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SUMMARY

Cloud computing provides key features of cloud platforms to enable customers to economically

deploy their applications. First, customers can deploy their applications on a cloud infrastructure that

provisions resources (e.g., memory) to these applications on as-needed basis. However, certain work-

loads can result in situations when customers pay for resources that are provisioned, but not fully used

by their applications, and as a result, some performance characteristics of these applications are not

met, i.e., the Cost-Utility Violations of Elasticity (CUVE). Second, customers can economically deploy

their applications on cloud spot instances (i.e., virtual machines (VMs)) in cloud computing at much

lower costs than that of other types of cloud instances. In exchange, spot instances are often exposed to

revocations (i.e., terminations) by cloud providers; thus, when applications that run in spot instances are

being irregularly terminated due to spot instance revocations, these applications might lose their states

that lead to certain bugs, i.e., Bugs of cloud-based Applications resulting from Spot Instance Revoca-

tions (BASIR). Also, applications often employ different fault-tolerance mechanisms to minimize the

lost work for each spot instance revocation. However, these fault-tolerance mechanisms incur additional

overhead related to application completion time and deployment cost, i.e., the Deployment Cost And

Time Overhead (DCATO). Unfortunately, cloud-based applications are not designed or tested to deal

with CUVE, BASIR, and DCATO problems in the cloud environment, and as a result, the benefits of

economically deploying applications in elastic clouds may be significantly reduced or even completely

obliterated. In this thesis, we propose a novel model that reduces the impact of CUVE, BASIR, and

DCATO problems in the cloud environment to economically deploy applications in elastic clouds, and
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SUMMARY (Continued)

this model leads to practical frameworks for optimizing cloud elasticity, improving the design of the

shutdown process, and reducing the deployment cost and completion time for cloud-based applications.

This ensures efficient cloud computing services that lead to greater economies of scale.

In the first work, we develop a novel approach for Testing for Infractions of Cloud Elasticity

(TICLE) that combines a search-based heuristic with rule-guided resource provisioning by stress testing

the elastic resource provisioning for cloud-based applications to automatically discover irregular work-

loads that led to CUVE. We conduct our experiments with four nontrivial open-source applications in the

Microsoft Azure cloud to determine how automatically and accurately TICLE explores a large search

space of over 1040 input combinations while discovering CUVEs. The results show that TICLE finds

the first irregular workload faster, thus enabling stakeholders to investigate its impact sooner, and it finds

more irregular workloads that lead to much higher costs and performance degradations for applications

in the cloud compared to the random approach.

In the second work, we implement a novel approach for Testing for Bugs of Cloud-Based Applica-

tions Resulting from Spot Instance Revocations (T-BASIR) that uses kernel modules to automatically

find BASIR and locate their causes in the source code. We evaluate T-BASIR using 10 popular open-

source applications. Our results show that T-BASIR not only finds more instances and different types

of BASIR (e.g., data loss) compared to the random approach, but it also locates the causes of BASIR

to help developers improve the design of the shutdown process for cloud-based applications during the

testing of these applications.

In the third work, we develop a novel cloud market-based approach that leverages features of

cloud spot markets for Provisioning Spot Instances WithOut employing Fault-Tolerance mechanisms

xv



SUMMARY (Continued)

(P-SIWOFT) to reduce the overhead related to application completion time and deployment cost (i.e.,

DCATO) and, as a result, reduces the deployment cost and completion time of applications. We eval-

uate P-SIWOFT in simulations and use Amazon spot instances that contain jobs in Docker containers

and realistic price traces from EC2 markets. Our simulation results show that our approach reduces the

deployment cost and completion time compared to approaches based on fault-tolerance mechanisms.

xvi



CHAPTER 1

INTRODUCTION

1.1 Introduction

Cloud computing enables cloud customers to rent resources (e.g., CPU, memory,virtual machines

(VMs)) on as-needed basis to run their applications [4]. That is, customers do not have to buy and

host expensive hardware to run their applications, and instead they pay for renting resources for these

applications from cloud computing facilities [5, 6]. This is a fundamental difference between cloud

computing systems and distributed systems, which require application owners, i.e., cloud customers, to

buy and host expensive hardware to run their applications. As the deployment cost is an integral part

of applications deployed on the cloud, the cost-efficiency of provisioning resource to these applications

becomes a priority, and it is of growing significance, since the total spending that will be affected by

cloud computing is over $1 trillion by 2020 [7].

Three major problems may prevent cloud customers from economically deploying their applications

in elastic clouds. First, a fundamental problem of cloud computing is to provision resources according

to the application’s runtime needs in order to ensure that its performance does not worsen below a

predefined threshold. The decisions to provision certain resources are typically made by engineers who

create and maintain cloud-based applications, and they express their decisions in rules. A common and

frequently used rule recommended by the Amazon and Google Cloud documentations is to provision

one more VM when the CPU’s utilization increases above 80% [8–10]. There are many different rules

1
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like that for controlling cloud elasticity, a term that designates on-demand resource provisioning to

an application [5, 11]. Unfortunately, the behaviours of the nontrivial applications are very complex,

so some rules may be far from optimal in terms of allocating best possible resources for maximizing

the applications’ performance. As a result, resources that are provisioned to an application may not

improve its performance; however, its owner (i.e., a cloud customer) still has to pay for these needlessly

provisioned resources.

Second, although cloud spot instances in cloud computing allow stakeholders to economically de-

ploy their applications at much lower costs than those of other types of cloud instances, spot instances

are often exposed to revocations (i.e., terminations) by cloud providers. With spot instances becoming

pervasive, terminations have become a part of the normal behavior of cloud-based applications; thus,

these applications may be left in an incorrect state leading to certain bugs, such as data loss, inconsistent

states, performance bottlenecks, hangs, crashes, deadlocks, locked resources, or these applications that

cannot restart/terminate. On top of poor user experience from seeing these bugs, other bugs result in

situations where cloud-based applications could not be restarted without manual interventions. Cloud-

based applications that run in spot instances are not designed or tested to deal with this behavior in the

cloud environment. The shutdown sequence of a cloud-based application is often left untested because

developers often assume that a cloud-based application is properly terminated as long as its processes

are terminated [12]. It is very difficult to find these bugs because a termination signal can be initiated

at every execution state of a cloud-based application, leading to a significantly larger search space of

application states [13]. Unfortunately, the absence of testing the effect of spot instance revocations on

cloud-based applications will likely lead to a large number of these bugs. As a result, the advantages of
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economically deploying applications on cloud spot instances could be significantly minimized or even

entirely negated [14].

Third, cloud computing offers a variable-cost payment scheme that allows cloud customers to spec-

ify the price they are willing to pay for renting spot instances to run their applications at much lower

costs than fixed payment schemes, and depending on the varying demand from cloud customers, cloud

platforms could revoke spot instances at any time. To alleviate the effect of spot instance revocations,

applications often employ different fault-tolerance mechanisms to minimize or even eliminate the lost

work for each spot instance revocation. However, these fault-tolerance mechanisms incur additional

overhead related to application completion time and deployment cost. As a result, even though cloud

customers sometimes rent spot instances at 90% lower prices than on-demand prices [15], their appli-

cations that run on spot instances can be terminated based on price fluctuations that happen frequently;

thus, those applications may incur additional overhead related to application completion time and de-

ployment cost from re-executing lost work for each spot instance revocation.

In summary, if many cloud-based applications are affected negatively by inefficient cloud elasticity,

spot instance revocations, or the overhead of employing fault-tolerance mechanisms, the demand from

cloud customers will eventually decrease, leading to a loss in both cloud providers’and cloud customers’

revenues. Therefore, my thesis is dedicated to ensuring efficient cloud computing operations and ser-

vices to enable cloud customers to deploy their applications in elastic clouds economically, resulting in

greater economies of scale.

1.2 Research Contributions

The main contributions of this thesis are:
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• We formulate challenging new problems that prevent cloud customers from deploying their ap-

plications in elastic clouds economically.

– We investigate situations when customers pay for resources that are provisioned to, but not

fully used by their applications, and as a result, some performance characteristics of these

applications are not met, i.e., the Cost-Utility Violations of Elasticity (CUVE).

∗ We develop a novel approach for Testing for Infractions of Cloud Elasticity (TICLE)

that combines a search-based heuristic with rule-guided resource provisioning by stress

testing the elastic resource provisioning for cloud-based applications to automatically

discover irregular workloads that led to CUVE.

∗ We evaluate TICLE using four nontrivial open-source applications in the Microsoft

Azure cloud to determine how automatically and accurately TICLE explores a large

search space of over 1040 input combinations while discovering CUVEs. The results

show that TICLE finds the first irregular workload faster, thus enabling stakeholders to

investigate its impact sooner, and it finds more irregular workloads that lead to much

higher costs and performance degradations for applications in the cloud compared to

the random approach.

– We investigate situations when applications that run in spot instances are being irregularly

terminated due to spot instance revocations. These applications might lose their states that

lead to certain bugs, i.e., Bugs of cloud-based Applications resulting from Spot Instance

Revocations (BASIR).
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∗ We implement a novel approach for Testing for Bugs of Cloud-Based Applications

Resulting from Spot Instance Revocations (T-BASIR) that uses kernel modules to au-

tomatically find BASIR and locate their causes in the source code.

∗ We evaluate T-BASIR using 10 popular open-source applications. Our results show

that T-BASIR not only finds more instances and different types of BASIR (e.g., per-

formance bottlenecks, data loss, locked resources, and applications that cannot restart)

compared to the random approach, but it also locates the causes of BASIR to help devel-

opers improve the design of the shutdown process for cloud-based applications during

the testing of these applications.

– We investigate situations when applications employ fault-tolerance mechanisms to minimize

the lost work for each spot instance revocation. These applications incur additional overhead

related to application completion time and deployment cost resulting from employing these

fault-tolerance mechanisms, i.e., the Deployment Cost And Time Overhead (DCATO).

∗ We develop a novel cloud market-based approach that leverages features of cloud spot

markets for Provisioning Spot Instances WithOut employing Fault-Tolerance mecha-

nisms (P-SIWOFT) to reduce the deployment cost and completion time of applications.

∗ We evaluate P-SIWOFT in simulations and use Amazon spot instances that contain jobs

in Docker containers and realistic price traces from EC2 markets. Our simulation results

show that our approach reduces the deployment cost and completion time compared to

approaches based on fault-tolerance mechanisms.
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1.3 Thesis Statement

The thesis statement is formulated as follows.

With cloud-based applications becoming pervasive, the impact of inefficient cloud elasticity, spot

instance revocations, and fault-tolerance mechanisms has become a very important concern for cloud

customers. A solution based on the model that we proposed can be utilized to reduce or even eliminate

the impact of CUVE, BASIR, and DCATO problems in the cloud environment to economically deploy

applications in elastic clouds, and this model can lead to practical frameworks for optimizing cloud

elasticity, improving the design of the shutdown process, and reducing the deployment cost and com-

pletion time for cloud-based applications. This ensures efficient cloud-computing services that lead to

greater economies of scale.

1.4 Thesis Outline

The thesis is organized as follows: In chapter 2, we provide the necessary background on cloud

instance types and highlight the rules that contribute to economically deploying applications in elastic

clouds. Chapter 3 compares the related work with our work in this thesis. Chapter 4 presents TICLE,

Testing for Infractions of Cloud Elasticity. Chapter 5 presents T-BASIR, Testing for Bugs of cloud-based

Applications resulting from Spot Instance Revocations. Chapter 6 presents P-SIWOFT, Provisioning

Spot Instances WithOut employing Fault-Tolerance mechanisms. Finally, we conclude this thesis and

highlight future work in Chapter 7.



CHAPTER 2

BACKGROUND

This chapter presents some portions of the following papers.

• Abdullah Alourani, Md Abu Naser Bikas, and Mark Grechanik. ”Search-Based Stress Testing the

Elastic Resource Provisioning for Cloud-Based Applications.” In International Symposium on

Search Based Software Engineering, pp. 149-165. Springer, Cham, 2018. [Online]. Available:

https://doi.org/10.1007/978-3-319-99241-9_7.

• Abdullah Alourani, Ajay D. Kshemkalyani, and Mark Grechanik. ”Testing for Bugs of Cloud-

Based Applications Resulting from Spot Instance Revocations.” In 2019 IEEE 12th International

Conference on Cloud Computing (CLOUD), pp. 243-250. IEEE, 2019. [Online]. Available:

https://doi.org/10.1109/CLOUD.2019.00050. Best Student Paper Award.

• Abdullah Alourani, Ajay D. Kshemkalyani, and Mark Grechanik. ”T-BASIR: Finding Shutdown

Bugs for Cloud-Based Applications in Cloud Spot Markets.” in IEEE Transactions on Parallel

and Distributed Systems (TPDS), 2020. [Online]. Available: https://doi.org/10.1109/

TPDS.2020.2980265.

In this chapter, we provide the necessary background on cloud instance types and highlights the

rules that contribute to economically deploying applications in elastic clouds.
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2.1 Cloud Instance Types

We provide an overview of cloud instance types and discuss the challenges of finding optimal pro-

vision of different instance types.

2.1.1 Overview

Many cloud providers such as Amazon Web Services offer four types of instances (i.e., Servers) [16]:

on-demand, reserved, dedicated, and spot (also known as preemptible [17]). Cloud customers can pay

for renting on-demand instances per hour without long-term commitments and they cost the most. The

reason for the highest cost is that cloud providers do not know the future demand for cloud resources

from many cloud customers in advance, so it is difficult for cloud providers to make instances available

without any prior notice from cloud customers. Also, cloud providers do not offer a discount for on-

demand instances compared to other types of instances (e.g., reserved, spot), since cloud providers

do not require long-term commitments from cloud customers to use on-demand instances, and cloud

providers guarantee the availability of on-demand instances until they are released by their owners, i.e.,

cloud customers or simply customers. Cloud customers can rent reserved instances for a long term by

making an upfront payment to cloud providers and thus pay a much lower rate than on-demand instances.

For example, Amazon offers a three-year contract at a 75% discount relative to its on-demand prices.

Cloud providers guarantee the availability of both reserved and on-demand instances. A variation of

reserved instances is a dedicated host, which is a physical server that is assigned only to a specific cloud

customer, and nobody besides this customer can use the resources of this host [18]. Dedicated hosts

allow cloud customers to use their server-bound licenses (e.g., Windows Server) to reduce costs. Cloud

customers can rent dedicated hosts per hour or for a long term. Therefore, although cloud providers
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guarantee the availability of on-demand, reserved, and dedicated instances until they are released by

their owners, they result in higher deployment costs for owners.

Unlike the fixed-cost paying schemes mentioned above, a variable-cost paying scheme allows cloud

customers to specify the price they are willing to pay for renting a spot instance to run their applications

[15], and, depending on the varying demand from cloud customers, the price of this spot instance can

go up if the demand increases and the number of available instances that can be supported by a finite

number of physical resources in a data center of cloud providers decreases [19]. Conversely, the price of

this spot instance can go down if the demand decreases and the number of available instances increases.

Therefore, if the customer’s price is greater than the cloud provider’s price that depends on the demand,

a spot instance will be provisioned to cloud customers’ applications at the customer’s price. However,

when spot instances are already provisioned to cloud customer applications and the cloud provider’s

price goes above the customer’s price, the cloud providers will terminate those spot instances within

two minutes by sending termination notification signals [20]. As a result, even though cloud customers

sometimes rent spot instances at 90% lower costs compared to on-demand [15], their applications that

run on spot instances can be terminated based on price fluctuations that happen frequently, thus the

services of those applications that run on spot instances will not be provided to their customers.

2.1.2 Challenges of Finding Optimal Provision of Different Instance Types

Cloud customers face a major challenge in choosing between different types of instances to run

their applications. When cloud customers only use on-demand instances to run their applications, they

will incur high deployment costs since on-demand instances cost the most. If cloud customers choose

to run their applications using only reserved instances, they will save up to 75% of the deployment
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costs compared to on-demand prices, but they will need to know the demands of their customers in

advance, which is often very difficult. When cloud customers only use spot instances to run their

applications, they can save up to 90% of the deployment costs compared to on-demand prices. However,

the availability of spot instances is not guaranteed since the cloud providers will terminate spot instances

when the demand increases and the number of available instances decreases. That is, the services of

cloud customers’ applications that run on spot instances will not be provided to their customers. As a

result, the fundamental problem for cloud customers is how to find an optimal provision of different

types of instances for their applications that effectively balance the availability of services and the cost

of deployment.

In addition, it is very difficult to determine an optimal allocation of different types of instances

based on the application’s needs. It requires application owners, i.e., cloud customers to understand

what application components need to be run on instances that their availabilities are guaranteed, how the

price of spot instances change at runtime, and how to make trade-offs between the cost of deployment

and the availability of applications. Suppose that a web store application has multiple components

(e.g., microservices) deployed on the cloud where each component has different impacts on quality

of service requirements. For example, the payment processing component requires strict completion

deadlines and has higher impacts on quality of service requirements compared to the shipping cost

calculation component. Therefore, the major challenge for cloud customers is to determine how to

allocate different types of instances to application components in order to reduce the deployment cost

while maximizing the availability of components; thus, the services of those components will often be

provided to applications’ customers.
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2.2 Elastic Rules

We provide an overview of elastic rules and discuss the challenges of creating optimal elastic rules.

2.2.1 Overview

In general, if-then elasticity rules contain antecedents that describe the level of utilization of some

resources (e.g., CPU utilization >80%) and the consequents that specify (de)provisioning actions (e.g.,

(de)provision a VM) [11]. Unfortunately, rule creation is an error-prone manual activity, and provi-

sioning certain resources using manually created rules may not improve the application’s performance

significantly. For example, when the CPU utilization reaches some threshold due to a lot of swapping

or a lack of the storage, provisioning more CPUs does not fix the underlying cause that requires giv-

ing more storage to the application. That is, often rules are not optimal in terms of allocating required

resources based on projected applications’ needs [5].

2.2.2 Challenges of Creating Optimal Elastic Rules

It is very difficult to create rules that provision resources optimally to enhance the performance of

the application while reducing the cost of its deployment. Doing so requires the application’s owners to

understand which resources to (de)provision at what points in execution, how the cost of the provisioned

resources varies, and how to make trade-offs between the application’s performance and these costs.

Doing so is difficult, even for five basic resource types (i.e., CPU, RAM, storage, VM, and network

connections), where each type has many different attributes (e.g., the Microsoft Azure documentation

mentions 30 attributes [21,22], which result in tens of millions of combinations). Furthermore, suppose

that the performance of an application falls below some desired level that is specified by the application’s

owners. Since there are multiple possible combinations of resources that could be allocated to the
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application, the challenge is to find the rules that provision only minimally needed resources to maintain

the desired level of performance (i.e., the average response time). Conversely, provisioning resources

that are not optimal often leads to a loss in customers’ revenues.

In addition, it is very difficult to create rules that provision resources optimally to maximize the

performance of a multi-tier web application (i.e., the user interface tier, the application server tier, and

the database tier) while minimizing the cost of its deployment because the lack of resources that leads

to degradation in its performance can occur at multiple tiers of this application. Therefore, applications’

owners would need to analyze their applications to determine how to allocate resources (i.e., CPU,

memory, VM) to different tiers of these applications in a way that maximizes their performance and

reduces their deployment costs. For instance, the database tier (e.g., MySQL) is often I/O intensive

whereas the application server (e.g., Tomcat) is rather CPU-intensive. Consider a typical scenario for

a multi-tier web application where an application server interacts with multiple database servers, and

the performance of this application drops at heavy loads (e.g., high CPU utilization). That is, allocating

CPU instead of VM would not only improve the performance of this application, but also, reduce the

cost of allocated resources. As a result, although some resources that are allocated to an application

may improve its performance, they result in higher deployment costs for application’s owners.

In summary, creating elastic rules that provision resources, based on applications’ behaviors to

optimize the performance of applications while minimizing the deployment cost, is an undecidable

problem because it is impossible to determine in advance how an application will use available resources

unless its executions are analyzed with all combinations of input values, which is often a huge effort

[23]. Currently, many applications’ owners manually determine the rules to (de)provision resources that
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approximate a very small subset of the application’s behavior, and clouds often (de)provision resources

inefficiently in general, thus resulting in major application service degradations and the loss of cloud

customers’ time and money, leading to inefficient cloud computing services that reduce the utility of

cloud based applications.

2.3 Financial Rules

We provide an overview of financial rules and discuss the challenges of creating optimal financial

rules.

2.3.1 Overview

If-then financial rules contain antecedents that specify the price condition of provisioning spot in-

stances (e.g., the customer’s price >the cloud provider’s price) and the consequents that determine

(de)provisioning actions (e.g., (de)provision a spot instance). It is very difficult for cloud customers

to decide a price they are willing to pay for renting a spot instance to run their applications in such a

way that reduces the deployment cost and the number of spot instance revocations [24, 25]. When spot

instances are already provisioned to cloud customer applications and the customer’s price is close to

zero, there is a high probability that those spot instances will be revoked by cloud providers. Also, when

a cloud customer requests spot instances and the customer’s price is close to zero, there is a very low

probability that those spot instances will be provisioned to cloud customer applications. Conversely, if

cloud customers set their prices close to on-demand instances’ prices, cloud customers may reduce the

number of revocations of spot instances that are provisioned to their applications, but cloud customers

may not benefit from a significant discount of spot instances that is up to 90% compared to on-demand

instances [15]. As a result, without knowing a demand from different cloud customers in advance, the
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challenge for cloud customers is to choose a price of spot instances that is both significantly lower than

the price of on-demand instances and greater than the cloud provider’s price to minimize the cost of the

deployment and the number of spot instance revocations.

2.3.2 Challenges of Creating Optimal Financial Rules

It is very difficult to create financial rules that provision spot instances optimally to reduce the num-

ber of spot instance revocations and the cost of the deployment since the revocations of spot instances

are based on price fluctuations that happen based on demand of spot instances from many cloud cus-

tomers. The cloud providers often revoke spot instances when the demand increases and the number of

available spot instances that can be supported by a finite number of physical resources in a data center

of cloud providers decreases. It is very difficult to determine in advance spot instance revocations that

depend on the varying demands of cloud customers [26]. Doing so requires cloud customers (i.e., ap-

plication’s owners) to understand how the demands of the spot instances change, how the costs of the

allocated spot instances change, and how to make trade-offs between the demands and these costs [1].

As a result, price fluctuations that depend on the demand have a high influence on the number of spot

instance revocations.

2.4 Consistency Rules

We provide an overview of consistency rules and describe the interactions between consistency and

financial rules.

2.4.1 Overview

Replication is the process of copying and distributing data objects of cloud applications from one

instance to other instances (i.e., replicas) in distributed systems deployed on the cloud, and then syn-
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chronizing these data objects among these instances to maintain the consistency of these distributed

systems. Consistency rules specify when and how this synchronization occurs to ensure that any new

updates made to any data object of cloud applications will be visible in all replicas in distributed sys-

tems deployed on the cloud. The CAP theorem [27] states that in the presence of partitions (i.e., the

network connection is broken), we cannot have both availability and strong consistency, i.e., any new

updates made to any data object will instantaneously be visible in all replicas. To preserve availability

guarantees, consistency rules can be defined based on eventual consistency instead of strong consis-

tency, which guarantees that all replicas of a data object will eventually converge if no new updates are

submitted to this data object for some time. A fundamental model of cloud environment that is used in

the CAP theorem is shown in Figure 1 that contains a data object D and its replica DR, a writer who

writes and updates the data object, and a reader who reads from the replica. The data object D and its

replica DR are synchronized over a network to exchange messages that designate the states of these data

objects. However, when there is a partition in the network, the data object D and its replica DR cannot

be synchronized because these messages will be delayed or lost.

Figure 1: A fundamental model of cloud environment.
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2.4.2 Interactions between Consistency and Financial Rules

We enhance the model that is shown in Figure 1 with a special type of a message (i.e., termination

message) that disconnects this distributed data object from the other data objects in the model of the

cloud environment, and this message models the terminations of spot instances to demonstrate when

consistency rules trigger. Consider a scenario where a writer (i.e., Alice) sends a message to update the

data object D, and then a termination message is sent to the data object D. As a result, this data object D

is disconnected before it synchronizes with its replica DR, and while the data object D is disconnected,

another writer (i.e., Bob) sends a message to update the replica DR. Suppose that the data object D is

reconnected again. If the old update by Alice is sent to the replica DR, this distributed data object will

be in an inconsistent state because it will overwrite the latest update by Bob that happens when the data

object D was disconnected. Then, consistency rules will be triggered to resolve these conflicts in order

to ensure consistency of this distributed data object. As a result, when spot instances are frequently

terminated based on price fluctuations that depend on the varying demand from cloud customers, more

consistency rules will be triggered that consume more resources to resolve conflict states of data objects

in a cloud-based application and achieve consistency, resulting in overloading of resources.
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RELATED WORK

This chapter presents some portions of the following papers.

• Abdullah Alourani, Md Abu Naser Bikas, and Mark Grechanik. ”Search-Based Stress Testing the

Elastic Resource Provisioning for Cloud-Based Applications.” In International Symposium on

Search Based Software Engineering, pp. 149-165. Springer, Cham, 2018. [Online]. Available:

https://doi.org/10.1007/978-3-319-99241-9_7.

• Abdullah Alourani, Ajay D. Kshemkalyani, and Mark Grechanik. ”Testing for Bugs of Cloud-

Based Applications Resulting from Spot Instance Revocations.” In 2019 IEEE 12th International

Conference on Cloud Computing (CLOUD), pp. 243-250. IEEE, 2019. [Online]. Available:

https://doi.org/10.1109/CLOUD.2019.00050. Best Student Paper Award.

• Abdullah Alourani, Ajay D. Kshemkalyani, and Mark Grechanik. ”T-BASIR: Finding Shutdown

Bugs for Cloud-Based Applications in Cloud Spot Markets.” in IEEE Transactions on Parallel

and Distributed Systems (TPDS), 2020. [Online]. Available: https://doi.org/10.1109/

TPDS.2020.2980265.

In this chapter, we discuss the related work concerning elasticity rules, genetic algorithms, perfor-

mance testing, spot instance revocations, application bugs, and fault-folerance mechanisms.
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3.1 Elasticity Rules

Elasticity rules are a key element in the reactive provisioning technique [28, 29], which is the most

commonly used and offered by popular cloud service providers [30–32]. Gambi et al. developed a tool

that uses predefined workloads to test the automation of cloud-based elastic systems [33]. Breitgand

et al. designed an algorithm based on the logistic regression model that redefines threshold values

when a violation of performance parameters occurs to improve the elasticity property of the cloud [34].

However, testing the elasticity rules has not yet been investigated. Islam et al. first observed a situation

when provisioning resources do not alleviate the service level agreement (SLA) violations [35]. Testing

for Infractions of Cloud Elasticity (TICLE) is the first approach that obtains workloads that lead to

Cost-Utility Violations of Elasticity (CUVE).

3.2 Genetic Algorithms

Genetic Algorithms (GAs) are extensively used in many areas of software engineering [36], such

as software maintenance [37–39], cloud computing [40], regression testing [41], quality assurance [42],

mutation testing [43, 44], textual analysis [45], test generation [46–52], stress testing [53], coverage

testing [54], fault detection [55], and performance testing [56, 57]. Although these genetic algorithms

are used in many areas of software engineering, they have not been applied to our problem, since it

required multiobjective optimization.

Only a few works have been conducted on applying multiobjective optimization in software engi-

neering [58–60]. Mondal et al. designed an approach for enhancing fault detection, which prioritizes

the selection of test cases by maximizing test case diversity and code coverage based on a multiobjective

optimization algorithm [61]. Linares-Vasquez et al. designed a multiobjective approach that generates
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color compositions for Android app GUIs to improve energy consumption [62]. Almhana et al. pro-

posed an approach that locates potential relevant classes for bug reports by applying a multiobjective

optimization algorithm [63]. TICLE uses a multiobjective algorithm with rule-guided provisioning of

resources to determine irregular workloads that lead to CUVEs.

3.3 Performance Testing

One of the critical goals of performance testing is to automatically generate test cases that may trig-

ger performance problems [64]. Several papers focused on generating test cases to find performance

problems [65–69]. Burnim et al. presented an approach for the symbolic test generation tool to find

inputs that lead to performance bottlenecks [70]. Bodik et al. proposed a workload model that charac-

terizes volume and data spikes to test the robustness of stateful systems [71]. Chen et al. developed a

tool that uses user-defined workloads to analyze performance and energy consumption for cloud applica-

tions [72]. Snellman et al. developed a tool that uses user-defined test scripts to evaluate the performance

and scalability of rich internet applications in the cloud [73]. Shen et al. presented an approach that

uses genetic algorithms to find the combinations of inputs that lead to performance problems [74]. Xiao

et al. presented an approach that uses complexity models to predict workload-dependent performance

bottlenecks [75]. However, TICLE is the first fully automatic approach that finds irregular workloads

that lead to the CUVEs for stress-testing applications deployed on the cloud.

3.4 Spot Instance Revocations

To the best of our knowledge, Testing for Bugs of Cloud-Based Applications Resulting from Spot

Instance Revocations (T-BASIR) is the first automated solution for testing the effect of spot instance

revocations on cloud-based applications. Most of the prior works focused on reducing the effect of
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TABLE I: Comparison of T-BASIR with the related work concerning spot instance revocations and
application bugs. The top part of Table (a) indicates existing works that aim to mitigate spot instance
revocations. The following row designates the methodology of the proposed solution, followed by a
row that designates specific methods. The bottom part of Table (b) indicates existing works that aim to
find application bugs. The next row designates the methodology of the proposed solution and the cells
contain the name of the proposed solutions.

(a) Spot Instance Revocations

Modeling Spot Markets Employing Fault-tolerance Mechanisms
Testing Impact on Applications

Bidding Strategies Prediction Schemes Replication Checkpointing Migration

PADB [76] DrAFTS [77] Multifaceted Policy [78] Spoton [79] Smart Spot Instances [80]

DBA [81] Calibration [82] Proteus [83] Checkpointing Schemes [84] Hotspot [85] T-BASIR

AMAZING [86] Quantitative Models [87] Spotcheck [88] ExoSphere [89]

(b) Application Bugs

Buggy Templates Rules and Specifications Historical Bugs RAT

Metal Checkers [90] Alattin [91] HCM [92]

PMD [93] Pr-miner [94] FixCache [95] T-BASIR

FindBugs [96] AFG [97] Bug Prediction [98]

spot instance revocations using fault-tolerance methods, such as replication [78, 83, 88, 88, 89, 99, 100],

checkpointing [79,84,89,101], and VM migration [80,85]. Voorsluys et al. [78] proposed a fault-aware

resource allocation approach that applies the price of spot instances, runtime estimation of applications,

and task duplication mechanisms to economically run batch jobs in spot instances. Yi et al. [84] pro-

posed checkpointing schemes to reduce the computation price of spot instances and the completion time

of tasks. Shastri et al. [85] proposed a resource container that enables applications to self-migrate to

new spot VMs in a way that optimizes cost-efficiency as the spot prices change.

In addition, other researchers worked on modeling spot markets to reduce the spot instance cost and

the performance penalty that results from a high number of revocations, by designing optimal bidding

strategies [76, 81, 86, 102–108] and developing prediction schemes [77, 82, 87, 109]. Song et al. [76]
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proposed an adaptive bidding approach that leverages the spot price history information to choose the

bid strategy that increases the profit for brokers of the cloud service. Javadi et al. [82] proposed a

statistical approach to analyze changes in spot price variations and the time between price variations

to explore characterization of spot instances that are required to design fault-tolerant algorithms for

applications deployed on cloud spot instances.

3.5 Shutdown Bugs of Applications

T-BASIR is the first automated solution to identify instances of Bugs of cloud-based Applica-

tions resulting from Spot Instance Revocations (BASIR). T-BASIR measures the impact on the state

of Resources Affected by Termination (RAT) when the application is irregularly terminated to identify

BASIR, as discussed in Section 5.4.3. Existing bug finding tools are not applicable to BASIR because

they rely on searching through the application’s execution paths for certain inputs to check if the state

value of an application varies from the expected value that represents the input value of the next instruc-

tion in this execution path [13]. However, a termination signal can be initiated at every execution state

of applications, leading to a significantly larger search space of these states. Prior works required users

to provide the buggy templates in order to find application bugs [90, 93, 96, 110], whereas other works

automatically inferred rules and specifications by mining existing applications in order to find applica-

tion bugs [91, 94, 97, 111]. Kermenek et al. [97] proposed a probabilistic approach that automatically

infers specifications from a source code of an application and uses them to detect incorrect and missing

properties in specifications. Other researchers focused on predicting application bugs using historical

data of reported bugs [92, 95, 98, 112]. Giger et al. [98] proposed a bug prediction approach that learns

from source code and change metrics to predict application bugs.
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In summary, Table I briefly gives a comparison of T-BASIR from different existing works that aim

to mitigate spot instance revocations and find application bugs. While many of the prior works focused

on reducing the effect of spot instance revocations by modeling spot markets and using fault-tolerance

methods, these works are subject to altering pricing algorithms and are exposed to incurring overhead

related to application completion time and deployment cost, respectively. In contrast, T-BASIR focuses

on testing the effect of spot instance revocations on cloud-based applications. Also, although the other

prior works focused on finding application bugs using buggy templates, rules and specifications, and

historical bugs, these works are subject to limited inputs. However, T-BASIR measures the impact

on the state of RAT when the application is irregularly terminated to identify BASIR, as discussed in

Section 5.4.3. As a result, T-BASIR is the first tool that sheds light on the effect of spot instance

revocations on cloud-based applications.

3.6 Fault-Tolerance Mechanisms

To the best of our knowledge, Provisioning Spot Instances WithOut employing Fault-Tolerance

mechanisms (P-SIWOFT) is the first approach that leverages cloud spot market’s features to provision

spot instances without employing fault-tolerance mechanisms to reduce the deployment cost and com-

pletion time of applications. Most of the prior works focused on reducing the effect of spot instance

revocations using fault-tolerance methods, such as replication [78, 83, 88, 88, 89, 99, 100], checkpoint-

ing [79, 84, 89, 101], and VM migration [80, 85]. Voorsluys et al. [78] proposed a fault-aware resource

allocation approach that applies the price of spot instances, runtime estimation of applications, and task

duplication mechanisms to economically run batch jobs in spot instances. Yi et al. [84] proposed check-

pointing schemes to reduce the computation price of spot instances and the completion time of tasks.
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Shastri et al. [85] proposed a resource container that enables applications to self-migrate to new spot

VMs in a way that optimizes cost-efficiency as the spot prices change.



CHAPTER 4

TESTING FOR INFRACTIONS OF CLOUD ELASTICITY (TICLE)

This chapter presents a published paper, Abdullah Alourani, Md Abu Naser Bikas, and Mark Grechanik.

”Search-Based Stress Testing the Elastic Resource Provisioning for Cloud-Based Applications.” In In-

ternational Symposium on Search Based Software Engineering, pp. 149-165. Springer, Cham, 2018.

[Online]. Available: https://doi.org/10.1007/978-3-319-99241-9_7.

In this chapter, we propose a novel approach for Testing for Infractions of Cloud Elasticity (TICLE)

that combines a search-based heuristic with rule-guided resource provisioning by stress testing the elas-

tic resource provisioning for cloud-based applications to automatically discover irregular workloads that

led to CUVE.

4.1 Overview

One of the main benefits of cloud computing is to enable customers to deploy their applications on

a cloud infrastructure that provisions resources (e.g., memory) to these applications on as-needed basis.

Unfortunately, certain workloads can cause customers to pay for resources that are provisioned to, but

not fully used by their applications, and as a result their performances then deteriorate beyond some

acceptable thresholds and the benefits of cloud computing may be significantly reduced or even com-

pletely obliterated. We propose a novel approach to automatically discover these workloads to stress

test elastic resource provisioning for cloud-based applications. We experimented with four non-trivial

applications on the Microsoft Azure cloud to determine how effectively and efficiently our approach
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explores a very large space of the workload parameters’ values. The results show that our approach dis-

covers the first irregular workload faster in the search space of over 1040 input combinations compared

to the random approach, and it discovers more irregular workloads that result in much higher costs and

performance degradations for applications in the cloud.

4.2 Introduction

One of the main benefits of cloud computing is to enable customers to deploy their applications on a

cloud infrastructure that provisions resources (e.g., virtual machines (VMs)) to these applications on as-

needed basis [4]. That is, instead of buying and hosting expensive hardware, customers pay for renting

resources for running these applications from cloud computing facilities [6]. A fundamental problem

of cloud computing is to provision resources according to the application’s runtime needs in order to

ensure that its performance does not worsen below a predefined threshold, and it affects the technology

spending in the excess of $1 trillion by 2020 [7].

The decisions to provision certain resources are typically made by engineers who create and main-

tain cloud-based applications, and they express their decisions in rules. A common and frequently

used rule recommended by the Amazon and Google Cloud documentations is to provision one more

VM when the CPU’s utilization increases above 80% [8–10]. There are many different rules like that

for controlling cloud elasticity, a term that designates on-demand resource provisioning to an applica-

tion [5,11]. Unfortunately, the behaviours of the nontrivial applications are very complex, so some rules

may be far from optimal in terms of allocating best possible resources for maximizing the applications’

performance.
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In performance testing, input workloads are often created that resemble typical usages of applica-

tions and their performance characteristics are analyzed for regular workloads. In this work, we are

interested in irregular workloads, whose occurrences are rare and deviate beyond what is normally ex-

pected and they are extremely difficult to predict. Whereas test input workload generation techniques

concentrate on finding patterns in the existing past workloads [113], there is no approach for finding

new irregular workloads for stress testing, where applications are used beyond the normal operational

capacity to a breaking point [114]. Unfortunately, when irregular workloads happen, customers pay for

resources that are provisioned to, but not fully used by their applications [35], and the benefits of cloud

computing may be significantly reduced or even completely obliterated [115].

Contributions: We propose a novel approach for automatically discovering irregular workloads that

result in situations when customers pay for resources that are not fully used by their applications while at

the same time, some performance characteristics of these applications are not met, i.e., the Cost-Utility

Violations of Elasticity (CUVE). We implemented our approach for Testing for Infractions of CLoud

Elasticity (TICLE) that combines a search-based heuristic with rule-guided resource provisioning to

discover irregular workloads that led to CUVEs. These irregular workloads and rules can be reviewed

by developers and performance engineers, who optimize the rules to improve the performance of the

corresponding application. To the best of our knowledge, TICLE is the first fully automatic CUVE

approach for discovering irregular workloads for applications deployed on the cloud. We TICLEd four

nontrivial open-source applications in the Microsoft Azure cloud to determine how automatically and

accurately TICLE explored a large search space of over 1040 input combinations while discovering

CUVEs. The results show that TICLE finds the first irregular workload faster, thus enabling stakeholders
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to investigate its impact sooner, and it finds more irregular workloads that lead to much higher costs and

performance degradations for applications in the cloud compared to the random approach.

4.3 Problem Statement

In this section, we provide a background on workloads and rules for elastic resource provisioning,

discuss sources of CUVE, and formulate the problem statement.

4.3.1 Rules and Workloads

In general, if-then elasticity rules contain antecedents that describe the level of resource utiliza-

tion (e.g., CPU utilization > 80%), and the consequents that specify (de)provisioning actions (e.g., to

(de)provision a VM). Unfortunately, rule creation is an error-prone manual activity, and provisioning

certain resources using manually created rules does not often improve the application’s performance.

For example, when the CPU utilization reaches some threshold due to a lot of page swapping or a lack

of the storage space, provisioning more CPUs does not fix the underlying cause that requires giving

more memory and storage to the application. That is, often rules are not optimal in terms of allocating

required resources based on projected applications’ needs [35].

It is very difficult to create rules that provision resources optimally to maximize the performance

of the application while minimizing the cost of its deployment. Doing so requires the application’s

owners to understand which resources to (de)provision at what points in execution, how the cost of

the provisioned resources varies, and how to make trade-offs between the application’s performance

and these costs [116]. Optimal provisioning is difficult even for five basic resource types (i.e., CPU,

RAM, storage, VM, and network connections), where each type has many different attributes (e.g.,
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the Microsoft Azure documentation mentions 30 attributes [10], which result in tens of millions of

combinations).

Definition 4.3.1. An application workload is a time-dependent collection of request tuples as shown in

Figure 3 that contains a function of time that maps a time interval to the subset of input requests and its

input data.

The application workload includes not only the static part of the input to the application (i.e., com-

binations of HTTP requests with their parameter values) but also the dynamic part that comprises the

number of HTTP requests submitted to the application per time unit and how this number changes as

a function of time [117]. For example, a workload specifies how the number of requests to the appli-

cation fluctuates periodically according to a circular function yt = αsinωt, where α is the amplitude

of the workloads that designates the maximum number of HTTP requests, t is the discrete time of the

execution, andω is the periodicity coefficient.

Application workloads are often characterized by fast fluctuations and burstiness, where the former

designates a fast irregular growth and then a decline in the number of requests over a short period of

time, and the latter means that many inputs occur together in bursts separated by lulls in which they do

not occur [118]. By changing the coefficients of the function, irregular workloads can be generated for

stress testing in varying degrees of burstiness and fluctuation.

4.3.2 Sources of Cost-Utility Violations of Elasticity

There are two main sources of CUVE. First, there is a problem of provisioning resources to an

application that are not optimal for achieving the application’s best performance. For example, the

application may not perform better with additionally provisioned many CPUs instead of some more
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RAM [35]. Recall that cloud providers recommend some generic rules for resource provisioning [8–10].

Often, during stress testing, applications are run under regular heavy workloads that reflect the expected

pattern of usage (e.g., loads peak during evening hours when people shop online), and they are unable

to find CUVEs that result from irregular workloads. As a result, when these workloads occur during

deployment, resources that are provisioned to an application may not improve its performance; however,

its owner still has to pay the cloud provider for these needlessly provisioned resources.

Second, when the cloud infrastructure allocates resources, there is a delay between the moment

when the cloud assigns a resource to an application and the moment when this application takes control

of this resource. There are at least a couple of reasons for this delay: the startup time for a VM that hosts

the application or its components includes the VM’s loading and initialization time by the underlying

infrastructure; assigning a new CPU to the existing VM requires its hosted operating system to recog-

nize this CPU, which takes from seconds to tens of minutes [119]. Of course, the cloud infrastructure

starts charging the customer for the resources at the moment it provisions them rather than when the

application can control these resources [35]. However, all these may be done in vain – if the applica-

tion rapidly changes its runtime behavior during a resource initialization time, this resource may not be

needed any more by the time it is initialized to maintain the desired performance of the application. As

a result, during irregular workloads, customers pay for resources that are not used by their applications

for some period of time resulting in performance degradations.

4.3.3 An Illustrative Example

The CUVE problem with a cloud-deployed application is illustrated in Figure 2. The operations

of the genetic algorithm (GA) will be discussed in Section 4.4 as a part of our solution, and they can
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Figure 2: An illustrative example of the CUVE for a cloud-based application. The timeline of the
operations is shown with the horizontal block arrow in the middle. The process starts with the customer
who defines elasticity rules on the left and the events are shown in the fishbone presentation sequence
that lead to the CUVE on the right.
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be ignored for now. On the left side, the input is a set of rules for elastic resource provisioning and

workloads for the application. The top leftmost embedded graph that is shown in Figure 2 summarizes

how workloads’ fluctuations and burstiness reduce the effectiveness of the elasticity rules. The hori-

zontal axis shows numbered workloads, and the inner measurements on the vertical axis indicate the

utilization of CPU and memory in percents. The solid blue line shows the provisioning condition that

describes the level of CPU utilization. The outer measurements on the vertical axis indicate the number

of the provisioned VMs and the response time in seconds, and the solid red line shows the threshold of

a service level agreement (SLA) that indicates a desired performance level (i.e., the response time).

We show that a rapid change from the workload 2 to the workload 3 results in a situation where

the cloud allocates resources according to the rule based on workload 2, whereas different resources are

needed to maintain a desired level of performance for workload 3, a short moment after the provisioning

is made for workload 2. Finding such irregular workloads that lead to the CUVE is very important

during stress testing, where the SLA is violated and the cost of deployment is high because of the

provisioned resources. The cost and the performance move in opposite directions. Once known, these

irregular workloads and rules can be reviewed by developers and performance engineers, who optimize

the rules to achieve a better performance of the corresponding application. We show how the interactions

between workloads and rules lead to the CUVE problem.

Consider what happens in the illustrative example with the commonly recommended rule that spec-

ifies that the cloud infrastructure should allocate one more VM if the utilization of the CPUs in already

provisioned VMs exceeds 80%. As an example, we choose the initial configuration of five VMs at the

cost of $2 at the time t1. We rounded off the cost for the ease of calculations and based it on the pricing
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of various cloud computing platforms [8–10]. Then, a CPU-intensive workload triggers the rule at the

time t2. A new VM will be provisioned after some startup time while the owner of this application is

charged an additional $2 at the time t2. The VM will become available to the application at t2+ tVMs
,

where tVMs
is the VM startup time. Suppose that allocating one more VM in this example decreases the

CPU utilization to 35% whereas the memory utilization remains the same at 30%. The new workload 2

leads to a significantly increased CPU utilization, and another VM is allocated at the time t3. This is in

a nutshell how an elastic cloud works.

Suppose that the response time for the application should be kept under two seconds according to the

SLA that is specified by the applications’ owners, and a goal of the elastic rules is to provision resources

to the application to maintain the SLA. The SLA is maintained below the threshold until the time t4 when

the workload rapidly changes. The new workload 3 leads to a significant burst in the memory usage

whereas the utilization of the CPUs in already provisioned VMs remains low at 40%. The memory

utilization increases to 90%, and there is no rule that can be triggered in response, thus, subsequently,

there is no action taken by the cloud to alleviate this problem. The CPUs wait for data to be swapped in

and out of memory, and they spend less time executing the instructions of the application. As a result,

the application’s response time increases, thus eventually breaking the SLA threshold. Furthermore, at

the 40% higher cost, the SLA is violated and the performance of the application worsened, while the

application’s owner pays for resources that are under-utilized or completely unused.

4.3.4 The Problem Statement

Software engineers make performance enhancements routinely during perfective maintenance when

they use mostly exploratory random performance testing to identify when the performance of the Ap-



33

plication Under Test (AUT) worsens. In this work, we address a fundamental problem of performance

testing in the cloud – how to increase the effectiveness and efficiency of obtaining irregular workloads

for software applications deployed on the cloud that lead to instances of the CUVE. The root of this fun-

damental problem is that using only regular workloads for applications as part of random exploratory

performance testing results in a large number of executions, many of which are not effective in deter-

mining CUVE instances. Selecting randomly a subset of workloads often results in a complete absence

of the CUVE instances. To the best of our knowledge, there is no automatic approach to obtain irregular

workloads that can produce instances of the CUVE.

Specifically, we want to construct irregular workloads automatically using combinations of inputs

to which some functions are applied to cause fluctuations and burstiness to detect situations where

the cost increases significantly while the average throughput (i.e., a measure inverse to the response

time) of the application decreases beyond a certain threshold defined in the SLA and the provisioned

resources remain under-utilized or even completely unused at the same time. This is an instance of the

multiobjective optimization problem (MOOP). Automatically discovering irregular workloads is very

difficult in general, especially when trying to satisfy multiple conflicting constraints.

4.4 Our Approach

In this section, we state our key ideas for our approach for Testing for Infractions of CLoud Elasticity

(TICLE), explain GA with MOOP (GAMOOP), and describe the algorithm for TICLE.

4.4.1 Key Ideas

A goal of our approach is to automatically obtain irregular workloads for the AUT using GAMOOP.

In general, GAs are based on natural selection techniques where solutions to optimization problems are
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obtained using a stochastic search. The advantage of a GA is in evolving multiple candidate solutions

in parallel thus allowing it to explore efficiently a large search space of possible solutions. Thus, TICLE

is likely to scale well to modern AUTs with enormous search space.

In TICLE, a workload is represented by a chromosome that contains a sequence of genes divided

into three parts as it is shown in Figure 3. The first part refers to the types of periodic circular functions

(e.g., sinusoidal) that represent changes in the number of HTTP requests in the workload, the second

part refers to the functions’ parameters (e.g., amplitudes), and the third part refers to a set of HTTP

requests, where each HTTP request is assigned to a unique ID, i.e., a HTTP request that includes various

parameters is assigned to various IDs. For each application, we used a spider tool [120] to traverse the

web interface of the application, log all unique HTTP requests sent to the backend of the application, and

ensure these HTTP requests are valid. Each chromosome contains one function of time, two function

parameters (e.g., amplitude and periodicity), and a set of HTTP requests, where each function of time

uses only two function parameters. Therefore, modifying the values of these parameters in the second

part of the chromosome by the GA is independent of changing the function of time in the first part

of the chromosome. Once chromosomes are constructed, they are modified by GAs iteratively to find

solutions that satisfy multiple objectives. That is, TICLE generates the combination of inputs (i.e.,

HTTP requests) plus the parameters of workloads for formulae that describe them. Hence, existing test

input data generation techniques are not applicable to TICLE. For example, model-based fuzzing or

monkey testing require a complete model of software, which is often unavailable.

Using GAs for finding the CUVEs is illustrated in Figure 2 with the label GA operations. In

GAs, new solutions, or offsprings are generated using existing solutions, or parents. New solutions
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Figure 3: The representation of the workload and the chromosome.

are often “fitter” to meet the objectives of the desired solution. A predefined fitness function is used to

evaluate how close each solution is to being the optimal solution and fitter solutions have a better chance

to “survive” multiple iterations. In order to create a new generation of workload solutions, the operator

selection, mutation, and crossover are applied to workloads, where a selection operator selects parents

based on their fitness, a crossover operator recombines a pair of selected parents and generates new

offspring workloads, and a mutation operator produces a mutant of one workload solution by randomly

altering its gene. It is our hypothesis that GAMOOP can efficiently generate close to optimal workloads

using the properties of their parents.

Our other key idea is to include user-defined rules for SLA violations as objective constraint func-

tions for TICLE. For example, the Amazon’s SLA rule limits the response time to 300ms for its web-

based application [121]. Finding workloads that violate SLA thresholds is one of the main goals of

performance testing. However, if finding workloads that break the SLA rules was the only objective,
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simply exponentially increasing the amplitude of the workloads with a very large burstiness would likely

result in a sudden increase of the response time. Unfortunately, doing so results in ignoring the other

two objectives (i.e., increasing the cost of the provisioned resources and decreasing the utilization of

resources), since the cost is likely to remain the same if the cloud does not rapidly provision resources

and the utilization will keep increasing with the increasing workloads. Thus, workload parameters

should be chosen in such a way that delays between resource provisioning and resource availability are

exploited by changing the fluctuations and the burstiness of the workloads in addition to differences

in how applications use resources based on the workload content that includes HTTP requests, which

trigger different execution paths in AUTs.

4.4.2 TICLE Algorithm

TICLE is shown in Algorithm 1 that includes the following major steps: (i) randomly generate an

initial set of workloads, (ii) use these workloads to execute the cloud-deployed AUT and measure its

performance, such as the utilization of the provisioned resources and the average response time, and

(iii) use fitness functions, as described by (Equation 4.2) [122] to evaluate the objectives and to select

workload solutions using the quality indicator described by (Equation 4.1) [122] to select solutions

using GAMOOP. The fitness function is Pareto dominance compliant since it uses the quality indicator

to rank solutions based on their usefulness regarding multiple objectives, amplifying the influence of

dominating solutions over dominated solutions. A Pareto optimal solution dominates some other one if

the dominating solution is better in some objectives and it is not worse in all the other objectives. Each

solution can be represented as a point in a multidimensional space of orthogonal objectives. A curve can

be drawn to connect non-dominated solutions that can be selected as optimal when no objective could
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be improved without sacrificing the other objectives. The curve is named a Pareto optimal front and is

used by GAMOOP to choose winning workloads that result in CUVEs.

I(S,S ′) = max
{
∀w ′ ∈ S ′∃w ∈ S : gj(w)≥ gj(w ′) for j ∈ {1, . . . ,n}

}
,

S,S ′ ∈Ω, w,w ′ ∈ P
(4.1)

F(w) = Σw ′∈P\{w}−e
−I({w ′},{w})/k, k > 0 (4.2)

WhereΩ indicates the entirety of all Pareto sets, S is a Pareto set and S ′ is another Pareto set in all Pareto

set approximations. P indicates the initial population P of workloads, w is a workload (i.e., solution),

and w ′ is another workload in the population. I is the quality indicator function that compares the

quality of two Pareto set approximations or solutions with respects to n objective functions g1, . . . ,gn

that are described below, k is a fitness scaling factor and is set to 0.05 experimentally.

We chose Non-dominated Sorting Genetic Algorithm II (NSGA-II) because previous evaluations

showed that it finds a much better spread of solutions and it converges near the true Pareto optimal front.

NSGA-II does not require the user to prioritize, scale, or weigh objectives like many other algorithms,

which would be a major manual effort in TICLE. Finally, NSGA-II can generate new non-dominated

solutions in unexplored parts of the Pareto front by applying the crossover operator to take advantage of

good solutions with respect to multiple conflicting objectives [123].

That is, the space of workload parameters (e.g., the amplitude, periodicity) is explored to optimize

three objectives in parallel by evaluating a fitness function (Equation 4.2) that maps workloads to the
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Algorithm 1 TICLE’s algorithm for automating workload search for instances of the CUVE problem.

1: Inputs: GAMOOP ConfigurationΩ, Input Set I
2: P ← InitializePopulation(I )
3: while ¬ Terminate do
4: EvalFitnessObjectiveFunctions(P ,Ω)
5: EvalConstraintsFunctions(P ,Ω)
6: F ← FastNondominatedSort(P )
7: CrowdingDistanceAssignment(F )
8: S ← SelectParentsByRankDistance(F , |P |)
9: R ← RemoveLowerRankedSolutions(S )

10: C ← CrossoverMutation(R ,Ω)
11: P ← P∪ Merge( P , C )
12: end while
13: return P

unused resources of provisioned VMs (objective 1), the cost of provisioned resources (objective 2),

and the average response time (objective 3). An ideal solution is a workload that maximizes these

objectives, as described by (Equation 4.1), i.e., to achieve the maximum cost of the deployment with the

minimum resource utilization and the application throughput that violates predefined SLA constraints.

These objectives cannot be formally defined, since their values are obtained from the Microsoft Azure

cloud. Determining if such an irregular workload is realistic is a task for subject-matter experts, and

its investigation is beyond the scope of this work. Since no solution exists to address this important

problem, using NSGA-II to find a better solution and to compare it with a random performance testing

approach is our major contribution.

The algorithm for TICLE takes in the complete set of input ranges for the subject AUT and the

GAMOOP configurations Ω, including the crossover and mutation rates, fitness functions for their re-

spective objectives, an SLA threshold, and the termination criterion. In Step 2, the algorithm generates

an initial population of workloads by combining randomly selected HTTP requests. In TICLE, we create

four types of workload fluctuation functions: sinusoidal, where the workload changes with periodicity,



39

as described by the equation yt = αsint, where α is the amplitude of the workloads that designates

the maximum number of HTTP requests, and t is the discrete time of the execution; linear, where the

workload increases or decreases linearly, as described by the equation yt = α × t; exponential, with a

rapid rise or drop of the workload yt = αt; and random, where a random number generator is used to

define the amplitude and the HTTP requests for the workloads. In the RANDOM approach, a workload

contains AUT’s HTTP requests, the types of periodic circular functions that represent changes in the

number of HTTP requests in the workload, and the functions’ parameters (e.g., amplitudes and peri-

odicities). Once workloads are constructed, their parameters are modified randomly to find solutions.

Based on previous research, these functions represent a majority of workload shapes [117].

Starting from Step 3, the evolution process begins by evaluating if the termination condition is

satisfied. In Step 4, fitness functions are applied to evaluate each individual workload and in Step 5

constraint functions are evaluated to determine if the SLA holds. After the evaluation, in Step 6 the

population is sorted and in Step 7 the distances of the solutions on the Pareto front are estimated. Using

those closest to the Pareto front, in Step 8 the solutions are ranked into a hierarchy of sub-populations

based on the ordering of the Pareto dominance. In Step 9, lower ranked solutions are removed from the

population. In Step 10, for each part of the chromosome, the mutation operator replaces the value of one

random gene with another value within the specified range, thus creating a new (updated) individual,

and the crossover operator randomly selects a crossover point and exchanges the remaining genes for

selected parent individuals, thus creating two new offspring individuals for a new generation.

All newly generated individual workloads are evaluated using the defined fitness functions, and

the fittest workloads are selected for the next generation that is formed first by the order of dominating
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precedence of the Pareto front and then by using the distance within the front. Finally, the new workload

solutions are added to the population. The cycle of Steps 3-12 repeats until the termination criterion is

satisfied, and the final population is returned in Step 13 as the algorithm terminates.

4.5 Empirical Evaluation

In this section, we describe the design of the empirical study to evaluate TICLE and state threats to

its validity. We pose the following three Research Questions (RQs):

RQ1: How effective is TICLE in finding irregular workloads that lead to the greater cost of the AUT’s

deployment?

RQ2: How fast is TICLE in finding the first irregular workload that infracts the elasticity rules for the

AUT?

RQ3: Is TICLE more effective than the random approach in finding more CUVEs for different elasticity

rules?

We introduce the null hypothesis H0 and an alternative hypothesis HA to evaluate the statistical

significance of the difference in the median value of the dependent variables:

H0: There is no statistical difference in the median values of the dependent variables triggered by

workloads generated randomly and by TICLE.

HA: There is a statistically significant difference in the median values of the dependent variables trig-

gered by workloads generated randomly and by TICLE.
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TABLE II: Characteristics of the subject AUTs: their names followed by their versions, the number of
lines of code (LOC), the number of classes, the number of methods and the approximate size of the
search space of the input requests for the AUT.

AUT Version LOC Classes Methods Space
JPetStore v4.0.5 2,762 42 400 1031

JForum v2.1.9 36,401 397 3,487 1049

PhotoV v2.1.0 10,549 81 931 1036

RUBiS v1.4.3 83,640 641 4,396 1014

4.5.1 Subject Applications

We evaluated TICLE on four web-based, open-source subject applications written in Java: JPet-

Store, JForum, PhotoV, and RUBiS. Their basic characteristics are shown in Table II. These applications

are written by different programmers, come from different domains, and have high popularity indexes.

JPetStore is a PetStore application that is widely used as a performance benchmark. JForum is a discus-

sion board forum software. PhotoV is a photo database system that allows users to catalogue, sort, and

display photos. RUBiS is an online auction system that is written in Java and PHP. Choosing up to 50

input requests from 100+ HTTP requests results in over 1040 combinations.

All subject AUTs have a three-tier architecture. Response time is measured between the moment

when a sent request is received by the AUT and the moment when a response to the request is issued

from the AUT, and the network latency time is not included. All components of the same AUT are

deployed on the same VM. When the cloud provisions VMs to the AUT, each VM will have a replica of

these three tiers to ensure full horizontal scalability of the AUT.
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TABLE III: The set of predefined if-then elasticity rules.

Rule Provisioning Action
Scale In Scale Out

R1 CPUutilization < 20% CPUutilization > 50%
R2 CPUutilization < 40% CPUutilization > 60%
R3 CPUutilization < 20% CPUutilization > 80%

4.5.2 Methodology

We use the definition a workload from Section 4.3.1 to specify the set of input requests and how

their quantities change over time. For example, the HTTP request https:

//jpetstore:8085/search?cat=FISH is an input to JPetStore, where search is the path

component of the HTTP request, cat is the name of its parameter, and FISH is the value of this

parameter. TICLE generates workloads and uses JMeter [124] that simulates users sending the workload

requests to web servers of the AUT and collects performance measurements of the provisioned VMs that

host AUT’s components that execute the workload requests. In our experiments, we set the number of

HTTP requests in a workload between 10 and 50 to observe a wide range of the AUT’s behaviors.

Also, we defined three elasticity rules with different ranges for VM (de)provisioning that are shown

in Table III to determine how effectively TICLE finds irregular workloads that infract these elasticity

rules for the AUTs. For example, the rule R3 gives us a wider range of the CPU utilization (i.e., 60%)

than the rule R2 (i.e., 20%), thus allowing us to control how easy it is to find a workload that triggers

provisioning of the VMs (or scaling out). Respectively, it is easier to trigger the rule R2 than the rule R1

to deprovision VMs (or scale in). Evaluating TICLE with these different rules is one of the goals of this

work to answer RQ3.
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Since our goal is to find irregular workloads that lead to CUVEs, violating the predefined SLA

threshold is an important objective of the experiments. We use the AUT’s response time as the SLA.

To determine the SLA threshold, we first run each subject AUT under heavy workloads in a single VM

to determine the longest possible response time. Then, we repeat our experiments with 20%, 40%, and

60% of this longest response time as the SLA threshold. That is, if we use 100% of the longest response

time as the SLA threshold, there will be very few observed CUVEs, if any, since the response time for

all experiments will be less than or equal to the SLA threshold. Conversely, setting the SLA threshold at

20% of the longest response time will likely make finding CUVEs easier. Experimenting with different

SLA thresholds in the controlled environment enables us to answer RQ1.

The experiments for the AUTs were carried out using 10 small VMs/servers from the A-series in

the Microsoft Azure cloud called Standard A1 with 1 GHz CPU and 1.75 GB of memory. We wrote a

client for JMeter [124] that applied generated workloads to the subject AUTs, and JMeter clients were

run externally on laptops. All experiments were conducted on the same experimental platform.

We implemented TICLE using jMetal, which is an open-source framework for multi-objective

optimization with various evolutionary algorithms [125]. We used the following GAMOOP settings

for TICLE: the crossover rate of 0.9, the mutation rate of 0.3, the population of 100 individuals, and

the tournament selection of size two. The evolution was terminated if the workload solutions did not

improve after 10 generations. The maximum number of generations was set to 30. We chose these

values experimentally for the platform based on the limitations of the hardware.

4.5.3 Variables
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Independent variables include the SLA violation threshold, i.e., the AUT’s response time, the set of

HTTP requests, the costs of the cloud virtual resources, the functions that describe the burstiness and the

fluctuations of the workloads, the subject applications, and the set of user-defined elasticity rules that

are illustrated in Table III. Dependent variables include the cost and the utilization level of resources

provisioned to the AUTs, the average response time of the AUT, the average execution time to find

irregular workloads that led to the first obtained CUVE, and the total count of the detected CUVEs.

4.5.4 Threats to Validity

A threat to the validity of our empirical study is that our experiments were performed on only four

open-source, web-based applications, which makes it difficult to generalize the results to other types of

applications that may have different logic, structure, or input types. However, the subject AUTs were

used in other empirical studies on performance testing [74]. Therefore, we expect our results to be

generalizable.

Our current implementation of TICLE deals with simple types of inputs, HTTP requests with basic

parameter types (e.g., integer), whereas other programs may have complex input types (e.g., JSON or

XML structures). While this is a threat, TICLE can be adapted to encode inputs of other types. In order

to apply TICLE to other applications, the user needs to modify only the gene representation approach

so that TICLE recognizes other types of inputs.

One threat to validity is that we deployed an AUT fully in a single VM. Indeed, deploying an AUT’s

components in multiple VMs may lead to performance bottlenecks since many shared resources are

used in the application layer. This situation may result in more CUVEs, thus making it easier for TICLE

to find them. However, deploying these layers on the same VM (i.e., it is scaled horizontally) puts
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TICLE at a disadvantage to find CUVEs since many bottlenecks do not show up easily, thus making our

experiments robust.

We experimented with only three generic elasticity rules using the recommendations from Amazon,

Azure, and Google Cloud documentations. This is a threat for two reasons. First, users may create

much more sophisticated rules that would make it difficult for TICLE to find CUVEs. Second, our rules

provision only VMs, whereas real-world rules could also provision storage, RAM, network connections,

and other virtual hardware. However, understanding the effect of various resources is currently out of

scope for this work and will be addressed in future work.

Our experiments were performed only on the Infrastructure as a Service (IaaS) cloud model, whereas

applications may be deployed on Platform as a Service (PaaS) or Software as a Service (SaaS) cloud

models. Even thought it is a potential threat to validity, TICLE is perfectly applicable for the PaaS model

as long as the PaaS supports auto-scaling features and provides access to resource utilization such as

App Service Plan in Azure.

4.6 Empirical Results

In this section, we describe and analyze the results of the experiments to answer the three RQs stated

in Section 4.5.

4.6.1 Finding Workloads that Lead to Higher Costs

The results of the experiments are shown in the box-and-whisker plots in Figure 4a and Figure 4b

that summarize the deployment costs and the time it takes to find the first CUVE for the subject AUTs

using the TICLE and RANDOM approaches for three different SLA threshold values of the longest re-

sponse time. We observe that the average costs for the found CUVEs using TICLE are consistently
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(a) (b)

Figure 4: Box-and-whisker plots compare (a) the deployment costs and (b) the time to the first CUVE
discovery for detected CUVEs that are computed using the TICLE and RANDOM approaches for the
subject AUTs for three SLA thresholds (i.e., 0.2, 0.4, and 0.6) of the longest response time. The cost is
measured in dollars and the time is measured in minutes.

higher than the average costs of the CUVEs found by RANDOM among all SLA threshold values. The

costs for CUVEs have the highest difference between TICLE and RANDOM at 60% of the SLA thresh-

old, then at 40%, followed by 20%. This result suggests that the higher threshold values require more

sophisticated workloads to break the threshold and to lead to a higher cost of deployment, because it is

more difficult to construct workloads when longer response times are permitted. The cost variance for

CUVEs computed by TICLE is significantly lower when compared to the RANDOM approach, which

suggests that TICLE favors workloads that have the highest impact on increasing the cost of deploy-

ment.

Similarly, it is shown in the box-and-whisker plot in Figure 4b that TICLE is consistently faster than

RANDOM in finding the first CUVE. This result is important not only to answer RQ2, but also to show

that TICLE is efficient in practice, since taking less time to find the first CUVE shows that TICLE
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TABLE IV: The comparison of the results of Mann-Whitney-Wilcoxon U-Tests for TICLE and RAN-
DOM using three SLA thresholds. The first column designates the null hypothesis followed by the column
for SLA thresholds, and the cells contain the p-values.

SLA Threshold
Null Hypothesis 20% 40% 60%

Cost 9.7×10−15 8.2×10−3 0.03
Detection Time 1.4×10−4 5.5×10−4 0.02

beats the RANDOM approach in notifying stakeholders faster that there is a workload that results in a

CUVE. We expect that TICLE will be used by performance testers, and it is important for them to

find CUVEs faster to report them to developers who will start looking for fixes to the detected CUVEs.

Thus, a faster-to-find-CUVE approach is also more efficient in using fewer computer resources and

stakeholders’ time.

In our case, the data cannot be guaranteed to follow the normal distribution, therefore, we applied

Mann-Whitney-Wilcoxon U-Tests to evaluate the statistical significance of the difference in the median

value of deployment cost between TICLE and RANDOM for the subject AUTs. The results of Mann-

Whitney-Wilcoxon U-Tests for TICLE and RANDOM are shown in Table IV. The results confirm that the

values for the differences between TICLE and RANDOM are always statistically significant according to

the Mann-Whitney-Wilcoxon U-Test, thus positively addressing RQ1.

4.6.2 Finding Workloads Faster

We applied Mann-Whitney-Wilcoxon U-Tests to evaluate the statistical significance of the difference

in the median value of detection time, which indicates the execution time to find irregular workloads that

lead to the CUVE, between TICLE and RANDOM for the subject AUTs. The results of Mann-Whitney-

Wilcoxon U-Tests for TICLE and RANDOM are shown in Table IV. The results confirm that the values
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for the differences between TICLE and RANDOM are always statistically significant according to the

Mann-Whitney-Wilcoxon U-Test, thus positively addressing RQ2, which states that TICLE is more

efficient in finding CUVE using significantly fewer computational resources compared to the RANDOM

approach.

Figure 5: Comparing TICLE and RANDOM for detecting CUVEs for the subject AUTs with different
elastic rules that are shown in Table III. The X-axis designates elasticity rules. The leftmost red bar
represents the ratio of the total number of detected CUVEs using the approaches TICLE and RANDOM,
countTICLE

countRANDOM
. The middle green bar represents the ratio of the average costs for CUVEs, costTICLE

costRANDOM
.

The righmost blue bar represents the ratio of detection times for the first found CUVE, timeRANDOM
timeTICLE

.
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4.6.3 The Impact of the SLA Threshold

An interesting question is how an SLA threshold affects the process of finding CUVEs. As dis-

cussed in Section 4.5.2, a higher percentage of the SLA threshold means that longer response times are

acceptable. Since one of the objectives is to find CUVEs where the SLA threshold is violated, the higher

the percentage at which the SLA threshold is chosen, the more difficult it is to obtain CUVEs. Consider

the box-and-whisker plots that are shown in Figure 4a and Figure 4b – the visual inspection clearly

identifies the rise of the average cost and the detection time with the increase of the SLA threshold.

However, our analysis shows that the cost of the application deployment increases robustly when using

TICLE whereas for RANDOM, the average cost stays approximately the same, but it shows a much wider

variance. Our explanation is that TICLE is more effective in finding workloads for CUVEs with much

higher SLA thresholds, since it systematically chooses workloads with a higher cost using the fitness

functions.

Alternatively, the detection time to the first occurrence of the CUVE shows almost an opposite

pattern. The detection time increases steadily when using RANDOM with a large variance of the mea-

surements whereas for TICLE, the average detection time stays approximately the same, and it shows

a much smaller variance. Again, this observation confirms the efficiency of TICLE when the SLA

threshold increases.

4.6.4 Impact of Different Elasticity Rules

The results of the experiments to answer RQ3 are presented in the histogram plot in Figure 5 that

shows ratios for the total numbers of detected CUVEs, deployment costs, and detection times computed

using the approaches TICLE and RANDOM over subject AUTs for three elasticity rules, which allocate
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and deallocate resources in consonance with the user-specific conditions (i.e., the utilization of CPUs

increases above 80%). We used three elasticity rules that are recommended by the Amazon, Microsoft

Azure, and Google Cloud documentations [8–10], and these rules are shown in Table III. The higher the

ratios, the more effective and efficient TICLE is in finding CUVEs compared to the RANDOM baseline

approach.

We observe that all ratios with the exception of one for the deployment cost of the rule R1 are greater

than one meaning that TICLE finds faster and more CUVEs when compared to RANDOM. The highest

count ratio is for R3 and R1, followed by R2, which suggests that a higher range value between the

lower threshold that triggers the scale-in operation and the upper threshold that triggers the scale-out

operation for elasticity rules results in more detected CUVEs. In summary, these experimental results

demonstrate that TICLE is more effective and efficient in finding CUVEs for all elasticity rules than the

RANDOM baseline approach, thus positively addressing RQ3.

4.6.5 Impact of Different Workload Types

Further details about the results of the TICLE and RANDOM comparison are shown in Table V,

where statistical information is provided on the deployment costs and the time it takes to find the first

CUVE in the context of four workload types using the TICLE and RANDOM approaches. We observed

that the median cost of the found CUVEs using TICLE is consistently higher than the median cost of the

CUVEs found by RANDOM for all workload types. Similarly, the median detection time using TICLE is

consistently shorter than RANDOM in finding the first CUVE for all workload types. This result suggests

that TICLE is more effective and efficient in finding CUVEs for all workload types when compared to
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TABLE V: Results of experiments on subject AUTs using the SLA threshold at 15% of the longest
response time. The first column represents the subject AUTs, and the second column represents the cir-
cular functions for workloads. The third column represents the approach TICLE and RANDOM followed
by deployment cost values, and the detection time. We report the Min, Max, Mean, Median, and the
standard deviation. We observe that the effectiveness of TICLE is higher in finding CUVEs.

Deployment cost, $ Detection Time, mins
App

Workload Method Min Max Mean Med SD Min Max Mean Med SD

JF
or

um

CIRCULAR
TICLE 6.217 11.400 9.722 9.883 0.995 15.828 98.028 44.403 41.871 18.320

RANDOM 2.100 12.050 8.007 7.717 2.583 17.244 138.000 78.281 77.730 35.122

LINEAR
TICLE 5.217 11.450 9.698 9.963 1.281 15.810 134.658 45.273 37.917 26.009

RANDOM 1.200 12.200 7.603 7.600 2.459 16.230 140.130 76.308 74.466 35.150

EXPON
TICLE 6.325 11.463 9.256 9.388 1.220 16.362 127.332 45.380 38.184 26.268

RANDOM 1.600 12.300 7.225 6.900 2.930 16.122 144.000 74.507 78.375 34.279

RANDOM
TICLE 7.350 12.275 9.771 10.000 1.089 17.442 144.426 49.581 46.833 26.559

RANDOM 1.200 12.325 7.538 7.200 2.957 18.546 142.710 75.800 78.828 34.948

R
U

B
iS

CIRCULAR
TICLE 8.975 10.575 10.047 10.356 0.596 19.068 97.836 46.605 40.476 24.601

RANDOM 6.975 10.825 9.501 9.856 1.108 20.088 153.744 80.982 81.420 41.857

LINEAR
TICLE 4.788 11.425 9.869 10.231 0.989 16.824 86.628 52.091 50.598 24.260

RANDOM 6.100 11.475 9.335 9.471 1.406 16.476 147.240 77.943 80.544 37.398

EXPON
TICLE 8.350 10.900 9.874 10.009 0.798 16.524 95.028 51.830 48.831 24.507

RANDOM 5.600 10.544 9.031 9.663 1.540 16.164 154.392 86.550 82.614 52.569

RANDOM
TICLE 8.850 10.817 9.954 10.263 0.638 25.848 133.668 68.843 64.764 36.083

RANDOM 6.350 10.450 8.818 9.075 1.428 16.272 146.364 73.317 72.000 37.806

JP
et

st
or

e

CIRCULAR
TICLE 6.779 12.400 10.126 10.611 1.501 16.149 51.579 32.433 29.390 11.027

RANDOM 3.225 12.425 8.343 8.350 2.228 15.587 111.615 53.574 50.783 25.838

LINEAR
TICLE 6.475 12.606 9.257 9.121 1.584 15.701 60.958 33.386 34.537 12.006

RANDOM 1.600 12.583 7.764 7.663 2.220 15.887 106.530 55.631 55.680 22.255

EXPON
TICLE 7.100 12.483 9.236 9.075 1.614 15.878 66.586 33.232 29.933 13.384

RANDOM 4.683 11.494 8.375 8.340 2.190 16.773 92.292 46.916 47.219 25.568

RANDOM
TICLE 6.267 11.533 9.578 9.791 1.343 18.510 60.020 34.576 31.086 12.919

RANDOM 5.350 12.367 8.232 7.850 1.776 17.664 112.632 57.449 56.055 26.521

Ph
ot

oV

CIRCULAR
TICLE 7.492 11.425 9.833 9.950 0.733 17.592 74.616 34.468 34.236 13.935

RANDOM 7.300 11.150 9.565 9.388 1.193 15.786 116.460 66.627 62.304 31.797

LINEAR
TICLE 6.575 10.200 9.629 9.825 0.724 15.972 62.628 39.351 39.546 13.389

RANDOM 8.325 11.588 9.822 9.575 0.933 23.646 119.880 68.300 71.880 27.909

EXPON
TICLE 6.925 11.300 9.595 9.763 0.967 15.774 79.800 37.567 35.937 14.896

RANDOM 7.700 11.800 9.635 9.450 0.977 15.846 99.972 49.992 44.004 31.022

RANDOM
TICLE 7.388 10.200 9.427 9.669 0.743 15.732 64.248 33.467 31.476 12.326

RANDOM 7.825 11.525 9.827 9.638 0.846 18.420 127.860 64.753 61.494 37.469
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RANDOM. The standard deviation of cost and detection time for CUVEs computed by TICLE is lower

when compared to the RANDOM approach for all workload types. This result suggests that TICLE favors

workloads that have the highest impact on the cost of deployment.

We show in bold the median values for workload types that give the highest differences between

the TICLE and RANDOM. The median costs and detection times for CUVEs have the highest difference

between TICLE and RANDOM for JForum when employing exponential workloads. Since JForum has

the largest search space of the input HTTP requests as shown in Table II, it is likely that randomly

selecting workloads from a very large space of input requests results in many misses and TICLE zeros in

on the CUVE-revealing workloads much faster in such large input spaces. Interestingly, the median costs

and detection time for CUVEs have the smallest difference between TICLE and RANDOM for PhotoV,

the subject AUT with the smallest number of the input HTTP requests, thus confirming our theory that,

if the number of combinations of inputs for one AUT is larger than the number of combinations of inputs

for some other AUT, then the effectiveness of TICLE for the former is higher than for the latter AUT.

4.7 Summary

We presented a novel approach for automating the discovery of situations when customers pay for

resources that are not fully used by their applications while at the same time, some performance charac-

teristics of these applications are not met, i.e., the cost-utility violations. We implemented our approach

for Testing for Infractions of CLoud Elasticity (TICLE) and we TICLEd four nontrivial open-source

applications in the Microsoft Azure cloud. The results show that TICLE is effective for automatic stress

testing of elastic resource provisioning for applications deployed on the cloud to determine infractions

of elastic rules. With TICLE, experts can analyze the discovered workloads to determine their impact on
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applications. To the best of our knowledge, TICLE is the first fully automatic approach for discovering

irregular workloads that are very difficult to create using other approaches.



CHAPTER 5

TESTING FOR BUGS OF CLOUD APPLICATIONS (T-BASIR)

This chapter presents the following papers:

• Abdullah Alourani, Ajay D. Kshemkalyani, and Mark Grechanik. ”Testing for Bugs of Cloud-

Based Applications Resulting from Spot Instance Revocations.” In 2019 IEEE 12th International

Conference on Cloud Computing (CLOUD), pp. 243-250. IEEE, 2019. [Online]. Available:

https://doi.org/10.1109/CLOUD.2019.00050. Best Student Paper Award.

• Abdullah Alourani, Ajay D. Kshemkalyani, and Mark Grechanik. ”T-BASIR: Finding Shutdown

Bugs for Cloud-Based Applications in Cloud Spot Markets.” in IEEE Transactions on Parallel

and Distributed Systems (TPDS), 2020. [Online]. Available: https://doi.org/10.1109/

TPDS.2020.2980265.

In this chapter, we propose a novel approach for Testing for Bugs of Cloud-Based Applications

Resulting from Spot Instance Revocations (T-BASIR) that uses kernel modules to automatically find

BASIR and locate their causes in the source code.

5.1 Overview

One of the major advantages of cloud spot instances in cloud computing is to allow stakeholders to

economically deploy their applications at much lower costs than that of other types of cloud instances.

In exchange, spot instances are often exposed to revocations (i.e., terminations) by cloud providers.

With spot instances becoming pervasive, terminations have become a part of the normal behavior of
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cloud-based applications; thus, these applications may be left in an incorrect state leading to certain

bugs. Unfortunately, these applications are not designed or tested to deal with this behavior in the cloud

environment, and as a result, the advantages of cloud spot instances could be significantly minimized

or even entirely negated. We propose a novel solution to automatically find these bugs and locate their

causes in the source code. We evaluate our solution using 10 popular open-source applications. The

results show that our solution not only finds more instances and different types of these bugs compared

to the random approach, but it also locates the causes of these bugs to help developers improve the design

of the shutdown process and is more efficient in finding instances of these bugs since it interposes at the

system call layer.

5.2 Introduction

Cloud computing enables cloud customers to rent resources (e.g., virtual machines (VMs)) on as-

needed basis to run their applications. That is, cloud customers do not have to buy and host expensive

hardware to run their applications, and instead they rent resources for their applications from cloud

computing facilities. This is an essential difference between cloud computing systems and distributed

systems, which require application owners to buy and host expensive hardware to run their applications.

As the deployment cost is an integral part of applications deployed on the cloud, the cost-efficiency of

provisioning resource to these applications becomes a priority, and it is of growing significance, since

the total spending that will be affected by cloud computing is over $1 trillion by 2020 [7].

Many cloud providers such as Amazon Web Services offer four types of instances (i.e., VMs) [15]:

on-demand, reserved, dedicated, and spot (also known as preemptible). Cloud customers can pay for

renting on-demand instances per hour without long-term commitments, and they cost the most. Also,
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they can rent reserved instances for a long term by making an upfront payment to cloud providers and

thus pay a much lower rate than on-demand instances. A variation of reserved instances is a dedicated

host, which is a physical server that is assigned only to a specific customer, and nobody besides this

customer can use the resources of this host. Unlike the fixed-cost paying schemes mentioned above,

a variable-cost paying scheme allows cloud customers to specify the price they are willing to pay for

renting a spot instance to run their applications [15], and, depending on the varying demand from cloud

customers, the price of this spot instance can go up if the demand increases and the number of avail-

able instances that can be supported by a finite number of physical resources in a data center of cloud

providers decreases [126]. Conversely, the price of this spot instance can go down if the demand de-

creases and the number of available instances increases. If the customer’s price is greater than the

cloud provider’s price that depends on the demand, a spot instance will be provisioned to customers’

applications at the customer’s price. However, when spot instances are already provisioned to customer

applications and the cloud provider’s price goes above the customer’s price, the cloud providers will

revoke those spot instances within two minutes by sending termination signals, thus resulting in revoca-

tions of those spot instances [126], whose occurrences are very difficult to predict [14]. As a result, even

though cloud customers sometimes rent spot instances at 90% lower costs compared to on-demand [15],

their applications that run in spot instances can be terminated based on price fluctuations that happen

frequently, thus these applications may switch to an incorrect state leading to certain bugs [127, 128].

In general, terminations could be seen as regular when an application receives a termination signal

in the context of predefined protocols, or irregular when an application receives a termination signal

without using any context of predefined protocols. Hence, the revocations of spot instances often lead to
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irregular terminations of cloud-based applications. Note that an application can be irregularly terminated

in two modes. We assume that the reason for executing an application is to run an algorithm that imple-

ments the requirements of this application to provide the required results. First, an application could be

irregularly terminated during the execution of the application’s algorithm. Second, an application could

be irregularly terminated during the execution of the shutdown sequence of the application when the

execution of the application’s algorithm is completed. Moreover, irregular terminations do not affect

stateless applications but often affect stateful applications relying on the results of ongoing calculation

by applications under irregular terminations. These stateful applications might change to incorrect states

when they are terminated before their shutdown sequences are entirely executed. In general, resources

utilized by an application under irregular termination can be called Resources Affected by Termination

(RAT). When an application (A) encounters irregular terminations while interacting with another appli-

cation (B), B is considered RAT because it might be left in an incorrect state until it identifies that A is

already terminated.

EC2 spot markets contain approximately 7600 independent spot prices for different types of in-

stances among 44 availability zones (i.e., data centers) in 16 regions [129]. With spot instances be-

coming pervasive, irregular terminations have become a part of the normal behavior of cloud-based

applications. Bugs of cloud-based Applications resulting from Spot Instance Revocations (BASIR) re-

sult from errors in the implementation of the shutdown instructions of these applications that occur only

during spot instance revocations. When these applications are being irregularly terminated, they might

lose their states that lead to BASIR, such as data loss, inconsistent states, performance bottlenecks,

hangs, crashes, deadlocks, locked resources, or these applications that cannot restart/terminate. On top
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of poor user experience from seeing these bugs, other bugs result in situations where cloud-based appli-

cations could not be restarted without manual interventions. In finer detail, when an application invokes

synchronization system calls to lock a file and perform an update on the file inode’s field that specifies

if the file shall be persisted and this application is being irregularly terminated before the update is com-

pleted, system calls (i.e., fsync) of this application that are responsible for synchronizing the data of an

open file to the storage device will become a ”no-op”, causing data loss of this file [130].

In general, heartbeat or timeout mechanisms might reduce the number of BASIR that require in-

teraction between external processes (or threads) that run in different instances and an application’s

processes (or threads) run in a spot instance under irregular terminations, i.e., deadlocks, hangs, and

performance bottlenecks. However, these mechanisms may not be useful for other types of BASIR

that solely depend on ongoing calculations by applications deployed on a spot instance under irregu-

lar terminations, i.e., data corruption, data loss, crashes, and inconsistent states of shared data objects.

Cloud-based applications that run in spot instances are not designed or tested to deal with this behavior

in the cloud environment. The shutdown sequence of a cloud-based application is often left untested

because developers often assume that a cloud-based application is properly terminated as long as its

processes are terminated. It is very difficult to find BASIR because a termination signal can be initiated

at every execution state of a cloud-based application, leading to a significantly larger search space of

application states [13]. Unfortunately, the absence of testing the effect of spot instance revocations on

cloud-based applications will likely lead to a large number of BASIR. As a result, the advantages of

cloud spot instances could be significantly minimized or even entirely negated.
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We propose a novel solution to automatically find BASIR and locate their causes in the source code

of cloud-based applications. We develop our solution for Testing for BASIR (T-BASIR) that uses

kernel modules (KMs) [131] to find these bugs and generate traces of their causes in the source code.

T-BASIR is comprised of two major components. (1) Automating BASIR detection using KMs that

contain the following main phases: (i) sending termination signals to certain system calls of a cloud-

based application, and (ii) measuring the impacts on the state of RAT when the cloud-based application

is irregularly terminated during the execution of these system calls. (2) Identifying the causes of BASIR

using Tracer KM, which modifies the flow of executions through intercepting a termination signal to

collect execution traces from the stack of a cloud-based application before the application receives the

termination signal. BASIR and the traces of BASIR can be analyzed during application testing by

developers, who look for fixes for these bugs to reduce or even eliminate the number of these bugs

when cloud-based applications encounter irregular terminations. The motivation behind this work is to

design a technique enabling developers to test the effect of spot instance revocations on cloud-based

applications.

Contributions: We address a new and challenging problem for cloud-based applications that results

from irregular terminations due to spot instance revocations. To the best of our knowledge, T-BASIR is

the first automated solution to find bugs of applications resulting from cloud spot instance revocations.

We evaluate T-BASIR using 10 popular open-source applications. Our results show that T-BASIR

not only finds more instances and different types of BASIR (e.g., performance bottlenecks, data loss,

locked resources, and applications that cannot restart) compared to the random approach, but it also
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locates the causes of BASIR to help developers improve the design of the shutdown process for cloud-

based applications during their testing.

5.3 Problem Statement

In this section, we provide a background on shutdown processes and revocation notifications, discuss

sources of BASIR, illustrate the BASIR problem, and formulate the problem statement.

5.3.1 Shutdown Processes and Revocation Notifications

The shutdown process of an application is often initiated during the execution of application in-

structions in response to termination signals. This allows the application to switch its execution control

to execute predefined shutdown instructions that save the state of the application and the state of its

artifacts within a certain timeout before the operating system removes the application process from the

memory. It is very difficult to specify in which sequence instructions should be executed during the shut-

down of an application. Doing so requires the knowledge of the execution state of an application at any

point when this application receives a termination signal. Also, specifications describing the shutdown

process of an application and which states are incorrect are rarely documented. The shutdown process

of an application is often left untested because developers often assume that an application is properly

terminated as long as its processes are terminated. As a result, the shutdown process of applications

may fail to be completed within a certain timeout, leading to an incorrect state that affects the execution

of subsequent instances of this application.

In general, cloud providers revoke (i.e., terminate) spot instances after a brief two-minute notifica-

tion. The revocation notifications are often sent to spot instances when the demand from cloud customers

increases and the number of available spot instances that can be supported by a finite number of phys-
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ical resources in a data center of cloud providers decreases. If the customer’s price is greater than the

cloud provider’s price that depends on the demand, a spot instance will be provisioned to customers’

applications at the customer’s price. However, when spot instances are already provisioned to customer

applications and the cloud provider’s price goes above the customer’s price, the cloud providers will re-

voke those spot instances within two minutes by sending termination signals [126]. The cloud providers

give spot instances two-minute revocation notifications to enable applications that run in spot instances

to be gracefully shut down within the two-minute revocation notice time. However, the brief two-minute

revocation notice is not often enough to complete the shutdown process of applications, especially when

the applications’ memory footprints are greater than 4GB [79]. As a result, when these applications are

being terminated during the execution of the shutdown process of these applications, they might lose

their states that lead to BASIR.

5.3.2 Sources of BASIR

There are two primary sources of BASIR. The first one is spot instance revocations. The other one

is shutdown bugs of cloud-based applications.

5.3.2.1 Spot Instance Revocations

The revocations of spot instances are based on price fluctuations that happen based on demand of

spot instances from many cloud customers. The cloud providers often revoke spot instances when the

demand increases and the number of available spot instances that can be supported by a finite number

of physical resources in a data center of cloud providers decreases. It is very difficult to determine in

advance spot instance revocations that depend on the varying demands of cloud customers [25]. Doing

so requires cloud customers (i.e., application’s owners) to understand how the demands of the spot
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instances change, how the costs of the allocated spot instances change, and how to make trade-offs

between the demands and these costs [1]. As a result, price fluctuations that depend on the demand have

a high influence on the number of spot instance revocations.

In addition, it is very difficult for cloud customers to decide a price they are willing to pay for

renting a spot instance to run their applications in such a way that reduces the deployment cost and

the number of spot instance revocations [106]. When spot instances are already provisioned to cloud

customer applications and the customer’s price is close to zero, there is a high probability that those

spot instances will be revoked by cloud providers. Also, when a cloud customer requests spot instances

and the customer’s price is close to zero, there is a very low probability that those spot instances will be

provisioned to cloud customer applications. Conversely, if cloud customers set their prices close to on-

demand instances’ prices, cloud customers may reduce the number of revocations of spot instances that

are provisioned to their applications, but cloud customers may not benefit from a significant discount of

spot instances that is up to 90% compared to on-demand instances [15]. As a result, without knowing

a demand from different cloud customers in advance, the challenge for cloud customers is to choose a

price of spot instances that is both significantly lower than the price of on-demand instances and greater

than the cloud provider’s price to minimize the cost of the deployment and the number of spot instance

revocations.

5.3.2.2 Shutdown Bugs of Cloud-Based Applications

The shutdown bugs of applications often result from errors in the implementation of a cleanup

process of these applications that occurs only during their shutdowns [132]. The shutdown sequence

of an application is often left untested because developers often assume that an application is properly
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SQL> connect /as sysdba 

Figure 6: An illustrative example of BASIR.
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terminated as long as its processes are terminated. Developers often depend on the assumption that

the operating system cleans the process space to a certain extent in any case. Also, specifications

describing the shutdown process of an application and which states are incorrect are rarely documented.

Unfortunately, existing bug finding tools (e.g., PMD [93] and FindBugs [96]) are not applicable to

BASIR because they rely on searching through the application’s execution paths for certain inputs to

check if the state value of an application varies from the expected value that represents the input value

of the next instruction in this execution path [13]. However, a termination signal can be initiated at every

execution state of applications, leading to a significantly larger search space of these states. On top of

that, the shutdown sequence of an application varies based on the type of termination signals [131].

In addition, it is very difficult to analyze irregular terminations, even for a single execution path

of an application for certain inputs since termination signals can be initiated at every point during the

execution of the path resulting in deviations from the execution path [133]. For example, termination

signals that are initiated during the execution of the third-party’s instructions could change the applica-

tion state, resulting in BASIR. Also, it is very difficult to specify in which sequence instructions should

be executed during the shutdown of an application. Doing so requires the knowledge of the execution

state of an application at any point when this application receives a termination signal. Furthermore,

multiple termination signals can be initiated during the execution of the shutdown instructions of an

application, leading to a significantly larger search space.

5.3.3 Illustrative Example

The BASIR problem with a cloud-based application is illustrated in Figure 6. As discussed in

Section 5.3.2, BASIR results from two primary sources: shutdown bugs of applications and spot instance
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revocations. We show an instance of BASIR that arises from the interactions between a shutdown bug

of an application, which comes from a real shutdown bug [127], and the revocation of a spot VM that

represents the normal behavior of spot VMs. Our illustrative example shows a typical cloud-based

application where a cloud-based application and its artifacts are often replicated across multiple VMs to

improve its fault tolerance and reduce its network latency. The cloud-based application and its artifacts

are deployed on three spot VMs, where spot VM 1 contains an Oracle shutdown script that reflects a

routine script for databases in production, spot VM 2 contains a transaction script that uploads a video

file with a large size (e.g., 10GB), and spot VM 3 contains an Oracle database.

Suppose that the Oracle shutdown script in spot VM 1 that runs on a particular process (Process 1)

is executed to terminate the Oracle database that runs in spot VM 3 at the same time another process

(Process 2) in spot VM 2 is holding the lock on this Oracle database to perform the transaction. Hence,

Process 1 will be waiting until Process 2 releases the lock from the Oracle database. However, consider

what happens when spot VM 2 is revoked as a part of the normal behavior of spot VMs while the

transaction that is executed by Process 2 is still ongoing. Since Process 2 does not release the lock

before the revocation of spot VM 2, the Oracle database will hang and consume needlessly resources

until Process 1 determines that Process 2 is gone. The Oracle database prevents users from performing

other operations (see the error message in the middle of Figure 6), since the database is waiting for

active calls to be finished (see the log on the left side of Figure 6). Furthermore, if the spot VM 3 that

contains the database is also revoked, this revocation (i.e., an irregular termination of the database) may

not only produce an inconsistent state of various data or an incorrect state of artifacts in the database but

also may affect the execution of subsequent instances of the database.
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Additionally, we point out to multiple real-world bugs resulting from irregular terminations to shed

light on the effect of spot instance revocations on applications. Irregular revocations could cause severe

bugs, such as EX file system corruption [134], data loss on Atom editor [135], data loss on XFS file sys-

tem [136], data corruption on Docker container [137], SQLite file corruption [138], database corruption

on Docker [139], Leveldb database corruption [140], and Mosquitto database corruption [141]. Also,

the Linux documentations describe that although Linux can often repair file system corruption due to a

power failure, some situations may require manual interventions to repair non-recoverable file system

issues [142].

5.3.4 The Problem Statement

With spot instances becoming pervasive, bugs of cloud-based applications resulting from spot in-

stance revocations have become a very important concern for cloud customers (i.e., application’s own-

ers). In this work, we address a new and challenging problem of testing the effect of spot instance

revocations on cloud-based applications – how to find bugs of cloud-based applications that result from

spot instance revocations. Also, (Equation 5.1) and (Equation 5.2) describe how to search through RAT

for certain execution points (i.e., system calls) to check if the value t ′ij of RAT j during the execution of

an execution point i when a cloud-based application is irregularly terminated varies from the expected

value tij that represents the value of RAT j during the execution of an execution point i when a cloud-

based application is regularly terminated. Once a difference bij is found, this difference is added to the

matrix B of potential BASIR.
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B := T −T ′ (5.1)

bij =


0 tij = t

′
ij

(tij− t
′
ij) tij 6= t ′ij

∀ i ∈ {1, . . . ,n},∀ j ∈ {1, . . . ,m},

tij ∈ T, t ′ij ∈ T ′, bij ∈ B

(5.2)

Here, T is a matrix of size n×m, n and m designate the total number of execution points (i.e.,

system calls) and RAT, respectively, for regular terminations of a cloud-based application, tij is the

value of RAT j during the execution of an execution point (i.e., a system call) i when a cloud-based

application is regularly terminated. T ′ is another matrix of size n×m for irregular terminations of a

cloud-based application, t ′ij is the value of RAT j during the execution of an execution point i when a

cloud-based application is irregularly terminated. Also, B is another matrix of size n×m for potential

BASIR, bij is the difference between tij and t ′ij.

The root of this major problem is that cloud-based applications that are exposed to irregular ter-

minations are not designed or tested to deal with this behavior in the cloud environment. Thus, when

cloud-based applications are being irregularly terminated, their current state might be lost, which leads

to certain bugs, such as data loss, inconsistent states, performance bottlenecks, hangs, crashes, dead-
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locks, or locked resources. On top of poor user experience from seeing these bugs, other bugs result

in situations where cloud-based applications could not be restarted without manual interventions. As a

result, the advantages of cloud spot instances could be significantly minimized or even entirely negated.

To the best of our knowledge, T-BASIR is the first automated solution to identify instances of BASIR.

BASIR results from two primary sources: shutdown bugs of applications and spot instance revoca-

tions. However, since spot revocations are unpredictable and cloud-based applications are not designed

or tested to deal with cloud spot revocations, BASIR is a critical problem for cloud customers, and

T-BASIR is an essential tool to shed light on the effect of spot instance revocations on cloud-based

applications. Thus, when the number of spot instance revocations or the number of shutdown bugs of

applications increase, the number of BASIR will likely increase, and vice versa.

Specifically, we use kernel modules to find these bugs and generate traces of their causes in the

source code. With our solution, developers can analyze the found bugs and their traces to improve the

design of the shutdown process for cloud-based applications during the testing of these applications.

Automatically finding these bugs is extremely difficult, in general, especially since a termination signal

can be initiated at every execution state of applications, leading to a significantly larger search space.

5.4 Our Approach

In this section, we introduce KMs, explain why we use KMs, describe how we utilize KMs in

T-BASIR and outline the architecture and workflow of T-BASIR.

5.4.1 Why We Use Kernel Modules in T-BASIR

A KM is a mechanism for (un)loading some codes into an operating system at runtime without

rebooting the operating system to extend its functionalities [131]. KMs facilitate modifying the flow
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of executions, handling the interruption of termination signals, and accessing the information of kernel

space functions. There are three main reasons for using KMs rather than modules in the user space. First,

using modules in the user space, it is very difficult to synchronize between a process of a cloud-based

application that performs a specific operation (e.g., write) on certain resources and a process that sends

a termination signal to this application. Second, it is very difficult to time the execution of a particular

instruction of a cloud-based application in the user space because an operating system that runs in the

kernel space determines the schedule of executing this instruction. Third, some termination signals

(e.g., SIGKILL) often invoke the signal handlers in the kernel space instead of the signal handler in the

user space (i.e., a signal handler that is defined in the source code of a cloud-based application) [131].

In contrast, KMs have complete control over the execution in the kernel space at runtime. As a result,

T-BASIR uses KMs to ensure termination signals are sent to certain points in the execution of a cloud-

based application and to measure the impact on the state of RAT at these points of the execution in order

to find BASIR.

5.4.2 Why We Use Synchronization System Calls in T-BASIR

In general, the synchronization system calls are responsible for managing the access of shared data

objects among multiple processes (or threads). T-BASIR focuses on the synchronization system calls

since the irregular terminations of synchronization system calls may negatively affect not only the state

of shared data objects causing bugs (e.g., data loss, data corruption) but also the state of external pro-

cesses (or threads) that run on different instances and interact with the process of terminated system

calls, causing bugs (e.g., deadlocks and performance bottlenecks). However, although a write system

call is another important type of system call that is responsible for modifying the value of data objects,
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the irregular termination of write system calls may negatively affect only the modified data objects,

causing bugs (e.g., data loss, data corruption). Thus, the irregular termination of synchronization system

calls may cause more bugs that are related to data objects and processes (or threads) within the critical

section of synchronization system calls, compared to the irregular termination of the write system calls

that may cause bugs related to only the modified data objects.

5.4.3 Automating BASIR Detection Using KMs

In T-BASIR, our terminator KM specifies when we send a termination signal during the execution

of cloud-based applications that mimics the irregular terminations, as discussed in Section 5.2. An

essential goal is to identify which instructions of applications are more likely to lead to BASIR in order

to send termination signals during the executions of these instructions. Given that BASIRs are more

likely to be exposed when instructions use resources to perform certain operations (e.g., write) that are

often accessed when specific system calls [131] (e.g., acquire-lock) are invoked, we favor instructions

whose executions access these resources. Our terminator KM sends a termination signal during the

execution of these system calls, which correspond to specific instructions in the source code. Our

terminator KM uses the number of a system call with KProbe and JProbe interfaces [131] to intercept

the execution of these system calls and, hence, ensures that a termination signal is sent to certain points

of the execution. In summary, our terminator KM sends termination signals only during the execution

of these instructions to increase the degree of precision for finding BASIR. In the RANDOM approach,

a termination signal is sent to any point in the execution of a cloud-based application. Our hypothesis is

that our terminator KM is more effective than randomly sending termination signals to any instructions
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because determining to which instruction a termination signal should be sent is highly correlated to the

probability of finding BASIR. We verify our hypothesis with the experimental data in Section 5.6.

B(T,T ′) =

n∑
i=1

m∑
j=1

D(tij, t
′
ij) where t ∈ T, t ′ ∈ T ′ (5.3)

D
(
tij, t

′
ij

)
=


0 tij = t

′
ij

1 tij 6= t ′ij

(5.4)

Here, T is a matrix of size n×m, n and m designate the total number of system calls and RAT,

respectively, for regular terminations of a cloud-based application, tij is the value of RAT j during the

execution of a system call i when a cloud-based application is regularly terminated. T ′ is another ma-

trix of size n×m for irregular terminations of a cloud-based application, t ′ij is the value of RAT j

during the execution of a system call i when a cloud-based application is irregularly terminated. D is

the delta function that evaluates the presence of BASIR by comparing the difference between the value

of RAT when a cloud-based application is regularly terminated and the value of the same RAT when

this application is irregularly terminated during the execution of the same system call. B is the summa-

tion function that computes the total number of BASIR by analyzing executions between irregular and

regular terminations of a cloud-based application form RAT and n system calls.
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In T-BASIR, our detector KM determines when irregular terminations lead to BASIR. We use

the values of RAT (e.g., variables and artifacts) for cloud-based applications to identify the presence

of BASIR. Initially, we randomly select a set of system calls of a cloud-based application. Then, we

use our identifier KM to record the values of RAT that are used by these system calls when a cloud-

based application is regularly terminated. For each system call, we run this application to collect the

values of the RAT when this application is irregularly terminated. Our detector KM uses (Equation 5.4)

to measure the difference between the value of RAT when the cloud-based application is regularly

terminated and the value of the same RAT when the cloud-based application is irregularly terminated

during the execution of the same system call. We use the difference operation to evaluate the presence

of BASIR by analyzing executions between irregular and regular terminations, since we assume that

running a single execution path of a cloud-based application for certain inputs multiple times leads to

the same values of the RAT in different runs. When the value of the RAT after irregular terminations

varies from the expected value of the RAT at the same point in the execution after regular terminations,

it indicates a potential instance of BASIR. Hence, once a difference is found, the detector KM uses

(Equation 5.3) to add this difference to the total number of potential BASIR and collects the traces of

this BASIR, as discussed in Section 5.4.4. As a result, with T-BASIR, developers can analyze the found

instances of BASIR and their traces to improve the design of the shutdown process for cloud-based

applications during the testing of these applications.

T-BASIR is illustrated in Algorithm 1 that contains the following main phases: (i) send termination

signals to certain system calls of a cloud-based application, and (ii) measure the impacts on the state of

RAT when the cloud-based application is irregularly terminated during the execution of these system
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Algorithm 2 T-BASIR’s algorithm for finding BASIR and locating their causes.

1: Inputs: KM ConfigurationΩ, Application A
2: LoadIdentifierKMs(Ω)
3: while A ¬ Terminate do
4: T ← IdentifySyscallRAT(A ,Ω)
5: end while
6: UnloadIdentifierKMs(Ω)
7: LoadTerminatorDetectorKMs(Ω)
8: for each system call i in T do
9: for each RAT j in T do

10: t’ij← MeasureSyscallRAT(A ,Ω)
11: if tij 6= t’ij then
12: B ← B + 1
13: C ← CollectTraces(t’ij)
14: end if
15: RestoreAppInitialState(A)
16: end for
17: end for
18: UnloadTerminatorDetectorKMs(Ω)
19: return B , C

calls. The algorithm for T-BASIR takes in the entire set of inputs for the cloud-based application, its

snapshot, and the KM configurationsΩ, containing the identifier, terminator and detector KMs. Starting

from Step 2, the algorithm loads the identifier KM into an operating system. In T-BASIR, we use lock

system calls, where a thread locks certain resources to perform read or write operations. In Steps 3-5,

the identifier KM randomly selects a set of system calls and records the values of RAT that are used

by these system calls when the cloud-based application is regularly terminated. In Step 6, the identifier

KM is unloaded from the operating system. In Step 7, the terminator and the detector KMs are loaded

into the operating system. In Steps 8-17, for each system call and RAT, the algorithm repeatedly runs

the snapshot of the cloud-based application, and then the terminator KM sends a termination signal

to the cloud-based application during the execution of this system call. For each run, the detector

KM uses (Equation 5.4) to measure the difference between the value of RAT when the cloud-based
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Figure 7: The implementation design of T-BASIR tracer.

application is regularly terminated and the value of the same RAT when this application is irregularly

terminated during the execution of the same system call. Once a difference is found, the detector KM

uses (Equation 5.3) to add this difference to the total number of potential BASIR and collects its traces,

as discussed in Section 5.4.4. The cycle of Steps 8-17 repeats until the set of system calls is completed.

Finally, in Step 18, the terminator and the detector KMs are unloaded from the operating system. The

found instances of BASIR and their traces are returned in Step 19 as the algorithm ends.

5.4.4 Identifying the Causes of BASIR

Tracer KM is at the core of the T-BASIR tracer to identify the causes of BASIR. We provide an

overview and describe the implementation design of the T-BASIR tracer.
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5.4.4.1 Overview of T-BASIR tracer

Our goal is to automatically determine specific instructions in the source code of cloud-based ap-

plications that lead to BASIR when these applications encounter irregular terminations. In order to

contrast instructions that lead to BASIR, we rely on the stack trace approach [143] that can be used

to collect execution traces from the stack in the memory when a cloud-based application is irregularly

terminated. The stack traces contain a sequence of method calls with corresponding instructions, which

often represents the current point in the execution path. These traces are often difficult to capture be-

cause termination signals can be initiated at every point in the execution of a cloud-based application,

leading to a significantly larger search space. Hence, existing tracing tools [143] are not applicable to

BASIR because the stack traces of applications are gone as soon as these applications are terminated.

However, our tracer KM in T-BASIR can intercept a termination signal before this signal is delivered

to a cloud-based application, as discussed in Section 5.4.4.2. As a result, during application testing,

developers can use these traces to identify corresponding instructions in the source code that lead to

instances of BASIR.

5.4.4.2 Implementation Design of the T-BASIR Tracer

The implementation design of the T-BASIR tracer in the kernel space is illustrated in Figure 7. The

rectangles denote Terminator KM, Tracer KM, and a cloud-based application with their processes. The

arrows indicate the actions between these KMs and the cloud-based application, and the numbers in the

circles show the sequence of operations in the T-BASIR tracer.

Our tracer KM can intercept a termination signal before this signal is delivered to the cloud-based

application because this application runs inside our tracer KM, as illustrated on the right side of Fig-
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ure 7 (i.e., this application runs on a child process of the tracer/parent process). In particular, when a

termination signal is sent (1) to the cloud-based application, our tracer KM first intercepts (2) this signal

to collect and store (3) the execution traces of the cloud-based application in files (e.g., text files) and

then delivers (4) this signal to terminate this application.

In general, it is very difficult to time the execution of a particular instruction of a cloud-based

application in the user space because an operating system that runs in the kernel space determines the

schedule of executing this instruction. Conversely, KMs have complete control over the execution in

the kernel space at runtime. Hence, our tracer KM modifies the flow of executions through intercepting

a termination signal to collect execution traces from the stack of a cloud-based application before the

application receives the termination signal. In particular, our tracer KM uses Libunwind interfaces [144]

to generate execution traces from the stack memory of the cloud-based application. An example of stack

traces for a cloud-based application (e.g., MySQL) is illustrated in the bottom of Figure 7. The first part

of these traces refers to the sequence of method calls with corresponding instructions that represents

the current point in the execution path when the cloud-based application is being irregularly terminated,

and the second part of these traces refers to the methods’ instruction pointers. As a result, the traces of

BASIR can be reviewed by developers during application testing to identify which instructions in the

execution path may lead to instances of BASIR.

5.4.5 T-BASIR’s Architecture and Workflow

The architecture of T-BASIR is illustrated in Figure 8. The rectangles indicate components of T-

BASIR, the arrows denote the data flow between components, and the numbers in the circles show the

sequence of processes in the workflow.
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Figure 8: The architecture and workflow of T-BASIR.
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TABLE VI: Overview of the applications: their names followed by the versions of the applications, and
the total number of accessed futexes and their system calls when these applications restart after regular
terminations.

Application Version Futexes Syscalls

MySQL v5.7.25 58 132
Cassandra v3.0.17 35 138

PostgreSQL v10.6 3 5
CouchDB v2.3.0 25 11920
MongoDB v3.0.6 61 1201

Hbase v2.1.2 53 808
Docker v18.09.0 45 1583
Hadoop v3.0.3 34 1716

ZooKeeper v3.4.12 35 910
Hive v2.1.1 32 874

The input to T-BASIR is the entire set of inputs for a cloud-based application that performs specific

operations (e.g., write) on certain resources (i.e., RAT), which often invoke particular system calls (e.g.,

acquire-lock) to use these resources. Initially, a set of system calls of the cloud-based application is

chosen at random (1). For each system call, RATs are identified (2), and Identifier KM records (3) the

values of RAT that are used by this system call when the cloud-based application is regularly terminated.

These values of RAT that represent the expected values of the RAT, as discussed in Section 5.4.3, are

passed (4) to Detector KM. Terminator KM sends (5) a termination signal to the cloud-based application

during the execution of each system call. The values of RAT that are used by these system calls when

the cloud-based application is irregularly terminated are collected (6). The evaluation is evolved using

Terminator KM until the set of system calls is completed (7).

When the values of RAT for all system calls are collected, these values of RAT are passed (8) to

Detector KM. Detector KM uses (Equation 5.4) to measure the difference between the value of RAT
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when the cloud-based application is irregularly terminated and the expected value of the same RAT

when the cloud-based application is regularly terminated during the execution of the same system call.

When the value of the RAT after irregular terminations varies from the expected value of the RAT at

the same point in the execution after regular terminations, it indicates a potential instance of BASIR.

Then, when a difference is found, Detector KM uses (Equation 5.3) to add this difference to the list of

potential BASIR (9). Once the list of potential BASIR is obtained (10), Tracer KM collects (11) the

traces of BASIR that contain a sequence of method calls with corresponding instructions, as discussed

in Section 5.4.4. The found instances of BASIR and their traces are given to the developers for further

evaluation (12).

5.5 Empirical Evaluation

In this evaluation section, we state our Research Questions (RQs), illustrate subject applications,

describe our methodology to evaluate T-BASIR, and outline threats to its validity.

RQ1: How effective is T-BASIR compared to the random approach in finding more instances of

BASIR?

RQ2: How effective is T-BASIR in finding different types of BASIR?

RQ3: Do irregular terminations result in different impacts on the behaviors of the applications compared

to the regular terminations?

RQ4: Is T-BASIRmore effective than the random approach in causing more impacts on the application

behaviors?
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5.5.1 Subject Applications

We evaluated T-BASIR on 10 open-source subject applications. An overview of the subject appli-

cations is shown in Table VI. These applications are multithreaded, have high popularity indexes, come

from different domains, and are written by different programmers. The synchronization mechanism of

these applications relies on a futex system call [145], which is a fast user-space synchronization method

that puts specific threads to sleep/wait or wakes waiting threads when specific conditions become true.

Each critical section in these applications often uses certain futex variables that are stored in particular

memory addresses and are used by multiple threads to access this critical section through futex system

calls [145].

5.5.2 Methodology

For each application, we first use the Strace tool [131] to ensure that its synchronization mechanism

relies on futex system calls. As discussed in Section 5.4.3, T-BASIR analyzes the values of the RAT

between regular and irregular terminations at the same point in the execution to identify BASIR. RATs

are the logs of the subject applications, the logs of the Linux kernel, the number of accessed futexes,

and the number of futex system calls. An application is irregularly terminated using the RANDOM

approach, where a termination signal is sent to any point in the execution of this application, and in

T-BASIR, where a termination signal is sent to specific points in the execution of this application

(i.e., during the executions of futex system calls). T-BASIR uses the logs to identify different types

of BASIRs that lead to different effects on the behaviors of applications to answer RQ1 and RQ2. T-

BASIR also identifies other cases of BASIR when the logs do not contain error messages. For example,

T-BASIR identifies when applications cannot restart without manual interventions using the process
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status tool [131]. Also, we measure the impacts on the behaviors of the subject applications to answer

RQ3 and RQ4. When an application restarts after irregular terminations, we check if values for the total

number of accessed futexes and their system calls vary from the expected values when this application

restarts after regular terminations for 20 seconds, which is set experimentally. Once a significant change

is identified, as discussed in Section 5.4.3, T-BASIR adds this change to the total number of potential

BASIR and collects its traces. T-BASIR is implemented using KMs, KProbe, and JProbe interfaces

[131]. The experiments for the subject applications were carried out using 10 virtual machines. Each

subject application was deployed on Ubuntu 18.04 LTS VM with 4 GB of memory and 4 GHz CPU. For

each application, we created a snapshot to ensure a similar state of the test environment after irregular

terminations.

5.5.3 Threats to Validity

Our implementation of T-BASIR deals with only futex system calls, whereas other applications

may use different synchronization mechanisms (e.g., semaphore system calls [131]). While this is a

potential threat, it is unlikely a major threat, since T-BASIR can be adjusted to support other types

of synchronization mechanisms. In order to use T-BASIR with other applications, the developer can

change only the system call type in the KMs so that T-BASIR identifies other types of system calls.

We experimented with only synchronization system calls, whereas other types of system calls (e.g.,

information flow, creation, preparatory, and termination) could also result in different effects on the

behaviors of applications when these applications are terminated during the execution of other types of

system calls. In contrast, understanding the effect of different types of system calls on the behavior of

the applications is beyond the scope of this empirical study and shall be considered in future studies.
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5.6 Empirical Results

In this section, we discuss the experimental results to answer the RQs listed in Section 5.5.

5.6.1 Finding more instances of BASIR

The experimental results to answer RQ1 are shown in Table VII and summarize the found instances

of BASIR when the subject applications encounter irregular terminations using T-BASIR and RAN-

DOM approaches. We focus on determining whether these applications restart without manual inter-

ventions after they are irregularly terminated using T-BASIR and RANDOM. The experimental results

show that T-BASIR causes MySQL, CouchDB, MongoDB, HBase, Hadoop, and ZooKeeper not to

restart without manual interventions, whereas the RANDOM approach causes only CouchDB to not

restart without manual interventions. Our explanation is that the RANDOM approach was able to cause

CouchDB not to restart without manual interventions, since CouchDB uses an extremely high number

of futex system calls, as shown in Table VI. Hence, the RANDOM approach may accidentally hit these

futex system calls, resulting in an instance of BASIR.

On the other hand, T-BASIR was not able to cause PostgreSQL, Cassandra, Docker, and Hive not

to restart without manual interventions. Our explanation is that PostgreSQL uses an extremely low num-

ber of futex system calls as shown in Table VI. This situation puts T-BASIR at a disadvantage to find

BASIRs since causing BASIR often requires more interactions among threads that often occur when a

large number of futex system calls are executed. Cassandra runs on Java processes using a Java Virtual

Machine (JVM), and T-BASIR uses Java processes instead of the application name processes (i.e., Cas-

sandra) to specify the desired process of an application for receiving termination signals. Subsequently,

JVM may play some roles in reducing the effect on Cassandra since Cassandra receives termination sig-
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TABLE VII: The comparison of the results of BASIR for T-BASIR and RANDOM. The first column
specifies the name of the applications followed by columns for T-BASIR and RANDOM, and the
cells indicate whether irregular terminations using these approaches lead to BASIR (i.e., an application
cannot restart without manual interventions).

Application T-BASIR RANDOM

MySQL 3 7

Cassandra 7 7

PostgreSQL 7 7

CouchDB 3 3

MongoDB 3 7

Hbase 3 7

Docker 7 7

Hadoop 3 7

ZooKeeper 3 7

Hive 7 7

nals through the JVM. Docker uses the resource isolation features for the kernel. T-BASIR uses KMs

to send termination signals to the process of the subject applications. Hence, these features may play

some roles in reducing the effect on Docker when Docker receives termination signals. Even though

the Hive server restarts after irregular terminations using T-BASIR, its HCatalog component fails to

restart. This observation allows us to conclude that even though irregular terminations may not show an

impact on the restart state of an application, it does not mean that the other components of this applica-

tion have no impacts too. In summary, our results show that T-BASIR causes six subject applications

not to restart without manual intervention, whereas the RANDOM approach causes only one subject

application not to restart without manual intervention, thus positively addressing RQ1.
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Figure 9: Comparing the total number of accessed futexes when the subject applications restart after
regular and irregular terminations using T-BASIR and RANDOM.

5.6.2 Finding different types of BASIR

When we investigate RQ2, we observe that unlike the RANDOM approach, T-BASIR leads to

other types of BASIR. Since we are more familiar with the MySQL components, we further analyze and

discuss the effects of other types of BASIR for MySQL. We observe that the logs of MySQL report the

following message. [Note] InnoDB: page cleaner: 1000ms intended loop took

848417ms [146]. The message shows that the page cleaner method that is responsible for writing

data from memory into the disk takes a very long time from 1 second, which is expected, to 848 seconds

(∼14 minutes). This result demonstrates a major problem, since it results in not only performance

bottlenecks but also data loss. We analyze the effect of data loss by creating a virtual machine with

1 GB of memory, and we use MySQLlap client to perform large write operations (e.g., inserting

hundreds of records) using multiple threads. We then load T-BASIR into the operating system to
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send the termination signals during the execution of these system calls. Interestingly, we observed

that once MySQL restarts, the recently written data is lost. This bug is also reported on the following

web page [128]. Also, we observed the following error message: [ERROR] InnoDB: Unable to

lock ./ibdata1 error: 11 [146]. The error message shows that T-BASIR prevents MySQL

from performing a clean shutdown and hence results in locked ibdata1, which is a file that includes the

shared tablespace containing the internal data of InnoDB. Unlike the RANDOM approach, T-BASIR

also leads to other types of BASIR, such as performance bottlenecks, data loss, and locked resources.

This result confirms that T-BASIR also results in different types of BASIR, compared to the RANDOM

approach, thus positively addressing RQ2. As a result, when irregular terminations result in BASIR,

T-BASIR collects the traces that contain a sequence of method calls with corresponding instructions, as

discussed in Section 5.4.4. Hence, developers can use these traces to improve the design of the shutdown

process for the subject applications during the testing of these applications.

5.6.3 Impact of irregular terminations on the behaviors of applications

The results of the experiments are presented in the histogram plot in Figure 9 that summarizes the

number of accessed futexes for the subject applications when these applications restart after regular and

irregular terminations using T-BASIR and RANDOM approaches. These futexes often control the ac-

cess of shared resources in critical sections across various threads/processes of an application. Different

futexes often correspond to different execution paths since these futexes control the access of critical

sections in different methods of an application. We observe that the number of accessed futexes varies

between regular and irregular terminations using T-BASIR and RANDOM approaches. This obser-

vation suggests that the execution paths between regular and irregular terminations of an application
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Figure 10: The change in the total number of accessed futexes between regular and irregular termi-
nations using T-BASIR and RANDOM approaches for the subject applications. The plus and minus
symbols specify extra and missing futexes, respectively. The horizontal stripes, diagonal stripes, and
dotted bars represent the change of accessed futexes between RANDOM and REGULAR, T-BASIR
and REGULAR,and T-BASIR and RANDOM approaches, respectively.

change where newly accessed futexes (i.e., extra futexes) may have been accessed in the recovery ex-

ecution paths, or other futexes that are often used during the execution of the application startup may

not have been accessed (i.e., missing futexes) [147]. We observe that, except for Docker, most numbers

of accessed futexes when applications are irregularly terminated using T-BASIR are lower than the

number of accessed futexes when applications are regularly terminated or irregularly terminated using

the RANDOM approach. A higher change in the number of accessed futexes often indicates a higher

change in the execution paths when an application restarts after regular and irregular terminations. Fur-

ther details about the results for all applications are shown in Figure 11, where the number of extra and
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missing futexes are provided. Interestingly, we observe that there is a change in the number of accessed

futexes between T-BASIR and RANDOM approaches, which suggests when an application encoun-

ters irregular terminations using different approaches, it often leads to different execution paths for the

application. Hence, this observation confirms that the change in the execution paths not only indicates

the recovery execution paths but also indicates other execution paths that may result in instances of

BASIR [133,148]. As a result, these experimental results demonstrate that when applications encounter

irregular terminations using different approaches, it often leads to different execution paths, which result

in different impacts on the behaviors of these applications, thus positively addressing RQ3.

5.6.4 Impact of T-BASIR on the behaviors of applications

We present the change in the number of futex system calls for the subject applications in Table VIII

when these applications restart after regular and irregular terminations using T-BASIR and RANDOM.

We assume that running recovery execution paths of an application multiple times leads to the same

values of the futex system calls for certain futexes in different runs. Hence, when the number of these

futex system calls of an application after irregular termination using T-BASIR varies from the number

of these futex system calls of this application after irregular termination using the RANDOM approach,

it suggests the former recovery execution paths deviate from the latter recovery execution paths, which

often indicates different impacts on the behaviors of this application. In particular, we observed that

the number of futex system calls varies between regular and irregular terminations using T-BASIR

and RANDOM approaches. This observation suggests the number of futex system calls may increase

when specific threads do not release the lock from resources, resulting in thread contentions, or decrease

when specific threads prevent other threads that use these futexes from reaching advanced points in the
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Figure 11: The change in the total number of accessed futexes between regular and irregular termi-
nations using T-BASIR and RANDOM approaches for the subject applications. The plus and minus
symbols specify extra and missing futexes, respectively. The horizontal stripes, diagonal stripes, and
dotted bars represent the change of accessed futexes between RANDOM and REGULAR, T-BASIR
and REGULAR,and T-BASIR and RANDOM approaches, respectively.

execution. In general, we observe that the number of futex system calls when Hive, Docker, Hadoop,

Cassandra, MongoDB, and ZooKeeper are irregularly terminated using T-BASIR, except for a few

futexes (they may correspond to the third-party’s instructions (i.e., JVM)), is often less than the number

of futex system calls when these applications are regularly terminated or irregularly terminated using

the RANDOM approach. This observation suggests that irregular terminations that are initiated by

T-BASIR often lead to more impacts on the behaviors of applications compared to the RANDOM
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approach since the lower number of futex system calls indicates not only a lack of thread executions but

also incomplete recovery executions.

Conversely, we observe that the number of the futex system calls when CouchDB and Hbase are

irregularly terminated, except for a few futexes, is often greater than the number of futex system calls

when these applications are regularly terminated. This result suggests that irregular terminations often

lead to more impacts on the behaviors of applications compared to the regular terminations since the

higher number of futex system calls indicates not only more thread contentions but also a higher chance

of locked resources. Interestingly, we observe that a futex with the last four digits of the memory address

0x0610 for CouchDB has a significant decrease in the number of its futex system calls between regular

and irregular terminations, which suggests some threads that use this futex may be prevented (i.e.,

locked) from reaching this point in the execution. We also observe that a futex with the last four digits

of the memory address of 0x0020 appears in extra futexes across different applications, such as Hadoop,

HBase, and Hive, when they are restarted after irregular terminations. This observation suggests that this

futex is invoked by recovery instructions of JVM, which is also reported on the collected traces of these

applications [146]. Hence, fixing these recovery instructions of JVM will reduce or even eliminate the

number of BASIR for all applications that rely on JVM. Also, we observe that the number of the futex

system calls when MySQL and PostgreSQL are irregularly terminated is not significantly different from

the number of futex system calls when these applications are regularly terminated. Our explanation is

that PostgreSQL uses an extremely low number of the futex system calls, as shown in Table VI, and

MySQL, unlike other applications, uses asynchronous I/O system calls. These situations make it more
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difficult to show different impacts on the behaviors of these applications in terms of the number of the

futex system calls when these applications encounter irregular terminations.

Finally, we observed that, except for Docker, the number of missing futexes when the subject appli-

cations are irregularly terminated using T-BASIR is often higher than the number of missing futexes

when these applications are irregularly terminated using the RANDOM approach. Similarly, we ob-

served that, except for Hadoop and Postgres, the number of extra futexes when the subject applications

are irregularly terminated using T-BASIR is often higher than the number of extra futexes when these

applications are irregularly terminated using the RANDOM approach. This observation suggests that

irregular terminations that are initiated by T-BASIR often lead to more impacts on the behaviors of ap-

plications compared to the RANDOM approach since a higher change in the number of accessed futexes

often indicates a higher change in the execution paths when an application restarts after irregular termi-

nations. In summary, these experimental results demonstrate that T-BASIR not only results in different

impacts on the behaviors of these applications but also leads to more impacts on the behaviors of these

applications compared to the RANDOM approach, thus positively addressing RQ4. As a result, when

certain futexes result in significant changes in the behavior of applications, the traces of these futexes

can be reviewed by developers to analyze how the changes of these futexes and their traces may lead to

BASIR.
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TABLE VIII: The comparison of the total number of futex system calls for the subject applications after

regular and irregular terminations. The first column specifies the name of the applications followed by

the memory address for a futex. The following columns designate REGULAR (T1), RANDOM (T2),

and T-BASIR (T3), respectively.

App Address T1 T2 T3 Address T1 T2 T3 Address T1 T2 T3 Address T1 T2 T3

C
ou

ch
D

B

0x7fbd804812c8 3 0 0 0x7fbd817802d0 412 512 528 0x7fbd81780450 392 523 530 0x7fbd817805d0 11 15 13

0x7fbd81780190 400 512 522 0x7fbd81780310 397 526 534 0x7fbd81780490 563 705 686 0x7fbd81780610 5245 3402 3315

0x7fbd817801d0 417 516 528 0x7fbd81780350 402 518 528 0x7fbd817804d0 396 520 528 0x94df78 3 3 0

0x7fbd81780210 396 518 526 0x7fbd81780390 449 578 584 0x7fbd81780510 391 506 507 0x94f7f8 3 6 3

0x7fbd81780250 409 506 518 0x7fbd817803d0 403 520 532 0x7fbd81780550 382 514 522 0x9595c8 19 5 9

0x7fbd81780290 414 522 530 0x7fbd81780410 405 522 538 0x7fbd81780590 6 8 10 0x9595cc 1 1 1

0x959660 1 1 1

H
ba

se

0x7ff1b8014d28 4 64 56 0x7ff1b8014d78 2 26 24 0x7ff1b8014d7c 2 20 19 0x7ff1b8014f28 2 0 0

0x7ff1b8014f78 1 0 0 0x7ff1b8015028 12 18 15 0x7ff1b8015078 8 7 6 0x7ff1b801507c 8 6 5

0x7ff1b8015228 3 138 0 0x7ff1b8015278 2 57 0 0x7ff1b8026728 2 28 28 0x7ff1b8026778 2 12 10

0x7ff1b802677c 3 13 11 0x7ff1b8028328 2 16 13 0x7ff1b8028378 2 6 6 0x7ff1b802837c 3 7 5

0x7ff1b8055c28 34 1 139 0x7ff1b8055c78 18 2 62 0x7ff1b8055c7c 12 56 61 0x7ff1b80d1628 39 72 46

0x7ff1b80d1678 21 34 27 0x7ff1b80d167c 12 25 15 0x7ff1b80db128 4 9 168 0x7ff1b80db178 3 4 63

0x7ff1b80db17c 2 2 64 0x7ff1b80ddb28 4 21 13 0x7ff1b80ddb78 2 7 5 0x7ff1b80ddb7c 3 8 6

0x7ff1b80ddf28 9 0 0 0x7ff1b80ddf78 4 0 0 0x7ff1b80ddf7c 2 0 0 0x7ff1b8111178 1 0 0

0x7ff1b8115128 49 41 30 0x7ff1b8115178 26 28 18 0x7ff1b811517c 25 30 18 0x7ff1b8117428 65 182 4

0x7ff1b8117478 25 67 2 0x7ff1b811747c 25 66 2 0x7ff1b811a378 1 0 1 0x7ff1b8123e28 162 209 186

0x7ff1b8123e78 162 208 185 0x7ff1b83d5728 1 0 0 0x7ff1b83d577c 2 0 0 0x7ff1b83d7788 1 0 0

0x7ff1b83d77d8 2 0 0 0x7ff1b83d77dc 1 0 0 0x7ff1b9644128 5 0 0 0x7ff1b9644178 4 0 0

0x7ff1b9644328 13 4 1 0x7ff1b9644378 9 2 2 0x7ff1b964437c 1 2 0 0x7ff1be5c5540 1 1 1

0x7ff1bf21e9d0 1 1 1 0x7fde20111278 0 1 1 0x7fde25870280 0 3 4 0x7f06c8000020 0 0 6

0x7f06c811ac28 0 0 3 0x7f06c811ac78 0 0 2 0x7f06c811fc78 0 0 1
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Table VIII – Continued from previous page

App Address T1 T2 T3 Address T1 T2 T3 Address T1 T2 T3 Address T1 T2 T3

H
iv

e

0x7f6fe801d228 27 28 22 0x7f6fe801d278 17 20 16 0x7f6fe801d27c 18 20 16 0x7f6fe801d428 6 0 0

0x7f6fe801d478 2 0 0 0x7f6fe801d47c 2 0 0 0x7f6fe8081928 47 52 36 0x7f6fe8081978 22 24 22

0x7f6fe808197c 13 15 8 0x7f6fe808b428 3 9 3 0x7f6fe808b478 2 3 2 0x7f6fe808b47c 1 4 1

0x7f6fe808de28 3 9 3 0x7f6fe808de78 1 3 1 0x7f6fe808de7c 2 4 2 0x7f6fe80c2f28 102 84 97

0x7f6fe80c2f78 43 40 37 0x7f6fe80c2f7c 42 38 38 0x7f6fe80c3128 3 3 3 0x7f6fe80c3178 2 2 2

0x7f6fe80c5228 101 122 107 0x7f6fe80c5278 44 43 41 0x7f6fe80c527c 43 44 42 0x7f6fe80c5428 10 6 0

0x7f6fe80c5478 4 2 0 0x7f6fe80c547c 4 2 0 0x7f6fe80c8578 1 1 1 0x7f6fe80cd928 153 157 143

0x7f6fe80cd978 152 156 142 0x7f6ff0bf4540 1 1 1 0x7f6ff0c0d280 3 0 0 0x7f6ff184e9d0 1 1 1

0x7f5494000020 0 6 12

0x557f25a478b0 9 120 9 0x557f25a47980 5 7 2 0x557f25a47990 8 116 6 0x557f25a479a8 2 2 2

0x557f25a47f48 2 3 2 0x557f25a47f90 2 0 2 0x557f25a483e8 101 121 79 0x557f25a4b860 1 0 0

0x557f25a68ba0 2 0 0 0x557f25a68bb8 7 0 4 0x557f25a68ca0 5 0 3 0x55c2866db8b0 43 0 35

0x55c2866db990 96 0 69 0x55c2866dc3e8 60 0 0 0x55c2866df840 8 11 0 0x55c2866df860 73 115 74

0x55c2866df8c0 3 0 0 0x55c2866df8e0 65 65 53 0x55c2866fcbb8 1 7 2 0x55c2866fcca0 3 6 2

0x55c4b7c8b8b0 10 0 9 0x55c4b7c8b980 4 0 4 0x55c4b7c8b990 10 0 6 0x55c4b7c8b9a8 5 0 3

0x55c4b7c8bf48 2 0 1 0x55c4b7c8bf90 2 0 2 0x55c4b7c8c3e8 98 0 78 0x55c4b7c8f860 1 0 1

0x55c4b7cacba0 1 0 0 0x55c4b7cacbb8 6 0 4 0x55c4b7cacca0 4 3 0 0xc42005e948 250 216 156

0xc42005ed48 260 179 124 0xc42005f548 53 279 0 0xc42005f948 1 0 0 0xc42005fd48 1 0 0

0xc420096548 101 0 0 0xc420096948 10 0 0 0xc420097148 9 0 0 0xc42016a148 14 0 0

0xc42016a548 57 0 0 0xc420404548 72 0 0 0xc420464548 47 0 0 0xc420464948 12 0 0

D
oc

ke
r

0xc42049b948 57 0 0 0x55e687f8e2a0 0 7 3 0x556aab5498e0 0 0 1 0x556aab566bb8 0 0 3

0x556aab566ca0 0 0 3 0x5578ba7b98b0 0 0 8 0x5578ba7b9980 0 0 4 0x5578ba7b9990 0 0 6

0x5578ba7b99a8 0 0 3 0x5578ba7b9f48 0 0 2 0x5578ba7b9f90 0 0 2 0x5578ba7ba3e8 0 0 82

0x5578ba7bd8e0 0 0 1 0x557bdda3e980 0 0 2 0x557bdda3e9a8 0 0 2 0x557bdda3ef48 0 0 1

0x55c52254fca0 0 0 3 0xc420022148 0 0 66 0xc42005d148 0 0 50 0xc4200921d8 0 0 1

0xc420094d48 0 0 15 0xc420095148 0 0 25 0xc420095948 0 0 35 0xc420095d48 0 0 65

0xc420098d48 0 0 28 0xc4201bc548 0 0 108 0xc4201bdd48 0 0 67 0xc4202b6148 0 0 65
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Table VIII – Continued from previous page

App Address T1 T2 T3 Address T1 T2 T3 Address T1 T2 T3 Address T1 T2 T3

0xc420e8d948 0 0 10

H
ad

oo
p

0x7f4c48013528 43 57 0 0x7f4c48013578 26 34 0 0x7f4c4801357c 24 32 0 0x7f4c48013728 4 7 0

0x7f4c48013778 2 6 0 0x7f4c4801377c 2 4 0 0x7f4c48077a28 63 65 20 0x7f4c48077a78 31 35 20

0x7f4c48077a7c 22 24 15 0x7f4c48081528 16 9 7 0x7f4c48081578 7 3 2 0x7f4c4808157c 6 6 1

0x7f4c48083f28 18 9 0 0x7f4c48083f78 7 6 1 0x7f4c48083f7c 6 3 0 0x7f4c48084328 12 9 0

0x7f4c48084378 4 4 0 0x7f4c4808437c 4 2 0 0x7f4c480b8f28 243 225 0 0x7f4c480b8f78 99 101 0

0x7f4c480b8f7c 100 102 0 0x7f4c480b9128 3 3 1 0x7f4c480b9178 2 2 1 0x7f4c480bb228 282 293 15

0x7f4c480bb278 102 107 11 0x7f4c480bb27c 102 107 9 0x7f4c480bb428 3 6 6 0x7f4c480bb478 2 2 5

0x7f4c480be07c 1 0 2 0x7f4c480c3428 238 243 283 0x7f4c480c3478 238 243 283 0x7f4c4e2e1540 1 1 3

0x7f4c4e2fa280 3 4 0 0x7f4c4ef3a9d0 1 1 4 0x7f8014000020 0 21 0 0x7f8014013228 0 4 0

0x7f8014013278 0 5 0 0x7f801401327c 0 1 1 0x7f80140be078 0 3 0 0x7f80140d767c 0 6 0

0x7f80140d7ac8 0 1 0 0x7f80141bd228 0 6 1 0x7f80141bd278 0 2 1 0x7f80141bd27c 0 2 0

0x7f801d2e2280 0 4 0 0x7f801d6d8ba4 0 1 0 0x7f96840be57c 0 0 1

0x7f9685263328 0 0 1 0x7f9685263378 0 0 1

0x7faff400d928 2 4 4 0x7faff400d978 2 2 2 0x7faff400d97c 2 2 2 0x7faff400db28 22 22 13

0x7faff400db78 9 9 7 0x7faff400db7c 8 9 4 0x7faff4071a28 4 6 3 0x7faff4071a78 2 2 1

0x7faff4071a7c 2 2 0 0x7faff407b628 1 3 0 0x7faff407b678 2 2 5 0x7faff407b67c 7 7 0

0x7faff407ba28 3 1 0 0x7faff407ba78 2 2 0 0x7faff407df28 3 3 1 0x7faff407df78 2 2 2

C
as

sa
nd

ra

0x7faff407df7c 6 6 5 0x7faff407e328 1 1 0 0x7faff407e378 2 2 0 0x7faff40b0428 1 3 3

0x7faff40b0478 2 2 2 0x7faff40b2528 7 7 9 0x7faff40b2578 4 4 4 0x7faff40b257c 3 3 3

0x7faff40b4728 7 5 5 0x7faff40b4778 4 4 4 0x7faff40b477c 3 3 3 0x7faff40b7628 1 1 1

0x7faff40b7678 2 2 2 0x7faff40b767c 1 1 1 0x7faff40ba028 2 4 4 0x7faff40ba078 2 2 2

0x7faff40ba07c 2 2 2 0x7faff994abc0 6 5 5 0x7faffa7b89d0 9 8 5

0x55870f1194c8 1 1 0 0x55870f14d908 2 1 0 0x55870f175700 1 0 0 0x5587108d6f68 1 1 1

0x55871098ef28 19 18 18 0x55871098ef78 19 18 19 0x5587109cb708 1 0 0 0x5587109cb758 2 0 0

0x558710aff978 3 4 3 0x558710b16cd8 8 9 9 0x558710bc5f98 2 1 1 0x558710bc5f9c 1 0 0

0x558710bc5fa0 3 0 0 0x558710bef1d8 3 0 0 0x558710ce2d28 18 18 17 0x558710ce2d78 19 19 18
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Table VIII – Continued from previous page

App Address T1 T2 T3 Address T1 T2 T3 Address T1 T2 T3 Address T1 T2 T3

M
on

go
D

B

0x558710eeb088 94 88 92 0x558710eeb0d8 85 84 83 0x558710eeb0dc 5 5 5 0x558710eebe88 21 21 21

0x558710eebed8 22 22 22 0x558710eebf08 164 162 160 0x558710eebf58 165 163 161 0x558710eebf88 31 28 32

0x558710eebfd8 32 29 33 0x558710ef14d0 164 146 160 0x558710ef1520 83 94 87 0x558710ef1524 84 71 75

0x558710ef18d0 1 1 1 0x558710ef9860 1 1 1 0x558710ef98f0 17 17 16 0x558710ef9940 18 18 17

0x558710efa898 11 12 12 0x558710efb198 9 9 10 0x55871451f008 3 1 3 0x55871451f058 2 2 2

0x55871451f088 3 1 3 0x55871451f0d8 2 2 2 0x55871451f108 3 3 3 0x55871451f158 2 2 2

0x55871451f188 3 3 3 0x55871451f1d8 2 2 2 0x55871451fe88 9 9 8 0x55871451fed8 10 10 9

0x55871451ff08 3 3 3 0x55871451ff58 2 2 2 0x55871451ff88 3 3 3 0x55871451ffd8 2 2 2

0x558714520008 3 3 3 0x558714520058 2 2 2 0x558714520088 3 3 3 0x5587145200d8 2 2 2

0x558714520108 13 12 18 0x558714520158 13 12 18 0x7f2690d3c9d0 1 1 0 0x7f269153d9d0 1 1 0

0x7f2691d3e9d0 1 1 0 0x7f26998fe0bc 1 1 0 0x7f26998fe124 1 1 0 0x7f26998fe214 1 1 0

0x7f26998fe21c 1 1 0 0x563244a0b4c8 0 3 1 0x563248893088 0 3 3 0x5632488930d8 0 2 2

0x5560c940f908 0 0 1 0x7f7f91bc09d0 0 0 1 0x7f7f923c19d0 0 0 1 0x7f7f92bc29d0 0 0 1

0x7f7f9a7820bc 0 0 1 0x7f7f9a782124 0 0 1 0x7f7f9a782214 0 0 1

Z
oo

K
ee

pe
r

0x7f8a34000e28 10 0 0 0x7f8a34000e78 11 0 0 0x7f8a34000e7c 1 0 0 0x7f8a7000cb28 24 5 0

0x7f8a7000cb78 10 5 0 0x7f8a7000cb7c 10 3 0 0x7f8a7000cee8 1 1 1 0x7f8a70071428 25 21 21

0x7f8a70071478 21 19 19 0x7f8a7007147c 3 1 1 0x7f8a7007af78 5 4 1 0x7f8a7007d97c 5 4 1

0x7f8a700b2828 89 11 3 0x7f8a700b2878 36 7 3 0x7f8a700b287c 32 4 0 0x7f8a700b4b28 82 13 3

0x7f8a700b4b78 34 7 3 0x7f8a700b4b7c 31 4 0 0x7f8a700b7878 5 2 1 0x7f8a7020b628 323 325 328

0x7f8a7020b678 323 325 327 0x7f8a702bf328 1 1 10 0x7f8a702bf378 2 2 10 0x7f8a702cbf28 2 1 1

0x7f8a702cbf78 2 0 0 0x7f8a702cbf7c 2 0 0 0x7f8a702cf528 1 10 0 0x7f8a702cf578 2 11 0

0x7f8a702cf9e8 2 0 0 0x7f8a702d2d28 1 1 0 0x7f8a702d2d78 2 2 0 0x7f8a702d31b8 1 0 0

0x7f8a789ad540 5 4 1 0x7f8a789c6280 3 0 0 0x7f8a796069d0 5 4 1 0x7f80d03262f8 0 2 1

0x7f80d00c9d78 0 0 4 0x7f80d0329ca8 0 0 1

0x1e06c28 1 1 1 0x3e935b8 6 7 0 0x3e93608 3 3 0 0x3e9360c 2 3 0

0x3e937d8 1 3 0 0x3e93828 2 2 0 0x3e93868 4 4 1 0x3e938b8 4 3 4

0x3e938f8 6 6 0 0x3e93948 4 3 5 0x3e9394c 2 2 0 0x3e93988 2 6 0
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App Address T1 T2 T3 Address T1 T2 T3 Address T1 T2 T3 Address T1 T2 T3

0x3e939d8 4 3 3 0x3e939dc 2 2 0 0x3e93a18 6 6 0 0x3e93a68 4 3 3

0x3e93a6c 2 2 0 0x3e93aa8 3 3 9 0x3e93af8 1 1 10 0x3e93af8 1 1 0

0x3e93b38 1 1 1 0x3e93b88 1 1 2 0x3e93bc8 1 1 0 0x3e93c18 2 2 2

M
yS

Q
L

0x3e93c58 4 4 10 0x3e93ca8 5 6 6 0x3e93cac 1 1 10 0x3e93ce8 1 3 0

0x3e93d38 2 2 2 0x41786f8 3 0 0 0x4505318 6 6 9 0x4505368 2 2 4

0x450536c 2 2 2 0x4505be8 1 1 3 0x4505c38 7 3 2 0x45234a8 1 1 9

0x45234f8 1 1 10 0x4526ff8 3 3 0 0x4527048 1 1 1 0x4527088 3 3 0

0x45270d8 2 2 0 0x452ccb8 1 3 0 0x452cd08 2 2 0 0x45732d8 3 1 1

0x4573328 1 1 2 0x4573368 1 0 0 0x45733b8 2 2 0 0x7fd1d13a89d0 1 1 0

0x7fd1d9e0d1a0 1 1 1 0x7fd1da53207c 1 1 1 0x7fd1da532088 1 1 1 0x7fd1dad7c0c8 1 1 1

0x7fff01d02c54 2 0 0 0x1dccce0 0 3 0 0x1ddc9e0 0 5 6 0x39ba428 0 7 10

0x39ba478 0 4 4 0x39ba47c 0 2 4 0x39e14b8 0 3 0 0x39e1508 0 2 0

0x7fb443d1a348 0 8 0 0x7ffdf1a2cdd4 0 2 0 0x1dcc748 0 0 3 0x1dcc760 0 0 3

0x1dcc848 0 0 1 0x1dcc908 0 0 2 0x1dcc920 0 0 3 0x7fff17a2dbe4 0 0 2

Po
st

gr
eS

Q
L

0x7f4491bb7ba4 0 1 0 0x7f44937506ec 0 1 0 0x7f44937520b0 0 1 0 0x7f44937520bc 0 1 0

0x7f4493752124 0 1 0 0x7f4493752214 0 1 0 0x7f449375221c 0 1 0 0x7f4493752230 0 1 0

0x7f4493752248 0 1 0 0x7f4493752254 0 1 0 0x7f449375225c 0 1 0 0x7f449375226c 0 1 0

0x7f4493752278 0 1 0 0x7f4493752340 0 1 0 0x7f4493752394 0 1 0 0x7f449375282c 0 1 0

0x7f44939bd648 0 1 0 0x7f44939bd720 0 1 0 0x7f44939bd7f0 0 1 0 0x7f44939bd7fc 0 1 0

0x7f44941ab370 0 1 1

5.7 Summary

We addressed a new and challenging problem for cloud-based applications that results from spot

instance revocations. We proposed a novel solution to automatically find Bugs of cloud-based Applica-
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tions that result from Spot instance Revocations (BASIR) and to locate their causes in the source code.

We developed our solution for Testing the BASIR (T-BASIR), and we evaluated it using 10 popular

open-source applications. The results show that T-BASIR finds more instances of BASIR and different

types of BASIR, such as performance bottlenecks, data loss and locked resources, and applications that

cannot restart, compared to the Random approach. With T-BASIR, developers can analyze the traces

of BASIR to improve the design of the shutdown process for cloud-based applications during their test-

ing and, hence, to gain the advantage of cloud spot instances in the cloud. This enables stakeholders

to economically deploy their applications on the cloud spot instances. To the best of our knowledge,

T-BASIR is the first automated solution to find bugs of cloud-based applications resulting from spot

instance revocations.



CHAPTER 6

PROVISIONING SPOT INSTANCES IN CLOUD MARKETS (P-SIWOFT)

In this chapter, we propose a novel cloud market-based approach that leverages features of cloud spot

markets for Provisioning Spot Instances WithOut employing Fault-Tolerance mechanisms (P-SIWOFT)

to reduce the deployment cost and completion time of applications.

6.1 Overview

Cloud computing offers a variable-cost payment scheme that allows cloud customers to specify the

price they are willing to pay for renting spot instances to run their applications at much lower costs than

fixed payment schemes, and depending on the varying demand from cloud customers, cloud platforms

could revoke spot instances at any time. To alleviate the effect of spot instance revocations, applications

often employ different fault-tolerance mechanisms to minimize or even eliminate the lost work for

each spot instance revocation. However, these fault-tolerance mechanisms incur additional overhead

related to application completion time and deployment cost. We propose a novel cloud market-based

approach that leverages cloud spot market features to provision spot instances without employing fault-

tolerance mechanisms to reduce the deployment cost and completion time of applications. We evaluate

our approach in simulations and use Amazon spot instances that contain jobs in Docker containers and

realistic price traces from EC2 markets. Our simulation results show that our approach reduces the

deployment cost and completion time compared to approaches based on fault-tolerance mechanisms.

97
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6.2 Introduction

Cloud computing offers a variable-cost payment scheme that allows cloud customers to specify the

price they are willing to pay for renting spot instances to run their applications at much lower costs than

fixed payment schemes, and depending on the varying demand from cloud customers, cloud platforms

could revoke spot instances at any time. The price of a spot instance can go up if the demand increases

and the number of available instances that can be supported by a finite number of physical resources

in a data center of cloud providers decreases. Conversely, the price of this spot instance can go down

if the demand decreases and the number of available instances increases. Therefore, if the customer’s

price is greater than the cloud provider’s price that depends on the demand, a spot instance will be

provisioned to cloud customers’ applications at the customer’s price. However, when spot instances

are already provisioned to cloud customer applications and the cloud provider’s price goes above the

customer’s price, the cloud providers will terminate those spot instances within two minutes by sending

termination notification signals [2]. As a result, even though cloud customers sometimes rent spot

instances at 90% lower prices than on-demand prices [15], their applications that run on spot instances

can be terminated based on price fluctuations that happen frequently; thus, those applications may incur

additional overhead related to application completion time and deployment cost (i.e., DCATO) from

re-executing lost work for each spot instance revocation.

Applications may benefit from different fault-tolerance mechanisms to alleviate the work lost for

each spot instance revocation. However, these fault-tolerance mechanisms incur additional overhead

related to application completion time and deployment cost (i.e., DCATO). Fault-tolerance mechanisms

are typically divided into three types: migration, checkpointing, and replication. First, migration mech-
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anisms are often employed to reactively migrate the state of an application (i.e., memory and local disk

state) to another instance prior to a spot instance revocation. The overhead of a migration mechanism is

determined based on the migration time of an application and the number of spot instance revocations

during the application execution. The migration time of an application mostly depends on the resource

usage of the application, whereas the number of spot instance revocations depends on the volatility of

cloud spot markets. A larger resource usage of an application often results in a higher overhead of a

migration mechanism, and vice versa. A similar explanation is applicable for the volatility of cloud

spot markets; thus, a higher overhead of a migration mechanism will lead to a higher overhead of an

application’s completion time and deployment cost. Second, checkpointing mechanisms are often em-

ployed to proactively checkpoint an application’s state to remote storage (e.g., AWS S3). The overhead

of a checkpointing mechanism is specified based on the time to checkpoint an application’s state and

the number of checkpoints, which represents how often an application’s state is stored in remote storage

during the application execution, along with the time to re-execute the lost work from the last checkpoint

for each spot instance revocation. The checkpointing time of an application relies on the resource usage

of the application and the number of checkpoints typically specified by engineers who maintain appli-

cations deployed on spot instances. If engineers specify a large number of checkpoints, the overhead

time to re-execute the lost work from the last checkpoint for each spot instance revocation will likely

decrease, whereas the overhead time to checkpoint the state of an application will likely increase. Con-

versely, if engineers specify a small number of checkpoints, the overhead time to checkpoint the state of

an application will likely decrease, whereas the overhead time to re-execute the lost work from the last

checkpoint for each spot instance revocation will likely increase. Hence, checkpointing mechanisms
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require analyzing cloud spot markets and the resource usage of applications to optimize the tradeoff

between the overhead of actual checkpoints and the overhead of re-executing lost work. Third, repli-

cation mechanisms are often employed to replicate the computations of an application among different

instances. The overhead of a replication mechanism is based on the degree of replication (i.e., the num-

ber of replicated instances) and the number of revocations that depends on the volatility of cloud spot

markets, and is independent of the resource usage of an application. As a result, a higher overhead of

these fault-tolerance mechanisms leads to a higher overhead related to application completion time and

deployment cost (i.e., DCATO).

Contributions: We address a challenging problem for applications deployed on cloud spot instances

that results from the overhead of employing fault-tolerance mechanisms. We propose a novel cloud

market-based approach that leverages features of cloud spot markets for provisioning spot instances

without employing fault-tolerance mechanisms (P-SIWOFT) to reduce the deployment cost and com-

pletion time of applications. We develop P-SIWOFT based on cloud spot market features, such as the

spot instance lifetime, revocation probability, and revocation correlation between cloud spot markets

and provision spot instances, without employing fault-tolerance mechanisms. We evaluate P-SIWOFT

in simulations and use Amazon spot instances that contain jobs in Docker containers and realistic price

traces from EC2 markets. Our simulation results show that our approach reduces the deployment cost

and completion time compared to approaches based on fault-tolerance mechanisms.

6.3 Problem Statement

In this section, we discuss sources of overhead of fault-tolerance mechanisms, describe an illustra-

tive example, and formulate the problem statement.
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6.3.1 Sources of Overhead of Fault-Tolerance Mechanisms

There are three main sources of overhead of fault-tolerance mechanisms. First, various resource

usage of an application imposes various overhead of fault-tolerance mechanisms depending on the set-

tings of each fault-tolerance mechanism type. A larger resource usage of an application (i.e., memory

footprint) often results in a higher overhead of a fault-tolerance mechanism, and vice versa. The time to

migrate/checkpoint the state of an application depends on the sizes of the application’s memory and lo-

cal disk state. Additionally, the choice of the type of fault-tolerance mechanism depends on the resource

usage of an application. For example, a live migration requires a limited size of an application’s memory

footprint and cannot be employed when the application’s memory footprint is greater than 4 GB [79].

As a result, the resource usage of an application not only affects the overhead of a fault-tolerance mech-

anism but also affects the choice of the type of fault-tolerance mechanism.

Second, the volatility of cloud markets is represented by the number of spot instance revocations

over the application runtime. A higher number of spot instance revocations often results in higher

overhead of fault-tolerance mechanisms, and vice versa. Checkpointing mechanisms will re-execute the

lost work from the last checkpoint for each spot instance revocation, whereas migration mechanisms

will reactively migrate an application to another instance prior to each spot instance revocation. Unlike

migration and checkpointing mechanisms, a replication mechanism might re-execute the lost work from

the beginning of an application’s runtime for each spot instance revocation when all replicated instances

are being revoked. As a result, the volatility of cloud markets has an impact on the overhead of various

types of fault-tolerance mechanisms.
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Third, the overhead of fault-tolerance mechanisms relies on the settings of each type of fault-

tolerance mechanism. A main parameter of replication settings is the degree of replication, which

represents the number of replicated servers needed to execute the same application’s job across these

replicated servers. When the degree of replication is small, the overhead that results from re-executing

the lost work from the beginning of an application’s runtime for each spot instance revocation will

likely increase. In contrast, when the degree of replication is large, the overhead that results from a high

number of servers will likely increase. A main parameter of checkpointing settings is the number of

checkpoints, which represents how often an application’s state is stored in remote storage over the ap-

plication runtime. When the number of checkpoints is small, the overhead that results from re-executing

the lost work from the last checkpoint for each spot instance revocation will likely increase. In contrast,

when the number of checkpoints is large, the overhead that results from the time to checkpoint an appli-

cation’s state will likely increase. A main parameter of migration settings is the number of migrations,

which represents how often an application’s state migrates to another server over the application run-

time. When the number of migrations is small, the overhead that results from re-executing the lost work

from the beginning of an application’s runtime for each spot instance revocation will likely increase.

In contrast, when the number of migrations is large, the overhead that results from the time to migrate

an application’s state will likely increase. As a result, the fundamental problem for cloud customers is

determining how to find the optimal settings of various types of fault-tolerance mechanisms to reduce

the overhead resulting from employing fault-tolerance mechanisms.
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Figure 12: An illustrative example of P-SIWOFT.
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6.3.2 An Illustrative Example

An illustrative example is shown in Figure 12. Applications deployed on cloud spot instances are

often exposed to revocations by cloud providers, and as a result, these applications often employ var-

ious fault-tolerance mechanisms to alleviate the effect of spot instance revocations. However, these

fault-tolerance mechanisms often incur additional overhead related to application completion time and

deployment cost (i.e., DCATO). Our illustrative example shows a comparison of deployment costs for

provisioning spot instances using a fault-tolerance approach and a cloud market-based approach (i.e.,

P-SIWOFT). Since cloud spot instances are often used to run batch job applications, we use a batch job

application throughout the illustrative example to compute the deployment cost for provisioning spot

instances using these approaches. As an example, we assume a cloud spot market contains three spot

instances (i.e., VM1, VM2, and VM3) that meet the resource requirements for a batch job (i.e., a job of

10 h execution length and 64 GB of memory footprint). For ease of calculation, we assign a fixed price

per hour for each spot instance throughout the entire job runtime. The prices of VM1, VM2, and VM3

are $1.2, $1.25, and $1.3, respectively, and the lifetimes of VM1, VM2, and VM3 are 4, 16, and 24 h,

respectively. First, we run the job using a fault-tolerance approach that employs a checkpointing mech-

anism and a cost-driven selection policy that selects a spot instance with the lowest price. To employ

the checkpointing mechanism, we need to specify the number of checkpoints in a way that balances the

overhead of actual checkpointing and the overhead of re-executing the lost work from the last check-

point for each spot instance revocation. Since the deployment cost depends on the number of billing

cycles, we specify the number of checkpoints for a job based on the number of billing cycles (i.e., a

checkpoint is taken in each billing cycle). Suppose the time to checkpoint the state of a job to remote
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storage is five minutes and the time to restore a checkpoint from remote storage (i.e., recovery time) is

also five minutes. Initially, VM1 will be selected based on the cost-driven selection policy to run the

job until VM1 is revoked after four hours according to the lifetime of VM1. Additionally, a checkpoint

will be taken/stored in each billing cycle (i.e., an hour based on the billing policies of various cloud

computing platforms [15]). VM1 will complete executing three hours of the job and 15 min for storing

three checkpoints before VM1 is revoked at its fourth hour of execution according to the lifetime of

VM1, and there will be 45 min of lost work that was executed but not saved into remote storage (i.e.,

a checkpoint). Thus, the billing time is four hours, whereas the completed execution time of the job

is three hours and the overhead time resulting from checkpoints and lost work is one hour. To resume

the job execution, VM1 will again be selected based on the cost-driven selection policy; then, the last

checkpoint will be restored, which takes five minutes, to resume the execution for another three hours

plus 15 min for storing three checkpoints before this VM is revoked at its fourth hour of execution, and

there will be 40 min of lost work that was executed but not saved in remote storage. Thus, the billing

time increases by four hours to become eight hours, whereas the completed execution time of the job

increases by three hours to become six hours in total and the overhead time increases by one hour to be-

come two hours in total. Similarly, the next run will complete executing another three hours, 20 min for

storing/restoring checkpoints, and 40 min of lost work. At this point, the billing time is 12 h, whereas

the completed execution time of the job is nine hours and the overhead time is three hours. Again, VM1

will be selected, and the last checkpoint will be restored to resume the remaining execution of the job

for the last hour; then, VM1 will be revoked due to the completion of the job execution. Since the last

execution time is one hour and five minutes, the billing time will round up to two hours based on the
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billing policy that charges are counted per billing cycle (i.e., a complete hour). The billing time is 14

h, whereas the completed execution time of the job is 10 h and the overhead time is four hours. As a

result, the total cost of executing this job using the fault-tolerance approach will be $16.8.

Second, we run the job using a cloud market-based approach that uses the spot instance lifetime and

a lifetime-driven selection policy that selects the spot instance with the highest lifetime. To reduce the

revocation risk of this policy, we limit the selection of spot instances to instances whose lifetimes are at

least twice the job’s execution length. When using the cloud market-based approach, if a spot instance

is revoked, the job will be re-executed from the beginning and the work before the revocation will be

lost. When the job is executed using the cloud market-based approach, VM3 will be selected based

on the lifetime-driven selection policy to execute the job until the job execution is completed or VM3

is revoked after 24 h according to the lifetime of VM3. VM3 will complete 10 h of the job execution

and will be terminated before it is revoked according to the lifetime of VM3. Thus, the total cost of

executing this job using the cloud market-based approach will be $13. In summary, even though the

fault-tolerance approach selects the most inexpensive VM in the cloud spot market to run the job, this

approach leads to a higher deployment cost resulting from the overhead of the fault-tolerance approach

(i.e., the checkpointing mechanism). On the other hand, the cloud market-based approach selects the

most expensive VM in the cloud spot market but results in a lower deployment cost since this approach

does not incur any additional overhead resulting from employing fault-tolerance mechanisms.

6.3.3 The Problem Statement

Cloud computing offers a variable-cost payment scheme that allows cloud customers to specify the

price they are willing to pay for renting spot instances to run their applications at much lower costs
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than fixed payment schemes. In exchange, applications deployed on spot instances are often exposed to

revocations by cloud providers, and as a result, these applications often employ different fault-tolerance

mechanisms to minimize or even eliminate the lost work for each spot instance revocation. However,

the overhead resulting from employing fault-tolerance mechanisms (i.e., periodic checkpointing) has be-

come a very important concern for cloud customers (i.e., application owners). In this work, we address

a challenging problem for applications deployed on cloud spot instances that results from the overhead

of employing fault-tolerance mechanisms—determining how to effectively deploy applications on spot

instances without employing fault-tolerance mechanisms to reduce the deployment cost and completion

time of applications. The root of this problem is that applications often employ fault-tolerance mecha-

nisms to minimize the lost work for each spot instance revocation without taking into consideration the

overhead of fault-tolerance mechanisms, leading to significantly larger deployment costs and comple-

tion times of applications, and as a result, the advantages of cloud spot instances could be significantly

minimized or even completely eliminated. To the best of our knowledge, there is no automated solution

to provision spot instances without employing fault-tolerance mechanisms to reduce the deployment

cost and completion time of applications.

6.4 Our Approach

In this section, we state our key ideas for P-SIWOFT, outline the architecture of P-SIWOFT, and

explain the P-SIWOFT algorithm.

6.4.1 Key Ideas

A goal of our approach is to automatically provision spot instances without employing fault-tolerance

mechanisms to reduce the deployment cost and completion time of applications. Our approach lever-
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ages features of cloud spot markets such as the spot instance lifetime, revocation probability, and re-

vocation correlation between cloud spot markets to provision spot instances for applications. The spot

instance lifetime represents the average time until a spot instance’s price rises above the corresponding

on-demand instance price (i.e., mean time to revocation (MTTR)) because cloud customers are often not

willing to pay more than the on-demand price to rent spot instances. The revocation probability of each

spot instance represents the estimated lifetime of a spot instance during a job execution and is calculated

by dividing the job’s execution length by the MTTR of the provisioned spot instance. The revocation

correlation between cloud spot instances represents how often these spot instances were revoked at the

same time (i.e., the same hour representing a single billing cycle in cloud platforms [15]) over the past

three months.

In general, cloud spot markets show a broad range of characteristics. These important character-

istics are at the core of our approach. First, revocations rarely happen in some cloud spot markets,

so the MTTR of these markets is very high (i.e., > 600 h) [149]. Second, employing fault-tolerance

mechanisms often results in additional overhead related to application completion time and deployment

cost [79]. Third, cloud spot markets exhibit variations in price characteristics for a similar type of spot

instance across various cloud spot markets (i.e., availability zones and regions). Thus, a spot instance

in a cloud market is often independent of a spot instance in another cloud market, which suggests that a

spot instance’s revocation in a cloud market is often uncorrelated with a spot instance in another cloud

market [89]. Based on these characteristics, our key idea is that we could eliminate the additional over-

head resulting from employing fault-tolerance mechanisms by provisioning the spot instance with the

highest MTTR as long as the spot instance’s MTTR is at least twice the application’s execution length.
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Figure 13: The architecture of P-SIWOFT.

Another idea is that we could reduce consequent revocations when a spot instance is revoked by pro-

visioning a new spot instance with the next highest MTTR and a low revocation correlation with the

revoked spot instance. When we provision a spot instance that is uncorrelated with the revoked spot

instance, it is more unlikely that the new spot instance will be revoked again than another spot instance

that is highly correlated with the revoked spot instance. As a result, these key ideas enable cloud cus-

tomers to avoid unnecessary overhead resulting from employing fault-tolerance mechanisms; hence,

cloud customers can execute jobs with a completion time near that of on-demand instances but at a cost

of only spot instances.
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6.4.2 Overview of P-SIWOFT

The architecture of P-SIWOFT is illustrated in Figure 13. Cloud market features are at the core

of P-SIWOFT to provision spot instances for applications. Provisioning spot instances for applications

based on cloud market features reduces the deployment cost of jobs compared to the deployment cost of

jobs using a fault-tolerance approach or on-demand instances, in addition to maintaining a completion

time near that of on-demand instances. There are four main phases in P-SIWOFT. 1) Collecting cloud

market prices and the resource requirements for a job. Initially, P-SIWOFT uses EC2’s REST API

to collect cloud market prices for all instances (i.e., servers) across all markets (i.e., availability zones

and regions) for the past three months. P-SIWOFT supports a predefined resource usage of a job to

guide the selection of spot instances and assumes a job’s resource usage does not change significantly

(i.e., unphased jobs) over runtime. 2) Analyzing cloud spot market’s features to identify a suitable spot

instance for a job. P-SIWOFT first filters cloud spot markets to identify spot instances that satisfy the

job’s resource usage requirements and then computes the MTTR for each spot instance, the revocation

probability for the job and a certain spot instance, and the revocation correlation between cloud spot in-

stances. P-SIWOFT sorts the spot instances’ MTTRs in descending order to provision the spot instance

with the highest MTTR as long as the MTTR of the spot instance is at least twice the job’s execution

length. P-SIWOFT uses the revocation probability to determine when a spot instance might be revoked

during its execution. Additionally, P-SIWOFT uses the revocation correlation between a pair of cloud

spot instances when the provisioned spot instance is revoked to provision a new spot instance that is

less correlated or even uncorrelated with the revoked spot instance to reduce the likelihood that the new

spot instance will again be revoked over the job’s runtime. 3) Provisioning a suitable spot instance for
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the job. P-SIWOFT uses the features of cloud spot markets and the resource requirements of spot in-

stances to provision a suitable spot instance for a job. 4) Monitoring cloud market prices and the job

execution progress over the job’s execution. P-SIWOFT monitors cloud market prices to determine

when a spot instance is revoked based on the revocation probability of the provisioned spot instance.

When the provisioned spot instance is revoked, P-SIWOFT provisions a new spot instance with the

next highest MTTR and a low revocation correlation with the revoked spot instance. P-SIWOFT also

monitors the progress of the job execution to determine when the job execution is completed. Finally,

our hypothesis is that leveraging cloud market features without employing fault-tolerance mechanisms

to provision spot instances for applications reduces the deployment cost compared to the deployment

cost using fault-tolerance approaches or on-demand instances and maintains the completion time near

that of on-demand instances.

6.4.3 P-SIWOFT Algorithm

P-SIWOFT is illustrated in Algorithm 3 that takes in the batch job set J; the resource requirement

set R; and the entire set of cloud marketsM, containing on-demand instance types, prices of on-demand

instances, spot instance types, their availability zones, their regions, and spot instance prices over the

past three months. Starting from Step 2, the algorithm finds a suitable set of spot instances U that meet

the resource requirements. In P-SIWOFT, we use the memory size to determine suitable types of spot

instances that are supported by EC2 markets [15]. In Step 3, for each suitable spot instance, the spot

instance’s lifetime (i.e., the spot instance’s MTTR) is computed based on the corresponding on-demand

instance price, as discussed in Section 6.4.1. L is the set of such lifetimes. In Steps 4-20, for each job,

the algorithm is executed until the jobs in the job set are completed. In Step 5, the cloud spot markets
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Algorithm 3 P-SIWOFT’s algorithm for provisioning spot instances without employing fault-tolerance
mechanisms.

1: Inputs: Jobs J, Cloud MarketsM, Resources R
2: U← FindSuitableServers(J, R)
3: L← ComputeLifeTime(M, U)
4: for each j in J do
5: Sj← ServerBasedLifeTime(j,M, L)
6: while j ¬ Completed do
7: sj← Highest(Sj)
8: if length(sj) >> length(j) then
9: vsj ← RevocationProbability(j, sj)

10: ProvisionHighestLifeTime(j, sj)
11: if sj encounters vsj then
12: Cj, Tj← Cj ∪ {csj}, Tj ∪ {tsj}
13: Wsj ← FindLowCorrelation(j, sj))
14: Sj← (Sj \ {sj}) ∩Wsj

15: end if
16: end if
17: end while
18: Cj, Tj← Cj ∪ {csj}, Tj ∪ {tsj}
19: C,T ← ComputeCostExeTime(Cj, Tj)
20: end for
21: return C, T

are first filtered to include only a set of suitable spot instances Sj for the job j according to their lifetimes

L, as discussed in Section 6.4.1, and then these spot instances are sorted in descending order based on

their lifetimes. In Steps 6–17, the job j is executed until the job’s execution is completed. In Step 7,

the algorithm selects a spot instance sj with the highest lifetime. In Step 8, we ensure that the highest

lifetime for the spot instance sj is at least twice the job j ′s execution length to reduce the revocation

probability of the provisioned instance during the job execution. In Step 9, the algorithm computes

the revocation probability of the provisioned instance vsj by dividing the job j ′s execution length by

the lifetime of the provisioned instance sj. In Step 10, the spot instance sj with the highest lifetime is

provisioned to (re)start executing the job j. In Steps 11–15, the algorithm checks if the provisioned spot
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instance sj is revoked based on its revocation probability vsj during the job execution j. When a spot

instance sj is revoked, the deployment time tsj and cost csj are added to the total deployment time set

Tj and cost set Cj, respectively, in Step 12. In P-SIWOFT, the deployment time represents the job’s

execution time until the spot instance is revoked, the deployment cost of a spot instance represents the

price of the provisioned spot instance at a certain execution point, and the cost is computed at a per

hour rate (i.e., a single billing cycle in cloud platforms [15]). In Step 13, the low revocation correlation

setWsj with the revoked spot instance is computed using the revocation correlation between cloud spot

instances, as discussed in Section 6.4.1. In Step 14, the revoked spot instance is removed from the set of

suitable spot instances Sj, and the set of suitable spot instances Sj is filtered based on a low revocation

correlation set Wsj . The cycle of Steps 6–17 repeats until the job j ′s execution is completed. When the

job j ′s execution is completed, the deployment time tsj and cost csj are added to the total deployment

time set Tj and cost set Cj, respectively, in Step 18. In Step 19, the total deployment time set Tj and

cost set Cj are computed and then added to the overall deployment time T and cost C, respectively. The

cycle of Steps 4–20 repeats until the jobs in the job set are completed. Finally, the total deployment time

T and cost C are returned in Step 21 as the algorithm ends.

6.5 Empirical Evaluation

In this section, we describe the design of the empirical study to evaluate P-SIWOFT and state threats

to its validity. We pose the following Research Questions (RQs):

RQ1: How efficient is P-SIWOFT compared to a fault-tolerance approach in executing applications?

RQ2: How effective is P-SIWOFT compared to a fault-tolerance approach in reducing the deployment

cost of applications?
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RQ3: Do different settings of a fault-tolerance approach contribute to different types of overhead?

6.5.1 Subject applications

We evaluate P-SIWOFT in simulations and use Amazon spot instances that contain jobs in Docker

containers and realistic price traces from EC2 markets. P-SIWOFT packages jobs in Docker containers

to simplify restoring and checkpointing. We use a load generator called Lookbusy [150] to create

synthetic jobs with different amounts of resource usage. In addition, P-SIWOFT uses EC2’s REST

API to collect realistic price traces for all spot instances across all markets (i.e., availability zones and

regions) for the past three months. We conduct some analysis on the collected cloud market prices to

compute a spot instance’s MTTR to identify the spot instance’s lifetime based on its revocations over the

past three months and to seed our P-SIWOFT for provisioning spot instances (i.e., P-SIWOFT looks for

the spot instance with the highest MTTR to provision it for a job as long as the job’s execution length is

at least twice the MTTR of this spot instance). We also use the collected cloud market prices to compute

the revocation correlation between cloud spot instances to identify how often a pair of spot instances

were revoked at the same time (i.e., the same hour representing a single billing cycle [15]) over the

past three months and to seed our P-SIWOFT for re-provisioning spot instances, i.e., P-SIWOFT looks

for a spot instance that has a low revocation correlation with the revoked spot instance to reduce the

revocation probability of the provisioned spot instance over the job’s execution. In other words, when

we provision a spot instance that is less correlated with the revoked spot instance, it is more unlikely that

the new spot instance will be revoked again than another spot instance that is highly correlated with the

revoked spot instance. As a result, our P-SIWOFT simulator utilizes these analyses of cloud markets
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to (re)provision spot instances without employing fault-tolerance mechanisms and hence reduces the

deployment cost and completion time of applications.

6.5.2 Methodology

Some objectives of the experiments are to demonstrate that P-SIWOFT can efficiently execute ap-

plications and can effectively decrease the deployment cost of applications compared to a fault-tolerance

approach. For these objectives, we use different combinations of job execution length (i.e., 13, 25, 51,

and 101 h) and job memory footprint (i.e., 8, 16, 32, and 64 GB) to show the impact on the completion

time and the deployment cost when a spot instance is provisioned for the job using P-SIWOFT and the

fault-tolerance approach. We define two revocation rules with different ranges for P-SIWOFT and the

fault-tolerance approach to show the impact on the completion time and the deployment cost for differ-

ent numbers of revocations during a job’s execution. When a spot instance is provisioned for a job using

the fault-tolerance approach, we randomly send a fixed number of terminations (i.e., revocations) per

day of the job’s execution length, as suggested by prior work [79]. Conversely, when a spot instance is

provisioned for a job using P-SIWOFT, we use the revocation probability of a spot instance that relies

on realistic price traces from the Amazon cloud to revoke the provisioned spot instance. The deploy-

ment cost/completion time for P-SIWOFT is derived from the price/execution time of spot instances

during the startup of a spot instance, the job’s execution, and the job’s re-execution after the provisioned

spot instance is revoked. On the other hand, the deployment cost/completion time for the fault-tolerance

approach is derived from the price/execution time of spot instances during the startup of a spot instance,

the job’s execution, the job’s re-execution, the job’s checkpointing, and the job’s recovery (i.e., check-
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point restoring). Evaluating P-SIWOFT with different combinations of job settings (i.e., job execution

length and job memory footprint) enables us to answer RQ1 and RQ2.

Since another goal is to understand how different settings of jobs and different settings of the fault-

tolerance approach contribute to different types of overhead (e.g., checkpoint overhead), we investigate

how different job execution lengths, job memory footprints, numbers of revocations, and numbers of

checkpoints contribute to different overhead types that are related to a job’s completion time and de-

ployment cost (i.e., DCATO). In general, the time/cost overhead mainly falls into four categories: 1)

the startup time/cost overhead that represents additional startup time/cost, which occurs when starting a

new spot instance after each revocation; 2) the re-execution time/cost overhead that represents the lost

work for each revocation (i.e., lost work using P-SIWOFT refers to unsaved and executed work from the

beginning of a job, whereas lost work using the fault-tolerance approach refers to unsaved and executed

work from the last checkpoint); 3) the checkpointing time/cost overhead that represents the time/cost

to checkpoint a job’s container into remote storage (i.e., AWS S3); 4) the recovery time/cost overhead

that represents the time/cost to restore a checkpoint of a job’s container from remote storage (i.e., AWS

S3) into a container deployed on a spot instance for each revocation. Furthermore, the time overhead is

divided into the startup time, the job’s re-execution time, the job’s checkpointing time, and the job’s re-

covery time (i.e., checkpoint restoring time). The cost overhead is divided into the startup cost, the job’s

re-execution cost, the job’s checkpointing cost, and the job’s recovery cost (i.e., checkpoint restoring

cost). Both P-SIWOFT and the fault-tolerance approach encounter the time/cost of startup overhead

and the time/cost of re-execution overhead, whereas the time/cost of checkpointing overhead and the

time/cost of recovery overhead are only encountered by the fault-tolerance approach. Understanding
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how different job settings and different settings of the fault-tolerance approach contribute to different

types of overhead enables us to answer RQ3.

P-SIWOFT is implemented using a load generator API (Lookbusy), EC2’s REST API, Docker

containers, AWS S3, and EC2 spot instances. The experiments for the subject applications were carried

out using spot instances from Amazon EC2 called m5ad.12xlarge with a 48 GHz CPU and 192 GB

of memory. We package jobs in Docker containers that run on Ubuntu 18.04 LTS with a limited CPU

and memory capacity for the provisioned spot instances to assess the effectiveness of P-SIWOFT for

different job memory footprints and job execution lengths. All experiments were performed on the

same experimental platform to ensure a fair comparison between P-SIWOFT and the fault-tolerance

approach. We used the following checkpointing settings: the number of checkpoints is equal to the

number of billing cycles of a job’s execution length because the deployment cost relies on the number

of billing cycles instead of the actual completion time of the job.

6.5.3 Variables

The independent variables include the job execution length, i.e., the time required to complete the

job execution; the job memory footprint, i.e., the size of a job’s memory usage; the price of spot instances

(i.e., price traces from EC2 markets); the price of on-demand instances; functions that describe instance

selection policies depending on the cost or MTTR; the number of revocations based on the MTTR or

user-defined rules, and the number of checkpoints, which represents how often the state of a job is

stored in remote storage over the job runtime. The dependent variables include the deployment cost of

instances provisioned for a job until the job’s execution; the total runtime to execute a job in instances;

types of overhead related to job completion time and deployment cost including startup, re-execution,
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checkpointing, and recovery overhead; and the time to restore/checkpoint a Docker container over a

range of job settings (i.e., the job’s memory footprint and the job’s execution length).

6.5.4 Threads to validity

One potential threat to our empirical evaluation is that our experiments were conducted only on

batch job applications, which may make it difficult to generalize the results of the experiments to other

types of applications (e.g., interactive job applications) that may have various workflows and behaviors.

However, cloud spot instances are often used to run batch job applications. As a result, we expect the

results of the experiments to be generalizable.

Another threat to validity is that our experiments were performed in a simulation environment.

While this is a potential threat, it is unlikely a major one since the average revocation time of spot

instances in a cloud environment (e.g., Amazon EC2) often exceeds hundreds of hours, which makes it

difficult to assess the effectiveness of P-SIWOFT for smaller job execution lengths that often reflect

job execution lengths in production [151]. That is, we use realistic price traces from the Amazon

cloud to define the revocation probability of spot instances for all spot instances across all markets

(i.e., availability zones and regions) for the past three months. Additionally, we use a realistic time

to restore/checkpoint a Docker container deployed on a spot instance in Amazon EC2 to seed our P-

SIWOFT. For example, we measure the time to restore/checkpoint a Docker container that packages

jobs with different job execution lengths and job memory footprints in/from S3 storage in Amazon

EC2. Our experiments were performed only on Docker containers. While this is a potential threat, it

is unlikely a major one since P-SIWOFT is perfectly applicable to other types of containers, such as

Linux Containers, as long as those containers support checkpointing and restoring container images.
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We experimented with a certain price ratio between spot instances and on-demand instances that

is based on realistic price traces from EC2 markets, whereas other ratios between spot instances and

on-demand instances could result in different effects on the deployment cost and completion time of

jobs when spot instances are provisioned using P-SIWOFT and the fault-tolerance approach. However,

understanding the effect of various price ratios between spot instances and on-demand instances is

beyond the scope of this empirical study and shall be considered in future studies.

6.6 Empirical Results

In this section, we describe and analyze the results of the experiments to answer the RQs listed in

Section 6.5.

6.6.1 Completion Time

The experimental results that summarize the completion time for the subject applications using P-

SIWOFT, the fault-tolerance approach, and on-demand instances for different job execution lengths

are shown in the stacked bar plots in Figure. 14a. We observe that the completion time using P-

SIWOFT is consistently shorter than the completion time using the fault-tolerance approach, and the

completion time using P-SIWOFT is consistently near that of on-demand instances, which do not incur

any additional overhead [15]. This result shows that a higher job length leads to a steadily higher

overhead of completion time resulting from the job’s checkpointing, recovery, and re-execution times,

as well as the startup time of a spot instance when using the fault-tolerance approach. However, a higher

job length leads to a slightly higher overhead of the completion time, as a result of the job’s re-execution

time and the startup time of a spot instance when using P-SIWOFT. Our explanation is that P-SIWOFT

does not incur frequent job re-execution time and the startup time of a spot instance since the startup
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(a) Job Length (Time)

(b) Memory Footprint (Time)
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(c) Revocation Number (Time)

(d) Job Length (Cost)
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(e) Memory Footprint (Cost)

(f) Revocation Number (Cost)

Figure 14: Comparing the completion time (top row) and the deployment costs (bottom row) for the
subject applications using P-SIWOFT (P), the fault-tolerance approach (F), and on-demand instances
(O) for different job execution lengths (a and d), memory footprints (b and e), and revocation numbers
(c and f), while keeping other job features constant.
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time of a spot instance using P-SIWOFT does not increase with the increase in job execution length.

This is expected based on the way P-SIWOFT provisions a spot instance with the highest MTTR.

The experimental results that summarize the completion time for the subject applications using P-

SIWOFT, the fault-tolerance approach, and on-demand instances for different job memory footprints

are shown in the stacked bar plots in Figure. 14b. We observe that the completion time for P-SIWOFT

is consistently shorter than the completion time for the fault-tolerance approach, and the completion

time for P-SIWOFT is consistently near that of on-demand instances, which do not incur any addi-

tional overhead [15]. This result shows that a higher job memory footprint leads to a higher overhead

of the completion time resulting from the job’s checkpointing time and recovery time when using the

fault-tolerance approach. In contrast, the overhead of the completion time resulting from the job’s re-

execution time and the startup time of a spot instance when using the fault-tolerance approach stays

approximately the same across various job memory footprints, which suggests that the overhead re-

sulting from the job’s re-execution time and the startup time of a spot instance for the fault-tolerance

approach is independent of the job resource usage. Also, the overhead of an application’s comple-

tion time resulting from the job’s re-execution time and the startup time of a spot instance when using

P-SIWOFT stays approximately the same across various job memory footprints, which suggests that

the completion time for the subject applications when using P-SIWOFT is also independent of the job

resource usage.

The experimental results that summarize the completion time for the subject applications using

P-SIWOFT, the fault-tolerance approach, and on-demand instances for different numbers of revoca-

tions are shown in the stacked bar plots in Figure. 14c. We observe that the completion time for P-
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SIWOFT—except for when the number of revocations equals one—is consistently shorter than the com-

pletion time for the fault-tolerance approach, and the completion time for P-SIWOFT is consistently

near that of on-demand instances, which do not incur any additional overhead [15]. When the number

of revocations equals one, the job’s checkpointing time for the fault-tolerance approach balances the

job’s re-execution for P-SIWOFT. This result suggests that the fault-tolerance approach incurs addi-

tional overhead due not only to the number of revocations, but also the number of checkpoints. It also

suggests that the effectiveness of P-SIWOFT may decrease when the number of revocations decreases,

and it is very difficult to guarantee that the number of revocations is small [129]. The job’s recovery

time, the job’s re-execution time, and the startup time of a spot instance—except for the job’s check-

pointing time—all increase steadily when using the fault-tolerance approach, whereas in P-SIWOFT,

the job’s re-execution time and the startup time of a spot instance stay approximately the same. This

observation suggests that the job’s checkpointing time for the fault-tolerance approach as well as the

job’s re-execution time and the startup time of a spot instance for P-SIWOFT, are independent of the

number of revocations. In summary, these experimental results allow us to conclude that P-SIWOFT is

more efficient in executing applications for different job execution lengths, job memory footprints, and

numbers of revocations than the fault-tolerance approach, thus positively addressing RQ1.

6.6.2 Deployment Costs

The experimental results that summarize the deployment costs for the subject applications using

P-SIWOFT, the fault-tolerance approach, and on-demand instances for different job execution lengths

are shown in the stacked bar plots in Figure. 14d. We observe that the deployment costs using P-

SIWOFT are consistently lower than the deployment costs using the fault-tolerance approach or those
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of on-demand instances. This result identifies the steady rise in overhead related to deployment costs

that result from the job’s checkpointing costs, its recovery costs, its re-execution costs, the startup costs

of spot instances, and the buffer costs of billing cycles when using the fault-tolerance approach with

the increased job length. However, this result also identifies a slight rise in the overhead of deployment

costs that result from the job’s re-execution cost, the startup costs of spot instances, and the buffer

costs of billing cycles when using P-SIWOFT with the increased length. Our explanation is that P-

SIWOFT does not frequently incur the job’s re-execution costs and the startup costs of spot instances

since the startup costs of spot instances using P-SIWOFT do not increase with the increase of the job

execution length, which is expected based on the way that P-SIWOFT provisions a spot instance with

the highest MTTR. Interestingly, we observe that unlike P-SIWOFT, the buffer costs of billing cycles

significantly increase compared to the other types of overhead costs when using the fault-tolerance

approach with the increase of the job length, which suggests that the fault-tolerance approach incurs not

only overhead related to the settings of the fault-tolerance approach (e.g., the job’s checkpointing cost)

but also additional overhead related to the cloud billing policies (i.e., the buffer costs of billing cycles).

Also, we observe that the deployment costs of the fault-tolerance approach across all job lengths are

equal to or higher than the deployment costs of on-demand instances [15], which suggests using on-

demand for larger job lengths may reduce deployment costs and the completion time when compared to

the fault-tolerance approach.

The experimental results that summarize the deployment costs for the subject applications using P-

SIWOFT, the fault-tolerance approach, and on-demand instances for different job memory footprints are

shown in the stacked bar plots in Figure. 14e. We observe that the deployment costs using P-SIWOFT
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are consistently lower than the deployment costs using the fault-tolerance approach and on-demand

instances. This result demonstrates the steady rise of the overhead related to deployment costs resulting

from the job’s checkpointing, recovery, re-execution, and startup costs of spot instances, as well as the

buffer costs of billing cycles when using the fault-tolerance approach with the increase of job memory

footprint. However, this result demonstrates a slight rise of the overhead of deployment costs resulting

from the job’s re-execution and startup costs of spot instances, and the buffer costs of billing cycles

when using P-SIWOFT with the increase of job memory footprint. Our explanation is that P-SIWOFT

does not incur the job’s re-execution and startup costs of spot instances, since the startup costs of spot

instances using P-SIWOFT do not increase with the increase of the job memory footprint, which is

expected based on the way that P-SIWOFT provisions a spot instance with the highest MTTR. We

observe that, unlike the buffer costs of billing cycles for P-SIWOFT, the buffer costs of billing cycles

for the fault-tolerance approach significantly increase with the higher job memory footprints (i.e., 32 and

64 GB), suggesting that the buffer costs increase when there is a significant change in deployment time

between consecutive job memory footprints (i.e., exceeds the period for a billing cycle). Additionally,

we observe that the deployment costs of the fault-tolerance approach across all job memory footprints

are equal or higher than the deployment costs of on-demand instances [15], which suggests provisioning

on-demand for large job memory footprints may result in lower deployment costs and completion time

than the fault-tolerance approach.

The experimental results that summarize the deployment costs for the subject applications using

P-SIWOFT, the fault-tolerance approach, on-demand instances for different numbers of revocations

are shown in the stacked bar plots in Figure. 14f. We observe that the deployment costs using P-
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SIWOFT and that of on-demand instances are consistently lower than the deployment costs using the

fault-tolerance approach. The job’s recovery and re-execution costs, the startup costs of spot instances,

and the buffer costs of billing cycles, except for the job’s checkpointing costs, increase steadily when

using the fault-tolerance approach whereas, for P-SIWOFT, the job’s re-execution costs, the startup

costs of spot instances, and the buffer costs of billing cycles stay approximately the same. This observa-

tion suggests that the job’s recovery time and re-execution costs, the startup costs of spot instances, and

the buffer costs of billing cycles depend on the number of revocations when using the fault-tolerance

approach. However, the job’s checkpointing costs for the fault-tolerance approach and the job’s re-

execution costs, the startup costs of spot instances, and the buffer costs of billing cycles for P-SIWOFT,

are independent of the number of revocations, respectively. Our explanation is that P-SIWOFT does

not incur the job’s re-execution costs and the startup costs of spot instances. We observe that unlike the

buffer costs of billing cycles for P-SIWOFT, the buffer costs of billing cycles for the fault-tolerance

approach significantly increase with the higher numbers of revocations (i.e., 8 and 16 times per day),

which suggests that the buffer costs increase when there is a significant change in deployment time be-

tween consecutive numbers of revocations (i.e., exceeds the period for a billing cycle). Interestingly, we

observe that the deployment costs for the fault-tolerance approach when the number of revocations is

high (i.e., 8 and 16 times per day) is significantly higher than the deployment costs for on-demand in-

stances [15], which confirms that provisioning on-demand for a large number of revocations may result

in lower deployment costs and completion time than the fault-tolerance approach. In summary, these

experimental results allow us to conclude that P-SIWOFT is more effective in reducing the deploy-
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ment costs of applications for different job execution lengths, job memory footprints, and numbers of

revocations than the fault-tolerance approach, thus positively addressing RQ2.

6.6.3 Impact on Different Types of Overhead

An interesting question is how different job execution lengths, job memory footprints, and numbers

of revocations, contribute to different overhead types that are related to a job’s completion time and

deployment cost (i.e., DCATO) when using the fault-tolerance approach. Consider the stacked bar

plots that are shown in Figure. 14a, Figure. 14b, and Figure. 14c — the visual inspection identifies the

highest overhead related to the completion time results from the job’s re-execution time, then the job’s

checkpointing time and the job’s recovery time, followed by the startup time of a spot instance, with

the increase of the job execution length. Also, with the rise of the job memory footprint, the highest

overhead related to the completion time when using the fault-tolerance approach results from the job’s

checkpointing time and the job’s recovery time. With the increase of the number of revocations, the

highest overhead related to the completion time when using the fault-tolerance approach results from

the job’s re-execution time, then the job’s recovery time, followed by the startup time of a spot instance.

Similarly, it is shown in the stacked bar plots in Figure. 14d, Figure. 14e, and Figure. 14f that the

highest overhead related to the deployment costs when using the fault-tolerance approach results from

the buffer costs of billing cycles, the job’s re-execution costs, then the job’s checkpointing cost, the job’s

recovery cost, followed by the startup costs of spot instances, with the increase of the job execution

length. With the rise of the job memory footprint, the highest overhead related to the deployment

costs when using the fault-tolerance approach results from the buffer costs of billing cycles, the job’s

re-execution costs, then the job’s checkpointing and recovery costs, followed by the startup costs of
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spot instances. With the increase of the number of revocations, the highest overhead related to the

deployment costs when using the fault-tolerance approach results from the buffer costs of billing cycles,

the job’s re-execution costs, then its recovery costs, followed by the startup costs of spot instances. The

results confirm that different job execution lengths, job memory footprints, and numbers of revocations

contribute to different overhead types related to a job’s completion time and deployment cost (i.e.,

DCATO) when using the fault-tolerance approach, thus positively addressing RQ3.

6.7 Summary

We addressed a challenging problem for applications deployed on cloud spot instances that results

from the overhead of employing fault-tolerance mechanisms. We proposed a novel cloud market-based

approach that leverages features of cloud spot markets for provisioning spot instances without employ-

ing fault-tolerance mechanisms (P-SIWOFT) to reduce the deployment cost and completion time of

applications. We evaluated P-SIWOFT in simulations and used Amazon spot instances that contain

jobs in Docker containers and realistic price traces from EC2 markets. Our simulation results show that

our approach reduces the deployment cost and completion time compared to approaches based on fault-

tolerance mechanisms. To the best of our knowledge, P-SIWOFT is the first approach that leverages

cloud spot market’s features to provision spot instances without employing fault-tolerance mechanisms

to reduce the deployment cost and completion time of applications.



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Cloud computing provides key features of cloud platforms to enable customers to economically

deploy their applications. First, customers can deploy their applications on a cloud infrastructure that

provisions resources (e.g., memory) to these applications on as-needed basis. Second, customers can

economically deploy their applications on cloud spot instances (i.e., virtual machines (VMs)) in cloud

computing at much lower costs than that of other types of cloud instances.

In this thesis, we formulated challenging new problems that prevent cloud customers from deploy-

ing their applications in elastic clouds economically. First, we investigated situations when customers

pay for resources that are provisioned, but not fully used by their applications, and as a result, some per-

formance characteristics of these applications are not met, i.e., the Cost-Utility Violations of Elasticity

(CUVE). Second, we investigated situations when applications that run in spot instances are being irreg-

ularly terminated due to spot instance revocations. These applications might lose their states that lead to

certain bugs, i.e., Bugs of cloud-based Applications resulting from Spot Instance Revocations (BASIR).

Third, we investigated situations when applications employ fault-tolerance mechanisms to minimize the

lost work for each spot instance revocation. These applications incur additional overhead related to

application completion time and deployment cost resulting from employing these fault-tolerance mech-

anisms, i.e., the Deployment Cost And Time Overhead (DCATO).

Therefore, we proposed a novel model that reduces the impact of CUVE, BASIR, and DCATO

problems in the cloud environment to economically deploy applications in elastic clouds, and this model

130
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leads to practical frameworks for optimizing cloud elasticity, improving the design of the shutdown

process, and reducing the deployment cost and completion time for cloud-based applications. This

ensures efficient cloud computing services that lead to greater economies of scale.

Chapter 4 presented a novel approach for automating the discovery of situations when customers

pay for resources that are not fully used by their applications while at the same time, some performance

characteristics of these applications are not met, i.e., the cost utility violations. We implemented our

approach for Testing for Infractions of Cloud Elasticity (TICLE) and we TICLEd four nontrivial open-

source applications in the Microsoft Azure cloud. The results show that TICLE is effective for auto-

matic stress testing of elastic resource provisioning for applications deployed on the cloud to determine

infractions of elastic rules. With TICLE, experts can analyze the discovered workloads to determine

their impact on applications. To the best of our knowledge, TICLE is the first fully automatic approach

for discovering irregular workloads that are very difficult to create using other approaches.

Chapter 5 presented a novel solution to automatically find Bugs of cloud-based Applications that

result from Spot instance Revocations (BASIR) and to locate their causes in the source code. We devel-

oped our solution for Testing the BASIR (T-BASIR), and we evaluated it using 10 popular open-source

applications. The results show that T-BASIR finds more instances of BASIR and different types of

BASIR, such as performance bottlenecks, data loss and locked resources, and applications that can-

not restart, compared to the Random approach. With T-BASIR, developers can analyze the traces of

BASIR to improve the design of the shutdown process for cloud-based applications during their test-

ing and, hence, to gain the advantage of cloud spot instances in the cloud. This enables stakeholders

to economically deploy their applications on the cloud spot instances. To the best of our knowledge,
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T-BASIR is the first automated solution to find bugs of cloud-based applications resulting from spot

instance revocations.

Chapter 6 proposed a novel cloud market-based approach that leverages features of cloud spot mar-

kets for provisioning spot instances without employing fault-tolerance mechanisms (P-SIWOFT) to re-

duce the deployment cost and completion time of applications. We evaluated P-SIWOFT in simulations

and used Amazon spot instances that contain jobs in Docker containers and realistic price traces from

EC2 markets. Our simulation results show that our approach reduces the deployment cost and comple-

tion time compared to approaches based on fault-tolerance mechanisms. To the best of our knowledge,

P-SIWOFT is the first approach that leverages cloud spot market’s features to provision spot instances

without employing fault-tolerance mechanisms to reduce the deployment cost and completion time of

applications.

This thesis addressed CUVE, BASIR, and DCATO problems that prevent cloud customers from

deploying their applications in elastic clouds economically. However, there are many other problems

and challenges that need to be addressed to ensure efficient cloud computing operations. Here, we

highlight two research directions to extend our work.

• Building Reliable Applications against Revocations. We plan to build revocation-robust appli-

cations in cloud spot markets to reduce the number of BASIR when these applications encounter

irregular terminations. In particular, our goal is to optimize the design of the shutdown sequence

for these applications using certain specifications that describe the shutdown sequence. These

specifications can be defined based on the developers’ recommendations of the found instances of

BASIR or common design flaws in the applications’ shutdown process (i.e., bug reports in code
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repositories, as discussed in Chapter 5). For example, applications should make their buffered

writes short (i.e., reducing the dirty data buffer time), and applications should first flush the pri-

mary data of applications in volatile buffers and then flush the secondary data of these applica-

tions (e.g., log files) in volatile buffers. Also, partitions used in applications should be mounted

as read-only and temporary remounted as read and write during the write operations. However,

if an irregular termination occurs during the write operations, partitions should be remounted as

read-only, which will likely force flushing volatile-buffers faster, and additional writes to volatile

buffers should be blocked. Hence, closing files that are opened for writing may reduce the nega-

tive effect on these files due to irregular terminations, whereas files that are open for reading will

likely not be affected by irregular terminations. In general, applications should operate based on

the magnitude of the termination interval to determine whether buffered writes can be stored in

permanent stores, and they should also indicate whether the shutdown process is completed suc-

cessfully. Finally, although such specifications cannot guarantee BASIR-free applications, they

will likely reduce the number of BASIR when these applications encounter irregular terminations.

• Exploring the Impact of other Types of System Calls. We plan to study the effect of I/O sys-

tem calls that are responsible for reading/writing data from/to storage on applications when these

applications are irregularly terminated during the execution of I/O system calls. For example,

we will test the irregular termination of sync system calls that are responsible for synchronizing

cached writes from volatile buffers to non-volatile buffers (i.e., persistent storage) to ensure that

changes on volatile buffers are successfully flushed and committed to persistent storages on an

irregular revocation. When sync system calls (i.e., fsync) are interrupted, due to irregular termina-
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tion, we expect that cached writes in volatile buffers will likely not be committed to non-volatile

storage, causing data loss. Another example of I/O system calls is write system calls. Let us sup-

pose that concurrent write system calls are executed by separate processes/threads writing into a

single buffer. However, consider what happens when one of these write system calls is interrupted

by irregular termination. These processes/threads may not put all the data in a row, which causes

data corruption.
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