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can only be achieved with the gPT-symmetric metasurfaces. If 1, the system would degenerate 

into the common PT-symmetric setup, as highlighted with a star. (b) is similar to (a), but for an 

individual active metasurface, showing an upper bound for lasing in terms of .  Contours of 

Transmittance as functions of   and x  (electrical length between amplifying and attenuating 

surfaces) for the PT-symmetric optical system in Fig. 7-1(a), varying the dielectric permittivity of 

spacer 2

0 / .   In this case, a physical bound similar to an individual active metasurface in (b) 

is still obtained…………………………………………………………………………………..153 

Figure 7-4 (a) Transmittance spectra for CPA-laser devices based on gPT-symmetric 

metasurfaces, which are designed using different scaling coefficients; here, lasing and CPA modes 

are excited by single and two coherent incident waves. (b) Snapshots of electric fields for the gPT-

symmetric CPA-laser in (a) ( 1 ), operated in the lasing mode (top) and the CPA mode 

(bottom)…………………………………………………………………………………………155 
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SUMMARY 

A generalized parity-time (PT)-symmetric telemetric sensing technique, which enables new 

mechanisms to manipulate radio frequency (RF) interrogation between the sensor and the reader, 

in order to boost the effective Q-factor and sensitivity of wireless microsensors was theoretically 

proposed and experimentally shown. This sensing technique which used MEMS-based wireless 

pressure sensors operating in the radio-frequency spectrum, overcame the long-standing challenge 

of implementing a miniature wireless microsensor with high spectral resolution and high 

sensitivity, and opened opportunities to develop loss-immune high-performance sensors, due to 

gain-loss interactions via inductive coupling and eigenfrequency bifurcation resulting from the PT 

(PTX)-symmetry.  

It was shown that a real and constant eigenfrequency in specific higher-order of the generalized 

PT-symmetric electronic systems was exploited to realize a robust wireless power transfer platform 

locked to the frequency of operation. This PT system, provided breakthrough in dynamic and 

alignment-free wireless charging technology with extended range wireless charging and sensing 

at the same time. 
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I. INTRODUCTION 

The concept of PT-symmetry originates from the quantum physics, where a non-Hermitian 

Hamiltonian can have real eigenfrequencies, if the Schrödinger system is invariant under operations 

of spatial reflection P and time reversal T. Thanks to formal similarities between Schrödinger and 

Helmholtz equations, PT-symmetry can be experimentally demonstrated in electromagnetic 

systems with balanced gain and loss, including transmission-line networks, coupled 

waveguides/cavities, and lumped-element circuits. PT-symmetric optical structures with balanced 

gain and loss have unveiled several exotic properties and applications, including unidirectional 

scattering, coherent perfect absorber-laser, single-mode micro-ring laser, and optical non-

reciprocity. Inspired by optical schemes, other PT-symmetric systems in electronics (sub-

radiofrequency, 30 KHz and below) acoustics and optomechanics have also been recently reported. 

The exceptional points (EPs) arising in these systems, found at the bifurcations of eigenfrequencies 

near the PT-phase transition, show potential to enhance the sensitivity of photonic sensors. Similar 

to earlier experiments in optical systems, the realization of PT-symmetry in an electronic circuit is 

achieved when the gain and loss parameters, namely R and –R, are delicately balanced, and the 

reactive components, L and C, satisfy mirror symmetry. This circuit platform of PT-symmetric 

electronic system leads to sharp and deep resonances, beyond the limitations for passive circuit 

systems, thus providing improved spectral resolution and modulation depth for sensing. The 

beneficial of the PT-symmetric electronic system, however, is not limited to sensing application 

and may be extended to wireless power transfer, non-destructive eddy current test and inductor-

less active filter system.  
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This thesis attempts to fulfil three major porpoises: (1) Generalized Parity-Time Symmetry for 

Enhanced Sensor Telemetry, (2) Ultra-Sensitivity with Divergent Exceptional Points for Radio-

Frequency Telemetry, (3) Robust Extended-Range Wireless Power Transfer Using a Higher-Order 

PT-Symmetric Platform.  

Chapter 2 provides an introduction of the concept of isospectral party-time-reciprocal scaling 

(PTX) symmetry and shows that it can be used to build a new family of radio-frequency wireless 

microsensors exhibiting ultra-sensitive responses and ultra-high resolution, which are well beyond 

the limitations of conventional passive sensors. In this chapter, I show theoretically and 

demonstrate experimentally using microelectromechanical (MEMS)-based wireless pressure 

sensors, that PTX-symmetric electronic systems share the same eigenfrequencies as their parity-

time (PT)-symmetric counterparts, but crucially have different circuit profiles and eigenmodes. 

This simplifies the electronic circuit design and enables further enhancements to the extrinsic Q-

factor of the sensors.  

Chapter 3, here I propose a new readout paradigm for enhancing the performance of wireless 

passive resistor-inductor-capacitor (RLC) sensors. Here, I consider a passive RLC sensor 

inductively coupled to an active reader, with the equivalent circuit of the whole telemetry system 

satisfying the parity-time (PT) symmetry or space-time reflection symmetry. I demonstrate that 

the PT-symmetric wireless sensor system, when compared to conventional interrogation 

techniques using a passive coil reader, may provide significantly improved quality factor (Q-

factor), sensing resolution, and sensitivity in response to the sensor’s reactance or resistance 

variation. 
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Chapter 4, here I propose and experimentally demonstrate an ultrasensitive wireless 

displacement sensing technique based on the concept of parity-time (PT)-symmetry or space-

time reflection symmetry, first explored in quantum physics and later extended to wave physics. 

This PT-symmetric telemetric sensing system comprises an active –RLC tank (stationary 

reader) and a passive RLC tank (movable tag), which are interrogated in a wireless manner via 

inductive coupling. Specifically, such a non-Hermitian electronic system obeying the PT-

symmetry, when operated around the exceptional point (EP), can achieve drastic frequency 

responses and high sensitivity, well beyond the limit of conventional fully-passive wireless 

displacement sensors. 

Chapter 5, here I theoretically introduce and experimentally demonstrate a new class of 

parity-time (PT) symmetric electronic oscillators that combine EPs with another type of 

mathematical singularity associated with poles of complex functions. These “divergent” 

exceptional points (DEPs) can exhibit unprecedentedly a large eigenvalue bifurcation beyond 

those obtained by standard EPs. The results pave the way for building a new generation of 

telemetering and sensing devices with superior performance.   

Chapter 6 discuses a fundamental challenge for the non-radiative wireless power transfer 

(WPT) resides in maintaining stable power transfer with a consistently high efficiency under 

dynamic conditions. In this chapter, I propose and experimentally demonstrate that a frequency-

locked WPT system satisfying higher-order parity-time (PT) symmetry can achieve a near-unity 

power transfer efficiency that is resilient to effects of distance variation and misalignment between 

coils, as well as impedance fluctuations in electric grids. In specific higher-order PT electronic 

systems, a purely real-valued and invariant (non-bifurcated) eigenfrequency would enable the 

robust and efficient wireless charging, even in the weak-coupling regime (mid-range operation). I 
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envision that this WPT technique may provide reliable, fast and efficient power delivery for 

electric vehicles, consumer electronics, and medical devices. 

Chapter 7, here I introduce a generalized PT (gPT)-symmetric optical structures, which have 

an asymmetric and unbalanced gain/loss profile, while exhibiting similar scattering properties and 

PT phase transitions as traditional PT-symmetric optical systems around the design frequency. 

Particularly, I show that the concept of gPT-symmetry may help reducing the threshold gain in 

achieving newly discovered PT-enabled applications, such as the coherent perfect absorber (CPA)-

laser and exceptional points. The concept proposed herein will facilitate the practice of PT-

symmetric optical devices by offering greater design flexibility to tailor gain-loss profiles and their 

thresholds. 

Finally, in chapter 8, I conclude by briefly foregrounding some of the study impacts, and 

some of the directions for future research consists that stem from the project. 

The proposed projects have been designed and prototypes are fabricated and measured by 

myself and another PhD. student Mehdi Hajizadegan under supervision of Prof. Pai-Yen Chen at 

the University of Illinois at Chicago (UIC). 
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II. GENERALIZED PARITY-TIME SYMMETRY FOR ENHANCED SENSOR 

TELEMETRY 

Parts of this chapter have been presented in (Chen et al., 2018, Nat. Electron.) Copyrightc©2019, Nature. 

Wireless sensors based on micromachined tuneable resonators are important in a variety of 

applications, ranging from medical diagnosis to industrial and environmental monitoring. The 

sensitivity of these devices is, however, often limited by their low quality (Q) factor. Here, I 

introduce the concept of isospectral party-time-reciprocal scaling (PTX) symmetry and show that 

it can be used to build a new family of radio-frequency wireless microsensors exhibiting ultra-

sensitive responses and ultra-high resolution, which are well beyond the limitations of 

conventional passive sensors. I show theoretically, and demonstrate experimentally using 

microelectromechanical (MEMS)-based wireless pressure sensors, that PTX-symmetric electronic 

systems share the same eigenfrequencies as their parity-time (PT)-symmetric counterparts, but 

crucially have different circuit profiles and eigenmodes. This simplifies the electronic circuit 

design and enables further enhancements to the extrinsic Q-factor of the sensors.  

2.1 Telemetric sensing based on compact, battery-less wireless sensors  

The wireless monitoring of physical, chemical and biological quantities is essential in a range 

of medical and industrial applications in which physical access and wired connections would 

introduce significant limitations. Examples include sensors that are required to operate in harsh 

environments, and those that are embedded, or operate in the vicinity of, human bodies [1].  
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Telemetric sensing based on compact, battery-less wireless sensors is one of the most feasible 

ways to perform contactless continuous measurements in such applications. The first compact 

passive wireless sensor was proposed by Collins in 1967 [2], and used a miniature spiral inductor 

(L) and a pressure-sensitive capacitor (C) to build a resonant sensor that could measure the fluid 

pressure inside the eye (an intraocular pressure sensor). The idea was based on a mechanically-

adjusted capacitor (or varactor), which has been an effective way of tuning resonant circuits since 

the advent of the radio [3]. Despite this, wireless capacitive sensing technology has only 

experienced a rapid expansion in the last two decades, due to the development of 

microelectromechanical systems (MEMS), nanotechnology, and wireless technology [4]-[8].  

Recently, low-profile wireless sensors based on passive LC oscillating circuitry (typically a 

series RLC tank) have been used to measure pressure [5],[6], strain [7], drug delivery [8], 

temperature, and chemical reactions [1]. The working principle of these passive LC sensors is 

typically based on detecting concomitant resonance frequency shifts, where the quantity to be 

measured detunes capacitive or inductive elements of the sensor. This could occur, for example, 

through mechanical deflections of electrodes, or variations of the dielectric constant. In general, 

the readout of wireless sensors relies on mutual inductive coupling (Fig. 2-1a), and the sensor 

information is encoded in the reflection coefficient. Such telemetric sensor systems can be 

modeled using a simple equivalent circuit model, in which the compact sensor is represented by a 

series resonant RLC tank, where the resistance R takes into account the power dissipation of the 

sensor (Fig. 2-1a). 

Although there has been continuous progress in micro- and nanomachined sensors in recent 

years, the basics of telemetric readout technique remains essentially unchanged since its invention. 

Nonetheless, improving the detection limit is often hindered by the available levels of Q-factor,  
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the sensing resolution, and the sensitivity related to the spectral shift of resonance in response to 

variations of the physical property to be measured. In particular, modern LC microsensors based 

on thin-film resonators or actuators usually have a low modal Q-factor, due to relevant power 

dissipations caused by skin effects, Eddy currents, and the electrically-lossy surrounding 

 

 

Figure 2-2 Non-Hermitian telemetric sensor system. a Schematics of a typical wireless 

implantable or wearable sensor system, where a loop antenna is used to interrogate the sensor via 

inductive (magnetic) coupling. The parameters to be sensed can be accessed by monitoring the 

reflection coefficient of the sensor, typically based on an RLC resonant circuit consisting of a 

micromachined varactor and inductor. b Equivalent circuit model for the proposed PTX-symmetric 

telemetric sensor system, where x is the scaling coefficient of the reciprocal-scaling operation X. If 

x = 1, the PTX system converges to the PT-symmetric case. In the close-loop normal mode analysis, 

an RF signal generator with a source impedance Z0, connected to the reader, is represented by –Z0. 

The inset shows the AC model for the Colpitts circuit with a positive feedback, which achieves an 

equivalent negative resistance and an equivalent series capacitance. 
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environment (such as biological tissues) [9]. A sharp, narrowband reflection dip has been a long-

sought goal for inductive sensor telemetry, because it could lead to superior detection and great 

robustness to noises. 

In this Article, I introduce a generalized parity-time (PT)-symmetric telemetric sensing 

technique, which enables new mechanisms to manipulate radio frequency (RF) interrogation 

between the sensor and the reader, in order to boost the effective Q-factor and sensitivity of 

wireless microsensors. I implement this sensing technique using MEMS-based wireless pressure 

sensors operating in the radio-frequency spectrum.  

2.2 Theory of Generalized PT-Symmetry 

The concept of PT-symmetry was first proposed by Bender in the context of quantum 

mechanics [10] and has been extended to classical wave systems, such as optics [11]-[13], thanks 

to the mathematical isomorphism between Schrodinger and Helmholtz wave equations. PT-

symmetric optical structures with balanced gain and loss have unveiled several exotic properties 

and applications, including unidirectional scattering [14],[15], coherent perfect absorber-laser  

[16],[17], single-mode micro-ring laser [18]-[20], and optical non-reciprocity [21]-[24]. Inspired 

by optical schemes, other PT-symmetric systems in electronics (sub-radiofrequency, 30 KHz and 

below [25]-[27]), acoustics [28] and optomechanics [29],[30] have also been recently reported. 

The exceptional points (EPs) arising in these systems, found at the bifurcations of eigenfrequencies 

near the PT-phase transition, show potential to enhance the sensitivity of photonic sensors [31]-

[35].  

In principle, exceptional points and bifurcation properties of a PT-symmetric system can be 

utilized also to enhance sensor telemetry, represented by the equivalent circuit in Fig. 2-1b with x 
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= 1. In this case, the PT-symmetry condition is achieved when the gain and loss parameters, namely 

R and –R, are delicately balanced, and the reactive components, L and C, satisfy mirror symmetry: 

that is, the impedance of active and passive circuit tanks, multiplied by i, are complex conjugate 

of each other at the frequency of interest. Similar to earlier experiments in optical systems [22], 

the realization of PT-symmetry in a telemetric sensor system is expected to exhibit real 

eigenfrequencies in the exact symmetry phase. This leads to sharp and deep resonances, beyond 

the limitations discussed above for passive systems, thus providing improved spectral resolution 

and modulation depth for sensing. Despite this advantage of traditional PT-symmetric systems, 

practical implementations for the sensor telemetry may encounter difficulties in achieving an exact 

conjugate impedance profile. For instance, given the limited area of medical bioimplants and 

MEMS-based sensors, the inductance of the sensor’s microcoil SL  is usually smaller than the one 

of the reader’s coil .RL  Although downscaling the reader coil can match RL  to ,SL  this would 

reduce the mutually inductive coupling and degrade the operation of the wireless sensor. 

Therefore, it is highly desirable to have extra degrees of freedom that allows arbitrarily scaling of 

the coil inductance and other parameters (for example, capacitance and equivalent negative 

resistance) in the reader, in order to optimize the wireless interrogation and facilitate the electronic 

circuit integration.  

To overcome the these difficulties, and at the same time significantly improve the sensing 

capabilities of telemetric sensors, I also introduce here the idea of PTX-symmetric telemetry (Fig. 

2-1b). This PTX-symmetric electronic system consists of an active reader (equivalently, a –RLC 

tank), wirelessly interrogating a passive microsensor (RLC tank) via the inductive coupling. Here, 

the equivalent series –R is achieved with a Colpitts-type circuit (Fig. 2-1b), which acts as a negative 

resistance converter (see ection 2-6 for detailed design, analysis and characterization of the circuit). 
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By suitably scaling the values of –R, L and C in the active reader, the system can be made invariant 

under the combined parity transformation P 1 2( ),q q time-reversal transformation T ( ),t t

and reciprocal scaling X 1/2 1/2

1 1 2 2 ,,( )q x q  q x q  where 1q 2( )q corresponds to the charge stored 

in the capacitor in the –RLC (RLC) tank, and x  is the reciprocal-scaling coefficient, an arbitrary 

positive real number. In the following analysis, I will prove that the introduced X  transformation 

allows operating a system with unequal gain and loss coefficients (also an asymmetric reactance 

distribution), while exhibiting an eigenspectrum that is identical to the one of the PT-symmetric 

system. Crucially, the scaling operation X  offers an additional degree of freedom in sensor and 

reader designs, overcoming the mentioned space limitations of microsensors that pose challenges 

in realizing PT-symmetric telemetry. Even more importantly, while the scaling provided by the 

X operator leaves the eigenspectrum unchanged, it leads to linewidth sharpening and thus boosts 

the extrinsic Q-factor, the sensing resolution, and the overall sensitivity. 

As I demonstrate below, the effective Hamiltonian of PTX and PT systems are related by a 

mathematical similarity transformation. I start by considering Kirchoff's law of the equivalent 

circuit representation of the PTX telemetric sensor system (Fig. 2-1b) casted in the form of 

Liouville-type equation      [25] governing the dynamics of this coupled RLC/–RLC 

dimer, where the Liouvillian  is given by 

   

   

2 2 2 2

2 2 2 2

0 0 1 0

0 0 0 1

1 1 1 1
,1 1 1 1

1 1

1 1 1 1

x x

x x

 

     

 

     

 
 
 
 
      

 
   
    
 

  (2-1) 
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and  1 2 1 2, , , ,
T

q q q q   
0 ,t   the natural frequency of an isolated lossless LC tank 

0 1/ LC  , the coupling strength between the active and passive tanks / R SM L L  , 

,RL xL  ,SL L  and the dimensionless non-Hermiticity parameter 

1 1/ ( ) ( ) ( / )R L C x|R| xL C x    ; here all frequencies are measured in units of 0.  The 

active and passive tanks have the same non-Hermiticity parameter ,  regardless of the value of x 

(PT or PTX system). From Eq. 2-1,  I can define an effective Hamiltonian Η i  with non-

Hermitian form (i.e., 
†H H ). Such non-Hermitian Hamiltonian system is invariant under a 

combined PTX transformation, with 

0
,

0

x

x





 
  
 

P     (2-2a) 

0
,

0

 
  

 

1

1
T K      (2-2b) 

0x 1X and 
1/2

0 1/2

0
,

0

x
x

x

 
 
 

=    (2-2c) 

where 
x  is the Pauli matrix, 1  is the identity matrix, K  performs the operation of complex 

conjugation, and 2( ) . 1PTX  The Hamiltonian and eigenmodes of the PTX system are related to  
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those of the PT system  ,Η    through the similarity transformation
1H H S S  and 

1 ,   S  where S  is an invertible 4-by-4 matrix 1S =  and 
1/2 0

0 1

x


 
  
 

. As a result, 

PTX and PT systems share the same eigenfrequencies, but possess different eigenmodes. 

Moreover, H  commutes with the transformed operators 
1P S PS  and 1 , T S T S T  i.e.

 

 

 

 

 

 
Figure 2-2 MEMS-based wireless pressure sensor.  a Schematics of a MEMS-based pressure sensor, 

which consists of a variable parallel-plate capacitor c connected in series with a microcoil inductor (L), 

effectively forming a resonant LC tank circuit. Increasing the internal pressure by an air compressor 

regulator increases the displacement of the upper membrane electrode, thereby reducing the capacitance 

of the MEMS varactor. b Top view of the microfabricated wireless pressure sensor on a flexible 

polymer substrate. c Three-dimensional surface profile of the sensor in b, which was measured by 

scanning white light interferometry (SWLI). d Measurement (dots) and theoretical (solid line) results 

for the total capacitance in response to pressure (); insets show the displacement of the upper membrane 

electrode measured by SWLI. Due to the cylindrical symmetry of the capacitor, only displacements in 

the radial direction (from point A to point B in c) are shown. 
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, 0,H  
 
PT  where P  performs the combined operations of parity and reciprocal scaling: 

1/2 1/2

1 2x q x q .  After some mathematical manipulations, I obtain ,PT = PTX  and, therefore, 

H  commutes also with PTX (i.e. , 0H   PTX ). In the limit when the scaling coefficient 1x = 

, the PTX-symmetric system converges into the traditional PT-symmetric system. Hence, the PTX-

symmetry can be regarded as a generalized group of the PT-symmetry. 

2.3 Experimental demonstration of PT/PTX-symmetric telemetric microsensor systems 

 I designed and realized the sensor using a micromachined parallel-plate varactor connected in 

series to a micromachined planar spiral inductor and also a parasitic resistance (Fig. 2-1b). Figures 

2a-2c show the schematics and photograph of the realized device, together with its detailed surface 

profiles characterized by the scanning white-light interferometry (SWLI) (see Section 2-6 and 2-7 

for design and fabrication details). The sensor was encapsulated with epoxy polyamides and 

connected to an air compressor, and a microprocessor-controlled regulator was used to vary the 

internal pressure inside the MEMS microcavity from 0 mmHg to 200 mmHg. This procedure 

simulates, for instance, pressure variations inside the human eye [6] (see Method for the detailed 

measurement setup). The sensor can be seen as a tunable passive RLC tank, in which the applied 

pressure mechanically deforms the floating electrode of the varactor (Fig. 2-2a), causing a change 

in the total capacitance. Figure 2-2d presents the extracted capacitance as a function of the internal 

pressure, with insets showing the corresponding cross-sectional SWLI images (see section 2-4 for 

the extraction of RLC values). The measurement results agree well with theoretical predictions, 

revealing that the capacitance is reduced by increasing the applied pressure. 

In our first set of experiments, I designed an active reader, which, together with the passive 

microsensor, form the PT-symmetric dimer circuit. I investigate the evolution of complex 
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eigenfrequencies and reflection spectra as I vary   and .  In our measurements, the reader was 

fixed on a XYZ-linear-translation stage used to precisely control .  For a specific value of ,    

was tuned by the equivalent capacitance of the microsensor, responsible for the applied pressure. 

On the reader side, the voltage-controlled impedance converter provides an equivalent negative 

resistance, whose magnitude is set equal to 0( ),R Z   where the sensor’s effective resistance R 

was measured to be ~150   and 0Z is the source impedance of the RF signal generator (e.g., vector 

network analyzer used in the experiment, with 
0 50Z   ) connected in series to the active reader. 

I note that, in the closed-loop analysis, an external RF source can be modeled as a negative 

resistance 
0Z , as it supplies energy to the system [3]. When the sensor’s capacitance changed, 

the voltage-controlled varactor in the reader circuit was adjusted accordingly to maintain the PT-

symmetry condition (see section 2-5 for details of reader design). Wireless pressure sensing was 

performed by monitoring in situ the shift of resonance in the reflection spectrum across 100-350 

MHz. In our measurements, a clear eigenfrequency bifurcation with respect to  and   of the PT-

symmetric system was observed, as shown in Fig. 2-3a, and the agreement between experimental 

results (dots) and theory (colored contours) is excellent; a detailed theoretical analysis of the 

critical points is provided in the Methods. At the exceptional point 
EP , real eigenfrequencies 

branch out into the complex plane. In the region of interest  ,EP   , the eigenfrequencies are 

purely real ( ℝ) (Fig. 2-3a) and    PT , such that the PT-symmetry condition is exactly 

met in the so-called exact PT-symmetric phase. In this phase, the oscillation occurs at two distinct 

eigenfrequencies corresponding to sharp reflection dips (Fig. 2-3b). Before passing ,EP  the 

system is in its broken PT-symmetric phase, where complex eigenfrequencies (   ℂ) exist in the 
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form of complex conjugate pairs, and the PT-symmetry of eigenmodes is broken, namely 

.   PT   

 

 

 

 
Figure 2-3 Evolution of eigenfrequencies and reflection spectra as a fucntion of the non-Hermiticity 

parameter  and coupling strength .  (a,b) Real (left) and imaginary (right) eigenfrequency isosurface 

normalized by 
0 in the ( , ) parameter space for a PT-symmetric wireless pressure sensor and b 

conventional passive wireless pressure sensor, where an active reader and a passive loop-antenna are 

respectively used to interrogate the micromachined sensor in Figure . c Reflection spectra aginst the 

frequency for the PT-symmetric wireless pressure sensor with different coupling strengths, showing a 

transition from the broken PT-symmetric phase ( 0.4  ) to the exact PT-symmetric phase (

0.48, 0.49 and 0.5  ) when  increases; here 2.26,  corresponding to applied pressure of 100 

mmHg, and
0 / 2 180π  MHz. Frequencies and linewidths of reflection dips in c are consistent with the 

eigenfrequency evolution in a. Solid and dashed lines denote experimental data and theoretical results 

obtained from the equivalent circuit model in Figure 2-1.  
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The system exhibits a phase transition when the non-Hermiticity parameter exceeds the critical 

value ,EP  at which point the non-Hermitian degeneracy can unveil several counterintuitive 

features, such as the unidirectional reflectionless transparency [14],[28] and the singularity-

enhanced sensing [31]-[35]. To better illustrate the system response, I plot the measured reflection 

spectra, where  is fixed to 2.26 (corresponding to an applied pressure of 100 mmHg), while   

is continuously varied from 0.4 to 0.5 (Fig. 2-3b). The evolution of the resonant response clearly 

identifies the eigenfrequency transition (Fig. 2-3a). In the weak coupling region, the system 

operates in the broken PT-symmetric phase, quantified by 
PT ,    and its complex 

eigenfrequency results in a weak and broad resonance. This can be explained by the fact that, if 

the coupling strength is weak, the energy in the active –RLC tank cannot flow fast enough into the 

passive RLC tank to compensate for the absorption, thereby resulting in a non-equilibrium system 

with complex eigenfrequencies. If the coupling strength exceeds a certain threshold, the system 

can reach equilibrium, since the energy in the active tank can flow fast enough into the passive 

one to compensate its power dissipation. From Fig. 2-3a, I observe that at higher  , the threshold  

of  for the phase transition (
EP ) can be reduced. As a result, a PT-symmetric telemetric sensor 

system, if designed properly to work in the exact PT-symmetric phase quantified by 
PT ,   can 

exhibit sharp and deep resonant reflection dips, ensuring high sensitivity with electrical noise 

immunity. From the circuit viewpoint, the reflectionless property in the one-port measurement is 

due to impedance matching. In the exact PT-symmetric phase with real eigenfrequencies, the input 

impedance looking into the active reader can be matched to the generator impedance Z0 at the 

eigenfrequencies (or resonance frequencies), leading to the dips observed in the reflection 

spectrum.  
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We also note that the splitting of the Riemann surface outlined in Fig. 2-3a may lead to an 

interesting topological response, implying a dramatic shift of the resonance frequency when   is 

altered by pressure-induced capacitance changes in the microsensor ( 1/2C  ). It is interesting 

to compare these results with those obtained with a conventional fully-passive telemetric sensing 

scheme (Fig. 2-3c) [4]-[9], where the negative resistance converter and varactors are removed from 

the active reader, leaving a coil antenna to interrogate the same pressure sensor. In this case, the 

eigenfrequency of the conventional passive system is always complex (Fig. 2-3c), no matter how 

  and   are varied, as expected for a lossy resonator, and the eigenfrequency surface is rather 

flat for both real and imaginary parts when compared with the PT-symmetric system (Fig. 2-3a). 

Figures 4a and 4b present the evolution of the reflection spectra for the two sensing systems; here  

 is fixed to 0.5 and   is varied by changing the applied pressure (20, 40, 70, and 100 mmHg). 

The bifurcation of eigenfrequency in the PT-symmetric system (Fig. 2-4b) leads to the formation 

of two eigenmodes with sharp reflection dips, whose spectral shifts in response to   can be 

dramatic and coincides with the topological phase transition shown in Fig. 2-3a. On the other hand, 

the passive system (Fig. 2-4a) exhibits a broad resonance, associated with a low sensing resolution, 

and a less observable change in the resonance frequency. It is evident that a PT-symmetric 

telemetric sensor can provide largely superior sensitivity when compared with conventional 

passive ones [4]-[9], as it achieves not only a finer spectral resolution in light of a higher Q-factor, 

but also more sensitive frequency responses (Fig. 2-5a).  
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 Next, I explore the functionality of the PTX-symmetric sensor within the same telemetry 

platform. Unlike the PT-symmetric system, the reciprocal scaling in the PTX system breaks the 

mirror symmetry of the effective |±R|, L, and C, namely their values in the sensor and the reader 

can be quite different for large or small values of x. In our experiments, the same MEMS-based 

pressure sensor was now paired with a new type of reader (Fig. 2-1b), whose equivalent circuit is 

similar to the reader in Fig. 2-4b, but with all elements scaled following the rule: ,R xR   

,L xL  and 1C x C.  This realizes a PTX-symmetric telemetry system that has a non-Hermitian 

Hamiltonian H (Eq. 2- 1) commuting with PTX (Eq. 2- 2). I have tested different values of x to 

investigate its effect on eigenfrequencies; here   was fixed to 0.5 in different setups.  

 

 

 
Figure 2-4 Pressure-induced spectral changes for conventional and PT-symmetirc telemetric 

sensors. (a,b) Magnitude of reflection coefficient for the MEMS-based pressure sensor interrogated by 

a the conventional passive loop antenna and b the active reader realizing a PT-symmetric dimer, under 

different applied pressures. Solid and dashed lines denote experimetnal data and theoretical results 

obtained from the equivalent circuit models.  
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Figure 2-5a shows the real and imaginary parts of eigenfrequencies against   for PTX-symmetric 

telemetric sensor systems with x = 3, 1/3, and 1. I note that x = 1 corresponds to the PT-symmetric 

system discussed before.  

We observe that a non-Hermitian PTX-symmetric Hamiltonian also supports real 

eigenfrequencies in the exact PTX-symmetric phase, thus leading to sharp and deep resonant 

reflection dips. As discussed earlier, in spite of the introduction of the X  operator, the PTX-

symmetric system and its PT-symmetric counterpart possess exactly the same eigenspectrum and 

bifurcation points, as clearly seen in Fig. 2-5a. In the PTX system, there is also a clear transition 

between the exact PTX-symmetric phase ( PTX ) and the broken PTX-symmetric phase ( 

PTX ), which are respectively characterized by real and complex eigenfrequencies. 

Theoretical and experimental results in Fig. 2-5a imply that the spectral shift of resonance 

associated with the exceptional-point singularity in a PT-symmetric sensor can be likewise 

obtained in a PTX-symmetric sensor, as the same eigenspectrum is shared. I note that the PT and 

PTX systems, although sharing the same eigenspectrum, can have different eigenmodes, i.e., 

1  S  and S  is correlated with x. Figures 5b presents reflection spectra for the PTX-

symmetric telemetric sensor with x = 3, under different applied pressures. Due to the scaling 

operation X  in the PTX-symmetric system, it is possible to further reduce the linewidth of the 

reflection dip and achieve a finer sensing resolution by increasing the value of x. In contrast to the 

case x > 1, x < 1 results in broadening of the resonance linewidth and thus a lowered Q-factor. I 

note that the input impedance (looking into the active reader) of PT- and PTX-symmetric telemetry 

systems can be identical and matched to the generator impedance Z0 at their shared resonance 

frequencies, corresponding to reflectionless points (see section 2-6). As the frequency is away 

from the resonance frequency, the input impedance and reflection coefficient of PT- and PTX-
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symmetric systems may be very different, leading to a different resonance linewidth as a function 

of x. As a result, the PTX-symmetric telemetric sensor system (Figs. 5b), when compared with the 

PT-symmetric one (Fig. 2-4b), not only offers more design flexibility by removing certain physical 

constraints (e.g., mirror-symmetric |±R|, L and C in the mutually coupled circuit), but also could 

support greater resolution, sensitivity, and potentially longer interrogation distance enabled by the 

optimally-designed self and mutual inductances of coils. Most importantly, both systems exhibit 

the same eigenspectrum and exceptional point. Ideally, in the exact PTX-symmetry phase there is 

no fundamental limit to the Q-factor enhancement. In the extreme case when x approaches infinity, 

the resonance linewidth becomes infinitesimally narrow, namely the Q-factor is close to infinity, 

provided that such a reader circuit can be realized. However, in reality, the –R, L and C values of 

electronic devices have their own limits.  

For generality, a microsensor (negative resistance converter) can in principle be decomposed 

into a series or parallel equivalent RLC (–RLC) tank, and either choice is formally arbitrary, 

depending on sensor and circuit architectures and on the kind of excitation (i.e., impressed voltage 

or current source). The concept of PTX-symmetry can also be generalized to an electronic dimer 

utilizing the parallel circuit configuration, whose PT-symmetric counterpart has been 

demonstrated in [25],[26]. It may also be possible to enhance the performance and resolution of a 

wireless resonant sensor modeled by a parallel RLC tank if the sensor is interrogated by a parallel –

RLC tank [25],[26], in order to satisfy the PTX-symmetry condition (see section 2-9 for an example 

of the PTX-symmetric parallel circuit). 

It is important to note that, in the exact symmetry phase of the PTX-symmetric system, 

although the gain and loss parameters (–xR and R) are not equal, the net power gained in the active 

tank and the one dissipated in the passive tank are balanced, similar to the PT-symmetric case. In  
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the closed-loop analysis, the power loss in the passive tank 2

2| | / 2,lossP q R  while the power 

gained in the active tank 
2 2

1 0 1 0| | ( ) / 2 | | / 2gainP q xR Z q Z    (where the first term accounts for 

power gained from the negative-resistance device and the second term corresponds to the external 

 
Figure 2-5 Evolution of the eigenfrequencies and reflection spectra for PTX-symmetric telemetric 

sensors. a Real (left) and imaginary (right) eigenfrequency as a function of the non-Hermiticity parameter 

  for the fully-passive (red hollow circle; Figure 7a), PT-symmetric (blue dob), and PTX-symmetric 

(green and yellow dots; b and c) telemetric pressure sensors. Solid lines denote theoretical preditions (see 

Method). (b,c) Magnitude of the reflection coefficient for the PTX-symmetric telemetric sensor systems; 

here scaling coefficients x used in b and c are 3 and 1/3. Solid and dashed lines in b and c denote the 

experimetnal data and theoretical predictions 
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energy source modeled as a negative resistance –Z0). Since the PTX-symmetry enforces the 

condition 1 2 /q q x  (see Eq. 2- 5), gain and dissipation are always balanced in this system (i.e., 

gain lossP P ), regardless of the value of x. Therefore, although this generalized PT-symmetric 

system allows for arbitrary scaling of the gain and loss parameters (R and –R here), the gain-loss 

power balance is maintained in the exact symmetry condition, as expected by the fact that the 

eigenvalues are real. However, greater design flexibility on the linewidth of the response could be 

enabled. 

Finally, it is interesting to note that in the PTX-symmetric system, if x is sufficiently small 

such that 
0 0xR Z  , both reader and sensor circuits can be fully passive, namely an inductively-

coupled RLC/RLC dimer is used.  Such observation is in stark contrast with what one would expect 

in conventional PT-symmetric systems, where pertinent gain or amplification are necessary to 

enable the associated peculiar phenomena. Figure 2-5c presents reflection spectra for the PTX-

symmetric telemetric sensor system with x = 1/3; in this case, the reader is also a passive RLC tank 

without the need of a negative-resistance or amplification device. I observe a broad resonance, as 

the linewidth of reflection dip is widened by decreasing the value of x.  This operating regime (x 

= 1/3), although not necessarily of interest for enhanced sensing capabilities, provides an 

interesting platform to study the dynamics of exceptional points and non-Hermitian physics in a 

loss-loss dimer, without the need of any active component. The presented PTX-symmetric dimer 

structure may also be extended to other frequencies, including light and ultrasonic waves. For 

instance, one potential application of our proposed reciprocally-scaling operation is to provide an 

additional knob to tailor the threshold gain of PT-symmetric single-mode lasers [18]-[20] or 

coherent perfect absorber-lasers [16],[17] by breaking the exact balance of gain and loss 

coefficients, while preserving the spectrum of eigenvalues.  
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2.4 Methods 

Exceptional point and phase transitions 

 Applying Kirchhoff’s laws to the PTX-symmetric circuit in Fig. 2-1b leads to the following set of 

equations:  

   

2

1
1 2 1 22 2 2 2 2

1 1 1 1
,

1 1 1 1

d q
q q q q

d x x

 

      
    

   
  (2-3a) 

   

2

2
1 2 1 22 2 2 2 2

1 1
,

1 1 1 1

d q
x q q x q q

d

 

      
   

   
  (2-3b) 

which leads to the Liouvillian formalism in Eq. 2-2 . After the substitution of time-harmonic charge 

distributions e ,i

n nq A   eigenfrequencies and normal modes for this PTX-symmetric electronic 

circuit can be computed from the eigenvalue equation ( ) 0,eff k kH   I  with 1,2,3,4.k    The 

eigenfrequencies associated to the non-Hermiticity parameter   and coupling strength  can be 

derived as: 

 

2 2 4 2

1,2,3,4 0 2 2

2 1 1 4 4
,

2 1

   
 

 

   
 


    (2-4) 

There is a redundancy in Eq. 2-4 because positive and negative eigenfrequencies of equal 

magnitude are essentially identical. Equation (4) is also valid for the PT-symmetric system, as 

eigenfrequencies in Eq. 2-4 is found to be independent of x. I note that if 1,x   the PTX-symmetric 

system would degenerate into the PT one. The eigenmodes of the PT-symmetric system ( k
 ) and 

the PTX-symmetric system ( k ) can be written as: 
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 , , , ,k k k k
T

i i i i

k k k kc e e iω e iω e
             kc ℝ;   (2-5a) 
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;
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k
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e
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
   

  


     


     (2-5b) 

1 .k k

   S         (2-5c) 

Complex eigenfrequencies would evolve with ,  unveiling three distinct regimes of behavior (Fig. 

2-3a). The eigenfrequencies undergo a bifurcation process and branch out into the complex plane 

at the exceptional point (or spontaneous PTX-symmetry breaking point): 

21 1 1
.

2
EP






 
       (2-6) 

In the parametric region of interest  ,EP   , PTX-symmetry is exact, rendering real 

eigenfrequencies and k k PTX . The region  ,c EP   is known as the broken PTX-

symmetric phase with complex eigenfrequencies. Another crossing between the pairs of 

degenerate frequencies (and another branching) occurs at the lower critical point:  

21 1 1
.

2
c






 
       (2-7) 

In the sub-critical region  0, ,c 
k  become purely imaginary and, therefore, the modes have 

no oscillatory part and simply blow up or decay away exponentially. These modes correspond to 

the overdamped modes of a single oscillator, which is of little interest, particularly for sensor 

applications that require sharp resonances.  
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Wireless measurement setups 

 Our experimental setup comprised a MEMS-based wireless pressure sensor, inductively coupled 

to a conventional passive reader or an active reader (a picture of experimental setup is shown in 

section 2-5). The MEMS varactor is constituted by two circular parallel metal-sheets with a 

diameter of 4 mm and an air gap of 8 μm. To simulate variations of internal pressure inside the 

human eye, the sensor was encapsulated with epoxy polyamides and connected with an air 

compressor. A microprocessor-controlled regulator (SMC E/P Regulator) was used to control the 

internal pressure inside the air cavity of MEMS varactor. The active reader composed of –RLC 

tank was fixed on a XYZ linear translation stage and connected to VNA (Agilent E5061B). This 

allows for precise control of the coupling strength   between the MEMS-based pressure sensor 

and the reader coil. The internal pressure inside the micromachined air cavity of the sensor, as the 

main physiological parameter of interest, was characterized by tracking the resonance frequency 

from the measured reflection coefficients. In our experiments, the pressure was varied from 0 

mmHg to 200 mmHg, and the VNA and the pressure regulator were synchronously controlled by 

the LabVIEW program.  

2.5 Design and Characterization of MEMS-Based Pressure Sensor 

Design of MEMS-Actuated Capacitive Pressure Sensor  

A typical passive pressure sensor contains an LC resonator, including a pressure-tuned parallel-

plate capacitor and a planar micro-coil inductor. Such device architecture has been widely adopted 

for pressure sensors in many medical, industrial, automotive, defense and consumer applications 

[1]-[9]. Assuming no fringe effect, the capacitance is given by: 

0 ,r

A
C

d
                                         (2-8) 
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where 
r is the relative permittivity, 

0 is free space permittivity, A and d are the area of two 

capacitor electrodes and the separation distance between them (when no pressure is applied). As 

schematically shown in Fig. 2-2 in the main text, the MEMS varactor includes a movable upper 

electrode and a stationary lower electrode, which are separated by a variable air gap ( 1r  ). The 

lower electrode is fixed to the substrate and has a small drain hole connected to the compressor 

through a sealed tube.  Therefore, the pressure inside the encapsulated air cavity can be controlled 

by a pressure regulator. As the internal pressure increases, the upper electrode is gradually bent 

upward such that the total capacitance of the MEMS varactor is varied. The maximum 

displacement of the movable upper electrode d , as a function of pressure P and electrode’s 

material parameters (Young’s modulus E and Poison ratio υ), can be calculated using the Euler–

Bernoulli theory [5], leading to: 

4 2

0

23

3 (1 ) 1
,

16
1 0.448

Pa
d

Et d

t


 

 
  

 

     (2-9) 

where 0a  and t represent the radius and thickness of the circular metallic plates. Consider the 

pressure-driven displacement, the capacitance can be calculated by conducting the surface integral 

over the metallic disk: 

0

0 0
2 ,

( )

a

r

r
C π dr

d+ d r
 


        (2-10) 

where ( )d r  is the function of deflection depending on the radial position of the membrane. Under 

an internal pressure, C can be approximately expressed as a function of d  [5]:  
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1

.

tanh

d

d
C C

d

d





 


                                             (2-11) 

For most commonly used copper electrodes, important material parameters are: E = 117 GPa and 

υ = 0.33 [10]. In our design, the two copper disks have the same radius 0a = 2 mm and are initially 

separated by an air gap d = 100 μm. 

 Figure 2-6 shows the theoretical and measurement results for the maximum displacement 

of the movable upper electrode as a function of the applied pressure. The scanning white-light 

interferometry (SWLI) was used to determine the maximum displacement. It is seen from Fig. 2-

6 that the experimental results agree with the theory quite well, confirming the validity of Eq. 2-

11. As can be expected, the displacement of upper electrode increases with increasing the applied 

pressure, which, in turn, reduces the total capacitance.  

 

 

Figure 2-6:  Maximum displacement of the movable electrode against applied pressure for the MEMS 

varactor in Fig. 2-2 of the main text. 
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 To characterize the practical capacitance and the effective resistance of the sensor, I first 

used an external coil to contactlessly read the sensor, and then analyzed the reflection responses 

to retrieve lumped-element parameters in the equivalent circuit. In our characterizations, I first 

characterized an individual micro-coil (without loading the capacitor) for knowing its inductance 

value, as well as the mutual inductance between two tightly coupled micro-coils. Once the 

impedance of the micro-coil is known, the capacitance of the complete sensor as a function of 

applied pressure can be retrieved by fitting experiment data with the equivalent circuit model. 

From the complex reflection coefficient, the effective resistance of the sensor can also be retrieved, 

which is found to be almost invariant under different pressures (~150 Ω). Figure 2-7 presents 

theoretical and experimental values of capacitance of the MEMS varactor; here capacitance as a 

function of pressure was calculated using Eqs. (2-8)-(2-11) The experimental and theoretical 

results exhibit good agreement, despite slight differences due to fringing effects and 

microfabrication imperfections. It is seen from Fig. 2-7 that the sensor’s capacitance decreases 

with increasing the applied pressure, due to the enlarged air gap d (Fig. 2-6). 
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Figure 2-7. Capacitance against the applied pressure for the MEMS varactor in Fig. 2-2 of the main text. 

 

 

 

 

 

Design of Microcoil Inductor 

 The self-inductance of the planar micro-coil inductor in Fig. 2-8 can be derived from the 

ratio between the magnetic flux and current, which has an approximate expression as [11]: 

2

0 22.46
ln 0.2 ,

2

avgN d
L φ

φ

   
   

  
     (2-12) 
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Figure 2-8. Configurations and physical parameters of planar coils used in the reader and the sensor. 

 

 

  

 

where 0 is the free space permeability, N is number of turn, 2 ( )avg ind r N s w     is the average 

diameter of spiral coil, 2 inr is inner diameter of spiral coil, w and s are width and spacing of the 

coil, and  ( ) ( )iφ N s w d N s w       is the filling ratio. I have applied Eq. 2-12 to design the 

reader/sensor micro-coils. For example, the inductance values and important design parameters 

for micro-coils used in the PT-symmetric sensor (Fig. 2-4b) are summarized in Table 1. 

 

 L [µH] N s [mm] w [mm] rin [mm] 

Sensor 0.3 5.5 0.075 0.075 2.4 

Reader 0.28 6 0.25 0.25 2 

Table 2-1. Physical parameters for IOP sensor and reader.  

 

The mutual inductance for two filamentary currents i and j can be computed using the double 

integral Neumann formula [12]: 
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0 1
,

4 i j
i jij C C

ij

μ
M =  dl dl

π |R |
      (2-13) 

where ijR  represents the distance between metallic lines, which has a relation with the radius of 

each coil and the central distance between them. The calculation of total mutual inductance for 

coils with multiple turns is possible with the summation of the separate mutual inductance of each 

current filament: 

1 1

,
SR NN

ij
i= j=

M ρ M        (2-14) 

where i (j) represents the i-th (j-th) turn of micro-coil on the reader (sensor) side, ρ is the shape 

factor of planar coil [12], and 
ijM  is the mutual inductance between the loops i and j, which are 

given by:  

2 2

0

2 2 2 3/2
,

2( )

i j

ij

i j

μ πa b
M

a +b +z
     (2-15) 

where z is the central distance between two micro-coils, ( 1)( ) / 2,i o,R i R R Ra  = r N w +s w    

( 1)( ) / 2,j o,S j S S Sb  = r N w +s w    Ni (Nj) represents the i-th (j-th) turn of reader (sensor) coil, or  

is the outer radius of the microcoil, and the subscript R (S) represents reader (sensor). Finally, the 

coupling coefficient between the reader and sensor micro-coils is given by / ,R S=M L L  where 

RL is the reader coil inductance and SL is the sensor coil inductance. In our designs, I first 

characterized the self-inductance of each individual coil using the analytical formula of Eq. 2- 

(15), which has been confirmed with the full-wave simulation [13]. Then, the total mutual 

inductance between two micro-coils was calculated using the analytical formula of Eqs. (2-13)-(2-
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15) and the result was confirmed by the full-wave simulations. In our designs, the coupling 

coefficient   is in the range of 0 to 0.5.   

2.6 Design of Negative Resistance Converter (NRC) 

 

 

 

 

 

 

Figure 2-9. a Schematics of the reader circuit for the PT/PTX-symmetric telemetric sensors, consisting of 

a negative resistance converter (Colpitts oscillator) connected to a microcoil inductor, fed by a RF source 

(vector network analyzer; VNA). b Input impedance of an open-circuited Colpitts-type circuit Zin=vi/ii, 

without connecting to any reactive element. The complex input impedance can be decomposed into a series 

combination of an equivalent negative resistance −Req and an equivalent capacitance CEq. 2- (c)Equivalent 

circuit model for the PT/PTX-symmetric telemetric sensor system, in which the reader is a series −RLC 

tank where −R and C are contributed by the Colpitts-type oscillator. (d) Layout and (e) fabricated PCB-

based active reader used in the PT-symmetric sensor. 

 

 

To build the PT-/PTX-symmetric electronic circuit, it requires a negative resistor (−R), 

realized using a negative resistance converter (NRC) at high frequencies. An active NRC could 
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pull in power to the circuit, rather than dissipating it like a passive resistor. Figure 2-9a shows the 

circuit diagram of our NRC, inspired by the design of Colpitts-type oscillator [14]-[21]. This NRC 

as an active lumped resistor may provide stable and almost non-dispersive negative resistance over 

a broad frequency range. The negative resistance can be a series or a parallel element, depending 

on how the circuit is designed, i.e., a series (parallel) circuit model is usually used for voltage-

controlled negative resistance oscillators (current-controlled negative conductance oscillators) 

[22]. For example, in Ref. [23], a one-port op-amp inverting circuit operating at KHz frequencies, 

equivalent to a parallel negative resistance, was used to demonstrate a PT-symmetric system based 

on parallel –RLC and RLC tanks. In the circuit analysis, it is common to model the Colpitts- or 

Hartley-type oscillator with positive feedback as a negative resistor (−R). One method of oscillator 

analysis is to determine its input impedance, neglecting any external reactive component at the 

input port, as shown in Fig. 2-9b. For the Colpitts circuit configuration in Fig. 2-9b, the complex 

input impedance (Zin = vi/ii) looking into the points A and B can be derived as [14]-[21]: 

(AB) 2

1 2 1 2

1 1
,m

in

g
Z +

C C iωC i C 

 
   

 
     (2-16) 

where mg  is the transconductance of the field-effect transistor (FET); here I assume that the 

, ,m gs gdg C C  and 
gdC  and 

gdC  are the gate-drain capacitance and gate-source capacitances), 

which is approximately valid at moderately low frequencies (e.g., VHF band in this project). As a 

result, the input impedance looking into the points A and B is equivalent to a series −RC circuit 

consisting of a negative resistance  
eqR  and an equivalent capacitance

eqC , as shown in Fig. 2-9b 

[1]-[6]: 

1 2

2

1 2 1 2

( )
and .m bias

eq eq

g V C C
R C =

C C C +C
        (2-17) 
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By connecting the input port to an inductor, a positive feedback oscillator can be made by 

controlling the open-loop and feedback gains at the resonance frequency. As known form Eq. 2- 

(17), the negative resistance can be increased by using larger values of transconductance and 

smaller values of capacitance. If the two capacitors are replaced by inductors, the circuit becomes 

a Hartley oscillator, whose input impedance becomes the −RL combination.  

According to Eqs. (2-16) and (2-17), the effective resistance is controlled by the transistor’s 

transconductance, readily adjusted by DC offset voltages. The RF transistors used here have high 

cutoff frequencies up to several GHz, ensuring the minimum parasitic effects and the stability of 

circuit. The effective capacitance is determined by the two lumped capacitances 1C and 2 ,C which 

could be contributed by the voltage-controlled varactors such that the effective capacitance of the 

–RLC tank is tunable. If a microcoil inductor is connected to the input of the Colpitts oscillator 

(points A and B in Figs. S4b and S4c), a series −RLC tank can be realized if that the AC source is 

connected in series to the inductor, as can be seen in Fig. 2-9c. Figures S4d and S4e show the 

circuit layout and the fabricated printed circuit board (PCB) for the active reader used in PT-

symmetric system (Fig. 2-4b), respectively. This active reader consists of the voltage-tuned NRC 

(Fig. 2-9a), which are connected in series to a planar coil, forming the –RLC tank.  

The effective impedance of the NRC can be retrieved from the measured reflection 

coefficient of an isolated series −RLC tank connected to the vector network analyzer (VNA), by 

decomposing the contribution of the coil inductance. An individual −RLC tank can allow the 

reflected RF signal to have larger amplitude than the incident one, namely the steady-state 

reflection gain is achieved. However, in experiments the reflection cannot be infinitely large 

because all transistors and electronic components have maximum operating voltage/current ranges, 

large-signal effects, and inherent nonlinearities. In a similar sense, although in theory a pole could 
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arise in a −RLC tank, an ever-growing eigenmode (charge/charge flow) is never achieved due to 

the above-mentioned nonlinear effects in real-world electronic devices. A more detailed equivalent 

circuit of the Colpitts-type NRC is shown in Fig. 2-10a, which includes also a shunt inductance Lp 

and a parasitic capacitance Cp [22]. I note that, at sufficiently low frequencies, Cp has a high RF 

impedance /c pZ =i C (acting like a low-pass filter or an open circuit), while Lp has a low RF 

impedance l pZ = i L (acting like a short circuit). Therefore, the parasitic effect may be minimized 

if the operating frequency is moderately low, well below the transistor’s cutoff frequency (fT) and 

maximum frequency (fmax). Figure 2-10a presents the experimental (solid) and simulated (dashed) 

reflection spectra of the Colpitts-NRC shown in Fig. 2-9, under different DC bias conditions. In 

our simulations, the equivalent resistive and reactive values in the circuit model, as shown in Figs. 

S5b and S5c, were extracted from the measured reflection coefficients by using the numerical 

optimization. From Fig. 2-10a, a good agreement is found between the experimental and 

simulation results. Here, I also present the reflection spectra for the equivalent circuit in Fig. 2-

10a without the parasitic capacitance (dotted). The results show no significant difference in the 

frequency range of interest, when compared to those obtained from experiments and the full 

equivalent circuit model. 
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Figure 2-10 . (a) Reflection spectra of the NRC versus frequency under different biasing conditions; here, 

solid and dashed lines represent the experimental and simulation results, and dotted lines represent the 

simulation results without considering the parasitic capacitance. Equivalent (b) resistance and (c) 

capacitance and parasitic components for the NRC in (a). The highlighted areas show the frequency range 

of interest, where the values of negative resistance and capacitance are nearly constant. The effects of Lp 

and Cp are negligible if the operating frequency is much lower than the cutoff frequency of the transistor.  

 

 

 

 

 

As a result, for our initial analysis, parasitic elements and device nonlinearities are ignored. In the 

frequency range of interest, the experimentally measured input impedance can be decomposed into 

a series combination of a negative resistance and a capacitance. This simplified model shows an 

acceptable comparison with experimental results, as can be seen in Fig. 2-10a. It is clearly seen 
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from Fig. 2-10b that that negative resistance can be tuned by adjusting the DC offset voltage and 

their values are nearly invariant at low frequencies.  

2.7  Microfabrication and Characterization of the Wireless Pressure Sensor  

Fabrication of Wireless Pressure Sensors by the MEMS processes 

 

 

 

 

 

 

Figure 2-11. Schematics of fabrication processes for the MEMS-based IOP sensor in Fig. 2-2 in the main 

text. 
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Figure 2-11 presents the fabrication flow of the MEMS-based intraocular pressure (IOP) 

sensor in Fig. 2-2. In step (a), the silicon (Si) wafer was first cleaned following the standard RCA 

cleaning process. In step (b), an 8 μm-thick parylene layer was deposited using the thermally 

activated chemical vapor deposition (CVD) method in the Specialty Coating Systems (SCS PDS 

2010). In this parylene layer, the sensor’s backside was etched to form a pressure access hole with 

diameter of 0.8 mm by using the oxygen reactive ion etching (RIE, DryTech RIE 184). In step (c), 

a 3 μm-thick copper (Cu) film was deposited using the electron beam evaporation (Temescal 

Model BJD-1800 e-beam evaporator). Standard photolithography was used to pattern the copper 

and form the coil inductor and the capacitor pad. In steps (d)-(e), a 10 μm-thick sacrificial 

photoresist layer was patterned by the lithographic method, following the coating of the second 

parylene layer that has a thickness of 4 μm. In step (f), the second Cu layer was deposited and 

patterned by the lithographic method; here the top and bottom metallic structures were connected 

by a Cu interconnect patterned by oxygen RIE. In step (g), the third parylene with a thickness of 

8 μm was coated as protection layer. After that, the device was released from Si substrate using 

the KOH solution. In the last step, (h), the sacrificial layer was removed in acetone solution with 

the critical point dryer (CPD) (Tousimis 931). Finally, the microfabricated IOP sensor was made 

with a flexible air cavity that can be actuated by the internal pressure, as shown in (i). 

2.8  Measurement Setup for the MEMS Wireless Pressure Sensors 

 Figure 2-12 shows our wireless measurement setup, which comprises a MEMS-based 

pressure sensor, inductively coupled to a passive or active reader (interrogator). The MEMS-based 

pressure sensor consists of a variable capacitor (varactor) functioning as a transducer, connected 

in series to a planar microcoil inductor. In the equivalent circuit diagram, the pressure sensor itself 

stands for a RLC tank, where the applied pressure mechanically deforms the MEMS varactor and 
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therefore varies the sensor’s natural frequency. The pressure sensor was encapsulated with epoxy 

polyamides and connected with an air compressor. A microprocessor-controlled regulator (SMC 

E/P Regulator) was used to control the internal pressure inside the air cavity of MEMS varactor. 

The active reader composed of –RLC tank was fixed on a XYZ linear translation stage and 

connected to vector network analyzer (VNA: Agilent E5061B). This setup allows for precise 

control of the coupling strength   between the MEMS sensor and the reader coil.  

 

 

 

 

 

 

 
Figure 2-12. Measurement Setup for the MEMS wireless pressure sensor.  
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 Figure 2-13 shows the theoretical and experimental results for eigenfrequency variations 

of the PT-symmetric wireless pressure sensor system, where the capacitance of the microfabricated 

pressure sensor is changed with respect to the pressure-induced displacement; here an equivalent 

resistance of 150was measured for the sensor, and the inductance of the sensor’s micro-coil is 

about 300 nH. When the sensor’s capacitance is varied (Fig. 2-7), the effective capacitance of the 

active reader should also be tuned accordingly to maintain the PT-symmetry. This can be achieved 

by precisely controlling the DC offset voltage of varactors in the reader circuit. To make a fair 

comparison, I also studied the conventional wireless pressure sensor system, where a passive 

external coil (the same as the one used in the active reader) was used to read the microsensor. As 

can be seen in Fig. 2-13, the PT-symmetric telemetric sensor system can provide a larger resonance 

frequency shift in response to pressure-driven capacitance variations. I note that a PTX-symmetric 

sensor would display the same sensitivity because the PT and PTX systems share the same 

eigenspectrum, as discussed in the main text.  
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Figure 2-13. Variations of eigenfrequencies with the pressure-driven capacitance for conventional and PT-

symmetric wireless pressure sensor systems. The pressure corresponding to the specific capacitance can be 

found in Fig. 2-7. I note that a PTX-symmetric sensor displays the same frequency response because PT 

and PTX systems share the same eigenspectrum.  

 

 

 

 

 

2.9 Analysis of PTX-Symmetric Electronic Systems 

PTX-Symmetric Circuits in the Parallel Configuration 

 

 

 

 

Figure 2-14. PTX-symmetric electronic system realized with the parallel-circuit configuration. 
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 The passive LC wireless sensors are also commonly designed and modeled using an 

equivalent, parallel RLC circuit (excited by an impressed current source). I note that the concept 

of PTX-symmetry can in principle be applied to different types of series and parallel circuits, and 

possibly their complex combinations. Figure 2-14 shows a PTX-symmetric circuit formed by the 

parallel –RLC and RLC tanks, which communicate through the inductive coupling. Such a system 

is invariant under the parity transformation P 1 2( ),q q  time-reversal transformation T

( ),t t and reciprocal scaling X 1/2 1/2

1 1 2 2 ,,( )q x q  q x q  where 1q 2( )q corresponds to the 

charge stored in the capacitor in the parallel –RLC (RLC) tank. Its PT-symmetric counterpart with 

x = 1 have been experimentally demonstrated in Ref. [23], in which a shunt negative resistor was 

realized using the op-amp inverting circuit. According to the Kirchoff's law, the Liouvillian  and 

the effective Hamiltonian Η  of the PTX-symmetric circuit in Fig. 2-11 can be derived as:  

 

Η i  and 
2 2

2 2
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   (2-18) 

 

where 0 1/ LC  , the coupling strength between the active and passive tanks /xM L  , the 

non-Hermiticity parameter 
1 1/ (| / ) ( / ) / ( ),R L C R| x L x xC     and all frequencies are 

measured in units of 0.  The effective Hamiltonian is non-Hermitian (i.e., 
†H H ) and 

commutes with PTX ; here ,P ,T and X are defined in Eq. 2- 2 in the main text. The Hamiltonian 
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and eigenmodes of this PTX system can be linked to those of its PT counterpart  ,Η    through 

the similarity transformation
1H H S S  and 

1 , S   where S  is an invertible 4-by-4 matrix

1S =  and
1/2 0

0 1

x


 
  
 

. As a result, the PTX and PT systems share the same 

eigenfrequencies, given by: 

2 2 2 2 2 4 2 2

1,2,3,4 2

2 (1 ) 4 4 (1 ) (1 )
,

2(1 )

      




      
 


  (2-19) 

which is found to be independent of x. Such results are consistent with our previous findings on 

the series –RLC/RLC dimer satisfying the PTX-symmetry. The scaling coefficient x plays a role in 

controlling the linewidth of the resonance. Therefore, the PTX-symmetry concept can also be 

exploited to improve the Q-factor and sensitivity of a wireless resonant sensor based on a parallel 

RLC circuit model. 

Reflectionless Property and Impedance Matching 

 Figure 2-15a considers a generalized PTX-symmetric circuit that is invariant under the 

PTX transformation. Here, 0x 1X and 

1/2

0 1/2

( / ) 0
,

0 ( / )

x y
x

x y 

 
 
 

=  which yield 

1/2

1 1( / )q x y  q  and 1/2

2 2( / ) .q x y  q  In this case, both active and passive tanks have the same 

non-Hermiticity parameter as 
1 1( | ) ( ) / ( / ) ( ) ( ) / ( / ).x R| xL C x yR yL C y      For this 

coupled circuit, the input impedance looking into the −RLC tank from the RF generator end can 

be derived as: 
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 2 2 2 2 2 4 2

0 2 2

2( 1) ( 1) /1
,

( 1)
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i x
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      
 






        

  
  (2-20) 

where  is the angular frequency, the generator impedance 0Z R [ ] , and   is the impedance 

normalization factor. In the single-port measurement, the information is encoded in the reflection 

coefficient at the input port, which can be written as: 

    0 0/ .in inΓ Z Z Z Z           (2-21) 

 

 

 

Figure 2-15 (a) PTX-symmetric circuits with the RF excitation source connected to the active −RLC tank. 

(b) Reflection spectrum for the single-port circuit in (a), under different values of x. (c) PTX-symmetric 

circuits with the RF excitation source connected to the passive RLC tank; the circuits in (a) and (c) share 

the same eigenfrequencies, as they represent the same type of −RLC/RLC dimer in the coupled-mode 

analysis. (d) Reflection spectrum the single-port circuit in (a), under different values of y. In the PTX-

symmetric circuits, the resonant frequencies remain constant, while the bandwidth (or Q-factor) can be 

tailored by varying the scaling coefficient x or y. 
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It is interesting to note that the input impedance and the reflection coefficient are 

independent of y used in the RLC tank. This could enable more flexibility in the sensor design 

when compared with the traditional PT-symmetric setup. The input impedance and reflection 

coefficient of the PT-symmetric telemetry system are obtained by setting x = 1 in Eq. 2- (21). In 

the exact PT-/PTX-symmetric phase, the eigenfrequencies are real, corresponding to the dips in 

the reflection spectrum. From the RF circuit viewpoint, the reflectionless property is due to the 

perfect impedance matching, namely 0inZ Z at the eigenfrequencies (resonance frequencies), 

leading to 0.Γ    

 Figure 2-15b shows the reflection spectrum for the PTX-symmetric circuits in Fig. 2-60a, 

under different values of x; here 2.5, 2.5, 0.2,     and y is an arbitrary positive real number 

(because inZ and Γ are independent of y). The PT-symmetric system is obtained when x = y = 1. It 

can be seen from Fig. 2-60b that for different PTX-symmetric systems, the reflection coefficient is 

always zero at the given eigenfrequencies, while the resonance linewidth can be tuned by varying 

the scaling coefficient x. Most importantly, the Q-factor, which is inversely proportional to the 

resonance bandwidth, increases with increasing the value of x, as has been demonstrated in our 

telemetry experiments (Fig. 2-5). As opposed to an active reader, a passive reader with x  can 

exhibit low reflection over a broad bandwidth, which could be of interest for applications that 

require large amounts of bandwidth, such as the high-speed communication.  

 Figure 2-15c considers the second case, in which the RF input port is connected to the 

passive RLC tank (e.g., an active sensor interrogated by a passive reader). In this scenario, the 

input impedance can be derived as: 
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  (2-22) 

It is worth mentioning that in this case, the input impedance and the reflection coefficient are 

independent of x used in the active tank.  According the coupled-mode analysis, the circuits in 

Figs. S10a and S10c share the same eigenfrequencies. In the exact PTX-symmetric phase, applying 

the real eigenfrequencies to the input impedance in Eq. 2- (22) results in 0inZ Z  and thus zero 

reflection can be obtained in these frequencies. Figure 2-15d shows the reflection spectra for the 

PTX-symmetric circuits in Fig. 2-60c, under different values of y; here 2.5, 2.5, 0.2,    

and x is an arbitrary positive real number (because inZ and Γ are independent of x). It is clearly seen 

that the zero reflection takes place at the same frequencies observed in Fig. 2-60b, and the 

resonance linewidth can be tuned by varying the value of y.  

2.10 Conclusions 

 We have applied PT-symmetry and the generalized PTX-symmetry condition to RF sensor 

telemetry with a particular focus on compact wireless micro-mechatronic sensors and actuators. 

Our approach overcomes the long-standing challenge of implementing a miniature wireless 

microsensor with high spectral resolution and high sensitivity, and opens opportunities to develop 

loss-immune high-performance sensors, due to gain-loss interactions via inductive coupling and 

eigenfrequency bifurcation resulting from the PT (PTX)-symmetry. Our findings also provide 

alternative schemes and techniques to reverse the effects of loss and enhance the Q-factor of 

various RF systems. Through our study of PTX-symmetry, I have shown that even asymmetric 

profiles of gain and loss coefficients can yield exotic non-Hermitian physics observed in PT-

symmetric structures. Importantly, compared to PT-symmetry, PTX-symmetry offers greater 
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design flexibility in manipulating resonance linewidths and Q-factors, while exhibiting 

eigenfrequencies identical to the associated PT-symmetric system.  
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III. ULTRASENSITIVE, PARITY-TIME SYMMETRIC WIRELESS REACTIVE AND 

RESISTIVE SENSORS 

Parts of this chapter have been presented in (Sakhdari et al., 2018, IEEE) Copyrightc©2019, IEEE. 

We propose a new readout paradigm for enhancing the performance of wireless passive resistor-

inductor-capacitor (RLC) sensors. Here, I consider a passive RLC sensor inductively coupled to an 

active reader, with the equivalent circuit of the whole telemetry system satisfying the parity-time 

(PT) symmetry or space-time reflection symmetry. I demonstrate that the PT-symmetric wireless 

sensor system, when compared to conventional interrogation techniques using a passive coil 

reader, may provide significantly improved quality factor (Q-factor), sensing resolution, and 

sensitivity in response to the sensor’s reactance or resistance variation. Our results may have 

impact on various wireless sensing, detection, and imaging systems, particularly for emerging 

micromachined sensors, miniature implants and wearables, and internet-of-things (IoTs) 

applications. 

3.1 Wireless Reactive and Resistive Sensors  

Many medical, industrial, and automotive applications require sensing of local physical or chemical 

quantities, where the wired connection between the sensor and the data acquisition system is not 

accessible. Representative examples include various bio-implants inside the human body (e.g. 

intraocular pressure sensors, intravascular pressure sensors, intracranial sensors, and tissue-

characterization sensors [1]-[6]), pressure sensors on rotating components of vehicle, and sensing 

in harsh environments (e.g. corrosive media or high temperature [7]-[8]).  
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Telemetric sensing based on battery-free passive wireless sensors or radio-frequency identification 

(RFID) tags is perhaps one of the most viable ways to achieve the contactless and continuous 

measurement for the above mentioned applications. To date, a great number of low-cost and low-

profile wireless sensors have been proposed to measure miscellaneous quantities, such as 

temperature [8]-[9], pressure [1],[7],[10],[12], liquid volume [13]-[14], humidity [15]-[16], 

mechanical strain [17], and chemical reactions (e.g., chemiresistive sensors) [13]. Most of these 

sensing devices are based on the passive RLC tank, where the quantity to be measured may detune 

the resistance or reactance of the sensor, resulting in the resonance frequency shift. A reader coil 

antenna is usually used to the measure the frequency response of the wireless sensor through the 

inductive coupling, as illustrated in Fig. 3-1a. 

 Although so far many research efforts have been focused on the design and fabrication of 

the miniature and functional sensors, very limited effort has been made to develop a more robust 

and sensitive wireless readout technique. However, existing readout methods for passive wireless 

sensors still face several challenges. For instance, sensitivity and minimum detection range of the 

miniature wireless sensors (e.g. integrated circuit piezoelectric or ICP sensors) usually suffer from 

 
 

Figure 3-1 (Color online) a Schematics of a wireless passive RLC sensor, inductively coupled to a coil 

reader, and its equivalent circuit model. b Equivalent-circuit expression of the PT-symmetric wireless 

sensor system. 
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the small resonance frequency shift and the low Q-factor, resulting from limited device 

dimensions, skin-effect and Eddy-current losses, and background absorption (e.g. human body at 

high frequencies). In general, an effective resistance taking into account the total power dissipation 

must be introduced into the RLC tank, as shown in Fig. 3-1a.  

In this work, I present a new wireless readout technique based on the concept of PT-symmetry, 

which may significantly enhance the sensitivity and the detection limit of the transformer-based 

sensors. Figure 3-1b shows the equivalent circuit of the proposed PT-symmetric wireless sensor 

system, where the passive wireless functional sensor, modeled by an equivalent RLC tank circuit, 

is inductively coupled to an active –RLC reader circuit. The whole telemetry system fulfills the 

spatial-inversion and time-reversal symmetry, so-called PT-symmetry. In the following, I will 

theoretically and experimentally investigate the performance and critical operation conditions of 

the proposed PT-symmetric wireless sensors, which can provide loss compensation and optimal 

sensing performance.  

3.2 Theory of PT-Symmetric Telemetry sensor systems 

 The concept of PT-symmetry originates from the quantum physics, where a non-Hermitian 

Hamiltonian can have real eigenfrequencies, if the Schrödinger system is invariant under operations 

of spatial reflection P and time reversal T [18]. Thanks to formal similarities between Schrödinger 

and Helmholtz equations, PT-symmetry can be experimentally demonstrated in electromagnetic 

systems with balanced gain and loss [19]-[24], including transmission-line networks, coupled 

waveguides/cavities, and lumped-element circuits [25]-[30]. As illustrated in Fig. 3-1b, a PT-

symmetric electronic circuit can be made by pairing the –RLC and RLC tanks, correspondingly 

responsible for the amplification and attenuation of the RF signal. When a RF source, such as a 

frequency synthesizer based on the negative-resistance device, excites this dimer circuit, a negative 
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generator impedance –Z0 must be included in the normal-mode (closed-loop) analysis [31]. While 

a positive resistor renders energy dissipations, a negative resistor implies an energy source. 

Therefore, for balancing gain and loss in the system, a negative-resistance converter (NRC) with 

resistance of –(R–Z0) must be used in the –RLC tank, if the –RLC tank is connected to the RF signal 

generator.  

Applying Kirchhoff’s laws to the circuit in Fig. 3-1b leads to the following set of equations: 
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                       (3-1) 

where 1q  ( 2q ) corresponds to the charge stored on the capacitor in the amplifying (attenuating) tank, 

0 ,t  0 1/ LC  is the natural frequency of an RLC tank, 1 /R L C  is the dimensionless gain-

loss parameter or the non-Hermiticity parameter in the terminology of PT-symmetric systems, and 

 
 

 

 
 

 

Figure 3-2 (Color online) a Real (left) and imaginary (right) eigenfrequency versus the non-Hermiticity 

parameter γ for the PT-symmetric circuit in Fig. 2-1b. b is similar to (a), but for measurement results 

obtained by the micro-coil reader shown in Fig. 1a. Here, eigenfrequencies are in units of ω0. 
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M/L   is the coupling strength between the –RLC and RLC tanks; here all frequencies are measured 

in units of 0 .  I find that Eq. (3-1) remains unchanged under the combined P  ( 1 2q q ) andT  (

t t  ) transformations. Further, Eq. (3-1) can be written in the Liouvillian formalism as [32]: 
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                           (3-2) 

where  1 2 1 2, , , .
T

q q q q  An effective Hamiltonian can be defined as effΗ i , which takes a non-

Hermitian form and is symmetric with respect to generalized PT transformations:  

0 0
, ,

0 0

x

x





   
    

  

I

I
P T K    (3-3) 

x  is the Pauli matrix, I is an 2 2  identity matrix, and K  conducts the operation of complex 

conjugation. effΗ  commutes with ,PT  namely , 0,effH   PT  which implies that effΗ and PT  share 

the same set of eigenstates. 

 After the substitution of time-harmonic charge distributions e ,j t
n nq A  eigenfrequencies 

and eigenstates for this PT-symmetric circuitry can be obtained from the eigenvalue equation,

( ) 0eff k kH   I and 1,2,3,4,k  as functions of the non-Hermiticity parameter   and the coupling 

strength  : 

 

2 2 4 2

1,2,3,4 0 2 2

2 1 1 4 4
,

2 1

   
 

 

   
 


   (3-4a) 
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

    (3-4c) 

The complex eigenfrequencies evolve with , showing three distinct regimes of behavior, as 

shown in Fig. 3-2a. The eigenfrequencies undergo a bifurcation process and branch out into the 

complex plane at the exceptional point (or the spontaneous PT-symmetry breaking point): 

21 1 1
.

2
EP






 
    (3-5) 

In the parametric region  ,EP   , eigenfrequencies are purely real (  ℝ) and
k k PT  such 

that the PT-symmetry is exact. Moreover, if one seeks only purely real solutions, there is 

redundancy because positive and negative eigenfrequencies of equal magnitude are essentially 

identical. The motion in this exact PT-symmetric phase is oscillatory at the two eigenfrequencies 

(resonance frequencies in the reflection spectrum). At the exceptional point ,EP  eigenfrequencies 

undergo a bifurcation process and branch out into the complex plane, and thus the PT-symmetry 

is spontaneously broken. The region ,c EP     is known as the broken PT-symmetric phase, where 

that eigenfrequencies become two complex conjugate pairs (  ℂ ). In this region, k k PT and 

thus the PT-symmetry is broken. Another crossing between the pairs of degenerate frequencies 

(and another branching) occurs at the lower critical point:  

21 1 1
.

2
c






 
     (3-6) 

In the sub-critical region 0, ,c    k  become purely imaginary and, therefore, the modes have no 

oscillatory part and simply blow up or decay away exponentially, which is of little interest for 
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telemetry sensing applications. Finally, I note that in the lossless scenario (   ), two frequency 

pairs are given by 1,2,3,4 1/ 1 .    These modes are associated with a pair of double-degenerate 

frequencies 1k     for a single isolated LC tank with 0.   

 Figures 3a and 3b show the frequency responses of reflection (Г), as functions of  and the 

normalized frequency 0/ ,k  for the conventional one [Fig. 3-1a] and the PT-symmetric wireless 

sensor system [Fig. 3-1b] [1]-[17] (which uses a reader coil with inductance L to interrogate the 

same passive sensor); here, I assume that the coupling strength 0.5   and the input impedance of 

the RF source (e.g. a vector network analyzer or VNA) 0 0.1 .Z R  I find that resonant reflection dips 

in Fig. 3-3b are in consistent with the eigenfrequency analysis in Fig. 3-2a: (1) if ,c   there is no 

clear resonant peak, but purely amplifying or decay phenomena; (2) if EP, ,c      a broadband 

resonance is obtained, as the system operates in the broken PT-symmetry phase; (3) if ,EP   the 

 
 
 

 

 
 

 

Figure 3-3  a Contours of reflection coefficient, as a function of the normalized operating frequency and 

the non-Hermiticity parameter, for the circuit of (a) the conventional wireless sensor system [Fig. 3-1(a)] 

and b the PT-symmetric one [Fig. 3-1(b)]; here the coupling strength κ = 0.6 and the input impedance of 

the RF source Z0 = 0.33 R.    
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exact PT-symmetry phase yields two real eigenfrequencies, resulting in sharp reflection dips. 

Comparing the conventional fully-passive wireless sensing scheme and the PT one, it is seen that 

the proposed approach may provide superior sensitivity in terms of modulation depth, spectral 

resolution, and resonance frequency shift due to changes in  (which is related to the sensor’s 

effective resistance, capacitance, and inductance). 

3.3 Implementation and Characterization of Wireless Capacitive Sensors 

 To validate the theoretical results in Section II, I have built a PT-symmetric RF circuit 

resembling a practical wireless sensor system. For example, many medical and industrial pressure 

sensors are based on the capacitance change due to the mechanical deflection or the variation of 

 

 

 

 

 

 

Figure 3-4 a Circuit diagram for the active reader consisting of an NRC, which is equivalent to a lumped 

negative resistor and b its practical implementation using the printed circuit board technique. 
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dielectric constant [8],[10]. In order to mimic a passive wireless capacitive sensor, I have made an 

onboard series RLC tank [Fig. 3-1a], consisting of a variable capacitor (BBY40: C = 2-32 pF), a 

resistor (MNR02JR-0402:  R = 150 ± 0.5% Ω) and a microstrip coil (L = 0.3 µH) [34]. To suit the 

PT-symmetric circuit topology in Fig. 3-1b, the reader needs to involve a negative resistor −R, 

which can be realized by a NRC that pulls in power to the circuit, rather than dissipating it like a 

resistor. The active reader, as a –RLC tank, has the same effective capacitance and inductance as 

those of the passive RLC tank (i.e., sensor).  

 Figures 4a and 4b respectively show the circuit diagram and the photograph of the positive-

feedback Colpitts-type NRC [34]-[38],[45],[46], which is equivalent to a negative resistor in series 

with a capacitor. Both effective –R and C are tunable (via the external DC bias), stabilized, and 

non-dispersive over a wide frequency range. For the NRC circuit in Fig. 3-4a, if the transistor’s 

transconductance ,m gd gsg C C  ( gdC  and gsC are the gate-drain and gate-source capacitances), the 

equivalent impedance of the NRC is approximately given by: 

2
1 21 2

1 1
,m

eq

g
Z j

ωC CC C 

 
    

 

       (3-7) 

where the real and imaginary parts correspond to the negative resistance and the capacitance. 

The negative resistance value can be controlled by the DC offset voltages of the transistor (RF n-

channel MOSFET: SOT-143). The effective capacitance of NRC is also tunable, if two voltage-

controlled varactors 1C  and 2C are used. We have designed and manufactured an active onboard 

reader (–RLC tank) to wirelessly interrogate the RLC tank simulating the capacitive wireless 

sensor. Once the capacitance of the RLC tank is varied, the effective capacitance of the reader is 

adjusted accordingly to maintain the PT-symmetry condition. The inset of Fig. 3-5 shows our 

measurement setup, where the reader and the pseudo-sensor are separated by an air gap of 5 mm, 
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yielding a coupling strength κ = 0.6. Figures 5a and 5b present evolutions of the reflection 

spectrum with different capacitance values for the conventional [Fig. 3-1a] and PT-symmetric 

[Fig. 3-1b] wireless sensor systems, respectively; here the effective capacitance C of the RLC 

tank is varied from 2 pF to 7 pF, corresponding to the change of  from 2.905 to 1.553.  

 

As can be seen in Fig. 3-5, experimental (solid lines) and theoretical (dashed lines) results agree 

quite well. The slight difference between the theory and experiment can be further improved by 

flattening the frequency response of NRC, which, for instance, could be achieved with the cross-

 
 

 
 

 

Figure 3-5 a Measured reflection coefficient for a passive RLC pseudo-sensor with an effective resistance 

R = 150 Ω and an effective inductance L = 300 nH, which is inductively coupled by (a) the conventional 

coil-antenna reader shown in Fig. 3-1a, and b the active reader (–RLC tank in Fig. 3-1b) that accomplishes 

the PT-symmetric electronic system. The effective capacitance C of the RLC sensor is varied from 7 pF to 

2 pF. 
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coupled transistor pair [34],[39] and the on-chip design. In this case, the non-Hermiticity 

parameter of the PT system,  , as a function of C, determines whether the PT-symmetry is exact 

or broken. If  < EP ,  the system will operate in the broken PT-symmetric phase and vice versa. I 

have retrieved from measurement results [32] the complex eigenfrequency versus  for both 

fully-passive and active wireless sensor systems in Fig. 3-5. Results are highlighted as dots in 

Fig. 3-2, which show excellent agreement with the theory. It is seen from Fig. 3-2 and Fig. 3-5 

that by sweeping C from high to low values (or, effectively, sweeping  from low to high values), 

the PT-symmetric telemetry system may evolve from the broken symmetry phase to the exact 

symmetry phase. The exact PT-symmetric phase results in real eigenfrequencies, associated with 

narrowband and sharp-peaked resonances. On the other hand, the broken PT-symmetry phase 

exhibits complex eigenfrequencies, associated with a weak and broad resonance. From Fig. 3-5, 

it is evidently seen that the PT-symmetric wireless readout technique, when operating in the 

exact symmetry phase, may enable much sharper reflection dips and greater Q-factor than the 

fully-passive readout technique. I note that if the negative resistor in the reader is replaced by a 

normal resistor of the same absolute resistance value, the PT-symmetry is no more valid and, 

therefore, the sharp resonances disappear (not shown here for saving some space).  

 It is worth mentioning that the PT-symmetric circuit may provide not only the loss 

compensation effect and the high-Q resonance, but also the enhanced sensitivity in response to the 

sensor’s impedance perturbation. As can be seen in Figs. 3-2a and 3-2b, under the same values of 

,  the PT-symmetric telemetric system shows a more dramatic shift in the resonance frequency, 

when compared with the traditional one using a coil reader (whose eigenfrequency variation is a 

flat line after being normalized by 0 1/ LC  ). The sensitivity enhancement is particularly obvious 

around the singular exceptional point EP , where the eigenfrequency bifurcation occurs [44].  
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3.4 Implementation and Characterization of Wireless Resistive Sensors 

Recently, there has been substantial investigation and research in wireless (bio-)chemical 

sensors based on the chemiresistor (i.e., chemically-tuned variable resistor). Particularly, 

nanomaterials (e.g., graphene [47],[48]) has been a recent thrust in micro/nano-sensor 

development. However, these resistive sensors typically exhibit poor sensitivity, due to the large 

electrical resistance of chemiresistor, which results in a low Q-factor and imperceptible resonance 

frequency shift. In this work, I also apply the concept of PT-symmetric telemetry to improve the 

sensing performance of wireless resistive sensors. In this scenario, a variable resistor is connected 

in series with a capacitor and an inductor, forming a passive RLC tank. The passive sensor is 

 

 

Figure 3-6 a Schematics of the PT-symmetric wireless resistive sensor system. b Real (left) and imaginary 

(right) eigenfrequency versus the non-Hermiticity parameter γ for the PT-symmetric circuit in (a). The 

resistance of the pseudo RLC sensor is varied from 190 Ω to 300 Ω, corresponding to the change of  from 

2.8 to 1.9. (b) is similar to (a), but for measurement results obtained by the micro-coil reader shown in Fig. 

3-1a. Here, eigenfrequencies are in units of ω0. 
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inductively coupled to an active reader based on a –RLC tank, as shown in Fig. 3-6a. For the proof-

of-concept demonstration, I used a variable onboard RLC tank with a variable resistor to simulate 

the resistance variation caused by, for instance, chemical reactions in a chemiresistor. The series 

RLC tank is built by a microstrip coil (L ≈ 0.6 µH), a capacitor (BBY40: C ≈ 2 pF), and a variable 

resistor (MNR02JR-0402:  R = 150~300 ± 0.5% Ω). The active reader is similar to the one used 

in Section III, of which the effective negative resistance is tuned by the external DC bias. When 

the active reader (–RLC tank) is used to wirelessly interrogate the pseudo resistive sensor (RLC 

tank), the PT-symmetric telemetry system can be achieved, with the equivalent the equivalent 

circuit shown in Fig. 3-6a.  

 
 

 
 

 

 

 

Figure 3-7 a Measured reflection coefficient for a (pseudo) RLC sensor with effective capacitance C = 2 

pF and effective inductance L = 600 nH, which is wirelessly read by (a) the conventional coil-antenna 

reader shown in Fig. 3-1a, and b the active reader (–RLC tank in Fig. 6b). The effective resistance R of the 

pseudo RLC sensor is varied from 190 Ω to 300 Ω. 
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Figure 3-6b presents the theoretical (solid lines) and experimental (dots) results for the complex 

eigenfrequency as a function of the non-Hermiticity parameter , which is varied by adjusting the 

effective resistance of the RLC tank sensor. A good agreement between experimental and 

simulation results can be seen in Fig. 3-6. Similar to the case of PT-symmetric wireless capacitive 

sensor [Fig. 3-2], there exists two distinct regimes of behavior divided by the exceptional point. 

As can be seen in Fig. 3-6b, near the exceptional point, the real eigenfrequencies become 

ultrasensitive to perturbation of the sensor’s effective resistance. Figure 3-6c is similar to Fig. 3-

6b, but for the fully-passive wireless sensing scheme using a simple micro-coil reader, showing 

that the eigenfrequency is a complex and quite insensitive to the change in  (or R of the sensor).  

Figs. 3-7a and 3-7b respectively present evolutions of reflection spectrum for the fully-passive 

and PT-symmetric wireless sensor systems in Fig. 3-6. In both cases, measurements results (solid 

lines) are in good agreement with theory (dashed lines). As can be seen in Fig. 3-7, in the PT-

symmetric telemetry system, the real eigenfrequncies give rise to sharp and high-Q reflection dips, 

even though the sensor’s effective resistance is large. However, the passive micro-coil reader only 

achieves a weak resonance with a broad linewidth. Again, our results demonstrate that a wireless 

sensor system engineered into the PT-symmetric dimer can provide superior sensitivity and 

detectivity, as it achieves not only higher spectral resolution and greater modulation depth, but 

also more very sensitive frequency responses associated with the exceptional point, well beyond 

the capability of fully-passive interrogation techniques. Fundamentally different from 

conventional loss-compensation resonator circuit, where R and R components are in direct 

contact, [45][46], in our PT-symmetric telemetry system, the balanced gain and loss are wirelessly 

interacted, thus offering a promising route for improving the performance of the wireless reactive 

and resistive sensors (e.g., without the need of active component and power source in the sensor).  
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3.5 Conclusions 

We have put forward the concept and practical designs of the PT-symmetric telemetry system 

for enhancing the sensitivity and detection limit of versatile RLC-based passive wireless sensors. 

Specifically, the equivalent circuit of the wireless sensor system is properly tailored to satisfy the 

spatial-inversion and time-reversal symmetry. I have first theoretically studied different PT phases 

and critical conditions for obtaining the optimal sensing performance. Then, I have experimentally 

demonstrated the possibility of using the PT-symmetry concept to wirelessly read the (lossy) 

capacitive and resistive sensors, with high spectral resolution and high sensitivity. The proposed 

wireless sensing technique is potentially revolutionary, as it may be beneficial to a plurality of 

environmental, wearable, and implantable wireless sensors, as well as emerging applications in the 

fields of IoTs and RFIDs.  
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VI. ULTRASENSITIVE WIRELESS DISPLACEMENT SENSING ENABLED BY PT-

SYMMETRIC TELEMETRY  

Parts of this chapter have been presented in (Hajizadegan et al., 2019, TAP). Copyrightc©2019, IEEE. 

Wireless inductive sensors have been deployed in the position and displacement sensing for a 

wide variety of applications ranging from manufacturing processes, medical systems, 

automotive and aerospace industries, to civil infrastructures. Here, I propose and experimentally 

demonstrate an ultrasensitive wireless displacement sensing technique based on the concept of 

parity-time (PT)-symmetry or space-time reflection symmetry, first explored in quantum 

physics and later extended to wave physics. This PT-symmetric telemetric sensing system 

comprises an active –RLC tank (stationary reader) and a passive RLC tank (movable tag), which 

are interrogated in a wireless manner via inductive coupling. Specifically, such a non-Hermitian 

electronic system obeying the PT-symmetry, when operated around the exceptional point (EP), 

can achieve drastic frequency responses and high sensitivity, well beyond the limit of 

conventional fully-passive wireless displacement sensors. The proposed telemetric sensing 

system show great potential for contactless, high-precision measurement of displacement, 

distance, position, and vibrations, particularly suitable for emerging industrial and healthcare 

internet-of-things (IoTs). 

4.1 Displacement sensing systems 

Displacement sensing has been a long time major demand for many industrial, medical, civil, 

aerospace and automotive applications [1]-[5], which require contactless, high-precision 

measurements of displacement, motion, position and distance of a targeted object.  
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Although optical methods, such as fiber laser and optical microscopic systems with a graphic 

interface [5], allow for high-precision dimension measurement, they typically require complex and 

costly modules. Moreover, the limited penetration depth of light remains hurdle for many real-

world applications. For instance, animal tissues and upper layer of human skin could absorb most 

of infrared and visible light. In this context, radio-frequency (RF) and microwave have a longer 

penetration depth than that of light. A RF sensor can detect the disturbance of electromagnetic 

fields caused by the object motion, converting that physical parameter into an output electrical 

signal to indicate the position of the target. Specifically, the inductive displacement sensors (IDS) 

based on printed circuit board (PCB) [6]-[13]. or microelectromechanical system (MEMS) 

techniques [14],[15] can offer a simple, low-cost and contactless method for measuring the 

displacement. The basic principle of a RF IDS is to employ the magnetic coupling between two 

coplanar or stereo inductor (L), as schematically shown in Fig. 4-1(a). In general, a RF IDS consists 

of two components: a stationary reader coil connected to the RF signal generator/analyzer (e.g., a 

vector network analyzer (VNA) or a portable RFID reader) and a movable tag coil, which is 

typically terminated by a resistor (R) and a capacitor (C) to form a resonant RLC tank. The mutual 

inductance (M) are varied when the tag physically moves with respect to the reader in normal and 

tangential planes, which, in turn, leads to a change in the measured reflection coefficient (S11), as 

shown in Fig. 4-1(a). As a result, the full displacement information of the tag can be encoded in 

the reflection coefficient, in terms of its amplitude, phase, and resonance frequency. In contrast to 

those capacitive sensing techniques [15], inductive methods are less influenced by the lossy 

background medium (i.e., materials with complex permittivity at high frequencies), and thus the 

reader coils can be set at a relatively large distance apart from tags. 
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Figure 4-1 PT-symmetric inductive displacement sensor (IDS) system. a Schematics (left) and 

measurement setup (right) for a wireless IDS system, in which a tag (RLC resonant tank) is inductively 

coupled to a reader antenna (planar inductive coil). b Equivalent circuit model for the PT-symmetric IDS 

system, in which an active reader (–RLC tank) is used to interrogate tags such that the circuit is invariant 

after spatial inversion and time reversal. In the close-loop (normal mode) analysis, a RF signal generator 

with source impedance Z0 is represented by –Z0, as it provides energy to excite the circuit. The inset pictures 

show the PCB-based prototypes for the DC-biased active reader (left) and the passive tag (right). 

 

 

 

 

 

In this work, I propose a new PT-symmetric IDS telemetry system, as shown in Fig. 4-1(b), 

which can offer significantly improved sensitivity and resolution compared with conventional IDS 

systems. The concept of space-time reflection symmetry, or PT-symmetry, was first proposed in 

quantum mechanics by Bender and Boettcher in 1998 [16]. Counterintuitively, it is argued that a 

non-Hermitian Hamiltonian can have real eigenfrequencies, if a quantum mechanical system is 

invariant under operations of spatial reflection P  and time reversal T  [16]. Although the existence 

of PT-symmetric quantum system is still a subject to debates, PT-symmetry has been 

experimentally validated in non-Hermitian electromagnetic, optical and acoustic systems, thanks 
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to the formal similarities between the Schrödinger and Helmholtz equations [17]-[31]. These PT-

symmetric wave systems are usually realized by introducing spatial distribution of balanced gain-

loss profiles. At RF and microwave frequencies, a PT-symmetric system can be readily realized 

with transmission-line networks or lumped-element circuits [32]-[34] described by the telegraph 

equation. At low frequencies, the gain medium can be achieved with active components, such as 

operational amplifiers and negative resistance converters (NRCs). For example, a PT-symmetric 

electronic system can be made by pairing the –RLC and RLC tanks, which are correspondingly 

responsible for the amplification and attenuation of the RF signal. The contactless interaction 

between active and passive tanks can be performed through capacitive coupling, inductive 

coupling, or both [32],[35]. PT-symmetric and non-Hermitian systems exhibit many exotic and 

anomalous spectral properties and dynamical features. Of particular interest is the exceptional 

point that leads to drastic eigenfrequency bifurcation and phase transitions, which have been 

utilized to build ultrasensitive optical sensors based on microcavity or metamaterial structures 

[36]-[40], with spatially varying gain-loss profiles. Inspired by previous works done in the optical 

domain, I presenThere a PT-symmetric electronic circuit and its practical application in high-

sensitivity wireless displacement and motion sensing. Figure 4-1(b) shows the equivalent circuit 

of the PT-symmetric IDS system, which consists of a passive tag (RLC circuit) inductively coupled 

to an active reader (–RLC circuit). In this scenario, the whole telemetry system fulfills the spatial-

inversion and time-reversal symmetry, as demonstrated below. In the following, I will investigate 

both theoretically and experimentally the performance improvement and critical operating 

conditions of the PT-symmetric IDS system in Fig. 4-1(b), with laboratory prototypes designed 

and fabricated by the low-cost PCB technique.  
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4.2 PT-Symmetric Telemetry  

Figure 4-1 shows the photograph and the equivalent circuit of the PT-symmetric RF IDS 

system: the reader (–RLC tank) is stationary and connected to the VNA, whereas the tag (RLC 

tank) is placed on a movable stage whose normal displacement Δz and tangential displacement 

Δx (or Δy) can be controlled precisely by the XYZ-positioning stage. In the closed-loop (normal-

mode) analysis, the VNA, which contains RF signal generator (energy source) to excite the circuit, 

should be modeled as a negative generator impedance –Z0, where Z0 is its source impedance 

[Pozar]. For balancing gain and loss in the system, the –RLC-reader connected to the VNA should 

use a NRC with an equivalent resistance of –(R–Z0). Applying Kirchhoff’s laws to the equivalent 

circuit in Fig. 4-1(b) leads to the Liouvillian formalism as [32]: 
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where  1 2 1 2, , , ,
T

q q q q   1q and 2q  are charges stored on the capacitor in the amplifying and 

attenuating tanks, 0 ,t  0 1/ LC  is the natural frequency of an RLC tank, 

1 1/ | | /R L C R L C     is the dimensionless gain-loss parameter or the non-Hermiticity 

parameter, and M/L   is the coupling strength between the –RLC and RLC tanks; here all 

frequencies are measured in units of 0.  The effective Hamiltonian can be expressed as effΗ i  

[32], which takes a non-Hermitian form and is symmetric with respect to generalized PT 
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transformations: 
0 0

,
0 0

x
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
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    
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I

I
P T K [32], where x  is the Pauli matrix, I is an 2 2  

identity matrix, and K conducts the operation of complex conjugation. Here, I find that effΗ  

commutes with PT, i.e., , 0,effH   PT  and thus effΗ  shares the same eigenbasis with the parity-

time operator PT [32]. After the substitution of time-harmonic charge distributions e ,j t

n nq A 

eigenfrequencies for this PT-symmetric electronic system, as a function of the non-Hermiticity 

parameter   and the coupling strength  ,  can be derived as:  
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Although there are four normal modes, there is redundancy and only two distinct modes are 

necessarily considered, since positive and negative eigenfrequencies of equal magnitude are 

essentially identical.  

 

 

 

Figure 4-2 Complex eigenfrequency of PT-symmetric electronic system.  Contours of a real and b 

imaginary eigenfrequency as a function of the non-Hermiticity parameter and the coupling coefficient   

for the PT-symmetric RF circuit in Fig. 4-1b. 
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For a given value of  , the   relationship shows two distinct regimes of behavior, depending 

on the value of , as shown in Fig. 4-2. In the parametric region EP  , the eigenfrequencies are 

purely real ( ℝ) and ,  PT  so-called the exact PT-symmetric phase. The motion in this 

exact PT-symmetric phase is oscillatory at the two eigenfrequencies, resulting in two resonant dips 

in the reflection spectrum. At the exceptional point ,EP  eigenfrequencies undergo a bifurcation 

process and branch out into the complex plane. The exceptional point between two PT phases is 

given by: 

2

1
1

1
.

4
EP

 
       (4-3) 

The region where EP   is known as the broken PT-symmetric phase. In such a weak coupling 

region, eigenfrequencies become two complex conjugate pairs ( ℂ ) and ,  PT indicating 

that the PT-symmetry is broken. It is particularly interesting to note that nearby the exceptional 

point, the drastically bifurcating eigenfrequencies with respect to the perturbation of   [Fig. 4-2] 

can be used to make an ultrasensitive wireless displacement sensor ( is varied by the relative 

distance between two coil inductors).  

For a specific value of ,  there exists similar phase transitions under the perturbation of  , and 

the exception point is given by:  
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The dramatically bifurcating eigenfrequencies (resonance frequency splitting) around 
EP  [Fig. 

4-2] may be of interest for the wireless reactive and resistive sensing. In these applications, the 

passive wireless sensor described by a RLC tank has either a variable capacitor (e.g., capacitive 

pressure sensor [35],[41]) or a variable resistor (e.g., chemiresistor sensor [42]) such that  can be 

tuned by the physical/chemical parameter to be sensed (i.e., 1 1/2R C   ). When the sensor is 

operated around ,EP  the bifurcation effect is expected to boost the sensitivity associated with the 

resonance frequency shift. 

 

 

 

 
Figure 4-3 Effect of normal and tangential displacement on the (inductive) coupling coefficient .  

(a,b) Calculated coupling coefficient versus normal displacement Δz and tangential displacement Δx; here, 

the inductance ratio between the reader coil and the tag coil, LR/LT, is also varied. 
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In our IDS telemetry experiments, a planar microstrip spiral inductor is used for both reader 

and tag. According to Neumann’s formula [43], the mutual induction between two spiral inductors 

is given by:  
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where Mij is the mutual inductance between two loops, i (j) represents the i-th (j-th) loop of the 

coil on the sensor (tag), ( 1)( ) / 2,i o,R i R R Ra  = r N w +s w   ( 1)( ) / 2,j o,T j T T Tb  = r N w +s w    Ni 

(Nj) is the number of turns in the sensor (tag), Rij represents the distance between filamentary metal 

lines, ρ is the shape factor of planar coil (here ρ = 1 for planar circular-shape coil) [43], μ0 is the 

free-space permeability, w and s are width and spacing of copper microstrip lines, z is the central 

distance between two coils, ro is the outer radius of the coil, and the subscript R (T) represents the 

sensor (tag). The mutual inductance depends on both tangential (x-y plane) and normal (x-z plane) 

displacements of the tag, which determine the value of .ijM  Figures 3(a) and 3(b) report the 

calculated coupling coefficient versus normal and tangential displacements, Δx and Δz; here, the 

inductance ratio between the reader and tag coils, LR/LT is also varied. The mutual inductance or 

the inductive coupling coefficient,  , reaches a maximum value when two spiral coils are 

perfectly aligned (i.e., Δx=0), and  decreases with increasing Δx. Similarly,  decreases with 

increasing Δz. As a result, the information of displacement can be encoded in the inductive 

coupling strength, determining the reflection coefficient measured by the VNA.  
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4.3 Experimental Demonstration of PT-Symmetric IDS System. 

 

 

Figure 4-4 Reflection spectra for PT-symmetirc and conventional (fully-passive) displacement 

sensors, under different values of Δx (tangential displacement). The reflection coefficient vesus 

frequency for the PT-symmetric IDS systems with a 4.9,  b 2.45   and c 2,   and for d the 

conventional passive IDS system using a coil-antenna reader to reade the same tag as (c); here, solid and 

dashed lines represent experimental and analytical results, respectively. When a tangential displacement is 

introduced, the coupling strength between the reader and tag coils is also varied, which in turn leads to a 

shift in the resonance frequency. I note that results on the bottom panel of (a) and (b) are obtained for 

systems operated close to the exceptional point, whereas the result on the bottom panel of (c) designates 

the broken symmetry phase, with resonance becomes progressively weaker as  decreases (or Δx increases).  
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The PT-symmetric inductive displacement sensing was tested using the PCB-based prototypes 

shown in Figure 4-1(b). For both –RLC-reader and RLC-tag, their effective inductance and 

capacitance are fixed as: L = 0.3 µH (planar spiral coil) and C = 5 pF. The passive tag is loaded 

with a resistor (MNR02JR-0402), whose resistance value and tolerance are R = 50/100/120 ± 0.5% 

Ω. The active reader has a Colpitts-type NRC, which gives a voltage-controlled equivalent 

negative resistance in the frequency range of interest [44],[45]. Details of the NRC design can be 

found in Ref. [ref]. Figure 4-4 reports the reflection coefficient versus the inductive coupling 

strength for the PT-symmetric IDS systems, with (a) 4.9  (R = 50 Ω), (b) 2.45   (R = 100 Ω), 

and (c) 2   (R=120 Ω); here,  is tuned through the tag’s tangential displacement Δx [Fig. 4-

3(b)]. It is seen from Fig. 4-4 that theoretical (dashed lines) and measurements (solid lines) results 

are in excellent agreement. For making a fair comparison, Fig. 4-4(d) reports the reflection spectra 

for the conventional IDS system, in which a coil antenna (which is identical to the planar spiral 

coil used in the PT systems) was used to interrogate the same RLC-tag in Fig. 4-4(c) ( 2   and 

R=120 Ω). It is clearly seen from Figure 4-4 that under the same magnitude of inductive coupling, 

the PT-symmetric IDS system [Figures 4(a)-(c)] can exhibit significantly greater sensitivity 

(resonance frequency shift) than the conventional passive one [Figure 4-4(d)], thanks to the largely 

bifurcating eigenfrequencies at the exceptional point. In addition, in the exact PT-symmetric phase 

where
EP  , real eigenfrequencies yield high-Q resonances and two sharp, narrowband 

reflection dips, ideally suitable for highly-resolution and noise-immune sensing. On the other hand, 

in the broken PT-symmetric phase where
EP   (e.g., the bottom panels of Fig. 4-4(c)), complex 

eigenfrequencies result in a weak and broad resonance with a much reduced Q-factor. Hence, the 

broken symmetry phase is not suitable for sensing and detection applications.  
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The above observations can be understood in terms of energy flow: if the coupling strength is 

weak, the energy in the active –RLC tank cannot flow fast enough into the passive RLC tank for 

compensating the absorption (loss), resulting in a non-equilibrium system with complex-valued 

eigenfrequencies. If the coupling strength exceeds a certain threshold EP , the system can reach 

equilibrium, since the energy in the active tank can flow fast enough into the passive one for 

compensating its power dissipations. As can be seen in Fig. 4-2, at a larger , the critical  for the 

phase transition ( EP ) can be reduced, and vice versa. I should point out that the linewidth 

sharpening or Q-factor enhancement, of importance for telemetric sensors, is also due to power 

compensation between the two tank circuits. Unlike the conventional loss-compensated filters and 

resonators [44], Q-factor enhancement is achieved by electrically disconnected gain and loss, 

which interact through the magnetic coupling.  

 

Figure 4-5 Evolution of the eigenfrequency for PT-symmetric and conventional (fully-passive) IDS 

systems. Contours of real part of eigenfrequency as a function of  Δx and Δz for the PT-symmetric IDS 

systems with a 4.9,  b 2.45  and c 2,   and for d the conventional fully-passive IDS system using 
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a coil-antenna reader to reade the same tag as (c); here, colored surface and dots represent theoretical and 

experimental results, respectively. 

 

 

 

 

Figure 4-5 shows the contour of real eigenfrequency Re[ ] as a function of x and z  [Eq. (4-

5)], where (a)-(d) correspond to the IDS telemetry systems in Figs. 4-4(a)-(d). Here, I found a good 

agreement between theoretical and measurement results, respectively represented by color surfaces 

and dots. The sensitivity improvement due to the singularity raised by the exceptional point can 

be better understood with the help of Fig. 4-5. It is clearly seen from Figs. 4-5(a)-(c) that the 

bifurcation effect can drastically shift the resonance frequencies with respect to , or, 

equivalently, x and z perturbations. I found that the evolution of the resonance response of the 

PT-symmetric IDS system clearly identifies the eigenfrequency transition predicted by Eq. (4-3), 

further validating our theoretical hypothesis. For the fully-passive IDS system in Fig. 4-5(d), the 

exceptional point and the bifurcation effect disappear. Instead, a rather flat contour of Re[ ]  is 

obtained, implying a relatively poor sensitivity due to a small resonance frequency shift. Moreover, 

given by the complex-valued eigenfrequency [Fig. 4-5(d)], the conventional IDS system displays 

a weak, low-Q resonance, leading to low spectral resolution and small modulation depth. 

Comparing the active PT-symmetric IDS system [Figs. 5(a)-(c)] and the conventional one [Fig. 4-

5(d)], one may conclude that the PT-symmetric design can, indeed, provide more sensitive 

frequency response and thus greater sensitivity in measuring the normal and tangential motions of 

a wireless tag.  

Finally, I note that the PT-symmetric IDS system based on the PCB prototypes already offers a 

sub-millimeter scale motion detection, as can be seen from Fig. 4-4. The detection limit can be 
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further pushed down to micrometer scale by using the MEMS technology. It is also worth 

mentioning that in the PT-symmetric system, the critical coupling strength 
EP can be reduced by 

increasing the non-Hermiticity parameter  (or the intrinsic Q-factor of the tag) [Eq. (4-3)], as can 

be seen in Figs. 4-4(a)-(c). The increment in  can be done by, for example, reducing the R and 

R  in the tag and the reader. A lower
EP also leads to a more dramatic bifurcation effect and 

greater sensitivity enhancement, as well as an increased range for effective detection of 

displacement. However, for an extremely miniaturized micromachined tag,  is typically quite 

small because L is limited by the small area and R is quite large due to the skin effect, Eddy 

currents, and dielectric losses in the background medium. As a result, the maximum value of   has 

its physical limitation, and there is a compromise between the size miniaturization of tag/reader 

and the sensing performance. 

 

4.5 Conclusions 

We outline a new paradigm of PT-symmetric wireless displacement and alignment sensors. 

I have theoretically studied and experimentally validated that the PT-symmetric IDS system 

based on an active telemetry can offer significantly higher sensitivity, sensing resolution and 

modulation depth, when compared with conventional fully-passive ones. The improvement in 

sensing performance can be ascribed to the bifurcation effect (resonance frequency splitting) 

nearby the exceptional point of the PT-symmetric physical system. Around such a singular 

point, even a small change in the inductive coupling strength, caused by motion and 

displacement of a targeted object, can lead to significantly shifted resonance frequencies that 

can be readily detected in the reflection spectrum. Our findings may have an impact on many 
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compact wireless displacement and proximity sensors, which will become ubiquitous in the 

industrial IoTs, manufacturing operations, intellectual civil infrastructures, healthcare systems, 

and even cyber-physical and humanoid robotic applications. 
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CHAPTER 5: ULTRA-SENSITIVITY WITH DIVERGENT EXCEPTIONAL POINTS 

FOR RADIO-FREQUENCY TELEMETRY  

Parts of this chapter have been presented in (Sakhdari et al., 2019, PRL). Copyrightc©2019, PRL. 

Standard Exceptional points (EPs) are non-Hermitian degeneracies that occur in open systems. 

Their existence features a singularity marked by the failure of Taylor series representation. 

Here, I theoretically introduce and experimentally demonstrate a new class of parity-time (PT) 

symmetric electronic oscillators that combine EPs with another type of mathematical singularity 

associated with poles of complex functions. These “divergent” exceptional points (DEPs) can 

exhibit unprecedentedly a large eigenvalue bifurcation beyond those obtained by standard EPs.  

Our results pave the way for building a new generation of telemetering and sensing devices with 

superior performance.   

5.1 PT-symmetry and divergent exceptional points (DEPs) 

 Parity-time (PT) symmetry in optics and photonics [1] has been a subject of intense 

investigations with several potential applications in building new types of optical diodes [2], 

microlasers[3],[4], sensors [5],[6] and nonlinear light sources [7]-[10]. A central notion to the 

physics of PT symmetry is exceptional points (EPs), which mark the onset of PT spontaneous 

symmetry breaking, i.e. the transition from an exact PT phase to a broken phase[11],[12]. EPs 

have been associated with some of the most intriguing features of PT-symmetric (and, in 

general, non-Hermitian) wave dynamics, such as unidirectional invisibility[13]–[15], laser self-

termination[16]–[19] and chirality [20],[21], to just mention few examples.  
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Essentially, EPs arise in the spectrum of non-Hermitian systems and represent a special type of 

degeneracy, where the eigenvalues and their corresponding eigenvectors coalesce. 

Mathematically, they are singular points, at which the associated characteristic equation fails 

to have a Taylor series representation [22].  

 

 

Figure 5-1   Non-Hermitian PT-symmetric telemetric electronic systems. (a, b) Schematics of (a) the 

standard PT-symmetric telemetric system and (b) the three-elements PT-symmetric system formed by 

electronic oscillators. (c) Experimental setup of the three-elements PT-symmetric telemetric system. (d) 

Evolution of complex eigenfrequencies as a fucntion of the non-Hermiticity parameter  and the coupling 

strength   for the third-order PT-symmetric system in b and c. Here, the system’s exceptional point (EP) 

and critical point (CP) are highlighted.  
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Besides optics, another important platform where PT symmetry and EPs were experimentally 

investigated is electronics23. Within the realm of electronics, coupled RLC and −RLC 

oscillators (Fig. 5-1a) are used to implement a discrete Hamiltonian that obeys PT symmetry  

and exhibits a transition between the exact and broken phases. Recently, applications of PT-

symmetric electronics in wireless power transfer [24] and sensor telemetry [25] have been 

proposed and experimentally demonstrated. In all the previous work (both in optics and 

electronics), the studied systems involved only the standard EP described above. Here,  I 

introduce the notion of divergent exceptional points (DEPs) and experimentally demonstrate 

their feasibility in telemetry applications. Particularly, I show that multi-element PT-symmetric 

electronic systems can be engineered to exhibit a unique spectral feature, namely a standard EP 

in the vicinity of a pole singularity, which I denote as a divergent EP (or DEP). Importantly, I 

show that the eigenvalue bifurcation associated with a DEP is much stronger than the case with 

a standard EP, thereby paving the way towards building ultra-responsive sensors with superior 

performance beyond what reported so far [25].  

5.2 Divergent exceptional points in PT-symmetric electronic circuit 

To this end, I consider a PT-symmetric electronic circuit that consists of three different 

coupled oscillators (see Figs. 5-1b and 5-1c): −RLC, LC and RLC (we also extend this analysis 

to N-elements in section 5.5). By applying the Kirchhoff’s circuit laws as expressed using the 

Liouvillian formalism23, I obtain:  
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where  1 2 3 1 2 3, , , , ,
T

q q q ,q q q q1, q2, and q3 are charges stored on the capacitor in the −RLC, 

LC, and RLC tanks, 1 /R L C   is the non-Hermiticity parameter (note that positive and negative 

 respectively play the role of gain and loss), /M L   is the normalized coupling strength

(0 1)  and M is the mutual inductance between two neighboring electronic oscillators. 

Additionally, 
0 ,t  0 1/ LC   is the natural frequency of the isolated neutral LC tank, and 

all frequencies are measured in units of 
0.   From Eq. (5-1), I find that the Liouvillian expression 

remains the same under the combined parity P (q1 ↔ q3) and time-reversal T (t → −t ) 

transformation. Moreover, the effective Hamiltonian can be defined as  effH i , which is non-

Hermitian (
†

eff effH H ) and symmetric with respect to the PT transformation, i.e., 

, 0,effH   PT with 

0
,

0

 
  
 

J

J
P          (5-2a) 

 



 

92 
 

0 0 0 0
0

, 0 1 0 , 0 1 0 ,
0

0 0 0 0

   
                    

T
T T

T

K K

T

K K
       (5-2b) 

where J is the 3 3 anti-diagonal identity matrix, and K  conducts the operation of complex 

conjugation. These operations in conjunction leave the system unaltered. The eigenfrequencies of 

the above system, as expressed in the bases ,ie   can be derived from the secular equation 

( ) 0eff nH  I   with 1,2, ,6,n   which in turn gives: 
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      (5-3) 

Note that the positive and negative frequency solutions of Eq. (5-3) are essentially the same. I will  

remove this redundancy by considering only the positive signs (this does not include the sings 

inside the square root functions). By inspecting Eq. (5-3), I can identify three different regimes, 

separated by the exceptional point 
EP  and the critical point 

c  (defined as the point of critical 

damping, as I will discuss later in more details):  

2
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Figure 5-2   Evolution of eigenfrequencies and reflection spectra as a function of the non-Hermiticity 

parameter   for the standard (two-elements) and three-elments PT-symmetric telemetric systems.  a. 

Experimental and theoretical complex eigenfrequencies, varying a function of non-Hermiticity parameter 
 , for the three-elements PT-symmetric system (red circles), the standard PT-symmetric system (blue 

squares), and the conventional telemetric system using a micro-coil reader (green diamonds). In all 

telemetric systems, the coupling strength  is fixed to 0.3. (b, c) Magnitude of the reflection coefficient 

versus frequency for the three-elements PT-symmetric system and the standard PT-symmetric system. Both 

systems are controlled to operate around the exceptional point (EP), under the coupling strength 0.3. 
Solid and dashed lines denote experimental and theoretical results, respectively.  

 

 

 

 

 

In particular, when  , ,EP    the eigenfrequencies are purely real (
n ℝ) and ,PT     

indicating that the PT-symmetry is exact. In this exact PT-symmetric phase, oscillatory motions 

can be obtained at the eigenfrequencies or resonance frequencies. On the other hand, when 

 ,c EP    the eigenfrequencies become complex conjugate pairs (
n ℂ ), signaling a 

transition to the broken phase where .PT     This corresponds to an underdamped mode, and 
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it could be unstable (if the system has a net gain) due to the exponentially growing mode related 

to the imaginary part of .n  Finally, when ,c   all eigenfrequencies become purely imaginary, 

corresponding to the overdamped mode. The point c thus corresponds to the critical damping. 

Importantly, a unique feature of the solution (3), which does not have analogy in optical systems, 

is the existence of an unremovable pole singularity at 22 1.   At this point, 
EP c   and the 

system exhibits a DEP. In the vicinity of this point, the critical and exceptional points are different, 

but both are close to the pole singularity, which significantly impacts the frequency splitting 

associated with the EP. Figure 5-1d demonstrates this behavior. I should note that, in theory, this 

pole singularity exists in the standard PT symmetric circuit consisting of only two elements, but it 

occurs when 2 1,   which is impossible to achieve because it implies a perfect magnetic coupling, 

with zero magnetic flux leakage. On the other hand, adding the central LC circuit relaxes this 

condition and provides access to this operating point for the first time.  

In order to confirm these predictions, I built an onboard tunable RLC tank to mimic a wireless 

capacitive sensor. This pseudo-sensor consists of a variable capacitor, connected in series to a 

planar spiral inductor and a resistor (which accounts for the effective resistance of the sensor), 

such that its equivalent circuit is identical to that of a realistic wireless sensor. The information 

provided by the sensor is then read by an onboard –RLC tank connected to the vector network 

analyzer (VNA) for measuring the reflection spectrum (see Method for more details). While the 

standard PT-symmetric telemetric system is made by paring the –RLC and RLC oscillators via the 

magnetic coupling [Fig. 5-1a], the three-elements PT-symmetric system is constructed by inserting 

a neutral LC tank between the –RLC and RLC oscillators (Fig. 5-1b). In the RLC and –RLC 

resonators, the inductance of microstrip coils is L = 330 nH and the absolute value of resistance 
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.| – | 50R R       In order to emulate behaviors of a wireless capacitive sensor, the capacitance of 

tank circuits is tuned from 10 pF to 220 pF (SMA CER ±0.05 pF), which in turn varies the non-  

Hermiticity parameter of the system ( 1/ C  ). The setup of the wireless experiment is shown 

in Fig. 5-1c. Figure 5-2a shows the theoretical (solid lines) and experimental (dots) results for 

complex eigenfrequencies as a function of   for the standard and three-elements PT-symmetric 

telemetric systems; here, the coupling strength between two nearby resonant tanks is weak and 

fixed to 0.3.   Excellent results between theory and experiment is observed, indicating an 

enhanced frequency splitting even for a relatively small value of .  When ,EP  positive 

eigenfrequencies of an electronic PT-symmetric dimer will diverge asymptotically to 

21/ 1n  25, while those become 1,1/ 1 2n   in an electronic PT-symmetric trimer. 

The level of bifurcation is proportional to the coupling strength and can be quite drastic in the 

vicinity of a DEP. I note that the exceptional point 
EP  is downshifted for the three-elements 

circuit, as predicted by theory. This in turn allows a lossy sensor with a small   ( 1/ R  ) to operate 

right beyond the exceptional point and in the exact PT-symmetric phase.  
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Figure 5-3   Multi-links multi-stages PT-symmetric electronic system. a. Schematics of a multi-links 

three-elements PT-symmetric system with N coplanar spiral inductors in the intermediator. b. 

Experimental setup for the PT-symmetric telemetric system in a, with 2N  (four links).  

 

 

 

 

 

Figure 5-2b presents evolutions of reflection spectrum for the three-elements PT-symmetric 

telemetric systems described above. For comparison, Fig. 5-2c presents the standard PT-symmetric 

telemetric system formed by only two elements (Fig. 5-1a) having L = 330 nH and 0.3.   I find 

that under the same coupling strength, the electronic PT-symmetric trimer exhibits larger 

resonance frequency shifts compared to the electronic PT-symmetric dimer. Overall, our 
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experimental results confirm the superior performance of the three-elements wireless sensor, since 

it could operate closer to a DEP.    

Naturally, one can ask if it is possible to provide more access to a DEP (which translates into even 

more sensitivity) by modifying the intermediating element or adding more elements into the 

system. To answer this question, I experimentally investigate the effect of adding more inductive 

coils (which I will call links) in the neutral element, as shown in Fig. 5-3a. If I consider N   mutually 

uncoupled links, it is not difficult to show that the frequency splitting is given by: 

 
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which clearly shows that the pole singularity is further downshifted. From an experimental 

perspective, this means that stronger splitting can be achieved even by using a smaller   (which is 

reduced by a factor of 1/ ,N compared to the previous dual-links third-elements system with N = 

3 and 1N  ).  In order to test these predictions, I have experimentally implemented a multi-

coupled PT-symmetric circuit having and N = 3 and 2N   (see Fig. 5-3b), eventually leading to a 

reduced critical coupling strength 1/ 2.c   Figure 5-4a presents theoretical (solid lines) and 

experimental (dots) results for eigenfrequencies as a function of   for the four-links three-elements 

PT-symmetric system with 0.49  (Fig. 5-3b) and the standard PT-symmetric system with 

0.7   (Fig. 5-1a). As expected, adding more links lead to even more enhancement in the 

eigenfrequency bifurcation. Such intriguing properties can be utilized for ultra-sensitively 

telemetering information of various RF sensors. The gigantic bifurcation effect can be attributed 

to the fact that the system now operates in a region very close to singular points, as c is reduced 

by a factor of 1/ N   (here 1/ 2c  ) and the exceptional point is even further downshifted to 
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(here 

EP 0.79  ). For the sake of completeness, Fig. 5-4a also presents 

results for the conventional telemetric system with a coil-antenna reader (whose self-inductance L 

= 330 nH). In this case, the eigenfrequency always has a complex value and its real part is rather 

insensitive to changes in   (  ). Hence, a weak resonance and a scarcely detectable resonance 

frequency shift were observed in the reflection spectrum (not shown here). Figure 5-4b reports the 

theoretical and measured reflection spectra for the four-links three-elements PT-symmetric 

telemetric system in Fig. 5-3b, with 0.49   and   being varied from 0.77 to 2.1. There exists  

certain discrepancy between theoretical and measurement results, mainly due to stray fields and 

unexpected parasitic elements. Figure 5-4c reports the reflection spectra for the standard PT-

symmetric telemetric systems in Fig. 5-1a. From Fig. 5-4, I find that with the same range of  , 

the resonance frequency shift in the four-links three-elements PT-symmetric system is much 

greater that in the standard (single-link two-elements) PT-symmetric setup. Moreover, thanks to 

the downshifted exceptional point in the multi-links multi-elements PT-symmetric system, even a 

relatively lossy sensor could experience largely bifurcating resonance frequencies. Finally, I note 

that intermediators in the multi-stages PT-symmetric telemetric system can also have arranged into 

a series configuration (e.g., a sequence of coupled neutral elements or alternating gain-loss 

elements) for elongating the interrogation distance. I have theoretically demonstrated that the 

critical coupling strength of such systems has a lower bounded 1/ 2c   (see section 5.4). 
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Figure 5-4   Evolution of eigenfrequencies and reflection spectra as a function of the non-Hermiticity 

parameter   for the four-links three-elements PT-symmetric telemetric system.  a. Experimental and 

theoretical complex eigenfrequencies, varying a function of non-Hermiticity parameter, for the dual-links 

three-stages PT-symmetric telemetric system in Fig. 5-3b with 0.49c   (red circles), the standard PT-

symmetric telemetric system in Fig. 5-1a with 0.7c   (blue squares), and the conventional one using a 

micro-coil reader with 0.7c   (green diamonds). (b, c) Magnitude of the reflection coefficient versus 

frequency for the four-links third-stages PT-symmetric telemetric system in a, in comparison with the 

standard PT-symmetric telemetric system; here, the non-Hermiticity paramaters   is varied from 0.77 to 

2.1. Note that if  < 1.3, the standard PT-symmetric system (
EP 1.3  ) operates in the broken phase, which 

exhibits a weak resonance with a low quality factor. Solid and dashed lines denote experimetnal and 

theoretical results, respectively.  

 

 

 

 

 

5.3 RF reader designs and wireless measurement setups 

 In our measurements, the reader (–RLC tank) was connected to the vector network analyzer or 

VNA (Agilent E5061B; Z0 = 50 Ω), and the intermediator (LC tank) and the pseudo-sensor (RLC 

tank) were fixed on the XYZ linear translation stage. In the –RLC tank, the equivalent negative 
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resistance can be realized with a negative impedance converter, such as a Colpitts-type circuit with 

a positive feedback. In addition, while a resistor accounts for power dissipation, a negative resistor 

means a source of energy in the closed-loop analysis. Hence, a RF signal generator with source 

impedance Z0 (e.g., a VNA that feeds the reader) is described by a negative impedance –Z0. In the 

one-port measurement, the information is encoded in the reflection coefficient. For example, if the 

physical quantity of interest varies the capacitance of a passive wireless capacitive sensor 

(equivalent to a RLC oscillator), it can be characterized by tracking the resonance frequency shift. 

For the standard PT-symmetric system (Fig. 5-1a), the reflection coefficient can be derived as: 
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where 
0η R / Z  and n  is the n-th eigenfrequency of the system. For the third-order PT-

symmetric system (Fig. 5-1b), the reflection coefficient is:  

 

6

1

2 2 2 4
6

2 2
1

.
2 ( 1 2) 1 ( 1)

2 1)(

n
n=

n
n=

ω

ω ω ω iγ ω ω
ω

ηγ









 

    
 



 
 

    (5-8) 

From Eqs. (5-7)-(5-8), reflection dips are obtained at n  (in the unit of 
0 ). In the exact PT-

symmetric phase ( n ℝ), zero reflection can be achieved when .n   

5.4 Physical Bounds of the Bifurcation Effect in PT-Symmetric Telemetry Systems  

It is of importance to understand the fundamental limit of the eigenfrequency bifurcation in PT-

symmetric electronic systems. In the standard PT-symmetric electronic system (i.e., coupled –RLC 

and RLC oscillators [Fig. 5-1a]), if ,EP   the two positive eigenfrequencies would diverge 
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asymptotically to 21/ 1 .n   In this case, when the exceptional point (
2 1/4(1 )EP    ) is 

taken as a reference, ranges of eigenfrequency splitting for the upper and lower branches are: 

     
1/41/2 120, 1 1 0, ;

   
 

 
        
  

     (5-9a) 

     
1/41/2 121 1 ,0 ,0 .

   
 

 
        
  

     (5-9b) 

In the case of perfect coupling ( 1  ), the critical point overlaps with the exceptional points (

1/ 2c EP   ) and the degenerate eigenfrequencies become .i   Assuming the coupling 

strength is close to (but slightly less than) unity, the two eigenfrequencies would rapidly diverge 

toward   and 1/ 2 , leading to  0,    and  ,0 .    In principle, the degree of 

bifurcation increases with increasing  , and it is possible to achieve huge  and  within a 

small range of  . 

In the third-order system (Fig. 5-1b), the critical coupling strength that leads to the divergent 

exceptional point (DEP) is reduced to 1/ 2,c   which is practically reasonable for coil-based 

inductive links. If ,c EP   eigenfrequencies of the system are 1, 1/ 1 2n     , which 

merge at the exceptional point (
2 1/41/ (1 2 )EP    ), leading to: 

     
1/2 1/4

1/ 220, 1 2 1 2 0, ;   
 



 

        
  

    (5-10a) 

     
1/2 1/4

1/ 220, 1 2 1 2 ,0 .   
 



 

        
  

    (5-10b) 
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In another extreme case, if 0,  the critical and exceptional points are far apart from each other 

(i.e., 1/ 2c  and
EP  ). If ~0 and ,EP   eigenfrequencies of the standard PT-symmetric 

electronic system are  1 1 / 2n        and those of the third-order PT-symmetric system 

are  1, 1 / 2n    . If the exceptional point ( 1EP  ) is taken as a reference point, 

bifurcating ranges for the standard PT-symmetric system are: 

 0, / 2 ;          (5-11a) 

 / 2,0    .       (5-11b) 

Under the same weak-coupling condition, the bifurcating ranges for the third-order PT-symmetric 

system are: 

0, / 2 ; 
  
 

         (5-12a) 

/ 2,0 . 
   
 

        (5-12b) 

In the weak coupling regime, there is no distinct eigenfrequency splitting (or resonance frequency 

shift), which is of little interest for sensing applications. Overall, the bifurcating range is 

proportional to the coupling strength. In the strong coupling regime, the sensitivity enhancement 

enabled by the non-Hermiticity degeneracy is particularly obvious.  
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5.5 Generalized Nth-Order PT-Symmetric Electronic Systems 

 

Figure 5-5   Generalized Nth-order PT-symmetric electronic systems. Schematic illustration for the PT-

symmetric telemetric system comprising (a) even-numbered and (b) odd-numbered oscillators, as well as 

(c) a pair of −RLC and RLC oscillators that are coupled via one or multiple neutral intermediators.  

 

 

 

 

 

 

In general, there could be more than one intermediator between the reader and sensor/tag in a 

telemetry system. Figure 5-5 shows the generalized PT-symmetric electronic system formed by 

even-numbered oscillators (i.e., N/2 pairs of –RLC and RLC tanks shown in Fig. 5-9a) and odd-

numbered oscillators (i.e., ( 1) / 2N  pairs of –RLC and RLC tanks and one neutral tank shown in 

Fig. 5-9b). These higher-order PT-symmetric systems can still be described by the Liouvillian 

formalism / ,effd d i  H  where   is the modal column vector of dimensionality N and effH  is 

the effective non-Hermitian Hamiltonian of dimensionality N × N. The eigenfrequencies of these 

systems can be derived from the eigenproblem: ( ) 0.eff n H I    
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The eigenfrequencies of the even-order PT-symmetric electronic system shown in Fig. 5-

5a can be derived from the eigenvalue equation. They are found to be roots of the transcendental 

equation 
even 0,U   where / 2N   and 

evenU  is a sequence of orthogonal polynomials that can 

be defined by the recurrence relation: 

 

even

0

even

1

even even even

2

2 4

1 1

1

2

U

U

U

x

x U U  



  



 

  

 

or 

 n
1

eve
2

0

2 AU x


 







  ,        (5-13) 

where 

2 1
sin ,A

2 2 1

π +

+







 
 
 

         (5-14) 

and 

2 22

2

1 1
.x



 

   
    

  
 From Eqs. (5-13) and (5-14), 2N eigenfrequencies of the system are 

given by: 

2 2 4 2 2

2 2 2

2 1 1 4 16
.

4

A

2 1 A
n





   


 

   
 

  
     (5-15) 

where 0,1,2, , 1.    In these systems, there may be N/2 exceptional points and N/2 critical 

points, and more than one critical coupling strength, whose values can be derived from the above 

equation as: 
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2 2

2

1 1 4 A1

2 2A
c










 
 , 

2 2

2

1 1 4A1
,

2 2A
EP










 
      (5-16a) 

and  

1
.

2A
c



          (5-16b) 

As examples, the eigenspectra for the Nth-order PT-symmetric electronic systems are shown in 

Fig. 5-10. 

 

 

 

 

Figure 5-6  Evolutions of eigenspectra for PT-symmetric electronic systems in Fig. 5-9, with different 

orders (N = 4, 5, 6, 7, 8, 9); here, the coupling strength is fixed to 0.5.   
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For the odd-order PT-symmetric electronic systems shown in Fig. 5-6b, eigenfrequencies are 

found to be roots of the transcendental equation  2 odd1 0,U   where ( 1) / 2N    and
oddU  

is a sequence of orthogonal polynomials that can be defined by the recurrence relation: 

 
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0

odd 2

1

odd 2 odd 4 odd

1 1

1
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2

U

U x

U x U U  
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 
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or 

 
1 2

odd

0

2 B ,U x


 







         (5-17) 

where  

1
sin .B

2 1

π +

+







 
 
 

         (5-18) 

From the Eqs. (5-17) and (5-90), 2N eigenfrequencies of the system can be explicitly written as: 

2 2 4 2 2

2 2 2

2 1 1 4
.

B

16 B
1,

2 1 4
n





   


 

   
  

  
    (5-19) 

where 0,1,2, , 1.   b From the above equation, expressions for ( 1) / 2N  exceptional and 

critical points, and critical coupling strengths can be obtained in the same forms as:  

2 2

2

1 1 4 B1

2 2B
c









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1 1 4B1
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2 2B
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




 
      (5-20a) 

and  
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1
.

2B
c



         (5-20b) 

Since 0 A ,B 1   , Eqs. (5-16b) and (5-92b) indicate a lower bound on c ; namely, c  cannot 

be lower than 1/2, regardless of the order of the PT-symmetric electronic system. Besides, if 

1,c  the system is not physically feasible, which sets an upper physical bound.  

 

 

 

 

Figure 5-7  (a) Coupling strength c  for different PT-symmetric electronic systems in Fig. 5-9. c has an 

upper bound of 1 (gray area is invalid) and a lower bound of 0.5. (b) Exceptional and critical points ( EP  

and c ) for different PT-symmetric electronic systems in Fig. 5-9, under a fixed coupling strength 0.5   
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Figure 5-7a reports critical coupling strengths for standard (N = 2) and higher-order (2< N 

< 21) PT-symmetric electronic systems in Fig. 5-5, showing that c  is, indeed, bounded between 

1/2 and 1. The region where 1c  (gray dots) is forbidden. When  is close to a specific c (green 

dots), a sharp bifurcation effect can be observed in the eigenspectrum. Figure 5-7b reports EP  

(red dots) and c (blue dots) for standard and higher-order PT-symmetric systems with 1/ 2.   I 

find that the EP  decreases with increasing the order of the PT-symmetric system, whereas c

exhibits an opposite trend. As a result, if a large number of active and passive oscillators are used, 

EP and c  will merge, which leads to a drastic bifurcation effect in the vicinity of DEP.  

 

 

 

Figure 5-8 Eigenfrequencies versus the non-Hermiticity parameter for the PT-symmetric electronic system 

in figures 5-9c, with different numbers of intermediator and coupling strengths.  
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Finally, I consider another higher-order PT-symmetric electronic system, comprising a –

RLC oscillator and a RLC oscillator that are remotely coupled via N–2 neutral intermediators (N > 

3), as shown in Fig. 5-5c. Such a telemetry system with multiple neutral intermediators is quite 

common in practical RF applications, such as sensing and wireless power transfer. Specifically, 

by setting the coupling strength between two neutral intermediators to be , and that between the 

gain (loss) oscillator and its neighboring intermediator to be ' 2,  as shown in Fig. 5-9c, 

eigenfrequencies of this system are found to be roots of the following transcendental equation: 
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and expressions for A  and B can be found in Eqs. (5-14) and (5-90).  

If N is an odd number, eigenfrequencies are given by: 

2 2 4 2

2 2

2 1 1 4 16 1
1, ,

2 1 4 1 2 A
n



   


  

   
   

  
.    (5-21) 

If N is an even number, eigenfrequencies are given by: 
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
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     (5-22) 

From Eqs. (5-93) and (5-94), I find that the higher-order PT-symmetric electronic systems with 

multiple neutral intermediators exhibit four -dependent eigenfrequencies, which are identical to 

those of the third-order PT-symmetric setup [Eq. (5-3)]. In addition, there are 2( 2)N   

eigenfrequencies that are independent of   (i.e., flat lines in the eigenspectrum), of little interest 

to sensing applications. All positive eigenvalues are bounded in the range: 

1/ 1 2 ,1/ 1 2n     
 

. An exemplified eigenspectrum is shown in Fig. 5-12. This system only 

has one exceptional point and one critical point, and thus one critical coupling strength. From Eqs. 

(5-93) and (5-94), their values are given by: 

21 1 1 4

2 2
c






 
 , 

21 1 1 4

2 2
EP






 
 ,      (5-23a) 

and  

1
.

2
c        (5-23b) 

We find that c and EP are independent of the order of the system and are a strong function of 

the coupling strength. Increasing the order, however, may elongate the total interrogation distance.  

5.6 Conclusion  

In summary, I have introduced the notion of divergent exceptional points in multi-elements PT-

symmetric electronic systems and shown that it can lead to gigantic eigenfrequency splitting . I 

have tested our predictions experimentally in a PT-symmetric “gain-neural-loss” electronic trimer 
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and have demonstrated that, indeed, the eigenfrequency bifurcation around the divergent 

exceptional point can be quite dramatic, with a physical upper bound approaching infinity (see 

section 5.4). I envision that such new non-Hermitian electronic systems, when applied to wireless 

probing and telemetering (e.g., a set of coupled oscillators including the –RLC reader, LC 

intermediator, and RLC sensor), will enable a superior sensing capability, as any tiny impedance 

change on the sensor could cause a wide range tuning of resonance frequencies. Similar 

performance was not found in the standard PT-symmetric electronic system  [6],[7] or the multi-

coupled PT-symmetric optical systems [1]. This work may not only open new avenues for high-

performance RF sensors, but also be extendable to other microwave, millimeter-wave and terahertz 

wireless sensing and telemetering systems. 
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VI. ROBUST EXTENDED-RANGE WIRELESS POWER TRANSFER USING A 

HIGHER-ORDER PT-SYMMETRIC PLATFORM 

Parts of this chapter have been presented in (Sakhdari et al., 2020, PRR). Copyrightc©2020, PRR. 

A fundamental challenge for the non-radiative wireless power transfer (WPT) resides in 

maintaining stable power transfer with a consistently high efficiency under dynamic conditions. 

Here, I propose and experimentally demonstrate that a frequency-locked WPT system satisfying 

higher-order parity-time (PT) symmetry can achieve a near-unity power transfer efficiency that is 

resilient to effects of distance variation and misalignment between coils, as well as impedance 

fluctuations in electric grids. In specific higher-order PT electronic systems, a purely real-valued 

and invariant (non-bifurcated) eigenfrequency would enable the robust and efficient wireless 

charging, even in the weak-coupling regime (mid-range operation). I envision that this WPT 

technique may provide reliable, fast and efficient power delivery for electric vehicles, consumer 

electronics, and medical devices. 

6.1 wireless power transfer 

Radio-frequency (RF) wireless power transfer (WPT) has experienced a rapid and widespread 

growth in recent years, as driven by the rising demand for wireless charging in consumer 

electronics, medical devices, sensors, and automotive applications [1-10]. The concept of 

transferring power without any physical contact was put forward soon after the proposition of 

Faraday’s law of induction [11]. In late 1890s, Nikola Tesla conducted pioneering experiments 

with lighting electric bulbs wirelessly through electrodynamic induction (a.k.a. 

resonant inductive coupling) [12].  
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Although his efforts appear to have met with little success, nowadays, considerable progress 

in WPT has been made in the realm of non-radiative transfer that employs the near-field magnetic 

coupling to efficiently transmit electrical energy from a power source to electrical loads [3]. While 

the WPT technology has motivated considerable research and development in the past two decades 

[14-16], there are still several theoretical and technical issues which need further investigation to 

maximize the potential of this technology. Traditional WPT systems are not robust against 

alteration of distance and misalignment between coils [5, 17], and variations in the terminating 

impedance of an electric power grid or battery over time [1]. To date, several techniques have been 

proposed to optimize the efficiency of power transfer, which include dynamic adjustment of 

operating frequency (resonant-frequency tracking) [18, 19], combination of multiple receivers and 

repeaters for adaptive impedance matching [20], and adding nonlinear tuning elements in circuits 

[7, 10]. For these often used WPT schemes, when the coupling factor (as a function of distance 

and alignment between coils) changes, the operating frequency must be adjusted accordingly to 

maintain a high transfer efficiency [21, 22]. Besides, the range of inductive power transfer remains 

a principal challenge. In spite of recent advances in various coil designs and the capability to create 

spatial Bessel beams [23], it remains difficult to overcome the performance deterioration due to 

the poor tolerance in coil misalignment, especially in the weak-coupling regime [24, 25].  

Very recently, a new WPT mechanism based on the concept of parity-time (PT) symmetry 

incorporating a nonlinear gain-saturation element has been projected to address this long-existing 

challenge [7]. Specifically, this system is engineered to have a subtle balance of energy flowing in 

(i.e., gain) and out (i.e., loss), and in its exact PT-symmetric phase, a nearly perfect transfer 

efficiency that is independent of the coupling strength can be achieved throughout the short-range 

operation. This PT WPT system does not need dynamic reconfiguration and sweeping of operating 
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frequency. However, in the standard (second-order) PT-symmetric electronic systems [26-30], the 

exact PT-symmetric phase requires a moderately strong coupling strength [26, 29], and this makes 

the system fail to maintain a satisfactory efficiency at weak/loose coupling (e.g., mid-range power 

transfer). In addition, perturbing the load resistance of receiver could lead to a symmetry-breaking 

phase transition [30] and a low efficiency is obtained in such broken PT-symmetric phases. 

 

 

 

 

 

Figure 6-1. a Schematics for standard (i), third-order (ii), and other higher-order (iii) PT-symmetric 

electronic systems consisting of electronic molecules with gain (red), neutral (gray) and loss (blue) 

properties. b Third-order PT-symmetric wireless power transfer system, where a robot car (loss) is 

wirelessly charged by a platform consisting of a repeater (neutral) and an active transmitter (gain). The 

inductive coupling strength between the intermediate and receiver coils (  ) is random, and that between 

the transmitter and intermediate coils (   ) is tuned by rotating the transmitter coil and a feedback algorithm, 

such that    and PT symmetry is preserved. 
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In the following, I will present a new non-radiative WPT system with high-order PT symmetry, as 

shown in Fig. 6-1, which can further overcome the drawback of the standard PT-symmetric WPT 

system. Higher-order PT-symmetric electronic systems in Fig. 6-1(a) exhibit a unique eigenspectral 

feature: a purely real eigenfrequency that is insensitive to variations in the coupling strength and 

the gain-loss parameter (related to the receiver’s load resistance or reactance). Such a property can 

ensure a transfer efficiency approaching 100 % over a wide range of distances and misalignment 

levels, thereby offering an unprecedented robustness and freedom in wireless charging.  

6.2  Higher-order PT-symmetric wireless powering 

 In 1998, Bender and Boettcher introduced a class of non-Hermitian Hamiltonians [31] satisfying 

PT symmetry. Counterintuitively, if a quantum system is invariant under the combined action of 

space inversion (P) and time reversal (T ), it exhibits either entirely real eigenspectra or complex 

conjugate eigenvalue pairs. Although PT-symmetry was originally considered as one of interesting 

theoretical findings, it has been experimentally demonstrated in optical [32, 33], acoustic [34] and 

electronic [26] platforms, and has aroused intense interest for real-life applications, such as lasers 

[35], sensors [29], cloaks [36], and non-reciprocal devices [37]. In electronics, the lumped-element 

circuitry could be the simplest possible configuration for observation of exotic physics of PT-

symmetric Hamiltonian [38]. In analogy to optical cases, spatially-distributed balanced gain and 

loss can be readily realized with an active negative-resistance converter [39, 40] and a resistor, 

which are connected through either capacitive or inductive links, as illustrated in Fig. 6-1(a). Figure 

6- 1(b) presents the proposed third-order (TO) PT-symmetric WPT systems with an equivalent 

circuit model shown in Fig. 6-1(a) (type ii). In this case, the transmitter, repeater, and receiver are 

represented by the −RLC, LC, and RLC oscillators, respectively. Here, inductive couplings between 
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the neighboring oscillators are the identical, and coupling between the transmitter and receiver is 

ignorable. These coupled the −RLC, LC, and RLC oscillators are analogous to “electronic” 

molecules with gain, neutral and loss characteristics, obeying a PT-symmetric Hamiltonian. 

Applying Kirchhoff’s laws to this circuit, the system can be described by Liouvillian formalism: 
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where  1 2 3 1 2 3, , , , , ,
T

q q q q q q  kq  and kq correspond to the charge stored on the capacitor and 

the displacement current in the k-th oscillator (the subscripts, 1, 2 and 3 denote the active, neutral 

and passive tanks), 0 ,  t  the natural frequency of the neutral LC tank, the gain-loss parameter 

(or non-Hermiticity) 
1 /R L C  , the coupling strength characterized by the rescaled mutual 

inductance /M L  , 0 1/  LC and all (angular) frequencies are measured in units of 0.  

The effective Hamiltonian can be written as ( ),eff effH i H i      which is non-Hermitian (

†

eff effH H ) and symmetric with respect to the PT transformation, namely , 0,effH   PT with 

0
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J
 and 
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T K
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119 
 

where J is an 3 3 anti-diagonal identity matrix, and K  conducts the operation of complex 

conjugation. These operations in conjunction leave the system unaltered. The system has six 

eigenvalues or eigenfrequencies, which can be derived from the secular equation as (in units of 0

): 

   

1,2

2 2 4 2 2 2 4 2

3,4 5,62 2 2 2

1,

2 1 1 4 8 2 1 1 4 8
, and .

2 1 2 2 1 2



       
 

   

 

       
   

 

 (6-3) 

 

The corresponding eigenmodes can be expressed in the form of 

 , , , , ,n n n n n n
T

i i i i i i

n n n n n n na e b e a e iωa e iωb e iωa e
       

     , where ,n na b ℝ. The dynamics 

(temporal response) of the PT system are the linear combination of all eigenmodes of the system, 

yielding 
6

1

( ) ni

n n
n

c e
  



    where the coefficient nc  depends on initial conditions. By inspecting 

Eq. (6-3), one can identify three different regimes, separated by the exceptional points 

2

EP, 1 1 2 / (2 ).       First, when ,[ , ],EP     the eigenfrequencies are real ( n ℝ) and 

n n PT   such that the PT-symmetry is exact. When EP, EP,[ , ],     the eigenfrequencies 

become complex conjugate pairs ( n ℂ ), signaling a transition to the broken phase where 

.n n PT   Finally, when EP,   , all eigenfrequencies are imaginary. In time-transient 

responses [see section 6-5], one may observe an oscillatory motion that consists of the 

superposition of all harmonics. In the broken phase, due to the positive imaginary part of complex 

eigenfrequencies, the eigenmodes grow exponentially in time, and, thus, the system exhibits an 
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unstable, underdamped behavior. Beyond the point of critical damping ( EP,  ), modes are either 

exponentially growing or decaying eigenmodes in time. Such a phase is referred to an overdamped 

mode, with exponential responses arising in the temporal dynamics of charges and displacement 

currents. 

 

 

 

Figure 6-2. Evolution of the real (top) and imaginary (bottom) parts of eigenfrequencies as a function the 

gain-loss parameter  and the coupling strength , for the a third-order and b standard PT-symmetric 

electronic systems in Fig. 6-1(a) (see type i and ii).  
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We note that the eigenfrequencies, 1,2 1   , are locked to the natural frequency of the LC tank 

and are independent of  and  in the eigenspectrum, as can be seen in Fig. 6-2(a); the 

corresponding eigenmodes also do not experience the PT phase transition. If a TO-PT circuit is 

exploited to build a WPT system, the invariant and real eigenfrequency ensures that wireless 

powering is a robust and stable. In this system, high-efficiency power transfer takes place at 0 ,

and the performance is rather insensitive to the transverse offset between the receiver and the 

transmitting module (i.e.,   variations) and to changes in the receiver’s load impedance (i.e.,   

variations). I note that such a dark-mode behavior is not found in the standard PT-symmetric 

system, as can be seen in Fig. 6-2(b), as its eigenfrequencies are always a strong function of 

and   [29, 41].  

If a signal generator with periodically varying electromotive force is connected to the TO-PT 

circuit, the forced oscillations arise in the system. In the WPT case, a continuous-wave RF source 

(steady-state time-harmonic excitation) is connected to the –RLC oscillator (transmitter). In the 

normal-mode analysis, an AC source with generator impedance Z0 [Ω] can be seen as a negative 

resistance –Z0. This is because while a positive resistor causes energy dissipations, a negative 

resistor represents an energy source. Therefore, if the signal generator is connected to a series –

RLC tank, a negative-resistance converter (NRC) with an equivalent resistance of –(R– Z0) must 

be used to maintain the gain and loss balance, necessary for PT physical systems. After the 

substitution of time-harmonic charge distributions in each oscillator, ,ei

k kq A   the 

eigenfrequencies (resonant frequencies found in the circuit’s spectral response) are zeros of the 

polynomial equation f nef|H | I . I should note that the positive and negative frequency solutions 

are essentially identical. I must remove this redundancy by considering only the positive signs. 
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From the circuit viewpoint, the input impedance looking into the −RLC tank from the signal 

generator is given by: 

2 3 2
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0 2 4 2 2

( 1)
1 ( 1)
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in
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Z Z i i
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    (6-4) 

where 0/R Z  . The reflection coefficient Γ measured at the input of the generator can be 

written as: 
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where 
n is the n-th eigenfrequency of the system in Eq. (6-3). In the exact PT-symmetric phase, 

three sharp reflection dips are obtained at the real eigenfrequencies. The reflectionless property is 

attributed to the impedance matching, namely, 0inZ Z , that is achieved at the resonant 

frequencies ( n  ). In the broken phase, there is only one dip in the reflection spectrum, as the 

1n    modes always exist in the TO-PT system. 

The energy balance at the resonant frequency clarifies the spectral behavior of the TO-PT 

electronic system. At
n (corresponding to a specific eigenmode 

n ), the real power produced by 

the signal generator is given by 2

s 1 0

1
| ( )

2
P |q Z  . The complex power delivered to the PT circuit is 

3

in gain loss
1

2 ( )m,k e,k m
k

P P P j W W W


      
  

where 
0 ,n   the powers gained from the negative-
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resistance element and dissipated by the resistor are 2

gain 1 0

1
| ( )

2
P |q R Z    and 2

loss 3

1
| ,

2
P |q R  

respectively, the average electric energy stored in each capacitor  
2 2

2

| |1 1
,

4 4

k k
e,k

|q |q
W =

C C
 the 

average magnetic energy stored in each inductor 21
| ,

4
m,k kW |q L  and the average magnetic energy 

stored in the coupled magnetic flux * *

1 2 2 3

1 1
.

2 2
mW Mq q Mq q    At the resonant frequencies, the 

average magnetic and electric stored energies are equal, i.e.,
3 3

1 1

,e,k m,k
k k

W W W
 

    and the power 

delivered to the load resistance is real, i.e. 2 2 2 2

1 0 0

1 1
| .

2 2
in nP |q Z a Z   Here, the net transfer of energy 

from gain to loss reach a balance condition, as 0.in sP P   Further, the zero reflection at resonant 

frequencies can be explained by the fact that power extracted from an external source 
sP  is equal 

to that dissipated in the PT circuit 
i .nP  This case is analogous to the conjugate matching condition 

with zero return loss (reflection), for which under a fixed generator impedance, the maximum 

power transfer occurs when the power lost in the source | Ps | (which is considered as "gain” in the 

non-Hermitian open electronic system) is equal to a load in electronic circuits. At the resonant 

frequencies (
1 6, ,  ), the power transfer efficiency defined as

T loss gain/ ( )s=P P P  is equal to 100 

%. 

In practical WPT applications, a multi-coil scheme shown in Fig. 6-1(a) (type iii) is usually 

used, in attempt to increase the total transfer distance. Here, I also study specific higher-order PT-

symmetric electronic systems composed of an –RLC oscillator and an RLC oscillator, which are 

remotely coupled via N–2 neutral intermediators (N > 3), as shown in Fig. 6-1(a) (type iii). This 

multi-element PT-symmetric system can still be described by the Liouvillian formalism 
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/ ,effd d i  H  where   is the modal column vector of dimensionality N and 
effH  is the 

effective non-Hermitian Hamiltonian of dimensionality N × N. I find that the multi-stage PT-

symmetric circuits with an array of neutral repeaters (type iii in Fig. 6-1(a)) share the same 

eigenfrequencies as those in Eq. (6-3) [see Method]. In addition, there are 2( 2)N   

eigenfrequencies that are independent of   and   (i.e., flat lines in the eigenspectrum) [see 

Method], which could also be of interest for WPT applications.  

6.3 Experimental demonstration of WPT system with third-order PT symmetry  

As a proof-of-concept demonstration, a TO-PT-symmetric WPT system was designed to 

wirelessly charge a robot car (Sparkfun Redbot-Arduino IDE) having a receiver mounted 

underneath it, as shown in Fig. 6-1(b) [see also Method]. The receiver is equivalent to an RLC 

resonator, of which the power taken by the AC-to-DC rectifier and battery (NH22NBP-NiMH 9V) 

is represented by a load resistance (50 Ω). The transmitter comprising an LC tank connected to an 

RF source with generator impedance Z0 = 50 Ω. In the Hamiltonian analysis, since the RF source 

is represented by – Z0 (gain), the transmitter can be seen as an –RLC resonator. If the load 

impedance is greater (smaller) than Z0, a negative resistance element [39, 40] (resistor) must be 

used. As shown in Fig. 6-1(b), the receiver and transmitter were wirelessly linked via an 

intermediate LC resonator. These three active, neutral and passive resonators form the TO-PT-

symmetric electronic system in Fig. 6-1(a). The transmitter was positioned on a linear translation 

stage with rotating platform, of which the tilt angle can be precisely controlled by a linear actuator 

(servomotor SG90). In our experiment, the repeater was stationary and separated from the receiver 

(transmitter) coil by a center-to-center distance dR (dT). The DC servomotor controlled by the 

LabVIEW-programmed provided a real-time positioning function to adjust the coupling strength 
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between the transmitter and repeater coils, such that it is equal to the coupling strength between 

the receiver and repeater coils. This action ensures that PT symmetry is preserved. I also used a 

control algorithm based on the pulse width modulation (PWM) for determining the required tilt 

angle of the transmitter coil, in response to deviation in the alignment of receiver and repeater coils 

[see Method].  

We first study the evaluation of complex eigenfrequencies as a function of  and   for the 

TO-PT and standard-PT (without the neutral LC repeater) circuits. Experimental and theoretical 

results shown in Fig. 6-2 are represented by the dots and isosurfaces, respectively. Here, in all 

three resonators, the coil inductance L = 15 µH, the coupling strength   varies from 0.01 to 0.77 

and the capacitance of ceramic capacitors (SMA-GRM022XX series) C varies from 100 pF to 3 

μF (which tunes  from 1 to 2.5).  In the receiver, the load resistance R = 50 Ω. I note that the 

green isosurface in Fig. 6-2(a) representing 1 01[ ]  (
0

/ 2 1.3 MHz   ) is a flat plain in the real 

domain, which reveals that in the spectral response there exists a resonance which is independent 

of  and .  Such an interesting characteristics is ideal for making robust and efficient WPT 

systems. This non-bifurcated dark-mode is, however, not allowed in the standard PT-symmetric 

system [Fig. 6-2(b)] and other currently existing WPT systems [6, 22]. The bifurcation effect is 

observed in both standard- and TO-PT systems, which, although can be exploited to realize ,  

ultrasensitive wireless sensors [27-30, 42], may not be suitable for wireless powering applications, 

since the bifurcation effect demands sophisticated frequency-tracking and/or adaptive impedance 

matching algorithms.  
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Figure 6-3 Evolvement of reflection and transmission spectra for the a third-order with the coupling strength 

𝜅 varied from 0.14 to 0.34 and b standard PT-symmetric WPT systems with the coupling strength 𝜅 varied 

from 0.2 to 0.58.  Experimental and theoretical results are denoted by solid and dashed lines, respectively. 

 

 

 

 

Figure 6- 3(a) and (b) report reflection and transmission coefficient versus frequency for the 

TO-PT and standard-PT WPT systems, respectively; here, the capacitance is fixed to 980 PF (   

2.47) and the coupling strenght is varied from 0.58 to 0.14 (coresponding to a change in dR from 

20 mm to 90 mm, caused by the software-controled motion of the robot car). In order to 

characterize the transmission spectrum, the LC tank in the receiver was connected to a cable 

attached to the vector network analyzer. From Fig. 6-3, I find a good agreement between theoretical 

(obtained with Eq. (6-5)) and measurement results. The experimental results show that at any 

arbitrary coupling strength, the transmittance (power transfer efficiency here) can be greater than 

90 % at frequency 0
/ 2 1.3 MHz   . In contrast, the transmittance of the standard-PT WPT 

system drops in the weak coupling condition, as can be seen in Fig. 6-3(b), due to the bifurcation 

effect observed in Fig. 6-2(b).  
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Figure 6-4 Efficiency of power transfer as a function of the gain-loss parameter  and the coupling strength 
, for the frequency-locked (1.3 MHz) standard and third-order PT-symmetric WPT systems, here d is the 

center to center distance between two neighbor coil. 

 

 

 

 

 

Finally, I compare the transfer efficiency (
2

T T    ) as a function of the coupling strength and 

the gain-loss parameter for the TO-PT and standard-PT WPT systems, whose theoretical 

efficiencies are shown as red and blue isosurfaces in Fig. 6-4. The measurement results represented 

by dots in Fig. 6-4 agree excellently with theoretical dependency. In our experiments, the receiver 

capacitor was varied (C = 100 pF –  3 μF) and the coupling strength is tuned with respect to dR (𝜅 

= 0.01 – 0.6). For the TO-PT WPT system, the resonance at 0
/ 2 1.3 MHz    is invariant with 

respect to different PT phases. On the other hand, a frequency-locked standard-PT WPT system 

fails to sustain a consistently high efficiency due to the bifurcation effect. In fact, the standard-PT 
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WPT system exhibits a high transfer efficiency only when an optimal set up of 𝜅 and  is used 

(which renders an eigenfrequency equal to the operating frequency). Besides, the standard-PT 

setup does not function well at weak coupling because of symmetry breaking which results in 

complex eigenfrequencies and relevant reflection (return loss). As evident from Fig. 6-4, our 

experimental results provide clear evidence that the TO-PT-symmetric arrangement can provide 

superior performance and robustness compared to existing WPT systems, without any need of 

sweeping frequency or multiple adaptive matching stages. Last but not least, the TO-PT WPT 

systems could be robust against changes in  , associate with fluctuations in the receiver’s load 

impedance. For example, the electrochemical fatigue or the heat damage of battery could change 

the load resistance or capacitance. In this case, the two bifurcating eigenfrequencies in the TO-PT 

circuit [see Fig. 6-2(a)] can be exploited for monitoring the receiver’s status and the battery 

lifetime. This unique feature combining simultaneous wireless charging and sensing may pave a 

promising new route towards the next generation of WPT systems. This technique could also benefit 

various industrial and medical applications, such as microwave ablation, hyperthermia, and cancer 

therapy, in which knowing the time-varying   caused by physical forces (e.g., temperature or 

pressure) or chemical reaction during the transmission of electrical power would be very important. 

6.4 Method 

Generalized theory for higher-order PT WPT systems 

Here, I consider the generalized higher-order PT-symmetric electronic system, which 

comprises an –RLC oscillator and an RLC oscillator that are remotely coupled via N–2 neutral 

intermediators ( 3N  ), as shown in Fig. 6-1(a) (type iii). Such a  

multi-state scheme is also commonly seen in practical WPT applications, attempting to increase 



 

129 
 

the transfer distance between the power supplier and receiver. This multi-element PT-symmetric 

system can still be described by the Liouvillian formalism / ,effd d i  H  where   is the modal 

column vector of dimensionality N and 
effH  is the effective non-Hermitian Hamiltonian of 

dimensionality N × N. Specifically, by setting the coupling strength between two neutral 

intermediators as  , and that between the gain (loss) oscillator and its neighboring repeater as 

' 2,   the eigenfrequencies of 
effH  are found to be roots of the following transcendental 

equations: 
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and 0,1,2, , 1.    If N is an odd number, eigenfrequencies are given by: 
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.    (6-7) 

If N is an even number, eigenfrequencies are given by: 
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2 2 4 2

2 2

2 1 1 4 16 1
, .

2 1 4 1 2 B
n



   


  

   
 

 





     (6-8) 

From Eqs. (6-7) and (6-8), I find that the multi-stage PT-symmetric circuits with an array of neutral 

repeaters exhibit the -dependent eigenfrequencies that are identical to those of the three-elements 

setup. In addition, there are 2( 2)N   discrete eigenfrequencies that are independent of  . All 

positive eigenfrequencies are bounded in the range: 1/ 1 2 ,1/ 1 2n     
 

. It is interesting to 

note that the    and   independent eigenfrequencies 1  exist only in higher odd-order PT-

symmetric circuits, which could be of interest for wireless power transfer applications. 

6.5 Dynamic control of PT symmetry in circuits 

 

 

 

 

 
Figure 6-5 a Control of the tilt angle of the transmitter coil by a servo motor SG90. b Measurment setup 

for the TO-PT WPT system which wirelessly charges a robot car battery (left), and the LabVIEW interface 

for the feedback control of rotation of the transmitter coil (right). 
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The motion of the robot car (Redbot) was controlled by a pair of hobby Gearmotor-140 RPM 

(DG01D-A130GEARMOTOR) motorized by the H-bridge motor driver (TB6612FNG). The 

gearmotors was powered by a rechargeable Nickel-Metal Hydride battery (NH22NBP-NiMH 9V). 

The motion of robot car would change the coupling strength between the receiver coil (on the robot 

car) and the stationary intermediate coil [see Section 6.4]. Therefore, the coupling strength between 

the transmitter and intermediate coils must be dynamically adjusted to maintain the PT-symmetry 

condition. In this work, the real-time rotation control of the transmitter coil (which alters its 

magnetic coupling to the repeater) was done by a DC servo motor (SG90) linked to the LabVIEW 

program, as illustrated in Fig. 6-5(a). The angle of rotation (α) for the transmitter coil is determined 

by the measured reflection at the resonance frequency. To this end, the relationship between the 

coupling strength and the reflection coefficient was measured for different values of α. In practical 

test environments, I first send a PWM (Pulse Width Modulation) signal to the RF circuit and track 

the minimum reflection at the resonance frequency by continuously altering α.  The detected 

reflection coefficient was used as the input of a PC-hosted peripheral LabVIEW program, which 

contains the measurement and control modes, as shown in Fig. 6-5(b). In the measurement mode, 

the vector network analyzer (Agilent HP-8753S) as an ultrafast-switching frequency synthesizer 

was connected to the General Purpose Interface Bus (GPIB). The archived reflection data was 

dumped into the control mode as a reference for adjusting the tilt angle of the transmitter coil.  
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6.6. Temporal responses of the third-order PT-symmetric circuit 

The dynamics (time-transient response) of the TO-PT system is a linear combination of all 

eigenmodes 
6

1

( ) ni

n n
n

c e
  



   , where the coefficient nc  depends on initial condition, and 

eigenfrequencies and  eigenmodes can be expressed in Eq. (6-3) and the following:   

 , , , , ,n n n n n n
T

i i i i i i

n n n n n n na e b e a e iωa e iωb e iωa e
       

     ,    (6-9) 

where ,n na b ℝ, 

 

1,2

2
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3,4 2 2

1 1 1

2 2

2
5,6 2 2

2 2 2

2 4 2 2 2 2 2

1,2 1,2 1,2

/

.

/ 2,

1
ln ,

2 2(1 2 )( ) / ( 4) 2

1
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2 (1 2 ) 2( ) ( 4) 2

1 4 8 , 2 (1 2 ), 1 2 , and 1 2

π

Y

i Y Z Y

Z

i Z Z Y

X  = γ Y X  Z Y






 




 

     

 

 
   

      

 
   
       

  

         

 (6-10) 

Considering for example a constant electromotive force (emf) at the initial moment 

 ( 0) 1,0,0,0,0,0 ,
T

   the evolution of charges stored on capacitors are presented in Fig. 6-9.  

In the PT-symmetric phase, one may observe an oscillatory motion that consists of the 

superposition of three harmonics [Fig. 6-9]. In the broken phase, due to the positive imaginary part 

of complex eigenfrequencies, the eigenmodes grow exponentially in time, and, thus, the system 

exhibits an unstable, underdamped behavior [Fig. 6-10]. Beyond the point of critical damping (

EP,  ), which leads to either exponentially growing or decaying eigenmodes in the temporal 

responses. Such a phase is referred to an overdamped mode, with exponential responses arising in 

the temporal dynamics of charges and displacement currents. 
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Figure 6-6 q v.s. τ. Temporal dynamics of the charge stored in the capacitor of the −RLC tank (red line), 

LC tank (black dashed line), and RLC tank (blue line); here, γ = 1.5 and 𝜅 = 0.5, which lead to the exact 

phase with 
1,2,3,4,5,6 .1.4844 0.91, , and 527      
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Figure 6-7 |q| v.s. τ. Temporal dynamics of the absolute charge stored in the capacitor of the −RLC tank 

(red line), LC tank (black dashed line), and RLC tank (blue line); here, γ = 1 and 𝜅 = 0.5, which lead to the 

broken phase. 

 

6.7 Characterization of magnetic coupling strength  

We have characterized effects of vertical and horizontal misalignments on the coupling strength 

between coils. In our experimental setups for higher-order PT-symmetric circuits, only adjacent 

coils are magnetically coupled, while the coupling between nonadjacent coils is negligible. The 

mutual inductance between two coils can be computed using Neumann formula [25]. Fig. 6-8 

compares the theoretical and experimental results for the coupling strength (mutual inductance 

normalized by the coil’s self-inductance). Both results are found to be in a good agreement.  

 

 

 

 

Figure 6-8 a Measurement setup for the coupling strenght between two coils. b Coupling strength as a 

function of distance (x, y); theoretical and  experimental results are denoted by the isosurface and symbols. 
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6.8 Evolvement of reflection as a function of magnetic coupling strength 

In the exact symmetry phase of the TO-PT electronic system, 2 2
EP 1 )4 / (2 2   is a transition 

point between the exact and broken symmetry phases. Figs. 6-9(a) and S4(b) show the experimental 

setup, as well as the transmission coefficient for the standard-PT and TO-PT electronic systems. In 

the TO-PT system, when EP  (exact PT-symmetric phase), real eigenfrequencies leads to a 

transmission near unity, and, as expected, three resonant transmission peaks are found. When 

EP  (broken PT-symmetric phase), two transmission peaks associated with the bifurcating 

eigenfrequencies would disappear, whereas one peak locked at the same frequency is found in both 

exact and broken PT-symmetric phases. This effect is, however, missed in the standard-PT system. 

 

 

 

 

Figure 6-9 Magnitude of reflection coficient as a function of frequency and coupling strength for the a 

standard and b third-order PT-symmetric circuits. 
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6.9 Evolvement of transmission coefficient as a function of intermediate coil loss 

The concept of PT-symmetry requires a lossless resonatour as a intermediate coil in the third order 

PT-symmetric system in order to entire circuit system be invariant under operations of spatial 

reflection P and time reversal T, this condition, however, is a unphysica assumption that a perfectly 

losssless resonator is avalible to serve as neutral element. Figs. 6-10(a) and S5(b) show the effect 

of loss of the intermediate coil on the system response. Here, the intermediate coil loss, r, is 

normilized to the loss/gain resistance, R,  of the loss/gain RLC tanks, 
R

 
r

. Fig. 6-S5(a) presents 

the evaluation of the real parts of eigenfrequencies as a function of the coupling strength ,  for  

 

 

 

 

  

Figure 6-10 a Evolution of the real parts of eigenfrequencies as a function of the coupling strength , here, 

7.7   and 0,0.1,and0.2,   b Transmission coefficient at the resonance frequency 1,  as a function of 

the coupling strength , and loss in the intermediate coil for 1.4,2.4,and7.7,  for the third-order PT-

symmetric circuits. 
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three different loss ratio of the intermediate coil, 0,0.1,and0.2,   here the non-hermiticity 

parameter is fixed to 7.7.   It is worth mentioned that note, the non-zero loss of the intermediate 

coil, breaks the PT-symmetry of the system, consequently the system eigen frequencies are not 

purely real even in exact PT phase, however,  it is observed that one of the circuit system complex 

eigen frequency has a real part near unit, Re( ) 1  which is ,   independent similar to the PT-

symmetric system, the imaginary part of the eigen frequency, however, is a function of , ,  and 

intermediate coil loss, this non-zero imaginary part of the eigen frequency means that the 

transmission coefficient reduces from unit at the resonance frequency, 1  , as it is shown in Fig. 

6-S5(b). I note that the imaginary part of the eigen frequency is larger for weak coupling regime 

compared with strong coupling which results reduction of efficiency in weak coupling strength 

and become worst as the intermediate coil loss is increased. This prediction is matched to the 

experimental results in Fig. 6-4.  

6.10 Conclusion 

We have shown that a real and constant eigenfrequency in specific higher-order PT-symmetric 

electronic systems can be exploited to realize a robust wireless power transfer platform locked to 

the frequency of operation. In this PT system, the two-dimensional eigenspectrum is flat with 

respect to changes in coupling strength and gain-loss parameter, thus ensuring a consistently-high 

efficiency that is not influenced by distance and alignment between the receiver and the power 

supplier (which include the transmitter and repeater(s)). Additionally, this effect is prominent even 

for the mid-range wireless power transfer with loose magnetic coupling. The third-order PT circuit 
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described here also exhibits bifurcating eigenfrequencies, which, together with the invariant and 

real one, may enable a multi-functional platform that provides wireless charging and sensing at the 

same time. Further studies may make a breakthrough in dynamic and alignment-free wireless 

charging technology with extended range. 
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VII. LOW-THRESHOLD LASING AND COHERENT PERFECT ABSORPTION IN 

THE GENERALIZED PT-SYMMETRIC OPTICAL STRUCTURES 

Parts of this chapter have been presented in (Sakhdari et al., 2018, PR Applied). Copyrightc©2019, PRL. 

Achieving exact balance between spatially separated gain and loss is generally considered as a 

weaker constraint for parity–time (PT)-symmetric classical wave systems  [1]-[12]. Here, I 

introduce a generalized PT (gPT)-symmetric optical structures, which have an asymmetric and 

unbalanced gain/loss profile, while exhibiting similar scattering properties and PT phase 

transitions as traditional PT-symmetric optical systems around the design frequency. Particularly, 

I show that the concept of gPT-symmetry may help reducing the threshold gain in achieving newly 

discovered PT-enabled applications, such as the coherent perfect absorber (CPA)-laser and 

exceptional points. The concept proposed herein will facilitate the practice of PT-symmetric 

optical devices by offering greater design flexibility to tailor gain-loss profiles and their thresholds.  

7.1 Coherent Perfect Absorber Laser 

Very recently, PT-symmetric optics has attracted intense research interest because it provides an 

experimentally-accessible platform to study real eigenspectra in physical systems with non-

Hermitian Hamiltonians [1]-[12]. Optical systems satisfying PT-symmetry usually consist of a 

lasing medium and its time-reversed lossy counterpart, of which gain and loss contributions are 

equally balanced and symmetrically distributed in space, e.g., an optical system with complex 

permittivities having a profile of 
*( ) ( ).  r r [1],[2] During recent years, numerous intriguing 

optical phenomena and applications have been observed in PT-symmetric systems, such as  
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PT–symmetry phase transitions and exceptional points [1],[2], unidirectional reflectionless light 

propagation [3]-[5], negative refraction and sub-diffraction focusing [6], as well as optical isolators 

and circulators [7]. Particularly, a PT–symmetric optical system can behave simultaneously as a 

CPA that fully absorbs incoming waves and a laser oscillator that emits outgoing coherent waves. 

Such an optical device is referred to as CPA-laser [8]-[12] because its exhibits both lasing and 

coherent perfect absorption modes at the same frequency, switchable via adjusting amplitudes and 

phases of incoming waves.  

In this project, instead of engineering optical structures with balanced loss and gain, as in 

traditional PT-symmetric systems [Fig. 7-1a], I investigate a generalized PT (gPT)-symmetric 

optical system [Fig. 7-1b], which could have net optical gain less than optical loss and vice versa, 

while displaying similar PT phase transitions and extraordinary scattering properties as traditional 

PT-symmetric system. More specifically, this gPT-symmetric system consists of the reciprocally 

scaled gain and loss, e.g., 
2 ( )  r and 

* 2( ) / r ; R : 0{ }   . It is therefore possible that loss 

is greater than gain in the gPT-symmetric CPA-laser, which in some sense similar to “loss-induced 

revival of lasing” [12].  

7.2 The concept of the generalized PT-symmetric optical systems 

Figure 7-1a features a traditional one-dimensional PT-symmetric optical system containing 

homogeneous, isotropic loss and gain media, whose permittivities are loss r ii     and 

* .gain loss  [1]-[2] Assuming a deeply subwavelength thickness for gain/loss media, i.e., t  , 

this optical system can be described by a transmission-line model shown in Fig. 7-1a (bottom), 

which consists of two admittance sheets with complex-valued surface admittances: 

, , ,s loss s r s i lossiY Y Y j t   and 
*

, ,( ) ,s gain s lossiY iY  where  is the angular frequency [13].  
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Figure 7-1 Schematics for (a) the PT-symmetric and (b) the generalized PT (gPT)-symmetric optical 

structures (top) comprising paired gain and loss components, and their corresponding transmission-line 

network model (bottom). Provided that the structured gain and loss media have subwavelength thickness 

and unit cells, their optical behaviors can be described by a surface admittance (or surface impedance). In 

the gPT-symmetric system, if the scaling coefficient 1,  the gain-loss balance, as a weaker constraint of 

PT-symmetry, can be broken, while the scattering properties remain the same at the design frequency.   

 

 

 

 

 

On the interface of each admittance sheet, electric fields are nearly the same t tE =E 
 and tangential 

magnetic fields are discontinues: ˆ ( )t t t sn H H =E Y   . These two gain and loss sheets are 

separated by a dielectric slab with thickness d and admittance 0 0/ ,Y= Y   where admittance of 

background medium 0 0 0/ .Y    Intuitively, such admittance sheets can also be realized with 

metasurfaces or two-dimensional nanomaterials [14],[15], e.g. graphene under equilibrium 
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(plasmon loss) [16] and population-inversion (plasmon gain) [17]. Figure 7-1b proposes the gPT-

symmetric optical system, in which the surface admittance of the passive sheet and the admittance 

of its host substrate are scaled by the dimensionless scaling factor , whereas those of the active 

sheet and its substrate are scaled by1/ .  For the composite structures in Fig. 7-1, the electric field 

on left and right sides 
( ) ( )( ) ( ) ( )ik z ik z

f bE E e +E e
          can be decomposed into forward- and 

backward-propagating waves, whose amplitudes are related by: 

,f f

b b

E E

E E

 

 

   
   

   
M     (7-1) 

where M is the 2×2 transfer matrix, Ef(b) is the amplitude of the forward (backward) traveling 

waves, the superscript +(−) indicates left (right) of the composite structure, and k is the wave 

number. Since  det 1,M both PT- and gPT-symmetric systems exhibit reciprocal and 

unidirectional scattering. The transmission (t) and reflection (r) coefficients for left (L) and right 

(R) incidences can be expressed in terms of transfer matrix elements as 21 22/ ,Lr M M 

12 22/Rr M M and 221/ .L Rt t = M  The scattering matrix linking incoming and outgoing waves is 

given by: 

L R

L R

t r

r t

 
  
 

S   and  .f f

b b

E E

E E

 

 

   
   

   
S   (7-2) 

The validity of PT-symmetry imposes a generalized conservation relation on the scattering matrix: 

* 1( ) ( ) ( )   S S SPT PT [9],[18], where the parity operator
0 1

,
1 0

 
  
 

P the time-reversal 

operator 
0 1

,
1 0

 
  
 

T K and K is the complex conjugation operator. In addition, * 1M M and
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*

22 11M M can be similarly derived. For the gPT-symmetric system in Fig. 7-1b, scattering 

coefficients in S  can be derived using the transfer-matrix method as: 

   

 

 

0

22 2 2 2 2

0 0

2 2 2 2 2 2

0 0 0

22 2 2 2

0 0

2 csc( )
;

( ( ) ( 1) cot( )

2 ( )( 1) 1) cot(

1) 1

(

1) ( )1

)

(

s,i s,r s,i s,r

s,r s,r s,i s,r s,i

s,i s,r s,i

R L

R

i κYY x

κ Y Y iY Y +Y Y κ i Y κ Y κ x

Y Y Y Y Y Y κ +Y i Y Y κ Y κ x

κ Y Y iY Y +Y Y κ i Y κ

t t

r

  
   
 

     







        

   


 


 

 

   

2

2 2 2 2 2 2

0 0 0

22 2 2 2 2

0 0

;
( 1) cot( )

2 ( ) (

1)

( 1) 1) cot( )
,

( ( ) ( 1) cot(1 )

s,r

s,r s,r s,i s,r s,i

s,i s,r s,i s,r

L

Y κ x

Y Y Y Y Y Y κ -Y i Y Y κ Y κ x

κ Y Y iY Y +Y Y κ i Y κ Y κ
r

x

 
 



 

        


   


 

   


 
 

(7-3) 

where the electrical length between two admittance sheets .x=kd  From Eq. (3), I can readily find 

that if (2 1) / 2x= n   and n is a positive integer, all scattering coefficients become independent of 

 , and, more interestingly, they are identical to those of the PT-symmetric setup in Fig. 7-1a,  

which are given by:  
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   (7-4) 

In this case, PT- and gPT-symmetric optical systems would share exactly the same S and M, and, 

therefore, a gPT-symmetric device, although having “unbalanced” gain and loss, can achieve 

similar optical scattering properties enabled by PT-symmetry. As a result, the optical structure in 

Fig. 7-1b can be considered as a “generalized” PT-symmetric system. In other words, the 

traditional PT-symmetric system in Fig. 7-1a is the degenerate case of the gPT-symmetric system 

with 1.  Since PT- and gPT-symmetric systems share the same S and its two eigenvalues 1,2 , 
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the transition between the symmetry and symmetry-breaking phases, typical for PT-symmetric 

scatters, can also be found in the gPT-symmetric system. The phase transition can be characterized 

by the evolution of eigenvalues given by [18]:  2

1,2 1 1/ | | 1 .L Rt r r t i t       In the 

symmetry phase, the two eigenvalues are nondegenerate and unimodular (i.e., | | 1  ) and | | 1.t   

In the broken-symmetric phase, they are non-unimodular (i.e., 
*1/ ( )   ) and | | 1,t  with a 

transition point called exceptional point where 
*1/ ( )      and 1t  . The lasing mode does 

occur in the symmetry-breaking phase of PT- and gPT-symmetric systems with | | 1t  , since the 

asymmetric S and eigenmodes could trap the excitation for a longer time in the gain part of the 

medium, rather than in the loss part.  

A laser oscillator, by definition, is an optical device that provides output fields 0,b fE ,E    even 

though input fields , 0.f bE E    The coherent perfect absorption mode would otherwise require 

that 0b fE =E   and , 0f bE E   . Hence, a laser is developed if 22 0M  and an CPA is developed 

if 11 0.M   These two conditions, in general, do not occur simultaneously at the same frequency 

in the same system, but may be possible with the PT- and gPT-symmetric systems that allow 

*

22 11M M 0.   The occurrence of CPA and laser has recently been theoretically studied [8],[9] 

and experimentally demonstrated [10],[11]. These two exotic behaviors can be characterized by 

the overall output coefficient Θ, defined as the ratio of the total intensity of outgoing 

(reflected/transmitted) waves to that of the incoming waves: 

 
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where / .b fE E    I should emphasize that for 21,M   which yields vanishing of ,  a CPA 

can be realized. On the other hand, for 21M  (e.g. 0  when considering only left-incident 

wave), the lasing mode is always obtained. For the PT-symmetric system in Fig. 7-1a, a CPA-laser 

can be attained in its breaking-symmetry phase, with a surface admittance profile:  

2

, , , 0 01 ( csc( ) / ) cot( );s loss s r s iY Y +iY =Y Y x Y iY x         (7-6a) 

, , , ,s gain s r s iY Y +iY             (7-6b) 

which leads to 
*

22 11 0.M M   At the CPA-laser point, two eigenvalues of S  become zero and 

infinity, which respectively correspond to the CPA and lasing modes [9]. The CPA-laser can be 

similarly achieved in the generalized PT-symmetric system, but the required conditions become:  

0

2 2

01 / ;s,lossY YY Y       (7-7a) 

and 1 2 2

00 1 / ,s,gainY Y Y Y       (7-7b) 

where  is the scaling factor. From Eq. (7), I note that in the gPT-symmetric system, two surface 

admittances must be purely real. Except for the special case of 1,   gain and loss are not equally 

balanced. Moreover, even if low-gain and high-loss media are paired (i.e. a large   yielding

Re[ ] Re[ ]s,gain s,lossY Y  ), the CPA-laser point can still be attained. As a result, for 21,M  a low-

threshold laser may be realized with a large  .  Likewise, a small  , yielding net gain greater 

than loss in the system, can interestingly achieve coherent perfect absorption if 21.M Such non-

intuitive properties are somehow analogous to recently explored “loss-induced lasing” and “gain-

induced absorption” effects [12].  
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7.3 Implementations of generalized PT-symmetric CPA-laser 

In this Letter, I illustrate the gPT-symmetric system by examples of dispersive gain media with 

Lorentzian lineshape, whose complex-valued permittivity can be expressed as: 

 
2

0 2 2

0

,
p

gain
i


  

  
 

 
   (7-8) 

where  is the angular frequency, p  is the angular plasma frequency (here 02p  ), 0  is the 

angular resonance frequency, and  is the linewidth of amplification governing the magnitude of 

resonance (here    0.198, 0.396, and 1.99 0 ). In order to satisfy the Kramers-Kronig relation 

and causality,  of an active medium must be positive. Further, a thin sheet of such a medium can 

be described by a surface conductivity ( ) ( )s,gain gaini t      or a surface admittance 

, , .s gain s gainY   At the design frequency D (or wavelength D ) of the gPT-symmetric CPA-laser,  

 

 

 

 

Figure 7-2 (a) Real (solid) and imaginary (dashed) parts of permittivity of active gain media with different 

linewidths of amplification . (b) Transmittance spectra of gPT-symmetric optical structures in Fig. 7-1b, 
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of which the amplifying metasurface made of gain media in (a); dashed lines and symbols represent 

analytical and full-wave simulation results, respectively. By varying the scaling coefficient , the CPA-

laser point with eigenvalues going to zero and infinite (inset) can be achieved, regardless of the resonant 

gain magnitude. Here, I consider only one excitation source, and, thus, only the lasing mode is observed. 

 

 

 

 

 

the amplifying and attenuating sheets are separated by a medium, with admittance 0Y=Y  and 

electrical length / 2x  . In order to satisfy the CPA-laser condition,   02 / ,s,gain DY Y   as 

described in Eq. (7), this Lorentzian gain media must be patterned into proper metasurface 

structures. One possible structure can be an array of subwavelength strips with periodicity p and 

gap g [Fig. 7-1], whose equivalent surface admittance has an explicit form [see Appendix A]. The 

attenuating surface is assumed to be a resistive thin slab with constant conductivity (e.g. metals in 

the long wavelength region), resulting in   02 .s,loss DY Y   Also, the host substrates for 

attenuating and amplifying sheets have a permittivity profile: 
2

1 0    and
2

2 01/   , which 

respectively render material admittances 0Y and 0 / ,Y   as shown in Fig. 7-1b. For simplicity 

illustrating the gPT-symmetry, here I assume that both host substrates are lossless and non-

dispersive. However, our theoretical results (not presented here) show that around the design 

frequency, the CPA-laser mode is robust to moderate substrate losses. 

Figure 7-2b shows the transmittance (
2| |T t ) against the normalized frequency for different gPT-

symmetric CPA-laser devices [Fig. 7-1b], illuminated by a single excitation source ( 21,M ). 

The gain media in Fig. 7-2a with    0.198, 0.396, and 1.99 0 (which render large, medium and 
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small resonant gain) are respectively utilized to realize gPT-symmetric CPA-laser devices with 

design frequency 00.962D    and scaling factor   1/2, 1, and 5. For each CPA-laser, the 

thickness and gap-to-period ratio of metasurface are fixed as 0.004 Dt   and g/p = 0.08, while the 

optimal period p is calculated using the explicit formula to achieve the CPA-laser mode. For 

example, if 5,   the active metasurface with   02 /s,gain DY Y   is placed on the substrate with

2 0 / 25   (i.e., epsilon-near-zero (ENZ) material [19]), whereas the lossy sheet with 

  02s,loss DY Y   is on a substrate with 1 025  . From Fig. 7-2b, I find that regardless of , a 

lasing peak with gigantic transmittance/reflectance can be always be achieved at ,D implying that 

there is, in principle, no lasing threshold, namely lasing could happen even with a poor gain related 

to a large  . Figure 7-2b also compares analytical results (lines) with full-wave simulations based 

on the finite-element method (dots) [20], showing good agreements around .D The inset of Fig. 

7-2b shows magnitudes of 1,2 , which respectively approach infinity and zero at ,D  typical of a 

CPA-laser. Figure. 3a presents contours of transmittance (T) as functions of  and   for this gPT-

symmetric optical device under a single monochromatic excitation source with frequency of D ; 

for each value of ,  permittivities of host substrates are changed accordingly and the 

metasurface’s period are optimized to achieve the maximum transmittance/reflectance. From Fig. 

7-3a, it is seen that for any arbitrary , the lasing mode can always be found by choosing a proper 

 . Moreover, peaks of transmittance are consistent with the locus of optimal sets of  and 

(white dashed line) that achieve , 0( ) 2 /s gain DY Y   .   
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Here, I also study lasing behaviors of an individual active metasurface and a traditional PT-

symmetric CPA-laser, in order to make a fair comparison with the gPT-symmetric CPA-laser. 

Figure 7-3b is similar to Fig. 7-3a, but considering only the amplifying sheet, as shown in the inset 

of Fig. 7-3b. In this case, one side of the active metasurface is air and the other side is dielectric 

substrate with permittivity 
2

0 / .    In this case, the lasing mode with infinite 

reflectance/transmittance occurs when , 0(1 ) ,s gainY Y    exhibiting an upper bound: 

, 0 ,s gainY Y   possible with an ENZ substrate. As can be seen in Fig. 7-3b, in sharp contrast 

to  

 

 

 

Figure 7-3 Contours of Transmittance as functions of   and  for the gPT-symmetric optical system in 

Fig. 7-1(b); here, the locus of optimal ( , ) sets, giving the lasing effect, for an individual active 

metasurface (inset of Fig. 7-3(b)), PT- and gPT-symmetric optical systems are presented for comparison. 

For a large , corresponding to a weak resonant gain, the lasing effect can only be achieved with the gPT-

symmetric metasurfaces. If 1, the system would degenerate into the common PT-symmetric setup, as 

highlighted with a star. (b) is similar to (a), but for an individual active metasurface, showing an upper 

bound for lasing in terms of .  Contours of Transmittance as functions of   and x  (electrical length 

between amplifying and attenuating surfaces) for the PT-symmetric optical system in Fig. 7-1(a), varying 

the dielectric permittivity of spacer 
2

0 / .   In this case, a physical bound similar to an individual 

active metasurface in (b) is still obtained. 
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The gPT-symmetric metasurface, it is not always feasible to attain the lasing mode at  As   

increases beyond the threshold 00.56th   , which makes 0Re[ ( , )]gain D th Y    , the real part 

of metasurface’s surface admittance is always out of the upper bound of 0Y (remind that 

, ,Re[ ] Re[ ] 0s gain s gainY  ). Next, I consider the PT-symmetric optical system in Fig. 7-1a, with 

*

, ,( )s loss s gainiY iY and an intermediary medium with 
2

0 /    and 0 / .x=k d   Figure 7-3c 

presents contours of T as functions of  and   for this PT-symmetric system, under a single 

monochromatic excitation source with frequency of ;D  the left, middle and right panels show 

results for 1  ,1/ 2  and 5, respectively, and for each set of  and ,x  the active metasurface is 

optimized by fixing /g p  to 0.08 and sweeping p to reach the maximum transmittance/reflectance. 

As can be seen in Fig. 7-3c, although it is possible to attain the CPA-laser mode in such a system, 

th  does exist for the lasing (single excitation source) and CPA (two excitation sources) modes. 

Although a large  and a suitable electrical length (2 1) / 2,x= n   leading to a CPA-laser condition 

of 2

, 0 0 01 ( csc( ) / ) ~s rY = Y Y x Y Y   and , 0 0cot( ) / ~ 0,s iY = Y Y x Y may help increase th ,  the 

maximum th  cannot be greater than 00.56 , analogous to that of an individual amplifying 

metasurface. Figure 7-3a also compares optimum   against   at the lasing point D  for the single 

metasurface amplifier (blue dashed line) [Fig. 7-3b], PT-symmetric metasurface with / 2x=π  

(green dashed line) [Fig. 7-3c], and the gPT-symmetric metasurface [Fig. 7-3a]. It is clearly evident 

that if the constituent gain media of active metasurface has a large  , corresponding to a low 
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resonant gain, the lasing effect is only achievable in the gPT-symmetric system that essentially has 

no gain threshold.   

 
Figure 7-4 (a) Transmittance spectra for CPA-laser devices based on gPT-symmetric metasurfaces, which 

are designed using different scaling coefficients; here, lasing and CPA modes are excited by single and two 

coherent incident waves. (b) Snapshots of electric fields for the gPT-symmetric CPA-laser in (a) ( 1 ), 

operated in the lasing mode (top) and the CPA mode (bottom). 

 

 

 

 

 

Finally, I also study the CPA mode of gPT-symmetric composite structures in Fig. 7-2b. Figure 7-

4a shows their output coefficient  against frequency; here, the solid lines represent the one-sided 

illumination with  = 0 (which leads to the lasing mode) and the dashed lines represent the 

doubled-sided illuminations with   = M21; for all three cases, 21 ( 1 2)M i      at D . It can be 

seen from Fig. 7-4a that the coherent perfect absorption and lasing can be obtained at the same 

frequency by simply switching the amplitude and phase of the second incoming signal. I should 

note that variations in transmittance/reflectance (i.e., modulation depth) of gPT-symmetric CPA-

laser can be quite dramatic, which is ideal for optical switching and modulation applications. 
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Figure 7-4b presents the full-wave simulation results for the CPA (top panel) and lasing (bottom 

panel) effects at ,D showing that the outgoing wave can be either fully suppressed or amplified, 

depending on how the coherent signal is tuned. Again, there is no threshold gain for a gPT-

symmetric CPA.   

7.4 Metasurface designs 

 According to impedance boundary conditions, a discontinuity on the tangential magnetic field on 

the metasurface is related to the induced averaged surface current by the surface admittance. 

Assuming perfectly-conducting strips of negligible thickness are aligned parallel to the magnetic 

field of the transverse magnetic (TM) incident wave, the equivalent surface admittance can be 

explicitly written as [13]: 

2 ,s effY i Y     (7-9) 
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where 
e 0/ ,eff ffY   0 ,eff effk    0( ) / 2.eff     When a dispersive medium is used to 

constitute the metasurface, the surface admittance is usually complex-valued, ,s s,r s,iY Y iY   

where the surface conductance s,rY  and the surface susceptance s,iY  account for the gain/loss 

magnitude and the net stored energy in the near field, respectively. When considering a complex-

valued sheet conductivity, the surface impedance of metasurface should be modified as [1]: 

1

1 1
.

(1 / ) 2
s

s eff

Y +i
σ g p Y



 
  

  

   (7-11) 
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7.5 Scattering from an individual metasurface 

The scattering coefficients for an individual metasurface, placed on the interface between the left-

sided background medium with admittance 0Y and the right-sided medium with admittance ,Y  are 

given by: 

0 0

0 0

0 0

, ,

, ,

, ,

/ (1 ), / (1 ), and .

s gain s gain

L R

s gain s gain

R R L L R L

Y Y
r  r

Y Y

Y Y Y Y

Y Y Y Y

Y Yt r tY rYt t

 

  

 





 



 

  (7-12) 

The lasing condition that achieves transmittance/reflectance peaks can be derived as: 

, 0(1 ) .s gainY Y     (7-13) 

7.5 Conclusion 

 Controlling the balance between gain and loss was the regarded as the necessary condition to 

realize a PT-symmetric classical wave system. Here, I have introduced the idea of a generalized 

PT-symmetric system with unbalanced, reciprocally-scaled gain and loss, which interestingly 

possesses similar scattering properties and eigenvalue bifurcations as typical PT-symmetric 

systems. Specifically, I have demonstrated this idea using the PT-symmetric metasurfaces, and 

shown that the CPA-laser mode can be realized even though the system has a small net gain. Our 

results may provide new directions for advances in PT-symmetry and its electromagnetic, acoustic, 

and circuit applications via breaking the gain/loss balance and eradicating the threshold gain/loss 

for reaching exotic properties of PT-symmetry, such as the and CPA-laser mode and exceptional 

points.  
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VIII. CONCLUSION AND FUTURE WORKS 

I have applied PT-symmetry and the generalized PTX-symmetry condition to RF sensor 

telemetry with a particular focus on compact wireless micro-mechatronic sensors, actuators and 

wireless power transfer. I have theoretically studied and experimentally demonstrated the 

possibility of using the PT-symmetry concept to wirelessly read the (lossy) capacitive and resistive 

sensors, with high spectral resolution and high sensitivity. The proposed wireless sensing technique 

is potentially revolutionary, as it may be beneficial to a plurality of environmental, wearable, and 

implantable wireless sensors, as well as emerging applications in the fields of IoTs and RFIDs. 

I have introduced the notion of divergent exceptional points in multi-elements PT-symmetric 

electronic systems and shown that it can lead to gigantic eigenfrequency splitting. I have tested the 

predictions experimentally in a PT-symmetric “gain-neural-loss” electronic trimer and have 

demonstrated that, indeed, the eigenfrequency bifurcation around the divergent exceptional point 

can be quite dramatic, with a physical upper bound approaching infinity. This work may not only 

open new avenues for high-performance RF sensors, but I also have extended it to wireless power 

transfer system.  

I have shown that a real and constant eigenfrequency in specific higher-order PT-symmetric 

electronic systems can be exploited to realize a robust wireless power transfer platform locked to 

the frequency of operation. this effect is prominent even for the mid-range wireless power transfer 

with loose magnetic coupling. The third-order PT circuit described here also exhibits bifurcating 

eigenfrequencies, which, together with the invariant and real one, may enable a multi-functional 

platform that provides wireless charging and sensing at the same time. Further studies may make 

a breakthrough in dynamic and alignment-free wireless charging technology with extended range. 
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My Proposed generalized PTX-symmetry condition compared with the standard PT-symmetry 

offers greater design flexibility in manipulating resonance linewidths and Q-factors, while 

exhibiting eigenfrequencies identical to the associated PT-symmetric system. I have extended the 

idea of a generalized PT-symmetric system with unbalanced, reciprocally-scaled gain and loss to 

the optical PT-symmetric systems. Specifically, I have demonstrated this idea using the PT-

symmetric metasurfaces, and shown that the CPA-laser mode can be realized even though the 

system has a small net gain. My results may provide new directions for advances in PT-symmetry 

and its electromagnetic, acoustic, and circuit applications via breaking the gain/loss balance and 

eradicating the threshold gain/loss for reaching exotic properties of PT-symmetry, such as the and 

CPA-laser mode and exceptional points.  

Although the PT-symmetric electronic circuits platform which have been studied in this thesis 

consist of one (multi) pair coupled oscillators, but it is not a required condition for the PT-

symmetric system and a non-oscillators circuit system may satisfy the Parity and Time symmetry 

condition. Such systems may contain one or multi pairs of coupled RL (-RL) circuit (series 

inductor- resistance one with gain, -R, one with loss, R); This non-oscillators system is invariant 

under combined parity and time operations and similar to the oscillator PT-symmetric system may 

provide  high spectral resolution and high sensitivity for sensing applications like non-destructive 

eddy current test where the device under test (metal surface) is modeled as an series RL circuit. 

This eddy current sensing technique which may be considered as future work, is potentially 

revolutionary to ultra-sensitive non-destructive eddy current testing in which the traditional eddy 

current test is unable to measure the low conductivity (e.g. superalloy) with high accuracy.  
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