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SUMMARY

This thesis will define and develop twenty metrics that are computed over tumor segmen-

tation in medical MRI images and that aim to describe such segmentation in an objective and

quantitative way. It will proceed to compute each metric over the Brain Tumor Image Segmen-

tation Benchmark dataset to show their descriptiveness over real data. Subsequently it will

attempt classification of tumor grade label using the defined metrics.
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CHAPTER 1

INTRODUCTION

In recent years, medical image analysis has undergone considerable increase in importance

in the diagnosis process. The huge amount of gathered imaging data and the advancements in

automatic image processing have radically transformed how medical images are used for both

research and diagnostic purposes: with the increase in computational capabilities of computers,

able to process large amount of data in a very short period of time, it has been made clear

that a personalisation of medical treatments, tailored to the individual, is possible with the aid

of automated tools. Simultaneously, this amount of new information highlights the need for

such automated tools to support and work side by side with medical professionals during the

clinical process. Indeed, many clinical applications nowadays require computer-aided diagnosis

systems, such as diabetes inspection, surgical planning and cancer diagnosis [2].

Expert systems have been used since their conception for image processing, medical image

processing included [3]. Edge and line detection filters, region growing and similar low-level

pixel processing methods were used since the mid-Seventies to construct rule-based systems

that could highlight sections of image for the purpose of human inspection. More interestingly,

supervised machine learning algorithms have been used for various medical imaging tasks since

their development in the 1990s. Exam and object/lesion classification, organ or lesion detection,

object segmentation, content-based image retrieval and image enhancement are all medical

1
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tasks that have been undertaken successfully by various machine learning algorithms in recent

years [3].

The segmentation of organ and lesion areas in particular has become a field widely studied

in computer science, as manual segmentation annotation is a tedious and subjective process

when carried out by human experts. Segmentation, defined as the task of labeling only and

all the pixels belonging to the desired object, requires both a rough localisation of the object,

finding its bounding box within the whole picture, and a precise detection of its boundaries.

This second task is particularly critical for medical image segmentation: the segmented objects

are often extremely variable in size, shape and location from patient to patient, even healthy

ones (such is the case, for example, for pancreas segmentation [4]). A correct segmentation

becomes especially critical when it’s used for surgical planning.

For these reasons, the development of automatic medical image segmentation will most

likely support the diagnosis process with increasing frequency in the near future [5]. In this

context, it’s becoming more and more important to define quantitative and rigorous approaches

to evaluate the performances of such algorithms, as well as to provide medical professionals,

with no knowledge of machine learning, understandable metrics to describe their results.

In this thesis, we develop a set of metrics apt to describe quantitatively aspects of a seg-

mented lesion that were before only qualitatively described. Such metrics aim to describe both

the distribution of intensity within a segmentation using various definitions of homogeneity,

and the shape of the segmentation by defining various measures that quantify object symmetry

and regularity.
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Furthermore, we perform an experimental analysis of the effectiveness of the developed

metrics in correctly classifying tumor grade by studying their behaviour and distribution, and

by training an out-of-the-box decision tree classification algorithm to correctly predict new

data.

This thesis will be divided as follows: Chapter 2 will briefly review the current state of the art

in clustering and image segmentation algorithms. Chapter 3 will define each developed metric

in detail; chapter 4 extensively describes the utilised dataset and explains our implementation

choices. Finally, Chapter 5 showcases our experimental results.



CHAPTER 2

STATE OF THE ART

In this chapter, we will present an overview of the most common algorithms and methods to

perform clustering and image segmentation. Specifically, Section 2.1 will cover the three most

common clustering algorithms, i.e. hierarchical clustering, k-means and density-based cluster-

ing. Section 2.2, on the other hand, will introduce first some non-machine learning approaches

to image segmentation, focusing in particular on medical image segmentation; then, we will

bring attention in Section 2.3 to the current state of the art in medical image segmentation,

which is obtained through machine learning algorithms (specifically fully convolutional neural

networks).

2.1 Cluster Analysis

In its most intuitive definition, cluster analysis (or clustering) is the unsupervised task of

finding a set of groups (or clusters) in a dataset, so that objects belonging to the same group

are similar and objects belonging to different groups are different according to some similarity

measure.

The definitions of this similarity measure, as well as those of what constitutes a cluster, are

many and have given rise to numerous algorithms. Here we’ll present an overview of some that

we’ve taken into consideration as preprocessing step for our task.

4
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Figure 1: Example of the Dendrogram of a Hierarchical Clustering Algorithm [1].

2.1.0.1 Hierarchical Clustering

Hierarchical Cluster Analysis (HCA) [6] is a greedy approach to clustering based on the

idea that observation points spatially closer are more likely related than points spatially farther

away. A distance matrix between each point in the dataset is computed, based on a chosen

distance metric (the most common are Euclidean and Manhattan distance, Maximum distance,

Lr norm).

Then, HCA computes a dendrogram that is a hierarchy of nested clusters, where the leaves

are single-point clusters, and the root is a cluster of all points in the dataset, as seen in Figure

Figure 1. A linkage criterion determines arcs between the nodes of the dendrogram, defining a



6

distance between two clusters and determining whether they should be merged together. HCA

algorithms can be divided in two rough sub-categories depending on the linkage computation:

methods which do not require a cluster center to be specified (i.e. single link or nearest neighbor,

complete link, weighted and unweighted average), and methods that make use of a cluster center

computation (such as centroid, median and minimum variance) [7]. The main disadvantage of

HCA is its complexity, which is O(n3) time-wise and O(n2) memory-wise, with n being the

number of samples in the dataset.

2.1.0.2 Centroid-based Clustering

Centroid-based Clustering represents clusters as a central vector. The most common centroid-

based algorithm is the k-means clustering, where the number of clusters k is a parameter of the

algorithm. The algorithm requires an initialization step, which can use either the Forgy method

(k data points from the dataset are chosen at random as initial means) or the Random Parti-

tion method (each data point is assigned to a random mean) [8]. Then, it iteratively assigns

each point of the dataset to a cluster, based on Manhattan distance between the point and the

mean [9], and recomputes the means. There are two main limitations to k-means clustering:

the first is that as an algorithm it requires to know a priori the number of clusters k. The

second is that the cluster model requires spherical, separable clusters to be efficient.

2.1.0.3 Density-Based Clustering

Density-based clustering is based on the assumption that the considered dataset is a sample

from an unknown probability density [10]. Clusters are then defined as high-density areas, which

are computed by defining a local density estimate (usually nearest neighbors) and a distance
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Figure 2: Density-Based Clustering using DBSCAN algorithm [1].

metric between points. Figure 2 shows an example using the common DBSCAN algorithm [11],

where large circles identify core samples of a cluster and black points are noise points.

2.2 Medical Image Segmentation

As a computer vision task, semantic image segmentation is defined as the process of pre-

dicting a class label at each pixel in an input image [12]. This process aims to define specific

objects within the image, or object boundaries. In medical applications, image segmentation

is a fundamental part of medical image analysis (together with classification and abnormality

detection) and is used to aid radiologists and clinicians in the diagnosis process [5].
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While the generalized semantic segmentation task may apply to innumerable kinds of im-

ages, medical image analysis focuses on a few imaging modalities (CT, ultrasound, MRI, X-

ray) [13] that medical segmentation algorithms need to specialize on.

This section will briefly expound on non-machine learning methods for semantic segmen-

tation applicable to a medical domain; later on, we will go into details of the current Deep

Learning State of the Art for image segmentation.

2.2.1 Otsu’s Thresholding

Otsu’s Thresholding Method [14] is an automatic process that finds the optimal single

threshold that assigns the pixels in the image to either one of two classes: Foreground or

Background.

At its core, Otsu’s method consists in computing the intra-class variance for each possible

threshold (i.e. every intensity of the image), and then choosing the threshold that minimizes

this variance:

arg max
t

(σ2
w(t) = w0(t)σ2

0(t) + w1(t)σ2
1(t)) (2.1)

The drawback of this computation is that it ensures good performances only if the histogram

of intensities of the image has a bimodal distribution; that is, only if there is a deep valley

between two peaks, as seen in Figure 3. Otsu’s method has been improved by successive

studies, developing 2D- and 3D-Otsu methods, which consider, together with the intra-class

variance, also the pixel’s spatial neighborhood information. However, naive 2D-Otsu has a time

complexity of O(N4) (N being the number of pixels), and 3D-Otsu a complexity of O(N6).
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Figure 3: Example of Otsu’s Thresholding method [1]

Feng et al. [15] have developed a Fast 3D-Otsu algorithm specifically for medical image

segmentation that also allows for multilevel thresholding segmentation. Their method either is

comparable or outperforms the most common multilevel thresholding methods, such as Particle

Swarm Optimization, Bacteria Foraging Optimization, Adaptive Bacterial Foraging and Real-

coded Genetic Algorithm, and can be used for automatic region of interest (ROI) extraction,

and organ volume calculation.

2.2.2 Region Growing

Similar to a thresholding method, in that it requires a threshold to the average color differ-

ence between pixels [16], Region Growing (also called Region Merging) iteratively examines and

merges neighboring regions whose average color difference is lower than the threshold, starting

from pixels adjacent to the initial seed points.
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(a) (b)

Figure 4: Canny operator applied to perform edge detection. Source: Wikipedia

2.2.3 Edge Detection

Identifying object or region boundaries is an intuitive way of performing image segmentation:

boundaries, or edges, usually correspond to an abrupt change in either color, intensity and/or

texture in an image. We define an edge as the location of a rapid intensity variation [16], which

can be located through a derivative computation. Several methods of edge detection have been

developed over the years using first-order and second-order operators.

First-order operators compute the first-grade derivative of the image and then search for

the local maxima of the gradient magnitude to identify the edges. Since derivative computation

accentuates high frequencies, it is very sensitive to noise, therefore first-order edge detection

is usually computed over a smoothed version of the image. The best-known first-order edge
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detector is the Canny filter (seen in Figure 4), which computes the convolution of the image

with the first-order derivative of a two-dimensional Gaussian in a direction n [17]:

G = exp(−x
2 + y2

2σ2
) (2.2a)

Gn =
δG

δn
= n ·∆G (2.2b)

Given the Gaussian operator Gn, an edge point is a local maximum in the direction n of

the operation Gn applied to an image I, i.e.

δ

δn
Gn ∗ I = 0 (2.3a)

which is equivalent to

δ2

δ2n
G ∗ I = 0. (2.3b)

Another common first-order operator is the Sobel operator [16]:

Gx =


+1 0 −1

+2 0 −2

+1 0 −1

 ∗ I and Gy =


+1 +2 +1

0 0 0

−1 −2 −1

 ∗ I (2.4a)
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where the gradient magnitude at each point is computed as:

G =
√
G2
x +G2

y. (2.4b)

Second order operators, on the other hand, compute the second-order derivatives of the

intensity to detect rate of change in the intensity. The most widely-used operator is the Lapla-

cian of the Gaussian, or Marr-Hildreth algorithm, with the following convolution kernel which

is applied to the image: [16]

∆2Gσ(x) =
1

σ3
(2− x2 + y2

2σ2
)exp(−x

2 + y2

2σ2
). (2.5)

2.3 Machine Learning in Medical Image Segmentation

The State of the Art for medical image segmentation in the last few years has been generated

nearly exclusively by Deep Learning-based methods [2, 5, 18].

Fully Convolutional Neural Networks (FCN) are one of the most common and efficient

architectures used for Semantic Segmentation, and they reach state of the art accuracy in general

domain tasks [19]. They accept arbitrary-sized input, and are translation invariant. Each layer

type in a FCN (convolution, pooling, ReLU) depend only on relative spatial coordinates.

We call xij the data feature vector at location (i, j) in a given layer, and yij the vector in

the next layer. Then the next layer’s feature vector is computed by:

yij = fks({xsi+δi,sj+δj}0≤δi,δj≤k) (2.6)
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where k is the kernel size, s is the stride, and fks is the layer function.

In a fully convolutional network, all layers obey the trasformation rule

fks ◦ gk′s′ = (f ◦ g)k′+(k−1)s′,ss′ . (2.7)

One of the major advantages of using a FCN, or a Deep Learning approach in general, is

that it does not require hand-crafted features to be accurate. This is particularly critical in a

domain such as medical image analysis where clinical experts have little to no knowledge of Deep

Learning and Deep Learning experts similarly have little knowledge of the clinical domain [5].

FCNs automatically learn meaningful features directly from the raw data.

Fully convolutional networks have been introduced in Medical Image Segmentation by Ron-

neberger et al. in 2015 with U-Net [20]. U-Net is a 2D encoder-decoder architecture where

excessive data augmentation was used to obviate the lack of annotated training data. U-Net

applies elastic deformations to the available training images, in order to expand the training

corpus and teach the network deformation invariance, which is especially important in medical

domains as tissue deformation is one of the most common variations in medical images.

Havaei et al. [21] also use a convolutional neural network (CNN) as architecture for the seg-

mentation of glioblastomas on the BRATS 2013 Dataset [22]. For each MRI slice, they predict

tumor segmentation using two CNN of different kernel size. The so-called ”local pathway” has

a kernel of 7 × 7, while the ”global pathway” of 13 × 13. This is so the pixel label will be
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predicted using both local information and regional information, i.e. where roughly the pixel is

located inside the brain.

Moeskops et al. [23] attempt to generalise the Medical Image Segmentation problem by

training a singular instance of a CNN architecture to recognize and segment different tissues in

brain MRI images, pectoral muscle tissue in breast MRI, and coronary arteries in cardiac CTA.

They first trained the same architecture separately in the three different tasks, then in two out

of three tasks, and then they trained it in all three tasks at the same time. Their results show

that this kind of generalized CNN has dice score comprarable to that of a specialized CNN for

each of the three tasks.

Roth et al. [4] apply a CNN architecture to pancreas segmentation, which had been previ-

ously one of the hardest medical segmentation tasks due to high variability of shape, location

and size from patient to patient. Their approach is coarse-to-fine, using a pruning algorithm to

select a Region of Interest on which to iteratively apply the CNN architecture, and they reach

State of the Art for pancreas recognition and segmentation.

All of the methods illustrated above perform the segmentation slice by slice, and then fuse

the 2D segmentation result to obtain a 3D volumetric segmentation. This is computationally

efficient, since 3D convolution has proven slow to draw inferences [5] and its network size and

parameters number are prohibitive. However, a drawback of 2D segmentation is that it does

not fully exploit the 3D context of volumetric data. Li et al. [2] formulates a coarse-to-fine

pancreas segmentation framework in which a first FCN (ResDSN Coarse) roughly localises the
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organ in question, then a second FCN of smaller kernel overlap size (ResDSN Fine) precisely

performs segmentation using the full 3D sub-region identified by ResDSN Coarse.

2.3.1 Generative Adversarial Networks

In 2014, Goodfellow et al. introduced a novel deep generative model called GAN [24].

GAN’s framework is formulated as a minmax two-player game between a generative network G,

tasked with capturing the data distribution, and a discriminative network D trained to discern

whether a data sample belongs to the ground truth or is generated by G.

Formally, given V (G,D) the game’s value function:

min
G

max
D

V (G,D) = Ex∼pdata(x)
[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]. (2.8)

The two networks, in the case of [24], are multi-layered perceptrons, and the results are

backpropagated in the next iteration of training.

Drawing from Goodfellow’s GAN framework, Luc et al. [12] apply Adversarial Networks to

semantic segmentation. They use CNNs to model both the generative and the discriminative

networks, and apply a large Field of View (FOV) and a small FOV for training. They find that

adversarial training improves spatial accuracy for the segmentation labels.

An application of GANs to medical image segmentation has been proposed by Xue et al.

with SegAN [25]. They use a FCN as the generative model and develop a multi-scale loss

function used for both the generative and discriminative model. They test their framework on

the BRATS 2013 dataset [22] and achieve state of the art performance.



CHAPTER 3

METRICS DEFINITION

This chapter will delve into our problem definition, first by detailing our cluster analysis

preprocessing choices, then by going into the details of each metric we develop.

Gliomas are the most common primary brain tumor in adults, comprising about 30% of all

brain tumors and 80% of malignant brain tumors [26]. The World Health Organization (WHO)

has identified in 2016 a pathological classification criterion that divides gliomas in four different

grades [27] in increasing prognosis severity: grade I are benign tumors and comparatively low

risk. Grade II gliomas (also called Low Grade) have benign tendencies and generally carry

a good prognosis for the patients; however overtime they are likely to exhibit an increase in

grade, therefore are considered malignant. Finally, grade III and IV gliomas (High Grade) are

malignant and portend a worse prognosis.

Our data will be comprised of Magnetic Resonance images (MRI) of brain volumes where the

glioma has been previously segmented by annotators. An MRI volume is a three-dimensional

representation of the brain, composed of typically 128 slices; each slice is an image taken on

the horizontal axis. MR images have various intensity channels, called modalities; the dataset

we use provides four: T1-weighted (T1), T1-weighted contrast enhanced (T1c), T2-weighted

(T2) and Fluid-Attenuated Inversion Recovery (FLAIR). Each of these modalities has been

captured using different magnetic resonance methods and highlights different elements in organ

16
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structure. Each slice also has a segmentation map associated to it. The segmentation map is

such that an intensity of 1 corresponds to a pixel belonging to a lesion, 0 otherwise.

Our task then is to define a set of robust metrics that describe the segmentation result

for each MRI volume in a quantitative and objective way and that therefore allow us to try

and draw inferences from them. Some of the metrics we introduce are geometrical properties

of the segmentation domain (i.e. dimension, symmetry, cluster numerousness and distance),

while others describe the area of the image that the segmentation highlights (i.e. histogram,

homogeneity, correlation).

3.1 Clustering

All the metrics we introduce require an additional preprocessing step to be carried out on

the dataset; we have therefore fed each segmentation image to a clustering algorithm, in order to

isolate and analyse separately each individual area of the lesion described by the segmentation.

We have done this both on each distinct 2D MRI slice and on whole 3D MRI images.

For each MRI slice, we used the segmentation result at each pixel to reconstruct a segmen-

tation map, as seen in Figure 6a.

We rebuilt the 3D segmentation map by ordering the slices belonging to the same MRI

and assigning them a value in the third dimension, as to create a 3D matrix from them. In

the BRATS dataset, each 3D MRI image has 128 slices [22], but the approach we used is

agnostic with respect to the number of slices per MRI, which can vary by dataset. We then

fed this image as a feature array to a Density Based Clustering algorithm (DBSCAN) [11] with

Euclidean distance metric and no constraint on sample number or sample distance to define a
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cluster. Figure 5 shows an example of 3D clustering on an MRI volume where two separate

clusters where found. We used DBSCAN as opposed to other clustering methods for three

reasons:

• There is no knowledge a priori in the dataset about the number of clusters for each 2D

image (and even more so for 3D images)

• The data analysed with the following metrics is the prediction of a deep network, and

not an expert-annotated dataset. We needed therefore to choose a clustering algorithm

robust to noise.

• The shape of the legion vary for each image and is not regular.

We found DBSCAN to be one of the simplest but most robust algorithm that could satisfy

all of the constraints in our data.

3.2 Metrics

3.2.1 Metrics by MRI

We define as metrics by MRI those metrics, detailed below, that describe the relations

between clusters within a 3D MRI image. For the purpose of these metrics, the noise points

detected by the DBSCAN algorithm are ignored.

• Cluster Numerousness, defined as the number of distinct cluster labels within the 3D

segmentation image.

• Center of Mass Cluster Distance . We first compute the center of mass for each

cluster: since all points belonging to the segmentation clusters have weight equal to 1
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Figure 5: clustering of a 3D segmentation image. The two clusters are very clearly distinct,

and they have different shape and size.

(a) (b)

Figure 6: clustering of a 2D segmentation slice. (a) is the original segmentation, (b) is the

cluster result.
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(while points that are not in the segmentation have null weight), the center of mass equals

the average of the coordinates ri = (x, y, z) of all points in a cluster: CoM = 1
N

∑N
i=1 ri.

1

For each pair of clusters we then compute the Euclidean distance between the centers of

mass.

• Minimum Percentile Cluster Distance The minimum distance between two clusters

C1 and C2 is defined as minp1∈C1,p2∈C2 dist(p1, p2). To guarantee robustness to the metric,

we compute the n-th percentile of the distances, so as to avoid unwanted noise to skew

the value of the metric. Experiments will include evaluations at different percentiles.

3.2.2 Metrics by Cluster

While the metrics detailed above outline a relationship between clusters, the metrics by

cluster aim to describe features of a single cluster within an MRI image.

• Cluster Size is defined as the number of pixels within a cluster.

• Histogram Intensity . To compute the histogram of an individual cluster, we first have

to apply the cluster as a mask onto its original MRI image, that is given Iij,MRI the MRI

image pixels, and Cij the cluster pixels:

Iij,Mask =


Iij,MRI if Cij = 1

0 if Cij = 0

(3.1)

1This metric can be extended in future works to account for probability weights of the segmentation
image instead of a binary classification. In that case, the center of mass would be computed as the
weighted average of point coordinates.
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We ignore zero-value pixels in the mask for the purpose of the histogram, since they

represent pixels where there is no cluster.

The major challenge in the histogram computation is to decide the number of bins. This is

because the number of bins must be chosen so that the histogram is meaningful for every

MRI image. This means that there must be enough bins so that the curve of different

histograms can be compared and made inferences upon, but not so many as to have bins

with very few examples in them. We found that having between 15 and 20 bins seems

to satisfy both constraints, but at the same time we’ve decided to keep the bin number

parametrical so as to allow for more experimentation.

• Intensity Heterogeneity . The most intuitive and rudimentary way to define hetero-

geneity in an image is to analyze exclusively its distribution of intensities [28]. That is,

an image where all pixels have the same intensity (e.g. a completely white image) will

be less heterogeneous (more homogeneous1) than an image where all pixels have different

intensities. In order to quantify this measure of heterogeneity, we compute the standard

deviation, skewness and kurtosis of the intensities within a given cluster.

The standard deviation is a measure of how much a distribution deviates from its mean;

given N pixels in a given cluster with intensity xi, and a mean intensity x̄, it is computed

as σ =
√

1
N

∑N
i=1(xi − x̄)2. The standard deviation of an image with all pixels of the same

intensity will be 0 (because xi = x̄ ∀xi). Therefore, we can use the standard deviation as

1A measure of homogeneity will be opposite to that of heterogeneity for the same intensity distribu-
tion: heterogeneity = 1− homogeneity
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a primitive measure of heterogeneity.

Similarly, the kurtosis and skewness of a distribution describe its shape and can be used

to define a simple measure of heterogeneity. Skewness describes the asymmetry of the

distribution of intensities. The closer a distribution resembles a normal distribution, the

closer its skewness will be to zero. Despite not being necessarily linked to heterogeneity,

we can postulate that a homogenous cluster will have skewness closer to zero than an

heterogeneous one.

Finally, Kurtosis describes how much the tails of a distribution are significant with re-

spect to the mean. The higher the Kurtosis, the more outliers a distribution has, and the

more prominent its tails are. A completely homogenous image will have kurtosis 0, as

every pixel has the same intensity of the mean. Therefore we can say that the higher the

kurtosis of a given cluster is, the more heterogeneous the cluster.

• GLCM Homogeneity As defined by Haralick et al. [29], a Gray-Level Co-occurrence

Matrix (GLCM) represents how many pixels of gray-level value i occur at a distance d and

angle θ from a pixel of gray-level value j. For formulaic ease, d and θ can be decomposed

into their Cartesian projections ∆x = d cos θ and ∆y = d sin θ.

An element P (i, j, d, θ) = P (i, j,∆x,∆y) of the co-occurrence matrix for an image I of

dimension n×m is then defined by Haralick as:

P (i, j, d, θ) =

n∑
k=1

m∑
l=1


1 if I(k, l) = i and I(k + ∆x, l + ∆y) = j

0 otherwise

(3.2)
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Haralick then defines 14 features that can be computed on the GLCM, among which

the Angular Second Moment (ASM): f1 =
∑

i

∑
j{p(i, j)}2, where p(i, j) is a normalized

element of the matrix P. The ASM represents a measure of homogeneity in the image: an

homogenous image will have few dominant gray-tone transitions, i.e. P will be sparse and

its elements will have larger magnitude, while an heterogeneous image will have a lot of

different tone transitions, hence P will have a large number of small elements [29]. ASM,

being the sum of squares of elements of P, will then be larger for homogenous images and

smaller for heterogeneous ones.

• Spatial Heterogeneity Brooks and Grisby [28] develop in their 2013 paper ”Quantifica-

tion of heterogeneity observed in medical images” a statistic that measures ”the distance-

dependent average deviation from the smoothest intensity gradation feasible” [28]. They

claim that measures of heterogeneity based exclusively on intensity distribution are not

meaningful enough when compared to a human expert visual inspection.

For each non-repeating pair of object pixels m and n with intensities Im and In (ignoring

the zero-intensity background), they compute the Bresenham line L, i.e. the ordered set

of pixels between m and n such that these pixels form the straightest line between m and

n. Then, they compute the discrete distance L = |L| and the average grayscale gradation

between m and n:

∆I =
1

L

∑
l∈L
|I(rml)− Il| (3.3)
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where Il is the intensity of pixel l ∈ L, and I(rml) is computed as:

I(rml) = Im +
In − Im
rmn

rml (3.4)

r being the Euclidean distance between the two indexed pixels.

Once ∆I and L are computed for each nonrepeating pair of pixels, ∆I is ensemble-

averaged for each L, such that every discrete separation L (that is, every possible discrete

distance between two pixels) has associated a single value ∆I ≡ 〈∆I〉ens. ∆I is then

normalized to the largest discrete distance L̃ = max(L).

Finally, the heterogeneity metrics by Brooks and Grisby is then computed as:

ζ ≡
∫ 1

0
∆I(L/L̃)d(L/L̃). (3.5)

• Symmetry To define a measure of symmetry, we consider each cluster as a geometrical

region, not considering its intensity. Unfortunately, we could not rely on the classical

definition of symmetry, as none of the clusters are technically completely symmetric.

Moreover, we decided that a binary measure of ”symmetric” an ”not symmetric”, as

is the classical definition, would not be meaningful in terms of diagnostics and image

analysis.

As seen in Figure 7 and Table I, we define symmetry as a series of values computed

for the whole image and for its halves. For the whole image, we computed solidity and

eccentricity. Solidity is defined as the ratio of pixels in the cluster to pixels of the convex
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(a) Cluster 01

(e) Cluster 02

(i) Cluster 03

(m) Cluster 04

Figure 7: Symmetry evaluation examples; the first column portrays the clusters and their two

main axes; the major axis (depicted in blue) will be then used to divide the cluster. The second

column shows the convex hull area, while the third and the fourth the upper and lower half of

the cluster with their own convex hull area respectively.
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Cluster Solid. Ecc. U Solid. U Perim. U Ecc. L Solid. L Perim. L Ecc.

Cluster 1 0.742 0.786 0.846 260.85 0.926 0.652 324.20 0.949

Cluster 2 0.947 0.553 0.882 98.04 0.876 0.947 92.90 0.908

Cluster 3 0.688 0.765 0.683 101.63 0.932 0.674 99.05 0.937

Cluster 4 0.725 0.611 0.898 127.23 0.888 0.604 168.82 0.901

TABLE I: Metrics values referring to Figure Figure 7

hull image, i.e. the smallest convex polygon enclosing the cluster (as seen in the second

column of Figure 7). The more regular the cluster, the closer its solidity is to 1. Similarly,

eccentricity refers to the ellipse with the same second-moments as the cluster. The closer

eccentricity is to zero, the closer the cluster is to a circle. These two measures, despite not

being directly related to a cluster’s symmetry, can still be helpful to define how regular a

cluster’s shape is.

We then compute the cluster’s centroid and the main axis. Using the line drawn by the

main axis direction, we split the cluster in two halves and compute solidity, eccentricity

and perimeter for both. It is reasonable to say that the more different the metrics of the

two halves are, the more asymmetrical the cluster is.

Figure 7 showcases this reasoning by applying the metrics to four clusters with wildly

different geometrical shapes. Cluster 2 is, among the four, the most symmetrical, and

indeed its solidity is very high, and its eccentricity is the lowest of the four; the two halves
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differ minimally in perimeter, and have both high solidity and high eccentricity. Cluster

1 and 4 are asymmetrical: the two halves have very different perimeters and solidity.

Finally, Cluster 3 shows the interesting property of being symmetrical along the main

axis, but extremely irregular in shape. The two halves have close solidity and perimeter,

but overall extremely low solidity.



CHAPTER 4

EXPERIMENTAL DESIGN

This chapter will provide a detailed description of the BRATS dataset we used to compute

our metrics (Section 4.1); Section 4.2 explains the tradeoff choice between metric’s meaning-

fulness and computational cost for Spatial Heterogeneity. Finally Section 4.3 will discuss our

implementation.

4.1 Dataset

The dataset we are using to test our metrics is the Multimodal Brain Tumor Image Seg-

mentation Benchmark (BRATS) [22], more precisely the 2015 version. It was developed and

made publicly available in 2012 in order to evaluate brain tumor segmentation algorithms and

provide a benchmark for future works.

The BRATS2015 dataset consists of 65 multi-contrast MR scans from glioma patients [22],

and 65 synthetic MR scans.

Of the 65 clinical MRI, 14 are low-grade (astrocytomas and oligoastrocytomas) and 51 are

high-grade (anaplastic astrocytomas and glioblastomas). Each image has four different MRI

contrasts, as mentioned in Chapter 3: T1, T1c, T2 and FLAIR.

The synthetic data, on the other hand, consists in simulated images of 35 high-grade and

30 low-grade gliomas. These images were generated using tumor simulation software. Both the

clinical data and the synthetic data was manually annotated.

28
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(a) (b)

Figure 8: Cluster size distribution within the dataset. Figure (a) shows the distribution of sizes

in 2d slices, while (b) shows size distribution in the 3D volume clusters.

4.2 Random Pixel Choice in Spatial Heterogeneity

The computation of Spatial Heterogeneity as defined by Brooks and Grisby [28] presents

one major flaw when applied to clusters with a great number of pixels: it has exponential time

complexity, more precisely of O(LN2) where N is the number of pixels in the given cluster

and L the average distance between two pixels in the cluster [28]. We found therefore that a

complete computation of the metric was excessively expensive.

The average size of a single 2D cluster in our dataset is 1109 pixels, and that of a 3D cluster

is 106 thousand pixels, with a maximum of 268741. Figure 8 shows dimension distribution

within the dataset.



30

(a) Slice 42407 62 (b) Cluster 42407 62

(c) Slice 42403 48 (d) Cluster 42403 48

Figure 9: Slices used for the statistical evaluation of random pixel selection during spatial

heterogeneity computation and respective clusters.
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200 pixels, 30 runs 400 pixels, 30 runs 1000 pixels, 30 runs 2000 pixels, 15 runs

id total pixels mean deviation mean deviation mean deviation mean deviation

42407 62 3872 0.0889 0.0027 0.0883 0.0019 0.0890 0.0012 0.0886 0.0009

42403 48 2002 0.2045 0.0126 0.2087 0.0072 0.2094 0.0050 0.2100 2.7755e−17

TABLE II: Statistical evaluation of random pixel selection impact on spatial hetero-

geneity

In their paper, Brooks and Grisby suggest taking ”as large a random subset of all possible

pixel pairings as is computationally accessible” [28]. We wanted to establish whether decreasing

the pixels of the clusters to a smaller, random subset could still yield a meaningful metric; it

is clear that there is a trade off between the metric’s validity and its computational feasibility.

Thus we conducted a statistical analysis over two randomly chosen slices, shown in Figure 9,

over which we computed spatial heterogeneity for 200, 400, 1000 and 2000 random pixels.

As can be seen in Table II, we ran the algorithm 30 times with subsets of 200, 400 and 1000

pixels, while for the 2000 pixels subset we made only 15 runs due to time complexity. We then

computed the mean and standard deviation of the runs’ results for each subset. As can be seen,

the average results between subsets are very similar, and even within a subset the standard

deviation never exceeds 1% of the metric’s range (and that only in the case of 200 pixels, which

is 10% of the total number of pixels of that particular slice).
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We’ve decided thus to run the algorithm on a subset of 200 pixels, as even 400 pixels per

slice proved to be computationally challenging.

4.3 Implementation

The code for this thesis was written in Python 3.6.9. We exploited pre-existing libraries

where possible, while a few metrics we implemented ourselves.

We implemented Clustering on both 2d slices and 3d volumes, using the DBSCAN imple-

mentation provided by scikit-learn [1] for both. 2D slices have shape 180 × 180 × 4, where

the third dimension represents the four modality channels. Since our data is exclusively two-

dimensional, we re-created each volume by stacking MRI slices on the z axis, thus creating a

4 dimensional matrix of 128 × 180 × 180 × 4. Our code however is independent on number of

slices and number of pixels, therefore could theoretically be applied to any MRI volume.

We saved each volume’s clusters in a separate npy file for easier manageability; each of these

files contains a matrix where each row [l, z, x, y] contains the spatial information and label of

each pixel belonging to a cluster. l is a discrete label assigned by the algorithm to each pixel

belonging in a cluster, therefore two pixels a and b belong to the same cluster if la = lb. l = −1

designates noise points; these noise points will be ignored for further computations.

For the metrics, we mainly used NumPy [30], SciPy [31] and Scikit-Image [32]. Cluster nu-

merousness was simply computed as the cardinality of the set of labels of a volume, excluding

l = −1. Center of Mass of each cluster is calculated as the average of cluster pixel coordinates,

and then their distance is the simple Euclidean distance between two points. As for the per-
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centile distance, for each pair of clusters we had to compute pairwise distance for all pixels,

then find the desired percentile.

Cluster histogram, standard deviation, skew and kurtosis are all computed directly using

NumPy, whereas for GLCM homogeneity we used the feature module on scikit-image. In

order to do this, we had to normalize the greyscale values of our slices to a [0, 255] integer

interval. We computed the grey co-occurrence matrix for an offset distance of 5 pixels and

angles (0, π4 ,
π
2 ,

3
4π). Then, for each of these four GLCMs, we computed homogeneity. This

wields four homgeneity values per cluster, which are then averaged.

Following Brooks and Grisby [28], we implemented spatial heterogeneity ourselves. The

process used to compute it is shown in Algorithm 1.

Finally, the symmetry metrics were computed using the measure module of scikit-image.

GLCM homogeneity, spatial heterogeneity and symmetry measures all require a 2d image

to be computed. We therefore computed them over each slice of an MRI volume, and then

computed the average of their results weighted by the number of pixels in the cluster in the

slice. Given a set of slices S and a metric m:

mtotal =

∑
s∈Smsps∑
s∈S ps

(4.1)

where ms is the metric calculated for slice s ∈ S and ps the number of pixels of s. Since

these metrics are all very sensitive to the number of pixels, we’ve decided to exclude the slices
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Procedure 1: Spatial Heterogeneity Algorithm

input : slice i where all pixels not belonging to a cluster are set to zero.

output: Heterogeneity metric ζ computed on i

1 pixel list ← [x, y] if i[x, y] 6= 0

2 if |pixel list| > 200 then

3 sampled pixel list ← 200 random samples ∈ pixel list

4 pixel list ← sampled pixel list

5 end

6 pair elements ← ∅

7 for m in pixel list do

8 remove m from pixel list

9 if pixel list not empty then

10 for n in pixel list do

11 BresenhamLine = Bresenham(m,n)

12 L = |BresenhamLine|

13 rmn = dist(m,n)

14 In ← i[xn, yn]

15 Im ← i[xm, ym]

16 Imn = In − Im

17 Ivals ← ∅

18 end

19 end

20 end
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Procedure 2: Spatial Heterogeneity Algorithm, cont.

Imn = In − Im

Ivals ← ∅

for l in BresenhamLine do

rml = dist(m, l)

Irml = Im + Imn
rmn

rml

Il ← i[xl, yl]

Ivals ← abs(Irml − Il)
∆Inm =

∑
Ivals

L

pair elements ← [L,∆Inm]

Lmax = max(L ∈ pair elements)

for unique l in pair elements do

∆I =
∑

∆I∈l ∆I

|l|

return ζ ≡
∫ 1

0 ∆I(L/L̃)d(L/L̃)
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where a cluster has less than 4 pixels. These slices would, in fact, have very skewed results as

their sample would be too small to be meaningful.

We computed all metrics for each volume in the dataset, with the exception of the mini-

mum percentile distance, due to complexity constraints. For those metrics that require pixel

intensity to be computed (deviation, skewness and kurtosis, GLCM homogeneity and spatial

heterogeneity), we computed them for every one of the four modalities. Center of Mass cluster

distance was set to NaN wherever the volume had only one cluster (making a distance between

clusters not defined). All metrics except cluster number and cluster distance are computed for

each cluster in the volume, then averaged among its clusters in order to give us an aggregated

measure per volume. The exception to this are the symmetry metrics, which have not been

averaged.



CHAPTER 5

RESULTS

This chapter will explain the general results of our analysis, displaying scatter plots for each

pair of metrics and explaining their relationship and descriptiveness (Section 5.1). Section 5.2

will then test the meaningfulness of our metrics with respect to the tumor grade label.

5.1 Metrics descriptiveness

For gliomas, both high grade and low grade, neuroimaging protocols such as computed

tomography (CT) and MRI are extensively used both before, during and after treatment to

evaluate the progression of the tumor and the effectiveness of a given therapy [22]. However,

these images are evaluated by doctors with qualitative criteria (for example the presence of

hyper-intense tissue in a T1c scan) or with rudimentary quantitative measures, such as the

diameter of the lesion [33, 34]. The primary goal of our research was to develop quantita-

tive metrics that could possibly be applied to an MRI brain volume as additional diagnostic

measures.

Figure 10, Figure 11, Figure 12, Figure 13 and Figure 14 show scatter plot matrices for

the metrics referring to each modality, and for the symmetry metrics. The classification labels,

that is the tumor grade, is shown in different colors within the plots. These matrices help us

define the relationships, if any, between our metrics.

37
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Figure 10: Scatter plots for the metrics calculated on the T1 modality
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Figure 11: Scatter plots for the metrics calculated on the T1c modality
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Figure 12: Scatter plots for the metrics calculated on the T2 modality
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Figure 13: Scatter plots for the metrics calculated on the FLAIR modality
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Figure 14: Scatter plots for the symmetry metrics
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First of all, we want to highlight how the differences in distribution between modalities

are little, and all metrics show a tendency to behave in a similar way in all modalities. This

homogeneity in results attests to a robustness of the developed metrics to different imaging

modalities they can be applied to.

It is particularly evident in FLAIR, but percievable in all other modalities also, how kurtosis

and skewness are not independent (confirmed in Table IV, Table V, Table VI and Table VII)

but have a very clearly defined polynomial relationship.

Looking especially at T1 and T1c, it is interesting to note how plotting sample points in

the GLCM homogeneity and spatial heterogeneity axis, there seems to be a linear tendency in

the samples. This will also be confirmed in Table V in the following section, suggesting the

two metrics are not independent. Similarly, spatial heterogeneity seems to have a somewhat

linear relationship with standard deviation, although not as strong as the one with GLCM

homogeneity.

As for the symmetry metrics, there are strong linear relationships between perimeters and

areas of the two halves of a cluster (perimeter lower and upper and area lower and upper in

Figure 14). Perimeter and area are also related, as shown by their relative scatter plots, which

have a very definite shape.

Table III shows a comparison between two slices from two different volumes. Qualitatively,

the first lesion has more homogeneous intensity, and its shape is more symmetrical and regular

than the second one, as can be seen in Figure 15. The metrics computed encase this visual

qualities in quantitative values that can be compared. Spatial heterogeneity is very low for
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Spatial Heterogeneity Spatial Heterogeneity

0.0467 0.2532

GLCM Homogeneity GLCM Homogeneity

0.5816 0.5577

Symmetry Metrics Symmetry Metrics

solidity = 0.8801 solidity = 0.6430

eccentricity = 0.7643 eccentricity = 0.8697

upper eccentricity = 0.9588 upper eccentricity = 0.9588

upper solidity = 0.8361 upper solidity = 0.8400

upper perimeter = 165.40 upper perimeter = 222.02

upper area = 990 upper area = 1250

lower eccentricity = 0.9327 lower eccentricity = 0.9701

lower solidity = 0.9056 lower solidity = 0.5132

lower perimeter = 161.98 lower perimeter = 249.78

lower area = 970 lower area = 1123

TABLE III: Comparison of metrics for two very different slices
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Figure 15: Slices used for descriptive comparison and relative clusters
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the first slice and very high for the second one; GLCM homogeneity, although with a subtler

difference, is higher in the first case, demonstrating higher homogeneity of the first slice with

respect to the second one.

Similarly, the very high solidity of the first image compared to the second one suggests a

more regular shape. The difference between upper and lower perimeter in the first case is only

4 pixels, while in the second one it’s 26 pixels; the difference in solidities (0.07 and 0.33) is also

a very strong indicator that the first lesion is more symmetrical than the second one.

5.2 Inference of tumor grade from image properties

Clinically, the grade of a glioma depends on its histology and pathology [27]. From the

histological point of view, once a glioma’s phenotype and genotype have been identified, then

the grade follows the World Health Organization categorisation. Conversely, the grade aims to

capture a pathological notion (that is, the higher the grade, the worse the prognosis).

Most gliomas characteristics, especially the histological ones, cannot be analyzed through

an MRI scan, but need mircoscopic, cellular analysis. MRI scans aid in the diagnosis process on

the macroscopic scale, identifying the shape and location of the tumor [27]. The macroscopic

information however does not have a definitive correlation to the tumor grade.

With the following analysis we wanted to examine whether the metrics we developed could

potentially carry meaning with respect to the grade of the tumor.

First of all, we computed the correlation and mutual information scores for each singular

metric with respect to the grade. The correlation we computed also for each pair of metrics.

Table IV displays the correlation for the T1 metrics; similarly Table V for the T1c metrics,
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Table VI for the T2 metrics and Table VII for the FLAIR metrics. Additionally, Table VIII

shows correlation among the symmetry metrics, and Table IX among the clustering metrics.

Table X and Table XI show the mutual information score between each individual metric and

the tumor grade.

The results suggest, as expected, a strong correlation between deviation, skewness and

kurtosis, particularly when computed on the T1c and Flair modalities. This makes sense as

skewness and kurtosis are not independent. Similarly, deviation shows a moderate correlation

to the heterogeneity measures, and the correlation between GLCM homogeneity and spatial

heterogeneity is above 0.5 for three out of four modalities. Indeed, as discussed in Chapter 3,

deviation, GLCM homogeneity and spatial heterogeneity should all have a similar meaning.

T1 deviation skewness kurtosis GLCM h. spatial h. grade

deviation 1.0000 0.1849 -0.1199 0.0726 0.4151 -0.0790

skewness 0.1849 1.0000 -0.6962 -0.4496 -0.1585 -0.2995

kurtosis -0.1199 -0.6962 1.0000 0.1995 -0.0574 0.1496

GLCM homogeneity 0.0726 -0.4496 0.1995 1.0000 0.6724 0.2113

spatial heterogeneity 0.4151 -0.1585 -0.0574 0.6724 1.0000 0.0734

grade -0.0790 -0.2995 0.1496 0.2113 0.0734 1.0000

TABLE IV: Correlation table for T1 metrics
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T1c deviation skewness kurtosis GLCM h. spatial h. grade

deviation 1.0000 0.2815 -0.1966 -0.0608 0.4149 -0.1924

skewness 0.2815 1.0000 -0.7377 -0.5364 -0.1121 -0.3162

kurtosis -0.1966 -0.7377 1.0000 0.2653 0.1597 0.1336

GLCM homogeneity -0.0608 -0.5364 0.2653 1.0000 0.5138 0.4142

spatial heterogeneity 0.4149 -0.1121 0.1597 0.5138 1.0000 0.0907

grade -0.1924 -0.3162 0.1336 0.4142 0.0907 1.0000

TABLE V: Correlation table for T1c metrics

The correlation between each singular metric and the tumor grade is on average very weak.

As seen in Table Table V, the modality that seems to carry slightly more meaning with regards

to tumor grade is T1c, with a -0.31 correlation for skewness and 0.41 for GLCM homogeneity.

In general however, no metric seems to show a strong connection with the tumor grade. The

same can be said for the modality-independent metrics, as can be seen in Tables Table VIII

and Table IX.

Furthermore, we tried to compute the mutual information score between singular metrics

and the grade, on the assumption that their relationship may not be linear. Results are shown

in Table Table X. It is however confirmed also by the mutual information score that no singular

metric has any strong relationship with the grade in and on itself.
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T2 deviation skewness kurtosis GLCM h. spatial h. grade

deviation 1.0000 -0.0781 -0.3453 0.2204 0.3962 0.2054

skewness -0.0781 1.0000 -0.3246 -0.2085 0.2623 0.1247

kurtosis -0.3453 -0.3246 1.0000 0.1049 -0.1625 -0.0408

GLCM homogeneity 0.2204 -0.2085 0.1049 1.0000 0.5206 -0.0294

spatial heterogeneity 0.3962 0.2623 -0.1625 0.5206 1.0000 0.1752

grade 0.2054 0.1247 -0.0408 -0.0294 0.1752 1.0000

TABLE VI: Correlation table for T2 metrics

Once established that there was no obvious direct relationship between any single metric

and tumor grade, we wanted to test whether a) a linear transformation over the metrics could

showcase a correlation with the grade label and b) a simple, out-of-the-box classification method

could correctly predict tumor label given our metrics. For a), we applied Principal Component

Analysis over a number of combinations of metrics, while for b) we performed Decision Tree

Classification.

5.2.1 Principal Component Analysis

We performed Principal Component Analysis (PCA), keeping the first two components for

visualization ease. Table XII shows the components’ plot, their mutual information with respect

to the grade, and their explained variance. The plots of Table XII show evident overlap of the

two grade labels for all the PCA results; this is further confirmed by the low mutual information
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FLAIR deviation skewness kurtosis GLCM h. spatial h. grade

deviation 1.0000 0.4325 -0.4544 -0.1841 0.4160 0.0758

skewness 0.4325 1.0000 -0.9520 -0.6546 0.2322 0.0496

kurtosis -0.4544 -0.9520 1.0000 0.5280 -0.2662 -0.0759

GLCM homogeneity -0.1841 -0.6546 0.5280 1.0000 0.0743 0.1518

spatial heterogeneity 0.4160 0.2322 -0.2662 0.0743 1.0000 0.1341

grade 0.0758 0.0496 -0.0759 0.1518 0.1341 1.0000

TABLE VII: Correlation table for FLAIR metrics

between each component and the classification label. In confirmation of the intuition of the

previous section, the higher information is carried by the T1c modality.

The explained variance of the first two components computed by the PCA is very low, with

a maximum of 0.87 total explained variance for the modality-independent metrics. The loss

of information resulting from PCA makes its usefulness in a classification context extremely

limited; it can be, however, used for visualization purposes.

5.2.1.1 Decision Tree Classification

We performed classification applying a decision tree classifier to the metrics for the four

modalities, plus separately for the symmetry metrics.

To exploit as best as we could the limited dataset, we performed Leave-One-Out cross-

validation. To avoid overfitting we imposed 40 minimum samples per tree split and a minimum



51

symmetry e tot s tot area u s u e u p u area l s l e l p l grade

eccentricity total 1.0000 -0.3634 -0.1820 -0.3680 0.6765 -0.0256 -0.1799 -0.3717 0.7034 -0.0203 0.0902

solidity total -0.3634 1.0000 0.3255 0.8922 -0.1673 0.0835 0.3120 0.8684 -0.2289 0.0990 -0.1136

area upper -0.1820 0.3255 1.0000 0.3272 -0.0898 0.8623 0.9903 0.3163 -0.1378 0.8659 -0.0314

solidity upper -0.3680 0.8922 0.3272 1.0000 -0.1944 0.0504 0.2979 0.6138 -0.2475 0.1561 -0.1102

eccentricity upper 0.6765 -0.1673 -0.0898 -0.1944 1.0000 -0.0082 -0.1307 -0.2006 0.2464 -0.0512 0.0458

perimeter upper -0.0256 0.0835 0.8623 0.0504 -0.0082 1.0000 0.8699 0.1572 -0.0270 0.9137 0.0298

area lower -0.1799 0.3120 0.9903 0.2979 -0.1307 0.8699 1.0000 0.3239 -0.0958 0.8721 -0.0309

solidity lower -0.3717 0.8684 0.3163 0.6138 -0.2006 0.1572 0.3239 1.0000 -0.2459 0.0712 -0.0817

eccentricity lower 0.7034 -0.2289 -0.1378 -0.2475 0.2464 -0.0270 -0.0958 -0.2459 1.0000 0.0270 0.0576

perimeter lower -0.0203 0.0990 0.8659 0.1561 -0.0512 0.9137 0.8721 0.0712 0.0270 1.0000 0.0238

grade 0.0902 -0.1136 -0.0314 -0.1102 0.0458 0.0298 -0.0309 -0.0817 0.0576 0.0238 1.0000

TABLE VIII: Correlation table for symmetry metrics

of 15 samples in the leaves. The labels of our dataset are highly unbalanced: as seen in Section

4.1, only 44 of all the volumes are low grade, which is 30% of the whole dataset. To obviate

this, in addition to computing the decision trees baselinestretchas is, for each cross-validation

training we downsampled the high grades to 60 volumes, and upsampled the low grades by

repeating 30% of the low grade volumes. This way, we obtained a balanced distribution of

the two labels, with 60 high grade and 57 low grade, without having to repeat all the low
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clustering cluster# CoM distance cluster size

cluster# 1.0000 -0.1276 -0.5056

CoM distance -0.1276 1.0000 0.4231

cluster size -0.5056 0.4231 1.0000

grade -0.0223 -0.1491 0.0258

TABLE IX: Correlation table for clustering metrics

grade data. Furthermore, applying this step during cross-validation ensures there will not be a

repeated sample in both training and test sets.

Performance of the different decision trees can be seen in Tables Table XIII and Table XIV.

When the decision tree is balanced as explained above, these results (Table Table XIII) show

that even with the complete set of metrics, T1, T2 and FLAIR modalities are barely above

random guessing with respect to the tumor grade. On the other hand, T1c metrics seem to

perform well in the classification task, as do symmetry metrics. Figure Figure 16 shows the

tree trained on T1c metrics.

On the other hand, training a decision tree with the dataset as is, without any label balanc-

ing, produces a very tall tree, disproportionately skewed towards the label 1, that is high grade,

as seen in Figure Figure 17. As shown in the second table of Table Table XIV, the performance

scores of such trees are very high, but only due to the high ratio of high grade tumors in the
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deviation skewness kurtosis GLCM h. spatial h.

T1 0.0304 0.0607 0.0099 0.0074 0

T1c 0 0.0701 0 0.1165 0.0912

T2 0.0281 0.0274 0.0771 0.0162 0.0469

FLAIR 0 0.0351 0 0 0

TABLE X: Mutual Information Score between single modality-dependent metric (indicated in

the columns) and the tumor grade.

dataset. As can be seen in the confusion matrices, the correctly labeled Low grades are very

few (in the case of T2 even none) when compared to the balanced cases.
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metric mutual information score

cluster number 0.0054

CoM distance 0

cluster size 0

eccentricity total 0.0037

solidity total 0.0087

upper area 0.0047

upper solidity 0.013

upper eccentricity 0.0078

upper perimeter 0.3467

lower area 0.0081

lower solidity 0.0107

lower eccentricity 0.0060

lower perimeter 0.3470

TABLE XI: Mutual information score between modality-independent metrics and tumor grade.
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T1 T1c T2

Mutual Information Measure Mutual Information Measure Mutual Information Measure

MIPC1 = 0.0534 MIPC1 = 0.0814 MIPC1 = 0.0118

MIPC2 = 0.0120 MIPC2 = 0.1108 MIPC2 = 0.0153

Explained Variance Per Component Explained Variance Per Component Explained Variance Per Component

σ2
PC1 = 0.3714 σ2

PC1 = 0.4011 σ2
PC1 = 0.4256

σ2
PC2 = 0.2202 σ2

PC2 = 0.2328 σ2
PC2 = 0.1736

σ2
total = 0.5916 σ2

total = 0.6339 σ2
total = 0.5992

FLAIR Modality-independent Symmetry

Mutual Information Measure Mutual Information Measure Mutual Information Measure

MIPC1 = 0 MIPC1 = 0 MIPC1 = 0.0046

MIPC2 = 0.0025 MIPC2 = 0 MIPC2 = 0.0029

Explained Variance Per Component Explained Variance Per Component Explained Variance Per Component

σ2
PC1 = 0.3589 σ2

PC1 = 0.6332 σ2
PC1 = 0.4259

σ2
PC2 = 0.2901 σ2

PC2 = 0.2384 σ2
PC2 = 0.2713

σ2
total = 0.6490 σ2

total = 0.8716 σ2
total = 0.6972

TABLE XII: PCA results
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balanced TH FL FH TL precision recall f1

T1 115 82 19 29 0.59 0.59 0.55

T1c 146 51 13 35 0.74 0.74 0.72

T2 106 91 30 18 0.47 0.51 0.46

FLAIR 104 93 18 30 0.58 0.55 0.50

symmetry 5011 9787 1284 2060 0.64 0.65 0.62

TABLE XIII: Performance measures for balanced Decision Trees classifiers for the different

modalities. The left half of the table shows the confusion matrix for each modality, with the

number of True High grades (TH), False High grades (FH), False Low grades (FL) and True

Low Grades (TL), while the right half displays each decision tree’s performance.
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unbalanced TH FL FH TL precision recall f1

T1 187 10 34 14 0.88 0.82 0.85

T1c 192 5 20 28 0.92 0.90 0.91

T2 174 23 48 0 0.80 0.71 0.75

FLAIR 188 9 41 7 0.90 0.80 0.84

symmetry 13626 1172 2315 1029 0.85 0.81 0.82

TABLE XIV: Performance measures for unbalanced Decision Trees classifiers for the different

modalities.
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Figure 16: Balanced decision tree computed on the T1c modality. Each node of the tree

displays the decision cut, if any, then the gini index for the node. The ’sample’ attribute shows

the number of samples of that particular node, with class distribution described by ’value’ in

the form [class = 0, class = 1]. Finally, ’class’ is the class of the node, with 0 meaning low grade

and 1 high grade. Each node is filled in different colors that display the class (orange for low,

blue for high), with intensity in saturation specifying the labeling confidence of that particular

node.
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Figure 17: Unbalanced decision tree computed on the T1c modality.



CHAPTER 6

CONCLUSION

In this thesis, we have defined and developed twenty metrics that provide a quantitative

description of previously segmented tumor regions within brain MR images. We have first

applied DBSCAN to whole MRI volumes, in order to separate the lesion areas into different

clusters, then computed the metrics on each cluster, or between the clusters, as appropriate for

each metric. Some of the metrics, such as cluster number, cluster size, and symmetry metrics

are independent from pixel intensity. The other metrics, namely Standard Deviation, Skewness,

Kurtosis, GLCM Homogeneity and Spatial Heterogeneity were computed for each of the four

MR modalities provided by the dataset: T1, T1c, T2 and FLAIR.

The goal of these metrics is to provide a quantitative, mathematically sound framework

to describe and compare different tumor lesions. We have analysed each metric’s relationship

with the others to establish which ones were independent, and we have demonstrated their

descriptiveness by showcasing meaningful examples.

Furthermore, to deepen our understanding of these metrics’ possible future applications,

we have investigated whether they can be meaningful with respect to the tumor grade label

assigned to each MRI volume. With this purpose in mind, we have computed correlation and

mutual information between each individual metric, which did not show any evident relationship

between metrics and tumor grade with the exception of metrics computed on the T1c modality.

60
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We also attempted dimensionality reduction by principal component analysis, which did not

improve on the mutual information score.

Finally, we trained five Decision Tree classification models with metrics for each modality,

as well as modality-independent metrics. In order to perform classification in the most efficient

way, we re-balanced the dataset and added a Leave-one-out cross-validation step. We discovered

that, while T1, T2 and FLAIR Decision Trees do not perform well, the T1c Decision Tree has a

f1 score of 72% on testing data. This suggests that the features computed on the T1c modality

could be used, in the future, for tumor label prediction.

6.1 Future Works

The current analysis explained in this thesis can be extended in future works in the following

directions:

• Extend 2d measures to 3d. As of now spatial heterogeneity, GLCM homogeneity

and symmetry metrics are calculated per slice, and then aggregated by weighted average.

Future development could try and extend these three metrics to be computed directly on

the 3d volume.

• Compute 2d metrics on different axis. In this work we computed spatial hetero-

geneity, GLCM homogeneity and symmetry metrics on the provided z axis slices, which

scan a brain volume vertically. It would be interesting, as an added venue of study, to

try and compute them on artificial slices on the x or y axis, to see whether the spatial

information on those axes could be meaningful.
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• Aggregate symmetry measure. Our development of symmetry requires a high number

of metrics to be computed (10 per slice). We tried aggregating them with PCA, with no

useful gain in information. Furthermore, PCA is a black box method that is not useful for

human understanding of the metric. It could therefore be useful to develop an aggregate

metric that encloses all ten measures in a single, understandable value.

• Further classification on different datasets. BRATS20181 provides information on

overall survivability of the patient together with the brain volume and segmentation. It

would be interesting to compute our metrics on such dataset and verify whether they are

meaningful with respect to the survivability rate, not only on the tumor grade.

1https://www.med.upenn.edu/sbia/brats2018/data.html
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