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SUMMARY

Chapter 2 sets the definitions of our objects of studies: coalgebras and their comodules,

both in the ordinary sense and in the ∞-categorical sense. Our main result here is Proposition

2.2.6 which shows that coalgebras in presentably symmetric monoidal ∞-categories are also

presentable. As a consequence, we show in Theorem 2.3.16 that higher algebras are enriched

over higher coalgebras in presentably symmetric monoidal ∞-categories. Although this result

is not needed for the rest of the thesis, it can serve as a motivation on why to study coalgebras

in the first place: they are part of the structure of algebras.

In Chapter 3, our main result is Theorem 3.3.2 which shows that weak monoidal Quillen

equivalences of monoidal model categories lift to strong monoidal equivalences of symmetric

monoidal ∞-categories. We apply the theorem to the Dold-Kan equivalence.

Chapter 4 presents the statement of the problem in full details: comparing homotopy co-

herent coassociative and cocommutative coalgebras with their strict analogue. We provide an

example where rigidification does not hold in Example 4.1.2, and we show that rigidification

does hold in the Cartesian case.

We explore the case of spectra in Chapter 5 and we show in Corollary 5.2.3 that rigidification

of coassociative and cocommutative coalgebras does not hold in the current symmetric monoidal

model categories of spectra.

We study rigidification for differentially graded comodules in Chapter 6. Our main result

is Theorem 6.3.3 which shows that rigidification holds for simply connected coalgebras in non-
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SUMMARY (Continued)

negative chain complexes over a finite product of fields. We also observe in Theorem 6.4.7 that

when a coalgebra C is equivalent to its dual algebra C∗, then rigidification of comodules also

holds as comodules over C are equivalent to modules over C∗.

Chapter 7 shows that we can derive the cotensor product of comodules in the simply con-

nected case in Theorem 7.5.2.

The Appendices are crucial in the arguments of Chapters 5 and 6. We essentially show

that we can provide an inductive fibrant replacement of comodules in a very similar way as a

Postnikov tower for a space does as seen in Corollary B.3.15.

viii



CHAPTER 1

INTRODUCTION

Any A∞-ring spectrum is homotopic to a strictly unital and associative ring spectrum, in

some monoidal model category representing spectra, say symmetric spectra, as in (Hovey et al.,

2000). Similarly, any E∞-ring spectrum is homotopic to a strictly unital, associative and com-

mutative ring spectrum. We are interested in this thesis in the dual question: can A∞-coalgebras

and E∞-coalgebras be homotopic to strictly counital, coassociative and cocommutative coalge-

bras over the sphere spectrum? In other words, can we rigidify the comultiplication in spectra?

We show in Corollary 5.2.3 and Corollary 5.2.4 that it is not the case. This follows from a

previous result in (Péroux and Shipley, 2019).

We instead focus our attention to module spectra over a discrete commutative ring R,

shift our rigidification question towards coalgebras and comodules in the derived category of

R, and work instead with the model category of unbounded chain complexes of R-modules.

Unfortunately, Example 4.1.2 hints that rigidification of coassociative coalgebras does not hold

in the differential graded context. The main result of our paper, in Theorem 6.3.3, shows that

we can always rigidify the coaction of comodules over any simply connected differential graded

coalgebra over a finite product of fields, in the non-negative context.

Rigidification of algebras and modules usually holds in a good combinatorial monoidal model

category, as seen in (Lurie, 2017, 4.1.8.4). Thus one could expect a good situation if we were

working with coalgebras and comodules in “cocombinatorial” model categories. However, we
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still want to work with presentable categories and not “copresentable” categories. Instead, we

investigate why the case of algebra works for a combinatorial model category. The key idea

is that one can argue inductively cell by cell just as one can when studying CW-complexes

of spaces. In model categories this is encoded in the small object argument. A dual theory

would be instead of generalizing CW-complexes which present any space as a filtered colimit,

we should now generalize Postnikov towers of spaces that present any space as a tower of

spaces whose layers are easy computable. As we are not working with a copresentable model

category, we do not have a “cosmall object argument” (see statement in Proposition A.1.7).

Nevertheless we can provide an explicit ad-hoc Postnikov tower for certain types of comodules

in chain complexes, see Corollary B.3.15. We introduce the notions of fibrantly generated model

categories and Postnikov presentations of a model category following the work of (Hess, 2009)

and (Bayeh et al., 2015) in Appendix A. This allows us to compute very explicitly homotopy

limits of comodules in chain complexes.

Another formal consequence of our ad-hoc Postnikov towers is that we can now define a

derived cotensor product of homotopy coherent comodules in the differential graded context.



CHAPTER 2

COALGEBRAS AND COMODULES IN HIGHER CATEGORY

We present here the formal definitions of coalgebras and comodules. Our main result in

this chapter is that coalgebras of a presentably symmetric monoidal ∞-category form also

a presentable ∞-category, see Proposition 2.2.6. We also observe that algebras are enriched

over coalgebras in Theorem 2.3.16 in any presentably symmetric monoidal ∞-category, which

generalizes the result in ordinary categories.

2.1 Classical Definitions and Results in Ordinary Category

Throughout this section, we let (C,⊗, I) be a symmetric monoidal category.

Definition 2.1.1. A comonoid (C,∆, ε) in C consists of an object C in C together with a

coassociative comultiplication ∆ : C → C ⊗ C, such that the following diagram commutes:

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C,

∆

∆ idC⊗∆

∆⊗idC

and admits a counit morphism ε : C → I such that we have the following commutative diagram:

C ⊗ C C ⊗ I ∼= C ∼= I⊗ C C ⊗ C

C.

idC⊗ε ε⊗idC

∆ ∆

3
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The comonoid is cocommutative if the following diagram commutes:

C ⊗ C C ⊗ C

C,

τ

∆ ∆

where τ is the twist isomorphism from the symmetric monoidal structure of C. A morphism of

comonoids f : (C,∆, ε) → (C ′,∆′, ε′) is a morphism f : C → C ′ in C such that the following

diagrams commute:

C C ′ C C ′

C ⊗ C C ′ ⊗ C ′, I.

f

∆ ∆′

f

ε
ε′

f⊗f

We denote CoMon(C) the category of comonoids in C. We denote CoCMon(C) the category of

cocommutative comonoids in C.

Remark 2.1.2. Notice that we could have defined the category of comonoids with the help of

the category of monoids by taking opposites: CoMon(C) = (Mon(Cop))op.

Proposition 2.1.3 ((Porst, 2008, 2.6)). Suppose the symmetric monoidal category (C,⊗, I)

is cocomplete. Then the category CoMon(C) is cocomplete and its associated forgetful functor

U : CoMon(C) → C is cocontinuous. Similarly, the category CoCMon(C) is cocomplete and its

associated forgetful functor U : CoCMon(C)→ C is cocontinuous.

We say that a category is presentable in the sense of locally presentable as in (Adámek and

Rosický, 1994)
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Proposition 2.1.4 ((Porst, 2008, 2.7)). Let (C,⊗, I) be a symmetric monoidal category. Sup-

pose C is presentable and the tensor product ⊗ preserves filtered colimits in each variable. Then

the categories CoMon(C) and CoCMon(C) are presentable.

Combining the above results, we get the following.

Proposition 2.1.5. Let (C,⊗, I) be a symmetric monoidal category. Suppose C is presentable

and the tensor product C ⊗ C → C preserves colimits in both variables. Then there exists a

functor T∨ : C→ CoMon(C) which forms the adjoint pair of functors:

U : CoMon(C) C : T∨.⊥

Similarly, there exists a functor S∨ : C→ CoCMon(C) which forms the adjoint pair of functors:

U : CoCMon(C) C : S∨.⊥

Definition 2.1.6. From Proposition 2.1.5, for any object X in C, we say that T∨(X) is the

cofree comonoid generated by X, and S∨(X) is the cofree cocommutative comonoid generated

by X.

Remark 2.1.7. Very little is known about these cofree functors in general. For explicit formulas

in particular cases, we refer the interested reader to (Michaelis, 2003), (Getlzer and Goerss,

1999), and (Anel and Joyal, 2013).
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Definition 2.1.8. Let (C,∆, ε) be a comonoid in C. A right comodule (X, ρ) over C, or a

right C-comodule, is an object X in C together with a coassociative and counital right coaction

morphism ρ : X → X ⊗ C in C, i.e., the following diagram commutes:

X X ⊗ C X X ⊗ C

X ⊗ C X ⊗ C ⊗ C, X ⊗ I

X.

ρ

ρ ρ⊗idC

ρ

idX⊗ε

idX⊗∆
∼=

The category of right C-comodules in C is denoted CoModC(C). Similarly, we can define

the category of left C-comodules where objects are endowed with a left coassociative counital

coaction X → C ⊗X and we denote the category by CCoMod(C).

Remark 2.1.9. If C is a cocommutative comonoid in C the categories of left and right co-

modules over C are naturally isomorphic: CCoMod(C) ∼= CoModC(C). In this case, we omit to

mention if the coaction is left or right.

Remark 2.1.10. Since a comonoid in C is a monoid in Cop, then we can define the category

of right comodules as modules in the opposite category: CoModC(C) = (ModC(Cop))op, and

similarly for the left case.

Proposition 2.1.11. Let (C,⊗, I) be symmetric monoidal category. Suppose that C is pre-

sentable and the tensor product ⊗ preserves filtered colimits in each variable. Then for any
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choice of comonoid in C in C, the category of right C-comodules (or left C-comodules) in C is

presentable, and we have an adjunction:

CoModC(C) C.
U

⊥
−⊗C

Proof. Notice that CoModC(C) is the category of coalgebras over the comonad −⊗C : C→ C.

Apply (Adámek and Rosický, 1994, 2.78, 2.j).

Definition 2.1.12. Following Proposition 2.1.11, for any object X in C, we say that X ⊗C is

the cofree right C-comodule generated by X. Similarly, we can define the cofree left C-comodule

generated by X as C ⊗X.

Recall that given a commutative monoid R in C, the category of (right) modules over R in

C, denoted ModR(C) is a symmetric monoidal category, where the unit is R and the monoidal

product is denoted ⊗R and is defined as the coequalizer:

M ⊗R⊗N M ⊗N,
idM⊗(αN◦τ)

αM⊗idN

where αM : M ⊗ R → M and αN : N ⊗ R → N are the (right) R-actions on M and N

respectively. This leads to the following definition.

Definition 2.1.13. Let R be a commutative monoid in C. A coalgebra (C,∆, ε) over R

in C, or an R-coalgebra in C, is a comonoid (C,∆, ε) in the symmetric monoidal category
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(ModR(C),⊗R, R). We denote the category of R-coalgebras by CoAlgR(C). We denote the

category of cocommutative R-coalgebras by CoCAlgR(C).

Remark 2.1.14. Notice that CoAlgR(C) is simply the category CoMon(ModR(C)).

2.2 Definitions and Preliminary Results in Higher Categories

The following definitions and results are generalizations of Section 3.1 of (Lurie, 2018a),

which was focused on the case of E∞-coalgebras. We define and extend the results for coalgebras

over any ∞-operad. Let Fin∗ denote the category of all finite pointed sets, as in (Lurie, 2017,

2.0.0.2, 2.0.0.3). Recall the definition of a coCartesian fibration of simplicial sets in (Lurie,

2009, 2.4.2.1).

Definition 2.2.1 ((Lurie, 2017, 2.0.0.7)). A symmetric monoidal ∞-category C⊗ is a coCarte-

sian fibration of simplicial sets: p : C⊗ −→ N (Fin∗), such that, for each n ≥ 0, the maps

in ρi : 〈n〉 → 〈1〉 induce a equivalences (ρi!)
n
i=1 : C⊗〈n〉

'−→
n∏
i=1

C⊗〈1〉. We denote its underlying

∞-category by C which is equivalent to the fiber C⊗〈1〉, as in (Lurie, 2017, 2.1.2.20).

The above definition can be generalized, where instead of working with the commutative

operad N (Fin∗), one can replace it by an ∞-operad O⊗ as in (Lurie, 2017, 2.1.1.10). Then we

define C to be an O-monoidal ∞-category as in (Lurie, 2017, 2.1.2.15).

Definition 2.2.2. Let C be an O-monoidal ∞-category. An O-coalgebra object in C is an O-

algebra object in Cop. The∞-category of O-coalgebra objects in C is defined as the∞-category

CoAlgO(C) := (AlgO(Cop))op. More generally, given any map O′⊗ → O⊗ of ∞-operads , we

define the ∞-category of O′-coalgebra in C as CoAlgO′/O(C) = (AlgO′/O(Cop))op.
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If we pick the associative operad O = A∞ or the commutative operad O = E∞, we have

generalized the definition of coassociative and cocommutative coalgebras in ordinary categories.

See more details in Chapter 3.

Proposition 2.2.3 ((Lurie, 2017, 3.2.4.4)). If C is a symmetric monoidal ∞-category and

O is any ∞-operad, then the ∞-category AlgO(C) inherits a symmetric monoidal structure,

given by pointwise tensor product. Dually, the ∞-category CoAlgO(C) inherits a symmetric

monoidal structure, given by pointwise tensor product.

Remark 2.2.4. If C is an O-monoidal ∞-category, then Cop can be given an O-monoidal

structure uniquely up to contractible choice, as in (Lurie, 2017, 2.4.2.7). One can use the work of

(Barwick et al., 2018) to give an explicit choice of the coCartesian fibration for Cop. For instance,

let p : C⊗ → O⊗ be the coCartesian fibration associated to the symmetric monoidal structure

of C. Then straightening of the coCartesian fibration gives a functor F : O⊗ −→ Ĉat∞, where

Ĉat∞ is the ∞-category of ∞-categories, as in (Lurie, 2017, 3.0.0.5). Then, by (Barwick et al.,

2018, 1.5) the functor F also classifies a Cartesian fibration p∨ : (C⊗)∨ −→ (O⊗)op. An explicit

construction is given in (Barwick et al., 2018, 1.7). The opposite map (p∨)op : ((C⊗)∨)op −→ O⊗

is a coCartesian fibration that is classified by: O⊗ Ĉat∞ Ĉat∞.
F op

One can check

that the fiber of (p∨)op over X in O is equivalent to (CX)op, and thus gives Cop a O-monoidal

structure. We see that O-coalgebras are sections of the Cartesian fibration p∨ : C⊗ → (O⊗)op

that sends inert morphisms in (O⊗)op to p∨-Cartesian morphisms in C⊗.

Proposition 2.2.5. Let C be a O-monoidal ∞-category and let K be a simplicial set. If,

for each X in O, the fiber CX admits K-indexed colimits, then the ∞-category CoAlgO(C)
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admits K-indexed colimits, and the forgetful functor U : CoAlgO(C)→ C preserves K-indexed

colimits.

Proof. Apply (Lurie, 2017, 3.2.2.5) to the coCartesian (p∨)op : ((C⊗)∨)op −→ O⊗ defined in

Remark 2.2.4.

The following dualizes the result on algebras in (Lurie, 2017, 3.2.3.5).

Proposition 2.2.6. Let O⊗ be an essentially small ∞-operad. Let C be an O-monoidal ∞-

category defined via a coCartesian fibration p : C⊗ → O⊗. Assume that, for each X in O,

the fiber CX is presentable. Assume further that p is compatible with small colimits. Then

CoAlgO(C) is a presentable ∞-category.

Proof. We apply (Lurie, 2009, 5.4.7.11) to the Cartesian fibration p∨ : (C⊗)∨ → Oop described

in Remark 2.2.4. For any object X in O⊗, the fiber of p∨ over X is equivalent to the fiber CX

of p over X. By (Lurie, 2017, 3.2.3.4), these fibers are accessible and CX → CX′ are accessible

maps. Thus the induced maps C∨X′ → C∨X are also accessible by (Barwick et al., 2018, 1.3).

Remark 2.2.7. In general, if C is compactly generated, there is no guarantee that CoAlgO(C)

is compactly generated. However, the fundamental theorem of coalgebras (see (Sweedler, 1969,

II.2.2.1) or (Getlzer and Goerss, 1999, 1.6)) states that if C is (the nerve of) vector spaces,

or chain complexes over a field, then CoAlgA∞(C) is compactly generated and the forgetful

functor U : CoAlgA∞(C) → C preserves and reflects compact objects. From (Adámek and

Porst, 2004, 4.2), if κ is an uncountable regular cardinal, we conjecture that the fundamental

theorem of coalgebra can be expended in the following sense. If C is κ-compactly generated



11

then CoAlgO(C) is κ-compactly generated and the forgetful functor preserves and reflects

κ-compact objects.

In some cases, the∞-category CoAlgO(C) is not mysterious. We recall the following result

from Lurie. Let C be a symmetric monoidal∞-category, and denote by Cfd the full subcategory

spanned by the dualizable objects, see (Lurie, 2017, 4.6.1). It inherits a symmetric monoidal

structure. For each dualizable object X, we denote X∨ its dual and this defines a contravariant

endofunctor on Cfd.

Proposition 2.2.8 ((Lurie, 2018a, 3.2.4)). Let C be a symmetric monoidal ∞-category. Then

taking dual objects assigns an equivalence of symmetric monoidal ∞-categories (Cfd)op
'−→ Cfd.

In particular, for any ∞-operad O, we obtain an equivalence CoAlgO(Cfd)op ' AlgO(Cfd) of

symmetric monoidal ∞-categories.

One particular choice of∞-operad can be the operad of left modules LM and right modules

RM, as in (Lurie, 2017, 4.2.1.13, 4.2.1.36). In particular, given C a monoidal ∞-category, and

A an A∞-algebra, we denote AMod(C) the∞-category of left A-modules, instead of LModA(C)

as Lurie does. We similarly denote ModA(C) the ∞-category of right A-modules.

Definition 2.2.9. Let C be a monoidal ∞-category. Let C be an A∞-coalgebra in C. Then

define the category of right C-comodules in C as:

CoModC(C) := (ModC(Cop))op.

We define the ∞-category of left C-comodules CCoMod(C) similarly.
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2.3 Higher Algebras Enrichment in Higher Coalgebras

Classically, in any presentable symmetric monoidal closed ordinary category, the category of

monoids is enriched, tensored and cotensored in the symmetric monoidal category of comonoids.

This was proven in (Hyland et al., 2017, 5.2) and (Vasilakopoulou, 2019, 2.18). See also the

example of the differential graded case in (Anel and Joyal, 2013). We show here in Theorem

2.3.16 an equivalent statement in ∞-categories.

An ∞-category shall be defined to be enriched over a symmetric monoidal ∞-category in

the sense of (Hinich, 2018, 3.1.2), or in the sense of (Gepner and Haugseng, 2015). By (Hinich,

2018, 3.4.4) they are equivalent. An ∞-category is tensored or cotensored over a monoidal ∞-

category in the classical sense of (Lurie, 2017, 4.2.1.19) or (Lurie, 2017, 4.2.1.28) respectively.

Our desired enrichment in Theorem 2.3.16 will also be enriched in the sense of (Lurie, 2017,

4.2.1.28), see Remark 2.3.17 below. It is conjectured in (Gepner and Haugseng, 2015) that the

definitions of enrichment of Lurie and Gepner-Haugseng are equivalent.

Throughout this section, let C be a presentably symmetric monoidal ∞-category. It is in

particular closed, and thus the strong symmetric monoidal functor ⊗ : C × C → C induces a

lax symmetric monoidal functor [−,−] : Cop × C → C characterized by the universal mapping

property C(X ⊗ Y, Z) ' C(X, [Y,Z]), for all X, Y , and Z in C. In other words, the functor

−⊗ Y : C → C is a left adjoint to [Y,−] : C → C.

Let O⊗ be an essentially small ∞-operad. From the lax symmetric monoidal structure of

[−,−] : Cop × C → C, we obtain a functor [−,−] : AlgO(Cop) ×AlgO(C) −→ AlgO(C). By
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definition of O-coalgebras, we identify AlgO(Cop) simply as CoAlgO(C)op, and thus obtain

the following definition.

Definition 2.3.1. Let C and O be as above. We call the induced functor:

[−,−] : CoAlgO(C)op ×AlgO(C) −→AlgO(C),

the Sweedler cotensor. In the literature, it is sometimes called the convolution algebra or the

convolution product, see (Sweedler, 1969, 4.0) and (Anel and Joyal, 2013).

Remark 2.3.2. The term convolution product stems from the algebra structure that gener-

alizes the usual convolution product in representation theory. See (Hazewinkel et al., 2010,

2.12.3). It also generalizes the classical convolutions of real functions of compact support, see

(Hazewinkel et al., 2010, 2.14.4).

Example 2.3.3. The Sweedler cotensor in the case where O = E∞ and C is the ∞-category

of R-modules in a symmetric monoidal ∞-category, where R is an E∞-algebra, was presented

in (Lurie, 2018b, Section 1.3.1).

Example 2.3.4. Let I be the unit of the symmetric monoidal structure of C. Let C be any

O-coalgebra, then the Sweedler cotensor [C, I] is simply the linear dual C∗, which is always

an O-algebra. Thus the linear dual functor (−)∗ : Cop → C lifts to the particular Sweedler

cotensor (−)∗ = [−, I] : CoAlgO(C)op → AlgO(C). Here we recover the classical result that

the dual of a coalgebra is always an algebra, see (Sweedler, 1969, 1.1.1).
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Remark 2.3.5. In a presentably symmetric monoidal ∞-category C, an object X is dual-

izable precisely if X is equivalent to its linear dual X∗. Thus, the above defined functor

(−)∗ : CoAlgO(C)op → AlgO(C) coincides with the equivalence of Proposition 2.2.8 (−)∨ :

CoAlgO(Cfd)op
'−→AlgO(Cfd), when we restrict (−)∗ to the subcategory CoAlgO(Cfd)op.

Since [−,−] : Cop × C → C is a continuous functor, and limits in AlgO(C) are computed

in C, we get that the Sweedler cotensor is a continuous functor. Fix C an O-coalgebra in C.

Then the continuous functor [C,−] : AlgO(C) → AlgO(C) is accessible (as filtered colimits

in AlgO(C) are computed in C) and is between presentable ∞-categories. Therefore, by the

adjoint functor theorem (Lurie, 2009, 5.5.2.9), the functor [C,−] admits a left adjoint denoted

C .− : AlgO(C)→AlgO(C).

Definition 2.3.6. Let C and O be as above. We call the induced functor:

− .− : CoAlgO(C)×AlgO(C)→AlgO(C),

the Sweedler tensor. Previously, it was called the Sweedler product in (Anel and Joyal, 2013)

and later in (Vasilakopoulou, 2019). For C a fixed O-coalgebra, the functor C .− is left adjoint

to [C,−] and we have in particular the equivalence of spaces:

AlgO(C . A,B) 'AlgO(A, [C,B]),

for any O-algebras A and B.
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Example 2.3.7. In (Anel and Joyal, 2013, 3.4.1), an explicit formula of the Sweedler tensor

was given in the discrete differential graded case.

Fix now A an O-algebra in C. The continuous functor [−, A] : (CoAlgO(C))op →AlgO(C)

induces a cocontinuous functor on its opposites [−, A]op : CoAlgO(C) → (AlgO(C))op. The

cocontinuous functor is from a presentable ∞-category to an essentially locally small ∞-

category: as the opposite of an essentially locally small ∞-category is also essentially locally

small, and presentable ∞-category are always essentially locally small. Thus, by the adjoint

functor theorem (Lurie, 2009, 5.5.2.9, 5.5.2.10), the functor [−, A]op admits a right adjoint

{−, A} : AlgO(C)op → CoAlgO(C).

Definition 2.3.8. Let C and O be as above. We call the induced functor:

{−,−} : AlgO(C)op ×AlgO(C)→ CoAlgO(C)

the Sweedler hom. For A and B any O-algebra in C, the O-coalgebra {A,B} is called the

universal measuring coalgebra in C of A and B. See (Sweedler, 1969, 7.0) for the discrete case

in vector spaces. In particular, if we fix A, we obtain that {−, A} is the right adjoint of [−, A]op

and we have the equivalence of spaces:

CoAlgO(C)(C, {A,B}) 'AlgO(C)(B, [C,A]),

for any O-coalgebra C.
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Example 2.3.9. Let I be the unit of the symmetric monoidal structure of C. Then, for

any O-algebra A in C, define A◦ to be the measuring coalgebra {A, I}. It is called the

Sweedler dual or finite dual of the O-algebra A in C. In particular, we obtain a functor

(−)◦ = {−, I}op : AlgO(C) → CoAlgO(C)op, which is the left adjoint of the linear dual func-

tor (−)∗ : CoAlgO(C)op → AlgO(C) defined in Example 2.3.4. In particular, we have the

equivalence of spaces: AlgO(C)(A,C∗) ' CoAlgO(C)(C,A◦), for any O-coalgebra C and any

O-algebra A. This was proven in the discrete classical case of vector spaces in (Sweedler, 1969,

6.0.5). By Remark 2.3.5, when the O-algebra A is dualizable in C, then A◦ ' A∗ as an object

in C.

Example 2.3.10. The origin of the term measure could be due to the following example. Let

X be a compact Hausdorff space. Then the Sweedler dual of the algebra of continuous real

functions Map(X,R) is equivalent to finitely supported measures on X, see (Hazewinkel et al.,

2010, 2.12.10).

We shall explain where the term universal measuring is coming from. Recall that the internal

hom property of C implies that, for any X, Y and Z objects in C, there is an equivalence of

spaces: C(X ⊗ Y,Z) ' C(Y, [X,Z]). The Sweedler cotensor guarantees conditions for an O-

algebra structure on [X,Z]. The following is a generalization of (Sweedler, 1969, 7.0.1) and

(Anel and Joyal, 2013, 3.3.1).

Definition 2.3.11. Let C and O be as above. Let C be an O-coalgebra in C, and A and B be

O-algebras in C. Let ψ : C ⊗ A→ B be a map in C. We say that (C,ψ) measures A to B (or

(C,ψ) is a measuring of A to B) if the adjoint map A→ [C,B] is a map of O-algebras in C.
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We give examples generalized from (Anel and Joyal, 2013).

Example 2.3.12 ((Anel and Joyal, 2013, 3.3.3)). If I is the unit of the symmetric monoidal

structure of C, then a map I⊗A→ B in C is a measuring of A to B if and only if it is a map

in AlgO(C).

Example 2.3.13 ((Anel and Joyal, 2013, 3.3.4)). The adjoint of the identity map on [C,A] is

a map C ⊗ [C,A]→ A and is always a measuring. In particular, the evaluation C ⊗ C∗ → I is

always a measuring of C∗ to I. Similarly A◦ ⊗A→ I is a measuring of A to I.

By definition of the Sweedler hom, as we have CoAlgO(C)(C, {A,B}) 'AlgO(C)(B, [C,A]),

we see that the O-coalgebra {A,B}, together with the natural map {A,B}⊗A→ B (adjoint of

the identity over {A,B}), is indeed the universal measuring algebra of A to B, in the following

sense. Given any other measuring (C,ψ) of A to B, there exists a unique (up to contractible

choice) map C → {A,B} of O-coalgebras in C such that the following diagram commutes in C:

C ⊗A

{A,B} ⊗A B.

ψ

Remark 2.3.14. Following (Anel and Joyal, 2013, 3.3.6), we see that, given maps A′ → A

and B → B′ in AlgO(C), a map C ′ → C in CoAlgO(C), together with a map A → [C,B] in

AlgO(C), we obtain the following map in AlgO(C): A′ A [C,B] [C ′, B′].

This shows that the space of measurings provides a functor:

CoAlgO(C)op ×AlgO(C)op ×AlgO(C) −→ S,
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that is representable in each variable with respect to the Sweedler hom, tensor and cotensor.

Let D⊗ be a monoidal ∞-category. Its reverse, denoted (D⊗)rev or simply Drev, is defined

in (Hinich, 2018, 2.13.1). Essentially, D and Drev have the same underlying∞-category but the

tensor X⊗Y in Drev corresponds precisely to Y ⊗X in D. Left modules over D corresponds to

right modules over Drev. If D is symmetric, then Drev = D by (Hinich, 2018, 2.13.4). We shall

be interested with the reverse opposite, denoted Drop = (Dop)rev, of a monoidal ∞-category D.

The following is a generalization of the discrete ordinary case (Hyland et al., 2017, 5.1).

Lemma 2.3.15. Let C and O be as above. Then the Sweedler cotensor endows the ∞-category

AlgO(C) the structure of a right module over the reverse opposite of the (symmetric) monoidal

∞-category CoAlgO(C).

Proof. Notice first that C is a right module over its reverse opposite Crop via its internal hom

[−,−] : Cop × C → C, as it is lax symmetric monoidal. Therefore, by Proposition 2.2.3, the

∞-category AlgO(C) is a right module over AlgO(Crop) via the Sweedler cotensor. Since

AlgO(Crev) 'AlgO(C)rev, then AlgO(Crop) ' CoAlgO(C)rop.

Since CoAlgO(C) is a presentably symmetric monoidal∞-category, it is enriched over itself

by (Gepner and Haugseng, 2015, 7.4.10). We denote CoAlgO(C)(D,E) the O-coalgebra in C

which classifies coalgebra maps from D to E, characterized by the universal mapping property:

CoAlgO(C)
(
C ⊗D,E

)
' CoAlgO(C)

(
C,CoAlgO(C)(D,E)

)
.
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Theorem 2.3.16. Let C be a presentably symmetric monoidal ∞-category. Let O be an essen-

tially small ∞-operad. The ∞-category of O-algebras AlgO(C) is enriched over the symmetric

monoidal ∞-category CoAlgO(C), via the Sweedler hom. Moreover it is tensored and coten-

sored respectively using the Sweedler tensor and Sweedler cotensor. In particular, we have an

equivalence of O-coalgebras:

CoAlgO(C)
(
C, {A,B}

)
'
{
A, [C,B]

}
'
{
C . A,B

}
,

for any O-coalgebra C in C and any O-algebras A and B in C.

Proof. By Lemma 2.3.15, the ∞-category AlgO(C)op is a left module over the symmetric

monoidal ∞-category CoAlgO(C), via [−,−]op the opposite of the Sweedler cotensor, such

that [−, A]op : CoAlgO(C)→AlgO(C)op admits a right adjoint {−, A} for all A in AlgO(C).

By (Hinich, 2018, 6.3.1, 7.2.1) (see also (Gepner and Haugseng, 2015, 7.4.9)) this shows that

AlgO(C)op is enriched over CoAlgO(C), with tensor [−,−]op. Thus, by (Hinich, 2018, 6.2.1),

we get that AlgO(C) is enriched over CoAlgO(C), with cotensor [−,−].

Remark 2.3.17. We could have applied (Lurie, 2017, 4.2.1.33) in the proof of Theorem 2.3.16

to show that AlgO(C) is enriched over CoAlgO(C) in the sense of Lurie, see (Lurie, 2017,

4.2.1.28). It is conjectured that the definitions of enrichment are equivalent in (Gepner and

Haugseng, 2015).
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Remark 2.3.18. The previous theorem shows that we can enrich the equivalence in Example

2.3.9 to an equivalence of O-coalgebras in C:

CoAlgO(C)
(
C,A◦

)
'
{
A,C∗

}
'
(
C . A

)◦
,

for any O-coalgebra C and any O-algebra A.

A particular consequence of the theorem gives the following adjunction which was shown in

(Anel and Joyal, 2013, 5.3.14) to generalize the algebraic cobar-bar adjunction.

Corollary 2.3.19. Let C be a presentably symmetric monoidal ∞-category. Let O be an

essentially small ∞-category. Let A be an O-algebra in C. Then there is an adjunction of

enriched ∞-categories over CoAlgO(C):

− . A : CoAlgO(C) AlgO(C) : {A,−}.⊥



CHAPTER 3

THE DWYER-KAN LOCALIZATION OF A MODEL CATEGORY

Let M be a model category and W its morphism class of weak equivalences. Recall that the

homotopy category Ho(M), associated to M, is an ordinary category obtained by inverting all

weak equivalences, and can also be denoted M[W−1], see (Hovey, 1999, 1.2.1, 1.2.10). However,

the higher homotopy information is lost in Ho(M). Dwyer and Kan, in (Dwyer and Kan, 1980),

suggested instead a simplicial category LH(M,W) sometimes called the hammock localization of

M, that retains the higher information. We will not define the hammock localization LH(M,W),

but invite the reader to read the explicit definition in (Dwyer and Kan, 1980, 2.1). The idea

is translated into ∞-categories by Lurie in (Lurie, 2017) as we see below. Following (Hinich,

2016), we shall prefer the less confusing term of Dwyer-Kan localization instead of underlying

∞-category of a model category, motivated by Remark 3.1.3.

3.1 The General Definition

We first start by some generality.

Definition 3.1.1 ((Lurie, 2017, 1.3.4.1)). Let C be an ∞-category and fix a collection W ⊆

HomsSet(∆
1,C) of morphisms in C. The Dwyer-Kan localization of C with respect to the col-

lection W is an ∞-category, denoted C[W−1], together with a functor f : C → C[W−1] that

respects the following universal property.

21
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(U) For any other ∞-category D, the functor f induces an equivalence of ∞-categories:

Fun(C[W−1],D) FunW(C,D),'

where FunW(C,D) is the full subcategory of functors C → D that sends morphisms in

W to equivalences in D.

The Dywer-Kan localization C[W−1] always exists, for any choice of C and W, see (Lurie,

2017, 1.3.4.2), and is unique up to contractible choice. We shall be more interested in the case

when C = N (M) for some model category M.

Definition 3.1.2 ((Lurie, 2017, 1.3.4.15)). Let M be a model category and W its class of weak

equivalences. We call N (M)[W−1] the Dwyer-Kan localization of M with respect to W as in

Definition 3.1.1, where we abuse notation and let W denote the induced class of morphisms in

N (M).

Notice that the homotopy category of N (M)[W−1] is precisely the category Ho(M).

Remark 3.1.3. Since simplicial categories represents ∞-categories, the hammock localisation

simplicial category LH(M,W) is a model for the Dwyer-Kan localization N (M)[W−1]. More

presicely, by (Lurie, 2009, 2.2.5.1), there is a Quillen equivalence between the category of

simplicial sets sSet endowed with the Joyal model structure and the category of simplicial

categories sCat endowed with the Bergner model structure:

sSet sCat.
C

⊥
N
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The functor N : sCat → sSet is the homotopy coherent nerve, or the simplicial nerve, as

in (Lurie, 2009, 1.1.5.5). After a fibrant replacement, the functor N sends LH(M,W) to the

equivalence class of N (M)[W−1], as seen in (Hinich, 2016, 1.3.1).

Remark 3.1.4. As noted in (Lurie, 2017, 1.3.4.16), (Hinich, 2016, 1.3.4), and (Dwyer and Kan,

1980, 8.4), if the model category M admits functorial fibrant and cofibrant replacement, in the

sense of (Hovey, 1999, 1.1.1. 1.1.3), then the following ∞-categories are equivalent:

N (Mc)[W
−1] ' N (M)[W−1] ' N (Mf )[W−1],

where Mc ⊆ M is the full subcategory of cofibrant objects, and Mf ⊆ M is the full subcategory

of fibrant objects.

3.2 Symmetric Monoidal Dwyer-Kan Localization

We now construct the symmetric monoidal structure on the Dwyer-Kan localization of a

symmetric monoidal model category M. This is a recollection of Appendix A in (Nikolaus and

Scholze, 2018) and Section 4.1.7 on monoidal model categories in (Lurie, 2017).

Definition 3.2.1 ((Lurie, 2017, 4.1.7.4), (Nikolaus and Scholze, 2018, A.4, A.5)). Let C⊗ be

a symmetric monoidal ∞-category. Let W ⊆ HomsSet(∆
1,C) be a class of edges in C that

is stable under homotopy, composition and contains all equivalences. Suppose further that

⊗ : C × C → C preserves the class W seperately in each variable. The symmetric monoidal

Dywer-Kan localization of C⊗ with respect to W is a symmetric monoidal ∞-category, denoted
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C[W−1]⊗, together with a symmetric monoidal functor i : C⊗ → C[W−1]⊗ which is characterized

by the following universal property.

(U) For any other symmetric monoidal ∞-category D⊗, the functor i induces an equivalence

of ∞-categories:

Fun⊗(C[W−1]⊗,D⊗)
'−→ FunW⊗ (C⊗,D⊗),

where FunW⊗ (C⊗,D⊗) is the full subcategory of symmetric monoidal functors C⊗ → D⊗

that sends W to equivalences.

As noticed in (Nikolaus and Scholze, 2018, A.5), the underlying∞-category of the symmetric

monoidal category C[W−1]⊗ is precisely the Dwyer-Kan localization of C with W in the sense

of Definition 3.1.1, i.e.: (
C[W−1]⊗

)
〈1〉
' C[W−1].

Remark 3.2.2. Let C⊗ and W be as in Definition 3.2.1. Given the symmetric monoidal

structure C⊗ → N (Fin∗), products of n edges in W in C correspond precisely, under the

equivalence:

C×n ' C⊗〈n〉,

to morphisms lying over id〈n〉 in N (Fin∗). This defines a class of edges W⊗ ⊆ HomsSet(∆
1,C⊗).

Then the Dwyer-Kan localization of C⊗ with respect to W⊗, in the sense of Definition 3.1.1,

denoted C⊗
[
(W⊗)

−1
]
, is equivalent to C[W−1]⊗ defined above.
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We would like to study the case where the underlying ∞-category of C⊗ is the Dwyer-

Kan localization N (M)[W−1] of a model category M. We first recall the induced symmetric

monoidal structure on the nerve of a symmetric monoidal category.

Definition 3.2.3 ((Lurie, 2017, 2.0.0.1)). Let (C,⊗, I) be a symmetric monoidal category.

Define a new category C⊗ as follows.

• Objects are sequences (C1, . . . , Cn) where each Ci is an object in C, for all 1 ≤ i ≤ n, for

some n ≥ 1. We allow the case n = 0 and thus the empty set ∅ as a sequence.

• A morphism (C1, . . . , Cn) → (C ′1, . . . , C
′
m) in C⊗ is a pair (α, {fj}), where α is a map of

finite sets α : 〈n〉 → 〈m〉 and {fj} is a collection of m-morphisms in C:

fj :
⊗

i∈α−1(j)

Ci −→ C ′j ,

for all 1 ≤ j ≤ m. If α−1(j) = ∅, then fj is a morphism I→ C ′j .

• The composition of morphisms in C⊗ is defined using the compositions in Fin∗ and C

together with the associativity of the symmetric monoidal structure of C.

• The identity morphism on an object (C1, . . . , Cn) is given by the identites in Fin∗ and C:

(id〈n〉, {idCj}).

We obtain a functor:

C⊗ −→ Fin∗,
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that sends (C1, . . . Cn) to 〈n〉. The induced functor N (C⊗) → N (Fin∗) in ∞-categories is

coCartesian and defines a symmetric monoidal structure.

Proposition 3.2.4 ((Lurie, 2017, 2.1.2.21)). Given any symmetric monoidal category (C,⊗, I),

let C⊗ be as Definition 3.2.3. Then the nerve N (C⊗) is a symmetric monoidal ∞-category

whose underlying ∞-category is N (C).

Remark 3.2.5. In particular, given (C1, . . . , Cn) in C⊗, and α : 〈n〉 → 〈m〉 a map in Fin∗, the

associated coCartesian lift is induced by defining C ′j as follows:

C ′j :=
⊗

i∈α−1(j)

Ci,

for each 1 ≤ j ≤ m. Define C ′j = I if j is such that α−1(j) = ∅. This defines a morphism

(C1, . . . , Cn)→ (C ′1, . . . , C
′
m) in C⊗ as desired.

If the symmetric monoidal category (C,⊗, I) happens to be endowed with a model structure,

the bifunctor ⊗ : C × C → C need not preserve weak equivalences in either variable. We need

to restrict to the following type of model category.

Definition 3.2.6 ((Hovey, 1999, 4.2.6)). A (symmetric) monoidal model category M is a cat-

egory endowed with both a model structure and a (symmetric) monoidal structure (M,⊗, I),

such that the tensor product ⊗ : M×M→ M is a Quillen bifunctor (see (Hovey, 1999, 4.2.1)),

and for any cofibrant replacement cI→ I of the unit, the induced morphism cI⊗X → I⊗X ∼= X

is a weak equivalence, for any cofibrant object X of M. The latter requirement is automatic if

I is already cofibrant.
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Therefore, in any monoidal model category (M,⊗, I), the tensor ⊗ : M×M→ M preserves

weak equivalences in each variable, if we restrict to cofibrant objects Mc ⊆ M. Moreover. the

tensor product of cofibrant objects is again cofibrant. In model categories, this allows us to

define a derived tensor product for the homotopy category Ho(M) = M[W−1], see (Hovey, 1999,

4.3.2). In higher category, the transition between the tensor product and the derived tensor

product is exactly through the Dwyer-Kan localization of a symmetric monoidal∞-category as

in Definition 3.2.1. If we suppose in addition that I is cofibrant, then, as in Definition 3.2.3, we

can define M⊗c ⊆ M⊗ from the full subcategory of cofibrant objects Mc ⊆ M, since (Mc,⊗, I) is

symmetric monoidal.

Proposition 3.2.7 ((Lurie, 2017, 4.1.7.6), (Nikolaus and Scholze, 2018, A.7)). Let (M,⊗, I)

be a symmetric monoidal model category. Suppose that I is cofibrant. Then the Dwyer-Kan

localization N (Mc)[W
−1] of M can be given the structure of symmetric monoidal ∞-category

via the symmetric monoidal Dwyer-Kan localization of N (M⊗c ) in the sense of Definition 3.2.1,

N (M⊗c ) N (Mc)[W
−1]⊗,

where W is the class of weak equivalences restricted to cofibrant objects in M.

Remark 3.2.8. The inclusion of cofibrant objects Mc ⊆ M induces a lax symmetric monoidal

functor N (M⊗c ) → N (M⊗). From Remark 3.1.4, Proposition 3.2.7 implies we can also

construct a symmetric monoidal ∞-category N (M)[W−1]⊗ whose fiber over 〈1〉 is precisely

N (M)[W−1]. However, cofibrant replacement induces a functor N (M⊗)→ N (M)[W−1]⊗ that
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is only lax symmetric monoidal and does not share the same properties of universality as in

Definition 3.2.1. We invite the interested reader to look at (Nikolaus and Scholze, 2018, A.7)

for more details.

If C is a left proper cellular simplicial symmetric monoidal model category, then its category

of symmetric spectra SpΣ(C) is also a symmetric monoidal model category, when endowed with

its projective stable model structure, see (Hovey, 2001, 7.3). If C⊗ is a symmetric monoidal

∞-category, then so is its stabilization Sp(C⊗). These are compatible with each other with

respect to the symmetric monoidal Dwyer-Kan localization.

Proposition 3.2.9 ((Ando et al., 2018, B.3)). Let C be a left proper cellular simplicial symmet-

ric monoidal model category. Then there is an equivalence of symmetric monoidal∞-categories:

N
(
SpΣ(C)c

) [
W−1

st

]⊗ ' Sp
(
N (Cc)

[
W−1

]⊗)
,

where W denotes the class of weak equivalences in C and Wst are the induced stable weak

equivalences in SpΣ(C).

3.3 Weak Monoidal Quillen Equivalence

Given C and D model categories, denote WC and WD their respective class of weak equiva-

lences. Let:

L : C D : R,⊥
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be a Quillen adjunction. Then as the left adjoint functor L preserves weak equivalences between

cofibrant objects and the right adjoint functor R preserves weak equivalences between fibrant

objects, we get, by (Hinich, 2016, 1.5.1), a pair of adjoint functors in ∞-categories between the

Dwyer-Kan localizations of C and D:

L : N (C)[W−1
C ] N (D)[W−1

D ] : R,⊥

where L and R represent the derived functors of L and R. If C and D are symmetric monoidal

model categories, we investigate when the derived functors are symmetric monoidal functors of

∞-categories.

Definition 3.3.1 ((Schwede and Shipley, 2003, 3.6)). Let (C,⊗, I) and (D,∧, J) be symmetric

monoidal model categories. A weak monoidal Quillen pair consists of a Quillen adjunction:

L : (C,⊗, I) (D,∧, J) : R,⊥

where L is lax comonoidal such that the following two conditions hold.

(i) For all cofibrant objects X and Y in C, the comonoidal map:

L(X ⊗ Y ) L(X) ∧ L(Y ),

is a weak equivalence in D.
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(ii) For some (hence any) cofibrant replacement λ : cI ∼−→ I in C, the composite map:

L(cI) L(I) J,L(λ)

is a weak equivalence in D, where the unlabeled map is the natural comonoidal structure

of L.

A weak monoidal Quillen pair is a weak monoidal Quillen equivalence if the underlying Quillen

pair is a Quillen equivalence.

Theorem 3.3.2. Let (C,⊗, I) and (D,∧, J) be symmetric monoidal model categories with cofi-

brant units. Let WC and WD be the classes of weak equivalence in C and D respectively. Let:

L : (C,⊗, I) (D,∧, J) : R,⊥

be a weak monoidal Quillen pair. Then the derived functor of L : C → D induces a symmetric

monoidal functor between the Dwyer-Kan localizations:

L : N (Cc)
[
W−1

C

]
N (Dc)

[
W−1

D

]
,

where Cc ⊆ C and Dc ⊆ D are the full subcategories of cofibrant objects. If L and R form a weak

monoidal Quillen equivalence, then L is a symmetric monoidal equivalence of ∞-categories.
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Proof. Let C⊗c and D⊗c be as Definition 3.2.3. Denote the symmetric monoidal Dwyer-Kan

localizations (Definition 3.2.1) by:

iC : N (C⊗c ) N (Cc)[W
−1
C ]⊗, iD : N (D⊗c ) N (Dc)[W

−1
D ]⊗,

and denote their coCartesian fibrations by:

p : N (Cc)[W
−1
C ]⊗ N (Fin∗), q : N (Dc)[W

−1
D ]⊗ N (Fin∗).

The functor L : C→ D, as a left Quillen functor, defines N (Cc)→ N (Dc), and hence a functor

L⊗ : N (C⊗c )→ N (D⊗c ) that is compatible with the coCartesian structures:

N (C⊗c ) N (D⊗c ) N (Dc)[W
−1
D ]⊗

N (Fin∗).

L⊗ iD

q

We show that the composite:

N (C⊗c ) N (D⊗c ) N (Dc)[W
−1
D ]⊗L⊗ iD

is a symmetric monoidal functor that sends WC to equivalences, i.e., belongs to the∞-category

Fun
WC
⊗ (N (C⊗c ),N (Dc)[W

−1
D ]⊗), as in Definition 3.2.1. The latter is clear as L is a left Quillen

functor. We are left to show that the composite sends p-coCartesian lifts to q-coCartesian lifts.

Let (C1, . . . , Cn) be an object of C⊗c , and let α : 〈n〉 → 〈m〉 be a morphism of finite sets. A
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p-lift of (α, (C1, . . . , Cn)) is given in Remark 3.2.5 by a certain sequence (C ′1, . . . , C
′
m) in C⊗c ,

i.e., the induced map (C1, . . . , Cn) → (C ′1, . . . , C
′
m) is sent to α via the coCartesian functor p.

Since L is weak monoidal functor, from (i) of Definition 3.3.1, we get that:

∧
i∈α−1(j)

L(Ci) L

 ⊗
i∈α−1(j)

Ci

 = L(C ′j),
∼

is a weak equivalence in D, for all 1 ≤ j ≤ m. In the case α−1(j) = ∅, we apply (ii) of Definition

3.3.1 to obtain a weak equivalence:

J L(I) = L(Cj).
∼

Applying the localization iD and Remark 3.2.2, we get that (L(C ′1), . . . , L(C ′m)) defines the

desired q-coCartesian lift.

By the universal property (U) of the symmetric monoidal Dwyer-Kan localization in Defi-

nition 3.2.1, the composite functor iD ◦ L⊗ represents a symmetric monoidal ∞-functor:

L⊗ : N (Cc)[W
−1
C ]⊗ N (Dc)[W

−1
D ]⊗.

Fiberwise over N (Fin∗), the functor L⊗ is precisely the product of the derived left adjoint

functor L : N (Cc)[W
−1
C ] → N (Dc)[W

−1
D ]. In particular, if L is a Quillen equivalence, then

L is an equivalence of ∞-category, and hence L⊗ is an equivalence of symmetric monoidal

∞-categories.
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Remark 3.3.3. In (Schwede and Shipley, 2003, 3.12), Schwede and Shipley show that given

a weak monoidal Quillen pair L : (C,⊗, I) (D,∧, J) : R,⊥ with cofibrant units, then the

right adjoint R induces Quillen equivalences between the category of monoids Mon(D) and

Mon(C), and also their categories of modules. Our Theorem 3.3.2 strenghten the results when

we worked with ∞-categories. In particular, given any ∞-operad O⊗, we get an equivalence

of ∞-categories AlgO
(
N (Cc)[W

−1
C ]
)
' AlgO

(
N (Dc)[W

−1
D ]
)
, which has been challenging to

prove in the case of O = E∞ in the past, see for instance (Richter and Shipley, 2017) and

(Mandell, 2003, 1.3, 1.4) for O = E∞. We also obtain an equivalence on the coalgebras:

CoAlgO
(
N (Cc)[W

−1
C ]
)
' CoAlgO

(
N (Dc)[W

−1
D ]
)
.

Such a result on coalgebras has been showed to be challenging in model categories, see for

instance (Soré, 2017), (Soré, 2019) and Remark 3.4.3 below.

3.4 The Derived Dold-Kan Equivalence

We now apply our Theorem 3.3.2 to the weak monoidal Quillen equivalence appearing in

(Schwede and Shipley, 2003), all missing details can be found there. Let R be a commutative

discrete ring subsequently. Let sModR denote the category of simplicial R-modules, and let

Ch≥0
R denote the category of non-negative chain complexes. The Dold-Kan equivalence says

that the normalization functor :

N : sModR Ch≥0
R ,

∼= (3.4.1)
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is an equivalence of categories. Its inverse functor is denoted Γ : Ch≥0
R → sModR.

We can endow each category with a model structure. For sModR, the weak equivalences

and fibrations are the underlying weak equivalences and fibrations in simplicial sets, i.e., they

are weak homotopy equivalences and Kan fibrations. In other words, the model structure of

sModR is right-induced from sSet via the forgetful functor, in the sense of (Hess et al., 2017).

For Ch≥0
R , we use the usual projective model structure. The weak equivalences are the quasi-

isomorphisms, and the fibrations are the positive levelwise epimorphisms. The isomorphism of

categories from (Equation 3.4.1) can be regarded now as two Quillen equivalences, depending

on the choice of left and right adjoints:

Ch≥0
R sModR,

Γ

N

⊥ (3.4.2)

and:

sModR Ch≥0
R .

N

Γ

⊥ (3.4.3)

Both categories can be endowed with their usual symmetric monoidal structure induced by

the tensor product of R-modules. However, the Dold-Kan equivalence (Equation 3.4.1) does

not preserve the monoidal structure. Nonetheless, with respect to the above choice of model

structures, the categories sModR and Ch≥0
R are both symmetric monoidal model categories
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with cofibrant units. If we choose the normalization functor N to be the right adjoint as in

(Equation 3.4.2), then it can be considered as lax symmetric monoidal via the shuffle map:

∇ : N(A)⊗ N(B) −→ N(A⊗B).

If we choose N to be the left adjoint as in (Equation 3.4.3), then the Alexander-Whitney formula

gives a lax comonoidal structure:

AW : N(A⊗B) −→ N(A)⊗ N(B),

which is not symmetric. Nevertheless, this shows that both Quillen equivalences form a weak

monoidal Quillen equivalence with cofibrant units, which is symmetric in the case where N

is a right adjoint (Equation 3.4.2). We can therefore apply our Theorem 3.3.2 to obtain the

following.

Corollary 3.4.1 (The Derived Dold-Kan Equivalence). Let R be a commutative discrete ring.

Then the Dwyer-Kan localizations of sModR and Ch≥0
R are equivalent as symmetric monoidal

∞-categories:

N (sModR)
[
W−1

∆

]
' N

(
Ch≥0

R

) [
W−1

dg

]
,

via the right Quillen derived functor of N : sModR → Ch≥0
R from the Quillen equivalence of

(Equation 3.4.2), where W∆ is the class of weak homotopy equivalences between simplicial R-
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modules, and Wdg is the class of quasi-isomorphisms between non-negative chain complexes over

R.

In particular, applying our Remark 3.3.3, we get the following result.

Corollary 3.4.2. For any ∞-operad O⊗, there is an equivalence of ∞-categories:

CoAlgO
(
N (sModR)

[
W−1

∆

])
' CoAlgO

(
N
(
Ch≥0

R

) [
W−1

dg

])
.

Remark 3.4.3. The above result bypasses a difficulty on the level of model categories and strict

coalgebras. If we choose the second adjunction (Equation 3.4.3) as a weak Quillen monoidal pair,

then the normalization functor, being lax comonoidal, lifts to coalgebras N : CoAlgR (sModR)→

CoAlgR(Ch≥0
R ), but its inverse Γ, being only lax monoidal, does not lift to coalgebras. Never-

theless, a right adjoint exists on the level of R-coalgebras, either by presentability, or using

dual methods as in section 3.3 of (Schwede and Shipley, 2003). We shall denote it by ΓCoAlg.

Then, using left-induced methods, we can endow model structures such that we get a Quillen

adjunction:

CoAlgR (sModR) CoAlgR

(
Ch≥0

R

)
.

N

⊥
ΓCoAlg

The weak equivalences are the underlying weak equivalences and every object is cofibrant, in

both model categories. However, it was shown in (Soré, 2019, 4.16) that the above Quillen pair

is not a Quillen equivalence, at least when R is a field. It was shown that for a particular choice

of fibrant object C in CoAlgR(Ch≥0
R ), the counit N (ΓCoAlg (C)) −→ C is not a weak equivalence
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(i.e. not a quasi-isomorphism). This will have a very important consequence for rigidification

results, see Example 4.1.2.

Our approach also gives a new proof of the stable Dold-Kan equivalence. This well-known

result was formalized with ∞-categories in (Lurie, 2017, 7.1.2.13) as follows. Let R be a

commutative discrete ring. Then the ∞-category of HR-modules ModHR is equivalent to ∞-

category of derived R-modules D(R) as symmetric monoidal ∞-categories: ModHR ' D(R).

However, the equivalence was not described explicitly in Lurie. In (Shipley, 2007, 2.10), Shipley

provided an explicit zig-zag of (weak monoidal) Quillen equivalences between the standard

model category ModHR of HR-modules in symmetric spectra and the projective model category

of chain complexes over R:

ModHR SpΣ (sModR)

SpΣ
(
Ch≥0

R

)
ChR.

⊥

a

⊥

Notice that the Dwyer-Kan localizations of ModHR and ChR are precisely the ∞-categories

ModHR and D(R) respectively. If we derive and combine the Quillen functors above, we obtain

an explicit functor of ∞-categories Θ : ModHR → D(R). Recall that both sModR and Ch≥0
R

are left proper cellular symmetric monoidal model categories. Combining Corollary 3.4.1 with

Proposition 3.2.9, and applying Theorem 3.3.2 yields the following.
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Corollary 3.4.4 (The Stable Dold-Kan Equivalence). Let R be a commutative discrete ring.

Then the ∞-category of HR-modules is equivalent to ∞-category of derived R-modules as sym-

metric monoidal ∞-categories via the functor Θ : ModHR
'−→ D(R).



CHAPTER 4

THE RIGIDIFICATION PROBLEM

In this chapter, we want to compare homotopy coherent coalgebras and comodules with their

strict analogue. One one hand, given a nice enough symmetric monoidal model category M,

we can obtain its Dwyer-Kan localization which is a symmetric monoidal ∞-category. We can

then apply Definitions 2.2.2 and 2.2.9, and define A∞ or E∞-coalgebras and their comodules.

Alternatively, we can consider comonoids and comodules in M as in Definitions 2.1.1 and 2.1.8,

and then take their Dwyer-Kan localization as in Definition 3.1.1.

There are classical rigidification results that compare A∞-algebras with their strict asso-

ciative analogue, see (Lurie, 2017, 4.1.8.4). There is also a comparison between the E∞-case

with the commutative case in (Lurie, 2017, 4.5.4.7). However, there is no reason to expect that

these results dualize in general. In particular, if A∞-algebras correspond to strict associative

algebras in a model category M, there is no reason to expect that A∞-coalgebras correspond to

strict coassociative coalgebras in M, see for instance our Example 4.1.2 below.

4.1 Rigidification Properties

Let C be a symmetric monoidal category. Let C⊗ be as in Definition 3.2.3. Let p : C⊗ → ∆op

be its associated Grothendieck opfibration (see (Groth, 2015, 4.5)) that determines the monoidal

structure of C, and induces the coCartesian fibration N (C⊗)→ N (∆op). There is a correspon-

dance between monoids in C and sections of p that sends convex morphisms to p-coCartesian

39
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arrows (see (Groth, 2015, 4.21)). In particular, we obtain the following identification in ∞-

categories:

N (Mon(C)) AlgA∞(N (C)).

By using opposite categories, we obtain therefore an identification:

N (CoMon(C)) CoAlgA∞(N (C)).

Let M be a symmetric monoidal model category with cofibrant unit. Consider Mc ⊆ M the

full subcategory of cofibrant objects. Apply the above identification to C = Mc to obtain the

following functor in ∞-categories:

N
(
CoMon(Mc)

)
CoAlgA∞(N (Mc))

Let W be the class of weak equivalences in M. By Proposition 3.2.7, there is a symmetric

monoidal functor N (M⊗c )→ N (Mc)
[
W−1

]⊗
, which thus provides a map of ∞-categories:

CoAlgA∞(N (Mc)) CoAlgA∞
(
N (Mc)

[
W−1

])
,

and therefore we obtain a functor of ∞-categories:

α : N
(
CoMon(Mc)

)
CoAlgA∞

(
N (Mc)

[
W−1

])
.
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Denote WCoMon the class of morphisms in CoMon(Mc) that are weak equivalences as underlying

morphisms in M. Notice that the above functor α sends WCoMon to equivalences. By the

universal property of Dwyer-Kan localizations as in Definition 3.1.1, we obtain the following

natural functor of ∞-categories:

α : N
(
CoMon(Mc)

) [
W−1

CoMon

]
CoAlgA∞

(
N (Mc)

[
W−1

])
.

Similarly, for the cocommutative case we obtain the natural functor of ∞-categories:

β : N
(
CoCMon(Mc)

) [
W−1

CoCMon

]
CoAlgE∞

(
N (Mc)

[
W−1

])
.

Definition 4.1.1. Let M be a symmetric monoidal model category with cofibrant unit. Let

α and β be the functors described above. If α is an equivalence of ∞-categories, we say that

the model category M (or its Dwyer-Kan localization) satisfies coassociative rigidification. If

β is an equivalence of ∞-categories, we say that M (or its Dwyer-Kan localization) satisfies

cocommutative rigidification.

In general there is no reason to expect that if a model category M respects the associative

rigidification then it also respects the coassociative rigidification, as we see from the following

counter-example.
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Example 4.1.2. We saw in Corollary 3.4.2 that the normalization functor N : sModR → Ch≥0
R

induces an equivalence between the A∞-coalgebras:

CoAlgA∞
(
N (sModR)

[
W−1

∆

])
' CoAlgA∞

(
N
(
Ch≥0

R

) [
W−1

dg

])
.

But on the level of model categories, we saw that the normalization does not induce a Quillen

equivalence in Remark 3.4.3:

N : N
(
CoMon(sModR)

) [
W−1

∆,Comon

]
N
(
CoMon(Ch≥0

R )
) [

W−1
dg,Comon

]
.

6'

Here W∆,Comon ⊆ W∆ and Wdg,Comon ⊆ Wdg denote the subclasses of their respective weak

equivalences between comonoid objects. This shows that either sModR or Ch≥0
R (or both) does

not satisfy the coassociative rigidification.

Remark 4.1.3. If we inspect the dual case of algebras (Lurie, 2017, 4.1.8.4, 4.5.4.7), we see that

we should have considered the ∞-category N (CoMon(M))
[
W−1

CoMon

]
and not the ∞-category

N (CoMon(Mc))
[
W−1

CoMon

]
. There are several issues with that.

• In general, these∞-categories are not equivalent unless for instance M admits a functorial

lax comonoidal cofibrant replacement. This means there is a functor Q : M → Mc such

that there is a natural map Q(X ⊗Y )→ Q(X)⊗Q(Y ) for any X and Y in M. The main

issue is that in general the functor N (M⊗c ) → N (M⊗) is only lax symmetric monoidal,

see Remark 3.2.8. Of course, if all objects in M are cofibrant, no such issues appear.
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• There is no good guarantee to have a model structure on CoMon(M) whose weak equiv-

alences are WCoMon, even when using the dual methods from Appendix A. Even though

we do not need a model category to define N (CoMon(M))
[
W−1

CoMon

]
, this would help

relate if there was some kind of compatibility with M. For instance, if we suppose M is

combinatorial monoidal model category and there exists a model category on comonoids

so that the forgetful-cofree adjunction (Proposition 2.1.5):

U : CoMon(M) M : T∨,⊥

is a Quillen adjunction, then there exists a functorial cofibrant replacement CoMon(M)→

CoMon(Mc) that induces an equivalence of ∞-categories:

N (CoMon(Mc))
[
W−1

CoMon

]
' N (CoMon(M))

[
W−1

CoMon

]
.

• In the cases where CoMon(M) does admit a model structure it is in general left-induced

by a model category that is not a monoidal model category. Indeed the lifting often uses

the injective model structures instead of the projective ones.

All the above also applies to the cocommutative case.

For any comonoid C in M that is cofibrant in M, we obtain the natural functor of ∞-

categories:

N (CoModC(Mc))
[
W−1

CoMod

]
CoModC

(
N (Mc)

[
W−1

])
,
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just as in the comonoid case. If we further assume that X ⊗ − : M → M preserves all weak

equivalences for any cofibrant object X, we obtain a map of ∞-categories:

γC : N (CoModC(M))
[
W−1

CoMod

]
CoModC

(
N (Mc)

[
W−1

])

that factors the above functor, and is defined via the assignement:

X̃ X X ⊗ C X̃ ⊗L C,∼ ∼

where X̃
∼−→ X is a cofibrant replacement of C-comodule X in M.

Definition 4.1.4. Let M be a symmetric monoidal model category as above. Let γC be

the functor described above. If γC is an equivalence of ∞-categories, we say that the model

category M (and its Dwyer-Kan localization) satisfies rigidification of comodules over C. If γC

is an equivalence for all comonoids C that are cofibrant in M, then we say that M (and its

Dwyer-Kan localization) satisfies the comodular rigidification.

4.2 The Cartesian Case

We provide here a simple case of model categories satisfying the coassociative, cocommu-

tative and comodular rigidification in the sense of Definitions 4.1.1 and 4.1.4. Let (M,×, ∗) be

a symmetric monoidal model category with respect to its Cartesian monoidal structure. Let

W be the class of weak equivalences in M. Suppose it respects the monoid axiom and that the

terminal object ∗ is cofibrant. Suppose also that M admits a functorial cofibrant replacement.
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Proposition 4.2.1. Let (M,×, ∗) be as above. Then, M satisfies the coassociative and cocom-

mutative rigidification, i.e. the following natural maps are equivalences of ∞-categories:

N (CoMon(M))
[
W−1

CoMon

]
CoAlgA∞

(
N (Mc)

[
W−1

])
,'

N (CoCMon(M))
[
W−1

CoCMon

]
CoAlgE∞

(
N (Mc)

[
W−1

])
,'

and all four of the∞-categories above are equivalent to the Dwyer-Kan localization N (M)
[
W−1

]
.

Moreover, the model category M also satisfies the comodular rigidification: for any cofibrant ob-

ject X in M, we have the following equivalence of ∞-categories:

N (CoModX(M))
[
W−1

CoMod

]
CoModX

(
N (Mc)

[
W−1

])
,

where both ∞-categories are equivalent to N (M/X)
[
W−1
X

]
. Here WX is the class of morphisms

in M over X that are weak equivalences.

Proof. For any Cartesian monoidal ∞-category C, we have the equivalence:

CoAlgA∞(C) ' CoAlgE∞(C) ' C,

see (Lurie, 2017, 2.4.3.10). Moreover, for any choice of object C in C, we have:

CoModC(C) ' C/C ,
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see (Beardsley and Péroux, 2019, 3.14). For any Cartesian monoidal (ordinary) category C, we

have the isomorphism of categories:

CoMon(C) ∼= CoCMon(C) ∼= C,

and for any C in C, we have the isomorphism:

CoModX(C) ∼= C/C ,

see (Aguiar and Mahajan, 2010, 1.19). Apply Remark 3.1.4 to conclude.



CHAPTER 5

COALGEBRAS IN SPECTRA

Based on the main result of (Péroux and Shipley, 2019), we prove here (in Corollaries 5.2.3

and 5.2.4) that the monoidal model categories of symmetric spectra (see (Hovey et al., 2000)),

orthogonal spectra (see (Mandell et al., 2001) (Mandell and May, 2002)), Γ-spaces (see (Segal,

1974) (Bousfield and Friedlander, 1978)), W -spaces (see (Anderson, 1974)) and S-modules (in

the sense of (Elmendorf et al., 1997)), do not respect the coassociative nor cocommutative rigid-

ification, in the sense of Definition 4.1.1. In other words, the strictly (possibly cocommutative)

coassociative counital coalgebras in these monoidal categories of spectra do not have the correct

homotopy type.

We work with the symmetric monoidal model category of symmetric spectra, denoted SpΣ

(see (Hovey et al., 2000)), and claim that similar results can be obtained with the other cate-

gories mentioned above, following (Péroux and Shipley, 2019). Notice that we have the equiv-

alence of ∞-categories:

N (SpΣ)[W−1] ' Sp,

where W is the class of stable equivalences of symmetric spectra, and Sp is the ∞-category of

spectra as in (Lurie, 2017, 1.4.3.1).

47
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5.1 Model Structures for Coalgebras

Although not necessary to show the non-rigidification, as seen in Remark 4.1.3, we provide

here a model category for coalgebras and cocommutative coalgebra in symmetric spectra. We

shall use the left-induced methods from Appendix A. We follow here the approach of Section

5 of (Hess et al., 2017). In (Hovey et al., 2000, Section 5) there is a simplicial, combinatorial

model structure on SpΣ with all objects cofibrant called the (absolute) injective stable model

stucture, see also (Schwede, , Remark III.4.13). The fibrant objects are the injective Ω-spectra.

Proposition 5.1.1 ((Hess et al., 2017, 5.0.1, 5.0.2)). For any S-algebra A in SpΣ, there exists

an injective model structure on ModA(SpΣ) left-induced from the injective stable model structure

on SpΣ:

ModA(SpΣ) SpΣ,
U

Hom
SpΣ

(A,−)

⊥

with cofibrations the monomorphisms and weak equivalences the stable equivalences. This model

structure on ModA(SpΣ) is simplicial and combinatorial.

Let A be a commutative ring spectrum (i.e. a commutative S-algebra). The symmetric

monoidal category (ModA(SpΣ),∧A, A) is presentable and the smash product ∧A preserves

colimits in both variables. Thus we can apply Proposition 2.1.5 and we obtain the (forgetful-

cofree)-adjunction between A-coalgebras and A-modules in SpΣ:

CoAlgA(SpΣ) ModA(SpΣ).
U

T∨
⊥
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Proposition 5.1.2. Let A be any commutative S-algebra in symmetric spectra SpΣ. There

exists a model structure on A-coalgebras CoAlgA(SpΣ) left-induced by the (forgetful-cofree) ad-

junction from the injective stable model structure on ModA(SpΣ). In particular, the weak equiv-

alences in CoAlgA(SpΣ) are the underlying stable equivalences, and the cofibrations are the

underlying monomorphisms.

Proof. We mimic the proof of (Hess et al., 2017, Theorem 5.0.3). We apply Proposition A.3.2.

Tensoring with a simplicial set lifts to A-coalgebras. Indeed, let K be a simplicial set and

(C,∆C , εC) be an A-coalgebra. Then the free S-module Σ∞+ K is endowed with a unique (co-

commutative) S-coalgebra structure (Σ∞+ K,∆K , εK), see (Péroux and Shipley, 2019, Lemma

2.4), where the comultiplication ∆K is induced by the diagonal K+ → K+∧K+ and the counit

εK is induced by the non-trivial map K+ → S0. Then the tensor K ⊗ C := Σ∞+ K ∧S C is an

A-coalgebra with comultiplication:

Σ∞+ K ∧S C
∆K∧∆C−→ (Σ∞+ K ∧S Σ∞+ K) ∧S (C ∧A C)

∼= (Σ∞+ K ∧S C) ∧A (Σ∞+ K ∧S C),

and counit:

Σ∞+ K ∧S C S ∧S A ∼= A.
εK∧εC

There is a good cylinder object in sSet given by the factorization:

S0
∐

S0 ∆[1]+ = I S0.∼
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Since ModA(SpΣ) is simplicial, all objects are cofibrant, and that the smash product of an

A-coalgebra with this factorization in sSet lifts to CoAlgA(SpΣ), this defines a good cylinder

object in CoAlgA(SpΣ) for any A-coalgebra C:

C
∐

C C ⊗ I C,∼

as C ⊗ S0 ∼= C, and colimits in CoAlgA(SpΣ) are computed in ModA(SpΣ) by Proposition

2.1.3.

We can also easily extends the results to cocommutative A-coalgebras.

Proposition 5.1.3. Let A be any commutative S-algebra in symmetric spectra SpΣ. There ex-

ists a model structure on cocommutative A-coalgebras CoCAlgA(SpΣ) left-induced by the (forgetful-

cofree) adjunction from the injective stable model structure on ModA(SpΣ). In particular, the

weak equivalences in CoCAlgA(SpΣ) are the underlying stable equivalences, and the cofibrations

are the underlying monomorphisms.

5.2 The Failure of Rigidification

We show here the failure of rigidification. Let A and B be commutative S-coalgebras. A

map A → B is defined to be a positive flat cofibration of commutative S-algebras if it is a

cofibration in the model category of commutative S-algebras defined in (Shipley, 2004, 3.2) (or

the positive flat stable model structure defined in (Schwede, , III.6.1)). As noted in (Péroux and

Shipley, 2019, 2.4), every comonoid in (sSet∗,∧, S0) is of the form Y+ and the comultiplication

is given by the diagonal Y+ → (Y × Y )+
∼= Y+ ∧ Y+.
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Theorem 5.2.1 ((Péroux and Shipley, 2019, 3.4, 3.6)). Let A be a positive flat cofibrant com-

mutative S-algebra in SpΣ. Then, given any counital coassociative A-coalgebra C in SpΣ, the

comultiplication is cocommutative and induced by the following epimorphism of A-coalgebras:

A ∧ C0 −→ C,

where A ∧ C0 is given an A-coalgebra structure via the diagonal on the pointed space C0 →

C0 ∧ C0.

Remark 5.2.2. As noted in (Péroux and Shipley, 2019, 3.6), any E∞-ring spectrum is equiv-

alent (as an E∞-ring spectrum) to a positive flat cofibrant commutative S-algebra in SpΣ.

Let A be any commutative S-algebra. Let CoAlgA(SpΣ
c ) denote the comonoid in the cofibrant

objects of A-modules in SpΣ endowed with the absolute projective stable model structure (as

in (Schwede, , IV.6.1)). There is a natural map of ∞-categories:

α : N (CoAlgA(SpΣ
c ))
[
W−1

]
CoAlgA∞(ModA(Sp)),

where W is the class of stable equivalences between A-coalgebras.

Corollary 5.2.3. Let A be a positive flat cofibrant commutative S-algebra in SpΣ. Then the∞-

category of A-modules ModA(Sp) does not satisfy the coassociative rigidification. In particular,

for A = S we have:

CoAlgA∞(Sp) 6' N (CoAlgS(SpΣ))
[
W−1

]
.
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Proof. Let (C,∆, ε) be an A-coalgebra in SpΣ that is cofibrant as an A-modules in the (absolute)

projective stable model structure. Suppose the functor:

α : N (CoAlgA(SpΣ
c ))
[
W−1

]
CoAlgA∞(ModA(Sp)),

is an equivalence of ∞-category. By Theorem 5.2.1, we see that α(C) is automatically an E∞-

coalgebra. But there exist A∞-coalgebras in Sp that are not E∞-coalgebras. Indeed, take any

compact topological group that is not Abelian (say O(2)), then A∧O(2)+ is an A∞-algebra in

ModA(Sp) that is not commutative and is a compact spectrum. By Spanier-Whitehead duality,

we obtain an A∞-coalgebra that is not E∞ in spectra.

Similarly, as there are examples of E∞-coalgebras that are not the diagonal in spectra by

Spanier-Whitehead duality, we also obtain the following.

Corollary 5.2.4. Let A be a positive flat cofibrant commutative S-algebra in SpΣ. Then the

∞-category of A-modules ModA(Sp) does not satisfy the cocommutative rigidification. In parti-

cular, for A = S we have:

CoAlgE∞(Sp) 6' N (CoCAlgS(SpΣ))
[
W−1

]
.



CHAPTER 6

COMODULES IN CHAIN COMPLEXES

Let ChR be the category of unbounded chain complexes of R-modules. It is a symmetric

monoidal category (ChR,⊗R, R). Subsequently, we may write ⊗R simply as ⊗. A differential

graded coalgebra is a comonoid in ChR. We show, in Theorem 6.3.3, that when R is a finite

product of fields, the projective model structure on non-negative chain complexes Ch≥0
R satisfies

the comodular rigidification when it is over a simply connected differential graded coalgebra. We

also show in Theorem 6.4.7 that ChR satisfies rigidification for any comodules over a differential

graded coalgebra that is perfect as a chain complex.

We saw in Example 4.1.2 that rigidification of coassociative coalgebras in non-negative chain

complexes Ch≥0
R over a commutative ring R might not be satisfied (when we endow it with the

projective model structure). Therefore our results in this chapter show that comodules are less

pathological than coalgebras in chain complexes.

6.1 Barr-Beck-Lurie Comonadicity Theorem

We invite the reader to look at the definition of monadicity in∞-categories in (Lurie, 2017,

4.7.3.4). A functor C → D of∞-categories will be called comonadic if its opposite Cop → Dop is

monadic. More precisely, a left adjoint functor C → D in∞-categories exhibits C as comonadic

over D if C is equivalent to coalgebras over the comonad over D determined by the adjunction.

53
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We recall a necessary and sufficent condition for a left adjoint functor to be comonadic.

This is an analogue to the situation in ordinary categories where a left adjoint L is comonadic

if and only it preserves L-split equalizers. The ∞-categorical notion of L-split coaugmented

cosimplical objects is entirely dual to the simplicial analogue described in (Lurie, 2017, 4.7.2.2).

Theorem 6.1.1 ((Lurie, 2017, 4.7.3.5) Barr-Beck-Lurie Comonadicity Theorem). A functor

F : C → D in ∞-categories exhibits C as comonadic over D if and only if it admits a right

adjoint, is conservative, and preserves all limits of F -split coaugmented cosimplicial objects.

Theorem 6.1.2 ((Lurie, 2017, 4.7.3.16)). A functor V : C → C′ is an equivalence of ∞-

categories if there is a left adjoint functor F ′ : C′ → D such that F ′ and F ′ ◦ V exhibit both

C and C′ as comonadic over D over the same comonad. More precisely, given the following

diagram of ∞-categories where V commutes with the left adjoints:

C

D

C′

V

F
⊥

G

⊥
G′

F ′

the functor V : C → C′ is an equivalence of ∞-categories if:

• the functor F : C → D exhibits C as comonadic over D;

• the functor F ′ : C′ → D exhibits C′ as comonadic over D;

• the canonical map (F ◦G)→ (F ′ ◦G′) is an equivalence of functors.
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Proposition 6.1.3 ((Lurie, 2017, 4.7.2.5)). Let C be a monoidal ∞-category. Given any

A∞-coalgebra C in C, the forgetful functor exhibits the ∞-category of (right) C-comodule

CoModC(C) as comonadic over C.

The following argument appeared in the proof of Theorem 0.3 in (Heuts, 2018). Given a

pair of adjoint functors L : C D : R,⊥ we define the canonical RL-resolution which is

the following L-split coaugmented cosimplicial object in C, induced by the comonad LR on D:

X RL(X) RLRL(X) RLRLRL(X) · · · .

We shall denote the L-split coaugmented cosimplicial object by X → RL•+1(X).

Proposition 6.1.4. Given a pair of adjoint functors L : C D : R⊥ in∞-categories, such

that L is conservative. Then L is comonadic if and only if the map X
'−→ limC

∆(RL•+1(X)) is

an equivalence for all objects X in C.

Proof. We show the sufficient condition. Let X−1 → X• be an L-split cosimplicial object of C.

We have the following square:

X−1 limC
∆(X•)

limC
∆

(
RL•+1(X−1)

)
limC

∆×∆

(
RL•+1(X•)

)
.

The vertical maps are equivalences by assumption. The bottom horizontal map is an equiv-

alence as X−1 → X• is L-split. Indeed, we have L(X−1) ' limD
∆L(X•), and since R pre-

serves limits, we get RL(X−1) ' limC
∆RL(X•). Since the coaugmented cosimplicial object
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RL(X−1) → RL(X•) remains L-split, we can reiterate our argument and thus show that the

bottom horizontal map is an equivalence in C. Therefore the top horizontal map is an equiva-

lence, as desired.

6.2 Model Category for Comodules

Recall there exist two model categories on chain complexes. The first one is called the projec-

tive model structure, denoted (ChR)proj, where its weak equivalences are the quasi-isomorphisms

and the fibrations are the levelwise epimorphisms. All objects are fibrant. It is cofibrantly gen-

erated by a pair of sets, see (Hovey, 1999, 2.3.11). It is a symmetric monoidal model category.

The second one is called the injective model structure, denoted (ChR)inj, where its weak equiv-

alences are the quasi-isomorphisms and the cofibrations are the levelwise monomorphisms. All

objects are cofibrant. It is cofibrantly generated, see (Hovey, 1999, 2.3.13). It is not in general a

monoidal model category. The identity functor on ChR gives the following Quillen equivalences:

(ChR)proj (ChR)inj .⊥

We shall also be interested in the particular case where R = k is a finite product of fields.

It is a commutative ring k such that it is a product in commutative rings: k = k1 × · · · × kn,

where each ki is a field, for some 1 ≤ n < ∞. In the literature, such rings are referred to

as commutative semisimple Artinian rings. For instance, if the integer n is the product of

distinct prime numbers p1 · · · pn, then the commutative ring Z/nZ is a finite product of fields.

In the case where k is a finite product of fields, then the model structures above are equal:

(Chk)proj = (Chk)inj. In particular, its fibrations and cofibrations are levelwise epimorphisms

and monomorphisms respectively. All objects are cofibrant and fibrant. If we restrict to the
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full subcategory Ch≥0
k ⊆ Chk of non-negative chain complexes, we obtain a model category

for Ch≥0
k where the weak-equivalences are the quasi-isomorphisms, the fibrations are positive

levelwise epimorphisms, and the cofibrations are levelwise monomorphisms. In fact, this model

structure is left-induced from the adjunction Ch≥0
k Chk,⊥ where the right adjoint is the

0-th truncation functor τ≥0 : Chk → Ch≥0
k defined in (Weibel, 1994, 1.2.7).

A differential graded R-coalgebra is a comonoid in ChR. Let us describe model structures

for right comodules over a differential graded R-coalgebra.

Proposition 6.2.1 ((Hess et al., 2017, 6.3.7)). Let R be any commutative ring. Let C be

a differential graded R-coalgebra. Then the category of right C-comodules in ChR admits a

model structure left induced from the injective model structure (ChR)inj, via the forgetful-cofree

adjunction:

CoModC(ChR) ChR.
U

⊥
−⊗C

In particular U preserves and reflects cofibrations and weak equivalences.

Definition 6.2.2. We denote (CoModC(ChR))inj the model structure constructed in Proposition

6.2.1 and call it the injective model structure on the category of right C-comodules in ChR.

In general, it is not possible to induce a model structure on CoModC(ChR) from the pro-

jective model structure on chain complexes unless R is a finite product of fields. However, we

shall see in Proposition 6.4.9 it is possible to induce a model structure for certain choices of

differential graded coalgebras.

Proposition 6.2.3. The injective model structure (CoModC(ChR))inj is combinatorial.
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Proof. Apply Proposition A.3.3.

We can adapt the arguments to the non-negative case.

Proposition 6.2.4. Let k be a finite product of fields. Let C be a non-negative differential

graded R-coalgebra. Then the category of right C-comodules in Ch≥0
k admits a combinatorial

model category left induced from the forgetful-cofree adjunction:

CoModC(Ch≥0
k ) Ch≥0

k .
U

⊥
−⊗C

In particular U preserves and reflects cofibrations and weak equivalences.

Notice that CoModC(Ch≥0
k ) is enriched, tensored and cotensored over Ch≥0

k , the tensor

product Ch≥0
k × CoModC(Ch≥0

k )
⊗−→ CoModC(Ch≥0

k ) is given by (M,X) 7→ M ⊗ X where the

right C-coaction is induced on X. It is then elementary to show that CoModC(Ch≥0
k ) is a

(Ch≥0
k )-model category in the sense of (Hovey, 1999, 4.2.18). In particular, this shows that

CoModC(Ch≥0
k ) is a simplicial model category.

6.3 The Simply Connected Case

We state and show here our main theorem. We shall make use of the results in the appen-

dices, in particular we shall need Corollary B.3.15. We first start by a definition.

Definition 6.3.1. Let R be any commutative ring. A differential graded R-coalgebra C is

1-connected or simply connected if: C0 = R, C1 = 0 and Ci = 0 for all i < 0.
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Remark 6.3.2. Any simply connected differential graded R-coalgebra C is naturally coaug-

mented, i.e., there is a map of coalgebras η : R → C which is trivial in every non-zero degree,

and in degree zero is the identity idR.

Theorem 6.3.3. Let k be a finite product of fields. Let C be a simply connected differen-

tial graded k-coalgebra. Then Ch≥0
k satisfies rigidification of comodules over C: we have the

following equivalence of ∞-categories: N
(
CoModC(Ch≥0

k )
) [

W−1
]
' CoModC

(
D≥0(k)

)
.

The canonical ((− ⊗ C) ◦ U)-resolution is the following U -split coaugmented cosimplicial

object in CoModC(Ch≥0
k ):

X U(X)⊗ C U
(
U(X)⊗ C

)
⊗ C · · · .

We shall denote it simply by X → Ω•(X,C,C) and refer to it as the cobar resolution of the

C-comodules X. Since CoModC(Ch≥0
k ) is a simplicial model category, homotopy limits over

cosimplicial diagrams are computed as in (Hirschhorn, 2003, 18.1.8). We denote the homotopy

limit of the cosimplicial diagram Ω•(X,C,C) in CoModC(Ch≥0
k ) by Ω(X,C,C). Notice that

each object in the cosimplicial diagram Ω•(X,C,C) is a right cofree C-comodule, hence fibrant.

Thus Ω(X,C,C) is a fibrant right C-comodule by (Hirschhorn, 2003, 18.5.2).

Remark 6.3.4. We warn the reader that in the literature Ω(X,C,C) denotes the homotopy

limit in Ch≥0
k (which is obviously quasi-isomorphic to X since Ω•(X,C,C) is U -split) and not

in CoModC(Ch≥0
k ). But as we will show in Lemma 6.3.6, this distinction won’t matter.
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Lemma 6.3.5. Let k be a finite product of fields. Let C be a simply connected differential

graded k-coalgebra. Let X = M ⊗C be a cofree right C-comodule. Then the cobar resolution of

X induces a weak equivalence X
'−→ Ω(X,C,C) in CoModC(Ch≥0

k ), i.e., a quasi-isomorphism.

Proof. Regard C as a right C-comodule via its comultiplication ∆ : C → C ⊗ C. Then the

coaugmented cosimplicial diagram C → Ω•(C,C,C) in CoModC(Ch≥0
k ):

C C⊗2 C⊗3 · · · ,

splits in the Dwyer-Kan localization N
(
CoModC(Ch≥0

k )
) [

W−1
]

via the map of C-comodules

ε⊗ idC : C⊗2 → C, where ε : C → S0 is the counit of C.

As we are working over a finite product of fields, tensoring with a chain complex M pre-

serves monomorphisms and quasi-isomorphisms, hence the functor M⊗ : CoModC(Ch≥0
k ) →

CoModC(Ch≥0
k ) is left Quillen, and thus induces a derived functor on the Dwyer-Kan localiza-

tions M ⊗ − : N
(
CoModC(Ch≥0

k )
) [

W−1
]
→ N

(
CoModC(Ch≥0

k )
) [

W−1
]
, thus it preserves

split cosimplicial objects. From the isomorphism of cosimplicial diagrams: M ⊗ Ω•(C,C,C) ∼=

Ω•(M⊗C,C,C), we get the quasi-isomorphism M⊗C 'M⊗Ω(C,C,C) ' Ω(M⊗C,C,C).

Lemma 6.3.6. Let k be a finite product of fields. Let C be a simply connected differential

graded k-coalgebra. Let X be any right C-comodule in Ch≥0
k . Then the cobar resolution of X

induces a weak equivalence X
'−→ Ω(X,C,C) in CoModC(Ch≥0

k ), i.e., a quasi-isomorphism.

Proof. We make use of Corollary B.3.15 and Definition B.3.16. Let {X(n)} be the Postnikov

tower of X, and denote by X̃ the (homotopy) limit of the tower in CoModC(Ch≥0
k ). Then the
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acyclic cofibration X
'
↪→ X̃ induces an objectwise weak equivalence Ω•(X,C,C)→ Ω•(X̃, C,C)

between objectwise fibrant cosimplicial diagrams. Thus Ω(X,C,C) → Ω(X̃, C,C) is a weak

equivalence by (Hirschhorn, 2003, 18.5.3). Therefore it suffices to show that X̃ → Ω(X̃, C,C)

is a weak equivalence.

Since the Postnikov tower {X(n)} stabilizes in each degree, we have the weak equivalence

U(holimC
nX(n)) ' holimnU(X(n)). Since the functor − ⊗ C : Ch≥0

k → CoModC(Ch≥0
k ) is right

Quillen, we also obtain the weak equivalence (U(holimC
nX(n))) ⊗ C ' holimC

n (U(X(n)) ⊗ C).

Notice that the tower
{
U(X(n)) ⊗ C

}
also stabilizes in each degree by Lemma B.3.5. The

maps in that tower are fibrations in CoModC(Ch≥0
k ) and in Ch≥0

k . Thus the homotopy limit can

also be computed in Ch≥0
k . Therefore:

Ω(X̃, C,C) ' holimC
n

(
Ω(X(n), C, C)

)
.

Hence it is enough to show that for all n ≥ 0, the canonical maps X(n) → Ω(X(n), C, C) are

weak equivalences in CoModC(Ch≥0
k ), i.e., quasi-isomorphisms.

We shall prove it inductively. For n = 0, we have X(0) = 0 and the map is trivial and

hence a quasi-isomorphim. For n = 1, we know that X(1) is a cofree right C-comodule, and

hence, by Lemma 6.3.5, we have X(1) → Ω(X(1), C, C) is a quasi-isomorphism. Suppose now



62

that we have shown X(n) → Ω(X(n), C, C) is a quasi-isomorphism for some n ≥ 1. Then by

construction, the comodule X(n+ 1) is the following homotopy pullback in CoModC(Ch≥0
k ):

X(n+ 1) Dn(V )⊗ C

X(n) Sn(V )⊗ C.

y

By (Hirschhorn, 2003, 18.5.2), it induces a homotopy pullback in CoModC(Ch≥0
k ):

Ω(X(n+ 1), C, C) Ω(Dn(V )⊗ C,C,C)

Ω(X(n), C, C) Ω(Sn(V )⊗ C,C,C).

y

Since X(n), Sn(V ) ⊗ C and Dn(V ) ⊗ C are weakly equivalent to their respective homotopy

limits of their cobar cosimplicial resolutions, either by induction or by Lemma 6.3.5, we get then

that X(n+ 1) → Ω(X(n + 1), C, C) is a weak equivalence since homotopy pullbacks preserve

weak equivalences.

Proof of Theorem 6.3.3. Since the forgetful functor U : CoModC(Ch≥0
k ) → Ch≥0

k preserves and

reflects weak equivalences by definition of the model structures, we immediately get that the left

Quillen derived functor N (CoModC(Ch≥0
k ))

[
W−1

]
→ D≥0(k) is conservative. By (Lurie, 2017,

1.3.4.23, 1.3.4.25), homotopy limits over cosimplicial diagrams in CoModC(Ch≥0
k ) correspond

exactly to limits over cosimplicial diagrams in the ∞-categorical sense. Hence the left Quillen

derived forgetful functor is comonadic by Lemma 6.3.6 and Proposition 6.1.4. We can conclude
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by Theorem 6.1.2 as Proposition 6.1.3 shows that CoModC(D≥0(k)) is also comonadic over the

same comonad −⊗ C : D≥0(k)→ D≥0(k).

6.4 The Perfect Case

We let R be any commutative ring. In general, we have the forgetful-cofree adjunction:

CoModC(ChR) ChR.
U

⊥
−⊗C

We are interested here to investigate when the forgetful functor U is a right adjoint. We begin

by recalling the following classical results.

Definition 6.4.1. A chain complex X in ChR is said to be flat over R if the induced functor

−⊗X : ChR → ChR preserves monomorphisms. In other words, the chain complex X is flat if

it is a chain complex of flat R-modules.

The next lemma is a classical result.

Lemma 6.4.2. Let X be any chain complex over R. The following are equivalent.

(i) The functor −⊗X : ChR → ChR preserves equalizers (i.e. is left exact).

(ii) The chain complex X is flat over R.

We obtain the following result since CoModC(ChR) is the category of coalgebras over the

comonad −⊗ C : ChR → ChR.

Lemma 6.4.3. Let C be any differential graded coalgebra over R. The following are equivalent:
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(i) The forgetful functor U : CoModC(ChR)→ ChR preserves equalizers.

(ii) The chain complex C is flat over R.

Similarly we have the following result, perhaps less well known.

Lemma 6.4.4. Let X be a chain complex over R. The following are equivalent.

(i) The functor −⊗X : ChR → ChR preserves infinite products.

(ii) X is a bounded chain complex of finitely presented R-modules.

Proof. This follows directly from the fact that, for any R module M , the functor − ⊗M in

R-modules preserves infinite products if and only if M is finitely presented as an R-module (see

(Brzezinski and Wisbauer, 2003, 40.17)).

Definition 6.4.5. A perfect chain complex in ChR is a bounded chain complex of finitely

generated projective R-modules.

Lemma 6.4.6. Let C be any differential graded coalgebra over R. Then the following are

equivalent.

(i) The forgetful functor U : CoModC(ChR)→ ChR is a right adjoint.

(ii) The coalgebra C is a perfect chain complex.

Proof. This is a combination of the previous lemmas. Notice that any flat bounded chain

complex of finitely presented R-modules is precisely a perfect chain complex over R.
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Theorem 6.4.7. Let R be any commutative ring. Let C be a differential graded-R coalgebra

that is a perfect as a chain complex. Then the projective model structure on ChR satisfies

rigidification of comodules over C. In particular, we obtain the following equivalence of ∞-

categories:

N
(
CoModC(ChR)

) [
W−1

]
' CoModC(D(R)),

where W is the class of quasi-isomorphisms between C-comodules in ChR.

We shall prove the above theorem later in the section. We first make the following observa-

tion.

Remark 6.4.8. The result of Theorem 6.4.7 is perhaps not surprising as we have the following.

For any chain complex X in ChR, let us denote X∗ = HomChR(X,R) its linear dual. For any

differential graded coalgebra C in ChR, we have a faithful functor towards the category of left

C∗-modules:

CoModC(ChR) C∗Mod(ChR).

Indeed, to any right C-comodule ρ : X → X ⊗ C, we associate a left C∗-modules by:

C∗ ⊗X C∗ ⊗X ⊗ C R⊗X ∼= X.
idC∗⊗ρ evaluation

One can easily check that the functor is an equivalence of categories whenever C is a perfect

chain complex. Therefore, rigidification of C-comodules is equivalent to rigidification of C∗-

modules, which is already known.
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From the identification of right C-comodule with left C∗-modules, we can view the differ-

ential graded algebra C∗ as a right C-comodule. Then since the free module functor −⊗ C∗ :

ChR → C∗Mod(ChR) is the left adjoint of the forgetful functor U : C∗Mod(ChR) → ChR, it

is also the left adjoint of the forgetful functor on comodules U : CoModC(ChR) → ChR. In

particular we get the following result.

Proposition 6.4.9. Let R be any commutative ring. Let C be a differential graded coalgebra

over R such that it is a perfect chain complex. Then the category of right C-comodules in

ChR admits model categories right induced from the projective model structure (ChR)proj, via the

free-forgetful adjunction:

ChR CoModC(ChR),
−⊗C∗

⊥
U

were C∗ is regarded as a right C-comodule. In particular, the weak equivalences and fibrations

in CoModC(ChR) are precisely the underlying quasi-isomorphisms and projective fibrations. The

generating cofibrations and acyclic cofibrations are the sets {Sn ⊗ C∗ ↪→ Dn+1 ⊗ C∗}n∈Z and

{0→ Dn ⊗ C∗}n∈Z respectively, and the model category is combinatorial.

Proof. Recall that both categories are presentable (see Proposition 2.1.11). The projective

model structure (ChR)proj is cofibrantly generated by the pair of sets I = {Sn ↪→ Dn+1}n∈Z

and J = {0 → Dn}n∈Z. Thus the sets I ⊗ C∗ and J ⊗ C∗ permit the small object argument.

The functor U takes relative (J ⊗ C∗)-cell complexes to weak equivalences as U preserves all

colimits. We conclude by (Hirschhorn, 2003, 11.3.2).
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Definition 6.4.10. We denote (CoModC(ChR))proj the model structure constructed in Propo-

sition 6.4.9 and call it the projective model structure on the category of right C-comodules in

ChR.

Proposition 6.4.11. Let R be any commutative ring. Let C be a differential graded R-coalgebra

that is perfect as a chain complex. Then the projective and injective model structures are Quillen

equivalent:

(CoModC(ChR))proj (CoModC(ChR))inj.⊥

Proof. The generating projective acyclic cofibrations 0 ↪→ Dn ⊗C∗ are clearly injective acyclic

cofibrations, i.e. are levelwise monomorphisms and quasi-isomorphisms. Let X → Y be an

injective fibration of right C-comodules. Then in the diagram:

0 X

Dn ⊗ C∗ Y.

'

there is always a lift Dn⊗C∗ → X as 0 ↪→ Dn⊗C∗ is also an injective acyclic cofibration.

Proof of Thoerem 6.4.7. We apply Theorem 6.1.2. Since C is a perfect chain complex, it is

cofibrant in the projective model structure of ChR. Thus the natural functor:

γC : N
(
CoModC(ChR)

) [
W−1

]
CoModC(D(R)),
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induces an obvious equivalence of the comonads − ⊗ C : D(R) → D(R). We are only left to

show that the (derived) forgetful functor:

N
(
CoModC(ChR)

) [
W−1

]
D(R),

exhibits the Dwyer-Kan localization as comonadic over D(R). This follows directly from (Lurie,

2017, 1.3.4.23, 1.3.4.25) and the fact that U : (CoModC(ChR))proj → (ChR)proj is a right Quillen

functor and thus preserves all homotopy limits.

We shall show in Theorem B.4.1 that (CoModC(ChR))inj also admits a Postnikov presentation

and therefore also allows inductive arguments to compute limits in CoModC(D(R)) whenevever

C is a perfect chain complex.

Remark 6.4.12. Our argument in Theorem 6.4.7 can be generalized to any closed symmetric

monoidal combinatorial model category (M,⊗, I). A sufficient condition on an object X such

that the functor − ⊗ X : M → M preserves all limits is to require the object X to be strong

dualizable in the monoidal category (see (Dold and Puppe, 1980, 1.2) for a definition). In that

case, just as in Proposition 6.4.9, we can right induced a model category from M to the category

of right C-comodule in M, if C is a strong dualizable object in M. Then, just as in Theorem

6.4.7, we obtain:

N
(
CoModC(M)

) [
W−1

CoMod

]
' CoModC

(
N (M)

[
W−1

] )
,
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for any coalgebra C in M that is strong dualizable. When M = ChR, a chain complex is strong

dualizable if and only if it is a perfect chain complex (see (Dold and Puppe, 1980, 1.6)). In

practice though, strong dualizable objects are rare in a non algebraic context. For instance,

a free pointed space X+ is strong dualizable in Top∗, the category of pointed spaces together

with the smash product, if and only if X = ∗. Therefore, the category CoModX+(Top∗) is

isomorphic to Top∗ and the case is vacuous. We can argue similarly that, in symmetric spectra,

the symmetric spectrum Σ∞X+ is strong dualizable if and only if X is a point.



CHAPTER 7

DERIVED COTENSOR OF COMODULES

We saw in Theorem 6.3.3 that there is a correspondance between (left or) right strict C-

comodules and (left or) right homotopically coherent C-comodules in non-differentially graded

context, over a finite product of fields, whenever C is simply connected. We show here, in

Theorem 7.5.2, that we can also lift a symmetric monoidal structure via the cotensor product

of comodules. This shows that the∞-category of comodules over a simply connected coalgebra

in connective Hk-modules is endowed with a symmetric monoidal structure given by the derived

cotensor product, which is equivalent to the cobar resolution.

Throughout this chapter, let k be a finite product of fields and let C be a simply con-

nected differential graded k-coalgebra. We shall always assume C to be cocommutative so that

CoModC(D≥0(k)) represents both left and right C-comodules. All the results in this chapter

would remain true if we consider the ∞-category of bicomodules over a non-cocommutative

C, but we choose C to be cocommutative for simplicity. We shall write CoModC instead of

CoModC(Ch≥0
k ) and CoModC instead of CoModC(D≥0(k)).

7.1 Definition and Properties

We begin by introducing the main construction of this chapter which is the cotensor product

of C-comodules.

70
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Definition 7.1.1. Let X and Y be C-comodules in Ch≥0
k . Define their cotensor product X�CY

to be the following equalizer in Ch≥0
k :

X�CY X ⊗ Y X ⊗ C ⊗ Y,

where the two parallel morphisms are induced by the coactions X → X ⊗ C and Y → C ⊗ Y .

Lemma 7.1.2. The cotensor X�CY is endowed with a C-comodule structure.

Proof. Since − ⊗ C : Ch≥0
k → Ch≥0

k preserves equalizers, we obtain the following dashed map

below by universality of equalizers:

X�CY X ⊗ Y X ⊗ C ⊗ Y

(X�CY )⊗ C X ⊗ Y ⊗ C X ⊗ C ⊗ Y ⊗ C.

We can check easily that the map is a coaction of a C-comodule.

Lemma 7.1.3 ((Eilenberg and Moore, 1966, 2.2)). For any C-comodule X, we have X�CC ∼=

X ∼= C�CX.

Lemma 7.1.4 ((Eilenberg and Moore, 1966, 2.1)). Let M be a non-negative chain complex.

Then for any cofree comodule M ⊗ C we have: (M ⊗ C)�CX ∼= M ⊗X and X�C(C ⊗M) ∼=

X ⊗M .

Proposition 7.1.5. The cotensor product defines a symmetric monoidal structure on C-comodules

and we shall denote it (CoModC ,�C , C).
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Proposition 7.1.6. Let X be a C-comodule. Then X�C− : CoModC → CoModC is a left

exact functor that preserves finite limits and filtered colimits.

Proof. This follows directly from the fact that, when over a finite product of fields, any chain

complex M induces a functor M⊗− : Ch≥0
k → Ch≥0

k that preserves finite limits and all colimits.

The cotensor product preserves filtered colimits as equalizers in presentable categories commute

with filtered colimits.

Remark 7.1.7. For a general C-comodule X, there is no reason to expect that the functor

X�C− : CoModC → CoModC is a left nor a right adjoint. We shall see in Propositions 7.3.2

and 7.3.7 that when X is fibrant, then X�C− is a left adjoint. So up to weak equivalence, we

can always have X�C− being a left adjoint. In (Takeuchi, 1977), the author introduced the

notion of quasi-finite C-comodules. Essentially, a C-comodule X is quasi-finite if and only if

X�C− is a right adjoint. However, it is easy to see that a C-comodule is not weakly equivalent

to a quasi-finite one. For instance, if we choose C = k, then X is quasi-finite if and only if X

is a perfect chain complex.

In order to produce a derived cotensor product of C-comodule, we shall show that the

cotensor product almost defines a co-monoidal model category. Indeed, we will prove that when

X is a fibrant C-comodule, then X�C− : CoModC → CoModC is a functor that preserves fibrant

objects (Proposition 7.5.1) and weak equivalences (Corollary 7.4.2). It won’t be a co-monoidal

model category as X�C− does not preserves all fibrations, see Remark 7.5.3. Surprisingly,
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when X is fibrant, we will have X�C− is a left Quillen functor (Corollary 7.4.3) but this fact

alone won’t allow us to derive it.

One core issue with the cotensor product is that it does not behave well with non-finite

limits. However, the key point in this chapter is that the cotensor product does behave well

with respect to Postnikov towers.

Lemma 7.1.8. Let {X(n)} be a Postnikov tower of a C-comodule X. Let Y be any C-comodule.

Then {X(n)�CY } stabilizes in each degree and (limC
nX(n))�CY ∼= limC

n (X(n)�CY ). In par-

ticular, if we denote X̃ the limit of {X(n)}, then the Postnikov tower of X̃�Y is given by

{X(n)�CY }.

Proof. Equalizers of towers that stabilize in each degree also stabilize in each degree. Then the

result follows from Lemma B.3.5.

7.2 The CoTor Functor

The category of C-comodules CoModC is (Grothendieck) Abelian and has enough injective

objects. More specifically, any injective chain complex M in Ch≥0
k induces an injective C-

comodule M ⊗ C, and thus we easily see that any C-comodule X can be embedded into

an injective C-comodule. Thus we can derive the cotensor product in the sense of Abelian

categories.

Remark 7.2.1. Notice that a C-comodule is injective if and only if it acyclic fibrant in CoModC .

We precisely used the fact that CoModC has enough injective objects in Lemma B.3.7.
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Definition 7.2.2. The functor X�C− : CoModC → CoModC is left exact by Proposition 7.1.6,

for any C-comodule X. Define CoToriC(X,−) : CoModC → CoModC to be the i-th right derived

functor of X�C−, for i ≥ 0. More specifically, given an injective resolution of a C-comodule

Y :

0 Y I0 I1 · · · ,

then CoToriC(X,Y ) is given by the i-th cohomology H i(X�CI•).

As usual, we have that CoTor0C(X,Y ) = X�CY for any comodules X and Y . If Y is an

injective C-comodule, then CoToriC(X,Y ) = 0 for any comodule X and i > 0.

Following (Eilenberg and Moore, 1966) and (Ravenel, 1986), we shall not use injective

resolutions but relative injective resolutions to compute CoTor.

Definition 7.2.3 ((Ravenel, 1986, A1.2.7, A1.2.10)). A relative injective C-comodule is the

direct summand of a cofree C-comodule. A resolution by relative injectives of a C-comodule Y

is a long exact sequence in CoModC :

0 Y J0 J1 · · · ,

in which each J i is a relatively injective C-comodule and the images of the maps J i → J i+1 is

a direct summand in Ch≥0
k .



75

Proposition 7.2.4 ((Ravenel, 1986, A1.2.4, A1.2.8)). Given a resolution by relative injectives

Y → J• for a C-comodule Y , then for any C-comodule X, CoTor∗C(X,Y ) is given precisely by

the cohomology of the induced cochain complex:

0 X�CJ0 X�CJ1 · · · .

We shall now show that the cobar resolution induces a resolution by relative injectives.

Recall from previous chapter that the cobar resolution of a C-comodule Y is the cosimplicial

object Ω•(C,C, Y ) in CoModC defined as:

C ⊗ Y C⊗2 ⊗ Y · · · ,

where the first coface maps are given by the coaction Y → C ⊗ Y and the other cofaces maps

are induced by the comultiplication C → C ⊗C. The codegeneracies are induced by the counit

ε : C → k.

Given any Abelian category M, recall that the conormalization functor provides an equiva-

lence of categories N• : M∆
∼=−→ CoCh≥0(M), between cosimplicial objects in M and non-negative

cochain complexes of M. Given Φ a cosimplicial object in M, we have that Ni(Φ) is given by

Φ0 if i = 0, and by the kernel of the codegeneracies:

i−1⋂
j=0

ker(Φj → Φj−1),
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for i ≥ 1. The differentials are given by the alternating sum of the coface maps of Φ.

If we apply the conormalization functor on Ω•(C,C, Y ) then we obtain a cochain complex

of C-comodules that we denote Ω•(C,C, Y ).

Definition 7.2.5. Let X and Y be C-comodules. Define the normalized cobar resolution of X

and Y to be the cochain complex X�CΩ•(C,C, Y ) in CoModC , which is denoted Ω•(X,C, Y ).

If we denote C the unit coideal, i.e. the kernel of the counit ε : C → k, then Ωn(X,C, Y ) is

given by X ⊗ C⊗n ⊗ Y .

Proposition 7.2.6 ((Ravenel, 1986, A1.2.12)). Let X and Y be any C-comodules. Then

Ω•(C,C, Y ) is a resolution by relative injectives for Y , and: CoToriC(X,Y ) ∼= H i(Ω•(X,C, Y )),

for all i ≥ 0.

7.3 Coflat Comodules

We introduce here a new class of C-comodules that behaves well with respect to the cotensor

product. We shall see that this class includes all fibrant C-comodules.

Definition 7.3.1. A C-comodule X is said to be coflat if X�C− : CoModC → CoModC is

(right) exact.

The following proposition is an immidate consequence of Proposition 7.1.6.

Proposition 7.3.2. Let X be a C-comodule. The following are equivalent:

(i) the C-comodule X is coflat;

(ii) the functor X�C− : CoModC → CoModC preserves all colimits;
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(iii) the functor X�C− : CoModC → CoModC is a left adjoint;

(iv) for any C-comodule Y , we have CoToriC(X,Y ) = 0 for all i ≥ 1.

We see that every injective C-comodule is automatically coflat. More generally, we shall

show that any fibrant C-comodule is coflat in Proposition 7.3.7 below. We first observe the

following result.

Proposition 7.3.3. Let X and Y be coflat C-comodules. Then X�CY is coflat. In particular,

the full subcategory of coflat C-comodules form a symmetric monoidal category when endowed

with the cotensor product.

Proof. We consider the following exact sequence in CoModC :

0 Z ′ Z Z ′′ 0.

Since Y is coflat, we obtain the following exact sequence:

0 Y�CZ ′ Y�CZ Y�CZ ′′ 0.

Since X is coflat, we then obtain the following exact sequence:

0 X�C(Y�CZ ′) X�C(Y�CZ) X�C(Y�CZ ′′) 0.
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By associativity of cotensor product, this exact sequence is equivalent to the following one:

0 (X�CY )�CZ ′ (X�CY )�CZ (X�CY )�CZ ′′ 0.

Thus X�CY is coflat by definition.

Lemma 7.3.4. Any cofree C-comodule is coflat.

Proof. Let M ⊗ C be a cofree C-comodule. The functor (M ⊗ C)�C− : CoModC → CoModC

is equivalent to the functor M ⊗ − : CoModC → CoModC by Lemma 7.1.4, hence we get that

it preserves exactness, as M is flat in Ch≥0
k (since we are working over a finite product of

fields).

Lemma 7.3.5. Coflat C-comodules are closed under extensions.

Proof. Given a short exact sequence in CoModC :

0 X Y Z 0,

where X and Z are coflat, let us show that Y is coflat. Let W be any C-comodule. We obtain

a long exact sequence of C-comodules:

0 X�CW Y�CW Z�CW CoTor1C(X,W ) CoTor1C(Y,W ) · · · .
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In particular, for any i ≥ 1, we get that the following sequence is exact:

CoToriC(X,W ) CoToriC(Y,W ) CoToriC(Z,W ).

Since X and Z are coflat, then CoToriC(X,W ) = 0 = CoToriC(Z,W ). Thus for any C-comodule

W , we have CoToriC(Y,W ) = 0 for all i ≥ 1. Hence Y is coflat.

Lemma 7.3.6. Coflat C-comodules are closed under retracts.

Proof. Suppose a C-comodule X is a retract of a coflat comodule Y . Then for any C-comodule

Z, and any i ≥ 1, we have that CoToriC(X,Z) is a retract of CoToriC(Y,Z) = 0. Thus

CoToriC(X,Z) = 0, hence X is coflat.

Proposition 7.3.7. Every fibrant C-comodule is a coflat C-comodule.

Proof. Let X be a fibrant C-comodule. By Corollary B.3.15, X is a retract of the limit X̃ of

its Postnikov tower {X(n)}. By Lemma 7.3.6, it is enough to show that X̃ is coflat.

We first argue by induction on n that X(n) is a coflat comodule. It is trivial for the case

n = 0. The case n = 1 follows from Lemma 7.3.4. Suppose now that X(n) is coflat, and let us

show that X(n+ 1) is coflat. Since it is given by the pullback in CoModC :

X(n+ 1) Dn(V )⊗ C

X(n) Sn(V )⊗ C,

y
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and that pullbacks conserve kernels, we obtain the short exact sequence in CoModC :

0 Sn−1(V )⊗ C X(n+ 1) X(n) 0.

By induction and Lemma 7.3.4, we get that X(n+ 1) is coflat by Lemma 7.3.5.

For any short exact sequence 0 Y ′ Y Y ′′ 0 , we therefore obtain

a short exact sequence of towers in CoModC :

0 {X(n)�CY ′} {X(n)�CY } {X(n)�CY ′′} 0.

Each of these towers has the Mittag-Leffler condition as we have the pullback:

X(n+ 1)�CY Dn(V )⊗ Y

X(n)�CY Sn(V )⊗ Y.

y

Thus, by Proposition 7.1.8, we obtain the following short exact sequence:

0 X̃�CY ′ X̃�CY X̃�CY ′′ 0.

Thus X̃ is coflat.
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7.4 An Eilenberg-Moore Spectral Sequence

We would like to compute the homology of the cotensor productX�CY given the homologies

of H∗(C), H∗(X) and H∗(Y ). These are computed in an Eilenberg-Moore spectral sequence

similar to (Eilenberg and Moore, 1966) if we require X to be coflat.

Recall that to any chain complex M , we can regard its homology H∗(M) as a chain complex

with trivial differentials. Then since C is simply connected, we easily verify that H∗(C) is also a

simply connected cocommutative differential graded coalgebra. Moreover, for any C-comodule

X, we can check that H∗(X) is a H∗(C)-comodule.

Theorem 7.4.1 (Eilenberg-Moore Spectral Sequence). Let X be a coflat C-comodule. Let Y

be any C-comodule. Then there is a convergent spectral sequence:

E2
•,q = CoTorqH∗(C)(H∗(X), H∗(Y ))⇒ E∞•,0 = H∗(X�CY ).

Proof. The normalized cobar resolution Ω•(X,C, Y ) of X and Y is a cochain complex of a chain

complex and thus defines a second quadrant double chain complex (Ω•(X,C, Y ))•, where we

grade the row cohomologically, but the columns homologically. For any p, q ≥ 0, we have:

(Ωq(X,C, Y ))p = (X ⊗ C⊗q ⊗ Y )p.

Since C is simply connected, its unit coideal C is trivial in degrees 0 and 1. Therefore we obtain

(Ωq(X,C, Y ))p = 0, for 0 ≤ p ≤ 2q − 1. Hence the two associated spectral sequences to the

double complex converge, see (McCleary, 2001, 2.15).
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The first spectral sequence has its E1-page induced by the cohomology of the rows, and

therefore:

E1
•,q = Hq(Ω•(X,C, Y ) ∼= CoTorqC(X,Y ).

Since X is coflat, then E1
•,q = 0 for all q ≥ 1, and we have E1

•,0 = X�CY . Thus the spectral

sequence collapses onto its second page E2
•,0 = H∗(X�CY ). The second spectral sequence has

its E1-page induced by the homology of the columns, and therefore:

E1
•,q = H∗(Ω

q(X,C, Y )) = Ωq(H∗(X), H∗(C), H∗(Y )).

Thus, as its E2-page is given by the cohomology of the induced cochain complex, we obtain:

E2
•,q = CoTorqH∗(C)(H∗(X), H∗(Y )).

It converges to the page with trivial columns except H∗(X�CY ) as its 0-th column.

Corollary 7.4.2. Let X be a coflat C-comodule. Let Y
'−→ Y ′ be a weak equivalence of

C-comodules. Then X�CY
'−→ X�CY ′ is a weak equivalence of C-comodules.

Proof. The weak equivalence induces an isomorphism H∗(Y ) ∼= H∗(Y
′) of H∗(C)-comodules.

Therefore we obtain:

CoTorqH∗(C)(H∗(X), H∗(Y )) ∼= CoTorqH∗(C)(H∗(X), H∗(Y
′)),
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for all q ≥ 0. By Theorem 7.4.1, we obtain H∗(X�CY ) ∼= H∗(X�CY ′) via the map Y → Y ′.

Corollary 7.4.3. Let X be coflat C-comodule. Then X�C− : CoModC → CoModC is a left

Quillen functor that preserves all weak equivalences.

7.5 Cotensor Product Closed On Fibrant Objects

We shall prove at the end of this section the following result.

Proposition 7.5.1. If X and Y are fibrant C-comodules, then so is X�CY . In particular, the

full subcategory of fibrant C-comodules is a symmetric monoidal category when endowed with

the cotensor product.

Combining with Corollary 7.4.2, the above proposition allows us to apply the symmetric

monoidal Dwyer-Kan localization of Definition 3.2.1 to get the following theorem.

Theorem 7.5.2. The ∞-category CoModC(D≥0(k)) of C-comodules in D≥0(k) is endowed

with a symmetric monoidal structure defined by the derived cotensor product.

The main idea of the proof is that the tensor product Ch≥0
k ×CoModC

⊗→ CoModC is almost

a “co-Quillen bifunctor”, i.e. there is somekind of compatibility with certain fibrations on Ch≥0
k

and on CoModC .

Remark 7.5.3. In general X�C− : CoModC → CoModC does not preserve fibrations, even

if X is fibrant. A simple example is given by applying the functor to the generating fibration

0 → S0(V ) ⊗ C. If we choose V = k, then we obtain a map 0 → X which is clearly not a

fibration (consider the case C = k). Similarly, for any chain complex M , we see that M ⊗− :

CoModC → CoModC does not preserve fibrations.
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We observe the following characterizations of fibrations in the injective model structure

setting. We are grateful for Pete Bousfield to have pointed out this result.

Proposition 7.5.4. Let M be an Abelian category endowed with a model structure where acyclic

cofibrations are precisely monomorphisms with acyclic cokernels. Let f : X → Y be an epimor-

phism in M. Let F be its kernel. Then f is a fibration if and only if F is fibrant.

Proof. A fibration always has fibrant kernel, regardless of being an epimorphism. This is because

pullbacks preserve fibrations and the the kernel F is given by the pullback:

F X

0 Y.

y
f

Now suppose F is fibrant, let us show that f is a fibration. Since M is a model category, we

can factor f as follows:

X Y

X ′,

f

'
i f ′

where i is an acylic cofibration and f ′ is a fibration. Denote F ′ the kernel of f ′. We obtain the

following morphism of short exact sequences in M:

0 F X Y 0

0 F ′ X ′ Y 0.

f

i'
f ′
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We have used the fact that since f is an epimorphism and f = f ′ ◦ i, then f ′ must also be an

epimorphism. Since i is a monomorphism, the snake lemma guarantees that the induced map

F → F ′ is also a monomorphism. Therefore we can take the cokernels of the vertical maps:

0 0 0

0 F X Y 0

0 F ′ X ′ Y 0

0 K K ′ 0 0.

0 0 0

f

i'
f ′

The 9-lemma guarantees that the third row is exact, and thus K is acylic. Therefore F → F ′

is an acylic cofibration. Since F is fibrant, then we obtain the following section of F → F ′:

F F

F ′ 0.

' `

We define then P to be the following pushout in M:

F ′ X ′

F P.

`
p
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In an Abelian category, pushouts preserve monomorphisms so F → P is a monomorphism.

Pushouts also preserve cokernels, thus Y is the cokernel of F → P . Therefore we obtain the

following composite of short exact sequences:

0 F X Y 0

0 F ′ X ′ Y 0

0 F P Y 0.

'

f

i'

`

f ′

The composite of the left vertical arrows is the identity on F by construction of `. By the

5-lemma, we get that P is isomorphic to Y . Therefore, we have just shown that f is a retract

of f ′ which is a fibration. Hence f is also a fibration.

Lemma 7.5.5. Let M ∈ Ch≥0
k and Y a fibrant C-comodule. Then M ⊗ Y is a fibrant C-

comodule.

Proof. Let Ỹ be the (homotopy) limit of the Postnikov tower {Y (n)} of Y . Since Y is a retract

of Ỹ , then M ⊗ Y is a retract of M ⊗ Ỹ , and thus it suffices to show M ⊗ Ỹ is fibrant. Notice

that as {M ⊗ Y (n)} stabilizes in each degree, then M ⊗ Ỹ ∼= limC
n (M ⊗ Y (n)).

We show that {M ⊗ Y (n)} is a fibrant tower in CoModC(Ch≥0
k ), in the sense of Proposition

A.1.13. For n = 0, then M⊗Y (0) = 0 is trivially fibrant. For n = 1, since every cofree comodule

is fibrant, then M ⊗Y (1) is fibrant. Since M ⊗− : Ch≥0
k → Ch≥0

k preserves epimorphisms, then

M⊗Dn(V )→M⊗Sn(V ) is a fibration in Ch≥0
k , and so M⊗Dn(V )⊗C →M⊗Sn(V )⊗C is a

fibration of C-comodule (alternatively, apply Proposition 7.5.4 as its kernel M ⊗ Sn−1(V )⊗C
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is clearly fibrant). Since M ⊗ − : CoModC(Ch≥0
k ) → CoModC(Ch≥0

k ) preserves pullbacks, then

from the pullback in CoModC(Ch≥0
k ):

M ⊗ Y (n+ 1) M ⊗Dn(V )⊗ C

M ⊗ Y (n) M ⊗ Sn(V )⊗ C,

y

we get that M ⊗ Y (n+ 1)→M ⊗ Y (n) is a fibration.

Lemma 7.5.6. Let V be a k-module. Let Y be a fibrant C-comodule. Let L → M be an

epimorphism in Ch≥0
k . Then L⊗ Y →M ⊗ Y is a fibration of C-comodules. In particular, for

any n ≥ 1, the map Dn(V )⊗ Y → Sn(V )⊗ Y is a fibration of C-comodule.

Proof. Let F be the kernel of L → M . Since − ⊗ Y : Ch≥0
k → CoModC preserves short exact

sequences, we obtain the following short exact sequence in CoModC :

0 F ⊗ Y L⊗ Y M ⊗ Y 0.

By Lemma 7.5.5 and Proposition 7.5.4, we can conclude.

Proof of Proposition 7.5.1. Let {X(n)} be the Postnikov tower of X and X̃ its (homotopy)

limit. Then since X is a retract of X̃, then X�CY is a retract of X̃�CY . Whence it suffices

to check that X̃�CY = limC
n (X(n)�CY ) is a fibrant C-comodule. This will follow from the

fact that {X(n)�CY } is a fibrant tower of C-comodules. For n = 0, we trivially have that

X(0)�CY = 0 is fibrant. For n = 1, since X(1) = U(X) ⊗ C, then X(1)�CY ∼= U(X) ⊗ Y
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which is fibrant by Lemma 7.5.5. For n ≥ 1, since X(n + 1) is defined as the pullback in

CoModC(Chk0):

X(n+ 1) Dn(V )⊗ C

X(n) Sn(V )⊗ C,

y

and −�CY : CoModC(Ch≥0
k )→ CoModC(Ch≥0

k ) preserves pullbacks, then we have the following

pullback in CoModC(Ch≥0
k ):

X(n+ 1)�CY Dn(V )⊗ Y

X(n)�CY Sn(V )⊗ Y,

y

where we have used Lemma 7.1.4 to identify the right vertical map. Since this map is a fibration

of C-comodules by previous lemma, then we get X(n + 1)�CY → X(n)�CY is a fibration of

C-comodules.

7.6 Change of Coalgebras

We observe here a direct consequence from Corollary 7.4.2. Let f : C → D be a map

of simply connected cocommutative differential graded k-coalgebras. The map endows the

coalgebra C with a D-comodule structure:

C C ⊗ C C ⊗D,∆C idC⊗f
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such that f : C → D is a map of D-comodules. We obtain a functor f∗ : CoModC → CoModD

where each C-comodule (X, ρ) is sent to the D-comodule (X, (idX ⊗ f) ◦ ρ). We shall often

write f∗(X) simply as X.

Given any D-comodule X, we can form the cotensor of D-comodules X�DC, which can

be endowed with the structure of C-comodule as follows. The C-coaction is induced by the

natural map of equalizers:

X�DC X ⊗ C X ⊗D ⊗ C

(X�DC)⊗ C X ⊗ C ⊗ C X ⊗D ⊗ C ⊗ C,

where the vertical arrows are induced by the comultiplication on C. One can easily check that

we obtain a functor −�DC : CoModD → CoModC which is right adjoint to f∗.

Proposition 7.6.1. Let f : C → D be a map of cocommutative simply connected differential

graded k-coalgebras. Then the adjunction:

CoModC CoModD,
f∗

⊥
−�DC

is a Quillen pair. Moreover, the adjunction is a Quillen equivalence if and only if the map f is

a quasi-isomorphism.

Proof. The first statement follows directly from the fact that the functor f∗ preserves monomor-

phisms and quasi-isomorphisms. For the second statement, we shall apply (Hovey, 1999, 1.3.16).
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Notice that f∗ reflects weak equivalences. Suppose first that f is a quasi-isomorphism. Now

let X be any fibrant D-comodule, the counit of the adjunction:

X�DC X�DD ∼= X,'

is a quasi-isomorphism by Corollary 7.4.2. Conversly, if we suppose the adjunction to be a

Quillen equivalence, then the map:

f : C ∼= D�DC −→ D�DD ∼= D,

must be a weak equivalence, as D is always fibrant as a D-comodule.
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Appendix A

DUAL TERMINOLOGY IN MODEL CATEGORY

One of the main tool of model categories is to assume the structure is cofibrantly generated by

a pair of sets (see definition in (Hovey, 1999, 2.1.17)). If in addition the category is presentable,

we say it is combinatorial. In such a case, cofibrations and acyclic cofibrations are retracts of

maps built out of pushouts and transfinite compositions, and we can inductively construct a

cofibrant replacement.

Simply dualizing the notions would be a fine method if one were working with copresentable

categories. However, if we still want to work with presentable categories, then naively dualizing

the notion of cofibrantly generated to fibrantly generated causes issues, as a model category is

rarely this way, see (Adámek and Rosický, 1994, 1.64). We instead weaken the definition (as in

Definitions A.1.9 and A.2.1). Unfortunately we cannot apply the cosmall object argument and

thus showing that a model category has an interesting Postnikov presentation will be challenging

in general.

A.1 Postnikov Presentation

We present the definition of Postnikov presentations, introduced by Kathryn Hess, which

is dual to cellular presentations and appeared in (Hess, 2009), (Hess and Shipley, 2014) and

(Bayeh et al., 2015).

We first dualize the notion of relative cell complex (Hovey, 1999, 2.2.9).
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Definition A.1.1 ((Hess, 2009, 5.12)). Let P be a class of morphisms in a category closed

under pullbacks C. Let λ be an ordinal. Given a functor Y : λop → C such that for all β < λ,

the morphism Yβ+1 → Yβ fits into the pullback diagram:

Yβ+1 X ′β+1

Yβ Xβ+1,

y

where X ′β+1 → Xβ+1 is some morphism in P, and Yβ → Xβ+1 is a morphism in C, and we

denote:

Yγ := lim
β<γ

Yβ,

for any limit ordinal γ < λ. We say that the composition of the tower Y :

lim
λop
Yβ −→ Y0,

if it exists, is a P-Postnikov tower. The class of all P-Postnikov towers is denoted PostP.

Proposition A.1.2 ((Bayeh et al., 2015, 2.10)). If C is a complete category, the class PostP

is the smallest class of morphism in C containing P closed under composition, pullbacks and

limits indexed by ordinals.

Proof. See dual statements in (Hovey, 1999, 2.1.12, 2.1.13).

Proposition A.1.3. Let R : C→ D be a right adjoint between complete categories. Let P be a

class of morphisms in C. Then we have: R(PostP) ⊆ PostR(P).
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Proof. Right adjoints preserve limits.

We also recall the dual notion of small object in a category.

Definition A.1.4. Let D be a subcategory of a complete category C. We say an object A in C

is cosmall relative to D if there is a cardinal κ such that for all κ-filtered ordinals λ (see (Hovey,

1999, 2.1.2)) and all λ-towers Y : λ→ Dop, the induced map of sets:

colim
β<λ

(HomC(Yβ, A)) −→ HomC

(
lim
β<λ

Yβ, A

)
,

is a bijection. We say that A is cosmall if it is cosmall relative to C itself.

Example A.1.5. The terminal object, if it exists, is always cosmall. In procategories, every

object is cosmall. Therefore in copresentable categories, every object is cosmall.

Example A.1.6. As noted after (Hovey, 1999, 2.1.18), the only cosmall objects in the category

of sets are the empty set and the one-point set. In practice, objects in a presentable categories

are rarely cosmall.

The dual of the small object argument (Hovey, 1999, 2.1.14) can be stated as follows.

Proposition A.1.7 (The cosmall object argument). Let C be a complete category and P be a

set of morphisms in C. If the codomains of maps in P are cosmall relative to PostP, then every

morphism f of C can be factored functorially as:

A B

Cf ,

f

γ(f) δ(f)
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where δ(f) is a P-Postnikov tower and γ(f) admits the left lifting property with respect to all

maps in P.

Notation A.1.8. Given a class of morphisms A in C, we denote Â its closure under formation

of retracts.

Definition A.1.9. A Postnikov presentation (P,Q) of a model category M is a pair of classes

of morphisms P and Q such that the class of fibrations is P̂ostP, the class of acyclic fibrations

is P̂ostQ, and for any morphism f : X → Y in M:

(a) the morphism f factors as:

X Y

V

f

i q

where i is a cofibration and q is a Q-Postnikov tower;

(b) the morphism f factors as:

X Y

W

f

j p

where j is an acyclic cofibration and p is a P-Postnikov tower.

We say in this case that the model category M is Postnikov presented by (P,Q).

Remark A.1.10. Since we do not require sets, every model category is trivially Postnikov

presented by the classes of all fibrations and acyclic fibrations. Although it was noted in

(Bayeh et al., 2015, 2.13, 2.14) that this trivial presentation can occasionally be useful (as we

will see in Theorem B.4.1), we use more interesting subclasses in this paper, see Theorems B.2.1

and B.3.3.
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Definition A.1.11. Let M be a complete model category that admits a Postnikov presentation

(P,Q). Given any object X in M, we can provide an inductive fibrant replacement FX as follows.

Let ∗ be the terminal object of M. There is an object FX in M that factors the trivial map:

X ∗

FX,
j p

where j : X
∼
↪→ FX is an acyclic cofibration in M, and p is a P-Postnikov tower. This means

that FX can be defined as iterated maps of pullbacks along P, starting with (FX)0 = ∗.

We shall sometimes make us of homotopy limits of countable towers, we record here some

notation and an explicit formula.

Notation A.1.12. Denote N the poset {0 < 1 < 2 < · · · }. Let C be any complete category.

Objects in CN are diagrams of shape N and can be represented as (countable) towers in C:

· · · X(2) X(1) X(0).
f3 f2 f1

We denote such object by {X(n)} = (X(n), fn)n∈N. The limit of the tower is denote limnX(n).

Proposition A.1.13 ((Goerss and Jardine, 1999, VI.1.1)). Let M be a model category. Then the

category of towers MN can be endowed with the Reedy model structure, where a map {X(n)} →

{Y (n)} is a weak equivalence (respectively a cofibration), if each map X(n) → Y (n) is a weak

equivalence (respectively a cofibration) in M, for all n ≥ 0. An object {X(n)} is fibrant if and

only if X(0) is fibrant and all the maps X(n + 1) → X(n) in the tower are fibrations in M.
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Moreoever, if we denote ι : M → MN the functor induced by the constant diagram, then we

obtain a Quillen adjunction ι : M MN : limn.⊥

A.2 Fibrantly Generated Model Categories

We introduce the notion of fibrantly generated as in (Bayeh et al., 2015).

Definition A.2.1. A model category is fibrantly generated by (P,Q) if the cofibrations are

precisely the morphisms that have the left lifting property with respect to Q, and the acyclic

cofibrations are precisely the morphisms that have the left lifting property with respect to P.

We call P and Q the generating fibrations and generating acyclic fibrations respectively.

Remark A.2.2. Our definition of fibrantly generated makes no assumption of cosmallness

and is not the usual definition one can find in the literature.

Remark A.2.3. Just as for Remark A.1.10, since we allow P and Q to be classes, any model

category is trivially fibrantly generated by its fibrations and acyclic fibrations.

Proposition A.2.4. If a model category is Postnikov presented by a pair of classes (P,Q), then

it is fibrantly generated by (P,Q).

Proof. Direct consequence of the retract argument (see (Hovey, 1999, 1.1.9)).

Remark A.2.5. The converse of Proposition A.2.4 is true if P and Q are sets that permit

the cosmall object argument. However, this rarely happens in context of interest as seen in

Example A.1.6.
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A.3 Left-Induced Model Categories

Definition A.3.1. Let M be a model category and A be any category, such that there is a pair

of adjoint functors: A M.
L

⊥
R

We say that the left adjoint L : A→ M left-induces a model

structure on A if the category A can be endowed with a model structure where a morphism

f in A is defined to be a cofibration (respectively a weak equivalence) if L(f) is a cofibration

(respectively a weak equivalence) in M. This model structure on A, if it exists, is called the

left-induced model structure from M.

The next result is the dual of the Quillen path object argument and is in practice the way

we verify left-induced model structures exist.

Proposition A.3.2 ((Hess et al., 2017, 2.2.1)). Let M and A be presentable categories. Suppose

we have an adjunction:

A M.
L

⊥
R

Suppose M is endowed with a cofibrantly generated model structure where all objects are cofi-

brant. If, for every object A in A, there is a factorization in A:

A
∐
A Cyl(A) A,

j p

such that, after applying the left adjoint L, we obtain a good cylinder object in M (i.e. L(j) is

a cofibration and L(p) is a weak equivalence in M), then the left-induced model structure from

M on A exists.
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The following result guarantees that left-inducing from a combinatorial model category gives

back a combinatorial model category.

Proposition A.3.3 ((Bayeh et al., 2015, 2.23),(Hess et al., 2017, 3.3.4)). Suppose A is a model

category left-induced by a model category M. Suppose both A and M are presentable. If M is

cofibrantly generated by a pair of sets, then A is cofibrantly generated by a pair of sets.

Proposition A.3.4 ((Bayeh et al., 2015, 2.18)). Suppose A is a model category left-induced by

a model category M, via an adjunction L : A M : R.⊥ If M is fibrantly generated by

(P,Q), then A is fibrantly generated by (R(P), R(Q)).

Remark A.3.5. If M is Postnikov presented by (P,Q), there is no reason to expect that A is

Postnikov presented by (R(P), R(Q)), as we made no assumption of cosmallness in general.
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POSTNIKOV PRESENTATIONS OF DIFFERENTIAL GRADED

COMODULES

In this appendix, we present the explicit ad-hoc Postnikov presentations. We first show, in

Theorem B.1.8, that chain complexes over a finite product of fields k are fibrantly generated in

the sense of Definition A.2.1. Then we show that comodules over a simply connected differential

graded k-coalgebra also admit a Postnikov presentation, generalizing the presentation defined

in (Hess, 2009). The induced explicit Postnikov tower of comodules defined in Corollary B.3.15

will be crucial to prove rigidification result in Theorem 6.3.3. We also observe in Theorem B.4.1

that we can produce a Postnikov presentation for comodules over a coalgebra that is a perfect

chain complex. However, it will not be used in this paper, but remains useful for any explicit

homotopy limit computations.

B.1 The Generating Fibrations

We start with the following definition.

Definition B.1.1. Let R be any commutative ring. Let V be an R-module. Let n be any

integer. Denote Sn(V ), the n-sphere over V , the chain complex that is V concentrated in

degree n and zero elsewhere. Denote Dn(V ), the n-disk over V , the chain complex that is V

concentrated in degree n − 1 and n, with differential the identity. As noted in (Bayeh et al.,
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2015, 3.1), it is enlightening to regard Sn(V ) as the Eilenberg-Mac Lane space K(V, n) and

Dn(V ) as the based path of K(V, n). We obtain the obvious map Dn(V )→ Sn(V ):

Dn(V ) · · · 0 V V 0 · · ·

Sn(V ) · · · 0 0 V 0 · · · .

This defines functors:

Sn(−) : ModR ChR, Dn(−) : ModR ChR.

The map defined above is natural, i.e. we have a natural transformation Dn(−)⇒ Sn(−), for

all n ∈ Z. When V = R, we simply write Dn and Sn.

Chain complexes over a field are advantageous as they are all split. In general, if R is a

unital domain ring, and if all short exact sequences of R-modules are split, then R must be a

field. In fact, a direct consequence of Wedderburn-Artin theorem gives the following result.

Proposition B.1.2. Let k be a commutative (unital) ring. The following are equivalent.

(i) Every k-module is projective.

(ii) Every k-module is injective.

(iii) Ever short exact sequence of k-modules splits.

(iv) k is a finite product of fields.
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Notation B.1.3. Given any chain complex, we denote Bn(X) the n-boundaries of X and

Zn(X) the n-cycles of X.

Proposition B.1.4. Let k be a finite product of fields. Let X be a chain complex in Chk. Then

X is split as a chain complex and we have a non-canonical decomposition:

Xn
∼= Hn(X)⊕Bn(X)⊕Bn−1(X).

In particular any chain complex X can be decomposed non-canonically as product of disks and

spheres:

X ∼=
∏
n∈Z

Sn(Vn)⊕Dn(Wn),

where Vn = Hn(X) and Wn = Bn−1(X).

Proof. We have the following short exact exact sequences of k-modules:

0 Bn(X) Zn(X) Hn(X) 0,

0 Zn(X) Xn Bn−1(X) 0.
dn

Since any short exact sequence splits (Proposition B.1.2), we can choose sections (the dashed

maps denoted above), such that we obtain the following isomorphism of k-modules:

Xn
∼= Zn(X)⊕Bn−1(X)

∼= Hn(X)⊕Bn(X)⊕Bn−1(X).
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We introduce now our generating fibrations and acyclic fibrations in Chk.

Definition B.1.5. Let k be a finite product of fields. Define P and Q to be the following sets

of maps in Chk:

P = {Dn −→ Sn}n∈Z, Q = {Dn −→ 0}n∈Z.

We thicken the sets P and Q to classes P⊕ and Q⊕ of morphisms in Chk:

P⊕ :=
{
Dn(V ) −→ Sn(V ) | V any k-module

}
n∈Z

,

Q⊕ :=
{
Dn(V ) −→ 0 | V any k-module

}
n∈Z

.

Clearly, the maps in P and P⊕ are fibrations in Chk and the maps in Q and Q⊕ are acyclic

fibrations in Chk.

Remark B.1.6. When k is a field, as every k-module is free, we get:

P⊕ =

{⊕
λ

Dn −→
⊕
λ

Sn | λ any ordinal

}
n∈Z

,

Q⊕ =

{⊕
λ

Dn −→ 0 | λ any ordinal

}
n∈Z

.

Lemma B.1.7. Let R be any commutative ring. Given a split exact sequence of R-modules:

0 V V ⊕W W 0,
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it induces the following diagram of split exact sequences in ChR for all n ∈ Z with compatible

retracts:

0 Dn(V ) Dn(V )⊕Dn(W ) Dn(W ) 0

0 Sn(V ) Sn(V )⊕ Sn(W ) Sn(W ) 0.

Proof. Notice first that we have the equalities Sn(V ⊕W ) = Sn(V )⊕Sn(W ) and Dn(V ⊕W ) =

Dn(V ) ⊕ Dn(W ). The choice of a splitting V ⊕W → V provides a coherent choice of chain

maps Dn(V ⊕W )→ Dn(V ) and Sn(V ⊕W )→ Sn(V ).

Theorem B.1.8. Let k be a finite product of fields. Let C be any differential graded coalgebra

over k.

(i) The model category of unbounded chain complex Chk is fibrantly generated by the pair of

sets (P,Q).

(ii) The injective model category CoModC(Chk) of comodules over k is fibrantly generated by

the pair of sets (P⊗ C,Q ⊗ C).

A similar result as of (i) above was proved in early unpublished versions of (Soré, 2016) in

(Soré, 2010, 3.1.11, 3.1.12) for non-negative chain complexes over a field. We extend the results

for the unbounded case and show that (i) of Theorem B.1.8 follows from Lemma B.1.11 and

Lemma B.1.12 below. Notice that (ii) above is a direct consequence of (i) by Propositions

A.3.4.

Notation B.1.9. Given any class of maps A in a category C, we denote Llp(A) the class of

maps in C having the left lifting property with respect to all maps in A.
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Lemma B.1.10. Let k be a finite product of fields. We have the equalities of classes: Llp(P⊕) =

Llp(P) and Llp(Q⊕) = Llp(Q) in Chk.

Proof. Since P ⊆ P⊕, we get Llp(P⊕) ⊆ Llp(P). Suppose now f is in Llp(P), let us argue it

also belongs in Llp(P⊕). Suppose we have a diagram:

X Dn(V )

Y Sn(V ),

f

for some k-module V . Since V is projective, there is another k-module W such that V ⊕W is

free. Thus V ⊕W ∼=
⊕

λ k, for some basis λ. In particular, by Lemma B.1.7, we obtain the

commutative diagram:

X Dn(V )
⊕
α∈λ

Dn
α

∏
α∈λ

Dn
α Dn

α

Y Sn(V )
⊕
α∈λ

Snα
∏
α∈λ

Snα Snα,

f

where Dn
α and Snα are a copies of Dn and Sn. Since f is in Llp(P), we obtain a lift `α : Y → Dn

α,

for each α. It induces a lift ` : Y →
∏
αD

n
α which restricts to Y → Dn(V ) via the retracts

(dashed maps in the diagram).

Lemma B.1.11. Let k be a finite product of fields. Maps in the set Q = {Dn → 0}n∈Z are the

generating acyclic fibrations in Chk.
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Proof. Let f : X → Y be a map in Llp(Q), let us show it is a cofibration in Chk, i.e. a

monomorphism. Following Proposition B.1.4, we decompose X as:

X ∼=
∏
n∈Z

Sn(Vn)⊕Dn(Wn).

Then the canonical inclusions Sn(Vn) ↪→ Dn+1(Vn) induce a monomorphism ι:

ι :
∏
n∈Z

Sn(Vn)⊕Dn(Wn)
∏
n∈Z

Dn+1(Vn)⊕Dn(Wn).

Since f is in Llp(Q), then there is a map ` such that ι = `◦f . Hence f must be a monomorphism

and thus a cofibration.

Lemma B.1.12. Let k be a finite product of fields. Maps in the set P = {Dn → Sn}n∈Z are

the generating fibrations in Chk.

Proof. Notice that Llp(P) ⊆ Llp(Q) as any lift Y → Dn in the following commutative diagram

induces the dashed lift:
X Dn

Y Sn

Y 0.
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In particular, Lemma B.1.11 shows that maps in Llp(P) are monomorphisms. Let f : X → Y

be map in Llp(P) and let us show it is a quasi-isomorphism. Since f is a monomorphism, there

is an induced short exact sequence in Chk:

0 X Y K 0,
f

where K = coker(f). It remains to show that K is acyclic. Notice first that K is defined as the

pushout:
X 0

Y K,

f
p

and so, since f is in Llp(P), then 0→ K is in Llp(P). Following Proposition B.1.4, decompose

K as:

K ∼=
∏
n∈Z

Sn(Vn)⊕Dn(Wn),

where Vn = Hn(K). Then we obtain a map by projection:

∏
n∈Z

Sn(Vn)⊕Dn(Wn)
∏
n∈Z

Sn(Vn),

that factors through the non-trivial map:

∏
n∈Z

Dn(Vn)
∏
n∈Z

Sn(Vn)
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as 0 → K is in Llp(P) = Llp(P⊕). But this is only possible when Vn = 0, hence K must be

acyclic. Thus f is a quasi-isomorphism.

B.2 Postnikov Presentation for Unbounded Chain Complexes

A Postnikov presentation was constructed in (Hess, 2009) and (Bayeh et al., 2015) for

finitely generated non-negative chain complexes over a field. We extend here the argument to

the unbounded non-finitely generated case, over a finite product of fields.

Theorem B.2.1. Let k be a finite product of fields. The pair (P⊕,Q) is a Postnikov presenta-

tion of the model category of unbounded chain complex Chk.

We shall prove Theorem B.2.1 with Lemmas B.2.4 and B.2.7 below. The theorem provides

an inductive fibrant replacement for diagram categories in Chk endowed with the injective model

structure and thus provides inductive arguments to compute homotopy limits in Chk.

Remark B.2.2. We were not able to restrict ourselves to the set P and had to consider the

class P⊕. We note here a few basic results.

(i) As P ⊆ P⊕, we get PostP ⊆ PostP⊕ .

(ii) The maps Sn → 0 are in PostP as they are obtained as pullbacks:

Sn Dn+1

0 Sn+1.

y

Similarly, for any k-module V , the maps Sn(V )→ 0 are in PostP⊕ .
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(iii) Since Dn → 0 is the composite Dn −→ Sn −→ 0, we see that Q ⊆ PostP, and thus

PostQ ⊆ PostP ⊆ PostP⊕ by Proposition A.1.2.

(iv) Although P⊕ * PostP, we have P⊕ ⊆ P̂ostP (see Notation A.1.8). Indeed, for any k-

module V , Lemma B.1.7 shows that any map Dn(V ) → Sn(V ) is the retract of a map

Dn(F )→ Sn(F ) where F is a free k-module. Then, for λ a basis of F , we have the retract

in Chk: ⊕
λ

Dn
∏
λ

Dn
⊕
λ

Dn

⊕
λ

Sn
∏
λ

Sn
⊕
λ

Sn,

induced by the split short exact sequence in k-modules:

0
⊕
λ

k
∏
λ

k coker(ι) 0,ι

where ι :
⊕
λ

k ↪→
∏
λ

k is the natural monomorphism.

Lemma B.2.3. Let k be a finite product of fields. Let X be any chain complex over k. Then the

trivial map X → 0 is a P⊕-Postnikov tower. If X is acyclic, the trivial map is a Q⊕-Postnikov

tower.

Proof. Follows from Proposition B.1.4, (ii) of Remark B.2.2, and Proposition A.1.2.

Lemma B.2.4. Every acyclic fibration in Chk is a retract of a Q-Postnikov tower. Every map

in Chk factors as a cofibration followed by a Q-Postnikov tower.
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Proof. We provide two proofs by presenting two different factorizations. The first one has the

advantage to be functorial but harder to compute. The second is not functorial but is easier

to compute. Let us do the first possible factorization. By Theorem B.1.8, the set Q of maps

in Chk is the set of generating acyclic fibrations. Their codomain is the terminal object in Chk

and is thus cosmall. We can then apply the cosmall object argument (Proposition A.1.7) to

obtain the desired factorization.

For the second possible factorization, start with any morphism f : X → Y in Chk. Choose a

decomposition of X by using Proposition B.1.4: X ∼=
∏
n∈Z S

n(Vn)⊕Dn(Wn), for some collec-

tion of k-modules Vn and Wn. The inclusions Sn(Vn) ↪→ Dn+1(Vn) define then a monomorphism

in Chk:

X ∼=
∏
n∈Z

Sn(Vn)⊕Dn(Wn)
∏
n∈Z

Dn+1(Vn)⊕Dn(Wn).

Since Vn and Wn are projective k-modules, they can be embedded into free k-modules, say Fn

and Gn, with basis λn and γn. Then we obtain the following monomorphisms in Chk:

∏
n∈Z

Dn+1(Vn)⊕Dn(Wn)
∏
n∈Z

⊕
λn

Dn+1 ⊕
⊕
γn

Dn

Thus, we get the monomorphism in Chk: X
∏
n∈Z

∏
λn,γn

Dn+1 ⊕Dn. Denote Z the acyclic

chain complex
∏
n∈Z

∏
λn,γn

Dn+1 ⊕ Dn. We obtain the desired second factorization in Chk:

X Z ⊕ Y Y,
ι⊕f q

where the map q is the projection onto Y , which is indeed a Q-

Postnikov tower by Proposition A.1.2.
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The following arguments are based on the proof of (Bayeh et al., 2015, Lemma 3.3). We

begin with preliminary results.

Lemma B.2.5. Let k be a finite product of fields. Let X be any chain complex in Chk. Let

V be any k-module. Let n be any integer in Z. Given a surjective linear map fn : Xn → V

non-trivial only on n-cycles, there is a map of chain complexes f : X → Sn(V ), and the pullback

chain complex P in the following diagram:

P Dn(V )

X Sn(V ),

y

has homology:

Hi(P ) ∼=


ker (Hn(f)) i = n,

Hi(X) i 6= n,

and we have Pi = Xi for i 6= n− 1 and Pn−1 = Xn−1 ⊕ V .

Proof. By construction, since pullbacks in Chk are taken levelwise, for i 6= n, n− 1, we have the

pullbacks of k-modules:

Pn−1 V Pn V Pi 0

Xn−1 0, Xn V, Xi 0.

y y y

fn
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Thus Pn−1
∼= Xn−1⊕V and Pi = Xi for any i 6= n− 1. The differential Pn → Pn−1 is the linear

map Xn Xn−1 ⊕ V,
dn⊕f

and the differential Pn−1 → Pn−2 is the linear map:

Xn−1 ⊕ V Xn−1 Xn−2,
dn−1

where the unlabeled map is the natural projection. All the differentials Pi → Pi−1 for i 6= n, n−1

are the differentials Xi → Xi−1 of the chain complex X. Clearly, we get Hi(P ) = Hi(X) for

i 6= n, n− 1. For i = n− 1, by Proposition B.1.4, we can choose a decomposition:

Xn
∼= Hn(X)⊕Bn−1(X)⊕Bn(X).

The differential dn : Xn → Xn−1 sends the factor Bn−1(X) in Xn to itself, and the factor

Hn(X) ⊕ Bn(X) to zero. By definition, the map fn : Xn → V sends the factor Hn(X) in Xn

to the image of fn, which is V since fn is surjective, and the factor Bn−1(X)⊕Bn(X) to zero.

Thus the image of the differential Pn −→ Pn−1, is precisely Bn−1(X)⊕V . Therefore, we obtain:

Hn−1(P ) =
ker(Pn−1 → Pn−2)

im(Pn → Pn−1)

∼=
Zn−1(X)⊕ V
Bn−1(X)⊕ V

∼=
Zn−1(X)

Bn−1(X)

= Hn−1(X).
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For i = n, notice that the n-boundaries of P are precisely the n-boundaries of X, the n-cycles

of P are the n-cycles x in X such that fn(x) = 0. Since fn : Xn → V is entirely defined on the

copy Hn(X) in Xn, we get from the commutative diagram:

Zn(X) Xn V

Hn(X),

fn

Hn(f)

that Hn(P ) ∼= ker(Hn(f)).

Lemma B.2.6. Let k be a finite product of fields. Let j : X → Y be a monomorphism in Chk,

such that it induces a monomorphism in homology in each degree. Let n be a fixed integer in

Z. Then the map j factors in Chk as:

X Y

Fn(Y )

j

Fn(j) Fn(pj)

where Fn(Y ) is a chain complex built with the following properties.

• The chain map Fn(pj) : Fn(Y )→ Y is a P⊕-Postnikov tower.

• The chain map Fn(j) : X → Fn(Y ) is a monomorphism (i.e. a cofibration in Chk).

• The k-module (Fn(Y ))i differs from Yi only in degree i = n− 1.

• In degrees i 6= n in homology, we have Hi(Fn(Y )) ∼= Hi(Y ) and the maps:

Hi(Fn(j)) : Hi(X) −→ Hi(Fn(Y )) ∼= Hi(Y ),
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are precisely the maps Hi(j) : Hi(X) → Hi(Y ). In particular, the maps Hi(Fn(j)) are

monomorphisms. Moreover, if the maps Hi(j) are isomorphisms, then so are the maps

Hi(Fn(j)).

• In degree n in homology, the map Hn(Fn(j)) : Hn(X)
∼=−→ Hn(Fn(Y )) is an isomorphism.

Proof. We construct below the chain complex Fn(Y ) explicitly using Lemma B.2.5. By Propo-

sition B.1.4, we can decompose Yn as:

Yn ∼= Hn(Y )⊕ Yn ∼= im
(
Hn(j)

)
⊕ coker

(
Hn(j)

)
⊕ Yn,

where Yn is the direct sum of the copies of the boundaries. Denote the k-module V =

coker(Hn(j)) and define the linear map fn : Yn → V to be the natural projection. In particular,

the map fn sends n-boundaries of Y to zero. This defines a chain map: f : Y −→ Sn(V ).

Notice that since j : X → Y is a monomorphism, we get j(Xn) ⊆ Yn, and so, by construction

of f , we get that the composite: X Y Sn(V ),
j f

is the zero chain map. We obtain

Fn(Y ) as the following pullback in Chk, with a chain map Fn(j) induced by the universality of

pullbacks:

X

Fn(Y ) Dn(V )

Y Sn(V ).

Fn(j)

∃!

0

j

y
Fn(pj)

f
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By construction, the induced chain map Fn(pj) : Fn(Y ) → Y is in PostP⊕ . From the commu-

tativity of the diagram:

X Fn(Y )

Y,

Fn(j)

j
Fn(pj)

since j is a monomorphism, so is Fn(j). Since Hi(j) is a monomorphism for i ∈ Z, then so is

Hi(Fn(j)). By Lemma B.2.5, we get Hi(Fn(Y )) ∼= Hi(Y ) for all i 6= n. For i = n, we get:

Hn(Fn(Y )) ∼= ker
(
Hn(f)

)
∼= Hn(X),

as we have the short exact sequence of k-vector spaces:

0 Hn(X) Hn(Y ) V 0,
Hn(j) Hn(f)

since V = coker(Hn(j)). Thus Hn(Fn(j)) is an isomorphism as desired.

Lemma B.2.7. Every fibration in Chk is a retract of a P⊕-Postnikov tower and every map in

Chk factors as an acyclic cofibration followed by a P⊕-Postnikov tower.

Remark B.2.8. Unlike Lemma B.2.4, we cannot use the cosmall object argument in order to

prove Lemma B.2.7. Indeed, as noted in (Soré, 2010), the codomains Sn of maps in the set P
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are not cosmall relative to PostP. Indeed, let Yk = Sn for all k ≥ 0 and Yk+1 → Yk be the zero

maps. Let Y = lim
k≥0

Yk be the limit in Chk. The set map:

colim
k≥0

(HomChk(Yk, S
n)) −→ HomChk(Y, S

n)

is not a bijection. Indeed, the map is equivalent to the map:

⊕
k≥0

k −→

∏
k≥0

k

∗ ,
which is never a bijection. A similar argument can be applied to show that the codomains

Sn(V ) of the maps in the class P⊕ are not cosmall relative to PostP⊕ , for any k-module V .
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Proof of Lemma B.2.7. The first statement follows from the second using the retract argument.

Given a chain map f : X → Y , we build below a chain complex W̃ as a tower in Chk using

Lemma B.2.6 repeatedly so that f factors as:

W̃

...

G−1 (W+)

W+

...

G+
1 (W )

G+
0 (W )

X W Y

G−1 (p)

p

G+
1 (p)

G+
0 (p)

f

j

G+
0 (j)

G+
1 (j)

j+

G−1 (j+)

j̃

p

where j̃ is a monomorphism and a quasi-isomorphism, and all the vertical maps and p are in

PostP⊕ . The composition of all the vertical maps and p is a chain map W̃ → Y which is in

PostP⊕ , by Proposition A.1.2.



118

Appendix B (Continued)

We first start by noticing the following factorization:

X Y,

X ⊕ Y

f

j p

induced by the following pullback in Chk:

X

X ⊕ Y X

Y 0.

f

j

y
p

The map p is in PostP⊕ by Lemma B.2.3 and Proposition A.1.2. By commutativity of the upper

triangle, we see that the monomorphism j induces a monomorphism in homology. We denote

W = X ⊕ Y .

The second step is to replace the map j : X → W by a chain map j+ : X → W+ that

remains a cofibration, a monomorphism in homology in negative degrees, and an isomorphism

in homology in non-negative degrees. We construct W+ as the limit lim
n≥0

(G+
n (W )) in Chk of the

tower of maps:

· · · G+
2 (W ) G+

1 (W ) G+
0 (W ) W,

G+
2 (p) G+

1 (p) G+
0 (p)
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where each G+
n (p) is in PostP⊕ . The map j+ : X → W+ is induced by the monomorphisms

G+
n (j) : X → G+

n (W ) which are compatible with the tower:

G+
n (W )

X G+
n−1(W ),

G+
n (p)

G+
n (j)

G+
n−1(j)

and G+
n (j) induces an isomorphism in homology in degrees i, for 0 ≤ i ≤ n, and a monomor-

phism otherwise. We construct the chain complexes G+
n (W ) of the tower inductively as follows.

• For the initial step, apply Lemma B.2.6 to the monomorphism j : X → W , for n = 0.

Denote G+
0 (W ) := F0(W ). The cofibration G+

0 (j) defined as the chain map:

F0(j) : X −→ F0(W ) = G+
0 (W ),

is an isomorphism in homology in degree 0, and a monomorphism in other degrees. The

chain map G+
0 (p) defined as the map:

F0(pj) : G+
0 (W ) = F0(W ) −→W,

is a P⊕-Postnikov tower.

• For the inductive step, suppose, for a fixed integer n ≥ 0, the chain complex G+
n (W ) is

defined, together with a cofibration G+
n (j) : X → G+

n (W ) inducing an isomorphism in
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homology for degrees i, where 0 ≤ i ≤ n, and a monomorphsim in homology for other

degrees. Apply Lemma B.2.6 to the monomorphism G+
n (j) for the degree n+ 1. Denote:

G+
n+1(W ) := Fn+1(G+

n (W )).

The cofibration G+
n+1(j) defined as the chain map:

Fn+1(Gn(j)) : X −→ Fn+1(G+
n (W )) = G+

n+1(W ),

is an isomorphism in homology in degrees i where 0 ≤ i ≤ n + 1, and a monomorphism

in other degrees. We obtain a P⊕-Postnikov tower G+
n+1(p) defined as the chain map:

Fn+1

(
pG+

n (j)

)
: G+

n+1(W ) = Fn+1(G+
n (W )) −→ G+

n (W ),

such that the following diagram commutes:

X G+
n (W )

G+
n+1(W ).

G+
n (j)

G+
n+1(j) G+

n+1(p)

The induced map j+ : X →W+ is a monomorphism of chain complexes. Indeed, for any fixed

i ∈ Z, we have: (
G+
i+1(W )

)
i

=
(
G+
i+2(W )

)
i

=
(
G+
i+3(W )

)
i

= · · · .
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Thus (W+)i =
(
G+
i+1(W )

)
i
. Therefore the linear map (j+)i : Xi → (W+)i is the linear map:

(
G+
n+1(j)

)
i

: Xi −→
(
G+
i+1(W )

)
i
,

which is a monomorphism. Similarly, we get: Hi(W
+) ∼= Hi(G

+
i+1(W )), for all i ∈ Z, and so

j+ is a monomorphism in negative degrees in homology, and an isomorphism in homology in

non-negative degrees.

The last step is to replace the map j+ : X → W+ by the desired chain map j̃ : X → W̃

that is an acyclic cofibration. We construct W̃ similarly as W+ (inductively applying Lemma

B.2.6) but in negative degrees. We build W̃ as the limit lim
n≥0

(G−n (W+)) in Chk of the tower of

maps:

· · · G−2 (W+) G−1 (W+) G−0 (W+) = W+,
G−2 (p) G−1 (p)

where each G−n (p) is in PostP⊕ . The map j̃ : X → W̃ is induced by the monomorphisms

G−n (j) : X → G−n (W+) which are compatible with the tower:

G−n (W )

X G−n−1(W ),

G−n (p)
G−n (j)

G−n−1(j)

and G−n (j) induces an isomorphism in homology in degrees i, for i ≥ −n, and a monomor-

phism otherwise. Similarly as the positive case, the map j̃ : X → W̃ can be shown to be a

monomorphism and quasi-isomorphism, hence an acyclic cofibration, as desired.
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B.3 Postnikov Presentation for Comodules over Simply-Connected Coalgebras

Definition B.3.1. For all commutative ring R, we denote τ≥0 : ChR → Ch≥0
R the 0-th trunca-

tion (see (Weibel, 1994, 1.2.7)). Let k be a finite product of fields. From the sets and classes of

Definition B.1.5, we denote their image under the truncation by:

P≥0 = {Dn −→ Sn}n≥1 ∪ {0→ S0}, Q≥0 = {Dn −→ 0}n≥1,

and:

P
≥0
⊕ :=

{
Dn(V ) −→ Sn(V ) | V any k-module

}
n≥1⋃{

0 −→ S0(V ) | V any k-module
}
.

Since τ≥0(PostP⊕) ⊆ Post
P
≥0
⊕

and τ≥0(PostQ) ⊆ PostQ≥0 by Proposition A.1.3, we can easily

adapt our arguments and show fibrant generation and cocellular presentation for Ch≥0
k .

We can easily adapt our arguments of before to show the following (it also follows from

Theorem B.2.1 and Proposition A.3.4).

Proposition B.3.2. Let k be a finite product of fields. Let C be a non-negative differential

graded k-coalgebra. Then the model category Ch≥0
k is fibrantly generated by (P≥0,Q≥0). The

model category CoModC(Ch≥0
k ) is fibrantly generated by (P≥0 ⊗ C,Q≥0 ⊗ C).

We shall focus in this section to show the following, which is a generalization of the result

in (Hess, 2009).
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Theorem B.3.3. Let k be a finite product of fields. Let C be a simply connected differential

graded k-coalgebra. Then (P≥0
⊕ ⊗C,Q≥0⊗C) is a Postnikov presentation of the model category

CoModC(Ch≥0
k ) of right C-comodules in non-negative chain complexes.

We shall prove Theorem B.3.3 with Lemmas B.3.7 and B.3.12 below. This will provide us

with a very explicit inductive fibrant replacement for comodules as we will see in Corollary

B.3.15.

In order to understand a Postnikov presentation of CoModC(Ch≥0
k ) we must be able to

describe limits of towers and pullbacks. Recall that U : CoModC(Ch≥0
k )→ Ch≥0

k preserves and

reflects colimits and finite limits. Thus pullbacks in CoModC(Ch≥0
k ) are computed in Ch≥0

k . In

general, limits of towers in CoModC(Ch≥0
k ) are very different than limits of the underlying towers

in Ch≥0
k . If {X(n)} is a tower of right C-comodules, we denote its limit by limC

nX(n), and if we

forget the C-comodule coactions, we denote the limit in Ch≥0
k by limnU(X(n)). Nevertheless,

in good situations, we can describe those towers.

Definition B.3.4. Let R be a commutative ring. A tower {X(n)} in Ch≥0
R stabilizes in each

degree if for each degree i ≥ 0, the tower {X(n)i} of k-modules stabilizes for n ≥ i+ 1, i.e., for

all n ≥ 0, and all 0 ≤ i ≤ n, we have: X(n + 1)i = X(n + 2)i = X(n + 3)i = · · · . Let C be

a non-negative differential graded R-coalgebra. A tower {X(n)} in CoModC(Ch≥0
R ) stablizes in

each degree if the underlying tower {U(X(n))} in Ch≥0
R stabilizes in each degree.
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Lemma B.3.5. Let R be a commutative ring. Let {X(n)} be a tower in Ch≥0
R that stabilizes

in each degree. Let C be any chain complex in Ch≥0
R . Then the tower

{
X(n)⊗C

}
in Ch≥0

R also

stabilizes in each degree and we have:
(
limnX(n)

)
⊗ C ∼= limn

(
X(n)⊗ C

)
.

Proof. For all n ≥ 0, and all 0 ≤ i ≤ n, we have:

(
X(n+ 1)⊗ C

)
i

=
⊕
a+b=i

X(n+ 1)a ⊗ Cb

=
⊕
a+b=i

X(n+ 2)a ⊗ Cb

=
(
X(n+ 2)⊗ C

)
i
,

as 0 ≤ a ≤ i ≤ n. This argument generalizes in higher degrees and thus shows that the

desired tower stabilizes in each degree. For all i ≥ 0, notice that both
((

limnX(n)
)
⊗C

)
i

and(
limn

(
X(n)⊗ C

))
i

are equal to
⊕
a+b=i

X(i+ 1)a ⊗ Cb.

Corollary B.3.6. Let R be a commutative ring. Let C be a non-negative differential graded

R-coalgebra. Let {X(n)} be a tower in CoModC(Ch≥0
R ) that stabilizes in each degree. Then the

natural map:

U(limC
nX(n))

∼=−→ limnU(X(n))

is an isomorphism in Ch≥0
R .

Proof. This follows directly from Lemma B.3.5 as U preserves and reflects a limit precisely when

the comonad − ⊗ C : Ch≥0
R → Ch≥0

R preserves that limit. In detail, if we denote X the chain
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complex limnU(X(n)), then the coaction X → X⊗C is constructed as follows. For each degree

i ≥ 0, the map Xi → (X⊗C)i is entirely determined by the coaction X(i+1)→ X(i+1)⊗C.

We now start proving Theorem B.3.3. The following lemma remains true for the unbounded

case and actually follows from (Hess, 2009, 1.15).

Lemma B.3.7. Let k be a finite product of fields. Let C be a non-negative differential graded

k-coalgebra. Every acyclic fibration in CoModC(Ch≥0
k ) is a retract of a (Q≥0 ⊗ C)-Postnikov

tower. Every map in CoModC(Ch≥0
k ) factors as a cofibration followed by a (Q≥0⊗C)-Postnikov

tower.

Proof. Just as in Lemma B.2.4, the proof follows either from the cosmall object argument, or

given any map X → Y in CoModC(Ch≥0
k ), choose an acylic chain complex Z which is a product

of 1-dimensional disks, such that U(X) ↪→ Z, just as in Lemma B.2.4. By adjunction, we

obtain a monomorphism X ↪→ Z ⊗ C into an acyclic cofree C-comodule. Then the desired

factorization is given by factoring through (Z ⊗ C)⊕ Y .

Corollary B.3.8. Let k be a finite product of fields. Let C be a non-negative simply connected

differential graded k-coalgebra. Then the forgetful functor U : CoModC(Ch≥0
k )→ Ch≥0

k preserves

acyclic fibrations.
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Proof. Every acyclic fibration X → Y in CoModC(Ch≥0
k ) is a retract of the projection (Z ⊗

C)⊕ Y → Y as constructed in the proof of Lemma B.3.7. Notice that we have the projection

is the following pullback in CoModC(Ch≥0
k ) (and in Ch≥0

k ):

(Z ⊗ C)⊕ Y Z ⊗ C

Y 0.

y

Since Z ⊗ C → 0 is clearly an acyclic fibration in Ch≥0
k , the result follows.

For any chain complex C and any k-module V , we see that the i-th term of the chain

complex Sn(V )⊗C is the k-module V ⊗Ci−n. If we choose C to be a 1-connected differential

graded k-coalgebra, we get:

(Sn(V )⊗ C)i =



0 i < n,

V i = n,

0 i = n+ 1,

V ⊗ Ci−n i ≥ n+ 2.

Thus, around the n-th term, the chain complex Sn(V )⊗C is similar to Sn(V ). We can therefore

modify the homology of a C-comodule for a specific degree without modifying the lower degrees.

Lemma B.3.9. Let k be a finite product of fields. Let C be a simply connected differential

graded k-coalgebra. Let X be any object in CoModC(Ch≥0
k ). Let V be any k-module. Let n ≥ 1

be any integer. Given a surjective linear map fn : (U(X))n → V non-trivial only on n-cycles,
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there is a comodule map f : X → Sn(V ) ⊗ C, and the pullback comodule P in the following

diagram in CoModC(Ch≥0
k ):

P Dn(V )⊗ C

X Sn(V )⊗ C,

y

has homology:

Hi(P ) ∼=


ker (Hn(f)) i = n,

Hi(X) i < n,

and we have Pi = Xi for i < n− 1 and i = n, and Pn−1 = Xn−1 ⊕ V .

Proof. The proof is similar to Lemma B.2.5, as we have:

(Dn(V )⊗ C)i =



0 i < n− 1,

V i = n− 1, n,

(V ⊗ Ci−n)⊕ (V ⊗ Ci−(n−1)) i ≥ n+ 1.

Notice that the differential (Dn(V )⊗ C)n+1 → (Dn(V )⊗ C)n is trivial. Thus we can adapt

our arguments.

Lemma B.3.10. Let k be a finite product of fields. Let C be a simply connected differential

graded k-coalgebra. Let j : X → Y be a monomorphism in CoModC(Ch≥0
k ), such that it induces
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a monomorphism in homology in each degree. Let n ≥ 1 be a fixed integer. Then the map j

factors in CoModC(Ch≥0
k ) as:

X Y

Fn(Y )

j

Fn(j) Fn(pj)

where Fn(Y ) is a right C-comodule built with the following properties.

• The map Fn(pj) : Fn(Y )→ Y is a (P≥0
⊕ ⊗ C)-Postnikov tower.

• The map Fn(j) : X → Fn(Y ) is a monomorphism (i.e. a cofibration in CoModC(Ch≥0
k )).

• The k-module (Fn(Y ))i differs from Yi in degrees i = n− 1 and i ≥ n+ 1.

• In degrees i < n in homology, we have Hi(Fn(Y )) ∼= Hi(Y ) and the maps:

Hi(Fn(j)) : Hi(X) −→ Hi(Fn(Y )) ∼= Hi(Y ),

are precisely the maps Hi(j) : Hi(X)→ Hi(Y ). For all degrees i ≥ 0, the maps Hi(Fn(j))

are monomorphisms, such that, if the maps Hi(j) are isomorphisms, then so are the maps

Hi(Fn(j)).

• In degree n in homology, we have Hn(Fn(Y )) ∼= Hn(X) and the map:

Hn(Fn(j)) : Hn(X) −→ Hn(Fn(Y )) ∼= Hn(X),

is an isomorphism.
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Proof. This is similar to the proof of Lemma B.2.6 and thus we shall omit some details. Define

V as the cokernel of Hn(j) and obtain a chain map U(Y ) → Sn(V ). By adjointness, obtain a

C-comodule map Y → Sn(V )⊗ C. Define Fn(Y ) as the following pullback CoModC(Ch≥0
k ):

Fn(Y ) Dn(V )⊗ C

Y Sn(V )⊗ C,

y

and the argument follows from previous lemma.

We state the case n = 0 carefully.

Lemma B.3.11. Let k be a finite product of fields. Let C be a 1-connected differential graded

k-coalgebra. Let j : X → Y be a monomorphism in CoModC(Ch≥0
k ), such that it induces a

monomorphism in homology in each degree. Then the map j factors in CoModC(Ch≥0
k ) as:

X Y

F0(Y )

j

F0(j) F0(p0)

where F0(Y ) is a right C-comodule built with the following properties.

• The map F0(p0) : F0(Y )→ Y is a (P≥0
⊕ ⊗ C)-Postnikov tower.

• The map F0(j) : X → F0(Y ) is a monomorphism and a monomorphism in homology.

• In degree zero, the map H0(F0(j)) : H0(X)→ H0(F0(Y )) is an isomorphism of k-modules.
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Proof. Let V = coker(H0(j)) which defines a map Y → S0(V )⊗ C of right C-comodules, such

that, if we precompose with j : X → Y , it is the zero map. Define the right C-comodule F0(Y )

as follows:
F0(Y ) 0

Y S0(V )⊗ C.

y
F0(p0)

f

One can easily check that F0(Y ) has all the desired properties by the same arguments as

before.

Lemma B.3.12. Let k be a finite product of fields. Let C be a simply connected differential

graded k-coalgebra. Every fibration in CoModC(Ch≥0
k ) is a retract of a (P≥0

⊕ ⊗ C)-Postnikov

tower. Any morphism in CoModC(Ch≥0
k ) factors as a cofibration followed by a (P≥0

⊕ ⊗ C)-

Postnikov tower.

Proof. We argue similarly as in the proof of Lemma B.2.7. Let f : X → Y be any morphism

in CoModC(Ch≥0
k ). We can factor through the C-comodule W := (U(X) ⊗ C) ⊕ Y via the

following pullback in CoModC(Ch≥0
k ):

X

W U(X)⊗ C

Y 0,

ρ

f y
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where ρ is the C-coaction of X. Then define W+ = limC
nFn(W ) inductively using previous

lemmas. Notice that the tower stabilizes in each degree and thus, for each i ≥ 0:

(W+)i = (limC
nFn(W ))i = (limnFn(W ))i = (Fi+1(W ))i = (Fi+2(W ))i = · · · ,

by Corollary B.3.6. Thus Hi(W
+) = Hi(Fi+1(W )) ∼= Hi(X) and we get the desired factoriza-

tion.

Remark B.3.13. The forgetful functor U : CoModC(Ch≥0
k ) → Ch≥0

k does not preserve fibra-

tions in general. Indeed, the generating fibration 0 → S0(V ) ⊗ C is not a positive levelwise

epimorphism.

Remark B.3.14. Using the vocabulary of (Hess and Shipley, 2014), we have essentially shown

that the comonad −⊗ C on Ch≥0
k is tractable and allows the inductive arguments and thus by

(Hess and Shipley, 2014, 5.8) we indeed have that (P≥0
⊕ ⊗C,Q≥0⊗C) is a Postnikov presentation

of CoModC(Ch≥0
k ).

The following crucial result follows directly from Lemma B.3.12 where we apply the factor-

ization to a trivial map of right C-comodule X → 0. We recall that we define homotopy limits

of towers as limits of fibrant towers as in Proposition A.1.13.

Corollary B.3.15. Let X be any right C-comodule in Ch≥0
k . Then there exists a countable

tower {X(n)} in CoModC(Ch≥0
k ) with limit X̃ := limC

nX(n) where the right C-comodules X(n)

are built inductively as follows.
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• Define X(0) to be the trivial C-comodule 0.

• Define X(1) to be the cofree C-comodule U(X)⊗ C. The map X(1)→ X(0) is trivial.

• Suppose X(n) was constructed for a certain n ≥ 1. Then there exists a certain k-module

Vn and a map of C-comodule X(n) → Sn(Vn) ⊗ C such that X(n+ 1) is defined as the

following pullback in CoModC(Ch≥0
k ):

X(n+ 1) Dn(Vn)⊗ C

X(n) Sn(Vn)⊗ C.

y

The tower {X(n)} enjoys the following properties.

(i) The map X̃ −→ 0 is a (P⊕ ⊗ C)-Postnikov tower and there exists an acyclic cofibration

of right C-comodules X X̃.'

(ii) If X is a fibrant right C-comodule, then X is a retract of X̃.

(iii) For all n ≥ 1, we have Hi(X(n)) ∼= Hi(X) for all 0 ≤ i ≤ n− 1.

(iv) The tower {X(n)} stabilizes in each degree. In particular U(X̃) = U(limC
nX(n)) ∼=

limn(U(X(n))).

(v) Each map X(n+ 1) → X(n) for n ≥ 0 is a fibration in CoModC(Ch≥0
k ), and its under-

lying map U(X(n + 1)) → U(X(n)) is also a fibration in Ch≥0
k . In particular X̃ is the

homotopy limit of {X(n)} in CoModC(Ch≥0
k ) and we have: U(X̃) ' U(holimC

nX(n)) '

holimn(U(X(n))).
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Proof. Observe that we do not need to apply Lemma B.3.11 as X(1) = U(X)⊗ C has already

the correct homology: H0(X(1)) = H0(X)⊗H0(C) ∼= H0(X) as C is 1-connected. Notice that

the generating fibrations Dn(V ) ⊗ C → Sn(V ) ⊗ C are all levelwise positive epimorphisms as

chain maps, and thus are fibrations in Ch≥0
k . Since pullbacks in CoModC(Ch≥0

k ) are computed

in Ch≥0
k , we get that each U(X(n+ 1))→ U(X(n)) is a fibration in Ch≥0

k .

Definition B.3.16. Let X be a right C-comodule in Ch≥0
k . The Postnikov tower of X is the

tower {X(n)} in CoModC(Ch≥0
k ) built in Corollary B.3.15. The construction is not functorial.

B.4 Postnikov Presentation Over a Perfect Coalgebra

In the previous section, we followed the approach of (Hess, 2009). For comodules over a

differential graded coalgebra C that is a perfect chain complex, we shall follow the approach

of (Smith, 2011). Although not used for the arguments in this paper, this can help compute

homotopy limits in CoModC(ChR) but also in C∗Mod(ChR), see Remark 6.4.8. The Postnikov

towers will be functorial but not constructed degree by degree, unlike the case for finite product

of fields.

Let R be a commutative ring. In this section, we shall always assume that the category

of unbounded chain complexes ChR is endowed with its injective model structure and we shall

always assume that CoModC(ChR) is endowed with its injective model structure too.

Let Fib and F̃ib denote the classes of injective fibrations and acyclic injective fibrations re-

spectively. Then ChR is (trivially) fibrantly generated and Postnikov presented by (Fib, F̃ib). For

any differential graded R-coalgebra C, we then get, by Proposition A.3.4, that CoModC(ChR)

is fibrantly generated by (Fib⊗ C, F̃ib⊗ C). We shall show the following here.
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Theorem B.4.1. Let R be a commutative ring. Let C be a differential graded R-coalgebra

that is perfect as a chain complex. Then (Fib ⊗ C, F̃ib ⊗ C) is a Postnikov presentation of the

injective model structure of right C-comodules CoModC(ChR).

Proof. Let f : X → Y be a map of right C-comodules. We need to show first that f factors

through an acyclic cofibration followed by (F̃ib⊗C)-Postnikov tower. This follows from (Hess,

2009, 1.15). In more details, there is an acyclic chain complex Z and a (functorial) factorization

in ChR:

U(X) 0

Z

'

Since the functor −⊗C : ChR → CoModC(ChR) is right Quillen, then Z⊗C → 0 is in Post
F̃ib⊗C .

The chain map U(X)→ Z induces a comodule map X → Z⊗C that remains a monomorphism

(as C is a flat chain complex). We obtain the desired factorization via the following pullback

in CoModC(ChR):

X

(Z ⊗ C)⊕ Y Z ⊗ C

Y 0.

f
y

'
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We now want to show the second factorization, i.e. we want to show that f factors through

an acyclic cofibration followed by a (Fib ⊗ C)-Postnikov tower. For any chain complex M , let

us fix a following (functorial in M) factorization in ChR:

0 M

P (M).

'

Now we inductively define our desired factorization. Define W (0) = (Z ⊗ C) ⊕ Y as above,

and let j0 : X ↪→ W (0) and p0 : W (0) → Y be the cofibration and the (F̃ib ⊗ C)-Postnikov

tower respectively defined above. Notice that Post
F̃ib⊗C ⊆ PostFib⊗C . Let W (−1) denote Y

and j−1 = f . Now, for n ≥ 0, suppose we have defined a cofibration jn : X ↪→ W (n) and a

(Fib ⊗ C)-Postnikov tower pn : W (n) → W (n − 1) such that pn ◦ jn = jn−1. Define the right

C-comodule K(n) as the cokernel of jn:

X 0

W (n) K(n).

jn

kn
p

Then the comodule map kn induces a map kn : W (n) → U(K(n)) ⊗ C which is the adjoint of

U(kn) : U(W (n)) → U(K(n)). It is easy to check that kn ◦ jn = 0. Let us denote K(n) :=
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U(K(n)). Then the fibration P (K(n)) → K(n) induces a (Fib ⊗ C)-Postnikov tower map

P (K(n))⊗ C → K(n)⊗ C. Define W (n+ 1) as the following pullback of right C-comodules:

X

W (n+ 1) P (K(n))⊗ C

W (n) K(n)⊗ C.

0

jn+1

jn pn+1

y

kn

Define W as the limit of right C-comodules of the tower {W (n)} (recall that since C is a perfect

chain complex, the limit is computed in ChR). Notice that naturality of cokernels induces tower

comodule maps K(n+ 1)→ K(n):

X 0

W (n+ 1) K(n+ 1)

W (n) K(n).

jn+1

jn

pn+1

kn+1

∃!

p

kn

This defines a tower {K(n)} of right C-comodules, such that we obtain the following exact

sequence of towers of right C-comodules:

0 {X} {W (n)} {K(n)} 0,
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where {X} denotes the constant tower, which trivially satisfies the Mittag-Leffler condition

(see (Weibel, 1994, 3.5.6)) as a tower in ChR. Thus, since tower limits in CoModC(ChR) are

computed in ChR, we obtain the following exact sequence of right C-comodules:

0 X W K 0,

where K is the limit of the tower {K(n)}. Thus the map f : X → Y factors through W , the

map X → W is a cofibration and W → Y is a (Fib⊗ C)-Postnikov tower by construction. We

are only left to show that K is an acyclic chain complex. This will follow from the fact that

the maps K(n+ 1)→ K(n) are trivial in homology. Indeed, the counit ε : C → k induces the

following commutative diagram in ChR (we have dropped U from some of the notations):

W (n+ 1) P (K(n))⊗ C P (K(n))

W (n) K(n)⊗ C K(n).
kn

U(kn)

Notice that the horizontal composite W (n+ 1)→ P (K(n)) is trivial if we precompose it with

jn+1 : X →W (n+ 1). Therefore by universality of the cokernel, we get that K(n+ 1)→ K(n)

factors in ChR through the chain complex P (K(n)) which is acyclic. Thus the induced map

in homology Hi(K(n + 1)) → Hi(K(n)) is trivial for all degrees i and all n ≥ 0. Since

W (n + 1) → W (n) are levelwise epimorphisms then so is K(n + 1) → K(n) (as pushouts

preserves epimorphisms). Therefore the tower {K(n)}, considered in ChR, satisfies the Mittag-
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Leffler condition and the induced maps in homologies are trivial. Thus by (Weibel, 1994, 3.5.8),

the homology of K is trivial.
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Anderson, D. W.: Convergent functors and spectra. In Localization in group theory and
homotopy theory, and related topics (Sympos., Battelle Seattle Res. Center, Seattle,

Wash., 1974), volume 418 of Lecture Notes in Math., pages 1–5. Springer, Berlin, 1974.

Ando, M., Blumberg, A. J., and Gepner, D.: Parametrized spectra, multiplicative Thom spectra
and the twisted Umkehr map. Geom. Topol., 22(7):3761–3825, 2018.

Anel, M. and Joyal, A.: Sweedler Theory for (co)algebras and the bar-cobar constructions,
2013. arXiv:1309.6952.

Barwick, C., Glasman, S., and Nardin, D.: Dualizing cartesian and cocartesian fibrations.
Theory Appl. Categ., 33:Paper No. 4, 67–94, 2018.
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