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SUMMARY

Visual Question Answering (VQA) concerns providing answers to natural language questions

about images. Several deep neural network approaches have been proposed to model the task

in an end-to-end fashion. Whereas the task is grounded in visual processing, given a complex

free form question the language understanding component becomes crucial. In this work, I

hypothesize that if the question focuses on events described by verbs, then the model should be

aware of verb semantics, as expressed via semantic role labels, argument types, and/or frame

elements. Unfortunately, no VQA dataset exists that includes verb semantic information. My

first contribution is a new VQA dataset (imSituVQA) that I built by taking advantage of the

imSitu annotations. The imSitu dataset consists of images manually labeled with semantic

frame elements, mostly taken from FrameNet. Second, I propose a multi-task CNN-LSTM

VQA model that learns to classify the answers as well as the semantic frame elements. The

experiments on imSituVQA show that semantic frame element classification helps the VQA

system avoid inconsistent responses and improves performance.

Semantic role labeling is an alternative solution to approximately annotate any VQA dataset

of interest. I employed a PropBank based semantic role labeler to label a subset of the VQA

dataset (VQAsub). Then I trained the proposed multi-task CNN-LSTM model with VQAsub.

The results show a slight improvement over the single-task CNN-LSTM model.

x



CHAPTER 1

INTRODUCTION

Visual Question Answering (VQA) is a multimodal task falling at the intersection of Com-

puter Vision and Natural Language Processing (NLP). Given an image and a question in natural

language, the task of a VQA system is to provide a correct natural language response. The

recent increasing interest in VQA is driven by the availability of large datasets and the success

of Deep Learning in both Computer Vision and NLP (Ferraro et al., 2015). Several deep neural

network approaches have been proposed to model the task in an end-to-end fashion. With all

the progress so far, the task of VQA is not solved yet.

Here, I describe two problems VQA suffers from: (1) The VQA task is usually grounded in

visual processing, however, if the question focuses on events described by verbs, the language

understanding component becomes crucial. I hypothesize that the model should be aware of

verb semantics, as expressed via semantic role labels, argument types, and/or frame elements.

Unfortunately, no VQA dataset exists that includes verb semantic information. (2) End-to-end

VQA models map a raw input <image, question> pair to a joint representation that is passed

to a classification layer on answers. This approach ignores the semantic of answers. For ex-

ample, a subset of answers can be stronger candidates for questions about location ([kitchen,

office, outdoor] versus [blue, 2, pasta]). My hypothesis is that the model should be aware of

the higher-level semantic of answers so as to avoid irrelevant responses and to improve gener-

1
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alization of the model.

The next three sections describe the three main contributions of my work.

Figure 1. Word cloud of the verbs in the VQA dataset (excluding ’to be’ )

1.1 Need for a VQA dataset annotated with verb semantic information

Many large scale datasets for VQA have been created. Exploring these datasets one can

realize that questions are mostly simple, short and more visually than linguistically challenging.

One reason comes from the fact that usually, people from Computer Vision research commu-

nities collect the datasets. For example, the DAQUARE (Malinowski and Fritz, 2014) and

CLEVER (Johnson et al., 2017) datasets include questions limited to objects and their at-
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tributes. The VQA dataset (Antol et al., 2015) is among the rare datasets with open-ended

free form questions. Figure 1 visualizes a word cloud of verbs excluding ”to be” in the VQA

dataset. I have observed that a large portion of the questions available in the VQA dataset,

involves a verb other than ”to be” (i.e., 43% of VQA dataset Figure 2). Then it becomes

important for the model to be aware of the arguments the verb can take. This information

can be described via semantic role labels, argument types, and/or frame elements. Semantic

information about verbs includes the type of arguments a verb can take and how they can

participate in the event expressed by a verb, but this information is missing in current VQA

systems. I contend that, if a VQA system is aware of such semantic information, it can not only

narrow down the possible answers but also avoid providing irrelevant responses. For example,

the answer to the question ”What is the woman cooking in the oven?”, should belong to the

FOOD semantic category. However, neither do VQA datasets encode, nor has any VQA system

taken advantage of this information.

The question is how to incorporate such semantic information in VQA. Traditionally in

linguistics, semantic information about a verb has been captured via so-called thematic or se-

mantic roles (Martin and Jurafsky, 2009), which may include roles such as AGENT or PATIENT

as encoded in a resource such as VerbNet (Kipper et al., 2008), the abstract roles provided by

PropBank (Palmer et al., 2005), or rather, the specialized frame elements provided by FrameNet

(Fillmore et al., 2003). In FrameNet, verb semantics is described by frames, schematic represen-

tations of situations. Frame elements are defined for each frame and correspond to important

entities present in the evoked situation. For example, the frame Cooking-Creation has four core



4

to be

56.73%

other verbs

43.27%

Figure 2. Distribution of verbs in the VQA dataset, ’to be’ versus ’other verbs’

elements, namely Produced Food, Ingredients, Heating Instrument, Container. I took advantage

of the imSitu dataset (Yatskar et al., 2016), developed for situation recognition and consisting

of about 125k images. Each image is annotated with one of 504 candidate verbs and its frame

elements according to FrameNet. My first contribution is the creation of the new imSituVQA

dataset, by employing a semiautomatic approach in order to create question-answer pairs from

the imSitu dataset.

1.2 A novel multi-task CNN-LSTM VQA model

Beside datasets, many models have been proposed and deep neural networks (Deep Learn-

ing) have been a dominant approach as of late(Wu et al., 2017). As mentioned earlier, end-to-

end models do not exploit semantic information in answers. These models can be augmented
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with linguistic information about answers and modified in order to respond coherently.

Figure 3. The proposed multi-task CNN-LSTM VQA model

(Xie et al., 2015) proposed a framework known as hyper-class augmented and regularized

deep learning. The authors suggest a hyper-class augmentation formulated as multi-task learn-

ing in order to boost the recognition task in fine-grained image classification (FGIC). Inspired

by their ideas, I formulate a VQA task as a multi-task learning problem. In this formula-

tion, the system should learn to classify answers as well as hyper-classes. Figure 23 depicts an

adapted version of the VQA task. Hyper-classes can be any additional information relevant to
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answers. For example in the imSituVQA answers are labeled with semantic frame information.

The semantic frames can be included as hyper-classes.

My second contribution is to augment a CNN-LSTM VQA model with semantic information

employing the described multi-task learning approach (Figure 3). The model is trained to clas-

sify answers as well as semantic frame elements. The two classifiers share the same weights

and architectures up to the classification point. The experiments on imSituVQA show that the

frame element classification acts as a regularizer to improve VQA performance. Augmenting

VQA with frame element information boosts accuracy up to 5%.

1.3 Automatic semantic role labeler as an alternative annotation tool

In order to train the proposed VQA model with any VQA dataset of interest semantic role

labels must be available. In order to avoid costly manual annotations, automatic semantic

role labeling is a quick alternative solution. I employed ClearNLP (Choi and Palmer, 2012)

(PropBank based semantic role labeler) to label a subset of the VQA dataset (VQAsub). ”R-”

pattern was used as an indicator of the response semantic role. For example, ”What kind of

pants does the woman wear?” is labeled as V:wear.01 A0:woman R-A1:kind. R-A1 indicates

A1 is the response semantic role. I used SemLink (Palmer, 2009) in order to map PropBank ab-

stract roles to VerbNet roles. For example A1 was mapped to Theme. I employed the proposed

multi-task CNN-LSTM model for training and testing. The results show a slight improvement

over the single-task CNN-LSTM model.
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1.4 Outline

This thesis is organized as follows:

Chapter 2 reviews resources and related work in VQA, from datasets to proposed architec-

tures and models.

Chapter 3 provides a short background on primary neural network concepts and models.

The CNN-LSTM model is briefly explained since it is the primary VQA model employed in this

proposal.

Chapter 4 describes the process of extracting a novel VQA dataset (imSituVQA) from the

currently available imSitu dataset. The process is composed of two primary steps: (1) Question

answer template generation and (2) Question answer pair realization.

Chapter 5 describes augmenting VQA with semantic frame information in a multi-task

learning approach. Further evaluations and fine-grained analysis are described, and so is the

performance of the proposed VQA model.

Chapter 6 generalizes the proposed idea to be working for any VQA dataset of interest.

Automatic semantic role labeling is an approximate alternative to manual annotation. Manual

annotation is expensive and time consuming. I employed semantic role labeling tools to label

the VQA dataset (Antol et al., 2015) in order to see how the proposed multi-task CNN-LSTM

works.

Chapter 7 concludes the thesis and proposes future research directions.



CHAPTER 2

RESOURCES AND RELATED WORK

In this chapter, I review various datasets and models that have been used to tackle the VQA

task.

2.1 Datasets

Datasets differ based on the number of images, the number of questions, complexity of the

questions, reasoning required and content information included via annotation for images, and

questions. Performance of any model of interest is typically measured via accuracy, unless

otherwise mentioned.

The DAtaset for QUestion Answering on Real-world images (DAQUAR) (Malinowski and

Fritz, 2014) was among initial datasets published for the VQA task. The images are taken from

NYUDepth Version2 dataset (Silberman and Fergus, 2012). The images are all of indoor scenes.

NYUDepth Version2 is annotated with semantic segmentation information. DAQUAR includes

1449 images (795 training, 654 test). Question answer pairs are collected in two ways: (1)

manually by human annotators with focus on colors, numbers and objects; (2) using predefined

templates to generate from the NYU dataset ( ”How many [object] are in [image id]?”). In

total, 12,468 question answer pairs were collected (6,794 training, 5,674 test). Unfortunately,

DAQUAR is restricted as the answers are among a predefined set of 16 colors and 894 object

categories. It also suffers from bias resulting from humans focusing on a few prominent objects

8
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such as tables and chairs in the image. Beside accuracy, the authors proposed WUPS in order

to measure performance. WUPS is defined based on WUP (Wu and Palmer, 1994). WUP(a, b)

measures similarity based on the depth of two words a and b in a taxonomy such as WordNet.

WUPS generates a score between 0 and 1. It is typically thresholded at 0.9 indicating whether

an answer is correct or not. Figure 17 and section 5.2.2 provide futher details on WUPS.

Many VQA datasets utilize the Microsoft Common Objects in Context (MS-COCO) (Lin

et al., 2014) image dataset. MS-COCO consists of 2.5 M instances of 91 object types for object

recognition. The images are taken from complex everyday scenes of common objects in a natural

context.

The COCO-QA dataset (Ren et al., 2015a) is a dataset based on the MS-COCO dataset.

It was one of the first attempts at increasing the scale of the dataset for the VQA task. The

<question, answer> pairs are automatically generated from MS-COCO caption annotations.

The questions generally fall in four categories: Object, Number, Color and Location. For each

image, there is one question with a single word answer. The dataset contains a total of 123,287

samples (72,783 training and 38,948 testing). Performance is assessed via either accuracy or

WUPS score. Automatic conversion of captions results in a high repetition rate of the questions.

Also since captions are describing the main information of the image, it does not provide detailed

specific questions.

The VQA dataset (Antol et al., 2015) is the most widely used dataset for the VQA task.

It is mostly because of the free-form and open-ended design of the questions and answers.

For open-ended questions, potentially major AI capabilities are needed to answer: fine-grained
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recognition (e.g., ”What kind of food is served?”), activity recognition (e.g., ”Is this man play-

ing tennis?”), object detection (e.g., ”How many zebras are there?”), commonsense reasoning

(e.g., ”Does this person follow the rules?”) and knowledge base reasoning (e.g., ”Is this a hy-

brid car?”). Real images are selected from the MS-COCO dataset. Questions and answers were

generated by crowd-sourced workers. For each question image pair, 10 answers were obtained

from each person. Answers are usually a single word or multiple words. Almost 38% of the

questions are Yes/No, 12% Number and 50% Others. The original VQA dataset has 204,721

images with 614,163 questions, 3 questions per image on average (248,349 training, 121,512

validation, 244,302 testing). The second version of the VQA 2.0 has also been proposed (Goyal

et al., 2017). It extends the VQA dataset by balancing Yes/No type of questions. A machine

response is evaluated via a VQA specific accuracy measure. An answer is considered correct if

it matches the answers of at least three annotators.

The Visual Genome 1 QA (Krishna et al., 2017) is the largest dataset for VQA, (1.7 M ques-

tion/answer pairs). It includes structured annotations known as scene graphs. These scene

graphs specify visual elements, attributes, and relationships between elements. Questions were

created by human subjects. Questions start with one of the 7 possible question words (Who,

What, Where, When, Why, How, and Which). A major advantage of the Visual Genome QA

dataset for VQA is the structured scene annotations. The diversity of the answers is also larger

in comparison to the VQA dataset. The Visual7W dataset (Zhu et al., 2016) is a subset of

1This is the terminology as chosen by the authors. Here is the webpage of the project: https:

//visualgenome.org/

https://visualgenome.org/
https://visualgenome.org/
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the Visual Genome dataset with additional annotations. Objects mentioned in the question

were drawn with bounding boxes in the image in order to resolve textual ambiguity and to

enable answers of a visual nature. The questions are evaluated in a multiple choice way with 4

candidate answers of which only one is correct. The dataset contains 47,300 images and 327,939

questions.

The Compositional Language and Elementary Visual Reasoning diagnostics dataset (CLEVR)

(Johnson et al., 2017) was proposed to alleviate the biased problem of VQA benchmarks. In

this way it prevents the models from exploiting the situation in order to answer questions with-

out reasoning. It challenges visual reasoning capabilities such as counting, logical reasoning,

comparing, and storing information in memory. It is designed so that accessing external knowl-

edge bases and using common sense may not help in order to answer the questions. Images

are annotated with ground-truth object positions and attributes (shape, size, color, material).

Questions are generated automatically using textual templates (i.e. ”How many <Color>

<Material> things are there?”) from 90 question families. CLEVR has 100K rendered images

(simple 3D shapes) and about one million questions of which 853K are unique.

The focus of many VQA datasets is on questions which require direct analysis of an image in

order to answer. There are many questions that require common sense, or basic factual knowl-

edge to be answered. FVQA (Fact-based VQA) (Wang et al., 2018) was proposed by appending

supporting fact information to VQA (<image, question>,answer) samples. The supporting fact

is represented as a triplet such as <Cat, CapableOf, ClimbingTrees>. 2190 images were sam-

pled from the MS-COCO. Each image is annotated with visual concepts (objects, scenes, and
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actions) using available resources and classifiers. The knowledge about each visual concept

is extracted from structured knowledge bases, such as DBpedia, ConceptNet, and WebChild.

Annotators created 5,826 questions in which answering each question requires information from

both the image and selected supporting facts.

2.2 Models

Multi-World QA (Malinowski and Fritz, 2014) is among the popular initial approaches which

do not employ deep learning in order to build a VQA system. The possibility of a response

given <image, question> inputs is formulated as follows:

P(A = a|Question,World) =
∑
ST

P(A = a|ST,World)P(ST |Question) (2.1)

ST is a hidden variable (Liang et al., 2013) related to a semantic tree. This semantic tree

is obtained from running a semantic parser on the question. W is the world 1, representing

the image (features can be obtained from segmentation). A deterministic evaluation function

evaluates P(A = a|T,W) and a log-linear model is trained in order to obtain P(T |Q). This

model was named SWQA. The authors also extended SWQA to a multi-world case covering

model unpredictability in class labeling and segmentation. These models were evaluated on the

DAQUAR dataset.

Deep learning models typically employ Convolutional Neural Networks (CNNs) to embed

the image. CNNs can be any of the popular models such as AlexNet(Krizhevsky et al., 2012),

1This is the terminology as chosen by the authors of this paper
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GoogLeNet (Szegedy et al., 2015) , VGGNet (Simonyan and Zisserman, 2015), ResNet (He

et al., 2016)and so on. Question words are initially mapped to dense vectors using word

embeddings such as Glove (Pennington et al., 2014) or Word2Vec (Mikolov et al., 2013). Then,

a sequence of vectors is usually passed to a Recurrent Neural Networks (RNNs) in order to

embed the question. RNNs are usually LSTMs (Hochreiter and Schmidhuber, 1997) or GRUs

(Chung et al., 2014)

Joint embedding is motivated by the advances of Artificial Neural Networks (Deep Learning)

in both Computer Vision and NLP. Learned embeddings of image and question are joined in

some fashion such as concatenation, multiplication or any complex fusion. Then after applying

a number of fully connected layers, an answer can be provided via classification on a number

of frequent responses or via generation by means of an RNN model. The approach is shown at

the top of Figure 4.

iBOWIMG (Zhou et al., 2015) employed the last layer of the pre-trained GoogLeNet model

for image classification in order to extract image features. Textual features of the question

were taken using a simple bag-of-word model. The concatenation of the features is passed to a

softmax layer for answer classification. The proposed model was evaluated on the VQA dataset

showing comparable performance with RNN based techniques.

(Ma et al., 2016) proposed a fully CNN based model. Not only is the image embedded using

the CNN model (VGGNet) but also the question is encoded using a CNN. While encoding the

question via CNN, the encoded question interacts with the image representation inter-modally

in order to produce an answer. The image CNN generates an image representation (vim), the
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sentence CNN applies convolution with receptive field size 3 on the question (vqt). Finally

a multimodal CNN fuses the multimodal inputs (vim and vqt) together to generate their joint

representation (vmm). This joint representation is given to a softmax layer to predict the answer.

The model was evaluated on the DAQUAR and COCO-QA datasets.

(Malinowski et al., 2017) used a pre-trained VGGNet in order to obtain the image repre-

sentation. The word embeddings of the question words are fed to an LSTM in order to obtain

the question representation. The answer is decoded in two ways: classification over answers or

as a generation of the answer. A fully connected layer followed by a softmax layer can be used

in order to predict the answer class. On the other hand, an LSTM can be employed in order

to decode and generate an answer. The decoder can generate variable length answers as long

as it does not generate the <END> symbol.

Attention methods improve on deep learning baselines by focusing on specific regions of

the input. In VQA, image features are replaced with spatial features. This allows correlating

the question embedding and regions of the image. The way this mapping is defined and how

it is interacting with question words has resulted in numerous attention based models. These

models are commonly analyzed based on how each attends differently to image regions in order

to answer. It is preferred that the model attends to relevant areas where the clue is located.

This way the attention model performs much better as compared to joint embeddings. A general

uniform attention model is depicted at the bottom of Figure 4

(Shih et al., 2016) proposed an attention-based model referred to as WTL (Where To

Look). The image representation is obtained from a VGGNet and the question representation
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Figure 4. Common approaches in order to model a VQA task (Wu et al., 2017)

by averaging word embeddings. An attention vector is defined over a set of image features

in order to capture the importance the model should assign to each region of the image. If

V = (~v1, ~v2, ..., ~vk) is the set of image features, and ~q is the question embedding, then the

importance of the jth region is computed as

gj = (A~vj + bA)
T (B~q+ bB) (2.2)

The final image embedding is an attention weighted sum of the different regions. The proposed

model was evaluated on the VQA dataset.
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(Yang et al., 2016) employs stacked attention networks (SAN) infering the answer repeatedly.

The image feature matrix of dimensionality 512×14×14 is obtained from the last pooling layer

of a pre-trained VGGNet. This indicates 196 feature vectors of dimensionality 512 for each

region of the image. If VI indicates the image feature matrix, and q is the question embedding,

then passing VI and q through a neural network with a layer with tanh activation function

followed by a softmax layer results in new image features (vi) with corresponding attention

probabilities (pi). Then having pi as weights, a new refined image query (vq) is defined as a

weighted sum of the vi vectors. This process is iterated having vq as new input. Reasoning via

multiple attention layers iteratively, the SAN can filter out the noise and attend to regions that

are relevant to the answer.

(Anderson et al., 2018) proposed a mixture of top-down and bottom-up attention technique.

This results in attention which can be computed at important image regions including the

objects. The main idea is that image regions should not necessarily be of the same size since

an object can be small or large, hence it may require a region in which fits. The bottom-up

mechanism employs a Faster R-CNN (Ren et al., 2015b) in order to propose image regions with

its features. On the other hand, the top-down mechanism figures out the attention weights of

each region.

(Lu et al., 2016) adds visual attention but also models question attention. Two forms of co-

attention were proposed: 1) Parallel co-attention, in which simultaneously image and question

attend over each other. 2) Alternating co-attention, which sequentially switches attention
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between generating image and question. The models were shown to improve performance on

the VQA dataset.

Multimodal Compact Bilinear (MCB) pooling (Fukui et al., 2016) suggested a different way

of combining image and question features in VQA. The idea is to calculate an approximation

of the outer product of image and question features. This would allow a deeper and better

interaction between vision and language modalities. The proposed idea was shown to perform

very well on the COCO-VQA and the VQA datasets.

Compositional models apply multiple levels of reasoning in order to answer a question. For

example, ”What is to the right of the car?” can be decomposed into first searching the car,

and then calling the instance to the right of it. Two popular compositional approaches are

Neural Module Networks (NMN) (Andreas et al., 2016) and Recurrent Answering Units (RAU)

(Noh and Han, 2016). Neural Module Networks (NMN) employ external textual parsers in

order to decompose the task into the subtasks. Recurrent Answering Units (RAU) are trained

completely end-to-end in order to learn sub-tasks.

A regular VQA system is unable to answer questions that require external information.

Knowledge-based techniques are designed in order to cover this shortcoming. They utilize

external structured information ranging from commonsense to encyclopedic level. The Ask Me

Anything (AMA) model (Wu et al., 2016) exploits information from an external knowledge base

in order to guide a visual question answering system. Initially, it extracts attributes such as

object names, properties and so on from the caption of the image. The caption is obtained from

a sample image captioning model trained on the MS-COCO dataset. Attributes are used to
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generate queries for DBpedia (Auer et al., 2007). Each query returns a text which is embedded

via Doc2Vec (Le and Mikolov, 2014). This Doc2Vec is passed as an additional input to the

LSTM in order to generate the answer. The proposed model was evaluated on the VQA dataset

and the COCO-QA dataset.



CHAPTER 3

BACKGROUND

This chapter provides background on Semantic Roles and Neural Networks. Semantic roles

are representations expressing the semantic arguments associated with the predicate or verb

of a sentence. The semantic roles are described in lexical resources such as PorpBank and

FrameNet. The first part of this chapter briefly describes the idea; details on semantic Roles

can be found in (Martin and Jurafsky, 2009). Artificial Neural Networks (ANN) have been

studied for a long time since the 1940s. Deep learning has been a dominant approach to model

a VQA task. Deep learning models typically employ Recurrent Neural Networks (RNN) to em-

bed the question and Convolutional Neural Networks (CNN) to embed the image. The second

part of this chapter explains the concepts and models used in this thesis and further details on

deep learning can be found in (Goodfellow et al., 2016).

3.1 Semantic Roles

The goal of semantic roles is to achieve a common representation for sentences like ”the

woman cooks pasta” and ”cooking of pasta by the woman”. There is a cooking event, the

participants are woman and pasta, and woman is the cook. Semantic roles are representations

expressing the role that arguments of a predicate take in the event. Semantic role labeling

(SRL) is the task of predicting the semantic roles in a sentence.

19
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Thematic roles are one way to capture this semantic commonality. AGENT is the thematic

role that represents an abstract idea such as volitional causation. Theme prototypically rep-

resents inanimate objects that are affected in some way by the action. Table I shows more

examples of important thematic roles. In the two sentences describing the event of the woman

cooking pasta mentioned above, woman is Agent and pasta is Theme.

Thematic Role Definition

AGENT The volitional causer of an event

EXPERIENCER The experiencer of an event

FORCE The non-volitional causer of the event

THEME The participant most directly affected by an event

RESULT The end product of an event

CONTENT The proposition or content of a propositional event

INSTRUMENT An instrument used in an event

BENEFICIARY The beneficiary of an event

SOURCE The origin of the object of a transfer event

GOAL The destination of an object of a transfer event

TABLE I. Some commonly used thematic roles with their definitions(Martin and Jurafsky,

2009)
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Difficulty in defining the thematic roles, have led to different semantic role sets that use

either many fewer (such as PropBank) or many more roles (such as FrameNet).

3.1.1 PropBank

The Proposition Bank (PropBank) (Palmer et al., 2005) adds semantic role labels, to the

syntactic structures of the Penn TreeBank. Penn TreeBank (Marcus et al., 1993) is a parsed text

corpus annotated with linguistic information such as syntactic or semantic sentence structure.

In PropBank, semantic roles are defined with regard to verb senses. The roles are given

numbers rather than names: Arg0, Arg1, Arg2, Arg3, Arg4 and ArgM (M as initial for modifier).

In general, Arg0 represents the AGENT, and Arg1, the PATIENT. The Arg2 is often the

instrument, the Arg3 the start point, and the Arg4 the end point. Table II shows semantic

roles ”Sales fell by 50% to $100 from $200”. Among the 12 senses of fall in VerbNet, fall in

this sentence is recognized as fall.O1, whose definition includes roles Patient (Arg1), Extent

(Arg2), Start point (Arg3) and End point (Arg4).

3.1.2 FrameNet

FrameNet is based on a theory of Frame Semantics (Fillmore et al., 2003). The meanings of

a sentence is described by a semantic frame. The semantic frame is a representation depicting

type of event and the participants in it. In order to explain the idea I show an example: The

concept of shopping usually involves a person doing the shopping (Shopper), the goods that
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Arg# Semantic Words

Arg1 Logical subject, patient, thing falling Sales

Arg2 Extent, amount fallen by 50%

Arg3 start point from $200

Arg4 end point, end state of arg1 to $100

TABLE II. PropBank semantic roles for ”Sales fell by 50% to $100 from $200” (Martin and

Jurafsky, 2009)

are being shoped (Goods). In the FrameNet database 1, this is represented as a frame called

Shopping, and the Shopper and Goods are called frame elements (FEs).

3.2 Feedforward Neural Network

A neuron is an atomic computational unit of a neural network. It gets a weighted sum of

the input vector x and outputs y after applying an activation function f such as sigmoid, tanh

or relu. As shown in Figure 5, a Feedforward Neural Network (FNN) is composed of a series

of levels (layers). Each level is composed of similar computational units and gets the output

of the previous level and after applying an activation function, it passes it to subsequent level.

In this way given an input, a series of matrix manipulations maps it to the output. In case

1https://framenet.icsi.berkeley.edu/fndrupal/

https://framenet.icsi.berkeley.edu/fndrupal/
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Figure 5. A basic feedforward neural network (Goodfellow et al., 2016). Input is passed

through a number of hidden non-linear layers. The last layer outputs the result.

of classification, the output is a probability distribution over classes (softmax ). For example a

feedforward neural network with one hidden layer can be expressed as follows:

h = f(WTx+ b) (3.1)

z = g(UTh+ b) (3.2)

y = softmax(z) : softmax(z)i =
exp zi∑
j exp zj

(3.3)

Training a neural network model means adjusting weight parameters (i.e. W and U in

Figure 5) so as to minimize the error (loss function) of the output. This may require passing

samples to the model several times (each is called one epoch). In order to adjust weights, the
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model requires to compute a loss function. In case of classification, the loss function is usually

cross entropy (Equation 3.4). A training algorithm should adjust each weight based on its

contribution to the error. In mathematical terms, this is expressed by the derivative of the loss

function to each weight parameter. Backpropagation is a popular algorithm which computes

derivatives and adjusts each weight. Different optimization algorithms are proposed concerning

how much each weight should be updated. The batch size is the number of samples processed

before the model is updated.

cross entropy = −

C∑
i=1

yi log(yi) (3.4)

3.3 Convolutional Neural Network (CNN)

Deep learning models typically employ Convolutional Neural Networks (CNNs) to embed

the image. A variety of deep CNNs have been proposed for visual recognition tasks. Here I

briefly describe how a basic CNN works. CNN is an extension of FNN introducing convolution

and pooling layers ( see Figure 6). A convolution layer applies a convolution function to the

input. This convolution function is called kernel or filter. The main purpose of convolution is

to extract features from the input image. Applying a sample m×n kernel to an M×N image

means to move it across the image and to compute an inner product of the kernel with the

intersected image. This results in newly filtered images. A relu unit is used in order to make

sure the output is never negative. These filtered images are passed through a pooling layer in

order to subsample images and reduce dimensionality. For example, max pooling selects the
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Figure 6. A basic Convolutional Neural Network (CNN) block for a classification task

(Goodfellow et al., 2016)

max value of the m×n sub-image. A convolution layer with a subsequent pooling layer acts as

a building block of CNNs. This building block repetition has resulted in different CNN archi-

tectures such as GoogLeNet (Szegedy et al., 2015), AlexNet(Krizhevsky et al., 2012), ResNet

(He et al., 2016), VGGNet (Simonyan and Zisserman, 2015), and so on. After a stack of convo-

lutional layers, a layer flattens the output of pooling in order to pass it to a classification layer

(with likely fully connected layers in between).
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3.3.1 VGGNet

VGGNet (Simonyan and Zisserman, 2015) is a very deep convolutional network proposed

by the Visual Geometry Group (VGG) at the University of Oxford. As shown in Figure 7, the

input is a 224×224 RGB image. The image is given to convolutional layers. Filters with size

3×3 are applied at each convolution layer. The filtered images are the same size as the input

(padding = 1, stride = 1). Spatial pooling is applied by five max-pooling layers, which follow

some of the convolution layers. Max-pooling is applied over a 2×2 pixel window, with stride 2.

Convolutional layers are followed by three fully connected layers ending in a 1000-class softmax

on ILSVRC (ImageNet Large-Scale Visual Recognition Challenge) (Russakovsky et al., 2015)

classification.

3.4 Word Embedding

Word embeddings are described as a vector representation of a word’s semantics or meaning.

Dense embeddings such as Glove (Pennington et al., 2014) are trained directly on a large corpus

in unsupervised mode. Training is based on aggregated global word-word co-occurrence statis-

tics. Words are transformed into a sequence of word vectors while feeding a Neural Network.

This is usually done by an embedding layer. The embedding layer weights can be initialized

with Glove and fine-tuned based on a new task such as VQA.

3.5 Recurrent Neural Network (RNN)

The RNN is an architecture for processing sequential data such as a sequence of words in

a natural language text. The main idea is that the output of step i is affected by input i
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Figure 7. VGGNet: Deep Convolutional Network for large-scale image recognition (Simonyan

and Zisserman, 2015). This pre-trained model is the primary source for extracting image

features.

Figure 8. Recurrent Neural Network (RNN) (Goodfellow et al., 2016). It is widely used for

modeling NLP tasks.
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Figure 9. Lomg Short Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997). This

model does not suffer from the long short term dependencies problem. The bidirectional

LSTM is the primary model used to extract question embedding.

and the output of the previous step i − 1. Then, the sequence of vectors is usually passed to

Recurrent Neural Networks (RNNs) to embed the question. Gated Recurrent (GRU) (Chung

et al., 2014) or Long Short Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) are

popular computational units employed in RNNs.

3.5.1 Long Short Term Memory (LSTM)

The main issue of a basic RNN is long short term dependency. An RNN with LSTM units

is usually called an LSTM network. An LSTM layer is composed of 4 components: (1) an input

gate, (2) cell, (3) a forget gate and (4) an output gate. A cell is responsible for memorizing

values overtimes or over steps. The other three gates are responsible for regulating the flow of

information to the cell and vice versa.
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Figure 10. CNN-LSTM Model (Antol et al., 2015) is the primary VQA model used in this

proposal.

3.6 Neural Network based VQA models

3.6.1 CNN-LSTM model

The CNN-LSTM Model (Figure 10) uses a two-layer LSTM to extract the question em-

bedding and the last layer of VGGNet to extract the image features. Both the question and

image features are mapped to the same dimensionality. Then the two vectors are fused via

element-wise multiplication. Then, the fusion vector is given to a fully connected layer. Finally

a softmax layer is employed to get a distribution over answers.
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Figure 11. Bottom-Up and Top-Down Attention Model (Anderson et al., 2018). This model

employed Faster R-CNN in order to attend at object level.

3.6.2 Attention model

A simple attention model can be obtained by getting the spatial features from the last

convolution block of a VGGNet. As shown in Figure 7, this is a 7×7×512 tensor and a single

vector can represent each of the 49 parts of the image. Then the model allows different fea-

tures to be given different weights. Furthermore, each feature can interact with the question

embedding. More complex is the bottom-up and top-down attention introduced in (Anderson

et al., 2018). This attention is at the level of objects and other important image regions rather

than uniform grid regions. The main idea is that image regions should not necessarily be of

the same size since an object can be small or large, hence it may require a region in which

it fits. This bottom-up mechanism employs a Faster R-CNN (Ren et al., 2015b) to propose

image regions with their features. On the other hand, the top-down mechanism figures out the

attention weights of each region. Figure 11 shows details of this architecture.



CHAPTER 4

IMSITUVQA: A NOVEL VQA DATASET (PREVIOUSLY PUBLISHED

AS M. ALIZADEH AND B. DI EUGENIO. (LREC 2020) A CORPUS FOR

VISUAL QUESTION ANSWERING ANNOTATED WITH FRAME

SEMANTIC INFORMATION. PAGES 5526 − 5533 )

This chapter briefly describes the imSitu dataset and explains the process of extracting a

novel VQA dataset (imSituVQA) from the currently available imSitu dataset. The process

is composed of two primary steps: (1) Question answer template generation: Question an-

swer templates are generated from imSitu abstract verb definitions. (2) Question answer pair

realization: The templates are filled with noun values from the imSitu annotated images.

The imSitu dataset (Yatskar et al., 2016) is collected for situation recognition task and in-

cludes about 125k images. The goal of situation recognition is predicting activities along with

substances, , actors, objects, and locations and so on. imSitu utilizes linguistic resources such

as FrameNet1 (Fillmore et al., 2003) and WordNet2 (Miller, 1995) in order to define a compre-

hensive space of situations. As described in Section 3.1.2, it provides representations helping

to understand who (AGENT ) did what (ACTIVITY ) to whom (PATIENT ), where (PLACE ),

1The FrameNet database contains over 1200 semantic frames. A semantic frame is a description of a
type of event the participants in it.

2WordNet is a lexical database of English.
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fixing cooking falling buying

Agent man Agent boy Agent leaf Agent woman

Object roof Food meat Source tree Goods shoe

Part tile Container wok Goal land Payment credit card

Tool hammer Tool spatula Seller person

Place roof Place kitchen Place shoe shop

catching painting attaching opening

Agent bear Agent man Agent woman Agent cat

Caughtitem fish Item boat Item fabric Item door

Tool mouth Tool roller Tool hand Tool paw

Place body of water Place outside —– Place workstation

TABLE III. Sample imSitu (Yatskar et al., 2016) annotations of images about different

events described by semantic frame.
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using what (TOOL) and so on. A semantic frame is a descriptive structure depicting an event

and the participants in it.

A sample of images from the imSitu dataset and their annotations can be found in Table III.

Every situation in imSitu is described with one of 504 candidate verbs such as cooking, fixing,

falling, opening, attaching and so on. Each verb has a set of FrameNet related frame elements.

For example Sr(cooking) ={ AGENT, FOOD, CONTAINER, HEATSOURCE, TOOL, PLACE

} provides the set of semantic frame elements of the verb cook. The set is also expressed by an

abstract definition: ”an AGENT cooks a FOOD in a CONTAINER over a HEATSOURCE us-

ing a TOOL in a PLACE”. As another example Sr(buying) ={ AGENT, GOODS, PAYMENT,

PLACE } includes a set of semantic frame elements of the verb buy. The abstract definition is :

”the AGENT buys GOODS with PAYMENT from the SELLER in a PLACE”. Table III shows

sample image annotations of some verbs such as cook and buy. The interested reader may refer

to the imSitu online browser in order to explore the dataset. 1

imSitu includes 190 unique frame elements, some shared among verbs such as AGENT and

TOOL, while some are verb-specific such as PICKED∈ Sr(picking). Every image is labeled

with one of the 504 candidate verbs along with frame elements filled with noun values from

WordNet. If an element is not present in the image its value is empty. There are about 250

images per verb and 3.55 roles per verb on average.

1http://imsitu.org

http://imsitu.org
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Question Word Frame Elements

Who
COMPETITOR, VICTIM, LISTENER, INDIVIDUALS, MOURNER, FOLLOWER,

COAGENT, VOTEFOR, PERFORMER, EXPERIENCER, TICKLED, SELLER, EATER

Where
PLACE, TARGET,ADDRESSEE, SURFACE, GROUND, END, SOURCE, SHELTER,

SURFACE, RECIPIENTS,CONTAINER, GOAL, STAGE, SCAFFOLD

What

OBJECT, HUNTED, BORINGTHING,FOCUS,

OCCASION, SUBSTANCE, CLOTH COMPONENTS, DEPICTED,

REFERENCE, AGENTTYPE, FOOD, CENTER, CLOTH

What item
ITEM, SIGNEDITEM, CAUGHTITEM, TURNEDITEM, GOODS, HIDINGITEM

DRENCHEDITEM, REMOVEDITEM, DEFLECTEDITEM, WRAPPEDITEM

What part
PART, BODYPART, YANKEDPART, VICTIMPART, ITEMPART,

RECIPIENTPART, AGENTPART, OBJECTPART, COAGENTPART

What [Frame

Element]

VEHICLE, CONTAINER, SKILL, SHAPE, PATH, LIQUID

IMITATION, MATERIAL, INSTRUMENT, PHENOMENON, OBSTACLE, EVENT

What does the

[AGENT] use to

CROWN, BRUSH, CONNECTOR, GLUE, WRAPPINGITEM, COMPONENT,

LOCK, COVER, DYE, PARACHUTE, ACTION, SEALANT

TABLE IV. A subset of frame elements and the question words they are mapped to.

4.1 Question answer template generation

The main idea behind question template generation is to ask questions about one of the

frame elements of a given verb based on its abstract definition. For example a question about
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what

43%

who

33%

where

24%

what is

43.92%

what does

28.40%

what item

17.50% what container

2.12%
what part

2.03% what [other]
6.03%

(a) (b)

Figure 12. Distribution of questions in templates. (a) covers all questions while (b) includes

questions starting with question word ”what”

cooking can ask about AGENT, FOOD, CONTAINER, HEATSOURCE, TOOL or PLACE. 1

Each frame element requires a relevant question word to be used. Consequently, we mapped

every frame element to a question word. For example, AGENT to who, LOCATION to where,

ITEM , FOOD and PICKED to what item, TOOL to what does [AGENT] use to and so on.

From 190 unique frame elements, 47 were mapped to who, 19 mapped to where, 53 mapped to

what and the remaining were mapped to a question word starting with what such as what item.

Table IV shows a subset of frame elements and the question word they are mapped to.

1The only exception is question template ”What is the AGENT doing?” whose the response frame
element is labeled with VERB.
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TABLE V. A subset of Question Answer templates generated for cooking, buying, catching

and opening.

Abstract definition from imSitu dataset Sample Generated Question Templates
Reponse

Frame Element

An AGENT cooks a FOOD in a CONTAINER over a

HEATSOURCE using a TOOL in a PLACE.

Who is cooking? AGENT

What does the AGENT cook with TOOL? FOOD

What is the AGENT doing ? VERB

What does the AGENT use to cook in CONTAINER ? TOOL

Where does the AGENT cook FOOD in CONTAINER ? PLACE

The AGENT buys GOODS with PAYMENT from the

SELLER in a PLACE

Who is buying GOODS ? AGENT

What is the AGENT doing ? VERB

What item does the AGENT buy with PAYMENT ? GOODS

Who does the AGENT buy GOODS from? SELLER

Where does the AGENT buy GOODS ? PLACE

An AGENT catches a CAUGHTITEM with a TOOL

at a PLACE.

Who catches at PLACE ? AGENT

What is the AGENT doing ? VERB

What item does the AGENT catches with TOOL CAUGHTITEM

Where does the AGENT catches CAUGHTITEM ? PLACE

The AGENT opens the ITEM with the TOOL

at the PLACE.

What does the AGENT use to open ITEM ? TOOL

Who opens ITEM ? AGENT

What item does the AGENT opens ? ITEM

Where does the AGENT opens ITEM with TOOL PLACE
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As shown in the first column of Table V, in imSitu, each verb is described by an abstract

statement including all its frame elements. Appendix B lists the definitions in a segmented

format. Therefore, there are 504 abstract definitions in total. An abstract definition defines

a natural form of how prepositions and punctuations are used along frame elements. For

example, for cook the abstract definition is ”an AGENT cooks a FOOD in a CONTAINER

over a HEATSOURCE using a TOOL in a PLACE”. We can easily segment the statement to

”[an AGENT] cooks [a FOOD] [in a CONTAINER][over a HEATSOURCE] [using a TOOL]

[in a PLACE]”. Now in order to ask a question about a specific frame element, we hold out

its segment. For example if we hold out FOOD then what remains is ”[an AGENT] cooks

[X] [in a CONTAINER][over a HEATSOURCE] [using a TOOL] [in a PLACE]”. Then, we

should decide which other segments should be included in the question. The only exception is

AGENT which will always be included (with article the AGENT ) if not held out as response

frame element. Approximately, we considered all possible subsets of segments. For example:

”[an AGENT] cooks” and ”[an AGENT] cooks [X] [in a CONTAINER][in a PLACE]” are

two possible combinations when FOOD is the response frame element. Finally the relevant

question word is appended at the beginning of each combination and the verb form is modified

accordingly. For example: ”What does the AGENT cook?” or ”What does the AGENT cook in

CONTAINER in PLACE?”. A subset of question templates and their response frame elements

for cooking, buying, catching and opening are shown in Table V. In total, 6879 templates are

generated, with on average 13.65 question-answer templates per verb. Figure 12 shows the

distribution of template questions in terms of question words.
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what

26%

who

31%

where

43%

what does

39.60%

what item

39.28%

what vehicle

5.52%

what container

3.06%
what part

2.84%
what [other]

9.7 %

(a) (b)

Figure 13. Distribution of questions in imSituVQA. (a) covers all questions while (b) includes

questions starting with question word ”what”

4.2 Question answer pair realization

The previous step generates templates for all 504 candidate verbs. As each image in imSitu

is annotated with one verb, the templates of the annotated verb are considered for the image.

Templates that include frame elements that are missing or empty in the image annotation are

excluded. Then, given each question template and response frame element, the frame elements

are filled with the noun values from the annotation. This realization process can be applied

to all imSitu images. The final dataset is called imSituVQA. Each sample in imSituVQA is a

<image,question> input pair that is labeled with an <answer> as output. For example given

the image about cooking from Table III, applying the realization process on ”What does the

AGENT cook in CONTAINER in PLACE?” results in ”What does the boy cook in wok in
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Figure 14. Distribution of template questions vs realized questions based on length.

kitchen?”. Realizing the response frame element FOOD results in ”meat” as answer. These

three items compose a sample (<image,question>:<answer>) for the VQA task. Table VI

shows VQA samples for cooking, buying, catching and opening. As can be seen, the dataset not

only includes the typical question answer pairs but frame element annotations as well.

If a verb has n templates, applying an image annotation results in n real <question, answer>

samples of the image. This way, the size of the extracted dataset is the average number

of templates times the number of images. This realization process results in 254k train, 88k

development and 88k test samples. For the training set, the top 10 most frequent frame element

classes among the existing 190 are shown in Table VII. Table VIII also shows the top 10 frequent

answers. Because 60% of answers are about PLACE and AGENT, the most frequent answers

are usually values from these two frame elements. Figure 15 visualizes the relative frequency of
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answers and response frame elements in terms of word clouds. The questions are mostly between

4 to 7 words. Figure 13 shows the distribution of imSituVQA questions according to the first

question word. As can be seen ”Where” is more frequent than ”Who” and ”What”. This derives

from PLACE being the most frequent frame element, twice as frequent as AGENT, which is the

second. Figure 14 depicts the distribution of template questions and realized questions lengths

in terms of the number of words. The distributions are very similar, showing the majority of

questions are 4 to 7 words.
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IMAGE about cooking IMAGE about buying

QUESTION ANSWER QUESTION ANSWER

Who is cooking

VERB

? boy

AGENT

Who is buying

VERB

shoes

ITEM

? woman

AGENT

?

What does the boy

AGENT

cook

VERB

with spatula

TOOL

? meat

FOOD

Where does the woman

AGENT

buy

VERB

shoes

GOODS

? shoe store

PLACE

Where does the boy

AGENT

cook

VERB

meat

FOOD

in wok

CONTAINER

? kitchen

PLACE

Who does the woman

AGENT

buy

VERB

shoes

ITEM

from ? person

SELLER

IMAGE about catching IMAGE about opening

QUESTION ANSWER QUESTION ANSWER

What is the bear

AGENT

doing ? catching

VERB

Who opens

VERB

the door

ITEM

cat

AGENT

Where does the bear

AGENT

catch

VERB

fish

CAUGHTITEM

? body of water

PLACE

What does the cat

AGENT

use to open

VERB

the door

ITEM

? paw

TOOL

What item does the bear

AGENT

catch

VERB

? fish

CAUGHTITEM

What item does the cat

AGENT

open

VERB

? door

ITEM

TABLE VI. imSituVQA dataset samples about cooking, buying, catching and opening. The

imSituVQA dataset includes frame element annotations for each question answer pair.



42

Frame element frequency

PLACE 100,006

AGENT 49,976

ITEM 24,376

TOOL 13,908

VICTIM 3,932

TARGET 3,860

VEHICLE 3,706

DESTINATION 3,238

COAGENT 2,544

OBJECT 2,317

TABLE VII

Top 10 frequent frame elements in imSituVQA training samples.
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Answer frequency

outdoors 14,621

man 13,527

woman 10,763

people 9,228

room 8,323

outside 6,881

inside 6,679

person 5,625

hand 4,238

field 3,086

TABLE VIII

Top 10 frequent answers in imSituVQA training samples.
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(a)

(b)

Figure 15. imSituVQA word clouds of (a) answers and (b) frame elements.



CHAPTER 5

A NOVEL MULTI-TASK VQA MODEL USING SEMANTIC FRAME

INFORMATION (PREVIOUSLY PUBLISHED AS M. ALIZADEH AND

B. DI EUGENIO. (ICSC 2020) AUGMENTING VISUAL QUESTION

ANSWERING WITH SEMANTIC FRAME INFORMATION IN A

MULTITASK LEARNING APPROACH. PAGES 37 − 44 )

This chapter explains the proposed VQA model in a multi-task learning paradigm. The idea

of multi-task with neural networks learning is to jointly train multiple tasks within a shared

architecture up to the classification layer (Caruana, 1997). Multi-task learning has been uti-

lized in deep learning in different applications. For example, Collobert and Weston (Collobert

and Weston, 2008) proposed a neural network based multi-task learning method for NLP. This

method jointly trains multiple NLP classification tasks, e.g., part-of-speech tagging, named

entity tagging, semantic role labeling, etc. Seltzer and Droppo (Seltzer and Droppo, 2013) em-

ployed multi-task learning in neural networks in order to improve phoneme recognition. It has

been shown that multi-task learning can boost the generalization of shared tasks. Traditional

multi-task learning transfers knowledge by sharing lower level features.

(Xie et al., 2015) discusses challenges in fine-grained image classification (FGIC). The goal of

FGIC is to recognize objects that are visually and semantically similar to each other. For ex-

ample classifying cars to their specific models such as Chevrolet, Toyota and so on. Fine tuning

45
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a convolutional neural network (CNN) works well for general visual recognition datasets such

as ImageNet (Deng et al., 2009). But because of large intra-class and small inter-class variance,

it may not work well for FGIC. The authors proposed a framework known as hyper-class aug-

mented and regularized deep learning. They suggest a hyper-class augmentation formulated

as multi-task learning in order to boost the recognition task in FGIC. Inspired by their ideas,

I formulate the VQA task as a multi-task learning problem. In this formulation, the system

should learn to classify answers as well as frame elements. (Xie et al., 2015) also proposed a

more complex hyper-class multi-task learning called hyper-class augmented regularized (HAR)

deep model. The idea is to link the output of the hyper-class classification layer to the fine-

grained classification layer. For the simplicity of the implementation, I preferred the first model

over the second one.

5.1 Proposed VQA model

Let Dt = {(xt1, y
t
1), ..., (x

t
n, y

t
n)} be a set of training <image, question> paired samples with

yt
i ∈ {1, ..., C} indicating the answers (e.g., woman, kitchen and cooking) of <image, question>

pair xti , and let Da = {(xa1 , r
a
1 ), ..., (x

a
n, r

a
n)} be a set of auxiliary frame element information,

where ri ∈ {1, ..., R} indicates the frame element of <image, question> pair xta (e.g., agent, food

and location). The goal is to learn a VQA model that correctly answers to an input <image,

question> pair. In particular, the goal is to learn a prediction function given by Pr(y|x), i.e.,

given the input x:<image, question> pair, the probability that y is the answer is computed.

Similarly, Pr(r|x) denotes the frame element classification model. Given the training <image,
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question> pairs and the answers with auxiliary frame element information, our strategy is to

train a multi-task deep VQA model. This model can use any arbitrary VQA architecture up to

the classification layer. Then sharing common features, it branches out to two different classi-

fiers. One classifier classifies answers, and the other one, frame elements. Figure 16 summarizes

the proposed multi-task learning model. In order to train the proposed VQA model, the total

loss is the average of losses from these two classifiers.

total loss =
1

2
× [loss(answers classification) + loss(frame elements classification)]

(5.1)

5.2 Evaluation

In this section, I evaluate the proposed VQA model on imSituVQA. The goal is not neces-

sarily to optimize the hyper-parameters or the design of the feature layers but rather to focus

the attention on learning strategies supported by linguistic facts.

5.2.1 Baselines

The following baselines are computed:

1. prior (”outdoors”): The most popular answer (”outdoors”).

2. per verb prior: The most popular answer per verb (for example cooking (”kitchen”),

buying (”man”), reading (”book”)).
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Figure 16. Proposed multi-task learning architecture for VQA

5.2.2 Experimental Setup

The proposed VQA model is evaluated by means of the CNN-LSTM-based architecture

introduced in (Antol et al., 2015). Training deep models require significant time and resources.

Consequently, trained models such as GLOVE (Pennington et al., 2014) and VGG-NET (Si-

monyan and Zisserman, 2015) are employed. GLOVE provides a good word embedding layer

initialization in order to generalize well and get a performance boost. GLOVE 300-dimensional

weights are utilized in order to feed question words to a bidirectional long short term memory

network (LSTM). The output of the LSTM is a 300 dimension question embedding which is

mapped to the 1024 dimensions by passing through a nonlinear layer. A VGG-NET-16 pre-

trained model was used in order to extract image feature vectors. The 4096 image embedding is
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mapped to 1024 dimensions by passing it through a nonlinear layer. The multimodal fusion of

image and question embeddings occurs via pointwise multiplication, then after passing through

a number of nonlinear layers, the final embedding is fed to the frame element softmax layer

and the answer softmax layer. The model is trained by minimizing the sum of the two cross

entropy loss functions using the rmsprop (Tieleman and Hinton, 2012) optimization algorithm.

The training data is passed with a batch size of 500 in 50 epochs.

5.2.3 Results and Discussions

Table IX shows the performance evaluation on the test samples. Using the most frequent

answer (prior) to answer each question results in 5.65% accuracy. Selecting the most frequent

answer per verb results in 22.15% accuracy. The CNN-LSTM model trained with single answer

softmax results in 38.08% accuracy. The multi-task CNN-LSTM model which includes both

answer softmax and frame element softmax achieves an accuracy of 43.89%. Augmenting VQA

with frame element information boosts the accuracy by up to 5%. This improvement in the

generalization of the CNN-LSTM model indicates how well the multi-task approach acts as a

regularizer. A chi-square test is performed in order to show statistically significant improvement

of the model (Table X).

Performance can be compared in terms of WUPS as well. Wu-Palmer Similarity (Malinowski

and Fritz, 2014) can be used as an alternative to accuracy (Wu and Palmer, 1994). It is based on

how semantically the predicted answer matches the ground truth. Given a predicted answer and

a ground truth answer, WUPS computes a value between 0 and 1 based on their similarity. As
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shown in Figure 17, It computes similarity by using the depths of the two synonyms in WordNet,

beside the depth of the LCS (Lowest Common Ancestor). For example WUP(land,earth) is 1.0

while WUP(tree,water) is 0.14. ”WUPS at 0.9” applies a threshold and considers a predicted

answer correct if the WUPS score is higher than 0.9. For example WUP(dog,wolf) is 0.93 and

answering wolf instead of dog is considered correct in terms of ”WUPS at 0.9”. Table IX

shows performance of the proposed model on the imSituVQA in terms of ”WUPS at 0.9”. The

multi-task approach results in improvements for both accuracy and ”WUPS at 0.9” of about

5%.

Figure 17. Wup is a WordNet based similarity measure. WUP similarity(C1, C2) is measured

by 2×N3
N1+N2 where C3 is the least common subsumer of C1 and C2. WUPS employs

WUP similarity between synsets of C1 and C2 in order to compute a fuzzy based similarity.

The detailed formulation is discussed in (Malinowski and Fritz, 2014)
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Accuracy (%) WUPS at 0.9 (%)

prior (”outdoors”) 05.68 11.87

per verb prior 22.15 27.65

CNN-LSTM 39.58 46.92

multi-task CNN-LSTM 44.90 51.83

TABLE IX. Accuracy of our VQA model on imSituVQA dataset

Correct Incorrect

CNN-LSTM 34905 53065

multi-task CNN-LSTM 39522 48448

TABLE X. The chi-square statistic is 496.1854. The p-value is < 0.01 and the result is

significant.

Fine-grained evaluation. In order to perform fine-grained evaluation, performance per

question, per verb and per role are computed. Figure 18 shows a performance comparison
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Figure 18. Evaluation by first question words

based on first question words. Multi-task CNN-LSTM performs better for who (4%), what

(8%) and where (5%) when compared to CNN-LSTM. Performance per role and per verb are

included in the appendix (for example cooking improves from 30.12% to 44.58% and buying from

27.42% to 64.52%). Performance per role is included in the appendix (for example the multi-

task approach improves AGENT from 48.78% to 52.29%, PLACE from 34.75% to 39.52% and

ITEM from 32.27% to 39.65%). Table XI shows a different view of the performance difference

between CNN-LSTM and the multi-task version. About 55% of verbs improve by less than

10%. whipping, buying, sketching, sketching, scooping, making improve by more than 30% of

improvement. spanking, ejecting, farming, hitting, harvesting, moistening decline by more than
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15%. payment, rammingitem, boaters, stage, undergoer, strapped, resource have more than 40%

of improvement. removeditem, beneficiary, eater, planted, blocker, aspect decline by more than

25%.

Accuracy Difference Range Verb Frequency Role Frequency

(-40%,-30%] 3

(-30%,-20%] 2 3

(-20%,-10%] 10 5

(-10%,0%) 67 24

0% 27 32

(0%,10%] 269 68

(10%,20%] 100 24

(20%,30%] 15 13

(30%,40%] 6

(40%,50%] 4

(50%,60%] 2

...

100% 1

TABLE XI. Performance evaluation grouped by performance intervals showing verb frequency

and role frequency in each group.
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It is very hard to extrapolate as concerns the reasons why some verbs improve and others

don’t; there doesn’t seem to be any apparent generalizations about classes of verbs (like action

verbs vs communication verbs and the like). There are subtle interplays between frequencies of

slot fillers and verb samples that don’t lend themselves to generalizations. For example, let’s

consider sketching. Table XII shows imSitu sample images about sketching where MATERIAL

annotated with paper. ”What material does the AGENT sketch on?” is one of the templates

generated during imSituVQA creation process. The response frame element is MATERIAL. For

many realized questions of this template, the answer is paper. The multi-task CNN-LSTM most

of the time answers paper at test time while the CNN-LSTM makes more mistakes. For subset of

samples about sketching, the multi-task CNN-LSTM model’s performance is 61.54% comparing

to 26.92% for the CNN-LSTM model. In general, for the samples where response frame element

is MATERIAL, the multi-task CNN-LSTM model’s performance is 50.88% comparing to 28.07%

for the CNN-LSTM model.

TABLE XII. imSitu sample images about sketching where the MATERIAL is annotated as

paper.
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Frame element classification: The hyper-class augmentation model utilizes frame ele-

ment classification for better representation learning of the VQA task. As discussed earlier,

the accuracy of the frame element classification is 99.32%. One important reason for such high

performance is the frame element dependency on the input question while it is independent of

the input image. For example for the question ”who is cooking ?” the frame element is always

AGENT for all images about cooking. This results in a huge amount of data to train the frame

element classification resulting in almost perfect performance.

It is interesting to know how frame element classification affects the predicted answer and how

consistent it is with the correct answer and predicted answer. We consider the correct or pre-

dicted answer to be consistent with the frame element if there is at least one training sample

labeled with both the answer and the frame element. For example <bear, AGENT> and <bear,

CHASEE> are consistent but <bear, PLACE> and <bear, TOOL> are inconsistent. Figure 19

shows the frequency of distinct frame elements for a subset of answers. For example man, car,

telephone, bear and cafe are fillers of 81, 37, 20, 8 and 1 distinct frame elements in the training

samples respectively. An answer is consistent with the set of distinct frame elements it fills and

inconsistent with others.

The almost perfect accuracy of the frame element classifier confirms its output is almost

always consistent with the correct answer. Now the question is, how much does frame element

classification help the predicted answer to be consistent with the semantic frame? Employing

the consistency criterion, the consistency of the CNN-LSTM model is 97.56% and multi-task

CNN-LSTM 99.94%. This shows a 2.38% improvement. In other words, augmenting the frame
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element classification decreases inconsistency in providing final responses. Consequently, the

end-user would get more reasonable answers from the system. Table XIII shows imSituVQA

test samples where the multitask CNN-LSTM VQA model answers correctly while the answer

of CNN-LSTM VQA model is wrong and inconsistent.

Figure 19. Distinct frame element frequency for different answers.
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QUESTION QUESTION

what container does the woman use to cook? what does the person stitch with sewing machine?

ANSWER/RFE CNN-LSTM Multitask CNN-LSTM ANSWER/RFE CNN-LSTM Multitask CNN-LSTM

bowl/CONTAINER telephone bowl thread/FASTENER paint thread

QUESTION QUESTION

what does the person use to slice seaweed? where does the cowboy ride the bull?

ANSWER/RFE CNN-LSTM Multitask CNN-LSTM ANSWER/RFE CNN-LSTM Multitask CNN-LSTM

knife/TOOL hand knife rodeo/PLACE adult rodeo

TABLE XIII. Comparing the predictions of CNN-LSTM with multitask CNN-LSTM . These

examples show the cases where the multitask CNN-LSTM VQA model answers correctly

while the answer of CNN-LSTM VQA model is wrong and inconsistent. RFE stands for

response frame element.



CHAPTER 6

AUTOMATIC SEMANTIC ROLE LABELING OF THE VQA DATASET

The imSituVQA is created based on accurate annotations. We would like to train the pro-

posed multi-task CNN-LSTM model with currently available VQA datasets such as the VQA

dataset (Antol et al., 2015) as well. The ideal solution is to manually annotate the VQA sam-

ples. However, this approach is expensive and time-consuming. An alternative approach is to

use an automatic semantic labeler. In this way we can have any question of interest approxi-

mately annotated.

Semantic Role Labeling (SRL) is the process of detecting semantic arguments associated with

the verb (or any word as a predicate) of a sentence and their classification into their seman-

tic roles. In 3.1, I explained the concept of semantic roles and available resources such as

FrameNet and PropBank. In this section, I describe the outputs of two semantic role labelers:

(1) Open-SESAME (Swayamdipta et al., 2017) (trained on FrameNet) and (2) ClearNLP (Choi

and Palmer, 2012) (trained on PropBank). As discussed later in this chapter, we found that

PropBank based labeler is better suited for the multi-task CNN-LSTM VQA modeling.

6.1 FrameNet based semantic role labeler

Open-SESAME (Swayamdipta et al., 2017) is a frame-semantic parser. It automatically

detects FrameNet frames and their frame-elements in a sentence. The project is a pipeline of

58
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Target Frame Arguments

what.n Entity

be.v Performers and roles he/B-Medium

throwing/I-Medium

throw.v Body movement what/B-Depictive

is/I-Depictive

he/I-Depictive

throwing/S-Message

?/S-Depictive

TABLE XIV. The output annotation of SESAME for ”what is he throwing ?”.

three primary tasks: target identification (which words or expressions evoke frames?), frame

identification (which frame does each target evoke?), and then argument identification (for each

frame f, and each of its possible roles in FrameNet, which span of the text provides the argu-

ment?). Table XIV shows the output of Open-SESAME on ”what is he throwing ?”. As can be

seen, three lexical units result in the evoking of three semantic frames. what.n evokes Entity,

be.v evokes Performers and roles and throw.v evokes Body movement. The third column shows

the frame elements of each frame with its span in the text. Generally, each frame has a possible
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set of frame elements but only a few of them are taking part in the sentence.

For many questions starting with ”what”, if it is a target word then it would evoke the Entity

frame. This is very general to be used as a discriminator in our VQA model. On the other

hand, the annotations do not directly provide information about the response role to be used

for the auxiliary classification task (similar to frame element classification).

6.2 PropBank based semantic role labeler

ClearNLP (Choi and Palmer, 2012) employs a dependency parser and feature-based algo-

rithm and it is trained on PropBank. The PropBank annotations include a trace of a wh-phrase

in questions. The annotation includes a ”R-A#” pattern which provides useful information re-

garding the argument of the question. ”Who is sitting on the bench?” is labeled as ”V:sit.01

A2:on R-A1:who”. ”R-A1” is an indicator of the argument of the question which is Arg1

of the first sense of the verb sit (Table II). ”What are the people watching?” is labeled as

”V:watch.01 A0:people R-A1:what”.”R-A1” is an indicator of the argument of the question

which is Arg1 of the first sense of the verb watch (Table II). Arg1 is a proto-patient role as

described in the background chapter. This ”R-A#” pattern is the advantage of PropBank over

FrameNet in the proposed multi-task VQA modeling.

6.3 Semantic Role Labeling of the VQA Dataset

Semantic role labeling tools capture different information. In general, this information

might be useful for the task of VQA. But the multi-task CNN-LSTM model, requires semantic
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A0 (2541) A1 (29105) A2 (1906) A3 (40) A4 (234)

Agent (1844) Theme (14752) Material (767) Staring Ending

Pivot (384) Patient (6510) Location (445) Point (40) Point (234)

Instrument (104) Agent (2322) Instrument (408)

Cause (87) Topic (2159) Recipient (90)

Theme (68) Value (1036) Destination (76)

TABLE XV. Non-modifier abstract arguments frequency in the VQAsub training samples.

Each column shows the top 5 SemLink mappings of the abstract role with frequencies inside

parenthesis.

labels of answers. This is the reason PropBank based semantic role labeler is preferred over

FrameNet based semantic role labeler. Given the PropBank annotation, R- indicates which

verb argument the question refers to. These references can be used as hyper-classes similar

to response frame elements in imSituVQA. So the CNN-LSTM model can be augmented with

semantic role information in the multi-task learning paradigm.

Since the labels provided by PropBank are abstract, I utilized SemLink (Palmer, 2009) in order

to map PropBank (Palmer et al., 2005) to VerbNet (Levin, 1993). Table XV shows a more fine-

grained mappings of non-modifier arguments (A0 to A4 excluding AM(Argument Modifier)). If

the annotations provided by SemLink include mapping from a specific sense of a verb, then it
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Figure 20. Verb frequencies in the VQAsub training samples. hold (2844), wear (2475), play

(2334), make (1688), have(1663), sit(1544), say(1380), show(1368), take(1032) and stand(973)

are 10 most frequent verbs.

is used otherwise default mapping is applied. For example Arg2 of fall.01 is mapped to Extent

while Arg2 default mapping is Instrument.

The VQA dataset samples fall in three general categories: (1) Yes/No (2) Number (3) Other.

Since the semantic role labels deal with ”Who did what to whom” (and perhaps also “when

and where”), I decided to focus on the Other category subset of the VQA dataset. This subset

has about 120k training samples. Some of the annotations do not include ”R-A” pattern. For

example ”What food is being served?” is labeled as ”V:serve.02 A2:food” and ”What brand of

beer does the sticker on the door feature?” is labeled as ”V:do.02 A0:brand A1:sticker”. ”R-

A” is essential for hyper-class augmentation modeling and the subset was filtered to include
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Labeled Question SemLink Mapping

Who makes the blue and red trucks?

V:make.01 A1:truck R-A0:who Agent

What is the girl dragging behind her?

V:drag.01 A0:girl A2:behind R-A1:what Theme

What kind of pants does the woman wear?

V:wear.01 A0:woman R-A1:kind Theme

From where in the room is the light coming?

V:come.01 A1:light R-AM-LOC:where Location

When will the red light turn on?

V:turn.13 A1:light AM-MOD:will R-AM-TMP:when Temporal

How does the man get the horse to move where he wants?

V:get.04 A0:man A1:move R-AM-MNR:how Manner

TABLE XVI. Samples of PropBank based semantic role labeling of the VQA dataset



64

what

44.11%

which
14.44%

why

11.69%

where

11.46%
how

10.25%

who
8.05%

what does

22.14%

what kind

16.93%

what are

13.76%

what type

10.92%

what sport

7.9%

what color

6.13% what [other]

22.22%

(a) (b)

Figure 21. Distribution of questions in the filtered VQA dataset. (a) covers all questions while

(b) includes questions starting with the question word ”what”

this information. I filtered ”what is the AGENT doing ?” type of questions as well. The tool

labels it as ”V:do.02 A0:AGENT R-A1:what”. The SemLink maps A1 to PATIENT. Since

the appropriate response would be of type predicate or event (”swimming”), I decided to filter

these samples as well. Therefore, filtering out these samples resulted in 41k training samples

and 21k test samples. I call the final version VQAsub. Table XVI shows a sample annotation of

a number of the VQAsub samples. Using the ”R-A” pattern and SemLink, the auxiliary gold

standard output of the multi-task CNN-LSTM model is extracted. Table XVII shows the list of

the top 10 frequent semantic roles. Table XVIII shows the list of the top 10 frequent answers.

Figure 21 shows the distribution of questions in the VQAsub. There are 40 unique semantic

roles for the auxiliary classification task. Each VQA sample is augmented with semantic role

information in order to train the multi-task CNN-LSTM VQA model.
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Semantic Role Frequency Relative Frequency (%)

Theme 116340 39.07%

Patient 7585 18.14%

Agent 4620 11.05%

Location 2945 7.04%

Topic 2364 5.65%

Cause 1705 4.08%

Value 1143 2.73%

Material 846 2.02%

Manner 830 1.98%

Product 822 1.97%

TABLE XVII. Top 10 Semantic Roles in the VQAsub. It also includes frequency and relative

frequencies of each semantic role.

Given the augmented VQAsub samples, the task is to train a VQA model to get a paired

input of <image, question> for answer classification as well as semantic role classification.

Figure 22 shows the updated CNN-LSTM VQA architecture. The example input question is

”What is the girl dragging behind her?”. Interestingly the verb ”drag” also exists in imSitu

with the abstract definition: ”AGENT drags an ITEM with a TOOL on a CONTACT at a

PLACE”. The semantic role response here is Theme while in the context of imSitu it is ITEM.
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Answer Frequency Relative Frequency (%)

tennis 725 1.73

baseball 713 1.7

wood 688 1.64

frisbee 676 1.62

right 570 1.36

left 526 1.26

skateboard 381 0.91

wii 374 0.89

grass 370 0.88

pizza 353 0.84

TABLE XVIII. Top 10 Answers in the VQAsub. It also includes frequency and relative

frequencies of each answer.

The answer is annotated by 10 people consequently 10 answers: 7 plaid, 1 striped, 1 shorts

and 1 multi-colored. For training, the answer with the highest frequency is chosen as gold

standard output. At validation time the VQA accuracy of the predicted answer is computed

based on accuracy(answer) = min{1, freq(answer)/3}. For example accuracy(plaid) is 1 and

accuracy(striped) is 0.33 for the given sample.
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Figure 22. Multi-task CNN-LSTM VQA with semantic roles as hyper-classes

Table XIX shows the results. CNN-LSTM model accuracy is 19.89%. Multi-task CNN-

LSTM model has two loss functions to be optimized and the final loss function is the weighted

some of the two: w1× loss(answer classification)+w2× loss(role classification). I experimented

with three configurations (0.5,0.5), (0.8,0.2) and (0.9,0.1). (0.5,0.5) does not work well since

it degrades answer classification performance. Lowering the weight of the role classification

results in lower role prediction accuracy but a better answer classification until I set it to 0.8.

(0.8,02) is the only setup slightly improving the performance over CNN-LSTM model.

I also performed a fine-grained analysis of the top frequent semantic roles and the results are

shown in Table XX. Product, Value, Manner and Topic are improved considerably. There is a

slight improvement (less than 0.15%) for Patient,Agent and Theme. However the performance
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Model Loss weights Answer Accuracy (%) Role Accuracy (%)

(answer,role)

CNN-LSTM - 19.89 -

Multi-task CNN-LSTM (0.5,0.5) 15.02 80.57

Multi-task CNN-LSTM (0.8,0.2) 20.08 63.20

Multi-task CNN-LSTM (0.9,0.1) 19.57 38.23

TABLE XIX. Accuracy of the proposed CNN-LSTM VQA model on the VQAsub. Three

different weightings were applied in order to check the effect of multi-task paradigm.

declines for Location and Cause. Table XXI shows the analysis in terms of non-modifier abstract

arguments. Interestingly the improvement is 0.8% as compared to 0.2% over all of the abstract

roles. As shown in Table XV non-modifier abstract arguments are mapped to different set of

VerbNet roles. A0 is mostly mapped to Agent (37%) then to Pivot (7%). The rest of the

mappings are less than 2% frequent. The improved performance of the model is good for Agent

but it is a little negative for A0 (-0.05). It shows the A0 samples labeled with a mapping other

than Agent result in more confusion and poor performance of the model for A0. A1 is mapped

mostly to Theme and Patient most of the time (35%). Agent and Topic are the next frequent

mappings with 4% of the times each. The mapping is vaguer comparing to other abstract

roles. But the performance is improved anyway by 0.12%. A2 is mapped to Location, Material,

Instrument more than 85% of times. The improvement for A2 is 2.26 showing the model is



69

Semantic Role Single-task (%) Multi-task (%) Improvement (%)

Theme 23.24 23.29 0.05

Patient 18.18 18.32 0.14

Agent 18.62 18.73 0.11

Location 14.33 14.21 -0.12

Topic 11.54 11.84 0.3

Cause 15.58 15.34 -0.24

Value 21.66 22.1 0.44

Manner 14 14.43 0.43

Product 32.72 33.83 1.11

TABLE XX. Fine-grained evaluation of frequent semantic roles.
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Argument Single-task (%) Multi-task (%) Improvement (%)

A0 18.34 18.29 -0.05

A1 20.71 20.83 0.12

A2 27.21 29.47 2.26

A3 24.55 21.49 -3.06

A4 6.95 8.48 1.53

TABLE XXI. Fine-grained evaluation of abstract arguments (excluding modifiers).

doing well for questions asking about roles mapped from A2. A3 and A4 have just one mapping

each. The proposed model degrades the performance for A3 by -3.06 while improving for A4

by 1.53. Because the number of samples is low for A3, any misclassified sample would result in

a significant error.

Table XXII shows the top 10 frequent verbs along with a list of their most frequent arguments.

Interestingly for all of the verbs, A1 is the most frequent argument in question. I also analyzed

the performance for the top frequent verbs and the results are shown in Table XXIII. Exploring

the top 10 the proposed multi-task model seems to work better for concrete verbs. For example

play and eat are improved while show and say are degraded. I explored the output of the

two models for test samples with play as the primary verb, multi-task version improvement is

considerable on ”what [sport] is the AGENT playing?” type of questions. I repeated the same

process for eat. The multi-task model performs better on ”what does the AGENT eat?” type
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Verb.sense rank1 arg rank2 arg rank3 arg rank4 arg rank5 arg

wear.01(1227) A1(990) A0(114) AM-CAU(93) AM-MNR(16) AM-LOC(14)

play.01(1196) A1(1121) AM-LOC(55) A0(14) AM-CAU(4) AM-MNR(1)

hold.03(916) A1(913) AM-CAU(2) AM-MNR(1)

have.03(887) A1(628) A0(164) AM-CAU(89) AM-LOC(5) AM-MNR(1)

sit.01(813) A1(675) A2(112) AM-CAU(21) AM-MNR(5)

show.01(801) A1(790) A0(6) AM-CAU(3) AM-LOC(2)

make.01(789) A1(375) A2(365) A0(37) AM-LOC(6) AM-MNR(4)

say.01(775) A1(769) A2(3) AM-CAU(2) AM-MNR(1)

eat.01(541) A1(484) A0(28) AM-LOC(14) AM-CAU(7) AM-TMP(5)

stand.01(526) A1(407) A2(85) AM-PRP(22) AM-CAU(10) AM-MNR(1)

TABLE XXII. top 10 verbs (with sense index) in the VQAsub test samples along their

response arguments sorted by frequency. The numbers inside parenthesis indicate the

frequency.

of questions.

Table XXIV shows fine-grained analysis on first question-words. The highest improvement is

for ”who” while the worst one is ”which”. Table XXV narrows down the questions starting

with ”what”. The highest improvement is for ”what sport” while the worst one is ”what time”.

It might be surprising to see what color in the list because we expect to have ”what color is
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Verb.sense Single-task (%) Multi-task (%) Improvement (%)

wear.01 26.22 26.35 0.13

play.01 34.47 35.02 0.55

hold.03 11.94 12.06 0.12

have.03 19.44 19.38 -0.06

sit.01 17.62 17.34 -0.28

show.01 18.38 18.19 -0.19

make.01 37.11 36.88 -0.23

say.01 12.34 12.31 -0.03

eat.01 26 26.25 0.25

stand.01 16.01 15.95 -0.06

TABLE XXIII. Performance of the top 10 verbs (with sense index) in the VQAsub test

samples.

[object]?” type of questions. However there are samples in VQAsub with verbs such as ”What

color light is lit on the traffic light?” or ”What color is the frisbee the woman is putting down?”.
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Question word Single-task (%) Multi-task (%) Improvement (%)

what 23.97 24.48 0.51

which 29 28.61 -0.39

why 16.33 16.04 -0.29

where 15.24 16.12 0.88

how 18.36 19.13 0.77

who 24.36 26.04 1.68

TABLE XXIV. Fine-grained evaluation of question words.
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what ... Single-task (%) Multi-task (%) Improvement (%)

what does 16.48 16.34 -0.14

what kind 16.48 16.72 0.24

what are 21.85 21.48 -0.37

what type 24.91 25.38 0.47

what sport 48.52 49.69 1.17

what color 24.2 25.04 0.84

what animal 18.57 19.51 0.94

what brand 28.8 29.78 0.98

what time 43.54 41.1 -2.44

TABLE XXV. Fine-grained evaluation of question words starting with what.



CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

In this report, I explained the need for a VQA dataset annotated with verb semantic informa-

tion. I exploited imSitu dataset annotations to create a new VQA dataset with frame semantic

information. This process involved two phases: (1) question, answer template generation (2)

question, answer pair realization. In the first step, I exploited imSitu abstract verb definitions

to generate question, answer templates. In the second step, I employed imSitu annotations to

create the novel VQA dataset called imSituVQA. I also performed a distributional analysis of

the imSituVQA to show the properties of the newly created dataset. This work is published in

the proceedings of the 12th Language Resources and Evaluation Conference (LREC). Adapting

c©ACL 2020, I reused many parts of the paper in my thesis (Appendix C).

The novel imSituVQA dataset is available online. 1 The imSituVQA questions are generated

via a semi-automatic process. Consequently, the naturalness of the questions is not guaran-

teed. There are no automatic metrics and it required human judgment. One solution might

be to adapt evaluation metrics from other domains. For example, (Zhang et al., 2019) pro-

posed BERTScore, an automatic evaluation metric for text generation. The authors showed

the metric is working very well for machine translation and caption generation comparing to

other metrics.

1https://github.com/givenbysun/imSituVQA/
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Then the question was how I could exploit this frame semantic information in a VQA system.

I explored different research to figure out a solution. (Xie et al., 2015) proposed a framework

known as hyper-class augmented and regularized deep learning for better fine-grained image

classification. In the context of VQA, I employed frame semantic information as hyper-classes.

I formulated the VQA task as a multi-task learning problem. In this formulation, the system

should learn to classify answers as well as frame elements. I evaluated the proposed idea with

the popular CNN-LSTM VQA modeling. This approach boosts performance and shows the

benefit of using verb semantics in answering questions about images. This work is published in

the proceedings of the 14th IEEE International Conference on Semantic Computing (ICSC). 1.

Adapting c©IEEE 2020, I reused many parts of the paper in my thesis (Appendix C).

Manual annotation is a time-consuming and expensive process. Automatic semantic role

labeling is an alternative solution to employ the proposed model for any VQA dataset of interest.

I employed ClearNLP (PropBank based semantic role labeler) to label a subset of the VQA

dataset (VQAsub). The ”R-” pattern was used as an indicator of the response semantic role.

I performed a distributional analysis of the VQAsub to show and visualize its properties. I

employed the proposed multi-task CNN-LSTM model for training and testing. The results

show a slight improvement over the single CNN-LSTM model. I also performed several fine-

grained evaluations for further analysis. A summary of this thesis including this work will be

published in the International Journal of Semantic Computing (IJSC).

1This paper was nominated for Best Paper Award
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In this work, I employed exclusively the CNN-LSTM architecture proposed in (Antol et al.,

2015). The two modalities are fused via multiplication. This fusion can be implemented by con-

catenation or bilinear pooling and so on. Different CNN models are proposed in the literature.

Beside VGGNet (Simonyan and Zisserman, 2015) (pre-trained on ImageNet), I experimented

with ResNet (He et al., 2016) (pre-trained on ImageNet) in order to extract image features.

The results are similar. LSTM is a very popular sentence embedding approach and works better

than traditional approaches such as bag of words. Bidirectional Encoder Representations from

Transformers (BERT) (Devlin et al., 2019) is one of the recent works that can be employed for

question embeddings. BERT is an approach for pre-training. The model is trained for general

representation that has been successfully fine-tuned for many natural language understanding

applications. In future work, BERT could be explored as an alternative embedding model to

LSTM.

7.1 Employing a new set of hyper-classes

Another interesting extension to this work would be employing a new set of hyper-classes.

The idea is to apply hyper-class augmentation to already available VQA datasets. For example

the type of task that a question refers to such as object presence, object attributes, counting can

be included as hyper-classes.

The VQA dataset answers are categorized into yes/no, number and other. According to the

proposed multitask CNN-LSTM modeling I added a softmax layer with three classes to the
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CNN-LSTM VQA model. Then I trained the model with the VQA dataset. Unfortunately, the

results show that augmentation did not help much in improving performance.

Figure 23. Hyper-class augmented VQA model using multi-task learning

The Task Driven Image Understanding Challenge (TDIUC) (Kafle and Kanan, 2017) in-

cludes 1.6 million questions categorized into 12 different unbiased (uniformly distributed) visual

tasks (Figure 24). The task types can be included as hyper-classes. I also experimented with

these 12 tasks as hyper-classes and could not achieve a significantly better result.

(Liu et al., 2019) proposed a Multi-Task Deep Neural Network (MT-DNN) showing the regu-

larization effect of multi-task learning in NLP. The main goal of MT-DNN is to train a model

across multiple natural language understanding (NLU) tasks. They designed the model so that

4 different tasks be optimized at the same time. Similarly, the idea of hyper-class augmenta-

tion can be extended to include more than two tasks. For example answer classification as the
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primary task and 3 other hyper-class augmentation classification as auxiliary tasks.

This direction of research can be explored further especially for hyper-classes with more complex

and rich semantic information.

Figure 24. TDIUC task oriented dataset (Kafle and Kanan, 2017)

7.2 Employing COCO Action (COCO-a) dataset

(Ronchi and Perona, 2015) annotated an action subset of COCO image dataset with de-

tectable interactions involving human agents as subjects. Figure 25 summarizes the process:
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(1) Visual VerbNet: obtaining common visual actions by analysis of VerbNet and MS-COCO

captions, (2) Image and Subject Selection: three types of scenes such as sport, outdoor

and indoor are selected, (3) Interactions Annotation: each subject is annotated with the

objects that the subject is interacting with and (4) Visual Actions Annotation: For each

subject-object pair, it is labeled with possible actions and interactions involving that pair.

I was interested in exploring and enhancing the VQA from a linguistic point of view. I focused

on lexical resources such as FrameNet. However, the COCO-a dataset provides interesting

visual information as well. Not only does the dataset include more detailed annotations of

interaction between entities and objects present in the image, but visual annotations of them

in the image as well. Now the output not only can be classified based on the hyper-classes

but also on detecting the object and entities as well. This multi-modal output augmentation

sounds like a promising research direction to be explored.

Employing attention mechanisms in the proposed VQA model is an open research to be ex-

plored. For the imSitu dataset, it does not seem to be critical as the participants in the activity

occupy a very large portion of the image. However, for coco-a images, it might be necessary to

use attention because there are multiple agents and multiple interactions; Consequently, there

might be cases where participants can be detected in a very small sub-image.
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Figure 25. COCOA dataset sample annotation process (Ronchi and Perona, 2015)
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Appendix A

FINE-GRAINED PERFORMANCE EVALUATION ON IMSITUVQA

Performance evaluations by role

format role : ( CNN-LSTM accuracy , multi-task CNN-LSTM accuracy)

sliceditem : ( 40.0 , 33.33 ) & tool : ( 42.84 , 51.78 ) & object : ( 30.69 , 39.66 )

& crownedentity : ( 44.0 , 52.0 ) & flipped : ( 48.33 , 68.33 ) & placeditem : ( 16.67 ,

45.83 ) & follower : ( 33.56 , 39.6 ) & part : ( 7.84 , 27.45 ) & agents : ( 57.0 , 62.67 ) &

bodypart : ( 38.86 , 57.77 ) & bottom : ( 70.0 , 60.0 ) & agenttype : ( 44.9 , 54.42 ) &

supported : ( 38.81 , 29.85 ) & crown : ( 54.17 , 56.25 ) & fluid : ( 45.0 , 52.5 ) & strap

: ( 57.14 , 71.43 ) & pinned : ( 34.38 , 28.13 ) & pricked : ( 55.41 , 62.16 ) & addressee :

( 34.35 , 40.46 ) & brush : ( 0.0 , 0.0 ) & action : ( 63.16 , 63.16 ) & createditem : ( 0.0 ,

0.0 ) & yankedpart : ( 42.86 , 68.57 ) & created : ( 22.22 , 27.78 ) & stake : ( 73.29 , 78.08

) & feature : ( 50.0 , 50.0 ) & entityhelped : ( 33.33 , 33.33 ) & caughtitem : ( 36.36 ,

45.45 ) & perceiver : ( 28.85 , 26.92 ) & victim : ( 46.58 , 52.1 ) & releaseditem : ( 30.5

, 51.06 ) & cause : ( 54.65 , 58.14 ) & yanked : ( 29.27 , 46.34 ) & turneditem : ( 22.07 ,

46.9 ) & erased : ( 27.71 , 48.19 ) & sealant : ( 67.74 , 70.97 ) & objectpart : ( 12.15 ,

24.3 ) & recipient : ( 33.01 , 33.01 ) & interviewee : ( 41.61 , 44.97 ) & drencheditem :
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Appendix A (Continued)

( 0.0 , 0.0 ) & item : ( 32.27 , 39.65 ) & fastener : ( 50.0 , 60.87 ) & paweditem : ( 38.46

, 46.15 ) & foodcontainer : ( 21.05 , 42.11 ) & experiencer : ( 25.0 , 22.92 ) & buyer :

( 0.0 , 14.29 ) & served : ( 7.14 , 14.29 ) & payment : ( 0.0 , 100.0 ) & unplugged : (

45.95 , 41.89 ) & scrapeditem : ( 27.27 , 30.3 ) & clungto : ( 30.41 , 39.86 ) & boaters :

( 50.0 , 100.0 ) & connector : ( 33.33 , 61.4 ) & agentpart : ( 0.0 , 0.0 ) & individuals

: ( 61.33 , 63.33 ) & container : ( 34.17 , 45.47 ) & glue : ( 75.0 , 75.0 ) & material : (

28.07 , 50.88 ) & decomposer : ( 15.5 , 32.56 ) & tickled : ( 20.83 , 25.0 ) & performer

: ( 100.0 , 100.0 ) & center : ( 24.07 , 24.07 ) & moisturized : ( 43.94 , 50.0 ) & seller

: ( 52.21 , 59.29 ) & confronted : ( 46.26 , 42.86 ) & wrappingitem : ( 43.64 , 40.0 ) &

stage : ( 57.14 , 100.0 ) & medium : ( 71.43 , 67.53 ) & end : ( 25.85 , 34.01 ) & food

: ( 32.4 , 30.67 ) & items : ( 26.67 , 38.0 ) & victimpart : ( 28.24 , 38.82 ) & theme :

( 20.0 , 36.0 ) & place : ( 34.75 , 39.52 ) & vehicle : ( 57.05 , 63.87 ) & destroyeditem

: ( 0.0 , 14.29 ) & brancher : ( 41.33 , 46.0 ) & blow : ( 25.96 , 30.77 ) & reference : (

24.18 , 24.18 ) & gatherers : ( 82.0 , 86.67 ) & eater : ( 57.14 , 28.57 ) & component : (

71.43 , 71.43 ) & surface : ( 46.2 , 54.1 ) & event : ( 57.59 , 64.56 ) & audience : ( 64.34

, 64.34 ) & carrier : ( 40.0 , 48.24 ) & scaffold : ( 17.24 , 37.93 ) & reciever : ( 29.93 ,

22.45 ) & removeditem : ( 25.0 , 0.0 ) & substance : ( 51.48 , 52.96 ) & rammingitem

: ( 0.0 , 50.0 ) & crop : ( 33.33 , 33.33 ) & beneficiary : ( 58.33 , 33.33 ) & obstacle :

( 44.44 , 60.42 ) & suspect : ( 56.08 , 53.38 ) & traveler : ( 50.0 , 33.33 ) & model : (

32.89 , 29.53 ) & sprouter : ( 71.33 , 76.0 ) & coagentpart : ( 25.0 , 33.33 ) & liquid :

( 71.11 , 69.63 ) & source : ( 29.65 , 40.12 ) & undergoer : ( 20.0 , 60.0 ) & blocker : (
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Appendix A (Continued)

100.0 , 66.67 ) & agent : ( 48.78 , 52.29 ) & shape : ( 23.81 , 26.19 ) & goalitem : ( 47.09

, 55.03 ) & signeditem : ( 20.0 , 34.29 ) & mass : ( 42.5 , 37.5 ) & pitched : ( 100.0 ,

100.0 ) & quantity : ( 75.0 , 75.0 ) & heaveditem : ( 60.22 , 68.82 ) & goods : ( 19.29

, 24.29 ) & phenomenon : ( 32.37 , 40.29 ) & lock : ( 14.29 , 42.86 ) & cover : ( 53.33 ,

61.33 ) & occasion : ( 42.42 , 49.49 ) & slider : ( 0.0 , 0.0 ) & mourner : ( 42.28 , 43.62

) & smashed : ( 41.67 , 25.0 ) & restrained : ( 45.64 , 51.68 ) & itemtype : ( 34.97 ,

39.86 ) & strapped : ( 20.0 , 60.0 ) & goal : ( 34.0 , 30.0 ) & shelter : ( 84.87 , 93.28 )

& chasee : ( 36.0 , 33.33 ) & depicted : ( 16.05 , 9.88 ) & contact : ( 37.12 , 50.12 ) &

imitation : ( 72.22 , 74.07 ) & student : ( 39.02 , 40.39 ) & projectile : ( 61.54 , 73.08 ) &

decorated : ( 37.78 , 24.44 ) & blocked : ( 52.17 , 65.22 ) & hidingitem : ( 43.61 , 42.86

) & firearm : ( 32.41 , 29.63 ) & harvesteditem : ( 0.0 , 0.0 ) & rocked : ( 10.0 , 10.0

) & top : ( 66.0 , 66.0 ) & destination : ( 39.61 , 44.21 ) & adressee : ( 34.0 , 29.6 ) &

naggedperson : ( 59.59 , 62.33 ) & listener : ( 35.21 , 41.2 ) & weapon : ( 36.84 , 42.11 )

& baptized : ( 31.51 , 32.88 ) & aspect : ( 33.33 , 0.0 ) & path : ( 0.0 , 0.0 ) & hunted

: ( 37.84 , 30.63 ) & giver : ( 0.0 , 0.0 ) & crusheditem : ( 26.19 , 42.86 ) & resource : (

40.0 , 80.0 ) & deflecteditem : ( 47.17 , 47.17 ) & instrument : ( 34.86 , 39.76 ) & image

: ( 0.0 , 0.0 ) & competition : ( 44.9 , 51.02 ) & components : ( 50.0 , 37.5 ) & target

: ( 41.67 , 46.17 ) & dye : ( 81.82 , 81.82 ) & heatsource : ( 12.5 , 25.0 ) & reassured :

( 22.82 , 24.16 ) & good : ( 9.09 , 18.18 ) & admired : ( 15.38 , 26.57 ) & distributed

: ( 0.0 , 0.0 ) & coagent : ( 39.71 , 46.04 ) & receiver : ( 17.39 , 21.74 ) & plunged : (

0.0 , 20.0 ) & against : ( 17.73 , 31.03 ) & start : ( 21.57 , 35.29 ) & planted : ( 33.33 ,
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Appendix A (Continued)

0.0 ) & message : ( 100.0 , 100.0 ) & ground : ( 81.97 , 82.62 ) & from : ( 0.0 , 0.0 ) &

ailment : ( 38.02 , 42.15 ) & boringthing : ( 35.48 , 44.35 ) & focus : ( 30.56 , 30.56 ) &

teacher : ( 40.0 , 40.0 ) & parachute : ( 89.36 , 82.98 ) & wrappeditem : ( 25.0 , 19.23 )

& cloth : ( 30.14 , 58.9 ) & skill : ( 48.84 , 55.81 ) & subject : ( 100.0 , 100.0 )

Performance evaluations by verb

Format verb : ( CNN-LSTM accuracy , multi-task CNN-LSTM accuracy)

tattooing : ( 29.49 , 44.87 ) & restraining : ( 37.67 , 39.67 ) & splashing : ( 55.0 ,

50.0 ) & walking : ( 40.64 , 39.58 ) & sketching : ( 26.92 , 61.54 ) & skiing : ( 43.77 ,

46.8 ) & inflating : ( 31.17 , 48.05 ) & rehabilitating : ( 21.48 , 31.21 ) & displaying : (

23.41 , 30.73 ) & marching : ( 47.33 , 49.67 ) & feeding : ( 27.78 , 33.33 ) & hunting :

( 35.0 , 34.0 ) & shredding : ( 27.78 , 30.56 ) & chewing : ( 38.51 , 39.86 ) & teaching

: ( 51.34 , 56.71 ) & flicking : ( 48.15 , 50.0 ) & shaving : ( 58.33 , 87.5 ) & ballooning

: ( 74.83 , 81.47 ) & intermingling : ( 46.42 , 51.88 ) & flinging : ( 28.57 , 47.62 ) &

sitting : ( 36.45 , 41.14 ) & yanking : ( 42.86 , 56.25 ) & putting : ( 26.53 , 27.55 ) &

decorating : ( 26.85 , 33.33 ) & wilting : ( 44.84 , 47.33 ) & mashing : ( 21.05 , 31.58 )

& washing : ( 50.0 , 62.5 ) & kneading : ( 44.67 , 54.67 ) & rearing : ( 49.82 , 58.36 )

& urinating : ( 28.76 , 32.11 ) & slouching : ( 41.08 , 53.54 ) & moistening : ( 38.64 ,

18.18 ) & inserting : ( 38.1 , 40.48 ) & lecturing : ( 60.27 , 59.26 ) & bubbling : ( 28.23

, 33.47 ) & installing : ( 57.14 , 67.86 ) & chopping : ( 60.42 , 56.25 ) & shrugging : (
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66.06 , 62.9 ) & parachuting : ( 85.61 , 87.88 ) & giving : ( 31.06 , 24.24 ) & cooking

: ( 30.12 , 44.58 ) & waiting : ( 35.27 , 44.18 ) & saluting : ( 37.98 , 43.41 ) & falling :

( 45.45 , 43.18 ) & racing : ( 47.65 , 49.66 ) & ramming : ( 25.0 , 45.0 ) & pushing : (

10.0 , 20.0 ) & wrapping : ( 37.4 , 34.96 ) & leaping : ( 18.92 , 40.54 ) & packing : (

41.0 , 48.0 ) & foraging : ( 35.91 , 44.3 ) & operating : ( 41.67 , 47.22 ) & ascending : (

43.84 , 45.89 ) & stretching : ( 32.0 , 39.67 ) & ignoring : ( 43.21 , 51.57 ) & whisking :

( 47.83 , 63.77 ) & sharpening : ( 28.13 , 45.83 ) & jogging : ( 41.28 , 50.0 ) & browsing

: ( 41.81 , 54.18 ) & sealing : ( 51.16 , 50.0 ) & rafting : ( 64.33 , 73.33 ) & examining

: ( 29.17 , 38.89 ) & hiking : ( 54.0 , 55.0 ) & clapping : ( 37.33 , 38.67 ) & erupting

: ( 67.59 , 68.97 ) & hunching : ( 24.16 , 30.87 ) & raking : ( 25.0 , 25.0 ) & ailing : (

33.67 , 42.35 ) & singing : ( 42.11 , 43.72 ) & standing : ( 56.54 , 51.92 ) & taxiing :

( 87.63 , 87.29 ) & working : ( 31.1 , 33.44 ) & whipping : ( 16.0 , 54.0 ) & crowning

: ( 49.54 , 52.29 ) & steering : ( 49.12 , 49.12 ) & distributing : ( 0.0 , 0.0 ) & spying

: ( 39.85 , 45.11 ) & uncorking : ( 35.11 , 51.91 ) & panhandling : ( 43.33 , 46.0 ) &

weeping : ( 41.8 , 44.67 ) & squeezing : ( 58.13 , 53.75 ) & curtsying : ( 30.5 , 45.39 )

& pawing : ( 46.15 , 48.72 ) & spearing : ( 36.11 , 38.89 ) & whirling : ( 51.9 , 57.09 )

& dripping : ( 32.56 , 40.7 ) & carrying : ( 22.03 , 23.73 ) & pinching : ( 23.77 , 30.49 )

& flapping : ( 47.83 , 51.84 ) & tying : ( 32.81 , 34.38 ) & arranging : ( 45.69 , 50.86 )

& tearing : ( 56.14 , 71.93 ) & blocking : ( 53.7 , 51.85 ) & swooping : ( 36.49 , 38.6 ) &

practicing : ( 44.68 , 45.74 ) & recovering : ( 33.45 , 48.65 ) & shushing : ( 45.91 , 45.14

) & dousing : ( 23.08 , 53.85 ) & buttering : ( 24.07 , 40.74 ) & hoeing : ( 70.67 , 69.0 )
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& making : ( 20.59 , 52.94 ) & unpacking : ( 33.33 , 43.33 ) & mowing : ( 50.0 , 37.5 )

& stacking : ( 67.33 , 62.38 ) & stinging : ( 51.06 , 63.83 ) & heaving : ( 52.69 , 58.6 )

& pulling : ( 14.29 , 21.43 ) & counting : ( 27.61 , 33.67 ) & breaking : ( 27.19 , 29.49

) & docking : ( 30.56 , 36.11 ) & scolding : ( 41.16 , 47.28 ) & complaining : ( 29.96 ,

37.91 ) & drying : ( 38.37 , 50.0 ) & poking : ( 9.09 , 31.82 ) & tickling : ( 18.37 , 22.45

) & bandaging : ( 30.0 , 33.85 ) & recuperating : ( 37.24 , 40.34 ) & butting : ( 43.0 ,

46.67 ) & communicating : ( 32.33 , 31.33 ) & begging : ( 31.74 , 38.7 ) & jumping : (

16.13 , 35.48 ) & hoisting : ( 0.0 , 8.33 ) & pasting : ( 34.29 , 51.43 ) & lighting : ( 36.22

, 43.31 ) & shelving : ( 62.96 , 57.41 ) & wagging : ( 33.33 , 40.23 ) & lifting : ( 27.27

, 40.91 ) & surfing : ( 0.0 , 0.0 ) & gluing : ( 30.36 , 57.14 ) & twisting : ( 46.0 , 48.0 )

& hauling : ( 29.17 , 25.0 ) & destroying : ( 42.31 , 50.0 ) & crawling : ( 30.77 , 28.32 )

& punting : ( 65.55 , 68.9 ) & erasing : ( 44.83 , 65.52 ) & bathing : ( 27.66 , 46.81 ) &

serving : ( 20.75 , 34.91 ) & telephoning : ( 41.52 , 50.87 ) & miming : ( 48.93 , 57.14

) & congregating : ( 41.28 , 43.62 ) & smiling : ( 46.0 , 46.8 ) & drinking : ( 26.35 ,

35.14 ) & scoring : ( 56.42 , 62.16 ) & pouting : ( 38.98 , 48.43 ) & yawning : ( 45.65 ,

45.29 ) & soaking : ( 25.0 , 25.0 ) & glowing : ( 20.31 , 16.8 ) & writing : ( 55.56 , 72.22

) & coaching : ( 21.33 , 30.67 ) & brawling : ( 31.94 , 31.6 ) & spoiling : ( 41.06 , 48.67

) & pooing : ( 43.1 , 51.85 ) & sucking : ( 38.59 , 41.95 ) & unveiling : ( 30.42 , 34.97

) & flipping : ( 39.45 , 49.54 ) & peeing : ( 39.13 , 39.8 ) & educating : ( 47.78 , 52.22

) & bothering : ( 51.39 , 50.0 ) & sweeping : ( 18.75 , 25.0 ) & baking : ( 33.08 , 40.0

) & spinning : ( 37.25 , 25.49 ) & dyeing : ( 52.69 , 56.99 ) & slipping : ( 34.67 , 45.0 )
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& ducking : ( 29.19 , 35.23 ) & shaking : ( 57.14 , 76.98 ) & signing : ( 51.19 , 59.52 ) &

braiding : ( 51.0 , 63.0 ) & stooping : ( 30.93 , 31.62 ) & celebrating : ( 37.07 , 43.88 )

& catching : ( 48.72 , 56.41 ) & juggling : ( 29.0 , 38.33 ) & preaching : ( 48.15 , 56.9

) & scratching : ( 50.0 , 57.74 ) & shearing : ( 75.0 , 91.67 ) & extinguishing : ( 40.63

, 54.69 ) & driving : ( 54.33 , 58.67 ) & puckering : ( 44.0 , 48.0 ) & peeling : ( 37.68 ,

40.58 ) & hanging : ( 25.76 , 28.79 ) & bulldozing : ( 50.0 , 54.8 ) & sliding : ( 28.0 ,

24.0 ) & igniting : ( 37.24 , 40.31 ) & turning : ( 31.99 , 41.08 ) & clenching : ( 45.38 ,

60.5 ) & mourning : ( 30.04 , 36.4 ) & grimacing : ( 45.66 , 47.92 ) & fastening : ( 25.0

, 15.0 ) & plowing : ( 54.55 , 59.09 ) & repairing : ( 19.23 , 42.31 ) & training : ( 40.4 ,

42.42 ) & potting : ( 51.09 , 54.35 ) & blossoming : ( 48.76 , 56.18 ) & cheering : ( 31.52

, 35.14 ) & nailing : ( 10.0 , 20.0 ) & wading : ( 43.67 , 43.33 ) & leading : ( 30.2 , 37.58

) & biting : ( 36.91 , 40.94 ) & strapping : ( 27.27 , 40.91 ) & sneezing : ( 54.93 , 63.38

) & drooling : ( 35.57 , 43.29 ) & striking : ( 37.5 , 50.0 ) & knocking : ( 41.67 , 53.0 )

& encouraging : ( 30.54 , 24.5 ) & soaring : ( 62.08 , 64.09 ) & flossing : ( 57.21 , 64.41

) & manicuring : ( 52.94 , 62.75 ) & squinting : ( 41.94 , 48.39 ) & boating : ( 47.16 ,

39.36 ) & typing : ( 43.62 , 50.67 ) & lacing : ( 30.2 , 28.19 ) & farming : ( 58.33 , 41.67

) & photographing : ( 45.54 , 58.42 ) & speaking : ( 39.39 , 45.12 ) & mining : ( 31.25

, 45.0 ) & selling : ( 17.65 , 21.01 ) & winking : ( 47.2 , 44.0 ) & bouncing : ( 27.59 ,

29.31 ) & leaking : ( 33.63 , 43.36 ) & cheerleading : ( 39.04 , 49.32 ) & autographing

: ( 18.3 , 28.1 ) & chasing : ( 35.33 , 31.0 ) & boarding : ( 41.47 , 55.52 ) & nagging : (

54.88 , 57.58 ) & scraping : ( 29.07 , 37.21 ) & recording : ( 32.53 , 43.84 ) & providing
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: ( 18.18 , 22.73 ) & tipping : ( 42.37 , 37.29 ) & nuzzling : ( 46.0 , 47.33 ) & gathering

: ( 50.0 , 52.36 ) & reassuring : ( 29.1 , 33.44 ) & patting : ( 53.73 , 73.13 ) & talking

: ( 37.25 , 41.61 ) & interrogating : ( 23.08 , 30.77 ) & emptying : ( 41.67 , 58.33 ) &

slithering : ( 57.09 , 62.63 ) & skidding : ( 38.0 , 47.33 ) & flaming : ( 29.37 , 28.57 )

& dining : ( 43.48 , 52.51 ) & hurling : ( 33.33 , 52.78 ) & scooping : ( 16.67 , 50.0 ) &

weeding : ( 34.33 , 44.33 ) & disembarking : ( 32.78 , 39.8 ) & sewing : ( 33.33 , 53.7 )

& videotaping : ( 26.99 , 31.83 ) & colliding : ( 42.0 , 43.67 ) & socializing : ( 43.14 ,

48.16 ) & subduing : ( 24.75 , 26.42 ) & giggling : ( 24.18 , 32.23 ) & sprinting : ( 51.35

, 51.35 ) & drawing : ( 25.71 , 34.76 ) & voting : ( 37.25 , 39.26 ) & swarming : ( 35.21

, 41.2 ) & attacking : ( 27.03 , 28.38 ) & signaling : ( 51.14 , 60.23 ) & dissecting : (

20.71 , 22.14 ) & emerging : ( 31.11 , 31.11 ) & applauding : ( 21.27 , 27.61 ) & grilling

: ( 22.26 , 27.55 ) & spanking : ( 56.82 , 40.91 ) & frisking : ( 36.0 , 39.0 ) & gasping :

( 40.8 , 39.2 ) & crashing : ( 31.86 , 39.82 ) & coloring : ( 28.26 , 39.13 ) & detaining :

( 40.0 , 53.67 ) & riding : ( 43.81 , 46.49 ) & clawing : ( 41.92 , 50.86 ) & scrubbing :

( 35.37 , 36.59 ) & rinsing : ( 51.92 , 59.62 ) & fording : ( 44.18 , 44.86 ) & fueling : (

24.07 , 50.0 ) & grieving : ( 27.41 , 34.75 ) & sprouting : ( 50.0 , 54.17 ) & tilting : (

45.45 , 62.12 ) & frowning : ( 48.35 , 47.52 ) & spraying : ( 5.56 , 11.11 ) & competing

: ( 40.0 , 39.67 ) & frying : ( 29.59 , 36.73 ) & imitating : ( 29.0 , 31.0 ) & stitching : (

41.88 , 55.63 ) & sowing : ( 52.01 , 65.1 ) & spilling : ( 0.0 , 21.43 ) & covering : ( 35.03

, 49.68 ) & rowing : ( 41.33 , 40.67 ) & dipping : ( 35.94 , 32.81 ) & licking : ( 23.91 ,

29.63 ) & calling : ( 46.82 , 53.18 ) & shelling : ( 29.1 , 42.14 ) & overflowing : ( 29.35 ,
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34.81 ) & wheeling : ( 20.37 , 24.07 ) & discussing : ( 37.41 , 40.48 ) & circling : ( 55.48

, 53.0 ) & constructing : ( 31.25 , 40.63 ) & burying : ( 22.22 , 25.93 ) & throwing :

( 27.56 , 34.65 ) & drenching : ( 50.0 , 60.0 ) & injecting : ( 43.33 , 50.0 ) & pricking

: ( 53.29 , 55.26 ) & exterminating : ( 21.67 , 24.33 ) & camping : ( 59.44 , 67.87 ) &

tackling : ( 68.33 , 62.33 ) & clearing : ( 50.0 , 50.0 ) & interviewing : ( 37.67 , 42.67 ) &

plummeting : ( 54.0 , 68.0 ) & wrinkling : ( 40.67 , 41.33 ) & wetting : ( 58.82 , 58.82 )

& reading : ( 30.41 , 44.59 ) & weighing : ( 51.06 , 60.64 ) & deflecting : ( 44.63 , 47.93

) & opening : ( 53.57 , 52.14 ) & brewing : ( 32.26 , 43.37 ) & lapping : ( 57.58 , 54.55 )

& vacuuming : ( 40.43 , 57.45 ) & kicking : ( 31.61 , 34.48 ) & phoning : ( 54.7 , 61.74

) & picking : ( 40.0 , 28.57 ) & staring : ( 31.51 , 32.53 ) & folding : ( 30.46 , 45.03 ) &

wringing : ( 20.74 , 26.76 ) & smearing : ( 33.33 , 33.33 ) & betting : ( 33.45 , 37.54 ) &

smashing : ( 25.53 , 21.28 ) & packaging : ( 25.84 , 33.56 ) & nipping : ( 24.0 , 24.0 )

& stroking : ( 24.07 , 35.19 ) & pouring : ( 12.5 , 12.5 ) & pedaling : ( 61.67 , 61.67 )

& tuning : ( 30.28 , 41.28 ) & dusting : ( 20.75 , 18.87 ) & chiseling : ( 33.45 , 37.16 ) &

attaching : ( 25.0 , 35.42 ) & dropping : ( 21.05 , 31.58 ) & baptizing : ( 26.01 , 30.41 )

& instructing : ( 26.67 , 36.0 ) & resting : ( 28.57 , 33.93 ) & shopping : ( 27.85 , 33.89

) & combing : ( 66.49 , 73.94 ) & coughing : ( 59.67 , 67.9 ) & releasing : ( 32.55 , 43.29

) & misbehaving : ( 26.14 , 31.44 ) & cresting : ( 50.51 , 48.81 ) & rocking : ( 30.26 ,

34.36 ) & dialing : ( 49.16 , 67.0 ) & paying : ( 44.57 , 50.86 ) & guarding : ( 29.11 ,

30.38 ) & queuing : ( 46.55 , 48.28 ) & grinning : ( 34.48 , 35.63 ) & leaning : ( 18.85 ,

31.56 ) & slapping : ( 37.04 , 38.89 ) & trimming : ( 0.0 , 0.0 ) & biking : ( 32.54 , 36.61
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) & piloting : ( 48.98 , 59.86 ) & welding : ( 34.62 , 26.92 ) & stuffing : ( 29.76 , 48.81

) & tilling : ( 48.48 , 50.51 ) & arching : ( 25.67 , 35.33 ) & rubbing : ( 15.38 , 16.67 )

& sleeping : ( 44.14 , 52.76 ) & skipping : ( 42.81 , 51.17 ) & pressing : ( 32.09 , 36.82 )

& clinging : ( 35.91 , 40.94 ) & swinging : ( 37.58 , 45.3 ) & pruning : ( 10.0 , 10.0 ) &

pinning : ( 29.35 , 29.35 ) & dragging : ( 16.67 , 33.33 ) & barbecuing : ( 34.34 , 29.97 )

& parading : ( 61.07 , 59.06 ) & fetching : ( 32.43 , 37.84 ) & locking : ( 50.36 , 54.74

) & shoveling : ( 42.86 , 35.71 ) & glaring : ( 39.53 , 44.96 ) & confronting : ( 40.0 ,

39.33 ) & cramming : ( 36.67 , 53.33 ) & disciplining : ( 36.61 , 46.88 ) & microwaving

: ( 56.55 , 57.93 ) & running : ( 46.67 , 51.0 ) & cleaning : ( 21.54 , 33.85 ) & spitting

: ( 25.84 , 28.09 ) & climbing : ( 33.33 , 28.57 ) & slicing : ( 47.22 , 38.89 ) & dancing

: ( 36.82 , 44.77 ) & flexing : ( 60.0 , 60.0 ) & studying : ( 33.22 , 35.23 ) & massaging

: ( 48.08 , 53.85 ) & handcuffing : ( 49.32 , 56.42 ) & assembling : ( 27.4 , 32.88 ) &

lathering : ( 48.68 , 68.42 ) & shivering : ( 44.32 , 48.48 ) & mending : ( 24.11 , 34.82 )

& distracting : ( 58.0 , 64.33 ) & fishing : ( 6.25 , 18.75 ) & praying : ( 37.93 , 43.3 ) &

kneeling : ( 46.42 , 52.22 ) & loading : ( 40.0 , 60.0 ) & decomposing : ( 20.82 , 34.29 ) &

exercising : ( 53.25 , 69.48 ) & arresting : ( 46.28 , 46.28 ) & shouting : ( 41.48 , 55.19 )

& crying : ( 41.87 , 43.9 ) & unloading : ( 25.0 , 50.0 ) & harvesting : ( 40.0 , 20.0 ) &

unplugging : ( 38.05 , 39.39 ) & molding : ( 33.8 , 35.92 ) & checking : ( 35.48 , 35.48

) & descending : ( 25.0 , 30.56 ) & saying : ( 29.76 , 28.72 ) & aiming : ( 37.25 , 42.11

) & pouncing : ( 26.51 , 31.21 ) & waddling : ( 41.41 , 43.1 ) & performing : ( 49.12 ,

63.16 ) & taping : ( 20.0 , 27.86 ) & laughing : ( 39.85 , 34.32 ) & immersing : ( 50.0 ,
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53.85 ) & gardening : ( 28.72 , 35.14 ) & punching : ( 31.65 , 48.2 ) & twirling : ( 24.75

, 35.45 ) & diving : ( 49.66 , 54.08 ) & sniffing : ( 38.93 , 40.6 ) & filling : ( 27.78 , 27.78

) & grinding : ( 21.74 , 29.35 ) & filming : ( 26.53 , 41.84 ) & asking : ( 38.19 , 40.97 ) &

measuring : ( 25.35 , 42.25 ) & eating : ( 48.48 , 49.49 ) & buckling : ( 71.05 , 60.53 ) &

hitchhiking : ( 44.82 , 61.2 ) & bowing : ( 28.11 , 29.18 ) & tripping : ( 25.0 , 28.0 ) &

officiating : ( 47.65 , 57.05 ) & submerging : ( 75.68 , 78.38 ) & waving : ( 24.0 , 34.0 )

& crafting : ( 28.68 , 32.35 ) & drumming : ( 71.15 , 76.92 ) & plunging : ( 35.92 , 28.16

) & swimming : ( 36.36 , 34.34 ) & carting : ( 36.0 , 41.0 ) & watering : ( 18.75 , 31.25

) & stampeding : ( 0.0 , 0.0 ) & curling : ( 57.14 , 75.32 ) & burning : ( 35.0 , 37.31 ) &

perspiring : ( 48.18 , 47.77 ) & clipping : ( 28.57 , 28.57 ) & snuggling : ( 38.33 , 43.67

) & carving : ( 28.17 , 33.1 ) & tugging : ( 26.1 , 37.97 ) & calming : ( 37.76 , 41.5 ) &

hitting : ( 39.13 , 19.57 ) & apprehending : ( 36.05 , 46.94 ) & retrieving : ( 37.1 , 35.48

) & camouflaging : ( 45.39 , 51.06 ) & placing : ( 24.0 , 33.33 ) & towing : ( 34.67 ,

34.67 ) & prowling : ( 48.48 , 52.53 ) & launching : ( 50.0 , 62.5 ) & crushing : ( 29.79 ,

36.17 ) & pitching : ( 100.0 , 100.0 ) & offering : ( 43.53 , 42.35 ) & branching : ( 44.44

, 47.22 ) & adjusting : ( 52.54 , 67.8 ) & landing : ( 56.67 , 59.33 ) & moisturizing : (

43.57 , 45.71 ) & tasting : ( 28.93 , 26.45 ) & wiping : ( 30.26 , 25.0 ) & sprinkling : (

13.64 , 18.18 ) & buying : ( 27.42 , 64.52 ) & applying : ( 32.14 , 39.29 ) & protesting :

( 43.67 , 45.33 ) & stumbling : ( 37.04 , 38.72 ) & stapling : ( 37.5 , 52.5 ) & mopping

: ( 52.01 , 59.06 ) & stirring : ( 37.5 , 25.0 ) & skating : ( 39.33 , 51.0 ) & gnawing : (

38.26 , 35.57 ) & floating : ( 51.9 , 50.0 ) & shooting : ( 46.33 , 50.0 ) & commuting : (
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54.67 , 66.0 ) & planting : ( 18.18 , 18.18 ) & fixing : ( 33.33 , 42.86 ) & milking : ( 0.0

, 0.0 ) & gambling : ( 59.93 , 80.48 ) & brushing : ( 31.94 , 43.06 ) & vaulting : ( 0.0 ,

28.57 ) & crouching : ( 35.92 , 40.14 ) & embracing : ( 43.69 , 40.96 ) & whistling : (

26.8 , 46.39 ) & helping : ( 31.25 , 50.0 ) & smelling : ( 35.69 , 38.38 ) & unlocking :

( 18.75 , 31.25 ) & ejecting : ( 33.33 , 16.67 ) & building : ( 45.0 , 50.0 ) & rotting : (

31.06 , 26.89 ) & painting : ( 10.94 , 29.69 ) & admiring : ( 21.33 , 29.0 ) & waxing : (

28.77 , 52.05 ) & stripping : ( 26.09 , 21.74 ) & prying : ( 42.31 , 42.31 ) & buttoning :

( 40.27 , 42.95 )
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IMSITU VERB ABSTRACT DEFINITIONS

This appendix includes segmented abstract definitions sorted by verbs.

A.

[an AGENT] adjusts [an ITEM’s FEATURE] [using TOOL] [at PLACE]

[an AGENT] is admiring [the ADMIRED] [at PLACE]

[the VICTIM’s VICTIMPART] is ailing [with the CAUSE] [at the PLACE]

[an AGENT] aims [an ITEM] [at TARGET] [in PLACE]

[an AGENT] applauds [an ADDRESSEE] [at PLACE]

[AGENT] is applying [SUBSTANCE] [to DESTINATION] [using TOOL] [in PLACE]

[AGENT] apprehended [VICTIM] [in PLACE]

[AGENT] arches [BODYPART] [at PLACE]

[the AGENT] arranges [ITEM] [with TOOL] [in PLACE]

[the AGENT] arrested [the SUSPECT] [in PLACE]

[an AGENT] ascends [at PLACE]

[an AGENT] asks [an ADDRESSEE] [at PLACE]

[an AGENT] assembles [the GOALITEM] [with COMPONENTs using TOOL] [at PLACE]

[an AGENT] attaches [ITEM] [to DESTINATION] [with GLUE] [using TOOL] [at PLACE]

[an AGENT] attacks [VICTIM] [using WEAPON] [at PLACE]

[an AGENT] autographs [an ITEM] [for RECEIVER] [at PLACE]
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B.

[an AGENT] bakes [FOOD] [in FOODCONTAINER] [by applying heat with HEATSOURCE] [at PLACE]

[an AGENT] balloons [at PLACE]

[AGENT] bandages [VICTIM] [at PLACE]

[AGENT] baptizes [BAPTIZED] [at PLACE]

[an AGENT] barbecues [FOOD] [at PLACE]

[an AGENT] bathes [COAGENT] [using TOOL] [and SUBSTANCE] [in PLACE]

[the AGENT] is begging [the GIVER] [for ITEM] [in PLACE]

[AGENT] bets [at PLACE]

[an AGENT] bikes [at PLACE]

[AGENT] is biting [ITEM] [in PLACE]

[the BLOCKER] blocked [the BLOCKED] [with TOOL] [in PLACE]

[an AGENT] blossoms [in PLACE]

[the AGENT] boards [VEHICLE] [at PLACE]

[the BOATERS] boat [on VEHICLE] [in PLACE]

[the AGENT] bothers [the VICTIM] [by do an ACTION] [in PLACE]

[the AGENT] bounces [an ITEM] [against SURFACE] [in PLACE]

[an AGENT] bows [at PLACE]

[AGENT] braids [ITEM] [at PLACE]

[BRANCHER] branches [at PLACE]

[an AGENT] brawls [at PLACE]
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[the AGENT] breaks [the ITEM] [using TOOL] [at PLACE]

[an AGENT] brews [TARGET] [at PLACE]

[an AGENT] browses [for GOALITEM] [at PLACE]

[an AGENT] brushes [TARGET] [with TOOL] [using SUBSTANCE] [at PLACE]

[the AGENT] bubbles [in PLACE]

[an AGENT] buckles [an ITEM] [using FASTENER] [into CONTAINER] [at PLACE]

[an AGENT] builds [GOALITEM] [from COMPONENTS] [using TOOL] [in PLACE]

[the AGENT] bulldozes [the OBJECT] [at PLACE]

[AGENT] is burning [TARGET] [in PLACE]

[AGENT] buries [an ITEM] [into DESTINATION] [using TOOL] [at PLACE]

[an AGENT] butters [an ITEM] [using TOOL] [in PLACE]

[AGENT] butts [TARGET] [at PLACE]

[an AGENT] buttons [an ITEM] [in PLACE]

[the AGENT] buys [GOODS] [with PAYMENT] [from the SELLER] [in PLACE]

C.

[an AGENT] calls [using TOOL] [at PLACE]

[AGENT] is calming [EXPERIENCER] [in PLACE]

[AGENT] is camouflaging [into HIDINGITEM] [in PLACE]

[an AGENT] camps [on/in SHELTER] [at PLACE]

[the AGENT] caresses [the RECIPIENTPART] [with the AGENTPART] [at PLACE]

[an AGENT] carries [an ITEM] [on their AGENTPART] [at PLACE]
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[the AGENT] cartes [the ITEM] [in TOOL] [at PLACE]

[AGENT] carved [SUBSTANCE] [with TOOL] [in PLACE]

[an AGENT] catches [CAUGHTITEM] [with TOOL] [at PLACE]

[an AGENT] celebrates [an OCCASION] [at PLACE]

[an AGENT] chases [the CHASEE] [at PLACE]

[the AGENT] checks [the PATIENT’s ASPECT] [with the TOOL] [in the PLACE]

[the AGENT] cheers [in PLACE]

[an AGENT] cheerleads [for the SUPPORTED] [at PLACE]

[an AGENT] chews [an ITEM] [in PLACE]

[the AGENT] chisels [the ITEM] [at the PLACE]

[AGENT] circles [CENTER] [in PLACE]

[the AGENT] claps [their AGENTPART] [in PLACE]

[AGENT] is clawing [VICTIM] [in PLACE]

[AGENT] is cleaning [SOURCE] [with TOOL] [in PLACE]

[an AGENT] clears [an ITEM] [from SOURCE] [using TOOL] [in PLACE]

[an AGENT] clenched [an ITEM] [with the AGENTPART] [at PLACE]

[the AGENT] climbs [an OBSTACLE] [with TOOL] [at PLACE]

[AGENT] is clipping [ITEM] [from SOURCE] [with TOOL] [in PLACE]

[an AGENT] coaches [STUDENT] [to be good at SKILL] [at PLACE]

[the AGENT] collides [with the ITEM] [at PLACE]

[the AGENT] colors [ITEM] [with TOOL] [in PLACE]
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[the AGENT] combs [the TARGET] [with TOOL] [at PLACE]

[an AGENT] communicates [to the ADRESSEE] [at PLACE]

[the TRAVELER] commutes [in VEHICLE] [in PLACE]

[AGENT] is competing [in COMPETITION] [in PLACE]

[the AGENT] complains [to the LISTENER] [in PLACE]

[AGENT] confronts [CONFRONTED] [in PLACE]

[the INDIVIDUALS] congregate [at the PLACE]

[an AGENT] constructs [CREATEDITEM] [with TOOL] [from the COMPONENTS] [at PLACE]

[an AGENT] cooks [FOOD] [in CONTAINER] [over HEATSOURCE] [using TOOL] [in PLACE]

[the AGENT] coughs [in PLACE]

[an AGENT] counts [the ITEMTYPE] [at PLACE]

[the AGENT] covers [the ITEM] [with COVER] [at PLACE]

[an AGENT] crafts [CREATED] [with INSTRUMENT] [in PLACE]

[the AGENT] crammed [the THEME] [into the CONTAINER] [in the PLACE]

[the AGENT] crashes [the ITEM] [into the AGAINST] [at PLACE]

[an AGENT] crawls [at PLACE]

[an AGENT] crests [at PLACE]

[the AGENT] crouches [in the PLACE]

[the AGENT] crowns [the CROWNEDENTITY] [with CROWN] [at the PLACE]

[an AGENT] crushed [the CRUSHEDITEM] [with TOOL] [at PLACE]

[an AGENT] cries [in PLACE]
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[AGENT] curling [TARGET] [with TOOL] [in PLACE]

[an AGENT] curtsies [at PLACE]

D.

[the AGENT] dances [in PLACE]

[DECOMPOSER] decomposes [at PLACE]

[an AGENT] decorates [the DECORATED] [with an ITEM] [at PLACE]

[the AGENT] deflected [the DEFLECTEDITEM] [to the DESTINATION] [at the PLACE]

[the AGENT] [uses TOOL] to descend [from SOURCE] [at PLACE]

[an AGENT] destroyed [the DESTROYEDITEM] [with TOOL] [at PLACE]

[an AGENT] detains [VICTIM] [at PLACE]

[an AGENT] dials [on an ITEM] [at PLACE]

[the AGENT] dined [on the FOOD] [in the PLACE]

[an AGENT] dips [an ITEM] [into SUBSTANCE] [at PLACE]

[an AGENT] disciplines [VICTIM] [with TOOL] [in PLACE]

[AGENTS] discuss [at PLACE]

[the AGENT] disembarks [from VEHICLE] [in PLACE]

[the AGENT] displays [the ITEM] [to the TARGET] [using TOOL] [at PLACE]

[AGENT] is dissecting [ITEM] [using TOOL] [in PLACE]

[an AGENT] distracts [VICTIM] [at PLACE]

[the AGENT] [uses TOOL] to distribute [DISTRIBUTED] [to RECIPIENTS] [at PLACE]

[the AGENT] docks [VEHICLE] [with CONNECTOR] [in PLACE]
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[AGENT] is dousing [UNDERGOER] [with LIQUID] [in PLACE]

[an AGENT] drags [an ITEM] [with TOOL] [on CONTACT] [at PLACE]

[an AGENT] draws [REFERENCE] [using TOOL] [in PLACE]

[AGENT] is drenching [DRENCHEDITEM] [with LIQUID] [using TOOL] [in PLACE]

[the AGENT] drinks [LIQUID] [from CONTAINER] [at PLACE]

[the AGENT] drips [the FLUID] [from the SOURCE] [to the DESTINATION] [in the PLACE]

[AGENT] is driving [ITEM] [in PLACE]

[the AGENT] drools [on END] [in PLACE]

[an AGENT] dropped [an ITEM] [from the START] [to the END] [at PLACE]

[the AGENT] drums [on the ITEM] [with the TOOL] [in the PLACE]

[AGENT] dries [ITEM] [using TOOL] [at PLACE]

[an AGENT] ducks [to avoid BLOW] [in PLACE]

[an AGENT] dusts [SOURCE] [using TOOL] [at PLACE]

[the AGENT] dyes [the MATERIAL] [with DYE] [in PLACE]

E.

[an AGENT] eat [FOOD] [from CONTAINER] [using TOOL] [at PLACE]

[TEACHER] educates [STUDENT] [on SUBJECT] [at PLACE]

[an AGENT] ejects [an ITEM] [from SOURCE] [toward DESTINATION] [at PLACE]

[the AGENT] embraces [the COAGENT] [at PLACE]

[the AGENT] emerges [from SOURCE] [to DESTINATION] [in PLACE]

[an AGENT] empties [an ITEM] [from CONTAINER] [into DESTINATION] [using TOOL] [in PLACE]
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[the AGENT] encourages [the RECIEVER] [in PLACE]

[the AGENT] erases [the ERASED] [from SOURCE] [in PLACE]

[an AGENT] erupts [with SUBSTANCE] [in PLACE]

[the AGENT] examines [the ITEM] [using TOOL] [at PLACE]

[the AGENT] exercises [the AGENTPART] [in PLACE]

[the AGENT] is exterminating [the PLACE] [with the INSTRUMENT]

[the AGENT] extinguishes [ITEM] [using TOOL] [in PLACE]

F.

[the AGENT] falls [from SOURCE] [to GOAL] [at PLACE]

[the FARMER] farms [the ITEM] [from the GROUND] [using TOOL] [at PLACE]

[an AGENT] fastens [an ITEM] [into DESTINATION] [with CONNECTOR] [using TOOL] [at PLACE]

[the AGENT] feeds [FOOD] [from SOURCE] [to the EATER] [in PLACE]

[the AGENT] fetches [the ITEM] [from SOURCE] [and brings it to DESTINATION,] [in PLACE]

[AGENT] fills [DESTINATION] [with ITEM] [from SOURCE] [at PLACE]

[the AGENT] films [PERFORMER] [using TOOL] [at PLACE]

[the AGENT] fish [from SOURCE] [using TOOL] [at the PLACE]

[the AGENT] fixes [the OBJECT’s OBJECTPART] [with TOOL] [in PLACE]

[an AGENT] flames [at PLACE]

[the AGENT] flapped [its BODYPART] [in PLACE]

[an AGENT] flexes [their AGENTPART] [at an ADDRESSEE] [at PLACE]

[the AGENT] flicks [the OBJECT] [in the OBJECTPART] [with their AGENTPART] [at PLACE]
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[AGENT] flings [ITEM] [toward GOAL] [using TOOL] [in PLACE]

[the AGENT] flips [the FLIPPED] [with TOOL] [in PLACE]

[the AGENT] is floating [in MEDIUM] [using TOOL] [at PLACE]

[an AGENT] flosses [COAGENT] [in PLACE]

[an AGENT] folds [CLOTH] [into SHAPE] [at PLACE]

[the AGENT] forages [for ITEM] [in PLACE]

[the AGENT] fords [using TOOL] [in PLACE]

[an AGENT] frisks [VICTIM] [at PLACE]

[the AGENT] frowns [in PLACE]

[an AGENT] fries [FOOD] [in CONTAINER] [at PLACE]

[AGENT] fuels [RECIPIENT] [with TOOL] [in PLACE]

G.

[the AGENT] gambles [STAKE] [in PLACE]

[the AGENT] gardens [with the help of TOOL] [in PLACE]

[the AGENT] is gasping [in PLACE]

[the GATHERERS] gathered [in PLACE]

[the AGENT] giggled [at the TARGET] [at PLACE]

[an AGENT] gives [an ITEM] [to the RECIPIENT] [at PLACE]

[an AGENT] glares [at PERCEIVER] [in PLACE]

[the AGENT] glows [at PLACE]

[the AGENT] glues [ITEM] [to GOAL] [with CONNECTOR] [in PLACE]
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[an AGENT] gnaws [an ITEM] [at PLACE]

[an AGENT] grieves [at PLACE]

[an AGENT] grills [FOOD] [at PLACE]

[the AGENT] grimaced [because of the CAUSE] [at the PLACE]

[the AGENT] grinds [an ITEM] [with TOOL] [against SURFACE] [in PLACE]

[the AGENT] grinned [in the PLACE]

[an AGENT] guards [an ITEM] [with WEAPON] [at PLACE]

H.

[AGENT] handcuffs [VICTIM] [at PLACE]

[the AGENT] hangs [the ITEM] [from the SCAFFOLD] [in the PLACE]

[the AGENT] harvest [the HARVESTEDITEM] [using TOOL] [from the GROUND] [at the PLACE]

[CARRIER] hauls [an ITEM] [with TOOL] [in PLACE]

[the AGENT] heaves [the HEAVEDITEM] [using TOOL] [at PLACE]

[AGENT] helped [ENTITYHELPED] [with TOOL] [in PLACE]

[the AGENT] hikes [at PLACE]

[an AGENT] hitchhikes [at PLACE]

[the AGENT] hits [the VICTIM] [on the VICTIMPART] [with TOOL] [in PLACE]

[an AGENT] hoes [the GROUND] [in PLACE]

[an AGENT] hoists [an ITEM] [up from SOURCE] [using TOOL] [at PLACE]

[the AGENT] to hug [HUGGED] [at PLACE]

[an AGENT] hunches [over SURFACE] [in PLACE]
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[the AGENT] hunts [the HUNTED] [in the PLACE]

[the AGENT] hurls [the OBJECT] [from START] [to END] [at PLACE]

I.

[an AGENT] ignites [the ITEM] [with TOOL] [at PLACE]

[the AGENT] ignores [the BORINGTHING] [in the PLACE]

[AGENT] imitates [MODEL] [in PLACE]

[the AGENT] immerses [an ITEM] [in LIQUID] [in PLACE]

[AGENT] [is using TOOL] to inflate [OBJECT] [in PLACE]

[an AGENT] injects [SUBSTANCE] [from SOURCE] [into DESTINATION] [at PLACE]

[the AGENT] inserts [the OBJECT] [into CONTAINER] [at PLACE]

[an AGENT] installs [COMPONENT] [into DESTINATION] [using TOOL] [at PLACE]

[an AGENT] instructs [STUDENT] [at PLACE]

[AGENTS] intermingle [in PLACE]

[the AGENT] interrogated [the ADDRESSEE] [using the TOOL] [in the PLACE]

[the AGENT] interviews [the INTERVIEWEE] [at PLACE]

J.

[an AGENT] jogs [at PLACE]

[an AGENT] juggles [ITEMS] [in PLACE]

[an AGENT] jumps [from SOURCE] [over/through an OBSTACLE] [and will end up at DESTINATION] [at PLACE]

K.

[an AGENT] kicks [VICTIM] [in the VICTIMPART] [at PLACE]
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[the AGENT] kissed [the COAGENT’s COAGENTPART] [with his/her AGENTPART] [at PLACE]

[the AGENT] kneads [an ITEM] [at PLACE]

[an AGENT] kneels [on the CONTACT] [at PLACE]

[an AGENT] knocks [on an ITEM] [at PLACE]

L.

[AGENT] laces [ITEM] [at PLACE]

[AGENT] lands [on DESTINATION] [at PLACE]

[an AGENT] laps [FOOD] [from CONTAINER] [at PLACE]

[an AGENT] lathers [SUBSTANCE] [into DESTINATION] [at PLACE]

[the AGENT] laughes [at PLACE]

[an AGENT] launches [an ITEM] [from SOURCE] [toward DESTINATION] [at PLACE]

[the AGENT] is leading [the FOLLOWER] [in PLACE]

[SUBSTANCE] leaks [from SOURCE] [onto/into DESTINATION] [at PLACE]

[an AGENT] leans [an ITEM] [against AGAINST] [at PLACE]

[the AGENT] leaps [from the SOURCE] [over/through an OBSTACLE] [to the DESTINATION] [in the PLACE]

[the AGENT] lectures [the AUDIENCE] [in PLACE]

[an AGENT] licks [an ITEM] [at PLACE]

[the AGENT] lifts [ITEM] [from START] [to END] [in PLACE]

[an AGENT] lights [an ITEM] [on fire using TOOL] [at PLACE]

[the AGENT] loads [DESTINATION] [with an ITEM] [using TOOL] [at PLACE]

[an AGENT] locks [an ITEM] [with TOOL] [in PLACE]
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M.

[an AGENT] makes [GOALITEM] [by manipulating COMPONENT] [using TOOL] [at PLACE]

[AGENT] manicures [ITEM] [using TOOL] [at PLACE]

[the AGENT] marches [in PLACE]

[an AGENT] mashes [an ITEM] [with TOOL] [in PLACE]

[an AGENT] massages [the COAGENTPART] [of the COAGENT] [at PLACE]

[an AGENT] measures [an OBJECTs’ QUANTITY] [using TOOL] [at PLACE]

[the AGENT] mends [ITEM] [with TOOL] [in PLACE]

[an AGENT] microwaves [FOOD] [in CONTAINER] [at PLACE]

[an AGENT] milks [SOURCE] [with TOOL] [into DESTINATION] [in PLACE]

[an AGENT] mimes [an IMITATION] [at PLACE]

[an AGENT] mines [the RESOURCE] [with TOOL] [at PLACE]

[an AGENT] misbehaves [at PLACE]

[an AGENT] moistens [an ITEM] [with LIQUID] [at PLACE]

[the AGENT] [uses TOOL] to moisturize [MOISTURIZED] [at PLACE]

[an AGENT] molds [SUBSTANCE] [into GOALITEM] [in PLACE]

[the AGENT] is mopping [the SURFACE] [in the PLACE]

[the MOURNER] mourns [at the PLACE]

[an AGENT] mows [an ITEM] [with TOOL] [in PLACE]

N.

[the AGENT] nags [the NAGGEDPERSON] [at PLACE]
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[the AGENT] [uses the TOOL] to nail [ITEM1] [and ITEM2] [together in the PLACE]

[an AGENT] nips [an ITEM] [at PLACE]

[an AGENT] nuzzles [an ITEM] [at PLACE]

O.

[AGENT] offers [ITEM] [to BENEFICIARY] [at PLACE]

[the AGENT] officiates [an EVENT] [in PLACE]

[the AGENT] opens [the ITEM] [with the TOOL] [at the PLACE]

[the AGENT] operates [an ITEM] [with TOOL] [in PLACE]

[AGENT] is overflowing [from SOURCE] [in PLACE]

P.

[AGENT] packages [ITEM] [in PLACE]

[an AGENT] pack [an ITEM] [into CONTAINER] [at PLACE]

[an AGENT] paints [an ITEM] [with TOOL] [at PLACE]

[AGENT] panhandles [TARGET] [at PLACE]

[an AGENT] parades [in PLACE]

[the AGENT] [used CONNECTOR] to paste [an ITEM] [to an OBJECT] [in PLACE]

[AGENT] pats [ITEM] [using TOOL] [at PLACE]

[the AGENT] pawed [the PAWEDITEM] [using his/her AGENTPART] [at PLACE]

[an AGENT] pays [SELLER] [for GOOD] [at PLACE]

[the AGENT] pedals [his VEHICLE] [in the PLACE]

[AGENT] is peeing [in TARGET] [in PLACE]
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[an AGENT] peels [an ITEM] [with TOOL] [at PLACE]

[the AGENT] performing [the EVENT] [on the STAGE] [using TOOL] [at PLACE]

[AGENT] perspires [in PLACE]

[the AGENT] phones [using the TOOL] [at the PLACE]

[the AGENT] photographes [an ITEM] [with TOOL] [in PLACE]

[an AGENT] picks [the CROP] [from the SOURCE] [in PLACE]

[the AGENT] pilots [VEHICLE] [from START] [to END] [in PLACE]

[the AGENT] pinches [the OBJECT] [in the OBJECTPART] [at PLACE]

[AGENT] is pinning [the PINNED] [onto DESTINATION] [in PLACE]

[the AGENT] [uses TOOL] to pitch [the PITCHED] [at PLACE]

[AGENT] placed [PLACEDITEM] [in DESTINATION] [along ALREADYPLACEDITEM] [in PLACE]

[the AGENT] [use TOOL] to plant [PLANTED] [in PLACE]

[AGENT] is plowing [with the INSTRUMENT] [in PLACE]

[the AGENT] is plummeting [from the START] [toward the DESTINATION] [in the PLACE]

[an AGENT] plunges [PLUNGED] [into DESTINATION] [at PLACE]

[the AGENT] poked [the OBJECT] [in its OBJECTPART] [using TOOL] [in PLACE]

[AGENT] poos [onto DESTINATION] [at PLACE]

[an AGENT] pots [an ITEM] [in CONTAINER] [at PLACE]

[an AGENT] pounces [onto the DESTINATION] [at PLACE]

[an AGENT] pours [SUBSTANCE] [from SOURCE] [to DESTINATION] [with TOOL] [in PLACE]

[an AGENT] pouts [at PLACE]
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[an AGENT] practices [SKILL] [using TOOL] [at PLACE]

[the AGENT] prays [at PLACE]

[an AGENT] preaches [to ADDRESSEE] [in PLACE]

[the AGENT] presses [ITEM] [in PLACE]

[the AGENT] pricks [the PRICKED] [with the TOOL] [in the PLACE]

[an AGENT] protests [at PLACE]

[an AGENT] provides [RECIPIENT] [with an ITEM] [from SOURCE] [in PLACE]

[AGENT] is prowling [for TARGET] [in PLACE]

[an AGENT] prunes [REMOVEDITEM] [from SOURCE] [using TOOL] [at PLACE]

[the AGENT] pries [the ITEM] [from the FROM] [using TOOL] [at PLACE]

[the AGENT] puckers [his/her AGENTPART] [at PLACE]

[the AGENT] pulls [an ITEM] [with TOOL] [at PLACE]

[an AGENT] pumps [SUBSTANCE] [from SOURCE] [to DESTINATION] [using TOOL] [at PLACE]

[AGENT] is punching [VICTIM’s BODYPART] [in PLACE]

[an AGENT] punts [ITEM] [at PLACE]

[an AGENT] pushes [an ITEM] [with an AGENTPART] [at PLACE]

[an AGENT] puts [an ITEM] [into DESTINATION] [in PLACE]

Q.

[the AGENT] is queueing [in PLACE]

R.

[the AGENT] races [against the COMPETITOR] [at PLACE]
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[an AGENT] rafts [at PLACE]

[an AGENT] rakes [an ITEM] [from SOURCE] [into DESTINATION] [at PLACE]

[an AGENT] rams [the VICTIM] [with RAMMINGITEM] [at PLACE]

[an AGENT] reads [an ITEM] [at PLACE]

[AGENT] is rearing [in PLACE]

[an AGENT] reassures [the REASSURED] [at PLACE]

[the AGENT] records [PHENOMENON] [in PLACE]

[the AGENT] recovers [from an AILMENT] [at PLACE]

[the AGENT] recuperates [at the PLACE]

[AGENT] rehabilitates [ITEM] [at PLACE]

[an AGENT] releases [RELEASEDITEM] [from PLACE]

[the AGENT] repairs [ITEM’s PROBLEM] [using TOOL] [in PLACE]

[the AGENT] rests [ITEM] [on GOAL] [in PLACE]

[an AGENT] restrained [the RESTRAINED] [in PLACE]

[the AGENT] retrieves [the OBJECT] [from START] [in PLACE]

[an AGENT] rides [then VEHICLE] [at PLACE]

[AGENT] is rinsing [OBJECT] [using TOOL] [in PLACE]

[the AGENT] rocks [ROCKED] [in CONTAINER] [in PLACE]

[AGENT] rots [in CONTAINER] [at PLACE]

[an AGENT] rows [VEHICLE] [at PLACE]

[the AGENT] rubs [ITEM] [with AGENTPART] [in PLACE]
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[AGENT] runs [at PLACE]

S.

[AGENT] is saluting [TARGET] [in PLACE]

[an AGENT] scolds [VICTIM] [in PLACE]

[AGENT] is scooping [ITEM] [from SOURCE] [using TOOL] [in PLACE]

[the AGENT] scores [in PLACE]

[the AGENT] scrapes [the SCRAPEDITEM] [with TOOL] [at the PLACE]

[the AGENT] scratches [the OBJECT] [using TOOL] [at PLACE]

[an AGENT] scrubs [an ITEM] [with TOOL] [at PLACE]

[an AGENT] seals [an ITEM] [with SEALANT] [at PLACE]

[SELLER] sells [an ITEM] [to BUYER] [at PLACE]

[the AGENT] serves [an ITEM] [to the SERVED] [at PLACE]

[the AGENT] sews [the ITEM] [with the TOOL] [in the PLACE]

[AGENT] shakes [ITEM] [using TOOL] [at PLACE]

[the AGENT] sharpens [ITEM] [with TOOL] [in PLACE]

[an AGENT] shaves [COAGENT’sBODYPART using TOOL] [with the help of SUBSTANCE] [at PLACE]

[an AGENT] shears [an ITEM] [from SOURCE] [at PLACE]

[the AGENT] shells [the OBJECT] [in PLACE]

[the AGENT] shelves [an ITEM] [on DESTINATION] [in PLACE]

[an AGENT] shivers [at PLACE]

[the AGENT] shoots [PROJECTILE] [from the FIREARM] [at TARGET] [in PLACE]
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[the AGENT] shops [for GOODS] [in PLACE]

[an AGENT] shouts [at an ADDRESSEE] [in PLACE]

[the AGENT] shovels [the ITEM] [from the SOURCE] [in the PLACE]

[an AGENT] shreds [an ITEM] [using TOOL] [at PLACE]

[an AGENT] shrugs [at an ADDRESSEE] [at PLACE]

[the AGENT] shushes [the TARGET] [at the PLACE]

[the AGENT] signals [the MESSAGE] [to the RECIPIENT] [using the TOOL] [in the PLACE]

[the AGENT] signs [the SIGNEDITEM] [with the TOOL] [at the PLACE]

[the AGENT] sings [in the PLACE]

[an AGENT] sits [on CONTACT] [at PLACE]

[an AGENT] skates [by using VEHICLE] [at PLACE]

[the AGENT] sketches [an IMAGE] [on MATERIAL] [with TOOL] [in PLACE]

[AGENT] is skidding [in PLACE]

[an AGENT] skis [in PLACE]

[an AGENT] skips [over an OBSTACLE] [at PLACE]

[AGENT] slaps [VICTIM] [in the VICTIMPART] [with TOOL] [in PLACE]

[the AGENT] sleeps [in the PLACE]

[the AGENT] slices [the SLICEDITEM] [using TOOL] [at the PLACE]

[the AGENT] slides [the SLIDER] [on SURFACE] [to DESTINATION] [at PLACE]

[an AGENT] slips [onto DESTINATION] [at PLACE]

[an AGENT] slithers [in PLACE]
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[an AGENT] slouches [on the CONTACT] [at PLACE]

[an AGENT] smashes [the SMASHED] [with TOOL] [against AGAINST] [at PLACE]

[the AGENT] smears [an ITEM] [on SURFACE] [with TOOL] [at PLACE]

[the AGENT] smells [ITEM] [in PLACE]

[the AGENT] smiles [in PLACE]

[the AGENT] sneezed [at the PLACE]

[an AGENT] sniffs [an ITEM] [in PLACE]

[an AGENT] snuggles [with COAGENT] [at PLACE]

[an AGENT] soaks [an ITEM] [in SUBSTANCE] [in CONTAINER] [at PLACE]

[an AGENT] soares [in PLACE]

[the AGENT] socializes [with COAGENT] [in PLACE]

[an AGENT] sows [with TOOL] [at PLACE]

[the AGENT] spanks [the VICTIM] [with the TOOL] [in the PLACE]

[the AGENT] speaks [to COAGENT] [in PLACE]

[the AGENT] spears [the VICTIM] [in PLACE]

[an AGENT] spills [SUBSTANCE] [from SOURCE] [onto DESTINATION] [at PLACE]

[an AGENT] spins [MATERIAL] [with TOOL] [in PLACE]

[the AGENT] spits [an ITEM] [on the TARGET] [at PLACE]

[an AGENT] splashes [DESTINATION] [with SUBSTANCE] [using TOOL] [in PLACE]

[the AGENT] spoils [at PLACE]

[an AGENT] sprays [SUBSTANCE] [onto DESTINATION] [from SOURCE] [using TOOL] [in PLACE]
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[an AGENT] spreads [SUBSTANCE] [onto SURFACE] [using TOOL] [at PLACE]

[an AGENT] sprinkles [an ITEM] [from SOURCE] [onto DESTINATION] [at PLACE]

[an AGENT] sprints [at PLACE]

[SPROUTER] sprouts [at PLACE]

[an AGENT] spies [on TARGET] [with TOOL] [in PLACE]

[an AGENT] squeezes [an ITEM] [with TOOL] [at PLACE]

[the AGENT] squints [at the ITEM] [in the PLACE]

[an AGENT] stacks [TOP] [onto BOTTOM] [in PLACE]

stampede [in PLACE]

[AGENT] is standing [in PLACE]

[an AGENT] staples [ITEM] [onto SURFACE] [using TOOL] [in PLACE]

[the AGENT] stares [at ITEM] [in PLACE]

[the AGENT] steers [the VEHICLE] [with the TOOL] [in the PLACE]

[the AGENT] stings [the VICTIM] [on the VICTIMPART] [in PLACE]

[AGENT] stirs [ITEM] [in CONTAINER] [using TOOL] [at PLACE]

[the AGENT] stitches [using the TOOL] [and the FASTENER] [in PLACE]

[AGENT] is stooping [at PLACE]

[an AGENT] straps [the STRAPPED] [into DESTINATION] [using STRAP] [at PLACE]

[AGENT] is stretching [ITEM] [in PLACE]

[an AGENT] strikes [the AGENTPART] [of COAGENT] [using TOOL] [at PLACE]

[AGENT] is stripping [REMOVEDITEM] [from SOURCE] [using TOOL] [in PLACE]
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[the AGENT] is stroking [the OBJECT] [on the PART] [in the PLACE]

[AGENT] is studying [in PLACE]

[the AGENT] stuffs [the ITEM] [in the DESTINATION] [at the PLACE]

[an AGENT] stumbles [onto DESTINATION] [at PLACE]

[an AGENT] subdues [TARGET] [in PLACE]

[the AGENT] submerges [the OBJECT] [in SUBSTANCE] [at PLACE]

[an AGENT] sucks [on an ITEM] [in PLACE]

[AGENT] is surfing [PATH] [using TOOL] [at PLACE]

[an AGENTTYPE] swarms [at PLACE]

[the AGENT] sweeps [the SURFACE] [with the BRUSH] [in the PLACE]

[the AGENT] swims [in PLACE]

[an AGENT] swings [on CARRIER] [at PLACE]

[AGENT] is swooping [in PLACE]

T.

[an AGENT] tackles [VICTIM] [in PLACE]

[the AGENT] talks [to the LISTENER] [in MANNER] [in PLACE]

[an AGENT] tapes [an ITEM] [to DESTINATION] [at PLACE]

[the AGENT] tastes [the ITEM] [with the TOOL] [in the PLACE]

[AGENT] tattooed [TARGET] [with TOOL] [in PLACE]

[the AGENT] taxies [on the GROUND] [at the PLACE]

[the TEACHER] to teach [the STUDENT] [at PLACE]
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[the AGENT] tears [the ITEM] [with the TOOL] [in the PLACE]

[AGENT] telephones [at PLACE]

the [AGENT] [throws an ITEM] [towards DESTINATION] [at PLACE]

[the AGENT] tickled [TICKLED] [with an OBJECT] [in PLACE]

[an AGENT] tills [soil with TOOL] [at PLACE]

[an AGENT] tilts [an ITEM] [with their AGENTPART] [at PLACE]

[an AGENT] tips [an ITEM] [with its AGENTPART] [in PLACE]

[AGENT] tows [ITEM] [onto DESTINATION] [using TOOL] [at PLACE]

[AGENT] is training [STUDENT] [in PLACE]

[AGENT] is trimming [ITEMPART] [of ITEM] [with TOOL] [in PLACE]

[an AGENT] trips [over an ITEM] [onto DESTINATION] [in PLACE]

[the AGENT] tugs [the ITEM] [in the PLACE]

[AGENT] tunes [OBJECT] [with TOOL] [in PLACE]

[AGENT] is turning [TURNEDITEM] [in PLACE]

[an AGENT] twirls [COAGENT] [in PLACE]

[AGENT] is twisting [AGENTPART] [at PLACE]

[AGENT] is typing [with TOOL] [in PLACE]

U.

[the AGENT] uncorks [CONTAINER] [using TOOL] [in PLACE]

[an AGENT] unloads [an ITEM] [from SOURCE] [using TOOL] [at PLACE]

[an AGENT] unlocks [CONTAINER] [by opening LOCK] [using TOOL] [in PLACE]
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[the AGENT] unpacks [ITEM] [from CONTAINER] [in PLACE]

[the AGENT] [uses TOOL] to unplug [UNPLUGGED] [at PLACE]

[the AGENT] unveils [the OBJECT] [in PLACE]

[the AGENT] urinates [onto the TARGET] [at PLACE]

V.

[the AGENT] [uses TOOL] to vacuum [the SURFACE] [at PLACE]

[an AGENT] vaults [from START] [over OBSTACLE] [to END] [using TOOL] [at PLACE]

[an AGENT] videotapes [the DEPICTED] [at PLACE]

[the AGENT] votes [for VOTEFOR] [at PLACE]

W.

[the AGENT] to waddle [at PLACE]

[AGENT] wades [through SUBSTANCE] [at PLACE]

[an AGENT] wags [the AGENTPART] [at an ADDRESSEE] [in PLACE]

[an AGENT] waits [at PLACE]

[an AGENT] walks [at PLACE]

[an AGENT] washes [an ITEM] [of DIRT] [using TOOL] [in PLACE]

[AGENT] is watering [RECIPIENT] [with TOOL] [in PLACE]

[the AGENT] waves [the AGENTPART] [in the PLACE]

[an AGENT] waxes [COAGENT’s BODYPART] [at PLACE]

[an AGENT] weeds [with TOOL] [at PLACE]

[an AGENT] weeps [at PLACE]
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[an AGENT] weighs [the MASS] [with TOOL] [in PLACE]

[the AGENT] welds [the ITEM] [to the SURFACE] [in the PLACE,] [using the TOOL]

[the AGENT] wets [the OBJECT] [with LIQUID] [using TOOL] [in PLACE]

[an AGENT] wheels [an ITEM] [on CARRIER] [at PLACE]

[AGENT] whips [ITEM] [using TOOL] [at PLACE]

[AGENT] whirls [at PLACE]

[the AGENT] whisks [ITEM] [in CONTAINER] [in PLACE]

[the AGENT] whistles [with TOOL] [in PLACE]

[the AGENT] wilts [in the PLACE]

[an AGENT] winks [at the ADDRESSEE] [at PLACE]

[an AGENT] wipes [SUBSTANCE] [from SOURCE] [with TOOL] [at PLACE]

[an AGENT] works [on FOCUS] [to achieve goal in PLACE]

[AGENT] is wrapping [WRAPPEDITEM] [with WRAPPINGITEM] [in PLACE]

[the AGENT] wrings [the ITEM] [at the PLACE]

[the AGENT] wrinkles [his/her AGENTPART] [at PLACE]

[AGENT] writes [on TARGET] [using TOOL] [at PLACE]

Y.

[an AGENT] yanks [the YANKED] [by the YANKEDPART] [in PLACE]

[an AGENT] yawns [at PLACE]
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