 1.15(0.01) 1.11(0.03) 1.07(0) 1.93(0.11)
4 0.62(0.01) 1.01(0) 1.01(0) 1.79(0.11)
5 0.22(0.04) . 1(0) 1.68(0.13)
6 0.11(0.05) . 1(0) 1.61(0.1)

H4

6

3 1.48(0.01) 1.36(0.02) 1.43(0) 1.56(0.04)
4 1.16(0.02) 1.42(0) 1.42(0) 1.56(0.04)
5 1.01(0) . 1.41(0) 1.53(0.04)
6 1(0) . 1.41(0) 1.5(0.03)

10

3 1.52(0) 1.44(0) 1.46(0) 1.85(0.05)
4 1.23(0.02) 1.42(0) 1.42(0) 1.82(0.07)
5 1.03(0.01) . 1.41(0) 1.73(0.05)
6 1.01(0) . 1.41(0) 1.71(0.04)

20

3 1.58(0) 1.56(0.01) 1.51(0) 2.1(0.09)
4 1.44(0.01) 1.43(0) 1.43(0) 2(0.09)
5 1.07(0.01) . 1.42(0) 1.9(0.09)
6 1.03(0.01) . 1.41(0) 1.84(0.06)

Frobenius norm (its sample variance in parentheses) between the η̂ and η based on 100 independent iterations
logn: log(N)
. means missing because a method’s running time for each iteration is larger than 1 day or memory shortage
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TABLE V: DIRECTION TEST FOR MRDR-SIR AND PRE-SIR

model p test MRDR-SIR PRE-SIR

logn 3.00 4.00 5.00 6.00 3.00 4.00

H1

6

0D vs 1D 0.94 1.00 1.00 1.00 1.00 1.00
1D vs 2D 0.06 0.99 1.00 1.00 0.81 0.59
2D vs 3D 0.00 0.01 0.02 0.00 0.10 0.00
3D vs 4D 0.00 0.00 0.00 0.00 0.00 0.00

10

0D vs 1D 0.98 1.00 1.00 1.00 1.00 1.00
1D vs 2D 0.12 1.00 1.00 1.00 0.74 0.48
2D vs 3D 0.00 0.02 0.00 0.01 0.20 0.00
3D vs 4D 0.00 0.00 0.00 0.00 0.01 0.00

20

0D vs 1D 1.00 1.00 1.00 1.00 1.00 1.00
1D vs 2D 0.03 0.67 1.00 1.00 0.57 0.55
2D vs 3D 0.01 0.00 0.07 0.02 0.07 0.00
3D vs 4D 0.00 0.00 0.00 0.00 0.01 0.00

Direction test based 100 on independent iterations.
For simplicity, we report only the first four test results for each simulation.
logn: log(N)

TABLE VI: FROBENIUS DISTANCE BASED ON TEST FOR MRDR-SIR AND PRE-SIR

model p logn MRDR-SIR PRE-SIR SIR

H1

6

3 1.04(0.01) 0.72(0.08) 1.02(0)
4 0.31(0.02) 0.51(0.17) 1(0)
5 0.12(0.02) . 1(0)
6 0.04(0) . 1(0)

10

3 1.11(0.01) 0.97(0.04) 1.04(0)
4 0.43(0.02) 0.64(0.15) 1(0)
5 0.11(0) . 1(0)
6 0.05(0.01) . 1(0)

20

3 1.15(0.01) 1.14(0.02) 1.08(0)
4 0.88(0.02) 0.72(0.07) 1.01(0)
5 0.28(0.04) . 1(0)
6 0.08(0.02) . 1(0)

Frobenius norm (its sample variance in parentheses) between the η̂ and η based on 100 independent iterations
logn: log(N)
. means missing because a method’s running time for each iteration is larger than 1 day or memory shortage
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TABLE VII: FROBENIUS DISTANCE GIVEN D FOR THE SECOND MOMENT

model p logn MRDR-SAVE SAVE PLS

H1

6
4 1.35(0.04) 0.16(0) 1.24(0.04)
5 0.12(0) 0.05(0) 1.26(0.03)
6 0.05(0) 0.02(0) 1.23(0.04)

10
4 1.12(0.07) 0.23(0) 1.34(0.01)
5 0.22(0) 0.07(0) 1.33(0.01)
6 0.06(0) 0.02(0) 1.32(0.02)

20
4 1.39(0.01) 0.35(0) 1.39(0)
5 0.86(0.04) 0.11(0) 1.37(0)
6 0.13(0) 0.03(0) 1.37(0)

H3

6
4 1.12(0.07) 0.26(0.01) 1.65(0.03)
5 0.76(0.1) 0.07(0) 1.67(0.03)
6 0.25(0.01) 0.02(0) 1.6(0.04)

10
4 1.24(0.04) 0.38(0.01) 1.79(0.01
5 0.8(0.1) 0.11(0) 1.8(0.01)
6 0.23(0) 0.04(0) 1.78(0.01)

20
4 1.36(0.01) 0.56(0.02) 1.91(0)
5 0.5(0.02) 0.17(0) 1.91(0)
6 0.12(0) 0.06(0) 1.9(0)

H4

6
4 1.17(0.1) 1.23(0.06) 1.54(0.05)
5 0.46(0.06) 1.18(0.06) 1.53(0.03)
6 0.15(0) 1.18(0.08) 1.52(0.02)

10
4 1.33(0.04) 1.37(0.01) 1.77(0.02)
5 0.96(0.07) 1.32(0.01) 1.76(0.02)
6 0.24(0) 1.29(0.03) 1.73(0.02)

20
4 1.82(0.02) 1.47(0) 1.9(0)
5 1.04(0.05) 1.38(0.01) 1.89(0)
6 0.38(0) 1.38(0) 1.88(0.01)

Frobenius norm (its sample variance in parentheses) between the η̂ and η based on 100 independent iterations
logn: log(N)
. means missing because a method’s running time for each iteration is larger than 1 day or memory shortage
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TABLE VIII: DIRECTION TEST FOR THE SECOND MOMENT

model p test MRDR-SAVE SAVE PLS

logn 4 5 6 4 5 6 4 5 6

H1

6

0D vs 1D 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1D vs 2D 0.00 0.32 1.00 0.08 0.05 0.03 1.00 1.00 1.00
2D vs 3D 0.00 0.00 0.00 0.04 0.07 0.04 0.67 0.51 0.50
3D vs 4D 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.24 0.28

10

0D vs 1D 0.55 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1D vs 2D 0.00 0.00 0.93 0.05 0.06 0.02 1.00 1.00 1.00
2D vs 3D 0.00 0.00 0.00 0.03 0.05 0.02 0.70 0.52 0.64
3D vs 4D 0.00 0.00 0.00 0.00 0.02 0.01 0.37 0.30 0.33

20

0D vs 1D 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1D vs 2D 0.05 0.99 1.00 0.04 0.01 0.00 1.00 1.00 1.00
2D vs 3D 0.00 0.95 1.00 0.06 0.07 0.05 0.71 0.60 0.53
3D vs 4D 0.00 0.66 1.00 0.00 0.00 0.00 0.38 0.31 0.25

H3

6

0D vs 1D 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1D vs 2D 0.00 0.02 0.65 1.00 1.00 1.00 0.53 0.50 0.52
2D vs 3D 0.00 0.00 0.01 0.04 0.05 0.04 0.26 0.24 0.25
3D vs 4D 0.00 0.00 0.00 0.00 0.01 0.00 0.15 0.12 0.08

10

0D vs 1D 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1D vs 2D 0.00 0.00 0.85 1.00 1.00 1.00 0.65 0.44 0.44
2D vs 3D 0.00 0.00 0.00 0.04 0.04 0.03 0.33 0.12 0.20
3D vs 4D 0.00 0.00 0.00 0.01 0.00 0.00 0.17 0.08 0.14

20

0D vs 1D 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1D vs 2D 0.31 1.00 1.00 0.79 1.00 1.00 0.68 0.52 0.53
2D vs 3D 0.01 0.99 1.00 0.04 0.03 0.03 0.39 0.25 0.21
3D vs 4D 0.00 0.97 1.00 0.00 0.00 0.00 0.16 0.10 0.10

H4

6

0D vs 1D 0.82 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1D vs 2D 0.01 1.00 1.00 0.44 0.53 0.52 1.00 1.00 1.00
2D vs 3D 0.00 0.03 0.96 0.06 0.03 0.05 0.59 0.49 0.48
3D vs 4D 0.00 0.00 0.07 0.01 0.00 0.00 0.30 0.25 0.28

10

0D vs 1D 0.79 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1D vs 2D 0.00 1.00 1.00 0.25 0.43 0.44 1.00 1.00 1.00
2D vs 3D 0.00 0.00 0.72 0.02 0.11 0.06 0.57 0.57 0.52
3D vs 4D 0.00 0.00 0.03 0.00 0.02 0.00 0.35 0.25 0.21

20

0D vs 1D 0.79 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1D vs 2D 0.15 1.00 1.00 0.18 0.20 0.36 1.00 1.00 1.00
2D vs 3D 0.01 1.00 1.00 0.06 0.07 0.04 0.70 0.56 0.43
3D vs 4D 0.00 0.98 1.00 0.00 0.00 0.00 0.39 0.35 0.23

Direction test based 100 on independent iterations.
Since the true space is (e1, e2) for model H1 and H3, we report the power of the first two direction tests and
type-I error for the rest of tests. Similarly, we report the power of for first three test for H4. The significant
level is 0.05.
For simplicity, we report only the first four test results for each simulation.
logn: log(N)
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TABLE IX: FROBENIUS DISTANCE BASED ON TEST FOR THE SECOND MOMENT

model p logn MRDR-SAVE SAVE PLS

H1

6
4 * 0.91(0.07) 1.5(0.09)
5 0.72(0.17) 0.94(0.05) 1.44(0.06)
6 0.05(0) 0.95(0.05) 1.43(0.09)

10
4 1.01(0) 0.97(0.03) 1.66(0.1)
5 1(0) 0.96(0.05) 1.57(0.09)
6 0.13(0.06) 0.98(0.02) 1.6(0.08)

20
4 1.1(0.01) 0.99(0.02) 1.77(0.14)
5 1.56(0.13) 0.95(0.05) 1.67(0.1)
6 4.24(0) 0.96(0.04) 1.62(0.09)

H3

6
4 1.01(0) 0.29(0.03) 1.66(0.03)
5 1(0) 0.13(0.05) 1.65(0.03)
6 0.52(0.14) 0.06(0.04) 1.61(0.03)

10
4 1.02(0) 0.41(0.03) 1.84(0.06)
5 1(0) 0.15(0.03) 1.73(0.03)
6 0.46(0.14) 0.07(0.03) 1.75(0.03)

20
4 1.15(0.03) 0.67(0.06) 1.96(0.07)
5 1.77(0.1) 0.2(0.02) 1.88(0.05)
6 4.24(0) 0.08(0.03) 1.86(0.05)

H4

6
4 1.42(0) 1.25(0.04) 1.56(0.04)
5 0.99(0.01) 1.2(0.05) 1.53(0.04)
6 0.26(0.1) 1.19(0.05) 1.5(0.03)

10
4 1.43(0) 1.34(0.03) 1.82(0.07)
5 1.01(0) 1.25(0.04) 1.73(0.05)
6 0.49(0.14) 1.24(0.04) 1.71(0.04)

20
4 1.69(0.01) 1.39(0.02) 2(0.09)
5 1.78(0.14) 1.33(0.03) 1.9(0.09)
6 4.12(0) 1.27(0.04) 1.84(0.06)

Frobenius norm (its sample variance in parentheses) between the η̂ and η based on 100 independent iterations
logn: log(N)
. means missing because a method’s running time for each iteration is larger than 1 day or memory shortage
∗ means missing because of the direction test
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TABLE X: EMPIRICAL COMPUTATION TIME FOR MRDR

p logn SIR SAVE PRE-SIR MR-SIR MR-SAVE Clustering

6
4 0 0 35.4 0 0 0
5 0.02 0.01 . 0 0 0.06
6 0.22 0.26 . 0 0 1.8

10
4 0 0 39.8 0 0 0.01
5 0.03 0.03 . 0 0 0.24
6 0.44 0.57 . 0 0 11.24

20
4 0.01 0.01 55.1 0 0 0.02
5 0.07 0.08 . 0 0 1.33
6 0.99 1.23 . 0.03 0.03 94.24

Empirical computational time (in minutes) calculated from 100 independent iterations.
The machine equips Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz and 32GB memory
. means missing because a method’s running time for each iteration is larger than 1 day or memory shortage
We also have run a PRE-SIR under N = 50000 and p = 10 for one iteration, its ruining time is 2335.95
mintues



CHAPTER 6

APPLICATION ON ELECTRICAL GRID STABILITY DATA

In this chapter, we first introduce the background of the Electrical Grid Stability (EGS)

data in Section 6.1. Then we compare the result of SDR methods on the data set. Since we

do not know the true central space of the EGS data, it is not straightforward to compare those

SDR results. In order to have a better view of the performances of the SDR methods on EGS

data, we generate a simulated data based on EGS via a non-parametric method. Based on the

simulated data, the proposed data again demonstrate the advantage over other methods. See

details in Section 6.2.

6.1 EGS data

An electrical grid is an energy network with electricity producers who supply the energy and

consumers who demand the energy. One property of the network is its stability. The stability

is roughly defined as the balance between the supply and demand of an energy network. In

order to keep a network stable, we may need to have a control system. Each control system

assumes a specific model for the grid. The EGS dataset is used for studying a system called

Decentral Smart Grid Control (DSGC). More details of the data and the system could be found

at (Arzamasov et al., 2018). In the paper, the author has introduced one way to define the

stability of a grid system. That is, a network is linearly unstable if the maximal real part of its

characteristic equations’ root is positive, is stable if the root is negative.

91
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The EGS data is generated from a 4-node star system based on DSGC. The response is a

binary variable indicating the stability of the gird. Among those four nodes in the network,

one node is a producer and the three of them are consumers. Each node has 3 measurements:

• Reaction time of a node to a price change τj, j = 1, . . . , 4

• Mechanical power produced/consumed Pj, j = 1, . . . , 4

• Coefficient proportional to price elasticity γj, j = 1, . . . , 4.

which we believe are related to the stability of a electrical grid . Note that the original EGS

data has 12 predictors in total. Based on the (Arzamasov et al., 2018), we transform each kind

of predictor in to its max, average and min, such as γmax = max(γj, j = 1, . . . , 4), γave =
∑4

j γj
4

and γmin = min(γj, j = 1, . . . , 4). Therefore, we have 9 predictors in total.

The general goal is to use the data to get insights into the structure of the DSGC system.

We want to know which predictors may influence the stability of the whole grid. We apply

MRDR on the EGS data and show that the proposed method helps us to understand the

DSGC system.

6.2 Dimension reduction on EGS data

Since we have made a comprehensive comparison of the performance of different SDR meth-

ods in Chapter 5, we only use the first inverse moment-based methods, which are SIR, PRE-SIR,

and MRDR-SIR in this section. First of all, we apply those methods on the EGS data to cal-

culate the estimated basis of central subspace, as η̂PRE and η̂MRDR. We show the difference

and similarity of that estimated basis. However, it is hard to compare two dimension reduction
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methods for real data because the true space is unknown to us. In order to have a better

understanding of those two methods, we also simulate a large data set based on EGS via an

additive model with the natural spline.

First of all, we apply PRE-SIR and MRDR-SIR to the EGS data and compare their results

via the distance measurement. Here, we introduce another distance measurement named vector

correlation. The vector correlation was introduced in (Hotelling, 1936). Let R2 be the vector

correlation, then we have

R2 = 1−

k∏
i=1

ρ2i ,

where ρi, i = 1, . . . k, is the ith non-zero eigenvalue of BTAATB and k = min(rank(A), rank(B)).

Small value of R2 indicates strong correlation between A and B, therefore, close distance be-

tween Span(A) and Span(B). The range of R2 is [0, 1]. If Span(A) ⊂ Span(B), then R2 = 0.

We calculate the distances between ηPRE1 and ηMRDR1, they are 0.006 and 0.15 for R2 and

F, which suggests that the first directions found by both methods are closed to each other. But

we do not know the true subspace, so there is not much we can tell futher about those results.

6.2.1 Directions estimated by EGS simulated data

Since the central subspace of the EGS is unknown us, we use a simulated data based on the

EGS data in order to have a better understanding of the performances of those two methods.

We use a generalized additive model for generating the data. The model depends on two

directions of the predictors as following,

g(E(Y|X)) = f1(η
T
1X) + f2(η

T
2X),
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where X ∼ N(09, I9), η1 and η2 are two 9× 1 vectors and f1 and f2 are arbitrary functions. In

order to make the simulated data as closed to EGS data as possible, we try to estimate most

of the parameters from the EGS data. First of all, we apply the SAVE on the EGS data to

calculate η̂1 and η̂2. We assume an additive logistic model, which is commonly used for binary

data. Therefore, g is the logit function. Then, we use the natural spline to estimate f1, f2.

We use the natural spline because it is a non-parametric method so that we could have less

assumption for our data generating process. Figure 1 is the plotted curves of f̂1 and f̂2 estimated

via natural splines. Note that both functions are not symmetric with the origin. Therefore the

first inverse moment method should be able to find all of them.

Figure 1: Natural spline function estimated from EGS
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Estimating result

We adopt a similar procedure in Chapter 5 to compare the results of the two methods. It

can be shown that with the sample size N increasing, the distance measurement of the proposed

method keeps decreasing because it takes advantage of the information provided by large data.

TABLE XI: FROBENIUS DISTANCE OF EGS GIVEN D

model p logn PRE-SIR MRDR-SIR

EGS 9
4 0.17(0) 0.7(0.06)
5 . 0.19(0)
6 . 0.06(0)

Frobenius norm (its sample variance in parentheses) between the η̂ and η based on 100 independent iterations
logn: log(N)
. means missing because a method’s running time for each iteration is larger than 1 day or memory shortage
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TABLE XII: DIRECTION TEST OF EGS

model p test PRE-SIR MRDR-SIR

logn 4 4 5 6

EGS 9

0D vs 1D 1 1.00 1.00 1
1D vs 2D 0.45 0.50 1.00 1
2D vs 3D 0 0.02 0.02 0
3D vs 4D 0 0.00 0.00 0
4D vs 5D 0 0.00 0.00 0
5D vs 6D 0 0.00 0.00 0
6D vs 7D 0 0.00 0.00 0
7D vs 8D 0 0.00 0.00 0
8D vs 9D 0 0.00 0.00 0

Direction test based on 100 independent iterations.
Since the true space is (e1, e2) for the simulated data, we report the power of the first two direction tests
and type-I error for the rest of tests. The significant level is 0.05.
For simplicity, we report only the first four test results for each simulation.
logn: log(N)

TABLE XIII: FROBENIUS DISTANCE OF EGS BASED ON TEST

model p logn PRE-SIR MRDR-SIR

EGS 9
4 0.88(0.07) 0.86(0.05)
5 . 0.21(0.02)
6 . 0.06(0)

Frobenius norm (its sample variance in parentheses) between the η̂ and η based on 100 independent iterations
logn: log(N)
. means missing because a method’s running time for each iteration is larger than 1 day or memory shortage
∗ means missing because of the direction test

6.3 Classification based on the simulated data

In this section, we are trying to demonstrate the benefit that dimension reduction methods

can provide for the classification task. That is, compared with the full data set, we could use
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a low-dimension projection of the original data to archive a similar classification accuracy. In

order to reduce the dimension, we first project the original data into the estimated subspace,

which is denoted as X∗, then we have

X∗ = η̂TX ∈ Rd, d << p,

where η̂ is an estimated basis of the central subspace. As for the dimension reduction method,

we use the SIR, PRE-SIRE and MRDR-SIR. Recall in Section 6.2, SIR can only find one

direction, but MRDR-SIR finds two direction with high power, which should contain more

information for predicting Y.

For classification, we use the Support Vector Machine (SVM) because it could identify a

non-linear boundary. We apply SVM on the low-dimension data estimated via SIR (p = 1),

PRE-SIR (p=2, after adjusting the cutoff ratio based on the simulation results), MRDR-SIR (p

= 2) and full dataset (p = 9). We use the training accuracy calculated from a simulated data

with sample size N = 104 to evaluate the performance of different SDR methods. Based on

Table XIV, we observe that the one direction estimated by SIR have a lower accuracy because

of missing one active direction. However, the two dimension subspace gives the similar accuracy

as the full data set.
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TABLE XIV: PREDICTION ACCURACY

SDR method p Accuracy

SIR 1 0.76
PRE-SIR 2 0.90

MRDR-SIR 2 0.91
Full data 9 0.92

N = 104



CHAPTER 7

CONCLUSION AND DISCUSSION

7.1 Conclusion

In this thesis, we develop two approaches to improve the performance of SIR and SAVE

on large data. The online algorithms of SIR and SAVE not only remove the memory obstacle

but also reduce the computational time. The simulation results demonstrate its computational

efficiency. On the other hand, the mean representative dimension reduction (MRDR) focuses

on statistical efficiency. In the binary response data, the mean representative of each block esti-

mates the conditional probability, which is continuous and therefore contains more information

than original data. Both theoretical study and simulation results show that mean representa-

tives improve the performance of SDR methods under binary response. Moreover, the proposed

method is less computationally intensive than the existing method. Besides, since the calcula-

tion of mean representatives can be considered as a data pre-processing procedure, the MRDR

can cooperate with other inverse-moment based SDR methods.

7.2 Discussion

7.2.1 Computational time

Compared to the existing method, the MRDR method has an advantage in dealing with

the large dataset. However, the result is still not fully satisfied. Based on the Table X, the

computational time of partition increases fast with the increase of N and p. The main reason

99
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is that we use K-means to cluster the data into blocks. One way to alleviate the computational

intensity is to adopt a faster clustering algorithm. For instance, there are K-means algorithms

that are linear in N and p, so that the time complexity will reduce to O(Np) (See details in

Manning et al., 2008). Besides, there are also parallel K-means algorithms (Kumar et al., 2011,

Miller and Boxer, 2012), which can dramatically reduce the running time of the partition step.

7.2.2 Structural dimension determination for MRDR

Another aspect of MRDR we would like to improve is how to decide the structural dimension

based on MRs. Although the simulation studies suggest that MRDR can work well with the

large sample test of SIR, the situation becomes more complicated for other SDR methods, like

SAVE. In order to have a validated large sample test, one may need to study the asymptotic

properties of each different SDR method on MRs.
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