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SUMMARY

This thesis is based on work done on two different problems. The first problem is

regarding restricted tangent bundles of the Grassmannian to rational curves. Let n ≥ 4,

2 ≤ r ≤ n−2 and e ≥ 1. We show that the intersection of the locus of degree e morphisms

from P1 to G(r, n) with the restricted universal sub-bundles having a given splitting type

and the locus of degree e morphisms with the restricted universal quotient-bundle having

a given splitting type is non-empty and generically transverse. As a consequence, we

get that the locus of degree e morphisms from P1 to G(r, n) with the restricted tangent

bundle having a given splitting type need not always be irreducible.

The second problem is regarding the Betti numbers of the moduli space of sheaves

on the projective plane. Let r ≥ 2 be an integer, and let a be an integer coprime to r.

We show that if c2 ≥ n+ b r−12r a
2+ 1

2(r
2+ 1)c, then the 2nth Betti number of the moduli

space MP2,OP2 (1)(r,OP2(a), c2) stabilizes.

vii



CHAPTER 1

INTRODUCTION

In this thesis, we study the following two items:

• the locus of restricted tangent bundle of the Grassmannian to rational curves with

a given splitting type, and

• the Betti numbers of the moduli space of stable sheaves on P2 with a fixed Chern

character.

We show that

Theorem (Corollary 3.3.7). When 2 ≤ r ≤ (n − 2), the locus of morphisms f from P1

to G(r, n) of degree e ≥ 1 with the restricted tangent bundle having a specified splitting

may not always be irreducible.

Moreover, we also show that

Theorem (Theorem 4.4.1). Assume that the rank r ≥ 2 and the first Chern class a are

coprime. If c2 ≥ N +
⌊
r−1
2r a

2 + 1
2(r

2 + 1)
⌋
, then the 2N th Betti numbers of the moduli

space of stable sheaves on P2 of rank r, first Chern class a, and second Chern class c2

stabilizes.

1.1 Rational curves and the Grassmannian

Rational curves play a central role in the study of algebraic geometry of projective

varieties. Let X be a non-singular projective variety over an algebraically closed field K

1
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of characteristic zero, and let C ⊂ X be a rational curve. We can study vector bundles

on X by studying their restrictions to rational curves. This approach is often useful due

to Grothendieck’s theorem which tells us that given any vector bundle E on P1 of rank

r ≥ 1, there exists a unique collection of integers a1 ≤ · · · ≤ ar such that E is isomorphic

to the direct sum of the line bundles OP1(ai), for 1 ≤ i ≤ r. We call this collection of

integers a1, · · · , ar, the splitting type of E .

The two bundles which are especially important to study are TX |C and NC/X because

they help us in understanding the deformations of C in X and in understanding the

geometry of the tangent space of smooth rational curves on X. These vector bundles

have been studied by Eisenbud and Van de Ven (1), (2), and by Ghione and Sacchiero (3),

(4), (5) who characterized the possible splitting types of the normal bundle of rational

curves in P3 and showed that the locus of rational curves in P3 with whose normal

bundles have a specified splitting type is irreducible of the expected dimension. Ran (6)

determined the splitting type of a generic genus-0 curve with one or two components

in Pn, as well as the way the bundle deforms locally with a general deformation of the

curve. More recently, Coskun and Riedl (7), (8) showed that the locus of nondegenerate

rational normal curves in Pn of fixed degree having a specified splitting type of the

normal bundle can be reducible when n ≥ 5.

In a similar vein, Verdier (9) and Ramella (10) showed that the locus of nondegenerate

rational curves in Pn with a given splitting type of the restricted tangent bundle is

irreducible of expected codimension. Strømme (11) examined a nice compactification of

this locus as a certain Quot scheme and computed the Chow ring of this compactification.
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In this paper, we study the locus of degree e morphism from P1 to the Grassmannian

variety with a specified splitting type of the restricted tangent bundle.

Let G(r, n) denote the Grassmannian variety of r-dimensional subspaces of the n-

dimensional vector space K⊕n. The Grassmannian variety has two special vector bundles,

the universal sub-bundle S of rank r and the universal quotient bundle Q of rank n− r.

Given a r-dimensional subspace Λ of K⊕n, let pΛ ∈ G(r, n) be the point corresponding

to this subspace. Then, we have

S |pΛ = Λ and Q|pΛ = K⊕n/Λ

Moreover, these vector bundles fit together in an exact sequence

0 −−−→ S −−−→ O⊕nG(r,n) −−−→ Q −−−→ 0

Additionally, the tangent bundle to the Grassmannian variety G(r, n), denoted TG(r,n),

is isomorphic to S∗ ⊗ Q. We denote by More(P1, G(r, n)) the scheme parameterizing

degree e morphisms from P1 to G(r, n). We know (see Lemma 2.1.2) that this scheme

is a non-singular quasi-projective variety of dimension r(n − r) + ne. We denote by

M(b•) the locus of morphisms f in More(P1K, G(r, n)) with f∗(Q) having splitting type

0 ≤ b1 ≤ · · · ≤ bn−r, and by M ′(a•) be the locus of morphism f with f∗(S∗) having

splitting type a1 ≥ · · · ≥ ar ≥ 0. We first show that

Proposition [Proposition 2.1.6]. The loci M(b•) and M ′(a•) are smooth of the expected

codimension.
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This follows as a consequence of a Corollary due to Le Potier (12)[Corollary 15.4.3].

We then show that

Theorem [Theorem 3.2.9]. Let n ≥ 4 and 2 ≤ r ≤ n − 2. The intersection of the loci

M(b•) and M ′(a•) is nonempty and generically transverse.

Note that the locus of degree e morphisms f from P1 to G(r, n) with f∗(TG(r,n))

having a specified splitting type is stratified by the intersection loci M(b•) ∩ M ′(a•)

coming from possible splitting types {a•} and {b•} of f∗(S∗) and f∗(Q) respectively. We

know that M(b•) is the union of M(b ′•) where 0 ≤ b ′1 ≤ · · · ≤ b ′n−r, b ′1 + · · · + b ′n−r = e

and b ′j + · · ·+ b ′n−r ≥ bj + · · ·+ bn−r for all 1 ≤ j ≤ n− r. Similarly, M ′(a•) is the union

of M ′(a ′•) where a ′1 ≥ · · · ≥ a ′r ≥ 0, a ′1 + · · · + a ′r = e and a ′1 + · · · + a ′i ≥ a1 + · · · + ai

for all 1 ≤ i ≤ r. Thus, there exists intersection loci M(b•) ∩M ′(a ′•) which are closed

in the locus of all morphisms with restricted tangent bundle having a specified splitting

type. Consequently,

Corollary [Proposition 3.3.4, Corollary 3.3.7]. The locus of morphisms f with f∗(TG(r,n))

having a given splitting type can be reducible in general, and it has at least one irreducible

component coming from a closed intersection loci M(b•) ∩M ′(a•).

For example, (as a consequence of Corollary 3.3.7 and Lemma 3.3.8) the locus of

morphisms in More(P1, G(2, 4)) with restricted tangent bundle having splitting type c1,

c2, c3, c4 with c1 ≤ c2 < c3 ≤ c4 and c1 + c2 + c3 + c4 = 4e has at least two irreducible

components.

This is in sharp contrast with the results of Verdier (9) and Ramella (10) who have

shown that the locus of morphisms f in More(P1,Pn) with the restricted twisted tangent
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bundle f∗(TPn(−1)) having splitting type a1, · · · , an with a1 ≥ · · · ≥ an ≥ 0 and a1 +

· · ·+ an = e is a nonempty, smooth, irreducible subvariety.

1.2 Betti numbers of the moduli space of stable sheaves on P2

Let X be a smooth projective surface over an algebraically closed field K of charac-

teristic zero, and let H be an ample divisor on X. Given a torsion-free, coherent sheaf

F on X, we define its H-slope µH(F) and discriminant ∆(F) as follows:

µH(F) =
ch1(F) ·H
ch0(F)H2

and ∆(F) = ch1(F)2 − 2ch0(F)ch2(F)
2ch0(F)2

We denote the Chern character of the torsion-free coherent sheaf F by γ = (r, c,∆(F)),

where r is the rank and c is the first Chern class. We say that F is H-slope (semi)stable if

for all subsheaves E of smaller rank, we have µH(E) ≤ µH(F). We denote by MX,H(γ),

the moduli-space parameterizing H-slope semistable sheaves with Chern character γ.

These spaces were constructed by Gieseker (13) and Maruyama (14), and play a central

role in many areas of mathematics including algebraic geometry, topology, representation

theory, etc. For example, they are used to study linear systems on curves and in the

Donaldson theory of 4-manifolds.

Given a Chern character γ, assume that all H-slope semistable sheaves with Chern

character γ are H-slope stable, and that such stable sheaves do exist. Then the moduli-

space MX,H(γ) is a smooth projective variety of dimension 1−χ(γ, γ), where χ denotes

the Euler characteristic. A crucial step to understand the geometry of such moduli

spaces is by scrutinizing the cohomology groups associated with them. Consequently,
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determining the Betti numbers of these spaces are of utmost importance. The general

philosophy of Donaldson, Gieseker and Li is that the geometry of the moduli space

MX,H(γ) behaves better as ∆ tends to infinity. O’Grady (15) showed that MX,H(γ) is

irreducible and generically smooth if ∆ is sufficiently large. Li (16) showed the stabi-

lization of the first and the second Betti numbers of MX,H(γ) when the rank is two. In

this paper, we look at the special case when X = P2 and H = c1(OP2(1)). We show that

Theorem (Theorem 4.4.1). Assume that the rank r ≥ 2 and the first Chern class aH

are coprime. If c2 ≥ N+
⌊
r−1
2r a

2 + 1
2(r

2 + 1)
⌋
, then the 2N th Betti numbers of the moduli

space MP2,H(r, aH, c2) stabilizes.

The following theorem due to Coskun and Woolf (17) tells us how to compute these

stable Betti numbers by describing their generating function.

Theorem ((17), Corollary 7.7). Let X be a rational surface, and H be a polarization on

X such that KX ·H < 0. Assume that all semistable sheaves of rank r and first Chern

class c are stable. Then the Poincaré polynomial of MX,H(r, c,∆) stabilizes as ∆→∞,

and the generating function for the stable Betti numbers is given by

(1− t2)
∞∏
i=1

1

(1− t2i)χtop(X)

Consequently, we can determine the Betti numbers for a large collection of such moduli

spaces MX,H(γ). We list of the first few stable Betti numbers when X = P2 and

H = OP2(1) in Table I.
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i 0 2 4 6 8 10 12

bstab, i 1 2 6 13 29 57 113

TABLE I: Table showing the first few stable Betti numbers for P2

Given a collection of smooth projective varieties Xd for d ≥ 0, with Poincaré polyno-

mials Pd(t) =
∑sd

i=0 ai,dt
d respectively, we say that {Pd} stabilizes (see Definition 2.2.1)

if for all i ≥ 0, there exists an integer d0(i) depending on i such that for all integers

d ≥ d0(i), we have ai,d = ai,d+1. We know (see Corollary 2.2.4) that the Poincaré polyno-

mials {Pd} stabilizes iff for each i ≥ 0, the coefficient of ti in the series (1−q)
∑∞

d=0 Pd(t)q
d

is a polynomial in q. Additionally, the generating function of the stable coefficients is

given by taking the limit of this series as q → 1. Hence, to understand the stability of

the Betti numbers or equivalently, the Poincare polynomials, it is enough to study the

series (1− q)
∑∞

d=0 Pd(t)q
d.

The stability of the Betti numbers and the Poincaré polynomials have been studied

extensively by several mathematicians. For instance, Macdonald,’62 (18) showed stabi-

lization of the Poincaré polynomials for the family of symmetric products of a smooth

projective surface X, and determined their sum

ζX(q, t) :=
∞∑
d=0

PX(d)(t)q
d =

(1+ qt)b1(X)(1+ qt3)b3(X)

(1− q)(1− qt2)b2(X)(1− qt4)
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Similarly, Göttsche,’90 (19) studied stabilization of the Poincaré polynomials for the

family {X [n]} comprising Hilbert scheme of n points on a smooth projective surface X,

and showed that

FX(q, t) =
∞∑
n=0

PX[n](t)qn =
∞∏
m=1

ζX(t
2m−2qm, t)

When the rank is one, the moduli space MX,H(1, c,∆) is isomorphic to Pic c(X)×X [∆]

The Künneth formula yields

GX(q, t) =
∞∑
∆=0

PMX,H (1,c,∆)(t)q
∆ = (1+ t)b1(X)

∞∏
m=1

ζX(t
2m−2qm, t)

Therefore, the Betti numbers of MX,H(1, c,∆) stabilizes as ∆ tends to infinity. In the

special case when X = P2 and H = OP2(1), the stabilization of the Betti numbers of

MP2,OP2 (1)(1, c,∆) was shown by Ellingsrud and Strømme, ’87 (20). Furthermore, they

computed explicit formulas to describe the Betti numbers. We list the first few Betti

numbers in Table II.

Stabilization of the Betti numbers of MP2,OP2 (1)(2,−1, c2) was worked out by Yosh-

ioka, ’94 (21). We list the first few Betti numbers in Table III .

Similarly, stabilization of the Betti numbers of MP2,OP2 (1)(3,−1, c2) was shown by

Manschot, ’11 (22), and furthermore, analyzed the rank 4 case building on the work of

Mozgovoy (23). We list the first few Betti numbers in Table IV.

Upon scrutinizing entries of Table III and Table IV, we deduce that in the rank 2

case, if c2 ≥ N + 1 then b2N stabilizes, and in the rank 3 case, if c2 ≥ N + 2 then



9

c2 b0 b2 b4 b6 b8 b10 b12 b14 b16 b18 b20

1 1 1

2 1 2 3

3 1 2 5 6

4 1 2 6 10 13

5 1 2 6 12 21 24

6 1 2 6 13 26 39 47

7 1 2 6 13 28 49 74 83

8 1 2 6 13 29 54 94 131 150

9 1 2 6 13 29 56 105 167 232 257

10 1 2 6 13 29 57 110 189 298 395 440

TABLE II: Ellingsrud and Strømme’s table for rank 1

c2 b0 b2 b4 b6 b8 b10 b12 b14 b16 b18 b20 b22 b24 b26 b28

1 1

2 1 2 3

3 1 2 6 9 12

4 1 2 6 13 24 35 41

5 1 2 6 13 29 51 85 113 129

6 1 2 6 13 29 57 106 175 262 337 370

7 1 2 6 13 29 57 113 200 342 527 746 922 1002

8 1 2 6 13 29 57 113 208 372 625 995 1464 1978 2390 2556

TABLE III: Yoshioka’s table for rank 2 and c1 = −1

c2 b0 b2 b4 b6 b8 b10 b12 b14 b16 b18 b20 b22 b24 b26

2 1 1

3 1 2 5 8 10

4 1 2 6 12 24 38 54 59

5 1 2 6 13 28 52 94 149 217 273 298

6 1 2 6 13 29 56 108 189 322 505 744 992 1200 1275

TABLE IV: Manschot’s table for rank 3 and c1 = −1

b2N stabilizes. We expect these kind of inequalities to hold in general. If we apply our

Theorem (see Theorem 4.4.1), we get that in the rank 2 case, if c2 ≥ N + 2 then b2N

stabilizes, and in the rank 3 case, if c2 ≥ N + 5 then b2N stabilizes. We loose a little bit
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because our inqualities work for any rank and any first Chern class. However, we can

get the actual inequality if we fix the rank to be 2 and the first Chern class c1 = −1 (see

Proposition 4.4.2).

Stabilization of the Betti numbers of the moduli space have been studied for other

surfaces as well. For example, Yoshioka (24), (25) and Göttsche (26) computed the Betti

and Hodge numbers of MX,H(γ) when X is a ruled surface and the rank is two. Yoshioka

(24), (27) observed the stabilization of the Betti numbers for rank two bundles on ruled

surfaces. Göttsche (28) extended his results to rank two bundles on rational surfaces

with polarizations which are KX -negative. The stabilization of the Betti numbers is

known for smooth moduli space of sheaves on K3 surfaces. By works of Mukai (29),

Huybrechts (30), and Yoshioka (31), smooth moduli spaces of sheaves on a K3 surface

X are deformations of the Hilbert scheme of points on X of the same dimension. In

particular, they are diffeomorphic to the Hilbert scheme of points, and hence, their Betti

numbers stabilizes. Yoshioka (32) obtained similar results for moduli spaces of sheaves

on abelian surfaces. A smooth moduli space of sheaves MX,H(γ) on an abelian surface X

is deformation equivalent to the product of the dual abelian surface of X and a Hilbert

scheme of points on X. Consequently, the Betti numbers stabilizes.



CHAPTER 2

PRELIMINARIES

In this chapter, we will set-up notations and go over preliminary results. We split

this chapter into two sections. Section 2.1 deals with rational curves and Grassmannain

varieties while Section 2.2 deals with Betti numbers of the moduli space of sheaves on

the projective plane.

2.1 Rational curves and the Grassmannian

Let K be an algebraically closed field of characteristic zero. Let E be a vector bundle

on P1 of rank r and degree e. Grothendieck’s theorem tells us that there are uniquely

determined integers a1, · · · , ar with a1 ≤ · · · ≤ ar and a1 + · · · + ar = e such that E is

isomorphic to ⊕ri=1OP1(ai). We call this collection of integers the splitting type of E . We

say that E is balanced if aj − ai ≤ 1 for all 1 ≤ i, j ≤ r.

Let n ≥ 2 and 1 ≤ r ≤ n − 1. We denote by G(r, n) the Grassmannian variety

of r-dimensional subspaces of the n-dimensional vector space K⊕n. We can think of

G(r, n) as a subvariety of P(
∧r K⊕n) = P(

n
r)−1 via the Plücker embedding, which given

r linearly independent vectors v1, · · · , vr, it sends the subspace spanned by the vi’s to

the point [v1 ∧ · · · ∧ vr]. We see that the Grassmannian variety G(r, n) is a smooth

projective variety of dimension r(n − r). For example, when r = 2 and n = 4, let

x1,2, x1,3, x1,4, x2,3, x2,4, x3,4 denote the co-ordinates of P(
∧2K⊕4), then G(2, 4) has

11
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dimension 4 and the image of G(2, 4) under the Plücker embedding is given by the zero

locus of the homogeneous polynomial x1,2x3,4 − x1,3x2,4 + x1,4x2,3.

The Grassmannian variety has two special vector bundles, the universal sub-bundle

S of rank r and the universal quotient bundle Q of rank n − r. Given a r-dimensional

subspace Λ of K⊕n, let pΛ ∈ G(r, n) be the point corresponding to this subspace. Then,

we have

S |pΛ = Λ and Q|pΛ = K⊕n/Λ

Moreover, these vector bundles fit together in an exact sequence

0 −−−→ S −−−→ O⊕nG(r,n) −−−→ Q −−−→ 0

Moreover, the tangent bundle to the Grassmannian variety G(r, n), denoted TG(r,n), is

isomorphic to S∗ ⊗Q.

Given integers e ≥ 1 and n ≥ 1, we can look at the locus of degree e morphisms from

P1 to Pn. A degree e morphisms f from P1 to Pn is uniquely determined upto scalars by

a collection of n + 1 homogeneous polynomials on P1 of degree e, namely the functions

xi ◦ f for 0 ≤ i ≤ n, where xi’s are the co-ordinate functions of Pn. Thus, this locus

of degree e morphisms can be identified with a open subvariety of the projective space

P(H0(OP1(e))
⊕n+1). Hence, this locus is smooth of dimension n+ (n+ 1)e.

Similarly, in a more general setting, given e ≥ 1 and 2 ≤ r ≤ n − 2, we can look

at the locus of degree e morphisms from P1 to G(r, n). We denote by M the scheme

More(P1, G(r, n)) parameterizing such morphisms. Similar to our previous case, it is
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natural to expect that M is a smooth quasi-projective variety of dimension r(n−r)+ne.

Our next goal is to show that this is indeed the case.

We glean the following Lemma 2.1.1 from the universal property of Grassmannian

Lemma 2.1.1. A degree e morphism P1 −−−→ G(r, n) corresponds uniquely to a vector

bundle E of rank r and degree e together with a surjection O⊕nP1 −−−→ E.

Proof. Given a morphism ϕ : P1 −−−→ G(r, n), we take E = ϕ∗(S∗), where S is the

universal sub-bundle, and we clearly have a surjection vϕ : O⊕nP1 −−−→ ϕ∗(S∗).

Conversely, given a surjection v : O⊕nP1 −−−→ E where E is a vector bundle of rank

r and degree e, let s1, · · · , sn form a basis for image of H0(O⊕nP1 ) in H0(E), we have a

morphism ϕv : P1 −−−→ P(
n
r) with co-ordinates given by si1 ∧ · · ·∧ sir for 1 ≤ i1 < · · · <

ir ≤ n, and we see that the image lies in G(r, n) because the co-ordinates satisfy Plücker

relations, and the resulting map has degree e because E has degree e.

Subsequently, using Lemma 2.1.1, we can think of a morphism from P1 to G(r, n) as

an element of the quot scheme Quotr,eO⊕nP1 /P
1/K, which parameterizes quotient sheaves of

O⊕nP1 of rank r and degree e. Strømme (11, Theorem 2.1) showed that this quot scheme

is an irreducible, rational, nonsingular, projective variety of dimension r(n − r) + ne .

In particular, we can think of M as a subscheme of Quotr,eO⊕nP1 /P
1/K.

Lemma 2.1.2. M is an open subscheme of the quot scheme Quotr,eO⊕nP1 /P
1/K. Therefore,

M is a smooth quasi-projective variety of dimension r(n− r) + ne.
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Proof. Note that any coherent sheaf E on P1 has a unique decomposition E = E ′ ⊕ T ,

where E ′ is locally free and T is torsion. Given any 1 ≤ i ≤ e, let Xi be the image of

the map

Quotr,e−iO⊕nP1 /P
1/K × P1 × · · ·(i times ) · · · × P1 −−−→ Quotr,eO⊕nP1 /P

1/K

which sends (E ′, x1, · · · , xi) to E ′ ⊕ T where T is the structure sheaf of the closed

subscheme of P1 defined by {x1, · · · , xi}. We see that Xi is closed and irreducible because

it is the image of a proper irreducible variety. We have

dim(Xi) ≤ r(n− r) + n(e− i) + i < r(n− r) + ne

Since every coherent sheaf E of rank r and degree e which is not locally free lies in some

Xi, we conclude that M is the complement of the union of the Xi’s for 1 ≤ i ≤ e.

Let S be a smooth variety and X be a smooth projective variety. Let E be a coherent

S-flat sheaf on S ×X. For every s ∈ S, let ms ⊂ OS,s be the ideal sheaf of the point s,

and let Es be the induced sheaf on X. We have an exact sequence

0 −−−→ (TsS)
∗ = ms/m

2
s −−−→ OS,s/m2

s −−−→ O{s} −−−→ 0

Tensoring with E , we get an exact sequence

0 −−−→ TsS
∗ ⊗ Es −−−→ E/m2

sE −−−→ Es −−−→ 0
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This exact sequence gives rise to an element ω ∈ Ext1(Es, TsS∗ ⊗ Es), a posteriori, a

linear map

ω : TsS −−−→ Ext1(Es, Es)

We call this linear map ω, the Kodaira - Spencer infinitesimal deformation map at the

point s ∈ S.

Definition 2.1.3. We say that the sheaf E defines a complete family parameterized by

S if the Kodaira - Spencer infinitesimal deformation map is surjective at every point

s ∈ S

In our case, we have a canonical map

Φ :M × P1 −−−→ G(r, n)

which sends a pair (f, x) to f(x). Let S denote the universal bundle over G(r, n). We

can look at the pullback vector bundle Φ∗(S∗) which is clearly M -flat and coherent. We

have

Lemma 2.1.4. The family of vector bundles parametrized by M via Φ∗(S∗) −−−→M×P1

is a complete family.

Proof. Let E = OP1(a1)⊕ · · · ⊕ OP1(ar) and K = OP1(−b1)⊕ · · · ⊕ OP1(−bn−r), where

deg(E) = −deg(K) = e, and consider the exact sequence

0 −−−→ K −−−→ O⊕nP1 −−−→ E −−−→ 0
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We first observe that if f is the morphism corresponding toO⊕nP1 −−−→ E, then Φ∗(S∗)|f =

E. We look at the following commutative diagram

Tf (M) Ext1(Φ∗(S∗)|f , Φ∗(S∗)|f )

Hom(K,E) Ext1(E,E)

where the vertical maps are isomorphisms, the top horizontal map is the Kodaira-Spencer

map, and the bottom horizontal map is obtained by applying Hom(•, E) to the exact

sequence

0 −−−→ K −−−→ O⊕nP1 −−−→ E −−−→ 0

Since the next term in the long exact sequence is Ext1(O⊕nP1 , E) = H1(E)⊕n = 0, the

bottom horizontal map is surjective. Hence, the Kodaira-Spencer map is surjective, and

so the family is complete.

Let X be a smooth projective curve, and let E be a coherent torsion free sheaf on X

of degree d and rank r. We define the slope of E to be

µ(E) = d

r



17

We say that E is stable (respectively semistable) if for all nonzero proper subsheaves F

of smaller rank, we have µ(F) < µ(E) (respectively µ(F) ≤ µ(E)). Given any coherent

torsion-free sheaf E on X, there exists a unique filtration

0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ El = E

such that Ei/Ei−1 is semistable for all 1 ≤ i ≤ l and moreover, we have µ(Ei/Ei−1) >

µ(Ei+1/Ei) for all 1 ≤ i ≤ l−1. This filtration is called the Harder-Narasimhan filtration

of E .

We will now use the following corollary due to Le Potier to conclude that the locus

of quotient vector bundles in M of given splitting type has expected codimension.

Proposition 2.1.5 ((12), Cor 15.4.3). Let X be a smooth projective curve of genus g.

Let Es be a complete family of vector bundles of rank r and degree d parametrized by a

smooth variety S. For integers l, ri > 0 and di, set

µi =
di
ri

The points s ∈ S such that the Harder-Narasimhan filtration (if it exists) has length l

and such that the Harder-Narasimhan grading gri(Es) of Es has rank ri and degree di,

for i = 1, · · · , l, form a locally closed smooth subvariety of codimension

∑
i<j

rirj(µi − µj + g − 1)
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Observe that when g = 0, we have Es = ⊕ri=1OP1(ai) for some integers a1, · · · , ar,

and so, ∑
i<j

rirj(µi − µj − 1) = ext1(Es, Es) =
∑
i,j

max {ai − aj − 1, 0} (2.1)

Now we fix two collection of non-negative integers a1 ≥ · · · ≥ ar ≥ 0 and 0 ≤ b1 ≤

· · · ≤ bn−r such that a1 + · · · + ar = b1 + · · · + bn−r = e > 0. Let M(b•) be the locus

of morphisms in M with the restricted universal quotient bundle being isomorphic to

OP1(b1) ⊕ · · · ⊕ OP1(bn−r), and let M ′(a•) be the locus of morphisms in M with the

restricted universal sub-bundle being isomorphic to OP1(−a1) ⊕ · · · ⊕ OP1(−ar). Our

goal is to show that the intersection locus M(b•) ∩M ′(a•) is nonempty and generically

transverse, a posteriori, has an irreducible component of expected codimension

∑
1≤i,j≤r

max {ai − aj − 1, 0}+
∑

1≤i,j≤n−r
max {bi − bj − 1, 0}

We see that

Proposition 2.1.6. The locus M(b•) is smooth of codimension

∑
i,j

max {bi − bj − 1, 0}

Similarly, M ′(a•) is smooth of codimension

∑
i,j

max {ai − aj − 1, 0}
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Proof. The first part of the Lemma follows from Lemma 2.1.4, Proposition 2.1.5, and

equation Equation 2.1.

To conclude the second part, we note that the canonical map

QuotrO⊕nP1 /P
1/K −−−→ Quotn−rO⊕nP1 /P

1/K

which sends [O⊕nP1 −−−→ E] to [O⊕nP1 −−−→ K∗], where K is the kernel of the map

O⊕nP1 −−−→ E, induces an isomorphism between More(P1, G(r, n)) and More(P1, G(n −

r, n)). Hence, the second part of the Lemma follows from the first part.

Therefore, we need to show that the intersection of M(b•) and M ′(a•) is nonempty,

and we need to find a point in M(b•)∩M ′(a•) where the intersection is transverse. We

show these in section 3.1 and 3.2.

Definition 2.1.7. Given a collection of non-negative integers a1, · · · , al, we define its

polygonal line to be

P(a1, · · · , al) = (a ′1, a
′
1 + a ′2, · · · , a ′1 + · · ·+ a ′l)

where a ′1, · · · , a ′l is a rearrangement of the ai’s such that a ′1 ≥ · · · ≥ a ′l . Additionally,

given another such collection b1, · · · , bl with rearrangement b ′1 ≥ · · · ≥ b ′l , we define

inequality

P(b•) ≥ P(a•) if
i∑

j=1

b ′j ≥
i∑

j=1

a ′j , for all 1 ≤ i ≤ l
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Note that if E is a vector bundle of rank r on P1 with splitting type a1 ≥ · · · ≥ ar ≥ 0,

then P(a1, · · · , ar) is the tuple consisting of the degrees of the subbundles appearing in

the Harder-Narasimhan filtration of E .

It follows as a consequence of Proposition 1.2 due to Ramella (10)

Proposition 2.1.8. Given two collection of non-negative integers 0 ≤ b1 ≤ · · · ≤ bn−r

and 0 ≤ b ′1 ≤ · · · ≤ b ′n−r with b1 + · · ·+ bn−r = b ′1 + · · ·+ b ′n−r = e. We have

M(b ′•) ⊃M(b•) iff P(b ′•) ≤ P(b•)

Similar result holds for M ′(a•).

SinceM is stratified byM(b•) for all possible 0 ≤ b1 ≤ · · · ≤ bn−r with b1+· · ·+bn−r =

e, and by M ′(a•) for all possible a1 ≥ · · · ≥ ar ≥ 0 with a1 + · · · + ar = e, Proposition

2.1.8 yields the following Corollary.

Corollary 2.1.9. The closure of the locus M(b•) in More(P1, G(r, n)) is

M(b•) =
⋃

0≤b ′1≤···≤b ′n−r
b1+···+bn−r=e
P(b ′•)≥P(b•)

M(b ′•)

Similarly, we have

M ′(a•) =
⋃

a ′1≥···≥a ′r≥0
a ′1+···+a ′r=e
P(a ′•)≥P(a•)

M ′(a ′•)
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2.2 Betti numbers of the moduli space of sheaves on P2

Let X be a smooth projective surface over an algebraically closed field K of charac-

teristic zero, and let H be an ample divisor on X. Throughout this thesis, we are going

to assume that all sheaves are coherent and torsion free. Given a sheaf F , we define the

H-slope of F as

µH(F) =
ch1(F) ·H
ch0(F) ·H2

Additionally, we define the Chern character of F as γ = (r, c,∆) where r is the rank, c

is the first Chern class, and ∆ is the discriminant defined as

∆(F) = ch1(F)2 − 2ch0(F)ch2(F)
2ch0(F)2

(2.2)

We define a sheaf F to be µH-semistable if for every nonzero proper subsheaf E , we have

µH(E) ≤ µH(F). Likewise, we define a sheaf F to be µH-stable if the inequality is strict.

Given any sheaf F , there exists a unique filtration

0 = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fl = F

such that the subquotients Fi/Fi−1 are µH -semistable for all 1 ≤ i ≤ l, and moreover,

we have µH(Fi/Fi−1) > µH(Fi+1/Fi) for all 1 ≤ i ≤ l − 1. We call this filtration the

Harder-Narasimhan filtration of F (see (33)[Section 1.3]).
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Furthermore, given any µH -semistable sheaf F , there exists a filtration

0 = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fl = F

such that the subquotients Fi/Fi−1 are stable and have H-slope µH(F) for all 1 ≤ i ≤ l.

We call such a filtration, a Jordan-Holder filtration of F (see (33)[Section 1.5]). Up to

isomorphism, the direct sum of the subquotients Fi/Fi−1 for 1 ≤ i ≤ l does not depend

on the Jordan-Holder filtration. We say two µH -semistable sheaves are S-equivalent if

the direct sum of subquotients appearing in their corresponding Jordan Hölder filtrations

are isomorphic.

Given a Chern character γ = (r, c,∆), we denote by MX,H(γ) the moduli space of S-

equivalence classes of µH -semistable sheaves with Chern character γ. These spaces were

constructed by Gieseker (13) and Maruyama (14). When X is smooth projective surface

and H is ample divisor with KX ·H < 0, the moduli space MX,H(γ) is smooth at every

stable sheaf F because ext2(F ,F) = hom(F ,F ⊗ KX) = 0. Consequently, assuming

MX,H(γ) is nonempty, if all µH -semistable sheaves with Chern character γ are µH -stable,

then MX,H(γ) is a smooth projective variety of dimension ext1(γ, γ) = 1 − χ(γ, γ). We

denote byMX,H(γ) the moduli stack of µH -semistable sheaves with Chern character γ.

Given a rank r and first Chern class c, assume that MX,H(r, c,∆) is nonempty smooth

projective variety for all ∆ ≥ 0, for example when r · H2 and c · H are coprime. Let
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γ = (r, c,∆) be the Chern character. To understand the Betti numbers of MX,H(γ), we

look at the Poincaré polynomial

PMX,H (γ)(t) =

2(1−χ(γ,γ))∑
i=0

bi(MX,H(γ))t
i

Intuitively, stabilization of the Betti numbers, or equivalently the Poincaré polynomials

mean that for each i ≥ 0, the Betti number bi(MX,H(γ)) becomes the same for sufficiently

large ∆.

In general, consider a collection of polynomials Pd(t) =
∑sd

i=0 ai,dt
i indexed by in-

tegers d ≥ N , for some integer N . We look at the corresponding collection of shifted

polynomials P̃d(t) =
∑0

j=−sd
bj,dt

j , where bj,d = aj+sd,d.

Definition 2.2.1. We say that the collection of polynomials {Pd(t)}d≥N stabilize if for

each j there exists an integer d0(j) such that for all d ≥ d0(j) we have bj,d = bj,d+1. In

this case, we define the stable limit to be P̃∞(t) =
∑0

j=−∞ βjt
j , where βj = bj,d for any

d ≥ d0(j).

In our case, we fix r and c and look at the collection of polynomials PMX,H (r,c,∆)

for ∆ ≥ 0. If this collection of polynomials stabilize, we say that the Betti numbers of

MX,H(r, c,∆) stabilize.

Consider the generating function

F̃ (q, t) =
∞∑
d=N

P̃d(t)q
d (2.3)
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We have

Proposition 2.2.2 ((17), Proposition 3.1). The polynomials Pd(t) stabilize iff the coef-

ficient of ti in (1− q)F̃ (q, t) is a Laurent polynomial in q. Moreover, if the polynomials

stabilize, the stable limit is obtained by evaluating (1− q)F̃ (q, t) at q = 1.

The proof of Proposition 2.2.2 due to Coskun and Woolf (17) essentially follows from

the following Lemma.

Lemma 2.2.3. For any j ≥ 0, the coefficient of t−jqd in (1 − q)F̃ (q, t) is zero for

d ≥ d0(j) iff bj,d = bj,d+1 for all d ≥ d0(j) − 1.

Proof. Let us define bj,d = 0 for j < −sd. It follows from equation Equation 2.3 that

F̃ (q, t) =
∑

d≥N, j≤0
bj,dt

jqd

whence,

(1− q)F̃ (q, t) =
∑

d≥N, j≤0
(bj,d − bj,d−1)t

jqd

Additionally, let

F (q, t) =
∞∑
d=N

Pd(t)q
d

and assume that the polynomials Pd(t) satisfy Poincaré duality i.e. tsdPd(t−1) = Pd(t)

for d� 0, then we have
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Corollary 2.2.4 ((17), Corollary 3.2). The polynomials Pd(t) stabilize iff the coefficient

of ti in (1−q)F (q, t) is a Laurent polynomial in q, and in this case, we get the generating

function for the stable coefficients by evaluating (1− q)F (q, t) at q = 1.

Let K0(varK) denote the Grothendieck ring of varieties over the field K, which we

think of as a quotient of the free abelian group of varieties of finite type over K by the

scissor relations

[X] = [Y ] + [Z]

where X is a disjoint union of locally closed subvarieties Y and Z. Multiplication in

K0(varK) is defined as

[X] · [Y ] = [X × Y ]

As a consequence of Hironaka’s resolution of singularities (34), the Grothendieck ring

K0(varK) is generated by the classes of smooth projective varieties. The Poincaré poly-

nomials for smooth varieties induces (35) the virtual Poincaré polynomial map

P (t) : K0(varK) −−−→ Z[t]

Let L denote the class [A1] in K0(varK). Consider the ring R = K0(varK)[L−1]. We

have a Z-graded filtration F on R, where for any given variety Y , we have

[Y ]La ∈ Fi iff dim(Y ) + a ≤ −i



26

We define the ring A− to be the inverse limit

A− := lim←−
i≥0

R/(Fi ⊗F0 R) (2.4)

Since L and Li − 1 for i > 0 are invertible in A−, we have a well-defined map from

R[{(Li − 1) | i > 0}] to A−. Our notion of dimension extends from K0(varK) to A−.

Similarly, the virtual Poincaré polynomial extends to R and A− where it takes values in

Z[t, t−1] and Z((t−1)) respectively.

Definition 2.2.5. We say that a sequence of elements ai in A− for i ≥ 0 stabilize to a

iff the sequence aiL−dim(ai) converges to a.

Given any smooth projective variety Y of dimension d, it follows from Poincaré

duality that

P[Y ](t) = t2dP[Y ](t
−1) = P[Y ]L−d(t−1) (2.5)

Therefore, we have

Lemma 2.2.6. Given a collection of smooth projective varieties [Xi] of dimension di,

if they stabilize in A− then their respective Poincaré polynomials also stabilize.

Moreover, we know

Proposition 2.2.7 ((17), Proposition 3.6). A sequence of elements ai ∈ A− for i ≥ 0

converges to a iff the generating function (1 − q)
∑

i≥0 aiq
i is convergent at q = 1, and

in this case, evaluating the generating function (1− q)
∑

i≥0 aiq
i at q = 1 yields a.

In particular, we see that
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Remark 2.2.8. If for all N ≥ 0, there exists ∆0(N) > 0 such that the coefficient of

L−Nq∆ in (1 − q)
∑

i≥0[Xi]L−diqi is zero, then for all N ≥ 0 the coefficient of L−N

in (1 − q)
∑

i≥0[Xi]L−diqi is a Laurent polynomial of q of degree at most ∆0(N). As a

result, it follows from Proposition 2.2.7 that the generating function (1−q)
∑

i[Xi]L−diqi

is convergent at q = 1, whence Lemma 2.2.6 yields the Poincaré polynomials of [Xi]

also stabilize. Consequently, it follows from equation Equation 2.5, Lemma 2.2.3, and

definition 2.2.1 that the 2Nth Betti number of X∆ stabilize when ∆ ≥ ∆0(N) − 1.

Given a smooth projective surface X, we have the following equality of generating

functions due to Göttsche

∞∑
∆=1

[X [∆]]L−2∆q∆ =
∞∏
m=1

( ∞∑
n=0

[X(n)]L(−m−1)nqmn
)

Vakil and Wood (36)[Conjecture 1.25] conjecture that the sequence [X(∆)]L−2∆ converges

in A−. Using above equality, this conjecture implies that the sequence [X [∆]]L−2∆ also

converges. This conjecture is known in the case when X is a rational surface. Coskun

and Woolf (17) showed that when X is a rational surface and H is an ample line bundle,

and KX ·H < 0, the sequence [MX,H(r, c,∆)]L−r2(2∆−χ(OX )) converges to the same limit

in A−. They studied the generating function

GX,H,r,c(q) =
∞∑
∆=0

[MX,H(r, c,∆)]L−r2(2∆−χ(OX ))qr∆

Using Proposition 2.2.7, they showed convergence of the generating function (1−q)GX,H,r,c(q)

at q = 1 and evaluated it.
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In the special case when X = P2 and H = OP2(1), we define generating function

Gr,c(q) =
∑
∆≥0

[MP2,H(r, c,∆)]Lr
2(1−2∆)qr∆ (2.6)

To study convergence of this generating function, we look at the blow-up of P2 at a point

and study convergence of a similar generating function on the blow-up.

Given any integer e ≥ 0, we denote by Fe the Hirzebruch surface P(OP1 ⊕ OP1(e)).

The Picard group of Fe is the abelian group generated by E which is the class of a section

of the canonical map π : Fe −−−→ P1 and F which is the class of fibers of π, satisfying

the relations

E2 = −e, E · F = 1, F 2 = 0

The canonical class of Fe is KFe = −2E − (e+ 2)F . Since −KFe is effective, KFe ·H < 0

for every ample divisor H. The nef cone of Fe is spanned by F and E + eF . In the

special case when e = 1, we think of F1 as the blow-up of P2 at a point p. We denote by

E the exceptional divisor and by F the fiber class.
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We are going to look at the moduli stacksMP2,H(r, c,∆) andMF1,E+F (r, c̃, ∆̃) where

γ = (r, c,∆) is Chern character on P2 and γ̃ = (r, c̃, ∆̃) is Chern character on F1. We

define generating functions

Gr,c(q) =
∑
∆≥0

[MP2,H(r, c,∆)]Lr
2(1−2∆)qr∆

and

G̃r,c̃(q) =
∑
∆̃≥0

[MF1,E+F (r, c̃, ∆̃)]Lr
2(1−2∆̃)qr∆̃

(2.7)

Coskun and Woolf have shown that

Theorem 2.2.9 ((17), Theorem 5.4, Corollary 5.5). The generating function (1 −

q)Gr,c(q) converges at q = 1 to
∏∞

i=1
1

(1−L−i)3
. Similarly, the generating function (1 −

q)Gr,c̃(q) converges at q = 1 to
∏∞

i=1
1

(1−L−i)4
.

Our goal is to determine lower bounds for the stabilization of the Betti numbers for

the moduli space MP2,H(r, c,∆) in the special case when r and c ·H are coprime. The

way we do this is by relating the stabilization of the Betti numbers with the convergence

of the generating function (1 − q)Gr,c(q) at q = 1. A key ingredient in this method is

to relate the classes of the moduli stack and the moduli space in A, which was shown

by Coskun and Woolf, where A is the quotient of A− by relations [P ] = [X][PGLn]

whenever P −−−→ X is an étale PGLn-torsor.
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Proposition 2.2.10 ((17), Proposition 7.3). The moduli stack and moduli space of µH-

stable sheaves on X, denoted Ms
X,H(γ) and M s

X,H(γ) respectively, are related in A as

follows:

[M s
X,H(γ)] = (L− 1)[Ms

X,H(γ)] (2.8)

By our assumption, r and c ·H are coprime, a posteriori, all µH -semistable sheaves

are µH -stable. As a consequence, we can use Proposition 2.2.10 to relate the moduli

stack and the moduli space.



CHAPTER 3

RESTRICTED TANGENT BUNDLE OF GRASSMANNIAN TO

RATIONAL CURVES

In this chapter, we study the locus of restricted tangent bundle of the Grassmannian

to rational curves with a given splitting type. More precisely, we show that this locus

is stratified by intersection loci M(b•) ∩ M ′(a•) which are nonempty and generically

transverse.

3.1 The intersection locus is nonempty

In this section we show that the intersection of the locus of degree e morphisms from

P1 to G(r, n) with the restricted universal sub-bundle having given splitting type and

the locus of degree e morphisms with restricted universal quotient bundle having given

splitting type is non-empty. In particular, we want to show that given two sequences of

non-negative integers a1 ≥ · · · ≥ ar ≥ 0 and 0 ≤ b1 ≤ · · · ≤ bn−r such that a1+ · · ·+ar =

b1 + · · ·+ bn−r = e > 0, there exits an exact sequence of vector bundles

0 −−−→ OP1(−b1)⊕ · · · ⊕ OP1(−bn−r)
u

−−−→ O⊕nP1
v

−−−→ OP1(a1)⊕ · · · ⊕ OP1(ar) −−−→ 0

By dualizing the sequence if necessary, we may assume without loss of generality that

(n− r) ≤ r.

Before doing the general case, we would like to do the case r = n − r = 2. We have

a1 ≥ a2, b1 ≤ b2 and a1 + a2 = b1 + b2 = e.

31
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Proposition 3.1.1. There exists an exact sequence

0 −−−→ O(−b1)⊕O(−b2) u
−−−→ O⊕4 v

−−−→ O(a1)⊕O(a2) −−−→ 0

Proof. Note that we must have a1 ≥ b1, otherwise

b1 + b2 ≥ 2b1 > 2a1 ≥ a1 + a2

which is a contradiction. We define

v =

x
a1 ya1 0 xa1−b1yb1

0 xa2 ya2 0

 u =



−yb1 0

0 xa1−b1ya2

0 −xb2

xb1 −yb2



where x and y denote the co-ordinate functions of P1. The minor corresponding to the

first two columns of v is xa1+a2 and the minor corresponding to the second and third

column of v is ya1+a2 . Since these two monomials do not vanish simultaneously on P1,

we conclude that v is surjective.

Similarly, by looking at the minor corresponding to first and fourth row, and the

minor corresponding to third and fourth row, we conclude that u is injective.

Finally, one can check that v ◦ u = 0.

Now we discuss the general case when (n− r) ≤ r. We define
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Definition 3.1.2.

A(j) =



0, if j ≤ 0

a1 + · · ·+ aj , if 1 ≤ j ≤ r

a1 + · · ·+ ar, if j ≥ r

B(i) =



0, if i ≤ 0

b1 + · · ·+ bi, if 1 ≤ i ≤ n− r

b1 + · · ·+ bn−r, if i ≥ n− r

To describe the matrices, we need to use the following lemma.

Lemma 3.1.3. Let a1 ≥ · · · ≥ ar ≥ 0 and 0 ≤ b1 ≤ · · · ≤ bn−r be two sequence of non-

negative integers with (n − r) ≤ r and A(r) = B(n − r). Then for all 0 ≤ l ≤ (n − r),

we have A(2r − n+ l) ≥ B(l).

Proof. Let s(l) = A(2r − n + l) − B(l) for any 0 ≤ l ≤ (n − r). Clearly, s(0) ≥ 0. Let

1 ≤ l0 < n− r be the least integer such that s(l0 − 1) ≥ 0 and s(l0) < 0.

Since s(l0) = s(l0− 1) + a2r−n+l0 − bl0 , we must have a2r−n+l0 − bl0 < 0. This in turn

implies that

ar ≤ · · · ≤ a2r−n+l0+1 ≤ a2r−n+l0 < bl0 ≤ bl0+1 ≤ · · · ≤ bn−r

which gives

s(n− r) = s(l0) + (a2r−n+l0+1 − bl0+1) + · · ·+ (ar − bn−r) ≤ s(l0) < 0

But we know s(n− r) = 0, thus we have a contradiction.
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The description of the matrices depend on how the A(j)’s and B(i)’s are ordered.

For example, let r = n− r = 5 and let’s assume the following order

B(1) < B(2) < A(1) < A(2) < B(3) < A(3) < B(4) < A(4) < B(5) = A(5)

For ease of notation, let us define sj,i = A(j) − B(i) for any given integers i, j. Let x

and y denote the co-ordinate functions of P1. Then the first matrix v is given as follows

: 

xa1 ya1 0 0 0 0 xs1,1 y−s0,1 xs1,2 y−s0,2 0 0

0 xa2 ya2 0 0 0 0 0 0 0

0 0 xa3 ya3 0 0 0 0 xs3,3 y−s2,3 0

0 0 0 xa4 ya4 0 0 0 0 xs4,4 y−s3,4

0 0 0 0 xa5 ya5 0 0 0 0


(3.1)
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The second matrix u is given as follows :



−yb1 0 0 0 0

0 0 xs1,2y−s1,3 0 0

0 0 −xs2,2y−s2,3 0 0

0 0 0 xs3,3y−s3,4 0

0 0 0 0 xs4,4y−s4,5

0 0 0 0 −xb5

xb1 −yb2 0 0 0

0 xb2 −yb3 0 0

0 0 xb3 −yb4 0

0 0 0 −xb4 −yb5



(3.2)

It is easy to see that the v is surjective, u is injective, and v ◦ u = 0.

We now proceed to define the matrices v and u in general. We define two increasing

sequences of non-negative integers {il}l≥0 and {jl}l≥0 recursively in the following manner:

We define i0 = 0, and j0 to be the largest non-negative integer such that j0 ≤ r and

A(j0) ≤ B(1). For each l ≥ 1, we define il to be the largest non-negative integer such

that il ≤ n − r and B(il) ≤ A(jl−1 + 1) and jl to be the largest non-negative integer

such that jl ≤ r and A(jl) ≤ B(il + 1). It follows that for l � 0, we have jl = r and

il = n − r. We define α to be the least positive integer such that jα+1 = r. It follows

from Lemma 3.1.3 that in general, there are two possible orderings:
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if a1 > b1, we see that i0 = j0 = 0 and we have:

B(1) ≤ · · · ≤ B(i1) ≤ A(1) ≤ · · · ≤ A(j1) ≤

B(i1 + 1) ≤ · · · ≤ B(i2) ≤ A(j1 + 1) ≤ · · · ≤ A(j2) ≤ · · · ≤

B(iα + 1) ≤ · · · ≤ B(n− r − 1) ≤ A(jα + 1) ≤ · · · ≤ A(r − 1) ≤ A(r) = B(n− r)

if a1 ≤ b1, we have:

A(1) ≤ · · · ≤ A(j0) ≤ B(1) ≤ · · · ≤ B(i1) ≤ A(j0 + 1) ≤ · · · ≤ A(j1) ≤

B(i1 + 1) ≤ · · · ≤ B(i2) ≤ A(j1 + 1) ≤ · · · ≤ A(j2) ≤ · · · ≤

B(iα + 1) ≤ · · · ≤ B(n− r − 1) ≤ A(jα + 1) ≤ · · · ≤ A(r − 1) ≤ A(r) = B(n− r)

We define the first matrix vr×n as follows: we have a r × (r + 1) block matrix and a

r × (n − r − 1) block matrix comprising the matrix vr×n. The r × (r + 1) block matrix

has diagonal and super-diagonal entries defined as follows:

vi,i = xai , for i = 1, · · · , r; vi,i+1 = yai , for i = 1, · · · , r;

All the remaining entries of this block are zero. The r × (n− r − 1) block has non-zero

entries only in rows j0+1, j1+1, · · · , jα+1, and all other rows have all zero entries. For
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0 ≤ l ≤ α− 1, the row jl+ 1 have non-zero entries in columns r+ 2+ il upto r+ 1+ il+1

and zero entries for all other columns. The non-zero entries are:

vjl+1,r+2+il = xA(jl+1)−B(il+1)yB(il+1)−A(jl), · · · , vjl+1,r+1+il+1 = xA(jl+1)−B(il+1)yB(il+1)−A(jl)

The row jα + 1 has non-zero entries in columns r+ 2+ iα upto n, and zero entries in all

other columns. The non-zero entries are:

vjα+1,r+2+iα = xA(jα+1)−B(iα+1)yB(iα+1)−A(jα), · · · , vjα+1,n = xA(jα+1)−B(n−r−1)yB(n−r−1)−A(jα)

We now proceed to define the second matrix un×(n−r). The matrix u comprises of

three blocks, a (j0 + 1) × (n − r) block u1 consisting of the first j0 + 1 rows of u, a

(r− j0−1)× (n−r) block u2 consisting of rows j0+2 upto r of u, and a (n−r)× (n−r)

block u3 consisting of rows r + 1 upto n of u.

The matrix u1 has non-zero entries in the first column and zero entries in all remain-

ing columns. The non-zero entries are:

u1,1 = −yb1 , u2,1 = (−1)2xA(1)yB(1)−A(1), · · · , uj0+1,1 = (−1)j0+1xA(j0)yB(1)−A(j0)

The matrix u2 has non-zero entries in columns i1+ 1, i2+ 1, · · · , iα+ 1 and (n− r), and

zero entries in all other columns. For any 1 ≤ l ≤ α, the column il + 1 has non-zero
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entries in rows jl−1+2, · · · , jl+1 and zero entries in all other rows. The non-zero entries

are:

ujl−1+2,il+1 = (−1)jl−1+2−(jl−1+2)xA(jl−1+1)−B(il)yB(il+1)−A(jl−1+1)

ujl−1+3,il+1 = (−1)jl−1+3−(jl−1+2)xA(jl−1+2)−B(il)yB(il+1)−A(jl−1+2)

...

ujl+1,il+1 = (−1)jl+1−(jl−1+2)xA(jl)−B(il)yB(il+1)−A(jl)

The (n− r)th column has non-zero entries in rows jα+ 2 upto r, and has zero entries in

all other rows. The non-zero entries are:

ujα+2,n−r = (−1)jα+2−(jα+2)xA(jα+1)−B(n−r−1)yB(n−r)−A(jα+1), · · ·

· · ·ur,n−r = (−1)r−(jα+2)xA(r−1)−B(n−r−1)yB(n−r)−A(r−1)

The non-zero entries of matrix u3 are along the diagonal, the sub-diagonal, and in the

(n− r)th column. The diagonal entries are:

ur+i,i =


0, if i = 1

−ybi , if 2 ≤ i ≤ (n− r)

The sub-diagonal entries are:

ur+1+i,i = (−1)βixbi , for i = 1, · · · , n− r − 1
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where βi denotes the number of A(j)’s lying strictly in between B(i) and B(i− 1). We

also have ur+1,n−r = (−1)βn−rx
bn−r . All other entries are zero.

Proposition 3.1.4. The matrix v is surjective, u is injective, and v ◦ u = 0. In partic-

ular, we have an exact sequence

0 −−−→ ⊕n−rj=1OP1(−bj)
u

−−−→ O⊕nP1
v

−−−→ ⊕ri=1OP1(ai) −−−→ 0

Proof. It follows from the definition of v that every entry in the ith row of v is either

zero or a monomial of degree ai in x and y, where x and y are the co-ordinate functions

of P1. Hence, v defines a morphism from O⊕nP1 to ⊕ri=1OP1(ai).

Similarly, it follows from definition of u that every entry in the jth column of u is

either zero or a monomial of degree bj in x and y, a posteriori, defining a morphism from

⊕n−rj=1 OP1(−bj) to O⊕nP1 .

To show v is surjective, we look at two r × r minors of v, the first one consisting of

the first r columns and the second one consisting of columns 2, · · · , (r + 1)

(vp,q)1≤p,q≤r and (vp,q)1≤p≤r,2≤q≤r+1

The determinant of first one is xa1+···+ar and second one is ya1+···+ar , which do not vanish

simultaneously at any point of P1.
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Similarly, to show u is injective, we look at two (n − r) × (n − r) minors, the first

one consisting of rows (r + 1), · · · , n and the second one consisting of row 1 and rows

r + 2, · · · , n

(up,q)r+1≤p≤n,1≤q≤n−r and (up,q)p=1,r+2≤p≤n,1≤q≤n−r

The determinant of first one is (−1)β1+···+βn−r+n−r+1xb1+···+bn−r and for the second one

is (−1)n−ryb1+···+bn−r , which do not vanish simultaneously at any point of P1.

Before we begin proof of third part, we would like to explicitly write down the β ′is

used in the description of the matrix u. Recall that βi is the number of A(j) ′s lying

strictly in between B(i) and B(i− 1). Thus, when we are in first case where a1 > b1, we

have

βi =



jl − jl−1, if i = il + 1, 1 ≤ l ≤ α

r − jα − 1, if i = n− r

0, otherwise

and when we are in second case where a1 ≤ b1, we have

βi =



j0, if i = 1

jl − jl−1, if i = il + 1, 1 ≤ l ≤ α

r − jα − 1, if i = n− r

0, otherwise
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Let vp denote the pth row of v, and uq denote the qth column of u. Our goal is to show

that for any 1 ≤ q ≤ (n− r), we have vp · uq = 0 for every 1 ≤ p ≤ r, and hence we can

conclude that v · u = 0.

We first analyze the case when a1 > b1. Now u1 has nonzero entry in the first and

(r+2)th row, and v1 is the only row in v with nonzero entries in the respective columns.

We see

v1 · u1 = xa1 · (−yb1) + xA(1)−B(1)yB(1) · xb1 = −xa1yb1 + xa1yb1 = 0

Thus, for any 1 ≤ p ≤ r we have vp · u1 = 0.

For 2 ≤ q ≤ n − r − 1 and q 6= i1 + 1, · · · , iα + 1, uq has nonzero entry in (r + q)th

and (r + 1 + q)th row. By construction, ur+q,q = −ybq and ur+q+1,q = xbq . Let A(jl) ≤

B(q) ≤ A(jl + 1) for some 0 ≤ l ≤ α as per our chosen ordering, then the (r + q)th and

(r + 1 + q)th columns of v have nonzero entry only in row jl + 1, and the entries are

vjl+1,r+q = xA(jl+1)−B(q−1)yB(q−1)−A(jl) and vjl+1,r+1+q = xA(jl+1)−B(q)yB(q)−A(jl). Thus,

vjl+1 · uq = xA(jl+1)−B(q−1)yB(q−1)−A(jl) · (−ybq) + xA(jl+1)−B(q)yB(q)−A(jl) · xbq

= −xA(jl+1)−B(q−1)yB(q)−A(jl) + xA(jl+1)−B(q−1)yB(q)−A(jl) = 0

Hence, for any 1 ≤ p ≤ r and 2 ≤ q ≤ n−r−1, q 6= i1+1, · · · , iα+1, we have vp ·uq = 0.
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Suppose q = il + 1 for some 1 ≤ l ≤ α, by construction uil+1 has nonzero entries in

rows jl−1 + 2, · · · , jl + 1, r+ 1+ il and r+ 1+ (il + 1). By our chosen ordering, we have

B(il) ≤ A(jl−1 + 1) ≤ · · · ≤ A(jl) ≤ B(il + 1) ≤ A(jl + 1)

Clearly the rows jl−1 + 1, · · · , jl + 1 of v are the only ones in which there is a nonzero

entry in the columns corresponding to the aforementioned rows of u. We have

vjl−1+1 · uil+1 = yajl−1+1 · xA(jl−1+1)−B(il)yB(il+1)−A(jl−1+1)

+ xA(jl−1+1)−B(il)yB(il)−A(jl−1) · (−ybl)

= xA(jl−1+1)−B(il)yB(il+1)−A(jl−1) − xA(jl−1+1)−B(il)yB(il+1)−A(jl−1) = 0

vjl+1 · uil+1 = xajl+1 · (−1)jl+1−(jl−1+2)xA(jl)−B(il)yB(il+1)−A(jl)

+ xA(jl+1)−B(il+1)yB(il+1)−A(jl) · (−1)jl−jl−1xbl

= (−1)jl−jl−1−1xA(jl+1)−B(il)yB(il+1)−A(jl)

+ (−1)jl−jl−1xA(jl+1)−B(il)yB(il+1)−A(jl) = 0
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For c = 2, 3, · · · , jl − jl−1, we have

vjl−1+c · uil+1 = xajl−1+c · (−1)jl−1+c−(jl−1+2)xA(jl−1+c−1)−B(il)yB(il+1)−A(jl−1+c−1)

+ yajl−1+c · (−1)jl−1+c+1−(jl−1+2)xA(jl−1+c)−B(il)yB(il+1)−A(jl−1+c)

= (−1)c−2xA(jl−1+c)−B(il)yB(il+1)−A(jl−1+c−1)

+ (−1)c−1xA(jl−1+c)−B(il)yB(il+1)−A(jl−1+c−1) = 0

Hence, for any 1 ≤ p ≤ r and q = il + 1 for 1 ≤ l ≤ α, we have vp · uq = 0.

By construction, un−r has a non-zero entry in rows jα + 2, · · · , r, r + 1 and n. The

rows vp of v such that there is a non-zero entry in any of the columns corresponding to

non-zero rows of un−r are p = jα + 1, · · · , r. We have

vjα+1 · un−r = yajα+1 · (−1)jα+2−(jα+2)xA(jα+1)−B(n−r−1)yB(n−r)−A(jα+1)

+ xA(jα+1)−B(n−r−1)yB(n−r−1)−A(jα) · (−ybn−r)

= xA(jα+1)−B(n−r−1)yB(n−r)−A(jα) − xA(jα+1)−B(n−r−1)yB(n−r)−A(jα) = 0

Similarly,

vr · un−r = xar · (−1)r−(jα+2)xA(r−1)−B(n−r−1)yB(n−r)−A(r−1) + yar · (−1)βn−rxbn−r
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Recall that βn−r = r − jα − 1 and A(r) = B(n− r). Thus, we have

vr · un−r = (−1)r−jα−2xA(r)−B(n−r−1)yB(n−r)−A(r−1) + (−1)r−jα−1xbn−ryar

= (−1)r−jα−2xB(n−r)−B(n−r−1)yA(r)−A(r−1) + (−1)r−jα−1xbn−ryar

= (−1)r−jα−2xbn−ryar + (−1)r−jα−1xbn−ryar = 0

For any 2 ≤ c ≤ r − jα − 1, we have

vjα+c · un−r = xajα+c · (−1)jα+c−(jα+2)xA(jα+c−1)−B(n−r−1)yB(n−r)−A(jα+c−1)

+ yajα+c · (−1)jα+c+1−(jα+2)xA(jα+c)−B(n−r−1)yB(n−r)−A(jα+c)

= (−1)c−2xA(jα+c)−B(n−r−1)yB(n−r)−A(jα+c−1)

+ (−1)c−1xA(jα+c)−B(n−r−1)yB(n−r)−A(jα+c−1) = 0

Thus, we have vp · un−r = 0 for any 1 ≤ p ≤ r.

We now analyze the case a1 ≤ b1. Observe that for i1 + 1 ≤ q ≤ (n − r), the proof

of the fact that vp · uq = 0 for any 1 ≤ p ≤ r is exactly same as above. We only need to

work out the cases 1 ≤ q ≤ i1.

By construction, the column u1 has non-zero entries in rows 1, 2, · · · , j0+1 and r+2.

The only rows of v which has non-zero entry in corresponding columns are 1 ≤ p ≤ j0+1.

We have

v1 · u1 = xa1 · (−yb1) + ya1 · (−1)2xA(1)yB(1)−A(1) = −xa1yb1 + xa1yb1 = 0
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For 2 ≤ c ≤ j0, we have

vc · u1 = xac · (−1)cxA(c−1)yB(1)−A(c−1) + yac · (−1)c+1xA(c)yB(1)−A(c)

= (−1)cxA(c)yB(1)−A(c−1) + (−1)c+1xA(c)yB(1)−A(c−1) = 0

and lastly

vj0+1 · u1 = xaj0+1 · (−1)j0+1xA(j0)yB(1)−A(j0) + xA(j0+1)−B(1)yB(1)−A(j0) · (−1)β1xb1

= (−1)j0+1xA(j0+1)yB(1)−A(j0) + (−1)j0xA(j0+1)yB(1)−A(j0) = 0

Thus, vp · u1 = 0 for all 1 ≤ p ≤ r.

For 2 ≤ q ≤ i1, observe that uq has non-zero entry in row r+ 1+ q− 1 and r+ 1+ q.

Clearly, j0 + 1 is the only row in v with non-zero entry in the corresponding columns.

We have

vj0+1 · uq = xA(j0+1)−B(q−1)yB(q−1)−A(j0) · (−ybq) + xA(j0+1)−B(q)yB(q)−A(j0) · xbq

= −xA(j0+1)−B(q−1)yB(q)−A(j0) + xA(j0+1)−B(q−1)yB(q)−A(j0) = 0

Thus, vp · uq = 0 for all 1 ≤ p ≤ r and 2 ≤ q ≤ i1.

In conclusion, we have v ◦ u = 0.

Recall from section 2.1 that M(b•) is the locus of morphisms in More(P1, G(r, n))

with the restricted universal quotient bundle being isomorphic toOP1(b1)⊕· · ·⊕OP1(bn−r),
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and M ′(a•) is the locus of morphisms in More(P1, G(r, n)) with the restricted universal

sub-bundle being isomorphic to OP1(−a1)⊕ · · · ⊕ OP1(−ar). We see that

Corollary 3.1.5. The intersection of the loci M(b•) and M ′(a•) is nonempty.

Proof. It follows from Proposition 3.1.4 that we have an exact sequence

0 −−−→ ⊕n−rj=1 OP1(−bj)
u

−−−→ O⊕nP1
v

−−−→ ⊕ri=1OP1(ai) −−−→ 0 (3.3)

The surjection v in equation Equation 3.3 corresponds uniquely to an element ofMore(P1, G(r, n)),

say ϕv. Moreover, it follows from our identification of v and ϕv in Lemma 2.1.1 and from

equation Equation 3.3 that ϕ∗v(S) is isomorphic to ⊕ri=1OP1(−ai) and ϕ∗v(Q) is isomor-

phic to ⊕n−rj=1OP1(bj), where S is the universal sub-bundle and Q is the universal quotient

bundle of G(r, n). Hence, the intersection of M(b•) and M ′(a•) is non-empty.

3.2 The intersection locus is generically transverse

In this section, we are going to show that there is a point in M(b•) ∩M ′(a•) where

the intersection is transverse. As a consequence, we see that M(b•) and M ′(a•) intersect

generically transversely.

More precisely, we want to show that there exists an exact sequence

0 −−−→ ⊕n−rj=1 OP1(−bj)
u

−−−→ O⊕n v
−−−→ ⊕ri=1OP1(ai) −−−→ 0 (3.4)
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where a1 ≥ · · · ≥ ar ≥ 0, 0 ≤ b1 ≤ · · · ≤ bn−r, (n − r) ≤ r, and a1 + · · · + ar =

b1 + · · ·+ bn−r = e, such that M(b•) and M ′(a•) intersect transversely at the morphism

ϕv corresponding to the surjection v (see Lemma 2.1.1).

For ease of notation, let E = O(a1)⊕· · ·⊕O(ar) and K = O(−b1)⊕· · ·⊕O(−bn−r).

Applying Hom(K, •) and Hom(•, E) to equation Equation 3.4, we obtain two long exact

sequences

0 −−−→ Hom(K,K) −−−→ Hom(K,O⊕n) −−−→ Hom(K,E) −−−→ Ext1(K,K) −−−→ 0

and

0 −−−→ Hom(E,E) −−−→ Hom(O⊕n, E) −−−→ Hom(K,E) −−−→ Ext1(E,E) −−−→ 0

(3.5)

We observe that

Remark 3.2.1. To show that M(b•) and M ′(a•) intersect transversely at ϕv, it is enough

to show that the kernels of the mapsHom(K,E) −−−→ Ext1(K,K) andHom(K,E) −−−→
Ext1(E,E) intersect transversely.

Let W1 be the kernel of the map Hom(K,E) −−−→ Ext1(K,K) and W2 be the kernel

of the map Hom(K,E) −−−→ Ext1(E,E). Using elementary linear algebra, we deduce

the following Lemma.

Lemma 3.2.2. The subspaces W1 and W2 of Hom(K,E) intersect transversely iff they

span Hom(K,E).
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Proof. Note that W1 and W2 intersect transversely if and only if

codim(W1 ⊂ Hom(K,E)) = codim((W1 ∩W2) ⊂W2)

Furthermore, it is a known fact that for any two subspaces W1 and W2, we have

codim((W1 ∩W2) ⊂W2) = codim(W1 ⊂ (W1 +W2))

Our assertion follows from these two equations.

We infer from the exact sequences in equation Equation 3.5 that W1 is the image of

the map

Hom(K,O⊕n) −−−→ Hom(K,E), and W2 is the image of the map Hom(O⊕n, E) −−−→
Hom(K,E).

Consider the map

Ψ : Hom(K,O⊕n)×Hom(O⊕n, E) −−−→ Hom(K,E)

given by Ψ(ϕ,ψ) = ψ ◦u+v ◦ϕ. Clearly, W1 and W2 span Hom(K,E) iff Ψ is surjective.

Consider the bilinear map of vector spaces

Φ : Hom(K,O⊕n)×Hom(O⊕n, E) −−−→ Hom(K,E)
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given by Φ(ϕ,ψ) = ψ ◦ ϕ. We see that Φ is a bilinear smooth map, so we can look at

DΦ(u,v). Identifying the tangent spaces with the original vector space, we get a map

DΦ(u,v) : Hom(K,O⊕n)×Hom(O⊕n, E) −−−→ Hom(K,E)

given by DΦ(u,v)(ϕ,ψ) = ψ ◦ u+ v ◦ ϕ. Therefore, we have DΦ(u,v) = Ψ which yields

Lemma 3.2.3. The subspaces W1 and W2 intersect transversely iff DΦ(u,v) is surjective.

We want to show that there exists a pair (u, v) with u injective, v surjective, v ◦ u =

0, and DΦ(u,v) is surjective. Before we proceed to show this, we make a couple of

observations.

Proposition 3.2.4. The map Φ is surjective.

Proof. Let P = (Pi,j)r×(n−r) be an element of Hom(K,E). We need to find elements

A ∈ Hom(K,O⊕n) and B ∈ Hom(O⊕n, E) such that P = A ◦ B. Clearly, Pi,j is a

homogeneous element of degree ai+bj and hence, there exists homogeneous polynomials

Ri,j of degree bj and Qi,j of degree ai such that

Pi,j = xai ·Ri,j +Qi,j · ybj
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Consider the matrix A = (Ai,j)r×n and B = (Bi,j)n×(n−r) defined as follows :

Ai,j =



xai , if i = j

Qi,j−r, if r + 1 ≤ j ≤ n

0, otherwise

Bi,j =



Ri,j , if 1 ≤ i ≤ r

ybj , if i = r + j

0, otherwise

Let Ai denote the ith row of A and Bj denote the jth column of B. It follows from

construction that Ai ·Bj = xaiRi,j +Qi,jy
bj = Pi,j . Hence, Ψ(A,B) = A ◦B = P .

Proposition 3.2.5. When K or E is balanced, then DΦ(u,v) is surjective.

Proof. Let K = O(−b1)⊕ · · · ⊕ O(−bn−r) is balanced. Then, we have

Ext1(K,K) = H1(P1,K∗ ⊗K) = H0(P1,K∗ ⊗K ⊗O(−2))∗ by Serre’s duality

Clearly,

K∗ ⊗K ⊗O(−2) = ⊕i,jO(bi − bj − 2)

Since K is balanced, bi − bj − 2 < 0 for all 1 ≤ i, j ≤ n− r. Hence, Ext1(K,K) = 0. It

follows from exact sequence stated earlier (see equation Equation 3.5) that the map

Hom(K,O⊕n) −−−→ Hom(K,E)
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is surjective, and hence the map

DΦ(u,v) : Hom(K,O⊕n)×Hom(O⊕n, E) −−−→ Hom(K,E)

is also surjective.

We argue similarly when E is balanced.

We now proceed to show that there exists a pair (u, v) with DΦ(u,v) is surjective.

Before tackling the general case, we look at special case when r = n− r = 2.

Proposition 3.2.6. When n = 4 and r = 2, then there exits a pair (u, v) with u

injective, v surjective, v ◦ u = 0, and DΦ(u,v) is surjective.

Proof. Recall that in Proposition 3.1.1, we constructed a pair (u, v) with v surjective, u

injective, and v ◦ u = 0. Let P be an element of Hom(K,E). We can think of P as a

2× 2 matrix P = (Pi,j) whose (i, j)th entry Pi,j is a homogeneous polynomial of degree

ai + bj .

We need to find a 4× 2 matrix R = (Ri,j) and a 2× 4 matrix Q = (Qi,j), where Ri,j

has degree bj and Qi,j has degree ai, which satisfies the equation

P = v ◦R +Q ◦ u
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Comparing the entries of the matrices, we get the following equations

P1,1 = xa1R1,1 + ya1R2,1 + xa1−b1yb1R4,1 −Q1,1y
b1 +Q1,4x

b1

P1,2 = xa1R1,2 + ya1R2,2 + xa1−b1yb1R4,2 +Q1,2x
a1−b1ya2 −Q1,3x

b2 −Q1,4y
b2

P2,1 = xa2R2,1 + ya2R3,1 −Q2,1y
b1 +Q2,4x

b1

P2,2 = xa2R2,2 + ya2R3,2 +Q2,2x
a1−b1ya2 −Q2,3x

b2 −Q2,4y
b2

We solve these equations from bottom to top. First, set R3,2, Q2,2, Q2,3 to be zero, and

solve R2,2, Q2,4 for the equation P2,2 = xa2R2,2 −Q2,4y
b2 . Then, set R3,1 = 0, and solve

for R2,1, Q2,1 in the equation P2,1−Q2,4xb1 = xa2R2,1−Q2,1y
b1 . Then, set R4,2, Q1,2, Q1,3

to be zero, and solve for R1,2, Q1,4 in the equation P2,1 − ya1R2,2 = xa1R1,2 − Q1,4y
b2 .

Finally, set R4,1 = 0 and solve R1,1, Q1,1 in the equation P1,1 − ya1R2,1 − Q1,4x
b1 =

xa1R1,1 −Q1,1y
b1 .

This shows that the map DΦ(u,v) is surjective.

We now proceed to the general case.

Proposition 3.2.7. Given any n ≥ 4 and 2 ≤ r ≤ n − 2 satisfying (n − r) ≤ r, there

exists a pair (u, v) with u injective, v surjective, v ◦ u = 0, and DΦ(u,v) is surjective.

Proof. Recall that we constructed matrices v and u in the paragraphs preceding Propo-

sition 3.1.4, and proved that v is surjective, u is injective, and v ◦ u = 0. We just need

to show that DΦ(u,v) is surjective for this pair (u, v).



53

Let P be an element of Hom(K,E). We can think of P as (Pi,j) which is a r×(n−r)

matrix with Pi,j being a homogeneous polynomial of degree ai + bj . We need to show

that there exits elements R ∈ Hom(K,O⊕n) and Q ∈ Hom(O⊕n, E) such that P =

v ◦R+Q ◦ u. We can think of R as (Ri,j) which is a (n− r)× n matrix with Ri,j being

homogeneous polynomial of degree bj , and Q = (Qi,j) a r × n matrix with Qi,j being

homogeneous polynomial of degree ai.

Observe that by comparing both sides of equation P = v ◦ R + Q ◦ u, get that for

any i, j, we have

Pi,j = xaiRi,j −Qαi,βjy
bj + other terms

We try to solve these equations in the following order

Pr,n−r, · · · , Pr,1, Pr−1,n−r, · · · , Pr−1,1, · · · , P1,n−r, · · · , P1,1

in the following manner :

Assume that all equations for Pi,j where i > i0, or i = i0 and j > j0 are solved. As

mentioned earlier we have equation

Pi0,j0 = xai0Ri0,j0 −Qαi0 ,βj0y
bj0 + other terms

where the ”other terms” has a bunch of Rα,β’s and Qα ′,β ′ ’s occurring in them, some

of which are already determined in some previous equation, and some are not. If they
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are not determined, then set them to be 0. Then we solve for Ri0,j0 and Qαi0 ,βj0 in the

equation

Pi0,j0 − other terms = xai0Ri0,j0 −Qαi0 ,βj0y
bj0

We claim that we can solve for all the equations Pr,n−r, · · · , P1,1 in aforementioned

method. Suppose not, consider the first Pi0,j0 for which a conflict occurs. Only possible

conflict at this step is that Ri0,j0 or Qαi0 ,βj0 has been already determined at some

previous step. But this is not possible, because by construction of the matrices u and v,

we have that in each column of v in which xai appears, all the entries below xai in that

column are 0; similarly, in each row of u in which −ybj appears, all the entries to the

right of −ybj in that row are 0; and hence, Ri0,j0 and Qαi0 ,βj0 does not appear in any of

the previous equations.

As a corollary, we get

Corollary 3.2.8. There exists an exact sequence

0 −−−→ ⊕n−rj=1 OP1(−bj)
u

−−−→ O⊕n v
−−−→ ⊕ri=1OP1(ai) −−−→ 0

such that the loci M(b•) and M ′(a•) intersect transversely at the morphism ϕv corre-

sponding to the surjection v.
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In particular, the loci M(b•) and M ′(a•) intersect generically transversely and has

an irreducible component of codimension

∑
i,j

max {ai − aj − 1, 0}+
∑
i,j

max {bi − bj − 1, 0}

Moreover, if either of the splitting type {a•} or {b•} is balanced, then the intersection

is transverse.

Proof. The first assertion of the corollary follows from Remark 3.2.1, Lemma 3.2.2,

Lemma 3.2.3, and Proposition 3.2.7.

The second assertion follows from the first one and Proposition 2.1.6.

The third assertion follows from Remark 3.2.1, Lemma 3.2.2, Lemma 3.2.3, and

Proposition 3.2.5.

In summary, it follows from Corollary 3.1.5 and 3.2.8 that

Theorem 3.2.9. The intersection of the loci M(b•) and M ′(a•) is nonempty and gener-

ically transverse. Furthermore, if either of the splitting types {a•} or {b•} is balanced, then

the intersection is transverse.

3.3 Analyzing the locus with restricted tangent bundle having fixed split-

ting type

In this section, we are going to show that the locus of morphisms in More(P1, G(r, n))

with the restricted tangent bundle having fixed splitting type need not always be irre-

ducible. This is in sharp contrast with the results of Verdier (9) and Ramella (10),
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who have shown that given a collection of integers a1, · · · , an with a1 ≥ · · · ≥ an and∑n
i=1 ai = e, the locus of morphisms ϕ in More(P1,Pn) with the restricted twisted tan-

gent bundle ϕ∗(TPn(−1)) having splitting type (a1, · · · , an) is empty if an < 0, else it is

nonempty, smooth and connected of codimension

∑
i,j

max{ai − aj − 1, 0}

Recall that given a morphism ϕ : P1 −−−→ G(r, n), the restricted tangent bundle

ϕ∗(TG(r,n)) is isomorphic to ϕ∗(S∗)⊗ϕ∗(Q), where S and Q are the universal sub-bundle

and universal quotient bundle of G(r, n). Now let us fix a splitting type c1, · · · , cr(n−r)

for the restricted tangent bundle ϕ∗(TG(r,n)). We define

Definition 3.3.1. A filling for the splitting type {cl}1≤l≤r(n−r) to be a r× (n−r) matrix

A with entries ai,j = cl for some l depending on i, j such that

• For all 1 ≤ i ≤ r − 1 and 1 ≤ j ≤ n− r − 1, we have ai,j ≤ ai+1,j and ai,j ≤ ai,j+1.

• For all 1 ≤ i ≤ r − 1 we have ai,n−r ≤ ai+1,n−r, and for all 1 ≤ j ≤ n− r − 1 we have

ar,j ≤ ar,j+1.

• For all 1 ≤ i ≤ r − 1 the difference ai+1,j − ai,j is independent of j, and for all

1 ≤ j ≤ n− r − 1 the difference ai,j+1 − ai,j is independent of i.

Moreover, we define
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Definition 3.3.2. A collection of integers α1, · · · , αν is non-negative if αi are non-

negative integers for all 1 ≤ i ≤ ν. A collection of integers α1, · · · , αν is increasing if

α1 ≤ · · · ≤ αν .

The exigency of these definitions is due to the following Lemma.

Lemma 3.3.3. A filling for the splitting type {cl}1≤l≤r(n−r) uniquely determines the

non-negative increasing splitting type of ϕ∗(S∗) and ϕ∗(Q).

Proof. Let ϕ∗(S∗) be isomorphic to⊕ri=1OP1(ai), and let ϕ∗(Q) be isomorphic to⊕n−rj=1 OP1(bj).

We can determine the ai’s and bj ’s uniquely by the following equations

e =
1

n

∑
i,j

ai,j

ai =
1

n− r

n−r∑
j=1

ai,j − e

 for all 1 ≤ i ≤ r

bj =
1

r

 r∑
i=1

ai,j − e

 for all 1 ≤ j ≤ n− r

Conversely, given a splitting type {a•} for ϕ∗(S∗) and {b•} for ϕ∗(Q) with 0 ≤ a1 ≤

· · · ≤ ar and 0 ≤ b1 ≤ · · · ≤ bn−r, we define a filling whose (i, j)th entry is ai + bj .

Let {a•} and {a ′•} be two non-negative increasing splitting types for ϕ∗(S∗), and let

{b•} and {b ′•} be two non-negative increasing splitting types for ϕ∗(Q). If {a•} is different

from {a ′•} (i.e. the corresponding vector bundles are not isomorphic) or {b•} is different

from {b ′•}, then the intersection of loci M(b•) ∩M ′(a•) and M(b ′•) ∩M ′(a ′•) must be

empty because a morphism ϕ : P1 −−−→ G(r, n) uniquely determines the splitting type

for ϕ∗(S∗) and ϕ∗(Q). Hence, it follows from Lemma 3.3.3 that
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Proposition 3.3.4. The locus of morphisms ϕ in More(P1, G(r, n)) with the restricted

tangent bundle having the splitting type {cl}1≤l≤r(n−r) is stratified by the loci M(b•) ∩

M ′(a•) where {a•} and {b•} are non-negative increasing splitting types for ϕ∗(S∗) and

ϕ∗(Q) arising from the distinct fillings for {cl}1≤l≤r(n−r).

Recall that given a collection of non-negative increasing integers α1, · · · , αν , we de-

fined its polygonal line (see Definition 2.1.7) to be P(α•) = (αν , αν + αν−1, · · · , αν +

· · ·+ α1).

Definition 3.3.5. We say a filling {ai,j}1≤i≤r, 1≤j≤n−r of a splitting type {cl}1≤l≤r(n−r)

to be minimal if the following holds:

Let a1, · · · , ar be the non-negative increasing splitting type of ϕ∗(S∗) and b1, · · · , bn−r

be the non-negative increasing splitting type of ϕ∗(Q) uniquely determined by the filling

(see Lemma 3.3.3). Then for every possible non-negative increasing collection of integers

a ′1, · · · , a ′r and b ′1, · · · , b ′n−r with a ′1 + · · · + a ′r = b ′1 + · · · + b ′n−r = e satisfying P(a ′•) ≥

P(a•) and P(b ′•) ≥ P(b•) with atleast one of the inequality being strict, the matrix

{a ′i + b ′j}1≤i≤r, 1≤j≤n−r is not a filling for {cl}.

It follows as a consequence of Corollary 2.1.9 that

Lemma 3.3.6. Suppose {a•} and {b•} be the non-negative increasing splitting types for

ϕ∗(S)∗ and ϕ∗(Q) respectively arising from a minimal filling of a given splitting {cl}, then

the loci M(b•) ∩M ′(a•) is closed in the locus of all degree e morphisms with restricted

tangent bundle having splitting type {cl}.

Hence, we see that
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Corollary 3.3.7. The number of irreducible components of the locus of degree e mor-

phisms from P1 to G(r, n) with the restricted tangent bundle having a given splitting type

is bounded below by the number of distinct minimal fillings of the given splitting type. In

particular, this locus need not always be irreducible.

Proof. The proof follows from Proposition 3.3.4 and Lemma 3.3.6, Corollary 3.1.5 and

3.2.8.

For example, let r = 2, n = 4 and e = 6. The locus Mor6(P1, G(2, 4)) of degree 6

morphisms from P1 to G(2, 4) has dimension 28. Consider the splitting type 3, 5, 7, 9 for

the restricted tangent bundle. We have two possible fillings

3 5

7 9

 and

3 7

5 9



Corresponding to the first filling we have non-negative increasing splitting types (a1, a2) =

(1, 5) and (b1, b2) = (2, 4), and to the second filling we have (a1, a2) = (2, 4) and

(b1, b2) = (1, 5). Since both the fillings are minimal (see Lemma 3.3.8), the locus of

morphisms in Mor6(P1, G(2, 4)) is the disjoint union of the loci M(2, 4) ∩ M ′(1, 5)

and M(1, 5) ∩ M ′(2, 4). Now the loci M(1, 5) and M ′(1, 5) have codimension 3 in

Mor6(P1, G(2, 4)) which follows from Proposition 2.1.6. Similarly, the loci M(2, 4)

and M ′(2, 4) have codimension 1 in Mor6(P1, G(2, 4)). It follows from Corollary 3.1.5

that the locus M(2, 4) ∩ M ′(1, 5) is nonempty. Similarly, M(1, 5) ∩ M ′(1, 5) is also

nonempty, and since M(2, 4) and M(1, 5) are disjoint, the intersection M(2, 4)∩M ′(1, 5)
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must be proper subset of M ′(1, 5). Moreover, since M(2, 4) has codimension 1 in

Mor6(P1, G(2, 4)), the intersection locus M(2, 4) ∩M ′(1, 5) must have codimension 1

in M ′(1, 5), and hence, it must have codimension 4 in Mor6(P1, G(2, 4)). Similarly, the

intersection locus M(1, 5)∩M ′(2, 4) has codimension 4 in Mor6(P1, G(2, 4)). Hence, the

locus of degree 6 morphisms from P1 to G(2, 4) with restricted tangent bundle having

splitting type 3, 5, 7, 9 has codimension 4 and has atleast two irreducible components

arising from the two distinct fillings.

We see that Proposition 3.3.4 exhorts us to determine the possible fillings of a split-

ting type as a key step towards understanding the locus of morphisms inMore(P1, G(r, n))

with restricted tangent bundles having the given splitting type. To this end, we have

the following Lemmas.

Lemma 3.3.8. Let r = 2 and n = 4, and let {c1, c2, c3, c4} be a splitting type of the

restricted tangent bundle with c1 ≤ c2 < c3 ≤ c4. Then {c1, c2, c3, c4} has two possible

fillings c1 c2

c3 c4

 and

c1 c3

c2 c4


Moreover, both the fillings are minimal.

Similarly, we have
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Lemma 3.3.9. Let r = 3 and n = 5. A splitting type {c1, · · · , c6} of the restricted

tangent bundle with c1 ≤ · · · ≤ c6 has exactly one filling except when {c1, · · · , c6} =

{c1, c1 + λ, · · · , c1 + 5λ} for some integer λ in which case there are two possible fillings


c1 c1 + λ

c1 + 2λ c1 + 3λ

c1 + 4λ c1 + 5λ


and


c1 c1 + 3λ

c1 + λ c1 + 4λ

c1 + 2λ c1 + 5λ



Additionally, all the fillings are minimal.

Proof of Lemma 3.3.8 and 3.3.9. We will briefly sketch the proof of Lemma 3.3.9. One

can prove Lemma 3.3.8 in a similar fashion.

Let r = 3 and n = 5. Given a splitting type {c1, · · · , c6} of a restricted tangent

bundle ϕ∗(TG(r,n)), there is at least one filling (since ϕ∗(TG(r,n)) = ϕ∗(S∗)⊗ϕ∗(Q)), say

A, which is a 3 × 2 matrix. After subtracting the (1, 1)th entry from every other entry

of A, we get a new matrix of form


0 λ

ρ2 ρ2 + λ

ρ3 ρ3 + λ



for some non-negative integers λ, ρ2, ρ3 with ρ2 ≤ ρ3. We now look at every possible

permutations with the (1, 1)th entry being zero and the (3, 2)th entry being ρ2 + λ, and

force the conditions of definition 3.3.1 which gives us some equations which must be
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compatible. This gives us all the possibilities. A similar brute force method works for

r = 2 and n = 4.

The proof of minimality of the fillings in the cases r = 2, n = 4 and r = 3, n = 5

are in a similar flavor. The key idea is to use the fact that the (1, 1)th and (r, n − r)th

entries are the same for every possible filling. For instance, when r = 3, n = 5, let

{c1, · · · , c6} = {c1, c1+ λ, · · · , c1+ 5λ} and let {a•} and {b•} be the corresponding induced

splittings. For any {a ′•} with P(a ′•) ≥ P(a•) and {b ′•} with P(b ′•) ≥ P(b•), we must have

a ′3 + b ′2 = a3 + b2 and since a ′3 ≥ a3 and b ′2 ≥ b2, we get a ′3 = a3, b
′
2 = b2. This gives

b ′1 = b1 and a ′2 + a ′1 = a2 + a1. Since we must have a ′1 + b ′1 = a1 + b1, we get a ′i = ai for

all i = 1, 2, 3 and b ′j = bj for all j = 1, 2.

Using a similar method as in proof of Lemma 3.3.9, we deduce that when r = 4 and

n = 6, a splitting type of the restricted tangent bundle of the form {c1, c1, c2, c2, c3, c3, c4, c4}

with 0 ≤ c2 − c1 = c3 − c2 = c4 − c3 has three possible fillings



c1 c1

c2 c2

c3 c3

c4 c4


,



c1 c2

c1 c2

c3 c4

c3 c4


and



c1 c3

c1 c3

c2 c4

c2 c4



However, in general, we found it impossible to determine all possible fillings using this

brute force method.

Additionally, we observe from these special cases that the number of fillings seems

to increase as we increase r, n and e. We don’t know how the fillings of a given splitting
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type depend on r and n, but we can provide a very crude upper bound for the number

of possible fillings.

Lemma 3.3.10. The total number of distinct fillings of a splitting type {cl}1≤l≤r(n−r) of

the restricted tangent bundle is bounded above by
(r(n−r)−2
n−r−1

)
.

Proof. It follows from definition 3.3.1 that every filling must have the same (1, 1)th and

(r, n − r)th entry. Furthermore, we see that every filling is uniquely determined by the

entries (1, 2), · · · , (1, n − r). Hence, a clumsy upper bound for the total number of

fillings is the number of choices for these entries, which is
(r(n−r)−2
n−r−1

)
.

On a more positive note, we see that

Lemma 3.3.11. If the splitting type of the restricted tangent bundle ϕ∗(TG(r,n)) is bal-

anced, then the splitting type of the restricted universal sub-bundle ϕ∗(S) and the splitting

type of the restricted universal quotient bundle ϕ∗(Q) must be balanced.

Proof. Let us choose a filling for the splitting type of the restricted tangent bundle, and

let a1, · · · , ar and b1, · · · , bn−r be non-negative increasing splitting types of ϕ∗(S∗) and

ϕ∗(Q) respectively. Since the splitting type of the restricted tangent bundle is balanced,

we must have (ar + bn−r) − (a1 + b1) ≤ 1, which yields ar − a1 ≤ 1 and bn−r − b1 ≤ 1.

Hence, the splitting types of ϕ∗(S) and ϕ∗(Q) must be balanced.

In conclusion, the locus of morphisms in More(P1, G(r, n)) need not always be ir-

reducible. For example, when r = 2 and n = 4, and let c1, c2, c3, c4 be non-negative

increasing splitting type of the restricted universal tangent bundle, with c2 < c3. It

follows from Lemma 3.3.8 that this locus has at least two irreducible components.



CHAPTER 4

BETTI NUMBERS OF MODULI SPACE OF SHEAVES ON P2

In this chapter, we determine bounds for stabilization of the Betti numbers of the

moduli space of stable sheaves on P2 when the rank is atleast two and it is coprime to

the first Chern class.

4.1 Estimating the Generating Functions when the rank is one

In this section, our goal is to analyze the generating functions G1,c(q) and G̃1,c̃(q).

More precisely, we are going to show that when ∆ > 2N the coefficient of L−Nq∆ in the

generating functions (1− q)G1,c(q) and (1− q)G̃1,c̃(q) is zero. As a consequence, we are

going to show that the 2Nth Betti number of MP2,H(1, c, c2) stabilize when c2 ≥ 2N .

Recall that given a smooth projective surface X with an ample divisor H on X,

the moduli space MX,H(1, c, c2) is isomorphic to Picc(X)×X [c2], where Picc(X) is the

abelian variety of line bundles on X with first Chern class c, and X [n] is the Hilbert

scheme of n points on X. The Betti numbers of X [n] were computed by Göttsche (19).

Using the Künneth formula, Coskun and Woolf (17)[Proposition 3.3] showed that the

Betti numbers of MX,H(1, c, c2) stabilize as c2 tends to infinity. In the special case when

X = P2, the moduli space MP2,H(1, c, c2) is isomorphic to P2[c2]. Ellingsrud and Stromme

(20)[Theorem 1.1, Corollary 1.3] computed the Betti numbers of P2[c2] and showed that

the 2Nth Betti number stabilize when c2 ≥ 2N . In this section, our goal is to re-derive

this result in a flavor similar to the higher rank case.
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We infer from equation Equation 2.7 that

G1,c(q) =
∑
∆≥0

[MP2,H(r, c,∆)]L(1−2∆)q∆

and

G̃1,c̃(q) =
∑
∆̃≥0

[MF1,E+F (r, c̃, ∆̃)]L(1−2∆̃)q∆̃

We have

Proposition 4.1.1. For ∆ > 2N , the coefficient of L−Nq∆ in (1 − q)G1,c(q) is zero.

Same for (1− q)G̃r,c̃(q).

Proof. We have the following equality of generating functions due to Göttsche (37)[Ex-

ample 4.9.1]

∞∑
∆=0

[(P2)[∆]]q∆ =
∞∏
m=1

1

(1− Lm−1qm)(1− Lmqm)(1− Lm+1qm)

Replacing q with L−2q in above equation, we get

∞∑
∆=0

[(P2)[∆]]L−2∆q∆ =
∞∏
m=1

1

(1− L−(m−1)qm)(1− L−mqm)(1− L−(m+1)qm)

Note that we have

[MP2,H(1, c,∆)] = (L− 1)−1[(P2)[∆]]
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Thus, we get

(1− q)G1,c(q) =
(1− q)L
(L− 1)

∞∑
∆=0

[(P2)[∆]]L−2∆q∆

=
(1− q)

(1− L−1)

∞∏
m=1

1

(1− L−(m−1)qm)(1− L−mqm)(1− L−(m+1)qm)

=
∞∏

m1=2

1

(1− L−(m1−1)qm1)

∞∏
m2=1

1

(1− L−2m2qm2)

∞∏
m3=0

1

(1− L−(m3+1)qm3)

=
∞∏

m1=2

 ∞∑
α1=0

L−(m1−1)α1qm1α1

× ∞∏
m2=1

 ∞∑
α2=0

L−m2α2qm2α2

×
∞∏

m3=0

 ∞∑
α3=0

L−(m3+1)α3qm3α3



Each non-zero term contributing to the coefficient of L−Nq∆ in (1−q)G1,c(q) arises from

a pair of equations

∆ =
δ1∑
j=1

m(j)
1 α(j)

1 +
δ2∑
j=1

m(j)
2 α(j)

2 +

δ3∑
j=1

m(j)
3 α(j)

3

−N =
δ1∑
j=1

−(m(j)
1 − 1)α(j)

1 +
δ2∑
j=1

−m(j)
2 α(j)

2 +

δ3∑
j=1

−(m(j)
3 + 1)α(j)

3

where α(j)
1 , α

(j)
2 , α

(j)
3 ≥ 0 for all j ≥ 1, and m

(j)
1 ≥ 2, m(j)

2 ≥ 1, m(j)
3 ≥ 0 for all j ≥ 1.

Therefore, we see that

∆−N =
δ1∑
j=1

α(j)
1 −

δ3∑
j=1

α(j)
3 ≤

δ1∑
j=1

(m(j)
1 − 1)α(j)

1 ≤ N

Hence, for ∆ > 2N the coefficient of L−Nq∆ in (1− q)G1,c(q) must be zero.
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In a similar fashion as above, we use the following equality of generating functions

due to Göttsche (37)[Example 4.9.3]

∞∑
∆̃=0

[F[∆̃]
1 ]q∆̃ =

∞∏
m=1

1

(1− Lm−1qm)(1− Lmqm)2(1− Lm+1qm)

Replacing q with L−2q and using the fact [MF1,E+F (1, c̃, ∆̃)] = (L−1)−1[F[∆̃]
1 ], we obtain

the following equation

(1− q)G̃1,c̃(q) =
∞∏

m1=2

 ∞∑
α1=0

L−(m1−1)α1qm1α1

× ∞∏
m2=1

 ∞∑
α2=0

L−m2α2qm2α2

2×
∞∏

m3=0

 ∞∑
α3=0

L−(m3+1)α3qm3α3



Each non-zero term contributing to the coefficient of L−Nq∆ in (1−q)G1,c̃(q) arises from

a pair of equations

∆ =
δ1∑
j=1

m(j)
1 α(j)

1 +

δ2,1∑
j=1

m(j,1)
2 α(j,1)

2 +

δ2,2∑
j=1

m(j,2)
2 α(j,2)

2 +

δ3∑
j=1

m(j)
3 α(j)

3

−N =
δ1∑
j=1

−(m(j)
1 − 1)α(j)

1 +

δ2,1∑
j=1

−m(j,1)
2 α(j,1)

2 +

δ2,2∑
j=1

−m(j,2)
2 α(j,2)

2 +

δ3∑
j=1

−(m(j)
3 + 1)α(j)

3

where α(j)
1 , α

(j,1)
2 , α

(j,2)
2 , α

(j)
3 ≥ 0 for all j ≥ 1, and m

(j)
1 ≥ 2, m(j,1)

2 ,m
(j,2)
2 ≥ 1, m(j)

3 ≥ 0

for all j ≥ 1. Therefore, we see that

∆−N =
δ1∑
j=1

α(j)
1 −

δ3∑
j=1

α(j)
3 ≤

δ1∑
j=1

(m(j)
1 − 1)α(j)

1 ≤ N
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Hence, for ∆ > 2N the coefficient of L−Nq∆ in (1− q)G̃1,c̃(q) must be zero.

As a consequence of above Proposition 4.1.1, we have the following:

Proposition 4.1.2. When c2 ≥ 2N , the 2N -th Betti number of MP2,H(1, c, c2) stabilize.

Proof. Note that all µH -semistable sheaves of rank one on P2 are µH -stable, because

the rank is coprime to the first Chern class. As a consequence, we can use Proposition

2.2.10 due to Coskun and Woolf and the fact that c2 = r∆+ r−1
2r c

2
1 to get the following

equality of generating functions

(1− q)
∑
c2≥0

[MP2,H(γ)]L−ext1(γ,γ)qc2 = (1− L−1)(1− q)G1,c(q)

where γ denotes the Chern character (r, c,∆).

Each term contributing to the coefficient of L−Nqd in (1− L−1)(1− q)G1,c(q) comes

from a pair of equations

d = ∆−N = ε−N ′

where ε ∈ {−1, 0} accounts for the contribution of the coefficient coming from (1−L−1),

and (∆,N ′) accounts for the contribution coming from the terms in coefficient of L−N ′q∆

in (1− q)G1,c(q). It follows from Proposition 4.1.1 that for the coefficient of L−N ′q∆ to

be nonzero, we must have ∆ ≤ 2N ′. Consequently, we must have d ≤ 2N . Hence, for

d > 2N , the coefficient of L−Nqd in (1 − L−1)(1 − q)G1,c(q) must be zero. Therefore,
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using Remark 2.2.8, we conclude that the 2Nth Betti number of MP2,H(1, c, c2) stabilize

for c2 ≥ 2N .

4.2 Estimating the generating function G̃r,c̃(q) when rank is at least two

In this section, our goal is to show that there is a constant C0 depending only on r

and c̃ such that when ∆ > N + C0, the coefficient of L−Nq∆ in (1 − q)G̃r,c̃(q) is zero.

We are going to show this in a couple of steps. First, we are going to use Mozgovoy’s

theorem (23)[Theorem 1.1] and estimate a generating function in A− expressed in terms

of the classes of the moduli stackMF1,F (γ). Then, we are going to use Joyce’s theorem

(38)[Theorem 6.21] to relate the classes of the moduli stacksMF1,E+F (γ) andMF1,F (γ)

in A−. Lastly, we are going to use key ideas of Coskun and Woolf (17) and Manschot

(22), (39) to derive our estimate (see Proposition 4.2.5).

Throughout this section, we are going to assume that r is at least two. We recall

two theorems due to Mozgovoy (23) and Joyce (38) respectively.

Let MF1,F (γ) denote the moduli stack of torsion free µF semistable sheaves on F1

with Chern character γ = (r, c,∆). We define generating function

Hr,c(q) =
∑
∆≥0

[MF1,F (r, c,∆)]qr∆ (4.1)

Let ZP1(q) =
1

(1−q)(1−Lq) be the motivic Zeta function for P1. Then, we have
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Theorem 4.2.1 ((23)[Theorem 1.1). If r - c · F , then MF1,F (γ) is empty, and hence

Hr,c(q) = 0. Otherwise, we have

Hr,c(q) =
1

(L− 1)

r−1∏
i=1

ZP1(Li)
∞∏
k=1

r−1∏
i=−r

ZP1(Lrk+iqk)

Before proceeding to Joyce’s theorem, in a similar vein as in Proposition 4.1.1, we

would like to show that for ∆� N , the coefficient of L−Nq∆ in the generating function

(1− q)
∑

∆≥0[MF1,F (r, c,∆)]Lr2(1−2∆)qr∆ vanishes.

Proposition 4.2.2. If ∆ > N , the coefficient of L−Nq∆ in the generating function

(1− q)
∑
∆≥0

[MF1,F (r, c,∆)]Lr
2(1−2∆)qr∆

is zero.

Proof. Clearly we can assume that r | c · F , because otherwise by Mozgovoy’s theorem

(Theorem 4.2.1) we have [MF1,F (r, c,∆)] = 0. Observe that

(1− q)
∑
∆≥0

[MF1,F (r, c,∆)]Lr
2(1−2∆)qr∆ = (1− q)Lr

2
Hr,c(L−2rq) (4.2)
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Moreover, we have the following equations

1

(L− 1)

r−1∏
i=1

1

(1− Li)(1− Li+1)
=

L−r2

(1− L−r)

r−1∏
i=1

1

(1− L−i)2

∞∏
k=1

r−1∏
i=−r

1

(1− L−rk+iqk)(1− L−rk+i+1qk)
=

∞∏
k1=1

1

(1− L−(rk1+r)qk1)
×

∞∏
k2=1

r−1∏
i=−r+1

1

(1− L−(rk2−i)qk2)2
×

∞∏
k3=1

1

(1− L−(rk3−r)qk3)

Therefore, we have

(1− q)Lr
2
Hr,c(L−2rq) =

 ∞∑
α1=0

L−rα1

 r−1∏
i=1

 ∞∑
α2=0

L−iα2

2 ∞∏
k1=1

 ∞∑
α3=0

L−(rk1+r)α3qk1α3

×
∞∏
k2=1

r−1∏
j=−r+1

 ∞∑
α4=0

L−(rk2−j)α4qk2α4

2 ∞∏
k3=2

 ∞∑
α5=0

L−(rk3−r)α5qk3α5



Each non-zero term contributing to the coefficient of L−Nq∆ in (1 − q)Lr2Hr,c(L−2rq)

corresponds to a pair of equations

∆ =
δ1∑
j1=1

k(j1)1 α(j1)
3 +

δ2∑
j2=1

r−1∑
j=−r+1

k(j2,j)2 (α(j2,j,1)
4 + α(j2,j,2)

4 ) +

δ3∑
j3=1

k(j3)3 α(j3)
5

−N = −rα1 +
r−1∑
i=1

−i(α(i,1)
2 + α(i,2)

2 ) +
δ1∑
j1=1

−(rk(j1)1 + r)α(j1)
3 +

δ2∑
j2=1

r−1∑
j=−r+1

−(rk(j2,j)2 − j)(α(j2,j,1)
4 + α(j2,j,2)

4 ) +

δ3∑
j3=1

−(rk(j3)3 − r)α(j3)
5



72

where all the α’s are non-negative integers and all the δ’s and k’s are positive integers

except k(j3)3 which is at least 2, for all 1 ≤ j3 ≤ δ3. We see that

r∆−N ≤
δ2∑
j2=1

r−1∑
j=−r+1

j(α(j2,j,1)
4 + α(j2,j,2)

4 ) +

δ3∑
j3=1

rα(j3)
5

Since j ≤ r − 1 and k
(j3)
3 ≥ 2, we see that (rk

(j2,j)
2 − j) ≥ 1 and (rk

(j3)
3 − r) ≥ r. Hence,

we have

δ2∑
j2=1

r−1∑
j=−r+1

j(α(j2,j,1)
4 + α(j2,j,2)

4 ) +

δ3∑
j3=1

rα(j3)
5 ≤ (r − 1)

δ2∑
j2=1

r−1∑
j=−r+1

(rk(j2,j)
2 − j)(α(j2,j,1)

4 + α(j2,j,2)
4 )

+

δ3∑
j3=1

(rk(j3)
3 − r)α(j3)

5 ≤ (r − 1)N

Hence for ∆ > N , the coefficient of L−Nq∆ in (1−q)
∑

∆≥0[MF1,F (r, c,∆)]Lr2(1−2∆)qr∆

is zero.

We now proceed to state Joyce’s theorem. Let X be a surface. Given a Chern charac-

ter γ, the ample cone of X admits a chamber decomposition where for all ample divisors

H in a given chamber the moduli stacks MX,H(γ) are isomorphic. When the ample

divisor H crosses a wall, certain sheaves inMX,H(γ) become destabilized and other un-

stable sheaves may become semistable. Joyce gives an inductive formula for computing

the change in the classes [MX,H(γ)] in term of the possible Harder-Narasimhan filtration

for unstable sheaves.

Let H1 and H2 be two ample line bundles on X. Let MX,H1(γ) (respectively

MX,H2(γ)) denote the moduli stack of torsion free µH1 (respectively µH2) semistable
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sheaves on X with Chern character γ = (r, c,∆). Let γ1, · · · , γl be Chern characters

such that
∑l

i=1 γi = γ. Assume that l ≥ 2, and consider the following conditions for all

1 ≤ i ≤ l − 1

A) µH1(γi) > µH1(γi+1) and µH2(
i∑

j=1

γj) ≤ µH2(
l∑

j=i+1

γj)

B) µH1(γi) ≤ µH1(γi+1) and µH2(
i∑

j=1

γj) > µH2(
l∑

j=i+1

γj)

(4.3)

Let u be the number of times that Case B occurs. We define

Sµ(γ1, · · · , γl;H1, H2) =



1, if l = 1

(−1)u, if l ≥ 2, and Case A or B occurs for all 1 ≤ i ≤ l − 1

0, otherwise
(4.4)

Theorem 4.2.3 ((38),Theorem 6.21). If H1 and H2 are ample line-bundles on X sat-

isfying KX ·H1 < 0 and KX ·H2 < 0, then we have the following equation

[MX,H2(γ)] =
∑

∑l
i=1 γi=γ

Sµ(γ1, · · · , γl;H1, H2)L−
∑
1≤i<j≤l χ(γj ,γi)

l∏
i=1

[MX,H1(γi)]

In our case, we would like to take X = F1, H1 = F and H2 = E + F . Clearly, since

KF1 = −2E − 3F , we have KF1 ·H1 < 0 and KF1 ·H2 < 0. However, H1 is not ample

and so we cannot use Joyce’s theorem (Theorem 4.2.3) as stated. Luckily the following

observation due to Coskun and Woolf (17)[Corollary 4.4] saves the day.
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Remark 4.2.4. Joyce’s theorem (Theorem 4.2.3) holds if H1 and H2 are nef, as long as

the sum on the right side of equation is convergent.

Moreover, Coskun and Woolf shows (17)[Corollary 5.3] that we can use Joyce’s equa-

tion in our case. Hence, we have

∑
∆≥0
MF1,E+F (γ)q

r∆ =
∑
∆≥0

∑
∑l
i=1 γi=γ

Sµ(γ1, · · · , γl;F,E + F ) L−
∑
1≤i<j≤l χ(γj ,γi)×

 l∏
i=1

[MF1,F (γi)]

 qr∆
(4.5)

Let γi = (ri, ci, ∆i) for all 1 ≤ i ≤ l. Further, we define µi = ci
ri

for all 1 ≤ i ≤ l.

We would like to manipulate equation Equation 4.5 so that the left hand side term of

equation Equation 4.5 becomes G̃r,c(q) and get rid of ∆ from the right hand side term

of equation Equation 4.5.

It is easy to see that

−
∑

1≤i<j≤l
χ(γj , γi) = −

1

2

∑
i<j

χ(γj , γi) + χ(γi, γj)

−
1

2

∑
i<j

χ(γj , γi) − χ(γi, γj)



We now list down some equations expressing the various Euler characteristics

• χ(γj , γi) − χ(γi, γj) = rirj(µj − µi) ·KF1

• χ(γ, γ) = r2(1− 2∆), and χ(γi, γi) = r2i (1− 2∆i) for all 1 ≤ i ≤ l.

•
∑

i<j χ(γj , γi) + χ(γi, γj) = χ(γ, γ) −
∑l

i=1 χ(γi, γi)
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Using the above equations we get

−
∑
i<j

χ(γj , γi) = −
1

2
r2(1− 2∆) +

1

2

l∑
i=1

r2i (1− 2∆i) −
1

2

∑
i<j

rirj(µj − µi) ·KF1 (4.6)

We now replace q by L−2rq in both sides of equation Equation 4.5, multiply both sides

of Equation 4.5 by Lr2 , and use equation Equation 4.6. We get

∑
∆≥0

[MF1,E+F (γ)]Lr
2(1−2∆)qr∆ =

∑
∆≥0

∑
∑l
i=1 γi=γ

Sµ(γ1, · · · , γl;F,E + F ) ×

L
1
2
r2(1−2∆)+ 1

2

∑l
i=1 r

2
i (1−2∆i) L− 1

2

∑
i<j rirj(µj−µi)·KF1 × l∏

i=1

[MF1,F (γi)]

 qr∆
(4.7)

Note that we are yet to get rid of ∆ from right hand side term in equation Equation 4.7.

To do that, we need to use Yoshioka’s relation for discriminants (25)[Equation 2.1]

r∆ =
l∑
i=1

ri∆i −
l∑
i=2

1

2ri
(∑i

j=1 rj
) (∑i−1

j=1 rj
)
 i−1∑
j=1

ricj − rjci

2 (4.8)

It follows from Yoshioka’s relation that the difference r∆ −
∑l

i=1 ri∆i depends only

on (r, c) and (ri, ci) for 1 ≤ i ≤ l. So we rewrite the first exponent of L in equation

Equation 4.7

1

2
r2(1−2∆)+

1

2

l∑
i=1

r2i (1−2∆i) =
1

2
(r2+

l∑
i=1

r2i )−r(r∆−
l∑
i=1

ri∆i)−
l∑
i=1

ri(r+ri)∆i (4.9)
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Using equation Equation 4.9 back in equation Equation 4.7 yields

G̃r,c(q) =
∑
∆≥0

∑
∑l
i=1 γi=γ

Sµ(γ1, · · · , γl;F,E + F )L
1
2(r

2+
∑l
i=1 r

2
i ) L− 1

2

∑
i<j rirj(µj−µi)·KF1 ×

(
L−rq

)r∆−
∑l
i=1 ri∆i

 l∏
i=1

[MF1,F (γi)]
(
L−(r+ri)q

)ri∆i
(4.10)

Observe that all the terms except the last one involving products on right hand side

of equality in equation Equation 4.10 depends only on (r, c) and (ri, ci) for 1 ≤ i ≤ l,

and the last term depends only on the ∆i’s for 1 ≤ i ≤ l. Therefore, we have

G̃r,c(q) =
∑

∑l
i=1 γi=γ

Sµ(γ1, · · · , γl;F,E + F )L
1
2(r

2+
∑l
i=1 r

2
i ) L− 1

2

∑
i<j rirj(µj−µi)·KF1 ×

(
L−rq

)r∆−
∑l
i=1 ri∆i

∑
∆1,··· ,∆l

 l∏
i=1

[MF1,F (γi)]
(
L−(r+ri)q

)ri∆i
(4.11)

Recall that we previously defined in equation Equation 4.1 the generating function

Hr,c(q) =
∑
∆≥0

[MF1,F (r, c,∆)]qr∆

The second summation term in equation Equation 4.11 can be expressed in terms of

Hr,c(q) as follows

∑
∆1,··· ,∆l

 l∏
i=1

[MF1,F (γi)]
(
L−(r+ri)q

)ri∆i =
l∏
i=1

Hri,ci(L
−(r+ri)q) (4.12)
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Therefore, we have

G̃r,c(q) =
∑

∑l
i=1(ri,ci)=(r,c)

Sµ(γ1, · · · , γl;F,E + F )L
1
2(r

2−
∑l
i=1 r

2
i ) L− 1

2

∑
i<j rirj(µj−µi)·KF1 ×

(
L−rq

)r∆−
∑l
i=1 ri∆i

l∏
i=1

Lr
2
iHri,ci(L

−(r+ri)q)

(4.13)

It follows from the definition of Sµ(γ1, · · · , γl;F,E + F ) in equation Equation 4.4

and from Mozgovoy’s theorem (Theorem 4.2.1) that all the terms on right hand side of

equality of equation Equation 4.13 depends only on (r, c) and (ri, ci) for 1 ≤ i ≤ l. Our

next goal is to analyze the exponents of each of these terms further and show that for

∆� N the coefficient of L−Nq∆ in (1− q)G̃r,c(q) vanishes.

Proposition 4.2.5. There is a constant C0 depending only on r and c such that if

∆ > N +C0, then coefficient of L−Nq∆ in (1− q)G̃r,c(q) is zero. Moreover, we can take

C0 to be 1
2(r

2 + 1).

Proof. Our approach is to look at each summand of (1 − q)G̃r,c(q) corresponding to a

equation

(r, c) =
l∑
i=1

(ri, ci)

and find a lower bound for ∆ corresponding to the term

(1− q)Sµ(γ1, · · · , γl;F,E + F )L
1
2(r

2−
∑l
i=1 r

2
i ) L− 1

2

∑
i<j rirj(µj−µi)·KF1 ×

(
L−rq

)r∆−
∑l
i=1 ri∆i

l∏
i=1

Lr
2
iHri,ci(L

−(r+ri)q)

(4.14)
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If l = 1, then equation Equation 4.14 becomes

(1− q)Sµ(γ;F,E + F )Lr
2
Hr,c(L−2rq) (4.15)

It follows from Proposition 4.2.2 and equation Equation 4.2 that for ∆ > N , the coeffi-

cient of L−Nq∆ in (1− q)Lr2Hr,c(L−2rq) is zero.

Assume l ≥ 2. We would like to estimate a lower bound for ∆ ′i such that the

coefficient of L−N ′i q∆
′
i in Lr2iHri,ci(L−(r+ri)q) is zero, and then use that to figure out

a lower bound for ∆ in equation Equation 4.14. It follows from Mozgovoy’s theorem

(Theorem 4.2.1) that

Lr
2
iHri,ci(L

−(r+ri)q) = Lr
2
i

1

(L− 1)

ri−1∏
j=1

ZP1(Lj)
∞∏
k=1

ri−1∏
j=−ri

ZP1(L−(rk−j)qk)

=
1

(1− L−ri)

ri−1∏
j=1

1

(1− L−j)2

 ∞∏
k=1

{
1

(1− L−(rk+ri)qk)
×

 ri−1∏
j=−ri+1

1

(1− L−(rk−j)qk)2

 1

(1− L−(rk−ri)qk)

}

Thus, we get

Lr
2
iHri,ci(L

−(r+ri)q) =

 ∞∑
α1=0

L−riα1

ri−1∏
j1=1

 ∞∑
α2=0

L−j1α2

2 ×
∞∏
k=1

{ ∞∑
α3=0

L−(rk+ri)α3qkα3

 ri−1∏
j2=−ri+1

 ∞∑
α4=0

L−(rk−j2)α4qkα4

2
 ∞∑
α5=0

L−(rk−ri)α5qkα5

}
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Each nonzero term contributing to the coefficient of L−N ′i q∆
′
i in Lr2iHri,ci(L−(r+ri)q)

arises from a pair of equations

∆ ′i =
δ∑
j=1

k(j)α(j)
3 +

ri−1∑
j2=−ri+1

k(j)(α(j,j2,1)
4 + α(j,j2,2)

4 ) + k(j)α(j)
5


−N ′i = −riα1 +

ri−1∑
j1=1

−j1(α
(j1,1)
2 + α(j1,2)

2 ) +
δ∑
j=1

{
− (rk(j) + ri)α

(j)
3 +

 ri−1∑
j2=−ri+1

−(rk(j) − j2)(α
(j,j2,1)
4 + α(j,j2,2)

4 )

− (rk(j) − ri)α
(j)
5

}

where all the α’s are non-negative integers, δ and the k’s are positive integers. Hence,

we get

r∆ ′i −N ′i ≤
δ∑
j=1

 ri−1∑
j2=−ri+1

j2(α
(j,j2,1)
4 + α(j,j2,2)

4 )

+ riα
(j)
5

Since j2 ≤ ri − 1 and k(j) ≥ 1, we see that j2 ≤ ri(rk
(j) − j2). Moreover, because l ≥ 2

we have ri ≤ (r − 1), and so ri ≤ ri(rk(j) − ri). These two inequalities yield

δ∑
j=1

 ri−1∑
j2=−ri+1

j2(α
(j,j2,1)
4 + α(j,j2,2)

4 )

+ riα
(j)
5 ≤ riN ′i

In summary, we get r∆ ′i −N ′i ≤ riN ′i ≤ (r − 1)N ′i , a posteriori, ∆ ′i ≤ N ′i .
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Going back to equation Equation 4.14, we see that each non-zero term contributing

to the coefficient of L−N ′q∆
′ in equation Equation 4.14 arises from a pair of equations

∆ ′ = ε+

r∆−
l∑
i=1

ri∆i

+
l∑
i=1

∆ ′i

−N ′ =
1

2

r2 − l∑
i=1

r2i

−
1

2

∑
i<j

rirj(µj − µi) ·KF1

− r

r∆−
l∑
i=1

ri∆i

+
l∑
i=1

−N ′i

where ε ∈ {0, 1} which accounts for contribution to the coefficient coming from (1 − q),

and (∆ ′i, N
′
i ) accounts for the contribution of terms to the coefficient of L−N ′q∆

′ coming

from terms of coefficient of L−N ′i q∆
′
i appearing in Lr2iHri,ci(L−(r+ri)q). Since ∆ ′i ≤ N ′i

for all 1 ≤ i ≤ l and ε ≤ 1, we see that

∆ ′ ≤ N ′+1+1
2

r2 − l∑
i=1

r2i

−1
2


∑
i<j

rirj(µj − µi) ·KF1

+ 2(r − 1)

r∆−
l∑
i=1

ri∆i




(4.16)

Clearly, to bound ∆ ′, we need to bound the last term in above equation Equation 4.16.

We are going to show later (in Lemma 4.2.6) that

2(r − 1)

r∆−
l∑
i=1

ri∆i

+

∑
i<j

rirj(µj − µi) ·KF1



is bounded below by a constant κ which depends only on (r, c) and ri for all 1 ≤ i ≤ l,

except when l = 2 and µF (γ2) − µF (γ1) = −1. Thus, we have

∆ ′ ≤ N ′ + 1+
1

2

r2 − l∑
i=1

r2i

−
1

2
κ
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We would like to scrutinize the special case when l = 2 and µF (γ2) − µF (γ1) = −1.

Note that it follows from Mozgovoy’s theorem (Theorem 4.2.1) that Hr,c only depends

on whether or not r | c · F . Let r = r1 + r2, c = aE + bF , c1 = r1a1E + b1F and

c2 = r2a2E+b2F . We will denote Hri,ci by Hri for i = 1, 2 because we are assuming that

ri | ci ·F for i = 1, 2. It follows from equation Equation 4.4 that for Sµ(γ1, γ2;F,E +F )

to be nonzero, we must have µE+F (γ1) ≤ µE+F (γ2), or equivalently, we have b2 ≥ br2
r .

Furthermore, we see that

−
1

2
r1r2(µ2 − µ1) ·KF1 = r1r2(a2 − a1) + rb2 − r2b

and

r∆− r1∆1 − r2∆2 =
r1r2
2r

(a2 − a1)
2 − (a2 − a1)b2 + b

r2(a2 − a1)

r

Using these equations together with the fact that a2 − a1 = −1, we see that equation

Equation 4.14 transforms to

(1− q)L
1
2
(r2−r21−r

2
2)L−r1r2q

r1r2
2r

− br2
r qb2

2∏
i=1

Lr
2
iHri(L

−(r+ri)q)

whenever b2 ≥ br2
r and is zero otherwise. Adding all these terms for b2 ≥ br2

r yields

L
1
2
(r2−r21−r

2
1)−r1r2q

r1r2
2r

− br2
r qd

br2
r e

2∏
i=1

Lr
2
iHri(L

−(r+ri)q) (4.17)
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Each nonzero term appearing in the coefficient of L−N ′q∆
′ in equation Equation 4.17

arises from a pair of equations

∆ ′ =
r1r2
2r

−
br2
r

+

⌈
br2
r

⌉
+∆ ′1 +∆ ′2

−N ′ =
1

2
(r2 − r21 − r22) − r1r2 −N ′1 −N ′2 = −N ′1 −N ′2

where (∆ ′i, N
′
i ) accounts for contribution coming from terms of coefficient of L−N ′i q∆

′
i

in Lr2i Hri(L−(r+ri)q). We have shown before that we must have ∆ ′i ≤ N ′i for i = 1, 2.

Hence, we must have

∆ ′ ≤ N ′ + r1r2
2r

+

(⌈
br2
r

⌉
−
br2
r

)

In conclusion, we have

∆ ′ ≤ N ′ + C0

where C0 is the supremum of 0, the terms 1 + 1
2

(
r2 −

∑l
i=1 r

2
i

)
− 1

2κ corresponding to

l ≥ 2 and r1 + · · · + rl = r, and the terms r1r2
2r +

(⌈
br2
r

⌉
− br2

r

)
corresponding to l = 2,

r1 + r2 = r, and µF (γ2) − µF (γ1) = −1.

It follows from equation Equation 4.26 that κ is bounded below by −(r−1). Clearly,(
r2 −

∑l
i=1 r

2
i

)
is bounded above by r2 − r. Hence, we see that

1+
1

2

r2 − l∑
i=1

r2i

−
1

2
κ ≤ 1

2
(r2 + 1)

Clearly
(⌈

br2
r

⌉
− br2

r

)
≤ 1 and r1(r−r1)

2r is bounded above by r
8 , whence the terms

corresponding to r = r1 + r2 and µF (γ2) − µF (γ1) = −1 are bounded above by r
8 + 1.
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In summary, we can take C0 to be 1
2(r

2 + 1). Hence, for ∆ ′ > N ′ + 1
2(r

2 + 1), the

coefficient of L−N ′q∆
′ in (1− q)G̃r,c(q) is zero.

Lemma 4.2.6. The following expression

2(r − 1)

r∆−
l∑
i=1

ri∆i

+

∑
i<j

rirj(µj − µi) ·KF1

 (4.18)

is bounded below by some constant κ which depends only on (r, c) and ri for 1 ≤ i ≤ l,

except when l = 2 and µF (γ2) − µF (γ1) = −1.

Proof. We can assume that ri | ci · F for each 1 ≤ i ≤ l, otherwise the entire summand

(equation Equation 4.14) vanishes due to Mozgovoy’s theorem (Theorem 4.2.1). Let

c = aE + bF and for each 1 ≤ i ≤ l, let ci = riaiE + biF . Note that every term in the

generating function G̃r,c(q) is invariant under the action of tensoring by line bundles,

whence, we can assume that 0 ≤ a, b ≤ (r − 1). Furthermore, we define si =
∑l

j=i bj for

all 1 ≤ i ≤ l.

Following Manschot (39)[Proof of Proposition 4.1] we see that

r∆−
l∑
i=1

ri∆i =
l∑
i=2

ri

2
(∑i

j=1 rj
) (∑i−1

j=1 rj
)
 i−1∑
j=1

rj(ai − aj)

2 −
l∑
i=2

(ai − ai−1)si

+ b
l∑
i=2

∑i−1
j=1 rirj(ai − aj)(∑i
j=1 rj

) (∑i−1
j=1 rj

)

Similarly, following Manschot (39)[Proof of Proposition 4.1] we see that

∑
i<j

rirj(µj − µi) ·KF1 =
∑
i<j

rirj(ai − aj) − 2
l∑
i=2

(ri + ri−1)si + 2(r − r1)b
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Using these two equations we get

2(r − 1)

r∆−
l∑
i=1

ri∆i

+

∑
i<j

rirj(µj − µi) ·KF1

 =2(r − 1)
l∑
i=2

ri

2
(∑i

j=1 rj
) (∑i−1

j=1 rj
)
 i−1∑
j=1

rj(ai − aj)

2 +∑
i<j

rirj(ai − aj)


+

2(r − 1)b
l∑
i=2

∑i−1
j=1 rirj(ai − aj)(∑i
j=1 rj

) (∑i−1
j=1 rj

) +

−2(r − 1)
l∑
i=2

(ai − ai−1)si − 2
l∑
i=2

(ri + ri−1)si + 2(r − r1)b

}
(4.19)

We would like to show that both the first and second summand of right hand side of

equation Equation 4.19 are bounded below. Let us call the first summand S1 and the

second summand S2.

We now proceed to scrutinize S1 to determine its lower bound. We are going to use

the following identity of Manschot (39)[Proof of Proposition 4.1]

l∑
i=2

ri

2
(∑i

j=1 rj
) (∑i−1

j=1 rj
)
 i−1∑
j=1

rj(ai − aj)

2 = 1

2r

 l∑
i=1

ri(r − ri)a
2
i − 2

∑
1≤i<j≤l

rirjaiaj


(4.20)

Since a =
∑l

i=1 riai, it follows from equation Equation 4.20 that

S1 = (r − 1)
l∑
i=1

ria
2
i −

r − 1

r
a2 +

l∑
i=1

airi

 l∑
j=i+1

rj −
i−1∑
j=1

rj


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Consider the smooth polynomial function

f(x1, · · · , xl) =
l∑
i=1

rix
2
i −

1

r
a2 +

l∑
i=1

xi
ri

r − 1

 l∑
j=i+1

rj −
i−1∑
j=1

rj



Clearly, the Hessian of f , given by
(

∂2f
∂xj∂xi

)
is positive definite. We define

g(x1, · · · , xl) =
l∑
i=1

rixi − a

Our goal is to minimize f along the locus of g = 0 for integer values of the xi’s. Using

the Lagrange’s multiplier method, we see that f assumes minima at

ai =
a

r
−

1

2(r − 1)

 l∑
j=i+1

rj −
i−1∑
j=1

rj

 , for i = 1, · · · , l

Clearly
∣∣∣∑l

j=i+1 rj −
∑i−1

j=1 rj
∣∣∣ ≤ (r − 1), and hence we get a

r − 1
2 ≤ ai ≤ a

r + 1
2 for all

1 ≤ i ≤ l. Thus, to find a lower bound for S1 we need to find the minimum value of f

when xi ∈ {−1, 0, 1, 2} for all 1 ≤ i ≤ l. We have the following partition

{1, · · · , l} = {iα}1≤α≤p ∪
{
jβ
}
1≤β≤q ∪ {kγ}1≤γ≤s ∪ {mδ}1≤δ≤t
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where xiα = −1, xjβ = 1, xkγ = 2, and xmδ = 0. We see that

r(r − 1)f = (12r − 9)

∑
iα>kγ

riαrkγ

+ (6r − 4)

∑
iα>jβ

riαrjβ +
∑

kγ<mδ

rkγrmδ


+ (2r − 1)

 ∑
iα>mδ

riαrmδ +
∑
jβ>kγ

rjβrkγ +
∑
jβ<mδ

rjβrmδ


+ (6r − 9)

∑
iα<kγ

riαrkγ

+ (2r − 4)

∑
iα<jβ

riαrjβ +
∑

kγ>mδ

rkγrmδ


+ (−1)

 ∑
iα<mδ

riαrmδ +
∑
jβ<kγ

rjβrkγ +
∑
jβ>mδ

rjβrmδ



(4.21)

Note that since r ≥ 2 all the summands in equation Equation 4.21 except the last one

have non-negative coefficient. By further examining the summands with non-negative

coefficient, we see that together they must be bounded below by (2r − 4) because all

the inequalities in the summations cannot be simultaneously compatible. Moreover, the

negative summand is bounded below by −(r2 − r). Hence, S1 is bounded below by

−r + 3− 4
r .

Our next goal is to determine a lower bound for S2. We are going to use the following

identities of Manschot (39)[Proof of Proposition 4.1]

l∑
i=2

ri(∑i
j=1 rj

) (∑i−1
j=1 rj

)
 i−1∑
j=1

rj(ai − aj)

 =
1

r

 l∑
i=2

(ai − ai−1)

 l∑
j=i

rj

 (4.22)

and
l∑
i=2

(ri + ri−1)

 l∑
j=i

rj

 = (r − r1)r (4.23)
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The identities in equations Equation 4.22 and Equation 4.23 yields

S2 = 2
l∑
i=2

((r − 1)(ai − ai−1) + (ri + ri−1))

 b
r

 l∑
j=i

rj

− si



Following Coskun and Woolf (17)[Proof of Theorem 5.4], we interpret the definition of

S({γ•};F, E + F ) (equation Equation 4.3) in our current situation, we obtain for all

2 ≤ i ≤ l

A) (ai − ai−1) < 0 and si ≥
b

r

 l∑
j=i

rj


B) (ai − ai−1) ≥ 0 and si <

b

r

 l∑
j=i

rj

 (4.24)

In Case A, we see that (r−1)(ai−ai−1)+ri+ri−1 ≤ 0 except when l = 2 and a2−a1 = −1,

which is not possible by our assumption. Hence, the term

((r − 1)(ai − ai−1) + (ri + ri−1))

 b
r

 l∑
j=i

rj

− si

 (4.25)

is non-negative.

Similarly, in Case B, we see that (r− 1)(ai− ai−1)+ ri+ ri−1 ≥ (ri+ ri−1), hence the

term in equation Equation 4.25 is non-negative. Additionally, by using the fact that si

are integers, it follows from equation Equation 4.24 that we have a slightly better bound

of equation Equation 4.25

|(r − 1)(ai − ai−1) + ri + ri−1|

1− sgn

(
ai − ai−1 +

1

2

)1− 2

−
b

r

l∑
j=i

rj



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where sgn is the sign function and {•} is the fractional part of any real number.

In conclusion, we can take κ to be

− r + 3−
4

r

+
l∑
i=2

|(r − 1)(ai − ai−1) + ri + ri−1|

1− sgn

(
ai − ai−1 +

1

2

)1− 2

−
b

r

l∑
j=i

rj




(4.26)

which is our lower bound for equation Equation 4.18.

Now that we have shown that for ∆̃� Ñ , the coefficient of L−Ñq∆̃ in (1− q)G̃r,c̃(q)

vanishes (see Proposition 4.2.5), our goal is to relate Gr,c(q) with G̃r,c̃ using the blow-up

formula, and conclude a similar result for Gr,c(q).

4.3 Estimating the generating function Gr,c(q) when rank is at least two

In this section, our goal is to show that there is a constant C depending only on r and

c such that when ∆ > N +C, the coefficient of L−Nq∆ in (1− q)Gr,c(q) is zero. To show

this, we are going to look at the blow-up F1 −−−→ P2 and use the blow-up formula due

to Mozgovoy (23)[Proposition 7.3] to relate the generating functions Gr,c(q) and G̃r,c̃(q)

(see equation Equation 4.30) in A−. We are going to scrutinize the terms appearing in

this relation, and use Proposition 4.2.5 to derive our inequality (see Theorem 4.3.7).

Recall from section 2.2 that we have a blow-up F1 −−−→ P2 at point p ∈ P2. Let

γ = (r, c,∆) be a Chern character on P2. Let m be the multiplicity of c at the point
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p. Let γ̃ = (r, c − mE, ∆̃) be a Chern character on F1. The blow-up formula due to

Mozgovoy (23)[Proposition 7.3] is the following equation

∑
ch2

[MF1,E+F (r, c−mE, ch2)]q
−ch2 = Fm(q)

∑
ch2

[MP2,H(r, c, ch2)]q
−ch2 (4.27)

where

Fm(q) =

 ∞∏
k=1

1

(1− Lrkqk)r




∑
∑r
i=1 ai=0,
ai∈Z+m

r

L
∑
i<j (

aj−ai
2 )q−

∑
i<j aiaj

 (4.28)

Note that on P2, we have −ch2(γ) = r∆ − c2

2r , while on F1, we have −ch2(γ̃) = r∆̃ −

c2

2r +
m2

2r . Hence, we can rewrite the blow-up equation (equation Equation 4.27)

∑
∆≥0

[MP2,H(r, c,∆)]qr∆ =
q
m2

2r

Fm(q)

∑
∆̃≥0

[MF1,E+F (r, c−mE, ∆̃)]qr∆̃ (4.29)

Replacing q by L−2rq and multiplying both sides by Lr2 in equation Equation 4.29 yields

Gr,c(q) =
(L−2rq)

m2

2r

Fm(L−2rq)
G̃r,c−mE(q) (4.30)

It follows from equation Equation 4.30 that in order to achieve our goal, we need to

analyze Fm(L−2rq) and find an estimate for ∆ in this expression.

By examining the definition of Fm in equation Equation 4.28, we conclude that it

depends only on the remainder of m modulo r, which we shall denote by m̄, which we

will think of as an integer between 0 and r − 1.
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We see that

Fm̄(L−2rq) =
∞∏
k=1

1

(1− L−rkqk)r

∑
∑r
i=1 ai=0,

ai∈Z+ m̄
r

L
∑
i<j (

aj−ai
2 )+2r

∑
i<j aiajq−

∑
i<j aiaj (4.31)

Since
∑r

i=1 ai = 0, we see that

−
∑

1≤i<j≤r
aiaj =

1

2

r∑
i=1

a2i

and ∑
1≤i<j≤r

(
aj − ai
2

)
+ 2r

∑
1≤i<j≤r

aiaj = −
r

2

 r∑
i=1

a2i

−

 r∑
i=1

iai


We now use the following substitutions

ai = bi +
m̄

r
, where bi ∈ Z, for 1 ≤ i ≤ r − 1,

ar = −
r−1∑
i=1

(
bi +

m̄

r

)

These substitutions yield the following equations

−
r

2

 r∑
i=1

a2i

−

 r∑
i=1

iai

 = −r

−m̄2

2r
+
m̄2

2
+

r−1∑
i=1

b2i + m̄
r−1∑
i=1

bi +
∑

1≤i<j≤(r−1)

bibj


+

(r − 1)m̄

2
+

r−1∑
i=1

(r − i)bi


1

2

r∑
i=1

a2i =

−m̄2

2r
+
m̄2

2
+

r−1∑
i=1

b2i + m̄
r−1∑
i=1

bi +
∑

1≤i<j≤(r−1)

bibj


(4.32)
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Employing the above equations Equation 4.32 leads to the following expression for

Fm̄(L−2rq)

Fm̄(L−2rq) =

 ∞∏
k=1

1

(1− L−rkqk)r

(L−rq
)− (r+1)m̄2

2r L
(r−1)m̄

2 ×

∑
b1,··· ,br−1∈Z

L
∑r−1
i=1 (r−i)bi

(
L−rq

)m̄2+∑r−1
i=1 b

2
i+m̄

∑r−1
i=1 bi+

∑
i<j bibj

For sake of convenience, we define

Λ
(m̄)
d =

∑
b1,··· ,br−1∈Z,

m̄2+
∑r−1
i=1 b

2
i+m̄

∑r−1
i=1 bi+

∑
i<j bibj=d

L
∑r−1
j=1(r−j)bj (4.33)

Thus, we can think of the last summation term of Fm̄(L−2rq) as a power series

Fm̄(L−2rq) =

 ∞∏
k=1

1

(1− L−rkqk)r

(L−rq
)− (r+1)m̄2

2r L
(r−1)m̄

2

 ∞∑
d=0

Λ
(m̄)
d (L)

(
L−rq

)d
(4.34)

Remark 4.3.1. Recall that any power series of the form f(x) = 1 + a1x + a2x
2 + · · · is

invertible, and its inverse is given by 1+ b1x+ b2x2+ · · · , where for any positive integer

n, we have

bn =
∑

n1+···+nl=n
ni∈Z>0

(−1)lan1 · · · anl

To analyze Gr,c(q), we need to invert Fm̄(L−2rq) (equation Equation 4.30), and a

posteriori, we need to invert the power series
∑∞

d=0 Λ
(m̄)
d (L)(L−rq)d. To do this, we need

to figure out the least non-negative integer d such that Λ(m̄)
d (L) is nonzero.
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Lemma 4.3.2. The smallest non-negative integer d for which Λ(m̄)
d is nonzero, is m̄2+m̄

2 .

Additionally,

Λ
(m̄)
m̄2+m̄
2

(L) = L−rm̄

rm̄− m̄2−m̄
2∑

ν= m̄2+m̄
2

ρνLν

where ρν is the cardinality of the set {(j1, · · · , jm̄) | 1 ≤ j1 < · · · < jm̄ ≤ r, j1 + · · ·+ jm̄ = ν},

when ν is a positive integer, and ρ0 = 1.

Proof. Note that

m̄2 +
r−1∑
i=1

b2i + m̄
r−1∑
i=1

bi +
∑
i<j

bibj =
1

2

m̄2 +
r−1∑
i=1

b2i +

m̄+
r−1∑
i=1

bi

2

Consequently, we need to figure out the smallest value of m̄2+
∑r−1

i=1 b
2
i +
(
m̄+

∑r−1
i=1 bi

)2
,

where bi ∈ Z for all 1 ≤ i ≤ r − 1.

If m̄ = 0, we see that the equation
∑r−1

i=1 b
2
i +

(∑r−1
i=1 bi

)2
= 0 has only one solution,

the trivial one. Thus, Λ(0)
0 (L) = 1.

Assume 1 ≤ m̄ ≤ r−1. It follows from Lemma 4.3.3 (below), that the smallest value

assumed by the expression
∑r−1

i=1 b
2
i +

(
m̄+

∑r−1
i=1 bi

)2
occurs at b1 = · · · = br−1 = − m̄

r .

As a result, we need to evaluate the expression when bi ∈ {−1, 0} for all 1 ≤ i ≤ r − 1,

to figure out the minimum value of the expression for integer values. Suppose k of the

bi’s are (−1) and the remaining are zero, the expression becomes k + (m̄− k)2. Clearly,

the minimum value of k + (m̄− k)2 for integer values of k is m̄, which occurs when

k = m̄− 1, m̄.
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In summary, when 1 ≤ m̄ ≤ r − 1, the smallest value of the expression

1

2

m̄2 +
r−1∑
i=1

b2i +

m̄+
r−1∑
i=1

bi

2

for integer values of bi is m̄2+m̄
2 , which occurs when m̄− 1 or m̄ of the bi’s are (−1) and

the remaining are zero. Hence, we have

Λ
(m̄)
d (L) =

∑
1≤j1<···<jm̄−1≤r−1

Lj1+···+jm̄−1−(m̄−1)r +
∑

1≤j1<···<jm̄≤r−1
Lj1+···+jm̄−rm̄

Factoring out L−rm̄ leads to

Λ
(m̄)
d (L) = L−rm̄

∑
1≤j1<···<jm̄≤r

Lj1+···+jm̄

Before proceeding further, we need to tie the loose ends of Lemma 4.3.2 by analyzing

the real valued polynomial function y21 + · · ·+ y2n + (A+ y1 + · · ·+ yn)
2.

Lemma 4.3.3. Consider the smooth real valued function

f(y1, · · · , yn) = y21 + · · ·+ y2n + (A+ y1 + · · ·+ yn)
2

where A is any real number. The Hessian of f is positive definite. Furthermore, the

function f has a global minima at y1 = · · · = yn = − A
n+1 , and the minimum value for f

is A2

n+1 .
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Proof. Clearly, we see that for 1 ≤ k ≤ n

∂f

∂yk
= 2yk + 2 (A+ y1 + · · ·+ yn)

Subsequently, we see that for 1 ≤ l ≤ n

∂2f

∂yl∂yk
=


2, if k 6= l

4, if k = l

Let H be the n× n matrix with Hl,k =
∂2f

∂yl∂yk
, then we see that

(y1 · · · yn) ·H · (y1 · · · yn)T = 2

 n∑
i=1

y2i

+ 2

 n∑
i=1

yi

2

Thus, H is positive definite. As a consequence, f has a global minimum when ∂f
∂yk

= 0

for all 1 ≤ k ≤ n. This system of linear equations has a unique solution y1 = · · · = yn =

− A
n+1 . It follows that the minimum value for f is A2

n+1 .

Returning back to our track, we still need to analyze Fm̄(L−2rq). Using equation

Equation 4.34 and Lemma 4.3.2, we see that

Fm̄(L−2rq) =

 ∞∏
k=1

1

(1− L−rkqk)r

(L−rq
)− (r+1)m̄2

2r L
(r−1)m̄

2

Λ
(m̄)
m̄2+m̄
2

(L)
(
L−rq

) m̄2+m̄
2

∞∑
d=0

Λ̃
(m̄)
d (L)

(
L−rq

)d

where Λ̃(m̄)
d (L) =

(
Λ
(m̄)
m̄2+m̄
2

(L)
)−1

· Λ(m̄)

d+ m̄2+m̄
2

(L).
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Finally, using remark 4.3.1, we can invert Fm̄(L−2rq).

(
Fm̄(L−2rq)

)−1
=

 ∞∏
k=1

(1− L−rkqk)r

(L−rq
)− rm̄−m̄2

2r L−
(r−1)m̄

2

(
Λ
(m̄)
m̄2+m̄
2

(L)
)−1

1+
∞∑
d=1

 ∑
d1,··· ,dl∈Z>0
d1+···+dl=d

(−1)l
l∏
i=1

Λ̃
(m̄)
di

(L−rq
)d


(4.35)

Before tackling Gr,c(q), we would like to analyze Fm̄(L−2rq)−1 and produce bounds

for ∆ such that the coefficient of L−Nq∆ vanishes.

Lemma 4.3.4. If ∆ > N − (r−m̄)m̄
2r , then the coefficient of L−Nq∆ in Fm̄(L−2rq)−1 is

zero.

Proof. We are going to produce an expression for
(
Λ
(m̄)
m̄2+m̄
2

(L)
)−1

, and use it alongwith

the expression for Fm̄(L−2rq)−1 (see equation Equation 4.35) to determine the bound

for ∆.

Using Lemma 4.3.2 and factoring Lrm̄− m̄2−m̄
2 , we get

Λ
(m̄)
m̄2+m̄
2

(L) = L− m̄2−m̄
2

−(rm̄−m̄2)∑
ν=0

ρν+rm̄− m̄2−m̄
2

Lν

In a similar fashion as in remark 4.3.1, it follows that

(
Λ
(m̄)
m̄2+m̄
2

(L)
)−1

= L
m̄2−m̄
2

1+ −∞∑
ν=−1

 ∑
ν1,··· ,νl∈Z<0
ν1+···+νl=ν

(−1)l
l∏
i=1

ρνi+rm̄− m̄2−m̄
2

Lν


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It follows from equation Equation 4.35 that

(
Fm̄(L−2rq)

)−1
=

∞∏
k=1

( ∞∑
α=0

(−1)α
(
r

α

)
L−rkαqkα

)
×
(
L−rq

)− rm̄−m̄2

2r L−
(r−1)m̄

2 ×
((

Λ
(m̄)
m̄2+m̄

2

(L)
)−1

+

−∞∑
d=−1

 ∑
d1,··· ,dl∈Z<0

d1+···+dl=d

(−1)l
(
Λ
(m̄)
m̄2+m̄

2

(L)
)−(l+1) l∏

i=1

Λ
(m̄)

di+
m̄2+m̄

2

(L)

(L−rq
)d


Each nonzero term appearing in the co-efficient of L−Nq∆ in Fm̄(L−2rq)−1 arises from

a pair of equations

∆ =

 δ∑
j=1

k(j)α(j)

−

(
rm̄− m̄2

2r

)
+ d

−N =

 δ∑
j=1

−rk(j)α(j)

+ r

(
rm̄− m̄2

2r

)
−

(r − 1)m̄

2
+

m̄2 − m̄

2
(l + 1) +

l+1∑
i=1

νi

+
l∑
i=1

r−1∑
j=1

(r − j)b
(i)
j

− rd

where the α’s, the ν’s, and l are non-negative integers; the k’s are positive integers; and

the b(i)j ’s are integers satisfying

m̄2 +
r−1∑
j=1

(
b
(i)
j

)2
+

m̄+
r−1∑
j=1

b
(i)
j

2 = 2di + m̄2 + m̄, for 1 ≤ i ≤ l

Subsequently, we will show (in Lemma 4.3.5) that
(∑r−1

j−1(r − j)b
(i)
j

)
+ m̄2−m̄

2 ≤ (r−1)di,

for all 1 ≤ i ≤ l. Consequently, we have

 l∑
i=1

r−1∑
j=1

(r − j)b
(i)
j

+
m̄2 − m̄

2
l ≤ (r − 1)d
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Therefore, we see that

N + (r − 1)
rm̄− m̄2

2r
−

(r − 1)m̄

2
+
m̄2 − m̄

2
≥

 δ∑
j−1

k(j)α(j)

−
rm̄− m̄2

2r
+ d = ∆

and hence,

N −
(r − m̄)m̄

2r
≥ ∆

Before we continue, we need to wrap up the proof of Lemma 4.3.4 by proving the

following:

Lemma 4.3.5. Let d be a non-negative integer, and m̄ be a non-negative integer less

than r. Suppose b1, · · · , br−1 are integers satisfying

m̄2 +
r−1∑
j=1

b2j +

m̄+
r−1∑
j=1

bj

2 = 2d+ m̄2 + m̄ (4.36)

Then, we have
∑r−1

j−1(r − j)bj ≤ (r − 1)d.

Furthermore, if r ≥ 3 and 2 ≤ m̄ ≤ (r − 1), then we have

r−1∑
j=1

(r − j)bj

+
m̄2 − m̄

2
≤ (r − 1)d

Proof. Before we begin the proof of Lemma 4.3.5, note that
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Remark 4.3.6. Let r1, · · · , rn be positive integers satisfying r1 > · · · > rn, and let

b1, · · · , bn be integers satisfying b1 ≥ · · · ≥ bn. Let σ be any permutation of {1, · · · , n}.

Then, we have

r1bσ(1) + · · ·+ rnbσ(n) ≤ r1b1 + · · ·+ rnbn

Thus, if b ′1, · · · , b ′r−1 be a rearrangement of b1, · · · , br−1 satisfying b ′1 ≥ · · · ≥ b ′r−1,

then we see that
r−1∑
j=1

(r − j)bj ≤
r−1∑
j=1

(r − j)b ′j

Moreover, let n1, n2, n3 be non-negative integers such that

• b ′j1 ≥ · · · ≥ b
′
jn1
≥ 2,

• b ′jn1+1 = · · · = b ′jn1+n2 = 1,

• −1 ≥ b ′jn1+n2+1 ≥ · · · ≥ b
′
jn1+n2+n3

, and

• b ′j = 0 for all j 6= jl, 1 ≤ l ≤ n1 + n2 + n3.

Therefore, we have

r−1∑
j=1

(r − j)b ′j ≤
n1∑
l=1

(r − jl)b
′
jl
+

n1+n2∑
l=n1+1

(r − jl) ≤
(r − 1)

2

2
 n1∑
l=1

b ′jl

+ 2n2



We observe that to complete our proof it is enough to show that

 n1∑
l=1

2b ′jl

+ 2n2 ≤ 2d
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Since
(
b ′jl

)2
≥ 2b ′jl for 1 ≤ l ≤ n1 and

(
b ′jl

)2
= 1 for n1 + 1 ≤ l ≤ n1 + n2, it follows

from equation Equation 4.36 that it is enough to show that

n2 + m̄ ≤
n1+n2+n3∑
l=n1+n2+1

(
b ′jl

)2
+

m̄+ n2 +
n1∑
l=1

b ′jl

+

n1+n2+n3∑
l=n1+n2+1

b ′jl

2

If n2+m̄ ≤ n3, then we are done because
(
b ′jl

)2
≥ 1 for all n1+n2+1 ≤ l ≤ n1+n2+n3.

Otherwise, it follows from Lemma 4.3.3 that

n1+n2+n3∑
l=n1+n2+1

(
b ′jl

)2
+

m̄+ n2 +
n1∑
l=1

b ′jl

+

n1+n2+n3∑
l=n1+n2+1

b ′jl

2 ≥ 1

n3 + 1

m̄+ n2 +
n1∑
l=1

b ′jl

2

Since b ′jl ≥ 2 for 1 ≤ l ≤ n1 and n2 + m̄ ≥ n3 + 1, we have

1

n3 + 1

m̄+ n2 +
n1∑
l=1

b ′jl

2 ≥ n2 + m̄

Now we are going to specialize to the case when r ≥ 3 and 2 ≤ m̄ ≤ r − 1. Clearly,

since m̄ ≥ 2, we see that m̄2−m̄
2 = 1+ · · ·+ (m̄− 1). We define

b ′j =


bj , if 1 ≤ j ≤ (r − m̄)

bj + 1, if (r − m̄+ 1) ≤ j ≤ (r − 1)

As a consequence, we see that

r−1∑
j=1

(r − j)bj

+
m̄2 − m̄

2
=

r−1∑
j=1

(r − j)b ′j
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Additionally, we can rewrite equation Equation 4.36 in terms of b ′j ’s as follows

r−1∑
j=1

(
b ′j

)2
+

r−1∑
j=1

b ′j

2 + 2

r−m̄∑
j=1

b ′j

 = 2d

As a result, to prove our claim, it is enough to show that

(r − 1)

2


r−1∑
j=1

(
b ′j

)2
+

r−1∑
j=1

b ′j

2 + 2

r−m̄∑
j=1

b ′j


−

r−1∑
j=1

(r − j)b ′j

 ≥ 0

for integer values of b ′j , for all 1 ≤ j ≤ r − 1. Consider the smooth polynomial function

f(x1, · · · , xr−1) =
(r − 1)

2


r−1∑
j=1

x2j +

r−1∑
j=1

xj

2 + 2

r−m̄∑
j=1

xj


−

r−1∑
j=1

(r − j)xj



We have

∂f

∂xk
=


(r−1)
2

{
2xk + 2

(∑r−1
j=1 xj

)
+ 2
}
− (r − k), if 1 ≤ k ≤ (r −m)

(r−1)
2

{
2xk + 2

(∑r−1
j=1 xj

)}
− (r − k), if (r − m̄+ 1) ≤ k ≤ (r − 1)

and, the second partial derivatives are

∂2f

∂xl∂xk
=


2 (r−1)2 , if l 6= k

4 (r−1)2 , if l = k
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Since r ≥ 3 and the Hessian matrix for f is (r−1)
2 times the Hessian matrix in Lemma

4.3.3, we conclude that our Hessian matrix is positive definite. Thus, f has a global

minimum at the critical point

xk =


− m̄

r − 1
2 +

(r−k)
(r−1) , if 1 ≤ k ≤ (r − m̄)

− m̄
r + 1

2 +
(r−k)
(r−1) , if (r − m̄+ 1) ≤ k ≤ (r − 1)

It follows from the bounds on k that in either case, we have −1
2 ≤ xk ≤ 1

2 . Hence,

to show that f is non-negative for all integer values of xj , for all 1 ≤ j ≤ (r − 1),

it is enough to show that f is non-negative for every element of the set {−1, 0, 1}r−1.

Let (x1, · · · , xr−1) be an element of the set {−1, 0, 1}r−1. Furthermore, assume that for

1 ≤ j ≤ (r − m̄), x of the xj ’s are (+1) and y of the xj ’s are (−1). On a similar note,

assume that for (r − m̄ + 1) ≤ j ≤ (r − 1), z of the xj ’s are (+1) and w of the xj ’s are

(−1). It follows from Remark 4.3.6 that

r−1∑
j=1

(r − j)xj ≤ (r − 1) + · · ·+ (r − x) − {m̄+ (m̄+ 1) + · · ·+ (m̄+ y − 1)}

+ (m̄− 1) + · · ·+ (m̄− z) − {1+ · · ·+ w}

= rx− m̄y + m̄z −
x2 + x

2
−
y2 − y

2
−
z2 + z

2
−
w2 + w

2
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Therefore, we have

f(x1, · · · , xr−1) ≥
(r − 1)

2
{(x− y + z − w)2 + 3x− y + z + w}

−

{
rx− m̄y + m̄z −

x2 + x

2
−
y2 − y

2
−
z2 + z

2
−
w2 + w

2

} (4.37)

For ease of notation, let’s call the right hand side of inequality in equation Equation 4.37

as g(x, y, z, w). Upon further scrutinizing, we deduce that

2g(x, y, z, w) = (r−1)(x−y+z−w)2+(x2+y2+z2+w2)+(r−2)x+(2m̄−r)y+(r−2m̄)z+rw

If r = 2m̄, then 2g(x, y, z, w) ≥ 0 because x and w are non-negative integers. If r > 2m̄,

then we see that

2g(x, y, z, w) ≥ (r − 2m̄) {(x− y + z − w)2 + (x− y + z − w)} ≥ 0

Similarly, if r < 2m̄, then using the fact that (r − 1) > (2m̄− r), we get

2g(x, y, z, w) ≥ (2m̄− r) {(−x+ y − z + w)2 + (−x+ y − z + w)} ≥ 0

In conclusion, the function f is non-negative for all integer values of xj , for all 1 ≤ j ≤

r − 1.

We are finally ready to analyze (1− q)Gr,c(q).
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Theorem 4.3.7. If ∆ > N + (2−2r)m̄2−rm̄
2r + C0, where C0 is the same constant as in

Proposition 4.2.5, then the coefficient of L−Nq∆ in (1− q)Gr,c(q) is zero.

Proof. Recall that if follows from the blow-up equation (equation Equation 4.30) that

(1− q)Gr,c(q) =
(
L−2rq

)m2
2r ×

(
Fm(L−2rq)

)−1 × (1− q)G̃r,c−mE(q)

Each nonzero term appearing in the co-efficient of L−Nq∆ arises from a pair of equations

∆ =
m̄2

2r
+∆1 +∆2

−N = −m̄2 + (−N1) + (−N2)

where (∆1,−N1) accounts for the contribution of terms from the co-efficient of L−N1q∆1

in (Fm̄(L−2rq))−1, and (∆2,−N2) accounts for the contribution of terms from the co-

efficient of L−N2q∆2 in (1− q)G̃r,c−mE(q).

It follows from Lemma 4.3.4 and Proposition 4.2.5 that

∆1 ≤ N1 −
(r − m̄)m̄

2r
, and ∆2 ≤ N2 + C0

These inequalities yield

∆ ≤ N +
(2− 2r)m̄2 − rm̄

2r
+ C0
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In conclusion, for ∆ > N + (2−2r)m̄2−rm̄
2r +C0, the co-efficient of L−Nq∆ in (1− q)Gr,c(q)

is zero.

4.4 Bounds for stabilization of Betti numbers

In this section, our goal is to determine lower bounds such that the Betti numbers

of the moduli space stabilize. More precisely, we look at P2 equipped with the ample

divisor H = c1(OP2(1)). We assume that r and a are coprime and consider the moduli

space MP2,H(r, aH, c2). Since r and a are coprime, all µH -semistable sheaves are µH -

stable. Using Proposition 2.2.10 in conjunction with Theorem 4.3.7, we derive the lower

bounds such that the Betti numbers of MP2,H(r, aH, c2) stabilize. Lastly, we investigate

some examples and show that we can improve this bound further.

Theorem 4.4.1. Let r be at least two. Assume that r and a be coprime. There is

a constant C depending only on r and a such that if c2 ≥ N + C, the 2N th Betti

number of the moduli space MP2,H(r, aH, c2) stabilize. Moreover, we can take C =

⌊
r−1
2r a

2 + 1
2(r

2 + 1)
⌋
.

Proof. Let γ denote the Chern class (r, aH, c2). By our assumption, r and a are co-

prime, a posteriori, all µH -semistable sheaves are µH -stable. In this case, we know that

MP2,H(γ) is a smooth projective variety of dimension ext1(γ, γ). We conclude using

Remark 2.2.8 that to show that the 2Nth Betti number stabilize for c2 ≥ N + C, it is

enough to show that the coefficient of L−Nqd in the generating function

(1− q)
∑
c2≥0

[MP2,H(γ)]L−ext1(γ,γ)qc2
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is zero for d > N + C.

We note that χ(γ, γ) = 1− ext1(γ, γ) and c2 = r∆+ r−1
2r c

2
1. Proposition 2.2.10 yields

the following equality in A

[MP2,H(r, aH, c2)] = (L− 1)[MP2,H(r, aH, c2)]

Thus, we have the following equality of generating functions

(1− q)
∑
c2≥0

[MP2,H(γ)]L−ext1(γ,γ)qc2 = q
r−1
2r

a2(1− L−1)(1− q)Gr,aH(q)

Each term contributing to the coefficient of L−Nqd in q
r−1
2r

a2(1 − L−1)(1 − q)Gr,aH(q)

arises from a pair of equations

d =
r − 1

2r
a2 +∆ ′

−N = ε−N ′

where ε ∈ {−1, 0} accounts for the contribution to the coefficient of L−Nqd coming from

(1 − L−1), and (∆ ′, N ′) accounts for the contribution coming from the coefficient of

L−N ′q∆
′ in (1 − q)Gr,aH(q). It follows from Theorem 4.3.7 that for the coefficient of

L−N ′q∆
′ to be nonzero, we must have ∆ ′ ≤ N ′+C0 (using m = 0). Moreover, it follows
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from Proposition 4.2.5 that we can take C0 = 1
2(r

2+1). Consequently, for the coefficient

of L−Nqd in q
r−1
2r

a2(1− L−1)(1− q)Gr,aH(q) to be nonzero, we must have

d ≤ N +

⌊
r − 1

2r
a2 + C0

⌋

For the remainder of this section, we look at some examples. Yoshioka (21)[Page 194]

has computed the Betti numbers b2N (MP2,H(2,−H, c2)), where MP2,H(2,−H, c2) is the

moduli space of µH -stable sheaves with Chern classes (2,−H, c2), which we will denote

by γ. We observe from the table in (21)[Page 194] that the Betti numbers b2N (MP2,H(γ))

stabilize when c2 ≥ N + 1. Since r = 2 and a = −1, we get from Theorem 4.4.1 that

the Betti numbers stabilize when c2 ≥ N + 2. Therefore, we need to improve our lower

bound.

Proposition 4.4.2. If c2 ≥ N+1, the 2N th Betti number of the moduli space MP2,H(2,−H, c2)

stabilize.

Proof. Following the proof of Theorem 4.4.1, it is enough to show that when d > N + 1

,the coefficient of L−Nqd in q
1
4 (1− L−1)(1− q)G2,−H(q) is zero.
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Each term contributing to the coefficient of L−Nqd in q
1
4 (1 − L−1)(1 − q)G2,−H(q)

arises from a pair of equations

d =
1

4
+∆ ′

−N = ε−N ′

where ε ∈ {−1, 0} accounts for the contribution to the coefficient coming from (1−L−1),

and (∆ ′, N ′′) accounts for the contribution coming from terms in coefficient of L−N ′q∆
′

in (1− q)G2,−H(q).

It follows from Theorem 4.3.7 that for the co-efficient of L−N ′q∆
′ to be nonzero, we

must have ∆ ′ ≤ N ′ + C0. Consequently, we must have

d−
1

4
= ∆ ′ ≤ N ′ + C0 = N + ε+ C0 ≤ N + C0 (4.38)

As a result, for d > N+
⌊
1
4 + C0

⌋
, the coefficient of L−Nqd in q

1
4 (1−L−1)(1−q)G2,−H(q)

must be zero. Therefore, to complete the proof of our Claim, we need to figure out the

value of C0.

It follows from the proof of Proposition 4.2.5 that to compute C0, we need to compute

1

2

r2 − l∑
i=1

r2i

−
1

2
κ
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where l = 2, r = 2, r1 = r2 = 1, and κ is a lower bound for

2 (2∆−∆1 −∆2) + (c2 − c1) ·KF1

except for the case l = 2 and (c2 − c1) · F = −1.

Let c1 = a1E+b1F and c2 = a2E+b2F . Since c1+c2 = −E−F , we have a1+a2 = −1

and b1 + b2 = −1. Moreover, we must have a2 − a1 6= −1. Using Yoshioka’s relation

(equation Equation 4.8) yields

(2∆−∆1 −∆2) = −
1

4
(c1 − c2)

2 =
1

4
(2a1 + 1)2 −

1

2
(2a1 + 1) (2b1 + 1)

Since KF1 = −2E − 3F , we see that

(c2 − c1) ·KF1 = (2a1 + 1) + 2 (2b1 + 1)

Therefore, we have

2(2∆−∆1 −∆2) + (c2 − c1) ·KF1 = 2a21 + 2a1 + 2b1 − 4a1b1 +
5

2

Clearly a21 + a1 ≥ 0 for all integer values of a1. Thus, we need to find a lower bound for

2b1(1− 2a1).

Recall that as per the definition of Sµ({1, c1}, {1, c2}, F, E + F ) (see equation Equa-

tion 4.3, Equation 4.4) we have two cases
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A) a1 > −1
2 and b1 ≤ −1

2

B) a1 ≤ −1
2 and b1 > −1

2

Since a1 and b1 are integers, in Case A, we see that a1 ≥ 0 and −b1 ≥ 1. When a1 = 0,

we must have a2 = −1, whence a2 − a1 = −1 which is not possible by our assumption.

Hence, we must have a1 ≥ 1, which yields

2b1(1− 2a1) = (2a1 − 1)(−2b1) ≥ (2 (1) − 1) (2(1)) = 2

Similarly, in Case B, we see that −a1 ≥ 1 and b1 ≥ 0, thereby yielding

2b1(1− 2a1) ≥ (2(0)) (1+ 2(1)) = 0

In either case we see that 2b1(1− 2a1) ≥ 0, and hence we can take κ = 5
2 .

Clearly, in our case r = 2 and r1 = r2 = 1, whence 1
2 (r

2 − r21 − r22) = 1. Following

the proof of Proposition 4.2.5, we see that

C0 = max
{
0, 1+ 1−

1

2
κ, 1−

3

4
+

(⌈
−1

2

⌉
−

−1

2

)}
= 2−

5

4

In summary, for the coefficient of L−Nqd to be nonzero, we must have

d ≤ N +
1

4
+ 2−

5

4
= N + 1
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In conclusion, when d > N + 1, the coefficient of L−Nqd in q
1
4 (1− L−1)(1− q)G2,−H(q)

is zero.

Manschot (22)[Table 1], (39)[Table 1] computed the Betti numbers of the moduli

spaceMP2,H(3,−H, c2) and the virtual Betti numbers of the moduli spaceMP2,H(4, 2H, c2).

We observe from the tables in these papers that the Betti numbers of MP2,H(3,−H, c2)

stabilize when c2 ≥ N + 2 and the virtual Betti numbers of MP2,H(4, 2H, c2) stabilize

when c2 ≥ N + 3. In the first case, we have r = 3 and a = −1, we get from Theorem

4.4.1 that the Betti numbers stabilize when c2 ≥ N + 5.

As our second example, we scrutinize the Betti numbers of the moduli spaceMP2,H(4,H, c2).

In this case, Theorem 4.4.1 yields the stabilization of the Betti numbers when c2 ≥ N+8.

We improve this bound in the following Proposition.

Proposition 4.4.3. If c2 ≥ N+5, the 2N -th Betti number of the moduli space MP2,H(4,H, c2)

stabilize.

Proof. Following the proof of Theorem 4.4.1, it is enough to show that when d > N + 5,

the coefficient of L−Nqd in q
3
8 (1− L−1)(1− q)G4,H(q) is zero.

Each term contributing to the coefficient of L−Nqd in q
3
8 (1−L−1)(1−q)G4,H(q) arises

from a pair of equations

d =
3

8
+∆ ′

−N = ε−N ′
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where ε ∈ {−1, 0} accounts for the contribution to the coefficient coming from (1 −

L−1), and (∆ ′, N ′) accounts for the contribution coming from the terms in coefficient of

L−N ′q∆
′ in (1− q)G4,H(q).

It follows from Theorem 4.3.7 that if the co-efficient of L−N ′q∆
′ is non-zero, then we

must have ∆ ′ ≤ N ′+C0, whence, d ≤ N+
⌊3
8 + C0

⌋
. Consequently, for d > N+

⌊3
8 + C0

⌋
,

the coefficient of L−Nqd in q
3
8 (1−L−1)(1−q)G4,H(q) must be zero. Therefore, to complete

our proof, we need to determine the value of C0.

Adopting the notation used in proof of Proposition 4.2.5 and Lemma 4.2.6 in our

situation, we get r = 4, a = b = 1. Recall that C0 is the maximum of the terms

1+ 1
2

(
r2 −

∑l
i=1 r

2
i

)
− 1
2κ except the case when l = 2 and µF (γ2)−µF (γ1) = −1 and the

terms r1r2
2r +

(⌈
br2
r

⌉
− br2

r

)
for r1+r2 = r, where r =

∑l
i=1 ri, a =

∑l
i=1 riai, si =

∑l
j=i bj ,

b = s1, and κ is lower bound for S1 + S2, where

S1 = (r − 1)
l∑
i=1

ria
2
i −

r − 1

r
a2 +

l∑
i=1

airi

 l∑
j=i+1

rj −
i−1∑
j=1

rj



and

S1 = 2
l∑
i=2

((r − 1)(ai − ai−1) + ri + ri−1)

 b
r

l∑
j=i

rj − si


When l = 2 and (r1, r2) = (3, 1), we see that S1 ≥ −3

4 with equality occurring at

(a1, a2) = (0, 1). At the point (0, 1) we get S2 ≥ 7
2 , and hence, S1 + S2 ≥ 11

4 . Since

there are no other points (a1, a2) satisfying 3a1 + a2 = 1 at which S1 <
11
4 , we can take

κ = 11
4 , and we get 1+ 1

2 (r
2 − r21 − r22) −

1
2κ = 21

8 .
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When l = 2 and (r1, r2) = (1, 3), we see that S1 ≥ 21
4 with equality occurring at

(a1, a2) = (1, 0), and S2 ≥ 1. Thus, we can take κ = 25
4 , and we get 1+ 1

2 (r
2 − r21 − r22)−

1
2κ = 7

8 .

When l = 2 and (r1, r2) = (2, 2), there is no integer solution for 2a1+2a2 = 1. Thus,

we ignore this case.

When l = 3 and (r1, r2, r3) = (2, 1, 1), we see that S1 ≥ −3
4 with equality occurring

at (a1, a2, a3) = (0, 0, 1). At this point we get S2 ≥ 4, whence S1 + S2 ≥ 5
2 . The only

other point (a1, a2, a3) with S1 ≤ 5
2 is (0, 1, 0) at which S1 = 5

4 and S2 ≥ 9
2 , and thus

S1+S2 ≥ 23
4 . Therefore, we can take κ = 5

2 , and we get 1+ 1
2

(
r2 − r21 − r22 − r23

)
− 1
2κ =

19
4 .

When l = 3 and (r1, r2, r3) = (1, 2, 1), we see that S1 ≥ −3
4 with equality occurring

at (0, 0, 1). At this point, we see that S2 ≥ 6, whence S1 + S2 ≥ 21
4 . At every other

point (a1, a2, a3) with a1 + 2a2 + a3 = 1, we have S1 ≥ 21
4 . As a consequence, we can

take κ = 21
4 , and we get 1+ 1

2

(
r2 − r21 − r22 − r23

)
− 1

2κ = 27
8 .

When l = 3 and (r1, r2, r3) = (1, 1, 2), we see that S1 ≥ 5
4 with equality occurring

at (a1, a2, a3) = (−1, 0, 1). At this point, we see that S2 ≥ 6, and thus S1 + S2 ≥

29
4 . The other points (a1, a2, a3) satisfying a1 + a2 + 2a3 = 1 at which S1 ≤ 29

4 are

(0, 1, 0), (0,−1, 1), (1, 0, 0). Analyzing S1 and S2 at these points, we see that S1 + S2

may attain the least possible value 25
4 . Thus, we take κ = 25

4 , and we see that 1 +

1
2

(
r2 − r21 − r22 − r23

)
− 1

2κ = 23
8 .

When l = 4 and (r1, r2, r3, r4) = (1, 1, 1, 1), we see that S1 ≥ −3
4 with equality

occurring at (a1, a2, a3, a4) = (0, 0, 0, 1). At this point, we see that S2 ≥ 6, and thus
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S1+S2 ≥ 21
4 . The other points (a1, a2, a3, a4) with a1+a2+a3+a4 = 1 at which S1 ≤ 21

4

are (−1, 0, 0, 2), (0,−1, 1, 1), (−1, 1, 1, 0), (−1, 1, 0, 1), (−1, 0, 1, 1), (1, 0, 0, 0), (0, 1, 0, 0),

and (0, 0, 1, 0). However, we see that at each of these points we have S1 + S1 ≥ 21
4 .

Hence, we can take κ = 21
4 , and we get 1+ 1

2

(
r2 − r21 − r22 − r23 − r24

)
− 1

2κ = 35
8 .

Finally, since b = 1, r = 4, and 1 ≤ r2 ≤ 3, we see that (r−r2)r2
2r + 1 − r2

r attains

maximum value of 9
8 at r2 = 1.

In conclusion, we can take C0 = 19
4 , and we get that when d > N + 5 the coefficient

of L−Nqd in q
3
8 (1− L−1)(1− q)G4,H(q) is zero.
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