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“One thing Grothendieck said was that one should never try to prove anything that is not

almost obvious” - Allyn Jackson, “Comme Appelé du Néant— As If Summoned from the Void:

The Life of Alexandre Grothendieck”.
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CONTRIBUTIONS OF AUTHORS

After brief introduction in Chapter 5, we prove some properties about the derived category

Dqc(X) needed prove Lemma 5.0.2 and Proposition 5.0.3

Done by the author is Proposition 5.0.6, which states that we can pullback a compact

generator from a quasicompact, separated scheme Xsep to X being quasicompact quasiseparated

scheme via the separator morphism, granted the scheme X satisfies Hypothesis 5.0.5. This

hypothesis motivated Definition 5.0.4, about how the open affines V ⊂ X from a cover of X

should contain the closed subset of non separated points ZV .

Later, Proposition 5.0.7 is proved, this forms the hypothesis that is used to prove the main

theorem.

Finally, the author concludes with the main Theorem 5.0.8, which proves the assertion made

that Dperf(X) is regular if and only if X can be covered by affines of finite global dimension,

given that X admits a separator and satisfies Hypothesis 5.0.5.

In Chapter 6 we briefly discuss further directions for this theory.

Most of the work done in this thesis is based on the article (26, Jatoba) published online by

the author of this thesis at arXiv with free access.
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CHAPTER 1

INTRODUCTION

This chapter is based on the article (26, Jatoba).

1.1 History

In 2003, Bondal and Van den Bergh in (2, Theorem 2.2), defined what it means for an

object to (strongly) generate a triangulated category. The definitions was inspired by the close

relation between certain types of triangulated categories having a strong generator and being

saturated, i.e., that every contravariant cohomological functor of finite type to vector spaces is

representable. Categories that admit a strong generator were then called regular.

Moreover, in the same article Bondal and Van den Bergh showed that whenever X is a

smooth variety, Dperf(X) is regular if and only if, X can be covered by open affine subschemes

Spec(Ri) with each Ri of finite global dimension. It was then asked by Bondal and Van den

Bergh if one could generalize the condition over the scheme to be quasicompact and separated.

We should point out that this theorem started with the affine case proved by Kelly (3), see

also Street (4). The result was rediscovered by Christensen (5) and later Rouquier (7).

Over the next decade, several steps followed in this direction. First, the case where X

is regular and of finite type over a field k was proved by both Orlov (6, Theorem 3.27), and

Rouquier (7), Theorem 7.38,. This last paper from Rouquier is also responsible for the generality

of the following important theorem.
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Theorem 1.1.1 (Rouquier). Let R be a neotherian, commutative ring. Let T be a regular

triangulated category proper over R, and suppose that T is idempotent complete. Then an

R-linear functor H : T → R−Mod is representable if and only if

i) H is homological, and

ii) for any object X ∈ T , the direct sum ⊕∞
i=−∞H(ΣiX) is a finite R-module.

This motivate finding examples of regular, idempotent complete triangulated categories

proper over a noetherian ring R. In particular, it is a well-known fact that the category Dperf(X),

for X a quasicompact, quasiseparated scheme, is idempotent complete.

In 2017, Neeman (1) proved the Bondal and Van den Bergh conjecture, i.e.

Theorem 1.1.2 (Neeman). Let X be a quasicompact, separated scheme. Then Dperf(X) is

regular if and only if, X can be covered by open affine subschemes Spec(Ri), with each Ri of

finite global dimension.

Remark 1.1.3. One direction of the Theorem 1.1.2 has been proven in full generality. If

Dperf(X) is regular, one may show that if U = Spec(R) is any open affine subscheme of X,

then R is of finite global dimension. This claim follows by Thomason and Trobaugh (8), which

shows that the restriction functor j∗ : Dperf(X) → Dperf(U) is the idempotent completion of

the Verdier quotient map, that is, there is a factorization of j∗ by a Verdier localization functor

V : Dperf(X) → S−1Dperf(X), where the Ker(V) is the strictly full saturated subcategory whose

objects are 0 outside of U, and then the idempotent completion˜: S−1Dperf(X) → ˜S−1Dperf(X) =

Dperf(U).
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If G ∈ Dperf(X) is a strong generator, then j∗G ∈ Dperf(U) is also a strong generator. By

(7, Theorem 7.25), this implies that R must be of finite global dimension.

One might ask if the separated condition could be weakened to quasiseparated. As shown

above, one of the main applications involves idempotent complete triangulated categories, and

Dperf(X) is an idempotent complete triangulated category, for X a quasicompact, quasiseparated

scheme.

This paper gives one step in this direction, extending Theorem 1.1.2. We show that for

quasicompact, quasiseparated scheme that admits a separator - with some extra condition for

the subscheme of non separated points - the theorem holds.

Theorem 1.1.4. Let X be a quasicompact, quasiseparated scheme that admits a separator

f : X → Xsep and a cover by affines Uλ such that the closed subscheme of non separated points

ZUλ is contained in f−1(f(Uλ)) . Then Dperf(X) is regular if and only if, X can be covered by

open affine subschemes Spec(Ri) with each Ri of finite global dimension.

A separator is a morphism f : X→ Xsep with some universal property from a quasicompact,

quasiseparated scheme X to a particular quasicompact separated scheme Xsep, introduced by

Ferrand and Khan in (9) and discussed here in Chapter 3. It encapsulates the idea of “gluing”

open sets from a quasiseparated scheme in such a way that the image is separated. If the

scheme is already separated, the separator is an isomorphism. Because of this, for any open

affine U ⊂ X, a point x ∈ U and the induced morphism f−1(f(U)) → f(U), one may have a fiber

of x being more than just x, i.e., {x} ( f−1(f(U)). We call x a non separated point of U and the
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schematically closure in X of all non separated points of U we call ZU. The hypothesis is that

ZU must be in f−1(f(U)). More on that will be discussed in Chapter 5.

One direction of the proof of theorem 1.1.4 is identical to the Remark 1.1.3, so it remains to

show that Dperf(X) is regular if X can be covered by affines of finite global dimension. With the

assumption of the existence of a separator, the main idea is to pullback the strong generator

from the separated scheme and show that it is again a strong generator in Dqc(X). Not all

quasiseparated schemes admits a separator, but several examples may be found in (9).



CHAPTER 2

BACKGROUND

This work will need some background knowledge on algebraic geometry and category theory

and is based on the article (26).

2.1 Algebraic Geometry

We start the introduction of the algebraic geometry theory. Mostly of what is here can be

found in (10, Sections 4, 5) or in (9, Apendix A).

2.1.1 Morphisms of schemes

We start by showing some definitions and properties of what we will use throughout this

work. We assume the reader is familiar with the concepts of what is a scheme, some topological

properties - such as: what is an open affine, an open subscheme, a closed subscheme, being qua-

sicompact - what is a morphism of schemes and the diagonal morphism. For those definitions,

we refer to books such as Hartshorne (11), Görtz and Wedhorn (12), Atiyah (13) and Eisenbud

(14).

Proposition 2.1.1. Let f : X → S be a morphism of schemes and ∆f : X → X ×S X the

diagonal morphism. Then the diagonal morphism is an immersion, that is, there exist an open

U ⊂ X×S X containing the image ∆f(X) such that ∆f induces a closed immersion X→ U.

5
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Definition 2.1.2. Let f : X → S be a morphism of schemes. We say that f is separated if

the diagonal morphism ∆f is a closed immersion, that is, that the image of ∆f(X) ⊂ X×S X is

closed. A scheme X is called separated if the morphism X→ Spec(Z) is separated.

Example 2.1.3. Affine schemes are separated (10, 5.2.2). Moreover, any open subscheme of a

separated scheme is separated.

Definition 2.1.4. Let f : X → S be a morphism of schemes. The morphism f is called

quasiseparated if the diagonal morphism is quasicompact. A scheme X is called quasiseparated

if the morphism X→ Spec(Z) is quasiseparated.

Lemma 2.1.5. Let f : X→ S be a morphism of schemes. Then:

• If X is a separated scheme, then all morphisms f : X→ S are separated.

• If X is a quasiseparated scheme, then all morphisms f : X→ S are quasiseparated.

• If S is a separated scheme and f is a separated morphism, then X is separated.

• If S is a quasiseparated scheme and f is a quasiseparated morphism, then X is quasisepa-

rated.
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Proof. Consider the following Cartesian diagram

X
∆f // X×S X

δ //

��

X× X

f×f
��

S
∆S // S× S.

The first two statements follows from the fact that both δ and ∆S are immersions. For the last

two statements, suppose ∆S, and δ, are closed immersion (or for the quasiseparated case, both

are quasicompact). Therefore, ∆f has the same property, as the composition δ ◦ ∆f = ∆X has

the respective property.

It is a known fact that for S = Spec(R) for some ring R, then f : X→ S is separated if and

only if, for every open affine U,V ⊂ X the intersection U∩V is also an affine open, the induced

R−algebra morphism of sections φUV : Γ(U)⊗R Γ(V) → Γ(U ∩ V) is surjective.

Now that we have the tools at our disposal, we can start discussing the properties of the

morphisms we will be working with. Recall that the main idea is to use properties of morphisms

to obtain a desired family of schemes on some derived category of OX−modules. The morphism

we will be working with will be called a separator, which is a quasiseparated, quasicompact

morphism that is a local isomorphism. What is left for us to define and discuss is what is a

local isomorphism and we will follow (10, 4.4) and (9, Apendix A).
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Definition 2.1.6. A morphism of schemes f : X → Y is called local isomorphism if for every

point p ∈ X, there exist an open U ⊂ X such that p ∈ U and f induces an open immersion

U→ Y.

The idea behind a local isomorphism is exactly of gluing together two open sets, that is, if

U and V are opens of X, then the induced morphisms of f to each open is an isomorphism of U

to f(U) and V to f(V) and their image are “glued” along the open f(U) ∩ f(V) which contain

f(U ∩ V).

By (10, 6.2.1), any local isomorphism is open, flat and locally of finite presentation. A

sufficient and necessary condition is that if f : X → Y is locally of finite presentation and for

every point p ∈ X, the morphism between the stalks θp : OY,f(p) → OX,p is an isomorphism,

then f is a local isomorphism.

We also have the following proposition

Proposition 2.1.7 ((9, Proposition A.3.1)). Let f : X → Y be a separated local isomorphism.

If f induces an injection over all maximum points of X, then f is an open immersion.

Definition 2.1.8 ((10, Definition 5.4)). A morphism f : X → Y is said to be schematically

dense if OY → f∗(OX) is injective.

If a morphism f : X→ Y is schematically dense, then it is dense, i.e., the image f(X) is dense

in Y. Any immersion that is schematically dense is an open morphism. Any closed immersion

that is schematically dense is an isomorphism.
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Let f : X → Y be a quasicompact, quasiseparated morphism. The direct image f∗(OX) is

a quasicoherent OX-algebra. The ideal I from the canonical morphism OY → f∗(OX) is also

quasicoherent. I defines a closed subscheme Z ⊂ Y which motivates the following definition.

Definition 2.1.9. The schematic closure of a quasicompact, quasiseparated morphism f : X→
Y, or of X in Y, is the closed Z ⊂ Y defined by the ideal I. There is a factorization

X
v // Z

u // Y

where u is a closed immersion and v is schematically dense.

An important property of schematic closure is that if the morphism is quasicompact, qua-

siseparated, then the schematic closure commutes with flat base change. Another known prop-

erty of schematic closure is the universal property which we state without proof as follows:

Lemma 2.1.10 (Uniqueness of Schematically Closure). Consider the following commutative

square of schemes

X
v //

v ′
��

Z

u
��

Z ′
u ′
// Y.

where u and u ′ are closed immersion defined by I and I ′ ideals of OY respectively. If the

morphism v is schematically dense, then I ′ ⊂ I and there exist a morphism w : Z→ Z ′ making

the two triangles commute.
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We end this section by giving two different ways to check when the diagonal ∆f is schemat-

ically dense, which will be used in Chapter 3.

Proposition 2.1.11 ((9, Proposition 2.2.1)). Let f : X → Y be a quasiseparated local isomor-

phism. Then the diagonal ∆f : X → X ×Y X is schematically dense if and only if, for all open

U ⊂ X such that the restriction of f is an open immersion on Y, the morphism U→ f−1(f(U))

is schematically dense.

Proposition 2.1.12. Let X be a scheme. Let U ⊂ X be an open subscheme. If the inclusion

morphism U→ X is quasicompact, then U is scheme theoretically dense in X if and only if the

scheme theoretic closure of U in X is X.

With that, we conclude the algebraic geometry part of this section.

2.2 Category Theory

2.2.1 Derived Category

The following sections will be devoted to explaining the background in category theory

needed to understand this work. We start with the derived category of an abelian category A

which will be a category where we invert a collection of morphisms. The notation used in this

section follows the one of (15).

Definition 2.2.1 ((16, Gabriel and Zisman))). Let C be a category and S a collection of

morphism in C. Then, there exist a category S−1C and a functor F : C → S−1C such that

Obj(C) = Obj(S−1C)

(i) If s ∈ S ⊂ Mor(C), then F(s) is invertible.
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(ii) Any functor F ′′ : C → B with F ′′(S) contained in the isomorphisms of B, factors uniquely

as C F
−→ S−1C F ′

−→ B.

Care must be taken when dealing with categories of the type S−1C, since morphisms are

composable strings, whose pieces are either an element of Mor(C) or the inverse of some element

of S. This increases the size of Mor(S−1C), which does not need to be small.

We refer to (17, Hartshorne) or (18, Verdier) for the original presentations, or for a more

recent approach (19, Gelfand and Manin), (20, Kashiwara and Schapira) or (21, Weibel).

Definition 2.2.2. Let A be an abelian category. The derived category DC‘
C (A) is defined as

follows:

a) The objects are cochain complexes in A, that is diagrams in A of the form

. . .→ An−1
dn−1
−−−→ An

dn−−→ An+1 → . . .

where the composites of the morphisms di : Ai → Ai+1 all vanish for all i ∈ Z, i.e.,

di+1 ◦ di = 0.

b) Morphisms in DC‘
C (A) are homotopy classes of cochain maps f• : A• → B• , that is a

commutative diagram

Ai
di

//

fi
��

Ai+1

fi+1
��

Bi
di // Bi+1
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satisfying the homotopy restriction and such that the objects A• and B• are in DC‘
C (A) and

moreover we formally invert quasi-isomorphism, i.e. the maps that induces isomorphisms

in cohomology.

The subscript C and superscript C ′ stand for conditions.

Example 2.2.3. Now let X be a scheme. Consider the abelian category of sheaves of OX-

modules. Then D(OX-modules) is the derived category of sheaves of OX-modules, which we

shorten as D(X) for convenience.

We then construct some more derived category by adding restrictions to D(X).

Example 2.2.4. Let Dqc(X) be the derived category of objects with quasicoherent cohomology,

that is, the objects in Dqc(X) are the objects of D(X) (the cochain complexes of OX-modules)

with the condition that the cohomology must be quasicoherent.

Example 2.2.5. Let Dperf(X) be the derived category where the objects are the perfect com-

plexes. A cochain complex of OX-modules is perfect if it is locally isomorphic to a bounded

complex of vector bundles.

2.2.2 Triangulated Category

The derived category is an example of a triangulated category, which is already endowed

with extra desired structures, such as the shifting endofunctor and that short exact sequences

form long exact sequence in cohomology. The theory of triangulated categories is rich and we

shall be brief for the purpose of this work, since we will not be using the specifics of triangulated
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category theory, but more about the consequences that being triangulated implies. For instance,

since the derived categories we will be working with are triangulated categories, we will have a

description of what a compact object is and moreover the compact objects will be exactly the

perfect complexes.

Definition 2.2.6. A triangulated category T is an additive category with the following extra

structure:

(i) An invertible additive endofunctor [1] : T → T .

(ii) A collection of exact triangles, also called distinguished triangles, which in our case are

diagrams in T of the form

X
f
−→ Y

g
−→ Z

h
−→ X[1]

This should satisfies the following axioms:

• [TR1:] Any triangle isomorphic to a distinguished triangle is a distinguished triangle.

For any object X ∈ T the diagram

0
0
−→ X

id
−→ X

0
−→ 0

is an exact triangle. Any morphism f : X→ Y may be completed to an exact triangle

X
f
−→ Y

g
−→ Z

h
−→ X[1].
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• [TR2:] Any rotation of an exact triangle is exact. That is:

X
f
−→ Y

g
−→ Z

h
−→ X[1]

is an exact triangle if and only if the following triangle also is

Y
−g
−−→ Z

−h
−−→ X[1]

−f[1]
−−−→ Y[1].

• [TR3+4:] Given a commutative diagram, where the rows are exact triangles,

X
f //

a

��

Y
g //

b
��

Z
h // X[1]

X ′
f ′ // Y ′

g ′
// Z ′

h ′
// X ′[1]

we may complete it to a commutative diagram

X
f //

a

��

Y
g //

b
��

Z
h //

��

X[1]

a[1]
��

X ′
f ′ // Y ′

g ′
// Z ′

h ′
// X ′[1]

.

Moreover: we can do it in such a way that the following is an exact triangle

Y ⊕ X ′


−g 0

b f ′


−−−−−−−−→ Z⊕ Y ′


−h 0

c g ′


−−−−−−−−→ X[1]⊕ Z ′


−f[1] 0

a[1] h ′[1]


−−−−−−−−−−−−→ Y[1]⊕ X ′[1].
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To show that the derived category is a triangulated category is a long, although simple,

problem. We will show what is the endofunctor [1], but for the exact triangles and why they

satisfies the axioms TR1 to TR4 we referred to (15).

Example 2.2.7. The endofunctor [1] in D(X), also called the shifting or suspension functor,

is the functor [1] : A• → A[1]• defined as taking the cochain complex

. . .→ A−2 d−2
−−→ A−1 d−1

−−→ A0
d0−→ A1

d1−→ A2 → . . .

to

. . .→ A−1 −d−1
−−−→ A0

−d0−−→ A1
−d1−−→ A2

−d2−−→ A3 → . . .

That is, we shift the complex to the left by one, A[1]n = An+1, and the maps all change

sign. For the morphisms, (f[1])• also follows the shift, not changing the map degree wise.

This defines [1] only for the cochain maps. To extend to arbitrary morphisms in D(X), we

must use the universal property of the localization of the derived category.

Remember that D(X) = S−1C, where C is the category with same objects as D(X), mor-

phisms are cochain maps up to homotopy and S is the class of morphisms that induces isomor-

phisms in cohomology, namely quasi-isomorphism. The shifting functor [1] takes S to itself,

since if s is a quasi-isomorphism, then s[1] will also be a quasi-isomorphism. We consider the

composition C [1]
−→ C F

−→ S−1C. By the universal property of the localization there exists an

unique map, represented by the dotted arrow below, such that the following diagram commute
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C
[1] //

F
��

C

F
��

S−1C // S−1C

.

Therefore, we define [1] : D(X) → D(X) to be this unique map.

Notice that the same construction gives us the shifting functor for the other two examples

of derived category: Dperf(X) and Dqc(X).

From now on, we will also call exact triangles or distinguish triangles as just triangles. We

also will define another endofunctor as following:

Definition 2.2.8. Let T be a triangulated category. The endofunctor [n] will be defined as

[n] = [1]n : T → T .

For the introduction of a compact generator we shall define what is a triangulated full

subcategory.

Definition 2.2.9. A full subcategory S ⊂ T is called triangulated if 0 ∈ S, if S[1] = S, and

if, whenever X, Y ∈ S and there exists in T a triangle X → Y → Z → X[1], we must also have

Z ∈ S. The subcategory S is thick if it is triangulated, as well as closed in T under direct

summands.

With the needed structures of triangulated category defined, we move to compact generators.

Compact generators are the foundation of this work, as stated in the Section 1.1.

Definition 2.2.10. Let T be a triangulated category with coproducts. An object G ∈ T is

compact if the functor Hom(G,−) respects coproducts, i.e., the map



17

∐
i∈I

HomT (G,Ei) −→ HomT

(
G,

∐
i∈I
Ei

)

is a bijection, for any set I and objects Ei ∈ Ob(T ) parametrized by i ∈ I. A set of compact

objects {Gi, i ∈ I} is said to generate the category T if the following equivalent conditions hold:

(i) If X ∈ T is an object, and if Hom(Gi, X[n]) = 0 for all i ∈ I and all n ∈ Z, then X = 0.

(ii) If a triangulated subcategory S ⊂ T is closed under coproducts and contains the objects

{Gi, i ∈ I}, then S = T .

If the category T contains a set of compact generators it is called compactly generated.

The equivalence from the Definition 2.2.10 above is not obvious, although it is an standard

result. In particular, we will be focusing on categories where the class of compact generators

{Gi, i ∈ I} is only a singleton {G}. We show now that the categories we have introduced before

are compactly generated.

Example 2.2.11. Consider the affine scheme X = Spec(R) for some ring R. We will call

Dqc(X) = Dqc(R) = Dqc(R−mod) where we view the abelian category OX −mod as R−mod.

The category Dqc(R) has coproducts: one can show that the coproduct of a family of

cochains parametrized by λ ∈ Λ

. . .→ A−2
λ → A−1

λ → A0λ → A1λ → A2λ → . . .

is
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. . .→ ∐
λ∈Λ

A−2
λ → ∐

λ∈Λ
A−1
λ → ∐

λ∈Λ
A0λ → ∐

λ∈Λ
A1λ → ∐

λ∈Λ
A2λ → . . .

If we consider the functor that takes R−mod to the zero degree cochain and look at the

image of R - viewed as R-mod - we obtain the object in Dqc(R)

. . .→ 0−2 → 0−1 → R0 → 01 → 02 → . . .

which we will also call as R ∈ Dqc(R).

The Hom functor Hom(R,−) is isomorphic in Dqc(R) to the 0-th degree cohomology functor,

that is HomD(R)(R,−) = H0(−). It is known that H0(−) respects coproducts. Hence, R is a

compact object.

We observe that for any object X ∈ Dqc(R), HomDqc(R)(R, X[n]) = Hn(X), for all n ∈ Z.

Hence, if Hn(X) = 0 for all n ∈ Z, X is acyclic, i.e. is quasi-isomorphic to 0. Therefore, X = 0

in Dqc(R) and R is a compact generator by Definition 2.2.10.

So we conclude that Dqc(R) is compactly generated by the single compact object R ∈

Dqc(R).

It should be clear that the formula used in Dqc(R) for coproducts does not work for Dperf(X),

since the arbitrary coproducts may not be perfect anymore. In fact, that is not an isolated case,

Dperf(X) does not have coproducts. Conversely, Dqc(R) has coproducts and in fact is compactly

generated by R.
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Even more can be said about Dqc(X). If X is a quasicompact, quasiseparated scheme, then

the category Dqc(X) also has a single compact generator. This is a theorem, proved in (2,

Theorem 3.1.1(ii)).

Remark 2.2.12. Let T be a triangulated category with coproducts. We denote by T c the full

subcategory whose objects are the compact objects in T . In the particular case where T =

Dqc(X), for X quasicompact quasiseparated, the category T c is exactly Dperf(X) of Example

2.2.5. This is not obvious, but can be found in (2, Theorem 3.1.1(i))

Example 2.2.11 is another good illustration of the big picture that encapsulates the phi-

losophy behind this work. First some result about compact objects of the derived category of

an affine scheme was proven. Since compact objects in that category are precisely the perfect

complexes in Dqc(R), it was expected to extend the result to the case where the scheme is qua-

sicompact, quasiseparated. This is because the “ideal” place where results of perfect complexes

should exist is for quasicompact, quasiseparated schemes, once the affine case is proven. This

is only an idea, not a rule.



CHAPTER 3

SEPARATOR MORPHISM

This chapter is based on the article (26).

A separator of a morphism f : T → S is another morphism h, which is universal among

morphisms from T to separated S-schemes E. This section will follow (9), which contains in-

depth explanations and further properties of separators and local isomorphisms.

Definition 3.0.1. Let f : T → S a morphism of schemes. A separator of f, or a separator

through f, is a morphism of S-schemes h : T → E, with E separated over S, such that the

following propreties are satisfied:

i) h is a quasicompact, quasiseparated, surjective local isomorphism (2.1.6) and

ii) the diagonal morphism ∆h is schematically dense (2.1.8).

If S = Spec(Z), we call h a separator of T . We observe that

(a) Morphism f : T → S that admits a separator is quasiseparated. This follows from the fact

that the diagonal ∆f factors as

T
∆h−−→ T ×E T

u
−→ T ×S T

where u is the induced morphism from the base change. Since ∆h is quasicompact, h is

quasiseparated and u is a closed immersion, the composition is quasicompact.

20
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(b) If T is integral, than property (i) of Definition 3.0.1 implies property (ii) of Definition

3.0.1.

The separator has several desired properties, all of which have an in-depth explanation in

(9). We are only interested in the following:

Proposition 3.0.2. Let f : T → S be a morphism and T
h
−→ E

g
−→ S a separator of f.

i) Let U be an open of T that is separated over S. Then the restriction of h induces an

isomorphism of U to h(U). In particular, h(U) is open and if T is already separated, h

is an isomorphism.

ii) (Universal Property) For all S-morphisms h ′ : T → E ′ with E ′ separated over S, there

exists a unique S-morphism u : E→ E ′ such that h ′ = uh.

Proof.

i) Let U be an open of T that is separated over S. First notice the morphism U→ E induced

from h is a separated morphism, since both U and E are, and h is quasi-separated. Second,

by the definition of a separator, ∆h is schematically dense. By 2.1.11, this implies that

the restriction of h to all maximal points of T is injective. Hence by Proposition 2.1.7, h

is an open immersion.

ii) Let h ′ : T → E ′ be an S-morphism with E ′ separated over S. Then, there exists a

commutative diagram
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T T ×E T

T ×E ′ T T ×S T

∆h ′

∆h

φ
∃w

φ ′

where the morphisms φ,φ ′ are closed immersions, since both E and E ′ are separated

over S. Since ∆h is schematic dense by assumption, the conditions on both φ and φ ′,

the requirements for the existence of w are met by the Uniqueness of Schematic Closure

2.1.10.

Hence the diagram

T ×E T T E

T ×E ′ T T E ′

w

h

u

h ′

commutes, and the result follows.

We give a simple, but important example which will guide our intuition throughout this

work.

Definition 3.0.3. Let U = Spec(k[t]) and V = Spec(k[s]). Let O1 = D(t) and O2 = D(s) be

open subschemes of U and V respectively. The affine line with double origin, named as A1d, is

the scheme obtained by glueing U and V over O1 ∼= O2 via the isomorphism k[t, 1t ]
∼= k[u, 1u ]

given by t 7→ u.
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Consider the affine line with double origin, which is quasicompact and quasiseparated. One

may ask the question: “What morphism of schemes from A1d should be universal over separated

schemes?”. A nice guess would be the projection morphism to the affine line. We shall give a

reasoning for why this should be the case.

Example 3.0.4. It is well known that A1d is quasicompact and quasiseparated. There is

an induced projection map π : A1d → A1 that maps both origin from A1d to the origin of

A1 = Spec(k[x]). This map is clearly quasicompact, quasiseparated (since both schemes are)

and surjective (is the left inverse of the open immersion i : A1 → A1d). It is also clear that any

point has an open (affine) neighbourhood that is isomorphic to the image π(U), as we can take

the open to be the same as either U or V from the definition 3.0.3. So π is a local isomorphism.

It remains to show that the diagonal ∆π is schematically dense. But this comes from the fact

that the inclusion of ∆π(A1d) in A1d⊗A1 A1d is quasicomapct and that A1d⊗A1 A1d is an affine line

with quadruple origin. Now, the schematic closure of ∆π(A1d) is A1d ⊗A1 A1d, so ∆π is schematic

dense, by Proposition 2.1.12.

Another way is to use Proposition 2.1.11. The map π defined as the left inverse of the

inclusion i : A1 → A1d satisfies the hypothesis of the proposition. Moreover, we may take U

to be affine and check that U → π−1(π(U)) is schematically dense. Again, we use Proposition

2.1.12, since the closure of any open containing one origin must contain the other, and if U is

an open not containing any of the origins, then π is the identity map. Hence, the diagonal is

schematically dense. Therefore π is the separator of A1d.

We give another point of view on the same example.
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Remark 3.0.5. Recall the Valuation Criteria for Separateness. Let f : X→ S be a morphism

of schemes. Assume that f is quasicompact and quasiseparated. Given any commutative solid

diagram

Spec(K) //

��

X

f

��
Spec(A) //

;;

S

where A is a valuation ring with field of fractions K,there exists a unique dotted arrow making

the diagram commute if and only if f is separated.

Example 3.0.6. We show that any map from A1d to a separated scheme must factor through

A1. As stated in the above remark 3.0.5, the key is to use the valuation criteria. Assume we

have a morphism f : A1d → S, for S some separated scheme. Then, since A1d is quasiseparated

and quasicompact, there should have at least two different maps h and g making the following

diagram commute

Spec(K) //

��

A1d

��
Spec(A) //

h

g

99

Spec(Z)

Further composing this diagram with f, we obtain

Spec(K) //

��

A1d

��

f // S

��
Spec(A) //

h

g

99

Spec(Z)
∼= // Spec(Z)
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Since S is separated, the two images of the point Spec(K) in A1d induced by g and h should

be equal after composing f, i.e., f ◦ g(Spec(K)) = f ◦ h(Spec(K)) where we made a slight abuse

of notation for the maps Spec(K) → A1d. In particular, the image of the two origins should

coincide in S. Therefore the map f should factor through π : A1d → A1.

We conclude that π : A1d → A1 could be the separator. Notice that this is not enough to

show that it is indeed the separator. Later we will give an example of a morphism that satisfies

the universal property, but is not a separator.

The good part of this example is that it gives a clear idea of a separator, both computation-

ally as given in Example 3.0.4 and through intuition as given by Example 3.0.6. Moreover, we

should not forget that the idea of a separator is to glue together two affines over the intersection,

which is basically how A1d is defined. Hence to get the separator of A1d we should “just” finish

gluing the two affines.

Finally, it is important to understand when a separator exists. The following theorem will

give some criteria to work with

Theorem 3.0.7. Let f : T → S be a quasiseparated morphism, and let T1 ⊂ T ×S T be the

schematic closure of the diagonal morphism ∆f : T → T ×S T . Then, f admits a separator h if

and only if, every irreducible component of T is locally finite over S - i.e., every point of T has

an open neighborhood which is disjoint to all but finitely many irreducible components of T -

and both the composition morphisms induced by the projections
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T1 →T ×S T ⇒ T

are flat and of finite type.

The proof is in (9, Theorem 5.1.1 )

Example 3.0.8. The schematic closure T1 of ∆(A1d) over f : A1d → Spec(Z) is the affine line

with quadruple origin. Each projection is of finite type, so remains to show that it is flat which

is a local condition.

Let U1, V1 be the affine cover of the first A1d that comes from the definition of how A1d is

constructed in 3.0.3 and U2,V2 the second copy A1d. Since Ui × Vj, for i, j = {1, 2} is a cover for

A1d × A1d, we should check flatness for projection for each one of the four opens of the cover.

But by definition of how A1d is constructed, each one of T1 ∩ (Ui×Vj) is isomorphic to A1, each

intersection selecting one of the four origins. It is clear that the projections are flat for those

cases.

Therefore, f : A1d → Spec(Z) has a separator. Notice that this does not tell us what map is

the separator, it only gives us that the separator exists.

Corollary 3.0.9. Let T be a quasiseparated S-scheme where each irreducible component is

locally finite. Then T admits a separator h : T → E if and only if, for all affine opens U,V of

T , the scheme U ∪ V admits a separator.
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Proof. For the necessary condition, it suffices to show that T has a cover by affine opens Uλ

such that the union of every two opens in the cover Uλ ∪Uµ admits a separator.

First, let U,V ⊂ T be affine opens. Since T is quasi-separated, the intersection of any affine

open with U∪V is quasi-compact. Recall that a subset Z of a topological space X is said to be

retrocompact if Z ∩U is quasi-compact for every quasi-compact open subset U of X. So U ∪ V

is retrocompact in T .

Hence, it suffices to show that for all retrocompact open U ⊂ T , h(U) is open and the

morphism U → h(U) is a separator of U. That h(U) is open in E follows from the fact that

U, by hypothesis, is retrocompact. It remains to show that h(U) is separated over S. Since h

is a local isomorphism, we have the induced isomorphism h ′ : U → h(U), which induces the

commutative diagram

U U×h(U) U U×E U

T T ×E T T ×E T

i

∆h ′ u

i×i

∆h

where u is an isomorphism, since h(U) → E is an immersion. Since i× i is an open immersion

and ∆h is quasi-compact and schematic dense, ∆h ′ is also schematically dense. Finally, for h ′

to be a separator, it remains to show that it is quasi-compact. But h ′ can be expressed as the

composition of two quasi-compact morphisms, i.e.,

U
i ′
−→ h−1(h(U))

h
−→ h(U)
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where i ′ is the open immersion induced by the inclusion i. Therefore the condition is necessary.

Next, notice that (U ∪ V)× (U ∪ V) ⊂ T × T is the union of four canonical opens, namely,

U×U,V×V,U×V,V×U. Let T1 be the schematic closure of the diagonal in T ×T . Then both

U×U and V×V are isomorphic via the projection to U and V respectively in T , hence flat and

of finite type. It suffices to work with U× V. Let W = T1 ∩ (U× V). By Theorem 3.0.7, both

projections d1 :W → U and d0 :W → V are flat and of finite type. Since T is quasi-separated,

the open immersions U→ T and V → T are (flat and) of finite type. The open sets U×V, with

U and V affines, cover T × T , so the two projections of T1 to T are flat and of finite type and,

again, from Theorem 3.0.7, the corollary follows.

Since we can not use the Corollary 3.0.9 on the A1d case, as A1d is already the union of two

known affines, we shall show without proof some examples taken from (9), Ferrand and Kahn.

Example 3.0.10. Here is a list of examples that do admit a separator:

i) Every regular locally Neotherian scheme of dimension 1 admits a separator, for instance

if T is a Neotherian dedekind scheme over Spec(Z) (9)[5.3.3].

ii) If f : T → S is étale of finite presentation and S is normal, then f admits a separator.

iii) Any normal scheme of finite type over a Noetherian ring admits an open subscheme

containing all points of codimension 1 and this subscheme has a separator (9, Example

6.1.1).

Sections 7 and 8 of (9) have some examples of schemes that do not admit a separator.

Example 3.0.11. The following are examples of schemes that do not admits a separator.
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i) (9, Example 7.3.1) Let P be a discrete valuation ring with field of fraction K. Let a 7→ a be

the quotient map from P to the residual field k = P/m. Suppose there exists two different

field extensions k1 and k2 such that [k : k1] = [k : k2] = 2. Let Ri ⊂ P, for i = 1, 2 formed

by a ∈ P such that a ∈ k1 and a ∈ k2. One can show that following properties

– The integral closure of Ai is P, for i = 1, 2.

– The homomorphism A1 ⊗A2 → P, defined by a⊗ b 7→ ab is surjective.

Let T be the scheme defined by gluing Ui = Spec(Ai) over the open U0 = Spec(K). Let

x1 and x2 be the two closed points such that jxi(Oxi) = Ai, where jx : Ox → K is the

(injective) homomorphism induced by restriction. By construction, both local rings Ai

are isomorphic (in P) to each other, but they are not equal.

Define T1 to be the schematic closure of the diagonal and d0, d1 : T1 ⇒ T be the projections.

Then d0 and d1 are flat if and only if for every couple of points x, y of T , the local

rings jx(Ox) being isomorphic to jy(Oy) implies that they are equal (9, Example 7.2.1).

Hence, by what was shown in the previous paragraph, one of the diagonals is not flat.

Therefore T does not admits a separator. After further inspection, one can show that

iT : T → Spec(Γ(T)) is the map that factors any other map from T to a separated scheme.

By the universal property of the separator, iT should be the separator of T . But what

fails is that it is neither a local isomorphism, nor it is flat.
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ii) There exist a morphism T → S smooth, quasicompact, with S being regular affine and of

dimension 1 that does not admits a separator. (9, Example 8.2.1)

iii) There exist an étale morphism f : T → S, with S local integral noetherian scheme of

dimension 1 that does not admits a separator. (9, Example 8.3.1).



CHAPTER 4

DERIVED CATEGORY

4.1 Strong Generators of a Triangulated Category

We begin with some definitions, terminology and key properties of a strongly generated

category. Most of what is written here follows the first few chapters of (1).

Definition 4.1.1. Let T be a triangulated category and G ∈ T an object. The full subcategory

〈G〉n ⊂ T is defined inductively as follows:

i) 〈G〉1 is the full subcategory consisting of all direct summands of finite coproducts of

suspensions of G.

ii) For n > 1, 〈G〉n is the full subcategory consisting of all objects that are direct summand

of an object y, where y fits into a triangle x→ y→ z, with x ∈ 〈G〉1 and z ∈ 〈G〉n−1.

Definition 4.1.2. Let G be an object in a triangulated category T . Then G is said to be a

classical generator if T = ∪∞n=1〈G〉n and a strong generator if there exists an n ∈ Z≥1 with

T = 〈G〉n.

Definition 4.1.3. A triangulated category T is called regular or strongly generated if a strong

generator exists.

Remark 4.1.4.

• One might also say that a regular category T is built from G in finitely many steps.

31



32

• In (1), a general discussion about different properties of triangulated category, such as

being proper or idempotent complete follows. It also gives insight about the importance

of studying such objects.

Definition 4.1.5. Let T be a triangulated category with coproducts, G ∈ T an object and

A < B integers. Then 〈G〉[A,B]n ⊂ T is the full subcategory defined inductively as follows:

i) 〈G〉[A,B]1 is the full subcategory of T consisting of all direct summands of arbitrary coprod-

ucts of objects in the set {Σ−iG,A ≤ i ≤ B} .

ii) 〈G〉[A,B]n is the full subcategory consisting of all objects that are direct summand of an

object y, where y fits into a triangle x→ y→ z, with x ∈ 〈G〉[A,B]1 and z ∈ 〈G〉[A,B]n−1 .

The difference between the categories 〈G〉n and 〈G〉[A,B]n is that 〈G〉[A,B]n allows arbitrary

coproducts, but restrict the allowed suspensions to a fixed range from A to B.

4.2 Operations between subcategories

There are several ways to create a new subcategory from others. Some of them will be

defined in this section, which follows (1).

Definition 4.2.1. Let T be a triangulated category with A and B two subcategories of T .

Then:

i) A?B is the full subcategory of all objects y in T for which there exist a triangle x→ y→ z

with x ∈ A and z ∈ B.

ii) add(A) is the full subcategory containing all finite coproducts of objects in A.
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iii) If T is closed under coproducts, then Add(A) is the full subcategory containing all (set-

indexed) coproducts of objects in A

iv) If A is also a full subcategory, then smd(A) is the full subcategory of all direct summands

of objects in A.

Note that the empty coproduct is 0, hence 0 ∈ add(A) ⊂ Add(A) for any A.

Definition 4.2.2. Let T be a triangulated category and A a subcategory. Define:

i) coprod1(A) := add(A), and inductively as coprodn+1(A) := coprod1(A) ? coprodn(A).

ii) Coprod1(A) := Add(A), and inductively as Coprodn+1(A) := Coprod1(A)?Coprodn(A).

iii) coprod(A) := ∪∞n=1coprodn(A).

iv) If T has coproducts, define Coprod(A) to be the smallest strictly full subcategory of T

containing A and satisfying

Add(Coprod(A)) ⊂ Coprod(A) and Coprod(A) ? Coprod(A) ⊂ Coprod(A).

Remark 4.2.3. The diagram
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coprodn(A) coprod(A)

Coprodn(A) Coprod(A)

commutes. Moreover, the associativity of the ? operation gives that

coprodm(A) ? coprodn(A) = coprodm+n(A),

Coprodm(A) ? Coprodn(A) = Coprodm+n(A).

It can also be shown that Coprod1(Coprodn(A)) = Add(Coprodn(A)) = Coprodn(A),

and Coprodn(Coprodm(A)) ⊂ Coprodnm(A).

The following lemma may be found in (1, Lemma 1.7) and will be used once to prove the

next corollary.

Lemma 4.2.4. Let T be a triangulated category with coproducts, T c be the subcategory of

compact objects in T , and let B be a subcategory of T c. Then

(i) For x ∈ Coprodn(B) and s ∈ T c, any map s → x factors as s → b → x with b ∈

coprodn(B).

(ii) For x ∈ Coprod(B) and s ∈ T c, any map s → x factors as s → b → x with b ∈

coprod(B).

Proof. (1, Lemma 1.7)
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Corollary 4.2.5. Let T be a triangulated category with coproducts, T c be the subcategory of

compact objects in T , and let B be a subcategory of T c. Then

(i) Any compact object in Coprodn(B) belongs to smd(coprodn(B)).

(ii) Any compact object in Coprod(B) belongs to smd(coprod(B)).

Proof. Let x be a compact object in Coprodn(B). The identity map 1 : x → x is a morphism

from the compact object x to x ∈ Coprodn(B). By the previous Lemma 4.2.4, the morphism

factors through an object b ∈
∐
n(B). Thus x is a direct summand of b and the results follows.

The same proof holds be removing the subscript n, which proves item (ii).

The next three results follow from these definitions with proofs found in the background

section from (1).

Lemma 4.2.6. Let T be a triangulated category with coproducts, and let B be an arbitrary

subcategory. Then

Coprodn(B) ⊂ smd(Coprodn(B)) ⊂ Coprod2n(B ∪ ΣB).

Remark 4.2.7. Let T be a triangulated category with coproducts, and let B ⊂ T be a

subcategory. For any pair of integers m ≤ n define

B[m,n] =
−m⋃
i=−n

ΣiB.
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Corollary 4.2.8. For integers N > 0,A ≤ B the identity 〈G〉[A,B]N = smd(CoprodN(G[A,B]))

always holds. Furthermore, one has the inclusions:

CoprodN(G[A,B]) ⊂ 〈G〉
[A,B]

N ⊂ Coprod2N(G[A− 1, B]).

From these two results, one concludes that regarding finiteness conditions there is no loss in

generality when working with Coprodn(G[A,B]) instead of 〈G〉[A,B]N , and smd will not change

the finiteness of the category generated by G[A,B]. So we may work with Coprodn(G[A,B]),

which behaves well with smd and the ? operations.

We end this section with a brief discussion about the Coprodn(G[A,B]) subcategory. As

stated in [4.1.5], Coprodn(G[A,B]) is a full subcategory of T . Together with Remark 4.2.7, we

may let the suspensions free by considering Coprodn(G[−∞,∞]). This means that any object

x ∈ Coprodn(G[−∞,∞]) factors through Coprodn(G[A,B]) for integers A and B. As usual, it

is possible that T = Coprodn(G[−∞,∞]), which motivates the following definition.

Definition 4.2.9. Let T be a triangulated category with coproducts and G ∈ T an object in

T . Then, T is said to be fast generated by G if T = Coprodn(G[−∞,∞]) for some n ∈ N.

When G is a compact object, Corollary 4.2.8 tells us that if T = 〈G〉[−∞,∞]

n , then T is fast

generated. In this paper, we will always consider the case when G is a compact generator.
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4.3 The Dqc(Xsep) case

Let Xsep be a quasicompact separated scheme. One may consider the category Dqc(Xsep),

which is the unbounded derived category of cochain complexes sheaves of OXsep−modules with

quasicoherent cohomology, and let Dperf(X) be the subcategory of compact objects.

Although the main result is about Dperf(X), the next result is the reason why we may work

over the bigger triangulated category Dqc(X), which contains coproducts for X quasicompact,

quasiseparated and moreover is compactly generated.

Proposition 4.3.1. Let X be a quasicompact, quasiseparated scheme and G ∈ Dperf(X) be

a compact generator of Dqc(X). If Dqc(X) is fast generated by G, then G strongly generates

Dperf(X).

Proof. Let Dqc(X) = Coprodn(G[−∞,∞]). Consider B = {ΣiG, i ∈ Z}. Then Corollary 4.2.5

gives that Dperf(X) = smd(coprodn(B)), which implies that G strongly generates Dperf(X).

The path should be clear by now. With the conditions of Theorem 1.1.4, if we show that

Dqc(X) is fast generated by a compact generator, then by the above Proposition 4.3.1 the main

result will follow.

We finish this section with two more results from (1) stated without proof.

Theorem 4.3.2 (Neeman). Let j : V → Xsep be an open immersion of quasicompact, sepa-

rated schemes, and let G be a compact generator for Dqc(Xsep). If H is any compact object
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of Dqc(V), and we are given integers n, a ≤ b, then there exist integers N,A ≤ B so that

Coprodn(Rj∗H[a, b]) ⊂ CoprodN(G[A,B]).

Proof. (1, Theorem 6.2)

Theorem 4.3.3 (Neeman). Let Xsep be a quasicompact separated scheme. If Xsep can be

covered by affine subschemes Spec(Ri) with each Ri of finite global dimension, then there exists

a compact generator G that fast generates Dqc(Xsep), i.e., Dqc(Xsep) = Coprodn(G[−∞,∞]).

Proof. (1, Theorem 2.1)



CHAPTER 5

GENERATORS FOR SCHEMES WITH SEPARATOR

This chapter is based on the article (26).

In this section we apply the constructions and results from the previous Chapters to conclude

that Dqc(X) is fast generated as defined in 4.2.9, which by Proposition 4.3.1 will conclude this

work.

Throughout this section, assume X to be a quasicompact, quasiseparated scheme with sep-

arator f : X→ Xsep. Without lost of generality, X may be written as X = U ∪ V with U and V

quasicompact open subschemes of X. Let V to be affine and Z be the closed complement of U

on X, i.e., Z = X\U. Then Z ⊂ V and we have the commuting diagram

Z

V

X Xsep

c

i
j

f

where c : Z→ V is a closed immersion and i : V → X, j : V → Xsep are open immersions.

Remark 5.0.1. Some remarks about this chapter:

• Throughout this section, the index [A,B] is omitted, as the range itself is not relevant

for almost all proofs, only that it is finite. That means that CoprodN(G[A,B]) for some

integers A < B is written as CoprodN(G).
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• Unless otherwise specified, G will be a compact strong generator of Dqc(Xsep), which

exists by Theorem 4.3.3.

• Unless otherwise specified, all functors are derived.

Lemma 5.0.2. Assume Xsep to be a quasicompact, separated scheme and V ⊂ Xsep an open

subscheme. For P ∈ Dperf(V), let j : V → Xsep be the open immersion and G the compact strong

generator of Dqc(Xsep) . Then the pushforward j∗P is in CoprodN(G).

Proof. It follows from Theorem 4.3.2 that j∗(P) ∈ CoprodN(G).

Proposition 5.0.3. Let P ∈ Dqc(Von Z), i : V → X and j : V → Xsep be the open immersions.

Then i∗P is a retract of f∗j∗P.

Proof. First, we show that f∗j∗P is supported on Z
∐
W, by viewing Z as Z = X\U and W

is some closed subset of U ⊂ X. Now it suffices to show that the pullback of f∗j∗P to the

intersection U ∩ V is zero.

Since the diagram

V

U ∩ V X Xsep

i
jk

l f

is commutative (where every map, except f is an open immersion), Z * U∩V, using the counit

equivalence map one can see that
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l∗f∗j∗P ∼= k∗j∗j∗P

∼= k∗P

∼= 0.

Hence, f∗j∗P ' R ⊕ S, with S supported on W ⊂ U and R supported on Z ⊂ V. Finally,

since V is separated and f is a local isomorphism on separated open subschemes, the restriction

of f∗j∗P to V is i∗P, i.e., i∗P ' R.

Therefore f∗j∗P ' i∗P ⊕ S and the result follows.

The next goal is to show that the pullback of a compact generator via a separator is again

a compact generator. This will be done in several steps. First, notice that the isomorphism

over separated opens property from the separator induces locally the notion of “non separated

points”. Those are the points in an open affine for which the separator is not an isomorphism.

Definition 5.0.4. Let X be quasicompact and quasiseparated. Suppose X admits a separator

f : X→ Y and V ⊂ X be an open affine. Define ZV as the closure of the set {x ∈ V ; f−1f(x) 6= {x}},

which we will call the non separated points of V.

We shall give some information about ZV . First, notice that by the definition of the separator

3.0.1, the diagonal morphism ∆f is schematically dense. Hence, we have that there exist an

affine cover of X such that for any open affine U of the cover, the open immersion U→ f−1(f(U))
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is schematically dense (9, 2.2.1) . Since U and f−1f(U) are quasicompact, the open immersion

is quasicompact. Hence, the scheme theoretical closure U in f−1(f(U)) is f−1(f(U)).

This implies that if there is a point p ∈ ZV that is not in V, then p is not a specialization of

any point in V. We wish to not have such pathology, although we could not prove that this does

not happen in full generality. Therefore, throughout this work, we add the following hypothesis

to the separator.

Hypothesis 5.0.5. Assume that the separator f : X→ Y has the property that for some affine

cover {Vλ} of X, ZVλ ⊂ f−1(f(Vλ)) for every Vλ.

Recall that the localization sequence for Dqc(X) holds true for X quasicompact and qua-

siseparated, i.e, for U ⊂ X quasicompact open and Z the closed complement, one have

Dqc(X on Z) → Dqc(X) → Dqc(U)

Moreover, G ∈ Dqc(X) is a compact generator if and only if, for any F ∈ Dqc(X), HomDqc(X)(G, F[n]) =

0 implies F[n] = 0 for all n ∈ Z.

With that in mind, it is possible to prove that the pullback via a separator of a compact

generator is a compact generator.

Proposition 5.0.6. Let f : X→ Y be a separator satisfying condition 5.0.5. If G ∈ Dperf(Y) is

a compact generator of Dqc(Y), then f∗G ∈ Dperf(X) is a compact generator of Dqc(X).
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Proof. Since X is quasicompact and quasiseparated, it suffices to show that the restriction of

f∗(G) is a generator for any affine open and use induction on the number of affines for any

quasicompact open subscheme of X.

For the affine case consider the commutative diagram

X

V V Y

fi

Id

f
∣∣∣
V

where V ↪→ X is an open affine.

The restriction to V is indeed a generator, since f
∣∣
V

is an isomorphism onto f(V), i.e,

i∗f∗(G) = (f ◦ i)∗(G) = (f
∣∣
V
)∗G = GDqc(V)

where GDqc(V) is the restriction of G to Dqc(V).

Notice this remains true if we replace V by any separated open subscheme of V, a fact that

will be used soon.

Next, one proceeds with the case of some quasicompact, quasiseparated open subscheme,

say U ⊂ X, by induction on the number of affines covering U. The case where U can be covered

by only one affine is exactly the case above. So we may assume U may be covered by n affines

and the property is true for any quasicompact, quasiseparated subscheme covered by up to n−1

affines.
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Let V be some open affine from the cover of U and let W be the union of the other n − 1

affines, i.e. U = V ∪W. Let ZV ⊂ V be the closed subscheme of non separated points of V. Let

L = V ∩W. We have three morphisms i : V ↪→ U, j :W ↪→ U and k : L ↪→ U.

Let F ∈ Dqc(U) and consider the square

HomDqc(U)(f
∗G, F) //

��

HomDqc(W)(j
∗f∗G, j∗(F))

��
HomDqc(V)(i

∗f∗G, i∗(F)) // HomDqc(L)(k
∗f∗G, k∗(F))

(5.1)

in the derived category, where an abuse of notation was used for f = f
∣∣
U

.

The goal is to show that the restriction of f∗G to each category is a compact generator.

By the induction hypothesis, the restrictions of f∗G to W,V are generators in each respective

derived category.

For the purpose of the proof, one may assume that W ∩ ZV = ∅, as one may consider the

complement of (ZV)
c = U\ZV and define Ŵ = W ∩ (ZV)

c. Indeed, with ĵ : Ŵ ↪→ W the open

immersion, it suffices to show that the further restriction ĵ∗j∗f∗G is again a generator. But this

comes from the fact that ĵ∗ is fully faithful, so 0 = Hom(̂j∗j∗f∗G,H) = Hom(j∗f∗G, ĵ∗H) implies

that ĵ∗H = 0, that is H = 0. Hence, even though Ŵ may be covered by more than n−1 affines,

one may replace W for Ŵ and still get the same square of Homs as before, with the restriction

of f∗G being a compact generator for Ŵ.
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Therefore, without loss of generality assume that U = V∪W, withW∩ZV = ∅. In particular,

L ∩ ZV = ∅. Now L is an open separated subscheme of the affine V, hence the restriction of

f∗G to L is again a generator. Assume that HomDqc(U)(f
∗G, F[n]) = 0 for all n ∈ Z. Then, the

proof will follow if F[n] = 0.

By adjunction, f∗F[n] = 0 for all n ∈ Z. Consider the localization sequence

Dqc(U on ZL) → Dqc(U) → Dqc(L)

in the derived category over k : L ↪→ U with ZL the complement of L, which induces the triangle

M→ F→ k∗k
∗F,

for M ∈ Dqc(U on Z) Applying f∗, one obtains the triangle

f∗M→ f∗F→ f∗k∗k
∗F.

By the hypothesis, the middle term is zero, and hence f∗M[1] ' f∗k∗k∗F. The claim is that

k∗F = 0. If that was not the case, the support of k∗F would not be empty, which would imply

the existence of a point p ∈ L such that p ∈ Supph(k∗F).
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But L has no non separated points. In particular f−1(f(L)) = L, which implies that f∗k∗k
∗F =

(f ◦ k)∗k∗F is supported on f(L) ' L.

On the other hand f∗M is not supported on f(L) ' L. Therefore k∗F ' 0.

Going back to the square of morphism Equation 5.1, the top left term is 0 by hypothesis

and the bottom right is also zero, since k∗F = 0. Hence the whole square is zero. That means

that each restriction of F is zero, i.e., j∗(F) = i∗(F) = k∗(F) = 0 Using another pullback square,

now for Dqc(U), one may glue each restriction back to F. Hence F = 0 as desired.

To prove the main theorem, a standard induction argument over the covering of X will be

used. The following proposition will provide the induction hypothesis needed. The notation of

subschemes and morphisms will follow the diagram shown in the beginning of this section.

Proposition 5.0.7. Let X be a quasicompact and quasiseparated scheme that admits a separator

f : X→ Xsep satisfying condition 5.0.5. Assume X can be covered by affine subschemes Spec(Ri)

with each Ri of finite global dimension. Moreover, let X = U∪V with U and V open subschemes

of X and assume V to be affine. Consider the diagram

U

X Xsep

u
o

f

where u : U→ X is the open immersion and o : U→ Xsep the induced map.

Let G be the strong generator of Dqc(Xsep). Then u∗o
∗G ∈ Coprodn(f∗G).
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Proof. First, by Proposition 3.0.2, X being covered by affine subschemes of finite global dimen-

sion implies Xsep also can be covered by affines with the same properties. Hence, by Theorem

4.3.3 there exists a G that fast generates Dqc(Xsep).

Let G be the generator of Dqc(Xsep) as above. One can fit f∗G into a triangle

Q f∗G u∗u
∗f∗G ' u∗o∗G ,

so it suffices to show that Q ∈ CoprodN(f
∗G) for some N ∈ Z.

Let Q be as above. Since Q vanishes on U, and V is assumed to be affine, by Thomason-

Trobaugh there exists a closed subscheme Z ⊂ V and P ∈ Dqc(V) such that Q ' i∗P.

By Theorem 4.3.3 there exists a fast generator G ′ ∈ Dqc(V). Hence, there exists M ∈ Z,

such that P ∈ CoprodM(G ′).

So Q ' i∗P is in i∗CoprodM(G ′) ⊆ CoprodM(i∗G
′).

But, by Proposition 5.0.3, i∗G
′ is a retract of f∗j∗G

′, which again by Theorem 4.3.2 is in

CoprodN(f
∗G) for someN. HenceQ ∈ CoprodMN(f

∗G), proving that u∗o
∗G is indeed generated

by f∗G.

Now we move to the main Theorem 1.1.4. The goal is to show that one may pullback a

fast generator via a separator and obtain a fast generator. By Proposition 4.3.1, this implies

Theorem 1.1.4.

Theorem 5.0.8. Let X be a quasicompact and quasiseparated scheme that admits a separator

f : X → Xsep satisfying condition 5.0.5 and let G be a compact fast generator of Dqc(Xsep).
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Assume X can be covered by affine subschemes Spec(Ri) with each Ri of finite global dimension.

Then there exists an object H in Dperf(X) that fast generates Dqc(X).

Proof. First, we notice that by Proposition 5.0.6, f∗G is already a compact generator. Hence,

it suffices to show that it is a fast generator. We proceed by induction on the number of affines

in the cover of X to show that f∗G is indeed a fast generator.

The case n = 1 means that X is affine, hence separated. Therefore, the separator f is an

isomorphism and f∗G = G.

Assume the theorem holds for any scheme which admits a cover by up to n affines Spec(Ri),

each Ri with finite global dimensions. Suppose that X can be covered by n + 1 affines Ui =

Spec(Ri), each Ri with finite global dimensions, i.e., X =
⋃n+1
i=1 Ui.

Let U =
⋃n
i=1Ui and V = Un+1, so X = U∪ V. Assume we are in the same situation as the

previous diagrams, i.e., the following diagrams:

V
j

!!
i
��
X

f // Xsep.

U

o

!!
u

��
X

f // Xsep.

Let G ∈ Dqc(Xsep) be a fast generator. By Lemma 5.0.6, the restriction of f∗G to U, i.e.

u∗f∗(G) = o∗(G) is a compact generator. By induction hypothesis, there exists G ′ that fast

generates Dqc(U). Since G ′ is compact and is in the subcategory generated by coproducts of

o∗(G), without loss of generality we may take o∗G to be the fast generator of Dqc(U). Now,

by Proposition 5.0.7, there exist N such that u∗o
∗G ∈ CoprodN(f

∗G).
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In similar fashion, since V is an affine open from X, we may take j∗G as a fast generator of

Dqc(V).

Using another localization sequence, one obtain the triangle

H f∗G i∗i
∗f∗G = i∗j

∗G

in Dqc(X) for H not supported in V. That implies that there exist some P ∈ Dqc(U) such

that H = u∗P. By the previous paragraph, Dqc(U) is fast generated by o∗(G), which implies

that H ∈ CoprodL(u∗o∗G), for some L > 0. Since u∗o
∗G ∈ CoprodN(f∗G), one obtains that

H ∈ CoprodLN(f∗G). Therefore, there exists M > LN > 0 such that i∗j
∗G ∈ CoprodM(f∗G).

Let T = U ∩ V and t : T → U be the inclusion. Then, any object F ∈ Dqc(X) fits in the

triangle

u∗[t∗t
∗u∗Σ−1F] F u∗[u

∗F]⊕ i∗[i∗F].

Thus, F belongs to [u∗(Dqc(U)] ? [u∗Dqc(U)⊕ i∗Dqc(V)] which is contained in

CoprodMN(f
∗G) ? CoprodMN(f

∗G) = Coprod2MN(f
∗G)

Therefore Dqc(X) is fast generated and the result follows.

Theorem 5.0.8 together with Remark 1.1.3 prove the main Theorem 1.1.4, restated below
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Theorem 5.0.9. Let X be a quasicompact, quasiseparated scheme that admits a separator

satisfying hypothesis 5.0.5. Then Dperf(X) is regular if and only if X can be covered by open

affine subschemes Spec(Ri) with each Ri of finite global dimension.



CHAPTER 6

FURTHER DIRECTIONS

In this final section we consider what should be the next extension of the constructions and

results shown so far.

6.1 Dqc(X) for X quasicompact and quasiseparated

Although this work has given positive results for a family of schemes that are quasicompact

and quasiseparated, the original question “Is Dperf(X) strongly generated for any X quasicom-

pact, quasiseparated and covered by affines, each of finite global dimension?” is still unknown.

The idea that properties on derived category involving perfect objects should be extended

to schemes that are quasicompact and quasiseparated is still what pushes this theory a bit

further.

Important to note that Neeman (1) extended the result using that schemes can be approx-

imated by the limit of neotherian schemes, as shown by Thomason and Trobaugh (8). By

2.1.5, if X is separated, then all maps are separated and therefore S is also separated. Neeman

proceeds by approximating the schemes with an affine neotherian scheme - just like in Kelly(3)

- hence the final scheme must be separated.

For this particular reason, Neeman’s results implies the extension to separated schemes and

the proof can not be easily adapted to quasiseparated schemes.

51
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This work extend the result almost solely using properties of schemes and not using much

of derived category. It is possible that the result might follow with the use of more categorical

tools. Nevertheless it is good to know that the most basic examples, such as A1d, has a positive

answer for the extension.

Another point is that the separator is somewhat “too strong” and the proof might be true

in general if we loose a bit on the restriction of the map. Maybe one could have a family of

morphisms such that the direct sum of the pullback of each morphism is a fast generator and

the separator is the particular case where the family of morphism is a singleton.

There is a lot of work ahead in this theory and it is by no means near the end.

6.2 Extensions to other Derived Categories

Everything done here was for the particular case of Dperf(X). But the fact that Dqc(X)

can be fast generated actually creates consequences further than only for Dperf(X). In fact,

Neeman’s paper (1) also proves that another category also may have a strong generator, namely

Db
coh(X), as long as some extra conditions are satisfied.

Section 8 of (15) is devoted to explaining why, under some conditions on X, Db
coh(X)

∼=

Dperf(X), which would imply that Db
coh(X) is also regular. In fact the following is shown in the

same paper.

Definition 6.2.1. Suppose X is a noetherian scheme, finite-dimensional, reduced and irre-

ducible. A regular alteration of X is a generically finite, surjective morphism X̃ → X with X̃

regular.
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Theorem 6.2.2 ((15, Theorem 6.11)). Let X be a separated, noetherian, finite-dimensional

scheme, and assume that every closed, reduced, irreducible subscheme of X has a regular alter-

ation. Then the category Db
coh(X) is strongly generated.

Regular alterations have some known theorems and are much more general than resolution

of sigularities. For some work on regular alterations see de Jong [(24), (25)].

Theorem 6.2.2 is not supposed to be obvious, not even for the affine case. For a more detailed

explanation about the history of this theorem and the consequences that puzzles algebraist to

this day, we recommend the reading of (15, Historical Survey 6.12).

A natural question would be if the results from this paper - which already extended regularity

in Dperf(X) for some family of quasicompact, quasiseparated schemes - could also extend for

Db
coh(X).

6.3 Triangulated Categories

Recently, Neeman in (15) studied when a triangulated category could be approximable. The

idea behind is motived by how we can approximate points in metric spaces as limits of Cauchy

sequences of simpler points. To better understand this topic, we briefly define some structures

on a triangulated category. We start by defining what a t−structure is.

Definition 6.3.1. A t–structure on a triangulated category T is a pair of full subcategories

(T ≤0, T ≥0) satisfying:

(i) T ≤0[1] ⊂ T ≤0

(ii) T ≥0 ⊂ T ≥0[1]
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(iii) Hom(T ≤0[1], T ≥0) = 0

(iv) Every object Y ∈ T admits a triangle A→ B→ C with A ∈ T ≤0[1] and C ∈ T ≥0.

Let T be a category with t−structure. Neeman uses the t−structure as the “metric” to say

when two objects are close inspired by the idea that two objects are close if they agree up to

a small “difference”. Hence, we say that x is close to y, for x, y ∈ T , if there exists in T a

triangle x → y → z, with z ∈ T −n for some large n. Obviously this is not a metric, since it is

not symmetric, maybe a map from y to x doesn’t exist. Moreover, different t−structures leads

to different “metrics” which leads to the concept of equivalent t−structures.

But to approximate via a metric, just like Taylor series uses polynomials to approximate

functions, we also need to specify what would be our simpler objects. For several reasons,

we will use a compact generator G. This all converge to the following definition of when a

triangulated category T is called approximable.

Definition 6.3.2. A triangulated category T is said to be approximable if it has coproducts

and there exists

(i) a compact generator G

(ii) a t−structure (T ≤0, T ≥0)

and these t−structure and generator can be chosen to satisfy

(iii) For some n > 0 we give G[n] ∈ T ≤<0 and Hom(G[−n], T ≤0) = 0.

(iv) In the metric induced by the t−structure (T ≤0, T ≥0), every object in T ≤0 can be expressed

as the limit of a sequence whose terms belong to ∪n〈G〉
[−n,n]

n
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More relations between compact generators and being approximable may be seen at (23),

specially Remark 3.3. In (22), further discussion regarding Dperf(X) and Db
coh(X) as one deter-

mining the other via a t−structure construction is made, wrapping up everything discussed so

far.

It turns out that because Dqc(X) is fast generated for X quasicompact, separated, then

Dqc(X) is approximable. It would be then expected that this work would extend this result to

X being quasicompact, quasiseparated satisfying Hypothesis 5.0.5 .
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