
Convex Integration and the Navier–Stokes Equations

by

Xiaoyutao Luo
B.S., University of Science and Technology of China, 2014

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Mathematics

in the Graduate College of the
University of Illinois at Chicago, 2020

Chicago, Illinois

Defense Committee:
Alexey Cheskidov, Chair and Advisor
Roman Shvydkoy
Christof Sparber
Mimi Dai
Luis Silvestre, University of Chicago



Copyright by

Xiaoyutao Luo

2020



Dedicated to my families.

iii



ACKNOWLEDGMENT

I would like to thank my advisor Alexey Cheskidov for his guidance and support during my

Ph.d study. Without him much of this work would not be possible.

I am thankful to many people in our department at the University of Illinois at Chicago. I

am thankful to Professors Roman Shvydkoy, Michael Greenblatt, Christof Sparber, and Gerard

Awanou from whom I have learned a lot math. I am thankful to my classmates Victor Jatoba,

Trevor Leslie, Jack Arbunich and Han Liu for the inspiring discussions. I am also very thankful

to all the staff at the department who made my graduate study a very pleasant experience.

Finally, I thank my family for their constant support and encouragement.

XL

iv



CONTRIBUTIONS OF AUTHORS

Chapter 1 is an general overview of the incompressible Navier-Stokes equations and the

method of convex integration. Chapter 2 is from a published paper (58) that I am of the sole

author while Chapter 3 is from a preprint (57) that I co-authored with my advisor Alexey

Cheskidov.

v



TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The incompressible Navier-Stokes equations . . . . . . . . . . . 1
1.2 Leray-Hopf weak solutions . . . . . . . . . . . . . . . . . . . . . 2
1.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Convex integration technique . . . . . . . . . . . . . . . . . . . . 5
1.5 The role of intermittency . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 STATIONARY WEAK SOLUTIONS IN DIMENSION D ≥ 4 . . 14
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Main theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Outline of the construction . . . . . . . . . . . . . . . . . . . . . 20
2.4 Concentrated Mikado flows . . . . . . . . . . . . . . . . . . . . . 31
2.5 Proof of Proposition 2.3.1 . . . . . . . . . . . . . . . . . . . . . . 38

3 STATIONARY AND DISCONTINUOUS WEAK SOLUTIONS
IN 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.1 Main theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.2 The main proposition . . . . . . . . . . . . . . . . . . . . . . . . 88
3.3 Stationary viscous eddies . . . . . . . . . . . . . . . . . . . . . . 107
3.4 Proof of main proposition: velocity perturbation . . . . . . . . 129
3.5 Proof of main proposition: new Reynolds stress . . . . . . . . . 153
3.6 Proof of main proposition: energy level . . . . . . . . . . . . . . 167

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Appendix C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

CITED LITERATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

vi



SUMMARY

This work is devoted to applying the convex integration technique that has been recently

developed in fluid dynamics to the incompressible Navier-Stoke equations in dimensions d ≥ 3.

The main results include the existence of stationary weak solutions in dimensions d ≥ 4 proved

in Chapter 2 and in 3D which is proved in Chapter 3 where we also construct weak solutions

in 3D whose energy profiles are discontinuous on some dense sets of positive Lebesgue measure

in time.

vii



CHAPTER 1

INTRODUCTION

1.1 The incompressible Navier-Stokes equations

The incompressible Navier-Stokes equations describe the motion of viscous and incompress-

ible flows. It is one of the most fundamental and prominent equations in fluid dynamics. In

this work, we consider the incompressible Navier-Stokes equations on the d-torus Td = Rd/Zd

∂tu− ν∆u+ div(u⊗ u) +∇p = 0

div u = 0,

(NSE)

where u(x, t) : Td×R+ → Rd is the unknown vector field, the scalar p : Td → R is the pressure

and ν is the viscosity. The system is supplemented by the periodic boundary condition u(x +

k, t) = u(x, t) for any k ∈ Zd. In this work, we consider the weak solutions of (Equation NSE)

in dimensions d ≥ 3.

The following weak formulation of (Equation NSE) will be used throughout the work and

the term “weak solution” refers to this definition in the sequel.

Definition 1.1.1. A vector field u ∈ Cw(0, T ;L2(Td)) is a weak solution of (Equation NSE)

if it satisfies:

1
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1. u(t) has zero-mean on Td and is weakly divergence-free for all t ∈ [0, T ], namely for any

φ(x) ∈ C∞0 (Td)
ˆ
Td
∇φu(x, t)dx = 0 for all t ∈ [0, T ]. (1.1)

2. For any test function ϕ(x, t) ∈ C∞c ([0, T ] × Td) such that ϕ(x, t) is divergence-free in x

for all t ∈ [0, T ] we have

ˆ
Td
u(x, 0) · ϕ(x, 0) dx+

ˆ T

0

ˆ
Td
u · (∂tϕ+ (u · ∇)ϕ+ ∆ϕ) dxdτ = 0,

The vector field u0(·) = u(·, 0), which is also the weak L2 limit of u(·, t) as t→ 0+, is called

the initial data. Often weak solutions with finite energy dissipation, i.e., u ∈ L2(0, T ;H1), are

studied in the literature. Besides Definition 1.1.1, there are numerous equivalent ways to define

such solutions, e.g., using alternative spaces of test functions (see (64)).

1.2 Leray-Hopf weak solutions

The system (Equation NSE) has been extensively studied by many researchers for a long

time. In (52) Leray constructed weak solutions u ∈ L∞t L2 ∩ L2
tH

1 for divergence-free initial

data u0 ∈ L2(R3). These solutions are termed Leray-Hopf weak solutions and also satisfy the

energy inequality. A similar result was later obtained by Hopf in (44) for the bounded domain

with Dirichlet boundary condition. It is also worth noting that even though the global existence

results of Leray and Hopf are best known for d = 2, 3, they can be carried over to Rd or Td for

d ≥ 4 without much trouble. Let us recall the relevant facts in the following.
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Theorem 1.2.1 (Leray-Hopf weak solutions). Let Ω = Td or Rd for d ≥ 3. Given any

divergence-free u0 ∈ L2(Ω) and 0 < T ≤ ∞, there exists at least one weak solution u ∈

Cw(0, T ;L2)∩L2(0, T ;H1) to (Equation NSE) and u verifies additionally the energy inequality:

‖u(t)‖22 + 2ν

ˆ t

t0

‖∇u(s)‖22ds ≤ ‖u(t0)‖22 (E.I.)

for any t > 0 and a.e. t0 ∈ [0, t) including 0.

In the literature, such solutions are referred to as the Leray-Hopf weak solutions. There

has been a long history of extensive studies of these solutions (52; 44; 63; 66; 51; 22; 71; 30),

however, the global regularity and uniqueness of Leray-Hopf weak solutions remain among the

most important unsolved questions in mathematical fluid dynamics. What is more related to

the present work, is the validity of energy equality (also known as Onsager’s conjecture in the

case of the Euler equations (21)). In the recent groundbreaking work (8) Buckmaster and Vicol

proved nonuniqueness and anomalous dissipation in the class of weak solutions, but this is still

an open question for Leray-Hopf solutions.

Even though the existence of weak solutions has been know for quite some time, the questions

of uniqueness and regularity of Leray-Hopf weak solutions in d ≥ 3 remain unknown to date

and are considered one of the most important issues in mathematical fluid mechanics. More

specifically the following questions are still open.
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1. Global regularity: For any divergence-free initial data u0 ∈ L2(Ω), does there exist a

global Leray-Hopf solution u ∈ C∞((0,∞)× Ω)1 ?

2. Uniqueness: For any divergence-free initial data u0 ∈ L2(Ω), is the Leray-Hopf weak

solution u(t) with initial data u0 unique among all Leray-Hopf weak solutions with initial

data u0?

3. Anomalous dissipation: Is there a Leray-Hopf weak solution u(t) satisfying (Equation E.I.)

with a strict sign?

One of the motivations of our work is to obtain some insights into the above question of

uniqueness. We are not yet able to obtain nonuniqueness results for the Leray-Hopf weak

solutions. Instead, we consider the following pathway:

A possible approach: Find the “smoothest” function space X ⊂ Cw(0, T ;L2) so that

there exist two weak solutions of (Equation NSE) u, v ∈ X such that u(0) 6= v(0).

Let

E = {u ∈ Cw(0, T ;L2) : ‖u‖L∞t L2 + ‖u‖L2
tH

1 <∞}.

The nonuniqueness problem of Leray-Hopf weak solutions can then be formulated as finding a

space X so that X ⊂ E and weak solutions of (Equation NSE) in X satisfy (Equation E.I.).

Following such approach, we are able to obtain a nonuniqueness statement for the function

space X = Hβ for β < 1
200 in dimensions d ≥ 4 and X = L2 in 3D.

1Here we mean that for any k,m ∈ N ∂kt∇m
x u is bounded on [ε,∞)× Ω.
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1.3 Main results

The focus of this work is to prove the existence of weak solutions to the (Equation NSE)

with very pathological energy behaviors. On one hand, we construct finite energy stationary

solutions. We first do this in dimensions d ≥ 4 in Chapter 2 and then extend the construction

to 3D in Chapter 3

Theorem 1.3.1 (Existence of stationary weak solutions d ≥ 4). Suppose d ≥ 4. There exists

a nontrivial stationary weak solution u ∈ L2(Td) of (Equation NSE) .

Theorem 1.3.2 (Existence of stationary weak solutions in 3D). Suppose d = 3. There exists

a nontrivial stationary weak solution u ∈ L2(T3) of (Equation NSE).

On the other hand, we construct weak solutions with energy profiles discontinuous on a

dense set of positive Lebesgue measure. So the set of discontinuities of the energy can be very

large at least in the class of weak solutions.

Theorem 1.3.3. For any ε, T > 0, there exists a weak solution u ∈ Cw([0, T ];L2(T3)) to the

3D NSE, which is discontinuous in L2 on a set E ⊂ [0, T ], such that

1. E in dense in [0, T ].

2. The Lebesgue measure of Ec is less than ε.

1.4 Convex integration technique

This work is based on the technique of convex integration. Although this method has been

around since the work of Nash (62), its application to fluid dynamics was brought to attention
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only in recent years by the pioneering work of De Lellis and Szekelyhidi Jr. (26), where the

authors obtained a bounded solution to the 3D Euler equations with compact support in space-

time generalizing the results of Scheffer (65) and Shnirelman (68).. Since (26), it was developed

over a series of works in the resolution of the Onsager’s conjecture for the 3D Euler equations

(26; 27; 28; 6; 7; 45; 3). Its extension to the NSE was done only very recently by Buckmaster-

Vicol (8), where non-unique weak solutions of the 3D Navier-Stokes equations in the sense

of Definition 1.1.1 are constructed. For a more detailed account of applications of convex

integration in fluid dynamics, we refer to the survey (29) by De Lellis and Székelyhidi, Jr. and

other interesting papers by different authors such as (4; 3; 20; 46; 48; 47).

In the context of fluid dynamics, the essence of convex integration is to construct a sequence

of approximate solutions that converges to a desire exact solution in the limit. This is typically

done by an iteration scheme. At each step, one specifically design a perturbation so that the

nonlinear interaction of the perturbation cancels the previous error and thus produce a the new

solution that is “closer” to the exact solution in a suitable functional space. More specifically,

we will construct a sequence of solution (un, pn, Rn) to the approximate system


∂tun −∆un + div(un ⊗ un) +∇pn = divRn

div un = 0.

(1.2)

where Rn is a stress tensor measuring the distance of un to the exact solutions. The heart of

the argument is then to design carefully at each step a perturbation wn so that the new velocity

un+1 := un+wn verifies (Equation 1.2) with a much smaller stress error Rn+1. This is typically
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done by using the high-high to low integration of the velocity perturbation so that modulo a

suitable pressure gradient, the term div(wn ⊗ wn + Rn) has only very high frequencies. There

are other restriction in this process, and we shall discuss this in the next section below.

So far, the focus of the convex integration method has been to produce wild solutions that

are as regular as possible. For instance, the regularity of wild solutions of the Euler equations

was pushed to the critical Onsager’s exponent 1/3 by Isett (45). Also, the extension of (8) to

the fractional NSE (−∆)α setting for 1 ≤ α < 5
4 was done in (56). Using the smoothing effect

of the Stokes semigroup, Buckmaster-Colombo-Vicol (5) were able to construct non-unique

weak solutions whose singular sets have Hausdorff dimension less than 1. Nonuniqueness of

Leray-Hopf solutions has also been obtained for ipodissipative NSE and Hall-MHD (20; 24).

However, it is not clear whether a convex integration scheme could ever produce non-unique

wild solutions in a class where the Leray structure theorem would hold1, except perhaps one

very specific scenario.

1.5 The role of intermittency

The effect of intermittency on the regularity properties of solutions to the (Equation NSE)

and toy models has been also studied in the past decade (18; 15; 16). Compared with other

inviscid or ipodissipative models, such as the Euler equations, the Muskat problem, the Sur-

face Geostrophic equations or the ipodissipative Navier-Stokes equations (4; 48; 33; 20) where

results of nonuniqueness-type have been obtained, the Navier-Stokes system has a dissipation

1Note that the solutions in (20; 24) do not obey the Leray structure theorem.
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term ν∆u with two derivatives, making it much harder to find suitable building blocks in the

convex integration scheme. To resolve this issue one has to start with building blocks that are

intermittent, which means that Bernstein’s inequality is highly saturated. The concept of inter-

mittency is crucial to the theory of turbulence in hydrodynamics (37) and it is both instructive

and interesting to understand its role from a mathematical point of view, see (59; 13; 15; 12).

Besides the work of Buckmaster-Vicol (8), the idea of using building blocks that are intermit-

tent has been used for other systems with diffusions, such as the transport-diffusion equations

(61; 60).

Let us briefly discuss the concept of intermittency using the Littlewood-Paley decomposition

as follows. Suppose uq = ∆qu is a Littlewood-Paley projection at frequency of size ∼ 2q, then

the intermittency D ∈ [0, d] of u is measured by

‖uq‖∞ ∼ 2q
d−D

2 ‖uq‖2 for all q sufficiently large. (1.3)

When D = d the function u is homogeneous spatially and all Lp norms are of the same order.

When D = 0 the function u has extreme intermittency and Bernstein’s inequality is fully

saturated. In view of the behavior in physical space, D roughly measures the concentration

level of u in the sense that u is concentrated on some set of dimension D. The Beltrami flows

used in (27; 6; 28; 7) for the 3D Euler equations and the Mikado flows used in the resolution

of the Onsager’s conjecture (45) all have intermittency D = 3. In contrast, the intermittent

Beltrami flows constructed by Buckmaster-Vicol (8) can be made to have intermittency D = 0.
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Heuristically speaking if a weak solution of (Equation NSE) is of intermittency D ≥ d − 2

then it is regular. So it appears impossible to have stationary weak solutions of Equation NSE

with intermittency bigger than d − 2. This is due to the fact that linear term dominates the

nonlinear term in this regime and the problem becomes subcritical. We show this heuristics

by considering the energy flux through each Littlewood-Paley shell as follows. Assuming only

local interactions between scales, i.e. div(u ⊗ u) · uq ∼ div(uq ⊗ uq) · uq for simplicity. Then

consider the energy flux equation obtained by multiplying (Equation NSE) with ∆quq and then

integrating in space:

d

dt
‖uq‖22 + Linear term = Nonlinear term

with

Linear term = (∆uq, uq) ∼ 22q‖uq‖22,

and

Nonlinear term = (div(u⊗ u) · uq) ∼ (div(uq ⊗ uq) · uq) . ‖uq‖22‖uq‖∞ ∼ 2q
d−D

2 ‖uq‖32.

Due to the fact that ‖uq‖2 → 0 as q → ∞ we have Linear term ≥ Nonlinear term when

D ≥ d− 2.



10

Finally we remark that the building blocks that we are using have intermittency dimension

1, which is the limitation forcing us to work in d ≥ 4. More discussions on the intermittency

and its role in the construction can be found in Section 2.3.2.

1.5.1 Motivation from a energy balance viewpoint

If a solution of the NSE is regular enough, then the energy equality is satisfied. This can be

seen by formally multiplying the equation (Equation NSE) by u and then integrating by parts

thanks to the incompressiblity. However, such a formal computation can not be justified for

weak solutions as there is not enough regularity to perform integration by parts.

It is known that Leray-Hopf weak solutions satisfy the energy inequality, but the continuity

of the energy in time or the validity of energy equality is not known. If the energy has a jump

discontinuity from the right, this immediately implies non-uniqueness since the solution can be

restarted at that time to remove the jump and infinitely many solutions can be obtained via

interpolation (50). However, the existence of such Leray-Hopf weak solutions that violets the

energy equality is still unknown to date.

Nontrivial stationary weak solutions do not lose any energy over time even though the

enstrophy is positive (in fact, infinite). As a result, the energy inequality is not satisfied. These

solutions exhibit a interesting phenomenon, what we call the anomalous energy influx, where

the backward energy cascade balances precisely the energy dissipation at each scale. Nontrivial

stationary solutions are also known to exist for the dyadic model of the NSE (2), but the

existence of such solutions was an open question for the NSE.
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Another motivation comes from the continuity of the energy of the solution. Weak solutions

(in the sense of Definition 1.1.1) are only lower semi-continuous in L2. Therefore, it is natural

to conjecture that there exist weak solutions that exhibit jumps in the energy. This is closely

related to the anomalous dissipation in the Section 1.2. In fact, one can ask the following

questions regarding the behavior of the energy:

Can energy ‖u(t)‖22 have jumps? Can it be discontinuous on a dense subset of [0, T ]? Can

it be discontinuous almost everywhere? Can it be discontinuous everywhere?

The answer to the last question is No. Indeed, the energy of a weak solution ‖u(t)‖22 is lower

semi-continuous. Hence, by Baire’s theorem, the energy is of the first Baire class and therefore

the points of continuity are dense. Nevertheless, we believe that all the previous questions have

positive answers. Theorem 1.3.3 can be seen as a first step in solving this conjecture.

1.6 Notations

Throughout this work we use the following standard notations.

• ‖ · ‖p := ‖ · ‖Lp(Td) is the Lebesgue norm (in space) for any 1 ≤ p ≤ ∞ and ‖ · ‖Cm :=∑
0≤i≤m ‖∇i · ‖∞ for any m is the Hölder norm. For uniform in time bounds we will use

standard notations ‖ · ‖L∞t Lp and ‖ · ‖L∞t Cm .

• For any Td-periodic function f ∈ Lp(Td) and σ > 0, the notation f(σ·) is the scaled

σ−1Td-periodic function f(σx) so that ‖f(σ·)‖p = ‖f‖p for Lp norms.
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• We say a function f is λ−1Td-periodic if f(x) = f(x+m) for any m ∈ λ−1Zd. The space

C∞0 (Td) is the set of smooth functions with zero-mean on Td.
ffl
Td = 1

|T|d
´
Td is the average

integral any function f ∈ L1(Td).

• The gradient ∇ always refers to differentiation in space only. Sometimes we use ∇t,x to

indicate that the differentiation is for space-time.

• We say a function f(x) : Td → R (or Td → Rd for the vector case) is smooth if f

has continuous derivative or any order and we denote f ∈ C∞(Td). The space C∞0 (Td)

consists of all smooth functions with zero-mean.

• x . y stands for the bound x ≤ Cy with some constant C which is independent of x and

y but may change from line to line. Then x ∼ y means x . y and y . x at the same

time. We use x� y to indicate x ≤ cy for some small constant 0 < c < 1.

• The space C∞0 (Td) is the set of smooth functions with zero-mean on Td.
ffl
Td = 1

|T|d
´
Td is

the average integral and for any function f ∈ L1(Td), its average is denoted by f =
ffl
Td f .

• For vectors a, b ∈ Rd, a⊗ b is the matrix with (a⊗ b)ij = aibj and a⊗̊b = aibj(1− δij) is

the trace-less product. For matrix-value functions f = fij and g = gij , div f = ∂ifij and

f : g = fijgij .

• ∆q is the standard periodic Littlewood-Paley projections on to the dyadic frequency shell

2q−1 ≤ |ξ| ≤ 2q+1 for any q ≥ −1 and ∆≤q =
∑

r≤q ∆r and ∆≥q =
∑

r≥q ∆r.

• We also use wavenumber projections to simplify notations. For any λ ∈ N define P≤λ =∑
q:2q≤λ ∆q and P≥λ = Id−P≤λ.
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• Sn×n+ denotes the set of positive definite symmetric n×n matrices and Qd = [0, 1]d is the

d-dimensional box.



CHAPTER 2

STATIONARY WEAK SOLUTIONS IN DIMENSION D ≥ 4

The content of this chapter has been previously published as X. Luo, Stationary solutions

and nonuniqueness of weak solutions for the Navier-Stokes equations in high dimensions, Arch.

Ration. Mech. Anal., 233(2):701–747, 2019. Permission to reuse the materials has been ob-

tained and attached in the appendix.

2.1 Background

In this section, let us review the some of the related works for the Navier-Stokes equations

in different settings. We first discuss the progress towards proving the global regularity and

uniqueness for the 3D Navier-Stokes equations. Then a brief summary of nonuniqueness results

and the method of convex integration is given. Lastly, we describe some existence and regularity

results on the forced stationary problem in high dimensions.

2.1.0.1 Regularity and uniqueness results in 3D

Since the seminal work of Leray, there have been a substantial amount of conditional regu-

larity and uniqueness results for (Equation NSE) with d = 3, the most physical relevant case.

Notably the classical Ladyzhenskaya-Prodi-Serrin criterion (51; 66; 63) says that if additionally

a Leray-Hopf weak solution also belongs to LqtL
p
x for some 2

q + 3
p ≤ 1 with p > 3 then the

solution is regular and unique among all Leray-Hopf solutions with the same initial data. The

endpoint case L∞t L
3
x was solved by Escauriaza-Seregin-Šverák in (30) and extensive studies

14



15

have been devoted to generalize and refine the classical Ladyzhenskaya-Prodi-Serrin criterion,

see (43; 55; 9; 14; 10; 41) and reference therein for more conditional regularity and uniqueness

results for the 3D NSE.

2.1.1 Nonuniqueness results and the method of convex integration

In the construction of Buckmaster-Vicol (8) weak solutions are allowed to have any pre-

scribed non-negative smooth functions as the energy profiles and hence 0 is not the only weak

solution with finite energy by taking a nontrivial compact energy profile. It is worth noting

that the solutions constructed in (8) are not known to be Leray-Hopf nor do they have finite

dissipation L2
tH

1. So these solutions do not obey the Leray structure theorem of the 3D Navier-

Stokes equations on the interval of regularity for Leray-Hopf weak solutions, see for instance

the original paper by Leray (52) or the notes by Galdi (40). It would be very interesting to

extend the results of Buckmaster-Vicol to the Leray-Hopf weak solutions.

2.1.2 The forced stationary problem

Unlike the case when d = 3, fewer results are available for the Navier-Stokes equations in

high dimensions d ≥ 4. We mention here a few studies on the forced stationary problem of NSE

with the presence of external force as in a sense they are closely related to the main results in

this chapter. The forced stationary problem consists of the following equations:


−ν∆u+ div(u⊗ u) +∇p = f

div u = 0

for all x ∈ Ω. (2.1)
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Remark 2.1.1. In parallel with Definition 1.1.1 for the unforced NSE, we search for the weak

solution to the above system that is L2(Ω) and verifies (Equation 2.1) in the sense of distribution

for all divergence-free test functions ϕ ∈ C∞c (Ω) (or C∞0 (Td) if Ω = Td). Different types of

formulations of the problem (Equation 2.1) have been considered in the literature, cf. (39; 49;

38).

The existence of regular solutions to (Equation 2.1) has been known under various assump-

tions on the force f and the domain Ω. In the seventies, Gerhardt studied the four-dimensional

case in (42), where he proved that if f ∈ Lp then if there exists a solution, then u ∈ W 2,p.

Since then there have been a considerable amount of studies on the forced stationary problem

in high dimensions. Frehse-Růžička (35) and Struwe (69) showed the existence and regularity

of the solutions in five dimensions. Later Frehse-Růžička obtained existence of regular solutions

in bounded six-dimensional domain in (34) and on torus in dimensions up to d = 15 in (36).

Recently, Farwig and Sohr (32) considered the general d-dimensional case where in particular a

uniqueness result was obtained for small force f . We refer readers to (49; 38; 39) and reference

therein for more interesting results on the forced stationary problem.

Despite the existence result on the regular solutions for the forced stationary case, the

question of uniqueness of regular solutions to (Equation 2.1) remains mostly open, particularly

when the data f is large. We offer here a partial result in this direction showing that at least

weak solutions are not unique to the stationary problem (Equation 2.1) when f = 0.
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2.2 Main theorems

Before giving the main results of the chapter, let us state some of the motivations of this

work. In the hope of better understanding of the nonuniqueness issue of the Navier-Stokes

system in both forced stationary case and unforced time-dependent case, we study the following

Liouville-type problem:

(Q) Consider (Equation NSE) for Ω = Rd or Td. Does there exist nontrivial stationary

weak solution u, i.e. ∂tu = 0 so that u ∈ Lp(Ω) for some 2 ≤ p < d (or Hs(Ω) for some

0 ≤ s < d−2
2 )?

From an energy balancing point of view, one can think of (Q) as investigating how strong

the nonlinear term is in producing nontrivial energy flux to balance linear dissipation. Such

phenomenon is closely related to the Onsager’s conjecture and the concept of anomalous dissi-

pation for the Navier-Stokes equations (31; 19; 11). If (Q) has a positive answer, then it might

be possible to use this mechanism of nontrivial energy flux to construct Leray-Hopf solutions

satisfying (Equation E.I.) with strict inequality. In terms of LqtL
p
x norms, for the Navier-Stokes

equations in dimension d ≥ 3 the scaling of the conditions implying uniqueness (51; 66; 63; 55)

corresponds to 2
q + d

p = 1 while the one implying energy equality is 2
q + 2

p = 1 (67). So in view

of such scaling gap, finding a Leray-Hopf solution with strict energy inequality could be the

first step towards obtaining the nonuniqueness. We plan to address these issues in our future

studies.

From a uniqueness point of view, a positive answer to the above question (Q) immediately

would imply the nonuniqueness of weak solutions of (Equation NSE) in the class Lp. Indeed,
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as initial data, u gives rise to two different weak solutions: a stationary solution u(t) = u itself

and the other one v(t) is Leray-Hopf. Then v as a Leary-Hopf weak solution satisfies the energy

inequality but u does not and hence they are different. Moreover such existence result would

also imply the nonuniqueness of weak solutions of the forced stationary problem (Equation 2.1)

for a particular force: there exists a force f = 0 ∈ C∞0 (Td) such that the system (Equation 2.1)

admits two different solutions, with one trivial solution being regular and the other nontrivial

one in Lp. It would be very interesting obtain the same result for other nontrivial forces.

The main aim of this chapter is to prove the following theorems.

Theorem 2.2.1 (Existence of stationary weak solutions). Suppose d ≥ 4. There exists non-

trivial steady-state weak solution u ∈ L2(Td) of (Equation NSE) .

Remark 2.2.2. In fact, we proved a slightly stronger result that the solution lies in Hβ(Td)

for every β < 1
200 .

As discussed in the paragraph preceding the statement of our main results, nonuniqueness

of weak solutions of (Equation NSE) and of the stationary problem (Equation 2.1) in d ≥ 4

both follow from Theorem 1.3.1.

Theorem 2.2.3 (Nonuniqueness of the NSE in d ≥ 4). Suppose d ≥ 4. There exists divergence-

free initial data u0 ∈ L2(Td) so that u0 admits at least two different weak solutions of

(Equation NSE) in the sense of Definition 1.1.1.

Theorem 2.2.4 (Nonuniqueness of the stationary problem). Suppose d ≥ 4. There exists a

force f ∈ C∞0 (Td) so that the system (Equation 2.1) admits at least two different weak solutions
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of (Equation 2.1) denoted as u and v so that u = 0 ∈ C∞0 (Td) is trivial while v ∈ L2(Td) is

nontrivial.

To the author’s knowledge, Theorem 1.3.1 is the first result showing the existence nontrivial

stationary weak solutions for the system (Equation NSE) . So it provides a positive answer to

(Q) for p = 2 (or any p > 2 sufficiently close to 2). It is interesting that even without the

presence of external force, the nonlinear term itself can produce enough energy flux to balance

the linear dissipation.

We remark that even though adaptations of the convex integration scheme have already

been used for other partial differential equations in fluid dynamics, it is the first time that

such method is used for the Navier-Stokes equations in dimensions d ≥ 4. Moreover, it is also

worth noting that the scheme used by Buckmaster-Vicol does not generate stationary weak

solutions for the 3D NSE even if one takes a constant energy profile. The reason is that the

building blocks of their construction are time-dependent by default. It is not clear whether

one can adapt their scheme to obtain stationary weak solutions in 3D NSE. The existence of

nontrivial stationary weak solutions of the 3D NSE still remains open. Another benefit of

considering stationary weak solutions is that without the time-dependence of the solution our

proof is much more streamlined.

It also appears that our current scheme is compatible with the time-dependent case, and it

is likely that we can also obtain weak solutions with any given energy profile as in (27; 3; 8).

However, it is unlikely that one is able to obtain nonuniqueness of Leray-Hopf weak solutions

using current techniques without incorporating substantially new ideas.
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2.3 Outline of the construction

In this section, we briefly introduce the main idea of the construction. The proof of Theorem

1.3.1 is based on an iteration scheme. We construct by induction a sequence of smooth solutions

to the Navier-Stokes-Reynolds system verifying a certain set of estimates which guarantees the

convergence to a stationary weak solution to (Equation NSE) in L2(Td). The iteration process

is then summarized in Proposition 2.3.1. After stating the main proposition, we give a proof

of Theorem 1.3.1. Lastly, we outline the explicit form of the velocity perturbation and explain

its important role in the induction process.

2.3.1 Navier-Stokes-Reynolds system

Let us first recall the Navier-Stokes-Reynolds system1 in the time-dependent case:


∂tu−∆u+ div(u⊗ u) +∇p = divR

div u = 0.

(2.2)

where R is a trace-less symmetric matrix usually termed Reynolds stress in the literature.

The system (Equation NSR) arises naturally in the study of weak solutions of the 3D

Navier-Stokes equations and the 3D Euler equations. The tensor R measures the distance

to the (Equation NSE) . In fact every weak solution to the original Navier-Stokes equations

1We normalize ν to 1 without loss of generality.
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(Equation NSE) can generate a family of solutions vl of (Equation 2.2). Let u be a weak

solution of (Equation NSE) and define

vl = u ∗ ηl

where ∗ηl is some kind of averaging process in space (for example frequency localization to

wavenumber . l−1 or standard smoothing mollifier at length scale ∼ l) , then vl is a solution

to 
∂tvl −∆vl + div(vl ⊗ vl) +∇pl = divRl

div vl = 0.

(2.3)

for some suitable pressure pl where the symmetric trace-less matrix Rl is defined by

Rl = (u⊗̊u) ∗ ηl − (u ∗ ηl)⊗̊(u ∗ ηl).

Since we are constructing stationary weak solutions to (Equation NSE) , it is convenient to

consider the following stationary Navier-Stoke-Reynolds system:


−∆u+ div(u⊗ u) +∇p = divR

div u = 0.

(NSR)

For our consideration here all u, p and R are assumed to be C∞0 (Td), i.e. smooth and zero-mean.



22

A sequence of solution triplet {(un, pn, Rn)}n≥1 to (Equation NSR) will be constructed in

the proof, and we measure the solutions (un, pn, Rn) by two parameters, a frequency λn and a

amplitude δn. These two parameters are explicitly defined by

λn =
⌈
ab
n
⌉

δn = λ−2β
n

(2.4)

where dxe denotes the smallest integer n ≥ x, the parameters a > 0 and the exponential

frequency gap b > 1 are large depending on β, which is the L2 regularity of the solution u. The

double exponential growth of λn is critical for our proof, see Proposition 2.4.4 in Section 2.4.

Starting with zero solution (u1, p1, R1) = (0, 0, 0) we will construct a sequence of solutions

(un, pn, Rn) of the system (Equation NSR) so that the following set of estimates is verified:

‖Rn‖1 ≤ δn+1λ
−2α
n (H1)

‖un‖2 ≤ 1− δ1/2
n (H2)

‖∇un‖2 ≤ λnδ1/2
n (H3)

where 0 < a < β is another small parameter depending on β and b. The exact values of all the

parameters will be given in Section 2.5.

We remark that unlike the schemes used for the 3D Euler equations, cf. (3; 45; 27), here

the Reynolds stress Rn is measured in L1 norm rather than L∞ norm. The reason is that Ld is

the critical norm for (Equation NSE) in d dimension. So as pointed out in the introduction, no
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stationary solution exists in L∞(Td)1 regardless of the dimensions and hence Rn can not have

any decay in L∞.

With these in mind we state the main proposition.

Proposition 2.3.1. There exists a sufficiently small 0 < β � 1 such that we can find b > 1, 0 <

α� β and a� 1 so that there exists a sequence of smooth solution triplets (un, pn, Rn) to the

system (Equation NSR) for n ∈ N starting from (u1, p1, R1) = (0, 0, 0) verifying (Equation H1),

(Equation H2) and (Equation H3). Moreover each velocity increment un − un−1 is nontrivial

and we have the estimate:

‖un − un−1‖2 +
1

λn
‖∇un −∇un−1‖2 ≤ λ−βn . (2.5)

Remark 2.3.2. For example we can take β = 1
200 , b = 5, α = 10−6 independent of dimension d

and a sufficiently large depending on some implicit constants from the computation. Such choice

of β and b is definitely not optimal. By optimizing one can take larger β as the dimension

d increases. However one is unlikely to get close to the critical space H
d−2
2 or Ld without

substantially new ideas. So we do not pursue additional improvement in the regularity using

the current scheme in this direction.

1Here and in what follows, weak solutions refer to Definition 1.1.1.
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Proof of Theorem 1.3.1. Let (un, pn, Rn) be the sequence obtained from Proposition 2.3.1 and

let 0 < β′ < β First, by the Sobolev interpolation

∑
k≥n
‖uk − uk−1‖Hβ′ (Td) ≤

∑
k≥n
‖uk − uk−1‖β

′

H1(Td)
‖uk − uk−1‖1−β

′

L2(Td)

.
∑
k≥n
‖∇uk −∇uk−1‖β

′

2 ‖uk − uk−1‖1−β
′

2 .

Then directly from the estimate (Equation 2.5) we find that

∑
k≥n
‖uk − uk−1‖Hβ′ (Td) .

∑
k≥n

(λnδn)β
′

.
∑
k≥n

λβ
′−β
n . λ−β

′

k

which means un is uniformly bounded in Hβ′ . So by the compactness of the embedding

Hβ′(Td) ↪→ L2(Td) after possibly passing to a subsequence which we still denote as un, we

find that there exists a u ∈ L2(T) so that

un → u strongly in L2.
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Now we need to show that u is a weak solution of (Equation NSE) . This is done by a standard

argument. Let ϕ(x) ∈ C∞0 (Td). Multiplying (Equation NSR) by ϕ and integrating in space

give

ˆ
Td
−ϕ ·∆un + ϕ · div(un ⊗ un) + ϕ · ∇pn =

ˆ
Td
ϕ · divRn.

Using the fact that un is divergence-free and integrating by parts we find that

ˆ
Td
un ·∆ϕ+

ˆ
Td
un · (un · ∇)ϕ−

ˆ
Td
∇ϕ : Rn = 0.

Due to the strong convergence of un in L2 the first two terms converge to their natural limit:

∣∣∣ ˆ
Td
un ·∆ϕ−

ˆ
Td
u ·∆ϕ

∣∣∣ ≤ ‖un − u‖2‖∆ϕ‖2 → 0 as n→∞;

and

∣∣∣ˆ
Td
un · (un · ∇)ϕ−

ˆ
Td
u · (u · ∇)ϕ

∣∣∣ ≤ ∣∣∣ ˆ
Td

(un − u) · (un · ∇)ϕ− u · ((u− un) · ∇)ϕ
∣∣∣

≤ ‖u− un‖2‖un‖2‖∇ϕ‖∞ + ‖u− un‖2‖u‖2‖∇ϕ‖∞

→ 0 as n→∞.
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By the estimate (Equation H1) it follows that

Rn → 0 strongly in L1,

and then

∣∣∣ˆ
Td
∇ϕ : Rn

∣∣∣ ≤ ‖Rn‖1‖∇ϕ‖∞ → 0 as n→∞.

So u ∈ Hβ′ for some β′ > 0 and verifies the weak formulation of (Equation NSE) . To recover

the pressure p associated to the solution u we can use the formula

pn = ∆−1 div div(un ⊗ un +Rn).

To ensure pn converges to some p in Lr for some r > 1 we need better convergence of un and

Rn. This can be done by using the fact that un → u in Hβ′ to obtain that there is some small

ε > 0 so that after possible relabeling

un → u strongly in L2+2ε

Rn → 0 strongly in L1+ε.
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Then by the Lp boundedness of the Riesz transform for p > 1 we know

pn → p strongly in L1+ε

for some p ∈ L1+ε.

2.3.2 The perturbation wn

The main task is to construct wn given (un−1, pn−1, Rn−1). The exact definition for the

precise wn will be given later in Section 2.5. It should be noted that the exact scheme is more

complicated than what we describe here.

We aim to design the wn so that it gives rise to a new solution triplet (un, pn, Rn) verifying

(Equation H1), (Equation H2) and (Equation H3). To the leading order wn will be of the form

wn(x) =
∑
i,k

ai,k(Rn−1)ψµni,k (σnx)

where ai,k are the coefficients for the concentrated Mikado flow that will be defined by Rn−1

and have low frequency ∼ λn−1, the variable µn is concentration parameter so that each ψµni,k (x)

is supported in some cylinder with radius µn and σn is oscillation parameter so that ψµni,k (σn·)

is σ−1
n Td-periodic and supported on cylinders of radius λ−1

n on Td. Thus wn has frequency λn

in the sense that λn = σnµn.
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To explain the role of σn and µn let us recall that for the new Reynolds stress Rn we need

to solve the divergence equation:

divRn = div ∆wn︸ ︷︷ ︸
Linear error

+ div(wn ⊗ wn +Rn−1)︸ ︷︷ ︸
Oscillation error

+ div(un−1 ⊗ wn + wn ⊗ un−1)︸ ︷︷ ︸
Quadratic error

+∇(pn − pn−1).

The idea of convex integration is to use the interaction wn ⊗ wn to balance the previous

Reynolds stress Rn in the sense that

div(wn ⊗ wn +Rn) +∇pn = High frequency error term. (2.6)

And more importantly we need to do this while keeping the “Linear error” under control. So it

is required for wn to have small intermittent dimension D < d− 2. On the other hand in order

to control the “Oscillation error” we need to have large spacing between each Fourier mode of

wn which is parametrized by σn.

The role of σn is to ensure |ψµni,k (σn·)|2 only has Fourier modes of multiples of σn, namely

|ψµni,k (σn·)|2 =
∑
m∈Zd

|̂ψµni,k |2(m)e2πσm·x
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such that the “High frequency error term” obeys the right inductive estimate. To this end we will

invoke a commutator-type estimate that takes advantage of the fast oscillation of |ψµni,k (σn·)|2,

for which it is required that

λn−1 � σn. (2.7)

On the other hand since ψµni,k is designed to be supported on small cylinders of radius µn,

one expects the saturation of the Bernstein inequality up to the exponent d− 1:

‖ψµni,k‖p ∼ µ
d−1
2
− d−1

p
n (2.8)

namely ψµni,k is of intermittency dimension D = 1. This is also the reason our construction only

works in dimensions d ≥ 4 since for the 3D Navier-Stokes equations the solution is regular if the

intermittency is equal of greater than 3−2 = 1. And as we shall see in the following discussion,

the intermittent dimension of the perturbation wn is strictly bigger than 1.

Taking the fast oscillation parameter σn into account the “Linear error” verifies


‖∇wn‖1 . δ

1
2
n+1µ

− d−1
2

n λn

‖∇wn‖2 . δ
1
2
n+1λn

with λn = σnµn. (2.9)
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To see what is the intermittency dimension of wn, let µn = λµn and σn = λσn for some µ+ σ =

1. Then by simple algebra and the definition of intermittency in term of Littlewood-Paley

decomposition (cf. Section 1.5) we find that

d−D = µ(d− 1).

Since µ < 1 due to the requirement that λn−1 � σn, we can infer that D > 1, which is the

reason that the construction breaks down in 3D. Furthermore, to make sure the “Linear error”

is small in L1 we need

σn � µn (2.10)

which will ensure that D < d − 2 when d ≥ 4, cf. Section 1.5. Then (Equation 2.10) and

(Equation 2.7) together imply that λn−1 � λn, namely the frequency gap b � 1. In view of

the quadratic relation

‖wn ⊗ wn‖1 ∼ ‖Rn−1‖1,

the regularity of wn is determined by Rn−1 so the large gap b � 1 results in a very small

amount of regularity of wn.
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2.4 Concentrated Mikado flows

In this section, the building blocks of the solution sequence are constructed. Based on

a variation of the Mikado flows introduced by Daneri and Székelyhidi Jr. in (25), we called

these building blocks concentrated Mikado flows. As pointed out in the introduction, the

idea of increasing the concentration of the flows is not new. Very recently, we learned that

Modena and Székelyhidi Jr. had used a similar idea to tackle the nonuniqueness problem

for transport equation and continuity equation, see (60; 61). However, being a systems of

equations, the Navier-Stokes equations are fundamentally different than the transport equation

and the continuity equation, which are both scalar equations. Here we point out some of the

major differences between our construction and the “Mikado densities” and “Mikado fields”

constructed by Modena-Székelyhidi Jr. in (60; 61).

1. The error terms in (60; 61) (counterparts of the Reynolds stress in our setting, see Section

2.3.1) are not matrices but vectors, therefore one does not need the geometric lemma for

the space of symmetric traceless matrices, i.e. Lemma 2.4.1.

2. To resort the “leakage” when partitioning the Reynolds stress, we use another index i so

that there are multiple flows in the same direction but at different locations.

3. The estimates for the perturbations in (60; 61) are scaling invariant, while in our case

scalings are much more complicated since we will take advantage of the superexponetial

nature of (Equation 2.4) using a commutator estimate, Proposition 2.4.4.
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2.4.1 The velocity profile ψµi,k

We first choose the velocity profile of the flow in this subsection. We fix a profile function

ψ : R→ R with suppψ ⊂ [1/2, 1] so that we have

ˆ
R
ψ dx = 0. (2.11)

Let K ⊂ Zd be a given finite set of lattice vectors and N ∈ N. Since d ≥ 4 we can then

choose a collection of points pi,k for any k ∈ K, 0 ≤ i ≤ N and a number µ0 > 0 with the

following properties: Let

li,k := {pi,k + tk +m : t ∈ R,m ∈ Zd} ⊂ Td

be the Td-periodization of the line passing through pi,k in the k direction. Since Td = Rd/Zd

and k ∈ K ⊂ Zd, the line only goes around the box Qd = [0, 1]d finitely many times. So if we

let

Nδ(li,k) := {x+ h : x ∈ li,k, |h| ≤ δ}

denote the closed δ-neighborhood of li,k, then

Nµ−1
0

(li,k) ∩Nµ−1
0

(lj,k′) = ∅ if k 6= k′ or i 6= j.
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For each direction k ∈ K, any 0 ≤ i ≤ N and any µ ≥ µ0 we define a profile function ψµi,k as

ψµi,k(x) = ck,pµ
d−1
2 ψ(µdist(x, li,k)) (2.12)

where ck,p are normalizing constants so that

 
Td
|ψµi,k(x)|2dx = 1. (2.13)

It is easy to see that due to (Equation 2.11), we have

ˆ
Td
ψµi,k(x)dx = 0. (2.14)

Indeed, to show (Equation 2.14) one can use cylindrical coordinates along the direction k as

(z, r, θ1, . . . , θd−2). Then

ˆ
Td
ψ(µdist(x, li,k))dx =

ˆ ∏
j

fj(θ1, . . . , θd−2)αjψ(µr)dzdrdθ1 . . . dθd−2

= 0.

2.4.2 Definition of concentrated Mikado flows

It is clear that ∇ψµi,k · k = 0 since ψµi,k is a smooth function on Td whose level sets are

concentric periodic cylinders with axis lk. Immediately we have the following properties.

1. Every ψµi,kk is divergence free: ∇ · ψµi,kk = 0.
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2. ψµi,kk solves d-dimensional Euler equations: div(ψµi,kk ⊗ ψ
µ
i,kk) = ψµi,kk · ∇ψ

µ
i,kk = 0 .

3. These vector fields ψµi,kk have disjoint support: suppψµi,kk ∩ suppψλj,k′ = ∅ if k 6= k′ or

i 6= j.

4. ψµi,kk has intermittency dimension D = 1, namely

‖∇mψµi,k‖p . µmµ
d−1
2
− d−1

p . (2.15)

Recall that Sd×d+ is the set of positive definite symmetric n×n. The next geometric lemma

allows us to form any R in a compact subset of Sd×d+ . A proof can be found in (70) or (62).

Lemma 2.4.1. For any compact subset N ⊂⊂ Sd×d+ , there exists λ0 ≥ 1 and smooth functions

Γk ∈ C∞(N ; [0, 1]) for any k ∈ Zd with |k| ≤ λ0 such that

R =
∑

k∈Zd,|k|≤λ0

Γ2
k(R)k ⊗ k for all R ∈ N .

Finally we can define the concentrated Mikado flows Wµ
i (R, x) : B × Td → Rd as follows.

We first apply Lemma 2.4.1 with N = B, where

B = {R ∈ Sd×d+ : | Id−R| ≤ 1

2
}
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is the ball of radius 1/2 centering at Id in Sd×d+ . This fixes the direction set K = {k ∈ Zd :

|k| ≤ λ0}, where λ0 is obtained from Lemma 2.4.1. Then given N ∈ N, by Section 2.4.1 there

is a µ0 > 1 depending on N , d and K so that for any µ ≥ µ0 we let

Wµ
i (R, x) =

∑
k∈Zd

Γk(R)ψµi,kk for any R ∈ B and 0 ≤ i ≤ N. (2.16)

Remark 2.4.2. The first lower index i in ψµi,kk is to have multiple flows in the same direction

k. So each flow Wµ
i (R, x) can only interact with itself to recover the matrix R as shown in

the lemma below. This ensures the proper separation properties and is needed to control the

“leakage” when partitioning the Reynolds stress in Section 2.5.

Let us summarize the properties in the lemma below for future reference.

Lemma 2.4.3. Suppose d ≥ 4 and let B be the ball of radius 1/2 centering at Id in Sd×d+ . For

any N ∈ N there exists µ0 > 1 depending on N and d so that the divergence-free smooth vector

fields Wµ
i (R, x) : B × Td → Rd defined above for µ ≥ µ0 and indexed by 0 ≤ i ≤ N have the

following properties.

Wµ
i (R, x)⊗Wµ

i (R, x) = R+
∑
k∈Zd

Γpk(R)
[(
ψµi,k

)2 − 1
]
k ⊗ k for all R ∈ N . (2.17)

suppWµ
i (R, x) ∩ suppWj(R, x) = ∅ if i 6= j. (2.18)
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Moreover the profile function ψµi,k obeys the bound:

‖∇mψµi,k‖p . µmµ
d−1
2
− d−1

p for any 1 ≤ p ≤ ∞ and m ∈ N. (2.19)

where the implicit constant depends on i, k, p and m but is dependent of µ.

2.4.3 A commutator estimate

Next, we need a commutator-type estimate involving functions with fast oscillation, which

is crucial in obtaining the L2 decay of the perturbation wn. It should be noted that a similar

result for p = 1 and 2 has been established in (8) using a different method. However, our result

here requires a weaker assumption.

Proposition 2.4.4 (Commutator for fast oscillation). For any small θ > 0 and any large

N > 0 there exists M ∈ N and λ0 ∈ N so that for any µ, σ ∈ N satisfying λ0 ≤ µ ≤ σ1−θ the

following holds. Suppose a ∈ C∞(Td) and let Ca > 0 be such that

‖∇ia‖∞ ≤ Caµi for any 0 ≤ i ≤M.

Then for any σ−1Td periodic function f ∈ Lp(Td), 1 < p < ∞, the following estimates are

satisfied.

• If p ≥ 2 is even, then

∥∥af∥∥
p
.p,d,θ,N ‖a‖p‖f‖p + Ca‖f‖pσ−N . (2.20)
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• If
ffl
Td f = 0 then for 0 ≤ s ≤ 1:

∥∥|∇|−1(af)
∥∥
p
.p,s,d,θ,N σ−1+s

∥∥|∇|−s(af)
∥∥
p

+ Ca‖f‖pσ−N . (2.21)

All the implicit constants appeared in the statement are independent of a, µ and σ.

Remark 2.4.5. In fact, (Equation 2.21) also holds for other −1 degree homogeneous Fourier

multipliers, for example the inverse divergence operator R defined by (Equation 2.60) in Section

2.5.

The proof of Proposition 2.4.4 is not difficult and we give one using the Littlewood-Paley

decomposition in the Appendix A.3.

The significance of Proposition 2.4.4 is clearer upon recalling the Ansatz for the velocity

increment:

wn(x) =
∑
i,k

ai,k(Rn−1)ψµni,k (σnx). (2.22)

So by the usual Hölder’s inequality we can get the trivial estimate

‖wn‖2 ≤
∑
i,k

∥∥ai,k(Rn−1)
∥∥
∞
∥∥ψµni,k (σn·)

∥∥
2

which is too big for the final solution u to be in L2.
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In contrast, if taking into account the fast oscillation λn−1 � σn we would apply Proposition

2.4.4, and then (Equation 2.22) can be estimated as

‖wn‖2 .
∥∥ai,k(Rn−1)

∥∥
2

∥∥ψµni,k (σn·)
∥∥

2
,

and since ∥∥ai,k(Rn−1)
∥∥

2
�
∥∥ai,k(Rn−1)

∥∥
∞

we shall see this approach indeed gives the desired bound for final solution u to be in L2.

2.5 Proof of Proposition 2.3.1

Let us give the main steps of the proof here. We prove by induction. It is obvious that

(0, 0, 0) verifies all the inductive estimates (Equation H1), (Equation H2) and (Equation H3).

Given a solution triplet (un−1, pn−1, Rn−1) verifying (Equation H1), (Equation H2),

and (Equation H3) with n−1 in place of n we aim to construct a new triplet (un, pn, Rn) verify-

ing the same set of estimates so that for the velocity increment un−un−1 it holds (Equation 2.5).

The main part of the proof is to find the proper velocity increment, which consists of the fol-

lowing several steps. We first set up all the constants except a in the beginning to convince the

reader there is no loophole. Then we mollify the solution triplet (un−1, pn−1, Rn−1) to obtain

a mollified solution (ul, pl, Rl) and we derive several standard estimates for (ul, pl, Rl). The

goal is then to find the perturbation wn so that un = ul + wn verifies the inductive hypothesis

(Equation H2) and (Equation H3). After mollification, we introduce a partition to properly

decompose the Reynolds stress Rl so that Lemma 2.4.3 applies. Once the decomposition of the
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Reynolds stress Rl is done, the velocity perturbations wpn and wcn can be defined, where wpn is

the principle part and wcn is a lower order correction to ensure the divergence-free condition of

wn. We then derive a number of estimates for wpn and wcn from their definitions. After all the

preparations, the new Reynolds stress Rn can be solved from a divergence equation, and the

last inductive hypothesis (Equation H1) follows by using all the established estimates for ul,

wpn and wcn.

Step 1: Set up constants.

We fix all the constants β, b, α appeared in the statement except a. The value of a will

be required to be larger several times in the following, mainly to absorbed various implicit

constants from computations.

• First, let β = 1
200 , b = 5 and α = 10−6 regardless of the dimensions d ≥ 4.

• Second, we define respectively the concentration and oscillation parameters µn, σn as

µn = λ
3
4
n and σn = λ

1
4
n . (2.23)

• Third, let l > 0 be as

l =
δ

1/2
n

δ
1/2
n−1λ

1+α
n−1

. (2.24)

Then λn−1 ≤ l−1 ≤ λ1+ 1
40

n−1 and there exists θ > 0 so that l−1−θ ≤ λn.
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Let us explain the role of each parameter. The parameter β is the resulting regularity of the

final solution u, i.e. u ∈ Hβ. Since we aim to prove the existence of stationary weak solutions

in L2, we need the compactness of some embedding Hβ ↪→ L2 to obtain a convergent sequence.

The parameter b is the exponential frequency gap between each step of the iteration. Recall

that the frequency is given by λn = a(bn). So λbn−1 = λn and hence λn−1 � λn.

Compared with β, the parameter α > 0 is very small which will be used for absorbing lower

order factors in conjunction with a large a� 1. More precisely, in the sequel we often use the

following fact: for any constant C > 1 there is a sufficiently large a > 0 so that Cλ−αn−1 ≤ 1

(recall that n ≥ 2 in the proof so in view of (Equation 2.4) this is possible).

Step 2: Mollification.

This step is to fix the problem of possible loss of derivative which is usual in convex integra-

tion. Since by mollifying we inevitably introduce new errors from the nature of noncommutativ-

ity between (Equation NSR) and mollification, the length scale that we use for the mollification

is expected to be larger than λn−1 so that the new errors are not too large. This is the reason

that we choose the length scale l as in (Equation 2.24). Fix a standard mollifying kernel η in

space and define the mollifications of the velocity field, pressure scaler and Reynolds stress

ul = ηl ∗ un−1

pl = ηl ∗ pn−1 + ηl ∗ (u2
n−1)− |ηl ∗ un−1|2

Rl = ηl ∗Rn−1 + ηl ∗ (un−1⊗̊un−1)− (ηl ∗ un−1⊗̊ηl ∗ un−1)
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where l is the length parameter defined by (Equation 2.24) and ⊗̊ is the trace-less tensor product

f⊗̊g := figj − δijfigj .

And hence we have a mollified solution triplet (ul, pl, Rl) verifying the following mollified

system: 
−∆ul + div(ul ⊗ ul) +∇pl = divRl

div ul = 0

(Mollified-NSR)

We can derive the following set of estimates by standard properties of mollifier.

Lemma 2.5.1. For any m ∈ N we have

‖ul − un−1‖2 . δ
1
2
nλ
−α
n−1 (2.25)

‖∇m+1ul‖2 . l−mδ
1
2
n−1λn−1 (2.26)

‖∇mRl‖1 . l−mδnλ
−2α
n−1, (2.27)

where all implicit constants are independent of n and l.

Proof. By the hypothesis (Equation H3) and the obvious estimate for mollifier, we have that

‖ul − un−1‖2 ≤ l‖∇un−1‖2 . δ
1
2
n−1λn−1l . δ

1
2
nλ
−α
n−1

where we have used (Equation 2.24) to get the last inequality.
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Again by the standard property of mollifier, we obtain that

‖∇m+1ul‖2 . l−m‖∇un−1‖2 . δ
1
2
n−1λn−1l

−m.

The last inequality for Rl follows from the Constantin-E-Titi commutator estimate, Propo-

sition A.2.1 in the Appendix A.2:

‖∇mRl‖1 . l−m‖Rn−1‖1 + ‖∇un−1‖22l2−m.

Using the definition of the length scale (Equation 2.24) and (Equation H3) we have

‖∇un−1‖22l2 = l2δn−1λ
2
n−1 ≤ l−mδnλ−2α

n−1.

So it follows that

‖∇mRl‖1 . l−m‖Rn−1‖1 + l−mδnλ
−2α
n−1 . l−mδnλ

−2α
n−1.

Remark 2.5.2. It is worth noting that the constants in Lemma 2.5.1 depend on m. This type

of dependence will appear in the sequel as well. However, we will only require these higher order

Sobolev norms up to some fixed order throughout the proof.



43

Step 3: Decompose the Reynolds stress

Recall that Lemma 2.4.3 is for symmetric matrices in a given compact subset B ⊂ Sd×d+ .

Since Rl is measured in L1, we need to properly decompose Rl so that we are able to use the

concentrated Mikado flows.

Choose a smooth cutoff function χ : Rd×d → [0, 1] so that

χ(x) =


1 if |x| ∈ [0, 3

4 ]

0 if |x| ≥ 1

(2.28)

Now let χi(x) = χ(4−ix) for any i ≥ 0 and define positive cutoff functions φi : Rd×d → [0, 1] as

(φi)
1
2 (x) =


χi − χi−1 if i ≥ 1

χ0 if i = 0

(2.29)

so that we have by telescoping

φ2
0(x) +

∑
i≥1

φ2
i (x) = 1.

Then define the partition for the Reynolds stress

χi,n(x) := φi

( Rl

δnλ
−2α
n−1

)
for any i ∈ N. (2.30)
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We are ready to define the velocity increment. First apply Lemma 2.4.3 with N = 1 and

then let the principle part of the perturbation be:

wpn(x) =
∑
i≥0

2i+1δ
1
2
nλ
−α
n−1χi,nW

µn
[i]

(
Id− Rl

4i+1δnλ
−2α
n−1

, σnx
)

(2.31)

where [i] = i mod 2. Since

4i−1δnλ
−2α
n−1 ≤ |Rl| ≤ 4iδnλ

−2α
n−1 for all x ∈ suppχi,n

we know that

∣∣∣∣ Rl

4i+1δnλ
−2α
n−1

∣∣∣∣ ≤ 1

4

and thus

Id− Rl

4i+1δnλ
−2α
n−1

∈ B ⊂ Sd×d+ for all x ∈ Td.

So wpn is well-defined in view of Lemma 2.4.3. In what follows, with a slight abuse of notations

we often use the shorthand

wpn =
∑
i

ai,k,nψ
µn
i,k (σn·) (2.32)
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where it is understood that in the functions ψµni,k the lower index i = 0 when even and i = 1

when odd and the short notation ai,k,n is defined by

ai,k,n = 2i+1δ
1
2
nλ
−α
n−1χi,nkΓk

(
Id− Rl

4i+1δnλ
−2α
n−1

)
. (2.33)

Let us show that wpn is non-trivial in the following. Recall that B ⊂ Sd×d+ is the ball of

radius 1
2 centered at Id. So 0 6∈ B, which means that

for any R ∈ B there exists at least a k ∈ Zd so that Γk(R) 6= 0. (2.34)

And then it follows that for any x ∈ Td there exists at least one Γk so that

Γk

(
Id− Rl

4i+1δnλ
−2α
n−1

)
6= 0. (2.35)

Thus due to the partition (Equation 2.30) for this particular k there exists i ∈ N so that

|ai,k,n| > 0 for some x ∈ Td (2.36)

which makes sure the non-triviality of wpn.
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One notices that wpn is not divergence-free. However we can fix this by introducing a

corrector:

wcn = −|∇|−1Rj
[∑

i

(
div ai,k,n

)
ψµni,k (σn·)

]
(2.37)

where Rj is the Riesz transform with symbol
kj
|k| for 1 ≤ j ≤ d. Again for better exposition we

will use the short notation

wcn = −|∇|−1Rj
∑
i

bi,k,nψ
µn
i,k (σn·) (2.38)

where

bi,k,n = div ai,k,n = 2i+1δ
1
2
nλ
−α
n−1 div

[
χi,nkΓk

]
.

Considering the fact that to the leading order wpn is divergence-free, the corrector is expected

to be much smaller and will not be of any trouble. It is easy to check

divwn = divwpn + divwcn = 0

and thanks to (Equation 2.35), (Equation 2.36), and (Equation 2.37), wn is not identically 0.

Now that we have successfully define the velocity perturbation wn, the velocity at step n is

then given by

un = ul + wn (2.39)
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Note that we perturb ul not un−1 since the mollified velocity field verifies much nicer esti-

mates than un−1. If one instead uses un−1 + wn then the typical problem of losing derivative

appears.

The new Reynolds stress Rn will be computed later via (Equation Mollified-NSR).

Step 4: Estimate the coefficients ai,k,n and bi,k,n

We show that the coefficients ai,k,n and bi,k,n have frequency ∼ l−1 and are of the correct

sizes for proving regularity of wn in the next step. This requires a result on the Hölder norm

of composition of functions, Proposition A.1.1.

Proposition 2.5.3. There exists an index imax . lnλ−1
n so that

ai,k,n = bi,k,n = 0 for all i ≥ imax.

Moreover we have for any m ∈ N that

‖∇mai,k,n‖L∞ . δ
1
2
nλ
−α
n−1l

−m−2d−2

‖∇m(a2
i,k,n)‖L∞ . δ

1
2
nλ
−α
n−1l

−m−2d−2

‖∇mbi,k,n‖L∞ . δ
1
2
nλ
−α
n−1l

−m−2d−3
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and

‖ai,k,n‖L1 + l‖∇ai,k,n‖L1 . δ
1
2
nλ
−α
n−1

‖ai,k,n‖L2 . δ
1
2
nλ
−α
n−1

‖bi,k,n‖L1 . l−1δ
1
2
nλ
−α
n−1.

Proof. Let imax be defined as the smallest integer so that

4imax+2δnλ
−2α
n−1 ≥ ‖Rl‖∞. (2.40)

Then, from the definition of ai,k,n and bi,k,n we know that

ai,k,n = bi,k,n = 0 for all i ≥ imax.

By the Sobolev embedding W d+1,1(Td) ↪→ L∞(Td) and the estimate from Lemma 2.5.1 that

‖∇iRl‖1 . l−iδnλ
−2α
n−1

we can conclude that

‖Rl‖∞ . ‖Rl‖W d+1,1 . l−(d+1)δnλ
−2α
n−1
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which together with (Equation 2.40) implies

imax . lnλ−1
n .

We then estimate the Hölder semi-norms. Let m ∈ N. By a crude use of product rule the

following pointwise bound holds

∣∣∇mai,k,n∣∣ . 2i+1δ
1
2
nλ
−α
n−1

∑
0≤j≤m

∣∣∣∇jχi,n∣∣∣∣∣∣∇m−jΓk( Id− Rl

4i+1δnλ
−2α
n−1

)∣∣∣.
Let Ei,n = suppχi,n. We will estimate each summand on the support set Ei,n. Using the Hölder

estimate for composition of functions, i.e. Proposition A.1.1 we have

∥∥∥∇m−jΓk( Id− Rl

4i+1δnλ
−2α
n−1

)∥∥∥
L∞(Ei,n)

.
∥∥∥∇m−j Rl

4iδnλ
−2α
n−1

∥∥∥
L∞(Ei,n)

∑
i≤m−j

∥∥∥ Rl

4iδnλ
−2α
n−1

∥∥∥i−1

L∞(Ei,n)
,

(2.41)

where we have put the Hölder norms of Γk into the implicit constant. Since there are only

finitely many Γk (depending only on the dimension d), this is allowable. And then we notice

that on Ei,n it holds that

Rl ∼ 4i+1δnλ
−2α
n−1 for all x ∈ Ei,n .



50

Taking this into account we obtain

∥∥∥∇m−jΓk( Id− Rl

4i+1δnλ
−2α
n−1

)∥∥∥
L∞(Ei,n)

.
∥∥∥∇m−j Rl

4iδnλ
−2α
n−1

∥∥∥
L∞(Ei,n)

. (2.42)

We can proceed similarly for ∇jχi,n to obtain the bound:

∥∥∥∇jχi,n∥∥∥
L∞(Ei,n)

.
∥∥∥∇j Rl

4iδnλ
−2α
n−1

∥∥∥
L∞(Ei,n)

∑
i≤j

∥∥∥ Rl

4iδnλ
−2α
n−1

∥∥∥i−1

L∞(Ei,n)

.
∥∥∥∇j Rl

4iδnλ
−2α
n−1

∥∥∥
L∞(Td)

. (2.43)

Moreover thanks to the Sobolev embeddingW d+1,1(Td) ↪→ L∞(Td) it follows from (Equation 2.42)

and Lemma 2.5.1 that

∥∥∥∇m−jΓk( Id− Rl

4i+1δnλ
−2α
n−1

)∥∥∥
L∞(Ei,n)

.
∥∥∥ Rl

4i+1δnλ
−2α
n−1

∥∥∥
Wm−j+d+1,1(Td)

. 4−i−1l−m+j−d−1 (2.44)

and from (Equation 2.43) Lemma 2.5.1 that

∥∥∥∇jχi,n∥∥∥
L∞(Ei,n)

.
∥∥∥ Rl

4iδnλ
−2α
n−1

∥∥∥
W j+d+1,1(Td)

. 4−i−1l−j−d−1. (2.45)
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Inserting these bounds into the estimate for ∇mai,k,n we have

‖∇mai,k,n‖L∞(Td) . 2i+1δ
1
2
nλ
−α
n−1

∑
0≤j≤m

∥∥∥∇jχi,n∥∥∥
L∞(Ei,n)

∥∥∥∇m−jΓk( Id− Rl

4i+1δnλ
−2α
n−1

)∥∥∥
L∞(Ei,n)

. δ
1
2
nλ
−α
n−1l

−m−2d−2.

Observing that

∇m(ai,k,n)2 . 4i+1δnλ
−2α
n−1

∑
0≤j≤m

∣∣∣∇jχ2
i,n

∣∣∣∣∣∣∇m−jΓ2
k

(
Id− Rl

4i+1δnλ
−2α
n−1

)∣∣∣,
and that

∇mbi,k,n . 2i+1δ
1
2
nλ
−α
n−1

∑
0≤j≤m+1

∣∣∣∇jχ2
i,n

∣∣∣∣∣∣∇m−jΓ2
k

(
Id− Rl

4i+1δnλ
−2α
n−1

)∣∣∣,
where the Hölder norms of all factors in the summation have been estimated, we can conclude

without proof that

‖∇m(ai,k,n)2‖L∞(Td) . δ
1
2
nλ
−α
n−1l

−m−2d−2,

and

‖∇mbi,k,n‖L∞(Td) . δ
1
2
nλ
−α
n−1l

−m−2d−3.
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It remains to show L1 and L2 bounds. Since these bounds are more delicate than the ones in

L∞-based norms, we estimate them in a more precise manner. By the definition of χi,n we have

‖ai,k,n‖1 ≤ 2i+1δ
1
2
nλ
−α
n−1

ˆ
Td
χi,k,ndx

. 2i+1δ
1
2
nλ
−α
n−1| suppχi,n|.

and

‖ai,k,n‖22 ≤ 4i+1δnλ
−2α
n−1

ˆ
Td
χ2
i,k,ndx

. 4i+1δnλ
−2α
n−1| suppχi,n|.

By the decomposition of the Reynolds stress Rl we know that

| suppχi,n| ≤
∣∣∣{x ∈ Td :

∣∣∣ Rl

δnλ
−2α
n−1

∣∣∣ ≥ 4i−1}
∣∣∣

from which it follows by the Chebyshev inequality that

| suppχi,n| ≤ 4−i+1.

So

‖ai,k,n‖1 . 2−iδ
1
2
nλ
−α
n−1.



53

and respectively

‖ai,k,n‖22 . δnλ
−2α
n−1.

To bound ∇ai,k,n we obtain first by the product rule and chain rule:

|∇ai,k,n| . 2i+1δ
1
2
nλ
−α
n−1

(
|χi,n||∇Γk|

∣∣∣ ∇Rl
4i+1δnλ

−2α
n−1

∣∣∣+ |Γk||∇φi|
∣∣∣ ∇Rl
4i+1δnλ

−2α
n−1

∣∣∣).
Then using the obvious bounds

|χi,n| ≤ 1, |∇φi| . 4−i

|Γk| . 1, |∇Γk| . 1

we can estimate L1 norm as follows:

‖∇ai,k,n‖1 . 2i+1δ
1
2
nλ
−α
n−1

ˆ
Td

∣∣∣ ∇Rl
4i+1δnλ

−2α
n−1

∣∣∣dx
. 2−iδ

− 1
2

n λαn−1‖∇Rl‖1

. l−1δ
1
2
nλ
−α
n−1,

where we have used ‖∇Rl‖1 . l−1δnλ
−2α
n−1 from Lemma 2.5.1.
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From the definition of bi,k,n it is clear that bi,k,n also verifies bound:

‖bi,k,n‖1 . l−1δ
1
2
nλ
−α
n−1.

Step 5: Estimate the velocity perturbation

We summarize the regularity properties of wpn in the below proposition.

Proposition 2.5.4 (Regularity of wpn). There exists a0 > 0 sufficiently large so that for any

a ≥ a0 the principle part of velocity increment defined by (Equation 2.31) verifies

‖wpn‖2 +
1

λn
‖∇wpn‖2 ≤

1

8
δ

1
2
n (2.46)

‖wpn‖1 +
1

λn
‖∇wpn‖1 ≤

1

8
δ

1
2
nµ

−d+1
2

n . (2.47)

Proof. Thanks to Proposition 2.5.3, we know that wpn consists of finitely many concentrated

Mikado flows:

wpn =
∑

0≤i≤imax

∑
k

ai,k,nψ
µn
i,k (σn·).

To show the bound for ‖wpn‖2 it suffices to show that

‖ai,k,nψµni,k (σn·)‖2 . δ
1
2
nλ
−α
n−1 (2.48)
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The reason is that the extra factor λ−αn−1 can be used to absorbed the logarithmic error causing

by imax and any constant factors provided that a is sufficiently large.

Since ψµni,k (σn·) is σ−1
n Td-periodic and by Proposition 2.5.3

‖∇mai,k,n‖L∞ . δ
1
2
nλ
−α
n−1l

−m−2d−2

we can apply the first part of Proposition 2.4.4 with Ca = δ
1
2
nλ
−α
n−1l

−2d−2, µ = l−1, σ = σn to

obtain that

‖ai,k,nψµni,k (σn·)‖2 . ‖ai,k,n‖2‖ψµni,k (σn·)‖2 + Caσ
−100d
n .

The second term appeared on the right is essentially a small error term. Indeed since Caσ
−100d
n �

λ−10d
n due to the fact that l−1 ≤ σ2

n we obtain

‖ai,k,nψµni,k (σn·)‖2 . δ
1
2
nλ
−α
n−1.

And hence by taking a sufficiently large, (Equation 2.46) can be obtained:

‖wpn‖2 ≤
1

16
δ

1
2
n
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To show the bound for ‖wpn‖1 we simply observe that

∣∣ supp ai,k,nψ
µn
i,k (σn·)

∣∣ ≤ ∣∣ suppψµni,k (σn·)
∣∣ . µ−(d−1)

n

and thus by Jensen’s inequality

‖ai,k,nψµni,k (σn·)‖1 . ‖ai,k,nψµni,k (σn·)‖2µ
− d−1

2
n

Again by taking a sufficiently large, (Equation 2.47) can be obtained:

‖wpn‖1 ≤
1

16
δ

1
2
nµ

−d+1
2 .

Now we turn to estimate ‖∇wpn‖p for p = 1 or 2. By the same argument of using small

support set and Jensen’s inequality, it suffices to only show the bound for ‖∇wpn‖2. Taking

derivative on wpn we have

∇wpn =
∑
i,k

∇ai,k,nψµni,k (σn·) + σn
∑
i,k

ai,k,n∇ψµni,k (σn·).

Following the same argument we apply Proposition 2.4.4 to the two above summands with

Ca = δ
1
2
nλ
−α
n−1l

−2d−2, µ = l−1, σ = σn and then obtain that

‖∇ai,k,nψµni,k (σn·)‖2 . δ
1
2
n l
−1λ−αn−1
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and

‖ai,k,n∇ψµni,k (σn·)‖2 . δ
1
2
nµnλ

−α
n−1.

Hence by the relationship λn = σnµn it is obtained that

1

λn
‖∇wpn‖2 . δ

1
2
nλ
−α
n−1

By choosing a sufficiently large it holds that

1

λn
‖∇wpn‖2 ≤

1

16
δ

1
2
n .

Next, we turn to estimate the correction part of the velocity wcn. As expected wcn is much

smaller than wpn.

Proposition 2.5.5 (Regularity of wcn). There exists a0 > 0 sufficiently large so that for any

a ≥ a0 the correction part of velocity increment defined by (Equation 2.31) verifies

‖wcn‖2 +
1

λn
‖∇wcn‖2 ≤

1

8
δ

1
2
n l
−1σ−1

n (2.49)

‖wcn‖1 +
1

λn
‖∇wcn‖1 ≤

1

8
δ

1
2
nµ

−d+1
2

n l−1σ−1
n . (2.50)
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Proof. Observe that the definition of wcn involves Riesz transform which is only bounded Lp →

Lp when 1 < p <∞. So to resolve this issue let us fix a parameter s > 1 sufficiently close to 1

such that

µ
d−1
1
− d−1

s
n ≤ λ

1
2
α

n−1. (2.51)

And we instead estimate the Ls norm rather than L1 norm. Let us first prove the bounds

for ∇wcn as in this case we can follow along the lines of Proposition 2.5.4. By the Lp → Lp

boundedness of the Riesz transform for any 1 < p <∞ we notice that

‖∇wcn‖Lp(Td) .

∥∥∥∥ ∑
i≤imax

bi,k,nψ
µn
i,k (σn·)

∥∥∥∥
Lp(Td)

. (2.52)

Since by Proposition 2.5.3

‖∇mbi,k,n‖L∞ . δ
1
2
nλ
−α
n−1l

−m−2d−3

so applying the first part of Proposition 2.4.4 with Ca = δ
1
2
nλ
−α
n−1l

−2d−3, µ = l−1, σ = σn and

after simplifying one obtains

∥∥bi,k,nψµni,k (σn·)
∥∥

2
. δ

1
2
nλ
−α
n−1l

−1 (2.53)

and then by small support of ψµni,k (σnx), namely

∣∣∣ supp bi,k,nψ
µn
i,k (σnx)

∣∣∣ ≤ ∣∣∣ suppψµni,k (σnx)
∣∣∣ . µ−(d−1)

n
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and Jensen’s inequality we have

∥∥bi,k,nψµni,k (σn·)
∥∥
s
. µ

d−1
1
− d−1

s
n

∥∥bi,k,nψµni,k (σn·)
∥∥

2

. δ
1
2
nλ
−α
n−1l

−1µ
−d+1

2
n λ

− 1
2
α

n−1 (2.54)

where we have used the fact that µ
d−1
1
− d−1

s
n ≤ λ

1
2
α

n−1.

Since σn = λ
1
4
n ≤ λn from (Equation 2.53) and (Equation 2.52) we get

1

λn
‖∇wcn‖2 ≤

1

16
δ

1
2
n l
−1σ−1

n

as long as a is sufficiently large.

To recover the L1 bound for ∇wcn we simply first bound L1 norm by its Ls norm:

‖∇wcn‖1 ≤ ‖∇wcn‖s

and it follows that

‖∇wcn‖1 .
∑
i

∥∥bi,k,nψµni,k (σn·)
∥∥
s
.

Then taking a sufficient large and using (Equation 2.54) we can ensure that

‖∇wcn‖1 ≤
1

16
δ

1
2
nµ

−d+1
2

n l−1
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which implies that

1

λn
‖∇wcn‖1 ≤

1

16
δ

1
2
nµ

−d+1
2

n l−1λ−1
n .

It remains to prove the estimates of ‖wcn‖p for p = 1, 2. It follows from the Lp boundedness

of Riesz transform that

‖wcn‖2 .
∑
i,k

∥∥|∇|−1
[
bi,k,nψ

µn
i,k (σn·)

]∥∥
2

‖wcn‖s .
∑
i,k

∥∥|∇|−1
[
bi,k,nψ

µn
i,k (σn·)

]∥∥
s
.

Therefore it suffices to derive suitable estimates for the functions

|∇|−1
[
bi,k,nψ

µn
i,k (σn·)

]

where we note that bi,k,nψ
µn
i,k (σn·) has zero-mean since

ˆ
Td
bi,k,nψ

µn
i,k (σnx) dx =

ˆ
Td

div ai,k,nψ
µn
i,k (σnx) dx = 0.

So, thanks to Proposition 2.5.3 the assumptions in Proposition 2.4.4 are fulfilled:

‖∇mbi,k,n‖L∞ . δ
1
2
nλ
−α
n−1l

−m−2d−3
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and then we can obtain from the second part of Proposition 2.4.4

∥∥|∇|−1
[
bi,k,nψ

µn
i,k (σn·)

]∥∥
2
. σ−1

n

∥∥bi,k,nψµni,k (σn·)
∥∥

2
+ σ−10d

n (2.55)

and

∥∥|∇|−1
[
bi,k,nψ

µn
i,k (σn·)

]∥∥
s
. σ−1

n

∥∥bi,k,nψµni,k (σn·)
∥∥
s

+ σ−10d
n . (2.56)

where we have used the fact that here δ
1
2
nλ
−α
n−1l

−2d−3σ−100d
n � σ−10d

n . Then it follows again

from the first part of Proposition 2.4.4 that

∥∥bi,k,nψµni,k (σn·)
∥∥

2
. δ

1
2
nλ
−α
n−1σ

−1
n l−1 + σ−10d

n , (2.57)

which by Jensen’s inequality and the small support of ψµni,k (σnx) also implies that

∥∥bi,k,nψµni,k (σn·)
∥∥
s
. µ

d−1
s
− d−1

2
n δ

1
2
nλ
−α
n−1σ

−1
n l−1 + σ−10d

n , (2.58)

So putting together (Equation 2.51), (Equation 2.55), (Equation 2.56), and (Equation 2.57) we

have

‖wcn‖2 .
∑
i,k

δ
1
2
nλ
−α
n−1σ

−1
n l−1

‖wcn‖s .
∑
i,k

δ
1
2
nλ
− 1

2
α

n−1 µ
−d+1

2
n σ−1

n l−1.
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Finally using the extra factors λ−αn−1 and λ
− 1

2
α

n−1 to absorb any logarithmic and constant factors

we can get rid of the summation in i, k to obtain that

‖wcn‖2 ≤
1

16
δ

1
2
n l
−1σ−1

n

and that

‖wcn‖1 ≤ ‖wcn‖s ≤
1

16
δ

1
2
nµ

−d+1
2

n l−1σ−1
n .

Remark 2.5.6. It seems that one should be able to gain a factor of l−1λ−1
n rather than l−1σ−1

n

since ψµni,k (σn·) has frequency λn. Such improvement can be obtained by carefully choosing the

profile function ψ in Section 2.4 with vanishing moments up to a sufficiently high order, which

may be useful in the future study of constructing solutions with better regularity.

Step 6: Check (Equation 2.5) and hypothesis (Equation H2) and (Equation H3)

Let us first check (Equation 2.5). Since by the definition of un, namely (Equation 2.39) we

have

‖un − un−1‖2 ≤ ‖wn‖2 + ‖ul − un−1‖2
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it suffices to estimate

‖un − un−1‖2 ≤ ‖wpn‖2 + ‖wcn‖2 + ‖ul − un−1‖2.

From the estimates (Equation 2.46) and (Equation 2.49) and Lemma 2.5.1 we know that

‖wpn‖2 + ‖wcn‖2 ≤
1

4
δ

1
2
n

‖ul − un−1‖2 ≤ Cδ
1
2
nλ
−α
n−1.

Taking a sufficiently large a, we can arrange that

‖un − un−1‖2 ≤
1

4
δ

1
2
n .

and therefore

‖un − un−1‖2 ≤
1

2
δ

1
2
n . (2.59)

We will bound the term ∇(un − un−1) in almost the same way. As before we first obtain

from the definitions of un and wn that

‖∇un −∇un−1‖2 ≤ ‖∇wn‖2 + ‖∇ul‖2 + ‖∇un−1‖2

≤ ‖∇wpn‖2 + ‖∇wcn‖2 + ‖∇ul‖2 + ‖∇un−1‖2
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Thanks to estimates (Equation 2.46), (Equation 2.49) and Lemma 2.5.1, we obtain

‖∇un −∇un−1‖2 ≤ ‖∇wpn‖2 + ‖∇wcn‖2 + ‖∇ul‖2 + ‖∇un−1‖2

≤ 1

4
λnδ

1
2
n + Cδ

1
2
n−1λn−1

where C is a constant depending only on the mollifier η. Again by choose a sufficiently large

we can guarantee that

‖∇un −∇un−1‖2 ≤
1

2
λnδ

1
2
n ,

which together with (Equation 2.59) means (Equation 2.5) is satisfied.

Now we show (Equation H2). First, we obtain the obvious bound

‖un‖2 = ‖ul + wn‖2 ≤ ‖un−1‖2 + ‖ul − un−1‖2 + ‖wn‖2.

Then, from Proposition 2.5.4 and 2.5.5, and Lemma 2.5.1 we see that

‖un‖2 ≤ ‖un−1‖2 + ‖ul − un−1‖2 + ‖wn‖2

≤ 1− δ
1
2
n−1 + Cδ

1
2
nλ
−α
n−1 +

1

2
δ

1
2
n .
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where again C is some constant depending only on the mollifier η. Now choosing a sufficiently

large depending on b so that

3δ
1
2
n ≤ δ

1
2
n−1

Cλ−αn−1 ≤ 1

we are able to find

1− δ
1
2
n−1 + Cδ

1
2
nλ
−α
n−1 +

1

2
δ

1
2
n ≤ 1− 2δ

1
2
n + δ

1
2
n +

1

2
δ

1
2
n

≤ 1− δ
1
2
n

and hence we obtain the desire bound (Equation H2):

‖un‖2 ≤ 1− δ
1
2
n .

As for (Equation H3), the proof is very similar. We first obtain

‖∇un‖2 ≤ ‖∇ul‖2 + ‖∇wn‖2
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and then using Lemma 2.5.1, estimates (Equation 2.46) and (Equation 2.49) we find that

‖∇un‖2 ≤ ‖∇ul‖2 + ‖∇wpn‖2 + ‖∇wcn‖2

≤ Cδ
1
2
n−1λn−1 +

1

2
δ

1
2
nλn

where the constant C depends only on the mollifier η. Letting a sufficiently large it can be

arranged that

Cλ1−β
n−1 ≤

1

2
λ1−β
n .

And then we have

Cδ
1
2
n−1λn−1 +

1

2
δ

1
2
nλn ≤ δ

1
2
nλn,

which implies

‖∇un‖2 ≤ δ
1
2
nλn.

So (Equation H3) is also fulfilled.
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Step 7: Estimate the new Reynolds stress

Thanks to (Equation Mollified-NSR), the new Reynolds stress is defined by the divergence

equation:

divRn +∇Pn = divRl + ∆wn + divwpn ⊗ wpn

+ div(wn ⊗ ul + ul ⊗ wn)

+ div(wcn ⊗ wpn + wpn ⊗ wcn + wcn ⊗ wcn).

To estimate the L1 norm of Rn, one needs to somehow invert the divergence. For this

purpose we follow the construction given in (3). The operator R : C∞(Td,Rd) → Rd×d is

defined as

(Rf)ij = Rijkfk

Rijk =
2− d
d− 1

∆−2∂i∂j∂k +
−1

d− 1
∆−1∂kδij + ∆−1∂iδjk + ∆−1∂jδik.

(2.60)

It is clear that for any f ∈ C∞(Td) the matrix (Rf)ij is symmetric. Taking the trace we have

TrRf =
2− d
d− 1

∆−1∂kfk +
−d
d− 1

∆−1∂kfk + ∆−1∂kfk + ∆−1∂kfk

= (
2− d
d− 1

+
−d
d− 1

+ 2)∆−1∂kfk = 0

which means that Rf is also trace-less.

And lastly, we have

divRf = ∂j(Rf)ij = ∂jRijkfk
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so by direct computation we can check that

divRf =
2− d
d− 1

∆−1∂i∂kfk +
−1

d− 1
∆−1∂k∂ifk + ∆−1∂i∂kfk + fi = fi = f.

Lemma 2.5.7. The operator R defined by (Equation 2.60) has the following properties. For

any f ∈ C∞0 (Td) the matrix Rf is symmetric trace-free and we have

divRf = f. (2.61)

If additionally div f = 0 then

R∆f = ∇f + (∇f)T . (2.62)

Thanks to Lemma 2.5.7 we need to estimate the following new Reynolds stress defined by

using the inverse divergence operator R.

Rn =R(divwn ⊗ un−1 + un−1 ⊗ wn)︸ ︷︷ ︸
quadratic error

+ R(∆wn)︸ ︷︷ ︸
linear error

+R(divwpn ⊗ wpn +Rl)︸ ︷︷ ︸
oscillation error

+R div(wcn ⊗ wpn + wpn ⊗ wcn + wcn ⊗ wcn)︸ ︷︷ ︸
correction error

(2.63)

which is well-defined since all terms involved have zero-mean, and we simply denote the equation

as

Rn = Eq + El + Eo + Ec. (2.64)
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It suffices to check that for each part we have

max{‖Eq‖1, ‖El‖1, ‖Eo‖1, ‖Ec‖1} ≤
1

4
δn+1.

Oscillation error

Due to the fact that each χi,nW[i] has disjoint support we can compute the nonlinear term

as

wpn ⊗ wpn =
∑
i

4i+1δnλ
−2α
n−1χ

2
i,nW[i] ⊗W

µn
[i]

(
Id− Rl

4i+1δnλ
−2α
n−1

, σnx
)
.

From Lemma 2.4.3 it follows

wpn ⊗ wpn = −Rl +
∑
i

4i+1δnλ
−2α
n−1χ

2
i,n Id +

∑
i,k

ρ2
i,k,nφ

µn
i,k(σn·) k ⊗ k (2.65)

where scaler functions ρi,k,n ∈ C∞(Td) and φµni,k ∈ C
∞
0 (Td) are defined respectively as

ρi,k,n = 2i+1δ
1
2
nλ
−α
n−1χi,nΓk

(
Id− Rl

4i+1δnλ
−2α
n−1

)

and

φµni,k =
(
ψµni,k

)2 −  (
ψµni,k

)2
.
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Upon taking divergence, we can find a pressure P to absorb the second term in (Equation 2.65)

so that

div(wpn ⊗ wpn) +∇P = −divRl +
∑
i,k

div
(
ρ2
i,k,nφ

µn
i,k(σn·) k ⊗ k

)

Noticing the fact that

div
(
φµni,k(σnx) k ⊗ k

)
= 0

we get

Eo = R(divwpn ⊗ wpn + divRl)

=
∑
i,k

R
[
∇ρ2

i,k,nφ
µn
[i],k(σn·) k ⊗ k

]
.

For the remainder of this part, we fix some p > 1 (depending on d and α) sufficiently close to

1 such that Lp(Td) ↪→W−α,1(Td), and will estimate ‖Eo‖p.

Since ai,k,n = ρi,k,n k, we get from Proposition 2.5.3 that

‖∇mρ2
i,k,n‖∞ . δ

1
2
nλ
−α
n−1l

−m−2d−2 for all m ∈ N

and by definition that
 
Td
φµn[i],k(σn·) = 0.
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Hence we have the following estimate for Eo by invoking the second part of Proposition

2.4.4 with Ca = δ
1
2
nλ
−α
n−1l

−2d−2, µ = l−1, σ = σn and p:

‖Eo‖p .
∑
i,k

σ−1+α
n

∥∥|∇|−α(∇ρ2
i,k,nφ

µn
[i],k(σn·)

)∥∥
p

+ σ−100d
n (2.66)

where we have used the bound

∥∥φµn[i],k(σn·)
∥∥

1
. 1. (2.67)

Then the embedding Lp(Td) ↪→W−α,1(Td) implies that

‖Eo‖p .
∑
i,k

σ−1+α
n

∥∥∇ρ2
i,k,nφ

µn
[i],k(σn·)

∥∥
1

+ σ−100d
n (2.68)

Since it is easy to see that

σ−10d
n � δn+1,

to bound ‖Eo‖, it suffices to bound
∥∥∇ρ2

i,k,nφ
µn
[i],k(σn·)

∥∥
1
. We attempt to apply the first part of

Proposition 2.4.4 with the same parameters, but (Equation 2.66) is in L1 rather than L2 and

if one uses the small support argument as in the proof of Proposition 2.5.4 and 2.5.5, one has

to bound ‖∇ρi,k,n‖2, which will be too big and have no decay in view of Proposition 2.5.3. To

resolve this issue, we appeal to the following heuristics:

∥∥∇ρ2
i,k,nφ

µn
[i],k(σn·)

∥∥
1
. l−1

∥∥ρi,k,nψµn[i],k(σn·)
∥∥2

2
+ Error terms
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We will show a slightly weaker bound in the following. Firstly, Let

ρl = P≤l−1−αρ2
i,k,n

where the extra factor α will allow us to exploit the derivative bounds for ai,k,n. More precisely,

applying the same integration by parts argument as in the proof of Proposition 2.4.4, one can

show that

‖∇(ρ2
i,k,n − ρl)‖∞ + ‖ρ2

i,k,n − ρl‖∞ . l1000d (2.69)

where the implicit constant depends on α and d. Using this and (Equation 2.67), we have

∥∥∇ρ2
i,k,nφ

µn
[i],k(σn·)

∥∥
1
.
∥∥∇ρlφµn[i],k(σn·)

∥∥
1

+ l1000d. (2.70)

Thus it suffices to get rid of the derivative on ρl and then bound
∥∥ρlφµn[i],k(σn·)

∥∥
1

. Using the

convolution representation of ρl by the Littlewood-Paley theory

ρl = P≤2l−1−αρl

we have

∥∥∇ρlφµn[i],k(σn·)
∥∥

1
=

ˆ ∣∣φµn[i],k(σnx)
∣∣∣∣∣∣ˆ ρl(x− y)∇ϕ̃l−1−α(y)dy

∣∣∣∣dx
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where ϕ̃l−1−α is the Fourier inverse for the frequency cut-off P≤2l−1−α . So by the Fubini’s

theorem and the bound ∥∥∇ϕ̃l−1−α
∥∥

1
. l−1−α

we find that

∥∥∇ρlφµn[i],k(σn·)
∥∥

1
=

ˆ ˆ ∣∣∣ρl(x− y)φµn[i],k(σnx)
∣∣∣dx∣∣∇ϕ̃l−1−α(y)

∣∣dy
≤
∥∥∇ϕ̃l−1−α

∥∥
1

sup
y

∥∥ρl(· − y)φµn[i],k(σn·)
∥∥

1

. l−1−α sup
y

∥∥ρl(· − y)φµn[i],k(σn·)
∥∥

1
. (2.71)

Thanks to (Equation 2.69) and (Equation 2.67) again, we get

∥∥∥[ρ2
i,k,n(· − y)− ρl(· − y)

]
φµn[i],k(σn·)

∥∥∥
1
.
∥∥ρ2

i,k,n − ρl
∥∥
∞
∥∥φµn[i],k(σn·)

∥∥
1
. l1000d

where the implicit constant is independent of y. Then (Equation 2.71) becomes

∥∥∇ρlφµn[i],k(σn·)
∥∥

1
. l−1−α sup

y

∥∥ρ2
i,k,n(· − y)φµn[i],k(σn·)

∥∥
1

+ l1000d. (2.72)

Putting together (Equation 2.66), (Equation 2.70), and (Equation 2.72) and using the fact that

σn ≤ l−10 we have

‖Eo‖p .
∑
i,k

σ−1+α
n l−1−α sup

y

∥∥ρ2
i,k,n(· − y)φµn[i],k(σn·)

∥∥
1

+ σ−10d
n . (2.73)
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For each fix y ∈ Td we compute that

∥∥ρ2
i,k,n(· − y)φµn[i],k(σn·)

∥∥
1
≤
∥∥ρi,k,n(· − y)ψµn[i],k(σn·)

∥∥2

2
+
∥∥ρi,k,n∥∥2

2
(2.74)

and now we can apply the first part of Proposition 2.4.4 with the parameters Ca = δ
1
2
nλ
−α
n−1l

−2d−2,

µ = l−1, and σ = σn to obtain

∥∥ρi,k,n(· − y)ψµn[i],k(σn·)
∥∥

2
.
∥∥ρi,k,n(· − y)

∥∥
2

∥∥ψµn[i],k(σn·)
∥∥

2
+ σ−10d

n

. δ
1
2
nλ
−α
n−1 + σ−10d

n (2.75)

where we have used Proposition 2.5.3 to get the bound of ‖ρi,k,n‖2 ∼ ‖ai,k,n‖2. Therefore, from

(Equation 2.73), (Equation 2.74), and (Equation 2.75) it follows that

‖Eo‖p .
∑
i,k

σ−1+α
n l−1−αδnλ

−2α
n−1.

Again by taking a sufficiently large a and using λ−2α
n−1 to absorb the constant and the logarithmic

factor causing by the summation in i, we can ensure that

‖Eo‖1 ≤ ‖Eo‖p ≤
1

4
σ−1+α
n l−1−αδn.
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In view of the choice of constants d ≥ 4, α = 10−6, β = 1
200 and b = 5, we have the following

numerical inequality

−1 + α

4
+

(1− β + α)(1 + α)

b
− β < −2bβ

which implies that

‖Eo‖1 ≤
1

4
σ−1
n l−1−αδn ≤

1

4
δn+1. (2.76)

Linear error

For the linear error, we first use Lemma 2.5.7 to obtain

‖El‖1 = ‖R∆wn‖1 ≤ 2‖∇wn‖1.

Then we can simply use the estimates (Equation 2.47) and (Equation 2.50) to get

‖El‖1 ≤ 2‖∇wpn‖1 + 2‖∇wcn‖1

≤ 1

4
δ

1
2
nλnµ

−d+1
2

n .

To check the validity of ‖El‖1 ≤ 1
4δn+1, we need to make sure that

δ
1
2
nλnµ

−d+1
2

n ≤ δn+1 (2.77)
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which after taking logarithm and using the definitions of various constants is equivalent to

−β + 1 +
3

4

1− d
2
≤ −2bβ. (2.78)

Since d ≥ 4, β = 1
200 and b = 5 the above inequality holds trivially. So we can conclude that

‖El‖1 ≤
1

4
δn+1. (2.79)

Quadratic error

Thanks to Lemma 2.5.7, we need to estimate the terms

‖Eq‖1 ≤ ‖Rdiv(ul ⊗ wpn)‖1 + ‖Rdiv(ul ⊗ wpn)‖1

:= ‖Eq1‖1 + ‖Eq2‖1.

Let us show that ‖Eqj‖ ≤ 1
8δn+1 for j = 1, 2 in the following.

For the first term Eq1, we have by the Lp boundedness of the Riesz transform, p > 1 that

‖Eq1‖1 ≤ ‖Eq1‖p .p

∑
i,k

‖ul ⊗ ai,k,nψµni,k (σn·)‖p.

Then by Hölder’s inequality and the fact that
∣∣ suppϕi,k,n

∣∣ . µ−d+1
n

‖ul ⊗ ai,k,nψµni,k (σn·)‖p . ‖ul‖∞‖ai,k,nϕi,k,n‖2µ
(d−1)( 1

p
− 1

2
)

n (2.80)



77

From (Equation 2.48) in Proposition 2.5.4 we know that

‖ai,k,nϕi,k,n‖2 . δ
1
2
nλ
−α
n−1 (2.81)

and from Lemma 2.5.1 and the Sobolev embedding H
d+1
2 ↪→ L∞ we get

‖ul‖∞ . ‖ul‖
H
d+1
2

. l−
d+1
2 (2.82)

Now choosing p > 1 sufficiently close to 1 such that

µ
(d−1)( 1

p
− 1

2
)

n ≤ µ−
d−1
2

n λαn−1

and combining (Equation 2.80), (Equation 2.81) and (Equation 2.82) we have

‖ul ⊗ ai,k,nψµni,k (σn·)‖p . l−
d+1
2 δ

1
2
nµ
− d−1

2
n

Since d ≥ 4, b = 5 and β = 1
200 , by taking a sufficiently large a we have

l−
d+1
2 δ

1
2
nµ
− d−1

2
n � λ−2β

n+1 = δn+1.

So it follows that

‖Eq1‖1 ≤
1

8
δn+1. (2.83)
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For Eq2 we will use a simple argument to get a very crude bound that suffices for our

purpose. We first obtain by the Lp boundedness of the Riesz transform, p > 1 and Hölder’s

inequality that

‖Eq2‖1 ≤ ‖Eq2‖p .p ‖ul ⊗ wcn‖p ≤ ‖ul‖2‖wcn‖ 2p
2−p

.

Then choosing p > 1 sufficiently close to 1 such that in view of Proposition 2.5.5 we have

‖wcn‖ 2p
2−p
≤ 1

8
δ

1
2
nµ

−d+1
2

n l−1σ−1
n λαn−1

Then we get

‖Eq2‖1 . δ
1
2
n l
−1σ−1

n imaxλ
α
n−1.

Again using d ≥ 4, b = 5 and β = 1
200 we find that

1− β + 2α

b
− 1

4
< −2bβ.

Since for any ε > 0, there exists a sufficiently large so that imax ≤ λεn. Then by taking a

sufficiently large we can ensure that

‖Eq2‖1 . δ
1
2
n l
−1σ−1

n imax = λ
1−β+2α

b
− 1

4
n imax � δn+1,
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So provided that a is large enough, we can conclude that

‖Eq2‖1 ≤
1

8
δn+1. (2.84)

Remark 2.5.8. One may notice that the bound we obtained for Eq2 is worse than that of Eq1.

In fact Eq2 should be much smaller than Eq1 since wcn is much smaller than wpn. As we do

not plan to obtain the optimal regularity of the final solution u, a rougher bound for Eq2 still

suffices for our purpose.

Correction error

It follows directly from Lemma 2.5.7 and Hölder’s inequality that

‖Ec‖1 = ‖Rdiv(wcn ⊗ wpn + wpn ⊗ wcn + wcn ⊗ wcn)‖1

≤ ‖wcn ⊗ wpn + wpn ⊗ wcn + wcn ⊗ wcn‖1

≤ ‖wcn‖2‖wpn‖2 + ‖wcn‖22.

From (Equation 2.46) and (Equation 2.49) we get

‖wcn‖22 ≤
1

16
δnλ
−2
n l−2

‖wcn‖2‖wpn‖2 ≤
1

16
δnλ
−1
n l−1.
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So

‖Ec‖1 ≤
1

4
δnλ
−1
n l−1

which is smaller than the final estimate for Eq2 and thus we conclude that

‖Ec‖1 ≤
1

4
δn+1. (2.85)

Step 8: Check inductive hypothesis (Equation H1)

Adding up estimates (Equation 2.76), (Equation 2.79), (Equation 2.83), (Equation 2.84)

,and (Equation 2.85) we obtain the bound for the new Reynolds stress

‖Rn‖1 ≤ ‖Eo‖1 + ‖El‖1 + ‖Eq1‖1 + ‖Eq2‖1 + ‖Ec‖1 ≤ δn+1. (2.86)

So (Equation H1) is verified and the proof of Proposition 2.3.1 is completed.



CHAPTER 3

STATIONARY AND DISCONTINUOUS WEAK SOLUTIONS IN 3D

The content of this chapter is based on a joint work that I co-authored with my advisor A.

Cheskidov and has been previously appeared on arXiv.org (see (57)).

3.1 Main theorems

We state the main results of this chapter. In particular, Theorem 1.3.2 and 1.3.3 listed in

Chapter 1are simpler versions of Theorem 3.1.1 and 3.1.3 accordingly.

The first theorem concerns the existence of stationary weak solutions for the 3D Navier-

Stokes equations, which extends the previous work (58) of the second author in dimension

d ≥ 4.

Theorem 3.1.1 (Finite energy stationary weak solution). Given any divergence-free f ∈

C∞(T3) with zero mean, there is Mf > 0 such that for any M ≥ Mf , there exists a weak

solution u ∈ L2(T3) to (Equation NSE) with forcing term f satisfying ‖u‖22 = M .

The next two theorems are about weak solutions with discontinuous energy profiles.

Theorem 3.1.2 (Energy with dense discontinuities). Let ε, T > 0 and a ∈ C∞(T3× [0, T ]) be a

smooth divergence-free vector field with zero mean for all t ∈ [0, T ]. There exists a dense subset

E ⊂ [0, T ] and a constant Ma > 0, such that for any M ≥ Ma there exists a weak solution

u ∈ Cw([0, T ];L2(T3)) to (Equation NSE) so that the following holds:

81
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1. The energy ‖u(t)‖22 is bounded by 2M :

‖u(t)‖22 ≤ 2M for any t ∈ [0, T ] , (3.1)

and has jump discontinuities on set E:

lim
s→t
‖u(s)‖22 > ‖u(t)‖22 for any t ∈ E . (3.2)

2. u(t) coincides with a(t) at t = 0, T :

u(x, 0) = a(x, 0) and u(x, T ) = a(x, T ), (3.3)

but the energy jump is of size M :

lim
s→0+

‖u(s)‖22 − ‖u(0)‖22 = lim
s→T−

‖u(s)‖22 − ‖u(T )‖22 = M. (3.4)

3. u is smooth on E:

u(t) ∈ C∞(T3) for all t ∈ E, (3.5)

and uniformly ε-close to a in W 1,1(T3):

‖u− a‖L∞t W 1,1 < ε. (3.6)
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The set E in Theorem 3.1.2 is dense in [0, T ] and, in fact, countable. Using a gluing

argument, we are also able to construct weak solutions whose energy discontinuities are dense

and of positive measure.

Theorem 3.1.3 (Energy with dense and positive measure discontinuities). Let ε > 0 and

0 < α ≤ T . There exist a set Eα ⊂ [0, T ] with Eα = Cα ∪ Fα where Cα is a fat Cantor set on

[0, T ] such that |[0, T ]\Cα| ≤ α and Fα is a countable dense subset of [0, T ], and a weak solution

u ∈ Cw([0, T ];L2(T3)) of (Equation NSE) so that the following holds:

1. The energy profile ‖u(t)‖22 is discontinuous at every t ∈ Eα. In fact,

lim sup
s→t

‖u(s)‖22 > ‖u(t)‖22 for all t ∈ Cα, (3.7)

and

lim
s→t
‖u(s)‖22 > ‖u(t)‖22 for all t ∈ Fα. (3.8)

2. u(t) is uniformly ε-small in W 1,1(T3):

‖u‖L∞t W 1,1 < ε, (3.9)

smooth on Fα:

u(t) ∈ C∞(T3) for all t ∈ Fα, (3.10)
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and vanishes on Cα:

u(t) = 0 for all t ∈ Cα. (3.11)

3.1.1 Some remarks on the results

Remark 3.1.4. It is known that for any smooth force f (Equation NSE) on torus T3 admits at

least one smooth stationary solution (22). Theorem 3.1.1 shows that there are infinitely many

finite energy stationary weak solutions.

Remark 3.1.5. As our building blocks are compactly supported, it seems likely that there also

exist finite energy stationary weak solutions in R3 with compact supports. We plan to address

this problem in future works.

Remark 3.1.6. We note that weak solutions constructed in (8; 56; 5) can not be stationary as

the building blocks are time-dependent and their schemes rely on fast time oscillations.

Remark 3.1.7. The smoothness of the vector field a in Theorem 3.1.2 and the force f in

Theorem 3.1.1 can definitely be lower, but we are not interested in this direction here. Also,

Theorem 3.1.2 shows that any smooth initial data u0 admits infinitely many weak solutions with

discontinuous energy.

Remark 3.1.8. It is possible to construct a weak solution with discontinuous energy by gluing

the solutions in (8), see Appendix B.3. However, those discontinuities are not jumps. More

importantly, such an argument can not generate dense discontinuities.
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Remark 3.1.9. In view of the theory of Baire category, the set of discontinuities of a semi

lower-continuous function is of Baire-1, which still can have full measure in [0, T ]. At the

moment, our method is not able to produce such examples.

Remark 3.1.10. Very recently, Luo and Titi (56) have extended the nonuniqueness result of

(8) to factional NSE with (−∆)α for any α < 5
4 , which is sharp in view of Lion’s wellposedness

result (53; 54). Even though our method seems to work for factional NSE for some α > 1,

extensions to the full range of α < 5
4 are unavailable at this point.

3.1.2 Effect of intermittency

As discussed in Chapter 2, in order for the d-dimensional Navier-Stokes equations to develop

singularities, the intermittency dimension D of the flows should be less than d− 2, so that the

Bernstein’s inequality is highly saturated. So D = 1 is critical for the 3D NSE. It was also

confirmed in (8; 58) that the main difficulty of conducting convex integration for the Navier-

Stokes equations is the intermittency of the flow. Such a constraint, however, is not presented

in the 3D Euler equations: Beltrami flows and Mikado flows used in the constructions of wild

solutions for the 3D Euler equations are essentially homogeneous in space, namely the the

intermittency dimension D = 3. This is also reflected in the difference between L3 based norm

in the best known energy conservation condition L3
tB

1
3

3,c0(N) in (11) and L∞ based norm of the

counterexamples (CCα for α < 1
3 in (45)) for the 3D Euler equations (45; 3).

To resolve the issue of intermittency when applying convex integration, Buckmaster-Vicol

introduced intermittent Beltrami flows in (8) and intermittent jets in (5) as building blocks with

arbitrary small intermittency dimension D > 0, allowing them to successfully implement convex
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integration scheme in the presence of the dissipative term ∆u. This was done by introducing

a Dirichlet type kernel to the classical Beltrami flows in (8) or using a space-time cutoff in (5)

respectively, rendering the linear term manageable. Even though such modifications produce

unwanted interactions that are too large for the convex integration scheme to go through, they

were handled with an additional “convex integration in time” with a help of very fast temporal

oscillations. We note that even though it was possible to take advantage of all the interactions

between Dirichlet kernels in (13; 17), this is out of reach in the convex integration scheme at

this point.

In this chapter, we will design new building blocks specifically for the NSE. These vector

fields, that we call viscous eddies, will be both stationary and compactly supported in R3. The

construction is partly motivated by the geometric Lemma 3.3.1 used for the Mikado flows which

were introduced in (25) and have been successfully used for the Euler equations on the torus Tn

for n ≥ 3. The Mikado flows can also be rescaled so that its intermittency dimension becomes

D = 1 as demonstrated in Chapter 2, (see also (60; 61) for the setting in transport equation).

This just misses the D < 1 requirement for the 3D NSE (see discussions in Chapter 2 and

heuristics in Section 2 of (12)).

In order to increase concentration that decreases the intermittency dimension, we start with

a pipe flow in R3, use a lower order cutoff only in space along the direction of the flow, and

add a correction profile to the existing one so that it will take advantage of the Laplacian

to balance some of the unwanted interactions. This is possible due to the fact that the error

introduced by the space cutoff along the major axis of the eddies is not a general stress term, but
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basically one-dimensional. By design, viscous eddies are divergence-free up to the leading term.

Moreover, they are compactly supported approximate stationary solutions of the NSE (not the

Euler equations). See Theorem 3.3.13 for a precise statement. Compared with the previously

used building blocks for the NSE, such an approach mainly has two advantages. First, the

new flows are time-independent and hence can be used to construct nontrivial stationary weak

solutions, which was an open question for the 3D NSE. Second, they are compactly supported

and can be used in the case of the whole space R3 in the future, whereas Beltrami flows, Mikado

flows, intermittent Beltrami flows, and intermittent jets only exist on the torus Td.

3.1.3 Energy pumping mechanism

In order to produce discontinuous energy we introduce a new energy pumping mechanism

that uses more energy than needed to cancel the stress error term in the convex integration

scheme. In previous works, there is a correspondence between the growth of the frequency and

the decay of the energy so that the energy is not changed much along the iteration process. In

other words, the high frequency part of the solution is very small uniformly in time. This is

typical and desirable in order to improve the regularity of the wild solutions.

In contrast, to produce discontinuities in the energy, one can not adhere to such a uniformity

in time in the scheme. We need to allow high frequencies to carry sizable energy on some time

intervals, so that there is energy coming from/escaping to infinite wavenumber1. Consider the

following toy model. Suppose u(t) is a function with Fourier support in a shell of size λ(t), and

1Such possible scenarios are closely related to the energy balance equation for the Navier-Stokes
equations. See for instance (12)
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λ(t) → ∞ as t → T . Then the energy remains constant for t < T , but at t = T , the solution

is zero, as all the energy has escaped to the infinite wavenumber. To reproduce this toy model

in the convex integration scheme, one needs to construct an approximate sequence of solutions

with temporal supports away from time T and sizable energy near T , such that the weak limit

is 0 at t = T . Generalizing this example, one can construct a wild solution of the Navier-Stokes

equations whose energy is constant on (0, T ) but vanishes at 0 and T .

However, if one uses solutions of such type with disjoint temporal support and glues them

together, the resulting solution will only have finitely or countably many discontinuities. The

next goal is to achieve the density of jumps. An exercise in real analysis shows that there

exist unbounded L2 functions that blow up on a dense subset of [0, 1]. Roughly speaking, we

will construct solutions whose energy mimics the behavior of such functions. More precisely,

there will be infinitely many blowing-up wavenumbers λ(t) with smaller and smaller lifespan

and energy. This is also consistent with the fact that the jumps decrease to zero along the

iterations, which is anticipated as the energy, which we want to be bounded, needs some time

to be transferred to lower/higher modes. We refer to Section 3.2 for more technical details in

this regard.

3.2 The main proposition

The main objective of this section is to prove Theorems 3.1.1, 3.1.2, and 3.1.3 using Propo-

sition 3.2.1, which we will refer to as the main proposition.
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3.2.1 Generalized Navier-Stokes system

Let a, f ∈ C∞(T3 × [0, T ]) be smooth divergence-free vector fields with zero mean for all

t ∈ [0, T ]. We consider the following generalized Navier-Stokes system:


∂tv + Lav + div(v ⊗ v) +∇p = f

div v = 0,

(gNSE)

where

Lav = −∆v + div(v ⊗ a) + div(a⊗ v).

The reason to consider such a generalization is as follows. Suppose v is a weak solution to

(Equation gNSE) with given vector field a and f = −∂ta+ ∆a− div(a⊗ a). Then u := v + a

solves (Equation NSE). We note that the added terms are of lower order compared to the

nonlinearity div(v ⊗ v), and thus will not be of any trouble in the proof.

To construct weak solutions to (Equation gNSE), let us consider the approximate equations


∂tv + Lav + div(v ⊗ v) +∇p = divR+ f

div v = 0,

(gNSR)

where R is a symmetric traceless matrix. If (v, p,R, f) is a solution to (Equation gNSR), then we

say (v,R) is a solution to (Equation gNSR) with data a and f . The above system is reminiscent

to the so-called Navier-Stokes-Reynolds system used in the previous works (5; 8; 58). Our main

proposition is to construct weak solutions to (Equation gNSE) using a sequence of solutions
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(vn, Rn) of the approximate system (Equation gNSR) so that the stress term Rn → 0 as n→∞

in a suitable sense.

3.2.2 Main proposition

In this subsection, we will introduce the main proposition of the chapter, which will enable

us to prove all the main theorems listed in the introduction.

Throughout the chapter we use the following notations. For any r > 0 and any finite set

F ⊂ [0, T ], let

Br(F ) = {t ∈ [0, T ] : dist(t, F ) < r},

Ir(F ) = [0, T ] \Br(F ).

(3.12)

Proposition 3.2.1. Let c0 = 10−2, T > 0.1 Consider the system (Equation gNSR) with given

a, f ∈ C∞(T3 × [0, T ]) smooth vector fields with zero mean. There exists a small universal

constant C such that the following holds.

Let ε, r > 0, 0 < e0 < e1 < ∞, and F0,F1 ⊂ [0, T ] be two finite sets such that F0 ⊂ F1. If

(v0, R0) is a smooth solution to (Equation gNSR) on [0, T ] with data a and f so that

1. the energy ‖v0(t)‖22 ≤ e0 for all t, and is almost constant e0 away from the set F0:

∣∣‖v0(t)‖22 − e0

∣∣ ≤ c0(e1 − e0) for all t ∈ Ir(F0) ,

1Since we only use c0 to measure the approximate level of the energy to a constant, the exact value
of c0 is not important.
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2. (v0, R0) is close to a solution of (Equation gNSE) in the sense that

δ0 ≤ C(e1 − e0),

where δ0 = ‖R0‖L∞t L1
x(T3×[0,T ]),

then there is another smooth solution (v,R) to (Equation gNSE) with data a and f such that

1. The energy ‖v(t)‖22 ≤ e1 for all t, and is almost constant e1 away from the set F1:

∣∣‖v(t)‖22 − e1

∣∣ ≤ c0

2
(e1 − e0) for all t ∈ I4−1r(F1) .

2. The new stress R verifies

‖R(t)‖1 ≤



ε for t ∈ I4−1r(F1)

δ0 + ε for t ∈ I4−2r(F1) \ I4−1r(F1)

δ0 for t ∈ [0, T ] \ I4−2r(F1).

(3.13)

.

Moreover, the velocity increment w = v − v0 verifies

supptw ⊂ I4−2r(F1) and ‖w‖L∞t W 1,1 ≤ ε, (3.14)
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and if F0 = F1 = ∅ and v0 is stationary1, i.e. ∂tv0 = 0, then w is also stationary: ∂tw = 0.

3.2.3 Proof of main theorems

We first prove Theorem 3.1.2, it suffices to prove the following result for (Equation gNSE):

Theorem 3.2.2. Let ε > 0 and a ∈ C∞(T3 × [0, T ]), T > 0 be a smooth divergence-free

function with zero mean for all t ∈ [0, T ]. Consider the associated generalized Navier-Stokes

system (Equation gNSE) with data a and f = −∂ta + ∆a − div(a ⊗ a). There exists a dense

subset E ⊂ [0, T ], a constant Ma > 0 such that for any M ≥ Ma there exists weak solution

v ∈ Cw(0, T ;L2(T3)) (Equation NSE) so that the followings hold:

1. The energy ‖v(t)‖22 is bounded by M :

‖v(t)‖22 ≤M for any t ∈ [0, T ] , (3.15)

and has jump discontinuities on set E:

lim
s→t
‖v(s)‖22 > ‖v(t)‖22 for any t ∈ E . (3.16)

2. v(t) vanishes at t = 0, T :

v(x, 0) = v(x, T ) = 0, (3.17)

1In this case, we of course require both a and f to be time-independent.
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but the energy jump is of size M :

lim
s→0+

‖v(s)‖22 − ‖v(0)‖22 = lim
s→T−

‖v(s)‖22 − ‖v(T )‖22 = M. (3.18)

3. v(x, t) is smooth on E:

v(t) ∈ C∞(T3) for all t ∈ E, (3.19)

and is ε-small in L∞t W
1,1
x :

‖v‖L∞t W ,1 < ε. (3.20)

The implication from Theorem 3.2.2 to Theorem 3.1.2 can be obtained simply by shifting

u = v + a since the vector field a is smooth. Now we prove Theorem 3.2.2 with the help of

Proposition 3.2.1.

Proof of Theorem 3.2.2 assuming Proposition 3.2.1. We first construct the set E, then a se-

quence of approximate solution vn such that vn converges to the desire solution v in a suitable

sense. Without loss of generality, we assume T = 1.

Step 1: Constructing the set E. Consider the binary representation of x ∈ [0, 1]:

x =
∞∑
j=0

xj2
−j .
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Now let Fn be the collection of all real numbers in [0, 1] whose binary representation has at

most n digits, namely x ∈ Fn ⊂ [0, 1] if and only if xj = 0 for all j > n. Assuming F−1 = ∅, let

also En = Fn+1 \ Fn, n ≥ −1. For instance, E−1 = {0, 1}, E0 = {1/2}, E1 = {1/4, 3/4}. Let

E = lim
n→∞

Fn =
⋃
n≥−1

En,

which is a dense subset of [0, 1].

Denoting rn = 4−n−1, let us show the following important property of the set E for later

use:

lim inf
n→∞

Brn(Fn−1) ⊂ E. (3.21)

Suppose t ∈ lim inf Brn(Fn−1), which means that there exist N and tn ∈ Fn−1 for every n ≥ N ,

such that

|t− tn| = dist(t, Fn−1) < rn. (3.22)

We claim that tn+1 = tn for all n ≥ N . Otherwise, for some n ≥ N there must be

|t− tn| ≥ |tn+1 − tn| − |t− tn+1| ≥ 2−n − rn+1 ≥ 2−n−1,

which contradicts (Equation 3.22):

2−n−1 < rn = 2−2n−2.
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Hence, it follows from (Equation 3.22) that t = tN ∈ FN−1 which implies that t ∈ E.

Step 2: Constructing approximate solutions vn. Given smooth vector field a, we set

v0 = 0 and R0 = R
(
∂ta−∆a+div(a⊗a)

)
, whereR is defined in Definition Equation 3.112. Then

(v0, R0) is a smooth solution of (Equation gNSR) with data a and f = −∂ta+ ∆a− div(a⊗ a)

on [0, 1]. We choose

Ma =
4

C
‖R0‖L∞t L1 , (3.23)

where C is the constant in Proposition 3.2.1.

Let rn = 4−n−1 and M ≥Ma and choose the energy level en = (1− 2−n)M for n ∈ N. Note

that the choice of en is admissible in view of (Equation 3.23).

Starting with (v0, R0), we apply Proposition 3.2.1 with data a and f on [0, 1] to obtain

a sequence (vn, Rn) of smooth solutions of (Equation gNSR). More precisely, (vn+1, Rn+1) is

obtained by applying Proposition 3.2.1 to the previous solution (vn, Rn) with parameters

(r, e0, e1, ε,F0,F1) := (rn, en, en+1, εn, Fn−1, Fn),

where the small parameters εn are defined inductively by

εn =
2−n−1ε

1 +
∑

j≤n−1 supt ‖wj‖∞
, (3.24)

and wj := vj − vj−1 is the j-th velocity perturbation for j ≥ 1.
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Clearly, each (vn, Rn) in the obtained sequence is a smooth solution of (Equation gNSR)

on [0, 1] with data a and f = −∂ta + ∆a − div(a ⊗ a), and by Proposition 3.2.1 we have the

following properties:

1. For any n ∈ N

∣∣∣‖vn(t)‖22 − en
∣∣∣ ≤ c02−nM

‖Rn(t)‖1 ≤ εn

for all t ∈ Irn(Fn−1) , (3.25)

and

‖vn(t)‖22 ≤ en ≤M,

‖Rn(t)‖1 ≤ ‖R0‖L∞t L1 + ε.

for all t ∈ [0, 1]. (3.26)

2. The velocity increment wn = vn − vn−1 verifies that

∥∥wn∥∥L∞t W 1,1 ≤ εn. (3.27)

3. If t ∈ Fn for some n ∈ N, then

vk(t) = vn(t) for all k ≥ n. (3.28)
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Step 3: L2 convergence of vn. The solution v(t) is constructed as a strong L2 limit of

approximate smooth solutions vn(t),

v(t) = lim
n→∞

vn(t) =

∞∑
j=1

wj , t ∈ [0, 1].

We first prove that v is well-defined, i.e. vn converges pointwise in L2. Indeed, thanks to

(Equation 3.24) and (Equation 3.27) the velocity perturbations wk are almost orthogonal in

L2:

sup
t
|〈wj , wk〉| ≤ 2−j−1ε for all j > k. (3.29)

As a result, due to (Equation 3.26)

n∑
j=1

‖wj‖22 ≤ ‖vn‖22 + 2
∑

1≤j<k≤n
|〈wj , wk〉| < M + 2ε for all n.

So, for 0 ≤ n < m we have

‖vm − vn‖22 =
∑

n<j≤m
‖wj‖22 + 2

∑
n<j<k≤m

|〈wj , wk〉|

<
∑
j>n

‖wj‖22 + 2−n+1ε→ 0 as n,m→∞,

i.e., vn(t) is Cauchy in L2 for every t ∈ [0, 1].
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Next, we show that v is a weak solution of (Equation gNSE). Let test function ϕ ∈ C∞c (T3×

[0, 1)) be mean-free and divergence-free for all t ∈ [0, 1]. Using the weak formulation for the

solution (vn, Rn)) of (Equation gNSR) with data a and f = −∂ta+ ∆a− div(a⊗ a), we get

ˆ
T3

vn(·, 0) · ϕ(·, 0)+

ˆ
T3×[0,1]

vn · ∂tϕ+ vn · (vn · ∇)ϕ+ vn ·∆ϕ

+

ˆ
T3×[0,1]

a · (vn · ∇)ϕ+ vn · (a · ∇)ϕ =

ˆ
T3×[0,1]

Rn : ∇ϕ+ f · ϕ.
(3.30)

For simplicity of notation, let

In =
⋂
k≥n

Irk(Fk−1).

Immediately

∣∣[0, 1] \ In
∣∣ . 2−n. (3.31)

From (Equation 3.25) and (Equation 3.29) it follows that

‖v − vn‖2L∞L2(T3×In) ≤ sup
In

(
‖v(t)‖22 − ‖vn(t)‖22 − 2〈v − vn, vn〉

)
. 2−n, (3.32)

and

‖Rn‖L∞t L1(T3×In) . 2−n. (3.33)
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Using the bounds (Equation 3.31), (Equation 3.32), and (Equation 3.33) together with

(Equation 3.26), it is easy to check the convergence of all the terms in (Equation 3.30) to

their natural limits by splitting the domain of integrals into T3 × In and T3 × Icn.

Next, let us show that as the pointwise L2 limit of vn, the solution v is weakly continuous.

Let ϕ ∈ L2(T3) and t0 ∈ [0, 1]. Consider the following split:

∣∣〈v(t)− v(t0), ϕ〉
∣∣ ≤ ∣∣〈v(t)− vn(t), ϕ〉

∣∣+
∣∣〈vn(t)− vn(t0), ϕ〉

∣∣+
∣∣〈vn(t0)− v(t0), ϕ〉

∣∣.
The first and last terms go to zero as n→∞ by the uniform W 1,1 convergence of vn. For the

second term, since vn ∈ C∞0 (T3 × [0, 1]), we get

∣∣〈vn(t)− vn(t0), ϕ〉
∣∣→ 0 as t→ t0.

So we may conclude that 〈v(t)− v(t0), ϕ〉 → 0 as t→ t0.

Step 4: Verifying properties of v. Finally, we show that v is a weak solution satisfying all

the properties (1), (2) and (3) stated in Theorem 3.2.2. First, ‖v(t)‖22 ≤ M for all t ∈ [0, 1]

due to (Equation 3.26). Therefore, to show (1), it remains to prove that E consists of jump

discontinuities.



100

Indeed, given t ∈ E, there exists n such that t ∈ En, which implies t ∈ Irn+1(Fn) and

v(t) = vn+1(t). Using (Equation 3.25) we get

M − ‖v(t)‖22 ≥M − en+1 − c0M2−n−1

&M2−n.

We will show that lim
s→t
‖v(s)‖22 = M . To this end, let

Iε = {s ∈ [0, 1] : t− ε < s < t or t < s < t+ ε},

and

Nε = max{j ∈ N : Iε ∩ Fj = ∅}.

By definitions of the sets Fn we have Nε > n provided ε ≤ 2−n−1, which implies that lim
ε→0+

Nε =

∞. Moreover, from (Equation 3.21) it follows that

Ec = [0, 1] \ E ⊂ lim sup Irj (Fj−1),

which by (Equation 3.25) and the pointwise L2 convergence of vn implies that

‖v(s)‖22 = M for all s ∈ Ec.
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Thus we only need to consider s ∈ Iε ∩ E. In this case s /∈ FNε , however, s ∈ Em for some

m ≥ Nε and v(s) = vm+1(s). Then s ∈ Irm+1(Fm), and therefore, (Equation 3.25) implies that

|‖v(s)‖22 −M | . 2−Nε .

Taking a limit ε→ 0 we obtain lims→t ‖v(s)‖22 = M . Thus statement (1) is proved. As a special

case of the jump discontinuities, statement (2) follows as well.

The smoothness of v on the set E and the uniform smallness of v in W 1,1 follow directly

from (Equation 3.28) and (Equation 3.27) respectively. So, statement (3) has been obtained as

well.

Next, we use a gluing technique to glue pieces of weak solutions given by Theorem 3.1.2 to

obtain Theorem 3.1.3.

Proof of Theorem 3.1.3. It is clear that Theorem 3.1.2 works for any interval [t0, t1]. Also, the

energy level Ma depends only on the vector field a and Ma can be any positive number when

a = 0. Without loss of generality, we assume T = 1.

Step 1: Constructing approximate sequence un. Let Cα be a fat Cantor set on [0, 1] with

measure (1− α) (each time remove the middle interval of length ( α
1+2α)n). In other words,

Cα = [0, 1] \
⋃
n≥1

⋃
1≤j≤2n−1

Iαj,n,
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where Iαj,n are the open intervals removed from the fat Cantor set Cα at step n.

Let us first construct a sequence of weak solutions of (Equation NSE) that are supported

on Iαj,n. Applying Theorem 3.1.2 on each interval Iαj,n with (ε, a,Ma) := (ε4−n, 0, 1), we obtain

a weak solution uj,n, which we then extend trivially to the whole interval [0, 1]. The resulting

sequence of weak solutions uj,n satisfy

1. uj,n is supported on Iαj,n. Moreover,

uj,n(t) = 0, for t 6∈ Iαj,n.

2. uj,n is small in W 1,1:

‖uj,n‖L∞W 1,1 ≤ ε4−n. (3.34)

3. ‖uj,n‖22 is discontinuous on a dense subset Fαj,n ⊂ Iαj,n.

Since Iαj,n ∩ Iαj′,n′ = ∅ if j 6= j′ or n 6= n′, namely uj,n have disjoint temporal supports, we

can construct another sequence of weak solutions of (Equation NSE) by defining

un =
∑

1≤k≤n

∑
1≤j≤2n−1

uj,k.

As both summations are finite, un are weakly continuous in L2 and are indeed weak solutions

on T3 × [0, 1].
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Step 2: Convergence and weak continuity of un. We claim that un(t) pointwise converges

in L2 and define

u(t) = lim
n→∞

un(t), t ∈ [0, 1].

To prove this claim, consider two sub-cases.

(a) If t ∈ Cα, then un(t) =
∑

k≤n
∑

j uj,k(t) = 0 for all n. So, in particular, un(t)→ 0 in L2.

(b) If t ∈ [0, T ] \ Cα, then there exist j, n ∈ N such that t ∈ Iαj,n. Thus um(t) = un(t) for any

m ≥ n, and consequently u(t) = un(t).

Combining this with (Equation 3.34), it is also clear that statement (2) holds.

Next, we show that u ∈ Cw([0, 1];L2), i.e., u(t) is weakly continuous. Let ϕ ∈ L2(T3) and

t0 ∈ [0, 1]. As usual, we consider the split

∣∣〈u(t)− u(t0), ϕ〉
∣∣ ≤ ∣∣〈u(t)− un(t), ϕ〉

∣∣+
∣∣〈un(t)− un(t0), ϕ〉

∣∣+
∣∣〈un(t0)− u(t0), ϕ〉

∣∣. (3.35)

Thanks to (Equation 3.34), for any t ∈ [0, 1] we have

∣∣〈u(t)− un(t), ϕ〉
∣∣ ≤ ∥∥u− un∥∥L∞W 1,1‖ϕ‖∞ ≤ ‖ϕ‖∞

∑
k>n

∑
1≤j≤2n−1

∥∥uj,k∥∥L∞W 1,1 ≤ ε2−n‖ϕ‖∞.

So the first and the last terms in (Equation 3.35) go to zero as n → ∞, which together with

the weak continuity of un implies the weak continuity of u in L2.
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Finally, we show that u is a weak solution of (Equation NSE). Let test function ϕ ∈

C∞c (T3 × [0, 1)) be mean-free and divergence-free for all t ∈ [0, 1]. By the weak formulation of

(Equation NSE) for un we get

ˆ
T3

un(x, 0) · ϕ(x, 0) dx+

ˆ 1

0

ˆ
T3

un · ∂tϕ+ un · (un · ∇)ϕ+ un ·∆ϕdxdτ = 0. (3.36)

Since un(0) = u(0) = 0, the first term is zero. For the rest of the terms it suffices to show that

un → u in L2
t,x as n→∞.

Consider a remainder set

In =
⋃
m>n

⋃
1≤j≤2n−1

Iαj,m.

Since suppt uj,m ⊂ Iαj,m we know that

u(t) = un(t) for all t ∈ [0, 1] \ In.

Moreover, the set In is small by direct computation:

∣∣In∣∣ . ( 2α

1 + 2α

)n
.
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Thanks to the above, we have

∥∥un − u∥∥L2
t,x(T3×[0,1])

=
∥∥un − u∥∥L2

t,x(T3×In)
≤
∥∥un − u∥∥L∞t L2

x

∣∣In∣∣ 12 → 0

as n → ∞. So, we have proved that u ∈ Cw(0, 1;L2) is a weak solution of (Equation NSE)

satisfying statement (2).

Step 3: Discontinuities of ‖u‖22 on Eα. We first define the countable set Fα:

Fα =
⋃
j,m

Fαj,m

where recall that Fαj,m is the set of jump discontinuities of ‖uj,m‖22. From the definition of Fαj,m

it follows that Fα ∩ Cα = ∅. Moreover, it is clear that Fα is a dense subset of [0, 1].

Let us show the discontinuity on Eα = Cα ∪ Fα. Suppose t0 ∈ Fα, then t0 ∈ Iαj,m for some

j,m. Moreover, this implies that

u(s) = uj,m(s) for all s ∈ Iαj,m.

Since uj,m is a weak solution given by Theorem 3.1.2, ‖u‖22 is discontinuous at t0:

lim
s→t0
‖u(s)‖22 > ‖u(t0)‖22 . (3.37)
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Next, suppose t0 ∈ Cα, then ‖u(t0)‖22 = 0. Let tk be a sequence such that tk → t0 as k →∞

and each tk is the endpoint of Iαj,k for some j = j(k). Then from Theorem 3.1.2 we get

lim sup
s→tk

‖u(s)‖22 ≥ lim sup
s→tk

‖uk(s)‖22 = 1.

So, for any t0 ∈ Cα we have

lim sup
s→t0

‖u(s)‖22 > ‖u(t0)‖22.

Statement (1) is now proved.

We finish this section by proving Theorem 3.1.1.

Proof of Theorem 3.1.1 assuming Proposition 3.2.1. Given any smooth force term f , let v0 = 0

and R0 = −Rf . So (v0, R0) solves (Equation gNSR) with data a = 0 and f . Then define

Mf =
4

C
‖R0‖L1 .

For any M ≥Mf we can construct the solution as follows. Let the energy level en = (1−2−n)M

for n ∈ N. Again, the choice of en is admissible due to M ≥Mf .

Starting with (v0, R0), we apply Proposition 3.2.1 to (vn, Rn) with the same parameters as

in the proof of Theorem 3.2.2:

(r, e0, e1, ε,F0,F1) = (4−n−1, en, en+1, εn, ∅, ∅),
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where εn is the same as (Equation 3.24). It should be noted that the value of r does not

matter here as all vn are stationary and F0 = F1 = ∅. Clearly, (vn, Rn) are smooth solutions

of (Equation gNSR) with data a = 0 and f such that

∣∣∣‖vn‖22 − en∣∣∣ ≤ c0M2−n−1,

‖Rn‖1 ≤ 2−n−1ε.

Using the same argument as in the proof of Theorem 3.2.2, one can show that vn converges

to a stationary weak solution v ∈ L2 of (Equation gNSE) with data a = 0 and f such that

‖v‖22 = M . So v is a stationary weak solution of (Equation NSE) with forcing term f .

3.3 Stationary viscous eddies

In this section, the building blocks of the solution sequence are constructed. The entire

construction is done in the whole space R3 not on torus T3. Recall the standard stationary

Mikado flows can be rescaled so that the intermittency dimension D = 1 (58), which is in-

sufficiently intermittent to be the building blocks for the 3D Navier-Stokes equations. Being

also stationary, our viscous eddies are in the intermittency regime D < 1, but the full range

0 < D < 1 is unattainable.

There are two main major differences between our new building blocks and previous ones

used for the NSE, intermittent jets in (8). First, existing building blocks for the NSE are

exact or approximate solutions of the Euler equations. As a result, the linear term is purely

a useless error in those convex integration schemes. In contrast, viscous eddies are a family of
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approximate stationary solutions to the NSE, not Euler equations, see Theorem 3.3.13. The

Laplacian is essential as it balances the leading term in the equations. Second, viscous eddies are

time-independent, which enables us to obtain stationary weak solutions with time-independent

(or zero) external force. In other words, our scheme does not require time oscillations, which

might be of interest in improving the temporal regularity of wild solutions.

3.3.1 A geometric lemma

We start with a geometric lemma that dates back to the work of Nash (62). A proof of the

following version, which is essentially due to De Lellis and Székelyhidi Jr., can be found in (70,

Lemma 3.3). This lemma allows us to reconstruct any stress tensor R in a compact subset of

S3×3
+ , the set of positive definite symmetric 3× 3 matrices.

Lemma 3.3.1. For any compact subset N ⊂ S3×3
+ , there exists λ0 ≥ 1 and smooth functions

Γk ∈ C∞(N ; [0, 1]) for any k ∈ Z3 with |k| ≤ λ0 such that

R =
∑

k∈Z3,|k|≤λ0

Γ2
k(R)

k

|k|
⊗ k

|k|
for all R ∈ N .

Lemma 3.3.1 is one of the reasons we choose to construct viscous eddies, which will be

nonisotropic, closed to pipe flows, and divergence-free up to the leading order terms.
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Fix a compact subset N ⊂ S3×3
+ and let K ⊂ R3 be the finite set of vectors given by Lemma

3.3.11, the directions of the major axis of viscous eddies. We can then choose a collection of

points pk ∈ [0, 1]3 for k ∈ K and a number µ0 > 0 such that

⋃
k

Bµ−1
0

(pk) ⊂ [0, 1]3,

and

B2µ−1
0

(pk) ∩B2µ−1
0

(pk′) = ∅ if k 6= k′.

These points pk will be the centers of our eddies and the balls Bµ−1
0

(pk) will contain the supports

of the eddies. Let

lk := {pk + tk : t ∈ R} ⊂ R3

be the line passing through the point pk in the k direction.

3.3.2 Velocity profiles

Let ψ ∈ C∞c (R+) be a smooth non-negative non-increasing function so that suppψ ⊂ [0, 1].

Then let

φ(r) := −1

r

ˆ ∞
r

ψ(s)s ds. (3.38)

1For applications in this chapter, the set N ⊂ S3×3
+ is fixed. See Section 3.4.5.
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Note that φ ∈ C∞((0,∞)), φ(r) = 0 for r > 1, and φ has a singularity r−1 near the origin due

to the monotonicity of ψ.

At this time we also assume

ˆ ∞
0

(ψ2 − φψ′)r dr = 0, (3.39)

which will be verified in the next lemma.

Lemma 3.3.2. There exits a smooth non-negative non-increasing ψ ∈ C∞c ([0, 1]) such that

(Equation 3.39) holds and ψ′ = 0 in a neighborhood of 0.

Proof. Integrating by parts we obtain

ˆ ∞
0

(ψ2 − φψ′) rdr =

ˆ ∞
0

rψ2dr +

ˆ ∞
0

ˆ ∞
r

ψ(s)s dsψ′(r) dr

= 2

ˆ ∞
0

rψ2dr − ψ(0)

ˆ ∞
0

rψ dr.

We first fix a non-negative non-increasing ψ ∈ C∞c ([0, 1]) such that

ψ(r) = 1 for all r ∈ [0, 1/2] and 2

ˆ ∞
0

rψ2dr −
ˆ ∞

0
rψdr > 0.

Note that the existence of such functions can be seen by taking mollification on the characteristic

function χ[0,1]
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Let us consider ψa = ψ + aψ(ar), a ≥ 1 to be determined, for which we need the solve the

equation

F (a) := 2

ˆ ∞
0

rψ2
a dr − ψa(0)

ˆ ∞
0

rψa dr = 0.

It is clear that once a solution F (a) = 0 is found, the lemma is proven.

A direct computation yields that

F (a) = 4

(ˆ ∞
0

rψ2 dr +

ˆ ∞
0

raψ(r)ψ(ar) dr

)
− (1 + a)

(ˆ ∞
0

rψ dr +

ˆ ∞
0

raψ(ar) dr

)
.

(3.40)

In particular, our assumption on ψ implies

F (1) = 8

ˆ ∞
0

rψ2 dr − 4

ˆ ∞
0

rψ dr > 0.

As a→∞ we notice in (Equation 3.40) that

ˆ ∞
0

raψ(r)ψ(ar)dr ≤
ˆ ∞

0
raψ(ar)dr = a−1

ˆ ∞
0

rψdr → 0,

and thus there exist some c0, c1 > 0 depending of ψ such that

F (a) ≤ c0 − c1(1 + a) for all sufficiently large a,
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which implies that there exits 1 < a <∞ such that F (a) = 0.

Throughout this section we will work in cylindrical coordinates to simply notations. Let

zk =(x− pk) ·
k

|k|
, (3.41)

rk =dist(x, lk) (3.42)

be the cylindrical coordinates with respect to the basis{er, eθ, ez} centered at pk, with ez = k
|k| .

It would also be convenient to introduce the following decomposition

R3 = Ωk ⊕ lk, (3.43)

where Ωk = {x ∈ R3 : x · k = 0} is the plane orthogonal to lk.

Finally, let us fix a smooth nontrivial function η ∈ C∞c (R) such that
´
η = 0 and η = 0 for

|x| ≥ 1.

Definition 3.3.3 (Principle profiles ψk and ηk). For k ∈ K and µ ≥ τ ≥ µ0 let ηk, ψk ∈ C∞(R3)

and φk ∈ C∞(R3 \ lk) be defined by

ηk = cτ
1/2η(τzk),

ψk = µψ(µrk),

φk = φ(µrk),

(3.44)

where c is a normalizing constant such that
´
R3

∣∣ηkψk∣∣2dx = 1.
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Remark 3.3.4. Note that ηk and ψk are smooth and compactly supported in Ωk, but not φk

which still has a compact support in Ωk but also a singularity 1/r at the origin. We can use a

mollification to smear out the singularity thanks to Proposition 3.3.9.

Using cylindrical coordinates we can easily prove the following simple lemma regarding the

profiles ηk and ψk.

Lemma 3.3.5. For any k ∈ K, the rescaled functions ψk and φk verify the identities

∂(rkφk)

∂rk
= rkψk and

ˆ ∞
0

(
ψ2
k − φk

∂ψk
∂rk

)
rk drk = 0. (3.45)

For any 1 ≤ p ≤ ∞, there hold

‖ηk‖Lp(lk) . τ
1/2−1/p,

‖ψk‖Lp(Ωk) . µ1−2/p,

(3.46)

and

‖φk‖Lp(Ωk) .p µ
−2/p if 1 ≤ p < 2. (3.47)

Proof. The first two identities (Equation 3.45) follow from the rescalings (Equation 3.44),

(Equation 3.38) as well as the zero-mean condition (Equation 3.39).

The first two estimates (Equation 3.46) follow from rescaling and the the fact that η, ψ ∈

C∞c (R+) while (Equation 3.47) follows from rescaling and the fact that φ ∈ Lp(rdr) for any

1 ≤ p < 2.



114

Next, we introduce another family of profiles that will be used to form the Laplacian cor-

rector part of the eddies.

Thanks to the zero-mean condition (Equation 3.45) and the vanishing of ψ′ near the origin

obtained in Lemma 3.3.2, Lemma B.2.1 implies that there exists h ∈ C∞(R+), such that

h(| · |) ∈ C∞(R2) ∩W 1,p(R2) for 1 < p ≤ ∞, and

∆h(|x|) = (ψ(|x|))2 − φ(|x|)ψ′(|x|). (3.48)

Then define Ψk ∈ C∞(R3) by

Ψk := h(µrk), (3.49)

for which we have

∆
(
Ψk

)
= ψ2

k − φk
∂ψk
∂rk

. (3.50)

.

Let us fix some nonnegative function ϕ ∈ C∞c (R+), such that φ(r) = 1 for r ≤ 1, suppϕ ∈

[0, 2], and
´∞

0 ϕ r dr = 1. This function will be used as a cutoff in Definition 3.3.6 below and a

radial mollification in Definition 3.3.7.

Now we define another two profile functions, ψ̃k and η̃k, which will constitute an important

part of our eddies.

Definition 3.3.6 (Viscous profiles ψ̃k and η̃k). For k ∈ K and µ ≥ τ ≥ µ0, define

ψ̃k = ϕ(τrk)Ψk,
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and

η̃k =
1

2

∂(η2
k)

∂zk
.

Note that the extra mild cutoff φ(τrk) is to make sure the support of ψ̃k is contained in a

cylinder centered at the line lk in R3 so that η̃kψ̃k is compactly supported.

3.3.3 Vector fields Wk and Vk.

Let us first introduce vector fields Wk and Vk, which corresponds to the principle part and

respectively the Laplacian correction part of the eddies.

Definition 3.3.7. Let K ⊂ R3 be a finite set and γ > 0 be a small constant. For each k ∈ K

and µ ≥ τ ≥ µ0, the vector fields Wk : R3 → R3 and Vk : R3 → R3 are defined by

Wk = (Wz +Wr)γ and Vk = η̃kψ̃kez, (3.51)

where the vector fields Wz and Wr are respectively defined by

Wz = ηkψkez, Wr = −∂ηk
∂zk

φker. (3.52)

Here (·)γ := ϕγ∗ indicates a radial mollification at scale µ−1−γ in the Ωk-plane via the kernel

ϕγ = 1
2πµ

2+2γϕ(µ1+γrk).
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In addition, let Wk be the non-smooth counterpart of Wk defined by

Wk = Wz +Wr. (3.53)

The role of each parameter is as follows.

• µ−1 parametrizes the concentration level of eddies.

• τ−1 measures the closeness of eddies to the pipe flows

• γ is a small constant that we use to achieve the smoothness of the eddies.

We will choose the parameters so that ‖Vk‖2 � ‖Wk‖2 and ‖Wr‖2 � ‖Wz‖2. Hence,

viscous eddies are quantitatively determined by Wz.

Note that Wk is divergence-free. Indeed, using standard vector calculus (see Appendix B.1)

we compute

div(Wk) = div

(
ηkψkez −

∂ηk
∂zk

φker

)
γ

=

(
∂ηk
∂zk

ψk −
∂ηk
∂zk

1

r

∂(rφk)

∂rk

)
γ

=0,

thanks to (Equation 3.45).
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Note that for Wk we can choose γ � 1 and τ � µ so that it has any small intermittency

D > 0:

‖∇mWk‖p .m µm(1+γ)µ1−2/pτ
1/2−1/p, (3.54)

however, besides being much smaller than Wk, the viscous part Vk will impose other restrictions

on admissible choices of τ, µ, as indicated by Proposition 3.3.11.

As a direct consequence of Definition 3.3.3 and 3.3.6 we obtain

Lemma 3.3.8 (Compact support of Wk and Vk). For any µ ≥ τ ≥ µ0, the supports set of Wk

and Vk verify

suppWk ∪ suppVk ⊂ [0, 1]3 for any k ∈ K,

suppWk ∩ suppWk′ = ∅ and suppVk ∩ suppVk′ = ∅ if k 6= k′,

and the estimate

| suppWk| . τ−1µ−2.

Moreover, the vector fields Wk have zero mean

ˆ
R3

Wk = 0. (3.55)
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Proof. The compactness and disjointness of the support follow from the definitions. The esti-

mate of the support set follows from the fact that µ−1-mollification only alter the diameter of

the support set by µ−1 and τ ≤ µ.

The zero-mean property (Equation 3.55) follows from integrating in cylindrical coordinates

with basis {er, eθ, ez} and the fact that the profile function η ∈ C∞c (R) used in (Equation 3.44)

has zero mean.

3.3.4 Definition of viscous eddies

We will show that Wk and Vk can be used to form stationary solutions of the Navier-Stokes

equations. The choice of Vk is inspired by the following results.

The first estimate shows that the leading order term in div(Wk ⊗Wk) is div(Wk ⊗Wz).

Proposition 3.3.9. Suppose τ ≤ µ1−γ. Then the following estimate holds

∥∥Wk ⊗Wk −Wk ⊗Wz

∥∥
p
.p µ

−γ
[
µ2−2/pτ1−1/p

]
,

for all 1 ≤ p < 2.

The next two results show a precise structure of the error term div(Wk⊗Wz). In particular,

it has a fixed direction ez and zero mean over the Ωk-plane thanks to Lemma 3.3.5. Hence, it

can be balanced by adding a Laplacian term.

Lemma 3.3.10. There holds

div(Wk ⊗Wz) =
1

2

∂(η2
k)

∂zk

(
ψ2
k − φk

∂ψk
∂rk

)
ez. (3.56)
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Proof. Since Wk = Wz + Wr is divergence-free, by a direct computation using cylindrical

coordinates (cf. Appendix B.1) we conclude

div(Wk ⊗Wz) =
(
(Wz +Wr) · ∇

)
Wz

= −∂ηk
∂zk

φkηk
∂ψk
∂rk

ez + ηkψk
∂ηk
∂zk

ψk ez

=
1

2

∂(η2
k)

∂zk

(
ψ2
k − φk

∂ψk
∂rk

)
ez.

Proposition 3.3.11. Suppose τ ≤ µ. Then the following important estimate holds:

∥∥div(Wk ⊗Wz)−∆Vk
∥∥
Lp(R3)

.p τ
2µ−1

[
µ2−2/pτ1−1/p

]
, (3.57)

for all 1 < p ≤ ∞.

While Lemma 3.3.10 follows from a direct computation using cylindrical coordinates, we

postpone the proofs of Proposition 3.3.9 and Proposition 3.3.11 to the end of this section. With

these results at hand, it is natural to consider the following family of vector fields.

Definition 3.3.12 (Viscous eddies). Viscous eddies are vector fields of the form

u =
∑
k

akWk − a2
kVk, (3.58)

where coefficients ak ∈ R for each k ∈ K.
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One of the advantages of viscous eddies is that they are approximate solutions of the sta-

tionary Navier-Stokes equations.

Theorem 3.3.13 (Approximate stationary solutions in R3). Let K ⊂ R3 be finite and u be a

viscous eddy:

u =
∑
k

akWk − a2
kVk,

where constants ak ∈ R for each k ∈ K.

Then u ∈ C∞c (R3) is an approximate solution of the stationary Navier-Stokes equations in

the following sense. There exist a stress R ∈ C∞c (R3×3) and a vector field r ∈ C∞c (R3) so that

∆u+ div(u⊗ u) = divR+ r.

Moreover, for any ε > 0, one can choose τ, µ > 0 such that

‖R‖L1(R3) + ‖r‖L1(R3) ≤ ε.

For simplicity of presentation we include the pressure in the stress term R and do not assume

R is symmetric traceless. It might be possible to write the vector field r in the divergence form,

gaining an additional one derivative. Such a method will require the use of inverse divergence

operator on R3. However, the inverse divergence R in defined in Equation 3.112 does not

preserve compact support on R3.
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As one can see, u is an approximate stationary solution to the NSE for an arbitrary direction

k, whereas both intermittent jets in (5) and Mikado flows in (58) must have lattice directions

to be periodic.

Proof of Theorem 3.3.13. Denote u1 =
∑

k akWk and u2 = −
∑

k a
2
kVk then define the stress

term R by

R = ∇u1 + u1 ⊗ u2 + u2 ⊗ u1 + u2 ⊗ u2.

and the vector field r as

r = ∆u2 + div(u1 ⊗ u1).

Immediately, by direct computation

∆u+ div(u⊗ u) = divR+ r.

As a result,

‖R‖L1(R3) . ‖∇u1‖1 + ‖u1‖2‖u2‖2 + ‖u2‖22, (3.59)

and

‖r‖Lp(R3) .
∑
k

∥∥div(Wk ⊗Wz)−∆Vk
∥∥
Lp(R3)

+
∥∥div(Wk ⊗Wk −Wk ⊗Wz)

∥∥
Lp(R3)

.
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By Propositions 3.3.9 and 3.3.11, it is easy to choose p > 1 sufficiently close to 1 and τ, µ

sufficiently large depending on ak such that

‖R‖L1(R3) + ‖r‖L1(R3) ≤ ‖R‖L1(R3) + ‖r‖Lp(R3) ≤ ε.

3.3.5 Estimates for the viscous eddies

Proposition 3.3.14. For any τ ≤ µ1−γ and µ sufficiently large, the following estimates hold:

µ−m(1+γ)
∥∥∇mWk

∥∥
Lp(R3)

.m µ1−2/pτ
1/2−1/p, 1 ≤ p ≤ ∞,

µ−m(1+γ)
∥∥∇mVk∥∥Lp(R3)

.m,p µ
−1τ

3/2
[
µ1−2/pτ

1/2−1/p
]
, 1 < p ≤ ∞.

Proof. By a dimensional analysis and smoothness of Wk and Vk, it suffices to prove the estimates

for m = 0.

Let us first estimate Wk. Definitions 3.3.3, 3.3.7 and Lemma 3.3.5 immediately imply that

‖Wz‖Lp . µ1−2/pτ
1/2−1/p, 1 ≤ p ≤ ∞, (3.60)

and

‖Wr‖Lp .p µ
−2/pτ

3/2−1/p, 1 ≤ p < 2. (3.61)
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Note that Wr /∈ L2, and hence the implicit constant in (Equation 3.61) blows up as p → 2−.

Now we will show that the mollified radial component of the eddy satisfies

‖(Wr)γ‖Lp . µγ−
2/pτ

3/2−1/p, 1 ≤ p ≤ ∞, (3.62)

provided µ is large enough.

Indeed, due to Lemma 3.3.2, there exist constants c1 ∈ R and 0 < α0 < 1, such that

ψ(r) = c1 for all r ≤ α0. By definition (Equation 3.38), for all r ≤ α0 we have

φ(r) = −1

r

ˆ ∞
r

ψ(s)s ds

= − 1

rk

(ˆ α

r
c1s ds+

ˆ ∞
α

ψ(s)s ds

)
= c1

r

2
+ c2

1

r
,

for some constant c2 ∈ R. Clearly there exists α ≤ α0, such that |φ(r)| is decreasing for all

r ≤ α, and |φ(α)| ≥ |φ(r)| for all r ≥ α. Therefore,
∣∣(φk)γ∣∣ attains a global maximum at rk = 0,

provided 2µ−γ ≤ α. A direct computation shows that

∣∣(φk)γ(0)
∣∣ =

∣∣∣∣∣
ˆ µ−1−γ

0
ϕγ(r)φk(r)r dr

∣∣∣∣∣
=

∣∣∣∣∣
ˆ µ−1−γ

0
µ2+2γϕ(µ1+γr)

1

µr
r dr

∣∣∣∣∣
. µγ .
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Now using the fact that | supp(Wr)γ | . µ−2τ−1, we can conclude that

‖(Wr)γ‖Lp . µ−
2/pτ−

1/p‖(Wr)γ‖L∞

. µ−
2/pτ−

1/p

∥∥∥∥∂ηk∂zk

∥∥∥∥
L∞

∥∥(φk)γ
∥∥
L∞

. µ−
2/pτ−

1/pτ
3/2µγ ,

provided µ is large enough (so that 2µ−γ ≤ α).

Now we can easily estimate viscous eddies using (Equation 3.60) and (Equation 3.62):

‖Wk‖Lp ≤ ‖(Wz)γ‖Lp + ‖(Wr)γ‖Lp . (1 + τµγ−1)
[
µ1−2/pτ

1/2−1/p
]
.
[
µ1−2/pτ

1/2−1/p
]
,

due to the assumption τ ≤ µ1−γ .

Next, we estimate ‖Vk‖Lp in cylindrical coordinates. Since Vk is axisymetric, using the

decomposition R3 = Ωk ⊕ lk, we obtain

‖Vk‖Lp(R3) . ‖η̃k‖Lp(lk)‖ψ̃k‖Lp(Ωk).

By Definitions 3.3.3 snd 3.3.6,

‖η̃k‖Lp(lk) .

∥∥∥∥∂(η2
k)

∂zk

∥∥∥∥
Lp(lk)

. τ
2− 1

p . (3.63)
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Then for p > 1 we have

‖ψ̃k‖Lp(Ωk) ≤ ‖ϕ‖L∞(Ωk)

∥∥Ψk

∥∥
Lp(Ωk)

.p

(ˆ ∣∣h(µrk)
∣∣prkdrk) 1

p

. µ−
2/p,

(3.64)

where in the last estimate we have used the fact that h ∈ Lp(R2) for any 1 < p ≤ ∞.

Putting together (Equation 3.63) and (Equation 3.64) we obtain the desired estimate

‖Vk‖Lp .p τ
3/2µ−1

[
µ1−2/pτ

1/2−1/p
]

for any 1 < p ≤ ∞.

Using the above estimates, we prove Proposition 3.3.9 and Proposition 3.3.11.

Proof of Proposition 3.3.9. We start with the decomposition

Wk ⊗Wk = Wk ⊗Wz +
(
Wk −Wk

)
⊗Wz + Wk ⊗

(
(Wz)γ −Wz

)
+ Wk ⊗ (Wr)γ .

So by Hölder’s inequality we will focus on the following

∥∥Wk ⊗Wk −Wk ⊗Wz

∥∥
p
.
∥∥Wk −Wk

∥∥
p
‖Wz‖∞ + ‖Wk‖∞

∥∥(Wz)γ −Wz

∥∥
p

+ ‖Wk‖∞
∥∥(Wr)γ

∥∥
p

. X1 +X2 +X3

(3.65)
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Let us first estimate X1. We start with the definition of Wk and obtain

X1 .
(
‖Wz − (Wz)γ‖p + ‖Wr − (Wr)γ‖p

)
‖Wz‖L∞

.
(
‖Wz − (Wz)γ‖p + ‖Wr‖p

)
‖Wz‖L∞ .

(3.66)

To estimate the above terms, we first notice that by a standard approach to mollification,

‖Wz − (Wz)γ‖p . ‖Wz‖W 1,pµ−1−γ . (3.67)

Moreover, by Lemma 3.3.5 (cf. (Equation 3.60) and (Equation 3.61)), we have

‖Wz‖W 1,p . µµ1−2/pτ
1/2−1/p, ‖Wz‖L∞ . µτ

1/2, (3.68)

and, since 1 ≤ p < 2,

‖Wr‖Lp .p µ
−1τµ1−2/pτ

1/2−1/p. (3.69)

Substituting bounds (Equation 3.67), (Equation 3.68), and (Equation 3.69) into (Equation 3.66)

gives

X1 . (µ−γ + µ−1τ)
[
µ2−2/pτ1−1/p

]
, (3.70)

which is the desired estimate since τ ≤ µ1−γ .
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Next, we estimate X2. By Proposition 3.3.14 we have

∥∥Wk

∥∥
∞ . µτ

1/2, (3.71)

which together with (Equation 3.67) and (Equation 3.68) implies that

X2 . µ−γ
[
µ2−2/pτ1−1/p

]
. (3.72)

Finally, we need to bound X3. All the estimates for X3 have been obtained before. In

particular, since 1 ≤ p < 2, (Equation 3.69) and (Equation 3.71) imply

X3 .
∥∥Wk

∥∥
∞
∥∥Wr

∥∥
p

. µ−1τ
[
µ2−2/pτ1−1/p

]
,

which is what we need due to the assumption τ ≤ µ1−γ .

Proof of Proposition 3.3.11. By a direct computation,

∆Vk = ∆(η̃kϕ)Ψkez + 2∇(η̃kϕ)∇Ψkez + η̃kϕ∆Ψkez, (3.73)
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where we write ϕ = ϕ(τrk) for short. Recall from (Equation 3.50) that

∆
(
Ψk

)
= ψ2

k − φk
∂ψk
∂rk

,

and, in particular, ∆Ψk = 0 for rk ≥ µ−1. Since τ ≤ µ, we have that ϕ(τrk) = 1 on supp ∆Ψk.

Then using Definition 3.3.6 and Lemma 3.3.10, we obtain

η̃kϕ∆Ψkez =
1

2

∂(η2
k)

∂zk

(
ψ2
k − φk

∂ψk
∂rk

)
ez

= div(Wk ⊗Wz).

Combining this with (Equation 3.73), we get

∥∥div(Wk ⊗Wz)−∆Vk
∥∥
Lp(R3)

.
∥∥∆(η̃kϕ)Ψk

∥∥
Lp(R3)

+
∥∥∇(η̃kϕ)∇Ψk

∥∥
Lp(R3)

. (3.74)

Since τ ≤ µ, it suffices to bound the second term in (Equation 3.74). By Definition 3.3.6,

we have a pointwise bound

∣∣∇(η̃kϕ)
∣∣ . ∣∣∇2(η2

k)
∣∣+ τ

∣∣∇(η2
k)
∣∣.

Thus for the second term in (Equation 3.74) we have

∥∥∇(η̃kϕ)∇Ψkez
∥∥
Lp(R3)

.
∥∥∇2(η2

k)
∥∥
Lp(lk)

∥∥∇Ψk

∥∥
Lp(Ωk)

+ τ
∥∥∇(η2

k)
∥∥
Lp(lk)

∥∥∇Ψk

∥∥
Lp(Ωk)

. (3.75)
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Now by rescaling (Equation 3.49) and Definition 3.3.3,

∥∥∇Ψk

∥∥
Lp(Ωk)

.p µ
1−2/p for 1 < p ≤ ∞, and

∥∥∇n(η2
k)
∥∥
Lp(lk)

.n τ
nτ1−1/p for 1 ≤ p ≤ ∞,

so we get

∥∥∇(η̃kϕ)∇Ψkez
∥∥
Lp(R3)

.p τ
2µ−1

[
µ2−2/pτ1−1/p

]
,

which implies the desired bound:

∥∥div(Wk ⊗Wz)−∆Vk
∥∥
Lp(R3)

.p τ
2µ−1

[
µ2−2/pτ1−1/p

]
for 1 < p ≤ ∞. (3.76)

3.4 Proof of main proposition: velocity perturbation

In this section, we start proving Proposition 3.2.1. The main objective of the section is to

define and estimate the velocity perturbation. More specifically, we will carefully design the

velocity perturbation w so that the new solution v = v0 + w has the desired properties listed

in Proposition 3.2.1. The key is to reduce the size of the stress error term and make sure w

carries a precise amount of energy on the intervals I4−1r(F1) at the same time.

The rest of this section is organized as follows. We first give a general introduction of the

proof, and then introduce all the necessary preparation work to define w, namely, fix constants

τ and µ appeared in the viscous eddies, choose suitable cutoff functions in space and time,
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and introduce the Leray projection and a fast oscillation operator Pσ. Finally, we define the

velocity perturbation w and derive various estimates needed in the next two sections.

3.4.1 General introduction

To better illustrate the idea, we provide some heuristics and try to outline the general idea

of the proof here. To the leading order, the velocity perturbation w consists of finitely many

highly oscillating viscous eddies:

w =
∑
k

akPσWk + a2
kPσVk := w(p) + w(l),

where coefficients ak are determined by the old Reynolds stress R0, and Pσ is a fast oscillation

operator (see Definition 3.4.4).

On one hand, we nee to control the new stress term, which, according to (Equation gNSR),

is implicitly defined by

divR = ∂tw + Law + div(w ⊗ v0 + v0 ⊗ w) + div(R0 + w ⊗ w)−∇p1.

The old Reynolds stress R0 will be canceled by the interaction w(p) ⊗ w(p) together with w(l).

More precisely,

div(w(p) ⊗ w(p)) + divR0 + ∆w(l) = High frequency errors + Lower order terms.
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On the left hand side, R0 will be canceled by the high-high interaction of w(p) ⊗ w(p), and

∆w(l) will balance the error essentially introduced by the unwanted div(Wk ⊗Wk) as shown in

Theorem 3.3.13. On the right hand side, lower order terms are automatically small, but high

frequency errors will gain a factor of σ−1 after inverting the divergence. This will be shown in

Lemma 3.5.8, Section 3.5.

On the other hand, we need to make sure the new solution v has the desired energy profile.

This is in fact mostly compatible with the above effort of controlling the new stress error.

Heuristically, to balance the stress term R0, one must spend the energy of size at least ∼ ‖R0‖1.

In other words,

‖w(t)‖22 & ‖R0(t)‖1 for all t.

There is a lot of flexibility in choosing the size of w though, as one can use more energy than

needed to balance the old stress term R0. In our scheme, the size of ‖w‖2 is determined by

the given energy levels e0 and e1 on the intervals I4−1r(F1), where the old stress error term is

already quite small (the second condition for (v0, R0) in Proposition 3.2.1). This makes control

of the stress and pumping of the energy compatibility. See (Equation 3.79) and Section 3.6 for

more details.

3.4.2 Setup of constants

First, we set up the constants appeared in the definition of the vector fields Wτ,µ
k and the

viscous eddies.

The major parameter λ, the (spacial) frequency of the perturbation, will be a sufficiently

large. The parameters µ and τ in the viscous eddies are defined explicitly as powers of λ while
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γ is taken to be small. Moreover, we also define an integer σ to parametrize the oscillations of

the eddies.

In the sequel, we fix 

σ = λ1/30

µ = λ14/15

τ = λ2/5

γ = 1
28

(3.77)

Clearly, it holds that µγ = σ and σµ1+γ = λ. We also have the following hierarchy of constants:

σ � τ � µ� λ.

For periodicity, we also require σ to be an integer. Let us briefly discuss the scales involved in

the definition of w. In essence, the choice of parameters ensures that by raising the value of λ,

the new stress term R0 introduced by w on I4−1r(F1) can be as small as we want, and, at the

same time, the energy of new solution ‖v(t)‖22 can be controlled precisely.

There are mainly four constraints in choosing the scales:

• The first constraint is due to the small intermittency requirement. Since λ is the frequency

of w which consists of oscillation σ and concentration τ and µ, then for w to be small in

W 1,1 it requires (see (Equation 3.46))

λτ−
1
2µ−1 � 1.
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• The second constraint is needed to achieve the correct energy level. Since ‖w(p)‖2 controls

the energy level of the new solution v, we need ‖w(l)‖2 � ‖w(p)‖2 and ‖w(c)‖2 � ‖w(p)‖2.

According to definitions of w(l) and w(c), i.e. (Equation 3.88) and (Equation 3.89), this

implies

τ
3
2 � µ.

• The previous two constraints are due to the viscous part w(l). There is a new error

introduced by ∆, namely Rlow in Lemma 3.5.8. To make sure Rlow is small, we need

τ2 � µ.

• We use a mollification in the scale µ−1−γ to remove 1/r singularity of a viscous eddy

in the radial direction. This singularity is needed so that we can take advantage of the

Laplacian. In order to control norms of the viscous eddy, we need an upper bound on γ.

More precisely, as we have seen in the previous section, we need the following condition:

τ ≤ µ1−γ .

It is easy to verify that our choice of constants (Equation 3.77) satisfies all the above constraints.

Next, we introduce a constant M , whose role is to limit the order of the derivative that we

will be taking so that the implicit constants stay bounded.
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Definition 3.4.1 (The constant M). Let N = 300 and θ = 1/2. We define M to be the constant

obtained from applying Proposition 2.4.4 with such θ and N .

3.4.3 Cut-offs in space and time

Let χ : R3×3 → R+ be a positive smooth function so that it is monotone increasing with

respect to |x| and

χ2(x) =


1, 0 ≤ |x| ≤ 1

|x|, |x| ≥ 2

(3.78)

where | · | denotes the Euclidean matrix norm. Note that by definition

‖∇mχ‖∞ .m 1.

Now we choose a proper threshold ρ0(t) to control how much energy is added. Given an solution

(v0, R0) and energy level e1 as in the statement of Proposition 3.2.1, let

ρ0(t) =
1

12
(ẽ1 − ‖v0(t)‖22), (3.79)

where ẽ1 = e1 − 10−6(e1 − e0) is to leave room for future corrections. Note that ρ0 is bounded

from below:

ρ0(t) & e1 − e0 & C−1δ0, (3.80)

due to the assumptions (1) and (2) in Proposition 3.2.1, where δ0 = ‖R0‖L∞t L1
x(T3×[0,T ]) and the

universal constant C in Proposition 3.2.1 will be specified in Section 3.6.
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To deal with the issue of the Reynolds stress R0 having large magnitudes, we introduce a

divisor as follows. Define ρ : T3 × [0, T ]→ R+ to be

ρ(x, t) = 4ρ0χ
2(ρ−1

0 R0). (3.81)

It follows from the above definitions that

|R0|
ρ

=
|R0|

4ρ0χ2(ρ−1
0 R0)

≤ 1/2 for all (x, t) ∈ T3 × [0, T ].

Next, we introduce a cutoff in time so that the energy profile of the new solution satisfies

all the required properties. For the exceptional set F1 (cf. (Equation 3.12)), let θ : R→ R+ be

a smooth cut-off function such that

θ(t) =


1, t ∈ I4−1r(F1)

0, t /∈ I4−2r(F1),

(3.82)

and

‖θ(n)‖∞ .n r
−n for all n ∈ N. (3.83)

Remark 3.4.2. When F1 = ∅, we take θ = 1, so there is no cutoff in time. This will ensure

that if F0 = F1 = ∅ and the solution v0 is stationary, then the velocity perturbation w is also

stationary.
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3.4.4 Leray projection and fast periodization operator

To define the velocity perturbation, we recall the definition of Leray projection.

Definition 3.4.3 (Leray projection). Let v ∈ C∞(T3,R3) be a smooth vector field. Define the

operator Q as

Qv := ∇f +

 
T3

v,

where f ∈ C∞(T3) is the smooth zero-mean solution of

∆f = div v, x ∈ T3.

Furthermore, let P = Id−Q be the Leray projection onto divergence-free vector fields with zero

mean.

To avoid potential abuse of notation, we will utilize the following fast periodization operator

Pσ for functions whose support sets are contained in [0, 1]3. We will apply Pσ to the viscous

eddies so that they oscillate at a frequency much higher than that of the solution (v0, R0).

Definition 3.4.4 (Fast periodization operator Pσ). Let σ ∈ N. Suppose f ∈ C∞c (R3) and

supp f ⊂ [0, 1]3, define the fast periodization operator Pσ by

Pσf(x) =
∑
m∈Z3

f(σx+m). (3.84)



137

By definition Pσf is σ−1T3-periodic, and for any differentiation ∇n, we have

∇nPσf = σnPσ∇nf (3.85)

which will be used without mentioning in the future.

3.4.5 Definitions of the perturbation

With all the preparations in hand, we can define the velocity perturbation w.

We first apply Lemma 3.3.1 for B = {R ∈ S3×3
+ : | Id−R| ≤ 1/2} to obtain smooth functions

Γk : B → R for k ∈ Z3, |k| ≤ λ0. Then the coefficients for the viscous eddies are defined by

ak(x, t) = ρ
1/2(x, t)Γk

(
Id−R0

ρ

)
for k ∈ Z3, |k| ≤ λ0. (3.86)

In view of Theorem 3.3.13, define vector fields

w(p) = θ
∑
k

akPσWk = w(p)
z + w(p)

r , (3.87)

where

w(p)
z = θ

∑
k

akPσ(Wz)γ , and w(p)
r = θ

∑
k

akPσ(Wr)γ ,

and

w(l) = −θ2σ−1
∑
k

a2
kPσVk. (3.88)
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Also define a divergence-free correction term

w(c) = −Qw(p) −Qw(l). (3.89)

Finally, the velocity increment w is defined by

w = θ
∑
k

akPσWk − θ2σ−1
∑
k

a2
kPσVk + w(c). (3.90)

which also reads

w = w(p) + w(l) + w(c). (3.91)

Thanks to Lemma 3.3.8, Pσ may be applied and w is well-defined. It is clear that w is

periodic due to the periodicity of coefficients ak and the periodization operator Pσ. By design

w is divergence-free. Also since the operator P removes the mean, w has zero mean as well.

Next, we show the smoothness of w, for which it suffices to show the following simple result

for the coefficients ak.

Lemma 3.4.5 (Properties of coefficients ak). The coefficients ak defined by (Equation 3.86)

are smooth on T3 × [0, T ]. There exist a number κ = κ(e1, v0, R0) ≥ r−1 such that

max
k
‖ak‖Cmt,x ≤ κ

m+1, for any integer 0 ≤ m ≤ 4M ;
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the following bounds hold

‖ρ(t)‖L1 . ρ0(t),

‖ak(t)‖L2 . ρ0(t)
1/2;

(3.92)

and we have the identity

∑
k

a2
k

 
T3

Pσ (Wk ⊗Wz) = ρ Id−R0. (3.93)

Proof. Recall that

ak = 2ρ
1/2
0 χ(ρ−1

0 R0)Γk

(
Id−R0

ρ

)
. (3.94)

To show that ak has bounded space-time Hölder norms of order 4M , it suffices to check that

each factor above is smooth as the domain T3 × [0, T ] is compact. Since

ρ
1/2
0 =

1

2
√

3
(ẽ1 − ‖v0(t)‖22)

1/2,

which is bounded from below by (Equation 3.80), the function ρ
1/2
0 is smooth on [0, T ]. By

the same argument and the definition of χ in (Equation 3.78), we may also conclude that

χ(ρ−1
0 R0) ∈ C∞x,t(T3 × [0, T ]). Since Γk ∈ C∞(B), the last term in (Equation 3.94) is also in

C∞t,x.
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Next, let us prove (Equation 3.92). Since 0 ≤ θ ≤ 1, by definition of ρ in (Equation 3.81),

we have

‖ρ(t)‖L1 ≤
ˆ
|R0|≤ρ0

ρ(x, t)dx+

ˆ
|R0|≥ρ0

ρ(x, t)dx

. ρ0

(ˆ
|R0|≤ρ0

1dx+

ˆ
|R0|≥ρ0

|R0|dx
)
. ρ0,

where we have used ‖R0‖L∞t L1 = δ0 . ρ0 due to (Equation 3.80).

For the second bound in (Equation 3.92), we can directly compute to obtain:

‖ak(t)‖22 . ρ0θ
2

ˆ
T3

χ2(ρ−1
0 R0)dx . ρ0θ

2.

To show the last identity, thanks to Lemma 3.3.1, it suffices to show

 
T3

Pσ (Wk ⊗Wz) =
k

|k|
⊗ k

|k|
.

Since

Wr ⊗Wz =
∂ηk
∂zk

φkηkψk er ⊗ ez.

where profile function ∂ηk
∂zk

φkηkψk is axisymmetric, we have

 
T3

Pσ (Wr ⊗Wz) = 0.
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Then by Definitions 3.4.4 and 3.3.3,

 
T3

Pσ (Wk ⊗Wz) =

 
T3

Pσ (Wz ⊗Wz) =

ˆ
R3

Wz ⊗Wz

=

ˆ
R3

|ηkψk|2ez ⊗ ez

=
k

|k|
⊗ k

|k|
.

Hence, the identity (Equation 3.93) follows from (Equation 3.86) and Lemma 3.3.1.

3.4.6 Estimates for the perturbations

This subsection is devoted to various estimates for the perturbation w. We start with

decomposing the corrector w(c) using standard vector calculus. Here the inverse Laplacian ∆−1

on torus T3 is defined via a multiplier with symbol −|k|−2 for k 6= 0 and 0 for k = 0.

Lemma 3.4.6 (Structure of the corrector). The corrector w(c) verifies

w(c) = w(cp) + w(cl)

where w(cp) and w(cl) are respectively

w(cp) = θ
∑
k

∇∆−1
(
∇ak ·PσWk

)
−
 
T3

w(p),

and

w(cl) = θ2σ−1Q
(∑

k

a2
kPσVk

)
.
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Proof. Noticing that divWk = 0, these formulae immediately follow from Definition 3.4.3.

We recall the following improved Hölder’s inequality for functions with fast oscillation proven

in (58), which is crucial in obtaining the L2 decay of the perturbation w.

Proposition 3.4.7. For any small θ > 0 and any large N > 0 there exist M ∈ N and λ0 ∈ N

so that for any µ > 0, σ ∈ N satisfying λ0 ≤ σ and µ ≤ σ1−θ the following holds. Suppose

a ∈ C∞(T3) and let Ca > 0 be such that

‖∇ia‖∞ ≤ Caµi for any 0 ≤ i ≤M.

Then for any σ−1T3 periodic function f ∈ Lp(T3), 1 < p < ∞, the following estimates are

satisfied.

• If p ≥ 2 is even, then

‖af‖p .p,θ,N ‖a‖p‖f‖p + Ca‖f‖pσ−N . (3.95)

• If
ffl
Td f = 0 then for 0 ≤ s ≤ 1

∥∥|∇|−1(af)
∥∥
p
.p,s,θ,N σ−1+s

∥∥|∇|−s(af)
∥∥
p

+ Ca‖f‖pσ−N . (3.96)

All the implicit constants appeared in the statement are independent of a, µ and σ.
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Remark 3.4.8. Throughout the chapter, we will always apply Proposition 2.4.4 for θ = 1
2 and

N = 300. These two fixed constants determine the constant M .

With the help of Proposition 2.4.4, we are in the position to derive useful estimates for the

velocity perturbation w.

Proposition 3.4.9 (Spacial frequency estimates). For any λ sufficiently large and integer

0 ≤ m ≤M the following estimates hold:

λ−m‖∇mw(p)(t)‖p . ρ
1/2
0 (t)

[
µ1−2/pτ

1/2−1/p
]
, 1 ≤ p ≤ 2, (3.97)

λ−m‖∇mw(p)
r (t)‖p . ρ

1/2
0 (t)τµ2γ−1

[
µ1−2/pτ

1/2−1/p
]
, 1 ≤ p ≤ 2, (3.98)

λ−m‖∇mw(l)(t)‖p .p τ
3/2µ−1

[
µ1−2/pτ

1/2−1/p
]
, 1 < p ≤ 2, (3.99)

λ−m‖∇mw(c)(t)‖p . σ−1
[
µ1−2/pτ

1/2−1/p
]
, 1 ≤ p ≤ 2. (3.100)

Proof. Bounds for w(p):

Since by Lemma 3.3.8 ∣∣T3 ∩ supp PσWk

∣∣ . τ−1µ−2, (3.101)

it suffices to show (Equation 3.97) for p = 2.

By product rule,

∣∣∇mw(p)
∣∣ .m

∑
k

∑
0≤i≤m

σm−i
∣∣∇iak∣∣∣∣∇m−iPσWk

∣∣. (3.102)
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As PσWk is σ−1T3-periodic and, thanks to Lemma 3.4.5,

‖∇iak‖Cmx ≤ ‖ak‖Cm+i
x
≤ κi+1+m for all 0 ≤ m ≤M.

Since for large enough λ we have κ2 < σ ∈ N, we can apply Proposition 2.4.4 with θ = 1
2 ,

N = 300, and Ca = κi+1 (cf. Definition 3.4.1) to obtain that

∥∥|∇iak||Pσ∇m−iWk|
∥∥

2
. ‖∇iak‖2‖Pσ∇m−iWk‖2 + κi+1‖Pσ∇m−iWk‖2σ−N . (3.103)

Let us consider two sub-cases: m = 0 and m ≥ 1. When m = 0, it follows that

‖akPσWk‖2 . ρ
1/2
0 + κσ−N .

As σ−N = λ−10 and ρ0 & e1 − e0 > 0, we can make sure for any sufficiently large λ(e0, e1, κ)

that

‖akPσWk‖2 . ρ
1/2
0 ,

from which we immediately get

‖w(p)(t)‖2 . ρ
1/2
0 .
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When m ≥ 1, we consider the split:

∑
0≤i≤m

σm−i
∥∥|∇iak||Pσ∇m−iWk|

∥∥
2
≤ σm‖akPσ∇mWk‖2 +

∑
1≤i≤m

σm−i
∥∥|∇iak||Pσ∇m−iWk|

∥∥
2
.

(3.104)

We will bound these two terms separately. For the first term in (Equation 3.104), we use

(Equation 3.103), Lemma 3.4.5, and Proposition 3.3.14 to obtain

σm‖akPσ∇mWk‖2 . σm
(
ρ
1/2
0 ‖Pσ∇mWk‖2 + σ−Nκ‖Pσ∇mWk‖2

)
. σmµm(1+γ)

(
ρ
1/2
0 + σ−Nκ

)
.

Since σ−N = λ−10, σµ1+γ = λ, and ρ0 & e1 − e0, for λ sufficiently large we get

σm‖akPσ∇mWk‖2 . ρ
1/2
0 λm. (3.105)

For the second term in (Equation 3.104), we simply use Hölder’s inequality, Lemma 3.4.5, and

Proposition 3.3.14 to obtain

∑
1≤i≤m

σm−i
∥∥|∇iak||Pσ∇m−iWk|

∥∥
2
≤

∑
1≤i≤m

σm−i‖∇iak‖L∞x,t‖Pσ∇m−iWk‖2

.
∑

1≤i≤m
σm−iκi+1µ(m−i)(1+γ) . κ2σm−1µ(m−1)(1+γ),
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where we have also used κ � µ in the last inequality. Then again, for λ sufficiently large, we

get

∑
1≤i≤m

σm−i
∥∥|∇iak||Pσ∇m−iWk|

∥∥
2
. ρ

1/2
0 λm. (3.106)

So for λ(ρ0, κ, e1, e0) sufficiently large, putting together (Equation 3.105) and (Equation 3.106),

we can bound (Equation 3.104) as

∑
0≤i≤m

σm−i
∥∥|∇iak||Pσ∇m−iWk|

∥∥
2
. ρ

1/2
0 λm,

which implies that

‖∇mw(p)(t)‖2 . ρ
1/2
0 λm, for any 1 ≤ m ≤M .

Since for any integer 0 ≤ m ≤M the desire estimate holds for p = 2, by Hölder’s inequality

and (Equation 3.101), for 1 ≤ p ≤ 2 we have

λ−m‖∇mw(p)(t)‖p . ρ
1/2
0 µ1−2/pτ

1/2−1/p.

Bounds for w
(p)
r :



147

In light of estimate (Equation 3.62), the above argument also gives the desired bound for

w
(p)
r . In particular, for m = 0, thanks to Proposition 2.4.4 we have

‖akPσ(Wr)σ‖2 . ‖∇iak‖2‖Pσ(Wr)σ‖2 + κ‖Pσ(Wr)σ‖2σ−N

. (ρ
1/2
0 + κσ−N )τµ2γ−1

. ρ
1/2
0 τµ2γ−1.

Bounds for w(l):

Without loss of generality, we prove this bound for m = 0 as well, since general cases for

0 ≤ m ≤M follow from applying an additional product rule, which can be seen in the estimates

for w(p).

Recall the definition (Equation 3.88) that

w(l) = −σ−1θ2
∑
k

a2
kPσVk.

By Hölder’s inequality, Lemma 3.4.5, and Proposition 3.3.14, we have

‖w(l)‖p . σ−1
∑
k

‖a2
k‖L∞t,x‖PσVk‖p

. κ2σ−1τµ−2τ1−1/pµ2−2/p.
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Therefore, for sufficiently large λ(κ), we can use σ−1 to absorb the factor with κ to obtain

‖w(l)‖p . τ
3/2µ−1

[
µ1−2/pτ

1/2−1/p
]
. (3.107)

Bounds for w(c):

Again, we only prove the bound for m = 0.Thanks to Lemma 3.4.6, we need to estimate

‖w(cp)‖p and ‖w(cl)‖p. It suffices to estimate the following term:

∥∥∥∑
k

∇∆−1
(
∇ak ·PσWk

)∥∥∥
p

=
∥∥∥∑

k

R|∇|−1
(
∇ak ·PσWk

)∥∥∥
p

.
∥∥∥∑

k

|∇|−1
(
∇ak ·PσWk

)∥∥∥
p
,

where R is the Riesz transform. R and |∇|−1 are defined via multipliers with symbols −i k|k|

and |k|−1 respectively for k 6= 0, and zero for k = 0. Recall that PσWk is σ−1T3-periodic and

of zero mean. Moreover, due to Lemma 3.4.5,

‖∇ak‖Cmx ≤ ‖ak‖Cm+1
x
≤ κm+2 for all 0 ≤ m ≤M.
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Once again we can apply Proposition 2.4.4 with Ca = κ2 to obtain the bound

∥∥∥|∇|−1
(
∇ak ·PσWk

)∥∥∥
p
. σ−1

∥∥∥(∇ak ·PσWk

)∥∥∥
p

+ κ2
∥∥∥(PσWk

)∥∥∥
p
σ−N

.
(
σ−1‖∇ak‖∞ + κ2σ−N

)
‖PσW‖p

. (σ−1κ2 + κ2σ−300)µ1−2/pτ
1/2−1/p

. σ−1κ2
[
µ1−2/pτ

1/2−1/p
]
.

Finally, since ∣∣∣∣ 
T3

|w(p)|
∣∣∣∣ . ρ

1/2
0 λ−

17/15,

we have

‖w(cp)‖p . σ−1
[
µ1−2/pτ

1/2−1/p
]
,

provided λ(κ, e1) is large enough.

To estimate the term w(cl), let us introduce pε = p+ ε, for ε ≥ 0, such that 1 < pε ≤ 2 and

τ
3/2µ−1

[
µ1−2/pετ

1/2−1/pε
]
≤ σ−1

[
µ1−2/pτ

1/2−1/p
]
.

Note that the operator Q is bounded on Lpε(T3), and hence we have

‖w(cl)‖p ≤ ‖w(cl)‖pε . ‖w(l)‖p . τ
3/2µ−1

[
µ1−2/pετ

1/2−1/pε
]
≤ σ−1

[
µ1−2/pτ

1/2−1/p
]
, (3.108)

due to the choice of constants (Equation 3.77).
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Using the choice of constants (Equation 3.77) and the established bounds (Equation 3.97),

(Equation 3.100), and (Equation 3.99), we get the next useful corollary.

Corollary 3.4.10 (Estimates with explicit exponents). For any λ sufficiently large we have

‖w(p)‖p + λ−1‖∇w(p)‖p . ρ
1/2
0 λ

17
15

(1− 2
p

)
, 1 ≤ p ≤ 2

‖w(p)
r ‖p + λ−1‖∇w(p)

r ‖p . ρ
1/2
0 λ−

7
15λ

17
15

(1− 2
p

)
, 1 ≤ p ≤ 2

‖w(l)‖p + λ−1‖∇w(l)‖p .p λ
− 1

3λ
17
15

(1− 2
p

)
, 1 < p ≤ 2,

‖w(c)‖p + λ−1‖∇w(c)‖p . λ−
1
30λ

17
15

(1− 2
p

)
, 1 ≤ p ≤ 2,

and consequently

‖w‖p + λ−1‖∇w‖p . ρ
1/2
0 λ

17
15

(1− 2
p

)
, 1 ≤ p ≤ 2. (3.109)

In particular, given any ε > 0, for λ sufficiently large,

‖w‖
L∞t W

1,1
x
≤ ε. (3.110)

The last estimate concerns the time derivative of the perturbation w. Since the velocity

profiles in Wk and Vk are stationary, time derivative only falls on the slow variables ak and θ.
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Proposition 3.4.11 (Temporal frequency estimates). For any λ sufficiently large, 1 ≤ p ≤ 2,

and integer 0 ≤ m ≤M , the following estimate holds:

κ−m−1‖∂mt w‖L∞t Lpx . µ1−2/pτ
1/2−1/p. (3.111)

Moreover, if (v0, R0) is stationary and F0 = F1 = ∅, then v = v0 + w is also stationary.

Proof. The last statement follows from (Equation 3.82) and (Equation 3.86). Let us show

(Equation 3.111). In view of Lemma 3.4.5, it suffices to prove the bound for m = 1. Thanks to

Lemma 3.4.6, we can use the decomposition

∂tw = ∂tw
(p) + ∂tw

(cp) + ∂tw
(cl) + ∂tPw(l).

We first bound the term ∂tw
(p). By its definition, Lemma 3.4.5, Hölder’s inequality and

Proposition 3.3.14 we have that

∥∥∂tw(p)
∥∥
p
.
∑
k

∥∥θak∥∥C1
t,x

∥∥PσWk

∥∥
p

. κ2
[
µ1−2/pτ

1/2−1/p
]
,

which is exactly the bound that we need.
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Next, we show the same estimate holds for the term ∂tPw(l). As done in the proof of

Proposition 3.4.9, let pε = p+ ε with ε ≥ 0 chosen small enough such that 1 < pε ≤ 2 and

µ1−2/pετ
1/2−1/pε ≤ µ1−2/pτ

1/2−1/pσ
1/2,

which is possible thanks to (Equation 3.77). Then, using the Lpε boundedness of the Leray

projection, Hölder’s inequality, Proposition 3.3.14 and the above choice of pε, for any 1 ≤ p ≤ 2

it follows that

∥∥∂tPw(l)
∥∥
p
≤
∥∥P∂tw(l)

∥∥
pε

.
∥∥∂tw(l)

∥∥
pε

. σ−1
∑
k

∥∥θ2a2
k

∥∥
C1
t,x

∥∥PσVk
∥∥
pε

. κ3σ−1τ
3/2µ−1µ1−2/pετ

1/2−1/pε . κ3σ−
1/2τ

3/2µ−1
[
µ1−2/pτ

1/2−1/p
]
.

Due to our choice of constants, (Equation 3.77), for any sufficiently large λ(κ) we have

κ3σ−
1/2τ

3/2µ−1 ≤ κ2

and hence

∥∥∂tPw(l)
∥∥
p
. κ2

[
µ1−2/pτ

1/2−1/p
]
.
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Finally, it remains to bound the terms ∂tw
(cp) and ∂tw

(cl). As in the proof of Proposition

3.4.9, we have the following estimates:

∥∥∥∑
k

∂t(θak)∇∆−1
(
∇ak ·PσWk

)∥∥∥
p
.
∥∥θak∥∥C1

t,x

∥∥∥∇∆−1
(
∇ak ·PσWk

)∥∥∥
p

. κ2σ−1
[
µ1−2/pτ

1/2−1/p
]

. κ2
[
µ1−2/pτ

1/2−1/p
]
,

which is the desired bound.

3.5 Proof of main proposition: new Reynolds stress

In this section, we construct a new Reynolds stress R such that (Equation 3.13) holds. The

majority of this section is devoted to obtaining bounds on the new Reynolds stress R using the

established estimates for the velocity perturbations in Section 3.4. We split R into four parts

and then estimate them separately.

To do this, one needs to obtain a symmetric traceless matrix R as the new stress term.

Since the underdetermined system (Equation gNSR) only provides an implicit definition of R,

i.e. its divergence, the divergence has to be “inverted”. This is a standard technique in elliptic

PDEs. Here, we follow the one used in (3).
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Definition 3.5.1 (Inverse divergence). Let f ∈ C∞(T3) be a smooth vector field. The inverse

divergence operator R : C∞(T3,R3)→ R3×3 is defined by

(Rf)ij = Rijkfk,

Rijk = −1

2
∆−2∂i∂j∂k −

1

2
∆−1∂kδij + ∆−1∂iδjk + ∆−1∂jδik.

(3.112)

Remark 3.5.2. We note that in the definition, the inverse Laplacian ∆−1 is defined on T3

and gives functions with zero mean. So Rf is always well-defined and mean free.

With the above definition, a simple exercise leads to the following.

Lemma 3.5.3. The operator R defined by (Equation 3.112) has the following properties. For

any vector field f ∈ C∞(T3) the matrix Rf is symmetric trace-free, and

divRf = f. (3.113)

If additionally div f = 0, then

R∆f = ∇f + (∇f)T . (3.114)

With this inverse divergence operator, we are ready to give the definition of the new Reynolds

stress.

Definition 3.5.4 (New Reynolds stress R). Define the new Reynolds stress by

R =R
(
∂tw + Law + div(w ⊗ v0 + v0 ⊗ w) + div(θ2R0 + w ⊗ w)−∇p1

)
+ (1− θ2)R0

(3.115)
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where the pressure term p1 = θ2ρ and ρ is defined in (Equation 3.81).

It is immediate that the new Reynold stress R verifies the following equation thanks to

Lemma 3.5.3

divR =∂tw + Law + div(w ⊗ v0 + v0 ⊗ w) + divR0 + div(w ⊗ w)−∇p1.

Consequently, since (v0, R0) is a solution of (Equation gNSR), there exists a uniquely deter-

mined zero-mean pressure P such that the new solution v = v0 + w verifies

∂tv + Lav + div(v ⊗ v) +∇P = divR.

In view of w = w(p) + w(l) + w(c), the new Reynolds stress can be rewritten as

R = Rlin +Rcor +Rosc +Rrem, (3.116)

where the linear part Rlin, the correction part Rcor, oscillation part Rosc and the reminder part

Rrem are respectively defined by

Rlin = R
(
∂tw + Law −∆w(l) + div(w ⊗ v0 + v0 ⊗ w)

)
,

Rcor = R
(

div
(
(w(c) + w(l))⊗ w + w(p) ⊗ (w(c) + w(l))

))
,

Rosc = R
(

div(θ2R0 + w(p) ⊗ w(p)) + ∆w(l) −∇p1

)
,

Rrem = (1− θ2)R0.
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In the remainder of this section, we will estimate R via the decomposition ‖R‖1 ≤ ‖Rlin‖1 +

‖Rcor‖1 + ‖Rosc‖1 + ‖Rrem‖1 and show the following.

Lemma 3.5.5 (Estimates for R). The new Reynolds stress R obeys the estimates:

‖R(t)‖1 ≤



ε for t ∈ I4−1r(F1)

δ0 + ε for t ∈ I4−2r(F1) \ I4−1r(F1)

δ0 for t ∈ [0, T ] \ I4−2r(F1).

(3.117)

Since supptw ⊂ I4−2r(F1), it is sufficient to show that

∥∥Rlin

∥∥
L∞t L

1
x

+
∥∥Rcor

∥∥
L∞t L

1
x

+ ‖Rosc‖L∞t L1
x
≤ ε.

We first estimate the linear part. For this term, the smallness of the intermittency plays a

key role.

Lemma 3.5.6 (Linear error). For any λ sufficiently large,

∥∥Rlin

∥∥
L∞t L

1
x
≤ ε

4
. (3.118)

Proof. Considering the fact that

‖R‖Lp(T3)→Lp(T3) . 1 for any 1 < p <∞ (3.119)
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due to the Hardy-Littlewood-Sobolev inequality, and that

‖Rdiv ·‖Lp(T3)→Lp(T3) . 1 for any 1 < p <∞ (3.120)

due to the boundedness of the Riesz transform, throughout the proof we fix p > 1 close to 1

such that

µ1−2/pτ
1/2−1/p = λ

17
15

(1−2/p) ≤ λ−16/15. (3.121)

Split the linear error Rlin = Rt + Rd, where the first part Rt is the error caused by time

derivative Rt = R∂tw, and the second part Rd consists of the dissipative and drifts errors

Rd = R∆(w(p) + w(c)) +R div
(
w ⊗ (a+ v0)

)
+Rdiv

(
(a+ v0)⊗ w

)
.

For the liner error caused by time derivative, by (Equation 3.119) and Proposition 3.4.11

we have

∥∥Rt∥∥1
≤
∥∥R∂tw∥∥p . ∥∥∂tw∥∥p . κ2µ1−2/pτ

1/2−1/p ≤ κ2λ−
16
15 . (3.122)
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We turn to estimate the liner error caused by drifts and the Laplacian. So using Lemma

3.5.3, (Equation 3.120) and Hölder’s inequality we get

∥∥Rd∥∥1
≤ ‖R∆(w(p) + w(c))‖1 +

∥∥R div
(
w ⊗ (a+ v0)

)∥∥
p

+
∥∥R div

(
(a+ v0)⊗ w

)∥∥
p

. ‖∇(w(p) + w(c))‖1 + ‖w‖p
[
‖a‖∞ + ‖v0‖∞

]
. (3.123)

By Corollary 3.4.10 and using (Equation 3.121) we have

‖∇(w(p) + w(c))‖1 .
[
ρ
1/2
0 + λ−

1/3
]
λ−

2/15

‖w‖p . ρ
1/2
0 λ−

16/15.

It follows from the above and (Equation 3.123) that

∥∥Rd∥∥1
. ρ

1/2
0 λ−

2/15 + ρ
1/2
0 λ−

16/15
(
‖a‖∞ + ‖v0‖∞

)
. (3.124)

Combining (Equation 3.122) and (Equation 3.124), for any sufficiently large λ(a, ε, e1, κ, v0)

it holds

∥∥Rlin

∥∥
1
≤
∥∥Rt∥∥1

+
∥∥Rd∥∥1

≤ ε

4
. (3.125)
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Next, we turn to estimating the correction part of the new Reynolds stress R. This part is

essentially caused by w(c) and w(l) which are both much smaller than w(p).

Lemma 3.5.7 (Correction error). For any λ sufficiently large,

∥∥Rcor

∥∥
L∞t L

1
x
≤ ε

8
. (3.126)

Proof. In view of Corollary 3.4.10, fix a p > 1 close to 1 such that

‖w(c)‖ 2p
p−2

. λ−
1
30 ,

‖w(l)‖ 2p
p−2

. λ−
1
30 .

By the Lp boundedness of Rdiv and Hölder’s inequality, we have

‖Rcor‖1 . ‖Rcor‖p .p ‖
(
(w(c) + w(l))⊗ w‖p + ‖w(p) ⊗ (w(c) + w(l))‖p (3.127)

.
(
‖w(c)‖ 2p

p−2
+ ‖w(l)‖ 2p

p−2

)
‖w‖2 (3.128)

. λ−
1
30
(
ρ
1/2
0 + λ−

1
3 + λ−

1
30
)
. (3.129)

Due to the negative exponent in λ on the right hand side, for any sufficiently large λ(ε, e0, e1, κ)

we have

‖Rcor‖1 ≤
ε

8
.
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Finally, we turn to estimating the oscillation error Rosc, where we will utilize the fact that

viscous eddies are approximate stationary solutions of the NSE.

Lemma 3.5.8 (Decomposition of Rosc). The oscillation error Rosc can be decomposed into two

parts:

Rosc = Rhigh +Rlow +Rerr, (3.130)

where Rhigh is the high frequency part

Rhigh = θ2R
∑
k

∇(ak)
2P 6=0Pσ

(
Wk ⊗Wz

)
, (3.131)

Rlow consists of lower order terms

Rlow =σθ2R
∑
k

a2
kPσ

(
div(Wk ⊗Wz)−∆Vk

)
− σ−1θ2R

∑
k

[
∆a2

kPσVk + 2∇a2
k ·Pσ∇Vk

]
,

(3.132)

and Rerr is the symmetry breaking error

Rerr = θ2Rdiv
∑
k

a2
k

(
Pσ

(
Wk ⊗Wk

)
−Pσ

(
Wk ⊗Wz

))
.
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Proof. Since Wk have disjoint supports in space, we have

w(p) ⊗ w(p) = θ2
∑
k

(ak)
2Pσ

(
Wk ⊗Wk

)
,

which in view of Lemma 3.4.5 gives

w(p) ⊗ w(p) − θ2
∑
k

a2
k

(
Pσ

(
Wk ⊗Wk

)
−Pσ

(
Wk ⊗Wz

))
= θ2(t)

∑
k

a2
k

 
T3

Pσ

(
Wk ⊗Wz

)
+ θ2

∑
k

a2
k

(
Pσ

(
Wk ⊗Wz

)
−
 
T3

Pσ

(
Wk ⊗Wz

))
= θ2ρ Id−θ2R0 + θ2

∑
k

(ak)
2P 6=0Pσ

(
Wk ⊗Wz

)
. (3.133)

Upon taking the divergence on both sides of (Equation 3.133) we have for the oscillation error

Rosc = R
(

div θ2R0 + div(w(p) ⊗ w(p))−∇p1 + ∆w(l)
)

= Rerr +R
(
θ2 div

∑
k

(ak)
2P 6=0Pσ

(
Wk ⊗Wz

)
+ ∆w(l)

)
.

By the product rule we may obtain

Rosc = Rerr +Rhigh +R
(
σθ2

∑
k

a2
kPσ div

(
Wk ⊗Wz

)
+ ∆w(l)

)
. (3.134)
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It remains to compute the second term in (Equation 3.134). Using the definition of w(l), a

routine computation gives

∆w(l) = −σθ2
∑
k

a2
kPσ∆Vk − θ2

∑
k

[
σ−1∆a2

kPσVk + 2∇a2
kPσ∇Vk

]
,

which implies exactly

R
(
σθ2

∑
k

a2
kPσ div

(
Wk ⊗Wz

)
+ ∆w(l)

)
= Rlow.

Hence the oscillation error verifies the identity Rosc = Rhigh +Rlow +Rerr.

Remark 3.5.9. The term Rhigh is typical in convex integration, where the derivative falls on

“slow variable” ak and the term P 6=0Pσ

(
Wk ⊗Wk

)
has fast oscillation and zero mean. The

presence of Rlow and Rerr is one the fundamental differences between our scheme and previous

ones.

We are ready to estimate the oscillation error. The term Rhigh will be able to gain a factor

of σ−1 via the inverse divergence R, while the term Rlow is already quite small thanks to the

inverse Laplacian. In other words, Rhigh is of high frequency, while Rlow is not of high frequency

but instead lower order.
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Lemma 3.5.10 (Oscillation error: Rhigh). For any λ sufficiently large,

∥∥Rhigh

∥∥
L∞t L

1
x
≤ ε

4
. (3.135)

Proof. Throughout the proof, let us fix two parameters 0 < α < 1 and 1 < p < 2, such that the

Sobolev embedding Wα,1(T3) ↪→ Lp(T3) holds.

It follows from the Lp boundedness of the Riezs transform that

‖Rhigh‖L1(T3) ≤ ‖Rhigh‖Lp(T3) .
∑
k

∥∥∥|∇|−1
(
∇(a2

k)P 6=0Pσ

(
Wk ⊗Wz

))∥∥∥
p
. (3.136)

Obviously P6=0Pσ

(
Wk ⊗Wz

)
is σ−1T3-periodic and has zero mean, and by Lemma 3.4.5

∥∥∇a2
k

∥∥
Cmx
≤
∥∥a2

k

∥∥
Cm+1
x
≤ κm+3 for all 0 ≤ m ≤M.

Thus we may apply Proposition 2.4.4 with Ca = κ3 to obtain that

∥∥∥|∇|−1
(
∇(a2

k)P 6=0Pσ

(
Wk ⊗Wz

))∥∥∥
p
.σ−1+α

∥∥∥|∇|−α(∇(ak)
2P 6=0Pσ

(
Wk ⊗Wz

))∥∥∥
p

+ κ3σ−N
∥∥Pσ

(
Wk ⊗Wz

)∥∥
p
.

(3.137)
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The first term in (Equation 3.137) can be estimated by the Sobolev embedding Wα,1(T3) ↪→

Lp(T3), and Lemma 3.4.5 as follows:

σ−1+α
∥∥∥|∇|−α(∇(ak)

2P 6=0Pσ

(
Wk ⊗Wz

))∥∥∥
p
. σ−1+α

∥∥a2
k

∥∥
C1
t,x

∥∥Pσ(Wk ⊗Wz)
∥∥

1

. σ−1+ακ4
∥∥Pσ

(
(Wz +Wr)⊗Wz

)∥∥
1
.

(3.138)

Now recall thatWr /∈ L2 due to the 1/r singularity on the Ωk-plane, butWr ∈ Lp since 1 ≤ p < 2

(see (Equation 3.61)). Hence, Hölder’s inequality, (Equation 3.60), and (Equation 3.61) imply

∥∥Pσ

(
(Wz +Wr)⊗Wz

)∥∥
1
.
(
‖Wz‖Lp(R3) + ‖Wr‖Lp(R3)

)
‖Wz‖L1−1/p(R3)

.p

(
µ1−2/pτ

1/2−1/p + µ−
2/pτ

3/2−1/p
)
µ−1+2/pτ−

1/2+1/p

= µ0τ0 + µ−1τ1

. 1.

(3.139)

The second term in (Equation 3.137) can be handled easily using Proposition 3.3.14 and

N = 300,

κ3σ−N
∥∥Pσ

(
Wk ⊗Wz

)∥∥
p
. κ3λ−10

(
‖Wz‖Lp(R3) + ‖Wr‖Lp(R3)

)
‖Wz‖L∞(R3) . κ3λ−1. (3.140)

Collecting (Equation 3.136), (Equation 3.137), (Equation 3.138), (Equation 3.139),

and (Equation 3.140) we arrive at

∥∥Rhigh

∥∥
1
. (κ3 + κ4)σ−1+α.
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As 0 < α < 1, for all λ(ε, κ) sufficiently large we can conclude that

∥∥Rhigh

∥∥
L∞t L

1
x
≤ ε

8
.

Lemma 3.5.11 (Oscillation error: Rlow). For any λ sufficiently large

∥∥Rlow

∥∥
L∞t L

1
x
≤ ε

8
. (3.141)

Proof. Let us fix p > 1 such that

στ2µ−1
(
τ1−1/pµ2−2/p

)
≤ λ−

1
30 . (3.142)

So by the boundedness of R on Lp and Hölder’s inequality, we have

∥∥Rlow

∥∥
L1(T3)

≤
∥∥Rlow

∥∥
Lp(T3)

.
∑
k

σ
∥∥a2

k

∥∥
L∞t,x

∥∥∥Pσ

(
div(Wk ⊗Wz)−∆Vk

)∥∥∥
p

+ σ−1
∥∥a2

k

∥∥
C2
t,x

∥∥PσVk
∥∥
p

+ σ−1
∥∥a2

k

∥∥
C1
t,x

∥∥Pσ∇Vk
∥∥
p

Thanks to Proposition 3.3.11,

∥∥∥Pσ

(
div(Wk ⊗Wz)−∆Vk

)∥∥∥
p
. τ2µ−1

(
τ1−1/pµ2−2/p

)
.
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Combining this with the estimates in Proposition 3.3.14 and Lemma 3.4.5, it follows that

∥∥Rlow

∥∥
1
.
(
κ2στ2µ−1 + κ4σ−1τµ−2 + κ3σ−1τµγ−1

)(
τ1−1/pµ2−2/p

)
.
(
κ2 + κ3 + κ4

)
στ2µ−1

(
τ1−1/pµ2−2/p

)
,

(3.143)

where we used µγ = σ ≤ σ2τ for the third term.

Using (Equation 3.142) and taking λ(κ, ε) sufficiently large, the desired bound follows:

∥∥Rlow

∥∥
1
≤ ε

8
.

Lemma 3.5.12 (Symmetry breaking error: Rerr).

∥∥Rerr

∥∥
L∞t L

1
x
≤ ε

8
.

Proof. We fix 1 < p < 2 so that µ−γµ2−2/pτ1−1/p ≤ µ−γ/2. Recall that R div is bounded on Lp.

Then

∥∥Rerr

∥∥
L1(T3)

≤
∥∥Rerr

∥∥
Lp(T3)

.
∑
k

∥∥a2
k

∥∥
L∞t,x

∥∥∥Pσ

(
Wk ⊗Wk

)
−Pσ

(
Wk ⊗Wz

)∥∥∥
p
.
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Now using Lemma 3.4.5 and Proposition 3.3.9, we obtain

∥∥Rerr

∥∥
1
. κ2µ−γµ2−2/pτ1−1/p

. κ2µ−
γ/2

≤ ε

8
,

for λ(ε, κ) large enough.

Note that Lemma 3.5.5 is proved, as it follows directly from Lemma 3.5.6, 3.5.7, 3.5.10,

3.5.11, and 3.5.12.

3.6 Proof of main proposition: energy level

In this section, we prove properties related to the energy in the main proposition. To show

the correct energy level of the solution v, let us first show that the energy in the perturbation

w is dominated by w
(p)
z , which is anticipated in view of the estimates in Proposition 3.4.9.

Lemma 3.6.1. For any λ sufficiently large

∣∣‖v(t)‖22 − ‖v0(t)‖22 − ‖w(p)
z (t)‖22

∣∣ ≤ 10−7(e1 − e0) for all t ∈ [0, T ]. (3.144)

Proof. Since w = w
(p)
z + w

(p)
r + w(l) + w(c), we have

‖v(t)‖22 − ‖v0(t)‖22 − ‖w(p)
z (t)‖22 = Eerror
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where the error term Eerror is

Eerror = 2〈w, v0〉+ 2〈w(p)
z , w(p)

r + w(c) + w(l)〉+ ‖w(p)
r + w(c) + w(l)‖22.

Fix any 1 < p < 2. By Hölder’s inequality, we have

∣∣Eerror

∣∣ . ‖w(t)‖p‖v0(t)‖ p
p−1

+
(
‖w(p)

r ‖2 + ‖w(c)‖2 + ‖w(l)‖2
)
‖w(p)

z ‖2 + ‖w(p)
r ‖22 + ‖w(c)‖22 + ‖w(l)‖22.

Thanks to Corollary 3.4.10, for any sufficiently large λ(e1, κ, v0) we have

‖w(c)‖22 + ‖w(l)‖22 . λ−
3
10 ,

‖w(p)
r ‖2 . ρ

1/2
0 λ−

7
15λ

17
15

(1− 2
p

)
,

‖w(p)
z ‖2 . ‖w(p)‖2 + ‖w(p)

r ‖2 . ρ
1/2
0 ,

‖w‖p . (ρ
1/2
0 + λ−

1
30 )λ

17
15

(1− 2
p

)
.

Since ρ0(t) . e1, for any sufficiently large λ(e1, e0, κ, v0), we can make sure that

∣∣Eerror

∣∣ ≤ 10−7(e1 − e0).

Next, we estimate the energy of w(p) more precisely than Proposition 3.4.9. Note that the

choice of ρ0, namely (Equation 3.79), is crucial in the proof. Recall that ẽ1 = e1−10−6(e1−e0).
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Lemma 3.6.2. Suppose that the constant C in the statement of Proposition 3.2.1 is small

enough. For any λ sufficiently large, the energy of w(p) verifies

∣∣‖w(p)
z ‖22 − θ2(ẽ1 − ‖v0‖22)

∣∣ ≤ 10−7(e1 − e0) for all t ∈ [0, T ].

Proof. First, note that as in (Equation 3.67) and (Equation 3.68),

‖Wz − (Wz)γ‖2 . µ−1−γ‖Wz‖H1 . µ−2−γτ = λ−
1/3.

Hence, thanks to Lemma 3.4.5,

∣∣∣∣∣‖w(p)
z ‖2 −

∥∥∥θak∑
k

PσWz

∥∥∥
2

∣∣∣∣∣ . ∥∥∥θak∑
k

Pσ(Wz − (Wz)γ)
∥∥∥

2
. κλ−

1/3,

and consequently ∣∣∣∣∣‖w(p)
z ‖2 −

∥∥∥θak∑
k

PσWz

∥∥∥
2

∣∣∣∣∣ ≤ 10−8(e1 − e0) (3.145)

for λ(e0, e1, κ) large enough. Now recall that

 
T3

Pσ

(
Wk ⊗Wz

)
=

 
T3

Pσ

(
Wz ⊗Wz

)
.
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Thus, similarly to (Equation 3.133), we obtain

θ2
∑
k

a2
k

 
T3

Pσ

(
Wz ⊗Wz

)
= θ2

∑
k

a2
k

 
T3

Pσ

(
Wz ⊗Wz

)
+
∑
k

a2
k

(
Pσ

(
Wz ⊗Wz

)
−
 
T3

Pσ

(
Wz ⊗Wz

))
= θ2ρ Id−θ2R0 + θ2

∑
k

(ak)
2P 6=0Pσ

(
Wz ⊗Wz

)
.

Upon taking the trace and integrating in space, it follows that

∥∥∥θak∑
k

PσWz

∥∥∥2

2
= 3θ2

ˆ
T3

ρ(x, t) + θ2
∑
k

ˆ
T3

(ak)
2P6=0Pσ Tr

(
Wz ⊗Wz

)
,

Using the definition of ρ0 (Equation 3.79), we can consider the split

∥∥∥θak∑
k

PσWz

∥∥∥2

2
− θ2(ẽ1 − ‖v0‖22) = Xl +Xh, (3.146)

where Xl is the low frequency error term

Xl = 3θ2

ˆ
T3

ρ(x, t)− θ2(ẽ1 − ‖v0‖22), (3.147)

and Xh is the high frequency error term

Xh = θ2

ˆ
T3

(ak)
2P 6=0Pσ Tr

(
Wz ⊗Wz

)
. (3.148)
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The goal is to show that |Xl| + |Xh| ≤ 10−7(e1 − e0). Let us first estimate the term Xh.

Using a standard integration by parts argument, we have1

∣∣Xh

∣∣ .∑
k

‖a2
k‖CMt,x

∥∥|∇|−MP6=0Pσ Tr
(
Wz ⊗Wz

)∥∥
2
, (3.149)

where M is as defined in Definition 3.4.1. Since P 6=0Pσ Tr
(
Wk ⊗Wk

)
is σ−1T-periodic and of

zero mean, we have

∥∥|∇|−MP6=0Pσ Tr
(
Wz ⊗Wz

)∥∥
2
. σ−M+3

∥∥|∇|−3P 6=0Pσ Tr
(
Wz ⊗Wz

)∥∥
2

. σ−M+3
∥∥P 6=0Pσ Tr

(
Wz ⊗Wz

)∥∥
1

. σ−M+3
∥∥Wz

∥∥2

L2(R3)

. σ−M+3,

where the second inequality follows from the Sobolev embedding H−3(T3) ↪→ L1(T3), and the

last inequality follows from Proposition 3.3.14. Combining this with (Equation 3.149) and using

Lemma 3.4.5, we get

∣∣Xh

∣∣ . ‖a2
k‖CMt,xσ

−M+3 . κM+2σ−M+3. (3.150)

1Recall that ‖ak‖Cm
t,x
≤ κm+1 is only valid for 0 ≤ m ≤ 4M .
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Hence for sufficiently large λ(e0, e1, κ), we can ensure that

∣∣Xh

∣∣ ≤ 10−8(e1 − e0). (3.151)

On the other hand, for the term Xl using the definitions of ρ and ρ0 (namely (Equation 3.81)

and (Equation 3.79)) we get

Xl = −12θ2ρ0

(
1−

ˆ
χ2(ρ−1

0 R0)

)

First, Let us split the integral

ˆ
χ2(ρ−1

0 R0) =

(ˆ
|R0|≤ρ0

+

ˆ
|R0|≥ρ0

)
χ2(ρ−1

0 R0).

Next, by the above split we have

∣∣Xl

∣∣ . ρ0

∣∣∣∣∣1−
ˆ
|R0|≤ρ0

χ2(ρ−1
0 R0)

∣∣∣∣∣+ ρ0

∣∣∣∣∣
ˆ
|R0|≥ρ0

χ2(ρ−1
0 R0)

∣∣∣∣∣ . (3.152)

Since δ0 = ‖R0‖L∞t L1
x
, thanks to the Chebyshev inequality we have

∣∣{x ∈ T3 : |R0| ≥ ρ0}
∣∣ ≤ δ0

ρ0
,
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which together with the definition of χ in (Equation 3.78) and the fact that |T3| = 1 implies

that

∣∣Xl

∣∣ . ρ0

∣∣∣∣∣1−
ˆ
|R0|≤ρ0

1dx

∣∣∣∣∣+ ρ0

ˆ
|R0|≥ρ0

ρ−1
0 |R0|

. ρ0

∣∣∣∣∣
ˆ
|R0|>ρ0

1dx

∣∣∣∣∣+

ˆ
|R0|≥ρ0

|R0|

. δ0.

Note that in the estimates for Xl, all implicit constants are universal. In view of the assumption

δ0 ≤ C(e1 − e0) in the statement of Proposition 3.2.1, we may choose the constant C small

enough such that

∣∣Xl

∣∣ ≤ 10−8(e1 − e0). (3.153)

Combining (Equation 3.145), (Equation 3.151), and (Equation 3.153) with (Equation 3.146)

we obtain

∣∣‖w(p)‖22 − θ2(ẽ1 − ‖v0‖22)
∣∣ ≤ 10−7(e1 − e0). (3.154)

With the help of Lemma 3.6.1 and 3.6.2, we obtain the desire energy level of the new solution

v as a corollary.
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Corollary 3.6.3. Suppose that the constant C in the statement of Proposition 3.2.1 is small

enough. For any λ sufficiently large, the energy of new solution v(t) verifies

sup
t
‖v(t)‖22 ≤ e1,

and

∣∣‖v(t)‖22 − e1

∣∣ ≤ c0

2
(e1 − e0) for all t ∈ I4−1r(F1).

Proof. Both bounds immediately follow from Lemma 3.6.1, 3.6.2 and the facts that ẽ1 = e1 −

10−6(e1 − e0) and θ = 1 on I4−1r(F1).
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Appendix A

SUPPLEMENTARY MATERIALS FOR CHAPTER 2

A.1 An Estimate for Hölder norms

We collect here the following classical result on the Hölder norms of composition of functions.

A proof using the multivariable chain rule can be found in (28).

Proposition A.1.1. Let F : Ω → R be a smooth function with Ω ⊂ Rd. For any smooth

function u : Rd → Ω and any 1 ≤ m ∈ N we have

‖∇m(F ◦ u)‖∞ . ‖∇mu‖∞
∑

1≤i≤m
‖∇iF‖∞‖u‖i−1

∞ (A.1)

where the implicit constant depends on m, d.

A.2 Constantin-E-Titi commutator estimate

The following commutator-type estimate originates from the one proved in (21). Compared

with other versions used in (3; 6) the one stated below is homogeneous, i.e. it only involves

highest order derivative. For reader’s continence we include a proof here following closely the

argument of Lemma 1 in (23).
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Proposition A.2.1. Let f, g ∈ C∞(Td) and let ηε be a family of mollifier. For any m ∈ N and

1 ≤ p ≤ ∞ we have

∥∥∥∇m[(fg) ∗ ηε − (f ∗ ηε)(g ∗ ηε)
]∥∥∥
p
. ε2−m‖∇f‖2p‖∇g‖2p (A.2)

Proof. It suffices to prove for any multi-index α with |α| = m the following estimate:

∥∥∥∂α[(fg) ∗ ηε − (f ∗ ηε)(g ∗ ηε)
]∥∥∥
p
. ε2−m‖∇f‖2p‖∇g‖2p. (A.3)

By the product rule and the fact that mollification commutes with differentiation we compute

∂α
[
(fg) ∗ ηε − (f ∗ ηε)(g ∗ ηε)

]
= (fg) ∗ ∂αηε −

∑
β

Cαβ (f ∗ ∂α−βηε)(g ∗ ∂βηε)

where the summation is taking over all multi-index 0 ≤ β ≤ α. So

∂α
[
(fg) ∗ ηε − (f ∗ ηε)(g ∗ ηε)

]
= (fg) ∗ ∂αηε − (f ∗ ∂αηε)(g ∗ ηε)− (f ∗ ηε)(g ∗ ∂αηε)

−
∑
β 6=0,α

Cαβ (f ∗ ∂α−βηε)(g ∗ ∂βηε)

The fact that
´
ηε = 1 and

´
∂ηε = 0 implies

f ∗ ηε = [f − f(x)] ∗ ηε + f(x) and f ∗ ∂βηε = [f − f(x)] ∗ ∂βηε
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for any multi-index β 6= 0. Let

rα(f, g) =

ˆ [
f(x− y)− f(x)

][
g(x− y)− g(x)

]
∂αηε(y)dy,

and it follows

rα(f, g) = (fg) ∗ ∂αηε − (f ∗ ηε)(g ∗ ∂αηε)− (f ∗ ∂αηε)(g ∗ ηε)

+ [f − f(x)] ∗ ηε(g ∗ ∂αηε) + (f ∗ ∂αηε)[g − g(x)] ∗ ηε

= (fg) ∗ ∂αηε − (f ∗ ηε)(g ∗ ∂αηε)− (f ∗ ∂αηε)(g ∗ ηε)

+ [f − f(x)] ∗ ηε([g − g(x)] ∗ ∂αηε) + ([f − f(x)] ∗ ∂αηε)[g − g(x)] ∗ ηε

and

∑
β 6=0,α

Cαβ (f ∗ ∂α−βηε)(g ∗ ∂βηε) =
∑
β 6=0,α

Cαβ

[
(f − f(x)) ∗ ∂α−βηε

][
(g − g(x)) ∗ ∂βηε

]
.

Putting together the preceding two equations we have

∂α
[
(fg) ∗ ηε − (f ∗ ηε)(g ∗ ηε)

]
= rα(f, g)−

∑
β

Cαβ
(
f − f(x)

)
∗ ∂α−βηε ·

(
g − g(x)

)
∗ ∂βηε.
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On the one hand by Minkowski’s inequality we have

∥∥∥ˆ [
f(x− y)− f(x)

][
g(x− y)− g(x)

]
∂αηε(y)dy

∥∥∥
p
.

ˆ ∥∥f(· − y)− f(·)
∥∥

2p

∥∥g(· − y)− g(·)
∥∥

2p
∂αηε(y)dy.

From the integral form of Mean Value Theorem and Minkowski’s inequality it follows that

∥∥f(· − y)− f(·)
∥∥

2p
. |y|‖∇f‖2p∥∥g(· − y)− g(·)

∥∥
2p

. |y|‖∇g‖2p

which enables us to obtain

∥∥∥ˆ [
f(x− y)− f(x)

][
g(x− y)− g(x)

]
∂αηε(y)dy

∥∥∥
p
. ‖∇f‖2p‖∇g‖2p

ˆ
|y|2∂αηε(y)dy

. ε2−m‖∇f‖2p‖∇g‖2p.

On the other hand by Hölder’s inequality we have

∥∥∥∑
β

Cαβ

[
(f − f(x)) ∗ ∂α−βηε

][
(g − g(x)) ∗ ∂βηε

]∥∥∥
p

.
∑
β

∥∥(f − f(x)) ∗ ∂α−βηε
∥∥

2p

∥∥(g − g(x)) ∗ ∂βηε)
∥∥

2p

. εm−2‖∇f‖2p‖∇g‖2p
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where we have used the fact that ‖(f − f(x)) ∗ ∂βηε‖2p . εβ−1‖∇f‖2p.

Therefore ∥∥∥∂α[(fg) ∗ ηε − (f ∗ ηε)(g ∗ ηε)
]∥∥∥
p
. ε2−m‖∇f‖2p‖∇g‖2p.

A.3 Proof of Proposition 2.4.4

We include a proof of Proposition 2.4.4 in the d-dimensional case. By considering ã := 1
Ca
a it

suffices to prove both of the results for Ca = 1. Notice that since p ≥ 2 is even, the function |a|p,

which is a composition of a : Td → [−1, 1] and xp, is smooth. Therefore, applying Proposition

A.1.1 we see that

‖∇m|a|p‖∞ .p ‖∇ma‖∞ +
∑
i≤m
‖∇a‖i−1

∞

.p µ
m

for any m ∈ N.

We can now introduce the split:

‖af‖pp =

ˆ
Td

(ap − |a|p)(|f |p − |f |p) dx+ ‖a‖pp‖f‖pp,
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where · denotes the integral over Td. By Parseval’s theorem, we get1

‖af‖pp ≤
∣∣∣∣ˆ

Td
|∇|M (ap − |a|p)|∇|−M (|f |p − |f |p)dx

∣∣∣∣+ ‖a‖pp‖f‖pp.

We need show the first term is very small. By Hölder’s inequality:

∣∣∣∣ˆ
Td
|∇|M (ap − |a|p)|∇|−M (|f |p − |f |p)dx

∣∣∣∣ . ∥∥|∇|Map∥∥2

∥∥|∇|−M (|f |p − |f |p)
∥∥

2
. (A.4)

By the L2 boundedness of Riesz transform we can replace the nonlocal |∇|M by ∇M to

obtain

∥∥|∇|Map∥∥
2
.
∥∥∇Map∥∥

2

≤
∥∥∇Map∥∥∞

. µM .

(A.5)

1The nonlocal operators |∇|s and |∇|−s are defined respectively by multipliers with symbols |k|s and
|k|−s for k 6= 0 and zero for k = 0.
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We turn to estimate the second factor in (Equation A.4). Considering the fact that the

function (|f |p − |f |p) is zero-mean and σ−1Td-periodic we have

∥∥∥|∇|−M (|f |p − |f |p)
∥∥∥

2
. σ−M+d

∥∥∥|∇|−d(|f |p − |f |p)∥∥∥
2

. σ−M+d
∥∥∥(|f |p − |f |p)

∥∥∥
1

. σ−M+d‖f‖pp,

where the first inequality is a direct consequence of the Littlewood-Paley theory and the second

inequality follows from the Sobolev embedding L1(Td) ↪→ Hd(Td).

Combining this with estimates (Equation A.4) and (Equation A.5) we find that

∣∣∣∣ˆ
Td
|∇|M (ap − |a|p)|∇|−M (|f |p − |f |p) dx

∣∣∣∣ . σ−M+dµM‖f‖pp.

By the assumption µ ≤ σ1−θ, there exists a number Mθ,p,N,d ∈ N sufficiently large so that

σ−M+dµM ≤ σ−Np. (A.6)

Then we have

∣∣∣∣ˆ
Td
|∇|M (ap − |a|p)|∇|−M (|f |p − |f |p) dx

∣∣∣∣ . σ−Np‖f‖pp,

which finishes the proof of (Equation 2.20) due to the elementary inequality (ap+bp) ≤ (a+b)p.
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To prove (Equation 2.21) let us first recall the wavenumber projection. For any λ ∈ R define

P≤λ =
∑

q:2q≤λ ∆q and P≥λ = Id−P≤λ, where ∆q is the Littlewood-Paley projection. Consider

the following decomposition:

|∇|−1(af) = |∇|−1+s|∇|−s
(
P≤2−4σa

)
f + |∇|−1+s|∇|−s

(
P≥2−4σa

)
f

:= |∇|−1+sA1 + |∇|−1+sA2

For the term A1, since f is σ−1Td-periodic and zero-mean, it follows that

P≥2−1σf = f

and then by the support of Fourier modes of
(
P≤2−4σa

)
f we have

P≤2−2σ

[
P≤2−4σaf

]
= 0 and

 
Td

P≤2−4σaf = 0

which implies that

|∇|−1+sA1 = |∇|−1+sP≥2−2σA1.

By the Littlewood-Paley theory, we have

∥∥∥|∇|−1+sP≥2−2σ

∥∥∥
Lp→Lp

.p σ
−1+s, 1 < p <∞.
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So, we have

∥∥|∇|−1+sA1

∥∥
p
.p σ

−1+s
∥∥∥|∇|−s(P≤2−4σaf

)∥∥∥
p
.

To get the exact form of the estimate, noticing that |∇|−s is bounded on Lp, 1 < p < ∞, we

conclude that

∥∥|∇|−1+sA1

∥∥
p
≤ σ−1+s

∥∥|∇|−s(af)
∥∥
p

+ σ−1+s
∥∥|∇|−s(P≥2−4σaf

)∥∥
p

. σ−1+s
∥∥|∇|−s(af)

∥∥
p

+ σ−1+s
∥∥P≥2−4σa

∥∥
∞‖f‖p. (A.7)

Similarly for A2, since |∇|−1 is bounded on Lp, we have

∥∥|∇|−1+sA2

∥∥
p

=
∥∥|∇|−1

(
P≥2−4σa

)
f
∥∥
p
.
∥∥P≥2−4σaf

∥∥
p
≤
∥∥P≥2−4σa

∥∥
∞‖f‖p.

So it suffices to show ‖∆qa‖∞ . 2−Nq for all 2q ≥ 2−4σ. Recall from the definition of the

periodic Littlewood-Paley projection that

∆qa =

ˆ
Td
ϕq(x− y)a(y)dy,

where the frequency cutoffs satisfy

∥∥|∇|−Mϕq∥∥2
. 2−qM‖ϕq‖2 . 2−qM+qd. (A.8)
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By Parseval’s theorem and Young’s inequality,

‖∆qa‖∞ =

∥∥∥∥ˆ
Td
|∇|−Mϕq(· − y)|∇|Ma(y) dy

∥∥∥∥
∞

≤
∥∥|∇|−Mϕq∥∥2

∥∥|∇|Ma∥∥
2
.

From L2 boundedness of Riesz transform and the assumption on a it follows

‖|∇|Ma‖2 . ‖∇Ma‖2 . ‖∇Ma‖∞ ≤ µM , (A.9)

where we used Ca = 1. Thus, combining estimates (Equation A.9) and (Equation A.8) we find

‖∆qa‖∞ . 2qdµM2−qM

≤ 2qdσ(1−θ)M2−qM ,

where we used the fact that µ ≤ σ1−θ. Now choosing λ0 large enough so that σθ/2 ≥ 24(1−θ/2)

for all σ ≥ λ0, we obtain

‖∆qa‖∞ ≤ 2qdσ(1−θ/2)M2−4(1−θ/2)2−qM

≤ 2qd2−qθM/2,

(A.10)

provided 2q ≥ 2−4σ. Choosing any M ≥ 2(N − d)/θ, in view of (Equation A.10), we have

‖∆qa‖∞ . 2−Nq for all 2q ≥ 2−4σ.
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After taking a summation in q for 2q ≥ 2−4σ we obtain

‖P≥2−4σa‖∞ . σ−N .

Then collecting all the estimates, we have

∥∥|∇|−1+s(af)
∥∥
p
≤
∥∥|∇|−1+sA1

∥∥
p

+
∥∥|∇|−1+sA2

∥∥
p

. σ−1+s‖|∇|−s(af)‖p + σ−N‖f‖p.
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SUPPLEMENTARY MATERIALS FOR CHAPTER 3

B.1 Del formulae in cylindrical coordinates

In this appendix, we collect some useful vector calculus identities concerning the cylindrical

coordinates (see for example (1)).

Let f be a scaler function. The gradient of f

∇f =
∂f

∂r
er +

1

r

∂f

∂θ
er +

∂f

∂z
ez. (B.1)

For vector field A = Arer +Aθeθ +Azez, its divergence

divA =
1

r

∂(rAr)

∂r
+

1

r

∂Aθ
∂θ

+
∂Az
∂z

, (B.2)

and curl

∇×A =
(1

r

∂Az
∂θ
− ∂Aθ

∂z

)
er

+
(∂Ar
∂z
− ∂Az

∂r

)
eθ

+
1

r

(∂(rAr)

∂r
− ∂Ar

∂θ

)
ez.

(B.3)
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For two vector field A and B, the material derivative

(A · ∇)B =
(
Ar
∂Br
∂r

+
Aθ
r

∂Br
∂θ

+Az
∂Br
∂z
− AθBθ

r

)
er

+
(
Ar
∂Bθ
∂r

+
Aθ
r

∂Bθ
∂θ

+Az
∂Bθ
∂z

+
AθBr
r

)
eθ

+
(
Ar
∂Bz
∂r

+
Aθ
r

∂Bz
∂θ

+Az
∂Bz
∂z

)
ez.

(B.4)

B.2 Decay estimates for the Possion equation

Here we derive some decay estimates for solutions of the planar Poisson equation. Let

f ∈ C∞c (R2) be radially symmetric with zero mean

ˆ
R2

f dx = 0. (B.5)

We show that

Lemma B.2.1. Let h be the solution of

∆h = f on R2, (B.6)

such that |h| → 0 as x→∞. Then h is radially symmetric and h ∈W 1,p(R2) for 1 < p ≤ ∞.

Proof. Since the solution h is given explicitly by the Newton potential

h(x) = − 1

2π

ˆ
R2

ln(|x− y|)f(y) dy, (B.7)

we only need to verify the decay estimates.
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The first decay |h| → 0 as x→∞ follows from removing the mean

h(x) = − 1

2π

ˆ
(ln(|x− y|)− ln(x))f(y) dy,

and the Mean Value Theorem. It is clear that h is smooth on R2.

To show that h ∈W 1,p(R2) for 1 < p ≤ ∞, let us consider the Taylor expansion of ln(|x−y|)

ln(|x− y|) = ln(|x|)− x · y
|x|2

+
∑
|β|=2

Rβ(x, y)yβ, (B.8)

where the remainder is given by

Rβ(x, y) =

ˆ 1

0
(1− t)Dβg(x− ty) dt, (B.9)

with g(x) = ln(|x|) and |∇2g| . 1
|x|2 .

Let us show that h ∈ Lp for 1 < p ≤ ∞. Since f has zero mean and zero first moment due

to radial symmetry, combining (Equation B.8) and (Equation B.7) we have

h(x) = − 1

2π

∑
|β|=2

ˆ
Rβ(x, y)yβf(y) dy. (B.10)

Then by Minkowski’s inequality, we have

‖h‖Lp(R2) .
∑
|β|=2

ˆ (ˆ ∣∣∣Rβ(x, y)
∣∣∣pdx) 1

p |f(y)||y|2dy. (B.11)
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To estimate Rβ(x, y), we use Minkowski’s inequality once again

ˆ ∣∣∣Rβ(x, y)
∣∣∣pdx .

[ˆ 1

0

(ˆ ∣∣∣Dβg(x− ty)
∣∣∣pdx) 1

p
dt

]p
.

Note that from definition, ∣∣∣Dβg(x− ty)
∣∣∣ .β

1

|x− ty|2
(B.12)

and we get
ˆ ∣∣∣Rβ(x, y)

∣∣∣pdx .p 1, for x > 2R and 1 < p ≤ ∞,

where R > 0 is chosen sufficiently large such that supp f ⊂ BR which together with the

smoothness of h on B2R implies

‖h‖Lp(R2) <∞, for 1 < p ≤ ∞.

The claim that ∇h ∈ Lp for 1 < p ≤ ∞ is easier since differentiating (Equation B.7) already

gives a decay of 1/|x| in the kernel, and in this case just removing the mean is sufficient.

B.3 Essential discontinuities by Buckmaster-Vicol solutions

In this section, we show that it is possible to use the weak solution constructed in (8) to

obtained essential discontinuities of positive measure in the energy profile. First, recall
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Theorem B.3.1 (Theorem 1.2 of (8)). There exists β > 0, such that for any nonnegative

smooth function e(t) : [0, T ] → R+, there exists v ∈ C([0, T ];Hβ(T3)) a weak solution of the

Navier-Stokes equations, such that
´
T3 |v(x, t)|2dx = e(t) for all t ∈ [0, T ].

Let e(t) be a nonnegative bump function supported on (1/2, 1) such that maxt e(t) = 1.

Consider a weak solution u ∈ C((0, 1];L2(T3)) such that on each interval [2−n−1, 2−n], u(t) is

the Buckmaster-Vicol solution with energy profile e(2nt). As a consequence, we have

lim inf
t→0−

‖u(t)‖22 = 0, lim sup
t→0−

‖u(t)‖22 = 1.

Such an example does not extend to the whole interval [0, 1] as Theorem B.3.1 on its own

does not guarantee the existence of the weak limit as t→ 0+ since there are no other available

bounds as opposed to in the proof of Theorem 3.1.3 where we used (Equation 3.35).

However, we can modify this construction in the following way. Consider a Buckmaster-

Vicol solution un(t) on [1/2, 1] with the energy profile en(t) = 2−2ne(t) and define (on T3)

u(t) =

∞∑
n=0

2nun(2nx, 22nt).

Then u(t) is weakly continuous at t = 0, as the weak limit is zero. And it is a weak solution on

[0, 1] with energy bounded by 1. Moreover,

lim inf
t→0+

‖u(t)‖2 = 0, lim sup
t→0+

‖u(t)‖2 = 1.
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Using a similar argument in the proof of Theorem 3.1.3, one can also use Buckmaster-Vicol

solutions to obtain weak solutions whose discontinuities have positive measure in time. Note

that this method does not produce jump discontinuities nor density of the set of discontinuities

since the resulting solution is “intermittent” on the time interval.
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PERMISSION TO USE PUBLISHED WORK

As stated in Chapter 1, the work in Chapter 2 and Chapter 3 has respectively already

appeared in (58) and (57). Permission was not required to reuse the material in Chapter 3

while the proof of permission to reuse the material in Chapter 2 was obtained and attached in

the following.
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34. Frehse, J. and Růžička, M.: On the regularity of the stationary Navier-Stokes equations.
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 21(1):63–95, 1994.
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