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SUMMARY 

Endothelial cells (ECs) are a specialized cell type lining all vertebrate blood 

vessels and form an interface between circulating blood and the neighboring 

tissue. Understanding the tissue-specific characteristics of endothelial cells could 

markedly improve our understanding of the organ-specific roles of blood vessel 

function and the development of vascular disease. Computational approaches 

statistically modeling the gene expression data provided by high throughput 

sequencing technologies have been developed to analyze the cellular 

transcriptome. In our work, we present novel computational methods, namely 

HeteroPath and Subnetwork Signaling Entropy Analysis (SSEA), to analyze gene 

expression data and ascertain organ-specific endothelial heterogeneity during 

homeostasis and inflammation.  

We hypothesized that characterizing cells from distinct tissues based on 

the heterogeneity of the molecular signaling would allow for the precise 

identification of clusters of genes which are uniquely upregulated or uniquely 

downregulated in each tissue. Using HeteroPath alongside traditional gene set 

enrichment analysis methods, we demonstrated endothelial transcriptomic 

heterogeneity. HeteroPath specifically identified organ-specific signaling 

pathways and provided a comprehensive characterization of EC heterogeneity in 

the healthy state. We next adopted the RiboTag mRNA isolation technique to 

directly isolate tissue-specific mRNAs undergoing translation without cell 

disassociation to understand the nature of the endothelial translatome in vivo. By 

performing RNA-Sequencing and computationally analyzing the endothelial  
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SUMMARY (Continued) 

translatome, we identified specific pathways, transporters, and cell-surface 

markers expressed in an organ-specific manner. In addition, we found that ECs 

adopt the characteristics of the tissue by expressing genes typically expressed in 

the surrounding tissue such as genes associated with synaptic function in the 

brain endothelium and cardiac contractile genes in the heart endothelium.  

Once we established the organ-specific endothelial signature during 

homeostasis, we studied whether this heterogeneity persisted in response to a 

biological stimulus that induced systemic inflammation. Using differential 

expression approaches and our novel framework, SSEA, we quantified the 

organ-specific endothelial gene expression dynamics and found that the 

progression and resolution of endothelial injury during vascular inflammation in 

each organ is mediated by distinct endothelial signaling mechanisms. Using 

these methods and tools, we characterized organ-specific endothelial 

heterogeneity during homeostasis and inflammation and provided insights 

regarding the underlying endothelial biology and potential therapeutic targets.  
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

1.1 Origin and Development of the Vasculature 

Vascular endothelial cells (ECs) are an abundant cell type lining the inner wall of 

every blood vessel in the body. Blood vessels possess a thick wall of connective 

tissue composed of fibroblasts, adipocytes, mast cells, macrophages, 

lymphocytes, and smooth muscle cells. On the luminal side, ECs form a thin 

monolayer named the endothelium which lines the vessel wall and serves as an 

interface between the blood and the surrounding tissue1.  

The first functional organ system to arise in the mammalian embryo is the 

circulatory system which plays an essential role in the survival and growth of the 

developing embryo2,3. Laboratory mice are a powerful model for elucidating the 

phenotypic and molecular mechanisms regulating vascular development. In  

mice, ECs and red blood cells first arise in the yolk sac by embryonic day 7 and 

begin to massively expand. ECs, like hematopoietic cells, arise from the 

mesoderm through differentiation of hemangioblasts4,5. Hemangioblasts possess 

the multipotent characteristic enabling them to also give rise to the vascular 

smooth muscle cells6, skeletal muscle cells, and cardiac muscle cells7.  

1.1.1 Vasculogenesis 

Vasculogenesis is the formation of blood vessels during embryonic 

development8. Vasculogenesis primarily occurs during early embryogenesis 

during which de novo capillaries are formed from endothelial precursor cells. This 

observed biological process begins with the migration of blood and endothelial 
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precursor cells, referred to as angioblasts, from the mesoderm to the yolk sac9,10. 

After angioblasts begin proliferating and differentiating into ECs, they migrate into 

the yolk sac and establish a simple capillary network. This primitive capillary 

plexus is composed of interconnected microvessels which are homogeneous in 

shape and size8,11,12.  

The de novo synthesis of the vascular network during embryonic vascular 

development is mediated by several signaling mechanisms. Vascular endothelial 

growth factor (VEGF) promotes EC migration and proliferation into a primitive 

vascular network13-16. Scl/T-cell acute lymphoblastic leukemia transcription factor 

(Scl) is a vital factor for the generation of blood and endothelial cells from 

progenitor cells17-19; and, vascular endothelial growth factor receptor 2 (Flk1) 

which is a regulator of the multipotent ability of progenitor cells during capillary 

plexus formation. The establishment of the network of blood vessels in the yolk 

sac is an essential step in the highly dynamic development of the vasculature20.  

1.1.2 Angiogenesis 

This primitive network formed during embryonic vascular development is able to 

expand due to endothelial migration and proliferation from capillaries. This 

process, termed angiogenesis, consists of pre-existing vessel sprouting, bridging, 

and branching. Angiogenesis enables the existing vascular plexus to remodel 

into a hierarchically branched, highly organized vascular structure consisting of 

arteries and veins. For vessel stabilization, pericytes and smooth muscle cells 

are recruited to surround the endothelial layer. This vascular remodeling shapes 

vessels into low-resistance conduits optimized for tissue-specific functions 
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including transport of nutrients, oxygen, blood, and waste. The remodeling 

process regulated by both molecular and biochemical signaling is crucial for 

cardiovascular function and the viability of the growing embryo.  

The well-known signaling pathways linked to angiogenesis include the Tie 

family of receptor tyrosine kinases, transforming growth factor β superfamily 

(TGFβ), the Eph receptor tyrosine kinases and their membrane-bound ligands, 

Notch signaling, and platelet derived growth factor B (PDGFB). The expression 

of Tie1 and Tie2 appear early on during angioblast specification and play a 

critical role in vascular remodeling after the generation of the capillary plexus21-23. 

Dysregulation of the TGFβ signaling pathway or bone morphogenic proteins and 

activins resulted in stunted development of the yolk sac, leaky vessels, and 

defects in hematopoietic and endothelial differentiation24-27. After vascular 

remodeling occurs, the yolk sac and the embryo vasculature become 

compartmentalized with their own vascular network composed of arteries and 

veins responsible for providing the developing embryo with oxygen and nutrients. 

The ephrins are among the first identified factors which regulate distinct arterial 

and venous specifications of nascent vessels28. Following the discovery of the 

ephrins, Notch signaling was found to be an upstream regulator of ephrin 

signaling in arterial venous identity. This arterio-venous specification and 

maintenance is essential for proper circulation. To further ensure vascular 

stability for circulation, ECs secrete PDGFB which binds to PDGF receptors on 

mural cells and activates signaling pathways that maintain the integrity of the 

vessel wall 29,30.  
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As development proceeds, in addition to arterio-venous cell fate identity 

the hierarchical vessel tree diversifies due to changes in hemodynamics, 

surrounding cell types, and the microenvironment. These microenvironmental 

cues guide the individual ECs into developing tissue-specific characteristics 

necessary for distinct organ function31-34. The largely homogenous embryonic EC 

population must differentiate and mature in an organ-specific manner in order 

engage in endothelial functions such as regulating flow, transport, hormonal 

interactions, cellular trafficking, metabolism, and inflammation35 36 that are 

attuned to the requirements of a given organ.  

1.2 Endothelial Functions 

ECs engage in several different functions, some of which are unique to a specific 

organ and tissue and others which are universal EC functions in most tissues 

and organs. For example, ECs regulate hemostasis – the cessation of bleeding – 

in most organs but even for this near universal EC function, studies have 

identified varying distribution of EC factors involved in the formation of blood 

clots37, thus suggesting that there is indeed a heterogeneity and organ-specific 

phenotype of ECs. Similar observations have been made for several pan-

endothelial functions such as blood vessel permeability, nutrient transport, 

immune cell trafficking and inflammation, and the regulation of tissue 

metabolism. 

Larger vessels such as arteries and veins branch into increasingly smaller 

vessels until they become microvascular capillaries which represent the 

connection between the arterial and venous circulation and which perfuse the 
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tissue, thus supporting organ-specific parenchymal cells such as cardiomyocytes 

in the heart or hepatocytes in the liver. The capillary endothelium in each organ 

consists of a thin sheet of cells functioning as a semi-permeable barrier between 

the blood and the tissue parenchymal cells. Adjacent endothelial cells 

dynamically modulate junctions between themselves to regulate permeability of 

the endothelium allowing for the passage of certain cell types and 

macromolecules. The multi-tasking nature of the endothelium is necessary for 

regulating physiological processes and pathophysiological responses including 

acute inflammation, antigen presentation and recognition, and immune 

surveillance. Persistent permeability due to prolonged disruption of endothelial 

cell-cell junctions can lead to excessive inflammation.  

1.2.1 Endothelial Permeability 

Activation of signaling mechanisms enables the endothelium increases and 

restore permeability by modulation of cell junctions38-40. The regulation of 

endothelial permeability is heterogeneous in response to an external stimulus 

within a vascular bed and also differs widely across distinct vascular beds as 

each organ-specific endothelium likely uses tissue-specific signaling mechanisms 

regulating permeability41. On one end of the spectrum there is the highly 

selective continuous endothelium forming the blood-brain barrier containing 

specialized tight junctions to protect neurons from toxins. On the other end of the 

spectrum are the discontinuous liver sinusoidal ECs which form a dynamic 

filtration barrier containing fenestrae with pore sizes ranging from 100-2000 nm 
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for endocytosis-based clearance of waste macromolecules and which therefore 

have very high permeability even during physiological homeostasis42.  

1.2.2 Endothelial Immune Cell Trafficking 

 
Aside from permeability, the vasculature is essential for the regulation of immune 

cell trafficking. Since ECs are among the first cells of the body (other than 

circulating blood leukocytes) to come into contact with circulating pathogens or 

toxins in the blood, ECs act as key sensors which can respond by activating the 

innate immune system. It has been shown that ECs express toll-like receptors 

(TLRs), nod-like receptors (NLRs), and chemokine receptors to detect foreign 

substances43,44. In response to pathogen and toxin detection, ECs respond by 

producing and secreting pro-inflammatory cytokines45,46. This recognition and 

response mechanism in endothelial cells initiates the recruitment of 

leukocytes47,48.  

Not only do ECs recruit immune cells to the inflammatory tissue, but ECs 

also physically interact with immune cells. Once the endothelium become 

activated during inflammatory conditions, the ECs begin to upregulate typical 

inflammatory adhesion molecules such as selectins, vascular cell adhesion 

molecule-1 (VCAM1), and intercellular adhesion molecule-1 (ICAM1) to promote 

immune cell trafficking across the endothelial barrier49. The endothelial specific 

expression of VCAM1, ICAM1, E-Selectin, and P-Selectin is critical in mediating 

the leukocyte adhesion cascade of events. First, the ECs secrete chemokines to 

recruit and activate the leukocytes. This promotes leukocyte attraction to ECs at 

the site of injury. The leukocytes tether and roll along the endothelium until 
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binding of selectins and integrin results in leukocyte arrest50. Once arrested, the 

leukocytes then transmigrate across the endothelium into the inflamed tissue 

while binding to adhesion molecules such as platelet endothelial adhesion 

molecule-1 (PECAM1) and ICAM151. The transmigration can occur in two 

different fashions. One route is paracellular where the leukocytes pass between 

the ECs while the other is transcellular, directly through the ECs52. The 

paracellular migration requires a relaxation of the endothelial junctions to create 

large enough gaps for immune cells from the blood to pass through51. The 

transcellular migration, on the other hand, involves remodeling of the membrane 

where a conduit is repeatedly opened and closed52.  

1.2.3 Endothelial Nutrient Transport 

The endothelial barrier is further responsible for regulating delivery of nutrients 

from the blood into the tissue. In the energy-consuming heart tissue, the cardiac 

ECs adjust to the metabolic demands of the tissue by controlling vessel density 

and endothelial nutrient transfer. Contractions of the myocardium heavily relies 

on ATP generated from fatty acid catabolism and the cardiac ECs express high 

levels of fatty acid transporters such as CD3653. In the brain tissue, neurons 

consume high levels of glucose for ATP production that is required for neuronal 

activity. Therefore, brain ECs have high levels of the glucose transporter, GLUT1 

which transports glucose from the blood into the brain tissue. This transporter is 

essential for the brain because dysregulation of GLUT1 leads to reduced levels 

of glucose which has been linked to neuronal dysfunction and neurodegenerative 

disease54-56. Other solute transporters including solute carrier family 7 member 5 
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(SLC7A5) have been associated with autism spectrum disorders due to the 

modulated levels of essential amino acids in the brain57.  

1.2.4 Endothelial Metabolism 

Emerging evidence has suggested that endothelial metabolism allows EC to 

adapt to the tissue specific functions are supply the tissue with the necessary 

nutrients that it imports from the circulating blood. Dysregulation of EC 

metabolism has been associated with many diseases including atherosclerosis, 

diabetes, neovascular eye disease, and cancer. EC metabolism is tightly 

regulated because it is imperative for ECs maximally preserve nutrients for the 

tissue the ECs are supplying and minimize consumption of these nutrients and 

metabolites by the ECs themselves. Under healthy homeostatic conditions, ECs 

are quiescent in nature but possess the ability to quickly adapt into a proliferative 

state for angiogenesis58. Like cancer cells, ECs rely heavily on glucose to 

generate 85% of their ATP and therefore consume high levels of glucose via the 

glycolysis pathway59. Glucose metabolism occurs via two distinct pathways: 

aerobic and anaerobic. The aerobic, or oxidative metabolism of glucose occurs in 

the mitochondria and results in the greatest production of ATP, while the 

anaerobic cycle occurs in the cytoplasm and is less efficient at producing ATP59. 

During angiogenesis, ECs migrate into a hypoxic environment to sprout and 

generate new blood vessels. In this hypoxic environment, the ECs are unable to 

rely on oxidative metabolism and must thus activate anaerobic metabolism60. To 

initiate the glycolytic pathway during angiogenesis, glucose must be taken up by 

the ECs via membrane-bound glucose transporters (GLUTs)61.  
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Another energy source for ECs is fatty acids. In the setting of low glucose, 

ECs adapt by increasing their fatty acid oxidation (FAO) through the activation of 

AMP-activated protein kinase (AMPK)62. It has been previously shown that during 

basal EC proliferation, VEGF-dependent signaling induces the expression of fatty 

acid binding protein (FABP4) for fatty acid uptake and trafficking63. The role of 

FAO in the endothelium is not well understood. Due to the similarity in ATP 

generation by cancer cells and endothelial cells, it has been hypothesized that 

endothelial FAO may regulate EC redox homeostasis in addition to biosynthesis 

of macromolecules64,65. It has been previously reported that the cardiac 

endothelium and endothelium in skeletal muscle express high levels of fatty acid 

binding proteins for fatty acid transport into the tissue66. The cardiac and skeletal 

muscle tissues then use their β-oxidation machinery to metabolize the fatty acids 

and generate energy67.  

Besides glycolysis and fatty acid oxidation, in recent years it has been 

shown that ECs metabolize specific amino acids for survival, migration, and 

proliferation. Arginine, for example, has been implicated in EC homeostasis due 

to its role in converting citrulline to nitric oxide via endothelial nitric oxide 

synthase (eNOS)68,69. In addition, a non-essential amino acid, glutamine, has 

been broadly studied as an easily accessible and abundant fuel source in the 

plasma70. ECs consume more glutamine than any other amino acid for TCA cycle 

anaplerosis, biomass synthesis and redox homeostasis. Experiments depleting 

glutamine by pharmacological inhibition or knockdown of glutaminase 1 (GLS1), 

have shown impairment of EC proliferation71. Interestingly, it was found that loss 
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of EC function and protein synthesis by glutamine withdrawal in ECs can be 

partially rescued with asparagine72. 

1.2.5 Endothelial Inflammation 

At rest, the endothelium is responsible for inhibiting coagulation of the blood, 

controlling blood flow, regulating barrier permeability, and reducing leukocyte 

entry into the tissue. In the presence of infectious microbes or during tissue 

injury, the process of acute inflammation begins with ECs becoming activated 

and recruiting neutrophils. EC activation consists of two responses: type I and 

type II activation. Type I activation is the acute response independent of 

transcription that effect vascular tone, permeability, and leukocyte diapedesis. 

Type II activation is a delayed response because it is dependent on transcription 

of genes which modulate the function of ECs in response to bacterial products or 

cytokines73. Type II endothelial activation result in a loss of barrier integrity, 

expression of adhesion molecules, a functional switch from anti-thrombotic to 

pro-thrombotic, and cytokine production74. A proper inflammatory response 

requires ECs to become activated, although prolonged activation can lead to 

endothelial dysfunction and vascular disease. Type II EC activation can be 

characterized by activation of a pleiotropic transcription factor, nuclear factor-κB 

(NF-κB), expression of cell-surface adhesion molecules such as endothelial 

leukocyte adhesion molecule (E-selectin), VCAM1, and ICAM1. Furthermore, the 

presence of pro-inflammatory cytokines including TNFα and IL-6 induce type II 

EC activation and initiate leukocyte recruitment and attachment 75.  
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The inflammatory process causes the production of reactive oxygen 

species which ultimately leads to endothelial dysfunction 76. Previous work 

established that oxidative stress regulates cytokine production and secretion 77-79 

thus implicating its role in endothelial dysfunction. To regulate vascular 

homeostasis the endothelium has built a system which regulates autocrine, 

paracrine, and endocrine signaling. These distinct forms of signaling within the 

endothelium and between the endothelium and neighboring cell types are driven 

by pathways which regulate vasodilation, vasoconstriction, and expression of 

cytokines and adhesion molecules. For example, reduced levels of NO due to 

less production and/or increased degradation is a hallmark characteristic for early 

onset of endothelial dysfunction 80. This NO driven endothelial dysfunction and 

imbalance of vasodilators and vasoconstrictors results in a vasculature 

characterized by vasoconstriction, leukocyte adhesion, and vascular 

inflammation.  

1.3 Endothelial Heterogeneity 

The ECs which line the inner walls of blood vessels exhibit drastic functional and 

molecular characteristics tailored for supporting the tissue they reside in. Across 

different vascular beds, ECs show structural heterogeneity due to the varying 

levels of endocytic pathway components such as clathrin-coated pits, varying 

numbers of caveolae in the transcytosis pathway, and unique expression levels 

of intercellular junctions, tight junctions, adherens junctions, or gap junctions. 

This organ-specific phenotypic heterogeneity observed in ECs is linked to both 

intrinsic genetic factors and extrinsic factors such as location, soluble mediators, 
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cell to cell contact, or mechanical forces41,81,82,83. ECs adopt organ-specific 

characteristics via mechanisms such as cytokine release, production of 

metabolites, biophysical forces, and cellular interaction between ECs and 

parenchymal cells. It has been previously discussed through transplantation 

studies that the endothelial plasticity is driven by ECs altering their tissue-specific 

gene expression patterns84.  

The tissue-specific interaction between ECs and surrounding cells occurs 

as early as during development, when, for example, brain ECs instruct neuronal 

differentiation85,86. Such tissue-specific endothelial adaptations persist throughout 

adulthood when brain ECs form a highly selective barrier composed of 

specialized tight junctions to limit neurotoxicity87. In the lung, ECs differentiate in 

parallel with epithelial cells to form gas exchange units which are in contact with 

the external environment and thus need to ensure a rapid immune response88. 

Heart ECs, on the other hand, are specialized in a manner to ensure ready 

supply of fatty acids to voracious cardiomyocytes which rely on continuous 

supply of fatty acids as the primary fuel to generate ATP necessary for cardiac 

contraction42.  

The tissue-specific gene expression patterns which regulate these 

processes remain poorly understood. By studying patterns of gene expression in 

different tissues, insights into the regulatory landscape of each endothelial 

population can be obtained. Identifying differences in the expression levels of 

selected genes in endothelial cells from different tissues provides some insights 

into the molecular underpinnings of endothelial heterogeneity, however unbiased 
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transcriptomic profiling is likely to yield a more comprehensive evaluation of the 

genes and regulatory pathways underlying endothelial heterogeneity.  

1.4 Computational Analysis of Endothelial Heterogeneity 

Computational analysis of microarray and RNA-Seq gene expression data of a 

given cell type obtained from distinct organs and tissues enables the unbiased 

identification of gene candidates. Endothelial cells, neurons, macrophages or 

fibroblasts that reside in different tissues or organs are thought to have distinct 

functions and are thus likely to have unique gene expression signatures that 

reflect their tissue-specific adaptation and function. Several recent publications 

addressing cellular heterogeneity have provided widely applicable biological 

insight in many areas including disease subtypes89, candidate biomarkers90, and 

molecular mechanisms of disease91. After generating gene expression data for 

different tissues, the goal is to identify the molecular heterogeneity characterizing 

the tissues. The heterogeneous populations may represent previously 

unidentified molecular profiles responsible for tissue-specific function. To 

characterize heterogeneous or differentially regulated genes, differential 

expression analysis 83 and gene co-expression network analysis 92 are commonly 

used. A limitation of these methods however is that the single dimensional 

analysis of genes does not identify the causal molecular mechanisms that 

regulate them 93. These methods rely on ranking individual genes by differential 

expression and subsequently inferring the underlying pathways or transcription 

factors that maintain the heterogeneous gene expression profiles. Importantly, 

deriving the initial rank-list of the most differentially expressed genes using these 



 

14 

conventional computational approaches does not consider whether differential 

expression of tissue-specific genes is concentrated within functional groups. 

From a biological perspective, functionally related genes often have similar 

expression patterns which match cell-specific phenotypes 94. In order to identify 

the molecular signature of distinct cell populations, new methods, in addition to 

existing gene set analysis methods need to be developed to interpret dynamic 

changes within a group of genes with common function. 

1.4.1 Gene Set Analysis 

Over-representation analysis (ORA), functional scoring (FCS) and pathway 

topology-based methods are the three predominant classes of gene set analysis 

methods 95. ORA is the most widely used method because of its simplicity, robust 

statistical model, and ease of use. In a recent publication it was reported that 

across the 68 gene set analysis methods tools, 40 of them were ORA-based 96. 

ORA is a first-generation method that evolved from single gene analysis. It 

requires a list of differentially expressed genes identified by a single gene 

analysis method as input. Given this input list of differentially expressed genes L, 

and a gene set, Gi, ORA-based methods statistically evaluate whether there is an 

over-representation or under-representation of L in Gi. The null hypothesis is 

there is no association between L and Gi. These methods are powered by a pre-

defined list of differentially expressed genes. The significance of over-

representation in a gene set is computed based on the extent to which the gene 

set is enriched in these differentially expressed genes. A gene set which contains 

significantly more genes from L than randomly expected is more likely to be truly 
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related to the biological condition. The next group of gene set analysis methods, 

functional class scoring (FCS) was developed in order to transition away from 

powering the analysis using differentially expressed genes defined by arbitrary 

thresholds. These methods hypothesize that in addition to genes that have large 

expression changes, minimal coordinated changes in gene expression are 

functionally relevant. There have been several implementations of this approach 

is recent years including gene set enrichment analysis (GSEA)97, sigPathway98, 

FunCluster99, and many others.  

The gene expression measurements generated by microarray or RNA-seq 

platforms are not fully exploited in gene set analysis. These values are only used 

in the context of identifying differentially expressed genes (ORA), or to rank the 

genes (FCS), but not to assess the modulation of a single gene set such as a 

biological signaling pathway. For example, ORA methods are unable to detect 

the difference between a subset of genes being differentially expressed at a 

small magnitude (e.g. 2-fold) versus the same subset of genes being 

dysregulated by many orders of magnitude (e.g. 100-fold). The FCS methods 

similarly provide a ranking for genes according to expression but rely on the 

correlation between the genes and observed phenotypes. These two gene set 

analysis methods miss the contextual information of the differentially expressed 

genes within gene sets.  

Treating the gene sets as groups of genes ignores the contextual 

information provided by annotation databases including KEGG or Gene 

Ontology. To be more precise, all the interactions and dependencies among the 
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elements within a gene set which likely dictate the function of the gene set are 

disregarded. Pathway topology-based methods are a powerful class of methods 

which have integrated gene expression data with interaction databases. In 

addition to gene expression, these approaches leverage the known signaling and 

interactions of each gene to define whether the gene set is enriched in a 

phenotype. If a signaling pathway is regulated by a few driver genes and those 

particular genes are modulated during disease conditions, it is likely that this 

pathway is implicated in disease. On the other hand, if several genes in a 

pathway are modulated during disease, but they do not greatly impact the 

pathway, changes in their expression levels may not be relevant. Performing an 

ORA-based or FCS-based gene set analysis is limited to identifying differentially 

expressed genes but does not provide insight about whether these expression 

changes are critical for signaling.  

Although current gene set analysis methods overcome some of the 

weaknesses of single gene analysis, there remain shortcomings when 

investigating cellular heterogeneity. In this thesis, we develop novel quantitative 

approaches for identification of the molecular signatures which explain organ-

specific endothelial heterogeneity. In addition, we propose using powerful mRNA 

isolation approaches to assess the in situ endothelial molecular signature across 

several mice organs. Our studies provide a direction for further research on 

identification of molecular signatures driving cellular heterogeneity in vivo.  
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CHAPTER 2 

HETEROPATH: A COMPUTATIONAL APPROACH TO IDENTIFY 

CELLULAR HETEROGENEITY AND TISSUE-SPECIFIC GENE REGULATORY 

NETWORKS 

Previously published as: 
Jambusaria, A., et al. (2018). "A computational approach to identify 

cellular heterogeneity and tissue-specific gene regulatory networks." BMC 
Bioinformatics 19(1): 217. 
 
 

2.1 Introduction 

Addressing how to detect heterogeneity of cells in any given tissue requires 

studying whether a relationship between two random variables has changes 

across conditions. This question is often fundamental to a scientific inquiry. For 

example, a vascular biologist may ask which sets of genes or pathways are 

modified in brain endothelial cells versus lung endothelial cells. This example 

considers only two groups of cells. Imagine uncovering the differences between 

three or more groups of cells when evaluating 15,000 genes. To answer the 

heterogeneity question in this context, we developed a computational method, 

HeteroPath, which statistically infers functional changes from high-throughput 

mRNA data. HeteroPath is a powerful tool which allows for studying individual 

genes in the context of their function.  

Previous publications focusing on cellular heterogeneity have made it 

clear that nearly all cellular systems are composed of a heterogeneous 

population of cells100,101. This heterogeneity is thought to exist to maintain 

homeostasis, enhance survival rates, and support tissue-specific functionality. 

For example, population-level survival strategies in single-celled and multicellular 
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organisms such as bet-hedging promote risk spreading and provide these 

organisms with the resources necessary to be fit for survival when faced with 

exogenous stresses102.  

Conducting large scale transcriptomics analyses is a common approach 

for detecting cellular heterogeneity. Although cells within an individual have 

nearly identical genomes, tissue-specific development generates tissue-specific 

cell types with distinct gene expression profiles. For example, during embryonic 

development the endothelium first forms clusters known as blood islands 

throughout the embryo to establish a vascular circulatory network103-105. During 

development, the immature network remodels in response to microenvironmental 

cues including neighboring cell types and hemodynamics. This maturing process 

of the network is critical for the establishment of tissue-specific functionality and 

the function of each organ31-33. This developmental and maturation process 

ensures that the initial homogenous population of angioblasts differentiates into 

organ-specific endothelial cells fit for supporting the flow, transport, hormonal 

interactions, and cell trafficking in each organ35,36. Since little is known about how 

each organ maintains the functional properties of its endothelium for instance, we 

developed HeteroPath to identify the molecular signature driving these functional 

properties.  

The HeteroPath algorithm is designed to identify heterogeneous pathways 

and gene sets. HeteroPath aims to find the pathways or gene sets that are not 

only differentially expressed from the global median gene expression value but 

also appear to be responsible for the regulation of distinct cell types. Briefly, we 
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first integrate normalized gene expression data with pathway data for all 

pathways and gene sets. For each group of samples, we calculate a t-statistic 

based heterogeneity score for every gene in every pathway. By aggregating the 

heterogeneity score for all heterogeneous genes in each pathway, we can rank 

the pathways in order of heterogeneity score. This ranked list of pathways 

defines the functional and molecular signature of each group of samples.  

2.1.1 Problem Definition 

In this study, we design a novel computational method, HeteroPath, which first 

identifies heterogeneously expressed pathways in cell populations of unique 

organs or tissues. The algorithm aims to determine a pathway heterogeneity 

score which allows for individual elements of the pathway to be either 

upregulated or downregulated when compared to the median of all tissues. This 

computational model generates experimentally testable predictions for 

understanding the general architecture of the gene regulatory networks that 

define cellular heterogeneity.  

2.2 Methods 

2.2.1 HeteroPath Overview 

We developed HeteroPath, a novel computational algorithm to identify significant 

heterogeneous pathways, in which the heterogeneity of pathways for a given set 

of cell types was evaluated (Figure 1). We applied a fixed gene set enrichment 

analysis which combined the gene expression and pathway data. We tested for 

bidirectionally perturbed pathways in the KEGG database. We were specifically 

interested in these bidirectionally perturbed pathways because they are individual 
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pathways which contain a significant number of elements that are upregulated 

and a significant number of elements which are downregulated.  

As seen in Figure 2, the algorithm iterates through all KEGG pathways 

and assigns a heterogeneity score to each pathway. The heterogeneity score is 

generated by summing the absolute t-statistics of genes with sufficient magnitude 

to determine significant differences in gene expression across multiple tissue 

types. The t-statistic is used as a distance metric to quantify tissue-specific 

association between gene expression profiles on a per-gene basis. Therefore, 

the heterogeneity scores factor in both direction and magnitude of perturbation. 

Although a t-statistic based heterogeneity score of 0.975 or greater is equivalent 

to a p-value < 0.05, it is not appropriate to calculate a p-value from this statistic 

because of the small number of genes associated with some pathways. 

Therefore, a permutation-based p-value is estimated in our algorithm. An 

adjusted p-value is then calculated to control for the false discovery rate. The 

stringent Benjamini-Hochberg correction method is applied to the raw p-values 

produced from the permutation-based calculation106. 
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Figure 1: Schematic Diagram of the HeteroPath framework designed for tissue-

specific transcriptomic profiling. First, the gene expression data is preprocessed 

and normalized. Then, the gene expression data and gene set data are 

integrated together. Each KEGG pathway is statistically evaluated using the 

traditional algorithms GSEA, PGSEA, and the novel HeteroPath algorithm to 

identify tissue-specific pathways. Next, the tissue-specific gene regulatory 

networks are constructed by identification of heterogeneous genes and their 

regulatory transcription factors as determined by motif enrichment analysis using 

the ENCODE database. 
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2.2.2 HeteroPath Algorithm 

1. For each of the N genes in the gene expression matrix, calculate the t-

statistic for each tissue by performing an individual-gene analysis: 

Equation 1: 

𝑡𝑖 =
𝑀1(𝑖) − 𝑀2(𝑖)

𝑠(𝑖)
 

Where 𝑀1(𝑖) is the median expression level of gene 𝑖 in an individual 

tissue, 𝑀2(𝑖) is the median expression level of gene 𝑖 across all tissues, 

and 𝑠(𝑖) is a pooled standard deviation over the two groups (individual 

tissue vs median of all tissues).   

2. Filter out genes which have less than a threshold for fold-change (The 

value 2 is set as default).  

3. Compute the Heterogeneity score (HS) corresponding to pathway/set S: 

𝐻𝑆 = ∑|𝑡𝑖| 

𝑖∈𝑆

 

4. Permute the labels of the phenotype P in the data matrix and repeat (1) 

and (2). Repeat until all permutations are considered. 

5. Compute empirical p-value for the association of S and P as the fraction of 

the HSs from the permuted datasets from (3) that is larger than the 

observed HS statistic from (2).  

6. Repeat the analysis for multiple gene sets and estimating false discovery 

rates (FDRs) from p-values of individual sets using the q-values106.  
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Figure 2: The HeteroPath algorithm for identifying heterogeneous pathways and 

gene sets. HeteroPath aims to find the pathways/gene sets that are not only 

differentially expressed from the global median gene expression value but also 

appear to be responsible for the regulation of distinct cell types. 
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2.2.3 Methods for Gene Set Analysis  

To reveal the biological relevance of the gene expression profiles obtained from 

HeteroPath, comparison studies were performed using GSEA97 and parametric 

analysis of gene set enrichment (PGSEA)107. The GSEA algorithm tests whether 

the distribution of the ranks of genes in the gene set differs from a normal 

distribution using a weighted Kolmogorov-Smirnov test. PGSEA is an algorithm 

used to analyze a gene expression data set for enrichment in gene sets, often by 

testing whether the average fold-change of a gene set is different from zero. 

Gene enrichment scores for each of the KEGG pathways within each tissue 

sample were calculated using both GSEA and PGSEA. The GSEA procedure 

allows for selection of a main parameter. The final output of enriched pathways is 

affected by the ranking metric which measures the level of difference in gene 

expression between phenotypes. Therefore, we compared the GSEA results 

using different ranking parameters and observed a strong overlap among the 

enriched pathways when a t-test statistic (t-test) or the Pearson correlation 

coefficient was used for quantitative studies. Since HeteroPath is a t-statistic 

based algorithm, using the t-statistic quantitative measure for GSEA was more 

appropriate. 

To visualize the degree of heterogeneity identified by different gene set 

enrichment analysis methods, GSEA, PGSEA, and HeteroPath, we calculated a 

pathway z-score for significantly differentially expressed pathways identified by 

the three independent algorithms and generated heatmaps. The Z-score for each 

pathway was calculated using the PGSEA method. In both microarray data sets, 
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we first calculated the fold change values for every gene by comparing each of 

the three tissues individually with the median expression across all tissues. Using 

those fold-change values we next calculated the mean of the total fold change 

values (μ) and the standard deviation of the total fold change values (σ). We 

denoted the mean of fold change values for a given pathway as xp and the 

number of genes in a given pathway as p, and then calculated the pathway Z 

score as 

Equation 2 

𝑍 = (𝑥𝑝 − 𝑢) ∗ 
𝑝

1
2

𝜎
 

By calculating the pathway Z score for all significant pathways, we were 

able to generate individual heatmaps for each of the algorithms and visualize the 

degree of heterogeneity identified by the significant pathways from each 

respective algorithm. 

2.2.4 HeteroPath Performance Evaluation 

The performance of HeteroPath was evaluated by calculating receiver operating 

characteristic (ROC) curves and area under the curve (AUC) values for each 

dataset at varying fold-change thresholds (1.5, 2, and 3) using the R package 

pROC108. We first defined a list of bona fide true positive and true negative 

pathways in each dataset by using the gene expression values to identify 

pathways which either had a q-value < 0.01 (“positive”) or q-value > 0.2 

(“negative”) in GSEA and PGSEA. We then drew a ROC curve for distinct fold 

change threshold values in the HeteroPath algorithm. Since HeteroPath identifies 
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significantly differentially expressed genes in each tissue sample by comparing 

each tissue with the median gene expression of all tissues, varying the fold 

change threshold influences the number of genes included to calculate the 

heterogeneity score for each pathway. Using the heterogeneity score, we 

identified the HeteroPath enriched pathways and compared them to the true 

positives and true negatives. By calculating the AUCs of the ROC curves based 

on binary classification of the pathways to the ground truth at three distinct fold 

change thresholds we were able to evaluate the performance of HeteroPath.  

We further evaluated the significance of the AUC values by performing a 

permutation test. By randomly permuting the class labels and running 

HeteroPath, we recorded AUC values. We repeated the process 1000 times and 

recorded all the “random” AUCs. Finally, we compared the observed AUC with 

the empirical distribution of “random” AUCs from the permutation tests to obtain a 

p-value which is defined by the fraction of “random” AUCs greater than or equal 

to the observed AUC value. 

2.2.5 HeteroPath Performance Simulations 

To further test the validity and performance of HeteroPath we designed a 

simulation study. The simulation studies were designed using a linear additive 

model to generate normalized microarray data on m genes and n samples 109. 

The samples were divided in three groups representing a scenario involving gene 

set enrichment analysis for three tissues: 

Equation 3 

𝑦𝑖𝑗 = 𝛼𝑖 + 𝛽𝑗 + ∈𝑖𝑗  
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where 𝛼𝑖 ~ N(μ = 0 , σ = 1) is a gene-specific effect, such as a probe-effect, with i 

= 1,…, m, 𝛽𝑗 ∼ N(μj , σj) is a sample-effect with j = 1, 2, 3 and  ∈𝑖𝑗 ∼ N(μ = 0 , σ = 

1) corresponds to random noise. 

To assess statistical power and false positive rate (type-I error), we 

designed a microarray gene expression data set with m = 5,000. Next, we 

simulated two differently sized differentially expressed gene sets. The first 

containing 50 genes and the second containing 150 genes. We considered 

different numbers of samples, n = 10, 20, 40, 60, and varying conditions leading 

to different simulation scenarios for each gene set size. We performed the 

simulation study varying fractions of differentially expressed genes in the gene 

set (25%, 50% and 80%) and varying the signal-to-noise ratio (the magnitude of 

the mean sample effect in differentially expressed genes for one of the sample 

groups).  

In the differentially expressed genes scenario, for 𝛽𝑗, we set μ1 = 0.5,  μ2 = 

μ3 = 0 for the weak effect; μ1 = 1, μ2 = μ3 = 0 for the strong effect; and σ1 = 0.5, σ2 

= σ3 = 1 for both cases. For the non-differentially expressed genes case we set 

μ1 = μ2 = μ3 = 0 with σ1 = σ2 = σ3 = 1.  

We simulated 500 independent data sets using these parameters. For 

each of the gene set enrichment methods we generated an enrichment score 

matrix for both gene sets (differentially expressed and non-differentially 

expressed). We then performed an ANOVA on the score matrix for the two gene 

sets for a difference in mean between the three groups of samples at a 

significance level α = 0.05. Across the 500 simulations, we estimated the 
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statistical power as 1 minus the ratio of non-rejections of the differentially 

expressed gene set and the empirical type-I error as the ratio of rejections of the 

non-differentially expressed gene set at a significance level α = 0.05. 

2.2.6 Annotated Transcriptional Regulators of Heterogeneous Genes 

To identify sets of unique transcription factors associated with heterogeneous 

pathways, we searched for transcription factors that have been experimentally 

proven by ChIP-seq to bind annotated motifs from the ENCODE project110 in the 

promoter regions of the heterogeneous genes. Our goal was to identify 

transcription factors motifs that were statistically over-represented in the set of 

DNA promoter sequences of the heterogeneous genes from a single pathway.  

The method requires three steps. First, we extracted 2.5 kb upstream of 

the transcription start site for each of the heterogeneous genes and examined 

enrichment for transcription factor binding sites (TFBSs) based on the 

TRANSFAC111 and JASPAR112 databases. We then derived a significance score 

which is a comparison of the enriched motif found in the set of upstream 

sequences as compared to a randomly selected set of sequences. In order to 

calculate significance, we first needed to identify the probability distributions of 

TFBS for a single transcription factor between the heterogeneous gene set and 

the randomly selected genes in the mouse genome. Then, we derived a p-value 

for the number of TFBS using the randomly selected background sequence set, 

which explains the probability of obtaining the number of TFBS observed merely 

by chance. Low p-values (p < 0.05) suggested that the motif was significantly 

over-represented. By identifying enriched motifs within each of the 
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heterogeneous pathways, we were able to infer candidate transcription factors 

that were associated with tissue-specific endothelial cell signaling pathways. 

2.2.7 Putative Regulatory Transcription Factors 

We then predicted which transcription factors regulate the heterogeneous gene 

expression between distinct cell types by identifying transcription factors 

predicted to bind the overrepresented motifs. This was performed by scanning 

the promoter regions of the heterogeneous genes and assessing the propensity 

of a transcription factor to bind a given sequence based on the PWM scores 

obtained from TRANSFAC111  and JASPAR112,113 . We performed this analysis 

using the MATCH algorithm114. This search algorithm uses a matrix similarity 

score (MSS) and a core similarity score (CSS) to measure the quality of the 

match between the PWM score and the sequence. This score ranges between 

0.0–1.0. If the score is above 0.7, we consider these as putative regulatory 

transcription factors. 

The MATCH algorithm has tunable cutoffs that allow for minimizing the 

false negative rate (minFN), minimizing the false positive rate (minFP), and 

minimizing the sum of both errors (minSum). We utilized the minSum cutoff 

which computes a sum of both false positive and false negative rates to find cut-

offs that give an optimal number of false positives and false negatives. The 

number of matches found in the exon sequences for each matrix is computed 

using minFN cutoffs which define 100% of false positives. The sum of 

percentages for false positives and false negatives is then computed for every 
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cut-off ranging from minFN to minFP. The minimum sum cut-off is then defined 

as the minSum cut-off. 

2.2.8 Constructing Gene Regulatory Networks 

The known and putative gene regulatory networks were reconstructed in R using 

the RTN package115 for visualization. This computational framework establishes 

interactions and structure of the network by mapping the interactions between 

upregulated transcription factors identified through motif enrichment and their 

respective heterogeneous genes identified by HeteroPath. 
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Figure 3: A) Hierarchical clustering of Endothelial cells from 7 mouse organs 

Intra- and inter-tissue heterogeneity. Tree plot generated via hierarchical 

clustering of 500 most variable genes across all distinct tissue endothelial cell 

samples B) Hierarchical clustering of Neuronal cells from 5 different regions of 

the mouse forebrain Intra- and inter-tissue heterogeneity. Tree plot generated via 

hierarchical clustering of 500 most variable genes across all distinct tissue 

neuronal cell samples.  
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2.2.9 Pairwise Differential Gene Expression 

In a separate analysis, prior to applying our novel method of identifying 

heterogeneous pathways, we first performed hierarchical clustering and 

generated tree plots shown in Figure 3 to evaluate the differential expression 

across the studied datasets. Further, to assess the level of heterogeneity among 

the tissues being analyzed we identified individual differentially expressed genes 

using the Linear Models for Microarray and RNA-Seq Data (limma) module 

contained in the R/Bioconductor software package. We compared the gene 

expression among three of the endothelial cell tissues from Figure 3A and among 

three of the neuronal cell tissues from Figure 3B to identify the heterogeneity of 

endothelial cells and the heterogeneity of neuronal cells. To address the degree 

of differential expression, we assigned confidence intervals to the differential 

expression. The transcripts were ranked based on the degree of differential 

expression using the fold-change (FC) in expression level metric 116,117. These 

statistics were computed using the biological replicates and the variance 

between the replicates to assign a probability value that indicates an incorrect 

classification of a gene as being differentially regulated. These statistical 

techniques allowed for a robust analysis that iterates through the transcriptomic 

cohort to identify genes that are differentially expressed. Gene expression 

differences were assessed in limma with false discovery rate (FDR) correction for 

multiple testing118. Genes with an adjusted p ≤ 0.05 and a FC ≥ 2 were 

considered significantly differentially expressed. This analysis did not allow us to 
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sufficiently understand the underlying heterogeneity biology therefore we sought 

out to elucidate characteristic pathways explaining the heterogeneity. 

2.3 Experiments & Results 

2.3.1 Datasets 

The statistical modeling framework we developed show in Figure 1 was applied 

to microarray data sets downloaded from the Gene Expression Omnibus (GEO) 

at http://www.ncbi.nlm.nih.gov/geo/. The mouse endothelial cells (GSE47067) 

were freshly isolated from mouse organs, labeled by antibodies specific to 

endothelial cells, isolated via flow sorting and immediately processed for RNA 

extraction, amplification and hybridization83. The mouse forebrain neurons 

(GSE2882) were fluorescently labelled neurons isolated from five different 

regions of the forebrain. Datasets of three of the endothelial cell tissues (brain, 

lung, and heart) and three of the neuronal cell tissues (hippocampus, cingulate 

cortex, and amygdala) were used in this study. 

2.3.2 Identification of Heterogeneously Expressed Tissue-specific 

Pathways 

First, we used a parametric and a non-parametric gene set enrichment analysis, 

PGSEA107 and GSEA97 respectively, as gene set enrichment methodologies 

followed by our novel algorithm HeteroPath to analyze organ-specific endothelial 

and tissue-specific neuronal transcriptomics data. We evaluated three distinct 

tissues with a well-balanced coverage of three samples per tissue in both 

datasets. PGSEA identifies differentially expressed gene sets by testing whether 

the average expression of genes in a gene set deviates from the overall 
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expression of all genes in the sample. GSEA aims to test the up- or 

downregulation of gene sets by testing the expression levels of individual genes. 

In this type of analysis, no threshold is set to select for significantly differentially 

expressed genes, but rather all genes are used to determine the differential 

expression of the pathway. Furthermore, GSEA makes the assumption that the 

more differentially expressed a gene is, the more biological relevance it has. We 

implemented our novel algorithm HeteroPath which assigns a heterogeneity 

score to each pathway based on how distinct its elements are across all tissues 

versus a “virtual median cell type”, i.e. the virtual endothelial cell that represents 

the median of endothelial cells from all tissues. As seen in Figure 2, a higher 

heterogeneity score is attributed to the pathways containing the most 

heterogeneously expressed genes when comparing distinct tissues independent 

of cumulative upregulation or downregulation. For example, if three elements of a 

pathway are similarly upregulated and three elements of pathway are also 

similarly downregulated in a given tissue when compared to the gene expression 

of the virtual median cell, HeteroPath would rank this as a highly heterogeneous 

pathway while PGSEA and GSEA would not consider this as a significant 

pathway. 

2.3.3 HeteroPath Benchmarking 

Two comprehensive studies were conducted to assess the performance of our 

novel pathway-based algorithm to detect tissue-specific gene regulatory 

networks. In the first study, we analyzed endothelial cells from three out of nine 

mouse organs. Each sample consisted of 28,815 probes that were mapped to 
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the 186 KEGG pathways. All of the KEGG pathways were evaluated in the 

analysis to simulate the differential expression change for all annotated biological 

processes. More specifically, the fold change in differential expression was 

drawn from a normal distribution with the mean set at 1.5, 2, 3 and the standard 

deviation at 0.5.  

In the second study with neuronal cell populations, all of the parameters 

were the same, with the only difference being that there were 22,690 probes 

representing the genome. The performance of the HeteroPath algorithm was 

evaluated by calculating the receiver operating characteristic (ROC) and area 

under the curve (AUC) values for each dataset using the R package pROC. 

In the endothelial cell heterogeneity study, the results showed that all 

three algorithms identified significantly enriched gene sets to distinguish the three 

endothelial cell populations. Furthermore, HeteroPath identified the least number 

of significant sets while PGSEA identified the largest number of significant sets 

(Figure 4A). Of the significant sets identified, only 20% of the significant sets 

identified were unique to the GSEA algorithm while 25 and 29% were unique to 

HeteroPath and PGSEA, respectively. PGSEA demonstrated a less stringent 

functional class scoring technique with significantly higher enrichment scores and 

more significant p-values (Fig. 2a). In the study of neuronal heterogeneity (Figure 

4B), HeteroPath obtained the highest enrichment score, most significant p-

values, and highest percentage of unique significant sets (55%). These results 

suggest that HeteroPath performs more optimally when the heterogeneity of 

pathways is not unidirectional but includes upregulated and downregulated 
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genes when compared to the virtual median cell type and may thus reflect a tight 

regulation of pathways. 

The AUC values ranging from 0.7856 to 0.8633 in the endothelial study 

(Figure 4C) and 0.7192 to 0.9549 in the neuronal study (Figure 4D) indicate that 

the power of the HeteroPath algorithm increased as the total proportion of genes 

increased and the fold change increased. Importantly, the HeteroPath algorithm 

increased in power significantly in the neuronal dataset because it contained a 

higher number of differentially expressed genes. 
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Figure 4: Comparison of pathways enriched using HeteroPath, GSEA, and 

PGSEA. A) The significantly enriched experimental sets and canonical pathways 

in mouse endothelial cells were inferred by HeteroPath, GSEA, and PGSEA. Top 

10 enrichment scores, p-values, numbers of significant gene sets, and 

percentage of unique gene sets are shown. B) The significantly enriched 

experimental sets and canonical pathways in mouse neurons were inferred by 

HeteroPath, GSEA, and PGSEA. Top 10 enrichment scores, p-values, numbers 

of significant gene sets, and percentage of unique gene sets are shown. C) ROC 

curves for the HeteroPath algorithm using the endothelial cell dataset. fc = fold-

change; AUC= area under curve. D) ROC curves for the HeteroPath algorithm 

using the neurons dataset fc = fold-change; AUC= area under curve. 
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2.3.4 Comparison of HeteroPath, GSEA, and PGSEA using Simulated data 

HeteroPath is a pathway-based algorithm which yields tissue-specific enrichment 

scores. Therefore, we evaluated the statistical power and type I error of 

HeteroPath, PGSEA and GSEA using simulated data. We simulated microarray 

data using a linear additive model with sample and probe effects for 5000 genes 

and three groups of samples (see Methods for details). Using simulated data for 

each scenario, we calculated the pathway enrichment scores using HeteroPath, 

PGSEA, and GSEA. For the differentially expressed gene set, we estimated the 

statistical power for each method as a function of the sample size. At the same 

time, for the non-differentially expressed gene set, we estimated the empirical 

type-I error rate. The results of this simulation (Figure 5 and Figure 6) illustrate 

that HeteroPath performs with comparable statistical power while maintaining 

similar control of the type-I error rate when compared to GSEA and PGSEA. 
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Figure 5: Comparison of statistical power and type-I error rate between 

HeteroPath, GSEA, and PGSEA for DE Gene Set size of 50 genes. The 

averaged results of 500 simulations are depicted as function of the sample size 

on the x-axis, for each of the methods. On the y-axis either the statistical power 

or the empirical type-I error rate is shown. GSE scores were calculated with each 

method with respect to two gene sets, one of them differentially expressed (DE) 

and the other one not. Statistical power and empirical type-I error rates were 

estimated by performing an ANOVA on the DE and non-DE gene sets, 

respectively, at a significance level of α = 0.05. 
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Figure 6: Comparison of statistical power and type-I error rate between 

HeteroPath, GSEA, and PGSEA for DE Gene Set size of 150 genes. The 

averaged results of 500 simulations are depicted as function of the sample size 

on the x-axis, for each of the methods. On the y-axis either the statistical power 

or the empirical type-I error rate is shown. GSE scores were calculated with each 

method with respect to two gene sets, one of them differentially expressed (DE) 

and the other one not. Statistical power and empirical type-I error rates were 

estimated by performing an ANOVA on the DE and non-DE gene sets, 

respectively, at a significance level of α = 0.05. 
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2.3.5 Case Study 1: Endothelial Heterogeneity 

In order to assess the degree of organ-specific endothelial heterogeneity we 

applied the three distinct functional class scoring algorithms to freshly isolated 

mouse endothelial cells from several organs. The results obtained from the 

HeteroPath algorithm display the most heterogeneous pathways in endothelial 

cells for three of the nine vascular beds studied. The heterogeneous pathways 

were ranked in the order of largest to smallest heterogeneity score where only 

top statistically significant pathways are shown (Figure 7A). The most prominent 

upregulated pathways identified using HeteroPath were the “Wnt signaling” and 

“adherens junction” pathways in brain endothelial cells; “focal adhesion”, “PPAR 

signaling”, “PI3K-Akt signaling” pathways in lung endothelial cells; and “cardiac 

muscle contraction” and “cytokine-cytokine receptor interactions” pathways in 

heart endothelial cells (Figure 7A). The HeteroPath algorithm assigned tissue 

specificity to the heterogeneous pathways when 60% of the heterogeneous 

elements of the pathway have unique expression in a specific organ (Figure 7A). 

GSEA analysis primarily identified molecular pathways involved in regulating 

global molecular function such as RNA and protein synthesis, processing, and 

degradation (Figure 7B) which were statistically significant but often represented 

minimal or moderate gene expression changes in terms of magnitude when 

compared to the virtual median endothelial cell. PGSEA analysis (Figure 7C) also 

identified signature pathways that were greater in magnitude than GSEA, but the 

pathways were distinct from those identified by the HeteroPath algorithm. For 

example, PGSEA revealed amino acid metabolism pathways as being 
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differentially expressed in brain endothelial cells. This finding likely reflects the 

importance of individual metabolic enzymes required in brain endothelial cells119. 

Of the 186 KEGG gene sets assessed, PGSEA detected 96 gene sets as 

statistically significant at p < 0.05 in this data set whereas GSEA detected 81 

gene set at this significance (Fig. 3d). The p-values obtained by PGSEA were 

generally smaller than p-values of corresponding gene sets obtained by GSEA. 

These methods specifically target pathways cumulatively regulated in a single 

direction, but do not consider that tissue-specific heterogeneity which may 

involve both heterogeneous upregulation and downregulation of elements within 

a single pathway unlike HeteroPath which ranks overall heterogeneity of a 

pathway by assessing the cumulative gene expression distance from that of the 

“virtual median endothelial cell” for each gene within a pathway. 

We performed comparative analysis to determine the number of significant 

sets which were exclusive to a particular algorithm (Figure 7D). For example, 

HeteroPath uncovered 14 unique pathways. Furthermore, with consistent 

thresholds applied to the different functional class scoring techniques, 

HeteroPath identified the least number of significant sets (56), while GSEA and 

PGSEA identified 81 and 96 significant sets, respectively (Figure 7D). 

Based on the design of the HeteroPath algorithm, each heterogeneous 

pathway reflected the simultaneous upregulation and downregulation of several 

member genes within a pathway in each tissue. To visualize the role of each 

significant heterogeneous element within one of the brain endothelium-specific 

pathways and one of the hippocampal neuronal pathways, we generated 
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respective gene expression heat maps for Wnt signaling and oxidative 

phosphorylation. 

Using the heterogeneous elements in the Wnt signaling pathway (Figure 

8A), we examined the role of putative transcription factors responsible for the 

brain endothelial cell specific gene expression signature by identifying 

transcription factors which have been experimentally proven as identified by the 

ENCODE database111 to bind motifs in the promoter regions of the 

heterogeneously expressed genes (Figure 8B, Figure 8C). For the Wnt signaling 

pathway, lymphoid enhancer-binding factor 1 (LEF1) and friend leukemia 

integration 1 (FLI1) were the top candidate transcription factors (Figure 8C). The 

Wnt signaling gene regulatory network (Figure 8B) contains upregulated genes in 

brain endothelial cells such as LEF1, Wnt family member 5A (WNT5A), 

transforming growth factor beta receptor 2 (TGFBR2), and Axin-related protein 

(AXIN2) as well as downregulated genes such as cyclin D1 (CCND1) and cyclin 

D2 (CCND2) (Figure 8A). 
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Figure 7: Endothelial cell heterogeneity. A) Heat map of heterogeneous 

pathways identified by HeteroPath from Brain, Lung, and Heart endothelial cells. 

The orange to yellow to white gradient represents increasing expression of the 

pathway with orange representing minimal expression while the white represents 

high expression of the pathway. Upregulated tissue-specific pathways are 

highlighted in colored boxes. B,C) The results of enriched PGSEA and GSEA 

pathways from Brain, Lung, and Heart endothelial cells. The orange to yellow to 

white gradient represents increasing expression of the pathway with orange 

representing minimal expression while the white represents high expression of 

the pathway. D) A Venn diagram displaying the number of overlapping and 

unique KEGG pathways identified by HeteroPath, PGSEA, and GSEA. 
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Figure 8: Endothelial gene regulatory networks generated from HeteroPath 

tissue-specific pathways. A) The heat map shows the normalized mRNA 

expression level in Brain, Lung, and Heart endothelial cells for the 

heterogeneous genes of the Wnt signaling pathway. B) Wnt signaling gene 

regulatory network including upregulated transcription factors which bind motifs 
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in the promoter region of brain-specific heterogeneous elements. C) Enriched 

Wnt Signaling Motifs from Brain endothelial cells. The table shows the five most 

enriched motifs in ChIP-seq peaks and the associated transcription factors. 

Significance values and significant p-values (p ≤ 0.05) are shown.   
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2.3.6 Case Study 2: Neuronal Heterogeneity 

To assess the relative fidelity of neuronal heterogeneity we applied HeteroPath, 

GSEA, and PGSEA to neurons isolated from 12 regions of the mouse 

forebrain120. To perform a comparison between the three algorithms, we focused 

on three distinct regions namely the hippocampus, the cingulate cortex, and the 

amygdala. The results showed large statistical differences between the three 

independent algorithms which emphasizes the fundamental molecular difference 

between neurons at their basal state in various regions of the brain. The 

HeteroPath algorithm identified the most distinct tissue-specific pathways among 

the three neuronal populations. For instance, hippocampal neurons exhibited an 

upregulation of “oxidative phosphorylation” and “GABAergic synapse”; 

“Hedgehog signaling” and “regulation of autophagy” were upregulated in 

cingulate cortex neurons; while “taste transduction” and “ribosome” were 

upregulated in amygdala neurons (Figure 9A). In the case of GSEA analysis, the 

subsets of neurons in distinct regions of the brain exhibited similar molecular 

signatures (Figure 9B). Across entire gene sets, there were no tissue-specific 

pathways. In fact, the algorithm was unable to cluster the neuronal populations 

into distinct groups. PGSEA, on the other hand, was able to differentiate the 

three different populations of neurons and identify pathways which contained 

several upregulated genes in a single tissue (Figure 9C). PGSEA primarily 

identified pathways in which there was a significant upregulation in one of the 

tissues relative to the downregulation in the other tissues. For instance, the entire 

fatty acid metabolism pathway was downregulated in the cingulate cortex and 
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amygdala neuron populations and hence upregulated in the hippocampal 

neurons (Figure 9C). 

In the analysis of neuronal cellular heterogeneity, the three independent 

algorithms showed that identifying tissue-specific pathways requires prioritizing 

the up- and downregulation of individual genes within a single pathway. PGSEA 

and GSEA detected similar numbers of significantly differentially regulated gene 

sets while HeteroPath detected the least number of differentially expressed 

pathways (Figure 9D), but these pathways segregated the neuronal populations 

most distinctively and thus elucidate pathways descriptive of each neuronal 

subpopulation. In addition, more than half of the significant sets identified by 

GSEA and PGSEA overlapped while HeteroPath detected 17 unique pathways 

which likely contributed to the distinctive clustering of the neuronal 

subpopulations (Figure 9D). 

By examining the tissue-specific neuronal pathways, we identified 

oxidative phosphorylation as a key upregulated pathway in the hippocampal 

neurons. Analysis of the heterogeneous elements in the oxidative 

phosphorylation pathway demonstrated that the high heterogeneity score was 

driven by the significant upregulation of cytochrome c oxidase family genes as 

well as mitochondrial ATP synthase genes in hippocampal neurons (Figure 10A). 

Using analogous methods to uncover regulatory transcription factors, we 

identified three central transcription factors which may drive the upregulation of 

oxidative phosphorylation in hippocampal neurons: cAMP response element 

binding protein (CREB), serum response factor (SRF), and Dimethyladenosine 
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transferase 1, mitochondrial (TFB1M) (Figure 10B, Figure 10C). From these 

results, we generated a hippocampal neuron specific gene regulatory network 

which included the regulatory transcription factors and the oxidative 

phosphorylation heterogeneous genes (Figure 10B). 
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Figure 9: Neuronal heterogeneity A) Heat map representation of heterogeneous 
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pathways identified by HeteroPath from hippocampal, cingulate cortex, and 

amygdala neurons. The orange to yellow to white gradient represents increasing 

expression of the pathway with orange representing minimal expression while the 

white represents high expression of the pathway. Upregulated tissue-specific 

pathways are highlighted in colored boxes. B,C) The results of enriched PGSEA 

and GSEA pathways from hippocampal, cingulate cortex, and amygdala 

neurons. The orange to yellow to white gradient represents increasing 

expression of the pathway with orange representing minimal expression while the 

white represents high expression of the pathway. D) A Venn diagram displaying 

the number of overlapping and unique KEGG pathways identified by HeteroPath, 

PGSEA, and GSEA. 
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Figure 10: Neuronal gene regulatory networks generated from HeteroPath 

tissue-specific pathways. A) The heat map shows the normalized mRNA 

expression level in hippocampal, cingulate cortex, and amygdala neurons for the 

heterogeneous genes of the oxidative phosphorylation pathway. B) Oxidative 

phosphorylation gene regulatory network including upregulated transcription 

factors which bind motifs in the promoter region of hippocampal-specific 

heterogeneous elements. C) Enriched Oxidative Phosphorylation Motifs from 

Hippocampal Neurons The table shows the five most enriched motifs in ChIP-seq 

peaks and the associated transcription factors. Significance values and 

significant p-values (p ≤ 0.05) are shown. 
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2.4 Conclusions 

Organ-specific endothelial cells and tissue-specific neuronal cells display 

remarkable cellular heterogeneity in both their genotypic and phenotypic 

characteristics41. Although it is well established that phenotypes of cell 

populations in different regions are distinct, the unique transcriptomic signatures 

that define cellular heterogeneity are less clear. Evaluating tissue-specific gene 

expression is critical for identifying tissue-specific mechanisms of disease 121. 

Here we applied HeteroPath to transcriptomic data of mouse endothelial cells 

from distinct tissues83 and neuronal cells from regions of the mouse forebrain to 

identify signature gene regulatory networks. 

Since endothelial cells are extraordinarily plastic and are known to change 

their phenotype in culture122, the data from these freshly isolated endothelial cell 

populations was particularly relevant for identifying tissue-specific endothelial 

pathways83. It is also known that regionalization in the brain is directed by 

molecular gradients during development123. The degree to which this 

regionalization causes neurons to express genes heterogeneously was 

previously unknown. In our work, we observed that the gene expression distance 

between hippocampal, cingulate cortex, and amygdala neurons isolated from 

mouse forebrain significantly surpassed the range of the expression distances 

between replicate experiments, thus indicating gene expression profile specificity 

for each of the studied brain regions. One of the major challenges in 

neurobiology has been to create signature gene regulatory networks which are 
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associated with cell type specific phenotypes such as morphology, firing patterns, 

connectivity and synaptic transmission120. 

To address this challenge in both endothelial cells and neurons, we 

developed the computational algorithm HeteroPath which performs a contextual 

analysis by assigning a higher heterogeneity score if multiple elements are 

heterogeneous within a single pathway. Furthermore, this computational model 

suggests experimentally testable predictions for understanding the general 

architecture of the gene regulatory networks that establish how basal cellular 

identity is maintained124. 

In this study, our objective was to design an algorithm, which first 

identified heterogeneously expressed pathways in cell populations of unique 

organs or tissues. The key principle in our analysis was that we determined a 

pathway heterogeneity score which allowed for individual elements of the 

pathway to be either upregulated or downregulated when compared to the 

median of all tissues. 

In order to show the application of identifying heterogeneous pathways, 

transcription factors and gene regulatory networks were generated for 

HeteroPath, GSEA, and PGSEA. When comparing the novel HeteroPath 

analysis with PGSEA107, which ranks genes according to their relative expression 

levels without prior identification of heterogeneous pathways, we found that 

HeteroPath uniquely identified signature gene regulatory networks for defining 

tissue specificity. Thus, the HeteroPath approach is well-suited for identifying 

tissue-specific druggable signaling targets or regulatory signaling pathways 
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because it particularly identifies tissue-specific regulated pathways. Furthermore, 

the HeteroPath analysis differs from GSEA because GSEA ranks pathways by 

cumulative perturbation of genes in a pathway but does not consider the extent 

of differential expression for each element within the pathway in establishing or 

maintaining tissue-specific heterogeneity. GSEA primarily identified minimally 

differentially expressed pathways as tissue specific in some cases and was 

unable to identify any tissue-specific pathways in other cases. Therefore, GSEA 

analysis of tissue specificity may be more appropriate for assessment of global 

cellular quiescence or activity as a function of subtle gene expression changes in 

distinct tissues. 

Traditional over-representation analysis (ORA) methods such as Fisher’s 

exact test treat genes in a gene set or a pathway simply as gene labels with 

equal importance, and then test the significance of the over-representation of the 

gene set among a list of interesting genes. In this type of analysis, the magnitude 

and direction of change are not evaluated and used to identify tissue-specific 

gene sets. To complement this approach, we designed HeteroPath to calculate a 

pathway score that factors in the magnitude and direction of change to identify 

characteristic pathways segregating distinct populations of cells. 

A fundamental question in cellular heterogeneity is defining the nature of 

interactions of cells from different organs or tissues with the underlying 

parenchymal cells. Recent studies have described an angiocrine mechanism by 

which the signals from surrounding cell types influence functions of tissue cells 

such as their growth and differentiation characteristics88. It is also likely that 
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specialized signals from a heterogeneous population of cells influence 

interactions underlying cells such as in the case of endothelial cells, vascular 

smooth muscle cells and pericytes125. Including gene upregulation and 

downregulation in the analysis along with the extent of differential expression to 

define tissue-specific gene expression generates comprehensive tissue-specific 

signatures as opposed to those obtained by existing gene set enrichment 

analyses based only on cumulative unidirectional gene regulation. 

Downregulation of specific genes and pathways is essential for the development 

of tissues such as during mesodermal differentiation when downregulation of 

Flk1 followed by a later induction of Flk1 expression is required for the formation 

of cardiac progenitors126. In addition, downregulated genes can act as “valves” 

which maintain low levels of baseline gene expression and enable upregulation 

as a response to stressors or stimuli. 

In the brain endothelium, we uncovered the Wnt signaling pathway as 

being significantly heterogeneous when compared to heart or lung endothelium. 

Analysis of regulatory transcription factors that could maintain the brain EC 

specific upregulation of the Wnt signaling pathways allowed us to identify the 

upregulation of Lef1, which is known to interact with β-catenin and regulate brain 

vascularization as well as differentiation of the BBB in vivo127. Additionally, the 

Wnt-associated beta-catenin/TCF7 transcriptional complex has been shown to 

regulate vascular remodeling through the regulation of smooth muscle cell 

proliferation and EC growth128-130. Similarly, the Wnt pathway member and 

transcription factor FLI1 was also upregulated in brain endothelial cells and is 
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thought to be among the earliest transcription factors involved in endothelial cell 

development131. 

In hippocampal neurons, we showed the oxidative phosphorylation 

biological process to be upregulated in a tissue-specific manner compared to 

cingulate cortex and amygdala neurons. We predicted that CREB, SRF, and 

TFB1M are crucial transcription factors driving the upregulation of the oxidative 

phosphorylation process in a tissue-specific manner. In neurons, CREB is known 

to be phosphorylated under conditions of hypoxia and oxidative stress which 

suggests that the CREB activation is a survival program during harmful stimuli 

and may play a role as a cellular form of defense132. In addition, the molecular 

mechanisms underlying SRF-dependent axon growth have been reported in mouse 

hippocampal neurons133. Furthermore, the mitochondrial transcription factor TFB1M has 

been implicated in cellular systems in which its upregulation induces mitochondrial 

biogenesis134. 
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CHAPTER 3 

ENDOTHELIAL TRANSLATOME HETEROGENEITY ACROSS 

DISTINCT VASCULAR BEDS DURING HOMEOSTASIS 

 
Previously published as:  

Jambusaria, A. et al. (2020). "Endothelial heterogeneity across distinct 
vascular beds during homeostasis and inflammation." eLife 9. e51413 
 
3.1 Introduction 

Endothelial cells (ECs) line blood vessels in all tissues and organs, where they 

form a barrier which tightly regulates the trafficking of oxygen, metabolites, small 

molecules and immune cells into the respective tissue75. Previous studies have 

suggested that the morphology of the microvascular endothelium and the 

expression of selected genes can vary when comparing the vasculature of 

multiple tissues, thus allowing ECs to take on tissue-specific EC functions 

82,84,135. Environmental signals from the tissue microenvironment including 

mechanical forces, metabolism, cell-matrix, cell-cell interactions, organotypic 

growth factors likely play an important role in regulating this endothelial 

heterogeneity135. 

Identifying differences in the expression levels of selected genes in 

endothelial cells from different tissues or organs provides some insights into the 

molecular underpinnings of endothelial heterogeneity, however unbiased gene 

expression profiling is likely to yield a more comprehensive evaluation of the 

genes and regulatory pathways underlying endothelial heterogeneity. Microarray 

profiling has been used to identify paracrine factors and signaling pathways that 

characterize endothelial cells in different organs83,136. Single-cell transcriptomic 
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analysis of endothelial cells has provided a molecular atlas of the brain and lung 

endothelial subpopulations at a single cell level137. While single cell RNA-

sequencing is ideally suited for identifying subpopulations within a single vascular 

bed, current single cell technologies are limited in their ability to detect the 

expression of individual genes in a given cell138-142. The endothelial signatures 

defined using these transcriptomic approaches are potentially influenced by 

disassociation and isolation of endothelial cells, a process affecting cellular 

mRNA levels when cells are removed from their native niche120,143,144. 

Furthermore, conventional global mRNA and single cell mRNA transcriptomic 

profiling does not discriminate between the total mRNA pool and those mRNAs 

preferentially translated due to translational regulation145,146. 

In this work, to understand the variegated nature of the endothelium, we 

used the RiboTag transgenic mouse model, in which LoxP mice express an HA-

tag on the ribosomal Rpl22 protein147. These mice enable direct isolation of 

tissue-specific mRNAs undergoing translation without cell disassociation147. 

Using an endothelial-specific RiboTag model, we show that organ-specific ECs 

have distinct translatome patterns of gene clusters during homeostasis. We 

found that ECs express tissue-specific genes involved in vascular barrier 

function, metabolism, and substrate-specific transport. In addition, we found that 

ECs expressed genes thought to be primarily expressed in the surrounding 

tissue parenchyma, suggesting a previously unrecognized organ-specific 

endothelial plasticity and adaptation. To allow other researchers to explore the 

organ-specific EC translatome heterogeneity, we have generated a searchable 
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database (http://www.rehmanlab.org/ribo), in which users can visualize gene 

expression levels of individual genes.  

3.1.1 Problem Definition 

Blood vessels are lined by endothelial cells engaged in distinct organ-specific 

functions, but little is known about their characteristic gene expression profiles. In 

this study, we performed RNA-Sequencing of the brain, lung, and heart 

endothelial translatome and identified specific pathways, transporters and cell-

surface markers expressed in the endothelium of each organ. We found that 

endothelial cells express genes typically found in the surrounding tissues such as 

synaptic vesicle genes in the brain endothelium and cardiac contractile genes in 

the heart endothelium. Complementary analysis of endothelial single cell RNA-

Seq data identified the molecular signatures shared across the endothelial 

translatome and single cell transcriptomes. Our study defines endothelial 

heterogeneity and plasticity and provides a molecular framework to understand 

organ-specific vascular disease mechanisms and therapeutic targeting of 

individual vascular beds. 

3.2 Methods 

3.2.1 Experimental Animals 

RiboTag (Rpl22HA/+) mice were purchased from Jackson Labs. Endothelial-

specific VE-cadherin-Cre mice were provided by Dr. Ralf Adams. We crossed the 

RiboTag mice (Rpl22HA/+)147 with the endothelial-specific VE-cadherin-Cre 

mice148,149 to generate RiboTagEC (Cdh5CreERT2/+; Rpl22HA/+) mice. Following 

tamoxifen-induced recombination at week 4, HA-tagged Rpl22 was specifically 
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expressed in endothelial cells. To investigate the mechanisms of organ-specific 

EC injury, repair, and regeneration we performed RNA-Seq analysis of gene 

expression in ECs isolated at 6 hr, 24 hr, 48 hr, 72 hr, and 1 week post-LPS 

challenge (10 mg/kg LPS i.p., Sigma-Aldrich Cat#: L2630) with PBS-injected 

mice serving as controls. 

The C57BL/6J mice were purchased from the Jackson Laboratory. All 

animal experiments were conducted in accordance with NIH guidelines for the 

Care and Use of Laboratory Animals and were approved by the IACUC of the 

University of Illinois (IACUC Protocol #19–014, IACUC Protocol #13–175 and 

IACUC Protocol #16–064). 

3.2.2 Isolation of Mouse Brain, Lung, and Heart 

After surgically opening the mouse chest, the brain, lung and heart were 

harvested after a one-time perfusion of 20 mL PBS through the left and right 

ventricular chamber. 

3.2.3 Ribosome Immunoprecipitation (IP) 

The tissue samples were extracted from RiboTagEC mice, flash-frozen in liquid 

nitrogen and then stored at −80°C. The samples were then homogenized on ice 

in ice-cold homogenization buffer (50 mM Tris, pH7.4, 100 mM KCl, 12 mM 

MgCl2, 1% NP-40, 1 mM DTT, 1:100 protease inhibitor (Sigma), 200 units/mL 

RNasin (Promega) 1 mg/mL heparin and 0.1 mg/mL cycloheximide (Sigma) in 

RNase free DDW) 10% w/v with a Dounce homogenizer (Sigma) until the 

suspension was homogeneous. To remove cell debris, 1 mL of the homogenate 

was transferred to an Eppendorf tube and was centrifuged at 10,000xg and 4°C 
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for 15 min. Supernatants were subsequently transferred to a fresh Eppendorf 

tube on ice, then 100 μL was removed for ‘input’ analysis and 3 μL (=3 µg) of 

anti-HA antibody (ab9110, Abcam) or 3 μL (=1 µg) of mouse monoclonal IgG1 

antibody (Sigma, Cat# M5284) or 6 μL anti-RPL22 (Invitrogen Cat# PA5-68320) 

was added to the supernatant, followed by 1 hr of incubation with slow rotation in 

a cold room at 4°C. Meanwhile, Pierce Protein A/G Magnetic Beads (Thermo 

Fisher Scientific), 100 μL per sample, were equilibrated to homogenization buffer 

by washing three times. At the end of 1 hr of incubation with antibody, beads 

were added to each sample, followed by incubation 1 hr in cold room at 4°C. 

After that, samples were washed three times with high-salt buffer (50 mM Tris, 

300 mM KCl, 12 mM MgCl2, 1% NP-40, 1 mM DTT, 1:200 protease inhibitor, 100 

units/mL RNasin and 0.1 mg/mL cycloheximide in RNase free DDW), 5 min per 

wash in a cold room on a rotator. At the end of the washes, beads were 

magnetized, and excess buffer was removed, 350 µL Lysis Buffer was added to 

the beads and RNA was extracted with RNeasy plus Mini kit (Qiagen). RNA was 

eluted in 30 μL H2O and taken for RNA-Sequencing. 

3.2.4 RNA-Sequencing 

RNA quality and quantity were assessed using an Agilent Bio-analyzer. RNA-Seq 

libraries were prepared using Illumina mRNA TruSeq kits as protocolled by 

Illumina. Library quality and quantity were checked using an Agilent Bio-analyzer 

and the pool of libraries was sequenced using an Illumina HiSeq4000 and 

Illumina reagents. 
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3.2.5 RNA-Sequencing Data Processing and Batch Correction 

The sequenced reads from all samples were aligned to the mouse reference 

genome (mm10) using STAR v. 2.4.2150. The aligned reads were then processed 

to calculate relative mRNA expression levels by using HTSeq-count v. 0.6.1151. 

Gene symbols were mapped to the ENSEMBL features using the biomaRt 

package v. 2.26.1152. Preliminary unsupervised analysis of normalized and 

processed profiles by principal component analysis (PCA) revealed separation 

into three major clusters. These clusters largely corresponded to the distribution 

of samples by sequencing batch. Consistent with the PCA plots, the distribution 

of samples by sequencing batch differed significantly but not by tissue type. To 

better harmonize profiles prior to analyses reported here, we normalized 

expression data of all samples using ComBat153. This correction ameliorated the 

separation by sequencing batch without substantially affecting distributions tissue 

type. 

3.2.6 Baseline Tissue-specific Gene Signatures 

We calculated the differential expression level of genes using a one versus 

others approach in order to identify signature genes which were upregulated for 

each tissue at baseline. For instance, to identify the genes significantly 

upregulated in brain ECs at baseline, we compared the 0 hr brain EC samples to 

0 hr lung ECs and 0 hr heart ECs. We performed these analyses for all three 

tissues to identify baseline organ-specific EC signatures. We utilized the limma R 

package and applied the standard limma pipeline154 to RNA-Seq data after voom 

transformation155. For each gene, the log fold-change (logFC) in expression level 
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is derived from the limma analysis. Genes with FDR < 0.05 were identified as 

being differentially expressed. All upregulated genes for each tissue were plotted 

using the heatmap.2 function from the gplots v.3.0.1.1 R package. The top 10 

significantly differentially expressed genes by logFC were listed. 

3.2.7 Baseline Tissue-specific Pathway Analysis 

To define the biological function associated with the molecular signature of the 

tissue-specific ECs, we specifically performed gene set enrichment analysis 

(GSEA)97 on the genes which were significantly upregulated (logFC >1) in the 

tissue of interest. GSEA was performed on significantly upregulated genes 

ranked by their p-value using the clusterProfiler package156 in R with gene 

ontology (GO) gene sets downloaded from the Molecular Signatures Database 

(MSigDB)157. The top 20 most enriched GO terms were plotted. 

3.2.8 Baseline Cell Surface Markers 

Tissue-specific cell surface markers were identified by intersecting tissue-specific 

differentially expressed genes with predicted cell surface markers, as reported in 

the Cell Surface Protein Atlas (www.proteinatlas.org)158. The top 10 significantly 

differentially expressed cell surface proteins by logFC were plotted. 

3.2.9   Isolation of Brain ECs 

The forebrains of C57BL/6J mice were micro dissected and minced in 

collagenase/dispase (Roche, Cat#: 11097113001) and DNAse (Worthington 

Biochemical Cat#: LK003170) and incubated for 1 hr at 37°C. Myelin Removal 

Beads (Miltenyl Biotec, Cat#: 130-096-433) and LS columns (Miltenyl Biotec, 

Cat#: 130-042-401) were used. The resulting pellet after myelin removal 
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contained microglia, astrocytes and endothelial cells. The endothelial cells were 

further enriched by using CD31 microbeads (Miltenyl Biotec, Cat#: 130-097-418 

3.2.10   Isolation of Lung ECs 

The C57BL/6J mice mouse lungs were minced and digested with 3 mL 

collagenase A at 1 mg/mL in PBS (Roche, Cat#: 10103586001) at 37°C water 

bath for 1 hr. Mixtures were titrated with #18 needles and then pipetted through a 

40 μm disposable cell strainer. After centrifuging 500xg for 5 min and washing 

with 1x PBS, the isolated cells were treated with red blood cell lysis buffer 

(Biolegend, Cat#: 420301) for 5 min. After washing with 1x PBS twice, cells were 

incubated in suspension buffer (Ca2+ and Mg2+ free PBS, 0.5% BSA, 4.5 

mg/mL D-glucose, and 2 mM EDTA) with 5 µg anti-CD31 antibody (BD 

Pharmingen, Cat#: 553370) at 4°C for 60 min with gentle tilting and rotation. After 

washing, cells were then incubated in suspension buffer with pre-washed 

Dynabeads (20 µL beads in 1 mL buffer, Invitrogen Cat#: 11035) at 4°C for 60 

min with gentle tilting and rotation. After washing with 1x PBS three times using 

magnetic separation, lung ECs were dissociated from magnetic beads with 

trypsin. 

3.2.11   Isolation of Heart ECs 

Isolated C57BL/6J mice hearts were minced and digested with prewarmed 

Collagenase/Dispase mix (1 mg/mL) (Roche) at 37°C for 30 min. 75 µL DNAse I 

per 10 mL cell suspension (1 mg/mL) was added and the suspension was 

incubated at 37°C for 30 min. The digested tissue was filtered using 70 µm cell 

strainer followed by RBC lysis in RBC lysis buffer (Biolegend, Cat#: 420301) for 7 
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min at room temperature. The cell suspension was diluted with 10 mL of MACS 

buffer (Prepared in phosphate-buffered saline (PBS), pH 7.2, 0.5% bovine serum 

albumin (BSA), and 2 mM EDTA) by diluting MACS BSA Stock Solution (Cat#: 

130-091-376) 1:20 with autoMACS Rinsing Solution (Cat#: 130-091-222)) and 

cells were passed through 40 µm cell strainer followed by centrifugation at 500xg 

for 5 min to pellet the cardiomyocytes. The supernatant containing endothelial 

cells was centrifuged at 800xg for 5 min to pellet down the ECs. The endothelial 

cell enriched pellet was resuspended in 500 µL of MACS buffer and the isolated 

cells were counted. Endothelial cells were further purified by using CD31 

microbeads (Miltenyl Biotec, Cat#: 130-097-418) and Miltenyl Biotec MS columns 

(Miltenyl Biotec, Cat#: 130-042-201) through affinity chromatography according 

to the manufacturer’s protocol. 

3.2.12   Preparation of Cytospin Slides from Brain, Lung, and Heart 

Endothelial Cells 

The Thermo Shandon Cytospin three was used to generate Cytospin slides. 

Briefly, the Cytoslide with filter card were inserted into a Cytoclip. The Cytoclip 

was fastened and placed in a recess of the Cytospin rotor after sliding a 

Cytofunnel into it. The required volume of the cell suspension was pipetted into 

the Cytofunnel after cell counting and calculation. The Cytospin was centrifuged 

for 500 rpm for 5 min. The slide was fixed with 4% paraformaldehyde for 10 min 

and stored in 1x PBS at 4°C. 
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3.2.13   Immunofluorescence and Confocal Microscopy of Brain, Lung, and 

Heart Endothelial Cells 

The slides were permeabilized and blocked with 10% donkey serum, 2% BSA, 

0.05% tween in PBS for 1 hr at room temperature. For lung cells, the slides were 

incubated with primary antibodies anti-CD31 (BD Pharmingen, Cat#: 550274, 

1:25) and anti-RAGE (Abcam, Cat#: Ab3611, 1:3200) at 4°C overnight. The brain 

ECs were incubated with primary antibodies anti-CD31 (BD Pharmingen, Cat#: 

550274, 1:25) and anti-PTN (Santa Cruz Biotechnology, Cat#: sc-74443, 1:3200) 

at 4°C overnight. For the heart samples, primary antibodies anti-AQP7 (Novus 

Biologicals, Cat#: NBP1-30862, 1:3200) and anti-CD31 (BD Pharmingen, Cat#: 

550274, 1:25) were used and incubated at 4°C overnight. The next day, slides 

were washed and incubated with the fluorescence-conjugated secondary 

antibody (AF488 donkey anti-rat 1:300, Invitrogen Cat#: A-21208; AF594 donkey 

anti-rabbit 1:300, Invitrogen Cat#: A-21207; AF594 goat anti-mouse 1:300, 

Invitrogen Cat#: A11032), followed by washing with 1x PBS. Cells were stained 

with DAPI and mounted on ProLong Gold mounting medium (Invitrogen, Cat#: 

P36934). Images were taken with a confocal microscope LSM880 (Zeiss) and 

analyzed by Zen software (Zeiss). 

3.2.14   Assessing baseline endothelial translatome heterogeneity  

Tissue-specific baseline gene expression heatmaps were generated for gene 

sets related to endothelial function including classical endothelial markers, 

glycolysis, fatty acid metabolism, and solute transport. The individual genes listed 
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in the heatmaps contain the tissue-specific differentially expressed genes which 

overlapped with each of the respective gene sets. 

The classical endothelial markers gene set contains 152 mouse 

endothelial cell markers downloaded from PanglaoDB159. The mouse glycolysis 

and fatty acid metabolism gene sets containing 67 and 52 genes respectively 

were downloaded from the Rat Genome Database (RGD) https://rgd.mcw.edu/ 

160. For the transport gene set, the solute carrier family including 423 membrane 

transport proteins located in the cell membrane were downloaded from the 

HUGO Gene Nomenclature Committee database 

(https://www.genenames.org/)161. 

3.2.15   Computational Assessment of mRNA Purity 

Due to the endothelial cells being surrounded by other tissue-resident cell types, 

it is likely that the mRNA isolated from endothelial-specific RiboTagEC samples 

could contain non-endothelial mRNA. For this reason, we assessed the mRNA 

purity of RiboTag endothelial samples isolated from whole tissue by comparing 

the gene expression levels of the endothelial-specific RiboTag samples to the 

gene expression levels of mRNA from whole tissue. We compared endothelial-

specific RiboTagEC mRNA expression levels from brain, lung, and heart tissue to 

whole brain, lung, and heart mRNA expression levels. 

We first acquired RNA-Seq data for whole brain, whole lung, and whole 

heart tissue from Array Express (Athar et al., 2019). The three whole brain 

samples and three whole lung samples were downloaded from accession 

number E-MTAB-6081, while the three whole heart samples were downloaded 
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from accession number E-MTAB-6798. Raw mRNA counts were processed, and 

batch corrected in a cohort including the 0 hr RiboTag brain, lung, and heart 

endothelial mRNA counts. The preprocessing and batch correction were 

performed in the same manner as described above. 

To identify whether mRNA of tissue-resident cells was isolated during the 

RiboTagEC mRNA isolation procedure, we calculated a Kendall’s Tau rank 

coefficient between the most abundant genes in the RiboTagEC mRNA and whole 

tissue mRNA. The Kendall’s Tau rank coefficient, ranging between −1 and 1, 

allowed us to test whether there was contamination of mRNA from the whole 

tissue in the RiboTagEC samples. As the coefficient approaches −1, the rank of 

most abundant genes differs in both sets of samples; while, as the coefficient 

approaches 1, the rank of most abundant genes becomes identical. Using this 

test, we were able to infer that if the rank of the most abundant genes in the 

RiboTagEC sample and the whole tissue is identical, there is contamination of 

non-endothelial mRNA in the RiboTagEC mRNA samples. All samples were 

compared to each other and heatmaps with Kendall’s Tau rank coefficients were 

generated to visualize the results. 

3.2.16   Single-cell Endothelial Transcriptome Heterogeneity 

To specifically analyze ECs at the single-cell level, we downloaded Tabula Muris 

data from https://github.com/czbiohub/tabula-muris and Betsholtz Lab data from 

NCBI Gene Expression Omnibus (GSE99235, GSE98816). We filtered out non-

ECs from the Tabula Muris brain, lung, and heart data based on Cd31 and Cdh5 

expression. We selected ECs from the Betsholtz Lab brain and lung data based 
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on Cd31 and Cldn5 expression. All genes that were not detected in at least 10% 

of all single cells were discarded. For all further analyses we used 2585 cells 

expressing 6802 genes from the Tabula Muris dataset and 873 cells expressing 

8116 genes from the Betsholtz Lab dataset. Data were log transformed for all 

downstream analyses.  

We analyzed the data utilizing the Seurat R package 

(https://github.com/satijalab/seurat; http://satijalab.org/seurat/)162. PCA analysis 

of organ-specific ECs was performed in each dataset separately using the 

‘RunPCA’ function of the Seurat package162. Differential expression analysis for 

organ-specific endothelial cells was performed using a Wilcoxon rank-sum test 

as implemented in the ‘FindAllMarkers’ function of the Seurat package. GSEA 

was performed on significantly upregulated genes ranked by their p-value using 

the clusterProfiler package156 in R with gene ontology (GO) gene sets 

downloaded from the Molecular Signatures Database (MSigDB)157. 

3.2.17   Comparison of Organ-specific Endothelial Translatome and 

Endothelial Single-cell Transcriptomic Data 

Cross-platform comparisons between bulk RNA-Seq data and scRNA-Seq data 

required computing the fold change of each gene relative to a housekeeping 

gene. We calculated the relative fold change by dividing the expression value for 

every gene in every sample by an invariable housekeeping gene. We chose 

Sap30l as a housekeeping gene because it was invariable in all three datasets. 

By generating the fold change matrix in all three datasets, we were then able to 

use these values to compare relative abundances for genes of interest. We next 
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calculated Spearman’s correlation coefficients for all genes shared between the 

organ-specific endothelial translatome, Tabula Muris scRNA-Seq, and Betsholtz 

scRNA-Seq datasets, and then separately for all parenchymal (non-endothelial) 

genes. 

3.2.18   Online Endothelial Translatome Expression Database  

The endothelial translatome expression database (www.rehmanlan.org/ribo) is 

hosted on Amazon S3. The website was constructed using Angular 8.0, 

JavaScript, HTML5, and CSS. Bar plots and heatmaps were generated for genes 

of interest using Tableau Public. The visualizations were integrated into the web 

application using the Tableau JavaScript API. RiboTag log2 normalized baseline 

translatome expression data were uploaded to Tableau. The averages were 

computed using Tableau calculated fields. Tableau dashboards and workbooks 

were created to generate bar plots and heatmaps for online publishing. 

3.3 Experiments & Results 

3.3.1 Optimized Platform to Characterize Organotypic Endothelial 

Heterogeneity 

To precisely investigate the in-situ organ-specific EC molecular signature in 

brain, lung, and heart tissue we crossed the RiboTag mice (Rpl22HA/+)147 with the 

endothelial-specific VE-cadherin-Cre mice148,149 to generate 

RiboTagEC (Cdh5CreERT2/+; Rpl22HA/+) mice. At 4 weeks post tamoxifen 

administration, ribosomes in the endothelial cells of all tissues expressed the HA 

tag, thus allowing for the specific isolation of mRNA undergoing ribosomal 

translation from ECs in the brain, heart and lung during homeostatic conditions. 
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We also isolated brain, lung, and heart endothelial mRNA at several time points 

following systemic inflammatory injury, induced using a sublethal dose of the 

bacterial endotoxin lipopolysaccharide (LPS), ranging from the acute injury phase 

at 6 hr post-LPS to the recovery phase at 1 week post-LPS (Figure 11). Log fold 

change (logFC) values were calculated between endothelial mRNA 

(immunoprecipitated by an anti-HA antibody) versus whole tissue mRNA 

(immunoprecipitated with control antibody, anti-RPL22) using quantitative PCR 

(qPCR). The analysis of the qPCR data confirmed enrichment of endothelial-

specific RNA similar to what has been reported in other studies using the 

RiboTag model148 and also demonstrated minimal expression of RNA from other 

tissue-resident cell types (Figure 11B–11F). 

After confirming the enrichment of endothelial RNA using qPCR, we 

performed global transcriptional profiling with RNA-Seq on the RiboTagEC brain, 

lung, and heart samples. Principal component analysis (PCA) of the RNA-Seq 

data for endothelial mRNA from brain, lung, and heart tissue from all time points 

showed a clear separation between the replicate brain, lung, and heart 

translatomes, indicating that ECs from each tissue demonstrated a distinct 

transcriptional identity at baseline that is maintained even in the setting of 

profound systemic inflammatory injury (Figure 12A). In order to identify the genes 

responsible for these distinct tissue-specific EC profiles, we performed a 

differential expression analysis on the RNA-Seq data. The differential expression 

analysis was concordant with the PCA and identified 1692 genes which were 

differentially expressed in brain ECs (versus ECs from the other two tissues), 

https://elifesciences.org/articles/51413/figures#fig1s1
https://elifesciences.org/articles/51413#fig1
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1052 genes which were differentially expressed in lung ECs, and 570 genes 

which were differentially expressed in heart ECs (Figure 12B).  

We next analyzed the baseline heterogeneity of ECs obtained from brain, 

lung and heart by assessing the gene expression levels of endothelial genes 

using established databases. We specifically focused our analysis on a pan-

endothelial gene set159, glycolysis and fatty acid metabolism gene sets160, and a 

solute transport gene set161. Hierarchical clustering of the RNA-Seq profiles on 

merely 152 pan-endothelial genes from PanglaoDB159 separated all replicate 

baseline samples, indicating that classical endothelial markers are sufficient to 

differentiate ECs from these three organs (Figure 1C). For example, genes 

upregulated in brain ECs included T-box transcription factor (Tbx1) and the 

glucose transporter 1 (Slc2a1), genes upregulated in the lung endothelium 

included claudin 5 (Cldn5) and the Hes related family BHLH transcription factor 

with YRPW Motif 1 (Hey1), whereas heart ECs demonstrated upregulation of 

vascular endothelial growth factor receptor 2 (Kdr) and the endothelial cell 

surface expressed chemotaxis and apoptosis regulator (Ecsr). 

We next focused on the tissue-specific upregulation of metabolic genes. 

As seen in the glycolysis gene heatmap, we found that most tissue-specific EC 

genes involved in glycolysis were specifically upregulated in the brain 

endothelium (Figure 12D), but there were selected glycolytic genes specifically 

upregulated in other tissues such as 6-phosphofructo-2-kinase/fructose-2,6-

biphosphatase 3 (Pfkfb3) in lung ECs and alcohol dehydrogenase 1 (Adh1) in 

heart ECs. In contrast, fatty acid metabolism genes were most upregulated in 

https://elifesciences.org/articles/51413#fig1
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heart ECs consistent with the heavy reliance of the heart on fatty acids to 

generate ATP (Figure 12E). Heart ECs exhibited upregulation of 17 fatty acid 

metabolism genes whereas brain ECs and lung ECs only demonstrated 

upregulation of 9 and 4 metabolism genes, respectively. 

Regarding solute transport genes, the brain endothelium showed the most 

specific upregulation of genes when compared to ECs of the other tissues, both 

in terms of number of transporters as well as the magnitude of upregulation. We 

found that 141 transporter genes were upregulated in brain ECs, whereas 43 and 

44 genes were upregulated in lung and heart ECs, respectively. As seen in the 

heatmap (Figure 12F), the expression levels of brain EC-specific transporters 

were far greater than those of lung and heart ECs, indicative of the central role of 

solute transport regulation in brain EC function. 
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Figure 11: RiboTag Isolation of endothelial mRNA. A) Schematic of RiboTag 

method for isolating the endothelial-specific translatome at various time points 

during LPS induced inflammatory injury, repair, and regeneration. B–D) Mice 

brain, lung, and heart RiboTagEC samples were homogenized with ice-cold 

homogenization buffer. mRNA from total lysate input and IP with HA antibody 

were used for RT-qPCR to compare (A) CD31, (B) Cdh5 (VE-cadherin). D–F) 

RiboTagEC mice brain, lung, and heart samples were homogenized with ice-cold 

homogenization buffer. Total ribosome associated mRNA (IP with anti-RPL22) 

and endothelial specific ribosome associated mRNA (IP with anti-HA) were used 

for RT-qPCR to compare (D) Cd31 and (E) Cdh5 (VE-cadherin) (F) Epcam 

mRNA levels. 
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Figure 12: Endothelial heterogeneity exists in classic endothelial functions. A) 

Principal component analysis of RNA-Seq data generated from brain, lung, and 

heart endothelial samples isolated from RiboTagEC mice displays the organ-

specific in-situ endothelial clusters. B) Differential expression analysis of 18,910 

genes which are expressed in brain, lung, and heart endothelium at baseline 

identified tissue-specific differentially expressed genes. (FDR < 5%) C–F) 

Hierarchical clustering of classical endothelial processes including (C) endothelial 

genes, D–E) metabolism, and (F) transporters results in distinct clustering of 

brain, lung, and heart endothelial baseline samples. 
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3.3.2 RiboTagEC Endothelial mRNA Purity 

After confirming the efficiency of the RiboTag immunoprecipitation protocol using 

qPCR, we next sought to perform an unbiased and systematic analysis of the 

utility of the RiboTagEC model as a tool to study the organ-specific endothelial 

translatome heterogeneity. We therefore compared organ-specific RiboTagEC 

RNA-Seq baseline profiles to healthy whole-tissue RNA-Seq profiles obtained 

from publicly available whole tissue RNA-Seq dataset163. By applying 

normalization and batch correction techniques, we were able to directly compare 

the mRNA expression levels of RiboTagEC endothelial samples with those of 

whole tissue samples. 

To characterize the whole brain, lung, and heart samples, we identified the 

genes that were significantly upregulated in each of the tissues and generated a 

heatmap displaying the 1358 differentially upregulated whole brain-specific 

genes relative to whole lung and whole heart (Figure 13A). By performing a gene 

set enrichment analysis (GSEA) to ascertain the pathways associated with these 

genes, we confirmed the validity of the samples because the top pathways 

included ‘neurotransmitter transport’, ‘synapse organization’, ‘synaptic vesicle 

cycle’ (Figure 13B). The top 10 most abundant genes in the whole brain RNA-

Seq data included myelin basic protein (Mbp), proteolipid protein 1 (Plp1), 

calmodulin 1 (Calm1), synaptosome associate protein 25 (Snap25), kinesis 

family member 5A (Kif5a), ATPase Na+/K+ transporting subunit alpha 3 

(Atp1a3), sodium-dependent glutamate/aspartate transporter 2 (Slc1a2), 

https://elifesciences.org/articles/51413/figures#fig1s2
https://elifesciences.org/articles/51413/figures#fig1s2
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secreted protein acidic and cysteine rich (Sparcl1), carboxypeptidase e (Cpe), 

stearoyl-coA desaturase 2 (Scd2) (Figure 13C). 

Whole lung samples were characterized by 1071 differentially expressed 

genes (Figure 14A) on which we performed GSEA (Figure 14B). The top 10 most 

abundant genes in the whole lung were desmoyokin (Ahnak), microtubule-actin 

crosslinking factor 1 (Macf1), actin beta (Actb), surfactant protein c (Sftpc), 

spectrin beta, non-erythrocytic 1 (Sptbn1), hypoxia inducible factor two alpha 

(Hif2a), stearoyl-CoA desaturase (Scd1), filamin a (Flna), adhesion g protein-

coupled receptor f5 (Adgrf5), and ldl receptor related protein 1 (Lrp1) (Figure 

14C). 

The signature of the whole heart derived from differential gene expression 

analysis was composed of 1351 genes (Figure 15A). GSEA indicated a 

preponderance of metabolic and muscle contraction pathways (Figure 15B). The 

top 10 most abundant cardiac genes were myosin heavy chain 6 (Myh6), 

ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2 (Atp2a2), 

myoglobin (Mb), actin, alpha, cardiac muscle 1 (Actc1), phospholamban (Pln), 

myosin regulatory light chain 2 (Myl2), titin (Ttn), troponin t2, cardiac type 

(Tnnt2), tropomyosin 1 (Tpm1), and lipoprotein lipase (Lpl) (Figure 15C). 

After establishing and confirming the molecular signatures of the whole 

brain, whole lung, and whole heart tissue, we next calculated a Kendall’s Tau 

correlation coefficient to assess the rank correlation between the RiboTagEC 

samples and the whole tissue samples. We surmised that if the rank of the most 

abundant whole tissue genes was the same as the rank of these genes in the 

https://elifesciences.org/articles/51413/figures#fig1s2
https://elifesciences.org/articles/51413/figures#fig1s3
https://elifesciences.org/articles/51413/figures#fig1s3
https://elifesciences.org/articles/51413/figures#fig1s3
https://elifesciences.org/articles/51413/figures#fig1s3
https://elifesciences.org/articles/51413/figures#fig1s4
https://elifesciences.org/articles/51413/figures#fig1s4
https://elifesciences.org/articles/51413/figures#fig1s4
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RiboTagEC samples, then it would indicate possible contamination of the EC 

samples with whole tissue mRNA; however, if the abundance rank order of whole 

tissue genes was quite distinct from that in the RiboTagEC samples, then it would 

indicate tissue specific programming of ECs in situ (Figure 16A). We assessed 

the Kendall’s Tau rank correlation for all three tissues and plotted correlation 

heatmaps showing the results (Figure 16B–D). Our findings indicate that there 

was no significant correlation between the abundance rank of whole tissue genes 

and their rank order in the RiboTagEC samples. The rank correlation in the brain 

samples ranged from −0.29 to 0.38 (Figure 16B). Since the cellular composition 

of the lung is 40–50% endothelial, we expectantly saw a higher rank correlation 

between whole lung samples and lung RiboTagEC samples, ranging between 

0.02 and 0.6 (Figure 16C). In the heart, we found a range of rank correlations 

between −0.29 to 0.24 (Figure 16D). These results provide mathematical 

evidence for the robustness and purity of the RiboTagEC samples. 

  

https://elifesciences.org/articles/51413/figures#fig1s5
https://elifesciences.org/articles/51413/figures#fig1s5
https://elifesciences.org/articles/51413/figures#fig1s5
https://elifesciences.org/articles/51413/figures#fig1s5
https://elifesciences.org/articles/51413/figures#fig1s5
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Figure 13: Characterization of Whole Brain RNA-Seq data. A) Heat map 

representation of differentially upregulated genes identified by comparing whole 

brain RNA-Seq samples to whole lung and whole heart tissues at baseline. The 

blue to white to red gradient represents increasing expression of the pathway 

with blue representing minimal expression while the red represents high 

expression of the pathway. B) The GSEA results of enriched GO terms from 

whole brain samples at baseline. C) Top whole brain signature genes ranked in 

order of abundance. 
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Figure 14: Characterization of Whole Lung RNA-Seq data. A) Heat map 

representation of differentially upregulated genes identified by comparing whole 

lung RNA-Seq samples to whole brain and whole heart tissues at baseline. The 

blue to white to red gradient represents increasing expression of the pathway 

with blue representing minimal expression while the red represents high 

expression of the pathway. B) The GSEA results of enriched GO terms from 

whole lung samples at baseline. C) Top whole lung signature genes ranked in 

order of abundance.  
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Figure 15: Characterization of Whole Heart RNA-Seq data. A) Heat map 

representation of differentially upregulated genes identified by comparing whole 

heart RNA-Seq samples to whole brain and whole lung tissues at baseline. The 

blue to white to red gradient represents increasing expression of the pathway 

with blue representing minimal expression while the red represents high 

expression of the pathway. B) The GSEA results of enriched GO terms from 

whole heart samples at baseline. C) Top whole heart signature genes ranked in 

order of abundance. 
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Figure 16: Kendall’s Tau correlation supports endothelial mRNA isolation from 

RiboTagEC mice. A) Schematic of assessing endothelial purity in RiboTagEC using 

Kendall’s Tau correlation shows rearrangement in the rank of most abundant 

genes between whole tissue and endothelial samples supports purity of the 

endothelial samples. B–D) Kendall’s Tau non-parametric correlation plots for 

whole tissue and RiboTagEC RNA-Seq samples for (B) brain, (C) lung, and (D) 

heart tissue. 
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3.3.3 Brain-specific Endothelial Molecular Signature 

After confirming the robustness and purity of the RiboTagEC samples, we 

performed differential expression analysis to identify the significantly upregulated 

genes in the brain endothelial translatome (Figure 17, full list of genes available 

at: https://cdn.elifesciences.org/articles/51413/elife-51413-supp1-v2.xlsx). We 

used these upregulated genes as the input into GSEA to characterize the brain 

ECs (Figure 17B). Surprisingly, we found that genes involved in processes 

typically thought of being canonical neuronal functions such as synapse 

organization, neurotransmitter transport, axon development, and regulation of ion 

transmembrane transport were significantly enriched in brain ECs (Figure 17B). 

The top 10 most significantly upregulated genes in the brain ECs included: 

prostaglandin d synthase (Ptgds), ATPase, Na+/K+ transporting, alpha two 

polypeptide (Atp1a2), basigin (Bsg), apolipoprotein e (Apoe), glutamine synthase 

(Glul), apolipoprotein d (Apod), pleiotrophin (Ptn), insulin like growth factor 2 

(Igf2), osteonectin (Spock2), and glucose transporter 1 (Slc2a1) (Figure 17C). In 

order to identify brain EC-specific surface markers, which could be of great value 

for therapeutic targeting of brain ECs, we used the Cell Surface Protein Atlas 

database (Bausch-Fluck et al., 2015) and identified the top 10 surface markers 

for brain ECs (Figure 17D), which included the glutamate/aspartate transporter II 

(Slc1a2), thyroxine transporter (Slco1c1), glial fibrillary acidic protein (Gfap), 

ATPase Na+/K+ transporting subunit alpha 3 (Atp1a3), endothelin b receptor-like 

protein 2 (Gpr37l1), Delta/Notch like EGF repeat containing transmembrane 

(Dner), synaptic vesicle glycoprotein 2b (Sv2b), sodium voltage-gated channel 
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beta subunit 2 (Scn2b), glutamate ionotropic receptor NMDA type subunit 2a 

(Grin2a), and neurofascin (Nfasc). Individual boxplots for the log2 expression 

levels of each gene show that the expression levels of these cell surface markers 

are 6–8 log2 units higher in brain ECs than in the lung and heart endothelium. 

We freshly isolated individual ECs, performed a cytospin and stained for the 

neurotrophic factor PTN and found that it was expressed on individual brain ECs 

but at much lower levels in heart or lung ECs (Figure 17E).  
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Figure 17: Brain endothelial specific signature. A) Heat map representation of 

differentially upregulated genes identified by comparing brain ECs to lung and 

heart ECs at baseline. The blue to white to red gradient represents increasing 

expression of the pathway with blue representing minimal expression while the 

red represents high expression of the pathway. Individual gene expression 

values can be visualized at www.rehmanlab.org/ribo. B) The GSEA results of 

enriched GO terms from RiboTag brain ECs at baseline. C) Top RiboTag brain 

EC signature markers ranked in order of logFC. D) Top RiboTag brain EC cell 

surface markers identified using the Cell Surface Protein Atlas. E) Confocal 

analysis was performed after brain, lung, and heart ECs were processed on a 

cytospin to assess brain EC PTN (Pleotrophin) specificity. A scale bar of 20 µm is 

included on all images. 

  

http://www.rehmanlab.org/ribo
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3.3.4 Lung-specific Endothelial Molecular Signature 

We next analyzed the lung EC signature using differential expression analysis 

(Figure 18A, full list of genes available at 

https://cdn.elifesciences.org/articles/51413/elife-51413-supp2-v2.xlsx). We found 

that the lung endothelium exhibits significant upregulation of genes involved in 

biological processes related to immune function such as leukocyte cell-cell 

adhesion, T cell activation, leukocyte migration, and regulation of immune system 

processes (Figure 18B). The 10 most significantly upregulated genes in lung ECs 

included surfactant protein c (Sftpc), advanced glycosylation end-product specific 

receptor (Ager), norepinephrine transporter (Slc6a2), chitinase-like protein 3 

(Chil3), WAP four-disulfide cco domain 2 (Wfdc2), c-type lectin domain 

containing 7a (Clec7a), mucin 1 (Muc1), resistin like alpha (Retnla), lysozyme 

(Lyz1), homeobox a5 (Hoxa5) (Figure 18C). The top lung endothelial cell surface 

markers included norepinephrine transporter (Slc6a1), mucin 1 (Muc1), tumor 

necrosis factor c (Ltb), prostaglandin transporter (Slco2a1), epithelial membrane 

protein 2 (Emp2), ATPase sarcoplasmic/endoplasmic reticulum Ca2+ 

transporting 3 (Atp2a3), epithelial cell adhesion molecule (Epcam), leukocyte 

function-associated molecule one alpha chain (Itgal), interleukin three receptor 

subunit alpha (Il3ra), matriptase (St14) (Figure 18D). We validated our 

computational analysis by staining freshly isolated ECs for RAGE and found that 

RAGE was only expressed at significant levels in lung ECs but not heart or brain 

ECs (Figure 18E). 

  

https://elifesciences.org/articles/51413#fig3
https://elifesciences.org/articles/51413#fig3
https://elifesciences.org/articles/51413#fig3
https://elifesciences.org/articles/51413#fig3
https://elifesciences.org/articles/51413#fig3
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Figure 18: Lung endothelial specific signature. A) Heat map representation of 

differentially upregulated genes identified by comparing lung ECs to brain and 

heart ECs at baseline. The blue to white to red gradient represents increasing 

expression of the pathway with blue representing minimal expression while the 

red represents high expression of the pathway. Individual gene expression 

values can be visualized at www.rehmanlab.org/ribo B) The GSEA results of 

enriched GO terms from RiboTag lung ECs at baseline. C) Top RiboTag lung EC 

signature markers ranked in order of logFC. D) Top RiboTag lung EC cell surface 

markers identified using the Cell Surface Protein Atlas. E) Confocal analysis was 

performed after brain, lung, and heart ECs were processed on a cytospin to 

assess lung EC RAGE (Receptor for Advanced Glycation Endproducts) 

specificity. A scale bar of 20 µm is included on all images. 

  

http://www.rehmanlab.org/ribo
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3.3.5 Heart-specific Endothelial Molecular Signature 

We then studied the differentially expressed genes in the heart endothelium 

(Figure 19A, Full list of genes available at: 

https://cdn.elifesciences.org/articles/51413/elife-51413-supp3-v2.xlsx). GSEA 

identified pathways specifically upregulated in heart ECs, as compared to brain 

and lung ECs (Figure 19B). Strikingly, we found that the genes specifically 

upregulated in heart ECs were involved in processes such as cardiac muscle 

tissue development, myofibril assembly and cardiac contraction (Figure 19B). 

This suggested that the cardiac endothelium expresses genes canonically 

thought to be cardiomyocyte genes, analogous to the expression of canonical 

neuronal genes in the brain endothelium. The top expressing heart EC genes 

included myosin regulatory light chain 2 (Myl2), myosin regulatory light chain 3 

(Myl3), aquaporin 7 (Aqp7), ADP-ribosylhydrolase like 1 (Adprhl1), alpha 2-HS 

glycoprotein (Ahsg), sodium-coupled nucleoside transporter (Slc28a2), xin actin 

binding repeat containing 2 (Xirp2), myoglobin (Mb), Butyrophilin like 9 (Btnl9), 

creatine kinase, mitochondrial 2 (Ckmt2), leucine rich repeats and 

transmembrane domains 1 (Lrtm1), and fatty acid binding protein 4 (Fabp4) 

(Figure 19C).The top 10 heart EC surface marker genes included alpha 2-HS 

glycoprotein (Ahsg), sodium-coupled nucleoside transporter (Slc28a2), titin (Ttn), 

tumor necrosis factor receptor superfamily member 27 (Eda2r), platelet 

glycoprotein 4 (Cd36), laminin subunit alpha 4 (Lama4), fibulin 2 (Fbln2), 

ectonucleotide pyrophosphatase/phosphodiesterase 3 (Enpp3), t-cadherin 

(Cdh13), steroid sensitive gene 1 (Ccdc80) (Figure 19D). We tested the heart EC 

https://cdn.elifesciences.org/articles/51413/elife-51413-supp3-v2.xlsx
https://elifesciences.org/articles/51413#fig4
https://elifesciences.org/articles/51413#fig4
https://elifesciences.org/articles/51413#fig4
https://elifesciences.org/articles/51413#fig4
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specificity of AQP7 using confocal analysis on freshly isolated brain, lung, and 

heart ECs and found that AQP7 was robustly expressed in heart ECs but 

minimally expressed in brain and lung ECs (Figure 19E). 

  

https://elifesciences.org/articles/51413#fig4
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Figure 19: Heart endothelial specific signature. A) Heat map representation of 

differentially upregulated genes identified by comparing heart ECs to brain and 

lung ECs at baseline. The blue to white to red gradient represents increasing 

expression of the pathway with blue representing minimal expression while the 

red represents high expression of the pathway. Individual gene expression 

values can be visualized at www.rehmanlab.org/ribo. B) The GSEA results of 

enriched GO terms from RiboTag heart ECs at baseline. C) Top RiboTag heart 

EC signature markers ranked in order of logFC. D) Top RiboTag heart EC cell 

surface markers identified using the Cell Surface Protein Atlas. E) Confocal 

analysis was performed after brain, lung, and heart ECs were processed on a 

cytospin to assess heart EC AQP7 (Aquaporin 7) specificity. A scale bar of 20 

µm is included on all images. 

  

http://www.rehmanlab.org/ribo
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3.3.6 Single-cell Endothelial Heterogeneity 

In light of the surprising findings that endothelial cells express genes typically 

associated with surrounding parenchymal cells such as cardiomyocytes or 

neuronal cells, we next used single cell RNA-Seq analysis to assess whether the 

RiboTagEC endothelial signatures are also found in individual endothelial cells by 

analyzing endothelial single-cell data from the Tabula Muris compendium164 and 

the single cell RNA-Seq atlas of the brain and lung endothelium165. Using 

expression of the endothelial genes Cd31 and Cdh5 as markers of ECs, we 

analyzed double positive cells for both markers in Tabula Muris brain, lung, and 

heart tissues and performed PCA to assess the extent of endothelial 

heterogeneity (Figure 20A). The PCA plot partitioned the cells into groups 

defined by their tissue of origin, indicating a tissue-specific EC signature even at 

the single cell level. Similarly, we performed PCA on ECs in the Betsholtz dataset 

(which relied on Cd31 and Cldn5 as EC markers) and also found that ECs 

similarly clustered according to their tissue of origin (Figure 20B). 

We then used these two scRNA-Seq endothelial datasets for the three 

organs we had analyzed in our RiboTag experiments and intersected the 

differentially expressed genes for each organ-specific endothelial population. The 

intent of this was to ascertain which tissue-specific EC signature genes were 

present in the single cell datasets as well as our RiboTagEC dataset. We found 

that the shared brain EC signature across all three datasets (Tabula MurisEC, 

BetsholtzEC and RiboTagEC) for brain ECs was enriched for genes involved in ion 

transport, acid transport, synapse organization and neurotransmitter transport 

https://elifesciences.org/articles/51413#fig5
https://elifesciences.org/articles/51413#fig5
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(Figure 20C). This finding is consistent with the brain EC-specific enrichment of 

neuronal signaling pathways that had been identified by the RiboTagEC analysis 

(Figure 17). We also found that the genes specifically upregulated in the Tabula 

Muris and Betsholtz lung ECs were involved in T cell activation, TGFβ signaling, 

and antigen processing and presentation (Figure 20D), again consistent with the 

‘immune activation’ signature identified by the RiboTagEC analysis alone (Figure 

18). Similarly, the shared upregulated genes in Tabula Muris single cell heart 

ECs were involved in processes such as cardiac muscle contraction, myofibril 

assembly and proliferation (Figure 20E, Figure 19). 

We next quantified the intersection of brain, lung and heart endothelial 

marker genes across the Tabula Muris, brain and lung EC atlas, and RiboTag 

datasets. For the brain endothelium, 40 of the Tabula Muris top 50 brain EC 

specific genes were also brain EC specific genes in the RiboTag dataset. In the 

Betsholtz dataset, 27 of the top 50 brain EC specific genes were present in the 

RiboTag brain EC specific genes (Figure 20F). We found that 17 of the top lung 

endothelial specific genes in the Betsholtz data set were also found in the list of 

lung endothelial-specific genes in the RiboTag model (Figure 20G). Of the 24 top 

lung endothelial specific genes found in the Tabula Muris data set, the same 

genes were also found in the list of lung endothelial-specific genes in the 

RiboTag model (Figure 20G). 

  

https://elifesciences.org/articles/51413#fig5
https://elifesciences.org/articles/51413#fig2
https://elifesciences.org/articles/51413#fig5
https://elifesciences.org/articles/51413#fig3
https://elifesciences.org/articles/51413#fig3
https://elifesciences.org/articles/51413#fig5
https://elifesciences.org/articles/51413#fig4
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Figure 20: Single-cell endothelial heterogeneity. A) PCA of endothelial scRNA-

Seq data from the Tabula Muris collection of mouse tissues colored by tissue. B) 

PCA of endothelial scRNA-Seq data from the Betsholtz Lab of mouse tissues 

colored by tissue. The GSEA results of enriched GO terms from overlapping 

differentially expressed genes between RiboTag and Betsholtz or Tabula Muris 

for C) brain ECs, D) lung ECs, and E) heart ECs. F) Overlap of top 50 scRNA-

Seq brain EC marker genes with RiboTag brain EC marker genes. G) Overlap of 

top 50 scRNA-Seq lung EC marker genes with RiboTag lung EC marker genes. 
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3.3.7 Organ-specific Parenchymal Gene Signature Exists in Endothelial 

scRNA-Seq 

To address further that the parenchymal signatures (Brain endothelial 

parenchymal signature: https://cdn.elifesciences.org/articles/51413/elife-51413-

supp4-v2.xlsx, Lung endothelial parenchymal signature: 

https://cdn.elifesciences.org/articles/51413/elife-51413-supp4-v2.xlsx, Heart 

endothelial parenchymal signature: 

https://cdn.elifesciences.org/articles/51413/elife-51413-supp6-v2.xlsx) identified 

in the endothelial translatome were simply not driven by low abundance of 

transcripts, we performed a Spearman correlation analysis to compare organ-

matched RiboTag bulk RNA-Seq data with scRNA-Seq data generated by the 

Betsholtz and the Tabula Muris Compendium (Figure 21, Figure 22). In each 

dataset, we first determined the fold change for all genes using a housekeeping 

gene, Sap30l which we identified as being stably expressed across all datasets, 

and thus ideally suited to perform relative abundance comparisons (Brain 

endothelial shared signature: https://cdn.elifesciences.org/articles/51413/elife-

51413-supp7-v2.xlsx, Lung endothelial shared signature: 

https://cdn.elifesciences.org/articles/51413/elife-51413-supp8-v2.xlsx, Heart 

endothelial shared signature: https://cdn.elifesciences.org/articles/51413/elife-

51413-supp8-v2.xlsx). Using the fold change values, we calculated the 

correlation coefficients between the brain endothelial translatome and single cell 

brain ECs from the Betsholtz and Tabula Muris datasets. We found that the 

correlation between RiboTag and Betsholtz was 0.53 for all genes detected in the 

https://cdn.elifesciences.org/articles/51413/elife-51413-supp4-v2.xlsx
https://cdn.elifesciences.org/articles/51413/elife-51413-supp4-v2.xlsx
https://cdn.elifesciences.org/articles/51413/elife-51413-supp7-v2.xlsx
https://cdn.elifesciences.org/articles/51413/elife-51413-supp7-v2.xlsx
https://cdn.elifesciences.org/articles/51413/elife-51413-supp8-v2.xlsx
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brain endothelium (Figure 21A) while the correlation between RiboTag and 

Tabula Muris was 0.47 (Figure 22A). We then specifically tested whether the 

parenchymal signature genes in the brain endothelium were correlated with the 

Betsholtz and Tabula Muris individual brain ECs. The correlation of the 

parenchymal gene expression between RiboTag brain EC samples and Betsholtz 

brain ECs was 0.31 (Figure 21B) while with Tabula Muris brain ECs the 

correlation was 0.28 (Figure 22B). Importantly, the brain EC parenchymal genes 

including synaptosome associated protein 47 (Snap47) and synaptotagmin 11 

(Syt11) were expressed at similar or higher levels in the single cell brain ECs 

from the Betsholtz and Tabula Muris datasets than in the RiboTag brain EC 

samples (Figure 21C). We performed identical analysis for the lung and heart 

endothelium (Figure 21D–I, Figure 22), and found that similar correlation values 

ranging between 0.37 to 0.68. Of note, the heart endothelial gene expression 

was the most correlated organ across the distinct platforms (Figure 21 G–H). In 

the lung and heart endothelium, we also found that individual genes representing 

the parenchymal signature were expressed at similar or higher levels in the 

single cell samples (Figure 21F, Figure 21G–I), such as the cardiac contractile 

gene Tropomyosin (Tpm1), which was expressed at higher levels in individual 

heart ECs from the Tabula Muris dataset. 
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Figure 21: Spearman correlation scatter plots of average gene expression in 

RiboTag bulk RNA-Seq and Betsholtz scRNA-Seq were generated for A) all 

genes detected in brain ECs and B) parenchymal (non-endothelial) genes 

detected in brain ECs. C) Average expression level of representative brain EC 

parenchymal genes. Spearman correlation scatter plots of average gene 

expression in RiboTag bulk RNA-Seq and Betsholtz scRNA-Seq were generated 

for D) all genes detected in lung ECs and E) parenchymal (non-endothelial) 

genes detected in lung ECs F) Average expression level of representative lung 

EC parenchymal genes. Spearman correlation scatter plots of average gene 

expression in RiboTag bulk RNA-Seq and Tabula Muris scRNA-Seq were 

generated for (G) all genes detected in heart ECs and (H) parenchymal (non-

endothelial) genes detected in heart ECs (I) Average expression level of 

representative heart EC parenchymal genes. 
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Figure 22: Expression Correlation Analysis between endothelial gene expression 

generated by RiboTag, Betsholtz, and Tabula Muris Spearman correlation scatter 

plots of average gene expression in RiboTag bulk RNA-Seq, Betsholtz scRNA-

Seq (Smart-Seq2), and Tabula Muris scRNA-Seq (10x Genomics). A) All genes 

detected in brain ECs. B) Parenchymal (non-endothelial) genes detected in brain 

ECs. C) All genes detected in lung ECs. D) Parenchymal (non-endothelial) genes 

detected in lung ECs.  
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3.4 Conclusions 

The endothelium which lines the entire vasculature matures in a tissue-

dependent manner during embryonic development to control organ development, 

homeostasis, and tissue regeneration166. Under normal physiological conditions, 

the endothelium maintains a quiescent interface between the blood and tissue. 

During stimulation, the endothelium becomes actively responsible for controlling 

blood flow, vascular permeability, leukocyte infiltration, and tissue edema167. 

Understanding the organotypic endothelial heterogeneity that exists at baseline is 

essential for understanding endothelial plasticity and its implications in tissue-

specific function168-171. 

The RiboTag strategy was originally applied to expression profiling of 

neurons and Sertoli cells147. Cell type specificity of the approach depends on the 

accuracy of the Cre driver that is combined with the Rpl22HA allele. This aspect is 

highlighted in our study and we revealed the precision of the inducible system for 

achieving endothelial specificity. Our results demonstrate that the RiboTag 

approach provides a useful method to identify distinct molecular gene expression 

signatures of tissue-specific endothelium. Performing high-throughput gene 

expression analysis on the translatome using the RiboTag approach enabled us 

to establish tissue-specific molecular signatures underlying in situ endothelial 

heterogeneity. During homeostasis, we found that the endothelial translatome in 

each organ is uniquely characterized by a signature adapted to the surrounding 

parenchymal tissue. The metabolic adaptation of the endothelium is less 

surprising as the endothelium plays a critical role in supplying nutrients to the 
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host tissue171,172. The upregulation of the glucose transporter 1 (Slc2a1) in brain 

ECs is consistent with the massive glucose consumption of the brain173, whereas 

the upregulation of the fatty acid metabolism genes Cd36 and Fabp4 in the heart 

likely reflects the importance of fatty acids to meet the bioenergetic demands of 

cardiomyocytes63,174. Similarly, the upregulation of immune and stress response 

genes in the lung endothelium is expected due to the lung’s continuous exposure 

to environmental stressors and pathogens contained in the inhaled air175,176. 

However, the adaptation of the endothelium appears to extend far beyond 

the supply of metabolites and nutrients to the parenchyma. We surprisingly found 

that there exists a multidirectional molecular crosstalk of vessel wall cells with the 

cells of their microenvironment. In the brain endothelium, synapse organization 

and neurotransmitter transport genes such as glutamine synthase (Glul) were 

highly enriched, which discloses the molecular mechanisms underlying how 

excitatory neurotransmitters such as glutamate can be transported among brain 

endothelial cells, neurons, and astrocytes177,178. We also found that lung ECs 

expressed genes typically found in the lung epithelium such as Surfactant Protein 

C (Spc) and Mucin1 (Muc1), again indicative of a key interaction of the lung 

endothelium with the lung parenchymal epithelium. The upregulation of genes 

involved in cardiomyocyte contraction such as Myl2 and Ckmt2 again points to 

an unexpected adaptation of the cardiac endothelium to the surrounding 

cardiomyocytes, possibly suggesting a key role for the endothelium in modulating 

cardiac contractility179,180. 
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One of the requisites for targeted therapies is the need to deliver such 

agents to specific organs, thus underscoring the importance of leveraging organ-

specific endothelial heterogeneity for such approaches. It has been suggested 

that vascular endothelial cells in different organs or disease states express 

specific markers, or ‘zip codes’181, so that ligands directed against organ-specific 

vascular endothelial cell surface markers could be used to deliver effector 

molecules to specific vascular beds. To address this concept, we expanded our 

analysis by analyzing 1296 cell surface glycoproteins, including 136 G-protein 

coupled receptors and 75 membrane receptor tyrosine-protein kinases. This 

allowed us to establish EC surface markers that were specifically upregulated in 

in each vascular bed. Not only was this integrative analysis valuable for the 

establishment of EC ‘zip codes’ based on the organs they are derived from, but it 

may also provide insights about tissue-specific cell-cell contacts of ECs that allow 

them to interact with niche or parenchymal cells in each tissue182,183. 

Among the most intriguing findings of our study was the prominent 

‘parenchymal’ signature of endothelial cells in each organ such as contractile 

genes in the cardiac endothelium and neurotransmitter transport or synaptic 

vesicle genes in the brain endothelium. A rank-based statistical analysis 

demonstrated that only selected genes of surrounding parenchymal cells were 

expressed in the endothelium of each organ. In the setting of a possible 

contamination, the most abundant genes expressed in the surrounding cells 

would also be the most abundant genes found in the cell of interest. That the 

rank order of parenchymal genes abundance in the endothelium differed from 
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that found in the parenchyma suggests tissue-specific programming and 

adaptation of the endothelium.  

To further address the concern of possible mRNA contamination by 

neighboring cells in the RiboTagEC data, we systematically analyzed two 

independent endothelial single cell RNA-Seq datasets164,165, which can exclude 

contaminating tissue cells by examining the identity of each sequenced cell. We 

found that EC signature genes identified by our RiboTagEC approach such as the 

synaptic vesicle gene Snap47 and cardiac contractile gene Tropomyosin were 

also expressed in individual brain and heart ECs as identified by scRNA-Seq. 

Importantly, we found a substantial overlap of individual signature genes across 

our data and both scRNA-Seq datasets. Even though the approaches to obtain 

the data were so different, this is a remarkable degree of consilience. We used a 

genetic VE-cadherin-Cre to label endothelial ribosomes, whereas the Tabula 

Muris scRNA-Seq dataset relied on mRNA markers of endothelial cells, and the 

Betsholtz dataset used Claudin5 lineage tracing combined with endothelial gene 

expression markers to identify individual ECs. 

Although the bulk of scRNA-Seq tissue-specific genes were found in the 

Ribotag dataset, the converse was not true. Not all RiboTagEC signature genes 

were present in the single cell RNA-Seq datasets. We think this likely reflects the 

greater depth and sensitivity of Ribotag RNA-Seq because current single cell 

technologies are limited in their ability to detect the expression of individual 

genes in a given cell138-142. Not all single ECs expressed parenchymal genes 

such as Tropomyosin or Snap47 but those expressing them did so at an even 
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higher levels than what we found in the RiboTagEC data. The reason for this 

might be that RiboTagEC data represent an aggregate of all ECs in a tissue. It is 

therefore possible that the tissue adaptation of individual ECs may be most 

prominent in anatomically distinct ECs, for example those in close proximity to 

parenchymal cells such as neurons and astrocytes. Furthermore, if the 

expression of parenchymal gene signatures such as synaptic vesicle genes or 

cardiac contractile genes in the endothelium is dependent on environmental cues 

from neighboring cells or the extracellular matrix, the disassociation of the cells 

required for single cell RNA-seq may have further reduced mRNA levels of these 

genes120,143,144. Sequencing a larger number of individual ECs in these tissues 

may enable identification of additional EC subsets with the most prominent 

parenchymal signatures, and a single cell sequencing approach that preserves 

the anatomy of the tissue such as Slide-Seq184 may also be useful to address the 

in situ transcriptomic signature. 

Using the RiboTag model, we were able to characterize the endothelial 

translatome profile from distinct tissues. Our analysis uncovered a previously 

unrecognized degree of endothelial plasticity and adaptation to the parenchymal 

tissues, raising intriguing questions about the role that the endothelium plays in 

modulating parenchymal tissue function that likely go far beyond the classically 

ascribed roles of supplying oxygen, metabolites and solutes. Further studies 

such as endothelial-specific deletion of neurotransmitter transport or cardiac 

contractile genes will be required to establish the functional roles of these tissue-

specific genes expressed in the endothelium of each organ. Understanding the 
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biological significance of endothelial plasticity and adaptation to the parenchyma 

will be important in providing a fuller picture of endothelial function during 

homeostasis and stress in each tissue. 
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CHAPTER 4 

TISSUE-SPECIFIC ENDOTHELIAL GENE EXPRESSION DYNAMICS 

DURING INFLAMMATION 

Parts have been previously published as:  
Jambusaria, A., et al. (2020). "Endothelial heterogeneity across distinct 

vascular beds during homeostasis and inflammation." Elife 9. 
 
4.1 Introduction 

The heterogeneity of vascular endothelial cells across tissue types represents a 

major challenge for studying biological mechanisms of tissue-specific vascular 

disease as well as for therapeutic targeting of distinct tissues because the 

vascular endothelium represents an important gateway for delivering therapeutic 

drugs to the various tissues and organs89. Endothelial cells that reside in different 

tissues or organs have distinct functions that are likely driven by unique gene 

expression signatures which reflect their tissue-specific adaptation and function. 

Computational methods have been developed and applied to identify tissue-

specific gene regulatory networks from transcriptomic data may provide 

important insights into the mechanisms underlying the cellular heterogeneity of 

cells in distinct organs and tissues93. In order to identify the molecular signature 

of distinct cell populations, new methods, in addition to existing methods such as 

GSEA97 and PGSEA107, have been developed to interpret dynamic changes 

within a group of genes with common function. In Chapter 2, we proposed a 

novel approach, HeteroPath, which assesses heterogeneously upregulated and 

downregulated genes within the context of pathways to provide a more 
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comprehensive understanding of the molecular underpinnings of tissue-specific 

phenotypes.  

Recent advances in RNA-Sequencing make time-series (longitudinal) 

analyses more affordable and provide a window in the dynamic changes in 

vascular injury or disease. In our work, we used the RiboTagEC (Cdh5CreERT2/+; 

Rpl22HA/+) mouse model to directly isolate endothelial mRNA without requiring 

endothelial cell isolation to minimize any changes in mRNA levels that might 

occur during the cell disassociation process147. We injected RiboTagEC mice with 

the bacterial endotoxin lipopolysaccharide (LPS) to induce systemic vascular 

endothelial inflammation and injury. We measured gene expression levels using 

RNA-Seq at several time points namely, 0 hr, 6 hr, 24 hr, 48hr, 72hr, and 1-week 

post injury. Computational analysis of the RNA-Seq data from the in vivo time 

series experiments led to a selection of candidate signaling mechanisms that are 

activated during the LPS-induced endothelial injury which can be validated with 

biochemical studies.  

One of the major questions in the context of cellular heterogeneity is 

whether cellular responses to biological stimuli and stressors routinely involve 

widespread changes in tissue-specific gene expression185. It is thought that 

biological gene expression networks are highly modular and contain dense 

communities of genes which work in concert to regulate cellular processes186, but 

these modular communities of genes change dynamically as cells respond to 

stimuli over time. While some methods have been developed to infer networks 

and analyze their topological variation, there is a need to develop methods which 
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evaluate biological network reconfiguration over time. Therefore, we investigated 

genome-scale transcriptomic networks derived from distinct time points to identify 

tissue-specific subnetworks mediating response to external stimuli. 

To be precise, we specifically studied whether the dynamics of tissue-

specific gene expression in response to a stimulus can be characterized by shifts 

in network signaling entropy. When cells are challenged with an external 

stimulus, cells typically respond with shifts in gene expression patterns which 

return to a steady-state level over time. This endothelial injury-response pattern 

during systemic inflammation is different from other classes of temporal 

responses where gene expression changes in an oscillatory fashion, for example 

as classically observed during cell cycle. We propose that by integrating the gene 

expression fold-change data we produce with database-derived protein-protein 

interaction (PPI) networks, we can determine the relationship between the 

changes in network signaling entropy and endothelial phenotype. The use of fold-

change networks (FCNs) is a novel approach to study signaling pathways in 

response to stressors. In our novel framework, Subnetwork Signaling Entropy 

Analysis (SSEA), we quantitatively characterize fold change subnetwork 

dynamics using network signaling entropy to quantitatively monitor gene 

regulatory network dynamics in biological systems. 

In Chapters 2 and 3, we have established the molecular signatures at 

baseline of the distinct endothelial tissues. Therefore, being able to track the 

tissue-specific endothelial response to systemic inflammatory stimulation would 

help to understand the molecular mechanisms mediating the endothelial 
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dysfunction. To do this, we designed a network-theoretical framework to 

calculate network signaling entropy for time series endothelial transcriptomic data 

and interpret basic endothelial biology underlying vascular disease. To precisely 

study the endothelium, we used the RiboTag system and isolated in situ 

endothelial-specific mRNA actively being translated from brain, heart, and lung 

tissue from a time series ALI model induced by a bacterial endotoxin, 

lipopolysaccharide. By pairing this injury model with RNA-Seq, we were able to 

explore the tissue-specific molecular dynamics in mice during endothelial injury, 

repair, and recovery. Identifying the individual gene and network-based 

biomarkers provides a better understanding of the tissue-specific signaling 

mechanisms mediating the disruption and repair of the endothelial barrier. 

We propose a generalized approach termed Subnetwork Signaling 

Entropy Analysis (SSEA) to evaluate cellular heterogeneity from transcriptomics 

data and produced comprehensive tissue-specific signatures. We hypothesize 

that the network signaling entropy dynamics of subnetworks derived from 

genome-scale fold-change networks represent the observed tissue-specific 

phenomena. We believe that during stimulation, genes that experience similar 

magnitude of gene expression change are more likely to be functionally related 

(fold-change networks) than genes which have similar expression levels at 

distinct time points (co-expression networks). We believe that using fold-change 

networks serves to provide insights about the manifestation of tissue-specific 

biological mechanisms in response to an external stimulus. In this work, we 

evaluate network signaling entropy to understand tissue-specific inflammatory 
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injury as well as determine the distinct states of endothelial injury and repair 

within a single tissue. We specifically demonstrate the power of assessing 

network signaling entropy to characterize cellular states of the brain endothelium 

during lipopolysaccharide (LPS) induced vascular injury and repair. 

We first identified differentially expressed genes between each time point 

and baseline. We then integrated gene expression fold-change data with a 

database-derived protein-protein interaction (PPI) networks, to demonstrate the 

relationship between the changes in network signaling entropy and cellular 

phenotype. The use of fold-change networks (FCNs) is a novel approach we 

applied to study signaling pathways in response to stressors. In our novel 

framework, Subnetwork Signaling Entropy Analysis (SSEA), we quantitatively 

characterized fold change subnetwork dynamics using network signaling entropy 

to quantitatively monitor gene regulatory network dynamics in biological systems. 

We used the RiboTag system to isolate in situ endothelial-specific mRNA actively 

being translated from brain, lung, and heart tissue from a time series ALI model 

induced by a bacterial endotoxin, LPS. By pairing this model with RNA-Seq, we 

explored tissue-specific dynamics in mice which underwent endothelial injury, 

repair, and recovery. The individual genes and gene networks we uncovered 

provided us with a better understanding of the biomarkers and tissue-specific 

signaling mechanisms mediating the disruption and repair of the endothelial 

barrier during systemic inflammation. 
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4.1.1 Problem Definition 

The circulating bacterial endotoxin lipopolysaccharide (LPS) is a key mediator of 

tissue inflammation and injury in patients with bacteremia and sepsis187,188, 

therefore we exposed RiboTagEC mice to LPS to induce systemic inflammatory 

injury and study the organ-specific endothelial translatome response. The tissue-

specific heterogeneity of the endothelium during homeostasis is maintained 

during systemic in vivo inflammatory injury as evidenced by the distinct 

responses to inflammatory stimulation. Our study defines endothelial 

heterogeneity and plasticity during systemic inflammation and provides a 

molecular framework to understand organ-specific vascular disease mechanisms 

and therapeutic targeting of individual vascular beds. 

4.2 Methods 

4.2.1 Experimental Animals 

RiboTag (Rpl22HA/+) mice were purchased from Jackson Labs. Endothelial-

specific VE-cadherin-Cre mice were provided by Dr. Ralf Adams. We crossed the 

RiboTag mice (Rpl22HA/+) 147 with the endothelial-specific VE-cadherin-Cre mice 

148,149 to generate RiboTagEC (Cdh5CreERT2/+; Rpl22HA/+) mice. Following 

tamoxifen-induced recombination at week 4, HA-tagged Rpl22 was specifically 

expressed in endothelial cells. To investigate the mechanisms of organ-specific 

EC injury, repair, and regeneration we performed RNA-Seq analysis of gene 

expression in ECs isolated at 6 hr, 24 hr, 48 hr, 72 hr, and 1 week post-LPS 

challenge (10 mg/kg LPS i.p., Sigma-Aldrich Cat#: L2630) with PBS-injected 

mice serving as controls.  
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All animal experiments were conducted in accordance with NIH guidelines 

for the Care and Use of Laboratory Animals and were approved by the IACUC of 

the University of Illinois (IACUC Protocol #19–014, IACUC Protocol #13–175 and 

IACUC Protocol #16–064). 

4.2.2 Assessing Endothelial Heterogeneity using the RiboTag method 

In order to define cell populations, distinct cell populations must be isolated from 

physiological tissue, suspended, and then sorted by flow cytometry or magnetic 

bead sorting. To isolate the cells from an intact tissue, different levels of 

mechanical processing and enzymatic tissue digestion are required. By nature, 

these processing steps and use of enzymes manipulate the sample and 

introduce artifacts.  

To bypass cell retrieval and obtain an in vivo snapshot of the tissue, new 

approaches have been developed to directly isolate cell-type-specific 

translatomes by immunoprecipitation (IP) of tagged ribosomes from crude tissue 

extracts147. The RiboTag strategy established by Sanz et al.147 recommends the 

use of cell-type-specific Cre recombinase to activate expression of a epitope 

tagged to a ribosomal subunit (RPL22). By immunoprecipitating the epitope-

tagged ribosomes out from the whole tissue, we can specifically isolate the cell-

type-specific translatome.  

Here we report the application of the RiboTag approach to the study of 

endothelial-specific mRNA. We chose to use the Cdh5-Cre animals because 

their endothelial specific expression148 would be ideal for profiling ECs using the 

RiboTag strategy (Figure 23). After the isolation of endothelial specific mRNA, we 
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performed a transcriptomic analysis on the translatome of brain, heart, and lung 

endothelium from animals challenged with the bacterial toxin LPS. 
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Figure 23: RiboTag mRNA isolation and time-series transcriptomic analysis. The 

RiboTag procedure allows simple and efficient isolation of ribosome-associated 

mRNAs from endothelial cells in complex tissues, including brain, lung, and 

heart. 
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4.2.3 Tissue-specific endothelial Kinetics following LPS-induced injury 

To ascertain the kinetics of the tissue-specific endothelial signatures during 

inflammation we analyzed the time-series RNA-Seq data with the gene sets 

referenced in Chapter 2 and Chapter 3: classical endothelial markers, glycolysis, 

fatty acid metabolism, and transport. To visualize the tissue-specific dynamics for 

predominant endothelial functions, we plotted a heatmap which includes the 

tissue-specific differentially expressed genes for each gene set. 

4.2.4 Early and late tissue-specific inflammatory markers 

To identify the inflammatory genes that were upregulated in the LPS 6 hr 

samples as compared to the baseline samples, we applied the standard limma 

pipeline154 for genes in the ‘inflammatory response’ gene ontology term 

(GO:0006954). The analysis was carried out on the tissue specific LPS treated 

samples against the baseline tissue-specific sample. Limma statistically 

evaluates each inflammatory gene and returns the genes which show statistically 

significant change between the inflammatory time point and baseline. We applied 

this approach to the early inflammation time point, 6 hr, and the late inflammatory 

time point, 24 hr. Heatmaps were generated to visualize the tissue-specific 

inflammatory genes and their kinetics. 

4.2.5 Online endothelial translatome expression database 

The endothelial translatome expression database 

(http://www.rehmanlab.org/ribo) is hosted on Amazon S3. The website was 

constructed using Angular 8.0, JavaScript, HTML5, and CSS. Bar plots and 

heatmaps were generated for genes of interest using Tableau Public. The 
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visualizations were integrated into the web application using the Tableau 

JavaScript API. RiboTag log2 normalized baseline and inflammation time-course 

translatome expression data were uploaded to Tableu. The averages were 

computed using Tableau calculated fields. Tableau dashboards and workbooks 

were created to generate bar plots and heatmaps for online publishing. 

4.2.6 Genome-scale Co-expression and Fold Change Networks (FCN) 

Integrating gene expression data with network data such as a protein interaction 

network may lead to novel discoveries about cellular states and dynamics. Let us 

say, for example, if two genes over a time series possess similar expression 

levels or similar changes in expression level, then these two genes may be 

functionally related and interact with each other. Furthermore, a gene set derived 

by clustering genes based on their fold change may identify novel signaling 

mechanisms that are modulated during the experiment189.  

We accumulated and preprocessed the RNA-Seq raw data from the brain, 

heart, and lung tissue from RiboTag+/Cdh5+ mice to construct co-expression 

and fold-change networks. The construction and analysis of the co-expression 

network were based on WGCNA190, which is a typical algorithm (Figure 24). In 

the co-expression network, nodes are genes, and edges indicate the magnitude 

of their co-expression at 6hr post-LPS challenge.  

To observe the effect of fold-change in expression of genes during the 

experimental condition, fold change networks were constructed. STRING191 

interactions (confidence score>500) were used to construct the networks. In the 

fold change network of genes, nodes are genes, and edges indicate the 
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magnitude of the Pearson correlation of the fold changes calculated for each 

gene between 0hr and 6hr post treatment. 
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Figure 24: Subnetwork Signaling Entropy Analysis (SSEA). A schematic of the 

overall framework to identify tissue-specific subnetworks that are dysregulated in 

response to an external stimulus.   
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4.2.7 Gene community detection in the networks 

We used the Louvain method192 193 to find the community structure of the co-

expression and fold change networks. This approach is a greedy optimization 

method which optimizes the local modularity of a subnetwork within the 

network193. Essentially, the modularity quantifies network structure by evaluating 

the number of edges within a cluster of genes and the number of edges that 

would be found in that cluster if it were derived from a random network 194 195. It 

is given by: 

Equation 4 

Q =
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Where Q varies between 0 and 1. Maximizing Q results in optimal clustering.  In 

this equation, NC = number of clusters in the network, E = number of edges, Es = 

the number of edges in the gene community s, and ks = total degrees across all 

nodes in gene community s.  

The Louvain approach is composed of two parts. In part 1, the algorithm 

strives to improve the network modularity, Q, in a local way to search for smaller 

gene communities. It then generates a new network by grouping genes from the 

same community, s, into a single node. This process is iterated through until the 

maximum value of modularity is achieved. 
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4.2.8 Network signaling entropy for subnetworks identified by community 

detection algorithms 

The derivation of network signaling entropy heavily relies on the robustness of 

the PPI network which the gene expression data is superimposed on. After 

overlaying the gene expression data on the PPI, the edge weights are calculated 

by approximating the gene-gene interaction probabilities between the 

corresponding nodes in the graph. Signaling entropy is calculated by first 

estimating the stochastic matrix and then embedding the node interaction 

weights over the entire network. 

Edge weights wij between nodes I and j are derived from the co-

expression or fold change values of the genes I and j. The assumption here is 

that genes with similar expression level or changes in expression level over a 

time course are more likely to be functionally related rather than two genes which 

are not co-expressed or do not undergo similar changes in expression level over 

time. The underlying PPI network is required to separate interactions which are 

biologically observed rather than discovered by random chance. The edge 

weights between two nodes in the graph can be defined using several different 

quantification methods. Here, in our case, we used simple Pearson correlations. 

We define the weights as: 

Equation 5 

𝑤𝑖𝑗 =  
1

2
(1 +  𝑐𝑖𝑗) 

With cij being the correlation between genes I and j. This definition of the 

correlation assumes that the positive correlation corresponds to an activating 
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interaction and a negative correlation corresponds to an inhibiting interaction. 

This assumption becomes very important because positive and negative 

interactions manifest in distinct downstream cellular signaling. This method to 

calculate edge weights does not assign edges to two nodes with an insignificant 

correlation. Once the gene-gene edge weights were calculated and normalized, 

they were then assigned to the stochastic matrix pij, 

Equation 6 

𝑝𝑖𝑗 =
 𝑤𝑖𝑗

∑ 𝑤𝑖𝑘𝐾∈𝑁𝑖

 

With Ni representing the PPI neighboring nodes of node i. Thus, pij can be 

defined as the signaling probability between nodes I and j. Notably, P is not a 

symmetric matrix because pij is not necessarily doubly stochastic. The bi-

directional edges are assigned unique correlation-based weights to assign a 

quantitative metric for the transduction of information from node I to j, and vice 

versa (pij≠pji). 

Given a stochastic matrix, pij, the Shannon entropy for each individual 

gene i can be calculated using the following equation: 

Equation 7 

𝑆𝑖 =  
−1

log 𝑘𝑖
∑ 𝑝𝑖𝑘 log 𝑝𝑖𝑘𝐾∈𝑁𝑖

 , 

Where ki denotes the degree of gene I in the PPI network. The normalization is 

not required but scales the Shannon entropy for all genes to be between 0 and 1. 

If there exists only one edge weight in the network which is non-zero, then the 

entropy is equal to the lowest uncertainty value of zero. On the other hand, if all 

edge weights from a single node i are equal, the Shannon entropy is equal to the 
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greatest uncertainty and highest promiscuity of 1. Therefore, we can use the 

Shannon entropy metric to analyze distinct phenotypes and identify dysregulated 

genes or interactions in the signaling network. When Shannon entropy is 

estimated on the phenotypic scale, resampling approaches can be applied to 

generate differential entropy statistics. Deriving the entropy statistics is a 

quantitative approach for studying the association between factors such as node 

degree and entropy variance. When sample-specific network signaling entropies 

are calculated statistical tests such as rank-sum tests can be applied to generate 

robust P-values.  

4.3 Experiments & Results  

4.3.1 In situ organ-specific endothelial early- and late-inflammation 

signature 

We first analyzed the dynamics of the EC inflammatory response in each tissue, 

focusing on the early response (6 hr post systemic LPS) and late response (24 hr 

post systemic LPS). At these time points, we identified the genes most 

upregulated by inflammatory injury in each tissue (Figure 25). In the brain 

endothelium, we identified several differentially expressed acute inflammatory 

factors including selectins, chemokine receptors, and interleukins which were 

strongly activated 6 hr post LPS treatment (Figure 26A–C). We analyzed the 

kinetics during the entire time course for the early inflammatory brain endothelial 

specific genes such as eosinophil chemotactic protein (Ccl11) (Figure 26C) and 

found that Ccl11 is markedly upregulated at the 6 hr time point and remains 

significantly higher in the brain endothelium, but by one week post LPS injection 

https://elifesciences.org/articles/51413#fig7
https://elifesciences.org/articles/51413#fig7
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the expression level returns to the same level as that seen in lung and heart 

endothelium. In the lung endothelium, we discovered that the most upregulated 

inflammatory pathways included chemokines, response to cellular stress, 

hematopoiesis genes and early immune response mediators (Figure 26D–F). 

Lymphocyte antigen 96 (Ly96) was strongly upregulated (Figure 26D) whereas 

the apoptosis gene caspase 6 (Casp6) was markedly downregulated 6 hr post 

LPS treatment and remained lower in lung ECs than in brain or heart ECs 

throughout the injury period (Figure 26F). In heart ECs, leukocyte migration and 

neutrophil activation pathways were most upregulated by inflammatory injury 

(Figure 26G–I). At 24 hr post injury, we found the peak upregulation of 

inflammatory genes (Figure 27) with a substantial overlap of the inflammatory 

response pathways, predominantly associated with neutrophil and leukocyte 

chemotaxis and migration, in the brain (Figure 27A–C), lung (Figure 27D–F), and 

heart ECs (Figure 27G–I). 

  

https://elifesciences.org/articles/51413#fig7
https://elifesciences.org/articles/51413#fig7
https://elifesciences.org/articles/51413#fig7
https://elifesciences.org/articles/51413#fig7
https://elifesciences.org/articles/51413#fig8
https://elifesciences.org/articles/51413#fig8
https://elifesciences.org/articles/51413#fig8
https://elifesciences.org/articles/51413#fig8
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Figure 25: Markers of early (6 hr) and late (24 hr) LPS-induced inflammation in 

brain, lung, and heart ECs. A) Top RiboTag brain EC early (6 hr) inflammatory 

markers B) Top RiboTag lung EC early (6 hr) inflammatory markers C) Top 

RiboTag heart EC early (6 hr) inflammatory markers D) Top RiboTag brain EC 

late (24 hr) inflammatory markers E) Top RiboTag lung EC late (24 hr) 

inflammatory markers F) Top RiboTag heart EC late (24 hr) inflammatory 

markers. 
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Figure 26: The early inflammation (6 hr) markers across organ-specific 

endothelial cells. A) Heat map representation of differentially expressed genes 

identified by comparing brain ECs to lung and heart ECs at the 6 hr time point. 

The orange to yellow to white gradient represents increasing expression of the 
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pathway with orange representing minimal expression while the white represents 

high expression of the pathway. B) The GSEA results of enriched GO terms from 

RiboTag brain ECs at the 6 hr time point. C) Tissue-specific kinetics of a specific 

RiboTag brain EC early inflammatory marker during the progression and 

resolution of inflammation. D) Heat map representation of differentially expressed 

genes identified by comparing lung ECs to brain and heart ECs at the 6 hr time 

point. The orange to yellow to white gradient represents increasing expression of 

the pathway with orange representing minimal expression while the white 

represents high expression of the pathway. E) The GSEA results of enriched GO 

terms from RiboTag lung ECs at the 6 hr time point. F) Tissue-specific kinetics of 

a specific RiboTag lung EC early inflammatory marker during the progression 

and resolution of inflammation. G) Heat map representation of differentially 

expressed genes identified by comparing heart ECs to brain and lung ECs at the 

6 hr time point. The orange to yellow to white gradient represents increasing 

expression of the pathway with orange representing minimal expression while the 

white represents high expression of the pathway. H) The GSEA results of 

enriched GO terms from RiboTag heart ECs at the 6 hr time point. I) Tissue-

specific kinetics of a specific RiboTag heart EC early inflammatory marker during 

the progression and resolution of inflammation. 
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Figure 27: The late inflammation (24 hr) markers across organ-specific 

endothelial cells. Heat map representation of differentially expressed genes 

identified by comparing brain ECs to lung and heart ECs at the 24 hr time point. 

The orange to yellow to white gradient represents increasing expression of the 

pathway with orange representing minimal expression while the white represents 
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high expression of the pathway. B) The GSEA results of enriched GO terms from 

RiboTag brain ECs at the 24 hr time point. C) Tissue-specific kinetics of a 

specific RiboTag brain EC late inflammatory marker during the progression and 

resolution of inflammation. D) Heat map representation of differentially expressed 

genes identified by comparing lung ECs to brain and heart ECs at the 24 hr time 

point. The orange to yellow to white gradient represents increasing expression of 

the pathway with orange representing minimal expression while the white 

represents high expression of the pathway. E) The GSEA results of enriched GO 

terms from RiboTag lung ECs at the 24 hr time point. F) Tissue-specific kinetics 

of a specific RiboTag lung EC late inflammatory marker during the progression 

and resolution of inflammation. G) Heat map representation of differentially 

expressed genes identified by comparing heart ECs to brain and lung ECs at the 

24 hr time point. The orange to yellow to white gradient represents increasing 

expression of the pathway with orange representing minimal expression while the 

white represents high expression of the pathway. H) The GSEA results of 

enriched GO terms from RiboTag heart ECs at the 24 hr time point. I) Tissue-

specific kinetics of a specific RiboTag heart EC late inflammatory marker during 

the progression and resolution of inflammation. 
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4.3.2 Tissue-specific dynamic response following LPS-induced 

inflammatory activation 

After establishing the baseline heterogeneity of brain, lung and heart ECs, we 

next studied the dynamics of the organ-specific baseline endothelial signature 

during systemic inflammation, we collected translatome data of the brain, lung, 

and heart endothelium at several time points following LPS treatment. By 

computationally analyzing RiboTagEC mRNA from brain, lung, and heart at 0 hr, 

6 hr, 24 hr, 48 hr, 72 hr, and 168 hr post-LPS administration, we were able to 

identify tissue-specific molecular mechanisms modulated in endothelial injury, 

repair, and regeneration. 

We first investigated the tissue-specific baseline signatures over time in 

order to address the question of whether the baseline core endothelial functions 

were disrupted during inflammatory activation. The time-course of the brain 

endothelium specific endothelial genes were plotted to compare their kinetics to 

the lung and heart endothelium (Figure 28A). We found that selected genes 

which constitute the tissue-specific EC signature during homeostasis are 

modulated during inflammatory injury. For instance, the expression level of von 

Willebrand factor A domain containing protein 1 (Vwa1) which we found to be a 

brain endothelial gene during homeostasis decreases during early and late 

inflammation and then returns to baseline levels one-week post LPS injury, 

whereas its levels in lung and heart endothelium remain relatively low during the 

entire time course. On the other hand, there are signature genes such as glucose 
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transporter protein 1 (Slc2a1) which is consistently upregulated in brain ECs 

throughout the post-injury period. 

From the analysis of the lung endothelium specific endothelial genes 

heatmap (Figure 28B), it is apparent that expression of nearly all the canonical 

endothelial genes drastically decrease during the early and late inflammatory 

time points. This is an important finding because it suggests that the lung 

endothelium experiences the most profound dysregulation of core endothelial 

genes following LPS injury. We also identified lung endothelial specific genes 

which are solely modulated in the lung endothelium during the inflammatory time 

course. For instance, the expression levels of forkhead-related transcription 

factor 1 (Foxf1) and tetraspanin8 (Tspan8) significantly decrease in the lung 

endothelium at 6 hr and 24 hr post LPS treatment and then gradually recover 

back to baseline levels, but both genes remain minimally expressed in the brain 

and heart endothelium. 

The endothelial genes which were specifically upregulated in the heart 

endothelium at baseline do not appear to be affected to the extent that the brain 

and lung endothelium were during LPS stimulation. In the heatmap (Figure 28C), 

a few genes such as Rho family GTPase 1 (Rnd1) and platelet glycoprotein 

(Cd36) undergo a robust change in expression during the time course. From our 

analysis, we found that the endothelial genes specific to the heart endothelium 

are much more abundant in the heart versus the other tissues. For example, 

caveolin 1 (Cav1) and vascular endothelial growth factor receptor 2 (Kdr) 

maintained a high expression level in the heart endothelial samples during the 

https://elifesciences.org/articles/51413#fig9
https://elifesciences.org/articles/51413#fig9
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entire LPS time course whereas in the brain and lung endothelial samples, we 

see significantly lower expression. 

Since, endothelial cells rely heavily on glycolysis for ATP generation, we 

next focused on the organ-specific endothelial glycolysis signature to investigate 

the tissue-specific dynamics of glycolytic genes. The brain endothelial basal 

translatome upregulated the greatest number of glycolytic genes compared to the 

lung and heart endothelium. Interestingly, when we analyzed the time course of 

these brain endothelial specific glycolysis genes, we found that they maintain 

similar levels during the progression and resolution of inflammation (Figure 29). 

There were only three glycolysis-related genes which were upregulated in the 

lung endothelium. When we analyzed these three genes over time, we found that 

two of them remained stable whereas 6-phosphofructo-2-kinase/fructose-2,6-

biphosphatase 3 (Pfkfb3) was dynamic in all three tissues. Even though this 

glycolysis regulatory enzyme was specifically upregulated in the lung 

endothelium at baseline, we found that it was activated in all tissues during late 

inflammation/early repair and then returned to baseline levels (Figure 29B). In the 

heart endothelium, we found that the upregulated glycolytic genes were not 

modulated during the LPS injury and recovery (Figure 29C). 

  

https://elifesciences.org/articles/51413/figures#fig9s1
https://elifesciences.org/articles/51413/figures#fig9s1
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Figure 28: Organ-specific endothelial cells uniquely regulate endothelial genes 

during the progression and resolution of inflammation. A–C) Time-series heat 

map of significantly upregulated endothelial genes at baseline in A) brain ECs B) 

lung ECs and C) heart ECs. The blue to white to red gradient represents 

increasing expression of the pathway with blue representing minimal expression 

while the red represents high expression of the pathway. 
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Figure 29: Organ-specific endothelial cells uniquely regulate glycolysis genes 

during the progression and resolution of inflammation. A–C) Time-series heat 

map of upregulated glycolysis genes at baseline in A) brain ECs B) lung ECs and 
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C) heart ECs. The blue to white to red gradient represents increasing expression 

of the pathway with blue representing minimal expression while the red 

represents high expression of the pathway.  
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4.3.3 Louvain Community Detection in Co-expression Networks versus 

Fold Change Networks 

To assess co-expression and fold change networks, we compared the results of 

applying the Louvain clustering algorithm on the co-expression network versus 

the fold change network. We first performed the analysis without setting a limit on 

the cluster size and found that the Louvain algorithm is highly sensitive to the 

input order of the genes analyzed191. To account for this, we performed 10 

independent runs and report the median results in Figure 30. Use of this 

algorithm in a fold-change network provides more robust results than in a co-

expression network because the clusters are more defined and smaller in size. 

For example, Louvain clustering in a fold-change network resulted in clusters 

with the maximal size of approximately 1000 nodes, a number which is in the 

reasonable range for biological responses of defined transcription factor targets. 

When we directly clustered the co-expression network using the Louvain method, 

the largest cluster contained nearly one-third of the network (3000+ genes) 

making it difficult to interpret distinct gene response clusters. We next performed 

Louvain clustering by placing varying thresholds on cluster sizes. To be 

consistent with the “disease module identification” DREAM challenge, we forced 

the clusters to be between 3 and 100. Again, Louvain clustering on the fold 

change networks performs better than on the co-expression network, with 

bounded cluster sizes. 
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Method 
Enriched 
Clusters 

#NEC %NEC #NEC S %NEC S 

Co-
expression 

Network 

153/303 
(50.50%) 

2476.0 
 

18.18% 
 

 
871.0 

 
7.61% 

Fold Change 
Network 

128/189 
(67.72%) 

 
1108.0 

 
40.62% 645.0 25.11% 

 

Figure 30: The performance of Louvain on the co-expression network versus the 

fold change network. NEC = “Nodes in Enriched Clusters”, %NEC = enrichment 

in the KEGG Pathways, and NEC S uses the same filtered KEGG Pathways. 

NEC S is the most meaningful because it reports results derived when we did not 

place a limit on the cluster size.  
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4.3.4 Identifying dysregulated subnetworks associated with the 

progression of LPS injury 

The goal of network signaling entropy was to quantify the extent to which genes 

were influenced by the entire network, the gene community that the gene was 

assigned, and the other gene communities. We first constructed both a co-

expression and fold change network including 9031 genes. For both networks, 

every gene in the network was initially assigned an entropy value. We first 

applied SSEA to our transcriptomic analysis of the endothelial translatome from 

animals exposed to bacterial toxin (LPS) challenge to demonstrate the 

effectiveness of the method in identifying dysregulated gene communities. We 

analyzed this dataset using fold change networks and co-expression networks.  

Our novel method using fold change networks identified 21 gene 

communities with corrected p-values <0.01 (Figure 31). We then applied SSEA to 

the gene communities and found 10 significant pathways. When we compared 

SSEA on the fold change networks to the co-expression networks, we found that 

the two networks had five overlapping pathways. Interestingly, the pathways 

identified exclusively by SSEA in the fold change networks have previously been 

associated with the brain endothelium and LPS injury. For example, alterations of 

Wnt Signaling in brain endothelium plays an important role in the development of 

the blood brain barrier196 while the focal adhesion pathway is linked to 

maintenance of the endothelial barrier197. Furthermore, the pathways which were 

identified in both networks were more easily detected in the fold change 

communities than in the co-expression gene communities. These results suggest 
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that when SSEA was applied on the fold change networks, rather than the co-

expression networks, it extracted meaningful biological subnetworks associated 

with brain endothelial injury. 

To assess the performance of SSEA on co-expression subnetworks, we 

conducted analysis of the 6hr time point co-expression subnetworks in the 

RiboTag LPS dataset. The data matrix contained 9031 genes. We applied the 

new method SSEA to the data to identify subnetworks as well as the signaling 

entropy dynamics over the LPS time course for gene subnetworks that were co-

expressed at 6hrs post LPS stimulation. The results of the subnetworks which 

exhibited significant changes in entropy during the time course, as well as their 

primary biological functions as defined by KEGG pathways are listed in Figure 

32. In the co-expression subnetworks, signaling entropy was found to be 

primarily associated with cell growth and cell death pathways, signal transduction 

pathways, and metabolic pathways.  

It is interesting to note that the co-expression subnetworks at the 6hr post 

LPS stimulation time point, which is canonically known to be the most severe 

inflammatory state, signaling entropy captures activated signaling transduction 

pathways and metabolic processes rather than pathways activated in response 

to LPS treatment which were identified by the fold-change networks. It appears 

that the signature of gene subnetworks responsible for responding to the 

inflammatory stimulation, exhibit a similar extent of fold-change in response to 

the stimulus rather than exhibiting similar gene expression levels.   
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Pathway 

SSEA 
Fold 

Change 
Network 

FDR 

SSEA 
Co-

expression 
Network FDR 

SSEA 
Fold 

Change 
Rank 

SSEA 
Co-

expression 
Rank 

Wnt signaling 
pathway 

<0.005 0.70 1 54 

MAPK Signaling 
Pathway 

<0.005 0.81 2 77 

Focal Adhesion <0.005 0.44 3 33 

ECM-receptor 
interaction 

<0.005 0.15 4 12 

Cytokine-cytokine 
interaction pathway 

<0.005 0.33 5 26 

NF-kappa B 
signaling pathway 

<0.005 0.27 6 22 

Pathways in 
Cancer 

<0.005 0.87 7 85 

Cell cycle 0.009 0.21 8 14 

JAK-STAT 
signaling pathway 

0.011 0.77 9 58 

Aldosterone-
regulated sodium 

reabsorption 
0.013 0.66 10 48 

 

Figure 31: Top Pathways identified in the Brain EC Fold Change Subnetworks 

by SSEA with FDR < 0.01  
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Pathway 

SSEA 
Co-

expression 
Network 

FDR 

SSEA Fold 
Change 

Network FDR 

SSEA 
Co-

expression 
Rank 

SSEA 
Fold Change 

Rank 

Apoptosis <0.001 0.12 2 13 

Pyruvate 
metabolism 

<0.001 0.15 4 15 

ECM-receptor 
interaction 

<0.001 0.27 6 28 

Pathways in Cancer <0.001 0.28 10 29 

Cell cycle <0.001 0.35 8 31 

Hematopoietic cell 
lineage 

<0.001 0.44 3 36 

P53 signaling 
pathway 

<0.001 0.70 1 91 

Fatty acid 
metabolism 

<0.001 0.73 9 92 

JAK-STAT signaling 
pathway 

<0.001 0.77 5 94 

Tyrosine 
metabolism 

<0.001 0.87 7 103 

Glutathione 
Metabolism 

0.002 0.33 11 30 

mTOR signaling 
pathway 

0.003 0.66 12 82 

RNA transport 0.003 0.81 13 96 

MAPK signaling 
pathway 

0.004 0.56 14 63 

DNA replication 0.006 0.21 15 20 

Ribosome 0.006 0.80 16 95 

Amino sugar and 
nucleotide sugar 

metabolism 
0.009 0.08 17 11 

 
Figure 32: Top Pathways identified in the Brain EC Co-expression Subnetworks 

by SSEA with FDR < 0.01  
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4.3.5 Subnetwork Dynamics during the Progression of LPS Injury 

The most significant fold change subnetwork identified in the brain endothelium 

by SSEA was the Wnt signaling pathway. The Wnt signaling pathway during 

homeostatic conditions was composed of several genes with large entropy 

values. More than 60% of genes were assigned larger entropy levels than the 

mean entropy value of all nodes in the network (0.09). We noticed that the 

pathway included multiple genes with large entropy values which indicated to us 

that the Wnt signaling pathway may be regulated by both expression level and 

number of interactions. As shown in Figure 33, the Wnt signaling subnetwork at 

baseline is characterized by high entropy (8.67), but then experiences a 

significant decrease in signaling entropy in response to LPS treatment 24hrs post 

LPS (6.03). Interestingly, this decrease in signaling entropy was reversed during 

the endothelial recovery and regeneration process and the signaling entropy 

level elevated at 1-week post LPS (7.84). SSEA clustered the genes in the Wnt 

signaling pathway to the top of the ranked subnetwork list. These observations 

indicate a strong connection between LPS induced inflammation in the brain and 

the Wnt signaling pathway. Indeed, it has been demonstrated that dysregulation 

of this subnetwork and change in Wnt signaling gene expression levels induce a 

disruption of the blood brain barrier198. 
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Figure 33: Brain Endothelium Wnt Signaling Subnetwork Dysregulation. In the 

Brain endothelium, a 34 node Wnt signaling subnetwork exhibited a network 

signaling entropy decrease 24hrs post inflammatory stimulation (Si = 8.67 vs Si = 

6.03) followed by recovery at 168hrs post-injury (Si = 6.03 to Si = 7.84). 
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4.4 Conclusions 

By computationally analyzing the in vivo endothelial translatome during systemic 

inflammation, we identified the heterogeneous organ-specific endothelial 

signaling dynamics in the brain, lung, and heart tissues. We elucidated the 

distinct mechanisms by which the endothelium modulates vascular injury, repair, 

and regeneration in an organ-specific manner. The existence of organ-specific 

endothelial cell processes has become a strong interest for vascular biologists 

but is severely understudied. For the first time, we have uncovered the molecular 

dynamics of brain, lung, and heart endothelial cells during LPS-induced systemic 

inflammation.  

 We developed a powerful model to study the endothelial translatome 

during endothelial injury, repair, and regeneration by administering a sub-lethal 

dose of LPS to RiboTagEC mice. This model enabled us to study the translational 

relevance of endothelial destruction and regeneration across distinct organs 

during endotoxemia. It has been previously found that circulating LPS serves as 

a key mediator of disease in patients with bacteremia and sepsis188. Our goal 

was to compare inflammatory transcriptomic responses in multiple vascular beds, 

therefore we needed to induce systemic inflammation in a controlled manner. 

LPS administration induced the release of inflammatory mediators and immune 

cell activation, thus allowing us to establish the heterogeneity of endothelial 

responses resulting from systemic inflammatory stimulation.  

Studying endothelial heterogeneity in response to the systemic 

inflammatory stress induced by LPS, we found that the endothelium in each 
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tissue maintains a distinct organ-specific molecular identity. Even in the setting of 

a profound systemic inflammatory disease, the baseline heterogeneity of each 

vascular bed was maintained. However, each endothelial bed exhibited a highly 

characteristic inflammatory response. Brain and heart ECs express classical 

inflammatory adhesion molecules such as E-Selectin and P-Selectin, whereas 

lung ECs upregulate chemokines such as Cxcl1 and Cxcl9. The gene expression 

shifts in the lung reflect the severe loss of lung endothelium recently observed 

during endotoxemia199. The marked upregulation of P-Selectin in the heart and 

brain is especially interesting because P-Selectin is a key mediator of thrombosis 

and platelet aggregation199, and both the brain and heart are especially 

vulnerable to thrombotic events. During the later stage of inflammation at 24 hr, 

the inflammatory gene expression pathways across all tissues demonstrated 

significant upregulation of leukocyte migration and chemotaxis genes, suggesting 

that despite the persistent heterogeneous signatures of the ECs in the respective 

organs, there is a broad shared program of inflammatory signaling pathways in 

response to systemic endotoxemia.   

We found that the progression and resolution of vascular inflammation in 

each organ is mediated by the signaling mechanisms activated in the respective 

tissue-specific endothelium. Classically, when activated by inflammatory signals 

the endothelium changes in terms of resistance, vasomotor tone, and barrier 

function200. In our studies, we found that the dynamics and magnitude of change 

for gold-standard endothelial marker genes varied from organ to organ. The lung 

endothelium undergoes the most prominent loss of endothelial markers, while the 
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brain and the heart are more resistant to loss of endothelial markers. This finding 

is consistent with the severe loss of the lung endothelium in the endotoxemia 

model of EC injury and recovery201. Furthermore, the brain and heart tissue 

which require consume large amounts of energy express numerous glycolytic 

factors such as Glut1 in the brain endothelium202 and Eno3203 in the heart 

endothelium throughout the inflammatory time course. On the other hand, the 

lung endothelium heavily relies on a limited number of glycolytic factors such as 

Pfkfb3 which is known to be a master regulator of glycolysis in endothelial 

cells204.  

When we applied our novel time-series based tool, SSEA, we found that 

signaling entropy, a measure of subnetwork promiscuity, is highly correlated with 

the dynamics of the brain endothelium and therefore identified signature 

pathways. In the fold change network, the most significant dynamic networks 

identified using SSEA were processes responsible for directly mediating the 

response to an external stimulus. For instance, Wnt signaling underwent a 

dramatic shift in the brain fold change network structure during vascular injury, 

thus suggesting a possible regulatory role of the brain endothelial Wnt signaling 

pathway during LPS-induced systemic inflammation. On the other hand, when 

we apply SSEA to co-expression subnetworks, pathways related to cell growth 

and cell death, metabolism, and genetic information processing. Interpreting 

signaling entropy as a measure of pathway promiscuity uncovered processes 

activated during the inflammatory injury, repair, and regeneration. Here we 
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demonstrated that the prognostic power of signaling entropy in LPS treated mice 

is indeed informative about endothelial inflammatory injury and resolution.  
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CHAPTER 5 

CONCLUSIONS 

Endothelial cells (ECs) require considerable molecular and phenotypic 

configuration to support organ-specific function. For example, to maintain a 

permeable endothelial barrier, liver and kidney ECs proliferate at a moderate 

pace, while lung and brain ECs double at a lower rate with slow turnover205. This 

heterogeneous endothelial proliferation rate is attributed to the blood brain 

barrier’s (BBB) responsibility to tightly regulate the balance of ions, nutrients, and 

transport of molecules into the brain tissue206. ECs are an essential component 

of the BBB forming tight junctions between cells to minimize fenestrations. On 

the other hand, lung ECs primarily regulate the absorption of oxygen into the 

blood stream but also assist in immunity by removing exogenous pathogens from 

inhaled air207. A hallmark of heart ECs is experiencing higher glycolysis and 

oxidation rates as well as engaging in vascular growth or angiogenesis as to 

match oxygen demands of the heart208. These examples of organ-specific 

endothelial phenotypic heterogeneity are driven by the underlying molecular 

signaling. In this work, we designed and applied novel computational and 

experimental approaches to ascertain the organ-specific endothelial signatures 

required for organ-specific function during homeostatic and inflammatory 

conditions.  

In Chapter 2 we first developed a novel computational tool, HeteroPath, to 

identify tissue-specific pathways from gene expression data by quantitatively 

evaluating the bidirectional expression of genes in the context of their molecular 
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signaling pathway. We applied this method to define organ-specific endothelial 

heterogeneity and tissue-specific neuronal heterogeneity. In both datasets, we 

found that HeteroPath segregated the distinct cellular populations by identifying 

signature pathways that were not identified by other pathway analysis methods. 

Using simulated datasets, HeteroPath demonstrated robustness that was 

comparable to what was seen using existing gene set enrichment methods. 

Furthermore, we generated tissue-specific gene regulatory networks involved in 

vascular heterogeneity and neuronal heterogeneity by performing motif 

enrichment of the heterogeneous genes identified by HeteroPath and linking the 

enriched motifs to regulatory transcription factors in the ENCODE database.  

We enhanced the resolution of our endothelial heterogeneity studies in 

Chapter 3 by adapting the RiboTag isolation technique147 to capture a snapshot 

of the endothelial translatome. Performing RNA-Seq on the endothelial 

translatome provided information about the mRNA transcripts undergoing 

translation. We generated endothelial specific RiboTag mice (RiboTagEC: 

Cdh5CreERT2/+; Rpl22HA/+) and performed RNA-Sequencing on brain, lung, and 

heart endothelial translatomes and identified specific pathways, transporters and 

cell-surface markers expressed in the endothelium of each organ. We found that 

endothelial cells express genes typically found in the surrounding tissues such as 

synaptic vesicle genes in the brain endothelium and cardiac contractile genes in 

the heart endothelium. In addition, we performed complementary analysis of 

endothelial single cell RNA-Seq data and found the molecular signatures shared 

across the endothelial translatome and single cell transcriptomes.  
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After comprehensively establishing the molecular configuration underlying 

endothelial heterogeneity during homeostatic conditions, we expanded our work 

in Chapter 4 to study endothelial heterogeneity dynamics in response to 

inflammatory stimulation. We found that the baseline tissue-specific 

heterogeneity of the endothelium is maintained during systemic in vivo 

inflammatory injury as evidenced by the distinct translatome responses to 

inflammatory stimulation.  

In the following sections, we summarize endothelial heterogeneity and 

plasticity and discuss our novel computational frameworks implemented to 

identify organ-specific vascular disease mechanisms and therapeutic targets for 

individual vascular beds. 

5.1 A Pathway-based Computational Modeling Approach to Identify Tissue-

Specific Gene Expression Networks 

We developed HeteroPath, a novel unbiased computational approach centered 

on analyzing gene expression within the context of pathways establishes tissue-

specific gene expression signatures. As HeteroPath assesses bi-directional gene 

expression within pathways, it provides a more comprehensive description of 

cellular heterogeneity and identifies previously unrecognized tissue-specific 

therapeutic targets. The objective of our study was primarily to identify 

heterogeneously dysregulated pathways in populations of cells, organs, or 

tissues. Our key contribution was the establishment of a method to quantify the 

heterogeneity of a tissue-specific pathway by analyzing the directionality and 

magnitude of gene expression dysregulation. We applied HeteroPath to 
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characterize EC and neuronal heterogeneity from an inherently unbiased 

perspective. Since ECs and neurons exhibit significant heterogeneity in structure 

and function as well as propensity for disease, we sought to understand the 

molecular basis of tissue-specific gene expression signatures and networks to 

gain important insights into vascular and neuronal disease mechanisms. 

 In a cohort of freshly isolated mouse ECs from three distinct tissues 

(heart, brain, and lung), we analyzed the transcriptomic heterogeneity of ECs by 

comparing gene set enrichment analysis (GSEA) and parametric gene set 

enrichment analysis (PGSEA) to our novel gene interaction model that assesses 

the bi-directional gene expression state (HeteroPath). Ranking gene expression 

levels in the context of established signaling pathways allowed us to discover 

transcriptomic signatures specific to a vascular bed. We further characterized the 

tissue-specific signatures by constructing transcriptional networks consisting of 

the identified heterogeneous genes and their regulatory transcription factors as 

determined by motif enrichment analysis. GSEA ranks pathways by cumulatively 

summing the perturbations of all individual genes within the context of each 

pathway. However, one limitation of this method is that it factors in the magnitude 

of perturbation for every individual gene when establishing a pathway as tissue-

specific. GSEA primarily labeled minimally differentially expressed pathways as 

tissue-specific and in some cases was unable to detect tissue-specific pathways. 

Therefore, applying GSEA to identify tissue-specificity would be powerful in 

settings when examining global cellular quiescence as a function of minute gene 

expression variation across several tissues. PGSEA predominantly identified 
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upregulation of amino acid metabolism pathways in the brain endothelium such 

as phenylalanine, tryptophan, and tyrosine metabolism. HeteroPath analysis, on 

the other hand, identified transcriptomic upregulation of signaling pathways in the 

brain such as the Wnt signaling and adherens junction pathways when compared 

to lung or heart endothelium. 

 The HeteroPath results observed from the endothelial, neuronal, and 

simulated datasets suggest that HeteroPath performs most optimally when the 

dysregulation of genes within pathways is both upregulation and down regulation 

rather than unidirectional dysregulation. This is evidenced by HeteroPath 

identifying the fewest significant tissue-specific pathways in the endothelial 

dataset. In the neuronal dataset, the output of HeteroPath produced the highest 

enrichment score, most significant p-values, and highest percentage of tissue-

specific pathways. To test the robustness of HeteroPath, we manipulated the 

proportion and magnitude of dysregulated genes within a pathway and observed 

that as the proportion and magnitude of heterogeneous genes increased the 

specificity and sensitivity of HeteroPath detecting significant pathways increased. 

We further evaluated the statistical power and type-I error using a linear additive 

model and found that HeteroPath performs with comparable statistical power and 

control of type-I error to GSEA and PGSEA.  

 The upregulated and downregulated genes within pathways identified by 

HeteroPath are important factors in activating specialized signals which influence 

the interactions amongst a heterogeneous population of cells. We mapped these 

genes to gene expression networks to understand the underlying regulatory 
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interactions which drive the observed phenotype. From the brain endothelial Wnt 

signaling gene expression network, we identified the upregulation of the centroid 

Lef1, which is known to regulate brain vascularization and BBB differentiation127. 

This finding, for example, generates the hypothesis that Lef1 is a key 

transcription factor mediating the development and maturation of brain ECs 

through the activation of Wnt signaling.  

5.1.1 Limitations and Future Research 

The identified tissue-specific gene regulatory networks include regulated 

pathways that would otherwise be overlooked by conventional analysis methods. 

Even though HeteroPath shows promise in generating tissue-specific gene 

regulatory networks, there are limitations of our approach that need to be 

considered. To assess the performance of HeteroPath, we randomly permuted 

the class labels and executed HeteroPath to calculate confidence intervals and 

p-values for each of the AUC values at distinct fold-change cut-offs. However, 

the sensitivity and specificity of these regulated pathways identified by 

HeteroPath could not be compared with GSEA and PGSEA using biological 

datasets since the method for generating the ground truth relied on GSEA and 

PGSEA. Therefore, we generated simulated microarray datasets and applied 

HeteroPath, GSEA, and PGSEA to detect differentially expressed gene sets. 

From this simulation study, we found that the statistical power and type I error 

rates for HeteroPath were comparable to existing gene set enrichment analysis 

methods. 
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Similar to PGSEA and GSEA, the HeteroPath algorithm relies on existing 

pathway databases. It is known that the curated pathways share multiple genes 

or describe similar phenomena209. For instance, we found occludin to be highly 

upregulated in the BBB, but it is not officially curated as a member of the 

adherens junction pathway even though it is known that occludins regulate 

adherens junction pathways in the brain endothelium210. In the commonly used 

KEGG pathway database, which we also employed as a pathway reference 

database for our analysis, pathways often significantly overlap on a molecular 

and functional level. Therefore, one limitation of our analyses is the accuracy and 

comprehensiveness of the underlying pathway database curation. To resolve this 

issue, a dimension reduction machine learning technique could be implemented 

to curate and filter the pathways from existing databases. Furthermore, 

expanding existing annotations to include condition-, tissue-, and cell-specific 

functions for genes and pathways would allow for the prediction of system 

variation due to factors such as stimuli, mutations, or environmental change95. 

The goal of our analysis and algorithm development was to develop tools that will 

allow researchers to predict signature gene regulatory networks for cell types, 

determine putative transcription factors that could drive the heterogeneity and 

generate novel biological hypotheses. It should be noted that the biological 

significance of each signature network would need to be confirmed using in vivo 

gene deletion or gene depletion studies. 

In conclusion, we describe herein a computational algorithm which ranks 

pathways by assigning heterogeneity scores. This technique allowed us to 
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uncover additional endothelial cell and neuronal signature gene regulatory 

networks for each tissue that would not have been identified by traditional 

analyses such as GSEA or PGSEA. Even though our analysis focused on 

comparing two cohorts of cellular heterogeneity: three endothelial cell 

populations and three neuronal populations, the algorithm can be readily 

expanded to assessing pathway heterogeneity between several tissues and 

implemented in any cellular heterogeneity context. Thus, the described 

computational approach identifying distinct regulatory pathways and druggable 

therapeutic targets in endothelial and neuronal populations may be of value in 

understanding the complex heterogeneity of other tissues. 

5.2 Unraveling Tissue-Specific Endothelial Cell Heterogeneity Using 

Pathway-based Computational Modeling of Gene Expression  

In recent years, understanding endothelial heterogeneity and the tissue-specific 

endothelial niche has become important for defining vascular health during 

homeostasis211-213. The extent of organ-specific endothelial heterogeneity and 

the plasticity of ECs in each respective organ to assist in organ-specific function 

is an important aspect of vascular biology208. In our work, we leveraged the 

RiboTag mouse model147 and computational analysis of RNA-Seq data to identify 

the molecular signature of brain, lung, and heart endothelial translatome 

underlying organ-specific endothelial function. Our findings suggest that in each 

organ, the ECs adopt the characteristics of the neighboring cells within the 

tissue. In the brain, the endothelial cells actively translate mRNA transcripts 

associated with synaptic signaling and amino acid metabolism. In the lung 
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endothelial translatome, we identified the upregulation of immune activation, cell 

migration, and tissue development. In the heart endothelium, we found a strong 

presence of cardiac muscle processes as well as proliferation and tissue 

maturation. While gene set enrichment analysis provided information about the 

biological processes that are characteristic of each organ-specific endothelium, it 

lacked the resolution necessary to detect individual gene enrichment. To 

understand which clusters of genes were enriched in a tissue and which genes 

potentially interact with each other in a tissue-specific manner, we performed 

differential expression analysis and established tissue-specific gene expression 

signatures. These tissue-specific endothelial translatome signatures provide 

insight into the molecular mechanisms driving organ-specific endothelial 

heterogeneity.  

 The overarching goal of our systems biology approach was to develop an 

approach which blends genomic and pathway information to better understand 

endothelial biology. One of the current difficulties faced is defining the tissue-

specific function of individual tissue-specific genes. This remains a challenge 

because the precise function of genes in multiple tissues are controlled by the 

microenvironment in which the cells are expressing the gene. Additionally, the 

tissue-specific gene-gene interactions are not well characterized due to the 

inability to perform high-throughput interaction measurements. To directly study 

the molecular configuration in brain, lung, and heart ECs, we integrated 

differentially expressed genes identified using RNA-Seq with publicly available 

curated signaling pathway databased to infer biological processes, functional 
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gene-gene interactions, and provide an enhanced understanding of organ-

specific endothelial biology.  

The tissue-specific endothelial translatome we performed RNA-Seq on is 

an in vivo complement to the incessantly growing transcriptomic work on 

endothelial heterogeneity. It revealed the in vivo organ-specific endothelial 

signatures and generated hypotheses about the role of ECs in organ-specific 

function. In depth analysis of the endothelial translatome data presented an 

opportunity to understand the tight regulation of endothelial signaling pathways 

within each organ. Since the organ-specific endothelial signatures we generated 

accurately weigh and integrate diverse molecular data, these signatures are the 

most comprehensive map of the relationship between genes, phenotypes, and 

tissues. These tissue-specific endothelial signatures become especially powerful 

for understanding vascular disease because they contain the information 

required to determine the dysregulation and reconfiguration of gene interactions 

manifested during different stages of disease. Transitions from healthy to 

diseased states as well as the progression of disease are likely driven by the 

molecular dynamics that occur in a tissue-specific pattern.  

A key challenge in current drug development focuses on the question of 

tissue-specific targeting. One of the leading goals of drug delivery and 

therapeutic agents in vascular biology has followed the Folkman analogy of 

drugs acting only where they are needed181. In our work, we provide the 

comprehensive list of tissue-specific endothelial specific markers, or zip codes 

that can be targeted. Ligands which directly target the genes present in the 
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tissue-specific endothelial signatures would be effective delivery targets for toxic 

agents, diagnostic molecules, genes, and other effector molecules to localize in 

brain, lung, or heart endothelial beds214. Modern drug delivery techniques for 

vascular injury should focus on reconstituting the tissue-specific homeostatic 

organ-specific endothelial signature.  

5.2.1 Limitations and Future Research 

Computationally analyzing the translatome of organ-specific ECs has proven to 

be invaluable for understanding tissue-specific EC function in the healthy state. 

Relative to other translatome profiling systems, the RiboTag system was easily 

paired with the Cre recombinase system to attain high specificity. This less 

technically challenging and time-consuming method was robust for targeting the 

endothelial cell population in each organ. Like all systems, the RiboTag system 

has inherent limitations which should be considered. For instance, the RiboTag 

system is not equipped to differentiate between mRNA primed to translate versus 

mRNA undergoing active translation. Due to this, the translational efficiency for 

individual mRNAs could not be quantified. If translation efficiency is an essential 

read out, then the RiboTag method could be performed alongside techniques 

including polysome profiling215.  

 Additionally, since the RiboTag system directly isolates ribosome 

associated mRNAs, it cannot be used for single cell RNA-Seq. Although the 

RiboTag system loses individual cellular gene expression information by 

reducing the sample population into an aggregate profile, it more accurately 

detects minimally expressed genes. ScRNA-Seq studies are better suited for 
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understanding the inter-tissue composition, while tissue-specific translatome 

analyses are powerful for generating a more comprehensive signature since the 

data contains the depth necessary to make inferences about the tissue structure 

and function. When the behavior and properties of all the endothelial cells within 

a tissue are merged using a Cre driver, such as Cdh5 in our case, we were able 

to comprehensively define the organ-specific endothelial differences.  

 In this work the RiboTag method allowed us to characterize organ-specific 

ECs in the healthy state. Now that the baseline organ-specific endothelial 

signature has been defined it would be quite exciting to compare it to each 

organ-specific endothelial translatome across different disease states. For 

example, which tissue-specific signaling pathways are activated in the brain 

endothelium during different stages of neurodegenerative diseases? Using the 

established baseline endothelial translatome signature, we can compare the 

activated brain EC translatome during early stages of Alzheimer’s disease to the 

homeostatic brain EC translatome signature to identify endothelial mechanisms 

of Alzheimer’s disease.  

As the data we have generated continues to be analyzed we hope to learn 

more about the underlying mechanisms by which ECs adopt a tissue-specific 

molecular signature and contribute to tissue-specific function. An increasingly 

active area of research has been to generate tissue-specific EC populations for 

regenerative therapy216. For example, there have been recent breakthroughs 

differentiating human pluripotent stem cells (hPSCs) to derive blood-brain barrier 

endothelial cells217,218 and endothelial cells with heart specificity219. These studies 
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have been performed without considering the comprehensive tissue-specific 

endothelial signature. Now that we have established the pathways and factors 

that are distinctively expressed in each organ-specific endothelial population, it 

would be worthwhile to utilize this information to improve differentiating stem cells 

into organ-specific endothelial cells.  

5.3 Capturing Tissue-specific Endothelial Translatome Dynamics during 

Systemic Inflammation 

Even though ECs are situated on the inner lining of blood vessels and primarily 

act as regulators of transport between the blood and neighboring tissue, they are 

active mediators of tissue function and modulate tissue development and 

regeneration220-222. In response to tissue injury, ECs signal tissue-resident stem 

cells to activate self-renewal and differentiation pathways to assist in the repair 

process88. It has also previously been reported that ECs secrete chemokines and 

other paracrine factors to induce repair processes such as regenerative 

alveolarization in the lungs or liver regeneration223. The tissue-specific response 

ECs exhibit varies considerably in response to injury and is manifested in tissue-

specific activation of transcription factors, chemokines, and growth factors224.  

Delineating the molecular signature responsible for the tissue-specific ECs 

during tissue injury, repair, and regeneration during systemic inflammation 

required a novel strategy to genetically target the endothelial translatome in an 

organ-specific manner. We crossed RiboTag mice (Rpl22HA/+) with endothelial-

specific VE-cadherin-Cre mice to generate RiboTagEC (Cdh5CreERT2/+; Rpl22HA/+) 

mice. Following tamoxifen-induced recombination at week 4, HA-
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tagged Rpl22 was specifically expressed in endothelial cells in all organs. To 

investigate the mechanisms of organ-specific EC injury, repair, and regeneration 

we performed RNA-Seq analysis of ECs isolated at 0 hr, 6 hr, 24 hr, 48 hr, 72 hr, 

and 1-week post-LPS challenge. We implemented this strategy and 

characterized the translatome for brain, lung, and heart ECs during systemic 

inflammation. One of our most important findings was that the organ-specific 

endothelial translatome signatures were not solely angiocrine factors, adhesion 

molecules, chemokines, transcription factors, cell surface receptors, or metabolic 

regulators, but rather a combination of several unique molecular processes. 

Thus, during systemic inflammation and more precisely endothelial injury, new 

strategies targeting different tissue-specific molecular processes are required.  

The computational analysis of the brain, lung, and heart ECs in response 

to systemic inflammation induced by LPS identified that each organ-specific 

endothelial translatome maintained a distinct molecular signature. We began 

unraveling the tissue-specific endothelial heterogeneous responses by testing 

whether the different responses to LPS-induced injury could be attributed to the 

dysregulation of inflammatory genes. By focusing on inflammatory genes, we 

concluded that the inflammatory response genes in the brain, lung, and heart 

ECs time course significantly. Interestingly, in the brain endothelium there was 

delay in the progression of inflammation but an accelerated resolution of 

inflammation. Additionally, the brain endothelial inflammatory response was not 

as dramatic as the lung and heart endothelium due to the minimal permeability of 

the blood-brain barrier225. During early inflammation, the gene expression 
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dysregulation in the lung was likely a reflection of the significant EC loss. During 

late inflammation, the hallmark inflammatory gene expression profile in brain, 

lung, and heart ECs was upregulation of leukocyte migration and chemotaxis 

factors. This finding suggests that even though the endothelial translatome is 

heterogenous across distinct organs at baseline, there is a shared inflammatory 

program in response to systemic endotoxemia.  

To perform a temporal analysis as a function of previous time points rather 

than differential expression analysis of individual timepoints we developed an 

entropy-based model named Subnetwork Signaling Entropy Analysis (SSEA). 

When we applied SSEA to infer dysregulated tissue-specific gene regulatory 

subnetworks from the organ-specific endothelial translatome inflammation time 

series RNA-Seq data, we successfully identified signaling pathways which were 

misconfigured during inflammation and reconfigured during regeneration. For 

example, we found a subnetwork of the Wnt signaling pathway, with Lef1 as a 

centroid node, change its preferred targets during inflammation and then return 

to baseline interactions after the resolution of inflammation. We found that when 

we detected differentially regulated subnetworks, we were able to detect genes in 

the context of their interacting partners which may be genes with weaker 

differential expression or lower expression level. One of the major advantages of 

implementing SSEA was that SSEA provided insights into the time series 

responses specific for each of the distinct endothelial translatomes. This 

advantage did not only prove to be helpful in the case of analyzing a time-series 

in response to a stimulus but would also be important for analyzing time-series 
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datasets evaluating cellular differentiation or disease progression. By considering 

previous time points and the context of differentially expressed genes, we were 

able to identify a more comprehensive set of differentially expressed genes. In 

this fashion, we developed a novel method, SSEA, that detects subtle changes in 

the time series and broadens the scope of drug targets by providing the 

regulatory network for each differentially expressed gene.  

5.3.1 Limitations and Future Research  

In this work, we have identified differentially expressed genes by performing 

individual time point comparisons as well as identified dysregulated subnetworks 

by calculating subnetwork signaling entropy. Since the network signaling entropy 

is a function of the gene expression of each node in the network as well as the 

correlation between genes, it is important to identify why stimulation causes an 

increase or decrease in tissue-specific subnetworks. While network entropy was 

able to discriminate dysregulated tissue-specific subnetwork from unaffected 

subnetworks, it does not better classify individual genes as differentially 

expressed when compared to standard differential expression approaches. Since 

we did not perform rigorous analysis on other quantitative network measures, it 

remains an outstanding question whether other network measures may provide 

equally good discrimination between dysregulated subnetworks and unaffected 

subnetworks. Nevertheless, the loss of an edge between two nodes in the 

network indicated an increase in subnetwork entropy which provides an 

interpretable framework in which systemic changes in gene expression can be 

explored.  
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When studying dynamic biological phenomenon such as the tissue-

specific endothelial response to LPS-induced systemic inflammation, datasets 

must be generated in a time series experiment. In our study, the brain, lung, and 

heart endothelial translatome were sampled and sequenced at several time 

points. By capturing the gene expression levels of the translatome we intended to 

identify factors responsible for mediating the tissue-specific endothelial response 

to LPS-induced inflammation. The analysis of this multi-time series involved 

analyzing several different samples simultaneously. As we increased the number 

of time points, the resolution of the data we generated better reflected the 

biological phenomenon, but the number of time points also heightened the 

complexity of the data and the cost of the experiment. To specifically handle the 

complexity of the obtained time series data, more powerful algorithms and 

methods need to be developed. So far, these algorithms have not been 

implemented due to technical infeasibilities. As tools such as cloud computing 

and parallelization continue to develop, pipelines and algorithms will have the 

resources necessary to be implemented to improve accuracy. As researchers 

continue to focus on high-throughput Omics data integration, the models will 

become fine-tuned and will further the understanding of time series biological 

processes including organ-specific endothelial response to systemic 

inflammation.  
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