On Restricted Tangent Bundles Of Grassmannian, And Betti Numbers Of The Moduli Of Stable Sheaves On \mathbb{P}^{2}

by

Sayanta Mandal

B.Sc., Mathematics, Chennai Mathematical Institute, 2013
M.Sc., Mathematics, Chennai Mathematical Institute, 2015

THESIS

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate College of the
University of Illinois at Chicago, 2020

Chicago, Illinois

Defense Committee:
Izzet Coskun, Chair and Advisor
Lawrence Ein
Kevin Tucker
Wenliang Zhang
Eric Riedl, University of Notre Dame

Copyright by
Sayanta Mandal

2020

To my parents

ACKNOWLEDGMENT

I am extremely grateful to my advisor Prof. Izzet Coskun for invaluable mathematical discussions, correspondences, and several helpful suggestions. I would like to express my sincere gratitude for his support and encouragement throughout my doctorate program.

I would like to express my deepest gratitude to my thesis committee members - Prof. Lawrence Ein, Prof. Eric Riedl, Prof. Kevin Tucker and Prof. Wenliang Zhang for sparing their valuable time to help me.

I highly appreciate the help and support provided by faculty and staff, friends and peers at the University of Illinois at Chicago.

TABLE OF CONTENTS

CHAPTER PAGE
1 INTRODUCTION 1
1.1 Rational curves and the Grassmannian 1
1.2 Betti numbers of the moduli space of stable sheaves on \mathbb{P}^{2} 5
2 PRELIMINARIES 11
2.1 Rational curves and the Grassmannian 11
2.2 Betti numbers of the moduli space of sheaves on \mathbb{P}^{2} 21
3 RESTRICTED TANGENT BUNDLE OF GRASSMAN- NIAN TO RATIONAL CURVES 31
3.1 The intersection locus is nonempty 31
3.2 The intersection locus is generically transverse 46
3.3 Analyzing the locus with restricted tangent bundle hav- ing fixed splitting type 55
4 BETTI NUMBERS OF MODULI SPACE OF SHEAVES ON \mathbb{P}^{2} 63
4.1 Estimating the Generating Functions when the rank is one 63
4.2 Estimating the generating function $\tilde{G}_{r, \tilde{c}}(q)$ when rank is at least two 68
4.3 Estimating the generating function $G_{r, c}(q)$ when rank is at least two 87
4.4 Bounds for stabilization of Betti numbers 103
CITED LITERATURE 113
VITA 116

LIST OF TABLES

TABLE
PAGE
I Table showing the first few stable Betti numbers for \mathbb{P}^{2}. . 7
II Ellingsrud and Strømme's table for rank 1 9
III Yoshioka's table for rank 2 and $c_{1}=-1$. 9
IV Manschot's table for rank 3 and $c_{1}=-1 \ldots \ldots$

SUMMARY

This thesis is based on work done on two different problems. The first problem is regarding restricted tangent bundles of the Grassmannian to rational curves. Let $n \geq 4$, $2 \leq r \leq n-2$ and $e \geq 1$. We show that the intersection of the locus of degree e morphisms from \mathbb{P}^{1} to $G(r, n)$ with the restricted universal sub-bundles having a given splitting type and the locus of degree e morphisms with the restricted universal quotient-bundle having a given splitting type is non-empty and generically transverse. As a consequence, we get that the locus of degree e morphisms from \mathbb{P}^{1} to $G(r, n)$ with the restricted tangent bundle having a given splitting type need not always be irreducible.

The second problem is regarding the Betti numbers of the moduli space of sheaves on the projective plane. Let $r \geq 2$ be an integer, and let a be an integer coprime to r. We show that if $c_{2} \geq n+\left\lfloor\frac{r-1}{2 r} a^{2}+\frac{1}{2}\left(r^{2}+1\right)\right\rfloor$, then the $2 n$th Betti number of the moduli space $M_{\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}(1)}}\left(r, \mathcal{O}_{\mathbb{P}^{2}}(a), c_{2}\right)$ stabilizes.

CHAPTER 1

INTRODUCTION

In this thesis, we study the following two items:

- the locus of restricted tangent bundle of the Grassmannian to rational curves with a given splitting type, and
- the Betti numbers of the moduli space of stable sheaves on \mathbb{P}^{2} with a fixed Chern character.

We show that
Theorem (Corollary 3.3.7). When $2 \leq r \leq(n-2)$, the locus of morphisms f from \mathbb{P}^{1} to $G(r, n)$ of degree $e \geq 1$ with the restricted tangent bundle having a specified splitting may not always be irreducible.

Moreover, we also show that
Theorem (Theorem 4.4.1). Assume that the rank $r \geq 2$ and the first Chern class a are coprime. If $c_{2} \geq N+\left\lfloor\frac{r-1}{2 r} a^{2}+\frac{1}{2}\left(r^{2}+1\right)\right\rfloor$, then the $2 N$ th Betti numbers of the moduli space of stable sheaves on \mathbb{P}^{2} of rank r, first Chern class a, and second Chern class c_{2} stabilizes.

1.1 Rational curves and the Grassmannian

Rational curves play a central role in the study of algebraic geometry of projective varieties. Let X be a non-singular projective variety over an algebraically closed field \mathbb{K}
of characteristic zero, and let $C \subset X$ be a rational curve. We can study vector bundles on X by studying their restrictions to rational curves. This approach is often useful due to Grothendieck's theorem which tells us that given any vector bundle \mathcal{E} on \mathbb{P}^{1} of rank $r \geq 1$, there exists a unique collection of integers $a_{1} \leq \cdots \leq a_{r}$ such that \mathcal{E} is isomorphic to the direct sum of the line bundles $\mathcal{O}_{\mathbb{P}^{1}}\left(a_{i}\right)$, for $1 \leq i \leq r$. We call this collection of integers a_{1}, \cdots, a_{r}, the splitting type of \mathcal{E}.

The two bundles which are especially important to study are $\left.T_{X}\right|_{C}$ and $N_{C / X}$ because they help us in understanding the deformations of C in X and in understanding the geometry of the tangent space of smooth rational curves on X. These vector bundles have been studied by Eisenbud and Van de Ven (1), (2), and by Ghione and Sacchiero (3), (4), (5) who characterized the possible splitting types of the normal bundle of rational curves in \mathbb{P}^{3} and showed that the locus of rational curves in \mathbb{P}^{3} with whose normal bundles have a specified splitting type is irreducible of the expected dimension. Ran (6) determined the splitting type of a generic genus-o curve with one or two components in \mathbb{P}^{n}, as well as the way the bundle deforms locally with a general deformation of the curve. More recently, Coskun and Riedl (7), (8) showed that the locus of nondegenerate rational normal curves in \mathbb{P}^{n} of fixed degree having a specified splitting type of the normal bundle can be reducible when $n \geq 5$.

In a similar vein, Verdier (9) and Ramella (10) showed that the locus of nondegenerate rational curves in \mathbb{P}^{n} with a given splitting type of the restricted tangent bundle is irreducible of expected codimension. Strømme (11) examined a nice compactification of this locus as a certain Quot scheme and computed the Chow ring of this compactification.

In this paper, we study the locus of degree e morphism from \mathbb{P}^{1} to the Grassmannian variety with a specified splitting type of the restricted tangent bundle.

Let $G(r, n)$ denote the Grassmannian variety of r-dimensional subspaces of the n dimensional vector space $\mathbb{K}^{\oplus n}$. The Grassmannian variety has two special vector bundles, the universal sub-bundle \mathcal{S} of rank r and the universal quotient bundle \mathcal{Q} of rank $n-r$. Given a r-dimensional subspace Λ of $\mathbb{K}^{\oplus n}$, let $p_{\Lambda} \in G(r, n)$ be the point corresponding to this subspace. Then, we have

$$
\left.\mathcal{S}\right|_{p_{\Lambda}}=\Lambda \quad \text { and }\left.\quad \mathcal{Q}\right|_{p_{\Lambda}}=\mathbb{K}^{\oplus n} / \Lambda
$$

Moreover, these vector bundles fit together in an exact sequence

$$
\mathrm{o} \longrightarrow \mathcal{S} \longrightarrow \mathcal{O}_{G(r, n)}^{\oplus n} \longrightarrow \mathcal{Q} \longrightarrow \mathrm{o}
$$

Additionally, the tangent bundle to the Grassmannian variety $G(r, n)$, denoted $T_{G(r, n)}$, is isomorphic to $\mathcal{S}^{*} \otimes \mathcal{Q}$. We denote by $\operatorname{Mor}_{e}\left(\mathbb{P}^{1}, G(r, n)\right)$ the scheme parameterizing degree e morphisms from \mathbb{P}^{1} to $G(r, n)$. We know (see Lemma 2.1.2) that this scheme is a non-singular quasi-projective variety of dimension $r(n-r)+n e$. We denote by $M\left(b_{\bullet}\right)$ the locus of morphisms f in $\operatorname{Mor}_{e}\left(\mathbb{P}_{\mathbb{K}}^{1}, G(r, n)\right)$ with $f^{*}(\mathcal{Q})$ having splitting type $\mathrm{o} \leq b_{1} \leq \cdots \leq b_{n-r}$, and by $M^{\prime}\left(a_{\bullet}\right)$ be the locus of morphism f with $f^{*}\left(\mathcal{S}^{*}\right)$ having splitting type $a_{1} \geq \cdots \geq a_{r} \geq 0$. We first show that

Proposition [Proposition 2.1.6]. The loci $M\left(b_{\bullet}\right)$ and $M^{\prime}\left(a_{\bullet}\right)$ are smooth of the expected codimension.

This follows as a consequence of a Corollary due to Le Potier (12)[Corollary 15.4.3]. We then show that

Theorem [Theorem 3.2.9]. Let $n \geq 4$ and $2 \leq r \leq n-2$. The intersection of the loci $M\left(b_{\bullet}\right)$ and $M^{\prime}\left(a_{\bullet}\right)$ is nonempty and generically transverse.

Note that the locus of degree e morphisms f from \mathbb{P}^{1} to $G(r, n)$ with $f^{*}\left(T_{G(r, n)}\right)$ having a specified splitting type is stratified by the intersection loci $M\left(b_{\bullet}\right) \cap M^{\prime}\left(a_{\bullet}\right)$ coming from possible splitting types $\left\{a_{\bullet}\right\}$ and $\left\{b_{\bullet}\right\}$ of $f^{*}\left(\mathcal{S}^{*}\right)$ and $f^{*}(\mathcal{Q})$ respectively. We know that $\overline{M\left(b_{\bullet}\right)}$ is the union of $M\left(b_{\bullet}^{\prime}\right)$ where $\mathrm{o} \leq b_{1}^{\prime} \leq \cdots \leq b_{n-r}^{\prime}, b_{1}^{\prime}+\cdots+b_{n-r}^{\prime}=e$ and $b_{j}^{\prime}+\cdots+b_{n-r}^{\prime} \geq b_{j}+\cdots+b_{n-r}$ for all $1 \leq j \leq n-r$. Similarly, $\overline{M^{\prime}\left(a_{\bullet}\right)}$ is the union of $M^{\prime}\left(a_{\bullet}^{\prime}\right)$ where $a_{1}^{\prime} \geq \cdots \geq a_{r}^{\prime} \geq 0, a_{1}^{\prime}+\cdots+a_{r}^{\prime}=e$ and $a_{1}^{\prime}+\cdots+a_{i}^{\prime} \geq a_{1}+\cdots+a_{i}$ for all $1 \leq i \leq r$. Thus, there exists intersection loci $M\left(b_{\bullet}\right) \cap M^{\prime}\left(a_{\bullet}^{\prime}\right)$ which are closed in the locus of all morphisms with restricted tangent bundle having a specified splitting type. Consequently,

Corollary [Proposition 3.3.4, Corollary 3.3.7]. The locus of morphisms f with $f^{*}\left(T_{G(r, n)}\right)$ having a given splitting type can be reducible in general, and it has at least one irreducible component coming from a closed intersection loci $M\left(b_{\bullet}\right) \cap M^{\prime}\left(a_{\bullet}\right)$.

For example, (as a consequence of Corollary 3.3.7 and Lemma 3.3.8) the locus of morphisms in $\operatorname{Mor}_{e}\left(\mathbb{P}^{1}, G(2,4)\right)$ with restricted tangent bundle having splitting type c_{1}, c_{2}, c_{3}, c_{4} with $c_{1} \leq c_{2}<c_{3} \leq c_{4}$ and $c_{1}+c_{2}+c_{3}+c_{4}=4 e$ has at least two irreducible components.

This is in sharp contrast with the results of Verdier (9) and Ramella (10) who have shown that the locus of morphisms f in $\operatorname{Mor}_{e}\left(\mathbb{P}^{1}, \mathbb{P}^{n}\right)$ with the restricted twisted tangent
bundle $f^{*}\left(T_{\mathbb{P}^{n}}(-1)\right)$ having splitting type a_{1}, \cdots, a_{n} with $a_{1} \geq \cdots \geq a_{n} \geq 0$ and $a_{1}+$ $\cdots+a_{n}=e$ is a nonempty, smooth, irreducible subvariety.

1.2 Betti numbers of the moduli space of stable sheaves on \mathbb{P}^{2}

Let X be a smooth projective surface over an algebraically closed field \mathbb{K} of characteristic zero, and let H be an ample divisor on X. Given a torsion-free, coherent sheaf \mathcal{F} on X, we define its H-slope $\mu_{H}(\mathcal{F})$ and discriminant $\Delta(\mathcal{F})$ as follows:

$$
\mu_{H}(\mathcal{F})=\frac{c h_{1}(\mathcal{F}) \cdot H}{c h_{0}(\mathcal{F}) H^{2}} \quad \text { and } \quad \Delta(\mathcal{F})=\frac{c h_{1}(\mathcal{F})^{2}-2 c h_{0}(\mathcal{F}) c h_{2}(\mathcal{F})}{2 c h_{0}(\mathcal{F})^{2}}
$$

We denote the Chern character of the torsion-free coherent sheaf \mathcal{F} by $\gamma=(r, c, \Delta(\mathcal{F}))$, where r is the rank and c is the first Chern class. We say that \mathcal{F} is H-slope (semi)stable if for all subsheaves \mathcal{E} of smaller rank, we have $\mu_{H}(\mathcal{E}) \leq \mu_{H}(\mathcal{F})$. We denote by $M_{X, H}(\gamma)$, the moduli-space parameterizing H-slope semistable sheaves with Chern character γ. These spaces were constructed by Gieseker (13) and Maruyama (14), and play a central role in many areas of mathematics including algebraic geometry, topology, representation theory, etc. For example, they are used to study linear systems on curves and in the Donaldson theory of 4-manifolds.

Given a Chern character γ, assume that all H-slope semistable sheaves with Chern character γ are H-slope stable, and that such stable sheaves do exist. Then the modulispace $M_{X, H}(\gamma)$ is a smooth projective variety of dimension $1-\chi(\gamma, \gamma)$, where χ denotes the Euler characteristic. A crucial step to understand the geometry of such moduli spaces is by scrutinizing the cohomology groups associated with them. Consequently,
determining the Betti numbers of these spaces are of utmost importance. The general philosophy of Donaldson, Gieseker and Li is that the geometry of the moduli space $M_{X, H}(\gamma)$ behaves better as Δ tends to infinity. O'Grady (15) showed that $M_{X, H}(\gamma)$ is irreducible and generically smooth if Δ is sufficiently large. Li (16) showed the stabilization of the first and the second Betti numbers of $M_{X, H}(\gamma)$ when the rank is two. In this paper, we look at the special case when $X=\mathbb{P}^{2}$ and $H=c_{1}\left(\mathcal{O}_{\mathbb{P}^{2}}(1)\right)$. We show that Theorem (Theorem 4.4.1). Assume that the rank $r \geq 2$ and the first Chern class aH are coprime. If $c_{2} \geq N+\left\lfloor\frac{r-1}{2 r} a^{2}+\frac{1}{2}\left(r^{2}+1\right)\right\rfloor$, then the $2 N$ th Betti numbers of the moduli space $M_{\mathbb{P}^{2}, H}\left(r, a H, c_{2}\right)$ stabilizes.

The following theorem due to Coskun and Woolf (17) tells us how to compute these stable Betti numbers by describing their generating function.

Theorem ((17), Corollary 7.7). Let X be a rational surface, and H be a polarization on X such that $K_{X} \cdot H<0$. Assume that all semistable sheaves of rank r and first Chern class c are stable. Then the Poincaré polynomial of $M_{X, H}(r, c, \Delta)$ stabilizes as $\Delta \rightarrow \infty$, and the generating function for the stable Betti numbers is given by

$$
\left(1-t^{2}\right) \prod_{i=1}^{\infty} \frac{1}{\left(1-t^{2 i}\right)^{\chi_{t o p}(X)}}
$$

Consequently, we can determine the Betti numbers for a large collection of such moduli spaces $M_{X, H}(\gamma)$. We list of the first few stable Betti numbers when $X=\mathbb{P}^{2}$ and $H=\mathcal{O}_{\mathbb{P}^{2}}(1)$ in Table I.

i	0	2	4	6	8	10	12
$b_{\text {stab,i } i}$	1	2	6	13	29	57	113

TABLE I: Table showing the first few stable Betti numbers for \mathbb{P}^{2}

Given a collection of smooth projective varieties X_{d} for $d \geq 0$, with Poincaré polynomials $P_{d}(t)=\sum_{i=0}^{s_{d}} a_{i, d} t^{d}$ respectively, we say that $\left\{P_{d}\right\}$ stabilizes (see Definition 2.2.1) if for all $i \geq 0$, there exists an integer $d_{0}(i)$ depending on i such that for all integers $d \geq d_{\mathrm{o}}(i)$, we have $a_{i, d}=a_{i, d+1}$. We know (see Corollary 2.2.4) that the Poincaré polynomials $\left\{P_{d}\right\}$ stabilizes iff for each $i \geq 0$, the coefficient of t^{i} in the series $(1-q) \sum_{d=\mathrm{o}}^{\infty} P_{d}(t) q^{d}$ is a polynomial in q. Additionally, the generating function of the stable coefficients is given by taking the limit of this series as $q \rightarrow 1$. Hence, to understand the stability of the Betti numbers or equivalently, the Poincare polynomials, it is enough to study the series $(1-q) \sum_{d=0}^{\infty} P_{d}(t) q^{d}$.

The stability of the Betti numbers and the Poincaré polynomials have been studied extensively by several mathematicians. For instance, Macdonald,'62 (18) showed stabilization of the Poincaré polynomials for the family of symmetric products of a smooth projective surface X, and determined their sum

$$
\zeta_{X}(q, t):=\sum_{d=0}^{\infty} P_{X^{(d)}(t)} q^{d}=\frac{(1+q t)^{b_{1}(X)}\left(1+q t^{3}\right)^{b_{3}(X)}}{(1-q)\left(1-q t^{2}\right)^{b_{2}(X)}\left(1-q t^{4}\right)}
$$

Similarly, Göttsche,'90 (19) studied stabilization of the Poincaré polynomials for the family $\left\{X^{[n]}\right\}$ comprising Hilbert scheme of n points on a smooth projective surface X, and showed that

$$
F_{X}(q, t)=\sum_{n=0}^{\infty} P_{X^{[n]}}(t) q^{n}=\prod_{m=1}^{\infty} \zeta_{X}\left(t^{2 m-2} q^{m}, t\right)
$$

When the rank is one, the moduli space $M_{X, H}(1, c, \Delta)$ is isomorphic to $\operatorname{Pic}^{c}(X) \times X^{[\Delta]}$ The Künneth formula yields

$$
G_{X}(q, t)=\sum_{\Delta=0}^{\infty} P_{M_{X, H}(1, c, \Delta)}(t) q^{\Delta}=(1+t)^{b_{1}(X)} \prod_{m=1}^{\infty} \zeta_{X}\left(t^{2 m-2} q^{m}, t\right)
$$

Therefore, the Betti numbers of $M_{X, H}(1, c, \Delta)$ stabilizes as Δ tends to infinity. In the special case when $X=\mathbb{P}^{2}$ and $H=\mathcal{O}_{\mathbb{P}^{2}(1)}$, the stabilization of the Betti numbers of $M_{\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}(1)}}(1, c, \Delta)$ was shown by Ellingsrud and Strømme, '87 (20). Furthermore, they computed explicit formulas to describe the Betti numbers. We list the first few Betti numbers in Table II.

Stabilization of the Betti numbers of $M_{\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}(1)}}\left(2,-1, c_{2}\right)$ was worked out by Yoshioka, '94 (21). We list the first few Betti numbers in Table III .

Similarly, stabilization of the Betti numbers of $M_{\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}(1)}}\left(3,-1, c_{2}\right)$ was shown by Manschot, '11 (22), and furthermore, analyzed the rank 4 case building on the work of Mozgovoy (23). We list the first few Betti numbers in Table IV.

Upon scrutinizing entries of Table III and Table IV, we deduce that in the rank 2 case, if $c_{2} \geq N+1$ then $b_{2 N}$ stabilizes, and in the rank 3 case, if $c_{2} \geq N+2$ then

c_{2}	b_{0}	b_{2}	b_{4}	b_{6}	b_{8}	b_{10}	b_{12}	b_{14}	b_{16}	b_{18}	b_{20}
1	1	1									
2	1	2	3								
3	1	2	5	6							
4	1	2	6	10	13						
5	1	2	6	12	21	24					
6	1	2	6	13	26	39	47				
7	1	2	6	13	28	49	74	83			
8	1	2	6	13	29	54	94	131	150		
9	1	2	6	13	29	56	105	167	232	257	
10	1	2	6	13	29	57	110	189	298	395	440

TABLE II: Ellingsrud and Strømme's table for rank 1

c_{2}	b_{0}	b_{2}	b_{4}	b_{6}	b_{8}	b_{10}	b_{12}	b_{14}	b_{16}	b_{18}	b_{20}	b_{22}	b_{24}	b_{26}	b_{28}
1	1	10													
2	1	2	3												
3	1	2	6	9	12										
4	1	2	6	13	24	35	41								
5	1	2	6	13	29	51	85	113	129						
6	1	2	6	13	29	57	106	175	262	337	370				
7	1	2	6	13	29	57	113	200	342	527	746	922	1002		
8	1	2	6	13	29	57	113	208	372	625	995	1464	1978	2390	2556

TABLE III: Yoshioka's table for rank 2 and $c_{1}=-1$

c_{2}	b_{0}	b_{2}	b_{4}	b_{6}	b_{8}	b_{10}	b_{12}	b_{14}	b_{16}	b_{18}	b_{20}	b_{22}	b_{24}	b_{26}
2	1	1												
3	1	2	5	8	10									
4	1	2	6	12	24	38	54	59						
5	1	2	6	13	28	52	94	149	217	273	298			
6	1	2	6	13	29	56	108	189	322	505	744	992	1200	1275

TABLE IV: Manschot's table for rank 3 and $c_{1}=-1$
$b_{2 N}$ stabilizes. We expect these kind of inequalities to hold in general. If we apply our Theorem (see Theorem 4.4.1), we get that in the rank 2 case, if $c_{2} \geq N+2$ then $b_{2 N}$ stabilizes, and in the rank 3 case, if $c_{2} \geq N+5$ then $b_{2 N}$ stabilizes. We loose a little bit
because our inqualities work for any rank and any first Chern class. However, we can get the actual inequality if we fix the rank to be 2 and the first Chern class $c_{1}=-1$ (see Proposition 4.4.2).

Stabilization of the Betti numbers of the moduli space have been studied for other surfaces as well. For example, Yoshioka (24), (25) and Göttsche (26) computed the Betti and Hodge numbers of $M_{X, H}(\gamma)$ when X is a ruled surface and the rank is two. Yoshioka $(24),(27)$ observed the stabilization of the Betti numbers for rank two bundles on ruled surfaces. Göttsche (28) extended his results to rank two bundles on rational surfaces with polarizations which are K_{X}-negative. The stabilization of the Betti numbers is known for smooth moduli space of sheaves on K_{3} surfaces. By works of Mukai (29), Huybrechts (30), and Yoshioka (31), smooth moduli spaces of sheaves on a K_{3} surface X are deformations of the Hilbert scheme of points on X of the same dimension. In particular, they are diffeomorphic to the Hilbert scheme of points, and hence, their Betti numbers stabilizes. Yoshioka (32) obtained similar results for moduli spaces of sheaves on abelian surfaces. A smooth moduli space of sheaves $M_{X, H}(\gamma)$ on an abelian surface X is deformation equivalent to the product of the dual abelian surface of X and a Hilbert scheme of points on X. Consequently, the Betti numbers stabilizes.

CHAPTER 2

PRELIMINARIES

In this chapter, we will set-up notations and go over preliminary results. We split this chapter into two sections. Section 2.1 deals with rational curves and Grassmannain varieties while Section 2.2 deals with Betti numbers of the moduli space of sheaves on the projective plane.

2.1 Rational curves and the Grassmannian

Let \mathbb{K} be an algebraically closed field of characteristic zero. Let \mathcal{E} be a vector bundle on \mathbb{P}^{1} of rank r and degree e. Grothendieck's theorem tells us that there are uniquely determined integers a_{1}, \cdots, a_{r} with $a_{1} \leq \cdots \leq a_{r}$ and $a_{1}+\cdots+a_{r}=e$ such that \mathcal{E} is isomorphic to $\oplus_{i=1}^{r} \mathcal{O}_{\mathbb{P}^{1}}\left(a_{i}\right)$. We call this collection of integers the splitting type of \mathcal{E}. We say that \mathcal{E} is balanced if $a_{j}-a_{i} \leq 1$ for all $1 \leq i, j \leq r$.

Let $n \geq 2$ and $1 \leq r \leq n-1$. We denote by $G(r, n)$ the Grassmannian variety of r-dimensional subspaces of the n-dimensional vector space $\mathbb{K}^{\oplus n}$. We can think of $G(r, n)$ as a subvariety of $\mathbb{P}\left(\bigwedge^{r} \mathbb{K}^{\oplus n}\right)=\mathbb{P}\binom{n}{r}-1$ via the Plücker embedding, which given r linearly independent vectors v_{1}, \cdots, v_{r}, it sends the subspace spanned by the v_{i} 's to the point $\left[v_{1} \wedge \cdots \wedge v_{r}\right]$. We see that the Grassmannian variety $G(r, n)$ is a smooth projective variety of dimension $r(n-r)$. For example, when $r=2$ and $n=4$, let $x_{1,2}, x_{1,3}, x_{1,4}, x_{2,3}, x_{2,4}, x_{3,4}$ denote the co-ordinates of $\mathbb{P}\left(\bigwedge^{2} \mathbb{K}^{\oplus 4}\right)$, then $G(2,4)$ has
dimension 4 and the image of $G(2,4)$ under the Plücker embedding is given by the zero locus of the homogeneous polynomial $x_{1,2} x_{3,4}-x_{1,3} x_{2,4}+x_{1,4} x_{2,3}$.

The Grassmannian variety has two special vector bundles, the universal sub-bundle \mathcal{S} of rank r and the universal quotient bundle \mathcal{Q} of rank $n-r$. Given a r-dimensional subspace Λ of $\mathbb{K}^{\oplus n}$, let $p_{\Lambda} \in G(r, n)$ be the point corresponding to this subspace. Then, we have

$$
\left.\mathcal{S}\right|_{p_{\Lambda}}=\Lambda \quad \text { and }\left.\quad \mathcal{Q}\right|_{p_{\Lambda}}=\mathbb{K}^{\oplus n} / \Lambda
$$

Moreover, these vector bundles fit together in an exact sequence

$$
\mathrm{o} \longrightarrow \mathcal{S} \longrightarrow \mathcal{O}_{G(r, n)}^{\oplus n} \longrightarrow \mathcal{Q} \longrightarrow \mathrm{o}
$$

Moreover, the tangent bundle to the Grassmannian variety $G(r, n)$, denoted $T_{G(r, n)}$, is isomorphic to $\mathcal{S}^{*} \otimes \mathcal{Q}$.

Given integers $e \geq 1$ and $n \geq 1$, we can look at the locus of degree e morphisms from \mathbb{P}^{1} to \mathbb{P}^{n}. A degree e morphisms f from \mathbb{P}^{1} to \mathbb{P}^{n} is uniquely determined upto scalars by a collection of $n+1$ homogeneous polynomials on \mathbb{P}^{1} of degree e, namely the functions $x_{i} \circ f$ for $\mathrm{o} \leq i \leq n$, where x_{i} 's are the co-ordinate functions of \mathbb{P}^{n}. Thus, this locus of degree e morphisms can be identified with a open subvariety of the projective space $\mathbb{P}\left(H^{\circ}\left(\mathcal{O}_{\mathbb{P}^{1}}(e)\right)^{\oplus n+1}\right)$. Hence, this locus is smooth of dimension $n+(n+1) e$.

Similarly, in a more general setting, given $e \geq 1$ and $2 \leq r \leq n-2$, we can look at the locus of degree e morphisms from \mathbb{P}^{1} to $G(r, n)$. We denote by M the scheme $\operatorname{Mor}_{e}\left(\mathbb{P}^{1}, G(r, n)\right)$ parameterizing such morphisms. Similar to our previous case, it is
natural to expect that M is a smooth quasi-projective variety of dimension $r(n-r)+n e$. Our next goal is to show that this is indeed the case.

We glean the following Lemma 2.1.1 from the universal property of Grassmannian

Lemma 2.1.1. A degree e morphism $\mathbb{P}^{1} \longrightarrow G(r, n)$ corresponds uniquely to a vector bundle E of rank r and degree e together with a surjection $\mathcal{O}_{\mathbb{P}^{1}}^{\oplus n} \longrightarrow E$.

Proof. Given a morphism $\varphi: \mathbb{P}^{1} \longrightarrow G(r, n)$, we take $E=\varphi^{*}\left(\mathcal{S}^{*}\right)$, where \mathcal{S} is the universal sub-bundle, and we clearly have a surjection $v_{\varphi}: \mathcal{O}_{\mathbb{P}^{1}}^{\oplus n} \longrightarrow \varphi^{*}\left(\mathcal{S}^{*}\right)$.

Conversely, given a surjection $v: \mathcal{O}_{\mathbb{P}^{1}}^{\oplus n} \longrightarrow E$ where E is a vector bundle of rank r and degree e, let s_{1}, \cdots, s_{n} form a basis for image of $H^{\mathrm{o}}\left(\mathcal{O}_{\mathbb{P}^{1}}^{\oplus n}\right)$ in $H^{\mathrm{o}}(E)$, we have a morphism $\varphi_{v}: \mathbb{P}^{1} \longrightarrow \mathbb{P}^{\binom{n}{r}}$ with co-ordinates given by $s_{i_{1}} \wedge \cdots \wedge s_{i_{r}}$ for $1 \leq i_{1}<\cdots<$ $i_{r} \leq n$, and we see that the image lies in $G(r, n)$ because the co-ordinates satisfy Plücker relations, and the resulting map has degree e because E has degree e.

Subsequently, using Lemma 2.1.1, we can think of a morphism from \mathbb{P}^{1} to $G(r, n)$ as an element of the quot scheme $Q u o t_{\mathcal{O}_{\mathbb{P}^{1}}^{\oplus n} / \mathbb{P}^{1} / \mathbb{K}}^{r, e}$, which parameterizes quotient sheaves of $\mathcal{O}_{\mathbb{P}^{1}}^{\oplus n}$ of rank r and degree e. Strømme (11, Theorem 2.1) showed that this quot scheme is an irreducible, rational, nonsingular, projective variety of dimension $r(n-r)+n e$. In particular, we can think of M as a subscheme of $Q u o t_{\mathcal{O}_{\mathbb{P}^{1}}^{\oplus n} / \mathbb{P}^{1} / \mathbb{K}}^{r, e}$.

Lemma 2.1.2. M is an open subscheme of the quot scheme $Q u o t_{\mathcal{O}_{\mathbb{P}^{1}}^{\oplus n} / \mathbb{P}^{1} / \mathbb{K}}^{r}$. Therefore, M is a smooth quasi-projective variety of dimension $r(n-r)+n e$.

Proof. Note that any coherent sheaf E on \mathbb{P}^{1} has a unique decomposition $E=E^{\prime} \oplus T$, where E^{\prime} is locally free and T is torsion. Given any $1 \leq i \leq e$, let X_{i} be the image of the map

$$
\text { Quot }_{\mathcal{O}_{\mathbb{P}^{2}}^{r} / \mathbb{P}^{1} / \mathbb{K}}^{r e-i} \times \mathbb{P}^{1} \times \cdots{ }_{(i \text { times })} \cdots \times \mathbb{P}^{1} \longrightarrow \text { Quot }_{\mathcal{O}_{\mathbb{P}^{1}}^{r,} / \mathbb{P}^{1} / \mathbb{K}}^{r, e}
$$

which sends $\left(E^{\prime}, x_{1}, \cdots, x_{i}\right)$ to $E^{\prime} \oplus T$ where T is the structure sheaf of the closed subscheme of \mathbb{P}^{1} defined by $\left\{x_{1}, \cdots, x_{i}\right\}$. We see that X_{i} is closed and irreducible because it is the image of a proper irreducible variety. We have

$$
\operatorname{dim}\left(X_{i}\right) \leq r(n-r)+n(e-i)+i<r(n-r)+n e
$$

Since every coherent sheaf E of rank r and degree e which is not locally free lies in some X_{i}, we conclude that M is the complement of the union of the X_{i} 's for $1 \leq i \leq e$.

Let S be a smooth variety and X be a smooth projective variety. Let \mathcal{E} be a coherent S-flat sheaf on $S \times X$. For every $s \in S$, let $\mathfrak{m}_{s} \subset \mathcal{O}_{S, s}$ be the ideal sheaf of the point s, and let \mathcal{E}_{s} be the induced sheaf on X. We have an exact sequence

$$
\mathrm{o} \longrightarrow\left(T_{s} S\right)^{*}=\mathfrak{m}_{s} / \mathfrak{m}_{s}^{2} \longrightarrow \mathcal{O}_{S, s} / \mathfrak{m}_{s}^{2} \longrightarrow \mathcal{O}_{\{s\}} \longrightarrow \mathrm{o}
$$

Tensoring with \mathcal{E}, we get an exact sequence

$$
\mathrm{o} \longrightarrow T_{s} S^{*} \otimes \mathcal{E}_{s} \longrightarrow \mathcal{E} / \mathfrak{m}_{s}^{2} \mathcal{E} \longrightarrow \mathcal{E}_{s} \longrightarrow \mathrm{o}
$$

This exact sequence gives rise to an element $\omega \in \operatorname{Ext}{ }^{1}\left(\mathcal{E}_{s}, T_{s} S^{*} \otimes \mathcal{E}_{s}\right)$, a posteriori, a linear map

$$
\omega: T_{s} S \longrightarrow E x t^{1}\left(\mathcal{E}_{s}, \mathcal{E}_{s}\right)
$$

We call this linear map ω, the Kodaira - Spencer infinitesimal deformation map at the point $s \in S$.

Definition 2.1.3. We say that the sheaf \mathcal{E} defines a complete family parameterized by S if the Kodaira - Spencer infinitesimal deformation map is surjective at every point $s \in S$

In our case, we have a canonical map

$$
\Phi: M \times \mathbb{P}^{1} \longrightarrow G(r, n)
$$

which sends a pair (f, x) to $f(x)$. Let \mathcal{S} denote the universal bundle over $G(r, n)$. We can look at the pullback vector bundle $\Phi^{*}\left(\mathcal{S}^{*}\right)$ which is clearly M-flat and coherent. We have

Lemma 2.1.4. The family of vector bundles parametrized by M via $\Phi^{*}\left(\mathcal{S}^{*}\right) \longrightarrow M \times \mathbb{P}^{1}$ is a complete family.

Proof. Let $E=\mathcal{O}_{\mathbb{P}^{1}}\left(a_{1}\right) \oplus \cdots \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(a_{r}\right)$ and $K=\mathcal{O}_{\mathbb{P}^{1}}\left(-b_{1}\right) \oplus \cdots \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(-b_{n-r}\right)$, where $\operatorname{deg}(E)=-\operatorname{deg}(K)=e$, and consider the exact sequence

$$
\mathrm{o} \longrightarrow K \longrightarrow \mathcal{O}_{\mathbb{P}^{1}}^{\oplus n} \longrightarrow E \longrightarrow \mathrm{o}
$$

We first observe that if f is the morphism corresponding to $\mathcal{O}_{\mathbb{P}^{1}}^{\oplus n} \longrightarrow E$, then $\left.\Phi^{*}\left(\mathcal{S}^{*}\right)\right|_{f}=$ E. We look at the following commutative diagram

where the vertical maps are isomorphisms, the top horizontal map is the Kodaira-Spencer map, and the bottom horizontal map is obtained by applying $\operatorname{Hom}(\bullet, E)$ to the exact sequence

$$
\mathrm{o} \longrightarrow K \longrightarrow \mathcal{O}_{\mathbb{P}^{1}}^{\oplus n} \longrightarrow E \longrightarrow \mathrm{o}
$$

Since the next term in the long exact sequence is $\operatorname{Ext}^{1}\left(\mathcal{O}_{\mathbb{P}^{1}}^{\oplus n}, E\right)=H^{1}(E)^{\oplus n}=0$, the bottom horizontal map is surjective. Hence, the Kodaira-Spencer map is surjective, and so the family is complete.

Let X be a smooth projective curve, and let \mathcal{E} be a coherent torsion free sheaf on X of degree d and rank r. We define the slope of \mathcal{E} to be

$$
\mu(\mathcal{E})=\frac{d}{r}
$$

We say that \mathcal{E} is stable (respectively semistable) if for all nonzero proper subsheaves \mathcal{F} of smaller rank, we have $\mu(\mathcal{F})<\mu(\mathcal{E})$ (respectively $\mu(\mathcal{F}) \leq \mu(\mathcal{E})$). Given any coherent torsion-free sheaf \mathcal{E} on X, there exists a unique filtration

$$
\mathrm{o}=\mathcal{E}_{0} \subset \mathcal{E}_{1} \subset \mathcal{E}_{2} \subset \cdots \subset \mathcal{E}_{l}=\mathcal{E}
$$

such that $\mathcal{E}_{i} / \mathcal{E}_{i-1}$ is semistable for all $1 \leq i \leq l$ and moreover, we have $\mu\left(\mathcal{E}_{i} / \mathcal{E}_{i-1}\right)>$ $\mu\left(\mathcal{E}_{i+1} / \mathcal{E}_{i}\right)$ for all $1 \leq i \leq l-1$. This filtration is called the Harder-Narasimhan filtration of \mathcal{E}.

We will now use the following corollary due to Le Potier to conclude that the locus of quotient vector bundles in M of given splitting type has expected codimension.

Proposition 2.1.5 ((12), Cor 15.4.3). Let X be a smooth projective curve of genus g. Let E_{s} be a complete family of vector bundles of rank r and degree d parametrized by a smooth variety S. For integers $l, r_{i}>0$ and d_{i}, set

$$
\mu_{i}=\frac{d_{i}}{r_{i}}
$$

The points $s \in S$ such that the Harder-Narasimhan filtration (if it exists) has length l and such that the Harder-Narasimhan grading $\operatorname{gr}_{i}\left(E_{s}\right)$ of E_{s} has rank r_{i} and degree d_{i}, for $i=1, \cdots, l$, form a locally closed smooth subvariety of codimension

$$
\sum_{i<j} r_{i} r_{j}\left(\mu_{i}-\mu_{j}+g-1\right)
$$

Observe that when $g=0$, we have $E_{s}=\oplus_{i=1}^{r} \mathcal{O}_{\mathbb{P}^{1}}\left(a_{i}\right)$ for some integers a_{1}, \cdots, a_{r}, and so,

$$
\begin{equation*}
\sum_{i<j} r_{i} r_{j}\left(\mu_{i}-\mu_{j}-1\right)=e x t^{1}\left(E_{s}, E_{s}\right)=\sum_{i, j} \max \left\{a_{i}-a_{j}-1, \mathrm{o}\right\} \tag{2.1}
\end{equation*}
$$

Now we fix two collection of non-negative integers $a_{1} \geq \cdots \geq a_{r} \geq 0$ and $0 \leq b_{1} \leq$ $\cdots \leq b_{n-r}$ such that $a_{1}+\cdots+a_{r}=b_{1}+\cdots+b_{n-r}=e>$ o. Let $M\left(b_{\bullet}\right)$ be the locus of morphisms in M with the restricted universal quotient bundle being isomorphic to $\mathcal{O}_{\mathbb{P}^{1}}\left(b_{1}\right) \oplus \cdots \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(b_{n-r}\right)$, and let $M^{\prime}\left(a_{\bullet}\right)$ be the locus of morphisms in M with the restricted universal sub-bundle being isomorphic to $\mathcal{O}_{\mathbb{P}^{1}}\left(-a_{1}\right) \oplus \cdots \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(-a_{r}\right)$. Our goal is to show that the intersection locus $M\left(b_{\bullet}\right) \cap M^{\prime}\left(a_{\bullet}\right)$ is nonempty and generically transverse, a posteriori, has an irreducible component of expected codimension

$$
\sum_{1 \leq i, j \leq r} \max \left\{a_{i}-a_{j}-1, \mathrm{o}\right\}+\sum_{1 \leq i, j \leq n-r} \max \left\{b_{i}-b_{j}-1, \mathrm{o}\right\}
$$

We see that

Proposition 2.1.6. The locus $M\left(b_{\bullet}\right)$ is smooth of codimension

$$
\sum_{i, j} \max \left\{b_{i}-b_{j}-1, \mathrm{o}\right\}
$$

Similarly, $M^{\prime}\left(a_{\bullet}\right)$ is smooth of codimension

$$
\sum_{i, j} \max \left\{a_{i}-a_{j}-1, \mathrm{o}\right\}
$$

Proof. The first part of the Lemma follows from Lemma 2.1.4, Proposition 2.1.5, and equation Equation 2.1.

To conclude the second part, we note that the canonical map

$$
Q u o t_{\mathcal{O}_{\mathbb{P}^{1}}^{\oplus n} / \mathbb{P}^{1} / \mathbb{K}}^{r} \longrightarrow Q u o t_{\mathcal{O}_{\mathbb{P}^{1}}^{\oplus n} / \mathbb{P}^{1} / \mathbb{K}}^{n-r}
$$

which sends $\left[\mathcal{O}_{\mathbb{P}^{1}}^{\oplus n} \longrightarrow E\right]$ to $\left[\mathcal{O}_{\mathbb{P}^{1}}^{\oplus n} \longrightarrow \mathcal{K}^{*}\right]$, where \mathcal{K} is the kernel of the map $\mathcal{O}_{\mathbb{P}^{1}}^{\oplus n} \longrightarrow E$, induces an isomorphism between $\operatorname{Mor}_{e}\left(\mathbb{P}^{1}, G(r, n)\right)$ and $\operatorname{Mor}_{e}\left(\mathbb{P}^{1}, G(n-\right.$ $r, n)$). Hence, the second part of the Lemma follows from the first part.

Therefore, we need to show that the intersection of $M\left(b_{\mathbf{\bullet}}\right)$ and $M^{\prime}\left(a_{\bullet}\right)$ is nonempty, and we need to find a point in $M\left(b_{\bullet}\right) \cap M^{\prime}\left(a_{\bullet}\right)$ where the intersection is transverse. We show these in section 3.1 and 3.2.

Definition 2.1.7. Given a collection of non-negative integers a_{1}, \cdots, a_{l}, we define its polygonal line to be

$$
\mathfrak{P}\left(a_{1}, \cdots, a_{l}\right)=\left(a_{1}^{\prime}, a_{1}^{\prime}+a_{2}^{\prime}, \cdots, a_{1}^{\prime}+\cdots+a_{l}^{\prime}\right)
$$

where $a_{1}^{\prime}, \cdots, a_{l}^{\prime}$ is a rearrangement of the a_{i} 's such that $a_{1}^{\prime} \geq \cdots \geq a_{l}^{\prime}$. Additionally, given another such collection b_{1}, \cdots, b_{l} with rearrangement $b_{1}^{\prime} \geq \cdots \geq b_{l}^{\prime}$, we define inequality

$$
\mathfrak{P}\left(b_{\bullet}\right) \geq \mathfrak{P}\left(a_{\bullet}\right) \quad \text { if } \quad \sum_{j=1}^{i} b_{j}^{\prime} \geq \sum_{j=1}^{i} a_{j}^{\prime}, \quad \text { for all } 1 \leq i \leq l
$$

Note that if \mathcal{E} is a vector bundle of rank r on \mathbb{P}^{1} with splitting type $a_{1} \geq \cdots \geq a_{r} \geq 0$, then $\mathfrak{P}\left(a_{1}, \cdots, a_{r}\right)$ is the tuple consisting of the degrees of the subbundles appearing in the Harder-Narasimhan filtration of \mathcal{E}.

It follows as a consequence of Proposition 1.2 due to Ramella (10)

Proposition 2.1.8. Given two collection of non-negative integers $\mathrm{o} \leq b_{1} \leq \cdots \leq b_{n-r}$ and $\mathrm{o} \leq b_{1}^{\prime} \leq \cdots \leq b_{n-r}^{\prime}$ with $b_{1}+\cdots+b_{n-r}=b_{1}^{\prime}+\cdots+b_{n-r}^{\prime}=e$. We have

$$
\overline{M\left(b_{\bullet}^{\prime}\right)} \supset M\left(b_{\bullet}\right) \quad \text { iff } \quad \mathfrak{P}\left(b_{\bullet}^{\prime}\right) \leq \mathfrak{P}\left(b_{\bullet}\right)
$$

Similar result holds for $M^{\prime}\left(a_{\bullet}\right)$.

Since M is stratified by $M\left(b_{\bullet}\right)$ for all possible $0 \leq b_{1} \leq \cdots \leq b_{n-r}$ with $b_{1}+\cdots+b_{n-r}=$ e, and by $M^{\prime}\left(a_{\bullet}\right)$ for all possible $a_{1} \geq \cdots \geq a_{r} \geq 0$ with $a_{1}+\cdots+a_{r}=e$, Proposition 2.1.8 yields the following Corollary.

Corollary 2.1.9. The closure of the locus $M\left(b_{\bullet}\right)$ in $\operatorname{Mor}_{e}\left(\mathbb{P}^{1}, G(r, n)\right)$ is

$$
\overline{M\left(b_{\bullet}\right)}=\bigcup_{\substack{0 \leq b_{1}^{\prime} \leq \cdots \leq b_{n-r}^{\prime} \\ b_{1}+\cdots+b_{n-r}=e \\ \mathfrak{P}\left(b_{\bullet}^{\prime}\right) \geq \mathfrak{P}\left(b_{\bullet}\right)}} M\left(b_{\bullet}^{\prime}\right)
$$

Similarly, we have

$$
\overline{M^{\prime}\left(a_{\bullet}\right)}=\bigcup_{\substack{a_{1}^{\prime}, \cdots \geq a_{r}^{\prime} \geq 0 \\ a_{1}^{\prime}+\cdots+a_{r}^{\prime}=e \\ \mathfrak{P}\left(a_{\bullet}^{\prime}\right) \geq \mathfrak{P}\left(a_{\bullet}\right)}} M^{\prime}\left(a_{\bullet}^{\prime}\right)
$$

2.2 Betti numbers of the moduli space of sheaves on \mathbb{P}^{2}

Let X be a smooth projective surface over an algebraically closed field \mathbb{K} of characteristic zero, and let H be an ample divisor on X. Throughout this thesis, we are going to assume that all sheaves are coherent and torsion free. Given a sheaf \mathcal{F}, we define the H-slope of \mathcal{F} as

$$
\mu_{H}(\mathcal{F})=\frac{c h_{1}(\mathcal{F}) \cdot H}{c h_{0}(\mathcal{F}) \cdot H^{2}}
$$

Additionally, we define the Chern character of \mathcal{F} as $\gamma=(r, c, \Delta)$ where r is the rank, c is the first Chern class, and Δ is the discriminant defined as

$$
\begin{equation*}
\Delta(\mathcal{F})=\frac{c h_{1}(\mathcal{F})^{2}-2 c h_{\mathrm{o}}(\mathcal{F}) c h_{2}(\mathcal{F})}{2 c h_{0}(\mathcal{F})^{2}} \tag{2.2}
\end{equation*}
$$

We define a sheaf \mathcal{F} to be μ_{H}-semistable if for every nonzero proper subsheaf \mathcal{E}, we have $\mu_{H}(\mathcal{E}) \leq \mu_{H}(\mathcal{F})$. Likewise, we define a sheaf \mathcal{F} to be μ_{H}-stable if the inequality is strict.

Given any sheaf \mathcal{F}, there exists a unique filtration

$$
\mathrm{o}=\mathcal{F}_{\mathrm{o}} \subset \mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \cdots \subset \mathcal{F}_{l}=\mathcal{F}
$$

such that the subquotients $\mathcal{F}_{i} / \mathcal{F}_{i-1}$ are μ_{H}-semistable for all $1 \leq i \leq l$, and moreover, we have $\mu_{H}\left(\mathcal{F}_{i} / \mathcal{F}_{i-1}\right)>\mu_{H}\left(\mathcal{F}_{i+1} / \mathcal{F}_{i}\right)$ for all $1 \leq i \leq l-1$. We call this filtration the Harder-Narasimhan filtration of \mathcal{F} (see (33)[Section 1.3]).

Furthermore, given any μ_{H}-semistable sheaf \mathcal{F}, there exists a filtration

$$
\mathrm{o}=\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \cdots \subset \mathcal{F}_{l}=\mathcal{F}
$$

such that the subquotients $\mathcal{F}_{i} / \mathcal{F}_{i-1}$ are stable and have H-slope $\mu_{H}(\mathcal{F})$ for all $1 \leq i \leq l$. We call such a filtration, a Jordan-Holder filtration of \mathcal{F} (see (33)[Section 1.5]). Up to isomorphism, the direct sum of the subquotients $\mathcal{F}_{i} / \mathcal{F}_{i-1}$ for $1 \leq i \leq l$ does not depend on the Jordan-Holder filtration. We say two μ_{H}-semistable sheaves are S-equivalent if the direct sum of subquotients appearing in their corresponding Jordan Hölder filtrations are isomorphic.

Given a Chern character $\gamma=(r, c, \Delta)$, we denote by $M_{X, H}(\gamma)$ the moduli space of Sequivalence classes of μ_{H}-semistable sheaves with Chern character γ. These spaces were constructed by Gieseker (13) and Maruyama (14). When X is smooth projective surface and H is ample divisor with $K_{X} \cdot H<0$, the moduli space $M_{X, H}(\gamma)$ is smooth at every stable sheaf \mathcal{F} because $\operatorname{ext}^{2}(\mathcal{F}, \mathcal{F})=\operatorname{hom}\left(\mathcal{F}, \mathcal{F} \otimes K_{X}\right)=0$. Consequently, assuming $M_{X, H}(\gamma)$ is nonempty, if all μ_{H}-semistable sheaves with Chern character γ are μ_{H}-stable, then $M_{X, H}(\gamma)$ is a smooth projective variety of dimension $\operatorname{ext}^{1}(\gamma, \gamma)=1-\chi(\gamma, \gamma)$. We denote by $\mathcal{M}_{X, H}(\gamma)$ the moduli stack of μ_{H}-semistable sheaves with Chern character γ.

Given a rank r and first Chern class c, assume that $M_{X, H}(r, c, \Delta)$ is nonempty smooth projective variety for all $\Delta \geq \mathrm{o}$, for example when $r \cdot H^{2}$ and $c \cdot H$ are coprime. Let
$\gamma=(r, c, \Delta)$ be the Chern character. To understand the Betti numbers of $M_{X, H}(\gamma)$, we look at the Poincaré polynomial

$$
P_{M_{X, H}(\gamma)}(t)=\sum_{i=0}^{2(1-\chi(\gamma, \gamma))} b_{i}\left(M_{X, H}(\gamma)\right) t^{i}
$$

Intuitively, stabilization of the Betti numbers, or equivalently the Poincaré polynomials mean that for each $i \geq 0$, the Betti number $b_{i}\left(M_{X, H}(\gamma)\right)$ becomes the same for sufficiently large Δ.

In general, consider a collection of polynomials $P_{d}(t)=\sum_{i=0}^{s_{d}} a_{i, d} t^{i}$ indexed by integers $d \geq N$, for some integer N. We look at the corresponding collection of shifted polynomials $\tilde{P}_{d}(t)=\sum_{j=-s_{d}}^{o} b_{j, d} t^{j}$, where $b_{j, d}=a_{j+s_{d}, d}$.

Definition 2.2.1. We say that the collection of polynomials $\left\{P_{d}(t)\right\}_{d \geq N}$ stabilize if for each j there exists an integer $d_{\mathrm{o}}(j)$ such that for all $d \geq d_{\mathrm{o}}(j)$ we have $b_{j, d}=b_{j, d+1}$. In this case, we define the stable limit to be $\tilde{P}_{\infty}(t)=\sum_{j=-\infty}^{o} \beta_{j} t^{j}$, where $\beta_{j}=b_{j, d}$ for any $d \geq d_{o}(j)$.

In our case, we fix r and c and look at the collection of polynomials $P_{M_{X, H}(r, c, \Delta)}$ for $\Delta \geq 0$. If this collection of polynomials stabilize, we say that the Betti numbers of $M_{X, H}(r, c, \Delta)$ stabilize.

Consider the generating function

$$
\begin{equation*}
\tilde{F}(q, t)=\sum_{d=N}^{\infty} \tilde{P}_{d}(t) q^{d} \tag{2.3}
\end{equation*}
$$

We have

Proposition 2.2.2 ((17), Proposition 3.1). The polynomials $P_{d}(t)$ stabilize iff the coefficient of t^{i} in $(1-q) \tilde{F}(q, t)$ is a Laurent polynomial in q. Moreover, if the polynomials stabilize, the stable limit is obtained by evaluating $(1-q) \tilde{F}(q, t)$ at $q=1$.

The proof of Proposition 2.2.2 due to Coskun and Woolf (17) essentially follows from the following Lemma.

Lemma 2.2.3. For any $j \geq 0$, the coefficient of $t^{-j} q^{d}$ in $(1-q) \tilde{F}(q, t)$ is zero for $d \geq d_{\mathrm{o}}(j)$ iff $b_{j, d}=b_{j, d+1}$ for all $d \geq d_{\mathrm{o}}(j)-1$.

Proof. Let us define $b_{j, d}=0$ for $j<-s_{d}$. It follows from equation Equation 2.3 that

$$
\tilde{F}(q, t)=\sum_{d \geq N, j \leq 0} b_{j, d} t^{j} q^{d}
$$

whence,

$$
(1-q) \tilde{F}(q, t)=\sum_{d \geq N, j \leq o}\left(b_{j, d}-b_{j, d-1}\right) t^{j} q^{d}
$$

Additionally, let

$$
F(q, t)=\sum_{d=N}^{\infty} P_{d}(t) q^{d}
$$

and assume that the polynomials $P_{d}(t)$ satisfy Poincaré duality i.e. $t^{s_{d}} P_{d}\left(t^{-1}\right)=P_{d}(t)$ for $d \gg 0$, then we have

Corollary 2.2.4 ((17), Corollary 3.2). The polynomials $P_{d}(t)$ stabilize iff the coefficient of t^{i} in $(1-q) F(q, t)$ is a Laurent polynomial in q, and in this case, we get the generating function for the stable coefficients by evaluating $(1-q) F(q, t)$ at $q=1$.

Let $K_{\mathrm{o}}\left(\mathrm{var}_{\mathbb{K}}\right)$ denote the Grothendieck ring of varieties over the field \mathbb{K}, which we think of as a quotient of the free abelian group of varieties of finite type over \mathbb{K} by the scissor relations

$$
[X]=[Y]+[Z]
$$

where X is a disjoint union of locally closed subvarieties Y and Z. Multiplication in $K_{0}\left(v a r_{\mathbb{K}}\right)$ is defined as

$$
[X] \cdot[Y]=[X \times Y]
$$

As a consequence of Hironaka's resolution of singularities (34), the Grothendieck ring $K_{\mathrm{o}}\left(v a r_{\mathbb{K}}\right)$ is generated by the classes of smooth projective varieties. The Poincaré polynomials for smooth varieties induces (35) the virtual Poincaré polynomial map

$$
P(t): K_{0}\left(\operatorname{var}_{\mathbb{K}}\right) \longrightarrow \mathbb{Z}[t]
$$

Let \mathbb{L} denote the class $\left[\mathbb{A}^{1}\right]$ in $K_{\mathrm{o}}\left(v a r_{\mathbb{K}}\right)$. Consider the ring $R=K_{\mathrm{o}}\left(v a r_{\mathbb{K}}\right)\left[\mathbb{L}^{-1}\right]$. We have a \mathbb{Z}-graded filtration \mathfrak{F} on R, where for any given variety Y, we have

$$
[Y] \mathbb{L}^{a} \in \mathfrak{F}^{i} \quad \text { iff } \quad \operatorname{dim}(Y)+a \leq-i
$$

We define the ring A^{-}to be the inverse limit

$$
\begin{equation*}
A^{-}:={\underset{\zeta}{i \geq 0}}^{\lim _{i}} R /\left(\mathfrak{F}^{i} \otimes_{\mathfrak{F}^{\circ}} R\right) \tag{2.4}
\end{equation*}
$$

Since \mathbb{L} and $\mathbb{L}^{i}-1$ for $i>0$ are invertible in A^{-}, we have a well-defined map from $R\left[\left\{\left(\mathbb{L}^{i}-1\right) \mid i>0\right\}\right]$ to A^{-}. Our notion of dimension extends from $K_{\mathrm{o}}\left(\operatorname{var}_{\mathbb{K}}\right)$ to A^{-}. Similarly, the virtual Poincaré polynomial extends to R and A^{-}where it takes values in $\mathbb{Z}\left[t, t^{-1}\right]$ and $\mathbb{Z}\left(\left(t^{-1}\right)\right)$ respectively.

Definition 2.2.5. We say that a sequence of elements a_{i} in A^{-}for $i \geq o$ stabilize to a iff the sequence $a_{i} \mathbb{L}^{-\operatorname{dim}\left(a_{i}\right)}$ converges to a.

Given any smooth projective variety Y of dimension d, it follows from Poincaré duality that

$$
\begin{equation*}
P_{[Y]}(t)=t^{2 d} P_{[Y]}\left(t^{-1}\right)=P_{[Y] \mathbb{L}^{-d}}\left(t^{-1}\right) \tag{2.5}
\end{equation*}
$$

Therefore, we have

Lemma 2.2.6. Given a collection of smooth projective varieties $\left[X_{i}\right]$ of dimension d_{i}, if they stabilize in A^{-}then their respective Poincaré polynomials also stabilize.

Moreover, we know

Proposition 2.2.7 ((17), Proposition 3.6). A sequence of elements $a_{i} \in A^{-}$for $i \geq 0$ converges to a iff the generating function $(1-q) \sum_{i \geq 0} a_{i} q^{i}$ is convergent at $q=1$, and in this case, evaluating the generating function $(1-q) \sum_{i \geq 0} a_{i} q^{i}$ at $q=1$ yields a.

In particular, we see that

Remark 2.2.8. If for all $N \geq 0$, there exists $\Delta_{0}(N)>0$ such that the coefficient of $\mathbb{L}^{-N} q^{\Delta}$ in $(1-q) \sum_{i \geq 0}\left[X_{i}\right] \mathbb{L}^{-d_{i}} q^{i}$ is zero, then for all $N \geq 0$ the coefficient of \mathbb{L}^{-N} in $(1-q) \sum_{i \geq 0}\left[X_{i}\right] \mathbb{L}^{-d_{i}} q^{i}$ is a Laurent polynomial of q of degree at most $\Delta_{0}(N)$. As a result, it follows from Proposition 2.2.7 that the generating function $(1-q) \sum_{i}\left[X_{i}\right] \mathbb{L}^{-d_{i}} q^{i}$ is convergent at $q=1$, whence Lemma 2.2.6 yields the Poincaré polynomials of $\left[X_{i}\right]$ also stabilize. Consequently, it follows from equation Equation 2.5, Lemma 2.2.3, and definition 2.2.1 that the $2 N$ th Betti number of X_{Δ} stabilize when $\Delta \geq \Delta_{0}(N)-1$.

Given a smooth projective surface X, we have the following equality of generating functions due to Göttsche

$$
\sum_{\Delta=1}^{\infty}\left[X^{[\Delta]}\right] \mathbb{L}^{-2 \Delta} q^{\Delta}=\prod_{m=1}^{\infty}\left(\sum_{n=0}^{\infty}\left[X^{(n)}\right] \mathbb{L}^{(-m-1) n} q^{m n}\right)
$$

Vakil and Wood (36)[Conjecture 1.25] conjecture that the sequence $\left[X^{(\Delta)}\right] \mathbb{L}^{-2 \Delta}$ converges in A^{-}. Using above equality, this conjecture implies that the sequence $\left[X^{[\Delta]}\right] \mathbb{L}^{-2 \Delta}$ also converges. This conjecture is known in the case when X is a rational surface. Coskun and Woolf (17) showed that when X is a rational surface and H is an ample line bundle, and $K_{X} \cdot H<0$, the sequence $\left[\mathcal{M}_{X, H}(r, c, \Delta)\right] \mathbb{L}^{-r^{2}\left(2 \Delta-\chi\left(\mathcal{O}_{X}\right)\right)}$ converges to the same limit in A^{-}. They studied the generating function

$$
G_{X, H, r, c}(q)=\sum_{\Delta=0}^{\infty}\left[\mathcal{M}_{X, H}(r, c, \Delta)\right] \mathbb{L}^{-r^{2}\left(2 \Delta-\chi\left(\mathcal{O}_{X}\right)\right)} q^{r \Delta}
$$

Using Proposition 2.2.7, they showed convergence of the generating function $(1-q) G_{X, H, r, c}(q)$ at $q=1$ and evaluated it.

In the special case when $X=\mathbb{P}^{2}$ and $H=\mathbb{O}_{\mathbb{P}^{2}}(1)$, we define generating function

$$
\begin{equation*}
G_{r, c}(q)=\sum_{\Delta \geq 0}\left[\mathcal{M}_{\mathbb{P}^{2}, H}(r, c, \Delta)\right] \mathbb{L}^{r^{2}(1-2 \Delta)} q^{r \Delta} \tag{2.6}
\end{equation*}
$$

To study convergence of this generating function, we look at the blow-up of \mathbb{P}^{2} at a point and study convergence of a similar generating function on the blow-up.

Given any integer $e \geq 0$, we denote by \mathbb{F}_{e} the Hirzebruch surface $\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(e)\right)$. The Picard group of \mathbb{F}_{e} is the abelian group generated by E which is the class of a section of the canonical map $\pi: \mathbb{F}_{e} \longrightarrow \mathbb{P}^{1}$ and F which is the class of fibers of π, satisfying the relations

$$
E^{2}=-e, \quad E \cdot F=1, \quad F^{2}=0
$$

The canonical class of \mathbb{F}_{e} is $K_{\mathbb{F}_{e}}=-2 E-(e+2) F$. Since $-K_{\mathbb{F}_{e}}$ is effective, $K_{\mathbb{F}_{e}} \cdot H<0$ for every ample divisor H. The nef cone of \mathbb{F}_{e} is spanned by F and $E+e F$. In the special case when $e=1$, we think of \mathbb{F}_{1} as the blow-up of \mathbb{P}^{2} at a point p. We denote by E the exceptional divisor and by F the fiber class.

We are going to look at the moduli stacks $\mathcal{M}_{\mathbb{P}^{2}, H}(r, c, \Delta)$ and $\mathcal{M}_{\mathbb{F}_{1}, E+F}(r, \tilde{c}, \tilde{\Delta})$ where $\gamma=(r, c, \Delta)$ is Chern character on \mathbb{P}^{2} and $\tilde{\gamma}=(r, \tilde{c}, \tilde{\Delta})$ is Chern character on \mathbb{F}_{1}. We define generating functions

$$
G_{r, c}(q)=\sum_{\Delta \geq 0}\left[\mathcal{M}_{\mathbb{P}^{2}, H}(r, c, \Delta)\right] \mathbb{L}^{r^{2}(1-2 \Delta)} q^{r \Delta}
$$

and

$$
\tilde{G}_{r, \tilde{c}}(q)=\sum_{\tilde{\Delta} \geq 0}\left[\mathcal{M}_{\mathbb{F}_{1}, E+F}(r, \tilde{c}, \tilde{\Delta})\right] \mathbb{L}^{r^{2}(1-2 \tilde{\Delta})} q^{r \tilde{\Delta}}
$$

Coskun and Woolf have shown that

Theorem 2.2.9 ((17), Theorem 5.4, Corollary 5.5). The generating function (1 $q) G_{r, c}(q)$ converges at $q=1$ to $\prod_{i=1}^{\infty} \frac{1}{\left(1-\mathbb{L}^{-i}\right)^{3}}$. Similarly, the generating function ($1-$ q) $G_{r, \tilde{c}}(q)$ converges at $q=1$ to $\prod_{i=1}^{\infty} \frac{1}{\left(1-\mathbb{L}^{-i}\right)^{4}}$.

Our goal is to determine lower bounds for the stabilization of the Betti numbers for the moduli space $M_{\mathbb{P}^{2}, H}(r, c, \Delta)$ in the special case when r and $c \cdot H$ are coprime. The way we do this is by relating the stabilization of the Betti numbers with the convergence of the generating function $(1-q) G_{r, c}(q)$ at $q=1$. A key ingredient in this method is to relate the classes of the moduli stack and the moduli space in A, which was shown by Coskun and Woolf, where A is the quotient of A^{-}by relations $[P]=[X]\left[P G L_{n}\right]$ whenever $P \longrightarrow X$ is an étale $P G L_{n}$-torsor.

Proposition 2.2.10 ((17), Proposition 7.3). The moduli stack and moduli space of $\mu_{H^{-}}$ stable sheaves on X, denoted $\mathcal{M}_{X, H}^{s}(\gamma)$ and $M_{X, H}^{s}(\gamma)$ respectively, are related in A as follows:

$$
\begin{equation*}
\left[M_{X, H}^{s}(\gamma)\right]=(\mathbb{L}-1)\left[\mathcal{M}_{X, H}^{s}(\gamma)\right] \tag{2.8}
\end{equation*}
$$

By our assumption, r and $c \cdot H$ are coprime, a posteriori, all μ_{H}-semistable sheaves are μ_{H}-stable. As a consequence, we can use Proposition 2.2.10 to relate the moduli stack and the moduli space.

CHAPTER 3

RESTRICTED TANGENT BUNDLE OF GRASSMANNIAN TO RATIONAL CURVES

In this chapter, we study the locus of restricted tangent bundle of the Grassmannian to rational curves with a given splitting type. More precisely, we show that this locus is stratified by intersection loci $M\left(b_{\bullet}\right) \cap M^{\prime}\left(a_{\bullet}\right)$ which are nonempty and generically transverse.

3.1 The intersection locus is nonempty

In this section we show that the intersection of the locus of degree e morphisms from \mathbb{P}^{1} to $G(r, n)$ with the restricted universal sub-bundle having given splitting type and the locus of degree e morphisms with restricted universal quotient bundle having given splitting type is non-empty. In particular, we want to show that given two sequences of non-negative integers $a_{1} \geq \cdots \geq a_{r} \geq 0$ and $0 \leq b_{1} \leq \cdots \leq b_{n-r}$ such that $a_{1}+\cdots+a_{r}=$ $b_{1}+\cdots+b_{n-r}=e>0$, there exits an exact sequence of vector bundles
$0 \longrightarrow \mathcal{O}_{\mathbb{P}^{1}}\left(-b_{1}\right) \oplus \cdots \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(-b_{n-r}\right) \xrightarrow{u} \mathcal{O}_{\mathbb{P}^{1}}^{\oplus n} \xrightarrow{v} \mathcal{O}_{\mathbb{P}^{1}}\left(a_{1}\right) \oplus \cdots \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(a_{r}\right) \longrightarrow 0$

By dualizing the sequence if necessary, we may assume without loss of generality that $(n-r) \leq r$.

Before doing the general case, we would like to do the case $r=n-r=2$. We have $a_{1} \geq a_{2}, b_{1} \leq b_{2}$ and $a_{1}+a_{2}=b_{1}+b_{2}=e$.

Proposition 3.1.1. There exists an exact sequence

$$
\mathrm{o} \longrightarrow \mathcal{O}\left(-b_{1}\right) \oplus \mathcal{O}\left(-b_{2}\right) \xrightarrow{u} \mathcal{O}^{\oplus 4} \xrightarrow{v} \mathcal{O}\left(a_{1}\right) \oplus \mathcal{O}\left(a_{2}\right) \longrightarrow \mathrm{o}
$$

Proof. Note that we must have $a_{1} \geq b_{1}$, otherwise

$$
b_{1}+b_{2} \geq 2 b_{1}>2 a_{1} \geq a_{1}+a_{2}
$$

which is a contradiction. We define

$$
v=\left(\begin{array}{cccc}
x^{a_{1}} & y^{a_{1}} & 0 & x^{a_{1}-b_{1}} y^{b_{1}} \\
0 & x^{a_{2}} & y^{a_{2}} & 0
\end{array}\right) \quad u=\left(\begin{array}{cc}
-y^{b_{1}} & 0 \\
0 & x^{a_{1}-b_{1}} y^{a_{2}} \\
0 & -x^{b_{2}} \\
x^{b_{1}} & -y^{b_{2}}
\end{array}\right)
$$

where x and y denote the co-ordinate functions of \mathbb{P}^{1}. The minor corresponding to the first two columns of v is $x^{a_{1}+a_{2}}$ and the minor corresponding to the second and third column of v is $y^{a_{1}+a_{2}}$. Since these two monomials do not vanish simultaneously on \mathbb{P}^{1}, we conclude that v is surjective.

Similarly, by looking at the minor corresponding to first and fourth row, and the minor corresponding to third and fourth row, we conclude that u is injective.

Finally, one can check that $v \circ u=0$.

Now we discuss the general case when $(n-r) \leq r$. We define

Definition 3.1.2.

$A(j)= \begin{cases}\mathrm{o}, & \text { if } j \leq \mathrm{o} \\ a_{1}+\cdots+a_{j}, & \text { if } 1 \leq j \leq r \quad B(i)=\left\{\begin{array}{ll}\mathrm{o}, & \text { if } i \leq \mathrm{o} \\ b_{1}+\cdots+b_{i}, & \text { if } 1 \leq i \leq n-r \\ a_{1}+\cdots+a_{r}, & \text { if } j \geq r\end{array} \quad \begin{array}{ll} \\ b_{1}+\cdots+b_{n-r}, & \text { if } i \geq n-r\end{array} \text { }\right.\end{cases}$
To describe the matrices, we need to use the following lemma.

Lemma 3.1.3. Let $a_{1} \geq \cdots \geq a_{r} \geq 0$ and $0 \leq b_{1} \leq \cdots \leq b_{n-r}$ be two sequence of nonnegative integers with $(n-r) \leq r$ and $A(r)=B(n-r)$. Then for all $0 \leq l \leq(n-r)$, we have $A(2 r-n+l) \geq B(l)$.

Proof. Let $s(l)=A(2 r-n+l)-B(l)$ for any $\mathrm{o} \leq l \leq(n-r)$. Clearly, $s(\mathrm{o}) \geq \mathrm{o}$. Let $1 \leq l_{0}<n-r$ be the least integer such that $s\left(l_{0}-1\right) \geq 0$ and $s\left(l_{0}\right)<0$.

Since $s\left(l_{0}\right)=s\left(l_{0}-1\right)+a_{2 r-n+l_{0}}-b_{l_{0}}$, we must have $a_{2 r-n+l_{0}}-b_{l_{0}}<0$. This in turn implies that

$$
a_{r} \leq \cdots \leq a_{2 r-n+l_{0}+1} \leq a_{2 r-n+l_{o}}<b_{l_{o}} \leq b_{l_{0}+1} \leq \cdots \leq b_{n-r}
$$

which gives

$$
s(n-r)=s\left(l_{0}\right)+\left(a_{2 r-n+l_{0}+1}-b_{l_{0}+1}\right)+\cdots+\left(a_{r}-b_{n-r}\right) \leq s\left(l_{0}\right)<0
$$

But we know $s(n-r)=0$, thus we have a contradiction.

The description of the matrices depend on how the $A(j)$'s and $B(i)$'s are ordered. For example, let $r=n-r=5$ and let's assume the following order

$$
B(1)<B(2)<A(1)<A(2)<B(3)<A(3)<B(4)<A(4)<B(5)=A(5)
$$

For ease of notation, let us define $s_{j, i}=A(j)-B(i)$ for any given integers i, j. Let x and y denote the co-ordinate functions of \mathbb{P}^{1}. Then the first matrix v is given as follows

$$
\left(\begin{array}{ccccccccccc}
x^{a_{1}} & y^{a_{1}} & 0 & 0 & 0 & 0 & x^{s_{1,2}} y^{-s_{0,2}} & x^{s_{1,2}} y^{-s_{0,2}} & 0 & 0 \tag{3.1}\\
0 & x^{a_{2}} & y^{a_{2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & x^{a_{3}} & y^{a_{3}} & 0 & 0 & 0 & 0 & x^{s_{3,3}} y^{-s_{2,3}} & 0 \\
0 & 0 & 0 & x^{a_{4}} & y^{a_{4}} & 0 & 0 & 0 & 0 & x^{s_{4,4}} y^{-s_{3,4}} \\
0 & 0 & 0 & 0 & x^{a_{5}} & y^{a_{5}} & 0 & 0 & 0 & 0
\end{array}\right)
$$

The second matrix u is given as follows :

$$
\left(\begin{array}{ccccc}
-y^{b_{1}} & 0 & 0 & 0 & 0 \tag{3.2}\\
0 & 0 & x^{s_{1,2}} y^{-s_{1,3}} & 0 & 0 \\
0 & 0 & -x^{s_{2,2}} y^{-s_{2,3}} & 0 & 0 \\
0 & 0 & 0 & x^{s_{3,3}} y^{-s_{3,4}} & 0 \\
0 & 0 & 0 & 0 & x^{s_{4,4}} y^{-s_{4,5}} \\
0 & 0 & 0 & 0 & -x^{b_{5}} \\
x^{b_{1}} & -y^{b_{2}} & 0 & 0 & 0 \\
0 & x^{b_{2}} & -y^{b_{3}} & 0 & 0 \\
0 & 0 & x^{b_{3}} & -y^{b_{4}} & 0 \\
0 & 0 & 0 & -x^{b_{4}} & -y^{b_{5}}
\end{array}\right)
$$

It is easy to see that the v is surjective, u is injective, and $v \circ u=0$.
We now proceed to define the matrices v and u in general. We define two increasing sequences of non-negative integers $\left\{i_{l}\right\}_{l \geq 0}$ and $\left\{j_{l}\right\}_{l \geq 0}$ recursively in the following manner:

We define $i_{0}=0$, and j_{0} to be the largest non-negative integer such that $j_{\mathrm{o}} \leq r$ and $A\left(j_{0}\right) \leq B(1)$. For each $l \geq 1$, we define i_{l} to be the largest non-negative integer such that $i_{l} \leq n-r$ and $B\left(i_{l}\right) \leq A\left(j_{l-1}+1\right)$ and j_{l} to be the largest non-negative integer such that $j_{l} \leq r$ and $A\left(j_{l}\right) \leq B\left(i_{l}+1\right)$. It follows that for $l \gg 0$, we have $j_{l}=r$ and $i_{l}=n-r$. We define α to be the least positive integer such that $j_{\alpha+1}=r$. It follows from Lemma 3.1.3 that in general, there are two possible orderings:
if $a_{1}>b_{1}$, we see that $i_{0}=j_{\mathrm{o}}=\mathrm{o}$ and we have:

$$
\begin{aligned}
& B(1) \leq \cdots \leq B\left(i_{1}\right) \leq A(1) \leq \cdots \leq A\left(j_{1}\right) \leq \\
& B\left(i_{1}+1\right) \leq \cdots \leq B\left(i_{2}\right) \leq A\left(j_{1}+1\right) \leq \cdots \leq A\left(j_{2}\right) \leq \cdots \leq \\
& B\left(i_{\alpha}+1\right) \leq \cdots \leq B(n-r-1) \leq A\left(j_{\alpha}+1\right) \leq \cdots \leq A(r-1) \leq A(r)=B(n-r)
\end{aligned}
$$

if $a_{1} \leq b_{1}$, we have:

$$
\begin{aligned}
& A(1) \leq \cdots \leq A\left(j_{0}\right) \leq B(1) \leq \cdots \leq B\left(i_{1}\right) \leq A\left(j_{0}+1\right) \leq \cdots \leq A\left(j_{1}\right) \leq \\
& B\left(i_{1}+1\right) \leq \cdots \leq B\left(i_{2}\right) \leq A\left(j_{1}+1\right) \leq \cdots \leq A\left(j_{2}\right) \leq \cdots \leq \\
& B\left(i_{\alpha}+1\right) \leq \cdots \leq B(n-r-1) \leq A\left(j_{\alpha}+1\right) \leq \cdots \leq A(r-1) \leq A(r)=B(n-r)
\end{aligned}
$$

We define the first matrix $v_{r \times n}$ as follows: we have a $r \times(r+1)$ block matrix and a $r \times(n-r-1)$ block matrix comprising the matrix $v_{r \times n}$. The $r \times(r+1)$ block matrix has diagonal and super-diagonal entries defined as follows:

$$
v_{i, i}=x^{a_{i}} \text {, for } i=1, \cdots, r ; \quad v_{i, i+1}=y^{a_{i}}, \text { for } i=1, \cdots, r ;
$$

All the remaining entries of this block are zero. The $r \times(n-r-1)$ block has non-zero entries only in rows $j_{0}+1, j_{1}+1, \cdots, j_{\alpha}+1$, and all other rows have all zero entries. For
$\mathrm{o} \leq l \leq \alpha-1$, the row $j_{l}+1$ have non-zero entries in columns $r+2+i_{l}$ upto $r+1+i_{l+1}$ and zero entries for all other columns. The non-zero entries are:
$v_{j_{l}+1, r+2+i_{l}}=x^{A\left(j_{l}+1\right)-B\left(i_{l}+1\right)} y^{B\left(i_{l}+1\right)-A\left(j_{l}\right)}, \cdots, v_{j_{l+1, r+1+i_{l+1}}}=x^{A\left(j_{l}+1\right)-B\left(i_{l+1}\right)} y^{B\left(i_{l+1}\right)-A\left(j_{l}\right)}$

The row $j_{\alpha}+1$ has non-zero entries in columns $r+2+i_{\alpha}$ upto n, and zero entries in all other columns. The non-zero entries are:
$v_{j_{\alpha}+1, r+2+i_{\alpha}}=x^{A\left(j_{\alpha}+1\right)-B\left(i_{\alpha}+1\right)} y^{B\left(i_{\alpha}+1\right)-A\left(j_{\alpha}\right)}, \cdots, v_{j_{\alpha}+1, n}=x^{A\left(j_{\alpha}+1\right)-B(n-r-1)} y^{B(n-r-1)-A\left(j_{\alpha}\right)}$

We now proceed to define the second matrix $u_{n \times(n-r)}$. The matrix u comprises of three blocks, a $\left(j_{0}+1\right) \times(n-r)$ block $u 1$ consisting of the first $j_{0}+1$ rows of u, a $\left(r-j_{0}-1\right) \times(n-r)$ block $u 2$ consisting of rows $j_{0}+2$ upto r of u, and a $(n-r) \times(n-r)$ block u_{3} consisting of rows $r+1$ upto n of u.

The matrix $u 1$ has non-zero entries in the first column and zero entries in all remaining columns. The non-zero entries are:

$$
u_{1,1}=-y^{b_{1}}, u_{2,1}=(-1)^{2} x^{A(1)} y^{B(1)-A(1)}, \cdots, u_{j_{0}+1,1}=(-1)^{j_{0}+1} x^{A\left(j_{0}\right)} y^{B(1)-A\left(j_{0}\right)}
$$

The matrix $u 2$ has non-zero entries in columns $i_{1}+1, i_{2}+1, \cdots, i_{\alpha}+1$ and $(n-r)$, and zero entries in all other columns. For any $1 \leq l \leq \alpha$, the column $i_{l}+1$ has non-zero
entries in rows $j_{l-1}+2, \cdots, j_{l}+1$ and zero entries in all other rows. The non-zero entries are:

$$
\left.\begin{array}{c}
u_{j_{l-1}+2, i_{l}+1}= \\
u_{j_{l-1}+3, i_{l}+1}
\end{array}=(-1)^{j_{l-1}+2-\left(j_{l-1}+2\right)} x^{A\left(j_{l-1}+1\right)-B\left(i_{l}\right)} y^{B\left(i_{l}+1\right)-A\left(j_{l-1}+1\right)}\right) ~\left(j_{l-1}+2\right) x^{A\left(j_{l-1}+2\right)-B\left(i_{l}\right)} y^{B\left(i_{l}+1\right)-A\left(j_{l-1}+2\right)}, ~(-1)^{j_{l}+1-\left(j_{l-1}+2\right)} x^{A\left(j_{l}\right)-B\left(i_{l}\right)} y^{B\left(i_{l}+1\right)-A\left(j_{l}\right)}
$$

The $(n-r)$ th column has non-zero entries in rows $j_{\alpha}+2$ upto r, and has zero entries in all other rows. The non-zero entries are:

$$
\begin{aligned}
& u_{j_{\alpha}+2, n-r}=(-1)^{j_{\alpha}+2-\left(j_{\alpha}+2\right)} x^{A\left(j_{\alpha}+1\right)-B(n-r-1)} y^{B(n-r)-A\left(j_{\alpha}+1\right)}, \cdots \\
& \cdots u_{r, n-r}=(-1)^{r-\left(j_{\alpha}+2\right)} x^{A(r-1)-B(n-r-1)} y^{B(n-r)-A(r-1)}
\end{aligned}
$$

The non-zero entries of matrix u_{3} are along the diagonal, the sub-diagonal, and in the $(n-r)$ th column. The diagonal entries are:

$$
u_{r+i, i}= \begin{cases}0, & \text { if } i=1 \\ -y^{b_{i}}, & \text { if } 2 \leq i \leq(n-r)\end{cases}
$$

The sub-diagonal entries are:

$$
u_{r+1+i, i}=(-1)^{\beta_{i}} x^{b_{i}}, \text { for } i=1, \cdots, n-r-1
$$

where β_{i} denotes the number of $A(j)$'s lying strictly in between $B(i)$ and $B(i-1)$. We also have $u_{r+1, n-r}=(-1)^{\beta_{n-r} x^{b_{n-r}}}$. All other entries are zero.

Proposition 3.1.4. The matrix v is surjective, u is injective, and $v \circ u=0$. In particular, we have an exact sequence

$$
\mathrm{o} \longrightarrow \oplus_{j=1}^{n-r} \mathcal{O}_{\mathbb{P}^{1}}\left(-b_{j}\right) \xrightarrow{u} \mathcal{O}_{\mathbb{P}^{1}}^{\oplus n} \xrightarrow{v} \oplus_{i=1}^{r} \mathcal{O}_{\mathbb{P}^{1}}\left(a_{i}\right) \longrightarrow 0
$$

Proof. It follows from the definition of v that every entry in the i th row of v is either zero or a monomial of degree a_{i} in x and y, where x and y are the co-ordinate functions of \mathbb{P}^{1}. Hence, v defines a morphism from $\mathcal{O}_{\mathbb{P}^{1}}^{\oplus n}$ to $\oplus_{i=1}^{r} \mathcal{O}_{\mathbb{P}^{1}}\left(a_{i}\right)$.

Similarly, it follows from definition of u that every entry in the j th column of u is either zero or a monomial of degree b_{j} in x and y, a posteriori, defining a morphism from $\oplus_{j=1}^{n-r} \mathcal{O}_{\mathbb{P}^{1}}\left(-b_{j}\right)$ to $\mathcal{O}_{\mathbb{P}^{1}}^{\oplus n}$.

To show v is surjective, we look at two $r \times r$ minors of v, the first one consisting of the first r columns and the second one consisting of columns $2, \cdots,(r+1)$

$$
\left(v_{p, q}\right)_{1 \leq p, q \leq r} \text { and }\left(v_{p, q}\right)_{1 \leq p \leq r, 2 \leq q \leq r+1}
$$

The determinant of first one is $x^{a_{1}+\cdots+a_{r}}$ and second one is $y^{a_{1}+\cdots+a_{r}}$, which do not vanish simultaneously at any point of \mathbb{P}^{1}.

Similarly, to show u is injective, we look at two $(n-r) \times(n-r)$ minors, the first one consisting of rows $(r+1), \cdots, n$ and the second one consisting of row 1 and rows $r+2, \cdots, n$

$$
\left(u_{p, q}\right)_{r+1 \leq p \leq n, 1 \leq q \leq n-r} \text { and }\left(u_{p, q}\right)_{p=1, r+2 \leq p \leq n, 1 \leq q \leq n-r}
$$

The determinant of first one is $(-1)^{\beta_{1}+\cdots+\beta_{n-r}+n-r+1} x^{b_{1}+\cdots+b_{n-r}}$ and for the second one is $(-1)^{n-r} y^{b_{1}+\cdots+b_{n-r}}$, which do not vanish simultaneously at any point of \mathbb{P}^{1}.

Before we begin proof of third part, we would like to explicitly write down the $\beta_{i}^{\prime} s$ used in the description of the matrix u. Recall that β_{i} is the number of $A(j)^{\prime} s$ lying strictly in between $B(i)$ and $B(i-1)$. Thus, when we are in first case where $a_{1}>b_{1}$, we have

$$
\beta_{i}= \begin{cases}j_{l}-j_{l-1}, & \text { if } i=i_{l}+1,1 \leq l \leq \alpha \\ r-j_{\alpha}-1, & \text { if } i=n-r \\ 0, & \text { otherwise }\end{cases}
$$

and when we are in second case where $a_{1} \leq b_{1}$, we have

$$
\beta_{i}= \begin{cases}j_{0}, & \text { if } i=1 \\ j_{l}-j_{l-1}, & \text { if } i=i_{l}+1,1 \leq l \leq \alpha \\ r-j_{\alpha}-1, & \text { if } i=n-r \\ 0, & \text { otherwise }\end{cases}
$$

Let v_{p} denote the p th row of v, and u_{q} denote the q th column of u. Our goal is to show that for any $1 \leq q \leq(n-r)$, we have $v_{p} \cdot u_{q}=$ o for every $1 \leq p \leq r$, and hence we can conclude that $v \cdot u=0$.

We first analyze the case when $a_{1}>b_{1}$. Now u_{1} has nonzero entry in the first and $(r+2)$ th row, and v_{1} is the only row in v with nonzero entries in the respective columns.

We see

$$
v_{1} \cdot u_{1}=x^{a_{1}} \cdot\left(-y^{b_{1}}\right)+x^{A(1)-B(1)} y^{B(1)} \cdot x^{b_{1}}=-x^{a_{1}} y^{b_{1}}+x^{a_{1}} y^{b_{1}}=0
$$

Thus, for any $1 \leq p \leq r$ we have $v_{p} \cdot u_{1}=0$.
For $2 \leq q \leq n-r-1$ and $q \neq i_{1}+1, \cdots, i_{\alpha}+1, u_{q}$ has nonzero entry in $(r+q)$ th and $(r+1+q)$ th row. By construction, $u_{r+q, q}=-y^{b_{q}}$ and $u_{r+q+1, q}=x^{b_{q}}$. Let $A\left(j_{l}\right) \leq$ $B(q) \leq A\left(j_{l}+1\right)$ for some $0 \leq l \leq \alpha$ as per our chosen ordering, then the $(r+q)$ th and $(r+1+q)$ th columns of v have nonzero entry only in row $j_{l}+1$, and the entries are $v_{j_{l}+1, r+q}=x^{A\left(j_{l}+1\right)-B(q-1)} y^{B(q-1)-A\left(j_{l}\right)}$ and $v_{j_{l}+1, r+1+q}=x^{A\left(j_{l}+1\right)-B(q)} y^{B(q)-A\left(j_{l}\right)}$. Thus,

$$
\begin{aligned}
v_{j_{l}+1} \cdot u_{q} & =x^{A\left(j_{l}+1\right)-B(q-1)} y^{B(q-1)-A\left(j_{l}\right)} \cdot\left(-y^{b_{q}}\right)+x^{A\left(j_{l}+1\right)-B(q)} y^{B(q)-A\left(j_{l}\right)} \cdot x^{b_{q}} \\
& =-x^{A\left(j_{l}+1\right)-B(q-1)} y^{B(q)-A\left(j_{l}\right)}+x^{A\left(j_{l}+1\right)-B(q-1)} y^{B(q)-A\left(j_{l}\right)}=0
\end{aligned}
$$

Hence, for any $1 \leq p \leq r$ and $2 \leq q \leq n-r-1, q \neq i_{1}+1, \cdots, i_{\alpha}+1$, we have $v_{p} \cdot u_{q}=0$.

Suppose $q=i_{l}+1$ for some $1 \leq l \leq \alpha$, by construction $u_{i_{l}+1}$ has nonzero entries in rows $j_{l-1}+2, \cdots, j_{l}+1, r+1+i_{l}$ and $r+1+\left(i_{l}+1\right)$. By our chosen ordering, we have

$$
B\left(i_{l}\right) \leq A\left(j_{l-1}+1\right) \leq \cdots \leq A\left(j_{l}\right) \leq B\left(i_{l}+1\right) \leq A\left(j_{l}+1\right)
$$

Clearly the rows $j_{l-1}+1, \cdots, j_{l}+1$ of v are the only ones in which there is a nonzero entry in the columns corresponding to the aforementioned rows of u. We have

$$
\begin{aligned}
v_{j_{l-1}+1} \cdot u_{i_{l}+1}= & y^{a_{j_{l-1}+1}} \cdot x^{A\left(j_{l-1}+1\right)-B\left(i_{l}\right)} y^{B\left(i_{l}+1\right)-A\left(j_{l-1}+1\right)} \\
& +x^{A\left(j_{l-1}+1\right)-B\left(i_{l}\right)} y^{B\left(i_{l}\right)-A\left(j_{l-1}\right)} \cdot\left(-y^{b_{l}}\right) \\
= & x^{A\left(j_{l-1}+1\right)-B\left(i_{l}\right)} y^{B\left(i_{l}+1\right)-A\left(j_{l-1}\right)}-x^{A\left(j_{l-1}+1\right)-B\left(i_{l}\right)} y^{B\left(i_{l}+1\right)-A\left(j_{l-1}\right)}=0
\end{aligned}
$$

$$
v_{j_{l}+1} \cdot u_{i_{l}+1}=x^{a_{j_{l}+1}} \cdot(-1)^{j_{l}+1-\left(j_{l-1}+2\right)} x^{A\left(j_{l}\right)-B\left(i_{l}\right)} y^{B\left(i_{l}+1\right)-A\left(j_{l}\right)}
$$

$$
+x^{A\left(j_{l}+1\right)-B\left(i_{l}+1\right)} y^{B\left(i_{l}+1\right)-A\left(j_{l}\right)} \cdot(-1)^{j_{l}-j_{l-1}} x^{b_{l}}
$$

$$
=(-1)^{j_{l}-j_{l-1}-1} x^{A\left(j_{l}+1\right)-B\left(i_{l}\right)} y^{B\left(i_{l}+1\right)-A\left(j_{l}\right)}
$$

$$
+(-1)^{j_{l}-j_{l-1}} x^{A\left(j_{l}+1\right)-B\left(i_{l}\right)} y^{B\left(i_{l}+1\right)-A\left(j_{l}\right)}=0
$$

For $c=2,3, \cdots, j_{l}-j_{l-1}$, we have

$$
\begin{aligned}
& v_{j_{l-1}+c} \cdot u_{i_{l}+1}= x^{a_{j_{l-1}}+c} \cdot(-1)^{j_{l-1}+c-\left(j_{l-1}+2\right)} x^{A\left(j_{l-1}+c-1\right)-B\left(i_{l}\right)} y^{B\left(i_{l}+1\right)-A\left(j_{l-1}+c-1\right)} \\
&+y^{a_{j_{l-1}+c}+} \cdot(-1)^{j_{l-1}+c+1-\left(j_{l-1}+2\right)} x^{A\left(j_{l-1}+c\right)-B\left(i_{l}\right)} y^{B\left(i_{l}+1\right)-A\left(j_{l-1}+c\right)} \\
&=(-1)^{c-2} x^{A\left(j_{l-1}+c\right)-B\left(i_{l}\right)} y^{B\left(i_{l}+1\right)-A\left(j_{l-1}+c-1\right)} \\
& \quad+(-1)^{c-1} x^{A\left(j_{l-1}+c\right)-B\left(i_{l}\right)} y^{B\left(i_{l}+1\right)-A\left(j_{l-1}+c-1\right)}=0
\end{aligned}
$$

Hence, for any $1 \leq p \leq r$ and $q=i_{l}+1$ for $1 \leq l \leq \alpha$, we have $v_{p} \cdot u_{q}=0$.
By construction, u_{n-r} has a non-zero entry in rows $j_{\alpha}+2, \cdots, r, r+1$ and n. The rows v_{p} of v such that there is a non-zero entry in any of the columns corresponding to non-zero rows of u_{n-r} are $p=j_{\alpha}+1, \cdots, r$. We have

$$
\begin{aligned}
& v_{j_{\alpha}+1} \cdot u_{n-r}= y^{a_{j_{\alpha}+1}} \cdot(-1)^{j_{\alpha}+2-\left(j_{\alpha}+2\right)} x^{A\left(j_{\alpha}+1\right)-B(n-r-1)} y^{B(n-r)-A\left(j_{\alpha}+1\right)} \\
&+x^{A\left(j_{\alpha}+1\right)-B(n-r-1)} y^{B(n-r-1)-A\left(j_{\alpha}\right)} \cdot\left(-y^{b_{n-r}}\right) \\
&=x^{A\left(j_{\alpha}+1\right)-B(n-r-1)} y^{B(n-r)-A\left(j_{\alpha}\right)}-x^{A\left(j_{\alpha}+1\right)-B(n-r-1)} y^{B(n-r)-A\left(j_{\alpha}\right)}=0
\end{aligned}
$$

Similarly,

$$
v_{r} \cdot u_{n-r}=x^{a_{r}} \cdot(-1)^{r-\left(j_{\alpha}+2\right)} x^{A(r-1)-B(n-r-1)} y^{B(n-r)-A(r-1)}+y^{a_{r}} \cdot(-1)^{\beta_{n-r}} x^{b_{n-r}}
$$

Recall that $\beta_{n-r}=r-j_{\alpha}-1$ and $A(r)=B(n-r)$. Thus, we have

$$
\begin{aligned}
v_{r} \cdot u_{n-r} & =(-1)^{r-j_{\alpha}-2} x^{A(r)-B(n-r-1)} y^{B(n-r)-A(r-1)}+(-1)^{r-j_{\alpha}-1} x^{b_{n-r}} y^{a_{r}} \\
& =(-1)^{r-j_{\alpha}-2} x^{B(n-r)-B(n-r-1)} y^{A(r)-A(r-1)}+(-1)^{r-j_{\alpha}-1} x^{b_{n-r}} y^{a_{r}} \\
& =(-1)^{r-j_{\alpha}-2} x^{b_{n-r}} y^{a_{r}}+(-1)^{r-j_{\alpha}-1} x^{b_{n-r}} y^{a_{r}}=0
\end{aligned}
$$

For any $2 \leq c \leq r-j_{\alpha}-1$, we have

$$
\begin{aligned}
& v_{j_{\alpha}+c} \cdot u_{n-r}= x^{a_{j_{\alpha}+c}} \cdot(-1)^{j_{\alpha}+c-\left(j_{\alpha}+2\right)} x^{A\left(j_{\alpha}+c-1\right)-B(n-r-1)} y^{B(n-r)-A\left(j_{\alpha}+c-1\right)} \\
&+y^{a_{j_{\alpha}+c}} \cdot(-1)^{j_{\alpha}+c+1-\left(j_{\alpha}+2\right)} x^{A\left(j_{\alpha}+c\right)-B(n-r-1)} y^{B(n-r)-A\left(j_{\alpha}+c\right)} \\
&=(-1)^{c-2} x^{A\left(j_{\alpha}+c\right)-B(n-r-1)} y^{B(n-r)-A\left(j_{\alpha}+c-1\right)} \\
& \quad+(-1)^{c-1} x^{A\left(j_{\alpha}+c\right)-B(n-r-1)} y^{B(n-r)-A\left(j_{\alpha}+c-1\right)}=0
\end{aligned}
$$

Thus, we have $v_{p} \cdot u_{n-r}=\mathrm{o}$ for any $1 \leq p \leq r$.
We now analyze the case $a_{1} \leq b_{1}$. Observe that for $i_{1}+1 \leq q \leq(n-r)$, the proof of the fact that $v_{p} \cdot u_{q}=\mathrm{o}$ for any $1 \leq p \leq r$ is exactly same as above. We only need to work out the cases $1 \leq q \leq i_{1}$.

By construction, the column u_{1} has non-zero entries in rows $1,2, \cdots, j_{0}+1$ and $r+2$. The only rows of v which has non-zero entry in corresponding columns are $1 \leq p \leq j_{0}+1$. We have

$$
v_{1} \cdot u_{1}=x^{a_{1}} \cdot\left(-y^{b_{1}}\right)+y^{a_{1}} \cdot(-1)^{2} x^{A(1)} y^{B(1)-A(1)}=-x^{a_{1}} y^{b_{1}}+x^{a_{1}} y^{b_{1}}=0
$$

For $2 \leq c \leq j_{0}$, we have

$$
\begin{aligned}
v_{c} \cdot u_{1} & =x^{a_{c}} \cdot(-1)^{c} x^{A(c-1)} y^{B(1)-A(c-1)}+y^{a_{c}} \cdot(-1)^{c+1} x^{A(c)} y^{B(1)-A(c)} \\
& =(-1)^{c} x^{A(c)} y^{B(1)-A(c-1)}+(-1)^{c+1} x^{A(c)} y^{B(1)-A(c-1)}=0
\end{aligned}
$$

and lastly

$$
\begin{aligned}
v_{j_{\mathrm{o}}+1} \cdot u_{1} & =x^{a_{j_{\mathrm{o}}+1}} \cdot(-1)^{j_{\mathrm{o}}+1} x^{A\left(j_{\mathrm{o}}\right)} y^{B(1)-A\left(j_{\mathrm{o}}\right)}+x^{A\left(j_{\mathrm{o}}+1\right)-B(1)} y^{B(1)-A\left(j_{\mathrm{o}}\right)} \cdot(-1)^{\beta_{1}} x^{b_{1}} \\
& =(-1)^{j_{\mathrm{o}}+1} x^{A\left(j_{\mathrm{o}}+1\right)} y^{B(1)-A\left(j_{\mathrm{o}}\right)}+(-1)^{j_{\mathrm{o}}} x^{A\left(j_{\mathrm{o}}+1\right)} y^{B(1)-A\left(j_{\mathrm{o}}\right)}=\mathrm{o}
\end{aligned}
$$

Thus, $v_{p} \cdot u_{1}=0$ for all $1 \leq p \leq r$.
For $2 \leq q \leq i_{1}$, observe that u_{q} has non-zero entry in row $r+1+q-1$ and $r+1+q$.
Clearly, $j_{\mathrm{o}}+1$ is the only row in v with non-zero entry in the corresponding columns.

We have

$$
\begin{aligned}
v_{j_{\mathrm{o}}+1} \cdot u_{q} & =x^{A\left(j_{\mathrm{o}}+1\right)-B(q-1)} y^{B(q-1)-A\left(j_{\mathrm{o}}\right)} \cdot\left(-y^{b_{q}}\right)+x^{A\left(j_{\mathrm{o}}+1\right)-B(q)} y^{B(q)-A\left(j_{\mathrm{o}}\right)} \cdot x^{b_{q}} \\
& =-x^{A\left(j_{\mathrm{o}}+1\right)-B(q-1)} y^{B(q)-A\left(j_{\mathrm{o}}\right)}+x^{A\left(j_{\mathrm{o}}+1\right)-B(q-1)} y^{B(q)-A\left(j_{\mathrm{o}}\right)}=0
\end{aligned}
$$

Thus, $v_{p} \cdot u_{q}=0$ for all $1 \leq p \leq r$ and $2 \leq q \leq i_{1}$.
In conclusion, we have $v \circ u=0$.

Recall from section 2.1 that $M\left(b_{\bullet}\right)$ is the locus of morphisms in $\operatorname{Mor}_{e}\left(\mathbb{P}^{1}, G(r, n)\right)$ with the restricted universal quotient bundle being isomorphic to $\mathcal{O}_{\mathbb{P}^{1}}\left(b_{1}\right) \oplus \cdots \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(b_{n-r}\right)$,
and $M^{\prime}\left(a_{\bullet}\right)$ is the locus of morphisms in $\operatorname{Mor}_{e}\left(\mathbb{P}^{1}, G(r, n)\right)$ with the restricted universal sub-bundle being isomorphic to $\mathcal{O}_{\mathbb{P}^{1}}\left(-a_{1}\right) \oplus \cdots \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(-a_{r}\right)$. We see that

Corollary 3.1.5. The intersection of the loci $M\left(b_{\bullet}\right)$ and $M^{\prime}\left(a_{\bullet}\right)$ is nonempty.

Proof. It follows from Proposition 3.1.4 that we have an exact sequence

$$
\begin{equation*}
\mathrm{o} \longrightarrow \oplus_{j=1}^{n-r} \mathcal{O}_{\mathbb{P}^{1}}\left(-b_{j}\right) \xrightarrow{u} \mathcal{O}_{\mathbb{P}^{1}}^{\oplus n} \xrightarrow{v} \oplus_{i=1}^{r} \mathcal{O}_{\mathbb{P}^{1}}\left(a_{i}\right) \longrightarrow \mathrm{o} \tag{3.3}
\end{equation*}
$$

The surjection v in equation Equation 3.3 corresponds uniquely to an element of $\operatorname{Mor}_{e}\left(\mathbb{P}^{1}, G(r, n)\right)$, say φ_{v}. Moreover, it follows from our identification of v and φ_{v} in Lemma 2.1.1 and from equation Equation 3.3 that $\varphi_{v}^{*}(\mathcal{S})$ is isomorphic to $\oplus_{i=1}^{r} \mathcal{O}_{\mathbb{P}^{1}}\left(-a_{i}\right)$ and $\varphi_{v}^{*}(\mathcal{Q})$ is isomorphic to $\oplus_{j=1}^{n-r} \mathcal{O}_{\mathbb{P}^{\mathbf{1}}}\left(b_{j}\right)$, where \mathcal{S} is the universal sub-bundle and \mathcal{Q} is the universal quotient bundle of $G(r, n)$. Hence, the intersection of $M\left(b_{\bullet}\right)$ and $M^{\prime}\left(a_{\bullet}\right)$ is non-empty.

3.2 The intersection locus is generically transverse

In this section, we are going to show that there is a point in $M\left(b_{\bullet}\right) \cap M^{\prime}\left(a_{\bullet}\right)$ where the intersection is transverse. As a consequence, we see that $M\left(b_{\bullet}\right)$ and $M^{\prime}\left(a_{\bullet}\right)$ intersect generically transversely.

More precisely, we want to show that there exists an exact sequence

$$
\begin{equation*}
\mathrm{o} \longrightarrow \oplus_{j=1}^{n-r} \mathcal{O}_{\mathbb{P}^{1}}\left(-b_{j}\right) \xrightarrow{u} \mathcal{O}^{\oplus n} \xrightarrow{v} \oplus_{i=1}^{r} \mathcal{O}_{\mathbb{P}^{1}}\left(a_{i}\right) \longrightarrow 0 \tag{3.4}
\end{equation*}
$$

where $a_{1} \geq \cdots \geq a_{r} \geq \mathrm{o}, \mathrm{o} \leq b_{1} \leq \cdots \leq b_{n-r},(n-r) \leq r$, and $a_{1}+\cdots+a_{r}=$ $b_{1}+\cdots+b_{n-r}=e$, such that $M\left(b_{\bullet}\right)$ and $M^{\prime}\left(a_{\bullet}\right)$ intersect transversely at the morphism φ_{v} corresponding to the surjection v (see Lemma 2.1.1).

For ease of notation, let $E=\mathcal{O}\left(a_{1}\right) \oplus \cdots \oplus \mathcal{O}\left(a_{r}\right)$ and $K=\mathcal{O}\left(-b_{1}\right) \oplus \cdots \oplus \mathcal{O}\left(-b_{n-r}\right)$. Applying $\operatorname{Hom}(K, \bullet)$ and $\operatorname{Hom}(\bullet, E)$ to equation Equation 3.4, we obtain two long exact sequences
$\mathrm{o} \longrightarrow \operatorname{Hom}(K, K) \longrightarrow \operatorname{Hom}\left(K, \mathcal{O}^{\oplus n}\right) \longrightarrow \operatorname{Hom}(K, E) \longrightarrow \operatorname{Ext}^{1}(K, K) \longrightarrow 0$ and

$$
\begin{equation*}
\mathrm{o} \longrightarrow \operatorname{Hom}(E, E) \longrightarrow \operatorname{Hom}\left(\mathcal{O}^{\oplus n}, E\right) \longrightarrow \operatorname{Hom}(K, E) \longrightarrow E x t^{1}(E, E) \longrightarrow 0 \tag{3.5}
\end{equation*}
$$

We observe that

Remark 3.2.1. To show that $M\left(b_{\bullet}\right)$ and $M^{\prime}\left(a_{\bullet}\right)$ intersect transversely at φ_{v}, it is enough to show that the kernels of the maps $\operatorname{Hom}(K, E) \longrightarrow \operatorname{Ext}^{1}(K, K)$ and $\operatorname{Hom}(K, E) \longrightarrow$ $E x t^{1}(E, E)$ intersect transversely.

Let W_{1} be the kernel of the map $\operatorname{Hom}(K, E) \longrightarrow E x t^{1}(K, K)$ and W_{2} be the kernel of the map $\operatorname{Hom}(K, E) \longrightarrow E x t^{1}(E, E)$. Using elementary linear algebra, we deduce the following Lemma.

Lemma 3.2.2. The subspaces W_{1} and W_{2} of $\operatorname{Hom}(K, E)$ intersect transversely iff they span $\operatorname{Hom}(K, E)$.

Proof. Note that W_{1} and W_{2} intersect transversely if and only if

$$
\operatorname{codim}\left(W_{1} \subset \operatorname{Hom}(K, E)\right)=\operatorname{codim}\left(\left(W_{1} \cap W_{2}\right) \subset W_{2}\right)
$$

Furthermore, it is a known fact that for any two subspaces W_{1} and W_{2}, we have

$$
\operatorname{codim}\left(\left(W_{1} \cap W_{2}\right) \subset W_{2}\right)=\operatorname{codim}\left(W_{1} \subset\left(W_{1}+W_{2}\right)\right)
$$

Our assertion follows from these two equations.

We infer from the exact sequences in equation Equation 3.5 that W_{1} is the image of the map
$\operatorname{Hom}\left(K, \mathcal{O}^{\oplus n}\right) \longrightarrow \operatorname{Hom}(K, E)$, and W_{2} is the image of the map $\operatorname{Hom}\left(\mathcal{O}^{\oplus n}, E\right) \longrightarrow$ $\operatorname{Hom}(K, E)$.

Consider the map

$$
\Psi: \operatorname{Hom}\left(K, \mathcal{O}^{\oplus n}\right) \times \operatorname{Hom}\left(\mathcal{O}^{\oplus n}, E\right) \longrightarrow \operatorname{Hom}(K, E)
$$

given by $\Psi(\varphi, \psi)=\psi \circ u+v \circ \varphi$. Clearly, W_{1} and W_{2} span $\operatorname{Hom}(K, E)$ iff Ψ is surjective.
Consider the bilinear map of vector spaces

$$
\Phi: \operatorname{Hom}\left(K, \mathcal{O}^{\oplus n}\right) \times \operatorname{Hom}\left(\mathcal{O}^{\oplus n}, E\right) \longrightarrow \operatorname{Hom}(K, E)
$$

given by $\Phi(\varphi, \psi)=\psi \circ \varphi$. We see that Φ is a bilinear smooth map, so we can look at $D \Phi_{(u, v)}$. Identifying the tangent spaces with the original vector space, we get a map

$$
D \Phi_{(u, v)}: \operatorname{Hom}\left(K, \mathcal{O}^{\oplus n}\right) \times \operatorname{Hom}\left(\mathcal{O}^{\oplus n}, E\right) \longrightarrow \operatorname{Hom}(K, E)
$$

given by $D \Phi_{(u, v)}(\varphi, \psi)=\psi \circ u+v \circ \varphi$. Therefore, we have $D \Phi_{(u, v)}=\Psi$ which yields

Lemma 3.2.3. The subspaces W_{1} and W_{2} intersect transversely iff $D \Phi_{(u, v)}$ is surjective.

We want to show that there exists a pair (u, v) with u injective, v surjective, $v \circ u=$ o, and $D \Phi_{(u, v)}$ is surjective. Before we proceed to show this, we make a couple of observations.

Proposition 3.2.4. The map Φ is surjective.

Proof. Let $P=\left(P_{i, j}\right)_{r \times(n-r)}$ be an element of $\operatorname{Hom}(K, E)$. We need to find elements $A \in \operatorname{Hom}\left(K, \mathcal{O}^{\oplus n}\right)$ and $B \in \operatorname{Hom}\left(\mathcal{O}^{\oplus n}, E\right)$ such that $P=A \circ B$. Clearly, $P_{i, j}$ is a homogeneous element of degree $a_{i}+b_{j}$ and hence, there exists homogeneous polynomials $R_{i, j}$ of degree b_{j} and $Q_{i, j}$ of degree a_{i} such that

$$
P_{i, j}=x^{a_{i}} \cdot R_{i, j}+Q_{i, j} \cdot y^{b_{j}}
$$

Consider the matrix $A=\left(A_{i, j}\right)_{r \times n}$ and $B=\left(B_{i, j}\right)_{n \times(n-r)}$ defined as follows :

$$
A_{i, j}=\left\{\begin{array}{ll}
x^{a_{i}}, \text { if } i=j \\
Q_{i, j-r}, \text { if } r+1 \leq j \leq n \\
0, \text { otherwise }
\end{array} \quad B_{i, j}= \begin{cases}R_{i, j}, & \text { if } 1 \leq i \leq r \\
y^{b_{j},} & \text { if } i=r+j \\
0, & \text { otherwise }\end{cases}\right.
$$

Let A_{i} denote the i th row of A and B_{j} denote the j th column of B. It follows from construction that $A_{i} \cdot B_{j}=x^{a_{i}} R_{i, j}+Q_{i, j} y^{b_{j}}=P_{i, j}$. Hence, $\Psi(A, B)=A \circ B=P$.

Proposition 3.2.5. When K or E is balanced, then $D \Phi_{(u, v)}$ is surjective.

Proof. Let $K=\mathcal{O}\left(-b_{1}\right) \oplus \cdots \oplus \mathcal{O}\left(-b_{n-r}\right)$ is balanced. Then, we have

$$
E x t^{1}(K, K)=H^{1}\left(\mathbb{P}^{1}, K^{*} \otimes K\right)=H^{0}\left(\mathbb{P}^{1}, K^{*} \otimes K \otimes \mathcal{O}(-2)\right)^{*} \quad \text { by Serre's duality }
$$

Clearly,

$$
K^{*} \otimes K \otimes O(-2)=\oplus_{i, j} \mathcal{O}\left(b_{i}-b_{j}-2\right)
$$

Since K is balanced, $b_{i}-b_{j}-2<\mathrm{o}$ for all $1 \leq i, j \leq n-r$. Hence, $E x t^{1}(K, K)=0$. It follows from exact sequence stated earlier (see equation Equation 3.5) that the map

$$
\operatorname{Hom}\left(K, \mathcal{O}^{\oplus n}\right) \longrightarrow \operatorname{Hom}(K, E)
$$

is surjective, and hence the map

$$
D \Phi_{(u, v)}: \operatorname{Hom}\left(K, \mathcal{O}^{\oplus n}\right) \times \operatorname{Hom}\left(\mathcal{O}^{\oplus n}, E\right) \longrightarrow \operatorname{Hom}(K, E)
$$

is also surjective.

We argue similarly when E is balanced.

We now proceed to show that there exists a pair (u, v) with $D \Phi_{(u, v)}$ is surjective. Before tackling the general case, we look at special case when $r=n-r=2$.

Proposition 3.2.6. When $n=4$ and $r=2$, then there exits a pair (u, v) with u injective, v surjective, $v \circ u=0$, and $D \Phi_{(u, v)}$ is surjective.

Proof. Recall that in Proposition 3.1.1, we constructed a pair (u, v) with v surjective, u injective, and $v \circ u=0$. Let P be an element of $\operatorname{Hom}(K, E)$. We can think of P as a 2×2 matrix $P=\left(P_{i, j}\right)$ whose (i, j) th entry $P_{i, j}$ is a homogeneous polynomial of degree $a_{i}+b_{j}$.

We need to find a 4×2 matrix $R=\left(R_{i, j}\right)$ and a 2×4 matrix $Q=\left(Q_{i, j}\right)$, where $R_{i, j}$ has degree b_{j} and $Q_{i, j}$ has degree a_{i}, which satisfies the equation

$$
P=v \circ R+Q \circ u
$$

Comparing the entries of the matrices, we get the following equations

$$
\begin{aligned}
& P_{1,1}=x^{a_{1}} R_{1,1}+y^{a_{1}} R_{2,1}+x^{a_{1}-b_{1}} y^{b_{1}} R_{4,1}-Q_{1,1} y^{b_{1}}+Q_{1,4} x^{b_{1}} \\
& P_{1,2}=x^{a_{1}} R_{1,2}+y^{a_{1}} R_{2,2}+x^{a_{1}-b_{1}} y^{b_{1}} R_{4,2}+Q_{1,2} x^{a_{1}-b_{1}} y^{a_{2}}-Q_{1,3} x^{b_{2}}-Q_{1,4} y^{b_{2}} \\
& P_{2,1}=x^{a_{2}} R_{2,1}+y^{a_{2}} R_{3,1}-Q_{2,1} y^{b_{1}}+Q_{2,4} x^{b_{1}} \\
& P_{2,2}=x^{a_{2}} R_{2,2}+y^{a_{2}} R_{3,2}+Q_{2,2} x^{a_{1}-b_{1}} y^{a_{2}}-Q_{2,3} x^{b_{2}}-Q_{2,4} y^{b_{2}}
\end{aligned}
$$

We solve these equations from bottom to top. First, set $R_{3,2}, Q_{2,2}, Q_{2,3}$ to be zero, and solve $R_{2,2}, Q_{2,4}$ for the equation $P_{2,2}=x^{a_{2}} R_{2,2}-Q_{2,4} y^{b_{2}}$. Then, set $R_{3,1}=0$, and solve for $R_{2,1}, Q_{2,1}$ in the equation $P_{2,1}-Q_{2,4} x^{b_{1}}=x^{a_{2}} R_{2,1}-Q_{2,1} y^{b_{1}}$. Then, set $R_{4,2}, Q_{1,2}, Q_{1,3}$ to be zero, and solve for $R_{1,2}, Q_{1,4}$ in the equation $P_{2,1}-y^{a_{1}} R_{2,2}=x^{a_{1}} R_{1,2}-Q_{1,4} y^{b_{2}}$. Finally, set $R_{4,1}=0$ and solve $R_{1,1}, Q_{1,1}$ in the equation $P_{1,1}-y^{a_{1}} R_{2,1}-Q_{1,4} x^{b_{1}}=$ $x^{a_{1}} R_{1,1}-Q_{1,1} y^{b_{1}}$.

This shows that the map $D \Phi_{(u, v)}$ is surjective.

We now proceed to the general case.

Proposition 3.2.7. Given any $n \geq 4$ and $2 \leq r \leq n-2$ satisfying $(n-r) \leq r$, there exists a pair (u, v) with u injective, v surjective, $v \circ u=0$, and $D \Phi_{(u, v)}$ is surjective.

Proof. Recall that we constructed matrices v and u in the paragraphs preceding Proposition 3.1.4, and proved that v is surjective, u is injective, and $v \circ u=0$. We just need to show that $D \Phi_{(u, v)}$ is surjective for this pair (u, v).

Let P be an element of $\operatorname{Hom}(K, E)$. We can think of P as $\left(P_{i, j}\right)$ which is a $r \times(n-r)$ matrix with $P_{i, j}$ being a homogeneous polynomial of degree $a_{i}+b_{j}$. We need to show that there exits elements $R \in \operatorname{Hom}\left(K, \mathcal{O}^{\oplus n}\right)$ and $Q \in \operatorname{Hom}\left(\mathcal{O}^{\oplus n}, E\right)$ such that $P=$ $v \circ R+Q \circ u$. We can think of R as $\left(R_{i, j}\right)$ which is a $(n-r) \times n$ matrix with $R_{i, j}$ being homogeneous polynomial of degree b_{j}, and $Q=\left(Q_{i, j}\right)$ a $r \times n$ matrix with $Q_{i, j}$ being homogeneous polynomial of degree a_{i}.

Observe that by comparing both sides of equation $P=v \circ R+Q \circ u$, get that for any i, j, we have

$$
P_{i, j}=x^{a_{i}} R_{i, j}-Q_{\alpha_{i}, \beta_{j}} y^{b_{j}}+\text { other terms }
$$

We try to solve these equations in the following order

$$
P_{r, n-r}, \cdots, P_{r, 1}, P_{r-1, n-r}, \cdots, P_{r-1,1}, \cdots, P_{1, n-r}, \cdots, P_{1,1}
$$

in the following manner :
Assume that all equations for $P_{i, j}$ where $i>i_{\mathrm{o}}$, or $i=i_{\mathrm{o}}$ and $j>j_{\mathrm{o}}$ are solved. As mentioned earlier we have equation

$$
P_{i_{\mathrm{o}}, j_{\mathrm{o}}}=x^{a_{i_{\mathrm{o}}}} R_{i_{\mathrm{o}}, j_{\mathrm{o}}}-Q_{\alpha_{i_{\mathrm{o}}, \beta_{j_{\mathrm{o}}}} y^{b_{j_{\mathrm{o}}}}+\text { other terms }}
$$

where the "other terms" has a bunch of $R_{\alpha, \beta}$'s and $Q_{\alpha^{\prime}, \beta^{\prime}}$'s occurring in them, some of which are already determined in some previous equation, and some are not. If they
are not determined, then set them to be o. Then we solve for $R_{i_{0}, j_{o}}$ and $Q_{\alpha_{i_{0}}, \beta_{j_{0}}}$ in the equation

$$
P_{i_{o}, j_{o}}-\text { other terms }=x^{a_{i o}} R_{i_{o}, j_{o}}-Q_{\alpha_{i_{0}}, \beta_{j_{o}}} y^{b_{j o}}
$$

We claim that we can solve for all the equations $P_{r, n-r}, \cdots, P_{1,1}$ in aforementioned method. Suppose not, consider the first $P_{i_{0}, j_{0}}$ for which a conflict occurs. Only possible conflict at this step is that $R_{i_{0}, j_{0}}$ or $Q_{\alpha_{i_{0}}, \beta_{j}}$ has been already determined at some previous step. But this is not possible, because by construction of the matrices u and v, we have that in each column of v in which $x^{a_{i}}$ appears, all the entries below $x^{a_{i}}$ in that column are o; similarly, in each row of u in which $-y^{b_{j}}$ appears, all the entries to the right of $-y^{b_{j}}$ in that row are o; and hence, $R_{i_{o}, j_{0}}$ and $Q_{\alpha_{i_{0}}, \beta_{j_{0}}}$ does not appear in any of the previous equations.

As a corollary, we get

Corollary 3.2 .8 . There exists an exact sequence

$$
\mathrm{o} \longrightarrow \oplus_{j=1}^{n-r} \mathcal{O}_{\mathbb{P}^{1}}\left(-b_{j}\right) \xrightarrow{u} \mathcal{O}^{\oplus n} \xrightarrow{v} \oplus_{i=1}^{r} \mathcal{O}_{\mathbb{P}^{1}}\left(a_{i}\right) \longrightarrow 0
$$

such that the loci $M\left(b_{\bullet}\right)$ and $M^{\prime}\left(a_{\bullet}\right)$ intersect transversely at the morphism φ_{v} corresponding to the surjection v.

In particular, the loci $M\left(b_{\bullet}\right)$ and $M^{\prime}\left(a_{\bullet}\right)$ intersect generically transversely and has an irreducible component of codimension

$$
\sum_{i, j} \max \left\{a_{i}-a_{j}-1, \mathrm{o}\right\}+\sum_{i, j} \max \left\{b_{i}-b_{j}-1, \mathrm{o}\right\}
$$

Moreover, if either of the splitting type $\left\{a_{\bullet}\right\}$ or $\left\{b_{\bullet}\right\}$ is balanced, then the intersection is transverse.

Proof. The first assertion of the corollary follows from Remark 3.2.1, Lemma 3.2.2, Lemma 3.2.3, and Proposition 3.2.7.

The second assertion follows from the first one and Proposition 2.1.6.
The third assertion follows from Remark 3.2.1, Lemma 3.2.2, Lemma 3.2.3, and Proposition 3.2.5.

In summary, it follows from Corollary 3.1.5 and 3.2.8 that

Theorem 3.2.9. The intersection of the loci $M\left(b_{\bullet}\right)$ and $M^{\prime}\left(a_{\bullet}\right)$ is nonempty and generically transverse. Furthermore, if either of the splitting types $\left\{a_{\bullet}\right\}$ or $\left\{b_{\bullet}\right\}$ is balanced, then the intersection is transverse.

3.3 Analyzing the locus with restricted tangent bundle having fixed splitting type

In this section, we are going to show that the locus of morphisms in $\operatorname{Mor}_{e}\left(\mathbb{P}^{1}, G(r, n)\right)$ with the restricted tangent bundle having fixed splitting type need not always be irreducible. This is in sharp contrast with the results of Verdier (9) and Ramella (10),
who have shown that given a collection of integers a_{1}, \cdots, a_{n} with $a_{1} \geq \cdots \geq a_{n}$ and $\sum_{i=1}^{n} a_{i}=e$, the locus of morphisms φ in $\operatorname{Mor}_{e}\left(\mathbb{P}^{1}, \mathbb{P}^{n}\right)$ with the restricted twisted tangent bundle $\varphi^{*}\left(T_{\mathbb{P}^{n}}(-1)\right)$ having splitting type $\left(a_{1}, \cdots, a_{n}\right)$ is empty if $a_{n}<0$, else it is nonempty, smooth and connected of codimension

$$
\sum_{i, j} \max \left\{a_{i}-a_{j}-1, \mathrm{o}\right\}
$$

Recall that given a morphism $\varphi: \mathbb{P}^{1} \longrightarrow G(r, n)$, the restricted tangent bundle $\varphi^{*}\left(T_{G(r, n)}\right)$ is isomorphic to $\varphi^{*}\left(\mathcal{S}^{*}\right) \otimes \varphi^{*}(\mathcal{Q})$, where \mathcal{S} and \mathcal{Q} are the universal sub-bundle and universal quotient bundle of $G(r, n)$. Now let us fix a splitting type $c_{1}, \cdots, c_{r(n-r)}$ for the restricted tangent bundle $\varphi^{*}\left(T_{G(r, n)}\right)$. We define

Definition 3.3.1. A filling for the splitting type $\left\{c_{l}\right\}_{1 \leq l \leq r(n-r)}$ to be a $r \times(n-r)$ matrix A with entries $a_{i, j}=c_{l}$ for some l depending on i, j such that

- For all $1 \leq i \leq r-1$ and $1 \leq j \leq n-r-1$, we have $a_{i, j} \leq a_{i+1, j}$ and $a_{i, j} \leq a_{i, j+1}$.
- For all $1 \leq i \leq r-1$ we have $a_{i, n-r} \leq a_{i+1, n-r}$, and for all $1 \leq j \leq n-r-1$ we have $a_{r, j} \leq a_{r, j+1}$.
- For all $1 \leq i \leq r-1$ the difference $a_{i+1, j}-a_{i, j}$ is independent of j, and for all $1 \leq j \leq n-r-1$ the difference $a_{i, j+1}-a_{i, j}$ is independent of i.

Moreover, we define

Definition 3.3.2. A collection of integers $\alpha_{1}, \cdots, \alpha_{\nu}$ is non-negative if α_{i} are nonnegative integers for all $1 \leq i \leq \nu$. A collection of integers $\alpha_{1}, \cdots, \alpha_{\nu}$ is increasing if $\alpha_{1} \leq \cdots \leq \alpha_{\nu}$.

The exigency of these definitions is due to the following Lemma.

Lemma 3.3.3. A filling for the splitting type $\left\{c_{l}\right\}_{1 \leq l \leq r(n-r)}$ uniquely determines the non-negative increasing splitting type of $\varphi^{*}\left(\mathcal{S}^{*}\right)$ and $\varphi^{*}(\mathcal{Q})$.

Proof. Let $\varphi^{*}\left(\mathcal{S}^{*}\right)$ be isomorphic to $\oplus_{i=1}^{r} \mathcal{O}_{\mathbb{P}^{1}}\left(a_{i}\right)$, and let $\varphi^{*}(\mathcal{Q})$ be isomorphic to $\oplus_{j=1}^{n-r} \mathcal{O}_{\mathbb{P}^{1}}\left(b_{j}\right)$.
We can determine the a_{i} 's and b_{j} 's uniquely by the following equations

$$
\begin{array}{ll}
e=\frac{1}{n} \sum_{i, j} a_{i, j} & \\
a_{i}=\frac{1}{n-r}\left(\sum_{j=1}^{n-r} a_{i, j}-e\right) & \text { for all } 1 \leq i \leq r \\
b_{j}=\frac{1}{r}\left(\sum_{i=1}^{r} a_{i, j}-e\right) & \text { for all } 1 \leq j \leq n-r
\end{array}
$$

Conversely, given a splitting type $\left\{a_{\bullet}\right\}$ for $\varphi^{*}\left(\mathcal{S}^{*}\right)$ and $\left\{b_{\bullet}\right\}$ for $\varphi^{*}(\mathcal{Q})$ with $0 \leq a_{1} \leq$ $\cdots \leq a_{r}$ and $\mathrm{o} \leq b_{1} \leq \cdots \leq b_{n-r}$, we define a filling whose (i, j) th entry is $a_{i}+b_{j}$.

Let $\left\{a_{\bullet}\right\}$ and $\left\{a_{\bullet}^{\prime}\right\}$ be two non-negative increasing splitting types for $\varphi^{*}\left(\mathcal{S}^{*}\right)$, and let $\left\{b_{\bullet}\right\}$ and $\left\{b_{\bullet}^{\prime}\right\}$ be two non-negative increasing splitting types for $\varphi^{*}(\mathcal{Q})$. If $\left\{a_{\bullet}\right\}$ is different from $\left\{a_{\bullet}^{\prime}\right\}$ (i.e. the corresponding vector bundles are not isomorphic) or $\left\{b_{\bullet}\right\}$ is different from $\left\{b_{\bullet}^{\prime}\right\}$, then the intersection of loci $M\left(b_{\bullet}\right) \cap M^{\prime}\left(a_{\bullet}\right)$ and $M\left(b_{\mathbf{\bullet}}^{\prime}\right) \cap M^{\prime}\left(a_{\mathbf{\bullet}}^{\prime}\right)$ must be empty because a morphism $\varphi: \mathbb{P}^{1} \longrightarrow G(r, n)$ uniquely determines the splitting type for $\varphi^{*}\left(\mathcal{S}^{*}\right)$ and $\varphi^{*}(\mathcal{Q})$. Hence, it follows from Lemma 3.3.3 that

Proposition 3.3.4. The locus of morphisms φ in $\operatorname{Mor}_{e}\left(\mathbb{P}^{1}, G(r, n)\right)$ with the restricted tangent bundle having the splitting type $\left\{c_{l}\right\}_{1 \leq l \leq r(n-r)}$ is stratified by the loci $M\left(b_{\mathbf{\bullet}}\right) \cap$ $M^{\prime}\left(a_{\bullet}\right)$ where $\left\{a_{\bullet}\right\}$ and $\left\{b_{\bullet}\right\}$ are non-negative increasing splitting types for $\varphi^{*}\left(\mathcal{S}^{*}\right)$ and $\varphi^{*}(\mathcal{Q})$ arising from the distinct fillings for $\left\{c_{l}\right\}_{1 \leq l \leq r(n-r)}$.

Recall that given a collection of non-negative increasing integers $\alpha_{1}, \cdots, \alpha_{\nu}$, we defined its polygonal line (see Definition 2.1.7) to be $\mathfrak{P}\left(\alpha_{\bullet}\right)=\left(\alpha_{\nu}, \alpha_{\nu}+\alpha_{\nu-1}, \cdots, \alpha_{\nu}+\right.$ $\left.\cdots+\alpha_{1}\right)$.

Definition 3.3.5. We say a filling $\left\{a_{i, j}\right\}_{1 \leq i \leq r, 1 \leq j \leq n-r}$ of a splitting type $\left\{c_{l}\right\}_{1 \leq l \leq r(n-r)}$ to be minimal if the following holds:

Let a_{1}, \cdots, a_{r} be the non-negative increasing splitting type of $\varphi^{*}\left(\mathcal{S}^{*}\right)$ and b_{1}, \cdots, b_{n-r} be the non-negative increasing splitting type of $\varphi^{*}(\mathcal{Q})$ uniquely determined by the filling (see Lemma 3.3.3). Then for every possible non-negative increasing collection of integers $a_{1}^{\prime}, \cdots, a_{r}^{\prime}$ and $b_{1}^{\prime}, \cdots, b_{n-r}^{\prime}$ with $a_{1}^{\prime}+\cdots+a_{r}^{\prime}=b_{1}^{\prime}+\cdots+b_{n-r}^{\prime}=e$ satisfying $\mathfrak{P}\left(a_{\bullet}^{\prime}\right) \geq$ $\mathfrak{P}\left(a_{\bullet}\right)$ and $\mathfrak{P}\left(b_{\bullet}^{\prime}\right) \geq \mathfrak{P}\left(b_{\bullet}\right)$ with atleast one of the inequality being strict, the matrix $\left\{a_{i}^{\prime}+b_{j}^{\prime}\right\}_{1 \leq i \leq r, 1 \leq j \leq n-r}$ is not a filling for $\left\{c_{l}\right\}$.

It follows as a consequence of Corollary 2.1.9 that

Lemma 3.3.6. Suppose $\left\{a_{\bullet}\right\}$ and $\left\{b_{\bullet}\right\}$ be the non-negative increasing splitting types for $\varphi^{*}(\mathcal{S})^{*}$ and $\varphi^{*}(\mathcal{Q})$ respectively arising from a minimal filling of a given splitting $\left\{c_{l}\right\}$, then the loci $M\left(b_{\bullet}\right) \cap M^{\prime}\left(a_{\bullet}\right)$ is closed in the locus of all degree e morphisms with restricted tangent bundle having splitting type $\left\{c_{l}\right\}$.

Hence, we see that

Corollary 3.3.7. The number of irreducible components of the locus of degree e morphisms from \mathbb{P}^{1} to $G(r, n)$ with the restricted tangent bundle having a given splitting type is bounded below by the number of distinct minimal filings of the given splitting type. In particular, this locus need not always be irreducible.

Proof. The proof follows from Proposition 3.3.4 and Lemma 3.3.6, Corollary 3.1.5 and 3.2.8.

For example, let $r=2, n=4$ and $e=6$. The locus $\operatorname{Mor}_{6}\left(\mathbb{P}^{1}, G(2,4)\right)$ of degree 6 morphisms from \mathbb{P}^{1} to $G(2,4)$ has dimension 28 . Consider the splitting type $3,5,7,9$ for the restricted tangent bundle. We have two possible fillings

$$
\left(\begin{array}{cc}
3 & 5 \\
7 & 9
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
3 & 7 \\
5 & 9
\end{array}\right)
$$

Corresponding to the first filling we have non-negative increasing splitting types $\left(a_{1}, a_{2}\right)=$ $(1,5)$ and $\left(b_{1}, b_{2}\right)=(2,4)$, and to the second filling we have $\left(a_{1}, a_{2}\right)=(2,4)$ and $\left(b_{1}, b_{2}\right)=(1,5)$. Since both the fillings are minimal (see Lemma 3.3.8), the locus of morphisms in $\operatorname{Mor}_{6}\left(\mathbb{P}^{1}, G(2,4)\right)$ is the disjoint union of the loci $M(2,4) \cap M^{\prime}(1,5)$ and $M(1,5) \cap M^{\prime}(2,4)$. Now the loci $M(1,5)$ and $M^{\prime}(1,5)$ have codimension 3 in $\operatorname{Mor}_{6}\left(\mathbb{P}^{1}, G(2,4)\right)$ which follows from Proposition 2.1.6. Similarly, the loci $M(2,4)$ and $M^{\prime}(2,4)$ have codimension 1 in $\operatorname{Mor}_{6}\left(\mathbb{P}^{1}, G(2,4)\right)$. It follows from Corollary 3.1.5 that the locus $M(2,4) \cap M^{\prime}(1,5)$ is nonempty. Similarly, $M(1,5) \cap M^{\prime}(1,5)$ is also nonempty, and since $M(2,4)$ and $M(1,5)$ are disjoint, the intersection $M(2,4) \cap M^{\prime}(1,5)$
must be proper subset of $M^{\prime}(1,5)$. Moreover, since $M(2,4)$ has codimension 1 in $\operatorname{Mor}_{6}\left(\mathbb{P}^{1}, G(2,4)\right)$, the intersection locus $M(2,4) \cap M^{\prime}(1,5)$ must have codimension 1 in $M^{\prime}(1,5)$, and hence, it must have codimension 4 in $\operatorname{Mor}_{6}\left(\mathbb{P}^{1}, G(2,4)\right)$. Similarly, the intersection locus $M(1,5) \cap M^{\prime}(2,4)$ has codimension 4 in $\operatorname{Mor}_{6}\left(\mathbb{P}^{1}, G(2,4)\right)$. Hence, the locus of degree 6 morphisms from \mathbb{P}^{1} to $G(2,4)$ with restricted tangent bundle having splitting type $3,5,7,9$ has codimension 4 and has atleast two irreducible components arising from the two distinct fillings.

We see that Proposition 3.3.4 exhorts us to determine the possible fillings of a splitting type as a key step towards understanding the locus of morphisms in $\operatorname{Mor}_{e}\left(\mathbb{P}^{1}, G(r, n)\right)$ with restricted tangent bundles having the given splitting type. To this end, we have the following Lemmas.

Lemma 3.3.8. Let $r=2$ and $n=4$, and let $\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$ be a splitting type of the restricted tangent bundle with $c_{1} \leq c_{2}<c_{3} \leq c_{4}$. Then $\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$ has two possible fillings

$$
\left(\begin{array}{cc}
c_{1} & c_{2} \\
c_{3} & c_{4}
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
c_{1} & c_{3} \\
c_{2} & c_{4}
\end{array}\right)
$$

Moreover, both the fillings are minimal.

Similarly, we have

Lemma 3.3.9. Let $r=3$ and $n=5$. A splitting type $\left\{c_{1}, \cdots, c_{6}\right\}$ of the restricted tangent bundle with $c_{1} \leq \cdots \leq c_{6}$ has exactly one filling except when $\left\{c_{1}, \cdots, c_{6}\right\}=$ $\left\{c_{1}, c_{1}+\lambda, \cdots, c_{1}+5 \lambda\right\}$ for some integer λ in which case there are two possible fillings

$$
\left(\begin{array}{cc}
c_{1} & c_{1}+\lambda \\
c_{1}+2 \lambda & c_{1}+3 \lambda \\
c_{1}+4 \lambda & c_{1}+5 \lambda
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
c_{1} & c_{1}+3 \lambda \\
c_{1}+\lambda & c_{1}+4 \lambda \\
c_{1}+2 \lambda & c_{1}+5 \lambda
\end{array}\right)
$$

Additionally, all the fillings are minimal.

Proof of Lemma 3.3.8 and 3.3.9. We will briefly sketch the proof of Lemma 3.3.9. One can prove Lemma 3.3.8 in a similar fashion.

Let $r=3$ and $n=5$. Given a splitting type $\left\{c_{1}, \cdots, c_{6}\right\}$ of a restricted tangent bundle $\varphi^{*}\left(T_{G(r, n)}\right)$, there is at least one filling (since $\varphi^{*}\left(T_{G(r, n)}\right)=\varphi^{*}\left(\mathcal{S}^{*}\right) \otimes \varphi^{*}(\mathcal{Q})$), say A, which is a 3×2 matrix. After subtracting the $(1,1)$ th entry from every other entry of A, we get a new matrix of form

$$
\left(\begin{array}{cc}
0 & \lambda \\
\rho_{2} & \rho_{2}+\lambda \\
\rho_{3} & \rho_{3}+\lambda
\end{array}\right)
$$

for some non-negative integers $\lambda, \rho_{2}, \rho_{3}$ with $\rho_{2} \leq \rho_{3}$. We now look at every possible permutations with the $(1,1)$ th entry being zero and the $(3,2)$ th entry being $\rho_{2}+\lambda$, and force the conditions of definition 3.3.1 which gives us some equations which must be
compatible. This gives us all the possibilities. A similar brute force method works for $r=2$ and $n=4$.

The proof of minimality of the fillings in the cases $r=2, n=4$ and $r=3, n=5$ are in a similar flavor. The key idea is to use the fact that the $(1,1)$ th and $(r, n-r)$ th entries are the same for every possible filling. For instance, when $r=3$, $n=5$, let $\left\{c_{1}, \cdots, c_{6}\right\}=\left\{c_{1}, c_{1}+\lambda, \cdots, c_{1}+5 \lambda\right\}$ and let $\left\{a_{\bullet}\right\}$ and $\left\{b_{\bullet}\right\}$ be the corresponding induced splittings. For any $\left\{a_{\bullet}^{\prime}\right\}$ with $\mathfrak{P}\left(a_{\bullet}^{\prime}\right) \geq \mathfrak{P}\left(a_{\bullet}\right)$ and $\left\{b_{\bullet}^{\prime}\right\}$ with $\mathfrak{P}\left(b_{\mathbf{\bullet}}^{\prime}\right) \geq \mathfrak{P}\left(b_{\bullet}\right)$, we must have $a_{3}^{\prime}+b_{2}^{\prime}=a_{3}+b_{2}$ and since $a_{3}^{\prime} \geq a_{3}$ and $b_{2}^{\prime} \geq b_{2}$, we get $a_{3}^{\prime}=a_{3}, b_{2}^{\prime}=b_{2}$. This gives $b_{1}^{\prime}=b_{1}$ and $a_{2}^{\prime}+a_{1}^{\prime}=a_{2}+a_{1}$. Since we must have $a_{1}^{\prime}+b_{1}^{\prime}=a_{1}+b_{1}$, we get $a_{i}^{\prime}=a_{i}$ for all $i=1,2,3$ and $b_{j}^{\prime}=b_{j}$ for all $j=1,2$.

Using a similar method as in proof of Lemma 3.3.9, we deduce that when $r=4$ and $n=6$, a splitting type of the restricted tangent bundle of the form $\left\{c_{1}, c_{1}, c_{2}, c_{2}, c_{3}, c_{3}, c_{4}, c_{4}\right\}$ with $\mathrm{o} \leq c_{2}-c_{1}=c_{3}-c_{2}=c_{4}-c_{3}$ has three possible fillings

$$
\left(\begin{array}{ll}
c_{1} & c_{1} \\
c_{2} & c_{2} \\
c_{3} & c_{3} \\
c_{4} & c_{4}
\end{array}\right),\left(\begin{array}{ll}
c_{1} & c_{2} \\
c_{1} & c_{2} \\
c_{3} & c_{4} \\
c_{3} & c_{4}
\end{array}\right) \text { and }\left(\begin{array}{cc}
c_{1} & c_{3} \\
c_{1} & c_{3} \\
c_{2} & c_{4} \\
c_{2} & c_{4}
\end{array}\right)
$$

However, in general, we found it impossible to determine all possible fillings using this brute force method.

Additionally, we observe from these special cases that the number of fillings seems to increase as we increase r, n and e. We don't know how the fillings of a given splitting
type depend on r and n, but we can provide a very crude upper bound for the number of possible fillings.

Lemma 3.3.10. The total number of distinct fillings of a splitting type $\left\{c_{l}\right\}_{1 \leq l \leq r(n-r)}$ of the restricted tangent bundle is bounded above by $\binom{r(n-r)-2}{n-r-1}$.

Proof. It follows from definition 3.3.1 that every filling must have the same $(1,1)$ th and $(r, n-r)$ th entry. Furthermore, we see that every filling is uniquely determined by the entries $(1,2), \cdots,(1, n-r)$. Hence, a clumsy upper bound for the total number of fillings is the number of choices for these entries, which is $\binom{r(n-r)-2}{n-r-1}$.

On a more positive note, we see that

Lemma 3.3.11. If the splitting type of the restricted tangent bundle $\varphi^{*}\left(T_{G(r, n)}\right)$ is balanced, then the splitting type of the restricted universal sub-bundle $\varphi^{*}(\mathcal{S})$ and the splitting type of the restricted universal quotient bundle $\varphi^{*}(\mathcal{Q})$ must be balanced.

Proof. Let us choose a filling for the splitting type of the restricted tangent bundle, and let a_{1}, \cdots, a_{r} and b_{1}, \cdots, b_{n-r} be non-negative increasing splitting types of $\varphi^{*}\left(\mathcal{S}^{*}\right)$ and $\varphi^{*}(\mathcal{Q})$ respectively. Since the splitting type of the restricted tangent bundle is balanced, we must have $\left(a_{r}+b_{n-r}\right)-\left(a_{1}+b_{1}\right) \leq 1$, which yields $a_{r}-a_{1} \leq 1$ and $b_{n-r}-b_{1} \leq 1$. Hence, the splitting types of $\varphi^{*}(\mathcal{S})$ and $\varphi^{*}(\mathcal{Q})$ must be balanced.

In conclusion, the locus of morphisms in $\operatorname{Mor}_{e}\left(\mathbb{P}^{1}, G(r, n)\right)$ need not always be irreducible. For example, when $r=2$ and $n=4$, and let $c_{1}, c_{2}, c_{3}, c_{4}$ be non-negative increasing splitting type of the restricted universal tangent bundle, with $c_{2}<c_{3}$. It follows from Lemma 3.3.8 that this locus has at least two irreducible components.

CHAPTER 4

BETTI NUMBERS OF MODULI SPACE OF SHEAVES ON \mathbb{P}^{2}

In this chapter, we determine bounds for stabilization of the Betti numbers of the moduli space of stable sheaves on \mathbb{P}^{2} when the rank is atleast two and it is coprime to the first Chern class.

4.1 Estimating the Generating Functions when the rank is one

In this section, our goal is to analyze the generating functions $G_{1, c}(q)$ and $\tilde{G}_{1, \tilde{c}}(q)$. More precisely, we are going to show that when $\Delta>2 N$ the coefficient of $\mathbb{L}^{-N} q^{\Delta}$ in the generating functions $(1-q) G_{1, c}(q)$ and $(1-q) \tilde{G}_{1, \tilde{c}}(q)$ is zero. As a consequence, we are going to show that the $2 N$ th Betti number of $M_{\mathbb{P}^{2}, H}\left(1, c, c_{2}\right)$ stabilize when $c_{2} \geq 2 N$.

Recall that given a smooth projective surface X with an ample divisor H on X, the moduli space $M_{X, H}\left(1, c, c_{2}\right)$ is isomorphic to $\operatorname{Pic}^{c}(X) \times X^{\left[c_{2}\right]}$, where $\operatorname{Pic}^{c}(X)$ is the abelian variety of line bundles on X with first Chern class c, and $X^{[n]}$ is the Hilbert scheme of n points on X. The Betti numbers of $X^{[n]}$ were computed by Göttsche (19). Using the Künneth formula, Coskun and Woolf (17)[Proposition 3.3] showed that the Betti numbers of $M_{X, H}\left(1, c, c_{2}\right)$ stabilize as c_{2} tends to infinity. In the special case when $X=\mathbb{P}^{2}$, the moduli space $M_{\mathbb{P}^{2}, H}\left(1, c, c_{2}\right)$ is isomorphic to $\mathbb{P}^{2\left[c_{2}\right]}$. Ellingsrud and Stromme (20)[Theorem 1.1, Corollary 1.3] computed the Betti numbers of $\mathbb{P}^{2}\left[c_{2}\right]$ and showed that the $2 N$ th Betti number stabilize when $c_{2} \geq 2 N$. In this section, our goal is to re-derive this result in a flavor similar to the higher rank case.

We infer from equation Equation 2.7 that

$$
G_{1, c}(q)=\sum_{\Delta \geq 0}\left[\mathcal{M}_{\mathbb{P}^{2}, H}(r, c, \Delta)\right] \mathbb{L}^{(1-2 \Delta)} q^{\Delta}
$$

and

$$
\tilde{G}_{1, \tilde{c}}(q)=\sum_{\tilde{\Delta} \geq 0}\left[\mathcal{M}_{\mathbb{F}_{1}, E+F}(r, \tilde{c}, \tilde{\Delta})\right] \mathbb{L}^{(1-2 \tilde{\Delta})} q^{\tilde{\Delta}}
$$

We have

Proposition 4.1.1. For $\Delta>2 N$, the coefficient of $\mathbb{L}^{-N} q^{\Delta}$ in $(1-q) G_{1, c}(q)$ is zero.
Same for $(1-q) \tilde{G}_{r, \tilde{c}}(q)$.

Proof. We have the following equality of generating functions due to Göttsche (37)[Example 4.9.1]

$$
\sum_{\Delta=0}^{\infty}\left[\left(\mathbb{P}^{2}\right)^{[\Delta]}\right] q^{\Delta}=\prod_{m=1}^{\infty} \frac{1}{\left(1-\mathbb{L}^{m-1} q^{m}\right)\left(1-\mathbb{L}^{m} q^{m}\right)\left(1-\mathbb{L}^{m+1} q^{m}\right)}
$$

Replacing q with $\mathbb{L}^{-2} q$ in above equation, we get

$$
\sum_{\Delta=0}^{\infty}\left[\left(\mathbb{P}^{2}\right)^{[\Delta]}\right] \mathbb{L}^{-2 \Delta} q^{\Delta}=\prod_{m=1}^{\infty} \frac{1}{\left(1-\mathbb{L}^{-(m-1)} q^{m}\right)\left(1-\mathbb{L}^{-m} q^{m}\right)\left(1-\mathbb{L}^{-(m+1)} q^{m}\right)}
$$

Note that we have

$$
\left[\mathcal{M}_{\mathbb{R}^{2}, H}(1, c, \Delta)\right]=(\mathbb{L}-1)^{-1}\left[\left(\mathbb{P}^{2}\right)^{[\Delta]}\right]
$$

Thus, we get

$$
\begin{aligned}
(1-q) G_{1, c}(q) & =\frac{(1-q) \mathbb{L}}{(\mathbb{L}-1)} \sum_{\Delta=0}^{\infty}\left[\left(\mathbb{P}^{2}\right)^{[\Delta]}\right] \mathbb{L}^{-2 \Delta} q^{\Delta} \\
& =\frac{(1-q)}{\left(1-\mathbb{L}^{-1}\right)} \prod_{m=1}^{\infty} \frac{1}{\left(1-\mathbb{L}^{-(m-1)} q^{m}\right)\left(1-\mathbb{L}^{-m} q^{m}\right)\left(1-\mathbb{L}^{-(m+1)} q^{m}\right)} \\
& =\prod_{m_{1}=2}^{\infty} \frac{1}{\left(1-\mathbb{L}^{-\left(m_{1}-1\right)} q^{m_{1}}\right)} \prod_{m_{2}=1}^{\infty} \frac{1}{\left(1-\mathbb{L}^{-2 m_{2}} q^{\left.m_{2}\right)}\right.} \prod_{m_{3}=0}^{\infty} \frac{1}{\left(1-\mathbb{L}^{-\left(m_{3}+1\right)} q^{\left.m_{3}\right)}\right.} \\
& =\prod_{m_{1}=2}^{\infty}\left(\sum_{\alpha_{1}=0}^{\infty} \mathbb{L}^{-\left(m_{1}-1\right) \alpha_{1}} q^{m_{1} \alpha_{1}}\right) \times \prod_{m_{2}=1}^{\infty}\left(\sum_{\alpha_{2}=0}^{\infty} \mathbb{L}^{-m_{2} \alpha_{2}} q^{m_{2} \alpha_{2}}\right) \times \\
& \prod_{m_{3}=0}^{\infty}\left(\sum_{\alpha_{3}=0}^{\infty} \mathbb{L}^{-\left(m_{3}+1\right) \alpha_{3}} q^{m_{3} \alpha_{3}}\right)
\end{aligned}
$$

Each non-zero term contributing to the coefficient of $\mathbb{L}^{-N} q^{\Delta}$ in $(1-q) G_{1, c}(q)$ arises from a pair of equations

$$
\begin{aligned}
\Delta & =\sum_{j=1}^{\delta_{1}} m_{1}^{(j)} \alpha_{1}^{(j)}+\sum_{j=1}^{\delta_{2}} m_{2}^{(j)} \alpha_{2}^{(j)}+\sum_{j=1}^{\delta_{3}} m_{3}^{(j)} \alpha_{3}^{(j)} \\
-N & =\sum_{j=1}^{\delta_{1}}-\left(m_{1}^{(j)}-1\right) \alpha_{1}^{(j)}+\sum_{j=1}^{\delta_{2}}-m_{2}^{(j)} \alpha_{2}^{(j)}+\sum_{j=1}^{\delta_{3}}-\left(m_{3}^{(j)}+1\right) \alpha_{3}^{(j)}
\end{aligned}
$$

where $\alpha_{1}^{(j)}, \alpha_{2}^{(j)}, \alpha_{3}^{(j)} \geq$ o for all $j \geq 1$, and $m_{1}^{(j)} \geq 2, m_{2}^{(j)} \geq 1, m_{3}^{(j)} \geq 0$ for all $j \geq 1$. Therefore, we see that

$$
\Delta-N=\sum_{j=1}^{\delta_{1}} \alpha_{1}^{(j)}-\sum_{j=1}^{\delta_{3}} \alpha_{3}^{(j)} \leq \sum_{j=1}^{\delta_{1}}\left(m_{1}^{(j)}-1\right) \alpha_{1}^{(j)} \leq N
$$

Hence, for $\Delta>2 N$ the coefficient of $\mathbb{L}^{-N} q^{\Delta}$ in $(1-q) G_{1, c}(q)$ must be zero.

In a similar fashion as above, we use the following equality of generating functions due to Göttsche (37)[Example 4.9.3]

$$
\sum_{\tilde{\Delta}=0}^{\infty}\left[\mathbb{F}_{1}^{[\tilde{\Delta}]}\right] q^{\tilde{\Delta}}=\prod_{m=1}^{\infty} \frac{1}{\left(1-\mathbb{L}^{m-1} q^{m}\right)\left(1-\mathbb{L}^{m} q^{m}\right)^{2}\left(1-\mathbb{L}^{m+1} q^{m}\right)}
$$

Replacing q with $\mathbb{L}^{-2} q$ and using the fact $\left[\mathcal{M}_{\mathbb{F}_{1}, E+F}(1, \tilde{c}, \tilde{\Delta})\right]=(\mathbb{L}-1)^{-1}\left[\mathbb{F}_{1}^{[\tilde{\Delta}]}\right]$, we obtain the following equation

$$
\begin{array}{r}
(1-q) \tilde{G}_{1, \tilde{c}}(q)=\prod_{m_{1}=2}^{\infty}\left(\sum_{\alpha_{1}=0}^{\infty} \mathbb{L}^{-\left(m_{1}-1\right) \alpha_{1}} q^{m_{1} \alpha_{1}}\right) \times \prod_{m_{2}=1}^{\infty}\left(\sum_{\alpha_{2}=\mathrm{o}}^{\infty} \mathbb{L}^{-m_{2} \alpha_{2}} q^{m_{2} \alpha_{2}}\right)^{2} \times \\
\prod_{m_{3}=\mathrm{o}}^{\infty}\left(\sum_{\alpha_{3}=\mathrm{o}}^{\infty} \mathbb{L}^{-\left(m_{3}+1\right) \alpha_{3}} q^{m_{3} \alpha_{3}}\right)
\end{array}
$$

Each non-zero term contributing to the coefficient of $\mathbb{L}^{-N} q^{\Delta}$ in $(1-q) G_{1, \tilde{c}}(q)$ arises from a pair of equations

$$
\begin{aligned}
\Delta & =\sum_{j=1}^{\delta_{1}} m_{1}^{(j)} \alpha_{1}^{(j)}+\sum_{j=1}^{\delta_{2,1}} m_{2}^{(j, 1)} \alpha_{2}^{(j, 1)}+\sum_{j=1}^{\delta_{2,2}} m_{2}^{(j, 2)} \alpha_{2}^{(j, 2)}+\sum_{j=1}^{\delta_{3}} m_{3}^{(j)} \alpha_{3}^{(j)} \\
-N & =\sum_{j=1}^{\delta_{1}}-\left(m_{1}^{(j)}-1\right) \alpha_{1}^{(j)}+\sum_{j=1}^{\delta_{2,1}}-m_{2}^{(j, 1)} \alpha_{2}^{(j, 1)}+\sum_{j=1}^{\delta_{2,2}}-m_{2}^{(j, 2)} \alpha_{2}^{(j, 2)}+\sum_{j=1}^{\delta_{3}}-\left(m_{3}^{(j)}+1\right) \alpha_{3}^{(j)}
\end{aligned}
$$

where $\alpha_{1}^{(j)}, \alpha_{2}^{(j, 1)}, \alpha_{2}^{(j, 2)}, \alpha_{3}^{(j)} \geq 0$ for all $j \geq 1$, and $m_{1}^{(j)} \geq 2, m_{2}^{(j, 1)}, m_{2}^{(j, 2)} \geq 1, m_{3}^{(j)} \geq 0$ for all $j \geq 1$. Therefore, we see that

$$
\Delta-N=\sum_{j=1}^{\delta_{1}} \alpha_{1}^{(j)}-\sum_{j=1}^{\delta_{3}} \alpha_{3}^{(j)} \leq \sum_{j=1}^{\delta_{1}}\left(m_{1}^{(j)}-1\right) \alpha_{1}^{(j)} \leq N
$$

Hence, for $\Delta>2 N$ the coefficient of $\mathbb{L}^{-N} q^{\Delta}$ in $(1-q) \tilde{G}_{1, \tilde{c}}(q)$ must be zero.

As a consequence of above Proposition 4.1.1, we have the following:

Proposition 4.1.2. When $c_{2} \geq 2 N$, the $2 N$-th Betti number of $M_{\mathbb{P}^{2}, H}\left(1, c, c_{2}\right)$ stabilize.

Proof. Note that all μ_{H}-semistable sheaves of rank one on \mathbb{P}^{2} are μ_{H}-stable, because the rank is coprime to the first Chern class. As a consequence, we can use Proposition 2.2.10 due to Coskun and Woolf and the fact that $c_{2}=r \Delta+\frac{r-1}{2 r} c_{1}^{2}$ to get the following equality of generating functions

$$
(1-q) \sum_{c_{2} \geq 0}\left[M_{\mathbb{P}^{2}, H}(\gamma)\right] \mathbb{L}^{-e x t^{1}(\gamma, \gamma)} q^{c_{2}}=\left(1-\mathbb{L}^{-1}\right)(1-q) G_{1, c}(q)
$$

where γ denotes the Chern character (r, c, Δ).
Each term contributing to the coefficient of $\mathbb{L}^{-N} q^{d}$ in $\left(1-\mathbb{L}^{-1}\right)(1-q) G_{1, c}(q)$ comes from a pair of equations

$$
d=\Delta-N=\varepsilon-N^{\prime}
$$

where $\varepsilon \in\{-1,0\}$ accounts for the contribution of the coefficient coming from $\left(1-\mathbb{L}^{-1}\right)$, and $\left(\Delta, N^{\prime}\right)$ accounts for the contribution coming from the terms in coefficient of $\mathbb{L}^{-N^{\prime}} q^{\Delta}$ in $(1-q) G_{1, c}(q)$. It follows from Proposition 4.1.1 that for the coefficient of $\mathbb{L}^{-N^{\prime}} q^{\Delta}$ to be nonzero, we must have $\Delta \leq 2 N^{\prime}$. Consequently, we must have $d \leq 2 N$. Hence, for $d>2 N$, the coefficient of $\mathbb{L}^{-N} q^{d}$ in $\left(1-\mathbb{L}^{-1}\right)(1-q) G_{1, c}(q)$ must be zero. Therefore,
using Remark 2.2.8, we conclude that the $2 N$ th Betti number of $M_{\mathbb{P}^{2}, H}\left(1, c, c_{2}\right)$ stabilize for $c_{2} \geq 2 N$.

4.2 Estimating the generating function $\tilde{G}_{r, \tilde{c}}(q)$ when rank is at least two

In this section, our goal is to show that there is a constant C_{0} depending only on r and \tilde{c} such that when $\Delta>N+C_{0}$, the coefficient of $\mathbb{L}^{-N} q^{\Delta}$ in $(1-q) \tilde{G}_{r, \tilde{c}}(q)$ is zero. We are going to show this in a couple of steps. First, we are going to use Mozgovoy's theorem (23)[Theorem 1.1] and estimate a generating function in A^{-}expressed in terms of the classes of the moduli stack $\mathcal{M}_{\mathbb{F}_{1}, F}(\gamma)$. Then, we are going to use Joyce's theorem (38)[Theorem 6.21] to relate the classes of the moduli stacks $\mathcal{M}_{\mathbb{F}_{1}, E+F}(\gamma)$ and $\mathcal{M}_{\mathbb{F}_{1}, F}(\gamma)$ in A^{-}. Lastly, we are going to use key ideas of Coskun and Woolf (17) and Manschot (22), (39) to derive our estimate (see Proposition 4.2.5).

Throughout this section, we are going to assume that r is at least two. We recall two theorems due to Mozgovoy (23) and Joyce (38) respectively.

Let $\mathcal{M}_{\mathbb{F}_{1}, F}(\gamma)$ denote the moduli stack of torsion free μ_{F} semistable sheaves on \mathbb{F}_{1} with Chern character $\gamma=(r, c, \Delta)$. We define generating function

$$
\begin{equation*}
H_{r, c}(q)=\sum_{\Delta \geq 0}\left[\mathcal{M}_{\mathbb{F}_{1}, F}(r, c, \Delta)\right] q^{r \Delta} \tag{4.1}
\end{equation*}
$$

Let $Z_{\mathbb{P}^{1}}(q)=\frac{1}{(1-q)(1-\mathbb{L} q)}$ be the motivic Zeta function for \mathbb{P}^{1}. Then, we have

Theorem 4.2.1 ((23)[Theorem 1.1). If $r \nmid c \cdot F$, then $\mathcal{M}_{\mathbb{F}_{1}, F}(\gamma)$ is empty, and hence $H_{r, c}(q)=0$. Otherwise, we have

$$
H_{r, c}(q)=\frac{1}{(\mathbb{L}-1)} \prod_{i=1}^{r-1} Z_{\mathbb{P}^{1}}\left(\mathbb{L}^{i}\right) \prod_{k=1}^{\infty} \prod_{i=-r}^{r-1} Z_{\mathbb{P}^{1}}\left(\mathbb{L}^{r k+i} q^{k}\right)
$$

Before proceeding to Joyce's theorem, in a similar vein as in Proposition 4.1.1, we would like to show that for $\Delta \gg N$, the coefficient of $\mathbb{L}^{-N} q^{\Delta}$ in the generating function $(1-q) \sum_{\Delta \geq 0}\left[\mathcal{M}_{\mathbb{F}_{1}, F}(r, c, \Delta)\right] \mathbb{L}^{r^{2(1-2 \Delta)}} q^{r \Delta}$ vanishes.

Proposition 4.2.2. If $\Delta>N$, the coefficient of $\mathbb{L}^{-N} q^{\Delta}$ in the generating function

$$
(1-q) \sum_{\Delta \geq 0}\left[\mathcal{M}_{\mathbb{F}_{1}, F}(r, c, \Delta)\right] \mathbb{L}^{r^{2}(1-2 \Delta)} q^{r \Delta}
$$

is zero.

Proof. Clearly we can assume that $r \mid c \cdot F$, because otherwise by Mozgovoy's theorem (Theorem 4.2.1) we have $\left[\mathcal{M}_{\mathbb{F}_{1}, F}(r, c, \Delta)\right]=0$. Observe that

$$
\begin{equation*}
(1-q) \sum_{\Delta \geq 0}\left[\mathcal{M}_{\mathbb{F}_{1}, F}(r, c, \Delta)\right] \mathbb{L}^{r^{2}(1-2 \Delta)} q^{r \Delta}=(1-q) \mathbb{L}^{r^{2}} H_{r, c}\left(\mathbb{L}^{-2 r} q\right) \tag{4.2}
\end{equation*}
$$

Moreover, we have the following equations

$$
\begin{aligned}
\frac{1}{(\mathbb{L}-1)} \prod_{i=1}^{r-1} \frac{1}{\left(1-\mathbb{L}^{i}\right)\left(1-\mathbb{L}^{i+1}\right)} & =\frac{L^{-r^{2}}}{\left(1-\mathbb{L}^{-r}\right)} \prod_{i=1}^{r-1} \frac{1}{\left(1-\mathbb{L}^{-i}\right)^{2}} \\
\prod_{k=1}^{\infty} \prod_{i=-r}^{r-1} \frac{1}{\left(1-\mathbb{L}^{-r k+i} q^{k}\right)\left(1-\mathbb{L}^{-r k+i+1} q^{k}\right)} & =\prod_{k_{1}=1}^{\infty} \frac{1}{\left(1-\mathbb{L}^{-\left(r k_{1}+r\right)} q^{\left.k_{1}\right)}\right.} \times \\
& \prod_{k_{2}=1}^{\infty} \prod_{i=-r+1}^{r-1} \frac{1}{\left(1-\mathbb{L}^{-\left(r k_{2}-i\right)} q^{\left.k_{2}\right)^{2}}\right.} \times \\
& \prod_{k_{3}=1}^{\infty} \frac{1}{\left(1-\mathbb{L}^{-\left(r k_{3}-r\right)} q^{\left.k_{3}\right)}\right.}
\end{aligned}
$$

Therefore, we have

$$
\begin{array}{r}
(1-q) \mathbb{L}^{r^{2}} H_{r, c}\left(\mathbb{L}^{-2 r} q\right)=\left(\sum_{\alpha_{1}=0}^{\infty} \mathbb{L}^{-r \alpha_{1}}\right) \prod_{i=1}^{r-1}\left(\sum_{\alpha_{2}=0}^{\infty} \mathbb{L}^{-i \alpha_{2}}\right)^{2} \prod_{k_{1}=1}^{\infty}\left(\sum_{\alpha_{3}=0}^{\infty} \mathbb{L}^{-\left(r k_{1}+r\right) \alpha_{3}} q^{k_{1} \alpha_{3}}\right) \times \\
\prod_{k_{2}=1}^{\infty} \prod_{j=-r+1}^{r-1}\left(\sum_{\alpha_{4}=0}^{\infty} \mathbb{L}^{-\left(r k_{2}-j\right) \alpha_{4}} q^{k_{2} \alpha_{4}}\right)^{2} \prod_{k_{3}=2}^{\infty}\left(\sum_{\alpha_{5}=0}^{\infty} \mathbb{L}^{-\left(r k_{3}-r\right) \alpha_{5}} q^{k_{3} \alpha_{5}}\right)
\end{array}
$$

Each non-zero term contributing to the coefficient of $\mathbb{L}^{-N} q^{\Delta}$ in $(1-q) \mathbb{L}^{r^{2}} H_{r, c}\left(\mathbb{L}^{-2 r} q\right)$ corresponds to a pair of equations

$$
\begin{aligned}
& \Delta=\sum_{j_{1}=1}^{\delta_{1}} k_{1}^{\left(j_{1}\right)} \alpha_{3}^{\left(j_{1}\right)}+\sum_{j_{2}=1}^{\delta_{2}} \sum_{j=-r+1}^{r-1} k_{2}^{\left(j_{2}, j\right)}\left(\alpha_{4}^{\left(j_{2}, j, j_{1}\right)}+\alpha_{4}^{\left(j_{2}, j, 2\right)}\right)+\sum_{j_{3}=1}^{\delta_{3}} k_{3}^{\left(j_{3}\right)} \alpha_{5}^{\left(j_{3}\right)} \\
& -N=-r \alpha_{1}+\sum_{i=1}^{r-1}-i\left(\alpha_{2}^{(i, 1)}+\alpha_{2}^{(i, 2)}\right)+\sum_{j_{1}=1}^{\delta_{1}}-\left(r k_{1}^{\left(j_{1}\right)}+r\right) \alpha_{3}^{\left(j_{1}\right)}+ \\
& \quad \sum_{j_{2}=1}^{\delta_{2}} \sum_{j=-r+1}^{r-1}-\left(r k_{2}^{\left(j_{2}, j\right)}-j\right)\left(\alpha_{4}^{\left(j_{2}, j, 1\right)}+\alpha_{4}^{\left(j_{2}, j, 2\right)}\right)+\sum_{j_{3}=1}^{\delta_{3}}-\left(r k_{3}^{\left(j_{3}\right)}-r\right) \alpha_{5}^{\left(j_{3}\right)}
\end{aligned}
$$

where all the α 's are non-negative integers and all the δ 's and k 's are positive integers except $k_{3}^{\left(j_{3}\right)}$ which is at least 2 , for all $1 \leq j_{3} \leq \delta_{3}$. We see that

$$
r \Delta-N \leq \sum_{j_{2}=1}^{\delta_{2}} \sum_{j=-r+1}^{r-1} j\left(\alpha_{4}^{\left(j_{2}, j, j_{1}\right)}+\alpha_{4}^{\left(j_{2}, j, 2\right)}\right)+\sum_{j_{3}=1}^{\delta_{3}} r \alpha_{5}^{\left(j_{3}\right)}
$$

Since $j \leq r-1$ and $k_{3}^{\left(j_{3}\right)} \geq 2$, we see that $\left(r k_{2}^{\left(j_{2}, j\right)}-j\right) \geq 1$ and $\left(r k_{3}^{\left(j_{3}\right)}-r\right) \geq r$. Hence, we have

$$
\begin{aligned}
\sum_{j_{2}=1}^{\delta_{2}} \sum_{j=-r+1}^{r-1} j\left(\alpha_{4}^{\left(j_{2}, j_{1}\right)}+\alpha_{4}^{\left(j_{2}, j, 2\right)}\right)+\sum_{j_{3}=1}^{\delta_{3}} r \alpha_{5}^{\left(j_{3}\right)} & \leq(r-1) \sum_{j_{2}=1}^{\delta_{2}} \sum_{j=-r+1}^{r-1}\left(r k_{2}^{\left(j_{2}, j\right)}-j\right)\left(\alpha_{4}^{\left(j_{2}, j, 1\right)}+\alpha_{4}^{\left(j_{2}, j, 2\right)}\right) \\
& +\sum_{j_{3}=1}^{\delta_{3}}\left(r k_{3}^{\left(j_{3}\right)}-r\right) \alpha_{5}^{\left(j_{3}\right)} \leq(r-1) N
\end{aligned}
$$

Hence for $\Delta>N$, the coefficient of $\mathbb{L}^{-N} q^{\Delta}$ in $(1-q) \sum_{\Delta \geq 0}\left[\mathcal{M}_{\mathbb{F}_{1}, F}(r, c, \Delta)\right] \mathbb{L}^{r^{2}(1-2 \Delta)} q^{r \Delta}$ is zero.

We now proceed to state Joyce's theorem. Let X be a surface. Given a Chern character γ, the ample cone of X admits a chamber decomposition where for all ample divisors H in a given chamber the moduli stacks $\mathcal{M}_{X, H}(\gamma)$ are isomorphic. When the ample divisor H crosses a wall, certain sheaves in $\mathcal{M}_{X, H}(\gamma)$ become destabilized and other unstable sheaves may become semistable. Joyce gives an inductive formula for computing the change in the classes $\left[\mathcal{M}_{X, H}(\gamma)\right]$ in term of the possible Harder-Narasimhan filtration for unstable sheaves.

Let H_{1} and H_{2} be two ample line bundles on X. Let $\mathcal{M}_{X, H_{1}}(\gamma)$ (respectively $\left.\mathcal{M}_{X, H_{2}}(\gamma)\right)$ denote the moduli stack of torsion free $\mu_{H_{1}}$ (respectively $\mu_{H_{2}}$) semistable
sheaves on X with Chern character $\gamma=(r, c, \Delta)$. Let $\gamma_{1}, \cdots, \gamma_{l}$ be Chern characters such that $\sum_{i=1}^{l} \gamma_{i}=\gamma$. Assume that $l \geq 2$, and consider the following conditions for all $1 \leq i \leq l-1$

$$
\begin{align*}
& \text { A) } \mu_{H_{1}}\left(\gamma_{i}\right)>\mu_{H_{1}}\left(\gamma_{i+1}\right) \text { and } \mu_{H_{2}}\left(\sum_{j=1}^{i} \gamma_{j}\right) \leq \mu_{H_{2}}\left(\sum_{j=i+1}^{l} \gamma_{j}\right) \\
& \text { B) } \mu_{H_{1}}\left(\gamma_{i}\right) \leq \mu_{H_{1}}\left(\gamma_{i+1}\right) \text { and } \mu_{H_{2}}\left(\sum_{j=1}^{i} \gamma_{j}\right)>\mu_{H_{2}}\left(\sum_{j=i+1}^{l} \gamma_{j}\right) \tag{4.3}
\end{align*}
$$

Let u be the number of times that Case B occurs. We define
$S^{\mu}\left(\gamma_{1}, \cdots, \gamma_{l} ; H_{1}, H_{2}\right)= \begin{cases}1, & \text { if } l=1 \\ (-1)^{u}, & \text { if } l \geq 2, \text { and Case A or B occurs for all } 1 \leq i \leq l-1 \\ 0, & \text { otherwise }\end{cases}$

Theorem 4.2.3 ((38),Theorem 6.21). If H_{1} and H_{2} are ample line-bundles on X satisfying $K_{X} \cdot H_{1}<\mathrm{o}$ and $K_{X} \cdot H_{2}<\mathrm{o}$, then we have the following equation

$$
\left[\mathcal{M}_{X, H_{2}}(\gamma)\right]=\sum_{\sum_{i=1}^{l} \gamma_{i}=\gamma} S^{\mu}\left(\gamma_{1}, \cdots, \gamma_{l} ; H_{1}, H_{2}\right) \mathbb{L}^{-\sum_{1 \leq i<j \leq 1} \chi\left(\gamma_{j}, \gamma_{i}\right)} \prod_{i=1}^{l}\left[\mathcal{M}_{X, H_{1}}\left(\gamma_{i}\right)\right]
$$

In our case, we would like to take $X=\mathbb{F}_{1}, H_{1}=F$ and $H_{2}=E+F$. Clearly, since $K_{\mathbb{F}_{1}}=-2 E-3 F$, we have $K_{\mathbb{F}_{1}} \cdot H_{1}<0$ and $K_{\mathbb{F}_{1}} \cdot H_{2}<0$. However, H_{1} is not ample and so we cannot use Joyce's theorem (Theorem 4.2.3) as stated. Luckily the following observation due to Coskun and Woolf (17)[Corollary 4.4] saves the day.

Remark 4.2.4. Joyce's theorem (Theorem 4.2.3) holds if H_{1} and H_{2} are nef, as long as the sum on the right side of equation is convergent.

Moreover, Coskun and Woolf shows (17)[Corollary 5.3] that we can use Joyce's equation in our case. Hence, we have

$$
\begin{align*}
& \sum_{\Delta \geq 0} \mathcal{M}_{\mathbb{F}_{1}, E+F}(\gamma) q^{r \Delta}=\sum_{\Delta \geq 0} \sum_{\sum_{i=1}^{l} \gamma_{i}=\gamma} S^{\mu}\left(\gamma_{1}, \cdots, \gamma_{l} ; F, E+F\right) \mathbb{L}^{-\sum_{1 \leq i<j \leq l} \chi\left(\gamma_{j}, \gamma_{i}\right)} \times \\
&\left(\prod_{i=1}^{l}\left[\mathcal{M}_{\mathbb{F}_{1}, F}\left(\gamma_{i}\right)\right]\right) q^{r \Delta} \tag{4.5}
\end{align*}
$$

Let $\gamma_{i}=\left(r_{i}, c_{i}, \Delta_{i}\right)$ for all $1 \leq i \leq l$. Further, we define $\mu_{i}=\frac{c_{i}}{r_{i}}$ for all $1 \leq i \leq l$. We would like to manipulate equation Equation 4.5 so that the left hand side term of equation Equation 4.5 becomes $\tilde{G}_{r, c}(q)$ and get rid of Δ from the right hand side term of equation Equation 4.5.

It is easy to see that

$$
-\sum_{1 \leq i<j \leq l} \chi\left(\gamma_{j}, \gamma_{i}\right)=-\frac{1}{2}\left(\sum_{i<j} \chi\left(\gamma_{j}, \gamma_{i}\right)+\chi\left(\gamma_{i}, \gamma_{j}\right)\right)-\frac{1}{2}\left(\sum_{i<j} \chi\left(\gamma_{j}, \gamma_{i}\right)-\chi\left(\gamma_{i}, \gamma_{j}\right)\right)
$$

We now list down some equations expressing the various Euler characteristics

- $\chi\left(\gamma_{j}, \gamma_{i}\right)-\chi\left(\gamma_{i}, \gamma_{j}\right)=r_{i} r_{j}\left(\mu_{j}-\mu_{i}\right) \cdot K_{\mathbb{F}_{1}}$
- $\chi(\gamma, \gamma)=r^{2}(1-2 \Delta)$, and $\chi\left(\gamma_{i}, \gamma_{i}\right)=r_{i}^{2}\left(1-2 \Delta_{i}\right)$ for all $1 \leq i \leq l$.
- $\sum_{i<j} \chi\left(\gamma_{j}, \gamma_{i}\right)+\chi\left(\gamma_{i}, \gamma_{j}\right)=\chi(\gamma, \gamma)-\sum_{i=1}^{l} \chi\left(\gamma_{i}, \gamma_{i}\right)$

Using the above equations we get

$$
\begin{equation*}
-\sum_{i<j} \chi\left(\gamma_{j}, \gamma_{i}\right)=-\frac{1}{2} r^{2}(1-2 \Delta)+\frac{1}{2} \sum_{i=1}^{l} r_{i}^{2}\left(1-2 \Delta_{i}\right)-\frac{1}{2} \sum_{i<j} r_{i} r_{j}\left(\mu_{j}-\mu_{i}\right) \cdot K_{\mathbb{F}_{1}} \tag{4.6}
\end{equation*}
$$

We now replace q by $\mathbb{L}^{-2 r} q$ in both sides of equation Equation 4.5, multiply both sides of Equation 4.5 by $\mathbb{L}^{r^{2}}$, and use equation Equation 4.6. We get

$$
\begin{align*}
& \sum_{\Delta \geq 0}\left[\mathcal{M}_{\mathbb{F}_{1}, E+F}(\gamma)\right] \mathbb{L}^{r^{2}(1-2 \Delta)} q^{r \Delta}=\sum_{\Delta \geq 0} \sum_{\sum_{i=1}^{l} \gamma_{i}=\gamma} S^{\mu}\left(\gamma_{1}, \cdots, \gamma_{l} ; F, E+F\right) \times \\
& \mathbb{L}^{\frac{1}{2} r^{2}(1-2 \Delta)+\frac{1}{2} \sum_{i=1}^{l} r_{i}^{2}\left(1-2 \Delta_{i}\right)} \mathbb{L}^{-\frac{1}{2} \sum_{i<j} r_{i} r_{j}\left(\mu_{j}-\mu_{i}\right) \cdot K_{\mathbb{F}_{1}}} \times \\
&\left(\prod_{i=1}^{l}\left[\mathcal{M}_{\mathbb{F}_{1}, F}\left(\gamma_{i}\right)\right]\right) q^{r \Delta} \tag{4.7}
\end{align*}
$$

Note that we are yet to get rid of Δ from right hand side term in equation Equation 4.7.
To do that, we need to use Yoshioka's relation for discriminants (25)[Equation 2.1]

$$
\begin{equation*}
r \Delta=\sum_{i=1}^{l} r_{i} \Delta_{i}-\sum_{i=2}^{l} \frac{1}{2 r_{i}\left(\sum_{j=1}^{i} r_{j}\right)\left(\sum_{j=1}^{i-1} r_{j}\right)}\left(\sum_{j=1}^{i-1} r_{i} c_{j}-r_{j} c_{i}\right)^{2} \tag{4.8}
\end{equation*}
$$

It follows from Yoshioka's relation that the difference $r \Delta-\sum_{i=1}^{l} r_{i} \Delta_{i}$ depends only on (r, c) and $\left(r_{i}, c_{i}\right)$ for $1 \leq i \leq l$. So we rewrite the first exponent of \mathbb{L} in equation Equation 4.7

$$
\begin{equation*}
\frac{1}{2} r^{2}(1-2 \Delta)+\frac{1}{2} \sum_{i=1}^{l} r_{i}^{2}\left(1-2 \Delta_{i}\right)=\frac{1}{2}\left(r^{2}+\sum_{i=1}^{l} r_{i}^{2}\right)-r\left(r \Delta-\sum_{i=1}^{l} r_{i} \Delta_{i}\right)-\sum_{i=1}^{l} r_{i}\left(r+r_{i}\right) \Delta_{i} \tag{4.9}
\end{equation*}
$$

Using equation Equation 4.9 back in equation Equation 4.7 yields

$$
\begin{array}{r}
\tilde{G}_{r, c}(q)=\sum_{\Delta \geq 0} \sum_{\sum_{i=1}^{l} \gamma_{i}=\gamma} S^{\mu}\left(\gamma_{1}, \cdots, \gamma_{l} ; F, E+F\right) \mathbb{L}^{\frac{1}{2}\left(r^{2}+\sum_{i=1}^{l} r_{i}^{2}\right)} \mathbb{L}^{-\frac{1}{2} \sum_{i<j} r_{i} r_{j}\left(\mu_{j}-\mu_{i}\right) \cdot K_{\mathbb{F}_{1}}} \times \\
\left(\mathbb{L}^{-r} q\right)^{r \Delta-\sum_{i=1}^{l} r_{i} \Delta_{i}}\left(\prod_{i=1}^{l}\left[\mathcal{M}_{\mathbb{F}_{1}, F}\left(\gamma_{i}\right)\right]\left(\mathbb{L}^{-\left(r+r_{i}\right)} q\right)^{r_{i} \Delta_{i}}\right) \tag{4.10}
\end{array}
$$

Observe that all the terms except the last one involving products on right hand side of equality in equation Equation 4.10 depends only on (r, c) and $\left(r_{i}, c_{i}\right)$ for $1 \leq i \leq l$, and the last term depends only on the Δ_{i} 's for $1 \leq i \leq l$. Therefore, we have

$$
\begin{array}{r}
\tilde{G}_{r, c}(q)=\sum_{\sum_{i=1}^{l} \gamma_{i}=\gamma} S^{\mu}\left(\gamma_{1}, \cdots, \gamma_{l} ; F, E+F\right) \mathbb{L}^{\frac{1}{2}\left(r^{2}+\sum_{i=1}^{l} r_{i}^{2}\right)} \mathbb{L}^{-\frac{1}{2} \sum_{i<j} r_{i} r_{j}\left(\mu_{j}-\mu_{i}\right) \cdot K_{\mathbb{F}_{1}}} \times \\
\left(\mathbb{L}^{-r} q\right)^{r \Delta-\sum_{i=1}^{l} r_{i} \Delta_{i}} \sum_{\Delta_{1}, \cdots, \Delta_{l}}\left(\prod_{i=1}^{l}\left[\mathcal{M}_{\mathbb{F}_{1}, F}\left(\gamma_{i}\right)\right]\left(\mathbb{L}^{-\left(r+r_{i}\right)} q\right)^{r_{i} \Delta_{i}}\right) \tag{4.11}
\end{array}
$$

Recall that we previously defined in equation Equation 4.1 the generating function

$$
H_{r, c}(q)=\sum_{\Delta \geq 0}\left[\mathcal{M}_{\mathbb{F}_{1}, F}(r, c, \Delta)\right] q^{r \Delta}
$$

The second summation term in equation Equation 4.11 can be expressed in terms of $H_{r, c}(q)$ as follows

$$
\begin{equation*}
\sum_{\Delta_{1}, \cdots, \Delta_{l}}\left(\prod_{i=1}^{l}\left[\mathcal{M}_{\mathbb{F}_{1}, F}\left(\gamma_{i}\right)\right]\left(\mathbb{L}^{-\left(r+r_{i}\right)} q\right)^{r_{i} \Delta_{i}}\right)=\prod_{i=1}^{l} H_{r_{i}, c_{i}}\left(\mathbb{L}^{-\left(r+r_{i}\right)} q\right) \tag{4.12}
\end{equation*}
$$

Therefore, we have

$$
\begin{gather*}
\tilde{G}_{r, c}(q)=\sum_{\sum_{i=1}^{l}\left(r_{i}, c_{i}\right)=(r, c)} S^{\mu}\left(\gamma_{1}, \cdots, \gamma_{l} ; F, E+F\right) \mathbb{L}^{\frac{1}{2}\left(r^{2}-\sum_{i=1}^{l} r_{i}^{2}\right)} \mathbb{L}^{-\frac{1}{2} \sum_{i<j} r_{i} r_{j}\left(\mu_{j}-\mu_{i}\right) \cdot K_{\mathbb{F}_{1}}} \times \\
\left(\mathbb{L}^{-r} q\right)^{r \Delta-\sum_{i=1}^{l} r_{i} \Delta_{i}} \prod_{i=1}^{l} \mathbb{L}^{r_{i}^{2}} H_{r_{i}, c_{i}}\left(\mathbb{L}^{-\left(r+r_{i}\right)} q\right) \tag{4.13}
\end{gather*}
$$

It follows from the definition of $S^{\mu}\left(\gamma_{1}, \cdots, \gamma_{l} ; F, E+F\right)$ in equation Equation 4.4 and from Mozgovoy's theorem (Theorem 4.2.1) that all the terms on right hand side of equality of equation Equation 4.13 depends only on (r, c) and $\left(r_{i}, c_{i}\right)$ for $1 \leq i \leq l$. Our next goal is to analyze the exponents of each of these terms further and show that for $\Delta \gg N$ the coefficient of $\mathbb{L}^{-N} q^{\Delta}$ in $(1-q) \tilde{G}_{r, c}(q)$ vanishes.

Proposition 4.2.5. There is a constant C_{0} depending only on r and c such that if $\Delta>N+C_{0}$, then coefficient of $\mathbb{L}^{-N} q^{\Delta}$ in $(1-q) \tilde{G}_{r, c}(q)$ is zero. Moreover, we can take C_{0} to be $\frac{1}{2}\left(r^{2}+1\right)$.

Proof. Our approach is to look at each summand of $(1-q) \tilde{G}_{r, c}(q)$ corresponding to a equation

$$
(r, c)=\sum_{i=1}^{l}\left(r_{i}, c_{i}\right)
$$

and find a lower bound for Δ corresponding to the term

$$
\begin{gather*}
(1-q) S^{\mu}\left(\gamma_{1}, \cdots, \gamma_{l} ; F, E+F\right) \mathbb{L}^{\frac{1}{2}\left(r^{2}-\sum_{i=1}^{l} r_{i}^{2}\right)} \mathbb{L}^{-\frac{1}{2} \sum_{i<j} r_{i} r_{j}\left(\mu_{j}-\mu_{i}\right) \cdot K_{\mathbb{F}_{1}}} \times \\
\left(\mathbb{L}^{-r} q\right)^{r \Delta-\sum_{i=1}^{l} r_{i} \Delta_{i}} \prod_{i=1}^{l} \mathbb{L}^{r_{i}^{2}} H_{r_{i}, c_{i}}\left(\mathbb{L}^{-\left(r+r_{i}\right)} q\right) \tag{4.14}
\end{gather*}
$$

If $l=1$, then equation Equation 4.14 becomes

$$
\begin{equation*}
(1-q) S^{\mu}(\gamma ; F, E+F) \mathbb{L}^{r^{2}} H_{r, c}\left(\mathbb{L}^{-2 r} q\right) \tag{4.15}
\end{equation*}
$$

It follows from Proposition 4.2.2 and equation Equation 4.2 that for $\Delta>N$, the coefficient of $\mathbb{L}^{-N} q^{\Delta}$ in $(1-q) \mathbb{L}^{r^{2}} H_{r, c}\left(\mathbb{L}^{-2 r} q\right)$ is zero.

Assume $l \geq 2$. We would like to estimate a lower bound for Δ_{i}^{\prime} such that the coefficient of $\mathbb{L}^{-N_{i}^{\prime}} q^{\Delta_{i}^{\prime}}$ in $\mathbb{L}^{r_{i}^{2}} H_{r_{i}, c_{i}}\left(\mathbb{L}^{-\left(r+r_{i}\right)} q\right)$ is zero, and then use that to figure out a lower bound for Δ in equation Equation 4.14. It follows from Mozgovoy's theorem (Theorem 4.2.1) that

$$
\begin{aligned}
\mathbb{L}^{r_{i}^{2}} H_{r_{i}, c_{i}}\left(\mathbb{L}^{-\left(r+r_{i}\right)} q\right)= & \mathbb{L}^{r_{i}^{2}} \frac{1}{(\mathbb{L}-1)} \prod_{j=1}^{r_{i}-1} Z_{\mathbb{P}^{1}}\left(\mathbb{L}^{j}\right) \prod_{k=1}^{\infty} \prod_{j=-r_{i}}^{r_{i}-1} Z_{\mathbb{P}^{\mathfrak{1}}}\left(\mathbb{L}^{-(r k-j)} q^{k}\right) \\
= & \frac{1}{\left(1-\mathbb{L}^{-r_{i}}\right)}\left(\prod_{j=1}^{r_{i}-1} \frac{1}{\left(1-\mathbb{L}^{-j}\right)^{2}}\right) \prod_{k=1}^{\infty}\left\{\frac{1}{\left(1-\mathbb{L}^{-\left(r k+r_{i}\right)} q^{k}\right)} \times\right. \\
& \left.\left(\prod_{j=-r_{i}+1}^{r_{i}-1} \frac{1}{\left(1-\mathbb{L}^{-(r k-j)} q^{k}\right)^{2}}\right) \frac{1}{\left(1-\mathbb{L}^{-\left(r k-r_{i}\right)} q^{k}\right)}\right\}
\end{aligned}
$$

Thus, we get

$$
\begin{aligned}
& \mathbb{L}^{r_{i}^{2}} H_{r_{i}, c_{i}}\left(\mathbb{L}^{-\left(r+r_{i}\right)} q\right)=\left(\sum_{\alpha_{1}=0}^{\infty} \mathbb{L}^{-r_{i} \alpha_{1}}\right)\left(\prod_{j_{1}=1}^{r_{i}-1}\left(\sum_{\alpha_{2}=0}^{\infty} \mathbb{L}^{-j_{1} \alpha_{2}}\right)^{2}\right) \times \\
& \prod_{k=1}^{\infty}\left\{\left(\sum_{\alpha_{3}=0}^{\infty} \mathbb{L}^{-\left(r k+r_{i}\right) \alpha_{3}} q^{k \alpha_{3}}\right)\left(\prod_{j_{2}=-r_{i}+1}^{r_{i}-1}\left(\sum_{\alpha_{4}=0}^{\infty} \mathbb{L}^{-\left(r k-j_{2}\right) \alpha_{4}} q^{k \alpha_{4}}\right)^{2}\right)\right. \\
&\left.\left(\sum_{\alpha_{5}=0}^{\infty} \mathbb{L}^{-\left(r k-r_{i}\right) \alpha_{5}} q^{k \alpha_{5}}\right)\right\}
\end{aligned}
$$

Each nonzero term contributing to the coefficient of $\mathbb{L}^{-N_{i}^{\prime}} q^{\Delta_{i}^{\prime}}$ in $\mathbb{L}^{r_{i}^{2}} H_{r_{i}, c_{i}}\left(\mathbb{L}^{-\left(r+r_{i}\right)} q\right)$ arises from a pair of equations

$$
\begin{aligned}
\Delta_{i}^{\prime}= & \sum_{j=1}^{\delta}\left\{k^{(j)} \alpha_{3}^{(j)}+\sum_{j_{2}=-r_{i}+1}^{r_{i}-1} k^{(j)}\left(\alpha_{4}^{\left(j, j_{2}, 1\right)}+\alpha_{4}^{\left(j, j_{2}, 2\right)}\right)+k^{(j)} \alpha_{5}^{(j)}\right\} \\
-N_{i}^{\prime}= & -r_{i} \alpha_{1}+\sum_{j_{1}=1}^{r_{i}-1}-j_{1}\left(\alpha_{2}^{\left(j_{1}, 1\right)}+\alpha_{2}^{\left(j_{1}, 2\right)}\right)+\sum_{j=1}^{\delta}\left\{-\left(r k^{(j)}+r_{i}\right) \alpha_{3}^{(j)}+\right. \\
& \left.\left(\sum_{j_{2}=-r_{i}+1}^{r_{i}-1}-\left(r k^{(j)}-j_{2}\right)\left(\alpha_{4}^{\left(j, j_{2}, 1\right)}+\alpha_{4}^{\left(j, j_{2}, 2\right)}\right)\right)-\left(r k^{(j)}-r_{i}\right) \alpha_{5}^{(j)}\right\}
\end{aligned}
$$

where all the α 's are non-negative integers, δ and the k 's are positive integers. Hence, we get

$$
r \Delta_{i}^{\prime}-N_{i}^{\prime} \leq \sum_{j=1}^{\delta}\left(\sum_{j_{2}=-r_{i}+1}^{r_{i}-1} j_{2}\left(\alpha_{4}^{\left(j, j_{2}, 1\right)}+\alpha_{4}^{\left(j, j_{2}, 2\right)}\right)\right)+r_{i} \alpha_{5}^{(j)}
$$

Since $j_{2} \leq r_{i}-1$ and $k^{(j)} \geq 1$, we see that $j_{2} \leq r_{i}\left(r k^{(j)}-j_{2}\right)$. Moreover, because $l \geq 2$ we have $r_{i} \leq(r-1)$, and so $r_{i} \leq r_{i}\left(r k^{(j)}-r_{i}\right)$. These two inequalities yield

$$
\sum_{j=1}^{\delta}\left(\sum_{j_{2}=-r_{i}+1}^{r_{i}-1} j_{2}\left(\alpha_{4}^{\left(j, j_{2}, 1\right)}+\alpha_{4}^{\left(j, j_{2}, 2\right)}\right)\right)+r_{i} \alpha_{5}^{(j)} \leq r_{i} N_{i}^{\prime}
$$

In summary, we get $r \Delta_{i}^{\prime}-N_{i}^{\prime} \leq r_{i} N_{i}^{\prime} \leq(r-1) N_{i}^{\prime}$, a posteriori, $\Delta_{i}^{\prime} \leq N_{i}^{\prime}$.

Going back to equation Equation 4.14, we see that each non-zero term contributing to the coefficient of $\mathbb{L}^{-N^{\prime}} q^{\Delta^{\prime}}$ in equation Equation 4.14 arises from a pair of equations

$$
\begin{aligned}
\Delta^{\prime} & =\varepsilon+\left(r \Delta-\sum_{i=1}^{l} r_{i} \Delta_{i}\right)+\sum_{i=1}^{l} \Delta_{i}^{\prime} \\
-N^{\prime} & =\frac{1}{2}\left(r^{2}-\sum_{i=1}^{l} r_{i}^{2}\right)-\frac{1}{2}\left(\sum_{i<j} r_{i} r_{j}\left(\mu_{j}-\mu_{i}\right) \cdot K_{\mathbb{F}_{1}}\right)-r\left(r \Delta-\sum_{i=1}^{l} r_{i} \Delta_{i}\right)+\sum_{i=1}^{l}-N_{i}^{\prime}
\end{aligned}
$$

where $\varepsilon \in\{0,1\}$ which accounts for contribution to the coefficient coming from ($1-q$), and ($\Delta_{i}^{\prime}, N_{i}^{\prime}$) accounts for the contribution of terms to the coefficient of $\mathbb{L}^{-N^{\prime}} q^{\Delta^{\prime}}$ coming from terms of coefficient of $\mathbb{L}^{-N_{i}^{\prime}} q^{\Delta_{i}^{\prime}}$ appearing in $\mathbb{L}^{r_{i}^{2}} H_{r_{i}, c_{i}}\left(\mathbb{L}^{-\left(r+r_{i}\right)} q\right)$. Since $\Delta_{i}^{\prime} \leq N_{i}^{\prime}$ for all $1 \leq i \leq l$ and $\varepsilon \leq 1$, we see that

$$
\begin{equation*}
\Delta^{\prime} \leq N^{\prime}+1+\frac{1}{2}\left(r^{2}-\sum_{i=1}^{l} r_{i}^{2}\right)-\frac{1}{2}\left\{\left(\sum_{i<j} r_{i} r_{j}\left(\mu_{j}-\mu_{i}\right) \cdot K_{\mathbb{F}_{1}}\right)+2(r-1)\left(r \Delta-\sum_{i=1}^{l} r_{i} \Delta_{i}\right)\right\} \tag{4.16}
\end{equation*}
$$

Clearly, to bound Δ^{\prime}, we need to bound the last term in above equation Equation 4.16. We are going to show later (in Lemma 4.2.6) that

$$
2(r-1)\left(r \Delta-\sum_{i=1}^{l} r_{i} \Delta_{i}\right)+\left(\sum_{i<j} r_{i} r_{j}\left(\mu_{j}-\mu_{i}\right) \cdot K_{\mathbb{F}_{1}}\right)
$$

is bounded below by a constant κ which depends only on (r, c) and r_{i} for all $1 \leq i \leq l$, except when $l=2$ and $\mu_{F}\left(\gamma_{2}\right)-\mu_{F}\left(\gamma_{1}\right)=-1$. Thus, we have

$$
\Delta^{\prime} \leq N^{\prime}+1+\frac{1}{2}\left(r^{2}-\sum_{i=1}^{l} r_{i}^{2}\right)-\frac{1}{2} \kappa
$$

We would like to scrutinize the special case when $l=2$ and $\mu_{F}\left(\gamma_{2}\right)-\mu_{F}\left(\gamma_{1}\right)=-1$. Note that it follows from Mozgovoy's theorem (Theorem 4.2.1) that $H_{r, c}$ only depends on whether or not $r \mid c \cdot F$. Let $r=r_{1}+r_{2}, c=a E+b F, c_{1}=r_{1} a_{1} E+b_{1} F$ and $c_{2}=r_{2} a_{2} E+b_{2} F$. We will denote $H_{r_{i}, c_{i}}$ by $H_{r_{i}}$ for $i=1,2$ because we are assuming that $r_{i} \mid c_{i} \cdot F$ for $i=1,2$. It follows from equation Equation 4.4 that for $S^{\mu}\left(\gamma_{1}, \gamma_{2} ; F, E+F\right)$ to be nonzero, we must have $\mu_{E+F}\left(\gamma_{1}\right) \leq \mu_{E+F}\left(\gamma_{2}\right)$, or equivalently, we have $b_{2} \geq \frac{b r_{2}}{r}$. Furthermore, we see that

$$
-\frac{1}{2} r_{1} r_{2}\left(\mu_{2}-\mu_{1}\right) \cdot K_{\mathbb{F}_{1}}=r_{1} r_{2}\left(a_{2}-a_{1}\right)+r b_{2}-r_{2} b
$$

and

$$
r \Delta-r_{1} \Delta_{1}-r_{2} \Delta_{2}=\frac{r_{1} r_{2}}{2 r}\left(a_{2}-a_{1}\right)^{2}-\left(a_{2}-a_{1}\right) b_{2}+b \frac{r_{2}\left(a_{2}-a_{1}\right)}{r}
$$

Using these equations together with the fact that $a_{2}-a_{1}=-1$, we see that equation Equation 4.14 transforms to

$$
(1-q) \mathbb{L}^{\frac{1}{2}\left(r^{2}-r_{1}^{2}-r_{2}^{2}\right)} \mathbb{L}^{-r_{1} r_{2}} q^{\frac{r_{1} r_{2}}{2 r}-\frac{b r_{2}}{r}} q^{b_{2}} \prod_{i=1}^{2} \mathbb{L}^{r_{i}^{2}} H_{r_{i}}\left(\mathbb{L}^{-\left(r+r_{i}\right)} q\right)
$$

whenever $b_{2} \geq \frac{b r_{2}}{r}$ and is zero otherwise. Adding all these terms for $b_{2} \geq \frac{b r_{2}}{r}$ yields

$$
\begin{equation*}
\mathbb{L}^{\frac{1}{2}\left(r^{2}-r_{1}^{2}-r_{1}^{2}\right)-r_{1} r_{2}} q^{\frac{r_{1} r_{2}}{2 r}-\frac{b r_{2}}{r}} q^{\left\lceil\frac{b r_{2}}{r}\right\rceil} \prod_{i=1}^{2} \mathbb{L}^{r_{i}^{2}} H_{r_{i}}\left(\mathbb{L}^{-\left(r+r_{i}\right)} q\right) \tag{4.17}
\end{equation*}
$$

Each nonzero term appearing in the coefficient of $\mathbb{L}^{-N^{\prime}} q^{\Delta^{\prime}}$ in equation Equation 4.17 arises from a pair of equations

$$
\begin{aligned}
\Delta^{\prime} & =\frac{r_{1} r_{2}}{2 r}-\frac{b r_{2}}{r}+\left\lceil\frac{b r_{2}}{r}\right\rceil+\Delta_{1}^{\prime}+\Delta_{2}^{\prime} \\
-N^{\prime} & =\frac{1}{2}\left(r^{2}-r_{1}^{2}-r_{2}^{2}\right)-r_{1} r_{2}-N_{1}^{\prime}-N_{2}^{\prime}=-N_{1}^{\prime}-N_{2}^{\prime}
\end{aligned}
$$

where ($\Delta_{i}^{\prime}, N_{i}^{\prime}$) accounts for contribution coming from terms of coefficient of $\mathbb{L}^{-N_{i}^{\prime}} q^{\Delta_{i}^{\prime}}$ in $\mathbb{L}^{r_{i}^{2}} H_{r_{i}}\left(\mathbb{L}^{-\left(r+r_{i}\right)} q\right)$. We have shown before that we must have $\Delta_{i}^{\prime} \leq N_{i}^{\prime}$ for $i=1,2$. Hence, we must have

$$
\Delta^{\prime} \leq N^{\prime}+\frac{r_{1} r_{2}}{2 r}+\left(\left\lceil\frac{b r_{2}}{r}\right\rceil-\frac{b r_{2}}{r}\right)
$$

In conclusion, we have

$$
\Delta^{\prime} \leq N^{\prime}+C_{\mathrm{o}}
$$

where C_{o} is the supremum of o , the terms $1+\frac{1}{2}\left(r^{2}-\sum_{i=1}^{l} r_{i}^{2}\right)-\frac{1}{2} \kappa$ corresponding to $l \geq 2$ and $r_{1}+\cdots+r_{l}=r$, and the terms $\frac{r_{1} r_{2}}{2 r}+\left(\left\lceil\frac{b r_{2}}{r}\right\rceil-\frac{b r_{2}}{r}\right)$ corresponding to $l=2$, $r_{1}+r_{2}=r$, and $\mu_{F}\left(\gamma_{2}\right)-\mu_{F}\left(\gamma_{1}\right)=-1$.

It follows from equation Equation 4.26 that κ is bounded below by $-(r-1)$. Clearly, $\left(r^{2}-\sum_{i=1}^{l} r_{i}^{2}\right)$ is bounded above by $r^{2}-r$. Hence, we see that

$$
1+\frac{1}{2}\left(r^{2}-\sum_{i=1}^{l} r_{i}^{2}\right)-\frac{1}{2} \kappa \leq \frac{1}{2}\left(r^{2}+1\right)
$$

Clearly $\left(\left\lceil\frac{b r_{2}}{r}\right\rceil-\frac{b r_{2}}{r}\right) \leq 1$ and $\frac{r_{1}\left(r-r_{1}\right)}{2 r}$ is bounded above by $\frac{r}{8}$, whence the terms corresponding to $r=r_{1}+r_{2}$ and $\mu_{F}\left(\gamma_{2}\right)-\mu_{F}\left(\gamma_{1}\right)=-1$ are bounded above by $\frac{r}{8}+1$.

In summary, we can take C_{0} to be $\frac{1}{2}\left(r^{2}+1\right)$. Hence, for $\Delta^{\prime}>N^{\prime}+\frac{1}{2}\left(r^{2}+1\right)$, the coefficient of $\mathbb{L}^{-N^{\prime}} q^{\Delta^{\prime}}$ in $(1-q) \tilde{G}_{r, c}(q)$ is zero.

Lemma 4.2.6. The following expression

$$
\begin{equation*}
2(r-1)\left(r \Delta-\sum_{i=1}^{l} r_{i} \Delta_{i}\right)+\left(\sum_{i<j} r_{i} r_{j}\left(\mu_{j}-\mu_{i}\right) \cdot K_{\mathbb{F}_{1}}\right) \tag{4.18}
\end{equation*}
$$

is bounded below by some constant κ which depends only on (r, c) and r_{i} for $1 \leq i \leq l$, except when $l=2$ and $\mu_{F}\left(\gamma_{2}\right)-\mu_{F}\left(\gamma_{1}\right)=-1$.

Proof. We can assume that $r_{i} \mid c_{i} \cdot F$ for each $1 \leq i \leq l$, otherwise the entire summand (equation Equation 4.14) vanishes due to Mozgovoy's theorem (Theorem 4.2.1). Let $c=a E+b F$ and for each $1 \leq i \leq l$, let $c_{i}=r_{i} a_{i} E+b_{i} F$. Note that every term in the generating function $\tilde{G}_{r, c}(q)$ is invariant under the action of tensoring by line bundles, whence, we can assume that $\mathrm{o} \leq a, b \leq(r-1)$. Furthermore, we define $s_{i}=\sum_{j=i}^{l} b_{j}$ for all $1 \leq i \leq l$.

Following Manschot (39)[Proof of Proposition 4.1] we see that

$$
\begin{gathered}
r \Delta-\sum_{i=1}^{l} r_{i} \Delta_{i}=\sum_{i=2}^{l} \frac{r_{i}}{2\left(\sum_{j=1}^{i} r_{j}\right)\left(\sum_{j=1}^{i-1} r_{j}\right)}\left(\sum_{j=1}^{i-1} r_{j}\left(a_{i}-a_{j}\right)\right)^{2}-\sum_{i=2}^{l}\left(a_{i}-a_{i-1}\right) s_{i} \\
+b \sum_{i=2}^{l} \frac{\sum_{j=1}^{i-1} r_{i} r_{j}\left(a_{i}-a_{j}\right)}{\left(\sum_{j=1}^{i} r_{j}\right)\left(\sum_{j=1}^{i-1} r_{j}\right)}
\end{gathered}
$$

Similarly, following Manschot (39)[Proof of Proposition 4.1] we see that

$$
\sum_{i<j} r_{i} r_{j}\left(\mu_{j}-\mu_{i}\right) \cdot K_{\mathbb{F}_{1}}=\sum_{i<j} r_{i} r_{j}\left(a_{i}-a_{j}\right)-2 \sum_{i=2}^{l}\left(r_{i}+r_{i-1}\right) s_{i}+2\left(r-r_{1}\right) b
$$

Using these two equations we get

$$
\begin{align*}
& 2(r-1)\left(r \Delta-\sum_{i=1}^{l} r_{i} \Delta_{i}\right)+\left(\sum_{i<j} r_{i} r_{j}\left(\mu_{j}-\mu_{i}\right) \cdot K_{\mathbb{F}_{1}}\right)= \\
& \left\{2(r-1) \sum_{i=2}^{l} \frac{r_{i}}{2\left(\sum_{j=1}^{i} r_{j}\right)\left(\sum_{j=1}^{i-1} r_{j}\right)}\left(\sum_{j=1}^{i-1} r_{j}\left(a_{i}-a_{j}\right)\right)^{2}+\sum_{i<j} r_{i} r_{j}\left(a_{i}-a_{j}\right)\right\} \tag{4.19}\\
& \quad+\left\{2(r-1) b \sum_{i=2}^{l} \frac{\sum_{j=1}^{i-1} r_{i} r_{j}\left(a_{i}-a_{j}\right)}{\left(\sum_{j=1}^{i} r_{j}\right)\left(\sum_{j=1}^{i-1} r_{j}\right)}+\right. \\
& \left.-2(r-1) \sum_{i=2}^{l}\left(a_{i}-a_{i-1}\right) s_{i}-2 \sum_{i=2}^{l}\left(r_{i}+r_{i-1}\right) s_{i}+2\left(r-r_{1}\right) b\right\}
\end{align*}
$$

We would like to show that both the first and second summand of right hand side of equation Equation 4.19 are bounded below. Let us call the first summand S_{1} and the second summand S_{2}.

We now proceed to scrutinize S_{1} to determine its lower bound. We are going to use the following identity of Manschot (39)[Proof of Proposition 4.1]

$$
\begin{equation*}
\sum_{i=2}^{l} \frac{r_{i}}{2\left(\sum_{j=1}^{i} r_{j}\right)\left(\sum_{j=1}^{i-1} r_{j}\right)}\left(\sum_{j=1}^{i-1} r_{j}\left(a_{i}-a_{j}\right)\right)^{2}=\frac{1}{2 r}\left(\sum_{i=1}^{l} r_{i}\left(r-r_{i}\right) a_{i}^{2}-2 \sum_{1 \leq i<j \leq l} r_{i} r_{j} a_{i} a_{j}\right) \tag{4.20}
\end{equation*}
$$

Since $a=\sum_{i=1}^{l} r_{i} a_{i}$, it follows from equation Equation 4.20 that

$$
S_{1}=(r-1) \sum_{i=1}^{l} r_{i} a_{i}^{2}-\frac{r-1}{r} a^{2}+\sum_{i=1}^{l} a_{i} r_{i}\left(\sum_{j=i+1}^{l} r_{j}-\sum_{j=1}^{i-1} r_{j}\right)
$$

Consider the smooth polynomial function

$$
f\left(x_{1}, \cdots, x_{l}\right)=\sum_{i=1}^{l} r_{i} x_{i}^{2}-\frac{1}{r} a^{2}+\sum_{i=1}^{l} x_{i} \frac{r_{i}}{r-1}\left(\sum_{j=i+1}^{l} r_{j}-\sum_{j=1}^{i-1} r_{j}\right)
$$

Clearly, the Hessian of f, given by $\left(\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}\right)$ is positive definite. We define

$$
g\left(x_{1}, \cdots, x_{l}\right)=\sum_{i=1}^{l} r_{i} x_{i}-a
$$

Our goal is to minimize f along the locus of $g=0$ for integer values of the x_{i} 's. Using the Lagrange's multiplier method, we see that f assumes minima at

$$
a_{i}=\frac{a}{r}-\frac{1}{2(r-1)}\left(\sum_{j=i+1}^{l} r_{j}-\sum_{j=1}^{i-1} r_{j}\right), \quad \text { for } i=1, \cdots, l
$$

Clearly $\left|\sum_{j=i+1}^{l} r_{j}-\sum_{j=1}^{i-1} r_{j}\right| \leq(r-1)$, and hence we get $\frac{a}{r}-\frac{1}{2} \leq a_{i} \leq \frac{a}{r}+\frac{1}{2}$ for all $1 \leq i \leq l$. Thus, to find a lower bound for S_{1} we need to find the minimum value of f when $x_{i} \in\{-1,0,1,2\}$ for all $1 \leq i \leq l$. We have the following partition

$$
\{1, \cdots, l\}=\left\{i_{\alpha}\right\}_{1 \leq \alpha \leq p} \cup\left\{j_{\beta}\right\}_{1 \leq \beta \leq q} \cup\left\{k_{\gamma}\right\}_{1 \leq \gamma \leq s} \cup\left\{m_{\delta}\right\}_{1 \leq \delta \leq t}
$$

where $x_{i_{\alpha}}=-1, x_{j_{\beta}}=1, x_{k_{\gamma}}=2$, and $x_{m_{\delta}}=0$. We see that

$$
\begin{align*}
r(r-1) f & =(12 r-9)\left(\sum_{i_{\alpha}>k_{\gamma}} r_{i_{\alpha}} r_{k_{\gamma}}\right)+(6 r-4)\left(\sum_{i_{\alpha}>j_{\beta}} r_{i_{\alpha}} r_{j_{\beta}}+\sum_{k_{\gamma}<m_{\delta}} r_{k_{\gamma}} r_{m_{\delta}}\right) \\
& +(2 r-1)\left(\sum_{i_{\alpha}>m_{\delta}} r_{i_{\alpha}} r_{m_{\delta}}+\sum_{j_{\beta}>k_{\gamma}} r_{j_{\beta}} r_{k_{\gamma}}+\sum_{j_{\beta}<m_{\delta}} r_{j_{\beta}} r_{m_{\delta}}\right) \tag{4.21}\\
& +(6 r-9)\left(\sum_{i_{\alpha}<k_{\gamma}} r_{i_{\alpha}} r_{k_{\gamma}}\right)+(2 r-4)\left(\sum_{i_{\alpha}<j_{\beta}} r_{i_{\alpha}} r_{j_{\beta}}+\sum_{k_{\gamma}>m_{\delta}} r_{k_{\gamma}} r_{m_{\delta}}\right) \\
& +(-1)\left(\sum_{i_{\alpha}<m_{\delta}} r_{i_{\alpha}} r_{m_{\delta}}+\sum_{j_{\beta}<k_{\gamma}} r_{j_{\beta}} r_{k_{\gamma}}+\sum_{j_{\beta}>m_{\delta}} r_{j_{\beta}} r_{m_{\delta}}\right)
\end{align*}
$$

Note that since $r \geq 2$ all the summands in equation Equation 4.21 except the last one have non-negative coefficient. By further examining the summands with non-negative coefficient, we see that together they must be bounded below by $(2 r-4)$ because all the inequalities in the summations cannot be simultaneously compatible. Moreover, the negative summand is bounded below by $-\left(r^{2}-r\right)$. Hence, S_{1} is bounded below by $-r+3-\frac{4}{r}$.

Our next goal is to determine a lower bound for S_{2}. We are going to use the following identities of Manschot (39)[Proof of Proposition 4.1]

$$
\begin{equation*}
\sum_{i=2}^{l} \frac{r_{i}}{\left(\sum_{j=1}^{i} r_{j}\right)\left(\sum_{j=1}^{i-1} r_{j}\right)}\left(\sum_{j=1}^{i-1} r_{j}\left(a_{i}-a_{j}\right)\right)=\frac{1}{r}\left(\sum_{i=2}^{l}\left(a_{i}-a_{i-1}\right)\left(\sum_{j=i}^{l} r_{j}\right)\right) \tag{4.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=2}^{l}\left(r_{i}+r_{i-1}\right)\left(\sum_{j=i}^{l} r_{j}\right)=\left(r-r_{1}\right) r \tag{4.23}
\end{equation*}
$$

The identities in equations Equation 4.22 and Equation 4.23 yields

$$
S_{2}=2 \sum_{i=2}^{l}\left((r-1)\left(a_{i}-a_{i-1}\right)+\left(r_{i}+r_{i-1}\right)\right)\left(\frac{b}{r}\left(\sum_{j=i}^{l} r_{j}\right)-s_{i}\right)
$$

Following Coskun and Woolf (17)[Proof of Theorem 5.4], we interpret the definition of $S\left(\left\{\gamma_{\bullet}\right\} ; F, E+F\right)$ (equation Equation 4.3) in our current situation, we obtain for all $2 \leq i \leq l$

$$
\begin{align*}
& \text { A) }\left(a_{i}-a_{i-1}\right)<0 \text { and } s_{i} \geq \frac{b}{r}\left(\sum_{j=i}^{l} r_{j}\right) \\
& \text { B) }\left(a_{i}-a_{i-1}\right) \geq 0 \text { and } s_{i}<\frac{b}{r}\left(\sum_{j=i}^{l} r_{j}\right) \tag{4.24}
\end{align*}
$$

In Case A, we see that $(r-1)\left(a_{i}-a_{i-1}\right)+r_{i}+r_{i-1} \leq 0$ except when $l=2$ and $a_{2}-a_{1}=-1$, which is not possible by our assumption. Hence, the term

$$
\begin{equation*}
\left((r-1)\left(a_{i}-a_{i-1}\right)+\left(r_{i}+r_{i-1}\right)\right)\left(\frac{b}{r}\left(\sum_{j=i}^{l} r_{j}\right)-s_{i}\right) \tag{4.25}
\end{equation*}
$$

is non-negative.
Similarly, in Case B, we see that $(r-1)\left(a_{i}-a_{i-1}\right)+r_{i}+r_{i-1} \geq\left(r_{i}+r_{i-1}\right)$, hence the term in equation Equation 4.25 is non-negative. Additionally, by using the fact that s_{i} are integers, it follows from equation Equation 4.24 that we have a slightly better bound of equation Equation 4.25

$$
\left|(r-1)\left(a_{i}-a_{i-1}\right)+r_{i}+r_{i-1}\right|\left(1-\operatorname{sgn}\left(a_{i}-a_{i-1}+\frac{1}{2}\right)\left(1-2\left\{-\frac{b}{r} \sum_{j=i}^{l} r_{j}\right\}\right)\right)
$$

where sgn is the sign function and $\{\bullet\}$ is the fractional part of any real number.
In conclusion, we can take κ to be

$$
\begin{align*}
& -r+3-\frac{4}{r} \\
& +\sum_{i=2}^{l}\left|(r-1)\left(a_{i}-a_{i-1}\right)+r_{i}+r_{i-1}\right|\left(1-\operatorname{sgn}\left(a_{i}-a_{i-1}+\frac{1}{2}\right)\left(1-2\left\{-\frac{b}{r} \sum_{j=i}^{l} r_{j}\right\}\right)\right) \tag{4.26}
\end{align*}
$$

which is our lower bound for equation Equation 4.18.

Now that we have shown that for $\tilde{\Delta} \gg \tilde{N}$, the coefficient of $\mathbb{L}^{-\tilde{N}} q^{\tilde{\Delta}}$ in $(1-q) \tilde{G}_{r, \tilde{c}}(q)$ vanishes (see Proposition 4.2.5), our goal is to relate $G_{r, c}(q)$ with $\tilde{G}_{r, \tilde{c}}$ using the blow-up formula, and conclude a similar result for $G_{r, c}(q)$.

4.3 Estimating the generating function $G_{r, c}(q)$ when rank is at least two

In this section, our goal is to show that there is a constant C depending only on r and c such that when $\Delta>N+C$, the coefficient of $\mathbb{L}^{-N} q^{\Delta}$ in $(1-q) G_{r, c}(q)$ is zero. To show this, we are going to look at the blow-up $\mathbb{F}_{1} \longrightarrow \mathbb{P}^{2}$ and use the blow-up formula due to Mozgovoy (23)[Proposition 7.3] to relate the generating functions $G_{r, c}(q)$ and $\tilde{G}_{r, \tilde{c}}(q)$ (see equation Equation 4.30) in A^{-}. We are going to scrutinize the terms appearing in this relation, and use Proposition 4.2.5 to derive our inequality (see Theorem 4.3.7).

Recall from section 2.2 that we have a blow-up $\mathbb{F}_{1} \longrightarrow \mathbb{P}^{2}$ at point $p \in \mathbb{P}^{2}$. Let $\gamma=(r, c, \Delta)$ be a Chern character on \mathbb{P}^{2}. Let m be the multiplicity of c at the point
p. Let $\tilde{\gamma}=(r, c-m E, \tilde{\Delta})$ be a Chern character on \mathbb{F}_{1}. The blow-up formula due to Mozgovoy (23)[Proposition 7.3] is the following equation

$$
\begin{equation*}
\sum_{c h_{2}}\left[\mathcal{M}_{\mathbb{F}_{1}, E+F}\left(r, c-m E, c h_{2}\right)\right] q^{-c h_{2}}=F_{m}(q) \sum_{c h_{2}}\left[\mathcal{M}_{\mathbb{P}^{2}, H}\left(r, c, c h_{2}\right)\right] q^{-c h_{2}} \tag{4.27}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{m}(q)=\left(\prod_{k=1}^{\infty} \frac{1}{\left(1-\mathbb{L}^{r k} q^{k}\right)^{r}}\right)\left(\sum_{\substack{\sum_{i=1}^{r} a_{i}=0, a_{i} \in \mathbb{Z}+\frac{m}{r}}} \mathbb{L}^{\sum_{i<j}\left({ }^{a_{j}-a_{2}}\right)} q^{-\sum_{i<j} a_{i} a_{j}}\right) \tag{4.28}
\end{equation*}
$$

Note that on \mathbb{P}^{2}, we have $-c h_{2}(\gamma)=r \Delta-\frac{c^{2}}{2 r}$, while on \mathbb{F}_{1}, we have $-c h_{2}(\tilde{\gamma})=r \tilde{\Delta}-$ $\frac{c^{2}}{2 r}+\frac{m^{2}}{2 r}$. Hence, we can rewrite the blow-up equation (equation Equation 4.27)

$$
\begin{equation*}
\sum_{\Delta \geq 0}\left[\mathcal{M}_{\mathbb{P}^{2}, H}(r, c, \Delta)\right] q^{r \Delta}=\frac{q^{\frac{m^{2}}{2 r}}}{F_{m}(q)} \sum_{\tilde{\Delta} \geq 0}\left[\mathcal{M}_{\mathbb{F}_{1}, E+F}(r, c-m E, \tilde{\Delta})\right] q^{r \tilde{\Delta}} \tag{4.29}
\end{equation*}
$$

Replacing q by $\mathbb{L}^{-2 r} q$ and multiplying both sides by $\mathbb{L}^{r^{2}}$ in equation Equation 4.29 yields

$$
\begin{equation*}
G_{r, c}(q)=\frac{\left(\mathbb{L}^{-2 r} q q^{\frac{m^{2}}{2 r}}\right.}{F_{m}\left(\mathbb{L}^{-2 r} q\right)} \tilde{G}_{r, c-m E}(q) \tag{4.30}
\end{equation*}
$$

It follows from equation Equation 4.30 that in order to achieve our goal, we need to analyze $F_{m}\left(\mathbb{L}^{-2 r} q\right)$ and find an estimate for Δ in this expression.

By examining the definition of F_{m} in equation Equation 4.28, we conclude that it depends only on the remainder of m modulo r, which we shall denote by \bar{m}, which we will think of as an integer between o and $r-1$.

We see that

$$
\begin{equation*}
F_{\bar{m}}\left(\mathbb{L}^{-2 r} q\right)=\prod_{k=1}^{\infty} \frac{1}{\left(1-\mathbb{L}^{-r k} q^{k}\right)^{r}} \sum_{\substack{\sum_{i=1}^{r} a_{i}=0, a_{i} \in \mathbb{Z}+\frac{\bar{m}}{r}}} \mathbb{L}^{\left.\sum_{i<j}\left(a_{j}^{a_{j}-a_{i}}\right)_{2}\right)+2 r \sum_{i<j} a_{i} a_{j}} q^{-\sum_{i<j} a_{i} a_{j}} \tag{4.31}
\end{equation*}
$$

Since $\sum_{i=1}^{r} a_{i}=0$, we see that

$$
-\sum_{1 \leq i<j \leq r} a_{i} a_{j}=\frac{1}{2} \sum_{i=1}^{r} a_{i}^{2}
$$

and

$$
\sum_{1 \leq i<j \leq r}\binom{a_{j}-a_{i}}{2}+2 r \sum_{1 \leq i<j \leq r} a_{i} a_{j}=-\frac{r}{2}\left(\sum_{i=1}^{r} a_{i}^{2}\right)-\left(\sum_{i=1}^{r} i a_{i}\right)
$$

We now use the following substitutions

$$
\begin{aligned}
a_{i} & =b_{i}+\frac{\bar{m}}{r}, \text { where } b_{i} \in \mathbb{Z}, \text { for } 1 \leq i \leq r-1 \\
a_{r} & =-\sum_{i=1}^{r-1}\left(b_{i}+\frac{\bar{m}}{r}\right)
\end{aligned}
$$

These substitutions yield the following equations

$$
\begin{align*}
-\frac{r}{2}\left(\sum_{i=1}^{r} a_{i}^{2}\right)-\left(\sum_{i=1}^{r} i a_{i}\right)= & -r\left(-\frac{\bar{m}^{2}}{2 r}+\frac{\bar{m}^{2}}{2}+\sum_{i=1}^{r-1} b_{i}^{2}+\bar{m} \sum_{i=1}^{r-1} b_{i}+\sum_{1 \leq i<j \leq(r-1)} b_{i} b_{j}\right) \\
& +\left(\frac{(r-1) \bar{m}}{2}+\sum_{i=1}^{r-1}(r-i) b_{i}\right) \\
\frac{1}{2} \sum_{i=1}^{r} a_{i}^{2}= & \left(\frac{-\bar{m}^{2}}{2 r}+\frac{\bar{m}^{2}}{2}+\sum_{i=1}^{r-1} b_{i}^{2}+\bar{m} \sum_{i=1}^{r-1} b_{i}+\sum_{1 \leq i<j \leq(r-1)} b_{i} b_{j}\right) \tag{4.32}
\end{align*}
$$

Employing the above equations Equation 4.32 leads to the following expression for

$$
\begin{aligned}
& F_{\bar{m}}\left(\mathbb{L}^{-2 r} q\right) \\
& F_{\bar{m}}\left(\mathbb{L}^{-2 r} q\right)=\left(\prod_{k=1}^{\infty} \frac{1}{\left(1-\mathbb{L}^{-r k} q^{k}\right)^{r}}\right)\left(\mathbb{L}^{-r} q\right)^{-\frac{(r+1) \bar{m}^{2}}{2 r}} \mathbb{L}^{\frac{(r-1) \bar{m}}{2}} \times \\
& \sum_{b_{1}, \cdots, b_{r-1} \in \mathbb{Z}} \mathbb{L}^{\sum_{i=1}^{r-1}(r-i) b_{i}}\left(\mathbb{L}^{-r} q\right)^{\bar{m}^{2}+\sum_{i=1}^{r-1} b_{i}^{2}+\bar{m} \sum_{i=1}^{r-1} b_{i}+\sum_{i<j} b_{i} b_{j}}
\end{aligned}
$$

For sake of convenience, we define

$$
\begin{equation*}
\Lambda_{d}^{(\bar{m})}=\sum_{\substack{b_{1}, \cdots, b_{r-1} \in \mathbb{Z}, \bar{m}^{2}+\sum_{i=1}^{r-1} b_{i}^{+}+\bar{m} \sum_{i=1}^{r-1} b_{i}+\sum_{i<j} b_{i} b_{j}=d}} \mathbb{L}^{\sum_{j=1}^{r-1}(r-j) b_{j}} \tag{4.33}
\end{equation*}
$$

Thus, we can think of the last summation term of $F_{\bar{m}}\left(\mathbb{L}^{-2 r} q\right)$ as a power series

$$
\begin{equation*}
F_{\bar{m}}\left(\mathbb{L}^{-2 r} q\right)=\left(\prod_{k=1}^{\infty} \frac{1}{\left(1-\mathbb{L}^{-r k} q^{k}\right)^{r}}\right)\left(\mathbb{L}^{-r} q\right)^{-\frac{(r+1) \bar{m}^{2}}{2 r}} \mathbb{L}^{\frac{(r-1) \bar{m}}{2}}\left(\sum_{d=0}^{\infty} \Lambda_{d}^{(\bar{m})}(\mathbb{L})\left(\mathbb{L}^{-r} q\right)^{d}\right) \tag{4.34}
\end{equation*}
$$

Remark 4.3.1. Recall that any power series of the form $f(x)=1+a_{1} x+a_{2} x^{2}+\cdots$ is invertible, and its inverse is given by $1+b_{1} x+b_{2} x^{2}+\cdots$, where for any positive integer n, we have

$$
b_{n}=\sum_{\substack{n_{1}+\cdots+n_{l}=n \\ n_{i} \in \mathbb{Z}>o}}(-1)^{l} a_{n_{1}} \cdots a_{n_{l}}
$$

To analyze $G_{r, c}(q)$, we need to invert $F_{\bar{m}}\left(\mathbb{L}^{-2 r} q\right)$ (equation Equation 4.30), and a posteriori, we need to invert the power series $\sum_{d=0}^{\infty} \Lambda_{d}^{(\bar{m})}(\mathbb{L})\left(\mathbb{L}^{-r} q\right)^{d}$. To do this, we need to figure out the least non-negative integer d such that $\Lambda_{d}^{(\bar{m})}(\mathbb{L})$ is nonzero.

Lemma 4.3.2. The smallest non-negative integer d for which $\Lambda_{d}^{(\bar{m})}$ is nonzero, is $\frac{\bar{m}^{2}+\bar{m}}{2}$. Additionally,

$$
\Lambda_{\frac{\bar{m}^{2}+\bar{m}}{2}}^{(\bar{m})}(\mathbb{L})=\mathbb{L}^{-r \bar{m}} \sum_{\nu=\frac{\bar{m}^{2}+\bar{m}}{2}}^{r \bar{m}-\frac{\bar{m}^{2}-\bar{m}}{2}} \rho_{\nu} \mathbb{L}^{\nu}
$$

where ρ_{ν} is the cardinality of the $\operatorname{set}\left\{\left(j_{1}, \cdots, j_{\bar{m}}\right) \mid 1 \leq j_{1}<\cdots<j_{\bar{m}} \leq r, j_{1}+\cdots+j_{\bar{m}}=\nu\right\}$, when ν is a positive integer, and $\rho_{\mathrm{o}}=1$.

Proof. Note that

$$
\bar{m}^{2}+\sum_{i=1}^{r-1} b_{i}^{2}+\bar{m} \sum_{i=1}^{r-1} b_{i}+\sum_{i<j} b_{i} b_{j}=\frac{1}{2}\left(\bar{m}^{2}+\sum_{i=1}^{r-1} b_{i}^{2}+\left(\bar{m}+\sum_{i=1}^{r-1} b_{i}\right)^{2}\right)
$$

Consequently, we need to figure out the smallest value of $\bar{m}^{2}+\sum_{i=1}^{r-1} b_{i}^{2}+\left(\bar{m}+\sum_{i=1}^{r-1} b_{i}\right)^{2}$, where $b_{i} \in \mathbb{Z}$ for all $1 \leq i \leq r-1$.

If $\bar{m}=0$, we see that the equation $\sum_{i=1}^{r-1} b_{i}^{2}+\left(\sum_{i=1}^{r-1} b_{i}\right)^{2}=0$ has only one solution, the trivial one. Thus, $\Lambda_{\mathrm{o}}^{(\mathrm{o})}(\mathbb{L})=1$.

Assume $1 \leq \bar{m} \leq r-1$. It follows from Lemma 4.3.3 (below), that the smallest value assumed by the expression $\sum_{i=1}^{r-1} b_{i}^{2}+\left(\bar{m}+\sum_{i=1}^{r-1} b_{i}\right)^{2}$ occurs at $b_{1}=\cdots=b_{r-1}=-\frac{\bar{m}}{r}$. As a result, we need to evaluate the expression when $b_{i} \in\{-1,0\}$ for all $1 \leq i \leq r-1$, to figure out the minimum value of the expression for integer values. Suppose k of the b_{i} 's are (-1) and the remaining are zero, the expression becomes $k+(\bar{m}-k)^{2}$. Clearly, the minimum value of $k+(\bar{m}-k)^{2}$ for integer values of k is \bar{m}, which occurs when $k=\bar{m}-1, \bar{m}$.

In summary, when $1 \leq \bar{m} \leq r-1$, the smallest value of the expression

$$
\frac{1}{2}\left(\bar{m}^{2}+\sum_{i=1}^{r-1} b_{i}^{2}+\left(\bar{m}+\sum_{i=1}^{r-1} b_{i}\right)^{2}\right)
$$

for integer values of b_{i} is $\frac{\bar{m}^{2}+\bar{m}}{2}$, which occurs when $\bar{m}-1$ or \bar{m} of the b_{i} 's are (-1) and the remaining are zero. Hence, we have

$$
\Lambda_{d}^{(\bar{m})}(\mathbb{L})=\sum_{1 \leq j_{1}<\cdots<j_{\bar{m}-1} \leq r-1} \mathbb{L}^{j_{1}+\cdots+j_{\bar{m}-1}-(\bar{m}-1) r}+\sum_{1 \leq j_{1}<\cdots<j_{\bar{m}} \leq r-1} \mathbb{L}^{j_{1}+\cdots+j_{\bar{m}}-r \bar{m}}
$$

Factoring out $\mathbb{L}^{-r \bar{m}}$ leads to

$$
\Lambda_{d}^{(\bar{m})}(\mathbb{L})=\mathbb{L}^{-r \bar{m}} \sum_{1 \leq j_{1}<\cdots<j_{\bar{m}} \leq r} \mathbb{L}^{j_{1}+\cdots+j_{\bar{m}}}
$$

Before proceeding further, we need to tie the loose ends of Lemma 4.3 .2 by analyzing the real valued polynomial function $y_{1}^{2}+\cdots+y_{n}^{2}+\left(A+y_{1}+\cdots+y_{n}\right)^{2}$.

Lemma 4.3.3. Consider the smooth real valued function

$$
f\left(y_{1}, \cdots, y_{n}\right)=y_{1}^{2}+\cdots+y_{n}^{2}+\left(A+y_{1}+\cdots+y_{n}\right)^{2}
$$

where A is any real number. The Hessian of f is positive definite. Furthermore, the function f has a global minima at $y_{1}=\cdots=y_{n}=-\frac{A}{n+1}$, and the minimum value for f is $\frac{A^{2}}{n+1}$.

Proof. Clearly, we see that for $1 \leq k \leq n$

$$
\frac{\partial f}{\partial y_{k}}=2 y_{k}+2\left(A+y_{1}+\cdots+y_{n}\right)
$$

Subsequently, we see that for $1 \leq l \leq n$

$$
\frac{\partial^{2} f}{\partial y_{l} \partial y_{k}}=\left\{\begin{array}{l}
2, \text { if } k \neq l \\
4, \text { if } k=l
\end{array}\right.
$$

Let H be the $n \times n$ matrix with $H_{l, k}=\frac{\partial^{2} f}{\partial y_{l} \partial y_{k}}$, then we see that

$$
\left(y_{1} \cdots y_{n}\right) \cdot H \cdot\left(y_{1} \cdots y_{n}\right)^{T}=2\left(\sum_{i=1}^{n} y_{i}^{2}\right)+2\left(\sum_{i=1}^{n} y_{i}\right)^{2}
$$

Thus, H is positive definite. As a consequence, f has a global minimum when $\frac{\partial f}{\partial y_{k}}=0$ for all $1 \leq k \leq n$. This system of linear equations has a unique solution $y_{1}=\cdots=y_{n}=$ $-\frac{A}{n+1}$. It follows that the minimum value for f is $\frac{A^{2}}{n+1}$.

Returning back to our track, we still need to analyze $F_{\bar{m}}\left(\mathbb{L}^{-2 r} q\right)$. Using equation Equation 4.34 and Lemma 4.3.2, we see that

$$
\begin{aligned}
F_{\bar{m}}\left(\mathbb{L}^{-2 r} q\right)=\left(\prod_{k=1}^{\infty}\right. & \left.\frac{1}{\left(1-\mathbb{L}^{-r k} q^{k}\right)^{r}}\right)\left(\mathbb{L}^{-r} q\right)^{-\frac{(r+1) \bar{m}^{2}}{2 r}} \mathbb{L}^{\frac{(r-1) \bar{m}}{2}} \\
& \Lambda_{\frac{\bar{m}^{2}+\bar{m}}{2}}^{(\bar{m})}(\mathbb{L})\left(\mathbb{L}^{-r} q\right)^{\frac{\bar{m}^{2}+\bar{m}}{2}} \sum_{d=0}^{\infty} \tilde{\Lambda}_{d}^{(\bar{m})}(\mathbb{L})\left(\mathbb{L}^{-r} q\right)^{d}
\end{aligned}
$$

where $\tilde{\Lambda}_{d}^{(\bar{m})}(\mathbb{L})=\left(\Lambda_{\frac{\bar{m}^{2}+\bar{m}}{2}}^{(\overline{\bar{m}})}(\mathbb{L})\right)^{-1} \cdot \Lambda_{d+\frac{\bar{m}^{2}+\bar{m}}{2}}^{\left(\overline{\bar{m}^{2}}\right.}(\mathbb{L})$.

Finally, using remark 4.3.1, we can invert $F_{\bar{m}}\left(\mathbb{L}^{-2 r} q\right)$.

$$
\begin{align*}
\left(F_{\bar{m}}\left(\mathbb{L}^{-2 r} q\right)\right)^{-1}= & \left(\prod_{k=1}^{\infty}\left(1-\mathbb{L}^{-r k} q^{k}\right)^{r}\right)\left(\mathbb{L}^{-r} q\right)^{-\frac{r \bar{m}-\bar{m}^{2}}{2 r}} \mathbb{L}^{-\frac{(r-1) \bar{m}}{2}}\left(\Lambda_{\frac{\bar{m}^{2}+\bar{m}}{2}}^{(\bar{m})}(\mathbb{L})\right)^{-1} \\
& \left(1+\sum_{d=1}^{\infty}\left(\begin{array}{l}
\left.\left.\sum_{\substack{ \\
d_{1}, \cdots, d_{l} \in \mathbb{Z}_{>0} \\
d_{1}+\cdots+d_{l}=d}}(-1)^{l} \prod_{i=1}^{l} \tilde{\Lambda}_{d_{i}}^{(\bar{m})}\right)\left(\mathbb{L}^{-r} q\right)^{d}\right)
\end{array}\right)\right. \tag{4.35}
\end{align*}
$$

Before tackling $G_{r, c}(q)$, we would like to analyze $F_{\bar{m}}\left(\mathbb{L}^{-2 r} q\right)^{-1}$ and produce bounds for Δ such that the coefficient of $\mathbb{L}^{-N} q^{\Delta}$ vanishes.

Lemma 4.3.4. If $\Delta>N-\frac{(r-\bar{m}) \bar{m}}{2 r}$, then the coefficient of $\mathbb{L}^{-N} q^{\Delta}$ in $F_{\bar{m}}\left(\mathbb{L}^{-2 r} q\right)^{-1}$ is zero.

Proof. We are going to produce an expression for $\left(\Lambda_{\frac{\bar{m}^{2}+\bar{m}}{2}}^{(\bar{m})}(\mathbb{L})\right)^{-1}$, and use it alongwith the expression for $F_{\bar{m}}\left(\mathbb{L}^{-2 r} q\right)^{-1}$ (see equation Equation 4.35) to determine the bound for Δ.

Using Lemma 4.3.2 and factoring $\mathbb{L}^{r \bar{m}-\frac{\bar{m}^{2}-\bar{m}}{2}}$, we get

$$
\Lambda_{\frac{\bar{m}^{2}+\bar{m}}{2}}^{(\bar{m})}(\mathbb{L})=\mathbb{L}^{-\frac{\bar{m}^{2}-\bar{m}}{2}} \sum_{\nu=0}^{-\left(r \bar{m}-\bar{m}^{2}\right)} \rho_{\nu+r \bar{m}-\frac{\bar{m}^{2}-\bar{m}}{2}} \mathbb{L}^{\nu}
$$

In a similar fashion as in remark 4.3.1, it follows that

$$
\left(\Lambda_{\frac{\bar{m}^{2}+\bar{m}}{2}}^{(\bar{m})}(\mathbb{L})\right)^{-1}=\mathbb{L}^{\frac{\bar{m}^{2}-\bar{m}}{2}}\left(1+\sum_{\nu=-1}^{-\infty}\left(\sum_{\substack{\nu_{1}, \cdots, \nu_{l} \in \mathbb{Z}_{<0} \\ \nu_{1}+\cdots+\nu_{l}=\nu}}(-1)^{l} \prod_{i=1}^{l} \rho_{\nu_{i}+r \bar{m}-\frac{\bar{m}^{2}-\bar{m}}{2}}\right) \mathbb{L}^{\nu}\right)
$$

It follows from equation Equation 4.35 that

$$
\begin{aligned}
\left(F_{\bar{m}}\left(\mathbb{L}^{-2 r} q\right)\right)^{-1} & =\prod_{k=1}^{\infty}\left(\sum_{\alpha=0}^{\infty}(-1)^{\alpha}\binom{r}{\alpha} \mathbb{L}^{-r k \alpha} q^{k \alpha}\right) \times\left(\mathbb{L}^{-r} q\right)^{-\frac{r \bar{m}-\bar{m}^{2}}{2 r}} \mathbb{L}^{-\frac{(r-1) \bar{m}}{2}} \times\left(\left(\Lambda_{\frac{\bar{m}^{2}+\bar{m}}{2}}^{(\bar{m})}(\mathbb{L})\right)^{-1}\right. \\
& \left.+\sum_{d=-1}^{-\infty}\left(\sum_{\substack{d_{1}, \cdots, d_{l} \in \mathbb{Z}_{<0} \\
d_{1}+\cdots+d_{l}=d}}(-1)^{l}\left(\Lambda_{\frac{\bar{m}^{2}+\bar{m}}{2}}^{(\bar{m})}(\mathbb{L})\right)^{-(l+1)} \prod_{i=1}^{l} \Lambda_{d_{i}+\frac{\bar{m}^{2}+\bar{m}}{2}}^{(\bar{m})}(\mathbb{L})\right)\left(\mathbb{L}^{-r} q\right)^{d}\right)
\end{aligned}
$$

Each nonzero term appearing in the co-efficient of $\mathbb{L}^{-N} q^{\Delta}$ in $F_{\bar{m}}\left(\mathbb{L}^{-2 r} q\right)^{-1}$ arises from a pair of equations

$$
\begin{aligned}
\Delta= & \left(\sum_{j=1}^{\delta} k^{(j)} \alpha^{(j)}\right)-\left(\frac{r \bar{m}-\bar{m}^{2}}{2 r}\right)+d \\
-N= & \left(\sum_{j=1}^{\delta}-r k^{(j)} \alpha^{(j)}\right)+r\left(\frac{r \bar{m}-\bar{m}^{2}}{2 r}\right)-\frac{(r-1) \bar{m}}{2}+ \\
& \left(\left(\frac{\bar{m}^{2}-\bar{m}}{2}(l+1)+\sum_{i=1}^{l+1} \nu_{i}\right)+\sum_{i=1}^{l} \sum_{j=1}^{r-1}(r-j) b_{j}^{(i)}\right)-r d
\end{aligned}
$$

where the α 's, the ν 's, and l are non-negative integers; the k 's are positive integers; and the $b_{j}^{(i)}$,s are integers satisfying

$$
\bar{m}^{2}+\sum_{j=1}^{r-1}\left(b_{j}^{(i)}\right)^{2}+\left(\bar{m}+\sum_{j=1}^{r-1} b_{j}^{(i)}\right)^{2}=2 d_{i}+\bar{m}^{2}+\bar{m}, \quad \text { for } 1 \leq i \leq l
$$

Subsequently, we will show (in Lemma 4.3.5) that $\left(\sum_{j-1}^{r-1}(r-j) b_{j}^{(i)}\right)+\frac{\bar{m}^{2}-\bar{m}}{2} \leq(r-1) d_{i}$, for all $1 \leq i \leq l$. Consequently, we have

$$
\left(\sum_{i=1}^{l} \sum_{j=1}^{r-1}(r-j) b_{j}^{(i)}\right)+\frac{\bar{m}^{2}-\bar{m}}{2} l \leq(r-1) d
$$

Therefore, we see that

$$
N+(r-1) \frac{r \bar{m}-\bar{m}^{2}}{2 r}-\frac{(r-1) \bar{m}}{2}+\frac{\bar{m}^{2}-\bar{m}}{2} \geq\left(\sum_{j-1}^{\delta} k^{(j)} \alpha^{(j)}\right)-\frac{r \bar{m}-\bar{m}^{2}}{2 r}+d=\Delta
$$

and hence,

$$
N-\frac{(r-\bar{m}) \bar{m}}{2 r} \geq \Delta
$$

Before we continue, we need to wrap up the proof of Lemma 4.3 .4 by proving the following:

Lemma 4.3.5. Let d be a non-negative integer, and \bar{m} be a non-negative integer less than r. Suppose b_{1}, \cdots, b_{r-1} are integers satisfying

$$
\begin{equation*}
\bar{m}^{2}+\sum_{j=1}^{r-1} b_{j}^{2}+\left(\bar{m}+\sum_{j=1}^{r-1} b_{j}\right)^{2}=2 d+\bar{m}^{2}+\bar{m} \tag{4.36}
\end{equation*}
$$

Then, we have $\sum_{j-1}^{r-1}(r-j) b_{j} \leq(r-1) d$.
Furthermore, if $r \geq 3$ and $2 \leq \bar{m} \leq(r-1)$, then we have

$$
\left(\sum_{j=1}^{r-1}(r-j) b_{j}\right)+\frac{\bar{m}^{2}-\bar{m}}{2} \leq(r-1) d
$$

Proof. Before we begin the proof of Lemma 4.3.5, note that

Remark 4.3.6. Let r_{1}, \cdots, r_{n} be positive integers satisfying $r_{1}>\cdots>r_{n}$, and let b_{1}, \cdots, b_{n} be integers satisfying $b_{1} \geq \cdots \geq b_{n}$. Let σ be any permutation of $\{1, \cdots, n\}$. Then, we have

$$
r_{1} b_{\sigma(1)}+\cdots+r_{n} b_{\sigma(n)} \leq r_{1} b_{1}+\cdots+r_{n} b_{n}
$$

Thus, if $b_{1}^{\prime}, \cdots, b_{r-1}^{\prime}$ be a rearrangement of b_{1}, \cdots, b_{r-1} satisfying $b_{1}^{\prime} \geq \cdots \geq b_{r-1}^{\prime}$, then we see that

$$
\sum_{j=1}^{r-1}(r-j) b_{j} \leq \sum_{j=1}^{r-1}(r-j) b_{j}^{\prime}
$$

Moreover, let n_{1}, n_{2}, n_{3} be non-negative integers such that

- $b_{j_{1}}^{\prime} \geq \cdots \geq b_{j_{n_{1}}}^{\prime} \geq 2$,
- $b_{j_{n_{1}+1}}^{\prime}=\cdots=b_{j_{n_{1}+n_{2}}}^{\prime}=1$,
- $-1 \geq b_{j_{n_{1}+n_{2}+1}}^{\prime} \geq \cdots \geq b_{j_{n_{1}+n_{2}+n_{3}}^{\prime}}$, and
- $b_{j}^{\prime}=0$ for all $j \neq j_{l}, 1 \leq l \leq n_{1}+n_{2}+n_{3}$.

Therefore, we have

$$
\sum_{j=1}^{r-1}(r-j) b_{j}^{\prime} \leq \sum_{l=1}^{n_{1}}\left(r-j_{l}\right) b_{j_{l}}^{\prime}+\sum_{l=n_{1}+1}^{n_{1}+n_{2}}\left(r-j_{l}\right) \leq \frac{(r-1)}{2}\left(2\left(\sum_{l=1}^{n_{1}} b_{j_{l}}^{\prime}\right)+2 n_{2}\right)
$$

We observe that to complete our proof it is enough to show that

$$
\left(\sum_{l=1}^{n_{1}} 2 b_{j_{l}}^{\prime}\right)+2 n_{2} \leq 2 d
$$

Since $\left(b_{j_{l}}^{\prime}\right)^{2} \geq 2 b_{j_{l}}^{\prime}$ for $1 \leq l \leq n_{1}$ and $\left(b_{j_{l}}^{\prime}\right)^{2}=1$ for $n_{1}+1 \leq l \leq n_{1}+n_{2}$, it follows from equation Equation 4.36 that it is enough to show that

$$
n_{2}+\bar{m} \leq \sum_{l=n_{1}+n_{2}+1}^{n_{1}+n_{2}+n_{3}}\left(b_{j_{l}}^{\prime}\right)^{2}+\left(\left(\bar{m}+n_{2}+\sum_{l=1}^{n_{1}} b_{j_{l}}^{\prime}\right)+\sum_{l=n_{1}+n_{2}+1}^{n_{1}+n_{2}+n_{3}} b_{j_{l}}^{\prime}\right)^{2}
$$

If $n_{2}+\bar{m} \leq n_{3}$, then we are done because $\left(b_{j_{l}}^{\prime}\right)^{2} \geq 1$ for all $n_{1}+n_{2}+1 \leq l \leq n_{1}+n_{2}+n_{3}$.
Otherwise, it follows from Lemma 4.3.3 that
$\sum_{l=n_{1}+n_{2}+1}^{n_{1}+n_{2}+n_{3}}\left(b_{j_{l}}^{\prime}\right)^{2}+\left(\left(\bar{m}+n_{2}+\sum_{l=1}^{n_{1}} b_{j_{l}}^{\prime}\right)+\sum_{l=n_{1}+n_{2}+1}^{n_{1}+n_{2}+n_{3}} b_{j_{l}}^{\prime}\right)^{2} \geq \frac{1}{n_{3}+1}\left(\bar{m}+n_{2}+\sum_{l=1}^{n_{1}} b_{j_{l}}^{\prime}\right)^{2}$

Since $b_{j_{l}}^{\prime} \geq 2$ for $1 \leq l \leq n_{1}$ and $n_{2}+\bar{m} \geq n_{3}+1$, we have

$$
\frac{1}{n_{3}+1}\left(\bar{m}+n_{2}+\sum_{l=1}^{n_{1}} b_{j_{l}}^{\prime}\right)^{2} \geq n_{2}+\bar{m}
$$

Now we are going to specialize to the case when $r \geq 3$ and $2 \leq \bar{m} \leq r-1$. Clearly, since $\bar{m} \geq 2$, we see that $\frac{\bar{m}^{2}-\bar{m}}{2}=1+\cdots+(\bar{m}-1)$. We define

$$
b_{j}^{\prime}= \begin{cases}b_{j}, & \text { if } 1 \leq j \leq(r-\bar{m}) \\ b_{j}+1, & \text { if }(r-\bar{m}+1) \leq j \leq(r-1)\end{cases}
$$

As a consequence, we see that

$$
\left(\sum_{j=1}^{r-1}(r-j) b_{j}\right)+\frac{\bar{m}^{2}-\bar{m}}{2}=\sum_{j=1}^{r-1}(r-j) b_{j}^{\prime}
$$

Additionally, we can rewrite equation Equation 4.36 in terms of $b_{j}^{\prime \prime}$ s as follows

$$
\sum_{j=1}^{r-1}\left(b_{j}^{\prime}\right)^{2}+\left(\sum_{j=1}^{r-1} b_{j}^{\prime}\right)^{2}+2\left(\sum_{j=1}^{r-\bar{m}} b_{j}^{\prime}\right)=2 d
$$

As a result, to prove our claim, it is enough to show that

$$
\frac{(r-1)}{2}\left\{\sum_{j=1}^{r-1}\left(b_{j}^{\prime}\right)^{2}+\left(\sum_{j=1}^{r-1} b_{j}^{\prime}\right)^{2}+2\left(\sum_{j=1}^{r-\bar{m}} b_{j}^{\prime}\right)\right\}-\left(\sum_{j=1}^{r-1}(r-j) b_{j}^{\prime}\right) \geq 0
$$

for integer values of b_{j}^{\prime}, for all $1 \leq j \leq r-1$. Consider the smooth polynomial function

$$
f\left(x_{1}, \cdots, x_{r-1}\right)=\frac{(r-1)}{2}\left\{\sum_{j=1}^{r-1} x_{j}^{2}+\left(\sum_{j=1}^{r-1} x_{j}\right)^{2}+2\left(\sum_{j=1}^{r-\bar{m}} x_{j}\right)\right\}-\left(\sum_{j=1}^{r-1}(r-j) x_{j}\right)
$$

We have

$$
\frac{\partial f}{\partial x_{k}}= \begin{cases}\frac{(r-1)}{2}\left\{2 x_{k}+2\left(\sum_{j=1}^{r-1} x_{j}\right)+2\right\}-(r-k), & \text { if } 1 \leq k \leq(r-m) \\ \frac{(r-1)}{2}\left\{2 x_{k}+2\left(\sum_{j=1}^{r-1} x_{j}\right)\right\}-(r-k), & \text { if }(r-\bar{m}+1) \leq k \leq(r-1)\end{cases}
$$

and, the second partial derivatives are

$$
\frac{\partial^{2} f}{\partial x_{l} \partial x_{k}}= \begin{cases}2 \frac{(r-1)}{2}, & \text { if } l \neq k \\ 4 \frac{(r-1)}{2}, & \text { if } l=k\end{cases}
$$

Since $r \geq 3$ and the Hessian matrix for f is $\frac{(r-1)}{2}$ times the Hessian matrix in Lemma 4.3.3, we conclude that our Hessian matrix is positive definite. Thus, f has a global minimum at the critical point

$$
x_{k}= \begin{cases}-\frac{\bar{m}}{r}-\frac{1}{2}+\frac{(r-k)}{(r-1)}, & \text { if } \quad 1 \leq k \leq(r-\bar{m}) \\ -\frac{\bar{m}}{r}+\frac{1}{2}+\frac{(r-k)}{(r-1)}, & \text { if }(r-\bar{m}+1) \leq k \leq(r-1)\end{cases}
$$

It follows from the bounds on k that in either case, we have $-\frac{1}{2} \leq x_{k} \leq \frac{1}{2}$. Hence, to show that f is non-negative for all integer values of x_{j}, for all $1 \leq j \leq(r-1)$, it is enough to show that f is non-negative for every element of the set $\{-1,0,1\}^{r-1}$. Let $\left(x_{1}, \cdots, x_{r-1}\right)$ be an element of the set $\{-1,0,1\}^{r-1}$. Furthermore, assume that for $1 \leq j \leq(r-\bar{m}), x$ of the x_{j} 's are $(+1)$ and y of the x_{j} 's are (-1). On a similar note, assume that for $(r-\bar{m}+1) \leq j \leq(r-1), z$ of the x_{j} 's are $(+1)$ and w of the x_{j} 's are (-1). It follows from Remark 4.3.6 that

$$
\begin{aligned}
\sum_{j=1}^{r-1}(r-j) x_{j} \leq & (r-1)+\cdots+(r-x)-\{\bar{m}+(\bar{m}+1)+\cdots+(\bar{m}+y-1)\} \\
& +(\bar{m}-1)+\cdots+(\bar{m}-z)-\{1+\cdots+w\} \\
= & r x-\bar{m} y+\bar{m} z-\frac{x^{2}+x}{2}-\frac{y^{2}-y}{2}-\frac{z^{2}+z}{2}-\frac{w^{2}+w}{2}
\end{aligned}
$$

Therefore, we have

$$
\begin{align*}
f\left(x_{1}, \cdots, x_{r-1}\right) & \geq \frac{(r-1)}{2}\left\{(x-y+z-w)^{2}+3 x-y+z+w\right\} \\
& -\left\{r x-\bar{m} y+\bar{m} z-\frac{x^{2}+x}{2}-\frac{y^{2}-y}{2}-\frac{z^{2}+z}{2}-\frac{w^{2}+w}{2}\right\} \tag{4.37}
\end{align*}
$$

For ease of notation, let's call the right hand side of inequality in equation Equation 4.37 as $g(x, y, z, w)$. Upon further scrutinizing, we deduce that

$$
2 g(x, y, z, w)=(r-1)(x-y+z-w)^{2}+\left(x^{2}+y^{2}+z^{2}+w^{2}\right)+(r-2) x+(2 \bar{m}-r) y+(r-2 \bar{m}) z+r w
$$

If $r=2 \bar{m}$, then $2 g(x, y, z, w) \geq 0$ because x and w are non-negative integers. If $r>2 \bar{m}$, then we see that

$$
2 g(x, y, z, w) \geq(r-2 \bar{m})\left\{(x-y+z-w)^{2}+(x-y+z-w)\right\} \geq 0
$$

Similarly, if $r<2 \bar{m}$, then using the fact that $(r-1)>(2 \bar{m}-r)$, we get

$$
2 g(x, y, z, w) \geq(2 \bar{m}-r)\left\{(-x+y-z+w)^{2}+(-x+y-z+w)\right\} \geq 0
$$

In conclusion, the function f is non-negative for all integer values of x_{j}, for all $1 \leq j \leq$ $r-1$.

We are finally ready to analyze $(1-q) G_{r, c}(q)$.

Theorem 4.3.7. If $\Delta>N+\frac{(2-2 r) \bar{m}^{2}-r \bar{m}}{2 r}+C_{0}$, where C_{o} is the same constant as in Proposition 4.2.5, then the coefficient of $\mathbb{L}^{-N} q^{\Delta}$ in $(1-q) G_{r, c}(q)$ is zero.

Proof. Recall that if follows from the blow-up equation (equation Equation 4.30) that

$$
(1-q) G_{r, c}(q)=\left(\mathbb{L}^{-2 r} q\right)^{\frac{m^{2}}{2 r}} \times\left(F_{m}\left(\mathbb{L}^{-2 r} q\right)\right)^{-1} \times(1-q) \tilde{G}_{r, c-m E}(q)
$$

Each nonzero term appearing in the co-efficient of $\mathbb{L}^{-N} q^{\Delta}$ arises from a pair of equations

$$
\begin{aligned}
\Delta & =\frac{\bar{m}^{2}}{2 r}+\Delta_{1}+\Delta_{2} \\
-N & =-\bar{m}^{2}+\left(-N_{1}\right)+\left(-N_{2}\right)
\end{aligned}
$$

where $\left(\Delta_{1},-N_{1}\right)$ accounts for the contribution of terms from the co-efficient of $\mathbb{L}^{-N_{1}} q^{\Delta_{1}}$ in $\left(F_{\bar{m}}\left(\mathbb{L}^{-2 r} q\right)\right)^{-1}$, and $\left(\Delta_{2},-N_{2}\right)$ accounts for the contribution of terms from the coefficient of $\mathbb{L}^{-N_{2}} q^{\Delta_{2}}$ in $(1-q) \tilde{G}_{r, c-m E}(q)$.

It follows from Lemma 4.3.4 and Proposition 4.2.5 that

$$
\Delta_{1} \leq N_{1}-\frac{(r-\bar{m}) \bar{m}}{2 r}, \quad \text { and } \quad \Delta_{2} \leq N_{2}+C_{0}
$$

These inequalities yield

$$
\Delta \leq N+\frac{(2-2 r) \bar{m}^{2}-r \bar{m}}{2 r}+C_{0}
$$

In conclusion, for $\Delta>N+\frac{(2-2 r) \bar{m}^{2}-r \bar{m}}{2 r}+C_{0}$, the co-efficient of $\mathbb{L}^{-N} q^{\Delta}$ in $(1-q) G_{r, c}(q)$ is zero.

4.4 Bounds for stabilization of Betti numbers

In this section, our goal is to determine lower bounds such that the Betti numbers of the moduli space stabilize. More precisely, we look at \mathbb{P}^{2} equipped with the ample divisor $H=c_{1}\left(\mathcal{O}_{\mathbb{P}^{2}}(1)\right)$. We assume that r and a are coprime and consider the moduli space $M_{\mathbb{P}^{2}, H}\left(r, a H, c_{2}\right)$. Since r and a are coprime, all $\mu_{H^{-}}$-semistable sheaves are $\mu_{H^{-}}$ stable. Using Proposition 2.2.10 in conjunction with Theorem 4.3.7, we derive the lower bounds such that the Betti numbers of $M_{\mathbb{P}^{2}, H}\left(r, a H, c_{2}\right)$ stabilize. Lastly, we investigate some examples and show that we can improve this bound further.

Theorem 4.4.1. Let r be at least two. Assume that r and a be coprime. There is a constant C depending only on r and a such that if $c_{2} \geq N+C$, the $2 N$ th Betti number of the moduli space $M_{\mathbb{P}^{2}, H}\left(r, a H, c_{2}\right)$ stabilize. Moreover, we can take $C=$ $\left\lfloor\frac{r-1}{2 r} a^{2}+\frac{1}{2}\left(r^{2}+1\right)\right\rfloor$.

Proof. Let γ denote the Chern class $\left(r, a H, c_{2}\right)$. By our assumption, r and a are coprime, a posteriori, all μ_{H}-semistable sheaves are μ_{H}-stable. In this case, we know that $M_{\mathbb{P}^{2}, H}(\gamma)$ is a smooth projective variety of dimension $\operatorname{ext}^{1}(\gamma, \gamma)$. We conclude using Remark 2.2 .8 that to show that the $2 N$ th Betti number stabilize for $c_{2} \geq N+C$, it is enough to show that the coefficient of $\mathbb{L}^{-N} q^{d}$ in the generating function

$$
(1-q) \sum_{c_{2} \geq 0}\left[M_{\mathbb{P}^{2}, H}(\gamma)\right] \mathbb{L}^{-e x t^{1}(\gamma, \gamma)} q^{c_{2}}
$$

is zero for $d>N+C$.
We note that $\chi(\gamma, \gamma)=1-\operatorname{ext}^{1}(\gamma, \gamma)$ and $c_{2}=r \Delta+\frac{r-1}{2 r} c_{1}^{2}$. Proposition 2.2.10 yields the following equality in A

$$
\left[M_{\mathbb{P}^{2}, H}\left(r, a H, c_{2}\right)\right]=(\mathbb{L}-1)\left[\mathcal{M}_{\mathbb{P}^{2}, H}\left(r, a H, c_{2}\right)\right]
$$

Thus, we have the following equality of generating functions

$$
(1-q) \sum_{c_{2} \geq 0}\left[M_{\mathbb{P}^{2}, H}(\gamma)\right] \mathbb{L}^{-e x t^{1}(\gamma, \gamma)} q^{c_{2}}=q^{\frac{r-1}{2 r} a^{2}}\left(1-\mathbb{L}^{-1}\right)(1-q) G_{r, a H}(q)
$$

Each term contributing to the coefficient of $\mathbb{L}^{-N} q^{d}$ in $q^{\frac{r-1}{2 r} a^{2}}\left(1-\mathbb{L}^{-1}\right)(1-q) G_{r, a H}(q)$ arises from a pair of equations

$$
\begin{aligned}
d & =\frac{r-1}{2 r} a^{2}+\Delta^{\prime} \\
-N & =\varepsilon-N^{\prime}
\end{aligned}
$$

where $\varepsilon \in\{-1,0\}$ accounts for the contribution to the coefficient of $\mathbb{L}^{-N} q^{d}$ coming from ($1-\mathbb{L}^{-1}$), and ($\Delta^{\prime}, N^{\prime}$) accounts for the contribution coming from the coefficient of $\mathbb{L}^{-N^{\prime}} q^{\Delta^{\prime}}$ in $(1-q) G_{r, a H}(q)$. It follows from Theorem 4.3.7 that for the coefficient of $\mathbb{L}^{-N^{\prime}} q^{\Delta^{\prime}}$ to be nonzero, we must have $\Delta^{\prime} \leq N^{\prime}+C_{\mathrm{o}}$ (using $m=0$). Moreover, it follows
from Proposition 4.2.5 that we can take $C_{0}=\frac{1}{2}\left(r^{2}+1\right)$. Consequently, for the coefficient of $\mathbb{L}^{-N} q^{d}$ in $q^{\frac{r-1}{2 r} a^{2}}\left(1-\mathbb{L}^{-1}\right)(1-q) G_{r, a H}(q)$ to be nonzero, we must have

$$
d \leq N+\left\lfloor\frac{r-1}{2 r} a^{2}+C_{\mathrm{o}}\right\rfloor
$$

For the remainder of this section, we look at some examples. Yoshioka (21)[Page 194] has computed the Betti numbers $b_{2 N}\left(M_{\mathbb{P}^{2}, H}\left(2,-H, c_{2}\right)\right)$, where $M_{\mathbb{P}^{2}, H}\left(2,-H, c_{2}\right)$ is the moduli space of μ_{H}-stable sheaves with Chern classes $\left(2,-H, c_{2}\right)$, which we will denote by γ. We observe from the table in (21)[Page 194] that the Betti numbers $b_{2 N}\left(M_{\mathbb{P}^{2}, H}(\gamma)\right)$ stabilize when $c_{2} \geq N+1$. Since $r=2$ and $a=-1$, we get from Theorem 4.4.1 that the Betti numbers stabilize when $c_{2} \geq N+2$. Therefore, we need to improve our lower bound.

Proposition 4.4.2. If $c_{2} \geq N+1$, the $2 N$ th Betti number of the moduli space $M_{\mathbb{P}^{2}, H}\left(2,-H, c_{2}\right)$ stabilize.

Proof. Following the proof of Theorem 4.4.1, it is enough to show that when $d>N+1$,the coefficient of $\mathbb{L}^{-N} q^{d}$ in $q^{\frac{1}{4}}\left(1-\mathbb{L}^{-1}\right)(1-q) G_{2,-H}(q)$ is zero.

Each term contributing to the coefficient of $\mathbb{L}^{-N} q^{d}$ in $q^{\frac{1}{4}}\left(1-\mathbb{L}^{-1}\right)(1-q) G_{2,-H}(q)$ arises from a pair of equations

$$
\begin{aligned}
d & =\frac{1}{4}+\Delta^{\prime} \\
-N & =\varepsilon-N^{\prime}
\end{aligned}
$$

where $\varepsilon \in\{-1,0\}$ accounts for the contribution to the coefficient coming from $\left(1-\mathbb{L}^{-1}\right)$, and $\left(\Delta^{\prime}, N^{\prime \prime}\right)$ accounts for the contribution coming from terms in coefficient of $\mathbb{L}^{-N^{\prime}} q^{\Delta^{\prime}}$ in $(1-q) G_{2,-H}(q)$.

It follows from Theorem 4.3.7 that for the co-efficient of $\mathbb{L}^{-N^{\prime}} q^{\Delta^{\prime}}$ to be nonzero, we must have $\Delta^{\prime} \leq N^{\prime}+C_{0}$. Consequently, we must have

$$
\begin{equation*}
d-\frac{1}{4}=\Delta^{\prime} \leq N^{\prime}+C_{\mathrm{o}}=N+\varepsilon+C_{\mathrm{o}} \leq N+C_{\mathrm{o}} \tag{4.38}
\end{equation*}
$$

As a result, for $d>N+\left\lfloor\frac{1}{4}+C_{\mathrm{o}}\right\rfloor$, the coefficient of $\mathbb{L}^{-N} q^{d}$ in $q^{\frac{1}{4}}\left(1-\mathbb{L}^{-1}\right)(1-q) G_{2,-H}(q)$ must be zero. Therefore, to complete the proof of our Claim, we need to figure out the value of C_{0}.

It follows from the proof of Proposition 4.2.5 that to compute $C_{\mathbf{0}}$, we need to compute

$$
\frac{1}{2}\left(r^{2}-\sum_{i=1}^{l} r_{i}^{2}\right)-\frac{1}{2} \kappa
$$

where $l=2, r=2, r_{1}=r_{2}=1$, and κ is a lower bound for

$$
2\left(2 \Delta-\Delta_{1}-\Delta_{2}\right)+\left(c_{2}-c_{1}\right) \cdot K_{\mathbb{F}_{1}}
$$

except for the case $l=2$ and $\left(c_{2}-c_{1}\right) \cdot F=-1$.
Let $c_{1}=a_{1} E+b_{1} F$ and $c_{2}=a_{2} E+b_{2} F$. Since $c_{1}+c_{2}=-E-F$, we have $a_{1}+a_{2}=-1$ and $b_{1}+b_{2}=-1$. Moreover, we must have $a_{2}-a_{1} \neq-1$. Using Yoshioka's relation (equation Equation 4.8) yields

$$
\left(2 \Delta-\Delta_{1}-\Delta_{2}\right)=-\frac{1}{4}\left(c_{1}-c_{2}\right)^{2}=\frac{1}{4}\left(2 a_{1}+1\right)^{2}-\frac{1}{2}\left(2 a_{1}+1\right)\left(2 b_{1}+1\right)
$$

Since $K_{\mathbb{F}_{1}}=-2 E-3 F$, we see that

$$
\left(c_{2}-c_{1}\right) \cdot K_{\mathbb{F}_{1}}=\left(2 a_{1}+1\right)+2\left(2 b_{1}+1\right)
$$

Therefore, we have

$$
2\left(2 \Delta-\Delta_{1}-\Delta_{2}\right)+\left(c_{2}-c_{1}\right) \cdot K_{\mathbb{F}_{1}}=2 a_{1}^{2}+2 a_{1}+2 b_{1}-4 a_{1} b_{1}+\frac{5}{2}
$$

Clearly $a_{1}^{2}+a_{1} \geq 0$ for all integer values of a_{1}. Thus, we need to find a lower bound for $2 b_{1}\left(1-2 a_{1}\right)$.

Recall that as per the definition of $S^{\mu}\left(\left\{1, c_{1}\right\},\left\{1, c_{2}\right\}, F, E+F\right)$ (see equation Equation 4.3, Equation 4.4) we have two cases
A) $a_{1}>-\frac{1}{2}$ and $b_{1} \leq-\frac{1}{2}$
B) $a_{1} \leq-\frac{1}{2}$ and $b_{1}>-\frac{1}{2}$

Since a_{1} and b_{1} are integers, in Case A, we see that $a_{1} \geq 0$ and $-b_{1} \geq 1$. When $a_{1}=0$, we must have $a_{2}=-1$, whence $a_{2}-a_{1}=-1$ which is not possible by our assumption. Hence, we must have $a_{1} \geq 1$, which yields

$$
2 b_{1}\left(1-2 a_{1}\right)=\left(2 a_{1}-1\right)\left(-2 b_{1}\right) \geq(2(1)-1)(2(1))=2
$$

Similarly, in Case B, we see that $-a_{1} \geq 1$ and $b_{1} \geq 0$, thereby yielding

$$
2 b_{1}\left(1-2 a_{1}\right) \geq(2(0))(1+2(1))=0
$$

In either case we see that $2 b_{1}\left(1-2 a_{1}\right) \geq 0$, and hence we can take $\kappa=\frac{5}{2}$.
Clearly, in our case $r=2$ and $r_{1}=r_{2}=1$, whence $\frac{1}{2}\left(r^{2}-r_{1}^{2}-r_{2}^{2}\right)=1$. Following the proof of Proposition 4.2.5, we see that

$$
C_{\mathrm{o}}=\max \left\{0,1+1-\frac{1}{2} \kappa, 1-\frac{3}{4}+\left(\left\lceil\frac{-1}{2}\right\rceil-\frac{-1}{2}\right)\right\}=2-\frac{5}{4}
$$

In summary, for the coefficient of $\mathbb{L}^{-N} q^{d}$ to be nonzero, we must have

$$
d \leq N+\frac{1}{4}+2-\frac{5}{4}=N+1
$$

In conclusion, when $d>N+1$, the coefficient of $\mathbb{L}^{-N} q^{d}$ in $q^{\frac{1}{4}}\left(1-\mathbb{L}^{-1}\right)(1-q) G_{2,-H}(q)$ is zero.

Manschot (22)[Table 1], (39)[Table 1] computed the Betti numbers of the moduli space $M_{\mathbb{P}^{2}, H}\left(3,-H, c_{2}\right)$ and the virtual Betti numbers of the moduli space $M_{\mathbb{P}^{2}, H}\left(4,2 H, c_{2}\right)$. We observe from the tables in these papers that the Betti numbers of $M_{\mathbb{P}^{2}, H}\left(3,-H, c_{2}\right)$ stabilize when $c_{2} \geq N+2$ and the virtual Betti numbers of $M_{\mathbb{P}^{2}, H}\left(4,2 H, c_{2}\right)$ stabilize when $c_{2} \geq N+3$. In the first case, we have $r=3$ and $a=-1$, we get from Theorem 4.4.1 that the Betti numbers stabilize when $c_{2} \geq N+5$.

As our second example, we scrutinize the Betti numbers of the moduli space $M_{\mathbb{P}^{2}, H}\left(4, H, c_{2}\right)$. In this case, Theorem 4.4.1 yields the stabilization of the Betti numbers when $c_{2} \geq N+8$. We improve this bound in the following Proposition.

Proposition 4.4.3. If $c_{2} \geq N+5$, the $2 N$-th Betti number of the moduli space $M_{\mathbb{P}^{2}, H}\left(4, H, c_{2}\right)$ stabilize.

Proof. Following the proof of Theorem 4.4.1, it is enough to show that when $d>N+5$, the coefficient of $\mathbb{L}^{-N} q^{d}$ in $q^{\frac{3}{8}}\left(1-\mathbb{L}^{-1}\right)(1-q) G_{4, H}(q)$ is zero.

Each term contributing to the coefficient of $\mathbb{L}^{-N} q^{d}$ in $q^{\frac{3}{8}}\left(1-\mathbb{L}^{-1}\right)(1-q) G_{4, H}(q)$ arises from a pair of equations

$$
\begin{aligned}
d & =\frac{3}{8}+\Delta^{\prime} \\
-N & =\varepsilon-N^{\prime}
\end{aligned}
$$

where $\varepsilon \in\{-1,0\}$ accounts for the contribution to the coefficient coming from ($1-$ $\left.\mathbb{L}^{-1}\right)$, and ($\Delta^{\prime}, N^{\prime}$) accounts for the contribution coming from the terms in coefficient of $\mathbb{L}^{-N^{\prime}} q^{\Delta^{\prime}}$ in $(1-q) G_{4, H}(q)$.

It follows from Theorem 4.3.7 that if the co-efficient of $\mathbb{L}^{-N^{\prime}} q^{\Delta^{\prime}}$ is non-zero, then we must have $\Delta^{\prime} \leq N^{\prime}+C_{0}$, whence, $d \leq N+\left\lfloor\frac{3}{8}+C_{0}\right\rfloor$. Consequently, for $d>N+\left\lfloor\frac{3}{8}+C_{0}\right\rfloor$, the coefficient of $\mathbb{L}^{-N} q^{d}$ in $q^{\frac{3}{8}}\left(1-\mathbb{L}^{-1}\right)(1-q) G_{4, H}(q)$ must be zero. Therefore, to complete our proof, we need to determine the value of C_{0}.

Adopting the notation used in proof of Proposition 4.2.5 and Lemma 4.2.6 in our situation, we get $r=4, a=b=1$. Recall that C_{0} is the maximum of the terms $1+\frac{1}{2}\left(r^{2}-\sum_{i=1}^{l} r_{i}^{2}\right)-\frac{1}{2} \kappa$ except the case when $l=2$ and $\mu_{F}\left(\gamma_{2}\right)-\mu_{F}\left(\gamma_{1}\right)=-1$ and the terms $\frac{r_{1} r_{2}}{2 r}+\left(\left\lceil\frac{b r_{2}}{r}\right\rceil-\frac{b r_{2}}{r}\right)$ for $r_{1}+r_{2}=r$, where $r=\sum_{i=1}^{l} r_{i}, a=\sum_{i=1}^{l} r_{i} a_{i}, s_{i}=\sum_{j=i}^{l} b_{j}$, $b=s_{1}$, and κ is lower bound for $S_{1}+S_{2}$, where

$$
S_{1}=(r-1) \sum_{i=1}^{l} r_{i} a_{i}^{2}-\frac{r-1}{r} a^{2}+\sum_{i=1}^{l} a_{i} r_{i}\left(\sum_{j=i+1}^{l} r_{j}-\sum_{j=1}^{i-1} r_{j}\right)
$$

and

$$
S_{1}=2 \sum_{i=2}^{l}\left((r-1)\left(a_{i}-a_{i-1}\right)+r_{i}+r_{i-1}\right)\left(\frac{b}{r} \sum_{j=i}^{l} r_{j}-s_{i}\right)
$$

When $l=2$ and $\left(r_{1}, r_{2}\right)=(3,1)$, we see that $S_{1} \geq-\frac{3}{4}$ with equality occurring at $\left(a_{1}, a_{2}\right)=(0,1)$. At the point $(0,1)$ we get $S_{2} \geq \frac{7}{2}$, and hence, $S_{1}+S_{2} \geq \frac{11}{4}$. Since there are no other points (a_{1}, a_{2}) satisfying $3 a_{1}+a_{2}=1$ at which $S_{1}<\frac{11}{4}$, we can take $\kappa=\frac{11}{4}$, and we get $1+\frac{1}{2}\left(r^{2}-r_{1}^{2}-r_{2}^{2}\right)-\frac{1}{2} \kappa=\frac{21}{8}$.

When $l=2$ and $\left(r_{1}, r_{2}\right)=(1,3)$, we see that $S_{1} \geq \frac{21}{4}$ with equality occurring at $\left(a_{1}, a_{2}\right)=(1,0)$, and $S_{2} \geq 1$. Thus, we can take $\kappa=\frac{25}{4}$, and we get $1+\frac{1}{2}\left(r^{2}-r_{1}^{2}-r_{2}^{2}\right)-$ $\frac{1}{2} \kappa=\frac{7}{8}$.

When $l=2$ and $\left(r_{1}, r_{2}\right)=(2,2)$, there is no integer solution for $2 a_{1}+2 a_{2}=1$. Thus, we ignore this case.

When $l=3$ and $\left(r_{1}, r_{2}, r_{3}\right)=(2,1,1)$, we see that $S_{1} \geq-\frac{3}{4}$ with equality occurring at $\left(a_{1}, a_{2}, a_{3}\right)=(\mathrm{o}, \mathrm{o}, 1)$. At this point we get $S_{2} \geq 4$, whence $S_{1}+S_{2} \geq \frac{5}{2}$. The only other point $\left(a_{1}, a_{2}, a_{3}\right)$ with $S_{1} \leq \frac{5}{2}$ is $(0,1, \mathrm{o})$ at which $S_{1}=\frac{5}{4}$ and $S_{2} \geq \frac{9}{2}$, and thus $S_{1}+S_{2} \geq \frac{23}{4}$. Therefore, we can take $\kappa=\frac{5}{2}$, and we get $1+\frac{1}{2}\left(r^{2}-r_{1}^{2}-r_{2}^{2}-r_{3}^{2}\right)-\frac{1}{2} \kappa=$ $\frac{19}{4}$.

When $l=3$ and $\left(r_{1}, r_{2}, r_{3}\right)=(1,2,1)$, we see that $S_{1} \geq-\frac{3}{4}$ with equality occurring at $(\mathrm{o}, \mathrm{o}, 1)$. At this point, we see that $S_{2} \geq 6$, whence $S_{1}+S_{2} \geq \frac{21}{4}$. At every other point $\left(a_{1}, a_{2}, a_{3}\right)$ with $a_{1}+2 a_{2}+a_{3}=1$, we have $S_{1} \geq \frac{21}{4}$. As a consequence, we can take $\kappa=\frac{21}{4}$, and we get $1+\frac{1}{2}\left(r^{2}-r_{1}^{2}-r_{2}^{2}-r_{3}^{2}\right)-\frac{1}{2} \kappa=\frac{27}{8}$.

When $l=3$ and $\left(r_{1}, r_{2}, r_{3}\right)=(1,1,2)$, we see that $S_{1} \geq \frac{5}{4}$ with equality occurring at $\left(a_{1}, a_{2}, a_{3}\right)=(-1, o, 1)$. At this point, we see that $S_{2} \geq 6$, and thus $S_{1}+S_{2} \geq$ $\frac{29}{4}$. The other points $\left(a_{1}, a_{2}, a_{3}\right)$ satisfying $a_{1}+a_{2}+2 a_{3}=1$ at which $S_{1} \leq \frac{29}{4}$ are $(\mathrm{o}, 1, \mathrm{o}),(\mathrm{o},-1,1),(1, \mathrm{o}, \mathrm{o})$. Analyzing S_{1} and S_{2} at these points, we see that $S_{1}+S_{2}$ may attain the least possible value $\frac{25}{4}$. Thus, we take $\kappa=\frac{25}{4}$, and we see that $1+$ $\frac{1}{2}\left(r^{2}-r_{1}^{2}-r_{2}^{2}-r_{3}^{2}\right)-\frac{1}{2} \kappa=\frac{23}{8}$.

When $l=4$ and $\left(r_{1}, r_{2}, r_{3}, r_{4}\right)=(1,1,1,1)$, we see that $S_{1} \geq-\frac{3}{4}$ with equality occurring at $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=(\mathrm{o}, \mathrm{o}, \mathrm{o}, 1)$. At this point, we see that $S_{2} \geq 6$, and thus
$S_{1}+S_{2} \geq \frac{21}{4}$. The other points $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ with $a_{1}+a_{2}+a_{3}+a_{4}=1$ at which $S_{1} \leq \frac{21}{4}$ $\operatorname{are}(-1,0,0,2),(0,-1,1,1),(-1,1,1, o),(-1,1, o, 1),(-1,0,1,1),(1,0,0, o),(0,1, o, o)$, and ($\mathrm{o}, \mathrm{o}, 1, \mathrm{o}$). However, we see that at each of these points we have $S_{1}+S_{1} \geq \frac{21}{4}$. Hence, we can take $\kappa=\frac{21}{4}$, and we get $1+\frac{1}{2}\left(r^{2}-r_{1}^{2}-r_{2}^{2}-r_{3}^{2}-r_{4}^{2}\right)-\frac{1}{2} \kappa=\frac{35}{8}$.

Finally, since $b=1, r=4$, and $1 \leq r_{2} \leq 3$, we see that $\frac{\left(r-r_{2}\right) r_{2}}{2 r}+1-\frac{r_{2}}{r}$ attains maximum value of $\frac{9}{8}$ at $r_{2}=1$.

In conclusion, we can take $C_{\mathrm{o}}=\frac{19}{4}$, and we get that when $d>N+5$ the coefficient of $\mathbb{L}^{-N} q^{d}$ in $q^{\frac{3}{8}}\left(1-\mathbb{L}^{-1}\right)(1-q) G_{4, H}(q)$ is zero.

CITED LITERATURE

1. Eisenbud, D. and Van de Ven, A.: On the normal bundles of smooth rational space curves. Math. Ann., 256:453-463, 1981.
2. Eisenbud, D. and Van de Ven, A.: On the variety of smooth rational space curves with given degree and normal bundle. Invent. Math., 67:89-100, 1982.
3. Ghione, F. and Sacchiero, G.: Normal bundles of rational curves in \mathbb{P}^{3}. Manuscripta Math., 33:111-128, 1980.
4. Sacchiero, G.: Fibrati normali di curvi razionali dello spazio proiettivo. Ann. Univ. Ferrara Sez. VII, 26:33-40, 1980.
5. Sacchiero, G.: On the varieties parameterizing rational space curves with fixed normal bundle. Manuscripta Math., 37:217-228, 1982.
6. Ran, Z.: Normal bundles of rational curves in projective spaces. Asian J. Math., 11(4):567-608, 2007.
7. Coskun, I. and Riedl, E.: Normal bundles of rational curves in projective space. Mathematische Zeitschrift, 288:803-827, 2018.
8. Coskun, I. and Riedl, E.: Normal bundles of rational curves in complete intersections. Communications in Contemporary Mathematics, 21(2), 2019.
9. Verdier, J. L.: Two dimensional σ-models and harmonic maps from s^{2} to $s^{2 n}$. Lecture Notes in Physics, 180, 1983.
10. Ramella, L.: La stratification du schémas de hilbert des courbes rationnelles de \mathbb{P}^{n} par le fibré tangent restreint. Comptes rendus de lAcadémie des sciences, Série I, Mathématique, 1990.
11. Strømme, S. A.: On parametrized rational curves in grassmann varieties. 1987.
12. Le Potier, J.: Lectures on vector bundles. Cambridge University Press, 1997.
13. Gieseker, D.: On the moduli space of vector bundles on an algebraic surface. Ann. Math., 106:45-60, 1977.
14. Maruyama, M.: Moduli of stable sheaves ii. Math. Kyoto, 18:557-614, 1978.
15. O'Grady, K. G.: Moduli of vector bundles on projective surfaces: Some basic results. Invent. Math., 123:141-207, 1996.
16. Li, J.: The first two betti numbers of the moduli space of vector bundles on surfaces. Comm. Anal. Geom., 5(4):625-684, 1997.
17. Coskun, I. and Woolf, M.: The stable cohomology of moduli spaces of sheaves on surfaces. 2019.
18. Macdonald, I.: The poincaré polynomial of a symmetric product. Proc. Cambridge Philos. Soc., 58:563-568, 1962.
19. Göttsche, L.: The betti numbers of the hilbert scheme of points on a smooth projective surface. Math Ann., 286:193-207, 1990.
20. Ellingsrud, G. and Strømme, S. A.: On the homology of the hilbert scheme of points in the plane. Invent. math., 87:343-352, 1987.
21. Yoshioka, K.: The betti numbers of the moduli space of stable sheaves of rank 2 on \mathbb{P}^{2}. J. reine angew. Math., 453:193-220, 1994.
22. Manschot, J.: The betti numbers of the moduli space of stable sheaves of rank 3 on $\mathbb{P}^{2} . \underline{\text { Lett. Math. Phys., } 98(1): 65-78,2011 .}$
23. Mozgovoy, S.: Invariants of moduli spaces of stable sheaves on ruled surfaces. arXiv:1302.4134, 2013.
24. Yoshioka, K.: The betti numbers of the moduli space of stable sheaves of rank 2 on a ruled surface. Math. Ann., 302(3):519-540, 1995.
25. Yoshioka, K.: Chamber structure of polarizations and the moduli of stable sheaves on a ruled surface. Internat. J. Math., 7(3):411-431, 1996.
26. Göttsche, L.: Change of polarization and hodge numbers of moduli spaces of torsion free sheaves on surfaces. Math. Z., 223(2):247-260, 1996.
27. Yoshioka, K.: Betti numbers of moduli of stable sheaves on some surfaces, s-duality and mirror symmetry. Nuclear Phys. B Proc. Suppl. (Trieste, 1995), 46:263268, 1996.
28. Göttsche, L.: Theta functions and hodge numbers of moduli spaces of sheaves on rational surfaces. Comm. Math. Phys., 206(1):105-136, 1999.
29. Mukai, S.: Symplectic structure of the moduli space of sheaves on an abelian or k 3 surface. Invent. Math., 77(1):101-116, 1984.
30. Huybrechts, D.: The kähler cone of a compact hyperkähler manifold. Math. Ann., 326(3):499-513, 2003.
31. Yoshioka, K.: Irreducibility of moduli spaces of vector bundles on k 3 surfaces. arXiv:math/9907001., 1999.
32. Yoshioka, K.: Moduli spaces of stable sheaves on abelian surfaces. Math. Ann., 321(4):817-884, 2001.
33. Huybrechts, D. and Manfred, L.: The geometry of moduli spaces of sheaves. Cambridge University Press, second edition, 2010.
34. Hironaka, H.: Resolution of singularities of an algebraic variety over a eld of characteristic zero i. Ann. of Math., 79(1):109-203, 1964.
35. Joyce, D.: Motivic invariants of artin stacks and 'stack functions'. Q. J. Math., 58(3):345-392, 2007.
36. Vakil, R. and Wood, M. M.: Discriminants in the grothendieck ring. Duke Math. J., 164(6):1139-1185, 2015.
37. Göttsche, L.: On the motive of the hilbert scheme of points on a surface. Math. Res. Lett., 8(5):613-627, 2001.
38. Joyce, D.: Configurations in abelian categories iv. Adv. Math., 217(1):125-204, 2008.
39. Manschot, J.: Sheaves on \mathbb{P}^{2} and generalized appell functions. arXiv:1407.7785, 2014.

VITA

Name	Sayanta Mandal
Education	B.Sc., Mathematics, Chennai Mathematical Institute, 2013 M.Sc., Mathematics, Chennai Mathematical Institute, 2015 Ph.D., Mathematics, University of Illinois at Chicago, 2020
Teaching	Teaching Assistant, University of Illinois at Chicago, 2015-2020 Math 125, Math 181, Math 310
Publications	Mandal, S., On the loci of morphisms from \mathbb{P}^{1} to $G(r, n)$ with fixed splitting type of the restricted universal sub-bundle or quotient bundle, arXiv:1908.09978. Mandal, S., On the stabilization of the Betti numbers of the moduli space of sheaves on \mathbb{P}^{2}, arXiv:1908.09977

