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SUMMARY 

The emergence of Additive Manufacturing (AM) has paved the way for fabrication of highly 

complex geometries and internal structures, owing to its unique layer-wise manufacturing 

approach. Moreover, the AM technology holds great potential for improving material efficiency 

and reducing life cycle environmental impacts and carbon footprint, which helps with promoting 

a sustainable “green” manufacturing strategy. Recently, the AM trend has shifted 

from fabrication of prototypes to functional end-use metallic or polymeric products in various 

critical industries including aerospace, automotive, and healthcare. Consequently, ensuring the 

final quality of these single-component or multi-component products has become more important 

than ever. As a result, prediction, control, and enhancing the dimensional, geometric, and 

mechanical properties of additively manufactured products have attracted significant research 

interest. Moreover, a promising approach to overcome the limitations of AM in terms of quality is 

the adoption of hybrid additive-subtractive manufacturing processes. Nonetheless, this approach 

introduces new challenges for quality assurance and sustainable production planning, as multiple 

processes with different characteristics are involved.  

To date, the majority of the existing literature on quality assurance and tolerance design for 

AM products is limited to a single component/process. Therefore, quality assurance for multi-

component products or those fabricated by hybrid additive-subtractive processes are not fully 

addressed. This is further aggravated by the fact that the existing geometric dimensioning and 

tolerancing techniques and standards cannot be directly applied to additive manufactured 

components as (i) they do not address the unique characteristics of these processes which either 

do not exist or differ from those in traditional manufacturing processes, (ii) rely on statistical 

assumptions suitable for mass production scenarios which do not currently apply to AM production 
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scenarios, i.e., mass customization, and (iii) are generally dealt with separately from the 

manufacturing-stage decision making, thus not allowing the potential of the process to be fully 

realized. Moreover, compared to the component’s dimensional properties, the geometric and 

mechanical properties of products are less addressed in the literature, and generally are quantified 

through empirical approaches. Thus, limited theoretical models for accurate estimation and 

prediction of these properties are available. Finally, the existing state-of-the-art on the “design-

process-property-sustainability” relationship for different additive manufacturing processes (i.e., 

pre-requisite to any tolerance design problem) is limited and thus offers significant research 

opportunities. Establishing methodologies and analytical tools for the design and manufacturing 

of quality-assured single-component and multi-component products using additive and hybrid 

manufacturing technologies is thus necessary.  

The aim of this dissertation is to thus advance the state-of-the-art on quality assurance for 

additive and hybrid manufacturing at both process and product levels. Analytical models and 

decision-making tools are established to help designers and manufacturers towards (i) quantifying 

and improving different quality metrics (i.e., dimensional accuracy, mechanical strength and 

porosity, and surface roughness) at the micro, meso, and macro scales for different additive and 

hybrid manufacturing processes while reducing the economic and environmental burdens, and (ii) 

smart tolerance design and process planning for multi-component products fabricated by the AM 

technology by considering the manufacturing stage decisions early during the design stage.  

A robotic hybrid additive-subtractive platform is developed, and experiments are performed to 

verify the effectiveness of the established models and decision-making tools for cost-effective 

quality assurance, tolerance design, and process planning towards smarter additive and hybrid 
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manufacturing. The outcomes of this research will contribute towards the innovation of smart 

additive and hybrid manufacturing design software, machines, and equipment. 
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1. INTRODUCTION 

1.1 General Introduction 

1.1.1 Additive Manufacturing 

Additive manufacturing (AM), also referred to as 3D printing, is defined as “a process of 

joining materials to make objects from 3D model data (CAD file), usually layer upon layer, as 

opposed to subtractive manufacturing methodologies” [1]. The general overview of the different 

stages associated with this manufacturing technology is illustrated in Figure 1.   

 

Figure 1. Overview of the different stages in additive manufacturing 

Additive manufacturing technologies can be classified based on the type of raw material (e.g., 

liquid polymer, molten material, discrete particles, or solid sheets) as well as layer building 

technique [2], [3]. The ASTM F2792 standard [1] categorizes AM technologies into 7 different 

families of (i) Material Extrusion, (ii) Material Jetting, (iii) Binder Jetting, (iv) Sheet Lamination, 

(v) Vat Photopolymerization, (vi) Powder Bed Fusion, and (vii) Directed Energy Deposition, as 

described in Table I.  

The advantages of AM technology are fourfold. (1) First, it offers higher capability in 

producing customized and complex geometries, internal features, heterogeneous compositions, 

and products with anisotropic properties --- which are costly and sometimes impossible to be 
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fabricated by traditional manufacturing processes. (2) Second, it significantly reduces the need for 

jigs, fixtures, and tooling, and offers part-independent build set-up which accelerate the product 

development and simplify the manufacturing process. (3) Third, it provides the ability to 

simultaneously produce multiple designs as well as assemblies within a single build cycle [4], [5]. 

(4) Finally, it holds great potential for improving material efficiency and reducing life cycle 

impacts and carbon footprint [6], [7].  

Table I. AM technology categories*  

Family Description Strength 
Typical 

Material 

Material Extrusion 

“Material is selectively 

dispensed through a 

nozzle or orifice” 

- Inexpensive 

- Color printing 

Thermoplastic 

filaments, 

liquids, and 

slurries 

Material Jetting 
“Droplets of build material 

are selectively deposited” 

- High accuracy 

- Color printing 

- Multi-material 

printing  

 

Photopolymers, 

polymers, 

waxes 

Binder Jetting 

“A liquid bonding agent is 

selectively deposited to 

join powder materials” 

- Color printing 

- Wide range of 

material 

Plastic, metal, 

ceramic and 

glass powders 

Sheet Lamination 
“Material sheets are 

bonded to form an object” 

- Relative low cost 

- Embedded 

components 

Paper, plastic 

sheets, and 

metal foils 

Vat 

Photopolymerization 

“Liquid photopolymer in a 

vat is selectively cured by 

light-activated 

polymerization” 

- High Accuracy 

- Smooth Surface 

finish 

UV-curable 

photopolymer 

resins 

Powder Bed Fusion 

“Thermal energy 

selectively fuses regions 

of a powder bed” 

- No need for support 

- Wide range of 

material 

Plastic, metal 

and ceramic 

powders 

Directed Energy 

Deposition 

“Focused thermal energy 

is used to fuse materials 

by melting as the material 

is deposited” 

- Suitable for repairs 

- Multi-material 

printing  

Metal wires, 

powders, and 

ceramics 

* Adopted from [1], [8] 
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Recently, the AM trend has shifted from the fabrication of prototypes to functional end-use 

metallic and polymeric products of small to medium volumes [9], [10]. Consequently, AM has 

attracted significant attention from both academia and industry, and has been adopted in various 

industries (Figure 2) including automotive and aerospace [11], health care [12]–[14], and 

electronics  [15]. In 2019, the global AM market surpassed $10.6 billion and is expected to increase 

rapidly over the next few years [16], [17]. Furthermore, it is envisioned that industrial use of AM 

is likely to reach a level of mainstream adaptation in the near future [18] and further extend from 

mass customization towards mass production of customized products [19].  

However, AM still has several limitations which hinder its application and movement towards 

becoming the mainstream industrial manufacturing technique. Some of these limitations are listed 

as follows:  

1. The product quality is generally inferior to traditional subtractive processes like computer 

numerical control (CNC) machines [3], [20]–[22]. As a result, post-processing techniques 

might be necessary for refining to tighter tolerances.  

2. There exists a limited choice and range of material, which further restricts possible new 

applications.  

3. AM has generally longer manufacturing time compared to traditional manufacturing processes 

[23].  

4. The unit cost for large volume production is generally larger compared to injection molding or 

other traditional processes. Therefore, the application of AM technology for mass production 

scenarios is not yet economically justified.  

5. The maximum size of printable products is usually bounded by the building platform.  
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6. The current design tools and guidelines are still immature and cannot address the AM 

characteristics and challenges. Therefore, current research aims to overcome existing 

limitations and to enhance the capabilities of AM technology. 

 

Figure 2. U.S. AM market share in different sectors for the year 2018  [24] 

1.1.2 Hybrid Additive-Subtractive Manufacturing 

A promising approach to overcome the limitations of AM in terms of quality and production 

time is the adoption of hybrid additive-subtractive manufacturing processes. According to CIRP 

[25], a hybrid manufacturing process “combines two or more established manufacturing processes 

into a new combined set-up whereby the advantages of each discrete process can be exploited 

synergistically”. Accordingly, hybrid additive-subtractive manufacturing processes leverage the 

advantages of both additive and subtractive manufacturing processes; i.e., achieving complexity 

of design, dimensional accuracy, and high surface quality simultaneously [26]. Moreover, hybrid 

additive-subtractive manufacturing processes have shown promising potential in remanufacturing 

applications [27]. Despite their advantages, hybrid manufacturing processes introduce new 

challenges regarding the process design, process planning,  and quality assurance, which need to 
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be addressed [28]–[32]. Consequently, the characteristics and interaction of all involved processes 

need to be evaluated and studied 

1.1.3 Quality Assurance in Additive Manufacturing  

Quality assurance is generally referred to a set of necessary tasks for maintaining the desired 

quality of a product, as shown in Figure 3.  

 

Figure 3. Overview of quality assurance steps 

The different tasks of this cycle can be described as follows:  

• Define: in this task, tolerances are defined according to the required functionality of the 

products. The term tolerance is defined as the total amount by which a specific value is 

permitted to vary and is usually represented by a range (or zone) within which the accepted 

values can lie. According to the Geometric Dimensioning and Tolerancing (GD&T) standard 

[33], [34], tolerances can be assigned to dimensional features (i.e., size of components), 

geometric features such as form, profile, orientation, location, and runout, as well as surface 

texture attributes including surface roughness. Tolerances are usually specified based on the 

expected product functionalities at the product design stage, aiming to assure the functionality 

of the product while reducing the overall cost [35]. 
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• Characterize: this step refers to characterizing the final quality characteristics and properties 

of a product as a function of the design and manufacturing decisions (e.g., process and material 

selection, process planning, post-processing, etc.). This would require a comprehensive 

understanding of the AM process and material properties and can be performed using both 

experimental and theoretical approaches. When established, these predictive models can 

provide a-priori estimations of the quality characteristics and thus provide guidelines for 

designers and manufacturers for AM process improvement and selection of achievable 

tolerances.  

• Measure and Analyze: this task refers to accurate measurement and analysis of different quality 

characteristics of manufactured parts. Different in-situ or off-line monitoring/measurement 

techniques and metrology systems can be adopted and developed for this purpose [36]–[39].  

• Improve: to satisfy the product requirements, off-line improvement of the process and product 

design can be performed according to the established predictive models in forms of (i) process 

plan optimization and parameter tuning, (ii) enhancing the slicing algorithm, (iii) machine error 

compensation, (iv) design adjustments and topology optimization, and (v) secondary/post- 

processing including the adoption of hybrid additive-subtractive processes.  

• Control: this stage refers to controlling the quality of product during the AM process based on 

the feedback from in-situ or online monitoring systems in real-time. As an example, the 

observed error from deposited layers can be utilized in real-time to adjust the thickness or 

deposition strategy of consequent layers to ensure a given dimensional accuracy. Control stage 

is itself cyclic in nature and refers to constant monitoring and improvement of quality 

characteristics in real-time.  
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To further facilitate the reader’s understanding, an overview of the different terminologies used 

in this work to describe the different quality characteristics and performance of the AM process is 

provided below.   

- Dimensional accuracy is evaluated by the amount by which the expected value of a set of 

dimensions is away from the nominal dimension (i.e., target value). The amount of this linear 

deviation is usually referred to as dimensional deviation or bias and is categorized as a systematic 

error.  The smaller the dimensional deviation or bias is, the higher the dimensional accuracy would 

be. Generally, the percentage of dimensional deviation relative to the nominal size is used as a 

measure of dimensional accuracy.  

- Dimensional precision is evaluated by the variability of a set of dimensions. The variability is 

normally measured by the standard deviation or in some cases using the range of distribution 

depending on the type of distribution. In cases where the standard deviation (σ) of the distribution 

is used, the variation of dimensions is usually represented by the 6×σ range [40] The variation 

among a set of dimensions is usually caused by random errors. The smaller the variation of 

dimensions, the higher the dimensional precision or repeatability would be.  

- IT Grade or International Tolerance Grade (ITG) is an indication of the precision of the process 

considering the nominal size of components. The IT grade is calculated according to the ISO 286-

2 standard as:  

 
3

5log( ) 16
0.45 0.001

T
ITG

D D
= +

 + 
 (1.1) 

where T represents the six-sigma range of the distribution in mm, D is the geometric mean 

dimension in mm, and ITG represents the IT grade.  
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- Surface roughness is a measure of surface quality and is generally evaluated by the arithmetic 

average height parameter, 𝑅𝑎, which is one of the most widely used parameters and provides a 

good general description of height variations along the length of the specimen’s surface [41]. It is 

theoretically defined as the arithmetic mean of the actual profile’s departure from the mean line 

along the sampling length [42], [43]. The mathematical definition of 𝑅𝑎 is as follows:  

 𝑅𝑎 =
1

𝑙
∫ |𝑦(𝑥)|𝑑𝑥
𝑙

0

, (1.2) 

where 𝑦(𝑥)  is the surface profile function and 𝑙  is the evaluation length of the profile. The 

accuracy of the above model relies heavily on the accuracy of the profile function 𝑦(𝑥). 

- Porosity is a measure of the void/empty spaces inside a fabricated component which directly 

contributes to its mechanical properties. To quantify the global and local mechanical strength, it is 

necessary to characterize pore/void size and their variation within the product which requires a 

deep understanding of the process physics. Generally, the pores/voids in the extrusion-based AM 

process are structural and depend on the deposition strategy.  

- Bonding degree or necking radius in the extrusion-based AM process is a measure of the bonding 

strength between two adjacent deposited filaments and directly contributes to the mechanical 

strength of the product. As the bonding degree is driven by the thermal energy of deposited 

filaments, characterizing the temperature profile of filaments through experimental and analytical 

approaches is critical.  

1.1.4 Tolerance Design   

As uncertainty and variability are inherent to any manufacturing system, activities towards 

ensuring the desired product performance regardless of the existing uncertainties are critical to the 
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survival of manufacturing enterprises. Traditionally, these activities are referred to as 

“tolerancing”, in which the acceptable amount of variation, i.e., the tolerance, for the critical size 

or form features of components are carefully designed by considering the product functionality as 

well as the life cycle of the product [44]. Generally, manufacturers prefer a larger tolerance range 

as it simplifies the production (as larger variability can be accepted) and consequently, the 

manufacturing cost can be reduced. On the other hand, a narrower tolerance band is generally 

preferred by the designers as it better assures the functionality of the product. Therefore, tolerance 

design is the key to cost reduction and quality improvement in manufacturing industries [45].  

Despite being a relatively mature field, the emersion of new manufacturing processes (e.g., 

AM) are creating new avenues of tolerancing research [46]–[48]. More specifically, it is necessary 

for different activities of tolerance design, namely, tolerance specification, analysis, and allocation, 

to be further tailored to the emerging manufacturing paradigms, their characteristics, and 

capabilities [49]. As an example, AM has the ability to make assemblies (either static or mobile) 

as one integrated unit in a single build [50]. Consequently, assemblies can be reduced to a single 

component, thus, eliminating the need for assembly, reducing cost, and possibly improving the 

sustainability performance of the process [51]. Clearance, defined according to the accumulated 

variation of assembly components [45], is considered as a key factor affecting both the mechanism 

operation and lifetime of assemblies and needs to be controlled to ensure a desired level of mobility 

is achieved [52], [53]. However, currently, the capabilities of AM technologies in satisfying the 

clearance requirements for this type of assemblies are unknown.  

An ideal AM tolerance design methodology not only takes into account all the decisions at the 

manufacturing stage but also provides guidelines for the selection of optimal process plan 

decisions at the manufacturing stage (e.g., process and material selection, process parameter 
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selection, post-processing, etc.) as shown in Figure 4, thus removing the gap between design and 

manufacturing stages. To achieve this, a comprehensive understanding of the relationship between 

(i) product design, (ii) AM process plan decisions, (iii) characteristics of the micro geometries, and 

anisotropic properties at the macro level, and (iv) the life cycle impact, (i.e., “design-process-

property-sustainability” relation) is necessary. As also observed in this figure, in addition to offline 

predictive models of quality characteristics and life cycle impacts (which guide the tolerance 

design efforts), the inclusion of online feedback models can also further benefit the system at the 

manufacturing stage by further improving the products’ quality.     

 

Figure 4. Smart process-aware tolerance design for AM   

1.2 Literature Review 

The prediction and control of the obtained quality characteristics in different manufacturing 

processes including additive and hybrid manufacturing processes is a critical requirement for 

designers and manufacturers [54] that not only allows for checking the compliance with design 

specifications, but also helps with the determination of manufacturing strategies in the process 

planning stage [55]. Therefore, several research efforts have been dedicated to the characterization, 
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enhancement, and control of dimensional, mechanical, geometric, and surface properties in 

different additive and hybrid manufacturing processes through both empirical and analytical means. 

In addition, the joint assessment of these quality characteristics together with manufacturing cost 

and sustainability performance is important, as it allows for the determination of optimal design 

and manufacturing strategies towards both higher quality and sustainability. Moreover, as AM 

processes are different in nature from traditional manufacturing processes and have unique 

capabilities, development of new tolerancing standards, guidelines, and benchmarks are necessary. 

Finally, the development and evaluation of different hybrid additive-subtractive manufacturing 

processes has also been another important topic in AM research. As explained earlier, hybrid 

additive-subtractive processes are adopted to overcome the limitations of AM processes in terms 

of quality and surface properties. However, the development and control of these processes is 

challenging and requires significant attention.  

To conclude, the existing research on quality assurance and sustainability assessment for AM  

can be categorized as follows.  

(i) Efforts to address the technological barriers (e.g., reduce the minimum achievable layer 

thickness), and development of more precise machines or smarter material,  

(ii) Efforts towards quantifying and benchmarking the capability of different AM processes,  

(iii) Efforts towards developing GD&T and design standards considering the characteristics and 

capabilities of AM processes (e.g., capability to fabricate complex geometries and as-built 

assemblies, i.e., assemblies as a whole in one build),  
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(iv) Efforts towards prediction, classification and controlling/reducing the errors through process 

parameter tuning, machine calibration, design adjustments and compensations [56]–[59], slicing 

algorithm improvement or modification, and adoption of hybrid additive-subtractive 

manufacturing processes. 

(v)  Efforts to bridge the above with the sustainability performance of the process, including energy 

consumption, emission, material consumption, and manufacturing cost.   

In this section, an overview of current literature on some of the mentioned lines of research are 

presented. For more information on the scope of this literature review, please refer to Section 1.4. 

Note that the contents of this section are from my previously published works, republished with 

permission from the publishers. For more information, please refer to the Appendix.  

1.2.1 Dimensional Accuracy Analysis and Modeling in Extrusion-based AM Process 

Different intrinsic errors of AM processes or machines (e.g. process parameter-related errors, 

machine errors, and material shrinkage errors) can contribute to the dimensional accuracy of 

components and their variability. However, as the nature of AM processes and their error sources 

are not entirely known, empirical studies for process understanding and control form the majority 

of research efforts. Specifically, regarding the Fused Deposition Modelling (FDMTM) process 

(trademarked by the company Stratasys), as one of the most common extrusion-based AM 

techniques [60], several researchers have studied and addressed the dimensional performance of 

the process using optimization or error compensation techniques.  

Sood et al. [61] and Nancharajah et al. [62] applied the Taguchi method to study the effect of 

process parameters on the dimensional accuracy of parts and found that layer thickness, orientation, 

and road width have the most significant effect. In addition, it was found that the optimal value of 
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process parameters for achieving the minimum dimensional deviation in length, width, and 

thickness of parts are different [63]. The design of experiments (DOE) method was used by 

Galantucci et al. [64] for finding the optimum process parameters and improving the dimensional 

accuracy of a rectangular test specimen. Among the studied parameters, the tip (nozzle dimension) 

was observed to have the most significant effect on the length of parts. A methodology for 

improving the accuracy of the distance between parallel faces was proposed in [65] where a 

combination of artificial neural networks (ANN) and an optimization algorithm was used. Islam 

et al. [66] focused on the analysis of the obtained dimensional accuracy of parts in additive 

manufacturing compared to CNC end milling and wire-cut discharge machining (WEDM). It was 

shown that the linear dimensional errors are higher in additive manufacturing compared to WEDM 

and end milling processes. In addition, international tolerance (IT) grades of the three processes 

were calculated according to the experimental results.  

Lieneke et al. [67] compared the dimensional performance of Extrusion-based AM, Laser 

Sintering (LS), and Laser Melting (LM) using IT grades and dimensional accuracy for different 

nominal dimensions and spatial alignments. It was shown that both spatial alignment and nominal 

dimension have a strong influence on the accuracy of parts. The dimensional tolerances (i.e. 

variability) were studied in [68] by calculating the IT class of a rectangular test part using different 

nominal dimensions and spatial alignment. In [69], different machine error sources were identified 

and categorized. Optimal shrinkage compensation factor (SCF) was calculated in [70] for 

improving the accuracy of parts built by Stratasys.  

As is observed, the majority of the literature is based on experimental approaches while few 

analytical models for characterizing the dimensional accuracy are available [56], [58], [71], [72].  
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1.2.2 Surface Roughness Analysis and Modeling in AM Processes 

Surface quality is one of the most important quality measures and is mainly evaluated by the 

surface roughness parameters defined by the ISO standard [43]. It depends on several factors 

including material properties and process planning parameters. Despite the numerous advantages 

of AM technology, the surface quality of printed parts is generally inferior to those fabricated by 

traditional subtractive processes using Computer Numerical Control (CNC)  machines [3], [20]. 

This relatively lower surface quality is mainly caused by the stair-stepping error due to the AM’s 

layer-by-layer production method and is significantly influenced by process parameters like layer 

thickness and build orientation [73]–[75]. Furthermore, the support generation and removal that 

are required in most AM processes can usually cause additional deformation and quality issues, 

especially if not performed properly. Consequently, extensive research has been dedicated to 

surface quality improvement through process parameter optimization, which is mainly performed 

using an empirical approach.  

A semi-empirical study was performed by Chryssolouris et al. [76] in which the correlation of 

process parameters and surface roughness was statistically studied for the Laminated Object 

Manufacturing (LOM) process. A fractional factorial design of experiments was applied in [73] 

for studying the effects of layer thickness, build orientation, road width, air gap, and temperature 

on the surface finish in FDM™. Anitha et al. [77] used the Taguchi technique to evaluate the 

effects of process parameters on surface roughness in the FDM™ process, where a strong inverse 

relationship between layer thickness and surface roughness was observed. Campbell et al. [78] 

developed a methodology and an accompanying software application tool to visualize the surface 

roughness value in different build orientations, and guide designers to select the optimum build 

orientation. The different error sources in FDM™ process were identified and quantified in terms 
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of surface roughness, dimensional accuracy, and precision in [69]. An adaptive neuro-fuzzy 

inference system (ANFIS) was developed in [79] for predicting the surface roughness in the 

FDM™ process based on critical process parameters, namely, build orientation and layer thickness. 

The above empirical studies highlight the significant effect of layer thickness and build orientation 

(also referred to as stratification angle, build angle, or surface angle) on the surface roughness. 

Furthermore, according to the results of these studies, surface roughness is observed to behave 

differently for different ranges of stratification angle.    

Despite the necessity of empirical approaches for providing preliminary insights on the effect 

of different process parameters, comprehensive analytical models are generally preferred but less 

addressed in the literature due to the increased level of complexity. Luis Perez et al. [80] were 

among the first researchers that addressed this issue and established an analytical model for surface 

roughness using two different surface profile representation schemes, i.e., sharp edge and round 

edge. A prediction model for surface roughness in FDM™ process was proposed by Ahn et al. [81] 

where the inclination of the surface profile was also considered in addition to the layer thickness 

and stratification angle parameters. Assuming that the surface profile has a slightly platykurtic 

distribution, Boschetto et al. [82] proposed a periodic arc-based shape to approximate the surface 

profile. A good agreement of the theoretical model with the experimental data was observed for 

surface angles between 30° and 150°. The authors in [83] further extended the existing surface 

roughness models to the Selective Laser Melting (SLM) process. They managed to decrease the 

prediction error by incorporating the presence of particles on the top surfaces into the model. More 

recently, a new modeling methodology for AM profile was proposed [84] that categorizes three 

types of build edge profiles: perimeter, raster, and the combination of both patterns. The authors 

also proposed a periodic parabolic-based profile scheme to represent the surface profile. Boschetto 
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and Bottini were among the first researchers to address the surface roughness modeling in hybrid 

FDM™ and Barrel Finishing (BF) process [85]. The authors incorporated two parameters of layer 

thickness and deposition angle from the additive process, and material removal from the BF 

process into their model. However, the developed model cannot be applied to other subtractive 

processes (e.g., milling or turning) as the cutting tool parameters are not incorporated into the 

model.   

1.2.3 Joint Assessment of Cost, Sustainability and Quality Measures  

While the choice of AM process and/or process parameters can affect the part quality as stated 

by many researchers, it also contributes to the final cost of production [86]. Hopkinson and 

Dicknes [87] are among the first researchers to study the cost elements of AM processes, namely 

material extrusion, stereolithography, and laser sintering. They observed that the machine cost 

(including investment, maintenance, and overhead) has the highest contribution to the total 

manufacturing cost (59%), followed by material consumption (39%) and labor cost for pre- and 

post-processing (less than 2%). In general, based on the studied on selective laser melting process, 

machine cost has shown to be among the most significant cost drivers in AM processes [88]. Build 

time, influenced by process parameters, is identified as the most important factor affecting energy 

consumption and machine cost [89]. In fact, the time-dependent energy consumption element 

(mainly attributed to keeping the heater on) has shown to account for the majority of the total 

energy consumption in FDM™ [90]. The material and energy consumptions are not only among 

the cost drivers of AM processes but also are important in terms of process sustainability due to 

the increasing environmental concerns [91], [92]. It has been highlighted by several researchers 

that the life cycle performance of AM processes (e.g. energy consumption, material consumption, 

and manufacturing cost) need to be thoroughly studied and assessed together with other process 
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attributes (e.g. accuracy and functionality of parts) in order to make the AM technology more 

sustainable [93], [94]. Therefore, a multi-objective study would be necessary to ensure that the 

optimal combination of process parameters is selected.  

These multi-objective studies have already been addressed for different quality characteristics 

[74] including surface roughness [95]–[97], staircase error [98], perpendicularity, parallelism, 

angularity, total runout, circular runout and conicity errors [99], and tensile strength [100], [101] 

in which at least one of the manufacturing cost elements have been considered in the quality 

improvement analysis and process parameter selection through empirical studies or theoretical 

modeling. However, very few efforts have been made for analyzing the combined dimensional 

performance and sustainability performance measure or manufacturing cost of AM processes in 

the literature.  

1.2.4 As-built Assemblies in Additive Manufacturing  

In addition to manufacturing complex geometries, one of the major capabilities of AM is the 

ability to make assemblies (either static or mobile) as one integrated unit in a single build [50]. 

Consequently, assemblies can be reduced to a single component, thus, eliminating the need for 

assembly, reducing cost, and possibly improving the sustainability performance of the process [51]. 

In the literature, these additive structures have been referred to as “one-piece assemblies” [102], 

“as-built assemblies” [46], “integrated assemblies” [103], as well as “non-assemblies” [104].  

The numerous research directions that have been formed regarding as-built assemblies are the 

integration of microscale components e.g., electronics and sensors in the assemblies to increase 

their functionality [105], [106] and improving the functionality and mechanical properties by using 

multiple materials in the assembly structure [107], [108]. These emerging applications of AM are 
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considered significant and can greatly change the field of product design. Therefore, developing 

guidelines and standards regarding design for additive manufacturing (DFAM) and assembly 

(DFAA) needs to be addressed in parallel with these technological advancements [109], [110]. 

Design for manufacturing and assembly is typically defined as “tailoring the design for eliminating 

the manufacturing difficulties, and minimizing the manufacturing and assembly costs” [111]. The 

design phase in AM assemblies is usually much more complicated than the actual manufacturing 

process, which makes it the current bottleneck for AM to achieve its full potential [112]. 

Furthermore, the effect of positioning of components in one build cycle (e.g., overlapped, 

integrated design, etc.) on the distribution of dimensional errors is not addressed in the literature.   

One of the main considerations in DFAM is ensuring the functionality of the assembly. 

Clearance, defined according to the accumulated variation of assembly components [45], is 

considered as a key factor affecting both the mechanism operation and lifetime of assemblies and 

needs to be controlled to ensure a desired level of mobility is achieved [52], [53]. On the other 

hand, the functionality of the mechanism is directly affected by the capability of AM technology 

to create the desired clearance among components in an as-built assembly scenario. However, the 

accuracy of current AM technologies is lower than traditional manufacturing processes in general 

[113] and is limited by a number of technological constraints. For example, the minimum 

achievable clearance in AM processes is a function of the minimum powder grain size (in powder-

based processes) or layer thickness [46]. Therefore, creating clearances smaller than these values 

is not feasible, which as a result, limits the application of AM technology in producing as-built 

assemblies. In addition, the successful production of as-built assemblies requires the entire 

removal of the excess material (support structure) between components. Therefore, in order to 

produce as-built assembly structures, one might need to redesign the original assembly and 
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components by changing geometries, dimensions, and even the clearance [114], which is usually 

performed using a trial and error approach.  

1.2.5 Hybrid Additive-Subtractive Manufacturing Processes  

As explained earlier, additively manufactured parts usually have lower accuracy [21] and 

strength, unsatisfactory surface quality [22], and longer manufacturing time [23]. Therefore, it is 

necessary to improve the dimensional and mechanical performance of AM processes while 

reducing the production time.  

Recently, the development of hybrid additive-subtractive manufacturing processes has become 

a promising solution for improving the current limitations of AM processes and also an effective 

approach for remanufacturing applications [27]. Many research efforts have been dedicated to 

proposing suitable hardware and kinematic configurations, control systems, and process planning 

approaches for hybrid manufacturing systems [29], [115], [116]. The most popular hybrid design 

in the literature is based on the integration of conventional AM processes and SM processes, such 

as milling, on a single station. This can be applied by either attaching a SM head to an AM 

machine/mechanism or vice versa. For instance, Jeng and Lin [117] presented a new method of 

fabricating and modifying metal rapid prototypes and molds, where selective laser cladding 

process was used to build up the material layer-by-layer, and milling process was performed to 

machine the top surface for better accuracy and surface finish. In order to manufacture super alloy 

integral impellers in aero engines which are vital functional parts with complex freeform surfaces, 

Xinhong et al. [118] adopted a hybrid process which consists of plasma deposition process and 

milling process, and managed to improve the insufficient dimensional precision and surface quality. 

Karunakaran et al. [119] integrated a 3D arc weld deposition process with a commercial CNC 

machine and found that the hybrid process can save time and cost of production compared to when 
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the parts are fabricated solely by the CNC machine. Choi et al. [120] developed a direct metal 

fabrication technique which combines CO2 laser welding and milling processes.  

The developed hybrid processes in the literature indicate a promising potential for quality 

improvement. Nevertheless, they lack fabrication flexibility because of having only three DOF for 

mobility. To address this limitation, Liou et al. [121] developed a hybrid process for metallic 

structures including a laser deposition system and CNC milling mechanism in one workstation 

with five-axis motion modes. It was shown that the five-axis hybrid process could significantly 

reduce material consumption and production time. In addition, a satisfactory surface quality could 

be obtained by using the CNC milling process. Lee et al. [122] developed a low-cost hybrid system 

with an FDM™ extruder and a spindle placed on each end of a rotary axis in a five-axis machine 

tool. A novel tool changing mechanism was also proposed for switching between extruder and 

spindle using a 180-degree rotation of the head. A remanufacturing station including three 

processes of laser cladding, machining, and in-process scanning was developed in [123]. The 

integrated station was successfully applied to remanufacture turbine blades with lower capital 

investment costs.  

Although the discussed hybrid additive-subtractive processes can have multi-axis motions 

(mainly caused by the rotatory build platform), the movements of SM and AM heads are usually 

constrained to three axes of motions (namely X, Y, and Z). Therefore, to incorporate more DOF 

to the SM and AM heads, employing a robotic arm or mechanism with more than 3-DOF is 

necessary. According to the literature, the only study on developing a multi-axis robotic hybrid 

additive-subtractive process is performed by Keating and Oxman [124], where a multi-axis robotic 

platform named compound fabrication is proposed, which integrates additive, subtractive, and 

formative processes. This compound fabrication platform is applied for plastic deposition and can 
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achieve a fast printing speed (0.2 m/s) as well as fine surface resolution for large-scale printing. In 

addition to the advantages obtained by employing a hybrid approach (e.g., reducing material waste, 

increasing accuracy, and reducing build time), adopting robotic arms for developing hybrid 

processes can increase the workspace adaptability and flexibility, and thus provides new 

manufacturing opportunities (e.g., printing on complex 3D surfaces rather than a planar surface or 

accessing inner surfaces or features). However, despite these numerous advantages compared to 

the conventional hybrid machines with motion constraints on X, Y, and Z axes, the development 

and application of robotic structures for hybrid additive-subtractive processes is still limited and 

not fully addressed in the literature. In addition, most of the research efforts regarding the 

development of hybrid processes do not consider or focus on the development of an integrated 

manufacturing platform to support the functionality of different processes.  

1.2.6 Porosity and Bonding Characterization in Extrusion-based Additive Manufacturing   

Extrusion-based additive manufacturing is a popular AM process in which thermoplastic 

material is melted and selectively dispensed through a nozzle or orifice to form the geometry in a 

layer-by-layer approach [125]. An interesting feature of this process is its potential to fabricate 

structures with locally-controlled properties through adjustment of the material dispensing strategy 

[126]. To fully exploit this potential, it is important to carefully study and link the (i) material 

properties, (ii) geometry design, (iii) deposition strategy including process parameters and path 

planning, (iv) characteristics of the micro geometries, and (v) anisotropic properties at the macro 

level [127]–[129].   

Several studies on linking the deposition strategy in the extrusion-based additive manufacturing 

process with mechanical properties at the macro level through experimental approaches are found 

in the literature. For example, the effect of printing speed, layer thickness, raster angle, air gap, 
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bead/raster width, liquefier temperature, and fill density on different mechanical properties 

including tensile, yield, flexural, impact, and compressive strengths, modulus of toughness, and 

elongation at break have been studied [130]–[133]. While these experimental efforts provide 

valuable insights, they do not provide information on micro geometries/structures and their 

influence on the mechanical properties at the macro level. Kulkarni and Dutta [134] were among 

the first to address the important role of microstructures on the mechanical behavior of material in 

extrusion-based additive manufacturing. Rodriguez et al. [135] and Too et al. [136] highlighted 

that the extent of bonding between contiguous filament segments and porosity (or void density) 

directly contribute to the mechanical properties [137]. Li et al. [126] established models for 

characterizing void density as a function of the air gap parameter in unidirectional specimens. An 

inverse relationship between mechanical properties and porosity was reported by Kalita et al. [138], 

Chin Ang et al. [139], and Phuong et al. [140]. To further improve the bonding quality, Ko et al. 

[141] proposed a material engineering approach in which the viscosity of the polymer is 

manipulated to increase the tensile strength of specimens.  

To fully characterize the extent of bonding between contiguous filaments and porosity of 

products, however, it is necessary to understand the underlying physical phenomenon of the 

process. In the extrusion-based AM process or similar path-based processes (e.g., selective laser 

melting or SLM), the bonding phenomenon and porosity is driven by the thermal energy. Sun et 

al. [142] investigated the effect of different processing conditions, i.e., the position of layer, 

liquefier and envelope temperatures, deposition strategy, and building location, on the temperature 

profile of printed filament segments as well as the bonding quality. Faes et al. [143] applied an 

experimental approach to study the influence of inter-layer cooling time on the ultimate tensile 

strength of parts and observed an inverse correlation between these parameters. As real-time 
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monitoring of temperature profile at different points in space and time during the process is 

extremely challenging, simulation-based or analytical approaches for filaments’ thermal history 

evaluation and characterization have become popular. As an example, a 2-D thermal analysis was 

performed by Bellehumeur et al. [144] to characterize the thermal profile of a single filament using 

heat transfer modeling and estimating the degree of bonding between two adjacent filaments [145]. 

Zhang et al. [146] proposed a finite element model to simulate the temperature variation of a 

cuboid during and after the extrusion-based AM process with respect to both space and time. 

D’Amico and Peterson [147] adopted Finite element analysis (FEA) in COMSOL to simulate heat 

transfer in the extrusion-based AM process. Recently, Costa et al. [148] established a model to 

evaluate the temperature evolution of filaments with adjusting boundary conditions based on the 

deposition strategy.  

Despite the existing efforts in the literature, there are several challenges and limitations that 

need to be addressed. First, estimating accurate values of material-related parameters is difficult 

due to the continuous cooling and heating cycles (e.g., the conduction and convection heat transfer 

coefficients, rheological properties, etc.) thus, leading to prediction inaccuracies. Second, the 

domain of validity of existing models on porosity and bonding characterization is limited and has 

shown to generally lead to prediction inaccuracies [126], [128], [142]. Third, the majority of the 

existing models do not account for the deformation of micro geometries due to the gravitational 

force, weight of upper filaments, viscoelasticity stress and creep, and its effect on the bonding 

degree due to its high modeling complexity [149]. Fourth, based on the existing literature, the 

spatial variation of bonding extent and porosity cannot be characterized as the majority of models 

only provide an overall estimation of these parameters [142], [150]–[152]. The ability to 

characterize these variations is critical towards the production of parts with locally-controlled 
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properties since different regions of the part might have different dimensional or mechanical 

properties requirements. Thus, having a priori knowledge on the variation of these factors as a 

function of the process plan and part geometry allows for optimal control of manufacturing 

parameters, and verifying or optimizing the design at the early product life cycle stages.  

1.2.7 Tolerance Design Research  

The importance of tolerance design task for enhancing the cost-effectiveness and quality of 

products was highlighted in the late 90s [45]. Initially, simple methods like “proportional scaling” 

and “weight factors” were adopted to distribute the assembly tolerance among different 

components due to their effectiveness and simplicity. However, they eventually became less 

popular as they could not address the manufacturing cost [153]. Consequently, more promising 

approaches using optimization techniques were introduced to minimize the manufacturing cost. 

Generally, there exist three categories of tolerances: (i) bilateral tolerances, where the tolerances 

are defined symmetrically around the target, (ii) unilateral tolerances, where the tolerance in one 

of the positive or negative directions is 0, and (iii) asymmetric or unbalanced tolerances, where 

the tolerances are either defined on the same direction of the target or are defined on opposite 

directions but with different lengths. Generally, the first category of tolerance design dominates 

the literature. Few studies have addressed the asymmetric tolerance design considering asymmetric 

quality loss functions [154]–[156], but they usually consider the distribution of the quality loss 

function and its coefficient to be known a-priori. In general, to distribute the assembly tolerance 

among components, three key elements need to be addressed: 

(i) The assembly/design function and the relationship between component tolerances and the final 

assembly tolerance need to be defined, 
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(ii) The relationship between component tolerances and cost (referred to as cost-tolerance model), 

or other penalty functions such as quality loss need to be defined,  

(iii) The optimization problem should be constructed and suitable solution approaches (either 

traditional, heuristic, or hybrid approaches) need to be proposed to tackle the problem.  

To establish the relationship between assembly tolerance and components’ tolerances, two 

common models are used in the literature: worst case (WC) and statistical (root sum square, RSS) 

[35]. These models have been adjusted to also address different dimensionality of assemblies, as 

shown below: 

 WC:          ∑ 𝑇𝑖𝑖 ≤ 𝑇𝐴𝑆𝑀 and  ∑ (|
𝜕𝑓
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in which, 𝑇𝐴𝑆𝑀  is the given assembly tolerance; 𝑇𝑖  is the tolerance of component 𝑖 ; 𝑓  is the 

assembly function, and |
𝜕𝑓

𝜕𝑥𝑖
| and (
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)
2

 are the sensitivity of the tolerance stack to each individual 

tolerance (in two- or three- dimensional assemblies) for the WC and RSS methods, respectively. 

In addition, the mean shift model [157] for tolerance allocation has been proposed as: 
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where 𝑚𝑖  is the mean shift factor. However, none of these models can tackle asymmetric or 

unbalanced tolerances. 
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Traditionally, cost-tolerance functions are obtained by curve-fitting to empirical data and thus 

require extensive effort. Alternative techniques such as fuzzy logic, neural networks, and design 

of experiments are also proposed in the literature to establish the cost-tolerance functions. The 

application of different traditional solution approaches (e.g., Lagrange multiplier and exhaustive 

search) and novel heuristic techniques (e.g., genetic algorithm, simulated annealing, or hybrid 

techniques) to tackle the optimization problem are also investigated in the literature [158].  

To conclude, the contributions of tolerance allocation research generally vary in terms of the 

(i) considered assembly function, its characteristics and complexity, (ii) adopted tolerance 

accumulation model, (iii) cost-tolerance function formulation, (iv) optimization model formulation 

and assumptions, (v) incorporated input parameters and objectives, and (vi) proposed solution 

approach. Some examples of these contributions include tolerance design in multistage 

manufacturing systems [159], joint optimization of cost with quality loss [160] or maintenance 

planning [161], and joint design and process/process parameter selection [162], [163]. 

1.3 Motivation 

The increasing application of additive and hybrid manufacturing technologies for fabricating 

functional polymeric or metallic products has motivated researchers to address the newly 

introduced challenges in the area of error characterization, quality assurance, tolerance 

specification, and design. More specifically, the different nature and manufacturing characteristics 

of the additive manufacturing technologies compared to traditional manufacturing techniques, as 

well as their currently unknown capabilities in satisfying different tolerances and possible 

environmental and cost implications, require specific attention from researchers in academia and 

industry [48]. According to the above literature review, some of the existing limitations in the 
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literature on quality assurance and tolerancing considering this emerging technology can be 

summarized as follows:   

(i) The majority of the existing literature is focused on quality assurance and tolerancing for 

single-component/process, thus neglecting multi-component products and hybrid 

manufacturing processes.  

(ii) Geometric, surface texture, and mechanical properties of components are less addressed 

compared to dimensional properties.   

(iii) The majority of the existing models are based on experimental approaches, and thus 

theoretical models for prediction/estimation of different quality characteristics are scarce.  

(iv) Environmental and cost implications of AM technology and lifecycle impacts of products 

(as the pre-requisite to any tolerance design research) are still not entirely known. 

Therefore, advancing the state-of-the-art on “design-process-property-sustainability” in 

different AM processes is necessary.     

1.4 Research Scope, Objectives, and Framework 

Based on the mentioned motivations and literature review, the following research scope, 

objective, and framework are proposed.  

1.4.1 Research Scope  

Among the different quality assurance stages introduced in Figure 3, this thesis would only 

focus on three stages of “Define”, ‘Characterize” and “Improve”. Therefore, the established 

predictive models are not necessarily real-time but provide tools for a-priori estimation of quality 

characteristics towards design and process improvements. In addition, this thesis aims to address 

methodologies for quality assurance and tolerancing for both single- and multi-component/process. 
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Therefore, some of the quality assurance challenges in multi-components AM products and those 

fabricated by hybrid additive-subtractive manufacturing process are addressed as well. The 

application of different analytical, statistical, and data-driven techniques is studied. Among the 

different quality metrics, this thesis addresses dimensional accuracy, surface roughness, porosity, 

and bonding strength. Finally, as studying all the different AM processes for the purpose of quality 

characterization is impossible, this thesis specifically focuses on polymer-based AM processes 

including Material extrusion AM, Vat photopolymerization AM, and Material jetting AM 

described in Table I. However, the methodologies established for quality assurance of multi-

component AM products are generic and can be adapted to different metal-based or polymer-based 

AM processes.     

1.4.2 Research Objective 

Based on the mentioned motivations, literature review, and research scope, the goal of this 

thesis is to provide designers and manufacturers with a set of decision-making tools for quality 

assurance and tolerancing of both single-component and multi-component products fabricated by 

additive and hybrid additive-subtractive manufacturing processes towards design and process 

improvement, higher sustainability, and smarter manufacturing.  

1.4.3 Research Framework  

The research framework and scope of this thesis are shown in Figure 5. Evaluating the “design-

process-property-sustainability” relation at the process level (i.e., for single components) is a 

prerequisite to the tolerance design at the product level (i.e., for multiple components). Therefore, 

the research is performed at two different levels considering the within-component interactions 

(“design-process-property-sustainability” relation for single components at the process level), and 

between-component interactions (“design-process-property-sustainability” relation among 
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multiple components at the product level) for smart selection of tolerances and manufacturing 

decisions. The process-level quality assurance research is performed for both additive and hybrid 

manufacturing processes as shown in the figure.  

 

Figure 5. Research framework and scope 

At the process-level, several dimensional, mechanical, and surface texture quality 

characteristics will be addressed. In addition, sustainability measures including cost, energy, and 

material consumption will be quantified. The established models and outcomes of research from 

the process-level quality assurance stage will then be incorporated at the product-level quality 

assurance stage in which multiple components are addressed.  

1.5 Contributions and Thesis Outline 

The main contributions of this thesis are as follows: First, several quality and sustainability 

measures of single-component additively-manufactured products including dimensional accuracy, 
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IT grades, surface roughness, porosity, bonding strength, cost, and energy consumption in 

polymer-based AM processes are characterized through analytical and experimental approaches. 

The relation between the process parameters, product design, and these measures are highlighted 

for process and design enhancement. Second, a novel robotic hybrid additive-subtractive process 

is developed. Third, the surface roughness of products as a result of this hybrid process is 

analytically characterized using a geometric modeling approach. Fourth, the dimensional 

distribution of pre-assembled multi-component products fabricated by AM is characterized. 

Finally, a comprehensive smart process-aware tolerance design methodology for additively 

manufactured components is proposed in which the dimensional tolerances and manufacturing 

decisions are jointly selected and optimized to ensure product quality. The previously established 

predictive models are used within the proposed methodology.      

The rest of this thesis is organized as follows.  

In Chapter 2, the within-component interaction for additive manufacturing is studied 

considering different quality metrics. First, a joint assessment of manufacturing cost and 

dimensional performance in the extrusion-based AM process is conducted using the design of 

experiments approach, and the achievable IT-grade for this process is quantified. Second, the 

surface roughness of components in polymer-based AM processes as a function of layer thickness 

and orientation is analytically modeled and validated. Third, the porosity, bonding strength, and 

their variation within a component in the extrusion-based AM process are analytically modeled 

using a hybrid physics-based and data-driven approach by incorporating heat-transfer modeling, 

Newtonian sintering model, geometric modeling, and data-driven modeling of filaments’ 

deformation. Experiments are performed to validate the established models. Finally, the 

conclusions and future works of the chapter are presented.   
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In Chapter 3, within-component interaction for hybrid manufacturing is studied. First, the 

development process and capabilities of a robotic hybrid additive-subtractive platform (developed 

to carry out this research) are discussed and illustrated through several case studies. A process 

planning methodology for reducing energy consumption and improving quality is proposed.  Next, 

an analytical surface roughness model for hybrid additive-subtractive manufactured surfaces is 

proposed and validated using the developed platform. Finally, the conclusions and future works of 

the chapter are discussed.   

In Chapter 4, the effect of assembly design on the dimensional distribution of components in 

the Polyjet process is studied. Next, a joint tolerance design and manufacturing decision-making 

methodology is proposed and formulated for additive manufactured components and products. The 

methodology is based on asymmetric distribution of errors and considering assembly requirements, 

namely specification and confidence level. The bootstrap statistical technique is used to estimate 

the unknown population’s statistics. Due to its suitability, a cyclic optimization approach is 

adopted to tackle the formulated problem. Finally, the conclusions and possible future works of 

the chapter are discussed.    

Finally, a summary of the main conclusions and possible future works of this thesis are 

provided in Chapter 5.    
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2. PROCESS-LEVEL QUALITY ASSURANCE: INVESTIGATING THE WITHIN-

COMPONENT INTERACTION FOR ADDITIVE MANUFACTURING 

[Parts of this chapter were previously published as “Haghighi, A., and Li, L. (2018). Study of 

the relationship between dimensional performance and manufacturing cost in fused deposition 

modeling. Rapid Prototyping Journal, 24(2): 395-408.; Haghighi, A., and Li, L. (2020). A hybrid 

physics-based and data-driven approach for characterizing porosity variation and filament bonding 

in extrusion-based additive manufacturing. Additive Manufacturing, 36, DOI: 

10.1016/j.addma.2020.101399.; and Li, L., Haghighi, A., and Yang, Y. (2019). Theoretical 

modelling and prediction of surface roughness for hybrid additive–subtractive manufacturing 

processes. IISE Transactions, 51(2), 124-135.”, reprinted, with permission, from the publishers. 

For more information, please refer to the Appendix (Copyright Statement).] 

This chapter presents the different studies performed to understand and establish the relation 

between (1) design, (2) process and process parameters, (3) properties of part: i.e., dimensional 

accuracy, surface roughness, bonding strength, and porosity, and (4) sustainability measures and 

economic implications in AM processes using both empirical and analytical approaches. As 

explained earlier, studying and understanding this relationship allows for selecting tolerances that 

are both feasible (at the manufacturing process level) considering the capability of the process, and 

optimal (at the product assembly level) considering product functionality and total manufacturing 

cost.   

In Section 2.1, a joint assessment of cost and dimensional performance in Fused Deposition 

Modeling (FDM™) process is presented [164], which aims to address the “process-property-

sustainability” relation. Cost models are developed and validated considering machine operation 
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as well as energy and material consumptions. In Section 2.2, the surface roughness as one of the 

most important quality measures of additive manufactured components is analytically modeled 

and validated [165]. The model is established by considering the two most important additive 

manufacturing process parameters; layer thickness and orientation, which exist in all AM 

processes. In Section 2.3, the porosity and bonding degree variation in the extrusion-based AM 

process (which contribute to the mechanical strength of components) are modeled based on a 

hybrid physics-based and data-driven approach [166]. The established models provide a-priori 

knowledge on the product’s surface property and mechanical strength and help designers with 

assigning feasible surface roughness and stress/strain tolerances and designing products with 

locally-controlled surface texture and mechanical properties. Finally, the chapter’s conclusions are 

presented in Section 2.4.  

2.1 Joint Assessment of Manufacturing Cost and Dimensional Tolerances in Extrusion-based 

Additive Manufacturing Process 

In this Section, a joint assessment of manufacturing cost and distribution of dimensions in the 

material extrusion process is performed. This study is motivated by the lack of research to analyze 

the combined dimensional performance and sustainability performance measure or manufacturing 

cost of this process in the literature for the purpose of tolerance design at the product level. The 

design of experiments (DOE) methodology is used for evaluating the effect of different process 

parameters and their interactions on the experiment responses, namely dimensional deviation and 

variation, as well as energy consumption, material consumption, machine operation cost, and the 

total manufacturing cost. To provide a cost evaluation tool for designers, mathematical models of 

the cost elements are also developed and validated using the empirical data. The desirability 
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function is used to select optimal process parameters for simultaneously improving the 

dimensional performance and minimizing the total manufacturing cost. 

2.1.1 Material Extrusion Process Introduction  

As discussed before, Fused Deposition Modeling (FDMTM), is one of the most common 

extrusion-based AM techniques [60] and is relatively simple to operate and maintain [167]. In this 

process, a thin filament of thermoplastic material is fed into the machine and is heated over its 

glass transition temperature to liquify. The liquified material is then pushed and extruded from a 

small orifice and deposited on the build platform. The relative movements of the extrusion head 

and the build platform controls the deposition pattern, which is according to the geometry’s 2D 

cross-sections and the programmed G-code. The deposited material is rapidly solidified as its 

temperature is dropped from the glass transition temperature. Each layer consists of several 

deposited segments (paths) of material. Once all segments of a layer are deposited, the extrusion 

head (or the build platform) moves one layer thickness up (or down). This process is repeated until 

all layers are deposited.  

To help support the deposited segments in the air, especially in the case of cavities, support 

structures are used. The support structures can be of the same type or different from the printing 

material. The support material needs to be further separated and removed from the printed parts 

either using manual force or with the help of solvents and solutions. Some of the common materials 

used in this process are polycarbonate (PC), polylactic acid or polylactide (PLA), acrylonitrile 

butadiene styrene (ABS), polyphenylsulfone (PPSF), Nylon, etc.  
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2.1.2 Cost Evaluation and Modeling 

The material, energy, and machine operation costs are considered for the cost evaluation and 

modeling. Since the majority of AM processes do not require specific labor attention during the 

printing process, the labor cost is usually limited to the machine setup at the pre-processing stage 

as well as part and support removal at the post-processing stage. In this study, however, the labor 

cost is not considered as it is expected to be insignificant considering the selected simple product 

geometry. Therefore, the total manufacturing cost is given as follows [168]:   

   C ( ) [ ( )] ( ),build energy build material part Support indirect buildP E P M M C T=  +  + +   (2.1) 

where Penergy, and Pmaterial, are the unit costs of energy, and material respectively. 𝐶̇indirect is the total 

indirect cost rate (machine hourly rate) that is estimated according to the machine purchase cost, 

machine depreciation, production overhead, etc. Tbuild is the total time of build, and Ebuild is the 

total energy consumption required during the build. Finally, the total material consumption 

consists of part material consumption (Mpart) and support material consumption (Msupport).  

(1) Energy Consumption Model  

Modeling the energy consumption of some AM processes has been addressed in the literature 

[169], [170]. However, the developed models typically have a general form and do not consider 

the contribution of different process parameters. Those that address the effect of different process 

parameters, however, are generally derived using the design of experiments approaches. Therefore, 

a more detailed energy model is presented. The energy consumption of the FDM™ extrusion-

based process can be modeled using the following equation:  

   
tan .build process s dby heatingE E E E= + +  (2.2) 
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Note that Eprocess is the geometry-dependant energy consumption element and can be calculated 

by summing up the required energy for vertical and horizontal movements of the nozzle for 

printing the provided geometry, together with the material extrusion energy consumption. Eheating 

is the amount of energy required to initially heat the filament to glass transition temperature and 

keeping it at a specific temperature range throughout the build duration. Estandby is the minimum 

amount of energy required to keep the machine on during the build process, i.e., the energy 

consumed by the wires, fan, etc., which is a time-dependant energy consumption element. 

Assuming that the friction is negligible, the three energy components can be further modeled 

according to the following set of equations:  
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   ( )heating H trans initial H steady build initialE P T P T T− −= + −  (2.4) 

   
tans dby M idle buildE P T−=  (2.5) 

where the following symbols are used: 

𝐼 Total number of layers 

𝐿𝑘
𝑖  The length of kth continuous path in the ith layer, k=1, …, Ki 

𝑋𝑘
𝑖  The horizontal distance between the endpoint of kth path and beginning of (k+1)th 

path in the ith layer 

𝑉𝑥𝑦 The horizontal printing speed on the xy plane 

𝑉𝑇−𝑥𝑦 The transitional horizontal nozzle speed between paths on the xy plane 

𝑉𝑇−𝑧 The transitional vertical nozzle speed between layers on the z axis   

𝑒𝑥𝑦 The amount of energy required to move the additive head with speed V for the 

distance of one layer thickness (D) horizontally (on the xy plane) 
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𝑒𝑧 The amount of energy required to move the additive head with speed V for the 

distance of one layer thickness (D) vertically (on the z axis) 

𝑃𝐴𝑣𝑔−𝑒𝑥𝑡 The average power rate required for extruding the filament  

𝑇𝑏𝑢𝑖𝑙𝑑 Total time of build   

𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 Required time for initial heating (which can be found by experiment) 

𝑃𝑀−𝑖𝑑𝑙𝑒 The power rate of the machine at the idle (standby) stage 

𝑃𝐻−𝑠𝑡𝑒𝑎𝑑𝑦 The power rate of the heater at the steady-state stage after the initial heating 

𝑃𝐻−𝑡𝑟𝑎𝑛𝑠 The power rate of the heater at the transition (initial heating) stage 

D Layer thickness. 

 

In addition to the layer thickness information and number of layers, the values of  𝐿𝑘
𝑖  and 𝑋𝑘

𝑖  

in the geometry-dependant energy consumption element are directly obtained from the G-code 

generated by the slicing software. 

(2) Material Consumption Model  

The proposed material consumption model is based on the part’s geometry and build 

parameters. The choice of process parameters affects the length of the printing paths which are 

then used in the model. Using the average estimated cross-section area of layers, the length of the 

printing path and the average density of material, the total material consumption for part and 

support can be calculated using the following models,  
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 (2.6) 

where 𝜌  is the average density of material, W is the width of paths, 𝐿𝑘
𝑝

 is the length of kth 

continuous path in layer p of part, and 𝐿𝑘
𝑠  is the length of kth continuous path in layer s of support. 

The symbols 𝐿𝑘
𝑠 , 𝐷𝑘

𝑠 and 𝑊𝑘
𝑠 refer to the length, thickness, and width of the kth path in the sth layer 
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of the support structure, respectively. Using different width and thickness values is necessary as 

they can vary from one layer to another. For the purpose of model validation however, it is assumed 

that the cross-section area does not change along the printing path (e.g., at the corner points). 

Moreover, the changes of material density are not considered in the model and the average density 

of the material is used.   

2.1.3 Experiment Design and Methodology  

Design of Experiments (DOE) method [171] is used to conduct the experiments. The test part 

(shown in Figure 6(a)) is first designed in Autodesk Inventor and then converted to STL file format. 

The studied dimension (aligned toward the Z-axis) is shown in Figure 6(a).  

 

Figure 6. (a) Test part, and (b) orientation representation scheme 

The Up-Mini 3D printer is used for fabricating the parts. The initial price of the machine is 

approximately 600 dollars. The machine operation cost (machine rate per hour) is estimated using 

the depreciation rate based on 3 hours of print time per day, 100 printing days per year and an 

amortisation period of 2 years. The machine overhead is assumed to be 25% of the depreciation 

rate. The hourly machine cost is thus, calculated as 1.3$ per hour.  An ABS filament spool with 

the price of $50 per kg is used for fabricating the parts. The energy consumption cost is also 

determined using the electricity price of $0.15 per kWh (Table II). 
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Table II. Machine, material and energy cost parameters and inputs 

Machine and Machine Operation 

Parameters 
Material and Energy Parameters 

Machine model Up-Mini printer Material type ABS 

Initial cost $600 Material cost per kg $50 

Hourly cost $1.3 Electricity cost per kWh $0.15 
 

A two-level full factorial design is used to establish the experiments including four controllable 

factors: layer thickness, fill density, inclination, and direction as shown in Table III. In this study, 

part orientation is represented through two different angles: (1) polar angle (φ), which describes 

the part relative to the XY plane (build plate) and is represented by the inclination factor, and (2) 

azimuthal angle (θ), which is the angle between the orthogonal projection of the part in the XY 

plane and the X-axis and is represented by the direction factor [67]. Therefore, the combinations 

of the two angles (φ,θ) has been used to represent the part’s final orientation as shown in Figure 

6(b). The (0,0) orientation is defined as the reference orientation in which the studied dimension 

is aligned toward the X-axis. Using the reference orientation, the rest of the orientations can be 

defined using counter-clockwise rotation as shown in Figure 7.  

As shown in Table III, layer thickness, inclination, and direction are defined as numerical 

parameters, and fill density is represented as a categorical parameter. Two levels of high and low 

are considered for each factor. Three replicate experiments are conducted for each possible 

combination of the factors at different levels. Six center points are also added to the experiment 

for studying the process noise or instability as well as checking for the curvature of the response 

surface. Therefore, a total of 54 experiment runs are conducted. The rest of the process parameters 

were kept constant and are provided in Table IV. 
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To have consistency among experiments and reduce the variation factors, the followings were 

considered. The machine was kept off for a constant duration of time between experiments so that 

it had enough time to cool down and reach the ambient temperature. All experiments were 

initialized at the 20-degree Celsius nozzle temperature. The energy consumption rate (power) of 

the machine was measured for every 5-minute interval using the Yokogawa CW10 power meter, 

with a maximum AC/DC current of 600A and a maximum AC/DC voltage of 1000V, during the 

build process. The dimension of part was measured using a digital caliper with the accuracy of 

0.01 mm. To account for the shrinkage of parts, each part was measured on the 4th day after the 

build.  

Table III. Control factors 

Control Factors Symbol 
Levels 

Center Point 
Low (-1) High (1) 

Layer thickness (mm) A 0.2 0.3 0.25 

Fill density B Hollow  Solid Loose 

Inclination φ (degrees) C 0 90 45 

Direction θ (degrees) D 0 90 45 
 

 

 

Figure 7. Experiment orientations 
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Table IV. Constant parameters 

Material ABS 

Printing speed  Normal 

Number of support layers 7 

Number of contours 2 

Initial nozzle temperature (˚C) 20 
 

2.1.4 Cost Model Validation 

Experimental data are used to validate the models. Two different experimental settings, which 

are among the settings with best dimensional performance, are selected for validation purposes.  

The results of the material consumption validation for two of the experimental setting are shown 

in Table V. The observed error is expected to be mainly due to the approximation of the length of 

the printing paths and width of layers.  

Table V. Material consumption model validation considering two settings 

 
Material consumption 

elements (g) 

A: 0.3, B: Hollow 

Alignment: Z 

A: 0.2, B: Hollow, 

Alignment: Z 

Model 
Mpart 1.01459 0.84103 

Msupport 0.69782 0.58484 

Experiment 
Mpart 1.11767 0.98967 

Msupport 0.83267 0.56767 

% Error    12.199%    8.442% 

 

Similarly, the energy consumption model is validated considering the same experimental 

settings as shown in Table VI. The model shows good accuracy and the error is expected to be 

mainly due to employing the approximated power consumption rates for different elements of 

the FDM™ machine instead of the actual power rates, as well as approximating the length of the 

printing path. Among the different energy elements of the system, the geometry-related energy 

component (Eprocess) has the highest contribution to the increase of total energy when changing 

the layer thickness from 0.3 to 0.2. 
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Table VI. Energy consumption model validation considering two settings 

 Energy elements (J) 
A: 0.3, B: Hollow 

Alignment: Z 

A:0.2, B: Hollow 

Alignment: Z 

Model 

Eprocess 6517 7714 

Eheating 16650 17950 

Estandby 10900 11900 

Total 34067  37564  

Experiment 
Average 37216  38868.3  

standard deviation 515.7  421.466  

% Error      8.46%     3.35% 
 

2.1.5 Dimensional Tolerances and Distributions of Components 

The experiment results are summarized in Table VII. The experiments are sorted from the 

smallest observed dimensional deviation to the largest. The linear dimensional deviation is 

calculated using the observed (DO) and nominal (DN) dimensions. The variation is evaluated by 

calculating the 6×standard deviation range. It is observed that dimensions along the Z-axis (build 

direction) are usually oversized while the dimensions are generally undersized on the XY plane. 

In addition, the contribution of machine operation cost to the total cost is approximately 69.8%, 

followed by the material consumption (29.6%) and energy consumption (0.6%).  

The distribution of dimensions in different experiment settings as well as the relative costs are 

presented in Figure 8. The fundamental deviations for each experiment are calculated according 

to the GD&T standards. The first experiment has the smallest dimensional deviation and variation 

compared to all other experiments. In the experiment numbers: 8, 10, 11, and 12, the alignment of 

the studied dimension is toward the Y-axis and the average variation is smaller compared to the X 

and Z alignments. However, in the X alignment (experiments 1, 3, 5, and 7) a smaller dimensional 

deviation compared to the Y alignment is obtained. To conclude, no systematic relation between 

the fundamental deviation values, IT grades, and relative cost are observed.  
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Table VII. Experiment results 

# A B C D 
DN 

(mm) 

DO 

(mm) 

Linear 

deviation 

(mm) 

Variation 

6×σ 

(mm) 

IT 

grade 
Relative cost 

% Cost 

contribution 

machine/material

/energy 

1 (-1, -1, -1, -1) 10 9.990 -0.010 0.018 7.32 0.965 76.35/23.1/0.55 

2 (-1, -1, 1, 1) 10 10.011 0.011 0.180 12.32 0.855 73.2/26.24/0.56 

3 (-1, 1, -1, -1) 10 9.973 -0.027 0.125 11.53 1.146 73.48/26/0.52 

4 (-1, -1, 1, -1) 10 10.033 0.033 0.183 12.36 0.858 73/26.45/0.55 

5 (1, -1, -1, -1) 10 9.967 -0.033 0.035 8.75 0.880 69.33/30.14/0.52 

6 (-1, 1, 1, 1) 10 9.957 -0.043 0.092 10.86 1.030 69.49/30/0.51 

7 (1, 1, -1, -1) 10 9.937 -0.063 0.193 12.48 1.067 67.56/31.98/0.46 

8 (1, -1, -1, 1) 10 9.933 -0.067 0.092 10.86 0.881 69.26/30.22/0.52 

9 (-1, 1, 1, -1) 10 9.907 -0.093 0.125 11.53 1.030 69.48/30.02/0.51 

10 (-1, -1, -1, 1) 10 9.897 -0.103 0.035 8.75 0.961 76.62/22.86/0.52 

11 (1, 1, -1, 1) 10 9.870 -0.130 0.060 9.95 1.053 67.98/31.56/0.46 

12 (-1, 1, -1, 1) 10 9.863 -0.137 0.035 8.75 1.149 73.72/25.77/0.52 

13 (0, 0, 0, 0) 10 10.232 0.232 0.116 11.36 1.344 66.14/33.39/0.47 

14 (1, -1, 1, 1) 10 10.310 0.310 0.120 11.42 0.862 66.52/32.95/0.53 

15 (1, -1, 1, -1) 10 10.353 0.353 0.092 10.83 0.862 66.52/32.96/0.52 

16 (1, 1, 1, -1) 10 10.363 0.363 0.330 13.61 1.028 64.51/35.01/0.48 

17 (1, 1, 1, 1) 10 10.407 0.407 0.346 13.73 1.029 64.4/35.11/0.49 

 

 

Figure 8. The distribution of dimensions and relative costs for different experiment settings 

2.1.6 Factorial Analysis Results 

(1) Dimensional Performance  

The dimensional performance of the process is evaluated using the percentage change of 

dimensions from the nominal value as well as the 6×σ range. The analysis of variance (ANOVA) 
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is performed for both responses (%∆Dimension and 6×σ) to find the significance level of process 

parameters. It is found that all of the studied factors and their interactions have a significant effect 

on the variation of dimensions using a 95% confidence level. Regarding dimensional deviation, 

layer thickness, inclination, and their interactions have shown to play the most important roles.  

 

Figure 9. Pareto chart and main effect plot for linear % change of dimensions and variation of 

dimensions 

The Pareto charts and main effect plots of both dimensional performance factors are presented 

in Figure 9. Although reducing the layer thickness and fill density seem to generally improve the 

dimensional performance of parts, the interactions between the orientation of part with both layer 

thickness and fill density makes it almost impossible to propose strategies that guarantee the 

improvement of dimensional performance at any given orientation. In other words, the orientation 

plays a key role in identifying the optimum layer thickness or fill density. In addition, the 

interaction between layer thickness and fill density is different in different orientations (Figure 10). 
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Therefore, the interaction of parameters in each spatial alignment was further studied. In both X 

and Y alignments, reducing the layer thickness has shown to result in smaller variability so that a 

narrower tolerance band can be satisfied. However, reducing the fill density shows contradictory 

effects on variability for X and Y alignments (reducing X’s but increasing Y’s). Therefore, no 

systematic relationship between fill density and variability was observed.  

 
Figure 10. Interaction plot for variation and deviation in different alignments 

The dimensional deviation along all three axes shows to be reduced by decreasing the fill 

density for a given layer thickness value. This is probably due to a smaller shrinkage of material 

as smaller material volume is deposited in each layer. Note that the amount of deviation for 

dimensions in the XY plane is also affected by several factors including the geometry of part, 

machine error, and even the deposition path. Therefore, all of these factors need to be studied in 

order to identify the best strategy for minimizing the dimensional deviation. For the X and Z axis 

alignments, it is observed that reducing the layer thickness leads to a reduction in dimensional 

deviation. However, an opposite behavior is observed in the Y-axis alignment.  
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 (2) Energy Consumption  

Smaller energy consumption can generally be obtained by increasing the layer thickness and 

reducing the fill density (Figure 11) which is predictable as the movements of the additive head 

and the total build time are decreased. In general, reducing the number of layers, the distance of 

the printing path within each layer, and the number of vertical nozzle movements for moving from 

one layer to another can reduce the total energy consumption. As can be seen in Figure 11, the 

energy consumption and machine operation cost reduction strategies are very similar as the 

majority of energy consumption cost is attributed to the build time. 

 

Figure 11. Pareto chart of energy consumption, and main effect plots of machine operation and 

energy consumption 

(3) Material Consumption  

It is relatively clear that reducing the fill density can decrease the material consumption. 

However, the effect of layer thickness has to be further studied. In other words, although reducing 

the layer thickness will decrease the volume of material in each layer, it also increases the number 

of layers. The main effect plot and Pareto chart of material consumption are presented in Figure 

12. Reducing layer thickness and fill density have shown to generally reduce the material 
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consumption in a given orientation. The orientation parameter has shown to be mainly responsible 

for support material consumption. 

 

Figure 12. Pareto chart of the standardized effects and Main effect plot for total material 

consumption 

2.1.7 Manufacturing Cost and Dimensional Performance 

In this section, the correlation between different responses is studied. To test the significance 

of the obtained correlation coefficients, t-test is used with α=0.05. The null and alternative 

hypotheses are presented below:  

   0
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where ρxy is the correlation coefficient between variables x and y in the population.  

The correlation between x and y in the sample is represented by 𝑟𝑥𝑦 , and υ-2 is the degree of 

freedom. The t-statistics and the critical value can be calculated using the followings:  
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t-statistic = 𝑟𝑥𝑦√

υ−2

1−𝑟𝑥𝑦
2 ) 

t-critical =𝑡(1−α 2⁄ ,𝜐−2)  

(2.8) 

All correlation coefficients with a t-statistics larger than the critical value are considered 

significant as they result in the rejection of the null hypothesis. The results of the t-test are 

presented in Table VIII. As can be observed, the correlation of responses varies as the orientation 

is changed. Therefore, identifying an appropriate strategy for improving the dimensional 

performance while reducing the manufacturing cost is a function of the part’s orientation. 

Dimensional deviation shows significant correlation with the dimensional variation in all 

alignments. Machine operation cost, as the major cost element shows positive relationship with 

dimensional deviation in Y alignment. However, a negative relationship is observed in both Z and 

X alignment even though the relationship is not significant.  

Although dimensional variation shows to have a significant negative correlation with total 

manufacturing cost in Y alignment, it shows to have a positive correlation in the X and Z 

alignments. This observation suggests that reducing the variability of dimensions in the X and Z 

alignments does not necessarily require a higher investment. This interesting observation is in 

contrast to the previous cost-variability relationships (also been referred to as cost-tolerance 

relationship in the literature) in traditional manufacturing. In other words, in the context of 

traditional processes, it is known that reducing the variability of dimensions is associated with 

higher manufacturing cost. However, according to the above observation, the orientation has an 

important role in the definition of the cost-variability function. In other words, there exist 

orientations in which both dimensional variation and manufacturing cost can vary in the same 
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direction by changing the process parameters. Therefore, one can easily reduce both dimensional 

variation and manufacturing cost by selecting proper process parameters.  

Table VIII. T-test analysis of the correlation coefficients  

All observation (t-critical=2.007) 

 DD DV MO MC EC TC 

%∆ Dimension (DD) - - - - - - 

6×σ (DV)  4.427 - - - - - 

Machine operation cost (MO) -0.844 -1.486 - - - - 

Material consumption cost (MC) 4.382 2.527 4.899 - - - 

Energy consumption cost (EC) -0.011 -0.890 23.930 5.738 - - 

Total cost (TC) 4.504 12.914 2.080 6.906 2.653 - 

Z alignment (t-critical=2.074) 

 DD DV MO MC EC TC 

%∆ Dimension (DD) - - - - - - 

6×σ (DV)  2.543 - - - - - 

Machine operation cost (MO) -1.848 0.735 - - - - 

Material consumption cost (MC) 4.260 3.057 2.182 - - - 

Energy consumption cost (EC) -1.534 0.799 20.302 2.463 - - 

Total cost (TC) 0.757 2.091 7.736 7.001 8.055 - 

X alignment (t-critical=2.228) 

 DD DV MO MC EC TC 

%∆ Dimension (DD) - - - - - - 

6×σ (DV)  2.649 - - - - - 

Machine operation cost (MO) -0.458 1.353 - - - - 

Material consumption cost (MC) 3.279 11.195 0.642 - - - 

Energy consumption cost (EC) -0.985 0.561 10.466 0.019 - - 

Total cost (TC) 0.619 3.452 6.787 2.337 4.053 - 

Y alignment (t-critical=2.228) 

 DD DV MO MC EC TC 

%∆ Dimension (DD) - - - - - - 

6×σ (DV)  -3.134 - - - - - 

Machine operation cost (MO) 4.622 -6.015 - - - - 

Material consumption cost (MC) 1.932 0.546 0.546 - - - 

Energy consumption cost (EC) 2.924 -3.381 8.499 0.462 - - 

Total cost (TC) 6.971 -2.904 7.129 2.111 5.128 - 

 

Although total cost does not show a significant correlation with the dimensional deviation in 

Z and X alignments, it has a positive correlation with dimensional deviation in the Y alignment. 
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However, note that as mentioned earlier, it is easier to compensate for the dimensional deviation 

by applying error compensation algorithms. Compensating the dimensional variation is, however, 

usually impossible. Therefore, proper selection of parameters is necessary to reduce the variability. 

Figure 13 presents the cost-saving potential and accuracy improvement of different experiment 

settings in each alignment. The percentage cost reduction and the changes of dimensional 

performance factors in three different alignments of X, Y, and Z are compared to the baseline. The 

baseline is the setting with the highest manufacturing cost in each alignment (i.e., 0.2 mm layer 

thickness and solid fill density). A higher % cost reduction is equivalent to a higher amount of 

savings that can be achieved with respect to the baseline. A higher % dimensional deviation and 

variation reduction is translated as a better dimensional performance.  

 

Figure 13. Percentage cost savings, dimensional deviation and variation reduction in each 

alignment compared to the baseline 
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As can be seen, the best dimensional performance (more accuracy and smaller variability) is 

not necessarily associated with the highest cost. In addition, the optimum setting is highly 

dependent on the orientation of part as different behavior is observed for different orientations. In 

the X alignment, the best dimensional performance is obtained at X1 while the most cost-effective 

option (X3) has a worse performance compared to X1. In the Y alignment, the minimum cost is 

achieved at Y3 which is also associated with the best accuracy but worst variability. In the Z 

alignment, a similar pattern as the X alignment is observed where Z3 is the most cost-effective 

setting while it has a worse performance specifically in terms of dimensional deviation compared 

to Z1.   

2.1.8 Multi-Objective Optimization of Cost and Quality  

In addition to the important role of orientation in finding the optimum strategies and the 

interaction of process parameters, the relative importance of responses also plays an important role 

in determining the optimum strategies. To further illustrate this point, a multi-objective 

optimization of manufacturing cost and dimensional performance is performed using two different 

scenarios. In order to determine the optimum process parameters that can simultaneously optimize 

the set of responses (dimensional performance and manufacturing cost), the desirability function 

is used. If Yi is the studied response (i=1,…,n), the desirability function for each of the responses 

(𝑑𝑖(𝑌𝑖̂)) can be calculated depending on what is desired (keep the response at target, minimize or 

maximize it) [172]. The total desirability function, D, will then be calculated as:  

   1

1

ˆ( ( ))
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D d Y
=

=   (2.9) 

The algorithm calculates the composite desirability values for different combinations of 

parameters where a higher desirability shows a more fit solution. 
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- Scenario 1: In this scenario, the scale of the part is small and the part is printed only once. 

Therefore, changes in the total cost are not significant. However, assume that both dimensional 

variation and deviation are very important and need to be minimized as much as possible. 

Therefore, a high importance is assigned to the dimensional factors while the cost elements have 

a much lower relative importance (Table IX). The setting with 0.2 mm layer thickness, hollow fill 

density, and orientation of (0,0) will be selected as an optimum setting with the composite 

desirability of 0.9155. 

-  Scenario 2: Assuming that the dimensional deviations are compensated, the role of dimensional 

variation in the final quality of parts becomes significant. In this case, a high importance factor has 

to be assigned to dimensional variation while a lower importance can be assigned to dimensional 

deviation. As a result, the setting with 0.3 mm layer thickness, hollow fill density, and (90,0) 

orientation (alignment toward Z-axis) is selected as the optimum setting with the composite 

desirability of 0.8949.  

Table IX. Constraints of input parameters and responses 

Name Goal 
Lower 

limit 

Upper 

limit 
Weight 

Importance 

Scenario 

1 

Scenario 

2 

A: Layer thickness  
Limited to 0.2, 

0.25, and 0.3 
0.2 0.3 1 - - 

B: Fill density Is in range -1 1 1 - - 

C: Inclination  Is in range 0 90 1 - - 

D: Direction Is in range 0 90 1 - - 

Operation cost Minimize 0.197 0.305 1 1 10 

Material cost  Minimize 0.075 0.155 1 1 3 

Energy cost  Minimize 0.0015 0.0022 1 1 1 

Dimension  Target (10) 9.86 10.41 1 10 1 

Variation Minimize 0.018 0.3464 1 10 10 
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As can be seen, depending on how one defines the relative importance of responses, different 

values of process parameters should be selected. Therefore, the geometry of part and machine 

errors, as well as the relative importance of responses are critical factors for finding the optimum 

parameter values.   

2.1.9 Conclusions  

In this Section, a comprehensive analysis of the dimensional performance (dimensional 

deviation and variation) of the FDM™ extrusion-based process and the manufacturing cost is 

presented. The total cost of manufacturing is estimated by the summation of material, energy, and 

machine operation costs. Analytical models are developed for quantifying the material and energy 

consumptions according to the input process parameters and are validated using the experimental 

data. The design of experiments is used to initially study the individual responses (dimensional 

deviation, dimensional variation, machine operation cost, material, and energy consumptions) and 

identify the optimal process parameters. A statistical correlation study is performed for the 

manufacturing cost elements and the dimensional performance factors. Finally, a multi-objective 

optimization, using desirability function, is performed for simultaneously improving the 

dimensional performance and reducing the manufacturing cost. The main findings of this study 

can be summarized as follows: 

- Identifying the optimal process parameters in terms of dimensional performance and 

manufacturing cost is highly dependent on both the orientation of part and the relative 

importance of responses (cost elements versus dimensional performance factors). Furthermore, 

the interaction of different process parameters and the relationship between experiment 

responses depends on the selected orientation.  
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- Dimensional deviation and variation are correlated but the sign of the correlation coefficient is 

a function of the part’s orientation. 

- Aligning the dimension in the XY plane has shown to generate a lower IT grade in general 

compared to the Z-axis. However, it is normally associated with a worse surface roughness.  

- The relative importance of responses has a critical effect on the selection of optimum process 

parameters.  

- Finally, it is observed that strategies for obtaining a better dimensional performance (reducing 

the dimensional deviation and variation) are not necessarily associated with higher 

manufacturing cost.  

Note that, although lowering the fill density has shown to generally have a positive effect on 

both dimensional performance and manufacturing cost, but it also affects the mechanical properties 

of parts [100] in a negative way. This trade-off needs to be considered in the optimization process 

in future works. In addition to orientation and relative importance of responses, the decision on 

optimal processes relies heavily on the geometry of part, position of the studied dimension in the 

part’s geometry, path planning, and machine error. Therefore, different part geometries and path 

planning strategies need to be studied to further analyze the relationship between dimensional 

performance and manufacturing cost. Moreover, this study can be extended to address other types 

of AM processes.  

Finally, it is important to develop analytical models in addition to empirical studies to 

characterize the dimensional distribution of additive manufactured parts as a function of part’s 

material and geometry, type of AM process, process parameters, and path planning strategies, as 

well as the machine errors.  
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2.2 Surface Roughness Modeling and Validation for Additive Manufacturing 

To assess the compliance with the design specifications, a priori prediction of surface 

properties (e.g., surface roughness) in additive manufactured components is necessary. 

Furthermore, most of the surface roughness modeling studies are based on empirical approaches 

and usually limited to a certain AM process. Therefore, the objective of this section is to establish 

a comprehensive mathematical model for the prediction of surface roughness in additive 

manufactured components. A new surface profile representation scheme for 3D printed surfaces 

is proposed to increase the prediction accuracy compared to the existing models in the literature. 

2.2.1 Additive Surface Profile Representation 

Two popular geometrical profile functions to describe the additive profile exist in the literature: 

(1) triangle function or staircase model [80] and (2) semi-circular function [82], [84], where the 

latter function is a more realistic representation of the surface profile. In addition, among the 

existing semi-circular functions in the literature, the parabolic function has shown to lead to an 

average higher prediction accuracy according to the experimental results [84]. The reason for this 

better performance lies in the fact that the parabolic function incorporates different error 

parameters along the layer base and height directions. In reality, the obtained layer thickness 

usually varies from the designed value due to different errors caused by material, machine, and 

process properties. Thus, by incorporating these errors into the surface profile function, the 

accuracy of the surface roughness model is expected to increase.  

The proposed surface profile representation scheme is based on the combination of a parabolic 

curve and a linear line, as shown in Figure 14. The parabolic function is selected to incorporate 

the errors, and the linear function is added to provide a more accurate representation of the 

geometrical profile. The proposed surface profile is defined as a function of the stratification angle 
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(𝜃) and layer thickness (𝑡). The stratification angle (𝜃) refers to the angle between the normal 

vector of the surface of interest and the build direction. The layer thickness (𝑡) represents the 

designed height of each layer, which is usually altered as a result of different errors during the 

printing process. To visualize the surface profile more clearly, a 2D (two-dimensional) sketch is 

shown in Figure 14 for different ranges of the stratification angle. When the stratification angle 

equals to 90°, a special case occurs in which the surface profile is only represented using the 

parabolic function. In this work, the build direction is assumed to be vertical at all circumstances 

which limits our work to 3-axis AM processes. 

 

Figure 14. 3D (left) and 2D (right) illustrations of surface profile 

2.2.2 Coordinate System Illustration 

Two different coordinate systems, 𝑋𝑌 and 𝑋′𝑌′, are considered for the modeling procedure, as 

shown in Figure 15. The 𝑋′𝑌′ coordinate system is established based on the shape of the surface. 

In 𝑋′𝑌′ coordinate system, the surface profiles are periodic combinations of parabolic curve and 

linear line. This combination forms the unit geometry of surface profile, which is repeated along 

the length of the surface. A second coordinate system (𝑋𝑌) is established for the unit geometry of 
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surface profile to further simplify the modeling procedure as the integral function used for surface 

roughness calculation is not significantly affected by varying the coordinate system from 𝑋′𝑌′ to 

𝑋𝑌 (shown in Figure 15). The generated errors as a result of this coordinate system change are 

considered to be negligible. Another issue that arises by considering the parabolic function in the 

𝑋′𝑌′ coordinate system is that more than one output might exist for a single 𝑥 input that contrasts 

with the mathematical definition of a function, and must be avoided. Note that in this model it is 

assumed that the mean profile line does not pass through the linear line element of the unit 

geometry. 

 

Figure 15. Illustration of unit geometry in (a) X'Y' and (b) XY coordinate systems 

 

2.2.3 Surface Roughness Model 

The non-periodic parabolic function of the unit geometry in the 𝑋𝑌 coordinate system can be 

formulated based on the values shown in Figure 16(b).  

Error coefficients of ɛ𝑥  and ɛ𝑦  are defined to represent the deviation of layer thickness along 

the 𝑋  and 𝑌  directions, respectively. Therefore, the effect of different error sources including 
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geometry, process parameters, machine, and even environment, can be incorporated into the model. 

Both error coefficients are assumed to follow normal distributions, where ɛ𝑥~𝑁(𝜇ɛ𝑥 , 𝜎ɛ𝑥 
2 ) and 

ɛ𝑦~𝑁 (𝜇ɛ𝑦 , 𝜎ɛ𝑦 
2 ), in which their means and standard deviations are obtained by experiment. The 

non-periodic function of the parabolic curve 𝑓𝑝(𝑥)  in the 𝑋𝑌  coordinate system can thus be 

represented by:  

 𝑓𝑝(𝑥) = −2 [
𝑡 − 2ɛ𝑦
(𝑡 − ɛ𝑥)2

] 𝑥2 + 2 [
𝑡 − 2ɛ𝑦
(𝑡 − ɛ𝑥)

] 𝑥. (2.10) 

 

Figure 16. (a) Surface area of the unit geometry and (b) unit geometry parameters in XY 

coordinate system 

To find the mean profile line of the AM profile in 𝑋𝑌 coordinate system, the mean profile line 

in 𝑋′𝑌′  coordinate system 𝑓1(𝑥)̅̅ ̅̅ ̅̅ ̅ , as shown in Figure 16(a), is initially calculated using the 

following equation:  

 𝑓1(𝑥)̅̅ ̅̅ ̅̅ ̅ =
(𝑆𝑝 + 𝑆𝑡)

(𝑡 − ɛ𝑥)
𝑠𝑖𝑛𝜃, (2.11) 

where 𝑆𝑝 represents the surface area of the parabolic curve and 𝑆𝑡 denotes the surface area of the 

triangle, as shown in Figure 16(a). Parameters 𝑆𝑝 and 𝑆𝑡 can be obtained from the followings  
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 𝑆𝑝 =
(𝑡 − ɛ𝑥)(𝑡 − 2ɛ𝑦)

3
, (2.12) 

 𝑆𝑡 =
(𝑡 − ɛ𝑥)

2𝑐𝑜𝑡𝜃

2
. (2.13) 

Using equations (2.11)-(2.13), the mean profile line in 𝑋′𝑌′  coordinate system 𝑓1(𝑥)̅̅ ̅̅ ̅̅ ̅  can be 

calculated as: 

 𝑓1(𝑥)̅̅ ̅̅ ̅̅ ̅ =
1

6
[2𝑠𝑖𝑛𝜃(𝑡 − 2ɛ𝑦) + 3𝑐𝑜𝑠𝜃(𝑡 − ɛ𝑥)]. (2.14) 

The function 𝑓1(𝑥)̅̅ ̅̅ ̅̅ ̅ is then reformulated by converting the coordinate system to 𝑋′𝑌′ , and is 

referred to as 𝑓2(𝑥)̅̅ ̅̅ ̅̅ ̅ which is presented below.  

 𝑓2(𝑥)̅̅ ̅̅ ̅̅ ̅ = −(𝑐𝑜𝑡𝜃)𝑥 +
1

3
(𝑡 − 2ɛ𝑦) +

1

2
(𝑡 − ɛ𝑥)𝑐𝑜𝑡𝜃. (2.15) 

Therefore, the surface roughness of additive manufactured surfaces can be calculated as:  

 𝑅𝑎 =
𝑠𝑖𝑛𝜃

(𝑡 − ɛ𝑥)
∫ |𝑓𝑝(𝑥) − 𝑓2(𝑥)̅̅ ̅̅ ̅̅ ̅|
(𝑡−ɛ𝑥)

0

𝑑𝑥. (2.16) 

 

2.2.4 Experimental Plan and Apparatus 

To validate the proposed model, a geometry containing a diverse range of stratification angles: 

20°, 30°, 40°, 50°, 60°, 70°, and 90°, is designed as shown in Figure 17(a) and fabricated using 

FDM™ process. Polylactide (PLA) material is used for printing the test parts in a 3-axis 

configuration (i.e., constant build direction) and with maximum fill density. As frequently adopted 

in the literature, a layer thickness of 0.25 mm is selected to allow for the comparison of results.  
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Several replicated test parts are fabricated, and multiple surface roughness measurements are 

obtained for each surface (associated with each stratification angle) using the Bruker-Nano 

Contour GT-K Optical Profilometer. The surface height variation data are also obtained from the 

optical profilometer, which are then used for fitting the surface profile and comparison with the 

profile image. In addition, to evaluate the layer error coefficients and obtain a high-resolution 

image of the actual surface profiles, the Micro-Vu Precision Measurement System with a 1.0 µm 

scale resolution is used.  Furthermore, statistical analysis was conducted to ensure no outlier exists 

among the measurements.  

 
Figure 17. Designed geometry 

2.2.5 Surface Profile Analysis 

To verify the proposed surface profile representation scheme, the two error coefficients (ɛ𝑥 

and ɛ𝑦) are first measured by the Micro-Vu System. The distributions of the error coefficients are 

obtained based on 10 different measurements for each surface profile and are presented in Table 

X. The mean and standard deviation of each error element with respect to different stratification 

angles are then calculated based on the obtained measurements. 
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Table X. Distributions of the error coefficients 

ɛ𝑥~𝑁(𝜇ɛ𝑥 , 𝜎ɛ𝑥 
2 ) 

ɛ𝑦~𝑁 (𝜇ɛ𝑦 , 𝜎ɛ𝑦 
2 ) 

Stratification angle θ (deg) 

20° 30° 40° 50° 60° 70° 90° 

𝜇ɛ𝑥(mm) 0.0178 0.0102 0.0144 0.0114 0.0190 0.0421 0.0165 

𝜎ɛ𝑥 (mm) 0.0144 0.0144 0.0205 0.0127 0.0173 0.0112 0.0149 

𝜇ɛ𝑦(mm) 0.0357 0.0483 0.0417 0.0541 0.0454 0.0817 0.0558 

𝜎ɛ𝑦 (mm) 0.0162 0.0038 0.0063 0.0035 0.0043 0.0052 0.0073 

 

Figure 18(a) shows the top view of the raw profile (obtained by the Bruker-Nano Contour GT-

K Optical Profilometer) where each area between two parallel lines represents a path of extruded 

material. Figure 18(b) illustrates the surface profile along the horizontal X-axis according to the 

selected cross-sections. The surface variation data are then further filtered using the smoothing 

spline function and used for fitting a quadratic function to each individual period/layer. The profile 

variations (“raw data” shown in Figure 19(a)) are obtained using the Bruker-Nano Contour GT-K 

Optical Profilometer as shown in Figure 18.  

The average fitted profile is illustrated in Figure 19(a) and is referred to as the “fitted profile”. 

In addition, the actual surface profile image is obtained from the Micro-Vu System for comparison 

with the fitted profile and is presented in Figure 19(b). According to Figure 19(a) and (b), the 

periodic parabolic trend is observed in both fitted profiles based on the raw data and the surface 

profile image, which verifies the adopted surface profile representation scheme used in the 

proposed surface roughness models.  
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Figure 18. The raw profile data obtained from optical profilometer: (a) the top view of the raw 

profile, and (b) the X-axis profile 

 

Figure 19. Comparison of (a) raw profile data and fitted profile, and (b) surface profile image 
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2.2.6 Surface Roughness Model Validation 

Table XI presents the results of the experiments to evaluate the effectiveness and validity of 

the proposed surface roughness model. The main input parameters of the additive profile include 

the layer thickness (𝑡), stratification angle (𝜃), and layer error coefficients (ɛ𝒙 and ɛ𝒚).  

Table XI. Validation of the proposed model 

θ (deg) Observed Ra (μm) Predicted Ra (μm) Percentage error (%) 

20° 54.069 55.023 1.764 

30° 56.021 52.683 5.958 

40° 50.651 46.789 7.625 

50° 40.006 40.294 0.720 

60° 30.808 32.560 5.689 

70° 18.868 19.904 5.491 

90° 17.332 17.762 2.484 

 

  

 

Figure 20. Comparison of predicted and experimental surface roughness values for AM 
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The average prediction error is found to be less than 5%.  In Figure 20, the performance of the 

model is demonstrated for different stratification angles. Confidence intervals are generated for 

the predicted roughness values based on the distribution of the error coefficients in Table X. 

According to the figure, the confidence intervals are generally larger for smaller stratification 

angles. In Table XII, the accuracy of the proposed surface roughness model for AM case is 

compared with the existing models in the literature. According to this comparison, the proposed 

model has superior performance compared to the existing models in most cases. The proposed 

representation scheme of the surface profile can be one of the reasons for this superior performance. 

Table XII. Comparison of the proposed AM surface roughness model with the literature 

Angle 

θ 

(deg) 

Experiment 

(μm) 

(Pandey et al. 2003) 
(Boschetto and 

Bottini 2015) 

(Taufik and Jain 

2016) 
Proposed model 

Prediction 

(μm) 

Error 

(%) 

Prediction 

(μm) 

Error 

(%) 

Prediction 

(μm) 

Error 

(%) 

Prediction 

(μm) 

Error 

(%) 

0° NA 28.150 NA NA NA 29.518 NA NA NA 

20° 54.069 51.678 4.422 46.913 13.235 28.433 47.413 55.023 1.764 

30° 56.021 35.377 36.850 32.090 42.717 33.465 40.263 52.683 5.958 

40° 50.651 27.530 45.648 24.961 50.720 27.809 45.097 46.789 7.625 

50° 40.006 23.105 42.246 20.943 47.650 23.334 41.674 40.294 0.720 

60° 30.808 20.441 33.649 18.524 39.872 20.639 33.007 32.560 5.689 

70° 18.868 18.840 0.148 17.071 9.524 19.019 0.800 19.904 5.491 

90° 17.332 17.705 2.155 16.038 7.463 17.868 3.096 17.762 2.484 

 

2.2.7 Conclusions  

In this section, surface roughness in the AM process is mathematically modeled and analyzed.  

The model is a function of two important process parameters: layer thickness and stratification 
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angle. In addition, it takes into account the layer to layer variation using the layer’s error 

coefficients. A new surface profile representation scheme compared to the literature is proposed 

to increase the prediction accuracy. Experiments are performed to verify the surface profile 

representation scheme and validate the developed models. According to the experimental results, 

the proposed model performs generally well with an average of 4.25% error.  

2.3 Characterizing Porosity Variation and Filament Bonding in Extrusion-based Additive 

Manufacturing    

In addition to dimensional and geometric properties studied above, it is necessary to account 

for the mechanical properties of products fabricated by AM technology. To quantify the global 

and local mechanical strength, it is necessary to characterize the microstructures and their variation 

within the product. The extent of bonding between adjacent filaments, both within and between 

layers, as well as porosity are two of the most important parameters that directly contribute to the 

mechanical strength of parts in extrusion-based additive manufacturing. However, most of the 

existing analytical models in the literature either significantly underestimate these parameters or 

fail to quantify or address their variation along the deposition path and build direction. Therefore, 

the objective of this section is to establish methodologies for accurate estimation of these 

parameters by integrating the process physics and machine learning techniques.   

2.3.1 Methodology 

An overview of the adopted methodology can be described as follows. First, the geometry of 

interest is decomposed into anisotropic voxels (i.e., voxels with unidentical width, length, and 

height) based on the selected layer width and thickness values as well as the user-defined 

computational step size. Next, the temperature history at the center of each voxel is estimated using 

an analytical heat transfer modeling approach. Assuming that necking (i.e., formation of bond 
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among contiguous filaments during the sintering process) occurs during the first few seconds of 

deposition, the inter-layer and intra-layer bonding values are characterized based on the interface 

temperature of the neighboring voxels using the Newtonian sintering model. Next, to account for 

the deformation of micro geometries and their effect on the bonding degree, a machine learning-

based model is established, in which, first the deformation values are obtained from the specimen’s 

cross-sectional images through image processing, and then fed into a neural network model.  

Finally, the calculated inter-layer and intra-layer bonding values, as well as the void boundaries 

are updated based on the obtained filament deformation values and the law of conservation of mass 

through a geometric-based modeling approach. The flowchart of this work’s methodology is 

presented in Figure 21, and the details are provided in the following sub-sections.  

 

Figure 21. Flowchart of the proposed methodology. 
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2.3.2 Nomenclature 

𝑑 Selected layer thickness   

𝑤 Selected layer width  

𝑖 Index of the layer number, 𝑖∈{1,… 𝐼} 

𝑑𝑖
  Thickness of 𝑖th layer 

𝑤𝑖
  Width of 𝑖th layer 

𝑃 Perimeter of filament’s cross-section (𝑚) 

𝜆𝑘 Fraction of perimeter 𝑃 

𝐴 Area of filament’s cross-section (𝑚2) 

𝑥 The location of voxel of interest along X axis (assumed to be colinear with the 

filaments)  

𝑦 The location of voxel of interest along Y axis  

𝑇 (𝑥, 𝑦, 𝑖, 𝑡) Temperature (°C) of voxel (𝑥, 𝑦, 𝑖) at time 𝑡 

𝑇𝐸 Temperature of environment (°C) 

𝑇𝐷
  Temperature of filament at time of deposition (°C) 

𝑡(𝑥, 𝑦, 𝑖) Activation time of voxel (𝑥, 𝑦, 𝑖) 

ℎ𝐶𝑜𝑛𝑣 Convective heat transfer coefficient (𝑊 𝑚2⁄ °C) 

ℎ𝐶𝑜𝑛𝑑 Conductive heat transfer coefficient (𝑊 𝑚2⁄ °C) 

𝛿 Necking radius 

𝛿𝑌
𝑦,𝑦′

(𝑥, 𝑖) Intra-layer necking radius between distinct neighboring filament sections 

represented by voxels (𝑥, 𝑦, 𝑖) and (𝑥, 𝑦′, 𝑖) without considering the filament’s 

deformation, |𝑦 − 𝑦′|=1 

𝛿𝑍
𝑖,𝑖′(𝑥, 𝑦) Inter-layer necking radius between distinct neighboring filament sections 

represented by voxels (𝑥, 𝑦, 𝑖) and (𝑥, 𝑦, 𝑖′) without considering the filament’s 

deformation, |𝑖 − 𝑖′|=1 

𝛿𝑌𝐹
𝑦,𝑦′

(𝑥, 𝑖) Intra-layer necking radius between distinct neighboring filament sections 

represented by voxels (𝑥, 𝑦, 𝑖) and (𝑥, 𝑦′, 𝑖) after accounting for the filament’s 

deformation, |𝑦 − 𝑦′|=1 



68 

 

𝛿𝑍𝐹
𝑖,𝑖′(𝑥, 𝑦) Inter-layer necking radius between distinct neighboring filament sections 

represented by voxels (𝑥, 𝑦, 𝑖) and (𝑥, 𝑦, 𝑖′) after accounting for the filament’s 

deformation, |𝑖 − 𝑖′|=1 

𝛽 The angle representing the necking radius between fused filaments  

𝜌 Density (𝑘𝑔 𝑚3⁄ ) 

𝐶 Specific heat capacity (𝐽 𝑘𝑔⁄ °C) 

𝛾(𝑇) Surface tension (𝑁 𝑚 ⁄ ) at temperature 𝑇 

𝜇(𝑇) Viscosity (𝑚2 𝑠⁄ ) at temperature 𝑇 

𝜇∗ Fitting parameter for viscosity model 

𝑏 Fitting parameter for viscosity model 

𝑀 Molar mass (𝑘𝑔/mol) 

𝑃𝑠 Parachor number 

𝛼 Coefficient of thermal expansion (°𝐶−1) 

𝑉𝐴
𝑦,𝑦′ 
𝑖,𝑖′ (𝑥) Void cross-sectional area encompassed by four voxels (𝑥, 𝑦, 𝑖) , (𝑥, 𝑦′, 𝑖) , 

(𝑥, 𝑦, 𝑖′), and (𝑥, 𝑦′, 𝑖′) 

𝛼1, 𝛼2, 𝛼3, 𝛼4 Angles of quadrilateral edges representing the void boundary 

𝑃𝑟 𝑟th corner of the initial void boundary, 𝑟=1,2,3,4  

𝑃𝑟
′ 𝑟th corner of the final void boundary, 𝑟=1,2,3,4 

𝑷 Matrix of initial void boundary coordinates 

𝑷′ Matrix of updated void boundary coordinates  

𝑋𝑟 Euclidian distance between corner points 𝑃𝑟  and 𝑃𝑟
′  on initial and final void 

boundaries  

𝐷 Linear distance between the centers of two horizontally neighboring filament 

segments 

𝛥𝑍
𝑖,𝑖′

 Vertical shrinkage distance between two vertically neighboring filament 

segments of layers 𝑖 and 𝑖′ 

𝑇̅𝑦,𝑦′  (𝑥, 𝑖, 𝑡) 
Temperature at the interface of two horizontally neighboring voxels (𝑥, 𝑦, 𝑖) and  
(𝑥, 𝑦′, 𝑖) at time 𝑡  
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𝑇̅𝑖,𝑖′  (𝑥, 𝑦, 𝑡) 
Temperature at the interface of two vertically neighboring voxels (𝑥, 𝑦, 𝑖) and  
(𝑥, 𝑦, 𝑖′) at time 𝑡  

𝐴( 𝜃0 , 𝜃1) Area of the elliptical arc bounded by two points on an ellipse 

𝜃0 , 𝜃1 polar angles representing the intersection points of two ellipses 

 

2.3.3 Thermal Profile Modeling 

The evolution of temperature is a factor of heating and cooling rates of filaments upon arrival 

and leaving of the extrusion head, axial conduction, conduction with adjacent filaments (either 

from the main printing material or support material) as well as convection with air.  These rates 

depend on many factors including the: (1) material properties (e.g., glass transition temperature, 

thermal conductivity, density, surface tension, and viscosity), (2) process parameters and strategy 

of build (e.g., liquefier temperature, layer thickness, extrusion width, feed rate, and sequence and 

direction of filaments to be printed), (3) part geometry, and (4) environment (e.g., envelope/ 

platform properties and temperature).  

To characterize the temperature profile, the part is initially decomposed into anisotropic voxels 

where the X-axis direction is aligned with the deposition direction on the build platform. The Y 

and Z axes represent the filament segments and layer numbers, respectively. The voxel size is 

defined as (𝑠, 𝑤, 𝑑) where 𝑠 represents a user-defined computational step size (generally a small 

value) along the deposition direction 𝑠 = 𝑑𝑥, 𝑤 is the selected layer width, and 𝑑 is the selected 

layer thickness. Both 𝑤  and 𝑑  values can be obtained from the printing stage. The raster gap 

between filament segments is assumed to be zero and the deposition strategy is assumed to be 

unidirectional. Next, a temperature tensor is defined to represent the temperature of each voxel. 

The temperature distribution within each voxel is assumed to be uniform. Provided that no material 

is deposited into a voxel, its temperature is assumed to be similar to the environment. As material 
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is deposited into the voxels, the values of the temperature tensor are updated according to the 

closed-form solution proposed in [148].  

A voxel is called "active" if it contains material. Activation time of a voxel is defined as 𝑡(𝑥, 𝑦, 𝑖) 

which represents the time that material is deposited into voxel (𝑥, 𝑦, 𝑖). Note that for a given layer 

thickness and width value, activation time 𝑡(𝑥, 𝑦, 𝑖)  would depend on velocity, path planning 

strategy, and the geometry of interest. As suggested by the literature, it is assumed that axial 

conduction along X direction is not significant [148], [173] and thus, is neglected in this work. 

Consequently, by neglecting those neighboring voxels along the X direction, and based on the 

assumption of unidirectional path planning strategy, each voxel (𝑥, 𝑦, 𝑖)  can have at most two 

active neighbors at 𝑡(𝑥, 𝑦, 𝑖), and at most 4 active neighbors at time 𝑡 > 𝑡(𝑥, 𝑦, 𝑖). The sequence 

in which material is deposited into the voxels, information on active neighbors, and deposition 

velocity are directly obtained from the G-code based on the selected deposition strategy.  

An illustrative example of the number of active neighbors at time of deposition for a 3 layered 

structure and with 3 filaments within each layer is provided in Figure 22. The total 9 stages of 

printing, from (1) to (9), at a given transverse section based on a unidirectional deposition strategy 

are presented. In stage (1) the bottom right voxel (here represented in 2D) is activated as material 

is deposited into it. The number inside this voxel represents the number of active neighbors of this 

newly deposited voxel. As can be seen, no active neighboring voxel exists for the newly deposited 

voxel in this stage, thus the value is zero. Moving to stage (2), the second voxel is activated. As 

the voxel to its right is already active, the number of active neighbors is 1. Similarly, in stage (5), 

the newly deposited voxel has two already active neighbors (to its left and its bottom). Note that 

the diagonal voxels are not considered neighbors as they do not share any boundary with the voxel 

of interest. 



71 

 

 

Figure 22. An illustrative example of the number of active neighbors at time of deposition for a 3 

layered structure and with 3 filaments within each layer. 

The temperature at voxel (𝑥, 𝑦, 𝑖) at production time 𝑡 can be approximated as follows [148]:  

 

𝑇 (𝑥, 𝑦, 𝑖, 𝑡) = 𝐶1 exp [
−𝑃𝑓(𝑛(𝑥,𝑦,𝑖,𝑡)

1 , … , 𝑛(𝑥,𝑦,𝑖,𝑡)
𝐾 )

𝜌𝐶𝐴
(𝑡 − 𝑡(𝑥, 𝑦, 𝑖))]

+ 𝑔(𝑛(𝑥,𝑦,𝑖,𝑡)
1 , … , 𝑛(𝑥,𝑦,𝑖,𝑡)

𝐾 ) 

(2.17) 

Where,  

 𝐶1 = 𝑇𝐷
 − 𝑔(𝑛(𝑥,𝑦,𝑖,𝑡)

1 , … , 𝑛(𝑥,𝑦,𝑖,𝑡)
𝐾 ) (2.18) 

 

𝑓(𝑛(𝑥,𝑦,𝑖,𝑡)
1 , … , 𝑛(𝑥,𝑦,𝑖,𝑡)

𝐾 ) = ℎ𝑐𝑜𝑛𝑣 (1 −∑𝑛(𝑥,𝑦,𝑖,𝑡)
𝑘 𝜆𝑘

𝐾

𝑘=1

) +∑𝑛(𝑥,𝑦,𝑖,𝑡)
𝑘 𝜆𝑘

𝐾

𝑘=1

ℎ𝑐𝑜𝑛𝑑 (2.19) 

 𝑔(𝑛(𝑥,𝑦,𝑖,𝑡)
1 , … , 𝑛(𝑥,𝑦,𝑖,𝑡)

𝐾 )

=
ℎ𝑐𝑜𝑛𝑣 (1 − ∑ 𝑛(𝑥,𝑦,𝑖,𝑡)

𝑘 𝜆𝑘
𝐾
𝑘=1 )𝑇𝐸 + ∑ 𝑛(𝑥,𝑦,𝑖,𝑡)

𝑘 𝜆𝑘
𝐾
𝑘=1 ℎ𝑐𝑜𝑛𝑑𝑇(𝑥,𝑦,𝑖,𝑡)

𝑘

𝑓(𝑛(𝑥,𝑦,𝑖,𝑡)
1 , … , 𝑛(𝑥,𝑦,𝑖,𝑡)

𝐾 )
 

(2.20) 



72 

 

 
𝑛(𝑥,𝑦,𝑖,𝑡)
𝑘 = {

1,   if 𝑘th neighbor of voxel (𝑥, 𝑦, 𝑖) is active at time t,    𝑘 = 1,… , 𝐾
0,                                                                                     else                            

 
(2.21) 

The filament’s elliptical cross-sectional area (𝐴) and perimeter (𝑃) are calculated as:   

 𝐴 =
𝜋

4
𝑑𝑤 (2.22) 

 
𝑃 =

𝜋

2
(𝑑 + 𝑤) (1 +

3ℎ

10 + √4 − 3ℎ
) ,     ℎ =

(𝑤 − 𝑑)2

(𝑤 + 𝑑)2
 (2.23) 

2.3.4 Initial Filament Bonding Model 

The initial bonding occurs during the first few seconds of deposition as the temperature of 

interface is generally above the critical sintering temperature. In this work, the temperature of 

interface between two neighboring active voxels is estimated by averaging the temperature of the 

individual voxels.  The Newtonian sintering model [145] (a modification of the Frenkel’s model 

in 1945 [174]) is adopted.  

 
𝑑𝛽

𝑑𝑡
=

𝛾(𝑇)

𝑎0𝜇(𝑇)

2
−5

3⁄ cos 𝛽 sin 𝛽 (2 − cos 𝛽)
1
3⁄

(1 − cos 𝛽)(1 + cos 𝛽)
1
3⁄

 (2.24) 

where 𝛽 = sin−1 𝛿 𝑎⁄ , and 𝛽, 𝛿, 𝑎0, and 𝑎 are the dimensionless necking radius, necking value, 

initial and final particle radiuses, as shown in Figure 23.  

 

Figure 23. Bond formation: (a) surface contacting, and (b) neck growth. 

Note that as the printed filaments are generally elliptical, the following definition for 𝑎0 is adopted.  



73 

 

 𝑎0 = {
𝑑
2⁄  𝑖𝑓 𝛿 =  𝛿𝑌

𝑦,𝑦′(𝑥, 𝑖) 𝑜𝑟 𝛿𝑌
𝑦,𝑦′(𝑥, 𝑖′)   

𝑤
2⁄  𝑖𝑓 𝛿 = 𝛿𝑍

𝑖,𝑖′(𝑥, 𝑦) 𝑜𝑟 𝛿𝑍
𝑖,𝑖′(𝑥, 𝑦′)

 (2.25) 

The interface temperature 𝑇 is calculated by averaging the temperatures of neighboring voxels, 

calculated from Equation (2.17), at the time of deposition.  

 

𝑇

=

{
 
 
 
 
 

 
 
 
 
 

𝑇̅𝑦,𝑦′  (𝑥, 𝑖, 𝑡(𝑥, 𝑦
′, 𝑖)) =

(𝑇 (𝑥, 𝑦, 𝑖, 𝑡(𝑥, 𝑦
′, 𝑖)) + 𝑇 (𝑥, 𝑦

′, 𝑖, 𝑡(𝑥, 𝑦′, 𝑖)))

2
  𝑖𝑓 𝛿 =  𝛿𝑌

𝑦,𝑦′(𝑥, 𝑖)  

𝑇̅𝑦,𝑦′  (𝑥, 𝑖
′, 𝑡(𝑥, 𝑦′, 𝑖′)) =

(𝑇 (𝑥, 𝑦, 𝑖
′, 𝑡(𝑥, 𝑦′, 𝑖′)) + 𝑇 (𝑥, 𝑦

′, 𝑖′, 𝑡(𝑥, 𝑦′, 𝑖′)))

2
  𝑖𝑓 𝛿 =  𝛿𝑌

𝑦,𝑦′(𝑥, 𝑖′)

𝑇̅𝑖,𝑖′  (𝑥, 𝑦, 𝑡(𝑥, 𝑦
 , 𝑖′)) =

(𝑇 (𝑥, 𝑦, 𝑖
 , 𝑡(𝑥, 𝑦  , 𝑖′)) + 𝑇 (𝑥, 𝑦

 , 𝑖′, 𝑡(𝑥, 𝑦  , 𝑖′)))

2
 𝑖𝑓 𝛿 = 𝛿𝑍

𝑖,𝑖′(𝑥, 𝑦)

𝑇̅𝑖,𝑖′  (𝑥, 𝑦
′, 𝑡(𝑥, 𝑦′

 
, 𝑖′)) =

(𝑇 (𝑥, 𝑦
′, 𝑖  , 𝑡(𝑥, 𝑦′

 
, 𝑖′)) + 𝑇 (𝑥, 𝑦

′ , 𝑖′, 𝑡(𝑥, 𝑦′
 
, 𝑖′)))

2
 𝑖𝑓 𝛿 = 𝛿𝑍

𝑖,𝑖′(𝑥, 𝑦′)

 
(2.26) 

The surface tension 𝛾(𝑇) and viscosity 𝜇(𝑇) parameters play an important role in estimating 

the necking value. Nonetheless, these rheological properties are functions of temperature. To 

account for this dependency, the viscosity parameter is assumed to obey the Reynolds viscosity 

model: 

 𝜇(𝑇) = 𝜇∗exp (−𝑏𝑇) (2.27) 

where 𝜇∗and 𝑏 are fitting parameters based on experimental data.  

Characterizing the temperature dependency of surface tension for thermoplastics (especially 

in their melted state) is generally not straightforward. Therefore, the Parachor model is adopted 

Additional information on this approach are provided in [175] and [176].  

 𝛾 = (
 𝜌𝑃𝑠
𝑀

)
4

 (2.28) 
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where 𝑃𝑠 is the Parachor number. To account for the effect of temperature, the above equation is 

re-written as follows.  

 𝛾(𝑇) = (
 𝜌𝑃𝑠

𝑀[1 + 𝛼(𝑇 − 𝑇𝐸)]3
)
4

 (2.29) 

where 𝛼 is the thermal expansion coefficient. The thermal expansion is assumed to be isotropic.  

Finally, the intra-layer and inter-layer necking radius, i.e., 𝛿𝑌
𝑦,𝑦′(𝑥, 𝑖)  and  

𝛿𝑍
𝑖,𝑖′(𝑥, 𝑦) are calculated by solving the differential equation provided in (2.24) and based on the 

derived temperature profiles from Equation (2.17).  

2.3.5 Final Filament Bonding after Accounting for the Filament’s Deformation 

Modeling of the filament deformation due to built-in stresses, gravity, weight of filaments, and 

constant pressure of nozzle during the printing process is extremely complex. In addition, if raster 

gap between filaments is small, the dynamics of bonding further affect the filament’s deformation. 

To account for the complex effect of these factors on the deformation of filaments, a machine 

learning approach is adopted in this work. The predicted deformation factors (i.e. bead size 

changes along width and thickness) are then used to update the inter-layer and intra-layer bonding 

values from 2.3.4 (and thus the void boundaries) based on the law of conservation of mass and a 

proposed geometric modeling approach. The detailed steps of this process are provided as follows.  

Step 1. Characterizing the micro-geometries deformation using artificial neural network  

Artificial neural network (ANN) is a popular machine learning algorithm capable of nonlinear 

mapping between several input and output parameters. In this work, a backpropagation neural 

network structure is adopted to characterize the filament deformation [177]. The inputs of this 
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model include extrusion width, total number of neighbors, printing speed, layer index, and location 

along the deposition path, and the output is the filament deformation (along the build direction). 

The general structure of the adopted neural network model is as follows. The output of each neuron 

is calculated as some function (i.e. activation function) of the weighted sum of its inputs, as shown 

below  

   

𝑦𝑖 = 𝑓 (∑𝑤𝑖𝑗𝑥𝑗
𝑗

+ 𝑤0𝑗) (2.30) 

where 𝑤𝑖𝑗 refers to the weight from unit 𝑗 to unit 𝑖, and 𝑤0𝑗 is the bias term. In this work, the log-

sigmoid function is used as the activation function. Therefore, the output is calculated as:   

   
𝑦𝑖 =

1

1 + 𝑒−(∑ 𝑤𝑖𝑗𝑥𝑗𝑗 +𝑤0𝑗)
 (2.31) 

In the backward learning, the loss function (usually defined as the sum of square of errors based 

on the Euclidian distance between target and estimated values) is evaluated and then used to update 

the 𝑤𝑖𝑗’s, so that the network converges eventually. The Levenberg-Marquardt algorithm is used 

in this work for training the data which uses Jacobian matrix, i.e. 𝐽𝑇𝐽, to approximate the Hessian 

matrix 𝐻. Therefore, the weights 𝑤𝑖𝑗 are updated as 

   𝑤𝑖𝑗
𝑘+1 = 𝑤𝑖𝑗

𝑘 − [𝐽𝑇𝐽 + 𝜇𝐼]−1𝐽𝑇𝐸 (2.32) 

where 𝜇 is a scalar, 𝐼 is the identity matrix and 𝐸 is the error function. 

Step 2. Updating the void boundary based on the new micro-geometry characteristics  

Once the deformation of filaments (beads) for a given layer 𝑖 is predicted, it is used to update 

the void boundary and the intra-layer and inter-layer bonding values as shown in Figure 24(a) and 
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Figure 24(b). In other words, as the layers are compressed and according to the law of conservation 

of mass, the material would have no option but to pour into the existing void boundaries (see Figure 

24(c)). 

 

Figure 24. The representation of (a) initial filament bonding and void, (b) final filament bonding 

and void, and (c) the intersection areas 𝐴1, 𝐴2, 𝐴3, and 𝐴4 pouring into the void. 

Let 𝐴
𝑦,𝑦′
𝑖,𝑖′ (𝑥)  be the area representing the amount of material that will pour into a given void 

boundary due to the deformation of two consecutive layers 𝑖 and 𝑖′. This area is obtained by the 

summation of the four areas 𝐴1, 𝐴2, 𝐴3, and 𝐴4 as shown in Figure 24(c). It is assumed that 𝐴1 =

𝐴3 as the vertical shrinkage distance is similar. However, as 𝑑𝑖
 ≠ 𝑑𝑖′

 , the areas 𝐴2 and 𝐴4 would 

be different.  

The intersection areas 𝐴1, 𝐴2, 𝐴3, 𝐴4 can be estimated as follows [178]:   

 
1

2
[2𝐴( 𝜃0 , 𝜃1) − |𝑥1𝑦0 − 𝑥0𝑦1|] (2.33) 

where 𝐴( 𝜃0 , 𝜃1) is the area of the elliptical sector between angles 𝜃0 and  𝜃1, and (𝑥0, 𝑦0) and 

(𝑥1, 𝑦1) are the coordinates of the intersection points between two ellipses. The area 𝐴( 𝜃0 , 𝜃1) 

can be calculated as, 

  

    

  
Void

Intra-layer 

necking 

radius 

Inter-layer 

necking 

radius 

New void

 
 ⁄

 
 ⁄

  

New inter-layer 

necking radius 

New intra-layer 

necking radius 

(a) (b) (c)
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 𝐴( 𝜃0 , 𝜃1) = ∫
1

2

𝜃1

 𝜃0 

 𝑟2𝑑𝜃 (2.34) 

where 𝑟 is the radius of the polar coordinate system which represents the elliptical function with 

semi-major and semi-minor axis length of 
𝑤𝑖

2
 and 

𝑑𝑖

2
 , respectively. The 𝑤𝑖 value is estimated as 

𝑑𝑤

𝑑𝑖
 

based on the law of conservation of mass. As a result, 𝑟 can be calculated as, 

 𝑟2 =
𝑤𝑖

2𝑑𝑖
2

4(𝑑𝑖
2 cos 𝜃 + 𝑤𝑖

2 sin 𝜃)
 (2.35) 

Now by substituting (2.35) in (2.34), 𝐴( 𝜃0 , 𝜃1) can be calculated as,  

 𝐴( 𝜃0 , 𝜃1) = 𝐹(𝜃1) − 𝐹(𝜃0) (2.36) 

where 𝐹(𝜃) is the antiderivative of the integrand as described below, 

 𝐹(𝜃) =
𝑤𝑖𝑑𝑖
8

[𝜃 − 𝑡𝑎𝑛−1 (
(𝑑𝑖 − 𝑤𝑖)𝑠𝑖𝑛2𝜃

(𝑤𝑖 + 𝑑𝑖) + (𝑑𝑖 − 𝑤𝑖)𝑐𝑜𝑠2𝜃
)] (2.37) 

For areas 𝐴2 and 𝐴4, the intersection points (𝑥0, 𝑦0) and (𝑥1, 𝑦1) are calculated as, 

 (
𝐷

2
, ±

𝑑𝑖
2𝑤𝑖

√𝑤𝑖
2 − 𝐷2) (2.38) 

where 𝐷 is the initial distance between the center of filaments segment, i.e. 𝐷 = 𝑤 in this work.  

Therefore, the angles corresponding to these points are calculated as follows. 

 𝜃0  
= 2𝜋 − 𝑡𝑎𝑛−1 (

𝑑𝑖√𝑤𝑖
2 − 𝐷2

𝐷𝑤𝑖
) (2.39) 

 𝜃1 = 𝑡𝑎𝑛−1 (
𝑑𝑖√𝑤𝑖

2 − 𝐷2

𝐷𝑤𝑖
) (2.40) 
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For areas 𝐴1 and 𝐴3, the intersection points (𝑥0, 𝑦0) and (𝑥1, 𝑦1) are calculated as follows. 

 (±
𝑤 
2𝑑 

√2𝑑𝛥𝑍
𝑖,𝑖′ − 𝛥𝑍

𝑖,𝑖′
2

,
(𝑑 − 𝛥𝑍

𝑖,𝑖′)

2
) (2.41) 

where 𝛥𝑍
𝑖,𝑖′ = 2𝑑 − (𝑑𝑖 + 𝑑𝑖′)  is the vertical shrinkage distance between the center of filament 

segments, and 𝑑𝑖 and 𝑑𝑖′  are obtained from Step 1. In addition, the angles corresponding to these 

points can be formulated as follows.  

 𝜃0 = 𝑡𝑎𝑛−1(

𝑑 − 𝛥𝑍
𝑖,𝑖′

2
𝑤
2𝑑

√2𝑑𝛥𝑍
𝑖,𝑖′ − 𝛥𝑍

𝑖,𝑖′2
⁄ ) (2.42) 

 𝜃1 = 𝜋 − 𝑡𝑎𝑛−1(

𝑑 − 𝛥𝑍
𝑖,𝑖′

2
𝑤
2𝑑

√2𝑑𝛥𝑍
𝑖,𝑖′ − 𝛥𝑍

𝑖,𝑖′2
⁄ ) (2.43) 

We assume that the new void boundary is convex, quadrilateral, and its edges possess the same 

slope as the initial void edges. The cross-section of the void between four voxels (𝑥, 𝑦, 𝑖), (𝑥, 𝑦′, 𝑖), 

(𝑥, 𝑦, 𝑖′) , and (𝑥, 𝑦′, 𝑖′) , and the initial and final void boundaries are presented in Figure 25. 

According to this figure, 𝑃1
 , 𝑃2

 , 𝑃3
  and 𝑃4

  are the corner points of the quadrilateral representing 

the initial void boundary, 𝑃1
′, 𝑃2

′ , 𝑃3
′  and 𝑃4

′ are the corner points of the quadrilateral representing 

the new void boundary. Assuming that the origin of the coordinate system is at the virtual 

intersection of the filament boundaries, the matrices 𝑷 and 𝑷′ can be defined as follows. 
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 𝑷 =

[
 
 
 
 
 𝛿𝑍

𝑖,𝑖′(𝑥, 𝑦′) −
𝑤

2
0

𝑤

2
− 𝛿𝑍

𝑖,𝑖′(𝑥, 𝑦)

0

 
    
 

0

𝛿𝑌
𝑦,𝑦′

(𝑥, 𝑖) −
𝑑

2
0

𝑑

2
− 𝛿𝑌

𝑦,𝑦′
(𝑥, 𝑖′)]

 
 
 
 
 

 (2.44) 

 𝑷′ =

[
 
 
 
 
 𝛿𝑍

𝑖,𝑖′(𝑥, 𝑦′) + 𝑋1 −
𝑤

2
0

𝑤

2
− 𝑋3 − 𝛿𝑍

𝑖,𝑖′(𝑥, 𝑦)

0

 
    
 

0

𝛿𝑌
𝑦,𝑦′(𝑥, 𝑖) + 𝑋2 −

𝑑

2
0

𝑑

2
− 𝑋4−𝛿𝑌

𝑦,𝑦′
(𝑥, 𝑖′)]

 
 
 
 
 

 (2.45) 

 

 

Figure 25. Initial and updated void boundary representation for four voxels (𝑥, 𝑦, 𝑖), (𝑥, 𝑦′, 𝑖), 

(𝑥, 𝑦, 𝑖′), and (𝑥, 𝑦′, 𝑖′). 

It is observed that  

 

𝐴1 

2
+
𝐴3 

2
+ 𝐴2

=
‖𝑃1

′𝑃2
′‖ + ‖𝑃1

 𝑃2
 ‖

2
(‖𝑃2

′𝑃2
 ‖ cos 𝛼2)

+
‖𝑃2

′𝑃3
′‖ + ‖𝑃2

 𝑃3
 ‖

2
(‖𝑃2

′𝑃2
 ‖ cos 𝛼1) 

(2.46) 

and  
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𝐴1 

2
+
𝐴3 

2
+ 𝐴4

=
‖𝑃1

′𝑃4
′‖ + ‖𝑃1

 𝑃4
 ‖

2
(‖𝑃4

′𝑃4
 ‖ cos𝛼4)

+
‖𝑃3

′𝑃4
′‖ + ‖𝑃3

 𝑃4
 ‖

2
(‖𝑃4

′𝑃4
 ‖ cos𝛼3) 

(2.47) 

where ‖ ‖ denotes the Euclidian distance. Furthermore, angles 𝛼1 to 𝛼4 are calculated as,  

 𝛼1 = tan−1 (
𝑑 − 2𝛿𝑌

𝑦,𝑦′
(𝑥, 𝑖)

𝑤 − 2𝛿𝑍
𝑖,𝑖′(𝑥, 𝑦)

) (2.48) 

 𝛼2 = tan−1 (
𝑑 − 2𝛿𝑌

𝑦,𝑦′
(𝑥, 𝑖)

𝑤 − 2𝛿𝑍
𝑖,𝑖′(𝑥, 𝑦′)

) (2.49) 

 𝛼3 = tan−1 (
𝑑−2𝛿𝑌

𝑦,𝑦′
(𝑥, 𝑖′)

𝑤 − 2𝛿𝑍
𝑖,𝑖′(𝑥, 𝑦)

) (2.50) 

 𝛼4 = tan−1 (
𝑑−2𝛿𝑌

𝑦,𝑦′
(𝑥, 𝑖′)

𝑤 − 2𝛿𝑍
𝑖,𝑖′(𝑥, 𝑦′)

) (2.51) 

where 𝛿𝑌
𝑦,𝑦′

(𝑥, 𝑖), 𝛿𝑌
𝑦,𝑦′

(𝑥, 𝑖′), 𝛿𝑍
𝑖,𝑖′(𝑥, 𝑦), and 𝛿𝑍

𝑖,𝑖′(𝑥, 𝑦′) are previously calculated. Now based on 

the previous assumption that the slope of a distinct edge from the quadrilateral representing the 

initial void boundary is the same as the slope of the equivalent edge from the quadrilateral 

representing the final void boundary, the following set of equations are formulated.  

 ‖𝑃3
′𝑃3

 ‖ (2𝛿𝑌
𝑦,𝑦′

(𝑥, 𝑖) − 𝑑) = ‖𝑃2
′𝑃2

 ‖(2𝛿𝑍
𝑖,𝑖′(𝑥, 𝑦) − 𝑤) (2.52) 

 ‖𝑃1
′𝑃1

 ‖ (2𝛿𝑌
𝑦,𝑦′

(𝑥, 𝑖) − 𝑑) = ‖𝑃2
′𝑃2

 ‖(2𝛿𝑍
𝑖,𝑖′(𝑥, 𝑦′) − 𝑤) (2.53) 

Now by solving the set of equations in (2.46), (2.47), (2.52) and (2.53), the coordinates of corner 

points 𝑃1
′, 𝑃2

′, 𝑃3
′ and 𝑃4

′ of the final void boundary can be calculated.  
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Step 3. Updating the necking radius values and estimating the void cross-sectional area   

Once the new corner points are obtained from Step 2, the new necking radius values can be 

calculated as follows.   

 𝛿𝑍𝐹
𝑖,𝑖′(𝑥, 𝑦) = 𝛿𝑍

𝑖,𝑖′(𝑥, 𝑦) + ‖𝑃3
′𝑃3

 ‖ (2.54) 

 𝛿𝑌𝐹
𝑦,𝑦′(𝑥, 𝑖) = 𝛿𝑌

𝑦,𝑦′(𝑥, 𝑖) + ‖𝑃2
′𝑃2

 ‖ (2.55) 

 𝛿𝑍𝐹
𝑖,𝑖′(𝑥, 𝑦′) = 𝛿𝑍

𝑖,𝑖′(𝑥, 𝑦′) + ‖𝑃1
′𝑃1

 ‖ (2.56) 

 𝛿𝑌𝐹
𝑦,𝑦′(𝑥, 𝑖′) = 𝛿𝑌

𝑦,𝑦′(𝑥, 𝑖′) + ‖𝑃4
′𝑃4

 ‖ (2.57) 

Finally, the void cross-sectional area encompassed by the four voxels (𝑥, 𝑦, 𝑖), (𝑥, 𝑦′, 𝑖), (𝑥, 𝑦, 𝑖′), 

and (𝑥, 𝑦′, 𝑖′) at a given location 𝑥 can be estimated as  

 𝑉𝐴
𝑦,𝑦′ 
𝑖,𝑖′ (𝑥) =

‖𝑃2
′𝑃4

′‖ × ‖𝑃1
′𝑃3

′‖

2
 (2.58) 

Similarly, the bonding values and void cross-sectional areas of all sets of neighboring four voxels 

in the geometry of interest can be calculated.     

2.3.6 Experimental Procedure and Material Properties  

The selected test part is a 100(L)×5(W)×3(H) mm cuboid, presented in Figure 26(b). Two 

critical process parameters of speed (feed rate) and extrusion width are selected and varied, from 

1800 to 2700mm/min and 0.45 to 0.6 mm, respectively, to generate specimens with different 

cooling rates, as shown in Table XIII.   

Multiple replicas for each specimen have been manufactured to reduce the variability of the 

experiment results. A unidirectional deposition strategy is adopted, i.e. the raster angle is set to 

zero. Once a layer is deposited, the deposition path is reversed as illustrated in Figure 26(a), and 
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the printing is continued. To simplify the image processing step, the layer thickness of 0.3 mm is 

selected and kept constant among all specimens. The rest of the fixed parameters are presented in 

Table XIV.   

 

Figure 26. (a) Deposition pattern of each layer, (b) test part geometry, and (c) filament segments 

within each layer.  

The specimens were then transversely cut at different locations along the deposition path with 

different distances ranging from 15 to 95 mm from the deposition start point using a 650 minitom 

from South Bay Technology Inc. with a 0.012-inch diamond wheel. The cross-sections were then 

polished and cleaned with alcohol to remove any dust or particles. The Micro-Vu SOL precision 

measurement system with 1-micron resolution was used to take high-resolution pictures of the 

cross-sections. The figures were then analyzed using image processing software for evaluating and 

measuring the dimensional characteristics of the printed beads as well as the void area.  



83 

 

Table XIII. Experiment design and specimen details 

Specimen 
Feed rate 

(mm/min) 

Layer width 

(mm) 

A1 2700 0.6 

A2 2250 0.6 

A3 1800 0.6 

B1 2700 0.53 

B2 2250 0.53 

B3 1800 0.53 

C1 2700 0.45 

C2 2250 0.45 

C3 1800 0.45 
 

 

 

Table XIV. Fixed experimental parameters 

Layer thickness  0.3 mm 

Liquefier temperature 220 °C 

Heated bed temperature 70 °C 

Fan setting  off 

Build location on platform Center  

 

 

The material used in this work is Polylactid acid also known as PLA with a chemical 

composition of (𝐶3𝐻4𝑂2)𝑛  [179]. While abundant data is available on ABS (Acrylonitrile 

butadiene styrene) material and its properties, rheological and thermal characteristics of PLA is 

less studied in the literature. Based on a comprehensive review of the PLA material and 

experimental data literature, the data provided in Table XV are adopted in this work. The molecular 

Parachor is calculated based on the approach used in [180] using the contribution of each 

atom/group/linkage according to the PLA chemical composition. The viscosity model coefficients 

are estimated based on the data obtained from the literature. Figure 27 demonstrates the fitted and 

experiment data for the viscosity of PLA at different temperatures. 
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Table XV. PLA material properties  

Properties Value Reference/Source 

Density (g.cm-3) 1.25 [129], [181] 

Glass transition (°C) 60±5 [129] 

Complete melting (°C) 165±5 [129] 

Molecular Parachor 148.1 Calculated based on the approach 

proposed in [180] using the 

atom/group/linkage contribution 

Molecular weight (g.mol-1) 72 [182] 

Thermal expansion coefficient (°C-1) 436 × 10-6 [183] 

Viscosity model coefficient 𝜇∗ (Pa.s) 1379×104 Fitted based on data provided in [129], 

[175] 

Viscosity model coefficient 𝑏 0.0499 Fitted based on data provided in [129], 

[175] 
Specific heat capacity (J/kg°C) 2175.69 Calculated from data provided in [184] 

Surface tension N.m-1 (at 160°C) 0.022 [175] 

Thermal conductivity (W/m°C) 0.19 - 1.47 [179], [185]–[187] 

Critical sintering temperature 150-155 [175], [188] 

 

 

Figure 27. Comparison of the fitted PLA viscosity model and experimental data in the literature. 
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2.3.7 Temperature Model Results   

A MATLAB code was generated based on the approach presented in 2.3.3 to characterize and 

analyze the temperature history. The part geometry characteristics, process parameters, and 

material properties described in 2.3.6 are incorporated in the code. Note that as the scale of the 

part is small (specially along the build direction), the surrounding environmental temperature is 

assumed to be close to the heated bed temperature. The step size along the X-axis is defined as 1 

mm, 𝑑𝑥 = 1. Note that a smaller step size can possibly increase the accuracy of the model but on 

the other hand will lead to a higher computation time. The processing of the temperature code for 

the specified test part in Figure 26(b) takes around 5 minutes using a desktop with Intel Xeon E5-

2620 2.40-GHz processor and 16-GB RAM.  

Figure 28(a) illustrates the cross-sectional view of temperature distribution for A1 specimen at 

location x=90 along the deposition path and time 61.468 seconds of the build. Based on the adopted 

unidirectional path planning strategy, the activation sequence of these voxels is as follows: 

(10,1,1), (10,2,1), (10,3,1), (10,4,1), (10,5,1), (10,5,2), (10,4,2), (10,3,2), (10,2,2), (10,1,2), 

(10,1,3), (10,2,3), and so on.  

Figure 28(b) demonstrates the temperature profile of voxels (10,1,1) to (10,1,2) from the above 

sequence during the first 61 seconds of the built. As can be observed, all temperature profiles are 

slowly converging to the environment temperature. Furthermore, the activation of neighboring 

voxels leads to an increase in the temperatures of adjacent filaments. For example, voxel (10,1,1) 

has two main neighbors: (10,2,1) and (10,1,2). According to the activation sequence, neighboring 

voxel (10,2,1) is the first to be activated at about 4.312 seconds from the activation of (10,1,1) 

voxel. This leads to a peak in the temperature profile of the (10,1,1) voxel.  
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Figure 28. (a) Cross-sectional view of temperature distribution for A1 specimen at location x=90, 

and (b) Temperature profile of filament segments for the first two layers. 
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The next observable peak occurs at time 18.304 seconds when (10,2,2) is activated. Note that 

although (10,2,2) is not a direct neighbor of (10,1,1) but is in contact with the neighbors of (10,1,1), 

i.e., (10,2,1), thus, can cause a slight increase in their temperature and consequently the 

temperature of their neighbors. Finally, the last and the largest peak occurs at time 22.176 seconds 

when voxel (10,1,2) is activated. Due to a larger contact area between (10,1,2) and (10,1,1), the 

observed temperature peak is larger than the previous peaks. The obtained patterns of temperature 

profiles due to interlayer and intralayer reheating are consistent with those reported in the literature 

[146], [148], [152].      

2.3.8 Filament Deformation Modeling and Results   

To analyze the filament deformation, a dataset with 270 entries is generated in which the 

deformation factor, i.e. distribution of layer thickness for different specimens, is measured. The 

final data set is {(𝒙𝒓𝒔, 𝑦𝑟𝑠)}1
270, where 𝒙𝒓𝒔 ∈ ℝ𝟓 is a vector of the 5 input parameters with respect 

to the 𝑟th filament segment of 𝑠th specimen (i.e., extrusion width, total number of neighbors at a 

given cutting location, printing speed, layer index, cutting location along the deposition path), and 

𝑦𝑟𝑠 is the new value of layer thickness due to deformation. From this data set, 20 data points are 

randomly put aside as the test set. The remaining data are used for training and validation purposes. 

For every 𝒙𝒓𝒔 in this data set, each of the k parameters are mapped to the closed interval [0,1]. This 

scaling ensures that during training, each of the k parameters is equally important. A 10-fold cross-

validation is used on the resulting normalized data set {(𝒙𝒓𝒔
′
 
, 𝑦𝑟𝑠)}1

270, where 𝒙𝒓𝒔
′ ∈  [0,1]𝑘. The 

dataset is randomly divided into 10 subsets, and the performance of the generated model based on 

the remaining 9 subsets was checked on the selected subset. This process was repeated over all 

subsets and then an average score was generated. The correlation analysis is used to reduce the 

dimensionality of the input parameters and increase the accuracy of prediction. Furthermore, the 
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parameters of the neural network model were optimized during the training process using a greedy 

algorithm. Finally, the performance of the trained ANN model for characterizing the layer 

thickness values along different layers was tested on the test data set.  

The accuracy metrics of root mean square error (RMSE), mean absolute error (MAE), and 

coefficient of determination (R-squared) are presented in Table XVI. The R-squared parameter for 

the training, validation, and test data sets is found to be 92%, 90.6%, and 90.3%, respectively. 

Figure 29 demonstrates the performance of the fitted model and the distribution of prediction error 

along the build direction.  According to this figure, it appears that the model overestimates the 

smaller layer thickness values (generally from the initial transition layers). Furthermore, the 

prediction error has a decreasing trend as the index of layer number is increased.   

Table XVI. Performance of the fitted artificial neural network model 

 Training Validation Test 

RMSE 0.009±0.003 0.011±0.004 0.015±0.000 

MAE 0.007±0.002 0.009±0.003 0.013±0.007 

R-squared (%) 92±1.5 90.6±4.1 90.3 

 

 

Figure 29. (a) Comparison of predicted and experimental layer thickness values for the test data 

set, and (b) distribution of average prediction error among different layers. 
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2.3.9 Bonding Degree/Necking Radius Estimation 

To evaluate the performance of the proposed approach in estimating the bonding degree/necking 

radius, two different scenarios are considered. In Scenario 1, the inter-layer and intra-layer necking 

radius values are estimated using the Newtonian sintering model in Equation (2.24) together with 

the temperature profile data obtained from Equation (2.17) without considering the filament 

deformation factor. In Scenario 2, the inter-layer and intra-layer necking radius values are 

estimated by incorporating the filament deformation data based on the newly established models 

in this work.  

A total of 38 different inter-layer and intra-layer bonding values, from different locations along 

the deposition path and build direction of specimens are selected to ensure that the proposed 

approach can address the variation of these parameters within the part.  

Figure 30 presents the performance of the proposed model (Scenario 2) in comparison to the 

experiment data and Scenario 1. 95% confidence intervals for the experimental data are 

constructed. According to this figure, the proposed models for inter-layer and intra-layer bonding 

have an average accuracy of 95% and 94%, respectively, which are significantly better compared 

to Scenario 1. More specifically, in Scenario 1, both inter-layer and intra-layer necking radiuses 

are underestimated. However, a significantly better accuracy in predicting the intra-layer necking 

radius values, Figure 30(b), compared to the inter-layer necking radius values, Figure 30(a) is 

observed in Scenario 1. The possible explanation for this observation would be the assumption of 

circular filaments in the Newtonian sintering model as well as the higher contribution of filament 

deformation effect on inter-layer necking radius compared to the intra-layer necking radius.  
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Figure 30. Performance of the proposed model for estimating the dimensionless (a) inter-layer 

necking radius, and (b) intra-layer necking radius. 
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The intra-layer necking radius prediction error in Scenario 1 is largest for samples 1, 2, 10, and 

11. Interestingly, these samples are obtained from the first transitional layers of specimens which 

have significant levels of deformation. Therefore, it appears that in Scenario 1, the intra-layer 

necking radiuses from the bottom layers are significantly underestimated but a higher accuracy for 

predicting the intra-layer necking radius of top layers is observed. This observation is further 

illustrated in Table XVII. According to this table, our proposed model (Scenario 2) outperforms 

Scenario 1 in estimating the necking radiuses for both the bottom and top layers.   

Table XVII. Comparison of the model performances for bottom and top layers of A1 specimen 

 

Experiment data 
Prediction based 

on Scenario 1 

Prediction based 

on Scenario 2  

(proposed model)  

Top 

layers 

Bottom 

layers 

Top 

layers 

Bottom 

layers 

Top 

layers 

Bottom 

layers 

Dimensionless Intra-layer 

neck radius  
0.465 0.678 0.404 0.437 0.432 0.687 

Standard deviation (μm) 46.3 12.6 - - - - 

 

2.3.10 Porosity Estimation 

To evaluate the porosity model performance, two specimens of A1 and B3 and two locations of 

x=15 and x=90 along the deposition path are selected, and 18 random void samples from these 

cross-sections are chosen along the build direction. Figure 31 demonstrates the selected specimens 

and void samples for the purpose of porosity model validation.  

The performance of the proposed model for quantifying the variation of porosity within a part 

is illustrated in Figure 32. According to this figure, despite the small scale of the cross-sectional 

void areas (generally less than 0.02 mm2), the proposed model can provide good estimates of their 

variation within the part and follows the trend obtained by the experimental data. However, the 
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average prediction accuracy for the void samples at the bottom layers (specifically in B3 specimen) 

is lower compared to the top layers of the specimens. This is consistent with the trend of thickness 

prediction error for the bottom (average 6.9 %) and top layers (average 4 %) shown in Figure 29(b). 

Therefore, it is suspected that the main factor contributing to the observed error is the prediction 

error from the filament deformation modeling stage.  

 

Figure 31. Selected specimens and void samples for the purpose of model validation. 

Furthermore, it is observed that the model performance is much better for A1 specimen (with 

larger extrusion width) compared to the B3 specimen, specially regarding the bottom layers. One 

possible explanation for this observation is the slight shift of the B3 specimen filaments at the first 

few transitional layers to both right and left directions as shown in Figure 31 which leads to a 

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5

L
a

y
er

 n
u

m
b

er

Filament segment  

6

A1, x=15

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7

L
a

y
er

 n
u

m
b

er

Filament segment  

A1, x=90

B3, x=15 B3, x=90

1

2

3

4

5

7

8

9

1

2

3

4

5

6

7

8

9

Void ID

Void ID

0.5 
mm

0.5 
mm

0.5 
mm

0.5 
mm



93 

 

different morphology/shape of the voids (triangle) versus the assumption in this work 

(quadrilateral). As this observation has not been incorporated into the proposed model, it can lead 

to prediction inaccuracies. Note that this slight shift also exists in the A1 specimen, however, due 

to the larger extrusion width of the A1 specimen, the void cross-sectional areas are almost zero or 

generally smaller than those in the B3 specimen. Therefore, the model prediction errors will be 

smaller.  

 

Figure 32. Performance of the proposed model for estimating porosity and its variation within 

the (a) A1 specimen at location x=15, (b) A1 specimen at location x=90, (c) B3 specimen at 

location x=15, and (d) B3 specimen at location x=90. 
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As is observed in Figure 31 and Figure 32, similar void samples of each specimen have 

significantly different cross-sectional areas along the deposition path due to their different cooling 

and heating rates which can clearly be captured by the proposed model. Furthermore, it is observed 

that the cross-sectional void area has an increasing trend by moving from the bottom layers to the 

top layers.  

2.3.11 Conclusions 

Mathematical models are established to characterize and quantify the inter-layer and intra-layer 

bonding, porosity, and their distributions within a geometry of interest, based on the extrusion-

based additive manufacturing process and a unidirectional deposition strategy. These models are 

among the first in the literature that can quantify the distribution of these parameters within 

manufactured parts. The established models can be used to quantify the global and local 

mechanical strength of parts in the extrusion-based additive manufacturing process. The effect of 

filament deformation on bonding and porosity, generally neglected in the literature, is incorporated 

into the models using machine learning approaches. The established models for inter-layer and 

intra-layer bonding have an average accuracy of 95% and 94%, respectively. In addition, it is found 

that the porosity variation model performs better for top layers compared to bottom layers with an 

average of 51% higher accuracy.       

2.4 Concluding Remarks  

In this chapter, efforts to address the process-level quality assurance problems in additive 

manufacturing are presented using both empirical and analytical approaches. Dimensional 

tolerance and distribution of components are experimentally studied in the extrusion-based AM 

process, and their correlation with sustainability and economic impacts are analyzed. A multi-

objective optimization using desirability function is performed for simultaneously reducing the 
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dimensional errors as well as manufacturing cost, by tuning the process parameters. Mathematical 

models are established to evaluate the sustainability measures (e.g., energy and material 

consumption), manufacturing cost, as well as the surface properties, i.e., surface roughness and 

mechanical properties; i.e., porosity and bonding degree, of components to provide guidelines 

during the tolerance design task at the product level. Several experiments are conducted to validate 

the proposed models. A geometric-based modeling approach is adopted for evaluating the surface 

roughness of components, i.e., the mathematical function of the geometry representing the surface 

profile is formulated. The porosity, bonding degree, and their variation within a component are 

characterized using a hybrid physics-based and data-driven approach by addressing the 

temperature profile and deformation of deposited paths.  
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3. PROCESS-LEVEL QUALITY ASSURANCE: INVESTIGATING THE WITHIN-

COMPONENT INTERACTION FOR HYBRID MANUFACTURING 

[Parts of this chapter were previously published as “Li, L., Haghighi, A., and Yang, Y. (2019). 

Theoretical modelling and prediction of surface roughness for hybrid additive–subtractive 

manufacturing processes. IISE Transactions, 51(2), 124-135.; and Li, L., Haghighi, A., and Yang, 

Y. (2018). A novel 6-axis hybrid additive-subtractive manufacturing process: Design and case 

studies. Journal of Manufacturing Processes, 33, 150-160.).”, reprinted, with permission, from the 

publishers. For more information, please refer to the Appendix (Copyright Statement).]  

This chapter presents the different studies performed to understand and establish the relation 

between (1) design, (2) process and process parameters, (3) properties of part: i.e., dimensional 

accuracy, variation and surface roughness, and (4) sustainability measures and economic 

implications in hybrid additive-subtractive processes. As explained earlier, studying and 

understanding this relationship allows for selecting tolerances that are both feasible (at the 

manufacturing process level) considering the capability of the process, and optimal (at the product 

assembly level) considering product functionality and total manufacturing cost.   

In Section 3.1, the development process and capabilities of a robotic hybrid additive-

subtractive platform are discussed and illustrated [189].  The surface roughness of components 

that are processed by the hybrid additive-subtractive process is then analytically modeled and 

validated in Section 3.2 [165]. The model is mainly tailored to the milling process and considers 

both additive and subtractive manufacturing process parameters. The developed hybrid platform 

in Section 3.1 is used for conducting the experiments in Section 3.2. Finally, in Section 3.3 the 

chapter’s conclusions and future work are discussed.   
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3.1 Hybrid Additive-Subtractive Process Development 

To perform research on hybrid manufacturing processes, it is important to first establish the 

necessary platform. Therefore, a hybrid additive-subtractive manufacturing (HASM) process is 

designed and developed in this section. Finally, several case studies are performed to illustrate the 

capabilities of the developed hybrid platform.    

3.1.1 System Design  

The hardware configuration design for the HASM process is shown in Figure 33. The hardware 

mainly consists of four components: a six degree of freedom (6-DOF) industrial robot arm, two 

changeable heads for both AM and SM processes, and an integrated manufacturing platform 

equipped with necessary features to support both AM and SM processes. The industrial robot arm 

adopted in the HASM process weights 25 kg and has a 3 kg payload with a reach of 580 mm. The 

changeable heads, currently developed for FDM™ and milling processes, are both screwed to a 

self-designed fixture which is connected to the end-point of the industrial robot arm. A unique 

self-designed fixture is also printed using the PolyJet AM technology for fixing the AM stepper 

motor and extruder to the robot end-point fixture. A direct connection of hot end and extruder is 

adopted for the AM head for a more precise guidance of the plastic filament into the extruder.  

The maximum payload of the robot arm is considered during the design and development of 

the two heads. In addition to the additive and subtractive heads, an integrated manufacturing 

platform equipped with a heated bed for the additive process and a T-slot structure and clamping 

set for fixturing the parts during the subtractive process is also designed. The developed hardware 

layout is shown in Figure 34. 



98 

 

 
Figure 33. Hardware design and configuration for HASM process 

 
Figure 34. Illustration of hardware layout of HASM process 

3.1.2 System Software and Control  

The HASM process requires new software to be developed to deal with different tasks, namely 

(i) process planning, (ii) controlling the elements of additive and subtractive heads (e.g., extrusion, 

heated bed, fan, spindle speed), (iii) controlling the printing path through the robot arm controller, 

and (iv) communicating between the robot arm controller and both additive and subtractive heads. 
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It is important that the robot arm controller and the additive/subtractive head controllers can 

synchronize and communicate for providing robust and high-quality prints. Process planning refers 

to all the necessary steps (tasks) for transforming a design into a manufactured part. Considering 

the traditional manufacturing processes, process planning consists of several tasks including 

fixture design, setup, and tool path planning as shown in Figure 35. Computer technologies mainly 

CAD (computer-aided design) and CAM (computer-aided manufacturing) have contributed 

significantly to the process planning research.  

 

Figure 35. Process planning in traditional manufacturing processes 

However, to address the characteristics of hybrid additive-subtractive processes, necessary 

adjustment to the traditional process planning tasks should be performed. In the HASM process, 

the necessary process planning steps are as follows.  

(1) 3D model generation and input: Initially, a 3D model is generated through CAD software 

or 3D scanning equipment.  In this thesis, the Autodesk Inventor software is used for generating 

the necessary CAD files.  
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(2) Feature recognition: Feature recognition refers to the decomposition of a geometry into 

additive (AM) and subtractive (SM) features. Traditionally, subtractive features (also known as 

machining features) are defined as “those shapes, such as step, slot, pocket and hole, which can be 

easily achieved by the available resources and defined machining technologies” [190]. AM 

features, however, can be extremely complex with no standard form. Current literature defines AM 

feature as “a geometrical shape and associated technological attributes for which at least an AM 

process is known; this AM process is also independent from processes of all other features” [191]. 

Different algorithms for machining feature recognition are available in the literature [192]. 

However, the research area of feature recognition in hybrid additive-subtractive processes is new. 

Currently, a knowledge-based approach by evaluating the complexity of components is used for 

feature recognition in the developed platform. The higher the complexity level of geometries, the 

more AM is suitable for their fabrication. As an example, sharp inner cuts and undercuts are 

difficult to be fabricated by subtractive processes. The combination of several different parameters 

can be considered for evaluating the level of geometry complexity including bounding box volume, 

ratio of solid (filled) volume to the blank (empty) volume inside the bounding box, connectivity 

of the blank volumes, location of the blank volumes in the bounding box, the ratio of surface area 

to the part volume, ratio of triangle number (in the STL file) to the surface area, relative angle of 

normal vectors for neighboring triangles, etc.   

(3) Setup planning: Setup planning refers to the positioning the workpiece on the build 

platform. Traditionally, the largest surface areas are selected for positioning of the workpiece as 

they provide more stability. However, in the AM process, the setup planning step is equivalent to 

the build direction selection. For hybrid additive-subtractive processes, especially with a large 

number of degrees of freedom, this decision becomes complex as it can directly affect the 
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feasibility of the process and quality of components. Currently, a knowledge-based approach is 

used for setup planning in the HASM process which considers both the quality aspects and 

geometrical constraints.  

(4) Feature sequencing: This task refers to the sequencing of recognized features (obtained 

from step (2)).  A greedy algorithm is adopted to perform feature sequencing to minimize the 

energy consumption of the system. First, precedence matrix (or graph) is generated (Equation (3.1)) 

for the recognized features considering both hard and soft precedence constraints including 

geometrical constraints, critical datum/tolerances, and the non-critical tolerances [193]:  
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 (3.1) 

where 𝑛 = 𝐼 + 𝐽 refers to the total number of features (𝐼 SM features, and 𝐽 AM features), and 𝑥𝑖𝑗 

is a binary variable. Therefore, the precedence of iF  to jF  is represented by 1ijx = . 

The energy consumption of the system is characterized into three categories of (i) SM feature 

processing, (ii) AM feature processing, and (iii) tool travel and tool/process change. SM feature 

processing refers to the energy consumption used for fabricating the SM feature and includes the 

energy consumption for material removal, feeding, and spindle rotation. The specific energy 

consumption (J/cm3) and volume of the SM feature i in cm3 (which is removed), will be used for 

calculating the energy consumption for each SM feature as shown below.   

 𝐸𝑆𝑀𝐹
𝑖 = 𝑆𝐸𝐶𝑖 × 𝑉𝑖  (3.2) 



102 

 

where 𝑉𝑖  can be calculated from the 𝑀𝑅𝑅𝑖  (material removal rate) for the milling and drilling 

processes.  

The energy consumption for AM feature j is calculated according to equations in Section 2.1. 

Finally, the energy consumption for tool travel and tool/process change is calculated as follows.  
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where 𝑘 is the index of the feature in the sequenced order, 𝑘𝑒 is the coordinates of the endpoint of 

the kth feature, (𝑘 + 1)𝑠 is the coordinates of the start point of (k+1)th feature, ℎ𝑜𝑚𝑒 represents 

the coordinates of the home position, and 𝑃𝑖𝑗 and 𝑇𝑖𝑗 are given as:  

 
1   Features i and j have same process

0   else
ijP


= 


 (3.4) 

 1   Features i and j have same tool
( 1)

0   else
ij ijT P


= = 


 

(3.5) 

Signal Analyzer module from the RobotStudio software [194] is used to evaluate the 
1k

kE +
 , 

which represents the total robot energy consumption (as well as the energy consumption of 

individual joints) for moving from one configuration/coordinate to a second 

configuration/coordinate, as shown in Figure 36.  The sequencing is then performed according to 

Figure 37 and using the above information [195].  
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Figure 36. The signal analyzer module in the Robotstudio Software (Left) and the virtual HASM 

platform (right) 

 

Figure 37. Feature sequencing using greedy algorithm 

(5) Slicing and support generation: For AM features, slicing algorithm is applied to slice the 

component into layers. The tool axis direction (TAD) strategy is considered during this step. In 

other words, due to the high flexibility of the 6-DOF mechanism, a single feature can be fabricated 

with different TAD strategies, namely, use of (1) constant TAD: fabricating a feature using only 

one TAD, (2) multiple TADs: fabricating a feature using multiple TAD, and (3) dynamic TADs: 

fabricating a feature by continuously adjusting the TAD to match the surface normal. To utilize 
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this added flexibility, new slicing algorithms to support multiple TADs (e.g., in multi-plane tool 

paths [196]) or dynamic TADs (e.g., in freeform tool paths [197]) are required.  

(6) Path planning, merging, and feasibility check: Path planning and merging is performed for 

the AM and SM features based on the slicing outputs and considering the mechanical/geometrical 

requirements and constraints using a knowledge-based approach. To perform the path planning, 

coordinate transformation (from the slicing software to the integrated build platform) is necessary. 

A MATLAB code is thus, developed and used for the transformation and processing of the path 

data. The virtual robot arm platform is used for checking the feasibility of the path plans.  

(7) Code dispatch and calibration: Finally, required codes are generated and dispatched to the 

HASM process controllers (robot arm and additive-subtractive head controllers). An ethernet 

connection is used for transferring the code to the robot arm controller. The code for the 

additive/subtractive heads is, on the other hand, transferred through a USB port. Although tool 

selection and fixture design are important elements of process planning, they have not been 

considered in this work. Therefore, only one type of milling tool and fixture design are used for 

the case study section. The platform calibration is initially performed in the robot software and by 

using an exact replica of the hybrid platform. Therefore, the robot arm will automatically calculate 

the coordinate of targets relative to the world, base, and tool coordinate systems. However, due to 

the errors caused by the platform fabrication process, a trial and error approach for finding the 

optimum minimum Z value is performed.  

The generated code which is dispatched to the robot arm controller contains the path-related 

data: (1) the coordinates of targets, (2) the sequence of targets, (3) the configuration and orientation 

of the robot arm at each target, (4) the coordinate systems of the robot and SM/AM heads, (5) 

tool’s weight, center of gravity, and center point, and (6) robot movement instructions (e.g. joint 
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or linear movement, speed, termination form of a target). The dispatched code to the additive-

subtractive head controllers, however, has a G-code format which includes the following data: (1) 

the coordinates of targets, (2) the sequence of targets, (3) robot movement speed, (4) the extrusion 

rate/spindle speed, and (5) additional information (fan on/off control, hot end, and heated bed 

temperature control, etc.).  

 

Figure 38. Schematic view of the software and control flow for the HASM process 
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The Arduino mega board is used for integrated control of the additive head, heated bed, and 

fan. The subtractive head is controlled using a control board for adjusting the spindle speed. The 

movements of the additive or subtractive heads, on the other hand, is controlled by the robot arm 

controller. Currently, a trial and error approach has been adopted for synchronizing the controllers 

by calculating and compensating for the time delay between controllers. In the future, a DeviceNet 

network can be established which allows for a more robust communication between controllers. 

The schematic view of the developed HASM process is shown in Figure 38. 

3.1.3 Coordinate Systems  

The different coordinate systems of the HASM process are shown in Figure 39. Coordinate 

transformation is necessary to move the generated coordinates from the slicing software on the 

manufacturing platform. The coordinates of the integrated build platform should be considered to 

ensure that all points are translated to coordinates above and within the build platform range. 

Therefore, the slicing software coordinates ( XYZ ) should be changed into ( X Y Z   ) coordinates 

in the world/base coordinate system while bringing all targets on the build platform through both 

rotatory and translational linear transformations. Since the scaling factor for the transformation is 

1, the homogenous transformation matrix (H) can be represented in the following form:  
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 (3.6) 

where ijr are the elements of the rotation matrix    3  3R   given the yaw, pitch, and roll rotation angles, 

and ,  ,x yt t  and zt  are the linear translations of center point along the X, Y and Z axes.  
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A 90-degree rotation along the Z axis is performed (φ=90) in a clockwise direction. The 

translations of δx, δy, δ'z and δ'x are also performed to move the targets to the center, and then 

forward to a higher altitude on the build platform. The transformation is represented below: 
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 (3.7) 

where XYZ  is the initial coordinate in the slicing software coordinate system and X Y Z    is the 

final transformed coordinates in the world/robot base coordinate system. The slicing software 

coordinate system and world coordinate systems have been overlapped for this transformation.  

 

Figure 39. HASM process coordinate systems illustration and transformation  

(Robot arm drawing is adopted from http://new.abb.com/products/robotics/industrial-robots/irb-

120/irb-120-cad) 

http://new.abb.com/products/robotics/industrial-robots/irb-120/irb-120-cad
http://new.abb.com/products/robotics/industrial-robots/irb-120/irb-120-cad
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3.1.4 Hybrid Platform Capabilities  

(1) Dynamic TAD adjustment 

The 6-DOF flexibility of the HASM process provides new manufacturing opportunities and 

can lead to higher efficiency and better quality of parts. One of the opportunities is the capability 

of defining trajectory movements that are not necessarily linear. In other words, the TAD can be 

adapted according to the geometrical and manufacturing requirements. For example, a dynamic 

TAD strategy can be used where the TAD adjusts to the surface normal vector while moving along 

the path. This capability can help towards improving the surface quality of parts. In addition, it 

can allow for accessing inner features or surfaces by adjusting the active kinematic chain to match 

the geometrical constraints of the part.  

To demonstrate the dynamic TAD adjustment capability of the developed HASM process, a 

freeform surface with a sine function was designed. Both additive and subtractive heads could 

successfully move along the path while adjusting the coordinate system of the tool to match the 

normal vector of the freeform surface during the printing or milling process, as shown in Figure 

40(left). The unique integrated platform of the HASM process allowed the test part to be clamped 

during the milling process once the printing process was finished. The rectangular base of the 

freeform geometry was used for clamping the part, as shown in Figure 40(right). Since the part 

was not re-located after the printing process (its coordinate system was not changed), it was 

possible to automatically derive the path coordinates for the milling process. However, the tool 

coordinate system was updated as the manufacturing head was changed. A 100% fill density and 

0.2 mm layer thickness parameters were selected for the print to minimize the porosity and improve 

the surface quality during the milling process.  
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Figure 40. Freeform surface printing and milling: (left) freeform printing, and (right) freeform 

milling 

(2) Improved surface quality as a result of the hybrid process 

The HASM process can improve the surface quality by using the SM head to perform the 

surface finishing process on additive manufactured parts. This capability is however expected and 

has already been well explored in the literature [118]. 

 In Figure 41, the surface profiles of the test part in Figure 40 as a result of our HASM process, 

shown in Figure 41(b), is compared with the surface profiles of the same part fabricated using only 

the AM technique, in Figure 41(a), as well as the surface of extruded plastic bars which can be 

bought from supplier companies,  Figure 41(c). Even without quantifying the surface roughness, 

it is clearly observed that the surface profile from the HASM process has a better quality compared 

to when the part is solely manufactured by the AM process (in our case, the FDM™ process). 

However, the surface quality is still not as good as the extruded plastic bars from supplier 

companies.   
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Figure 41. Surface profile of (a) printed surface, (b) machined surface of a printed part, and (c) 

surface of extruded plastic bars 

(3) Improved surface quality as a result of 6-DOF capability 

In addition to adopting the SM process for surface finishing, the surface quality can be 

improved by adjusting the orientation of the AM head during the printing process to reduce the 

staircase error. Therefore, the adoption of SM head for surface finishing might not be necessary. 

Staircase error is one of the most common quality issues in 3-DOF AM processes, which directly 

affects the surface quality of printed parts [198], and is significantly affected by the angle between 

the surface’s normal vector and build orientation as well as the adopted layer thickness. The 6-

DOF HASM process, is however, not constrained to the 3 axes of X, Y and Z, and can adapt the 

build direction to match the surface normal. Therefore, the staircase error can be reduced or 

eliminated. To illustrate this capability, a case study was performed where a right triangular prism 

was printed using two different scenarios of: (a) constant TAD, and (b) multiple TADs. In the 

constant TAD scenario, the configuration of the additive head was fixed during the entire process 

so that the Z axis of the tool (Figure 39) was aligned with the build direction along the Z axis of 

the platform. However, in the multiple TADs scenarios, the component was first printed using a 

constant TAD configuration similar to the first scenario. Finally, an additional layer was printed 
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on the angled surface of the component to reduce the effect of staircase error using a different TAD 

from the initial TAD.  

 

Figure 42. Comparison of surface quality (a) using 3-DOF printing (constant TAD), (b) using 

HASM process (multiple TAD), and (c) configuration of AM head during deposition of the final 

layer 

As can be seen in Figure 42, a smoother surface is obtained using the HASM process, and the 

staircase error is significantly reduced. Figure 42(c) shows the robot arm configuration when using 

multiple TADs scenario to print the final layer for improving the surface quality. 

(4) Multi-plane processing 

One of the main capabilities of the HASM process is multi-plane processing (i.e., 

printing/milling) using either the AM or SM head. This multi-plane processing is achieved by 

changing the printing/milling plane using the 6-DOF configuration. In addition, due to the hybrid 

capabilities of the process in one integrated station, a part with both subtractive and additive 

features can be manufactured without re-location or setup change. To demonstrate the mentioned 
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capability, a part with both additive and subtractive features was designed as shown in Figure 43(a). 

An extruded block of PLA material is used as the raw workpiece. The fabrication of this part starts 

with machining the slot feature on the PLA block by using the SM head, as shown in Figure 43(b). 

Next, the center piece (main body) is printed using 3-DOF AM process (Figure 43(c)), during 

which the layers are printed on a horizontal plane (vertical TAD). The TAD is then changed to 

horizontal by using the 6-DOF capability to fabricate the hanging feature on the center piece, where 

the printing is continued on a vertical plane. No support material is required as a result of this 

change of TAD. In addition to the multi-plane printing capability, HASM process is also capable 

of multi-plane milling. It is important to note that in most hybrid additive-subtractive 

manufacturing processes in the literature, the application of the subtractive process is usually 

limited to surface finishing. Therefore, the potentials of the subtractive process are not used to 

their fullest. However, this case study has demonstrated that the subtractive manufacturing can 

also be used to fabricate different machining features not necessarily for the purpose of surface 

finishing (e.g., the slot feature shown in Figure 43(b)).   

 

Figure 43. Hybrid manufacturing through multi-plane processing 
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(5) Higher collision avoidance capability 

The additional degree of freedom provided by the 6th rotational axis in the developed 6-DOF 

hybrid process provides a higher collision avoidance capability compared to 5-DOF hybrid 

additive-subtractive processes. To demonstrate this capability, the test part in Figure 43 is slightly 

altered and used as shown in Figure 44. In the new test part, two overhang features exist and 

therefore the vertical printing (i.e., printing on a vertical plane) should be performed on both sides. 

Considering the tool coordinate system and to perform the vertical printing on the left side, the 

tool configuration can be easily adjusted without involving the 6th rotational axis. However, to 

reach a suitable configuration for vertical printing on the right side, all of the 6 axes need to get 

involved to avoid collision between the additive head and the printing platform (as illustrated in 

Figure 45, Figure 46, and Figure 47). 

 

Figure 44. (a) the previous test part in Figure 43 and (b) the new test part to demonstrate the 

capability of the sixth axis 
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Figure 45. The only feasible configuration of additive head using the 5-DOF capability which 

leads to collision 

 

Figure 46. The configuration of additive head using the sixth rotational axis to avoid collision 

Without the additional degree of freedom provided by the 6th axis, the only possible approach 

to fabricate the part is to change the setup by re-locating the part which can lead to additional 

production time. In addition, the inevitable loss of datum during the re-location can negatively 

affect the accuracy of part. Since the FDM™ process is currently adopted as the additive process, 

the feasibility of configurations not only needs to be evaluated considering the robot arm 

limitations but also considering the limitations introduced by the attached filament and wires to 
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the additive head. For example, continuous rotational movement of the head will not be feasible 

considering the current setup. However, integrating other additive processes through a more 

flexible and innovative design might increase the freedom of movement and help with fully 

utilizing the capability of the 6th axis.   

 

Figure 47. The robot arm configuration using the sixth rotational axis to avoid collision 

(6) Reduced material waste and production time 

As explained in the previous case studies, the flexibility of movement and processing provided 

by the 6-DOF HASM process not only can improve the quality but also can reduce the number of 

setups, production time, and material waste. To better demonstrate the production time and 

material waste reduction capability, the following case study is designed. Three different 

manufacturing scenarios for the test part shown in Figure 44(a) are considered and the obtained 

material wastes and required production times are compared.  
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Case I is the scenario studied in Figure 43. The final part is fabricated by the developed hybrid 

system (HASM process) using 3-DOF milling (for the slot feature), 3-DOF printing (for the main 

body), and 6-DOF printing (for the overhang feature). In Case II, the same part is manufactured 

by the HASM process but only using 3-DOF capability for printing (printing both main body and 

overhang feature) and 3-DOF for milling (for the slot feature). Note that in both Case I and Case 

II, the PLA block shown in Figure 43(a) is used as the raw workpiece. Finally, in Case III, the part 

is entirely built by 3-DOF printing (including the 3D print of the block, main body and overhang 

feature). Note that when using 3-DOF printing for fabricating the overhang feature, the support 

structure is required as illustrated in Figure 48. 

 

Figure 48. The designed test part (a) with, and (b) without support structure 

The comparison of material waste and production time for three different manufacturing 

scenarios is shown in Table XVIII. It can be observed that adopting the developed HASM process 

for fabricating the part (Case I) can reduce the material waste percentage by 63.39% and 43.45%, 

compared to Cases II and III, respectively. In Case I, the material waste is mainly generated as a 
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result of the milling process for fabricating the slot feature. In Case II, in addition to the above 

machining waste, the support structure that is required due to the use of 3-DOF AM process for 

fabricating the overhang feature accounts for around 62% of the total material waste. In Case III, 

however, the material waste comes from the support structure, as the part is entirely fabricated 

using the AM process. Furthermore, the hybrid manufacturing scenario in Case I can save the 

production time by 6.72% and 59.59% compared to the production times of Case II and Case III, 

respectively. The total production time in Case I consists of the time for milling process (SM), tool 

changeover (from SM head to AM head), 3-DOF printing of the main body (AM), TAD adjustment 

(i.e., changing the configuration from printing on a horizontal plane to a vertical plane) and 6-DOF 

printing of the overhang feature (AM). In Case II, the 3-DOF printing time is longer than that of 

Case I as the support structure for the overhang feature needs to be printed as well. On the other 

hand, the required time for TAD adjustment and 6-DOF printing are saved. Consequently, the total 

production time is slightly larger than Case I.  In Case III, the entire workpiece (including the PLA 

block) is fabricated by 3-DOF printing, which therefore requires a substantially longer period 

compared to former cases. The detailed production time breakdown is illustrated in Table XIX and 

Figure 49. 

Table XVIII. Comparison of material waste 

 Case I: Hybrid 

manufacturing  

(6-DOF capability) 

Case II: Hybrid 

manufacturing  

(3-DOF capability) 

Case III: Additive 

manufacturing 

(3-DOF capability) 

PLA filament used (g) 32.08 34.60 91.33 

PLA block used (g) 59.33 59.33 0 

Material waste (g) 1.46 4.10 2.54 

Waste percentage  1.60% 4.37% 2.78% 

 



118 

 

 

Table XIX. Contribution of different factors in the production time for the studied cases 

 Case I: Hybrid 

manufacturing  

(6-DOF capability) 

Case II: Hybrid 

manufacturing  

(3-DOF capability) 

Case III: Additive 

manufacturing  

(3-DOF capability) 

3-DOF printing  79.24% 94.07% 100% 

Milling  5.08% 4.74% N/A 

6-DOF printing  13.98% N/A N/A 

Tool changeover  1.27% 1.19% N/A 

TAD adjustment  0.42% N/A N/A 

 

 

Figure 49. The production time breakdown for the studied cases 

3.1.5 Conclusions 

In this section, the development of the 6-DOF hybrid additive-subtractive manufacturing 

(HASM) process is presented. The described hybrid platform is mainly developed for conducting 
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research on tolerance design challenges of hybrid manufactured components. The different 

elements of the hardware, software, and control system of HASM are explained and discussed. 

Two additive and subtractive heads and an integrated manufacturing platform to support the 

functionality of each process are developed. The proposed 6-DOF HASM process is capable of 

non-linear trajectory movements by adjusting the tool axis direction to match the surface normal 

vector. The capability of this HASM process is demonstrated through five different case studies. 

It has been shown that HASM process can reduce material waste, production time, and improve 

the surface quality of parts.  

3.2 Surface Roughness Modeling and Validation for Hybrid Additive-Subtractive 

Manufacturing  

In this section, analytical models for predicting the surface roughness of hybrid additive-

subtractive manufactured components are proposed and validated. As the existing surface 

roughness models in the literature do not address the effect of secondary processes, the proposed 

model provides a critical tool for designers to evaluate the surface quality and check the feasibility 

of designed tolerances. The subtractive process is considered for surface finishing, which aims to 

improve the surface roughness of 3D printed parts. To simplify the modeling process, the 

following terminologies are adopted. The term “additive profile” is used to refer to the obtained 

surface profile from the AM process; “milling profile” is used to refer to the obtained surface 

profile from flat end milling process on a non-3D printed surface; and “intersected profile” is used 

to refer to the obtained surface profile from flat end milling process on a 3D printed surface. 

3.2.1 Surface Profile Representation 

To understand and model the intersected profile, different parameters such as cutting 

parameters, milling tool geometry, and characteristics of the existing additive profile need to be 
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considered. In this work, a sawtooth function is selected to represent the smallest unit of the milling 

profile in an ideal condition [199], as shown in Figure 50.  

 
Figure 50. Representation of the milling profile 

Two parameters of feed (𝐹) and working minor cutting edge angle (𝛽) are incorporated into 

the sawtooth function to reflect the tool geometry and cutting parameters. The amplitude of the 

sawtooth function is defined as 𝐴𝑃𝑠, where 𝐴 = tan (𝛽) is the slope of the sawtooth function and 

𝑃𝑠 = 𝐹 is the periodicity of the sawtooth function. Note that all the other parameters as well as the 

machine errors during the milling process are neglected in this work. 

3.2.2 Model Assumptions 

The following assumptions are adopted for the surface roughness modeling: (1) the starting 

coordinates of additive and milling profiles are similar; (2) the sawtooth function intersects with 

each parabolic curve at exactly two points; (3) the building direction is vertical at all circumstances; 

(4) the periodicity of sawtooth function (𝑃𝑠) is always greater than the periodicity of parabolic 

function (𝑃𝑝 ); and (5) both 𝑃𝑠  and 𝑃𝑝  are rational numbers. To further analyze the intersected 

profile and surface roughness, two cases are considered based on the stratification angle: (I) 𝜃 =
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90°  and (II) 0° < 𝜃 < 90°  as shown in Figure 51. Note that the special case 𝜃 = 0°  is not 

considered.  

 

Figure 51. Representation of the intersected profile for different stratification angles 

3.2.3 Surface Roughness Model for θ = 90° 

To study the obtained intersected profile, the periodic functions of both additive and milling 

profiles are derived using the Fourier’s theorem. 

Fourier’s theorem: It is known, that the general representation of Fourier trigonometric series for 

function 𝑓(𝑥) with a periodicity of 𝐿 (0 ≤ 𝑥 ≤ 𝐿) is:  

 𝑓(𝑥) = 𝑎0 +∑[𝑎𝑛 cos (
2𝜋𝑛𝑥

𝐿
) + 𝑏𝑛 sin (

2𝜋𝑛𝑥

𝐿
)]

∞

𝑛=1

, (3.8) 

where coefficients 𝑎0, 𝑎𝑛 and 𝑏𝑛 can be obtained from the following equations:  

 𝑎0 =
1

𝐿
∫ 𝑓(𝑥)𝑑𝑥,
𝐿

0

 (3.9) 

 
𝑎𝑛 =

2

𝐿
∫ 𝑓(𝑥) cos (

2𝜋𝑛𝑥

𝐿
) 𝑑𝑥,

𝐿

0

 
(3.10) 
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𝑏𝑛 =

2

𝐿
∫ 𝑓(𝑥) sin (

2𝜋𝑛𝑥

𝐿
) 𝑑𝑥

𝐿

0

. 
(3.11) 

Using Fourier’s theorem, the Fourier series representing the sawtooth function 𝑓𝑠
′(𝑥) and periodic 

parabolic function 𝑓𝑝
′(𝑥) can be derived as:  

 𝑓𝑠
′(𝑥) =

𝐴𝑃𝑠
2

+∑ [−
𝐴𝑃𝑠
𝜋𝑛

sin (
2𝜋𝑛𝑥

𝑃𝑠
)]

∞

𝑛=1

, (3.12) 

 

𝑓𝑝
′(𝑥) =

1

3
(𝑡 − 2ɛ𝑦) +∑ [−

2(𝑡 − 2ɛ𝑦)

𝜋2𝑛2
cos (

2𝜋𝑛𝑥

𝑃𝑝
)]

∞

𝑛=1

, 
(3.13) 

where 𝑃𝑝 denotes the periodicity of parabolic function and can be calculated as 𝑃𝑝 = (𝑡 − ɛ𝑥). The 

intersected profile 𝑓𝑝−𝑠
′ (𝑥) can be calculated by subtracting the milling profile from the additive 

profile (shown in Figure 52), and can be represented using the following equation:  

 𝑓𝑝−𝑠
′ (𝑥) = min{𝑓𝑠

′(𝑥), 𝑓𝑝
′(𝑥)} , ∀𝑥 (3.14) 

The periodicity of the intersected profile can be calculated as ψ = LCM(𝑃𝑝, 𝑃𝑠), where LCM 

represents the least common multiple. Note that the periodicity of the intersected profile ψ always 

exists according to the model assumptions and lemma 1: 

Lemma 1: if 𝑥, 𝑦 ∈ ℚ, then 𝐿𝐶𝑀(𝑥, 𝑦) ≠ ∅.  

Therefore, we have: 

 𝑓𝑝−𝑠
 (𝑥) = min{𝑓𝑠

′(𝑥), 𝑓𝑝
′(𝑥)} , ∀𝑥 ∈ [0, ψ] (3.15) 
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Figure 52. Illustration of the intersected profile and the intersection points 

The mean of the intersected profile is shown in Figure 52 and can be calculated according to 

the following 

 𝑓𝑝−𝑠′ (𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  
𝑊

ψ
 , (3.16) 

where 𝑊 denotes the surface area of the intersected profile, and can be obtained by the following 

equation: 

 𝑊 = 
∫ 𝑓𝑝

′(𝑥)𝑑𝑥 + ∫ 𝑓𝑠
′(𝑥)𝑑𝑥 − ∫ |𝑓𝑝

′(𝑥) − 𝑓𝑠
′(𝑥)|𝑑𝑥

ψ

0

ψ

0

ψ

0

2
, (3.17) 

and ∫ 𝑓𝑝
′(𝑥)𝑑𝑥

ψ

0
, ∫ 𝑓𝑠

′(𝑥)𝑑𝑥
ψ

0
, and ∫ |𝑓𝑝

′(𝑥) − 𝑓𝑠
′(𝑥)|𝑑𝑥

ψ

0
 can be calculated as follows. 

 ∫ 𝑓𝑝
′(𝑥)𝑑𝑥

ψ

0

=
ψ

3
(𝑡 − 2ɛ𝑦)  +∑ [−

(𝑡 − 2ɛ𝑦)(𝑡 − 𝜀𝑥)
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sin (

2𝜋𝑛ψ

𝑡 − 𝜀𝑥
)]

∞

𝑛=1

, (3.18) 
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ψ

0

=
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2
 +∑ [

tan(𝛽)𝐹2

2𝜋2𝑛2
cos (

2𝜋𝑛ψ

𝐹
) −

tan(𝛽)𝐹2

2𝜋2𝑛2
]

∞

𝑛=1

, 
(3.19) 
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sin (
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𝐹
)]| 𝑑𝑥. 

(3.20) 

Finally, the surface roughness of the intersected profile can be calculated as:  

 𝑅𝑎 = 
1

ψ
 ∫ |𝑓𝑝−𝑠(𝑥) − 𝑓𝑝−𝑠 (𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |

ψ

0

𝑑𝑥, (3.21) 

where 𝑓𝑝−𝑠 (𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝑓𝑝−𝑠′ (𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Note that to solve the above integral, the 𝑓𝑝−𝑠(𝑥) function should be 

re-written, so that the value of the function is known for any given input, 𝑥 . To do so, the 

intersection points between the parabolic and sawtooth functions for one period of ψ need to be 

determined. The 𝑓𝑝−𝑠
 (𝑥) function can thus be re-written as: 

 𝑓𝑝−𝑠
 (𝑥) = {

𝑓𝑠
 (𝑥)      𝑥𝑚

1 ≤ 𝑥 < 𝑥𝑚
2   

    𝑓𝑝
 (𝑥)      𝑥𝑚

2 ≤ 𝑥 < 𝑥𝑚+1
1   

  𝑚 =0,… ,𝑀 − 1. (3.22) 

where 𝑥𝑚
1,2

 are the intersection points between the additive and milling profiles as shown in Figure 

52 and can be calculated using the proposed algorithm in Section 3.2.5. Finally, the surface 

roughness can be calculated as follows:  
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 𝑅𝑎 = 
1

ψ
∑ [∫ |𝑓𝑠(𝑥) − 𝑓𝑝−𝑠 (𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |

𝑥𝑚
2

𝑥𝑚
1

𝑑𝑥 + ∫ |𝑓𝑝(𝑥) − 𝑓𝑝−𝑠 (𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |
𝑥𝑚+1
1

𝑥𝑚
2

𝑑𝑥]

𝑀−1

𝑚=0

. (3.23) 

3.2.4 Surface Roughness Model for 0° < 𝜃 < 90° 

For cases where the stratification angle 𝜃 is within the range of (0°, 90°), the surface profile is 

simplified to a linear function as shown in Figure 53. The reason for such approximation is the 

unnecessarily long computation time for surface roughness calculation which might not 

necessarily lead to a significant improvement of the prediction accuracy. Furthermore, since the 

amplitude of the sawtooth function is very small, and its periodicity is much larger than the additive 

profile, a linear function can provide a good approximation. Therefore, for 0° < 𝜃 < 90° , the 

milling profile is represented using a linear function 𝑓𝑐(𝑥), which is parallel to the reference line 

1 as shown in Figure 53.  

 

Figure 53. Illustration of the milling profile for 0° < 𝜃 < 90° 

Clearly, the axial depth of cut will highly affect the obtained profile since the additive profile 

is represented using the combination of two different functions. As can be seen in Figure 54, any 

milling profile above the reference line 2, will only cut through the parabolic function. However, 

both the parabolic and the linear functions will be involved in the intersected profile if the milling 

profile is lower than reference line 2.  
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Therefore, two separate cases are considered. The distance between the reference lines 1 and 

2 is (𝑡 − 𝐾𝑏) cos 𝜃, and the distance between the milling profile position and reference line 1 is 

represented by 𝐷, as shown in Figure 54. Note that, in practical applications, the optimum axial 

depth of cut should be decided based on both the surface roughness and dimensional accuracy 

requirements. In addition, due to the existence of voids inside the printed part, increasing the depth 

of cut might not necessarily be beneficial. 

 

Figure 54. Different milling profile scenarios: case 1 (left) and case 2 (right) 

Case 1: The milling profile is above or on reference line 2 (D ≥ (t − εx) cos θ)  

The mean line of the intersected profile 𝑓𝑝−𝑠 (𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  in 𝑋′𝑌′ coordinate system can be calculated 

as 

 

𝑓𝑝−𝑠 (𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
𝑠𝑖𝑛𝜃

𝑡 − 𝜀𝑥
[
(𝑡 − 𝜀𝑥)

2

2𝑡𝑎𝑛𝜃
+
(𝑡 − 𝜀𝑥)(𝑡 − 2ɛ𝑦)

3

− ∫ (𝑓𝑝(𝑥) − 𝑓𝑐(𝑥))
𝑥1

𝑥0

𝑑𝑥], 

(3.24) 

where the linear function 𝑓𝑐(𝑥) representing the milling profile can be formulated as 
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 𝑓𝑐(𝑥) = −𝑐𝑜𝑡θ (𝑥 −
𝐷

𝑐𝑜𝑠 𝜃
), (3.25) 

and 𝑓𝑝(𝑥) is calculated in Chapter 2. Finally, the surface roughness can be calculated as  

 

𝑅𝑎 = 
𝑠𝑖𝑛𝜃

𝑡 − 𝜀𝑥
[∫ |𝑓𝑝(𝑥) − 𝑓𝑝−𝑠

∗ (𝑥)|
𝑥0

0

𝑑𝑥 + ∫  (𝑓𝑐(𝑥) − 𝑓𝑝−𝑠
∗ (𝑥))

𝑥1

𝑥0

𝑑𝑥

+ ∫ (𝑓𝑝(𝑥) − 𝑓𝑝−𝑠
∗ (𝑥))

𝑡−𝜀𝑥

𝑥1

𝑑𝑥 + ∫ |−𝑓𝑝−𝑠
∗ (𝑥)|

𝑡−𝜀𝑥

𝑥1

𝑑𝑥], 

(3.26) 

where 𝑥0 and 𝑥1 are the intersection points of 𝑓𝑝(𝑥) and 𝑓𝑐(𝑥). Also, 𝑓𝑝−𝑠
∗ (𝑥), the mean line in 𝑋𝑌 

coordinate system can be obtained as shown below. 

 𝑓𝑝−𝑠
∗ (𝑥) = −𝑐𝑜𝑡θ (𝑥 −

𝑓𝑝−𝑠 (𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑐𝑜𝑠 𝜃
). (3.27) 

Case 2: The milling profile is below reference line 2 (D < (t − εx) cos θ)  

In this case, both additive and milling profiles are involved in forming the intersected profile 

𝑓𝑝−𝑠
 (𝑥). Similarly, the mean of the intersected profile can be calculated as 

 

𝑓𝑝−𝑠 (𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
𝑠𝑖𝑛𝜃

𝑡 − 𝜀𝑥
[
(𝑡 − 𝜀𝑥)

2

2𝑡𝑎𝑛𝜃
+
(𝑡 − 𝜀𝑥)(𝑡 − 2ɛ𝑦)

3
−
((𝑡 − 𝜀𝑥)𝑐𝑜𝑠𝜃 − 𝐷)

2

𝑠𝑖𝑛2𝜃

− ∫ (𝑓𝑝(𝑥) − 𝑓𝑐(𝑥))
𝑥1

𝑥0

𝑑𝑥 − ∫ 𝑓𝑝(𝑥)𝑑𝑥
𝑡−𝜀𝑥

𝑥1

], 

(3.28) 

where 𝑥0 is the intersection point of 𝑓𝑝(𝑥) and 𝑓𝑐(𝑥), and 𝑥1 is the intersection point of 𝑓𝑐(𝑥) with 

the function 𝑓(𝑥) = 0 in the 𝑋𝑌 coordinate system. Finally, using the mean line in 𝑋𝑌 coordinate 

system, the surface roughness can be calculated as  
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 𝑅𝑎 = 
𝑠𝑖𝑛𝜃

𝑡 − 𝜀𝑥
[∫ |𝑓𝑝(𝑥) − 𝑓𝑝−𝑠

∗ (𝑥)|
𝑥0

0

𝑑𝑥 + ∫ (𝑓𝑐(𝑥) − 𝑓𝑝−𝑠
∗ (𝑥))

𝑡−𝜀𝑥

𝑥0

𝑑𝑥]. (3.29) 

3.2.5 Solution Algorithm  

The following algorithm is developed for determining the intersection points which are 

necessary for calculating the surface roughness when 𝜃 = 90° . In general, to calculate the 

intersection points of two periodic functions 𝑓′(𝑥) and 𝑔′(𝑥) with the maximum order of 2, the 

following is enforced:  

 𝑓′(𝑥) = 𝑔′(𝑥).    (3.30) 

However, if the periodic functions are represented with Fourier series, calculating the intersection 

points can become very complex. The following lemmas are thus used to simplify the calculation.  

Lemma 2: if 𝑓′(𝑥) is a periodic function:  

𝑓′(𝑥) =  𝑓′(𝑥 − 𝛿𝑃1), ∀𝛿 ∈ ℤ 

where 𝑃1is the periodicity of function 𝑓′(𝑥). 

Lemma 3: if 𝑓′(𝑥) is a periodic function:  

𝑓′(𝑥) =  𝑓(𝑥 − 𝛿1𝑃1), ∃𝛿1:  𝑥 − 𝛿1𝑃1 ∈ [0, 𝑃1] 𝑜𝑟 𝛿1 = ⌊
𝑥

𝑃1
⌋. 

where 𝑓(𝑥) is the equivalent non-periodic function of 𝑓′(𝑥) for one period of 𝑃1 and ⌊ ⌋ is the 

floor function.  

Using the above lemmas, we have:  
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 𝑓(𝑥 − 𝛿1𝑃1) = 𝑔(𝑥 − 𝛿2𝑃2),     ∀𝑥 ∈ 𝐼 (3.31) 

where 𝑃1 and 𝑃2 are the periodicities of functions 𝑓′(𝑥) and 𝑔′(𝑥) respectively, 𝛿1 and 𝛿2 can be 

calculated based on lemma 3, and 𝐼 is the set of all intersection points.  

Assuming that the periodicity of the intersected profile exists and is 𝑃∗ = 𝐿𝐶𝑀(𝑃1, 𝑃2), it is 

known that:  

 𝛿1 ∈ ℤ ∩ {0,… ,
𝑃∗

𝑃1
− 1}, (3.32) 

 
𝛿2 ∈ ℤ ∩ {0,… ,

𝑃∗

𝑃2
− 1}. 

(3.33) 

Using all the feasible combinations of (𝛿1, 𝛿2) from the above sets, where equation (94) stands, 

the intersection points of the two functions can be calculated. However, before that, all the feasible 

combinations of (𝛿1, 𝛿2) need to be determined. For ∀𝑥 ∈ 𝐼 we can write:  

 𝛿1𝑃1 + 𝛼1 = 𝛿2𝑃2 + 𝛼2, (3.34) 

where 0 ≤ 𝛼1 < 𝑃1 and 0 ≤ 𝛼2 < 𝑃2. Therefore, we have:  

 𝛿2 = 
𝛿1𝑃1 + 𝛼1 − 𝛼2

𝑃2
. (3.35) 

For any given 𝛿1 ∈ ℤ ∩ {0,… ,
𝑃∗

𝑃1
− 1}, we can thus write 𝛿2 as a function of the unknown value 

(𝛼1 − 𝛼2). However, the maximum and minimum values of (𝛼1 − 𝛼2) is known. Therefore, we 

have:  
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 𝛿2 ∈ ℤ ∩ [𝛿1 (
𝑃1
𝑃2
) − 1  ,   𝛿1 (

𝑃1
𝑃2
) +

𝑃1
𝑃2
]. (3.36) 

Assuming that 𝑃1 < 𝑃2, we can derive that: 

 𝛿2 = ⌊(
𝑃1
𝑃2
) (𝛿1 + 1)⌋. (3.37) 

Therefore, using the above equations, all the feasible sets of (𝛿1, 𝛿2) can be obtained, which are 

then used to calculate the intersection points. As we have assumed that the functions are of 

maximum order of two, we can get a maximum of two roots by solving the 𝑓(𝑥 − 𝛿1𝑃1) =

𝑔(𝑥 − 𝛿2𝑃2) equation. Assuming that exactly two intersection points exist per each period 𝑃1, the 

proposed algorithm can be summarized as follows:  

 

Step1. Set 𝛿1 = 0 and 𝑚 = 0. 

Step2. Set  𝛿2 = ⌊(
𝑃1

𝑃2
) (𝛿1 + 1)⌋. 

Step3. If the 𝑓(𝑥 − 𝛿1𝑃1) = 𝑔(𝑥 − 𝛿2𝑃2) has any solution, go to Step 4.  

           Else set 𝛿1 = 𝛿1 + 1, and go to Step 2.  

Step 4. Set 𝑥𝑚
1 = 𝑥𝑚𝑖𝑛 (the smallest root) and set 𝑥𝑚

2 = 𝑥𝑚𝑎𝑥 (the largest root). 

Step 5. If  𝛿1 <
𝑃∗

𝑃1
, set 𝛿1 = 𝛿1 + 1 and 𝑚 = 𝑚 + 1, and go to Step 2.  

            Else, go to Step 6.  

Step 6. End.  

 

The set of all intersection points, 𝐼, can thus be written as: 
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 𝐼 = {𝑥0
1, 𝑥0

2, 𝑥1
1, 𝑥1

2, 𝑥2
1, 𝑥2

2, … , 𝑥𝑀
1 } or 𝐼 = {𝑥𝑚

1,2, 𝑥𝑀
1 }   𝑚 = 0,… , (𝑀 − 1). (3.38) 

where 𝑥𝑀
1 = 𝑃∗. Also, note that the above set 𝐼 is sequenced in a monotonically increasing order.   

3.2.6 Experiment Design 

To validate the proposed model, the geometry in Figure 17 is adopted. To perform the case 

studies, the developed hybrid additive-subtractive process, described in Section 3.1 is used. 

Polylactide (PLA) material is used for printing the test parts in a 3-axis configuration (i.e., constant 

build direction). As frequently adopted in the literature, a layer thickness of 0.25 mm is selected. 

A four-flute end-mill tool with the diameter of 1/8 inch and nose radius of zero is then applied for 

further processing of the surfaces using a 6-axis configuration (i.e., six degrees of freedom) which 

helps with reducing the setup time significantly. Several replicated test parts are fabricated, and 

multiple surface roughness measurements are obtained for each surface using the Bruker-Nano 

Contour GT-K Optical Profilometer. The layer error coefficient distributions presented in Table X 

from Chapter 2 are used.  

3.2.7 Model Validation 

Table XX presents the results of the experiments to evaluate the effectiveness and validity of 

the proposed surface roughness models. A MATLAB code was developed and implemented for 

calculating the surface roughness values for the hybrid case based on the proposed mathematical 

models and the developed algorithm in which the experimental error coefficient values in Table X 

were considered. The milling profile parameters (including the working minor cutting edge angle 

(𝛽) and feed (𝐹)) are obtained based on the milling tool geometry and the selected machining 

parameters including the robot movement speed, and the estimated spindle speed. In addition, the 

parameter 𝑛 is a main input parameter for the 90° case.    
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Table XX. Validation of the proposed surface roughness model 

 Surface roughness results 
% Ra reduction due to the 

secondary process 

θ 

(deg) 

Observed Ra 

(μm) 

Predicted Ra 

(μm) 

Percentage error 

(%) 

Observed 

(%) 

Predicted 

(%) 

20° 24.511 25.562 4.288 54.667 53.543 

30° 23.457 22.886 2.432 58.129 56.559 

40° 15.340 17.159 11.862 69.715 63.327 

50° 12.064 13.549 12.314 69.846 66.375 

60° 8.065 7.768 3.683 73.821 76.143 

70° 4.870 4.931 1.253 74.189 75.226 

90° 11.445 13.889 21.354 33.966 21.805 

 

It is observed that the surface roughness generally tends to get smaller as the stratification angle 

increases, except for the 90° hybrid case. The average prediction errors for the AM and hybrid 

cases are found to be less than 5% and 9% respectively. About 21.35% error is observed for the 

90° stratification angle in the hybrid case which is higher than the errors obtained for other values 

of 𝜃  as a different model is used. In addition, the computation time and the accuracy of the 

sawtooth and periodic parabola functions, used in the 90° hybrid model, depend on the value of 𝑛. 

As 𝑛 gets closer to infinity, the sine and cosine waves will be further dampened so that a more 

accurate approximation of the profile functions can be obtained. Note that however, there is a 

difference between the accuracy of the proposed profile functions and the accuracy of the surface 

roughness prediction. Although ideally expected, a more accurate profile representation is not 

necessarily associated with a more accurate prediction of surface roughness. Therefore, it is 

necessary to study the behavior of the model and the computation time to determine the optimum 

value of 𝑛. Therefore, the prediction accuracy was evaluated based on different values of 𝑛 (2, 5, 

50, and 100). Finally, 𝑛 = 2 was selected as the best prediction accuracy was obtained. In addition 
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to optimizing the model parameters, increasing the number of samples and measurements is 

expected to further reduce the obtained errors. 

In Figure 55, the performance of the surface roughness model is presented for different 

stratification angles. For better understanding, the performance of the model for the hybrid case is 

illustrated together with the performance of the model for additive case (Figure 20 in Chapter 2).  

Confidence intervals are generated for the predicted roughness values based on the distribution of 

the error coefficients in Table X. According to the figure, the confidence intervals are generally 

larger for smaller stratification angles. It should be noted that the confidence intervals for 70° and 

90° are too narrow to be visible in the figure. The confidence intervals for 70° and 90° angle are 

[4.484, 5.379] and [13.770, 14.007], respectively. 

 

Figure 55. Comparison of predicted and experimental surface roughness values for both additive 

and hybrid cases 
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3.2.8 Conclusions 

In this section, mathematical models for surface roughness of hybrid additive-subtractive 

manufactured surfaces are established. Layer thickness, stratification angle, layer’s error 

coefficients, and cutting tool’s parameters are incorporated into the developed models. 

Experiments are performed to validate the developed models. An average of 91.83% accuracy is 

obtained which is significant specifically considering that no other similar models exist in the 

literature. Extending the current model to the 𝜃 = 0°  or 180°  scenario, considering other 

subtractive processes or profile models, and incorporating other parameters into the model are 

among the possible future works.  

3.3 Concluding Remarks 

In this chapter, efforts to address the process-level quality assurance problems in hybrid 

additive-subtractive manufacturing are presented using both empirical and analytical approaches.  

First, a hybrid additive-subtractive manufacturing platform is developed and described. The 

developed platform uses a robot arm with 6 degrees of freedom which provides additional 

manufacturing capabilities compared to the 3-5 axis commercial hybrid additive-subtractive 

platforms. The development process, including the designed software, control, and hardware are 

presented and explained. The capabilities of the developed platform are illustrated through several 

case studies.  

Second, as the process planning decisions have experimentally shown to affect the energy 

consumption in the developed hybrid platform [200], an approach for optimum sequencing of the 

additive and subtractive manufacturing features during the process planning of the hybrid process 

was developed. The proposed approach aims to minimize the energy consumption of the hybrid 

platform using a greedy algorithm and based on the characterized energy consumption elements, 
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by proposing the best sequence among features. The proposed model uses the Signal Analyzer 

module in ABB RobotStudio Software to derive the robot arm energy consumption during 

movement or at different configurations. Note that mathematical approaches to study the robot 

arm energy consumption exist in the literature [200], [201], and can be used to be further integrated 

into the proposed feature sequencing approach.  

Finally, analytical models for prediction of surface roughness of additive manufactured 

surfaces which are further processed by the subtractive process (in our model, milling process) are 

proposed. The proposed models are based on the proposed AM surface profile representation 

scheme in Section 2.2.1. The sawtooth function is adopted to represent the SM surface profile. 

Both additive and milling parameters, namely layer thickness, layer error coefficients, 

stratification angle, working minor cutting edge angle of the milling tool, feed, and cutting depth 

are considered. Several experiments are performed to validate the proposed models. According to 

the experiment results, the accuracy of the proposed models was found to be 91.83% in average. 

The proposed models provide guidelines for designers in the tolerance design stage for assigning 

feasible and optimal tolerances.  
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4. PRODUCT-LEVEL QUALITY ASSURANCE: INVESTIGATING THE BETWEEN-

COMPONENT INTERACTION FOR ADDITIVE MANUFACTURING 

[Parts of this chapter were previously published as “Haghighi, A., Yang, Y., and Li, L. (2017, 

June). Dimensional performance of as-built assemblies in polyjet additive manufacturing process. 

In International Manufacturing Science and Engineering Conference (Vol. 50732). American 

Society of Mechanical Engineers, and Haghighi, A. and Li, L. "Joint Asymmetric Tolerance 

Design and Manufacturing Decision-Making for Additive Manufacturing Processes." IEEE 

Transactions on Automation Science and Engineering (2018). DOI: 

10.1109/TASE.2018.2879719.” © [2018] IEEE. Reprinted, with permission, from [Azadeh 

Haghighi and Lin Li, Joint Asymmetric Tolerance Design and Manufacturing Decision-Making 

for Additive Manufacturing Processes, IEEE Transactions on Automation Science and 

Engineering, 12/2018], and ASME. For more information, please refer to the Appendix (Copyright 

Statement).] 

This chapter presents the different studies performed to understand and address product-level 

quality assurance challenges considering multi-component additively manufactured products. In 

Section 4.1, the clearance of assemblies using the PolyJet AM process is empirically studied as a 

function of different assembly design and manufacturing decision parameters [202]. In Section 4.2, 

a methodology for integrated optimum tolerance design and parameter tuning in the additive 

manufacturing process is proposed and illustrated [203]. The main idea is to take advantage of the 

frequent systematic shifts in AM during the manufacturing process by tuning the process 

parameters of each individual component in such a way that the errors cancel each other out. 

Therefore, the need for AM error compensation, which is generally complex and requires a lot of 
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effort, can be eliminated, or minimized. Finally, the conclusions and futures work of this chapter 

are summarized in Section 4.3. 

4.1 Dimensional Distribution of As-Built Assemblies in PolyJet Additive Manufacturing 

Process 

4.1.1 PolyJet Additive Manufacturing Process Introduction  

One of the most promising AM processes for printing as-built assemblies is the PolyJet 

technology (Figure 56) because of its high precision and accuracy. PolyJet is a 3D printing process 

similar to the Inkjet process which jets thin layers of curable liquid photopolymer resins onto the 

building tray and cures them using UV energy [3]. 

 In this process, the head moves in the X and Y directions while jetting out arrays of 

photopolymers in shapes of droplets which are then cured by the ultraviolet lamps after each layer 

is finished. PolyJet technology has shown to have a very good dimensional performance compared 

to other AM processes [204], [205].  

 
Figure 56. Schematic view of PolyJet technology (adopted from 

http://www.3daddfab.com/technology/) 
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4.1.2 Experimental Plan 

A two-component prismatic assembly structure (shown in Figure 57) is used for the 

experiments which consists of a prismatic base component (shaft) and a top component with an 

inner prismatic hole.  

The reason for selecting a prismatic design for components instead of the more common 

cylindrical shaft and hole design is to reduce the contribution of tessellation error. Tessellation is 

referred to as rendering a 3D object and using triangle meshes to represent its surface. However, 

representing a curved surface using triangles will always introduce some dimensional errors which 

can be minimized by reducing the size of triangles. Two marks on both of the components are 

designed which are solely used as a guide in order to assemble the parts in a uniform direction. 

This way, we can make sure that the measurements at different height levels of components are 

comparable. The assembly has a rectangular shape and thus, requires two different clearance 

values to be assigned for each of the width (clearance W) and length (clearance L) directions 

(Figure 58).  

Currently, a trial and error approach (through experiments and simulation) is usually applied 

for finding the optimal design clearance, dimensions, and support structure when as-built 

assemblies are printed  [104], [110]. The clearance of 0.2 mm is selected for the assembly 

according to the empirical data [206] to ensure that components do not fuse together during the 

printing process. In other words, if the clearance value is small enough, distinguishing and 

separation of different assembly components would not be possible. Additional experiments are 

also performed to verify the suitability of the selected clearance values.  
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Figure 57. Dimensions of the two-component assembly 

 
Figure 58. Width (W) and length (L) clearances 

The DOE approach is used for analyzing the effects of two different decision factors (assembly 

type and orientation) on the two clearance values (clearance W and clearance L) of the assembly. 

Assembly type is a categorical parameter that refers to the alternative design/manufacturing option. 

Two possible types of assembly are considered: (1) as-built assembly (i.e., printing the assembly 

as a whole with overlapped geometries) and (2) individual assembly (i.e., printing the components 

individually with no overlapped geometries). The second studied factor is the orientation of 

components. Two different orientations of vertical and horizontal are considered. The vertical and 

horizontal orientations are presented in Figure 59, where Z-axis shows the build direction. 

Therefore, a 22 full factorial design is applied to study the effects of decision parameters on the 



140 

 

clearance values. Finally, the best setting for obtaining more accurate assemblies is identified by 

using the desirability function. Two replicas are built for each experiment scenario. Therefore, a 

total of 8 assemblies are printed. The control factors of the study are shown in Table XXI.  Table 

XXII presents the parameters that are kept constant during all experiments.   

Table XXI. Control factors 

Factors  Symbol 
Levels 

-1 1 

Assembly type A Individual As-built 

Orientation B Vertical Horizontal 

 
 

Table XXII.  Constant parameters 

Material  VeroClear-RGD810 

Layer thickness 28 µm 

Fill density 100% 

Print mode High Speed (HS) 

 

The Objet30 Prime 3D desktop printer from Stratasys based on PolyJet technology is used for 

fabricating the parts. The Objet30 Prime machine, is capable of achieving a layer thickness of 28 

µm for Tango materials and 16 µm for other materials, and has a resolution of 6000 dpi on X-axis, 

6000 dpi on Y-axis, and 1600 dpi on Z-axis [207]. The VeroClear-RGD810 translucent material 

is used for fabricating the parts which has been proved to have a good dimensional stability and 

surface smoothness. The objet30 prime machine uses a gel-like nontoxic support material which 

can be easily removed with a waterjet after the part is printed [207]. As a result of this capability 

and the high resolution of the machine, small clearances in as-built assemblies can be easily 
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realized. A digital caliper with an accuracy of 0.01 mm is used for measuring the dimensions of 

components and the obtained clearance.  

 
Figure 59. (a) Vertical and (b) Horizontal orientations 

4.1.3 Factorial Analysis Results 

The fabricated components before and after the support removal are presented in Figure 60 

and Figure 61. The support material has been removed using a waterjet to ensure the dimensional 

values remain intact. The remaining support structure is further cleaned before the measuring 

process. To measure the obtained clearance along the length of assembly (clearance L) in each 

scenario, the lengths of the shaft and hole were measured at two different height positions (top and 

bottom) due to the inconsistency of the dimensional profile along the height of components. The 

measurements were repeated 10 times. The average of the repeated measurements for the top and 
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bottom positions of each component were used to calculate the estimated length of components. 

The final clearance values were calculated by finding the difference between the base component’s 

length and the length of the hole. A similar approach is applied for calculating the clearance value 

along the width of assembly (clearance W). The results of the measurements for each scenario are 

presented in Table XXIII. All obtained clearances are smaller (within a range of 19%-92%) than 

the initial 0.2 mm designed clearance due to the shrinkage/expansion of components.  

 

 
Figure 60. Support Structure; (a) As-built, vertical, (b) Individual, vertical, (c) As-built, 

horizontal, and (d) Individual, horizontal 

 

 
Figure 61. Fabricated components 

It is observed that in all horizontal orientations, clearances are larger than the corresponding 

vertical orientations. In addition, clearance L is larger in the individual scenario compared to the 
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as-built assembly scenario. This observation, however, does not apply to clearance W; in the 

horizontal orientation, the as-built scenario is slightly better than the individual scenario. Also, 

note that clearance L is aligned toward the Y-axis of the machine in the vertical orientation. As the 

orientation is changed to horizontal, the alignment of clearance L does not change. However, the 

alignment of clearance W in the machine coordinate system changes as the orientation is changed. 

Initially, at the vertical orientation, clearance W is aligned toward the X-axis of the machine. By 

changing the orientation to horizontal, the alignment of clearance W will be changed toward the 

Z-axis (build direction). These different alignments can also contribute to the observed different 

errors of vertical/horizontal settings and also between clearance L and clearance W.    

Table XXIII. Obtained clearance values 

# Assembly type Orientation Clearance L 

(mm) 

Clearance W 

(mm) 

Nominal (L, W) 

1 As-built Vertical 0.02275 0.02325 0.2 

2 As-built Vertical 0.02275 0.01525 0.2 

3 As-built Horizontal 0.08685 0.16025 0.2 

4 As-built Horizontal 0.10325 0.15 0.2 

5 Individual Vertical 0.08175 0.04125 0.2 

6 Individual Vertical 0.0655 0.0555 0.2 

7 Individual Horizontal 0.15775 0.1475 0.2 

8 Individual Horizontal 0.1665 0.146 0.2 

 

The analysis of variance for both clearance W and L are presented in Table XXIV. It is 

observed that with a 95% confidence interval, the effect of assembly type on the clearance W is 

not statistically significant (p-value of 0.09). However, the p-values of both orientation factor and 

the interaction between orientation and assembly type are less than the significance level of 0.05. 

Therefore, they both have a significant relationship with the final value of clearance W.  In contrast 
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to the findings for clearance W, the assembly type has shown to have a statistically significant 

relationship with clearance L using a 95% confidence interval (p-value of 0.001). In addition, 

orientation has also shown to play a significant role in the final value of clearance L. However, the 

interaction between orientation and assembly type does not show a statistically significant 

relationship with clearance L (with a p-value of 0.26). The main effect plots for both clearance L 

and clearance W (shown in Figure 62 and Figure 63) again highlight that orientation plays a 

significant role in the final clearance of components. As mentioned earlier, the final clearance is 

always larger in the horizontal orientation compared to the vertical orientation. In addition, using 

as-built assemblies can significantly reduce the clearance L compared to the individual scenario. 

However, a significant reduction of clearance W is not observed when changing the assembly type 

from individual to as-built.  

Considering that all clearances have shrunk compared to the initial design clearance, the best 

setting is the setting in which the obtained clearance values are larger (closer to the design 

clearance). Considering clearance L, the best setting would be the “Individual, Horizontal” setting 

as selecting these two levels will increase the final clearance. The horizontal orientation also will 

generate larger clearances for clearance W. However, according to Table XXIII, the as-built 

assembly type will lead to a better clearance compared to the individual assembly type for 

clearance W. Since both clearance L and clearance W need to be kept close to their target value of 

0.2 mm, and assuming they have similar importance and weight factors, a desirability function can 

be used to select the best experiment setting while optimizing both clearances. The “Individual, 

Horizontal” setting shows to have the highest desirability of 0.745 and thus, is selected as the 

optimum setting in terms of dimensional accuracy.  
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Table XXIV. Analysis of variance for clearance L and W 

ANOVA for Clearance L (α = 0.05) 

Source Degree of 

freedom 

Sum of 

squares (SS) 

Mean sum of 

squares (MS) 

P-value 

A 1 0.006956 0.006956 0.001 

B 1 0.012928 0.012928 0.000 

A*B 1 0.000131   0.000131   0.260 

Error 4 0.000305 0.000076 - 

Total 7 0.020320 - - 

ANOVA for Clearance W (α = 0.05) 

Source Degree of 

freedom 

Sum of 

squares (SS) 

Mean sum of 

squares (MS) 

P-value 

A 1 0.000215 0.000215 0.099 

B 1 0.027437 0.027437 0.000 

A*B 1 0.000703 0.000703 0.018 

Error 4 0.000187 0.000047 - 

Total 7 0.028542 - - 

 

 

Figure 62. Main effect plot of clearance L 
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Figure 63. Main effect plot of clearance W 

4.1.4 Dimensional Profiles and Distributions 

Another interesting observation from the experiments is the difference of dimensional profile 

of assembly components in different experimental settings. Table XXV shows the measured 

dimensions at the top and bottom positions of each component for different experiment settings: 

(1) vertical, as-built, (2) vertical, individual, (3) horizontal, as-built, and (4) horizontal, individual. 

The bottom position is the position on the profile of component that is the closest to the embedded 

mark in the design. In the vertical orientation, the bottom position is closest to the building platform 

and the top position is the closest to the printing head. It is observed that in all individual scenarios, 

the base component (shaft) has a higher expansion rate at the bottom position compared to the top 

position. In other words, the deviation on the bottom position is higher compared to the top position. 

Similar behavior is observed for the top and bottom dimensions of the hole component along the 

width dimension in the individual scenarios. However, the difference of dimensions is not as 

significant as in the shaft component. In addition, it is observed that the dimensional changes of 

top and bottom positions in the as-built scenario are more uniform compared to the individual 
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scenario. To better visualize this different behavior, the dimensional profile of as-built and 

ordinary assemblies in the vertical orientation and along the length of components is shown in 

Figure 64.   

Table XXV. Dimensional profile of components 

Component Direction/Position 1 2 3 4 

1-Shaft Length/Top 13.237 13.074 13.170 13.006 

1-Shaft Length/Bottom 13.217 13.240 13.152 13.119 

2-Hole Length/Top 13.281 13.303 13.355 13.356 

2-Hole Length/Bottom 13.265 13.306 13.347 13.418 

1-Shaft Width/Top 10.324 10.199 10.034 10.013 

1-Shaft Width/Bottom 10.312 10.437 10.086 10.095 

2-Hole Width/Top 10.364 10.399 10.365 10.338 

2-Hole Width/Bottom 10.349 10.431 10.375 10.357 

 

Table XXVI shows the mean, standard deviation, and range of measured dimensions at the top 

and bottom positions. It is observed that (i) the shaft dimensions are oversized while the hole 

dimensions tend to be undersized, and (ii) the standard deviations of the measured dimensions at 

the top and bottom positions of as-built assemblies (mainly for the shaft component) are smaller 

compared to the corresponding individual assemblies.  

Different reasons could contribute to this uniform behavior of dimensional change for as-built 

assemblies. One of the possible explanations for this different behavior could be the different 

geometrical interaction in as-built assemblies compared to the individual scenario. These 

geometrical interactions could refer to both interactions between the assembly components, and 

between the components and the support structure. The different interaction can also affect the 

freedom of expansion/shrinkage of material and thus, lead to different dimensional behavior. In 

other words, due to the connection of components to each other and to the added support structures, 
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the capability of the layers to expand/shrink freely could become limited compared to the 

individual scenario. The support structure/material properties can also affect this different behavior 

and need to be studied.  

The different support structures in our experiments are presented in Figure 60. As can be seen, 

there exists a difference between support structure in as-built and individual cases which could 

have contributed to the observed dimensional difference. In addition to the support structure and 

different geometrical interactions, the curing process of droplets needs to be studied to see if UV 

light can contribute to this different behavior. Therefore, the different behavior in as-built 

assemblies and individual assemblies and the contributing factors need to be further studied and 

modeled for better prediction of the final assembly clearances. 

 
Figure 64. Dimensional profile of assemblies in the vertical orientation and along the length 
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Table XXVI. Dimensional distribution of components 

 
 

4.1.5 Conclusions 

In this section, the dimensional performance of as-built assembly structures compared to 

ordinary assemblies (in which parts are printed individually and assembled together) in the PolyJet 

AM process is studied. The DOE has been used to study the effect of the assembly type and 

orientation in the final clearance of assemblies. A full factorial design with a total of 8 experiments 

are conducted where two clearance values (along the width and length of components) are analyzed 

as the experiment responses. In addition, the dimensional profiles of components are studied in 

different scenarios. The “Individual, Horizontal” setting has been found to be the optimum 

experiment setting in terms of dimensional accuracy. The main finding of this study is that the 

assembly design strategy (fabricating components in an overlapped/integrated scenario versus 

non-overlapped scenario) significantly impacts the dimensional profile of components and 

assembly clearance, and thus, should be considered for the purpose of tolerance design. The rest 

of the experimental findings are summarized below:  
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- The dimensions of the shaft (either along the width or length) are generally oversized while 

the hole dimensions are generally undersized using the PolyJet process.  

- All obtained clearance values are reduced within a range of 19% to 92% compared to the 

original design clearance.  

- Orientation has shown to have a significant effect on the final clearance of assemblies. In our 

experiments, all horizontal orientations led to a larger clearance (closer to the design clearance).  

- The assembly type has a significant contribution to clearance L in contrast to clearance W. The 

interaction of assembly type and orientation factors also contributes to the clearance W.   

- The decision on how to print assemblies (as-built vs. ordinary) is critical as it can affect the 

clearance values even if all of the process parameters are kept constant. Therefore, if the 

assembly is designed in a way that we have a freedom to alter between as-built and ordinary 

assemblies (e.g., it is possible to remove the support between moving components), assembly 

type has to be also considered as an important factor beside process parameters when 

optimizing the dimensional accuracy of components.  

- The obtained clearance in different directions and alignments is also different when using 

similar printing parameters. In our case, clearance L and W show different behaviors which 

could be as a result of their different alignments in the machine coordinate system.  

- The dimensional deviation of assembly components (mainly shaft) is more uniform along their 

profile in as-built assemblies compared to the individual scenario.  

- The measured dimension at the bottom position of shaft is always larger than the top position 

in the individual assembly scenario. This applies to both width and length measurements.  

- As a result of the above, it can be concluded that a different dimensional behavior exists in as-

built assemblies (overlapped or integrated geometries) compared to ordinary assemblies (non-
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overlapped geometries). This different behavior can probably be caused by the different 

geometrical interactions and different movement limitations (either among components or 

among components and support structure).   

The different dimensional behavior of as-built assemblies and ordinary assemblies is one of 

the main findings. The implications of this different behavior are that the current dimensional 

accuracy improvement techniques, error compensation values, and optimal process parameters for 

individual AM components might not necessarily be applicable/optimal for the as-built assembly 

structures and need to be further studied as a future work. However, note that the findings of this 

paper are only specific to the PolyJet process. Therefore, similar studies have to be performed for 

other additive manufacturing processes, different material and geometries to indicate if similar 

behavior is observed or not.   

4.2 Joint Tolerance Design and Parameter Tuning in Additive Manufacturing Processes  

In this section, a methodology for optimum tolerance design and parameter tuning in additive 

manufacturing process is proposed and illustrated. The main idea is to take advantage of the 

frequent systematic shifts in AM during the manufacturing process by tuning the process 

parameters of each individual component in such a way that the errors cancel each other out. 

Therefore, the need for AM error compensation, which is generally complex and requires a lot of 

effort, can be eliminated or minimized. In other words, error compensation will adjust the process 

mean to the nominal mean, thus increasing the accuracy of parts. However, for the aim of tolerance 

design, it is not necessary for all the components to have high accuracy, as long as the assembly 

specifications are met. By considering the manufacturing decisions at the tolerance design stage, 

an optimal tolerance design can be proposed. More specifically, build direction is one of the most 

important parameters which should be considered during the tolerance design stage as it 
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significantly affects the distribution of dimensions. As a result, the design and manufacturing 

stages become hugely interrelated.  

Moreover, the normal distribution which is generally considered in the traditional tolerance 

design problems, might not be suitable for AM process due to its different application domain, i.e., 

mass customization. In other words, due to the generally slower production speed of AM processes 

compared to traditional processes, as well as the small number of unique components, it is 

generally not required nor cost-effective to print large enough number of parts to justify the 

adoption of normal distribution assumption or derive the moments of the distribution. Therefore, 

the assumption of normal distribution might lead to calculation inaccuracies if the distributions are 

in fact not normal. Some researchers have highlighted the non-normal and generally skewed 

behavior of observed dimensions specifying that the application of standard deviation can be 

inappropriate in AM processes [68]. Therefore, in this section, the above issue is addressed by 

adopting the bootstrap technique to generate the distribution parameters.  

4.2.1 Preliminaries and Problem Description 

Consider a one-dimensional (1-D) assembly chain consisting of 𝑁  individual components, 

each with a fixed nominal size of 𝐷𝑛 (𝑛 = 1,…𝑁)  defined by the designer. The assembly 

specification is defined as: 𝐷𝐴 ± 𝑇𝐴, where 𝐷𝐴 is the nominal size of the assembly and 𝑇𝐴 denotes 

the assembly tolerance (defined symmetrically around 𝐷𝐴 ). In addition, it is required that the 

assemblies lie within the provided specification with a confidence level 𝑃𝐴. It is assumed that the 

components are fabricated with different AM processes or materials due to the design requirements. 

Therefore, no two components of the assembly can be built together in a single setup. To fabricate 

the components, a set of process parameters should be selected from the 𝐽 feasible or preferred 
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combinations of process parameters. The feasible candidate sets of the process parameters are 

assumed to be given based on manufacturer’s experience as well as the process/machine 

constraints, and generally are assumed to include statistically significant parameters like layer 

thickness and build direction [63], [74], [75].  

Let 𝐶𝑛𝑗  be the cost of manufacturing component 𝑛 using the 𝑗th set of process parameters.  

Therefore, the 𝑁 × 𝐽 cost matrix, 𝑪 = {𝐶𝑛𝑗} can be defined. Note that the cost can be evaluated 

from many AM cost formulations available in the literature (e.g., see [208]–[210] and the 

references therein). Let 𝑓(𝐷𝑛 , 𝒑𝒓𝒋) denote the pdf of dimensions given the nominal dimension 𝐷𝑛 

and using the 𝑗th set of process parameters. In most cases, the above pdf of data is unknown. One 

technique would be to use the central limit theorem and assume normality of data. However, this 

approach requires large number of samples for each individual component to be obtained which is 

not very practical considering the generally longer production time of AM technology compared 

to the traditional manufacturing processes, and the assumption of independent setups made earlier. 

Finally, a confidence interval 𝐼𝑛𝑗
𝑝𝑛 = [𝛼𝑛𝑗

𝑝𝑛  , 𝛽𝑛𝑗
𝑝𝑛  ] for the area in which the data are more likely to 

lie can be constructed for a given nominal dimension 𝐷𝑛 , process parameter set 𝒑𝒓𝒋 , and 

confidence level 𝑝𝑛 using the Bootstrap statistical technique described in Section 4.2.2. 

Given the above information, the goal is to assign the optimum set of process parameters and 

components’ tolerances (maximum confidence level vector 𝒑) so that the total manufacturing cost 

is minimized, while the assembly tolerance requirements (both specification and confidence level) 

are satisfied. Since the optimum confidence level vector defines the area in which the component’s 

dimensions should lie to satisfy the assembly tolerance requirements, it can be further translated 
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as the optimum tolerance range for individual components. In the next subsection, the Bootstrap 

statistical technique and the approach for constructing the confidence intervals are presented. 

4.2.2 Construction of Confidence Intervals 

Bootstrapping (a special case of Monte-Carlo simulation) is the key technique used for 

constructing the confidence intervals in this paper. The term Bootstrap was coined and popularized 

by Efron [211]. The key idea of nonparametric Bootstrap method is to use the available sample 

data as a “surrogate population” for estimating the sampling distribution of a statistic [212]. The 

bootstrap samples are generated through resampling with replacement from the original sample 

data. Finally, the distribution of different population statistics is computed from the bootstrap 

samples based on the law of large numbers.  

Consider (𝑥1, … , 𝑥𝑚) are 𝑚 sample points drawn from an unknown probability distribution 𝐹. 

A bootstrap sample is a resample of the above data point (usually) with the same size of 𝑚. 

Suppose 𝜃  is the population parameter of interest to be studied and 𝜃  is the sample statistic 

obtained from the data points 𝑥1, … , 𝑥𝑚 . Bootstrap technique allows us to approximate the 

distribution of 𝜃 − 𝜃 using the bootstrap distribution of  𝜃𝑏 − 𝜃, where 𝜃𝑏 is the statistic computed 

from the resamples (𝑅), as 𝑅 becomes large. Although the underlying logic is easy to grasp, the 

execution of this technique is less straightforward. The implementation of this method is relatively 

inexpensive as it can operate with a limited number of samples, but relies heavily on the modern 

computational power. 

One of the main applications of Bootstrap technique is constructing confidence intervals for 

different statistics [213]. The "first-order" interval formed from the quantiles of the bootstrap 

distribution has a major limitation as it does not adjust for the skewness of data. The bias corrected 
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and accelerated (BCa) percentile method (also referred to as the “second-order” accurate bootstrap 

method) was thus proposed to address this issue [214]. Accordingly, the skewed behavior of data 

and long production time in AM make the Bootstrap technique a suitable statistical approach for 

evaluating the distribution of components’ dimensions.  

Let vector 𝒑 = (𝑝1, 𝑝2, … , 𝑝𝑛, … , 𝑝𝑁)  represent the set of selected confidence levels for 

components. To construct the confidence interval for each component given the value of 𝑝𝑛 (i.e., 

generate a point estimate of lower and upper percentiles; 𝛼𝑛𝑗
𝑝𝑛 and 𝛽𝑛𝑗

𝑝𝑛), the following approach is 

applied. Two confidence intervals around the (1 − 𝑝𝑛)/2 th percentile and (1 + 𝑝𝑛)/2 th 

percentile of the data is initially established using the “second-order” Bootstrap statistical 

technique with sample number 𝑅. These confidence intervals can be referred to as: [𝑙1−𝑝𝑛
2

𝑗

 

 

, 𝑢1−𝑝𝑛
2

𝑗

 ] 

and [𝑙1+𝑝𝑛
2

𝑗

 

 

, 𝑢1+𝑝𝑛
2

𝑗

 ]. Both confidence intervals are re-constructed based on T different simulation 

instances for a specific set of dimensions (𝐷𝑛), confidence level (𝑝𝑛), and process parameter set 

(𝑗).  

By re-simulating the confidence intervals, the effect of nonlinear error can be addressed for 

generating the point estimates of percentiles, and thus can increase the accuracy of point estimates. 

As a result, 2𝑇 values representing the confidence interval points for each percentile is obtained. 

The point estimate for each of the lower and higher percentiles, is thus calculated as the weighted 

arithmetic mean of the 2𝑇 data points as follows.   

 𝛼̂𝑛𝑗
𝑝𝑛,𝑇 = (2𝑇)−1(∑𝜔𝑞𝑦𝑞

𝑄 

𝑞=1

), (4.1) 
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𝛽̂𝑛𝑗
𝑝𝑛,𝑇 = (2𝑇)−1(∑ 𝜔𝑞′

′

𝑄′ 

𝑞′=1

𝑦𝑞′
′ ), (4.2) 

where  𝛼̂𝑛𝑗
𝑝𝑛,𝑇  and 𝛽̂𝑛𝑗

𝑝𝑛,𝑇  are the point estimates of lower and higher percentile for the given 𝑇 

simulation instances of the confidence interval respectively. In addition, 𝑄 and 𝑄′ represent the 

total number of sets with unique values 𝑦𝑞 and 𝑦𝑞′
′  from the observed 2𝑇 data points. Furthermore, 

𝜔𝑞 and 𝜔𝑞′
′  denote the assigned weight which are equal to the number of data points in each set. 

Observe that we have: 

 ∑𝜔𝑞

𝑄 

𝑞=1

= ∑ 𝜔𝑞′
′

𝑄′ 

𝑞′=1

= 2𝑇,         ∀𝑇. (4.3) 

The flowchart of the described method for generating point estimates of the percentiles is 

illustrated in Figure 65.   

Remark: Note that implementing the bootstrap technique to construct confidence intervals for 

the extreme points of the pdf can be a little problematic especially if the true extreme points of the 

pdf are not within the sampled data. In other words, in such a case, the extreme points can never 

be generated by merely resampling the existing data. 

 As a result, the bootstrap intervals might not be close to the correct asymptotic values. 

Consequently, the application of this method for extreme points should be performed with caution. 

In such cases, one suggested remedy is to use a small fraction of the initial sample size as the size 

of the bootstrap samples.  
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Figure 65. Percentile point estimation based on Bootstrap statistical process 

 

4.2.3 Dimensional Tolerance Definition 

Once the optimal values of 𝑝𝑛 ’s are known, the component’s tolerances can be defined. 

Depending on the position of the percentile point estimates with respect to the nominal value, the 

dimensional tolerances can be defined in three different ways as follows: 
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  𝐶𝑎𝑠𝑒 1: 𝐷𝑛 

+(𝛼̂𝑛𝑘
𝑝𝑛,𝑇−𝐷𝑛 )

+(𝛽̂𝑛𝑘
𝑝𝑛,𝑇−𝐷𝑛 )

,         𝐷𝑛 < 𝛽̂𝑛𝑘
𝑝𝑛,𝑇 , 𝐷𝑛 ≤ 𝛼̂𝑛𝑘

𝑝𝑛,𝑇  

 

𝐶𝑎𝑠𝑒 2:  𝐷𝑛 
−(𝐷𝑛 − 𝛼̂𝑛𝑘

𝑝𝑛,𝑇)

+(𝛽̂𝑛𝑘
𝑝𝑛,𝑇−𝐷𝑛 )

,       𝐷𝑛 < 𝛽̂𝑛𝑘
𝑝𝑛,𝑇 , 𝛼̂𝑛𝑘

𝑝𝑛,𝑇 < 𝐷𝑛 
 

 𝐶𝑎𝑠𝑒 3: 𝐷𝑛 
−(𝐷𝑛 − 𝛼̂𝑛𝑘

𝑝𝑛,𝑇)

−(𝐷𝑛 −𝛽̂𝑛𝑘
𝑝𝑛,𝑇)

,        𝛽̂𝑛𝑘
𝑝𝑛,𝑇 ≤ 𝐷𝑛  , 𝛼̂𝑛𝑘

𝑝𝑛,𝑇 < 𝐷𝑛 

 (4.4) 

where 𝑘 represents the optimum selected process parameter set for component 𝑛 based on the 

optimization model in Section 4.2.5 and the proposed solution approach in Section 4.2.7. These 

three cases are further illustrated in Figure 66. 

 

Figure 66. Illustration of different forms of asymmetric tolerances 

Due to the skewed behavior of dimensions, the dimensional tolerances are not necessarily 

symmetric around the nominal. The main reason for using the asymmetric tolerance format is to 

reduce the number of nonconforming products and increase the efficiency of the tolerance band 

given the assumption of fixed nominal value. In other words, by adopting a symmetric form, some 

portions of the tolerance band will never be visited by the dimension’s pdf and can be considered 

as wasted bounds. In this work, it is assumed that given the known 𝐷𝑛’s and set of 𝑝𝑛’s, there 

exists at least one set of process parameters with which the assembly tolerance specification is 

satisfied with the given confidence level 𝑃𝐴. Therefore, at least one feasible solution exists with 

the given nominal values and no error compensation would be necessary. However, if no feasible 

solution is found, one should either consider additional sets of process parameters or perform an 
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additional analysis on the 𝐷𝑛’s where the nominal dimensions are adjusted/altered so that a feasible 

search space is generated. This second analysis can be referred to as “dimension allocation” which 

compensates systematic errors of some or all of the components by alternating the nominal values 

and needs to be performed together with the tolerance allocation task. 

4.2.4 Tolerance Scaling 

Once the tolerances are defined according to Section 4.2.3, an additional step is performed to 

evaluate the efficiency of the consumed assembly tolerance band based on the assigned tolerances. 

In other words, any unused portion of the assembly tolerance band, if exists, will be distributed 

within all or some of the tolerance bands of components, in either one or both directions. Although 

not necessary, this additional step provides an opportunity to possibly further reduce the number 

of nonconforming parts from the maximum tolerable level. Note that however, the percentage 

reduction in the number of nonconforming parts depends on the adopted scaling approach. Ideally, 

one might want to employ a scaling approach that can minimize the possible maximum number of 

nonconforming parts. 

In this work, we employ a weighted approach which does not necessarily consider the number 

of nonconforming parts but instead considers the weight coefficient of each component (decided 

by the designer/manufacturer) for scaling the tolerances. The weight coefficient can depend on 

many factors including the used AM process, the derived width of the tolerance band, component’s 

material, etc. For example, if the recycling process of a material is expensive in case of waste, a 

higher weight coefficient can be assigned to that component so that less non-conforming parts are 

generated. As another example, if the determined tolerance band for a component is too narrow, 

the designer might also want to increase it to further reduce the number of possible defects. 
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The proposed weighted approach is as follows. Let 𝑾𝑵×  denote the given component’s 

weight matrix with its first and second columns given as  − = (𝑤1
−, … , 𝑤𝑁

−)𝑇  and  + =

(𝑤1
+, … , 𝑤𝑁

+)𝑇 , ∑ 𝑤𝑛
− = 1𝑁

𝑛=1 , ∑ 𝑤𝑛
+ = 1𝑁

𝑛=1 , 0 ≤ 𝑤𝑛
−, 𝑤𝑛

+ < 1, where  −  and  +  represent the 

components’ weight vectors along positive and negative directions, and subscript T denotes matrix 

transpose. Also, let 𝑇𝑅
− and 𝑇𝑅

+ represent the remaining tolerance bands on negative and positive 

directions after determining the component tolerances. The additional distributed allowance to 

each component along negative and positive directions is simply calculated by: 

 𝑻𝑫
 = diag(𝑇𝑅

−, 𝑇𝑅
+)𝑾𝑇 . (4.5) 

4.2.5 Optimization Model 

Let matrix 𝑿 = {𝑋𝑛𝑗} be the decision matrix with each element 𝑋𝑛𝑗 representing the binary 

decision variable to denote the process plan. Therefore, 𝑋𝑛𝑗 takes the value of one if component 𝑛 

is fabricated by the 𝑗th set of process parameters (𝒑𝒓𝒋), and zero otherwise. The above joint 

tolerance allocation and manufacturing decision-making problem can be formulated with the 

objective function (4.6) and constraints (4.7-4.11) as follow: 

 min
𝑿,𝒑

  ∑∑ 

𝐽

𝑗=1

𝐶𝑛𝑗𝑋𝑛𝑗

𝑁

𝑛=1

− 𝜆∑𝑝𝑛

𝑁

𝑛=1

   (4.6) 

 

𝑠. 𝑡.       𝑝𝐴 ≤∏𝑝𝑛

𝑁

𝑛=1

, (4.7) 

 

∑𝛽𝑛𝑘
𝑝𝑛

𝑁

𝑛=1

≤ 𝐷𝐴 + 𝑇𝐴,       (𝑘 = 𝑗   𝑖𝑓𝑓  𝑋𝑛𝑗 = 1), (4.8) 
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∑𝛼𝑛𝑘
𝑝𝑛

𝑁

𝑛=1

≥ 𝐷𝐴 − 𝑇𝐴,       (𝑘 = 𝑗   𝑖𝑓𝑓  𝑋𝑛𝑗 = 1),     (4.9) 

 

∑𝑋𝑛𝑗

𝐽

𝑗=1

= 1,         ∀𝑛, 𝑛 = 1,… ,𝑁 (4.10) 

 𝑋𝑛𝑗 ∈ {0,1}, 0 < 𝑝𝑛 ≤ 1, 𝑝𝑛 ∈ ℝ+. (4.11) 

In (4.6), the cost minimization objective is formulated with the decision variables of matrix 𝑿 

and vector 𝒑 where 𝑝𝑛 represents the natural logarithm of the confidence level 𝑝𝑛, and 𝜆 is a small 

number. Using 𝜆 allows us to formulate the objective of maximizing 𝒑 together with the cost 

minimization objective.  

As stated in (4.6), the objective is to minimize the total cost of manufacturing by determining 

the optimal decision matrix 𝑿 (Boolean matrix with entries from the Boolean domain {0, 1}) and 

component confidence levels (equivalently the value of individual tolerances).  

Constraint (4.7) is established to address the relationship between the assembly confidence 

level and components’ confidence levels, and is based on the following theorem: 

Theorem 1: if 𝑑𝑛𝑘 is a randomly obtained dimension from an unknown pdf: 𝑓(𝐷𝑛 , 𝒑𝒓𝒌), where 𝑘 

represents the optimum selected process parameter set for component 𝑛, and assuming that the 

component’s dimensions are independence (this is true based on our initial assumption as no two 

components are printed in one setup), the probability that the final assembly lies within the 

assembly specification is:   
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           P ((∑𝑑𝑛𝑘

𝑁

𝑛=1

)  ⊆ [𝐷𝐴 − 𝑇𝐴, 𝐷𝐴 + 𝑇𝐴])

≥               P (⋂(𝑑𝑛𝑘  ⊆  𝐼𝑛𝑘
𝑝𝑛)

𝑁

𝑛=1

) =∏𝑝𝑛

𝑁

𝑛=1

, 

(4.12) 

which according to the problem formulation should be at least 𝑃𝐴 . Therefore, to satisfy this 

requirement, constraint (4.7) is needed.  

Corollary 1.1: If all 𝑝𝑛’s are selected as equal, for a given assembly confidence level 𝑃𝐴, the 𝑝𝑛’s 

should be at least √𝑃𝐴
𝑁

. 

Note that constraint (4.7) has a quadratic form which can increase the complexity of the 

solution approach. To transform this constraint into a linear format, we take the natural logarithm 

of both sides of the inequality. Therefore, this constraint can be re-written as:  

 𝑝𝐴 ≤ ∑𝑝𝑛

𝑁

𝑛=1

, (4.13) 

where superscript ~ denotes the natural logarithm. 

Constraints (4.8) and (4.9) are formulated to address the acceptable total error based on the 

assembly specifications. An alternative formulation of these constraints is  

represented below: 

 ∑∑𝑩𝑛𝑗
𝒑

𝐽

𝑗=1

𝑋𝑛𝑗

𝑁

𝑛=1

≤ 𝐷𝐴 + 𝑇𝐴, (4.14) 
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∑∑ 𝑛𝑗
𝒑

𝐽

𝑗=1

𝑋𝑛𝑗

𝑁

𝑛=1

≥ 𝐷𝐴 − 𝑇𝐴, 

(4.15) 

where   and 𝑩 are the matrices of the 𝛼̂𝑛𝑗
𝑝𝑛,𝑇 and 𝛽̂𝑛𝑗

𝑝𝑛,𝑇 for 𝒑. 

Remark:  Note that characterizing the total assembly error by summing up the lower bounds 

𝛼𝑛𝑗
𝑝𝑛‘s together (and doing the same thing with  𝛽𝑛𝑗

𝑝𝑛’s), as stated in constraints (4.8) and (4.9) might 

not be very accurate specifically when the confidence levels are not large, and can lead to some 

inaccuracies in the evaluation of the final error. In that case, the correct approach for characterizing 

the assembly error is the convolution of individual pdfs of individual components. However, for 

cases where the pdfs do not exist or the likelihood functions are not completely known, one can 

use a similar approach as stated in [215], [216]. As an example, Barlow suggested the following 

likelihood function to address the asymmetric error (±𝜎−
𝜎+) for 68% confidence level: 

 ln 𝐿(𝜗) =  −
1

2
(
ln (1 +

𝜗
𝛾)

ln𝜔
) (4.16) 

Where 𝐿(𝜗) is the likelihood function, 𝜔 = 
𝜎+

𝜎−
, and 𝛾 =  

𝜎+𝜎−

𝜎+−𝜎−
. 

In constraint (4.10), the number of assigned process parameters set for each component is 

limited to 1. Finally, in (4.11), the decision variables 𝑋𝑛𝑗 are defined as binary, and 𝑝𝑛’s are limited 

to the continuous range from zero to one. 

4.2.6 Input Parameters and Decision Variables 

In general, the input parameters in this work can be divided into four different categories: (i) 

Design-related parameters, (ii) Process-related parameters, (iii) Bootstrap-related parameters, and 
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(iv) Optimization-related parameters. The parameters of the first two categories are mainly decided 

by the designer and with the inputs from the manufacturer regarding the feasible process parameter 

sets, or cost of manufacturing. The last two categories are related to the optimization model and 

the implemented bootstrap method. The notation and description of the input parameters in this 

work are provided in Table XXVII.  

The decision variables of the optimization problem comprise of decision matrix 𝑿  and 

confidence level vector 𝒑 , and are presented in Table XXVIII.  Once the optimum decision 

variables are obtained, the components’ tolerances will be calculated based on the intermediate 

parameters of  𝛼̂𝑛𝑘
𝑝𝑛,𝑇 and 𝛽̂𝑛𝑘

𝑝𝑛,𝑇  (for all 𝑛). These two parameters are the point estimates of lower 

and upper percentiles of the distribution for 𝑛th component printed with the optimum set of process 

parameters (𝑘), respectively, and are a function of optimum 𝑝𝑛. 

Table XXVII. Input parameters 

Category Notation Description 

(i) 

𝑁  Number of components 

𝐷𝑛 Nominal dimension of the nth component 

𝐷𝐴 Nominal dimension of the final assembly 

𝑇𝐴 Dimensional tolerance of the assembly 

𝑃𝐴 Confidence level of the assembly 

𝑤− Weight vector (negative direction) 

𝑤+ Weight vector (positive direction) 

(ii) 

𝐽 Number of process parameter sets 

𝑝𝑟𝑗 The jth set of process parameters 

𝐶 = {𝐶𝑛𝑗} Cost matrix 

(iii) 

𝑅 Number of Bootstrap samples 

𝑇 
Number of repeated simulation runs for 

constructing the confidence intervals 

(iv) 

𝜆 Objective function coefficient 

Ω Initial manufacturing cost 

𝜉 Cost cut-off value 
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Table XXVIII. Decision variables 

𝒑 = (𝑝𝑛)   Confidence level of components 

𝑿 = {𝑋𝑛𝑗} Manufacturing decision matrix 

 

4.2.7 Solution Approach 

We have adopted a cyclic (or alternating) optimization approach, for finding the optimum 

values of the decision variables 𝑋𝑛𝑗’s and 𝑝𝑛’s. This method has also been referred to as block 

relaxation, block-nonlinear Gauss–Seidel (GS), or cyclic coordinate descent method in the 

literature. Cyclic optimization is a well-known optimization approach for solving multivariate 

optimization problems and similar complex problems that arise in machine learning and data 

analysis, particularly in “big data” settings [217]. In addition, it has shown to work well in many 

problems with good convergence properties, and thus is very popular with practitioners [218]. The 

key idea is to convert the optimization problem to a univariate optimization problem (usually much 

simpler to handle) by optimizing the function along one direction at a time through cyclic iterations. 

The main reason for adopting the cyclic optimization in this work was that it could simplify the 

optimization process due to the unique structure of our formulation. 

Consider the function 𝑔:ℛ𝑚 → ℛ  and the vector variable 𝒚 = (𝑌1, … , 𝑌𝑚)
𝑇 ∈ ℛ𝑚 , where 

subscript 𝑇 denotes matrix transpose. It is assumed that the scalar variables in 𝒚 can be partitioned 

into s sub-vectors as (𝒚 , … , 𝒚𝒔)
𝑇, 𝒚𝒊 ∈ ℛ𝑡𝑖  (𝑖 = 1,… , 𝑠), where ∑ 𝑡𝑖

𝑠
𝑖=1 = 𝑚. Using the cyclic 

optimization approach, one can minimize the function 𝑔(𝒚 , … , 𝒚𝒔)  over 𝒚 , … , 𝒚𝒔 , by first 

generating an initial point 𝒚𝟎 = (𝒚 
𝟎, … , 𝒚𝒔

𝟎)
𝑇
that preferably belongs to the set of feasible solutions, 

denoted by 𝛹. The solution is then obtained using the following iterative approach until either no 

significant change is obtained in two consecutive iterations or a maximum tolerable number of 

iterations is reached [219], [220]:  
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 𝒚𝒊
𝒓+ = arg min

𝒚𝒊∈𝛹𝑖

𝑔(𝒚 
𝒓+ , … , 𝒚𝒊− 

𝒓+ , 𝒚𝒊, 𝒚𝒊+ 
𝒓 , … , 𝒚𝒔

𝒓), 𝑖 = 1,… , 𝑠, (4.17) 

where 𝛹𝑖 is the set of feasible 𝒚𝒊’s, 𝑟 denotes the iteration number, and the strikethrough notation 

indicates a vector that is considered to be fixed. 

The algorithm starts by generating a random vector 𝒑 which satisfies constraint (4.13). The 

optimization problem is then solved with respect to 𝑿 using Binary Linear Programming (BLP) in 

which constraint (4.13) is relaxed. Next, the optimization problem is solved with respect to 𝒑 and 

by fixing the optimum matrix 𝑿  obtained from the previous step. The reduction in the total 

manufacturing cost caused by the changes to the values of vector 𝒑 and matrix 𝑿 is evaluated at 

each cycle and is compared with a user-defined threshold 

𝜉. The algorithm stops when the cost reduction becomes insignificant and the latest values of 𝒑 

and 𝑿 will be reported as the final solution. Note that for each optimization cycle, the model 

coefficient matrices  𝑩𝑛𝑗
𝒑

 and  𝑛𝑗
𝒑

 are evaluated based on the Bootstrap algorithm presented in 

Figure 65. The detailed steps of the proposed cyclic optimization algorithm are presented below.  

Step 1. Set i = 0 and 𝑓𝑇𝐶(𝒑
− , 𝑿− ) = Ω, where Ω is a large number. 

Step 2. Generate a vector 𝒑 where for the given value 𝑃𝐴, constraint (4.13) is satisfied, and 

denote it as 𝒑𝒊. 

Step 3. Fix the vector  𝒑 = 𝒑𝒊 and solve the optimization problem (objective function (4.6) and 

constraints (4.8-4.11), where constraint (4.7) is relaxed) with respect to matrix 𝑿𝒊 : 𝑿𝒊 =
 argmin  𝑓𝑇𝐶(𝒑,𝑿

𝒊). 

Step 4. Evaluate the cost reduction: 𝛿𝑇𝐶𝑖 = 𝑓𝑇𝐶(𝒑
𝒊, 𝑿𝒊) − 𝑓𝑇𝐶(𝒑

𝒊− , 𝑿𝒊− ) . If the total cost 

reduction is significant; |𝛿𝑇𝐶𝑖| > 𝜉, go to Step 5, else go to Step 8. 

Step 5. Increase i by one. 

Step 6. Fix the matrix 𝑿 = 𝑿𝒊− obtained from Step 3 and solve the optimization problem 

(objective function (4.6) and constraints (4.7-4.11)) with respect to vector 𝒑𝒊 : 𝒑𝒊 =
argmin  𝑓𝑇𝐶(𝒑

𝒊, 𝑿). 

Step 7. Go to Step 3.  

Step 8. End. 
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The flowchart of the algorithm is illustrated in Figure 67. The general illustration of the 

proposed cyclic optimization approach is shown in Figure 68. As is shown, the total cost will 

eventually converge as each optimization cycle is performed. The total cost is guaranteed to 

converge based on the monotone convergence theorem. 

 

Figure 67. Flowchart of the proposed cyclic optimization algorithm 
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Theorem 2: If sequence {qk}  is lower bounded and monotonically decreasing, then {qk}  is 

convergent. 

If the reduced cost at cycle i of the optimization is denoted as  𝛿𝑇𝐶𝑖 = 𝑓𝑇𝐶(𝒑
𝒊, 𝑿𝒊) −

𝑓𝑇𝐶(𝒑
𝒊− , 𝑿𝒊− ) , where 𝑓𝑇𝐶(𝒑

𝒊, 𝑿𝒊)  denotes the value of the objective function at cycle i, the 

sequence {𝛿𝑇𝐶𝑖}  would be a monotonically decreasing sequence. Furthermore, it is clearly 

observed that the objective function in (4.6) is lower bounded at zero. Therefore, the above theorem 

guarantees the convergence of the total cost but does not necessarily guarantee to find the global 

optimum. In other words, this theorem will ensure a locally optimum solution for vector 𝒑 and 

matrix 𝑿 which determine the assigned tolerances and the selected process parameters for each 

component respectively. 

 

Figure 68. General illustration of cyclic optimization approach 
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The proposed method is then adopted to determine component tolerances as well as the optimum 

set of process parameters to be used for fabricating each component. Finally, sensitivity analysis 

is performed to investigate the effect of different input parameters on the obtained solutions. 

A one-dimensional five-component assembly chain is considered. It is assumed that the 

assembly is required to satisfy the 85±0.15 mm design specification with an 80% confidence level. 

Note that 80% confidence level is a minimum requirement, however, any additional improvement 

is preferred as it can further decrease the number of non-conforming parts. The nominal 

dimensions of the components are given as 10, 15, 18, 20, and 22 mm and are assumed to be fixed. 

Note that earlier we highlighted that if our proposed method does not find any solution, it might 

be necessary to re-assign the nominal dimensions or consider additional process parameter sets. 

However, in this case study the existence of feasible solutions has been previously investigated. 

Therefore, altering the nominal dimensions would not be necessary. Four possible sets of process 

parameters are considered for printing each component. For each combination of components and 

process parameter sets, six independent samples are considered. Therefore, a total of 120 samples 

are used. The 95% confidence interval for the three first moments of the distribution: mean (𝛼̂1), 

standard deviation ( 𝛼̂2 ), and skewness ( 𝛼̂3 ), are also calculated for each component and 

combination of process parameters using the bootstrap technique. The adjusted Fisher-Pearson 

coefficient of skewness is used to evaluate the skewness of the component’s distributions:   

 𝛼̂3 =
√𝑁𝑑(𝑁𝑑 − 1)∑ (𝑌𝑖 − 𝑌̅)3

𝑁𝑑
𝑖=1

𝑁𝑑(𝑁𝑑 − 2)𝑠𝑑
3  (4.18) 

where 𝑁𝑑 is the number of data points, 𝑌̅ is the mean and 𝑠𝑑 is the standard deviation.  
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As is observed in Table XXIX, some of the distributions tend to be skewed which thus affects 

the optimum tolerances to be assigned for a given assembly confidence level. The cost for 

fabricating each component using each set of process parameters is also known and is given in 

Table XXX. The rest of the input parameters are presented in Table XXXI. the proposed 

methodology is then applied to determine the component tolerances as well as the process 

parameters. The methodology and optimization is implemented in MATLAB. The overall 

flowchart of the implemented methodology in MATLAB is presented in Figure 69.  

Table XXIX. Confidence intervals of distribution statistics for input data 

N Statistic 𝒑𝒓  𝒑𝒓  𝒑𝒓  𝒑𝒓  

1 

𝛼̂1 [10.16,10.21] [9.99,10.03] [9.88,9.97] [9.89,9.97] 

𝛼̂2 [0.02,0.05] [0.02,0.04] [0.02,0.08] [0.03,0.08] 

𝛼̂3 [-1.79,0.71] [-1.13,1.48] [-0.23,1.75] [-0.23,1.75] 

2 

𝛼̂1 [14.96,15.03] [14.99,15] [15.01,5.09] [14.9,15.01] 

𝛼̂2 [0.03,0.06] [0.01,0.02] [0.03,0.08] [0.008,0.011] 

𝛼̂3 [-1.71,0.52] [-1.79,1.05] [-1.74,0.37] [-1.79,1.12] 

3 

𝛼̂1 [17.98,18.04] [17.99,18.02] [17.78,17.8] [18.12,18.18] 

𝛼̂2 [0.03,0.05] [0.01,0.02] [0.01,0.02] [0.03,0.05] 

𝛼̂3 [-1.51,1.16] [-1.57,1.13] [-1.79,1.34] [-0.53,1.74] 

4 

𝛼̂1 [20.10,20.15] [19.99,20.05] [19.97,20.02] [19.88,19.91] 

𝛼̂2 [0.02,0.05] [0.03,0.04] [0.02,0.04] [0.01,0.02] 

𝛼̂3 [-0.99,1.30] [-1.74,1.34] [-0.82,1.79] [-0.71,1.79] 

5 

𝛼̂1 [22.2,22.26] [21.92,21.99] [22.83,22.13] [21.89,21.93] 

𝛼̂2 [0.02,0.05] [0.04,0.07] [0.02,0.04] [0.02,0.04] 

𝛼̂3 [-0.56,1.79] [-1.64,1.08] [-1.69,0.59] [-0.71,1.79] 

 

Table XXX. Cost matrix 

N 𝒑𝒓  𝒑𝒓  𝒑𝒓  𝒑𝒓  

1 3 3 2.5 4 

2 4.75 5 4 5 

3 8.75 8.5 8.5 9 

4 1.5 2 1.75 1.25 

5 5.5 6.5 5 6 
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Table XXXI. Parameter values 

N 5 D2 15 D5 22 PA 0.8 Ω 0.001 

J 4 D3 18 DA 85 λ 0.001 R 2000 

D1 10 D4 20 TA 0.15 ξ 500 T 20 

 

 

Figure 69. Overall flowchart of the implemented methodology in MATLAB 
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Figure 70 shows the distribution of the (1 − 𝑝𝑛)/2th and (1 + 𝑝𝑛)/2th percentile of the 

components’ dimensions for each set of process parameters for a single simulation run based on 

the initial random vector 𝒑 (for the given 𝑃𝐴) using the bootstrap technique. Please note that since 

𝑅 is large, 𝑃𝐴 is 0.8 and based on Theorem 1, the variability of vector 𝒑 from one simulation run 

to another is small, and thus does not affect the provided distributions significantly.   

 

Figure 70. Distribution of the percentiles based on the bootstrap technique 
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Table XXXII shows the calculated optimum tolerances for components, the selected process 

parameter sets, and the total cost, based on 20 different runs. The assignment matrix 𝑿 can be 

represented using the vector 𝒙′  with size 𝑁  which holds the index of the assigned process 

parameter set to each component. Therefore, the optimal vector 𝒙′ is selected as (2, 1, 2, 4, 3) with 

a total cost of 22.49006. As is observed, the allocated tolerances can follow different structures 

(either bilateral, unilateral, or asymmetric), which thus increases the efficiency of the consumed 

tolerance bands. Based on the calculated tolerances, the assembly tolerance will fall within the 

range of [-0.1248, 0.1348] which is still smaller than the initial designed 𝑇𝐴 of 0.15. Therefore, the 

remaining allowances of 0.0252 and 0.0152 are further distributed among the components based 

on the assumption that all components have a similar weight factor. The updated tolerance values 

after this tolerance scaling are presented in Table XXXII under the “updated lower and upper 

tolerance” columns. 

Note that the combination of parameters with the total minimum cost of 21.25, 𝒙′= (3, 3, 3, 4, 

3) or 𝒙′= (3, 3, 2, 4, 3) cannot be selected as they do not satisfy the assembly specifications and 

the required confidence level according to the percentile distributions. In general, without using 

the proposed method, finding a set of feasible solutions for both the assigned process parameters 

and tolerance limits is not possible even with exhaustive search approaches as the pdf of data is 

unknown. In addition, it would be difficult to account for the skewness or asymmetric distribution 

of dimensions for evaluating the feasibility of random solutions for a given confidence level. To 

further illustrate this point and the effectiveness of the proposed method, a bootstrap-assisted semi-

exhaustive search is used for generating random feasible solutions. Note that to further reduce the 

search space, the search is implemented based on a feasible randomly generated vector 𝒑 using 

Theorem 1. In addition, the bootstrap technique is used for constructing the confidence intervals, 
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as it would be difficult to account for the skewness or asymmetric distribution of dimensions 

without this approach. The results of this semi-exhaustive search compared to our proposed 

method is presented in Table XXXIII. As is observed, the proposed method outperforms the semi-

exhaustive search approach with an extremely smaller number of solution points. It is also worthy 

to note that out of the millions of points searched by the exhaustive search method only around 

2.7% of them were found to be feasible, which highlights the difficulty of finding feasible solutions.  

Table XXXII. Determined optimum solution 

N 
Initial lower 

tolerance 

Initial upper 

tolerance 

Updated lower 

tolerance 

Updated upper 

tolerance 

Process 

parameter set 

1 -0.025 0.035 -0.030 0.038 2 

2 -0.045 0.035 -0.050 0.038 1 

3 -0.015 0.015 -0.020 0.018 2 

4 -0.115 -0.085 -0.120 -0.082 4 

5 0.075 0.135 0.070 0.138 3 

 

Table XXXIII. Comparison of the proposed method and semi-exhaustive search 

 
Proposed 

method 

Bootstrap-assisted  

semi-exhaustive search 

Min cost 22.49002 22.4901 

Max cost 22.49008 25.7401 

Average 

cost 

22.49006  

(over 10 points) 

23.5358  

(over more than 10000000 

points) 

 

4.2.9  Sensitivity Analysis 

To further investigate the effect of different input parameters on the decision variables, as well 

as the manufacturing cost, sensitivity analysis is performed. The analysis is performed by varying 

a parameter at a time and evaluating its effect on the variability of the decision variables as well 

as the obtained manufacturing cost. The selected parameters for this analysis include the assembly 

tolerance (𝑇𝐴) and confidence level (𝑃𝐴). The ranges of the values for 𝑇𝐴 and 𝑃𝐴 parameters are 
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[0.1, 0.125, 0.15, 0.175, 0.2], and [0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99], respectively. In addition to 

the 20 number of simulation instances implemented within each simulation run, each simulation 

run was repeated 10 additional times to derive the average cost for each case and to further 

investigate the convergence trend of the solutions. The computation time of the studied cases 

ranged from approximately 1800 to 5000 seconds using a desktop with Intel Xeon E5-2620 2.40 

GHz processor and 16 GB RAM. 

Table XXXIV. Sensitivity analysis results 

 
Value 

Average 

cost 

Standard 

deviation 

Minimum 

cost 

Maximum 

cost 
Solution 

% of 

solutions 

𝑇𝐴 

0.1 22.74005 0.000018 22.74003 22.74008 (2, 2, 2, 4, 3) 100 

0.125 22.74007 0.000012 22.74006 22.74009 
(2, 4, 2, 4, 3) 

(1, 2, 3, 4, 3) 

80 

20 

0.15 22.49006 0.000021 22.49002 22.49008 (2, 1, 2, 4, 3) 100 

0.175 21.74007 0.000015 21.74005 21.74009 (1, 3, 3, 4, 3) 100 

0.2 21.24006 0.000017 21.24002 21.24008 (3, 3, 2, 4, 3) 100 

𝑃𝐴
 

0.5 22.46522 0.079049 22.24025 22.49026 

(2, 1, 2, 4, 3) 

(1, 1, 3, 4, 3) 

(2, 3, 3, 4, 1) 

70 

20 

10 

0.6 22.46513 0.079034 22.24020 22.49019 

(2, 1, 2, 4, 3) 

(2, 3, 3, 4, 1) 

(1, 1, 3, 4, 3) 

80 

10 

10 

0.7 22.49009 0.000038 22.49005 22.49015 (2, 1, 2, 4, 3) 100 

0.8 22.49006 0.000021 22.49002 22.49008 (2, 1, 2, 4, 3) 100 

0.9 22.49003 0.000009 22.49001 22.49004 (2, 1, 2, 4, 3) 100 

0.95 22.49001 0.000002 22.49001 22.49002 (2, 1, 2, 4, 3) 100 

0.99 22.49000 0.000001 22.49000 22.49000 (2, 1, 2, 4, 3) 100 

 

Table XXXIV summarizes the results of the sensitivity analysis.  In addition, the relative cost 

as a function of the studied parameters is plotted in Figure 71 and Figure 72. As expected, the 

relative cost for producing the assembly decreases as the assembly tolerance increases. In addition, 

relaxing the symmetricity constraint provides better opportunities towards reducing both cost and 

tolerance simultaneously through tuning the process parameters. Furthermore, it is observed that 
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the relative cost slightly increases as the assembly confidence level 𝑃𝐴 is increased. However, the 

change in 𝑃𝐴 does not significantly affect the final manufacturing cost. Different models were 

fitted to the obtained data. It appears that the 2nd order polynomial model fits well to the data in 

Figure 71. However, in Figure 72, the 2nd order polynomial model does not perform as good. 

Instead, it is observed that the relative cost tends to almost remain unchanged for a range of 

confidence level values, and then jump to a higher level as the confidence level is increased. This 

observation suggests that there exists a confidence level threshold after which, the number of 

nonconforming parts can be reduced with no significant additional cost.  

 

 

Figure 71. Relative cost of different assembly tolerances 
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Figure 72. Relative cost of different assembly confidence levels 

The width of the tolerance band for components based on different assembly tolerances is 

studied in Figure 73. It is observed that as the assembly tolerance is increased, increasing the 

tolerance bandwidth of all components is not necessarily optimum. In other words, depending on 

the cost of components (function of their geometry, design, and manufacturing parameters) and 

process capability, sometimes it might be necessary to tighten the tolerance band of some 

components to further reduce the total manufacturing cost. In addition, the variation of tolerance 

bandwidth for some components (e.g., components 1 and 2 in our case) is more significant than 

others. This generally suggests that the selected process for fabricating these components is more 

stable (has lower process variability) for the studied process parameter sets, while the difference 

between the cost of different sets is generally significant.  
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Figure 73. Width of tolerance band for different components 

4.2.10 Conclusions 

Motivated by the lack of GD&T standards for AM processes and their unique characteristics, 

in this section, a methodology for joint tolerance design and manufacturing decision making is 

established to address the complex relationship between design and manufacturing as well as the 

asymmetric behavior of tolerances. Both assembly specification and confidence level (to reflect 

the defect rate based on the process capability) are considered as constraints. Dimensional 

tolerances are formulated based on the optimal confidence level and nominal dimensions. The 

bootstrap technique is adopted to generate the confidence interval for components’ dimensions. 

The cyclic optimization approach is then used to solve the multivariate optimization problem. 

Numerical case studies have been performed to evaluate the effectiveness of the proposed 

methodology.  
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For the illustrated case study, the proposed methodology managed to reduce the total 

manufacturing cost compared to the bootstrap–assisted semi-exhaustive search method with 

almost 106 less solution points, while ensuring the assembly requirements. It is expected that as 

the number and cost of components increases, the methodology will become more effective, and 

the cost reduction becomes more significant. 

4.3 Concluding Remarks 

In this chapter, studies towards understanding and addressing the challenges of tolerance 

design at the product level considering multi-component products with additively manufactured 

components are performed. First, the effect of assembly design and manufacturing scenario 

(integrated and overlapped geometries versus individual and non-overlapped geometries) on the 

assembly clearance and dimensional profile of assembly components are empirically studied in 

the PolyJet AM process. It was observed that a different dimensional profile behavior exists which 

affects the tolerance design decisions. As a result, this factor needs to be considered at the tolerance 

design stage for suggesting feasible and optimal tolerances.  

Second, a joint tolerance design and parameter tuning methodology is formulated and 

established. With respect to the formulation challenges, the bootstrap statistical technique was used 

to address the challenge of distribution estimation based on a limited number of components. An 

optimization problem is then formulated to minimize the cost while ensuring the assembly 

specification and confidence level. The multivariate optimization is then solved using the cyclic 

optimization approach due to its suitability for the problem’s structure.  Case studies are performed 

to validate the methodology and analyze the sensitivity of model outputs by changing the input 

values. The tolerance design methodology is tailored to be applicable to assemblies with additive 

manufactured components.  
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5. SUMMARY AND FUTURE WORK  

Motivated by the increasing application of additive and hybrid manufacturing processes for 

the fabrication of functional products, some of the quality assurance and tolerance design 

challenges of these emerging products were addressed at two levels of process and product by 

characterizing the relationship between product design, process characteristics and parameters, 

product property, and sustainability.  At the process level, comprehensive analytical and 

experimental models for quality characterization and improvement of components from additive 

and hybrid additive-subtractive manufacturing processes towards higher sustainability were 

established.  Moreover, a robotic hybrid additive-subtractive manufacturing process is developed. 

At the product level, a decision-making tool for joint tolerance design and manufacturing of multi-

component additively manufactured products is established. The established smart process-aware 

tolerance design methodology and quality assurance models help designers and manufacturers in 

assigning feasible and optimal tolerances and provide guidelines for design and process 

improvements.   

Possible future research extensions of this work are as follows. The interdependency of 

dimensional and geometrical errors among overlapped or connected geometries in a single build 

AM cycle can be further studied towards establishing joint optimal tolerance design and 3D 

packing algorithms. The quality issues as a result of multi-plane hybrid manufacturing can be 

further studied. Finally, tolerance design challenges for multi-component products from both 

additive and hybrid manufacturing processes can be considered.   
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