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SUMMARY

Visual storytelling is an intriguing and complex task that only recently entered the language

and vision research arena. The task focuses on generating human-like, coherent and visually

grounded stories from a sequence of images while maintaining the context over these images.

In this study I survey recent advances in the field and conduct a thorough error analysis of

three approaches to visual storytelling. I categorize and provide examples of common types

of errors, and identify key shortcomings in prior work. Later, I make recommendations for

addressing these limitations, and propose an improved model for visual storytelling: a hierar-

chical encoder-decoder network, with co-attention over the images and their natural language

literal descriptions. I assess the performance of this model at generating visual stories. Finally,

I experiment with a novel metric, BertScore [5], as an alternative to human evaluation.

x



CHAPTER 1

INTRODUCTION

Previously published as Modi, Y. and Parde, N.: The steep road to happily ever after:

An Analysis of Current Visual Storytelling Models. In Proceedings of the Second Workshop

on Shortcomings in Vision and Language, pages 47–57, Minneapolis, Minnesota, June 2019.

Association for Computational Linguistics.

1.1 What is Visual Storytelling?

Artificial intelligence continues to evolve, making it increasingly plausible to develop models

that interpret vision and language in a humanlike manner. A crucial element of such models

is the capacity to not only match images with surface-level descriptions, but to infer deeper

contextual meaning. Recent literature has begun to refer to this task as visual storytelling :

the generation of a cohesive, sequential set of natural-language descriptions across multiple

images [6]. Visual storytelling is distinct from image captioning in that the text generated is

oftentimes subjective, hinges on contextual image order, and typically employs more abstract

and dynamic terms. We illustrate the dichotomy between the two more concretely in terms of

possible sets of sentences1 for the images in Figure 1 on the next page.

1Real samples (with punctuation and capitalization edited in some cases to increase readability) from
the VIST dataset: http://visionandlanguage.net/VIST/dataset.html

1

http://visionandlanguage.net/VIST/dataset.html
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Figure 1. A sequence of images from the VIST dataset.The image is taken from Modi and

Parde, 2019 [1]

Sentence Set 1: (1) A woman looking at a collection of tribal masks on the wall. (2) Three

skulls of varying sizes ordered from largest to smallest. (3) A top view of a book about mythical

creatures. (4) Three people standing in a store looking at the products. (5) An old traveling

wagon that is on display.

Sentence Set 2: (1) I went to the natural history museum today. (2) Their evolution

display was very interesting. (3) They had an area for cryptozoology. (4) They also have a gift

shop. (5) My favorite was this real covered wagon from 200 years ago.
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The first is a set of traditional image captions, whereas the latter represents a visual story.

Note that the former presents factual descriptions of the images in isolation from one another.

The latter also describes the images, but places stronger emphasis on the development of a

cohesive narrative underlying the image sequence.

High-performing visual storytelling approaches will enable growth for a variety of applica-

tions, many of which are associated with language understanding tasks. They may also hold

promise as a tool for assistive technology. For instance, it is relatively common for users to

upload large photo albums to social media platforms without including any image descriptions

at all, making these albums inaccessible to those with sight impairments. Visual storytelling

could bridge this gap by automatically generating descriptive narratives for these albums.

1.2 Visual Storytelling Challenge 2018

Most of the initial work towards visual storytelling was conducted in the context of the

2018 Visual Storytelling Challenge; thus, we focus our analysis on methods employed by the

participating teams. The challenge required participants to make AI systems capable of gener-

ating human-like stories from a sequence of images as input. It had (1) an Internal Track that

constrained participants such that they could train only on data from the Visual Storytelling

(VIST) Dataset, described further in Section 4.1, and use pretraining data only from any version

of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)1 and any version of the

1A well-known annual competition that challenges researchers to solve a variety of large-scale object
and image detection tasks [7]: http://image-net.org/challenges/LSVRC/.

http://image-net.org/challenges/LSVRC/
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Penn Treebank;1 and (2) an External Track that allowed participants free reign when training,

with the only requirement being that all training data be made publicly accessible if it was not

already. The challenge evaluated the quality of the generated stories using both an automatic

metric (METEOR [9] , described in further detail in 5.4) and human ratings corresponding to

the following characteristics: (1) focus, (2) structure and coherence, (3) inclination to share, (4)

likelihood of being written by a human, (5) visual grounding quality, and (6) level of detail.2

The winning team for the challenge was DG-DLMX [10]. Other participating teams included

UCSB-NLP [2], SnuBiVtt [3], and NLPSA501 [11].

1.3 Outline

Chapter 1 introduces visual storytelling and the shared task that took place for it. Chapter

2 discusses related work.

The dataset is described in detail in Chapter 3 followed by the error analysis of visual

storytelling approaches in Chapter 4. We discuss the details of our proposed model in Chapter

5 followed by the experimental setup used for the same in Chapter 6.

The evaluation and the results we obtained by conducting experiments with the proposed

model are mentioned in Chapter 7. Finally, we end the discussion with our conclusion and

future work in Chapter 8.

1 [8]: https://catalog.ldc.upenn.edu/LDC99T42.

2Human judgements were solicited using Amazon Mechanical Turk (https://www.mturk.com/).

https://catalog.ldc.upenn.edu/LDC99T42
https://www.mturk.com/


CHAPTER 2

RELATED WORK

(Previously published as Modi, Y. and Parde, N.: The steep road to happily ever after:

An Analysis of Current Visual Storytelling Models. In Proceedings of the Second Workshop

on Shortcomings in Vision and Language, pages 47–57, Minneapolis, Minnesota, June 2019.

Association for Computational Linguistics.)

A small but growing body of research has investigated visual storytelling. We perform an

in-depth error analysis of the work done by UCSB-NLP [2], SnuBiVtt [3], and DG-DLMX [10]

for the Visual Storytelling Challenge. These are the three teams who have released publicly

available source code to date. We describe these models in further detail in Chapter 5. The

other team participating in the challenge was NLPSA501 [11]. NLPSA501 introduced a con-

volutional neural network (CNN) and gated recurrent unit (GRU) encoder-decoder model that

incorporated an inter-sentence diverse beam search as a way to reduce redundancy in the gen-

erated stories. We could not analyze their model’s output as we did for those by UCSB-NLP,

DG-DLMX and SnuBiVtt, due to the lack of available implementations or generated stories.

Outside of the Visual Storytelling Challenge, several other groups have also explored the

task. Huang et al. [6] published the original paper introducing the visual storytelling task, high-

lighting the differences between storytelling and image captioning. The authors used GRUs for

both encoding the image and decoding the story. Lukin et al [12] defined a pipeline for visual

storytelling consisting of Object Detection, Single-Image Inferencing, and Multi-Image Narra-

5
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tion steps. Yu et al. [13] employed an alternate pipeline comprised of Album Encoder, Photo

Selector, and Story Generator stages. Agrawal et al.’s [14] approach focuses on identifying

proper sequences for existing story sentences, rather than on generating those sentences them-

selves. Jain et al. [15] explored a phrase-based and syntax-based statistical machine translation

approach as a vehicle for story generation using text but no images from the VIST dataset. The

approaches developed for the Visual Storytelling Challenge were designed to be improvements

upon Huang et al.’s [6] model.

The task of visual storytelling is still in its infancy, and to date there exists no comprehensive

review of prior work in this area. Our analysis fills this void, by summarizing relevant work in

a shared context and providing concrete comparisons and example output when possible. This

in turn allows us to identify core areas for improvement in our implementation, recommending

specific actions to address these current limitations. Our hope is that the analysis can also serve

as a useful launchpad for us and other researchers aspiring to work in the visual storytelling

domain.

Since publishing our original analysis [1], additional work has also been published in the

visual storytelling domain. We build upon some of this work in our proposed model. Specifically,

we use the Hierarchical Context-based Network (HCBNet) architecture proposed by Nahian et

al. [4] as the base for our network. HCBNet is a hierarchical, context-based neural network.

Its name is derived from the fact that the network makes hierarchical use of natural language

descriptions of images along with the images themselves to generate the visual stories. Nahian

et al.claim that this allows them to learn the expected sequence of events that take place from
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the input images and produce a visually grounded and cohesive story. We discuss this model

in more detail in Chapter 6.

Recent work by Yang et al. [16], Wang et al. [17] and Hsu et al. [18] has sought to leverage

supplemental context, making use of knowledge graphs for visual storytelling. Specifically,

all three works make use of Faster R-CNNs pretrained with the Visual Genome Dataset [19].

Yang et al. [16] first distill the terms from images using an image-to-term model, then enrich

the word set using scene graphs and produce term paths. Finally, they use the Transformer

architecture to generate the stories. They make use of external data for all three of those tasks,

outperforming GLACNet [3] in a human evaluation.

Hsu et al. 2019a [18] incorporate knowledge graphs generated using external data to extract

commonsense knowledge. They consider the key concepts of images as nodes in a graph,

which are surrounded by nodes representing imaginary/commonsense concepts. They extract

the commonsense concepts and combine them with semantic visual features, attempting to

maximize the semantic similarity in the output during optimization. The CIDer score [20] for

this model outperforms other state-of-the-art models.

Wang et al. [17] propose graph convolutional networks for extracting local, fine grained

scene graphs from individual images and then finding the cross-relations between them using

temporal convolutional networks. Visual attention is used in the decoder with the knowledge

graph to generate the stories. This model is more informative and outperforms AREL [2] in a

human evaluation.
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Finally, recent work that does not incorporate knowledge graphs includes that of Jung et

al. [21] and Hu et al. [22]. Jung et al. [21] introduced a “Hide and Tell” network. In this

network, some images are hidden from the input stream using curriculum learning, basically

the number of images hidden from a single training sequence increases with time and starts with

showing all images to the model first, and the model tries to fill in the visual gaps by imagining

what non-local relations could have been between the missing and shown images. The model

outperforms other alternatives in both human and automatic evaluations. Hu et al. [22] instead

optimize their model, ReCO-RL, using three human evaluation criteria (relevance, coherence,

and expressiveness) to generate high quality stories. Specifically, they employ a reinforcement

learning framework with three reward functions to score the above mentioned criteria. Their

model outperforms AREL [2] by a wide margin.



CHAPTER 3

DATA

Previously published as Modi, Y. and Parde, N.: The steep road to happily ever after:

An Analysis of Current Visual Storytelling Models. In Proceedings of the Second Workshop

on Shortcomings in Vision and Language, pages 47–57, Minneapolis, Minnesota, June 2019.

Association for Computational Linguistics.

3.1 Visual Storytelling Dataset

Most visual storytelling work to date has been trained and evaluated using the VIST Dataset

[6]. VIST is the first publicly available dataset for sequential vision-to-language tasks, and

consists of sequences or “albums” of images wherein each image is paired with two types of

captions; namely, descriptions of images in isolation (DII), and stories of images in sequence

(SIS). The images were originally downloaded from Flickr (https://www.flickr.com/). In

total, the dataset comprises 10,117 Flickr albums containing 210,819 unique photos.

Amazon Mechanical Turk (AMT) workers selected subsets of five images per album about

which to write sequential, cohesive stories. The dataset contains 50,200 story sequences overall;

these are divided into subsets of 40,155 training, 4,990 validation and 5,055 testing stories. Five

written stories were collected per album. Three standalone descriptions per image (DII, first

defined above) were also collected separately using the image captioning interface used to build

the COCO image caption dataset [23].

9

https://www.flickr.com/
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In both the stories and descriptions, all people names were replaced with generic MALE/FEMALE

tokens, and all named entities were replaced with their entity type (e.g., LOCATION). A small

number of broken images were filtered from VIST by most research groups. For concrete ex-

amples of DII and SIS from VIST, we refer readers to Figure 1, where Sentence Sets 1 and 2

(see Chapter 1) are from the DII and SIS subsets, respectively.

When developing our own model, we selected only those stories which had DII available for

every image, following the practice that Nahian et al. [4] took when training HCBNet. This

resulted in a total of 26,905 training stories, 3,354 validation stories, and 3,385 test stories.



CHAPTER 4

AN ANALYSIS OF ERRORS IN EXISTING VISUAL STORYTELLING

MODELS

Previously published as Modi, Y. and Parde, N.: The steep road to happily ever after:

An Analysis of Current Visual Storytelling Models. In Proceedings of the Second Workshop

on Shortcomings in Vision and Language, pages 47–57, Minneapolis, Minnesota, June 2019.

Association for Computational Linguistics.

4.1 Overview

In this chapter, we conduct an analysis of three of the approaches submitted to the Visual

Storytelling Challenge: AREL [2], GLACNet [3], and Contextualize, Show and Tell [10]. We

selected these approaches as the focus of our work for two reasons. First, all were publicly avail-

able and well-documented, ensuring easy replicability. Other existing visual storytelling models

would have required reimplementation or a lot of processing power. Doing so introduces the

possibility of unintentionally crippling performance (e.g., when setting required but unreported

parameters), which we wished to avoid. Second, all were very recent models, representing some

of the current state of the art in visual storytelling. We summarize AREL, GLACNet, and

Contextualize, Show and Tell in Section 5.1, and refer readers to the original papers for fuller

detail.

11
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4.2 Model Summaries

4.2.1 Adversarial Reward Learning

Adversarial Reward Learning (AREL) [2] is an adversarial reinforcement learning approach

that makes use of two models: a policy model, followed by a reward model. The policy model is

an encoder-decoder model utilizing a CNN-recurrent neural network (RNN) architecture, used

to generate new stories. Specifically, a pre-trained CNN is fed a sequence of 5 images as input

to extract high-level image features which are further encoded as visual context vectors using

bidirectional GRUs. The outputs of the encoder are then fed into a GRU-RNN decoder to gen-

erate sub-stories for the image sequence in parallel. The sub-stories are concatenated to form

a single full story. The CNN-based reward model is applied to every sub-story to compute its

partial reward, and from the input sequence embeddings, n-gram features are extracted using

convolution kernels of different sizes and passed through pooling layers. Image features are

concatenated with these sentence representations and passed through a fully connected layer

to obtain the final reward. The objective of the story generation policy was to maximize the

similarity between a Reward Boltzmann distribution and itself. The first model optimized the

policy to minimize the KL divergence [24] between itself and the Boltzmann Distribution, and

the second model attempted to (a) minimize the KL divergence with the empirical distribu-

tion, and (b) maximize the KL divergence with the approximated policy distribution, with the

objective of distinguishing between human and machine generated stories.

AREL outperformed a generative adversarial network (GAN) model, a cross-entropy model,

and other baselines and achieved state-of-the-art results across both automated and human
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metrics. The human metrics considered included both a Turing test (in which annotators

attempted to guess which of two stories was written by a human) and pairwise comparisons

measuring relevance, expressiveness, and concreteness.

4.2.2 GLocal Attention Cascading Networks

GLocal Attention Cascading Networks (GLACNet) [3] also uses an encoder-decoder archi-

tecture, but it adds a hard attention mechanism which stresses feeding both the local image

features and the overall context to the decoder as input. The image-specific features are ex-

tracted using a 152-layer residual network [25]. Those features are fed sequentially into a

bidirectional LSTM, which then produces the global context vectors. The global context and

local image features are combined to form glocal vectors and passed through fully connected

layers. The output is concatenated with word tokens and fed to the decoder (LSTM) as input.

Thus, five glocal vectors for each image are fed into the decoder one after another, creating a

cascading mechanism by passing the hidden state of one sentence generator as the initial hidden

state of the next sentence generator.

To validate that all components of the GLACNet architecture contributed to the model’s

performance, Kim et al. [3] conducted an ablation study in which the cascading, global attention,

local attention, and post-processing routines were removed one at a time, comparing perplexity

and METEOR [9] scores between conditions as well as with a standalone LSTM sequence-to-

sequence (Seq2Seq) model and the full GLACNet model. The full GLACNet model exhibited

the best performance on the hidden test set in the Visual Storytelling Challenge (however, it
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was not declared the winner since the authors submitted their results late). HCBNet [4], the

basis of our proposed model, is built on top of GLACNet.

4.2.3 Contextualize, Show and Tell

Contextualize, Show and Tell [10] won the 2018 Visual Storytelling Challenge. The model

uses an encoder LSTM to read in the image representations one by one for every image in a

sequence. The image representations are generated using Inception V3 [26]. Five decoders,

again LSTMs, then read in the image embedding as input. The first hidden state of each

decoder is initialized using the last hidden state of the encoder to provide the model with

global context. Gonzalez-Rico and Pineda [10] obtained the final story by concatenating the

outputs of the model’s five decoders.

As part of the Visual Storytelling Challenge, the model was evaluated on public and hidden

test sets using both human evaluation and an automated metric (METEOR). METEOR scores

of 30.88 and 31 were obtained on the public and hidden test sets, respectively.1 Human evalua-

tion scores were collected via Amazon Mechanical Turk.2 Crowd workers evaluated six aspects

of each story using a Likert scale. Each worker was asked to indicate the degree to which: 1)

the story was focused, 2) the story had good structure and coherence, 3) the worker would

share the story, 4) the worker thought the story was written by a human, 5) the story was visu-

ally grounded, and 6) the story was detailed. In summing the average scores received for each

1Gonzalez-Rico and Pineda [10] reported a METEOR score of 34.4 on the standard VIST test set.

2https://www.mturk.com/

https://www.mturk.com/
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criterion, Contextualize, Show and Tell achieved a score of 18.498, whereas human-generated

stories achieved a score of 23.596.

4.3 Experimental Setup

We trained and evaluated AREL according to the instructions provided in its publicly

available Github repository.1 However, we modified the source code slightly such that we were

able to obtain the individual METEOR scores for each predicted story in the test set. This

helped us in performing an in-depth error analysis of the generated stories and determining

how well the automatic metrics were at scoring the stories. Training the model took around 2

weeks on a 3.5 GHz Intel Core i5 CPU with 16 GB RAM.2

The GLACNet code is also publicly available.3 We trained and evaluated the model using

an NVIDIA Tesla P100 GPU instance on Google Cloud Platform. The model took one week to

finish training. The original source code only provided an average METEOR score across all

generated stories after testing. Thus, we added code to produce the METEOR score for each

story. We will make all adapted source code publicly available online to ensure easy replicability.

1https://github.com/littlekobe/AREL

2Extenuating circumstances limited our hardware resources in the midst of our AREL evaluation.
Training would have undoubtedly been quicker using GPUs, as was done in the original paper [2].

3https://github.com/tkim-snu/GLACNet

https://github.com/littlekobe/AREL
https://github.com/tkim-snu/GLACNet
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The source code for Contextualize, Show and Tell is available online as well.1 The authors

personally sent us the generated stories, so we did not re-implement their model. We have

directly included their METEOR results in our evaluation.

4.4 Evaluation Metrics

Common metrics for evaluating visual storytelling models include METEOR [9], BLEU [27],

CIDEr [20], and ROUGE-L [28]. METEOR, the primary metric considered in the Visual

Storytelling Challenge, calculates the alignment between the machine-generated hypotheses and

the reference stories based on the exact, stem, synonym, and paraphrase matches between words

and phrases. CIDEr is a consensus based metric that is supposed to capture human judgement

well. ROUGE-L calculates F-score and not just recall. It is based on the longest common

subsequence. BLEU does not take into account recall and only considers n-gram precision. It

examines overlap between the output and reference translations, assigning a penalty to shorter

outputs. While AREL was evaluated using METEOR as well as the other metrics, GLACNet

was evaluated using only METEOR scores and measures of perplexity. Contextualize, Show and

Tell was also evaluated using only METEOR. We generated scores for the remaining metrics

as well for GLACNet and Contextualize, Show and Tell to aid our analysis.

4.5 Results

We defined a threshold METEOR score of 25, with stories scoring below this threshold

considered as serious errors. This threshold was chosen following a manual assessment of the

1https://github.com/dgonzalez-ri/neural-visual-storyteller

https://github.com/dgonzalez-ri/neural-visual-storyteller
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predicted stories, with METEOR < 25 representing a medium at which there existed both a

sizable number of errors, and a sample of generated stories that were of noticeably low quality.

Stories having a METEOR score ≥50 were also analyzed for any anomalies (e.g., bad stories

with high scores).

Some metrics (CIDEr and BLEU-4) produced scores of 0 for many stories in both models.

Upon manual analysis we found many of these stories to be sensible. Other work has confirmed

that BLEU-3 and CIDEr scores do not correlate well with human evaluations [2].

We systematically analyzed errors in each story and made notes indicating characteristics

contributing to the error (including those that rendered the predicted stories to be completely

meaningless or incoherent). In the process, we also identified mechanisms by which those errors

may be addressed in the future. We compiled the errors into representative categories, which

we define below and exemplify in Table I. In that table, we identify the system that predicted

each example in parentheses, and indicate the specific component of the story in error in italics

when applicable. We also discuss some general errors from papers about other visual storytelling

approaches for which we were unable to obtain full working implementations.

4.5.1 Error Categories

We define our representative error categories as follows:

• Grammatical Errors: Incorrect use of verbs and tenses and/or subject-verb disagree-

ments.

• Contradictions: Presence of inconsistent ideas within the same story (e.g., two sub-

stories that are the opposite of each other).
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• Repetitions: These errors were further subdivided into the following categories.

– Repetitions within Story: Recurrence of the same sentence(s) within a story.

– Repetitions within Sentence: Recurrence of the same phrase(s) within a sub-

story.

– Repetitive Subject: The sub-stories have the same subject and differ only in the

adjective used to describe it.

– Repetitive Sentence Structure: Most sentences start with “the [noun] was/were/is

[adjective].” This leads to monotonous and unoriginal stories. We observed this error

only in stories predicted by GLACNet.

• Description in Isolation: Most sub-stories start with “This is a picture of....” Sentences

of this nature sound more like single image captions than contextual stories.

• Singular/Plural Disagreement: The same story has one sentence with a singular noun

and another sentence with the same noun but in plural form.

• Ghost Entities: Some sub-stories make use of a pronoun that has no antecedent at

all (e.g., referring to a new person who was not introduced formally in the preceding

sub-stories). This leads to confusion.

• Personification: The attribution of human-like qualities to something non-human due

to lack of common sense knowledge.

• Absurdity: Nonsensical stories or sub-stories.

• Incomplete Stories: Stories that have less than 5 sentences.
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• Point-of-View Inconsistency: The narrative point of view randomly changes within

the story (e.g., first person to second person), creating confusion.

• Excessive Paraphrasing: Presence of sub-stories that have similar meanings but are

expressed using different words or phrases.

In addition to analyzing errors in stories with low predictions, we uncovered several anoma-

lies in stories with high predictions. We provide examples of these in Table IV.
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TABLE I. Example stories associated with each error category. This table is taken from Modi

and Parde, 2019 [1].

Error Type Example

Grammatical

Errors

there was a lot of people at the convention center . we saw a lot of interesting signs

. there were a lot of people there . there were a lot of people there . we had a great

time at the bar . (AREL)

the man was taking a walk on the sidewalk . he saw a lot of cool buildings . he

saw a statue of a woman . he was a big group of people . he went to the museum .

(GLACNet)

Contradictions we went to the art gallery . we saw a lot of people there . the streets were empty .

the streets were full of people . this is a picture of a woman . (AREL)

Repetitions

within Story

the bride and groom were very happy to be married . the bride and groom were so

happy to be married . the bride and groom were so happy to be married . we all had

a great time at the reception . they danced the night away . (AREL)

the family went to the zoo . they had a lot of fun . they were all very excited . we

had a great time . i had a great time . (Contextualize, Show and Tell)

Repetitions

within Sent.

it was a beautiful day for a trip to the beach . we took a trip to the beach . we went

to the beach . the beach was beautiful . as the sun went down , the sun went down

. (AREL)

Repetitive

Subject

the water was calm and clear . the buildings were empty . the building was very tall

. the architecture was amazing . the architecture was breathtaking . (GLACNet)

Repetitive

Sentence

Structure

the city is very beautiful . the bridge is amazing . the water is so nice . the ferris

wheel is very good . the view is spectacular . (GLACNet)
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TABLE II. Example stories associated with each error category. (TABLE I CONTINUED..)

Error Type Example

Description

in Isolation

this is a picture of a street . it was a long drive . there was a lot of damage to the

side of the road . this is a picture of a man . after that we found a trail that was in

the middle of the forest . (BLEU-RL)

the flowers were very pretty the flowers were so beautiful . the flowers were beautiful

. this is a picture of a column . it was a very nice place to be .(Contextualize, Show

and Tell)

Singular/Plural

Disagree-

ment

the resort was beautiful . the beach was nice . the beaches were amazing . the water

was so calm . the food was delicious . (GLACNet)

Ghost Enti-

ties

the lady was smiling for the camera . she was excited to be there . she was having a

good time . she was so happy to see her . she was looking at the car (GLACNet)

Personification the plane was very excited to be at the location . the first stop was the train station .

the guide was also impressed with the organization organization . the students were

able to see the exhibits from the city . the entire group was so happy to be there .

(GLACNet)

Absurdity

the kitchen was a lot of work . here is a picture of a box . i had to take a picture of

my work . we had to take a picture of the menu . i had a great time . (AREL)

i bought a new car . this is a picture of a cat . she was very excited . and i ’m so

excited . this is my favorite gift . (GLACNet)
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TABLE III. Example stories associated with each error category. (TABLE II CONTINUED)..

Error Type Example

Incomplete

Stories

i love to travel i had a great time . she is having a great time . we went to the city

to see some of the people . i had a great time . (AREL)

Point-of-

View Incon-

sistency

i was so excited to be graduating today . he was very proud of his graduation . grad-

uation day is always a success . he was very proud of his accomplishments . he was

very proud of his accomplishments . (AREL)

Excessive

Paraphrasing

we went on a trip to location . there were a lot of interesting things to see . there

were many different kinds of fruits and vegetables . there was also a variety of fruits

and vegetables . i had a great time there . (AREL)

we took the kids to the park . we had a lot of fun . we had a great time . the kids

were having a great time . we had a great time . (Contextualize, Show and Tell)
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TABLE IV

Example scoring anomalies, including the anomalous scores for each story.

Anom. Example Scores

Good

Story,

Low

Score

we went to a halloween party . there were

a lot of interesting things to see . we saw

a lot of cool things . we saw a lot of old

buildings . the christmas tree was the

best part of the day . (AREL)

CIDEr: 4.27, BLEU-4:

0.00, BLEU-3: 15.79,

BLEU-2: 29.76, BLEU-1:

50.95, ROUGE-L: 24.43,

METEOR: 24.42

the couple was excited to be on vacation .

they were going to the mountains . they

went down the road . they saw a beau-

tiful church . they had a nice dinner .

(GLACNet)

CIDEr: 0.62

Bad

Story,

High

Score

the group of friends decided to go on a

trip . they saw many interesting things .

they stopped at a local restaurant . they

had a great time . they ended up buying

a new car . (GLACNet)

METEOR: 19.52, Bleu-4:

0.00, Bleu-3: 8.93, Bleu-2:

16.00, ROUGE-L: 22.55

i went to a wedding last week . i had to

take a picture of this beautiful flower .

this is a picture of a woman . the flowers

were so beautiful . the flowers were so

beautiful . (AREL)

CIDEr: 20.90, Bleu-1:

71.79, Bleu-2: 43.47, ME-

TEOR: 33.98
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TABLE V

Frequency (in terms of overall percentage) of the most common error types across all 1010

generated test stories by AREL and GLACNet and 1938 generated test stories by

Contextualize, Show and Tell. This table is taken from Modi and Parde, 2019 [1].

Error Category AREL-s-50 GLACNet

Contextualize,

Show

and

Tell

Repetition of Sub-Stories 19.70% 2.08% 15.42%

Description in Isolation 29.01% 0% 15.79%

4.5.2 Discussion

The most common error types we observed were repetitions and descriptions in isolation;

we present statistics indicating the frequencies of these errors for AREL, GLACNet, and Con-

textualize, Show and Tell in Table V (note that both occurred with the highest frequency in

AREL). The rarest error category was that containing incomplete stories. This error appeared

only in AREL stories, and only in three of the 1010 generated stories (0.003%).

The prevalence of repetitions in AREL is likely a side-effect of the model’s architecture—it

generates the sub-stories for the whole album in parallel, rather than keeping track of what
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was generated in the previous sub-story. We found that this structure also led to some stories

having contradictory sentences. In contrast, GLACNet stories exhibited few repetitions because

of the post-processing step employed after decoding. In this step, words for a sentence are

sampled from a word probability distribution one hundred times and the most frequent word is

selected. The words which occur in the generated sentences are also counted and the selection

probabilities of words are decreased as their frequency increases.

It is somewhat surprising that the stories generated using Contextualize, Show and Tell also

exhibited such a high frequency of repetitions, in spite of the fact that the model generated

sub-stories sequentially. This demonstrates that some sort of feedback mechanism incorporating

the model’s previously generated sub-stories is needed. The output of each of the five decoders

in Contextualize, Show and Tell should be fed into the next decoder to keep track of previously

generated sub-stories.

We observed that there were very few grammatical errors in the GLACNet stories, as the

probabilities associated with function words (e.g., prepositions and pronouns) remained un-

changed even if their rate of occurrence was high. In contrast, stories generated by AREL (which

includes no such grammar-checking mechanism) included a considerable number of grammati-

cal errors. GLACNet’s post-processing step still could be improved upon—we were somewhat

surprised to find that some of its stories used both singular and plural forms of the same noun

within a story. We assume the error occurred due to the fact that the model decreases the

probability of frequently occurring words. Thus, if the singular noun occurred in the previous

sub-story, its plural form gets included in the next sub-story.
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The within-sentence repetitions may at least partially be a consequence of the presence

of repetitions in some VIST training stories. In our analysis of the crowdsourced dataset we

found that human typing/grammar errors were a relatively common occurrence, resulting in

imperfect training data. Although the stories generated by GLACNet did not often exhibit

repetitions due to the reasons mentioned in the paragraph above, there was a trade-off in terms

of originality of the generated stories. We found that most were monotonous, using similar

sentence structures for every story.

Descriptions in isolation, the single most prevalent error type we identified in AREL and

Contextualize, Show and Tell stories, read more like image captions (describing the image’s

contents) than components of a sequential story. We are perplexed as to why these errors were

so common, since to the best of our understanding the models did not include any DII instances

in their training sets. It may be the case that caption-like sub-stories are learned to be “safer”

choices by these models, and thus generated more often than riskier contextual sub-stories.

Sentences that are lexically different but semantically similar cause redundancies in the

story and are a common occurrence in both GLACNet and AREL. Since images in a sequential

album are often visually similar to one another, it may be the case that both models predict

that two (or more) images in a sequence refer to the same content. In attempting to vary the

resulting sub-stories nonetheless, they succeed only at generating paraphrases of one another.

4.6 Recommendations

As evidenced by our error analysis, there is substantial scope for improvement in visual

storytelling. Based on our observations, we make the following recommendations. First, auto-
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matically preprocessing the DII and SIS training files remains an unexplored but

potentially highly useful preliminary step in the story generation process. Doing so

could aid future systems in avoiding grammatical mistakes, particularly if coupled with a post-

processing mechanism similar to what is currently employed by GLACNet. Second, in terms of

the post-processing mechanism itself, incorporating temporal sequencing methods will

yield more well-organized and coherent stories. This could be done by sorting a (pre-

sumably jumbled) set of sub-stories after they have been generated, as was done by Agrawal et

al. [14].

Third, it is common for current models to generate all sub-stories in parallel. This leads

to repetitions and redundancies in the generated stories. Modifying the architecture in

such a way that the sub-stories are generated sequentially and the word tokens

of the previously generated sub-stories are passed back to the model may lead

to numerous benefits. For instance, this feedback could be used to identify past sub-story

topics, as well as to ensure that the singularity/plurality of subjects remains the same across

the entire story. Incorporating a memory mechanism could also lessen the frequency of point-

of-view inconsistencies, excessive paraphrasing, and contradictions. The architecture of the

decoder used by Venugopalan et al. [29] can also be adopted for providing feedback at the word

level along with the sub-story level feedback. This will help in keeping track of the previously

generated words in the story and prevent in-sentence repetitions.

Fourth, traditional image captions (DIIs) can be (carefully) leveraged to support

the generation of high-quality stories, for instance by facilitating named entity recognition



28

and thereby decreasing the frequency of ghost entities. Another way to avoid ghost entities is

to (fifth) incorporate a bottom-up and top-down visual attention mechanism, such

as that used in prior image captioning work [30], to learn image-specific features and facilitate

visual grounding. Few-shot learning methods to jointly encode the images and text [31] could

also be used in this regard. Matusov et al. [32] use a neural machine translation model which

contains a visual encoder and a textual encoder, thus giving attention independently to both

image features and source sentences. This technique is a more viable option. Finally, the

anomalies we uncovered in our error analysis validate the position first put forward by Wang et

al. [2], that automatic metrics leave much to be desired in terms of judging visual storytelling

approaches. We recommend that a standardized human (or at least very humanlike) evaluation

metric be included in the assessment of these approaches in the future.



CHAPTER 5

THE PROPOSED MODEL

5.1 Methods

Following our error analysis, we aimed to develop an improved model for visual storytelling.

We select HCBNet [4] as the base model upon which we build our network, primarily due to

its existing use of DII from the VIST dataset; as highlighted in our earlier analysis, doing so

may offer particularly high utility in improving model quality. This hypothesis is supported

by the performance results produced by HCBNet. An important addition in our proposed

model is that we create a joint embedding of the image and text description by applying a

dynamic coattention mechanism similar to that used by Xiong et al. [33] to focus on relevant

parts of both. As human evaluation is not always possible to score the generated visual stories

(particularly during model development, when collecting human scores would be impractical),

here we experiment with BertScore [5] as an additional automated metric for the task. In the

following sections we provide a detailed description of our network architecture.

5.2 Natural Language Generation

Natural Language Generation (NLG) is the process of automatically producing clear, sen-

sible, and meaningful natural language phrases, sentences, and texts. Visual storytelling is at

its core an NLG task that seeks to generate humanlike narratives for images. Other common

NLG tasks include text summarization, image captioning, and text completion, among other

29
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things. Although both rule-based and statistical methods have proven useful for NLG in the

past, the dominant current direction makes use of artificial neural networks in various forms.

As we make heavy use of artificial neural networks in our proposed model, we describe some

key aspects of these models in the next few subsections.

5.3 Artificial Neural Networks

Artificial Neural Networks (ANNs) are fundamentally comprised of lots of tiny, intercon-

nected processing units commonly referred to as “neurons.” These neurons are inspired by

(although do not necessarily functionally mirror) the neurons of our brain. They can be used

to solve a variety of complex, nonlinear problems. When many layers of such neurons are con-

nected together, they form ANNs. ANNs then serve as universal functional approximators, in

the sense that they can in theory learn to map any inputs to any outputs. They need to be

trained thoroughly to do so for their respective tasks by tuning hyperparameters, or modifiable

characteristics of their architecture.

Neural networks with many hidden layers and many neurons in each layer are called Deep

Neural Networks (DNNs). DNNs are special because they can automatically generate useful

features from unstructured data. In contrast, in other machine learning algorithms you specif-

ically need to select the important features which will help in predicting and/or classifying the

input. The downside of deep learning is that the networks require huge amounts of data to

train properly, thus resulting in correspondingly huge processing times with many computa-

tions. DNNs also function as “black boxes”—data is fed in, and results are passed out, but it
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is often unclear exactly why or how those results are obtained. Thus, another downside is that

DNNs are less interpretable than other classification models.

The DNNs we will be using in this work are Convolutional Neural Networks and a type of

Recurrent Neural Networks called Long Short Term Memory Units (LSTMs).

5.4 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) make use of sequential data. Consider a sequence of

data X0, X1, ... fed as input to an RNN. The RNN sees X0 at time 0 and correspondingly

performs its weight updates, similarly to a simple feedforward neural network. However, at

timestep 1, it uses the hidden state of previous step (timestep 0) along with X1 as input. The

process continues for each timestep in the data sequence. In this way, the information (hidden

representation) learned by the network is passed over time repeatedly.

The problem with RNNs is that they cannot remember information over long sequences,

focusing more heavily on recent informations. They also suffer from the vanishing gradient

problem: As the loss is back-propagated over several time steps, the gradient gets smaller and

smaller until it has a negligible effect on weight updates.

5.5 Long Short Term Memory

In order to deal with the above issues, a variation of RNNs called Long Short Term Memory

(LSTM) is used. They contain a memory cell C, whose gradient is exactly 1. This solves the

vanishing gradient problem and also captures long distance dependencies.
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Figure 2. RNN with its unrolled version through time

LSTM uses a gating mechanism to do this. The detailed architecture is shown in Figure 3.

u<t> = tanh (W<xu>x<t> +W<hu>h<t−1> + b<u>) (5.1)

i<t> = σ (W<xi>x<t> +W<hi>h<t−1> + b<i>) (5.2)

o<t> = σ (W<xo>x<t> +W<ho>h<t−1> + b<o>) (5.3)

C<t> = i<t> � u<t> + C<t−1> (5.4)
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Figure 3. LSTM cell with update, input and output gates

h<t> = o<t> � tanh (C<t>) (5.5)

where, x<t−1> and x<t> are the inputs at the previous and current timesteps to the LSTM

respectively, and h<t−1> and h<t> are the hidden states of the previous and current timesteps

respectively.

Equation 6.1 [34] is the same as the normal update u<t> of a simple RNN at a timestep

t. The input gate i<t> and output gate o<t> are shown in Equations 6.2 and 6.3 respectively.
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Both the gates specify subsets of information that is allowed to pass through them to the next

stage. All the equations have been referred from Neubig, 2017 [34].

Although LSTMs already reduce some of the issues experienced with simple RNNs, they are

able to capture only the previous context and not the future context. In order to train a neural

language model that is good at predicting the next word, both future and previous contexts

are needed. To address this need, Schuster and Paliwal [35] proposed bidirectional RNNs.

Bidirectional RNNs combine two separate hidden RNN layers that read the same sequence in

opposite directions to generate the output. In our model, we employ bidirectional LSTMs.

Figure 4. Sequence Processing in a Bidirectional RNN

~h<t> = σ
(
W

<~hx>
x<t> +W

<~h~h>
~h<t−1> + b ~<h>

)
(5.6)
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<
←−
h >

)
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y<t> = W
y~h
~h<t> +W

<y
←−
h >

←−
h <t> + by (5.8)

More specifically, bidirectional LSTMs calculate the input in the forward direction to get

the forward hidden sequence as shown in Equation 6.6. They also calculate the input in the

backward direction to get the backward hidden sequence as shown in equation 6.7. y<t> is the

encoded vector which which is the concatenation of ~h<t> and
←−
h <t> expressed as [~h<t>;

←−
h <t>].

The output sequence of the first hidden layer is shown in Equation 6.8. These equations have

been taken from CS 224d lecture notes of Stanford University. This process is illustrated in

Figure 4.

5.6 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are made up of convolutional layers, which are

specialized hidden layers that compute functions over regions of input. They are mostly used

for extracting high level features from images but can be used for text also. CNNs are powerful

tools that are good at identifying local, fine grained patterns from large inputs, producing

fixed-size output representations. Thus, they are very good at encoding images.

CNNs are composed of the following different types of layers:

• Convolution: This operation requires two types of signals. One is the input image, and

the other is the filter matrix or kernel. Different sizes of filters can be applied on an
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Figure 5. An example of a Convolutional Neural Network with convolution, pooling and fully

connected (FC) layers.

input image to produce outputs of various sizes. The filter slides over the input image,

and a simple dot product of the filter and the part of the input image it coincides with

is taken. This is done repeatedly across the whole image to produce a final feature map.

This process is known as a convolution. The weights for the filter have to be initialized

randomly and are adjusted over time as the network learns. Including multiple types of

convolutional layers in a model helps it to extract different types of features.

• Pooling: Pooling involves down sampling the feature maps generated from convolution,

essentially reducing the dimensionality of the feature maps. Pooling does so by separating

the feature map into bins and choosing only one value to represent the bin as a whole.
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There are many types of pooling but the most common ones are min pooling and max

pooling. As the name goes, max pooling chooses the maximum of all values in the bin to

represent the bin and min pooling chooses the minimum one.

The output of a CNN is a long, dense representation in the form of a vector which encodes

essential information about the input image or text.

5.7 Encoder-Decoder Networks

Encoder-decoder networks are commonly used in neural machine translation and sequence

to sequence prediction. They take a sequence of input as the source, encode the source, and

pass it to the decoder to generate the target data. Both the encoder and decoder are separate

neural networks (typically recurrent neural networks). The encoder-decoder network encodes

the information in the source into a vector representation (the final hidden state of the encoder)

and passes this on to the decoder which decodes the encoded information into the target.

An advantage of such a network is that it can handle variable length input and outputs.

It is also an end to end model which directly operates on the input source and target output.

Thus, the loss function is optimized to learn the weights directly over input and output.

In the case of machine translation, we consider a text sequence in a source language as

an input to the network. The network first generates an embedding of the input text. This

embedding is then passed through the encoder (e.g., an LSTM). The final hidden state of the

encoder is forwarded to the decoder (e.g., another LSTM) as input along with an embedding

of the word generated in the previous iteration. In the initial case, a start of sentence <SOS>

token is used to trigger the generation of words by the decoder. Using this information, the
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decoder predicts the next word in the target language by calculating the probability by taking

a softmax over its hidden state. It then continues to generate words until it encounters the end

of sentence <EOS> token.

5.8 Hierarchical Context-Based Network

HCBNet is a hierarchical encoder-decoder network. The network is composed of two main

parts: (1) A hierarchical encoder network and (2) a sentence decoder. We describe each of

these components in more detail in the subsections below.

5.8.1 Hierarchical Encoder Network

5.8.1.1 Image Sequence Encoder

Within the hierarchical encoder network, the Image Sequence Encoder (ISE) component

encodes the global context over all of the images it has seen at the current timestep. To do so,

it first embeds each image from the input image sequence into a single vector representation

using a CNN (specifically, a pretrained ResNet152 [36]). The extracted features are also passed

through an LSTM network and the hidden state output of this LSTM is passed to the next

LSTM to initialize its hidden state. This is repeated over the entire sequence and the final

hidden state of the LSTM unit is passed through a fully connected layer to form the sequence

embedding vector. This vector represents the global context of the sequence and is used to

initialize the hidden state of the description encoder.

5.8.1.2 Image Description Encoder

The Image Description Encoder (IDE) contains two components: an image encoder and a

description encoder.



39

Image Encoder (IE): The current image is passed through ResNet152 to extract features,

which are then passed through an LSTM network. The hidden state of the LSTM at the current

timestep is initialized by the hidden state of the LSTM from the previous timestep. The output

of the LSTM at the current time step is passed through a fully-connected layer to generate the

image embedding, which functions as the local context of the current image.

Description Encoder (DE): The theme type information incorporated in the image sequence

embedding vector from the ISE is used as the initial hidden state of the first DE LSTM. The

description is preprocessed into an embedding, which is then passed through an LSTM. The

hidden state of the DE is passed through a fully-connected layer to generate the description

embedding. This is then concatenated with the image embedding from above, and sent to the

decoder. The final hidden state of the Sentence Decoder (SD) is concatenated with the DE’s

hidden state. This concatenated vector is passed through a fully-connected layer to form the

initial state of the SD. The current sentence theme is obtained from the hidden state of the

DE and the previous hidden state of the DE tells the model what has been generated up until

that point. Thus, the information extracted from the description is used to maintain temporal

dependencies between the sentences.

5.8.2 Sentence Decoder

The Sentence decoder (SD) accepts as input the concatenation of the image embedding

from the IE, the description embedding from the DE, and the previous word embedding. This

is similar to a hard attention mechanism used to combine image and description contexts. The
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hidden state of the SD of the current timestep is propagated to the next timestep. It uses the

contexts from the IDE to then generate the visual narrative word by word.

5.9 Our Modification to HCBNet

The local features of the current image are learned from the image embedding vector, and

the overall theme and local context are learned from the description embedding vector by the

decoder. These two embeddings are thus learned from different vector spaces, and contain

multimodal information. We hypothesized that adding an attention mechanism that combines

the two modalities into a single space, or one which encodes the embedding of one modality into

the space of another, would improve the HCBNet further. Our implementation and inclusion of

this component forms the crux of our subsequent model experiments. Since the improved model

will attend to both image and text features simultaneously, it will learn to focus on relevant

parts from both.

Coattention was introduced by Lu et al. [37] as a mechanism for jointly reasoning about

question and image attention while developing a visual question answering network. Visual

question answering is another multimodal task which requires the model to form a correct

understanding of both an image and a question, to correctly answer the question about an

image. Lu et al. specifically employed a parallel co-attention and alternating co-attention

between the question-image pairs. Their ablation studies show that the alternating coattention

led to greater performance gains than the parallel one, and focuses on interpretable regions of

images and questions while predicting the answer. They suggest that such a mechanism can be
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adopted for other language and vision tasks as well; in our work, we test this conjecture. Our

work is the first to employ a coattention mechanism for visual storytelling.

We adapt the coattention mechanism proposed by Xiong et al. [33], which originally sought

to capture relations between questions and documents used in a text-based question answering

system. We tweak the mechanism in such a way that it can instead be leveraged for image and

description embeddings.

5.9.1 Coattention for Visual Storytelling

The image embedding obtained from the IE at the current timestep can be represented

as V ∈ R m X l1 where l1 is the dimension of the image embedding vector. The description

embedding from DE at the current timestep can be represented as D ∈ R m X l2 where l2 is the

dimension of the word embedding. m is the maximum of all lengths of sub-stories in the full

story (SIS).

Initially, an affinity matrix similar to Lu et al. [37] is calculated as follows:

L = tanh
(
DWbV

T
)

(5.9)

where Wb ∈ R l2 X l1 contains the weights and is initialized randomly from a normal distri-

bution. L is the affinity matrix which is the most important for calculating attention weights.
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This matrix is normalized row wise to obtain attention weights AD ∈ R m X m across the

image for each part of the description embedding, and column-wise to get attention weights

AV ∈ R m X m across the description embedding for each part of the image.

AD = softmax(L) (5.10)

AV = softmax(LT ) (5.11)

C D ∈ R l1 X m summarises or computes the attention contexts of the image in taking into

account each part of the description embedding:

C D = V AD (5.12)

The next two operations are performed in parallel. We also compute DAV , the summaries of

the description in light of each part of the image embedding. The summaries C DAV compute

the previous attention contexts in light of each part of the image embedding. C DAV essentially

represents the mapping of the description embedding space into the image embedding space.

C V = [D;C D]AV (5.13)
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C V ∈ R ( l1 + l2 ) X m is a co-dependent representation of the description and image, known

as the coattention context. We use the notation [x; y] for concatenating the vectors x and y

horizontally.

Figure 6. Coattention for Visual Storytelling. The affinity matrix L has been omitted but the

attention weights AD, AV have been shown directly. W is the word embedding of the

previously generated word by the SD.

The last step is to concatenate this coattention context with temporal information in the

form of the word embedding of the previously generated word by the SD, so that they can be
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fused together by passing them as input to the SD LSTM, which will then generate the next

word.

Figure 7. The Proposed Model with Coattention added to HCBNet (Nahian et al. 2019 [4]).
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In Figure 7, Im 1,...,Im n are the image inputs, Desc 1,...,Desc n are the corresponding de-

scriptions for each image. hdesc 0 is the image sequence embedding generated by the ISE. It

represents the overall theme of the story and is used to initialize first hidden state (hdesc 0) of

the DE. The output hidden state hdesc 1 of the DE is used to initialize the DE of Desc 2 and

so on. hdec 0 is the initial hidden state of the 1st SD. The output hidden state hdesc 1 of this

SD is concatenated with hdec 2 and passed through a fully connected (FC) layer and used to

initialize the hidden state of SD. This is repeated for all images. A coattention module as de-

scribed in Figure 6 which takes as input the current image embedding Im i emb and the current

description embedding desc i emb to produce CV i. This attended vector is concatenated with

the embeddings of previously generated word at each timestep and thus W i represents those

embeddings. This is used as input to the SD (SD Inpi) which generates a sentence Si, word by

word.



CHAPTER 6

EXPERIMENTAL SETUP

To perform our experiments, we resize images in the VIST dataset to 256 × 256 pixel

dimensions, and then transform them into 224 × 224 (the dimension needed for use as input

to ResNet152) images via random cropping along with a horizontal flip while training. Each

word is embedded into a 256-dimension vector. We remove stop words from the descriptions,

but not from the stories.

We train the decoder LSTM using teacher forcing (the ground truth/ target is fed as input

to the decoder LSTM while predicting the next word). The hidden layer size of both LSTMs

is set to 1024. Two layers of bidirectional LSTMs are used, resulting in a output hidden state

of size 2048. This output is then resized using a fully-connected layer. Batch normalization

and dropout have been applied following this to prevent overfitting the network. Each fully-

connected layer that follows an LSTM layer has batch normalization applied to it. A dropout

of 0.5 is applied on each LSTM cell, and to the output vector of the sentence decoder.

The learning rate is set to 0.0001, while the weight decay is set to 1e-5 for the Adam

optimizer. The batch size is set to 64, and the model is trained for 40 epochs.
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CHAPTER 7

EVALUATION AND RESULTS

7.1 Quantitative Evaluation

In order to quantitatively evaluate our model, we make use of a suite of automatic met-

rics, described in detail earlier in Section 4.4. We also experiment with another automated

metric, BERTScore [5]. BERTScore was recently introduced as an improved mechanism for

automatically evaluating generated text.1

7.1.1 BERTScore

BERTScore ( [5])is an automatic evaluation metric for text generation tasks such as ma-

chine translation, image captioning, and text summarization. It computes a sum of the cosine

similarity between the contextual BERT [38] embeddings of the tokens of the candidate and

reference sentences. It is different from the other commonly used evaluation metrics because it

doesn’t perform hard string matching or text alignment checks. It is also better able to manage

long distance dependencies.

BERTScore captures paraphrase matches well, because BERT encodes semantic meanings

of words. It maximizes the matching similarity score by using a greedy strategy. Essentially,

it tries to match each token from one sentence to the most similar token in the other sentence.

1Although we originally spent some time trying to develop our own metric along similar lines,
BERTScore was released first; thus, we decided to make use of it rather than investing additional
time on our metric for the present.
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BERTScore also makes use of importance weighing, which is based on the observation that rare

words indicate more sentence similarity than common words. To do so, it makes use of inverse

document frequency scores.

BERT-Score is fast, robust, easy to use and task agnostic. Unlike BLEU, it is not bound

by n-gram matching. It can also capture dependencies over long ranges. These traits make it

particularly suitable for our task; thus we use it here to evaluate our generated visual stories.

7.2 Results and Discussion

As can be seen from Table VI, AREL and CIDEr-RL have higher scores compared to our

model for all standard metrics (METEOR, CIDEr, ROUGE-L, BLEU-1, BLEU-2, BLEU-3,

and BLEU-4). As mentioned previously, such automatic metrics have been shown to exhibit

low correlation with human evaluation scores for visual stories, in some cases even exhibiting a

negative correlation [39]. Thus, we mainly provide these metrics here to facilitate comparison

with prior work for which no other metrics were computed.

We note that we did observe a noticeable increase in the precision-based metrics scores (e.g.,

BLEU and CIDEr) for our model when compared to the original HCBNet without coattention.

ROUGE-L also increases. AREL scores highest overall using these standard metrics, but as

mentioned in our earlier analysis, we observed that its stories tend to contain many repetitions

and produce more literal descriptions than actual human-like stories.

As a consequence of all the problems faced when evaluating stories with the classical auto-

matic metrics above, we turn our focus instead to the obtained BERTScores for the remainder
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TABLE VI. Performance as reported in the source papers [2, 3]. BLEU-RL, METEOR-RL,

and CIDEr-RL were baseline reinforcement learning approaches using BLEU, METEOR, and

CIDEr scores as their reward functions, respectively [2].

Model METEOR CIDEr ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4

AREL-s-50 34.9 9.1 29.4 62.9 38.4 22.7 14.0

BLEU-RL 34.6 8.9 29.0 62.1 38.0 22.6 13.9

CIDEr-RL 34.9 8.1 29.7 61.9 37.8 22.5 13.8

GLACNet 30.14 3.7 28.2 53.4 29.4 15.6 8.6

Contextualize,

Show and

Tell

34.4 5.1 29.2 60.1 36.5 21.1 12.7

HCBNet 34.0 5.1 27.4 59.3 34.8 19.1 10.5

Our Model 31.1 5.5 27.9 60.0 35.6 19.9 11.1

of our quantitative evaluation. BERTScore has been shown to exhibit high correlation with

human evaluation results for various text generation tasks.

Table VII shows the BERTScores for all core visual storytelling models considered. Since

scores computed by BERTScore fall into a very small range when using a RoBERTa base [40],

we report rescaled BERTScores to enhance their readability as directed by Zhang et al. [5].
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TABLE VII. BERTScore Precision (PBERT ), Recall(RBERT ) and F1 Score F1BERT . The

maximum values are made bold.

Model PBERT RBERT FBERT

AREL 26.88 13.58 20.24

GLACNet 27.05 11.43 19.22

Contextualize, Show and Tell 23.20 9.6 16.41

Our Model 29.68 14.19 21.91

Our model achieves the highest BERTScore precision, recall, and F1 score compared to all

other models. We note that for image captioning tasks, Zhang et al. [5] find PBERT to be

least useful and RBERT to be most useful. As visual storytelling is somewhat similar to image

captioning, we focus primarily on that outcome. Our model’s RBERT score outperforms that

of AREL, GLACNet, and Contextualize, Show and Tell by a percent increase of 4.5%, 24.1%,

and 47.8%, respectively.

7.3 Qualitative Evaluation

Following our quantitative evaluation, we also qualitatively evaluate our generated stories

by computing n-gram counts, average sentence length, and average story length, across various

visual storytelling models. From Figure 8, we can see that stories predicted by our model

contain more unique n-grams than observed in other models, providing evidence that our model

generates more lexically diverse stories. This may be jointly attributable to our inclusion of
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Figure 8. Histograms showing the count of unique 1-grams, 2-rams, 3-grams and 4-grams in

the various models.

DIIs and our novel coattention mechanism when training our model. Overall, it is clear that

the DIIs help in generating much higher quality stories than is observed in baselines that do

not use them. The stark difference in n-gram counts of HCBNet and our model (particularly

at higher values of n) also demonstrates that the attention mechanism effectively enabled the

model to map from the image embedding space and the description embedding space, and thus

highlight more relevant (and therefore often more unique) words from the descriptions used to

generate these visual stories. We hypothesize that the the SD LSTM also played a role in this
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increased story customization, by attempting to learn relations between the coattention vector

CV and the previously generated word embedding.

AREL produced very long visual stories, as we can see from Table VIII; however, its unique

unigram count is much lower than all other models. This lends more concrete support to our

earlier finding that the long AREL stories are riddled with repetitions and are in general of

relatively low quality, despite achieving high scores from standard metrics like BLEU. We also

note that GLACNet seems to be producing shorter stories. An earlier investigation by Hsu et

al. [39] found that when humans were asked to manually edit GLACNet stories, their length

generally increased to an average length of 36.7 words. Thus, (a) the increase in the size of

stories generated by our model may be attributable to the fact that our stories are closer to

“edited” stories,1 and (b) out of all models, our average story length is closest to the average

length of human-edited stories, lending an additional small but interesting similarity between

stories generated by our model and human stories, relative to those generated by other models.

Finally, we counted the number of stories generated by our model which have repetitive sub-

stories in them. Out of the 2019 stories generated, only 1 story has two repetitive sentences.

This is a massive improvement from the other baselines, which have had a considerable percent

of repetitive sub-stories as seen in Table V. This once again proves the efficacy of our model.

Further, only 1.08% of the stories generated sub-stories resembling DII (e.g., “this is a picture

of...”).

1We remind readers that our model is built upon a variation of GLACNet.
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TABLE VIII. Experimental results showing some word properties

Model Average No. of words per sentence Average No. of words per story

AREL 8.52 42.67

GLACNet 6.86 34.36

Contextualize,

Show and

Tell

8.75 33.86

HCBNet 6.141 30.7

Our Model 7.09 35.47
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Figure 9. The different visual stories generated by the baselines and our model.
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Figure 10. A very imaginative and good quality visual story generated by our model.



CHAPTER 8

CONCLUSION AND FUTURE WORK

In this work, we conducted a comprehensive error analysis of recent visual storytelling ap-

proaches. We note current shortcomings in this area, and make recommendations for addressing

these limitations in future work. We find that the most common errors are repetitions, the pres-

ence of traditional image descriptions, and a lack of creativity in the machine-generated stories.

Preprocessing the training text, developing a combined visual and text co-attention mechanism,

and sequentially generating sub-stories and providing them as feedback to the model can all

help to ameliorate these issues. Specifically, including these elements could help in the gener-

ation of more context-aware sequential sub-stories, and temporally sequencing the sub-stories

will produce more creative, coherent, relevant, and most importantly, humanlike stories.

We made use of some of the aforementioned recommendations to develop our own improved

model for visual storytelling. Specifically, we introduced a novel coattention mechanism be-

tween image embeddings and description embeddings for visual storytelling. This leads to the

generation of a joint representation of the two modalities, a co-dependent vector which leads

to the generation of more coherent, visually grounded, cohesive and much higher quality visual

stories. We also experimented with a recently introduced metric called BERTScore to evaluate

our stories. We achieve state of the art BERTScores for stories generated by our model. In the

future, we plan to experiment with knowledge graphs and residual connections in the network

in order to further enhance our model performance.
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APPENDIX

COPYRIGHT PERMISSION

This study contains work from Modi, Y. and Parde, N.: The steep road to happily ever after:

An Analysis of Current Visual Storytelling Models. In Proceedings of the Second Workshop

on Shortcomings in Vision and Language, pages 47–57, Minneapolis, Minnesota, June 2019.

Association for Computational Linguistics. [1]. I am the first author and my advisor Prof.

Natalie Parde is the second author. The license for the paper is attached on page 59.

The chapter wise breakdown containing parts from previously published work is as follows:

CHAPTER 1: INTRODUCTION (Previously published as Modi, Y. and Parde, N.: The

steep road to happily ever after: An Analysis of Current Visual Storytelling Models. In Pro-

ceedings of the Second Workshop on Shortcomings in Vision and Language, pages 47–57, Min-

neapolis, Minnesota, June 2019. Association for Computational Linguistics.)

CHAPTER 2: RELATED WORK (Part of it is previously published as Modi, Y. and Parde,

N.: The steep road to happily ever after: An Analysis of Current Visual Storytelling Models.

In Proceedings of the Second Workshop on Shortcomings in Vision and Language, pages 47–57,

Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.)

CHAPTER 3: DATA (Previously published as Modi, Y. and Parde, N.: The steep road

to happily ever after: An Analysis of Current Visual Storytelling Models. In Proceedings of

the Second Workshop on Shortcomings in Vision and Language, pages 47–57, Minneapolis,

Minnesota, June 2019. Association for Computational Linguistics.)
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APPENDIX (Continued)

CHAPTER 4: AN ANALYSIS OF ERRORS IN EXISTING VISUAL STORY-TELLING

MODELS (Previously published as Modi, Y. and Parde, N.: The steep road to happily ever

after: An Analysis of Current Visual Storytelling Models. In Proceedings of the Second Work-

shop on Shortcomings in Vision and Language, pages 47–57, Minneapolis, Minnesota, June

2019. Association for Computational Linguistics.)
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Figure 11. A very imaginative and good quality visual story generated by our model.
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