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SUMMARY 

It is commonly believed that diagnostic information that are instructionally relevant and 

educationally meaningful would help students identify remediation learning paths and assist teachers 

customize their instruction according to students’ knowledge gaps (DiBello et al., 2006). The 

Bayesian Network (BN) approach operationalizes cognitive diagnosis in a novel way of releasing 

some constraints of Cognitive Diagnostic Models (CDMs) and catering to a need of complex 

modeling of attribute structure and polytomous attributes. It also naturally relates to the assessment 

framework of Evidence-Centered Design (ECD). However, empirical studies fall short of 

systematically addressing the utility, uniqueness, and value of using BN in analyzing diagnostic 

assessment data.  

 

In this study, I first conducted simulations to examine the performance of the BN approach 

across assessment scenarios of different sample sizes, test lengths, Q matrix complexities, and 

attribute types. Second, I evaluated the mastery classification accuracies of the BN approach when 

various amount of information on the structure in attributes is provided. Third, I compared the utility 

and the performance of both BN and CDM in terms of mastery classification accuracies across 

different assessment scenarios. Finally, I applied BN to analyze a dataset with dichotomous attributes 

from Trends in International Mathematics and Science Study (TIMSS) and a dataset with polytomous 

attributes.  
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SUMMARY (continued) 

 

The results supported that BN can yield model parameters with acceptable accuracy for 

formative diagnostic assessments under various conditions, namely different test lengths, sample 

sizes, Q matrix complexities, and attribute types. BN can also provide adequate estimation results 

when partial information on the attribute structure is provided. The comparison of BN and a CDM  

model highlights the flexibility of BN in handling different assessment types. Finally, the real data 

analyses showcased the diagnostic reports on student performance levels based on the BN approach.  
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1. INTRODUCTION 

1.1 Statement of the Problem 

The question of how assessment can contribute to teaching and learning has long been of 

interest to researchers, practitioners, and educators. In his presidential address at the annual 

meeting of the National Council on Measurement in Education, Bennett (2018) presented his 

insights to the features of future educational assessments and emphasized the attempt to improve 

learning through “personalized” assessments, which can better accommodate diversity among 

students, and the incorporation of new approaches to modeling and analyzing assessment data. In 

the wake of the popularity of data science, researchers have paid attention to a combination of 

educational assessment with advances from data mining techniques in an effort to provide a more 

comprehensive understanding of students’ development of knowledge and skills, identify each 

individual student’s achievement gaps, and as a result aid improving instructors’ teaching and 

students’ learning. Bayesian Network (BN) is viewed as one of the well-developed machine 

learning and data mining techniques. It can operationalize the abovementioned goals of 

analyzing formative and diagnostic assessment driven by the cognitive theory of the measured 

subject domain and at the same time handling complex models (Almond et al., 2015). However, 

empirical studies are lacking in addressing the utility, uniqueness, and value of using BN in 

analyzing assessment data for a diagnostic purpose. This study intends to fill this gap.   
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1.2 Background 

As educational agenda are inspired by the realization of students’ academic potential, 

educational researchers are motivated to explore ways of tapping the evidence of students’ 

academic achievement while promoting instruction and learning. One way to achieve this goal is 

developing assessment to measure students’ achievement and to make decisions on whether their 

performance meets the standards. Importantly however, it has long been a concern that the 

decisive and summative features of a typical assessment based on a pass-fail decision or a single 

ability estimate may be incongruent with the educational aim of guiding students to make 

improvement.  

1.2.1 Cognitive Diagnosis  

One long-standing approach to rectify the single ability estimate is to conduct a formative 

assessment, which is used to provide feedback for students and teachers in an ongoing learning 

process, so that they can improve both teaching and learning (Black & Wiliam, 1998, 2005). 

Further, Black and Wiliam (2005) contended that diagnostic score reports could serve as 

facilitators of formative assessment when initiated to achieve the three goals of diagnosing 

students' understanding of the measured subject domain, measuring the effectiveness of 

instructional strategies, and providing feedback to both teaching and learning. In concert with 

this claim, Yin et al. (2014) called for an application of formative assessment aligned with 

learning progression to facilitate conceptual change of domain knowledge. In a study of using 

the Rule Space Method (Tatsuoka, 1983) to diagnose students’ proficiencies in statistical 

knowledge, Im and Yin (2009) suggested that the diagnostic information obtained from the 

analyses would be helpful for students to fill their knowledge gaps. If a standardized test can 

provide diagnostic feedback regarding students’ attribute or sub-skill performance, it may hold 
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pronounced promise for informing students’ knowledge gaps and prioritizing their remediation 

learning paths. A diagnostic performance report would be able to place students into various 

performance levels on each attribute to help them strategize their learning improvement process.  

To illustrate this contention, we can consider a scenario where teachers and 

psychometricians collaborate to design a math test. The test can be designed to provide 

diagnostic, finer-grained feedback to learners about their mastery of the measured math skills 

and to inform them of the pathways to remedy those skills they have not yet sufficiently 

mastered. In this context, this math test is composed of the attributes of multiplication and 

addition. When the test is administered, and the test results are reported to students, it could be 

conceivable that two students with the exact same total score could have different understanding 

and competence regarding different attributes. For example, one student could have incorrectly 

answered all the addition questions and a second student all the multiplication questions, yet both 

receive the same total score. In order to differentiate the two students and build more informative 

score reporting, a diagnostic feedback mechanism could elaborate on students’ attribute 

performance given their overall performance and make a summative score report more useful 

than a total score for learners, their parents, and teachers. It may further motivate students to 

restructure and improve their knowledge and work toward achieving a better proficiency level. 

The attribute score reports may offer comparisons among students with respect to their 

attribute performance, rankings by each attribute, and pass/fail information. From the teachers’ 

perspective, students’ attribute performance allows them to understand their weaknesses and 

strengths and then determine the best exercise strategy for each individual student or for students 

of the same attribute mastery profile. From the stakeholders’ perspective, students’ attribute 

performance could provide schools and test preparation centers with information to examine 
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their curriculum readiness and learn potential remediation policies, so that they can further 

identify deficiencies in content standards, curricula, and instructional practices (Haberman et al., 

2009). In other words, stakeholders expect tests to furnish an overall total test score, which can 

be used to place a student, or grant a certificate or license, while at the same time yield 

diagnostic information for student remediation, institutional evaluation, or program effectiveness 

(Feinberg & Wainer, 2014; Puhan et al., 2010).  

Theoretically, the diagnostic feedback mechanism based on the observed students’ 

performance should be delineated by the underlying processes embodied by assessment 

frameworks in order to aid its implementation and interpretation. Assessment Triangle 

(Pellegrino et al., 2001) and ECD (Mislevy et al., 2003) have been two widely adopted 

assessment frameworks, with the latter practically implementing the former (DiBello et al., 

2006). The Assessment Triangle is comprised of three corners: the cognition component, the 

observation component, and the interpretation component. To situate assessment in a more 

practical sense, ECD brings together test developers and other stakeholders in order to define and 

support each piece of assessment development process. From the very beginning of identifying 

each target component of measurement, evidence through score interpretation is gathered to 

support decision-making (Huff et al., 2010). Given that ECD plays an important role in reporting 

attribute performance, measurement models can coordinate with ECD in providing diagnostic 

information. BN and Cognitive Diagnostic Models (CDMs) are well known as classification 

approaches and can be conceptually relating to ECD. 
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1.2.2 CDMs and BN  

CDMs can be used to demonstrate how well assessments classify students’ level of 

proficiency. Learners and teachers can get additional information from formative assessments, if 

the assessments are designed under the Assessment Triangle and the ECD frameworks, and 

subsequently calibrated with CDMs for their assessment context. Lee et al. (2011) found that the 

detailed diagnostic feedback provided by CDM would directly contribute to classroom 

instruction. Later, Park and Lee (2014) reparametrized one of CDMs to account for the impact of 

covariates on students’ mastery of the measured latent skills. This finding yields insights into 

ways of enriching the complexity of CDM to illuminate students’ learning process. A recent 

study conducted by Tu et al. (2019) considers the attribute hierarchy when using CDMs and 

suggested that the classification results might be misleading if ignoring the hierarchy.  

Despite of the advances of CDMs over other measurement models, CDMs were not 

widely applied to analyze assessment data due to some constraints. Culbertson (2016) pointed 

out that CDMs fail to specify the structure of the underlying latent abilities. Further, Rupp et al. 

(2010) explained specific and constrained attribute mastery status for a correct response in each 

CDM model. To rectify these constraints, BN, which can construct a joint probability 

distribution over the involved variables based on graphical representations, serves as one novel 

way to build a flexible modeling framework. Its modeling construction can rely on assessment 

frameworks, and its modeling results can infer diagnostic performance report (Almond et al., 

2015; Rupp et al., 2010). It also has the capacity of identifying the hierarchy in attributes by 

deriving a series of conditional probabilities based on Bayes’ Theorem and releasing the 

condensation rule in CDMs by specifying probabilities of a successful response for each possible 

mastery profile.  
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The application of Bayesian inference research has drawn attention in the field of 

modeling assessment data. For example, Karabatsos and Sheu (2004) proposed an order-

constrained Bayes inference framework to analyze dichotomous item responses. Additionally, 

software functions and packages pertinent to Bayesian inference have also been developed for 

analyzing educational test data (for example, software of Karabatsos, 2017). Inspired by the BN 

framework, Mislevy et al. (1999) proposed a Bayesian framework for modeling educational 

assessment that considers a joint distribution over responses, students, and items by breaking a 

holistic structural model into small models. Methodologically, BN can capture the conditionally 

probabilistic relationships among latent variables and observed variables, based on student 

responses to individual assessment tasks or test items and latent skills of interest indicated by 

theory. Using BN to propagate information from assessment is consistent with the role of 

assessment that can tap students’ performance and make inferences on students’ learning process 

in a particular subject domain (Almond et al., 2015). As such, this recognized connection can be 

manifested by constructing a structural graph of the measured component skills, an advance over 

CDMs.  

Like CDMs, BN builds on a theory-based structure which incorporates content experts’ 

input about the dependent relationships among attributes. However, different from the entire 

reliance on expert input or theory-based structure in CDM, BN can update these prior beliefs 

based on observations. Additionally, BN can release the compensation and condensation rules of 

the attribute mastery pattern of CDMs by probing each combination of attributes in a successful 

response. Another advantage of BN is the flexibility in modeling complex and evidentiary 

relationships among attributes and items.  
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A BN analysis is reminiscent of but not identical to the CDM analysis, providing 

diagnostic feedback to students based on their test performance (Rupp et al., 2010; Zhang & 

Chang, 2016). Both frameworks are extended versions of latent class models. Further, CDMs can 

extend IRT modeling while BN can be parameterized using IRT. Despite the importance of 

diagnostic feedback (De La Torre & Minchen, 2014), the majority of research on cognitive 

diagnosis has focused on the application of CDMs rather than on BN (Shute, 2011; Xenos, 

2004). Although both approaches aim to provide informative attribute feedback regarding 

student performance, few studies on educational assessment compared CDMs and BN. 

Therefore, their similarities and differences in terms of utility and values are not well understood. 

To be scaled up for further research, it highlights a practical need to examine how BN modeling 

performs in analyzing student overall ability and their attribute performance, and what diagnostic 

feedback BN could help to provide that would further promote student learning, and finally 

whether it could furnish more information regarding students’ learning strategies relative to 

CDMs. 

Taken together, this study concerns measurement model, statistical inference, and 

cognitive diagnosis in the analysis of assessment results using a simulation and a data application 

of the BN approach. Theoretically, the ECD approach holds the promise for integrating cognitive 

task design and statistical measurement modeling and constructing a framework that informs the 

design of an assessment and the interpretation of assessment results (Yan et al., 2003). Further, it 

builds blocks for a cognitive diagnosis of students’ domain knowledge. In the measurement and 

statistical sense, BN dismantles the underlying process of students’ learning and usage of 

knowledge or skills to respond to items, and further provides a more comprehensive guidance of 
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future learning paths rather than a pass-fail or a single ability estimate, which may convey less 

informative evaluation. Below I review the literature to build the foundation for my study. 
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2. REVIEW OF THE LITERATURE 

2.1 Organization of the Literature Review 

 In this chapter, I address the assessment frameworks, the measurement models, and the 

connection between them. First, I introduce the assessment frameworks of Assessment Triangle 

and ECD as the underlying foundations for assessment data analysis. Second, I discuss about the 

main principles of the measurement models, including IRT, CDMs, and BN. Third, I review the 

psychometric studies on the application of the BN method and unfold the common evaluation 

criteria to determine the accuracy and precision of model results of simulation studies. Finally, I 

map the components of ECD to the measurement models so that the three overarching topics of 

cognitive domain diagnosis, measurement modeling, statistical inference are integrated. 

2.2 Assessment Triangle and Evidence-Centered Design 

The framework of Assessment Triangle is proposed by Pellegrino et al. (2001). It is 

composed of three vertices: cognition, observation, and interpretation (see in Error! Reference 

source not found.) that must work congruently in assessment development. Cognition reveals 

how student proficiency of the latent trait is presented and developed. Observation refers to the 

tasks or scenarios used to tap student performance as evidence of the measured latent traits. 

Further, the observation activities are represented by the design and specifications of assessment 

tasks. Interpretation illuminates the connection between observation and cognition. In other 

words, the observation of students’ representation of their knowledge is displayed through 

interpretation. Practically speaking, the interpretation helps researchers to determine an 
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appropriate measurement model. The assessment triangle provides a valuable theoretical 

framework to develop and use assessments. 

 

 

 

 

 

 

Figure 1. Assessment triangle.  

 

 

 

 

 

 

ECD is an assessment design framework that originates from the Assessment Triangle. It 

also requires evidentiary arguments during assessment design process. It serves as a tool to 

systematize the design and development of assessments based on a logical connection between 

and within assessment goals, the cognitive framework of domain knowledge, the design of tasks, 

the collection of performance evidence, and an operational delivery of assessments. As has been 

demonstrated before, based on the theoretical framework of the Assessment Triangle, ECD 
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provides a template for assessment design and analysis guided by evidentiary reasoning and 

knowledge representations.  

The ECD framework has five layers that spread from the knowledge presentation of 

domain analysis, modeling, to a conceptual assessment framework (CAF) essential to test design, 

and finally to the test operationality of assessment implementation and delivery. Mislevy and 

Haertel (2006) demonstrated details on ECD layers. Domain analysis is the first step of 

assessment design. For this step, test development team needs to collect all kinds of information 

on the measured domain including concepts, tools of knowledge representations, and 

conventional application formats. Domain modeling is a narrative model of logical relationships 

among the components concluded from the domain analysis. Researchers and test designers 

construct domain modeling to guide and organize the descriptive statement of the CAF. 

The CAF details the design blueprint of an assessment by incorporating models for 

assessment arguments based on the first stage of domain analysis and modeling. It builds a 

bridge between assessment arguments and assessment activities. CAF specifies the proficiency 

model with knowledge, skills, and abilities involved in the assessment; the evidence model 

demonstrating the student acquisition of knowledge and skills; the task model describing the 

features of tasks to elicit the expected evidence of student achievement.  

To be specific, the proficiency model represents the relationship of the measured 

components. It lays out the inferences made about student proficiencies. The variables in the 

proficiency model can be probed from the nature of students’ performances and their reasoning 

process during a real assessment through the lens of ECD.  

The evidence model, explaining how we measure the domain knowledge, consists of two 

sections: the evidence rules component characterizing the evidence identification process and the 



12 

 

 

measurement model summarizing evidence. The evidence rules component considers the quality 

of expected student responses and their accuracy, strategies they use for problem-solving, etc. 

Item responses capture student performance, and then teachers can evaluate their item responses 

based on predetermined scoring rules to yield observations of student performance. The evidence 

rules component provides information about proficiency model and feedback on student 

performance. As such, the evidence rules model is represented by item scoring and scoring 

results. Teachers or researchers use answer keys or scoring rubric to evaluate how well students 

have used the domain knowledge according to the relationships specified in the domain 

modeling. Additionally, guided by the evidence rules model, test designers need to concern 

whether tasks assess enough information to evaluate the quality of student work.  

After the scoring procedure, the measurement model is to define and quantify the degree 

to which item responses reveal student performance. It provides information on the connection 

between the proficiency model variables and the observed item responses based on statistical 

models that can be applicable to assessment data. Psychometric models play an important role in 

the measurement framework, including the widely used classical test theory and IRT, and the 

less familiar CDMs and BN. They accumulate and synthesize evidence on student proficiency in 

the targeted domain by collecting evidence from the proficiency model and the evidence rules 

procedure.  

For the questions of where to measure the domain knowledge, the task model describes 

the tools where students can produce responses and provides information on their proficiency. 

Also, teachers or researchers design tasks or items and describe test specifications guided by the 

task model. The test specification includes test prompts presented to students and test items for 
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collecting student responses. Test designers need to make decisions on the formats of items and 

the features of these tasks that are salient to student proficiency.  

The assembly model specifies the breadth and diversity of the domain knowledge as 

assessment constructs. The assembly model concerns the relationship among the proficiency 

model, the evidence model, and the task model to form a complete assessment tool. The rules to 

construct a form depend on validity, which is referred to how accurately each student variable 

can be measured, and balance, which decides the distribution of content knowledge in an 

assessment to maintain an appropriate breadth and diversity. 

The presentation model describes the style on how task materials should be presented in 

terms of test formats, platforms, and any other alternatives. The delivery system model 

encompasses a big picture of all assessment pieces that convey evidentiary arguments from the 

collection of proficiency, evidence, task, assembly, and presentation models. Tests for different 

purposes may have different models. For example, if we want to use the same test for both 

diagnostic purposes and placement purposes, the task models might be the same but evidence 

models and proficiency models will be different. The proficiency model of a diagnostic 

assessment will include examinees’ proficiency levels on each attribute, while that of a 

placement assessment will rely on examinees’ overall competence level. Accordingly, the 

evidence model of a diagnostic assessment will list the connections of each item and each 

attribute, while in the placement assessment, items may only vary by item-level parameters (e.g., 

item difficulty).  

2.3 Measurement Models 

Researchers and practitioners use measurement models to analyze educational or 

psychological data and make inferences on participants’ competence of the latent trait of interest. 
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One of the typical measurement models is IRT, which has been well developed and widely 

adopted in a substantial body of literature. Typically, IRT considers participants’ achievement 

and item performance in a general level and are applicable to various assessment purposes and 

formats. Additionally, different functions can be derived to serve for unidimensional or 

multidimensional situation, dichotomously or polytomously score items. Another measurement 

model is CDM, which aims for classifying students into different proficiency levels on each 

attribute of the latent skill. It has recently drawn great attention due to its diagnostic feature, 

which would provide informative feedback beneficial to teaching and learning. In the era of big 

data driven by data science, researchers have started to examine whether machine learning and 

data mining techniques can be effectively used to analyze assessment data. BN, as a technique of 

machine learning, has been applied into the measurement framework and the assessment data 

analysis. This section first briefly introduces IRT followed by CDM, and then elaborates on the 

principles of BN and its application in psychometrics. 

2.3.1 Item Response Theory  

Item response theory (IRT) is a theoretical framework for analyzing design and scoring 

of educational tests and psychological instruments (e.g., Embretson & Reise, 2000). These tests 

or instruments are established to measure latent variables that are not directly observable. As 

such, IRT is also known as latent trait theory, which describes the relationship between 

individual performance and the performance of the entire group on an overall measure of the 

latent construct. IRT considers items with different levels of difficulty rather than equal difficulty 

and also scales item difficulty and person ability onto the same metric and provides sample- and 

test-independent information on item characteristics and person performance (Embretson & 

Reise, 2000).  



15 

 

 

Mathematically, in IRT modeling, the probability of a correct response to an item is 

assumed to be a function specifying the relationships between person and item parameters. Each 

item is characterized by item parameters (e.g., item difficulty, item discrimination, and 

guessing). Each examinee is characterized by a person ability estimate. As such, in the IRT 

modeling, examinees’ performance can be represented by latent traits (i.e., person abilities) 

estimated by their item responses. By convention, θ represents person ability, and it is usually 

assumed to be normally distributed. b, a, c respectively represents item difficulty, item 

discrimination, and guessing parameters. Based on this relationship, IRT provides item 

characteristic curve (ICC) for each item showing a bell-shaped probability curve across person 

abilities.  

ICC reflects the relationship between ability and item performance, which is 

monotonically increasing. In other words, the probability of answering an item correctly always 

increases as ability increases. Students with lower level of proficiency would be estimated to 

have lower probability of getting the item correct, and vice versa. The ICC is depicted according 

to the mathematical function as shown in Equation (1) for the 1-PL IRT model or also called as 

the Rasch model. The 2-PL model (Equation 2) has two item parameters including item 

difficulty and item discrimination. The item discrimination parameter determines the slope of the 

ICC at the inflection point. Items with a steep slope are highly discriminating (i.e., a higher value 

of parameter a), while items with a gradual slope are poorly discriminating. Items with a high 

discrimination distinguish students with different levels of performance. As such, they are 

informative. When item discrimination equals 1, the function will be the same as 1-PL model. 

The third parameter in the 3-PL IRT model (Equation 3) is the guessing parameter c, considering 
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that students may give a correct answer due to guessing. The guessing parameter is denoted as 

the lower asymptote of the ICC.  

𝑃j(θ) =
e(θ−𝑏j)

1 + e(θ−𝑏j)
,                                                                                                                      (1) 

where j =1,2,3,...,J for items, 

θ represents person ability, 

𝑏j represents the item difficulty of item j, 

𝑃j(θ) represents the probability of getting item j correct.                                                              

𝑃j(θ) =
e𝑎j(θ−𝑏j)

1 + e𝑎j(θ−𝑏j)
,                                                                                                                  (2) 

where j =1,2,3,...,J, 

θ represents person ability, 

𝑎j represents the item discrimination of item j, 

𝑏j represents the item difficulty of item j, 

𝑃𝑗(θ) represents the probability of getting item j correct.                                                             

𝑃j(θ) = 𝑐j + (1 − 𝑐j)
e𝑎j(θ−𝑏j)

1 + e𝑎j(θ−𝑏j)
,                                                                                                     (3) 

where j =1,2,3,...,J, 

θ represents person ability, 

𝑎j represents the item discrimination of item j, 

𝑏j represents the item difficulty of item j, 

𝑐j represents the pseudo-chance ("guessing") parameter of item j, 

𝑃j(𝜃) represents the probability of getting item j correct.                                             
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IRT modeling relies on three assumptions: (a) The assumption of unidimensionality 

states that only one latent trait is measured by the test. If a test is designed to measure multiple 

latent traits, multidimensional IRT (MIRT) should be used for analysis. (b) The assumption of 

local independence states that each examinee's responses to a given set of test items are 

independent when conditional on the model parameters. If the IRT model parameters explain all 

the variances of item responses, then each pair of inter-item correlations becomes zero. In 

contrast, the violation of local independence, termed as local dependence, occurs when this 

conditional independence property fails to hold on a given set of item responses. The non-zero 

inter-item correlations exist among pairs of test items, even after conditioning on the IRT model 

parameters. Consequently, locally dependent items carry less information than the IRT model 

would predict. The assumptions of unidimensionality and local item independence are closely 

related given the fact that local item independence infers the unidimensionality of a test. (c) The 

third assumption states that the responses of a person can be depicted by the Item Response 

Function (IRF), which is defined by Equation (1), (2), (3) for 1-PL, 2-PL, 3-PL IRT models, 

respectively. The IRF of each model defines the shape of the ICC. After all the model 

assumptions are met, IRT would be able to yield invariant person parameters, suggesting that 

person ability remains the same across different tests, and invariant item parameters, suggesting 

that they also remain the same across examinees of different performance levels.  

2.3.2 Cognitive Diagnostic Modeling  

CDMs, as sophisticated measurement models, are intended to improve the quality of 

diagnostic feedback provided to students at various performance levels. Rather than assigning to 

examinees a single ability estimate on a continuous scale, CDMs aim to provide examinees with 

finer-grained information pertaining whether or not they have mastered each attribute required to 
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answer a certain item correctly (Rupp et al., 2010). In this way, CDMs can be used to classify 

students into different mastery groups and further provide diagnostic feedback on their strengths 

and weaknesses of attribute knowledge. In this section, I introduce CDMs and their basic 

characteristics.  

Given the predetermined finer-grained proficiency dimensions (e.g., attributes), CDMs are 

designed to furnish criterion-referenced interpretations for each attribute specific to each student or 

students within the same mastery group. In decision-making situations (e.g., placement, admission, 

or certification), students are usually classified into non-mastery or mastery on a specific domain. To 

evaluate students’ learning, CDM can also be used to yield informative feedback based on more than 

two levels of classifications. For example, Templin (2004) has explored ways of assigning several 

mastery levels for each attribute. Moreover, similar as BN modeling, CDM is also capable of 

considering the structure in attributes (Leighton et al., 2004; Templin & Bradshaw, 2014), although 

this feature has not been fully explored and applied. In the following sections, I introduce the critical 

components of CDMs, Q matrix, and three commonly used CDMs.  

 Q matrix. Like other latent class models, the CDM classification results rely on how 

latent skills are measured across items. In other words, we need to input the information on 

which attributes are measured by each item to enable CDM to classify students’ performance 

levels based on their responses to the items measuring the corresponding attribute. This input is a 

loading table called Q matrix (Tatsuoka, 1983). The specification of Q matrix is developed or 

confirmed by subject-matter experts. From an assessment perspective, Q matrix indicates how 

the measurement of each attribute is distributed across items. From a statistical perspective, Q 

matrix is a loading structure, like those often used in a confirmatory factor analysis, specifying 

the loadings of each attribute on items. Q matrix not only can help with the analysis of test data, 
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but also assist in developing and revising assessment, as it clearly indicates the distribution of 

attributes across items.  

The structure of Q matrix is composed of rows representing items and columns 

representing the measured attributes. A simple structure Q matrix is specified when each item is 

only dependent on one attribute. For a complex structure Q matrix, items can be loaded on 

multiple attributes. For a dichotomous classification of mastery and non-mastery on students’ 

attribute performance, the Q matrix will consist of 1s and 0s indicating whether an attribute is 

measured by an item. For a polytomous classification of attributes, 0s still represent an attribute 

is not measured while the other non-zero integers represent different levels of mastery. An 

example of a dichotomous Q-matrix with binary entries and a polytomous Q-matrix with 3-level 

categorical entries are shown in Table I and Table II, respectively. In Table I, a test contains J = 

3 items and measures K = 3 attributes. Item 1 is measured by attribute 1, item 2 is measured by 

attribute 2 and 3, and item 3 is measured by attribute 3. Table II shows the Q matrix for a test 

with polytomous attributes. In this example, items 1 requires high mastery of attribute 1 but 

neither attributes 2 and 3; item 2 requires high mastery of attribute 1 and medium mastery of 

attributes 2 and 3; item 3 requires medium mastery of attribute 3. 

 

 

TABLE I AN EXAMPLE OF A SIMPLE STRUCTURE DICHOTOMOUS Q MATRIX 

Items Attribute 1 Attribute 2 Attribute 3 

1. 1 0 0 

2. 0 1 1 

3. 0 0 1 
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TABLE II AN EXAMPLE OF A COMPLEX STRUCTURE POLYTOMOUS Q MATRIX 

Items Attribute 1 Attribute 2 Attribute 3 

1. 2 0 0 

2. 2 1 1 

3. 0 0 1 

 

 

 

 

 

A mathematical explanation of CDM is specified as follows. I used a K-dimensional 

vector:  = (1,…,K) to represent the collection of K attributes measured by a test. The items 

are denoted by j = 1,…,J, where J is the test length of the test. Q matrix is used to describe the 

relationships between items and attributes, in which 1 indicates that the attribute is measured by 

the item, and 0 suggests that the attribute is not measured by the item. The Q matrix has J rows: 

each row refers to one item and provides information on which attributes need to be mastered in 

order to answer this item correctly. Examinees are denoted by i = 1, …, N, where N is the total 

number of examinees. The response of examinee i to item j is denoted by Xij. If the examinee 

correctly answers a dichotomous item, then Xij = 1, otherwise Xij = 0. The responses for all 

examinees to all items are denoted by X, which is an N×J matrix.  

As discussed above, a complex structure of Q matrix may have multiple attributes load 

on one item. This feature leads to a discussion on how to specify the individual contribution of 

each attribute toward the overall problem-solving process of an item. Mathematically speaking, 

the combination of attributes can be either additive or multiplicative. According to this 

relationship, CDMs can be classified into two types of models: the compensatory model and the 

non-compensatory model. The non-compensatory model depends on the assumption that a 

successful response requires the mastery of all the measured attributes. In other words, a low 

value on one latent variable cannot be compensated by a high value on another latent variable. In 
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this case, the non-compensatory CDM model will use a product to represent the relationships 

among attributes. The typical non-compensatory models in CDMs are the deterministic-input, 

noisy-and-gate model (DINA) and the non-compensatory reduced reparametrized unified model 

(NC-RRUM). In the generic compensatory models, the average or sum of the required attributes 

would influence the possibility of item responses, therefore a low value on one latent variable 

can be compensated for by a high value on another latent variable. The typical compensatory 

models in CDMs are the deterministic-input, noisy-or-gate model (DINO) and the compensatory 

reparametrized unified model (C-RUM). Below I illustrate the DINA model as an example of 

non-compensatory models, the DINO model as an example of compensatory models, and the 

generalized DINA (G-DINA) model as a saturated model free from the compensatory and non-

compensatory rule. 

The DINA model. The DINA model (Haertel, 1989; Junker & Sijtsma, 2001) is one of 

the simplest and most widely used CDM. As one of the non-compensatory models, it is assumed 

that examinees must possess all the measured skills to successfully answer an item. By doing so, 

students will be classified into two exclusive groups for each item: mastering all the required 

attributes and not mastering at least one of the required attributes. Although students in the latter 

group may have different mastery profiles (e.g., mastering one out of the three required attributes 

vs. mastering two out of the three), the DINA model will compute a same probability of correctly 

answering this item for the latter group. 

Tatsuoka (1983) proposed the rule space methodology as one type of cognitive diagnosis, 

which lays the foundation for current CDMs. In terms of the model specification, Tatsuoka 

(1995) proposed the ideal response should be specified as follows: 

ηij = ∏ θ
ij

qjkK
k=1                                                                                                                       (4) 
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where 

 ηij =1  when examinee i has mastered all the required attributes for item j, 

K represents the total number of attributes measured by the test, 

θij represents the mastery status of person i on attributes required by item j, 

𝑞jk represents the kth attribute required to solve the jth item.                   

The slipping parameter is shown in Equation (5), and the guessing parameter is shown in 

Equation (6).  

𝑠j = 𝑝(𝑋ij = 0|ηij = 1)                                                                                                         (5) 

where 

 ηij=1 represents examinee i has mastered all the required attributes for item j, 

𝑋ij = 0 represents examinee i incorrectly answers item j.                                                                                                      

𝑔j = 𝑝(𝑋ij = 1|ηij = 0)                                                                                                          (6) 

where ηij=1 represents examinee i has mastered all the required attributes for item j, 

𝑋ij = 1 represents examinee i correctly answers item j.                                                                                                              

The formula for the slipping parameter represents the probability of a student responding 

to the item incorrectly while mastering all the measured attributes. The formula for the guessing 

parameter denotes that the probability of correctly answering the item while having not mastered 

at least one attribute required for the item. Given the ideal response, the item response function 

for the DINA model is given by Equation (7).  

𝑝(𝑋ij = 1|ηij) = (1 − 𝑠j)
ηij𝑔j

1−ηij                                                                                                      (7) 

where ηij represents the mastery status of examinee i on all the attributes required by item j, 

 𝑋ij = 1 represents examinee i correctly answers item j, 
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𝑠j represents the slipping parameter of item j, 

𝑔j represents the guessing parameter of item j.                                                                                                 

The DINO model. The deterministic input, noisy-or-gate (DINO) model (e.g., Templin 

& Henson, 2006) is compensatory analog to the DINA model (Rupp et al., 2010). Similarly, the 

DINO model is also parameterized by slipping and guessing parameters. But their ideal response 

function is different, shown as follows: 

ηij = 1 − ∏ (1 − θ
ij

qjk)K
k=1                                                                                                           (8) 

where 

 ηij = 1 represents examinee i has mastered at least one of the required attributes for item j, 

K represents the total number of attributes measured by the test, 

θij represents the mastery status of person i on attributes required by item j, 

𝑞jk represents the kth attribute required to solve the jth item.                                                                                                    

As shown in the Equation (8), the ideal response function is defined by the situation 

where examinees master at least one of the required attributes to correctly answer the item. In 

other words, the DINO model assumes that examinees are likely to answer items correctly by 

mastering at least one of the required attributes rather than mastering all the required attributes. 

Although the formulas for the slipping and guessing parameters are the same as the DINA 

model, they have different interpretations. The slipping parameter formula (see in Equation 5) 

represents the probability of a student responding the item incorrectly when at least one 

measured attribute is present. The guessing parameter formula (see in Equation 6) denotes the 

probability of correctly answering the item while all measured attributes are absent. It is also the 

same case for the response function.  
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The GDINA model. The generalized diagnostic input noisy “and-gate” (GDINA) 

framework articulated by De La Torre (2011). Unlike specific CDMs (e.g., DINA, DINO) 

constrained by the compensatory rule, the GDINA model serves as a saturated model releasing 

this constraint and provide probabilities of success for students of each mastery profile. 

Specifically, the DINA model partitions students’ mastery profiles into two classes: mastery of 

the required attributes and non-mastery of the required attributes. However, the G-DINA model 

partitions the latent classes into 2k groups, which each has its own probability of success. The 

mathematical function of the G-DINA model can be specified as: 

𝑝(𝑋j = 1|θlj
∗ ) = δj0 + ∑ δjkθljk + ∑ ∑ δjkk′θlk

Kj
∗

k′=k+1

θlk′ + ⋯ + δj12…Kj
′ ∏ θlk

Kj
∗

k=1

              (9)

Kj
∗−1

k=1

Kj
∗

k=1

 

where j represent items, k represent attributes, θ denotes the attribute parameters, θlj
∗  denotes 

students’ mastery status on the required attributes, δ denotes item parameters. 

2.3.3 Bayesian Network  

CDMs have been well researched in the literature but rarely been implemented in the 

operational context (Rupp et al., 2010). The reason might be that most CDMs are restrictive with 

constraints of assuming the attribute pattern of giving a correct response (i.e., compensatory 

rules). Consequently, when they disagree with the compensatory rule, teachers or researchers 

might have less passion in applying CDMs due to these constraints. For the same purpose of 

classifying students according to their ability on latent traits, BN, as a less restrictive modeling 

framework, has recently been applied as a method of cognitive diagnosis. Different from the 

dichotomous classification of mastery and non-mastery estimated by traditional CDMs, the 

levels of latent skill performance in BN are typically polytomous, indicating the degree of 

mastery on each attribute. Due to its flexibility in statistically modeling the relationship between 
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observed and latent variables, BN has also been widely applied in the field of data mining and 

machine learning. In particular, the method of data mining is a process to discover patterns in 

large data sets, and machine learning is a process to learn from data and make predictions based 

on new data. Both methods have been applied into education research (Romero et al., 2010). 

This integration contributes to making inferences on educational outcomes in a diverse way and 

solving research questions that are not feasible with small sample, which is common in the 

educational setting.  

Typically, the BN technique constructs a model from known information including prior 

information of knowledge structure from experts or the distribution we wish to model. The goal 

is to obtain and optimize a model that can more precisely capture the real distribution 

representing the observed data. BN uses probabilistic graphical models to account for conditional 

distributions over several variables (Koller et al., 2009). BN graphical models consist of nodes 

representing variables and edges (i.e., arrows) representing directed probabilistic relationships 

between variables as illustrated in Figure 2. The graph shows a model representing the problem 

involved with variables and parameters. In particular, BN is one type of graphical models that 

use directed arcs to construct a directed acyclic graph (DAG): directed means the edges are 

directed by arrows, and acyclic means that the graph has no cycles so that you cannot reverse the 

edges. 
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Figure 2. An example BN graph. 

 

 

 

 

 

 

Representing in symbols, the graph of a BN model can be simplified by using G = (N, E). 

It consists of a set N of nodes along with a set E of directed edges. In Figure 2, an edge (a, b) 

denotes an arrow pointing from node a to node b: a is a parent of b; b is a child of a. Similarly, 

there are two arrows pointing to b from a and d, which indicates a and d are parents of b, and b is 

a child of both a and d. d is also pointing to e, suggesting another child of d. To explain the 

relationships among variables in a graphical model, each variable is represented conditionally on 

its parents, the set of variables with a directed edge into the variable. The general form of a 

dependent relationship for each variable is written in Equation (9):  

𝑝(𝑿) = ∏ 𝑝(𝑥|𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑥))                                                                                                               (10)  

The values of nodes can be discrete or continuous. For example, Figure 3 shows a 

graphical structure of the dependent relationships among attributes for a sample test with two 

items measuring three attributes. In the example, attribute 1 and 2 are assumed to be 
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independent. Attribute 3 depends on these two attributes. In the corresponding Q matrix (as 

shown in Table III), item 1 is loaded on attribute 3, and item 2 is loaded on attribute 2. It is a 

joint probability distribution that can be decomposed into smaller local probability relationships 

between the latent variables and the observed outcomes. 

 

 

 

 

 

 

 

Figure 3. A DAG representing part of an assessment. 
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TABLE III THE Q MATRIX FOR THE GRAPHICAL EXAMPLE IN FIGURE 3 

Items Attributes 

 Attribute 1 Attribute 2 Attribute 3 

Item 1  1 0 0 

Item 2 0 1 0 

 

 

 

Specifically, the conditional dependence distributed over all the variables is derived by a 

set of local probability distributions that represent the dependence of each variable on its parents. 

According to the chain rule, this derivation can be defined by a product of local distributions of 

each variable. For example, Equation 10 shows the factorization of the joint distribution 

associated with the DAG in Figure 3. p(A1), represents the distribution of students with different 

levels of mastery for attribute 1. p(A2), represents the distribution of students with different 

levels of mastery for attribute 2. The distribution over attribute 3 is a conditional distribution, 

p(A3 | A1,A2), specifying the distribution over attribute 3 is dependent on attribute 1 and 

attribute 2. The probability of student mastery of attribute 3 depends on their mastery of attribute 

1 and attribute 2. As such, each student would have their own distribution of attribute 3 given 

their proficiency in attribute 1 and 2.  

𝑝(A1, A2, A3, I1, I2) = 𝑝(A1)𝑝(A2)𝑝(A3|A1, A2)𝑝(I1|A3)𝑝(I2|A2)                                        (11) 

As a concrete example, we might assume that a student who have fully mastered both 

attribute 1 and 2 has 70% probability of fully mastering attribute 3, 20% partially mastering 

attribute 3, 10% not mastering attribute 3. Conversely, a student who have fully mastered 

attribute 1 but partially mastered attribute 2 may only be 50% probable to fully master attribute 

3. In general, each variable in the graphical model has a conditional probability distribution 

(CPD), depending on the joint distribution of its parents in the model. If a variable has no 
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parents, its CPD appears to be its own probability distribution with different magnitude of its 

values. To construct prior conditional relationship among variables, we may depict the edges 

based on our assumptions or content experts’ suggestions.  

From the modeling framework and mathematical specification, we may find some 

similarities between the two approaches. CDMs are developed to classify students into different 

proficiency levels, and BN can be used to serve the same purpose. Other models can do similar 

cognitive diagnosis, but they are not very comparable to either CDM or BN. This highlights the 

need to compare and evaluate the performance of the two approaches.  

2.3.4 Bayesian Network and Measurement Models  

As discussed before, BN has become a useful tool to understand the relationships among 

a large number of variables. Many studies have explored its promising application in analyzing 

educational or psychological data relative to other measurement models. BN highlights its 

advantages in a powerful modeling flexibility for building psychometric models and supporting a 

wide range of assessment types and contexts, particularly for multidimensional proficiency 

models or tests with multiple attributes. However, the usage of BN in the psychometric field is 

still in its infancy compared to CDMs and IRT. One important advantage of the BN approach over 

other measurement approaches is that it can estimate the unknown parameters and hidden structural 

relationships based on the observed data (Bolstad, 2007). The following section reviews the current 

studies on the integration of BN modeling in assessment.  

Culbertson (2016) reviewed the current state of the BN application in the educational 

assessment and concluded that BN can diagnostically model content domains. Similarly, Almond 

et al. (2009) suggested that BN is powerful for providing diagnostic individual-level and group-

level information on student proficiency which could help teachers to conduct customized 
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instruction. Researchers have explored ways to combine BN and IRT when analyzing assessment 

data. For example, Ueno (2002) proposed a BN-IRT model to relax the local independence 

assumption by explaining the local dependence within the probabilistic network relationship of 

BN modeling. They found that the proposed BN-IRT model provides better results than the 

traditional IRT model in terms of model fit. Later in a same condition of detecting local 

dependence, Hashimoto and Ueno (2011) constructed network relations among items based on 

BN and computed an index of conditional mutual information to determine the dependence 

among items.  

BN performs well with large data in the context of technology-integrated assessments and 

an intelligent learning environment. Nouh et al. (2006) presented a computer-based Intelligent 

Tutoring System (ITS) to diagnose student achievement based on BN and at the same time use 

IRT to select items adaptive to students of any achievement levels. By using the same ITS tool, 

Liu (2009) found that even when item responses do not explicitly reflect students’ competence, 

BN can help researchers to identify proficiency model with indirect observations. Specifically, 

BN can indirectly estimate the competence of students through students’ item responses and can 

learn the structural relationships of attributes. Moreover, the BN method helps teachers and 

educators to make better decisions on instructional and assessment design.  

In a more practical psychometric consideration, researchers have applied BN to the 

context of computer adaptive testing (CAT) and the large-scale operational assessment. 

Desmarais and Pu (2005) utilized partial order knowledge structure (POKS), which was also 

considered as a format of BN model structure, to directly depict the knowledge structure among 

the attributes measured by the items. They compared the POKS model and the 2-PL IRT model 

on a CAT exam and concluded that POKS works well with small test data and yields accurate 
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examinee classification in terms of proficiency levels on attributes. In another case, Culbertson 

and Li (2012) applied BN to analyze the attribute structure for a medical licensing exam. They 

described the development process of a BN model using the operational data and investigates its 

measurement precision. Later, Culbertson (2014) conducted a simulation study to examine the 

performance of BN-based item selection criteria given different conditions of information 

distribution reflected among attributes for a CAT assessment. He discussed how different BN-

based item selection methods impact measurement precision in CAT. Recently, Chen et al. 

(2018) have proposed a BN-based framework to make recommendations on learning materials 

for adaptive learning system.  

Researchers also used BN to understand the development of the learning process and the 

relationship among attributes. Pek and Poh (2004) introduced a tutoring system which provides 

adaptive assistance to students based on a BN modeling of item parameters, students’ mastery of 

the key concepts, and an IRT structure to compute the probability of response correctness. 

Similarly, Steedle (2008) investigated two contrasting assessment systems: learning progressions 

and facet-based assessments based on BN modeling.  

In the realm of longitudinal assessment data, West et al. (2012) and Choi (2012) 

constructed a dynamic BN model to investigate the relationships between learning progression 

and learning tasks. The dynamic BN models, also known as Hidden Markov Model (HMM), are 

used to model learning progressions over time by making a connection among the associated 

learning progression theory, assessment design, and inferences on student achievement. The 

application of dynamic BN is more of interest in formative assessments with a purpose of 

assessing student learning progress during instruction. They pointed out the advantages of using 

BN to model learning progressions: (a) it depends on expert input to build the initial conditional 
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dependence among components and then updates the relationships using observed data of real 

time; (b) it is flexible to model complex data or small sample data; (c) it provides information to 

help teachers and educators to diagnose students’ achievement levels regarding attributes and 

learning progressions and update their test design.  

Lee et al. (2015) applied Bayesian Knowledge Tracing (BKT) algorithm, an algorithm 

based on BN, to score an interactive learning task. BKT algorithm holds the similar idea with BN 

model in tracing the learning process based on the dependent relationships among attributes and 

in inferring whether students master one or multiple components. They can be used to examine 

students’ knowledge acquisition approaches and to provide implications for designing learning 

tasks. Khajah et al. (2014) integrated BKT algorithm and IRT. Also working with ITS, this study 

used both MLE and Bayesian approaches to estimate parameters for the BKT, IRT and combined 

models and concluded that the BKT-IRT model and the IRT model outperform the BKT model 

when estimating student proficiency. Different from Khajah et al. (2014)’s results, Wilson et al. 

(2016) discovered that structural IRT is the best-performing model compared to IRT and BKT 

model and suggested that grouping information is useful to predict student responses while BKT 

model is more advantageous when considering the inclusion of prior information from experts.  

The BN modeling framework corresponds to the principles of ECD. Almond et al. (2007) 

highlighted the use of BN modeling and its integration with ECD when conducting cognitive 

diagnosis. They demonstrated the framework of ECD in BN modeling in two steps: the 

proficiency model, with the conditional dependence among proficiency variables; the evidence 

model, with the presentation of how observed variables connected with proficiency variables. 

Further, Wu (2014) found that BN models are slightly better with small samples compared to 

CDMs as it may rely on the relationships among attributes to estimate parameters in a short test. 
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Bolt (2007) discussed some advantages and weaknesses of BN modeling. BN is accessible and 

flexible to construct all aspects of assessment following the ECD framework. However, like 

CDM, BN modeling relies heavily on expert judgment. Therefore, it may sometimes unclear 

whether experts can reflect the real relationships between items and attributes, or how real data 

are used to be representative of their judgment and accurate information.  

Taken together, the purpose of applying BN to diagnostic assessment is to classify students 

into different proficiency levels on each attribute according to their item responses (Rupp, et al., 

2008). Under the Bayesian approach, the classification results can be obtained by computing the 

posterior distribution of parameters after considering the prior information. Further, as Rupp and 

Templin (2008) stated, BN can be used to specify complex attribute structures and the flexible 

modeling feature. 

2.4 Conceptual Assessment Framework in the Bayesian Network Modeling 

BN naturally corresponds to the ECD framework when used to construct an assessment 

(Almond et al., 2015). ECD intends to gather evidence to make inference on student performance 

through assessment arguments. Under the ECD framework, the stage of CAF serves as an 

inferential modeling process transferring the domain conceptualization into a concrete tool to 

elicit students’ knowledge and skills. Rupp et al. (2010) stated that any diagnostic assessment 

can potentially benefit from the design of the ECD framework.  

BN is a graphical modeling procedure providing diagnostic feedback to students’ mastery 

of attributes and explaining structural relationships of cognitive attributes. It can be constructed 

following the CAF under the ECD framework. Specifically, it demonstrates a path of inference 

composed of a proficiency model explaining the relationships of proficiency indicators, an 

evidence model providing statistical inference for the proficiency model from observations, and 
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a task model specifying the features of materials and tasks presented to students. BN can be 

represented by a graphical structure of variables and a parametric demonstration determining the 

CPDs for variables in the graphical structure. To echo an assessment framework, the structural 

part of BN represents the proficiency model, where nodes reflect students’ proficiency 

indicators, and edges are directed arrows specifying the hypothesized or known relationships 

among indicators. The parametric section allows the mapping from proficiency indicators to 

observations by parameterizing the relationships and providing inferential evidence to explain 

the graphical structure based on observed data.  

2.5 Summary 

In sum, this chapter lays the theoretical and methodological foundations for the study by 

addressing the topics of assessment frameworks, measurement models, and the connection 

between them. Specifically, (a) the review of the Assessment Triangle framework and the ECD 

framework serves as the theoretical foundation for the formative, diagnostic features of the 

potential BN application results. It specifies the components of the Assessment Triangle, the 

procedures of ECD, and the three models of CAF (i.e., the proficiency model, the evidence 

model, the task model). (b) The description of the IRT modeling, CDMs including DINA, DINO 

and G-DINA, and BN provides an overview of the current popular measurement models. The 

review of the existing BN application in assessment underlies the methodological support for 

conducting cognitive diagnosis in this study. Finally, (c) the review of relating BN to CAF 

demonstrates the natural connection between the theoretical assessment framework and the 

methodological technique.  

Despite the flexibility in modeling and the capacity of providing diagnostic information 

on student knowledge presented in BN modeling, little research on analyzing assessment data 
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and providing informative diagnosis has considered using BN. It might be attributable to its 

origin in the artificial intelligence community, which has less connection to the education 

community. However, research has shown that BN is generally consistent with the assessment 

framework of ECD and the measurement modeling framework. In addition to these advances, 

Almond et al. (2015) have listed 10 reasons for considering BN in educational assessment in 

their book, including its solid mathematical foundations of Bayes’ Theorem, its incorporation of 

theory and experts’ option about the measured cognitive domain, its capability of learning 

observations and optimizing models, its prominent computation time, to name a few. Although 

limited evidence has presented in the literature on the application of BN in conducting cognitive 

diagnosis, it has potential to become a prominent conceptual and empirical operationalization of 

the genuine educational agenda in identifying and realizing students’ academic potential. 

Culbertson (2016)The lack of relevant BN literature and the potential of BN in improving 

students’ learning warrant an empirical comparison of the performance of BN and other 

measurements models commonly used for cognitive diagnosis including CDMs and a scale-up of 

the BN application in educational assessment. 

2.6 Research Questions  

This study aims to answer the following research questions. The first two sets of 

questions are addressed in a simulation study and the third question is addressed in an analysis of 

real data:  

1. Based on a simulation study, under the different conditions of sample size and 

test length, how well can the following parameters be recovered: students’ mastery 

profiles, item parameters, person parameters? 
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2. Based on a stable and optimal selection of sample size and test length (if any) 

from the first research question, 

2a. under the different conditions of attribute types and Q matrix 

structures, how well can the following parameters be recovered: students’ mastery 

profiles, item parameters, person parameters? 

2b. how well the classification accuracies of student attribute mastery can 

be recovered with a prior information of no structural relationships, partial 

structural relationships, full structural relationships, and wrong structural 

relationships? What cognitive diagnostic information can be provided to students 

and teachers? 

2c. how are the models’ fitting and accuracies different between the CDM 

and the BN approach? 

3. Based on two existing data sets, how is the effectiveness of the BN approach 

based on MCMC estimation in analyzing real test data? What cognitive diagnosis can be 

provided by the BN approach? 
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3. METHOD 

In this chapter, I address the methods used to answer the research questions, including the 

modeling procedures of BN, MCMC estimation of model parameters, simulation specifications, 

evaluation criteria, real dataset description, and data analysis plan. First, I explain the conditional 

distributions defined for proficiency models and evidence models for BN modeling and the joint 

distribution of all model parameters. Second, I briefly describe the MCMC estimation procedures 

for this study. Third, I elaborate on the simulation conditions of sample size, test length, Q 

matrix complexity, attribute types, and prior information on hierarchy in attributes. I also specify 

the sampling of model parameters for the MCMC estimation. I further explain how the 

simulation data is generated. Finally, I specify the evaluation criteria of the utility and 

effectiveness of model results.  

3.1 BN Modeling 

As demonstrated in Chapter 2, BN models conditional dependence among variables and 

presents these probabilistic relationships in a graphical display. Its probabilistic computations 

depend on making a series of Bayesian inferences, which use Bayes’ Theorem to update 

probabilistic relationships as more information is added. As such, I specify BN modeling in 

terms of Bayesian inferences and conditional probabilities later in this section. In addition to its 

flexibility in modeling dependent relationships, the other motivation to promote the application 

of BN in educational assessment is its natural correspondence with the assessment frameworks 

of Assessment Triangle (Pellegrino et al., 2001) and ECD (Mislevy & Haertel, 2006). 

Specifically, the cognition component of BN modeling depends on a proficiency model 
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embodying the theory about the structural relationships among knowledge attributes and the 

beliefs about students’ mastery levels of these attributes. The observation component of BN 

modeling furnishes the evidence model to elicit students’ item responses and make inferences 

about their mastery status based on the information from the proficiency model. The 

interpretation component of BN modeling supports the cognitive diagnosis of students’ 

knowledge and strategizes the remediation path for further improvement. Mislevy et al. (1999) 

have proposed the BN representation of the assessment framework. To be closely aligned with 

CAF framework in ECD, this study manifests BN modeling in terms of proficiency models and 

evidence models following their specification. 

The proficiency model contains the latent ability variables, which represent students’ 

mastery profile of attributes as a result of the BN application in cognitive diagnosis. They are the 

target statistical inferences made about examinees. The proficiency model is denoted as i =

(i1, … ,iK), indexed for all N students (i = 1,…,N) and all K attributes (k = 1,…,K). Most of the 

current literature and studies on cognitive diagnosis focus on classifying students into binary 

proficiency levels of mastery and non-mastery. However, practically speaking, finer-grained 

proficiency levels (i.e., more than two levels) could provide teachers and researchers with more 

information to develop post-diagnosis remediation or learning development plans. To extend the 

current literature, this study defines students’ mastery of attributes on a polytomous scale, which 

also includes the dichotomous case. Put more generally, i is a polytomously-valued vector, 

where 𝑖𝑘 = 𝑚, denoting student i reaches the ability level m, for m = (1,…,M), on attribute k. 

For the dichotomous case, M is equal to 2.  

The inferences made on student mastery of attributes and the structure among k attributes 

are both based on CPDs. To construct the conditional probability for attribute mastery for each 
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student, a prior distribution, which is the distribution of the parameters before any data is 

observed, is proposed. For the vector of student mastery profile i for student i, its prior 

distribution should contain assumptions about the distribution of expected ability levels of each 

attribute for the class student i belongs to in the target population and the structure in attributes 

through specifying the model structure based on a  hyperparameter λ. As such, the probability 

distribution of the polytomously-valued vector  is expressed as θik~𝑝(θ|λk), in which 𝛌 =

(𝛌1, … , 𝛌K). λk is defined based on the proportion of examinees belonging to each level of the kth 

attribute for level m = 1,…,M. For example, in a math assessment evaluating three ability levels 

of each attribute (i.e., M = 3), inferences on student ability levels are made in terms of non-

mastery, medium mastery, and high mastery. To be congruent with such classification, the Q 

matrix of this test would contain polytomous values to demonstrate items requiring different 

ability levels. For example, items may require a medium mastery of multiplication and a high 

mastery of addition to be answered correctly. Content experts who hold an existing theory or 

prior experience can provide strong information on the proportions of students distributed across 

performance levels, which is expressed by λ, to render a precise prior distribution for . If such 

information is not available, a vague prior distribution should be provided for λ to estimate the 

probability distribution of . Given that λ is unknown in most cases, the distribution of p(λ) can 

be specified as a Dirichlet distribution, which is a natural conjugate prior distribution for 

categorically distributed ik, based on a vague predetermined pseudo count of students 

distributed across all ability levels for attribute k. 

Mathematically, for independent attributes with no structural relationships, i =

(i1, … ,iK), ik~Categorical(𝛌k), 𝛌k~Dirichlet(𝑪𝒐𝒖𝒏𝒕λk
), where 𝑪𝒐𝒖𝒏𝒕𝜆𝑘

 is a vector of 
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M(k) pseudo counts for attribute k. For attributes with dependent relationships, a conditional 

structure should be incorporated to define ik. For example, for a test with a dependent 

relationship as shown in Figure 3, ik~Categorical(𝛌k), for 𝑘 = 1,2; 

𝛌k~Dirichlet(𝑪𝒐𝒖𝒏𝒕λk
), for 𝑘 = 1,2; θi3|(

i1
,i2) = 𝑐 ~ Categorical(𝛌3c), 

𝛌3c~Dirichlet(𝑪𝒐𝒖𝒏𝒕λ3c
), where c represents student i’s mastery status of attribute 1 and 2, for 

c = 1,…,M2. In other words, there would be different mastery probabilities of attribute 3 

conditional on their mastery status of attributes 1 and 2. As an example, we can set λ3,𝑐=3 

depends on the pseudo counts of students across all ability levels of attribute 3 if they have high 

mastery of attribute 1 and medium mastery of attribute 2.  

The evidence model of BN modeling yields the structure of a probability distribution 

describing how students’ item responses depend on their mastery profile and item parameters. As 

demonstrated in Chapter 2, a Q matrix predetermined by test developers is used to demonstrate 

which attributes are measured by each item. In BN modeling, items measuring the same levels of 

the same attributes are grouped together. Each group of items has its own evidence model 

indexed by s = 1,…,S. Each evidence model elicits item responses Xij(s) and contributes 

information about attribute mastery to making inferences for . Student responses are denoted as 

a matrix 𝐗j = (𝑋j1, … , 𝑋JN) for item j = 1,…,J across all examinees. Regarding item-level 

parameters, πjl|i denotes the conditional probability of responding to item j with a value of l 

given students’ mastery status i. That is, πjl|i = 𝑃(𝑋ij = 𝑥ijl|i) as described in Levy and 

Mislevy (2004). More generally, let each mastery status of the attributes measured by each 

evidence model be labeled by integer c = 1,…,C. Then 𝛑j|i=𝑐(s)
 represents a vector of 
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conditional probabilities of observing each possible value of Xij on item j for students with 

mastery status c on the attributes measured by evidence model s.  

The distribution of item responses depends on i and πj, which is denoted as 

𝑋ij~𝑝 (𝑋ij|i, 𝛑j|i=𝑐(s)
). Further, the distribution of 𝛑j|i=𝑐(s)

 has its prior distribution defined by 

the pseudo count parameter Countsc, which refers to the prior information about the probability 

of selecting each possible response on the items grouped by evidence model s for students with a 

given mastery status c. If Countsc is unknown, its prior distribution can be determined as 

p(Countsc), and Countsc can be specified as the pseudo counts of students in different mastery 

status of the associated evidence model s. Similar as the Bayesian inferences for i, 𝛑j|i=𝑐(s)
 

follows a categorical distribution dependent on Countsc for polytomous item response or a 

Bernoulli distribution dependent on Countsc for dichotomous item responses, which reflects the 

response behavior on item j for students in mastery profile c.  

Mathematically, (𝑋ij|ik(s) = 𝑐)~Categorical(𝛑j|i=𝑐(s)
) for polytomous responses; 

(𝑋ij|ik(s) = 𝑐)~Bernoulli(𝛑j|i=𝑐(s)
) for dichotomous responses; 

𝛑j|i=𝑐(s)
~Dirichlet(𝑪𝒐𝒖𝒏𝒕sc),  𝛑j|i=𝑐(s)

= (𝛑j1, … , 𝛑jC), where ik(s) represents the mastery 

status of the attribute mastery required by evidence model s; 𝑪𝒐𝒖𝒏𝒕sc is a vector with a length L 

reflecting the pseudo counts of each possible value of item j for student i who belongs to mastery 

profile c of the measured attributes for evidence model s.  

Put more succinctly, I delineated the π parameters in terms of likelihood functions. I used 

a dichotomous item as an illustration. Suppose that this item has two attributes as its parents in 

the DAG, that is, measuring two attributes. For each combination of the parent variables, there is 

a conditional distribution for the possible responses to this item. Table IV illustrates the 
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conditional probability table as the likelihood function for the item response coded as 0 and 1 

that depends on respondents’ discrete mastery status on the two latent variables for the measured 

attributes, each coded as the number of attributes reaching the required mastery levels taking on 

values of 0, 1, 2. As shown in the table, it can be noted that there are three π parameters 

associated with item j, which depends on two attributes. These π parameters were sampled from 

Beta distribution based on prior pseudo counts. 

 

 

 

 

 

 

TABLE IV CONDITIONAL PROBABILITY TABLE FOR RESPONSES TO ITEM J THAT 

DEPENDS ON TWO ATTRIBUTES 

Number of attributes having 

reached the required mastery levels 

of the measured attributes 

 P(Xj | 1,2) 

 0 1 

0  1− πj,(00) πj,(00) 

1  1− πj,(01, 10) πj,(01, 10) 

2  1− πj,(11) πj,(11) 

Note: πj(ab) is the probability of correctness for item j When 1 = a and 2 = b. 

 

 

 

After setting up all the modeling pieces, the full joint probability distribution of the 

responses X(s)ij of N students to J items nested within S evidence models can be expressed as 

follows according to Bayes’ Theorem. It is used to simulate the posterior distributions of the 

unknown parameters.  

𝑝(𝐗,, 𝛑, 𝛌) = ∏ ∏ ∏ 𝑝(𝑋(s)ij|i, π(s)j)𝑝(π(s)j)
𝑁
𝑖=1

𝐽
𝑗=1 𝑝(i|λ)𝑝(λ)                                 𝑆

𝑠=1     (12) 
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3.2 MCMC Estimation 

Once the response data are observed, the Bayesian inference on each parameter is 

computed by deriving the posterior distribution from posterior simulation, which is also called 

Markov Chain Monte Carlo (MCMC). The MCMC procedure follows a Markov chain of 

estimation iterations, in which the probability of each estimation iteration depends only on the 

state of parameters estimated in the previous iterations. The MCMC estimation of BN modeling 

for this study demonstrates that given the observed responses, the posterior distribution is 

estimated for the unobserved parameters (i.e., , π, λ). 

In this study, I carried out MCMC based on the approach of Gibbs sampling by using the 

Bayesian inference Using just another Gibbs sampler (JAGS; Plummer, 2015), and the R2jags 

package (Su & Yajima, 2015) in R. The R2jags package is used to run the JAGS code on the R 

platform. The Gibbs sampling procedure for this study is described as follows.  

 

Given 𝑪𝒐𝒖𝒏𝒕𝜆𝑘
, 𝑪𝒐𝒖𝒏𝒕𝑆𝐶, 𝑿 are known, and the full joint probability distribution: 

𝑝(𝐗,, 𝛑, 𝛌) = ∏ ∏ ∏ 𝑝(𝑋(s)ij|i, π(s)j)𝑝(π(s)j)

𝑁

𝑖=1

𝐽

𝑗=1

𝑝(i|λ)𝑝(λ)

𝑆

𝑠=1

, 

 

Step 1. Sample  

𝛌0~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝑪𝒐𝒖𝒏𝒕𝜆𝑘
) 

𝛑0~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡( 𝑪𝒐𝒖𝒏𝒕𝑆𝐶) 

0~𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝝀0) 
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Step 2. Given observed response data X, for t = 0, 1,…,T, where T represents the convergence 

point, the value of each model parameter is drawn from the following CPDs based on the full 

probability model: 

Draw 

t+1~𝑝(|𝑿, 𝛑t, 𝛌t) 

=
𝑝(, 𝑿, 𝛑t, 𝛌t)

𝑝(𝑿, 𝛑t, 𝛌t)
                                                              according to Bayes′ Theorem, 

=
𝑝(𝑿|, 𝛑t) 𝑝(𝛑t) 𝑝(|𝛌t) 𝑝(𝛌t)

𝑝(𝑿|𝛑t, 𝛌t) 𝑝(𝛑t|𝛌t) 𝑝(𝛌t)
                             according to the chain rule on the denominator, 

=
𝑝(𝑿|, 𝛑t) 𝑝(𝛑t) 𝑝(|𝛌t) 𝑝(𝛌t)

𝑝(𝑿|𝛑t) 𝑝(𝛑t) 𝑝(𝛌t)
                             𝑎𝑠 𝑿 is independent of 𝛌, 𝛑 is independent of 𝛌, 

=
𝑝(𝑿|, 𝛑t) 𝑝(|𝛌t)

𝑝(𝑿|𝛑t)
 

Draw 

𝛑t+1~𝑝(𝛑|𝐗,t+1, 𝛌t) 

=
𝑝(𝛑, 𝑿,t+1, 𝛌t)

𝑝(𝑿,t+1, 𝛌t)
                                                       according to Bayes′ Theorem, 

=
𝑝(𝑿|t+1, 𝛑) 𝑝(𝛑) 𝑝(t+1|𝛌t) 𝑝(𝛌t)

𝑝(𝑿|t+1, 𝛌t) 𝑝(t+1|𝛌t) 𝑝(𝛌t)
                  according to the chain rule on the denominator, 

=
𝑝(𝑿|t+1, 𝛑) 𝑝(𝛑) 𝑝(t+1|𝛌t) 𝑝(𝛌t)

𝑝(𝑿|t+1) 𝑝(t+1|𝛌t) 𝑝(𝛌t)
                  𝑎𝑠 𝑿 is independent of 𝛌, 

=
𝑝(𝑿|t+1, 𝛑) 𝑝(𝛑)

𝑝(𝑿|t+1)
 

Draw 

𝛌t+1~𝑝(𝛌|𝐗,t+1, 𝛑t+1) 
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=
𝑝(𝛌, 𝑿,t+1, 𝛑t+1)

𝑝(𝑿,t+1, 𝛑t+1)
                                                   according to Bayes′ Theorem, 

=
𝑝(𝑿|t+1, 𝛑t+1) 𝑝(𝛑t+1) 𝑝(t+1|𝛌) 𝑝(𝛌)

𝑝(𝑿|t+1, 𝛑t+1) 𝑝(t+1|𝛑t+1) 𝑝(𝛑t+1)
         according to the chain rule on the denominator, 

=
𝑝(𝑿|t+1, 𝛑t+1) 𝑝(𝛑t+1) 𝑝(t+1|𝛌) 𝑝(𝛌)

𝑝(𝑿|t+1, 𝛑t+1) 𝑝(t+1) 𝑝(𝛑t+1)
         𝑎𝑠  is independent of 𝛑, 

=
𝑝(t+1|𝛌) 𝑝(𝛌)

𝑝(t+1)
 

 

The Empirical Bayes method was used to estimate hyperparameters in the above CPDs 

and to further approximate the distribution for each model parameter. As the starting values of 

model parameters are randomly sampled or chosen for convenience, they are usually far from the 

target values. The posterior estimation of model parameters would approximate the target values 

when the number of iterations increase. When the Markov chain reaches its convergence and the 

parameter estimation becomes stable, the posterior distribution at this iteration demonstrates the 

target model parameter estimation. To make the Markov chain reaches the target values more 

quickly, I dropped some iterations at the beginning of MCMC as burn-ins.  

3.3 Simulation Specification 

3.3.1 Simulation Factors  

As the application of BN in cognitive diagnosis is still new to the field, it is necessary to 

evaluate how different assessment scenarios or contexts impact its estimation. I varied the 

following factors in this simulation study: (a) sample size, (b) test length, (c) Q matrix 

complexity, (d) attribute type, and (e) the structure in attributes. These factors were chosen 

according to the current challenges or contexts of conducting cognitive diagnosis. First, cognitive 
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diagnosis is usually noted to be sensitive to sample size because it is hard to make reliable 

estimation of model parameters for small sample sizes (Chiu et al., 2018). For this reason, most 

studies were conducted for sample sizes larger than 500. However, for some small education 

programs or interventions where a large sample size is not feasible to achieve, it may hinder the 

applicability of cognitive diagnosis in some small-scale classroom contexts. It is therefore 

necessary to examine whether the BN approach, as an alternative way of cognitive diagnosis, 

could alleviate this constraint and provide informative feedback regarding student proficiency in 

broader educational contexts. To achieve this goal, I examined sample sizes of 50, 100, 500. 

Another factor that accounts for data size is the test length. Almond et al. (2015) claimed that, in 

addition to a larger sample size, increasing the test length would also help to produce more 

accurate estimates for BN models. However, it is not clear how sample size, test length, and its 

interaction impact parameter estimation results of BN modeling. It is therefore necessary to 

probe whether test length may influence the effectiveness of the BN approach. For this purpose, I 

examined the test lengths of 15 and 30 items in this study.  

I also evaluated the performance of the BN approach under different structures of the Q 

matrix. As demonstrated in Chapter 2, tests can be designed based on a simple structure or a 

complex structure given the requirements of test blueprint and test purposes. In a simple 

structure Q matrix, only one attribute is measured by each item, while more than one attribute 

can be loaded on one item in a complex structure Q matrix. Additionally, in current literature, 

most CDM models were developed to provide binary classification on student mastery of 

attributes and fail to accommodate polytomous attributes (Chen & de la Torre, 2013). However, 

finer-grained inferences regarding student mastery profile would help instructors and researchers 

to customize their instruction and intervention according to different learning demands. This 
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study investigates the application of the BN approach in classifying students into more mastery 

levels based on polytomous attributes, which may extend the utility of current cognitive 

diagnosis. Finally, as one objective of this study is to investigate how BN performs for 

assessment with a structure in attributes and how it recovers the structural relationships, I also 

varied the prior information on the structure in attributes by inputting no information, partial 

information, and full information. The simulation scenarios are summarized in Table V.  

 

 

 

 

 

 

TABLE V SIMULATION FACTORS AND LEVELS 

Factor # of conditions Level 

Sample size 3 50, 100, 500 

Test length 2 15, 30 

Q matrix complexity 2 Simple, Complex 

Attribute type 2 Dichotomous, Polytomous 

Prior info on attribute structure 4 No info, Partial info, Full info, Wrong info 

 

 

 

 

 

 

3.3.2 Q Matrix  

Q matrix is used to demonstrate the measured attributes by each item. In order to design 

the simulation of this study with theoretical rationale rather than completely from scratch, I have 

extended the Q matrix from the fraction-subtraction test of Tatsuoka’s (1983) study based on its 

item distributions and revised the structural structure proposed by Sinharay et al. (2004). That 

said, the tests simulated for this study has five attributes containing a structural relationship. 
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Figure 4 depicts the structural relationships among attributes used in this study after adaption. 

Tables VI-IX describe the Q matrices used in this study under different scenarios. Table VI and 

Table VII are simple structure Q matrices, where each item only measures one attribute, and the 

attributes in this simple structure test were set to be evenly distributed. Table VIII and Table IX 

are complex structure Q matrices, where each item may measure more than one attribute, and the 

distribution of the items on each attribute follows that of the original Q matrix for the Tatsuoka 

(1984) mixed number subtraction test. Additionally, Table VIII and Table IX contain 

polytomous attributes, in which I balanced the distribution of the three levels based on the 

hierarchy in attributes. The mastery requirement for an item should be associated with the 

medium or high mastery of its prerequisite attributes. For example, item 9 requires high mastery 

of attributes 1 and 5 but medium mastery of attributes 3 and 4 as attributes 1 and 5 are 

prerequisites for attributes 3 and 4. 
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Figure 4. The structural relationships among the attributes used in the simulation. This structure 

was adapted from the structure from Sinharay et al. (2004). 

 

 

 

TABLE VI SIMPLE STRUCTURE Q MATRIX WITH DICHOTOMOUS ATTRIBUTES 

Evidence 

Model 

Item No. of different 

test lengths 
 Attributes 

 15 30  1 2 3 4 5 

1 1-2 1-4  1     

2 3-4 5-8   1    

3 5-7 9-14    1   

4 8-10 15-20     1  

5 11-15 21-30      1 

Note. The measured attributes measured by each item are labeled as 1.  
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TABLE VII COMPLEX STRUCTURE Q MATRIX WITH DICHOTOMOUS ATTRIBUTES 

Evidence 

Model 

Item No. of different 

test lengths 
 Attributes 

 15 30  1 2 3 4 5 

1 1-2 1-4  1     

2 3 5-6  1 1    

3 4-6 7-12  1  1   

4 7-11 13-22  1  1 1  

5 12-14 23-28  1  1 1 1 

6 15 29-30  1 1 1 1  

Note. The measured attributes measured by each item are labeled as 1. 

 

 

 

 

 

TABLE VIII SIMPLE STRUCTURE Q MATRIX WITH POLYTOMOUS ATTRIBUTES 

Evidence 

Model 

Item No. of different 

test lengths 
 Attributes 

 15 30  1 2 3 4 5 

1 1 1-2  1     

2 2 3-4  2     

3 3 5-6   1    

4 4 7-8   2    

5 5-6 9-12    1   

6 7 12-14    2   

7 8 15-16     1  

8 9-10 17-20     2  

9 11-13 21-26      1 

10 14-15 27-30      2 

Note. The measured attributes requiring high mastery level are labeled as 2, medium mastery are 

labeled as 1. 
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TABLE IX COMPLEX STRUCTURE Q MATRIX WITH POLYTOMOUS ATTRIBUTES 

Evidence 

Model 

Item No. of different 

test lengths 
 Attributes 

 15 30  1 2 3 4 5 

1 1 1-2  1     

2 2 3-4  2     

3 3 5-6  2 1    

4 4-5 7-10  2  1   

5 6 11-12  2  2   

6 7-8 13-16  2  1 1  

7 9-10 17-20  2  2 1  

8 11 21-22  2  2 2  

9 12 23-24  2  1 1 2 

10 13 25-26  1  1 1 1 

11 14 27-28  2  1 1 1 

12 15 29-30  2 2 1 1  

Note. The measured attributes requiring high mastery level are labeled as 2, medium mastery are 

labeled as 1. 

 

 

 

 

 

 

 

 3.3.3 Parameter Sampling  

This section specifies the prior distributions for person and item parameters to sample 

from in the simulation based on the specified structural relationships as shown in Figure 4.  

Generally speaking, the posterior distribution of parameters in Bayesian estimation relies 

on prior distribution and the observed data. Stronger prior information would result in posterior 

distribution estimation closer to prior distribution. Therefore, if reliable information on prior 

distribution is not available, no or weak prior distribution should be provided so that it has little 

influence on the poster distribution of model parameters. Considering that this study examines 

the application of BN modeling in a relatively small sample size, the estimation accuracy might 
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be influenced if no information was provided (i.e., same priors for each parameter). For this 

reason, when conducting the MCMC estimation for model parameters using JAGS in this study, 

I used weak priors, which reflects a lack of accurate prior knowledge but with some vague 

information about the proportions of student classes of different mastery profiles.  

The sampling of person parameters is guided by the proficiency model. According to the 

dependent relationships among the five attributes, the proficiency model can be factorized as: 

𝑝(i) = 𝑝(i3|i1,i2,i5)𝑝(i4|i1,i2,i5)𝑝(i5|i1,i2)𝑝(i2|i1)𝑝(i1)                    (13) 

Specifically, this proficiency model demonstrates that attribute 1 is the prerequisite for all 

the other attributes. Attribute 2 is only dependent on attribute 1. To learn attribute 5, students 

usually first master both attributes 1 and 2. Attributes 1, 2, 5 are prerequisites to attributes 3 and 

4 respectively. Following this relationship, λ can be defined as follows: 

λ1 = 𝑝(1 = 𝑚1) for 𝑚1 = 0, … , 𝑀 

λ2 = 𝑝(2 = 𝑚2|1 = 𝑚1) for 𝑚2 = 0, … , 𝑀 

λ5 = 𝑝(5 = 𝑚5|2 = 𝑚2,1 = 𝑚1) for 𝑚5 = 0, … , 𝑀 

λ3 = 𝑝(3 = 𝑚3|5 = 𝑚5,2 = 𝑚2,1 = 𝑚1) for 𝑚3 = 0, … , 𝑀 

λ4 = 𝑝(4 = 𝑚4|5 = 𝑚5,2 = 𝑚2,1 = 𝑚1) for 𝑚4 = 0, … , 𝑀. 

When selecting the starting values of the pseudo counts for the conjugate prior 

distribution for the distribution of mastery levels for each attribute, the larger sum of the pseudo 

counts for each mastery level would provide stronger prior knowledge about λ, while a smaller 

sum would have less influence on the subsequent posterior simulation (i.e., MCMC estimation). 

As there is no prior knowledge about the distribution of mastery profiles for this study, I used a 

small sum of pseudo counts, 10, and a seemingly reasonable distribution for the mastery levels of 
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each attribute to maintain a weak prior information and avoid much influence on posterior 

estimation.  

For an assessment with two ability levels, the conjugate prior distribution for mastery 

levels of each attribute follows a beta distribution. According to the structural relationships, 

attribute 1 tends to be a basic attribute for the target population to master. Therefore, I assumed 

80% (=
8

8+2
) of students are expected to master attribute 1, and λ1 follow Beta (8,2). For the rest 

attributes which are all dependent on other attributes, there would be multiple λ associated with 

each attribute specifying the probability of mastery based on the mastery status of prerequisite 

attributes. For example, attribute 5 has attributes 1 and 2 as prerequisites and its probabilities of 

mastery can be categorized into groups of students who master none of the two attributes, who 

master one of the two attributes, and those who master both attributes. In this case, there are 

three λ parameters associated with attribute 5. All the pseudo counts for sampling the λ 

parameters for dichotomous attributes are summarized in Table X.  

 

 

 

 

 

 

TABLE X PRIOR DISTRIBUTIONS FOR PERSON PARAMETERS (Λ) FOR 

DICHOTOMOUS ATTRIBUTES IN THE SIMULATION  
Mastery Status of Prerequisite Attributes  

None One Two Three 

Attribute 1 
 

Beta (8,2) 
  

Attribute 2 Beta (2,8) Beta (8,2) 
  

Attribute 3 Beta (2,8) Beta (4,6) Beta (6,4) Beta (8,2) 

Attribute 4 Beta (2,8) Beta (4,6) Beta (6,4) Beta (8,2) 

Attribute 5 Beta (2,8) Beta (5,5) Beta (8,2) 
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For an assessment with three ability levels, λ follow Dirichlet distributions. We can select 

the pseudo count parameter with a sum of 10 and distributed as (5, 3, 2) as a standard. It suggests 

that, given their mastery of parent attributes to the current attribute, 50% (=
5

5+3+2
) of students in 

the target population tend to fully acquire the current measured attribute, 30% (=
3

5+3+2
) partially 

acquire the measured domain, and 20% (=
2

5+3+2
) fail to acquire the measured attribute. For 

example, following the structural relationships among the attributes in the simulated 

assessments, 𝛌1~Dirichlet(5, 3, 2) reflects that 50% in the population master the first attribute in 

the high level, 30% in the medium, 20% in the non-mastery. 𝛌2,0~Dirichlet(2, 3, 5) reflects that, 

given that students failed to master the first attribute, 20% in the population would master the 

second attribute in the high level, 30% in the medium, 50% non-mastery. The subscript notation 

of λ before the comma represents the attribute for this λ, and the notation after the comma 

represents the mastery level of this attribute’s parent attributes. For a more complex case, I may 

need to adjust the standard pseudo count parameters to match the need. For example, 

𝛌5,21~Dirichlet(6, 2, 2) means that if students have mastered attribute 1 in a high level and 

attribute 2 in a medium level, they tend to have 60% probability of mastering attribute 5 in the 

high level, 20% probability in the medium and non-mastery. In this case, I increased the 

probability of correctness, which is represented by the first pseudo count, to match this mastery 

profile. Similar procedures will be conducted for attribute 3 and 4. All the pseudo counts for 

sampling the λ parameters from Dirichlet distribution are summarized in Table XI. 
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TABLE XI PRIOR DISTRIBUTIONS FOR PERSON PARAMETERS (Λ) FOR 

POLYTOMOUS ATTRIBUTES IN SIMULATION  
Sum of mastery levels on prerequisite attributes  

None One Two Three Four Five Six 

Attribute 1 
 

Dirichlet 

(1,2,7) 

     

Attribute 2 Dirichlet 

(7,2,1) 

Dirichlet 

(3,5,2) 

Dirichlet 

(1,2,7) 

    

Attribute 3 Dirichlet 

(7,2,1) 

Dirichlet 

(6,2,2) 

Dirichlet 

(5,3,2) 

Dirichlet 

(3,5,2) 

Dirichlet 

(1,5,4) 

Dirichlet 

(1,3,6) 

Dirichlet 

(1,2,7) 

Attribute 4 Dirichlet 

(7,2,1) 

Dirichlet 

(6,2,2) 

Dirichlet 

(5,3,2) 

Dirichlet 

(3,5,2) 

Dirichlet 

(1,5,4) 

Dirichlet 

(1,3,6) 

Dirichlet 

(1,2,7) 

Attribute 5 Dirichlet 

(7,2,1) 

Dirichlet 

(2,6,2) 

Dirichlet 

(3,5,2) 

Dirichlet 

(1,5,4) 

Dirichlet 

(1,2,7) 

  

 

 

 

 

 

 

Based on the prior distribution of λ from either Beta distribution or Dirichlet distribution, 

the distribution of  can be specified as

𝟏~Categorical(𝛌𝟏), 

𝟐~Categorical(𝛌𝟐), 

𝟑~Categorical(𝛌𝟑), 

𝟒~Categorical(𝛌𝟒), 

𝟓~Categorical(𝛌𝟓). 

Guided by evidence models, item parameters π are defined as the distribution of each 

possible value an item can take given each mastery profile. Each evidence model has Countsc to 

define the conjugate prior distribution for the conditional probabilities 𝛑j|i=𝑐(s)
. For example, let 

the exam has dichotomous items (i.e., L = 2). For the test with complex polytomous attributes, 

the Count (7)9c denoting the pseudo counts of possible values (i.e., 0 or 1) for item 9 in evidence 
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model 7 can be specified as (2, 8) for examinees who have mastered the high level of attribute 1 

but have not mastered attribute 3 and 4. Note that Countsc are specified as the same across all 

items grouped within the same evidence model. Based on the Count (7)9c, the item parameter π9|c 

for examinees of mastery profile c follows Beta (Count (7)9c). Further, the item response of 

examinees in this mastery profile for item 9 would follow Bernoulli (π9|c). The pseudo counts for 

prior distribution of π parameters for students of each mastery profile are summarized in Table 

XII. 

 

 

 

 

 

 

TABLE XII PRIOR DISTRIBUTIONS FOR DICHOTOMOUS ITEM PARAMETERS (Π) IN 

THE SIMULATION 

Evidence Models 

(number of 

measured 

attributes) 

Number of attributes having reached the required mastery levels 

 
0 1 2 3 4 

1 Beta (2,8) Beta (8,2) 
   

2 Beta (2,8) Beta (5,5) Beta (8,2) 
  

3 Beta (2,8) Beta (4,6) Beta (6,4) Beta (8,2) 
 

4 Beta (2,8) Beta (3.5,6.5) Beta (5,5) Beta (6.5,3.5) Beta (8,2) 

 

 

 

 

 

 

3.3.4 Data Generation and Real Data Description 

I took two steps to generate simulated data: the first step is to generate students’ mastery 

profiles depending on the proficiency model, and the second step is to generate dichotomous 
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item responses depending on the item parameters from evidence models. For the first step of 

generating proficiency model variables, the probabilities (p) of the three mastery levels of each 

attribute among the target population was set to sample from the conjugate prior distribution 

based on pseudo counts with a sum of 1000. By doing so, the generated parameter would be 

distributed concentratedly around a specific value with small variance. In this way, replicating 

each simulation based on similar parameter values would not vary a lot, which is helpful in 

testing the stability of BN modeling. Based on these probabilities, the mastery levels of each 

attribute for each student are categorically distributed, that is  ik~Categorical(𝒑). For the 

second step, the conditional probabilities πj as item parameters are dependent on mastery profiles 

and the attributes required by the evidence models. Specifically, if a mastery profile c has 

reached the required proficiency levels of the attributes specified by the evidence model s, πj for 

this mastery profile c are higher than other mastery profiles. Similarly, the pseudo counts to 

sample the π parameters have a sum of 1000 so that it would yield stable parameter values across 

replications for each simulation. Further, depending on the conditional probabilities πj, the 

dichotomous item responses Xij for item j for student i of mastery profile c follows Bernoulli 

(πjc).  

The real data used in this study comes from Trends in International Mathematics and 

Science Study (TIMSS) 2003 Grade 8 Mathematics test carried out by the International 

Association for the Evaluation of Educational Achievement. It includes 757 examinees and their 

responses to 21 dichotomously scored items, including 19 multiple-choice questions and two 

constructed response questions. 
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3.3.5 Evaluation Criteria  

The model performance through simulations is usually evaluated by making comparisons 

of the estimated results with true known parameters or through comparisons with results from 

other measurement models based on a set of evaluation criteria. In this section, I explain the 

evaluation criteria for the effectiveness and utility of BN model results for this study.  

Overall model fit. The model fit indices include deviance and posterior predictive 

modeling checking (PPMC). The deviance is a model fit statistic representing the amount of 

unexplained variance in the applied model – the higher the value the less accurate the model. It 

sums the squares of residuals between the predicted outcome and the actual outcome and provide 

a measure of the total residuals for each model. 

The PPMC (Gelman et al., 2013) is used to evaluate the absolute model–data fit. The 

approach is to replicate observed data or predict data based on the probability function stated in 

Equation (10). If the function is the correct probability function, then the replicated item 

responses should be similar to the observed responses. In this study, the discrepancy of the sum 

of the squared Pearson residuals for person i and item j (Yan, Mislevy, & Almond, 2003) 

between the predicted and the observed responses is calculated to evaluate the overall fit of BN 

modeling. The formula for the sum of the squared Pearson residuals is specified as follows:  

𝑆(𝑌𝑖𝑗; 𝛼𝑖) = ∑ ∑ (
𝑌𝑖𝑗−𝑝𝑖𝑗

√𝑝𝑖𝑗(1−𝑝𝑖𝑗)
)2𝐽

𝑗=1
𝐼
𝑖=1 , (14) 

Where pij is defined as the probability of answering item j correctly for student i, 

Yij represents the response to item j for student i. 

The discrepancy measure then represents the posterior predictive probability (PPP) 

values. When the PPP values are around 0.5, it indicates no systematic distinctions between 
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observed item responses and the item responses predicted by the applied model. In this case, this 

model has an adequate fit to the data. In contrast, when PPP values are close to 0 or 1 (i.e., PPP 

value < 0.05 or PPP value > 0.95), it suggests a model misfit.  

Then the PPP value of the overall fit represents the proportion of time the observed data 

is larger than the replicated data. Based on the same idea, the PPP values for item fit and person 

fit are also calculated. Specifically, item fit is calculated by the RMSE of the squared Pearson 

residuals S for each item, and person fit is calculated by the RMSE of S for each person. In this 

case, the posterior mean of both RMSEs represent the magnitude of discrepancy between 

observed and predicted responses. Then, the PPP values for each item and each person is 

calculated by the proportion of time observed data is larger than replicated data.  

When comparing the CDM model with the BN approach, deviance was used to indicate 

the model fitting performance. Across all model fit indices, the CDM model usually gives out 

AIC, BIC, deviance, while the BN approach, as a Bayesian estimation approach, often provides 

DIC and deviance. In this case, we can only use deviance as the model fitting criteria for the 

comparison.  

The Evidence model results: item parameters. The item parameters π in BN modeling 

are interpreted as the probability of solving an item correctly given students’ mastery profile on 

the measured attributes. The procedure of obtaining estimated π was elaborated in Section 3.2. 

The performance of BN modeling in terms of the estimated item parameters can be evaluated by 

accuracy, which compares the true item parameters with the estimated item parameters. 

Researchers (e.g., Choi, 2012; Culbertson, 2014) have reported indices of accuracy: the mean of 

the bias of the estimated item parameters relative to the true item parameters and the root mean 
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squared standard deviations (RMSDs). Biases and RMSDs are computed based on Equations 15 

and 16. 

𝐵𝑖𝑎𝑠(�̂�) =
∑ (�̂�𝑟 − 𝜋)𝑁

𝑟=1

𝑁
,                                                                                                               (15) 

𝑅𝑀𝑆𝐷(�̂�) = √
1

𝑁
∑(�̂�𝑟 − 𝜋)2

𝑁

𝑟=1

,                                                                                                      (16) 

where 𝑟 denotes the 𝑟-th replication, N denotes the number of replications; 

�̂� denotes the estimated item parameter, 𝜋 denotes the true item parameter. 

The Proficiency model results: person parameters and mastery profile. The person 

parameter λ of BN modeling refers to the probability of a student mastering each attribute. The 

procedure of obtaining estimated λ was elaborated in Section 3.2. Similar to the item parameters, 

bias and RMSDs are considered as the evaluation criteria to examine ability estimation accuracy 

as shown in Equations (17), (18), respectively.  

𝐵𝑖𝑎𝑠(�̂�) =
∑ (�̂�𝑟 − 𝜆)𝑁

𝑟=1

𝑁
,                                                                                                                      (17) 

𝑅𝑀𝑆𝐷(�̂�) = √
1

N
∑(�̂�r − 𝜆)

2
N

r=1

,                                                                                                              (18) 

where 𝑟 denotes the 𝑟-th replication, N denotes the number of replications; 

�̂� denotes the estimated probability of reaching a mastery level for an attribute,  

𝜆 denotes the true probability of reaching a mastery level for an attribute. 

In addition to person parameters, the typical results of BN modeling are person 

classification results. Researcher (e.g., Levy & Mislevy, 2004; Liu & Cheng, 2018; Shu, Henson, 
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& Willse, 2013) have investigated the classification accuracy between true and estimated results 

and classification consistency of results across several simulation scenarios. The weighted 

Cohen’s Kappa (see in Equation 19) for the discrete skills (Cohen, 1960) is used to evaluate 

classification accuracy and consistency of person mastery profile. According to Landis & Koch 

(1977), the rule of thumb for Cohen’s Kappa statistic is that values smaller or equal to 0 suggest 

no agreement, values between 0.01 and 0.20 suggest none to small agreement, values between 

0.21 and 0.40 suggest fair agreement, values between 0.41 and 0.60 suggest moderate agreement, 

values between 0.61 and 0.80 suggest substantial agreement, and values between 0.81 and 1.00 

suggest almost perfect agreement. 

κ =
𝑝o(w) − 𝑝e(w)

1 − 𝑝e(w)
                                                                                                                                      (19) 

where 

𝑝o represents the relative observed agreement among the two estimates after being weighted, 

𝑝𝑒 represents the hypothetical probability of chance agreement after being weighted.   
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4. RESULTS 

This section presents the results of each research question. First in Section 4.1, I unpack 

the data generation process and the simulated data analysis results for the first four research 

questions. Second in Section 4.2, I discuss the results of real data analysis of two existing 

datasets.  

4.1 Simulation Data and Analysis Results 

4.1.1 MCMC Convergence  

Equation (20) gives the full joint probability distribution over all data and parameters. 

Once item responses X are observed, Bayesian inferences regarding parameters can be obtained 

by estimating the posterior estimation. The posterior distribution for , π, λ is given as follows: 

𝑝(, 𝛑, 𝛌|𝐗) = ∏ ∏ ∏ 𝑝(𝑋(s)ij|i, π(s)j)𝑝(π(s)j)
𝑁
𝑖=1

𝐽
𝑗=1 𝑝(i|λ)𝑝(λ)𝑆

𝑠=1                         (20) 

I first conducted a convergence check to estimate an adequate number of iterations to 

achieve convergence for the simulation study. To answer the research questions of this study, I 

checked item and person parameters for convergence. In the convergence check, I chose two 

Markov chains with 2000 iterations per chain, and used the first 25% of iterations in each chain 

as burn-ins. I then set the thinning interval to 1, indicating no thinning. Through the MCMC 

estimation, the JAGS would compute the potential scale reduction factor (Brooks & Gelman, 

1998), �̂�, to assess the convergence of each parameter. According to (Brooks & Gelman, 1998), 

the �̂� value associated with each parameter less than 1.2 indicates its convergence. The 

preliminary convergence check results have showed that at least 2,000 iterations are necessary 



63 

 

 

for convergence to ensure �̂� < 1.2 for all item and person parameters. Also, as the preliminary 

check has achieved convergence, the choice of burn-in value is acceptable (Meyn & Tweedie, 

2012). Accordingly, I used the same setup of Bayesian analysis (two Markov chains, one 

thinning interval, 25% of burn-in) for all the following simulation analyses and results. Although 

2000 iterations have already reached convergence, I used 5000 iterations for simulation analysis 

from a conservative perspective.  

For each simulation condition, I produced 20 datasets (i.e., replications) to avoid extreme 

values occurred in few replications. In most real-world situations, teachers and researchers would 

at least have a basic idea of the mastery difficulty of each attribute. As such, I used weak priors 

for person and item parameters instead of priors with no information. By doing so, it aligns with 

the situation where teachers know some but not all accurate information about the measured 

attributes. The specific prior assignment can be found in Section 3.3.4. 

4.1.2 Research Question 1  

Based on a simulation study, under the different conditions of sample size and test length, 

how well can the following parameters be recovered: students’ mastery profiles, item parameters, 

person parameters? 

This research question is aimed to dismantle how sample size and test length may affect 

parameter estimation when making Bayesian inferences for diagnostic assessments. To make a 

thorough comparison across different conditions, I used the combination of three sample sizes (N 

= 50, 100, 500) and two test lengths (J = 15, 30) on different conditions of Q matrix complexity 

(i.e., simple and complex) and attribute types (dichotomous and polytomous). To emphasize the 

impact of sample size and test length, BN modeling results were presented for each condition: 

the simple dichotomous case, the complex dichotomous case, the simple polytomous case, and 
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the complex polytomous case. The results of each condition across sample sizes and test lengths 

were evaluated in terms of the model fit index of PPMC which checks how BN modeling fits the 

data, the biases and RMSDs of item and person parameters estimated by BN modeling, the 

classification accuracy of person attribute mastery measured by the weighted Kappa index. The 

average PPMC index across all replications was used to demonstrate the model fit for each 

condition of each case. Consistently, the average bias and RMSD of each parameter across all 

replications for each condition of each case was presented. The weighted Kappa index for each 

condition of each case was calculated by taking the average of all Kappa values across all 

replications.  

Simple dichotomous case. As shown in Table XIII, all the PPMC indexes meet the fit 

criteria, , as they all larger than .05 or smaller than .95. They suggest that the BN model fits the 

simple dichotomous data adequately, therefore the estimated parameters are reliable for analysis. 

Each item parameter represents the probability of correctness of each item for students with a 

certain mastery status of the measured attributes and produces generally small biases when 

compared to the true item parameters that are used to generate simulation data. A decreasing 

trend of the magnitude of biases is found from the small sample size with the short test length 

(= .047)  to the large sample size with the long test length (= .021). It suggests that if we 

distribute a longer test length to more students, BN model would yield item parameters closer to 

true parameters. However, the difference between the shortest test length with the smallest 

sample size and the longest test length with the largest sample size is around 0.02. This 

difference can be regarded as trivial if we consider that the assessment scale of 50 examinees and 

15 items is low-stakes in a classroom context. In this case, there is neither grossly large biases 

associated with small sample size or short test length nor apparently small biases associated with 
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large sample size or long test length for item parameter estimation when using BN modeling. 

The values of RMSD associated with each bias also demonstrate a decreasing trend from .010 

to .002 with a very small distinction (<= .01) among conditions.  

 

 

 

 

 

 

TABLE XIII THE SIMULATION RESULTS FOR THE SIMPLE DICHOTOMOUS CASE 

Sample 

Size  

Test 

Length 

Model 

Fit 

Estimated vs True 

Item Parameters π  

 Estimated vs True 

Person Parameters λ  

Classification 

Accuracy κ   
PPMC Absolute-

valued 

Bias 

RMSD  Absolute

-valued 

Bias 

RMSD 
 

50 15 0.232 0.047 0.010  0.052 0.017 0.740  
30 0.101 0.046 0.009  0.048 0.014 0.889 

100 15 0.214 0.041 0.007  0.048 0.014 0.784  
30 0.089 0.040 0.006  0.047 0.011 0.901 

500 15 0.287 0.026 0.003  0.044 0.009 0.783  
30 0.190 0.021 0.002  0.035 0.005 0.903 

 

 

 

 

 

 

The person parameters demonstrate the proportions of students who may master a certain 

attribute given their mastery status of the prerequisite attributes, which is explained by the 

structural relationships among attributes in Figure 4. Consistent with the item parameters, we 

found a decreasing tendency of biases and the associated RMSDs across conditions of sample 

sizes and test lengths. The person parameters tend to be closer to true person parameters in an 

assessment with a larger sample size and a longer test length. The largest difference in the biases 
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across conditions, which is also considered as small, is between the condition of 50 students with 

15 items (= .052) and 500 students with 30 items (=.035). The range of the variety in the 

associated RMSDs is also trivial (Δ =.012). These results highlight the little impact of sample 

size and test length on person parameters estimated by BN modeling in the simple dichotomous 

case. The weighted Kappa index is calculated to evaluate the agreement between the estimated 

mastery classification and the true classification on each attribute for each student. As a result, 

the classification accuracies for the conditions with 30 items outperform the conditions with 15 

items regardless of sample sizes as shown in Figure 5. According to the rule of thumb for the 

Kappa statistic, the classification accuracies for the conditions of 30 items have reached perfect 

agreement and the accuracies for 15 items have had substantial agreement. In general, the BN 

approach performs well on the classification accuracy for attribute mastery, with longer test 

length showing slightly higher agreement. 

 

 

 

 

 

Figure 5. Classification accuracy for the simple dichotomous case. 

Note. N denotes sample size; J denotes test length. 
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Complex dichotomous case. As shown in Table XIV, the model fit in terms of the PPMC 

values are satisfactory, as they all larger than .05 or smaller than .95. Not in line with the simple 

dichotomous case, the biases and the associated RMSDs for item parameters fail to show a 

monotonically decreasing trend but a fluctuating trend instead. The bias for the case of 500 

students and 30 items has the smallest value (= .050) but those for the other five cases are all 

around .06. The RMSDs for the first three conditions are slightly lower than the latter three. 

However, this difference is not large enough (Δ =.010) to alleviate the usage of BN modeling in 

low-stakes assessments. With respect to person parameters, no pattern of changes in biases and 

RMSDs is shown across conditions. The magnitude of all bias values is relatively small (i.e., 

around 0.04), and the largest difference (Δ =.015) is between 50 students with 30 items and 500 

students with 15 items. The associated RMSDs are all around .02. As it turns out, little bias in BN 

modeling estimation is manifested for both item and person parameters, and these estimates tend 

to be stable across different conditions of sample sizes and test lengths. The classification 

accuracies across all conditions are ranged from .54 to .65, showing a moderate agreement 

between estimated and true classification on student attribute mastery. As shown in Figure 6, the 

variations among conditions are small, and classification accuracies show little pattern of 

changes varied by sample sizes and test lengths. 
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TABLE XIV THE SIMULATION RESULTS FOR THE COMPLEX DICHOTOMOUS CASE 

Sample 

Size  

Test 

Length  

Model 

Fit 

Estimated vs True Item 

Parameters π  

 Estimated vs True 

Person Parameters λ  

Classification 

Accuracy κ   
PPMC Absolute

-valued 

Bias 

RMSD  Absolute

-valued 

Bias 

RMSD 
 

50 15 0.366 0.060 0.019  0.041 0.019 0.597  
30 0.292 0.062 0.018  0.051 0.019 0.658 

100 15 0.375 0.061 0.016  0.043 0.018 0.636  
30 0.370 0.062 0.026  0.040 0.020 0.608 

500 15 0.420 0.057 0.027  0.035 0.021 0.547  
30 0.477 0.050 0.024  0.042 0.025 0.580 

 

 

 

Figure 6. Kappa indices for the complex dichotomous case. 

Note. N denotes sample size; J denotes test length. 

 

 

 

 

 

 

Simple polytomous case. Table XV shows the results for the simple polytomous case 

under the six conditions of sample sizes and test lengths. The PPMC indices for all the 

conditions are satisfactory, as they all larger than .05 or smaller than .95. The magnitude of 
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biases for item parameter estimation has shown a decreasing trend among conditions. That being 

said, the condition of 50 students with 15 items has the largest bias (= .052) away from the true 

item parameter while the condition of 500 students with 30 items has the smallest (= .029). The 

same tendency is also revealed in the RMSDs associated with the biases. These results suggest 

that for the simple polytomous case, more students and longer test lengths would help to reduce 

the estimation bias and present more stable parameter estimates in BN modeling. However, the 

difference is still small (Δbias = .023, ΔRMSD = .010), especially for a low-stakes assessment. In 

terms of person parameters, unlike item parameters, no decreasing pattern is found in biases 

across conditions nor in the associated RMSDs. However, the conditions of shorter test length 

and smaller sample size still show larger bias and higher RMSDs. The largest difference in the 

bias is presented between the case of 50 students and 15 items and the case of 500 students and 

15 items (Δ =.008), and the largest difference in RMSDs is between the case of 50 students and 

15 items and the case of 500 students and 30 items (Δ =.009). These differences are smaller than 

those of item parameters and can also be regarded as small. In line with the simple dichotomous 

case, the classification accuracies of the simple polytomous case for the conditions of longer test 

length (i.e., J = 30) regardless of sample sizes are higher than those with 15 items, as shown in 

Figure 7. All Kappa indices are higher .6, reaching substantial agreement. In general, the 

application of BN modeling in a simple polytomous case across different conditions of sample 

sizes and test lengths show little obvious variation in estimation bias and stability. 
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TABLE XV THE SIMULATION RESULTS FOR THE SIMPLE POLYTOMOUS CASE 

Sample 

Size  

Test 

Length  

Model 

Fit 

Estimated vs True Item 

Parameters π  

 Estimated vs True 

Person Parameters λ  

Classification 

Accuracy κ   
PPMC Absolute

-valued 

Bias 

RMSD  Absolute-

valued 

Bias 

RMSD 
 

50 15 0.306 0.052 0.013  0.043 0.020 0.669  
30 0.168 0.048 0.010  0.049 0.018 0.781 

100 15 0.274 0.046 0.011  0.045 0.019 0.668  
30 0.151 0.044 0.008  0.050 0.017 0.801 

500 15 0.337 0.042 0.010  0.052 0.018 0.672  
30 0.207 0.029 0.003  0.050 0.011 0.810 

 

 

 

Figure 7. Kappa indices for the simple polytomous case.  

Note. N denotes sample size; J denotes test length.  

 

 

 

 

 

 

Complex polytomous case. Table XVI shows the results of the most complex case in this 

study. All the PPMC indices have met the criteria, as they are all larger than .05 or smaller 

than .95. They suggest that BN modeling for the complex polytomous case fits the data 
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adequately. The biases of all item parameter estimation have small variations across conditions, 

with shorter test length showing slightly smaller bias  than longer test length. This difference 

indicates that longer test length for complex Q matrix assessment may involve more complex 

relationships between attributes and items, thereby more difficult to estimate. The associated 

RMSDs are generally small and are similar to each other, suggesting a stable estimation across 

conditions. The biases for person parameters are generally small and vary little among different 

conditions of sample sizes and test lengths (Δ =.006). Their RMSDs are very similar to each 

other with the largest pairwise difference of .002. Further, all the classification accuracies reveal 

fair to moderate agreement between the estimated and true classification of student attribute 

mastery. Additionally, Figure 8 presents that the classification accuracies maintain at the similar 

magnitude regardless of sample sizes and test lengths. It should be noted that the lower 

classification accuracies in the complex polytomous case compared to previous cases should not 

preclude the utility of BN modeling in a complex case. One should expect this decrease as in the 

polytomous attribute case with a complex Q matrix, students got placed into more levels after 

accounting for the complex relationships between attributes and items, thereby resulting in more 

variance in the attribute mastery classification than simpler conditions. Classification accuracies 

are similar across different conditions of sample sizes and test lengths. These results again show 

that BN modeling for the complex polytomous case is affected little by varying levels of sample 

size and test length.  
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TABLE XVI THE SIMULATION RESULTS FOR THE COMPLEX POLYTOMOUS CASE 

Sample 

Size 

Test 

Length 

Model 

Fit 

Estimated vs True Item 

Parameters π  

 Estimated vs True 

Person Parameters λ  

Classification 

Accuracy κ   
PPMC Absolute-

valued 

Bias 

RMSD  Absolute-

valued 

Bias 

RMSD 
 

50 15 0.287 0.051 0.018  0.035 0.019 0.372  
30 0.168 0.056 0.018  0.038 0.019 0.475 

100 15 0.274 0.051 0.016  0.034 0.019 0.426  
30 0.151 0.054 0.018  0.037 0.020 0.363 

500 15 0.755 0.049 0.018  0.035 0.019 0.373  
30 0.207 0.048 0.016  0.032 0.017 0.382 

 

 

 

Figure 8. Kappa indices for the complex polytomous case. 

Note. N denotes sample size; J denotes test length. 

 

 

 

 

 

 

In summary, little evidence supports that the larger sample size and the longer test length 

would lead to a significantly better parameter estimation and classification accuracy of attribute 

mastery across different assessment scenarios when BN is applied. In other words, BN modeling 
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tends to perform adequately for a small sample size of 50 students and a short test length of 15 

items and maintains the estimation accuracy and stability with little variations from conditions of 

a large sample size and a long test length. From another perspective, in most conditions across 

the four cases, larger sample size and longer test length yield a small increase in estimation 

accuracy, especially for simple dichotomous and simple polytomous cases. Although small, this 

variation is consistent with the intuitive assumption that assessments, which measure attributes 

independently by items, would give models more information on each attribute for parameter 

estimation compared to a complex case with the same sample size and test length, and therefore 

would furnish more accurate parameter estimation.  

However, considering the interplay among attributes in answering an item correctly, it is 

necessary to design items to evaluate whether students know how to use multiple attributes 

simultaneously to solve problems. Additionally, furnishing finer attribute mastery classifications 

would prepare students and teachers for knowledge remediation and instruction improvement. 

Although a larger sample size and a longer test length would improve the estimation accuracy, in 

formative and diagnostic educational assessments, it is usually difficult to find a large sample 

size (i.e., N > 500). To address these practical concerns, BN modeling opens the door for 

teachers and researchers to diagnostically analyze assessment data with a relatively small sample 

size and short test length but at the same time yields reasonable parameters estimation accuracy. 

The results of the first research question show that all the assessment conditions varying by 

sample size and test length have reached reasonable accuracy with small variations between each 

other. For this reason, I used a combination of sample size (N = 100) and test length (J = 15) that 

is feasible in common practice for the following simulation studies.  
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4.1.3 Research Question 2a 

Based on a stable and optimal selection of sample size and test length (if any) from the 

first research question, under the different conditions of attribute types and Q matrix structures, 

how well can the following parameters be recovered: students’ mastery profiles, item parameters, 

person parameters? 

This research question entails a comparison of the performance of BN modeling among 

two kinds of Q complexity and two types of attributes and their parameters under the same 

sample size and the same test length. From the modeling perspective, the simple Q matrix cases 

would have more straightforward modeling specification as each item only measures one 

attribute, and the complex cases tend to be more complicated as they measure students’ 

competence in simultaneously using multiple attributes to solve problems. The polytomous cases 

need to consider three or more mastery levels in an attribute rather than two levels of mastery 

and non-mastery in dichotomous cases. Consequently, more complicated assessment contexts 

may lead to less accurate parameter estimation compared to relatively simpler assessment 

scenarios. Table XVII presents the results of the four cases. The model fitting results of the four 

cases show that BN modeling performs well on each case, as they are all larger than .05 or 

smaller than .95. These findings indicate the flexibility of BN in handling different levels of Q 

matrix complexity and different types of attributes. With respect to the estimation bias of item 

parameters across the four cases, the cases of simple Q matrix have smaller biases than those of 

complex Q matrix, while no apparent difference is found between cases of the two attribute 

types. The largest difference is between the simple dichotomous case (= .041) and the complex 

dichotomous case (= .061). However, the biases and the associated RMSDs are all small for the 

four cases. To be specific, the simple dichotomous case has the smallest RMSD (= .007) while 
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the complex dichotomous case has the largest (= .016). These results echo the previous 

assumption that BN modeling for simpler assessment scenarios would give out more accurate 

estimation. But the small variations among cases also suggest that BN modeling can provide 

item parameters with acceptable biases for different kinds of Q matrix complexity and different 

item types.  

TABLE XVII SIMULATIONS RESULTS FOR THE FOUR CASES WITH A 15-ITEM TEST 

AND 100 STUDENTS 

Model Model Fit Estimated vs True 

Item Parameters π  

 Estimated vs True 

Person Parameters λ  

Classification 

Accuracy κ  
PPMC Absolute-

valued 

Bias 

RMSD  Absolute-

valued 

Bias 

RMSD 
 

Simple 

Dichotomous 

0.214 0.041 0.007  0.048 0.014 0.784 

Complex 

Dichotomous 

0.375 0.061 0.016  0.043 0.018 0.636 

Simple 

Polytomous 

0.274 0.046 0.011  0.045 0.019 0.668 

Complex 

Polytomous 

0.274 0.050 0.016  0.034 0.019 0.426 

 

 

 

 

 

 

In terms of person parameters, the results show that the complex polytomous case has the 

least bias while the other three cases have similar biases. Different from item parameters, the 

biases of person parameters for the cases of complex Q matrix tend to be lower than the simple 

cases. The largest difference is between the case of simple dichotomous (= .048) and the 

complex polytomous (= .034). Their RMSDs are similar to each other. These findings suggest 

that, although a different pattern is presented for person parameters, the biases and their RMSDs 
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are still small. As it turns out, BN modeling can be considered as robust in estimating person 

parameters across varied assessment scenarios. 

Finally, in congruent with the contention that simple cases would yield more accurate 

model estimation results, the simple dichotomous case shows the highest classification accuracy 

(= .784) while the complex polytomous case reflects the lowest accuracy (= .426) in classifying 

student attribute mastery levels. Further, the cases of simple Q matrix have higher Kappa indices 

than the cases of complex Q matrix. In particular, the complex polytomous case has yielded a 

moderate agreement between estimated and true classifications while the other three cases have 

substantial agreements. The modeling complexity, which has impact on the classification 

accuracy, may lead to the lower agreement of the complex polytomous case. In the complex 

polytomous modeling, I computed the estimated classification by its average classifications 

among the 4000 iterations (after 1000 burn-ins). This might be the other reason for the lower 

agreement of the complex polytomous case. Put more succinctly, if the average classification of 

an attribute for a person across 4000 iterations is between [0, .7), then the classification is 0; if 

falls within [.7, 1.4), then the classification is 1; if it fall within [1.4, 2], the classification is 2. By 

doing so, the classification results might have some biases because they were re-calculated by 

assuming the average classification results follow a uniform distribution. In sum, although the 

complex polytomous case has slightly lower classification accuracies compared to other cases, 

the usage of BN modeling in analyzing assessment data of different Q matrix complexities and 

different attribute types present acceptable classification accuracy. 

4.1.4 Research Question 2b 

Based on the same selection of sample size and test length, how well the classification 

accuracies of student attribute mastery can be recovered with a prior information of no structural 
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relationships, partial structural relationships, full structural relationships, and wrong structural 

relationships? What cognitive diagnostic information can be provided to students and teachers? 

In the previous two research questions, I hypothesized that the true structural 

relationships among attributes are already known based on the structure in attributes shown in 

Figure 4. However, in a real-world situation, teachers or researchers may not know the true 

structural relationships among the latent variables of skills as these skills are unobservable. 

Therefore, it is necessary to evaluate whether BN modeling can recover the diagnostic attribute 

classifications when the information about the structure embedded among attributes is unknown. 

To achieve this goal, I set four conditions of prior information on the structural relationships 

among attributes: no prior information, partial information, full information, and wrong 

information. Specifically, under the condition of no prior information, there are no relationships 

among attributes. In other words, attributes are assumed to be independent in this scenario. 

Under the partial information condition, I used the structure shown in the left graph of Figure 9. I 

removed the edge from attribute 2 to 5 and the edges from attributes 2 and 5 to 4 in the original 

structure (see in Figure 4). For the condition of wrong information, I used the structural 

relationships shown in the right graph of Figure 9. I reversed the arrow from attribute 2 to 3 and 

the one from attribute 2 to 5 in the original structure and removed the paths from attributes 2 and 

5 to attribute 4. 

Using the same combination of 100 students and 15 items, I evaluated the classification 

accuracy of student attribute mastery under each condition of prior information on the structure 

in attributes for each kind of Q matrix complexity and attribute type (see in Table XVIII). 
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TABLE XVIII THE SIMULATION RESULTS OF FOUR CASES UNDER DIFFERENT 

CONDITIONS OF PRIOR INFORMATION ON STRUCTURE IN ATTRIBUTES 

Model 
Prior Information on Structure in Attributes 

No Info Partial Info Full Info Wrong Info 

Simple Dichotomous 0.736 0.764 0.784 0.770 

Complex Dichotomous 0.494 0.603 0.636 0.609 

Simple Polytomous 0.609 0.643 0.668 0.642 

Complex Polytomous 0.333 0.413 0.426 0.401 

 

 

   

Figure 9. The partial structure of attributes (Left); The wrong structure of attributes (Right). 

 

 

 

 

 

 

Within each condition of prior information, the four cases manifest the pattern that the 

cases of simple Q matrix would yield higher classification accuracy than the complex cases, and 

the cases of dichotomous attributes tend to show higher classification accuracy than polytomous 

attributes as shown in Table XVIII. After removing some paths from the true structural 
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relationships of attributes, the condition of partial information mirrors the situation where 

teachers or researchers partially understand the difficulty of each attribute, or the learning 

progression of attributes from some previous studies, but they are unsure about the accurate 

structure. The results of this scenario indicate that when we fed the model with less information, 

the classification accuracy tends to be slightly lower than the condition where the complete true 

relationships were captured in the modeling. According to the rule of thumb for the Kappa 

statistic, the classification accuracies of the simple dichotomous (κ = .764), complex 

dichotomous (κ = .603), simple polytomous cases (κ = .643) still reach a substantial agreement, 

and the complex polytomous case still maintains a moderate agreement (κ = .413). It reveals that 

BN modeling would still have its diagnostic classification accuracy reach a satisfactory level 

across different kinds of Q matrices and different attribute types when partial hypotheses on the 

structure in attributes are provided.  

Another condition I evaluated for this research question is when we missed a structural 

relationship among attributes. In other words, we assume that the acquisition of one attribute is 

not associated with that of another attribute, and each independently contributes to item 

responses. The results of this scenario show that the simple dichotomous case (κ = .736) and the 

simple polytomous case (κ = .609) are smaller than the partial information condition but still 

maintain the substantial agreement between the estimated and true student attribute mastery 

status. It is probably because the modeling for the cases of simple Q matrix complexity is free 

from the impact of interactions between attributes on item responses so that it is impacted less 

even without prior information on attribute structure. However, for the cases of complex 

dichotomous (κ = .494) and complex polytomous (κ = .333), the classification accuracies drop to 

moderate agreement and fair agreement. This discrepancy with the partial information and full 
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information conditions shows that ignoring the prior information on attribute structure may 

reduce its modeling accuracy in making diagnostic classification for student attribute mastery, 

especially for the cases of complex Q matrices.  

Finally, it is also possible that teachers or researchers may have a wrong assumption 

about the attribute structure. Teachers and researchers may have some knowledge about which 

are the basic attributes (attribute 1) and the advanced attributes (attribute 4), but not sure about 

the dependent relationships among the intermediate attributes (attributes 2, 3, 5). Table XVIII 

has shown that the classification accuracy for the condition of wrong information tends to be 

lower than the full information condition, but similar to the case being provided with partial 

information. These results indicate that although being fed with some wrong information, BN 

modeling is still able to recover students’ attribute mastery to an acceptable level. Note that it is 

also important for teachers and researchers to have some information on the attribute structure, 

and it is still worth telling the model with some basic assumptions even they might not be 

accurate. 

For an illustrative purpose, I graphically displayed the structure in attributes and their 

relationships with items under different scenarios of prior information using Netica (Norsys, 

1992-2014) in Figures 10 to 15. In Netica, I modeled the posterior distribution over the 

proportion of masters for each attribute and the probability of correctness for each item for the 

complex dichotomous case with no prior information, partial prior information, full prior 

information, and wrong information. I also used a student’s item responses to showcase the 

relationships between attribute structure and item responses. The model formulated in Netica for 

the case of full prior information on structure in attributes is given in Figure 10. In the graph, 

each node is depicted by a bar revealing the probability for the node being in each state, which is 
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also represented numerically as a percentage. They denote the average probability of correctness 

for each item denoted by X and the average proportion of mastery for each attribute denoted by 

alpha. The probabilities of correctness can be compared to check item difficulties. As can be 

found from Figure 10, items measuring more attributes tend to be more difficult than items 

measuring one or two attributes. For example, items 1, 2, and 3 measuring the basic attributes 1 

and/or 2 have higher probabilities of correctness than other items. Also, among items 7-11 

measuring the same attributes 1, 3, and 4, items 7, 9, 10 are more difficult than items 8 and 11. 

The proportion of masters for each attribute manifest the difficulty of mastering this attribute. 

The results show that attributes 1 and 2 are easier (probmaster > .80) to master than attribute 5 

(probmaster = .775), and attributes 3 (probmaster = .627) and 4 (probmaster = .577) are harder for 

students to acquire.  

Figure 11 shows the joint distribution over the true distribution of students’ attribute 

mastery levels and the distribution of simulated item responses. In comparison with Figure 10, 

the true joint distribution slightly differs from the estimated distribution of the full information 

condition. However, this difference does not affect the general distribution of difficulties among 

attributes, indicating a consistent pattern between the true and the BN estimated results. 
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Figure 10. The graphical display of the BN posterior distribution under the condition of full information. 

Note. Alpha denotes the mastery classification for each attribute, X denotes the items responses to each item. 
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Figure 11. The graphical display of the true joint distribution. 

Note. Alpha denotes the mastery classification for each attribute, X denotes the items responses to each item. 
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Further, the flexibility of the BN formulated in Netica allows entries of specific states for 

each variable in order to observe how the probabilities of other variables are influenced 

accordingly. For example, based on the scenario where the full information is provided, teachers 

would like to know how the probabilities of a student’s mastery of attributes 3 and 4 and how the 

probabilities of item correctness are impacted if this student mastered attribute 1 and 2 but not 

attribute 5. This scenario is depicted in Figure 12. The results indicate that this student have a 

25% probability of mastering attribute 3 and a 12.5% probability of mastering attribute 4. In 

addition, the probabilities of correctness for items (items 7-12) measuring attributes 3, 4, and 5, 

which this student failed to master, become smaller than the average level shown in Figure 10.  

With respect to the partial prior information condition, Figure 13 shows that attribute 5, 

which lacks a path compared to the true structure, becomes slightly easier to acquire as its 

proportion of masters turns slightly higher. Attribute 3 tends to become harder as it requires more 

prerequisite attributes than other attributes. For items 12-14 requiring both attributes 3 and 5, 

their probabilities of correctness show small difference (Δ ≈ .04) compared to the true joint 

distribution shown in Figure 11. These results suggest that BN modeling with partial information 

would provide results that deviate little from the truth.  

For the wrong information condition shown in Figure 14, it can be found that, similar to 

the partial information case, the posterior distribution over attributes has some small differences 

compared to the true joint distribution shown in Figure 11. Specifically, attribute 5 becomes 

slightly easier while attributes 2 and 3 turn slightly harder. This small difference again shows the 

capacity of BN modeling in recovering the true classification results to some extent.   
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Figure 12. The graphical display of the BN posterior distribution with some attributes fixed with mastery levels. 

Note. Alpha denotes the mastery classification for each attribute, X denotes the items responses to each item. 
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Figure 13. The graphical display of the BN posterior distribution under the partial information condition. 

Note. Alpha denotes the mastery classification for each attribute, X denotes the items responses to each item. 
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Figure 14. The graphical display of the BN posterior distribution under the wrong information condition. 

Note. Alpha denotes the mastery classification for each attribute, X denotes the items responses to each item. 
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The modeling for the third condition considered no structure in attributes and 

hypothesized that they independently affect students’ responses to items as shown in Figure 15. 

Not surprisingly, some difference shows in the proportion of masters for each attribute when 

compared to the true joint distribution shown in Figure 11. The mastery probabilities for 

attributes 2, 3 and 5 become easier while attribute 3 becomes harder. Regarding the probabilities 

of correctness for items, more disparity is found than the full or partial information conditions. 

The items measuring multiple attributes have a difference around .04 in their average 

probabilities of correctness, higher than the difference found in the partial and wrong information 

conditions. These results suggest that analyzing item responses without any prior information on 

the structure in attributes would affect the estimated proportions of mastery in attributes and the 

estimated probabilities of correctness for items.  

I used Examinee 85 as a case study for illustration. Table XIX lists the response vector 

for this student. I then entered this student’s responses into the Netica BN model built with the 

full information. Figure 16 shows that examinee 85 performed well on the items that require a 

simultaneous usage of attributes 1, 2, and 5, but struggled with the items that require attributes 4 

and 5. This student is very likely to possess attributes 1, 2, and 5 as their mastery probabilities 

are larger than or close to 90%, and this student is nearly certain to fail to acquire attribute 3 

(prob = 15.8%) and may not possess attribute 4 with a mastery probability of 33.5%. This 

finding is consistent with the true mastery status of this student. This BN demonstration allows 

an interpretation of student attribute mastery status given their item responses. 
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TABLE XIX Q MATRIX AND ITEM RESPONSES FOR EXAMINEE 85 

Item ID Attributes Item responses  
1 2 3 4 5 

 

1 1 
    

1 

2 1 
    

1 

3 1 1 
   

1 

4 1 
 

1 
  

0 

5 1 
 

1 
  

1 

6 1 
 

1 
  

0 

7 1 
 

1 1 
 

1 

8 1 
 

1 1 
 

0 

9 1 
 

1 1 
 

0 

10 1 
 

1 1 
 

1 

11 1 
 

1 1 
 

0 

12 1 
 

1 1 1 0 

13 1 
 

1 1 1 1 

14 1 
 

1 1 1 1 

15 1 1 1 1 
 

0 

 

 

 

 

 

 

Taken together, these results demonstrate that less information on the structure in 

attributes would yield less satisfactory model fitting and less accurate diagnostic classification 

results when the structure in attributes truly exists. However, the application of BN modeling can 

maintain the classification accuracies at a satisfactory level for conditions where at least some 

information or assumptions are given. Further, the graphical features of BN modeling allow a 

straightforward display of posterior distribution over attributes and items. It can also unfold 

diagnostic results for each student on their mastery of each attribute when item responses are 

observed. 
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Figure 15. The graphical display of the BN posterior distribution under the no information condition. 

Note. Alpha denotes the mastery classification for each attribute, X denotes the items responses to each item. 
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Figure 16. The graphical display of the BN posterior distribution under the full information condition with the Examinee 85 item 

responses fixed. 

Note. Alpha denotes the mastery classification for each attribute, X denotes the items responses to each item.  
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4.1.5 Research Question 2c  

Based on the same selection of sample size and test length as previous questions, how are 

the models’ fitting and accuracies different between the CDM and the BN approach?  

As another modeling approach for diagnostic assessments, CDMs have gained attention 

in both research and practice. As demonstrated in Section 2.3.3, the similarities between CDM 

and BN warrant the need to compare the two related but distinct approaches which are both built 

under the latent class modeling framework. In the practical application, the classification results 

of CDMs are sometimes refrained from rendering more useful information due to its 

compensatory rules. In other words, most commonly used CDMs (i.e., DINA, DINO) classify 

students into two groups either who have mastered all the measured attributes and who have not 

or who have mastered at least one measured attribute and who have not mastered any. By doing 

so, many information about students who are in different mastery levels (e.g., having mastered 2 

out of 3 measured attributes) is lost in such modeling rules. Further, it may contribute less to the 

requests from teachers or researchers who would like to have finer-grained feedback on student 

mastery levels. Later, a saturated CDM, GDINA (De La Torre, 2011), which can consider all 

mastery levels, releases this constraint. When comparing CDM with BN, it would be fair to use 

GDINA as both are saturated approaches and both can handle structure in attributes. To evaluate 

the performance of both approaches in analyzing formative diagnostic assessments, I compared 

the model fit indices and the classification accuracies between GDINA and BN. I also compared 

their performance under different prior information conditions. Similar to the previous research 

questions, 20 datasets were replicated for each comparison. 

Note that during the modeling process, I found some limitations of GDINA. First, 

although the GDINA model can consider the structural relationships among attributes, it takes 
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these relationships as prerequisites rather than correlations. In other words, the structure shown 

in Figure 4 is interpreted as mastering attribute 1 is required to master attribute 2, mastering 

attributes 1 and 2 is required to master attribute 5, mastering attributes 1, 2, 5 is required to 

master attributes 3 and 4, respectively. In this case, students who have mastered attributes 

without mastering the prerequisite attributes (e.g., students have not mastered attributes 1 and 2 

but mastered attribute 5) are considered as impossible and therefore are excluded in 

classifications. By doing so, the input of structural relationships among attributes reduces latent 

classes by removing mastery profiles incongruent with the prerequisite rule. Second, I also found 

that although the GDINA model can handle polytomous attributes, they fail to simultaneously 

accommodate the structural relationships among polytomous attributes. It is also true for other 

commonly used CDMs. Therefore, no analysis was conducted in this study for polytomous-

attribute GDINA under the conditions of partial, wrong or full information on the structural 

relationships among polytomous attributes.  

Table XX presents the model fit indices and the classification accuracies for both models 

under the four conditions of prior information when available. As demonstrated in Section 

3.3.5.1, deviance is used to evaluate the model fit of the two models. When assuming attributes 

are independent without any structural relationships (i.e., the no information condition), it can be 

found that the deviances of the BN model for the simple dichotomous, complex dichotomous, 

simple polytomous cases are smaller than those of the GDINA model, suggesting that BN yields 

better model fit than GDINA on these cases. While for the complex polytomous case, the 

GDINA model has slightly better model fit than the BN model. In terms of the attribute mastery 

classification accuracy, Kappa statistic of the two models for the simple dichotomous case are 

very similar and maintain substantial agreement. While for the complex dichotomous case, the 
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classification accuracy for BN modeling (κ = .494) is higher than the GDINA modeling (κ 

= .385), with the former having moderate agreement and the latter having fair agreement. In the 

simple polytomous case, GDINA has a slightly better classification accuracy than BN, both 

having substantial agreement. Although GDINA has a better model fit in the complex 

polytomous case, its classification accuracy (κ = .306) is lower than BN (κ = .333), both having 

fair classification accuracy. I also evaluated the classification agreement between BN and 

GDINA. As can be seen, they have higher agreement in the simple Q matrix cases than the 

complex ones, and the dichotomous cases have higher agreement than the polytomous cases. 

These results reveal that for assessments in which attributes have relationships with each other in 

reality, but no prior information is provided to the model, BN generally performs better than 

GDINA in terms of a better model fit and a higher classification accuracy. The classification 

consistency results show that their classification results are congruent with each other. 
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TABLE XX THE COMPARISON BETWEEN BN AND GDINA UNDER DIFFERENT CONDITIONS OF PRIOR 

INFORMATION 
 Conditions of prior information 

Condition No information Partial information Full information Wrong information 

 Model fit: 

Deviance 
Mastery Profile 

Accuracy 
Model fit: 

Deviance Mastery Profile Accuracy Model fit: 

Deviance Mastery Profile Accuracy Model fit: 

Deviance Mastery Profile Accuracy 

 BN GDINA BN GDINA BN vs. 
GDINA BN GDINA BN GDINA BN vs. 

GDINA BN GDINA BN GDINA BN vs. 
GDINA BN GDINA BN GDINA BN vs. 

GDINA 

Simple 

Dichotomous 1459 1744 0.74 0.73 0.79 1474 1737 0.76 0.71 0.82 1512 1779 0.78 0.73 0.86 1489 1759 0.77 0.73 0.84 

Complex 

Dichotomous 1611 1660 0.49 0.39 0.51 1630 1709 0.60 0.45 0.59 1630 1718 0.64 0.43 0.62 1617 1701 0.61 0.49 0.65 

Simple 
Polytomous 1491 1705 0.61 0.63 0.80 1451 NA 0.64 NA NA 1505 NA 0.67 NA NA 1457 NA 0.64 NA NA 

Complex 
Polytomous 1654 1628 0.33 0.31 0.48 1687 NA 0.41 NA NA 1672 NA 0.43 NA NA 1681 NA 0.40 NA NA 
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For the condition of providing partial information on the structure in attributes, only the 

dichotomous cases are compared because the polytomous attribute GDINA is not compatible 

with attribute structure. The deviances of the two dichotomous cases reveal that BN has better 

model fit than GDINA. Further, the classification accuracies of BN are also higher than GDINA. 

Specifically, BN has produced substantial agreement on the two dichotomous cases (κsimple 

= .764, κcomplex = .603) while GDINA has maintained substantial agreement on the simple 

dichotomous case (κ = .710) but dropped to moderate agreement on the simple polytomous case 

(κ = .447). Likewise, the agreement between the two models has reached the perfect level in the 

simple dichotomous case (κ = .818) but has maintained the moderate level in the complex 

dichotomous case (κ = .589). Similar to BN, the classification accuracy of GDINA is higher for 

the partial information condition than the no information condition. Again, these results support 

that BN performs better than GDINA. The classification consistency is also high between the 

two approaches. 

With respect to the full information condition, BN still has better model fit than GDINA 

in the two dichotomous cases. The classification accuracies of both models under this condition 

are higher than the conditions with partial or no prior information except that the classification 

accuracy of GDINA for the complex dichotomous case is slightly lower than the condition of 

partial information. It may suggest that providing more information on attribute structure may 

contribute little to the classification accuracy for the GDINA modeling. Regarding the model-

wise comparison, the Kappa statistic for BN modeling (κ = .784) is higher than the GDINA 

modeling (κ = .727) for the simple dichotomous case and both have reached the substantial 

agreement with the true attribute classification. BN, maintaining the substantial agreement, has a 

higher classification accuracy (κ = .636) than GDINA (κ = .432) in the complex dichotomous 
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case, which has a moderate agreement. The two approaches still maintain high classification 

consistency. 

Finally, regarding the condition where wrong information is provided, the deviances of 

BN are lower than those of GDINA, indicating a better model fitting. The classification 

accuracies of BN are also higher than GDINA, in which the accuracies associated with the 

complex Q matrix case are lower than those of the simple case. The classification consistency 

between the two approaches is still high. 

In summary, although not all comparisons between BN and GDINA under each condition 

can be conducted due to the limitations of GDINA in a simultaneous compatibility of 

polytomous attributes and the structure in attributes, the current comparisons exhibit the better 

flexibility of the BN approach in terms of defining the attribute structure and its latent groups. 

With different levels of prior information on attribute structure, BN performs better than GDINA 

in most cases in term of model fit and diagnostic classification results. This finding highlights the 

capacity and the flexibility of BN in classifying students into true latent mastery classes when 

compared to GDINA as BN can well consider the structural relationships among attributes and 

therefore can yield results more representative of true attribute classifications. 
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4.2 Real Data Analysis 

This section answers the third research question, “Based on two existing data sets, how is 

the effectiveness of the BN approach based on MCMC estimation in analyzing real test data? 

What cognitive diagnosis can be provided by the BN approach?” and shows the results of the 

two real data analyses.  

4.2.1 MCMC Convergence  

To determine the number of iterations to use in analyzing the two datasets, I used the 

automatic function in the JAGS program to confirm the number of iterations required to 

converge. It turned out that the TIMSS data needs 40000 iterations and the polytomous attribute 

data needs 6000 iterations to converge. I then set the iterations accordingly. As same as the 

simulation study, I used the first 25% of iterations as burn-ins, two chains, and the thinning 

interval as 1 (i.e., without thinning). To double-check if all parameters have reached 

convergence, I investigated if the �̂� value associated with each parameter is lower than 1.2. The 

results suggest that all the parameters converged well and are ready for the next-step analysis. 

4.2.2 TIMSS Data Analysis 

The dichotomous attribute test data, used in Su et al. (2013), came from the United States 

sample of the Trends in International Mathematics and Science Study (TIMSS) 2003 Grade 8 

Mathematics test carried out by the International Association for the Evaluation of Educational 

Achievement. The data in this study include 757 examinees and their responses to 21 

dichotomously scored items, including 19 multiple-choice questions and two constructed 

response questions. The test measured 15 attributes of math knowledge. Table XXI specifies the 

Q matrix used in this test, and Figure 23 shows the attributes and their hierarchical relationships 

used in the data analysis.  
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Priors. I selected the starting values for parameters based on some assumptions about the 

attribute mastery and the relationships between attributes and items. Table XXII lists all the 

priors for each parameter. In terms of priors for person parameters, based on the structural 

relationships among attributes, the first layer of attributes (i.e., attributes 1, 13, 3, 11, 14), which 

are not dependent on other attributes, are considered as basic attributes. In this case, these 

attributes were assumed to be mastered by around 80% of the target population and therefore the 

associated hyperparameters λ were sampled from beta (8,2). The second layer of attributes 

(including attributes 2, 4, 5) are dependent on one of the first layer attributes so their 

probabilities of mastery based on the mastery status of the prerequisite attribute was assumed 

to .295 by sampling from Beta (7,3) for those who fail master the prerequisite attribute and .705 

by sampling from Beta (3,7) for those who have mastered the prerequisite attribute. The third 

layer of attributes dependent on one of the second layer attributes are considered as harder to 

master and have probabilities of mastery of .404 by sampling from Beta (4,6) for students with a 

lack of the prerequisite attribute and .594 by sampling from Beta (6,4). For attribute 9 which 

depends on three prerequisite attributes, I used the beta distributions of (2,8), (4,6), (6,4), (8,2) to 

represent the probabilities of mastery on attribute 9 when students mastered none, one, two and 

all of the prerequisite attributes. The corresponding probabilities sampled from these 

distributions are .196, .404, .594, .800.
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TABLE XXI Q MATRIX FOR THE EIGHTH GRADE TIMSS 2003 MATHEMATICS TEST 

Item 

Number 

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 

1 1 0 0 0 0 0 0 0 0 0 1 0 1 

2 0 0 0 0 0 1 0 0 0 0 0 0 0 

3 0 1 0 0 0 0 1 0 0 0 0 0 0 

4 0 0 0 1 0 0 0 0 1 0 0 0 0 

5 0 0 0 0 0 1 0 0 0 1 0 1 0 

6 0 0 0 0 0 1 1 0 0 0 0 0 0 

7 1 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 1 0 0 0 1 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 1 0 0 

10 0 0 0 0 0 1 0 0 0 0 0 0 0 

11 0 1 0 0 0 0 0 1 0 0 0 0 0 

12 0 0 1 0 0 0 0 0 0 0 0 0 1 

13 0 0 0 0 1 0 0 0 0 0 0 0 0 

14 0 0 0 0 0 1 0 0 0 0 0 0 0 

15 0 1 0 0 0 0 0 0 0 0 0 1 0 

16 0 0 0 0 1 0 0 0 0 0 0 0 0 

17 0 0 0 1 0 0 0 0 0 0 0 0 0 

18 0 0 1 0 0 0 0 0 1 0 1 0 1 

19 0 1 0 0 0 0 0 0 0 0 0 0 0 

20 1 0 0 0 0 0 0 0 0 0 0 0 0 

21 0 0 0 0 1 0 0 0 0 0 0 0 0 

22 0 1 0 0 0 0 0 0 0 0 0 0 0 

23 0 0 0 1 0 0 0 0 1 0 0 0 0 

Note. This Q matrix is described by Su et al. (2013) 
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Figure 17. Upper: the attributes used in the eighth grade TIMSS 2003 mathematics test described by Su et al. (2013); Bottom: the 

structural relationships among attributes described by Su et al. (2013).  
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TABLE XXII PARAMETER VALUES ESTIMATED FOR TIMSS DATA 

Parameter Mean SD 2.50% Median 97.50% Priors Rhat 

lambda_1 0.493 0.037 0.423 0.492 0.565 0.800 1.002 

lambda_2[0] 0.085 0.028 0.038 0.082 0.146 0.295 1.002 

lambda_2[1] 0.917 0.031 0.852 0.920 0.965 0.705 1.004 

lambda_3 0.675 0.104 0.484 0.674 0.888 0.800 1.011 

lambda_4[0] 0.378 0.141 0.155 0.360 0.714 0.295 1.022 

lambda_4[1] 0.764 0.130 0.191 0.787 0.886 0.705 1.002 

lambda_5[0] 0.268 0.069 0.141 0.265 0.411 0.295 1.002 

lambda_5[1] 0.680 0.064 0.557 0.679 0.805 0.705 1.001 

lambda_6[0] 0.176 0.052 0.084 0.173 0.285 0.404 1.004 

lambda_6[1] 0.846 0.043 0.757 0.849 0.923 0.594 1.001 

lambda_7[0] 0.442 0.134 0.185 0.447 0.682 0.404 1.004 

lambda_7[1] 0.836 0.070 0.668 0.848 0.939 0.594 1.060 

lambda_8[0] 0.609 0.128 0.349 0.614 0.846 0.404 1.001 

lambda_8[1] 0.543 0.128 0.272 0.553 0.771 0.594 1.002 

lambda_9[0] 0.183 0.112 0.025 0.163 0.446 0.196 1.002 

lambda_9[1] 0.235 0.099 0.073 0.225 0.452 0.404 1.001 

lambda_9[2] 0.267 0.133 0.127 0.243 0.801 0.594 1.006 

lambda_9[3] 0.945 0.037 0.856 0.952 0.993 0.800 1.001 

lambda_10[0] 0.521 0.144 0.242 0.518 0.800 0.404 1.001 

lambda_10[1] 0.509 0.145 0.218 0.514 0.771 0.594 1.002 

lambda_11 0.885 0.070 0.722 0.898 0.990 0.800 1.001 

lambda_12 0.648 0.079 0.495 0.648 0.804 0.800 1.001 

lambda_13 0.625 0.115 0.427 0.613 0.858 0.800 1.011 

pai1[1,0] 0.167 0.100 0.025 0.150 0.404 0.196 1.001 

pai1[1,1] 0.152 0.059 0.052 0.147 0.280 0.404 1.001 

pai1[1,2] 0.602 0.143 0.306 0.624 0.835 0.594 1.001 

pai1[1,3] 0.978 0.015 0.943 0.980 0.997 0.800 1.001 

pai2[2,0] 0.521 0.033 0.454 0.522 0.585 0.196 1.001 

pai2[2,1] 0.889 0.023 0.842 0.889 0.932 0.800 1.001 

pai3[3,0] 0.136 0.048 0.048 0.135 0.236 0.196 1.001 

pai3[3,1] 0.325 0.101 0.178 0.306 0.581 0.503 1.001 

pai3[3,2] 0.828 0.045 0.746 0.825 0.924 0.800 1.001 

pai4[4,0] 0.304 0.083 0.136 0.305 0.461 0.196 1.001 

pai4[4,1] 0.535 0.052 0.439 0.533 0.645 0.503 1.002 

pai4[4,2] 0.753 0.040 0.687 0.751 0.847 0.800 1.001 

pai5[5,0] 0.146 0.088 0.021 0.132 0.353 0.196 1.001 

pai5[5,1] 0.316 0.104 0.130 0.310 0.537 0.404 1.001 

pai5[5,2] 0.750 0.087 0.556 0.758 0.896 0.594 1.001 

pai5[5,3] 0.878 0.070 0.718 0.888 0.982 0.800 1.001 

pai6[6,0] 0.379 0.119 0.114 0.396 0.565 0.196 1.001 

pai6[6,1] 0.865 0.043 0.774 0.869 0.940 0.503 1.001 

pai6[6,2] 0.977 0.013 0.946 0.979 0.996 0.800 1.001 

pai7[7,0] 0.558 0.034 0.491 0.560 0.619 0.196 1.001 
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pai7[7,1] 0.924 0.019 0.884 0.925 0.958 0.800 1.001 

pai8[8,0] 0.175 0.045 0.085 0.176 0.262 0.196 1.001 

pai8[8,1] 0.787 0.052 0.679 0.789 0.881 0.503 1.003 

pai8[8,2] 0.962 0.017 0.925 0.964 0.990 0.800 1.021 

pai9[9,0] 0.338 0.164 0.057 0.333 0.643 0.196 1.001 

pai9[9,1] 0.837 0.025 0.787 0.837 0.884 0.800 1.001 

pai10[10,0] 0.152 0.026 0.101 0.152 0.205 0.196 1.002 

pai10[10,1] 0.554 0.032 0.492 0.553 0.618 0.800 1.001 

pai11[11,0] 0.242 0.106 0.052 0.242 0.448 0.196 1.001 

pai11[11,1] 0.712 0.078 0.555 0.715 0.855 0.503 1.001 

pai11[11,2] 0.904 0.052 0.784 0.910 0.984 0.800 1.001 

pai12[12,0] 0.171 0.101 0.025 0.155 0.407 0.196 1.001 

pai12[12,1] 0.223 0.059 0.110 0.222 0.341 0.503 1.001 

pai12[12,2] 0.940 0.032 0.869 0.944 0.990 0.800 1.001 

pai13[13,0] 0.274 0.029 0.218 0.274 0.333 0.196 1.001 

pai13[13,1] 0.670 0.031 0.609 0.670 0.733 0.800 1.001 

pai14[14,0] 0.253 0.034 0.187 0.254 0.319 0.196 1.001 

pai14[14,1] 0.721 0.030 0.662 0.721 0.781 0.800 1.001 

pai15[15,0] 0.202 0.073 0.053 0.206 0.337 0.196 1.001 

pai15[15,1] 0.508 0.063 0.389 0.507 0.634 0.503 1.001 

pai15[15,2] 0.916 0.034 0.847 0.918 0.978 0.800 1.012 

pai16[16,0] 0.262 0.039 0.185 0.263 0.337 0.196 1.004 

pai16[16,1] 0.891 0.027 0.836 0.891 0.944 0.800 1.002 

pai17[17,0] 0.106 0.076 0.016 0.091 0.376 0.196 1.003 

pai17[17,1] 0.621 0.059 0.548 0.613 0.828 0.800 1.001 

pai18[18,0] 0.187 0.115 0.026 0.167 0.459 0.196 1.001 

pai18[18,1] 0.226 0.091 0.077 0.217 0.432 0.352 1.001 

pai18[18,2] 0.220 0.046 0.131 0.219 0.314 0.503 1.004 

pai18[18,3] 0.263 0.076 0.130 0.258 0.425 0.643 1.002 

pai18[18,4] 0.702 0.046 0.614 0.701 0.795 0.800 1.003 

pai19[19,0] 0.060 0.017 0.030 0.059 0.095 0.196 1.002 

pai19[19,1] 0.422 0.031 0.365 0.422 0.483 0.800 1.002 

pai20[20,0] 0.021 0.010 0.005 0.020 0.043 0.196 1.001 

pai20[20,1] 0.305 0.030 0.250 0.305 0.366 0.800 1.003 

pai21[21,0] 0.154 0.023 0.110 0.153 0.201 0.196 1.001 

pai21[21,1] 0.354 0.027 0.303 0.353 0.408 0.800 1.033 

pai22[22,0] 0.492 0.031 0.432 0.493 0.551 0.196 1.001 

pai22[22,1] 0.917 0.021 0.874 0.918 0.955 0.800 1.001 

pai23[23,0] 0.167 0.063 0.052 0.165 0.297 0.196 1.001 

pai23[23,1] 0.244 0.126 0.129 0.220 0.792 0.503 1.001 

pai23[23,2] 0.913 0.034 0.842 0.916 0.970 0.800 1.002 
Note. lambda [a] denotes the λ parameter for the condition of a mastered prerequisite attributes, where 0 

denotes none prerequisite attribute is mastered, 1 denotes one prerequisite attribute is mastered, etc. pai[b, 

a] denotes the π parameter of Item b when a measured attributes are mastered, where 0 denotes none of 

the measured attributes are mastered, 1 denotes one of the measured attributes is mastered, etc.  
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Regarding priors for item parameters, I classified them into four groups based on the 

number of attributes they measure. First, for the items measuring only one attribute, the 

probabilities of correctness for students who have and have not mastered the measured attribute 

were assumed to follow Beta (8,2) and Beta (2,8), respectively. Items measuring two attributes 

were hypothesized to have probabilities of correctness for students who have mastered none, 

one, two measured attributes following Beta (2,8), Beta (5,5), Beta (8,2), respectively. Items 

measuring three attributes were assigned to follow Beta (2,8), Beta (4,6), Beta (6,4), Beta (8,2) 

for their probabilities of correctness for student who have mastered none, one, two and three 

measured attributes, respectively. Finally, items measuring four attributes were assigned to 

follow Beta (2,8), Beta (3.5,6.5), Beta (5,5), Beta (6.5,3.5), Beta (8,2) for their probabilities of 

correctness for student who have mastered none, one, two, three and four measured attributes, 

respectively. 

Parameter values. Table XXII summarizes the estimated person and item parameters, 

their interquartile range, their �̂� statistics by taking an average from 30000 iterations following 

10000 burn-ins, and the abovementioned priors. All parameters have �̂� statistics smaller than 

1.2, suggesting the estimation of these parameters has reached convergence. 

Person parameters. Person parameters, denoted by λ (lambda), represent the probabilities 

of mastering an attribute to a certain level for a student given their mastery status of prerequisite 

attributes. As shown in Table XXII, the probability of mastering attribute 1 (i.e., Understand 

concepts of a ratio and a unit rate and use language appropriately) is .493. With the probability of 

mastering attribute 1 at the classification borderline of .5, this attribute is not good at  

dichotomously classifying students into mastery and non-mastery levels. The probability of 

mastering attribute 11 tends to be .885. In comparison, attribute 1 tends to be an attribute 
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relatively hard to master, while attribute 11 is relatively easy to master. Attribute 2 (i.e., Use 

ratio and rate reasoning to solve real-world and mathematical problems) is dependent on attribute 

1, meaning that mastering attribute 1 positively contributes to mastering attribute 2. The results 

manifest that if a student has acquired attribute 1, this student may have a probability of .917 in 

mastering attribute 2, while if not, then the probability of mastering attribute 2 would drop 

to .085. Figure 17 shows the MCMC chain histories and posterior distributions for λ1 and λ2. The 

λ1 distribution is nicely concentrated and centered at .493 with a small posterior variance, 

indicated by the path niggling around the estimated value and the density having thin tails and 

high peak. Similarly, the two levels of mastery status for attribute 2 also show paths concentrated 

and density centered tightly around the estimated values.  

In another case, because attribute 9 has three prerequisite attributes (i.e., attributes 3, 4, 

13), four levels of mastery status are possible: the probability of mastering attribute 9 with none 

of the prerequisite attributes mastered is .183, the mastery probability with one attribute mastered 

is .235, the mastery probability with two attributes mastered is .267, the mastery probability with 

all the prerequisite attributes mastered is .945. The four possibilities suggest that to understand 

and master attribute 9 (Apply and extend previous understandings of operations with factions to 

add, subtract, multiple, and divide rational numbers), it is better for students to first understand 

attribute 3 (Compute fluently with multi-digit numbers and find common factors and multiples), 

attribute 4 (Apply and extend previous understandings of numbers to the system of rational 

numbers), attribute 13 (Use equivalent faction as a strategy to add and subtract factions) all 

together. Lacking even one of the prerequisite attributes may largely reduce the probability of 

mastering attribute 9. Figure 18 shows the MCMC chain histories and posterior distributions for 

parameters associated with λ9. It can be found that the MCMC chains for the first two levels (i.e., 
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no or one prerequisite attributes being mastered) have relatively large variances around the 

estimated value, and their posterior SDs are relatively large, three to four times greater than the 

ones associated with the attribute. Further, for the other two levels of attribute 9 (i.e, two or all 

prerequisite attributes being mastered), although the MCMC chain is mixing well in the Bayesian 

analysis, they fail to quickly reach the target value after burn-ins, which leads to a larger 

posterior SD as well. Consistently, the density plots for these four levels show fatter tails on the 

first two levels and tighter ones for the latter two levels. These results may suggest that there is 

less evidence in this group to make extremely clear inferences on student mastery of attribute 9.  

Item parameters. Table XXII also shows item parameter values of TIMSS data. 

Generally, each item has several parameters associated with different levels of mastery on the 

attributes measured by this item. Specifically, the items measuring only one attribute have two 

parameters: the probabilities of correctly answering this item when students fail to master the 

measured attribute (i.e., false positive) and when they have mastered the attribute (i.e., true 

positive). In other words, the false positive rate can be interpreted as the guessing parameter 

mostly used in CDMs, and similarly the probability deducted from 1 by the true positive rate can 

be interpreted as the slipping parameter. For example, as shown in Figure 20, the parameter for 

the false positive rate for item 14 measuring attribute 6 is mixing well in the MCMC trace plot 

and is tightly centered around .253, suggesting that students who fail to master attribute 6 would 

have a 25% probability of answering this item correctly; and the true positive rate is .721, 

suggesting that students who have mastered attribute 6 would have a 72% probability of 

answering this item correctly. In other words, the guessing parameter of this item is .251, and the 

slipping parameter is .279 (= 1 − .721). They are both relatively low, indicating a good quality of 

this item for identifying students who have and have not mastered attribute 6.  
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Figure 18. MCMC chain plots and density plots for parameters of λ1, λ2.  

Note. The value in the bracket [a] denotes the ath parameter associated with the λ parameter.  
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Figure 19. MCMC chain plots and density plots for parameters of λ9.  

Note. The value in the bracket [a] denotes the ath parameter associated with the λ parameter. 
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Figure 20. MCMC chain plots and density plots for parameters of π14.  

Note. The value in the bracket [b, a] denotes the ath parameter associated with the πb parameter. 

 

 

 

 

 

 

Figure 21 and Figure 22 show the MCMC chain histories and the density plots for the π 

parameters of Items 21 and 22, respectively. For both items, the MCMC chains of their π 

parameters are mixing well with small posterior SDs, and the posterior distributions are tightly 

concentrated around the parameter values. However, in terms of item quality, Item 21 has a 
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guessing parameter of .154 and a slipping parameter of .646 (= 1 −.354), indicating that students 

who have mastered the measured attribute 5 may have a 64% probability of answering this item 

wrong. The high slipping parameter suggests that this item has low quality in identifying 

students who have mastered attribute 5. Item 22 has a guessing parameter of .492, suggesting 

that students who fail to master the measured attribute 2 have a 49.2% probability of answering 

this item correctly, and a slipping parameter of .093. It suggests that although this item has a low 

slipping parameter, its high guessing parameter marks this item as low-quality in differentiating 

students who fail to mastered attribute 5.  

For another example, Item 8 measures attributes 5 and 9, therefore there are three mastery 

levels for this item: students who have mastered both attributes, students who have mastered one 

of the two attributes, and students who have not mastered any attributes. In this case, there is one 

parameter for each of the three levels. As shown in Figure 23 and Table XXII, the MCMC chains 

for these parameters are mixing well and their density plots are tightly centered around parameter 

values. Specifically, the probability of correctly answering item 8 for students who fail to master 

attributes 5 and 9 is .175; the correctness probability for students who have mastered either 

attribute 5 or 9 is .787; and as expected, the correctness probability for students who have 

mastered both attributes is .962. This result shows that mastering at least one attribute would 

have a relatively high probability of answering Item 8 correctly. 

Table XXII lists the priors used for each parameter. Regarding the impact of the priors on 

the posterior distribution for both person and item parameters, it can be found from the MCMC 

chain histories and the discrepancy between priors and posterior estimates that the data are able 

to pull most of the BN posterior estimates away from the starting values. It suggests that the 

impact of priors on the BN posterior estimation is small for this analysis.  
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Item fit. As described in Section 3.3.5.1, the item fit indices for BN modeling are 

calculated by the PPMC, which can identify the discrepancy between the observed and the 

replicated item responses estimated by the model. In other words, it indicates what the data 

should look like if the model is true and how far their distribution is from the observed data 

distribution (Yan et al., 2003). Table XXIII summarizes the item-fit indices for a sample of 

30000 iterations after 10000 burn-ins. According to the rule of thumb for the PPP value of 

PPMC, all the items fit well with no items having PPP values larger than .95 or smaller than .05. 

Most of them are around .5, indicating good fit.  

Person fit. The person fit indices specifically explain whether students’ item responses 

are consonant with their attribute mastery statuses. They allow us to know whether some 

responding behaviors fail to comply with the modeling estimation. Table XXIV presents the 

descriptive statistics of the person fit indices for 757 examinees in this data. As shown in Table 

XXIV, most of the person fit indices meet the criteria except that six students, .79% of the 

sample, have fit indices larger than .95 or smaller than .05, indicating that the person misfit of 

this model is negligible in estimating their mastery status of attributes.  

I used six students as examples to unpack their performance in this assessment. Table 

XXV shows their item responses and their estimated mastery levels on each attribute. Among the 

six students, three have misfit indices and the others fit well by the model estimation. Table 

XXVI presents the mastery classifications based on the BN posterior probabilities of each 

attribute for these students.  
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Figure 21. MCMC chain plots and density plots for parameters of π21.  

Note. The value in the bracket [b, a] denotes the ath parameter associated with the πb parameter. 
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Figure 22. MCMC chain plots and density plots for parameters of π22.  

Note. The value in the bracket [b, a] denotes the ath parameter associated with the πb parameter. 
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Figure 23. MCMC chain plots and density plots for parameters of π8.  

Note. The value in the bracket [b, a] denotes the ath parameter associated with the πb parameter. 
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TABLE XXIII ITEM FIT INDICES FOR TIMSS DATA 

Item P(Obs >= Rep) 

1 0.286 

2 0.482 

3 0.491 

4 0.591 

5 0.432 

6 0.300 

7 0.451 

8 0.375 

9 0.512 

10 0.518 

11 0.450 

12 0.401 

13 0.578 

14 0.562 

15 0.476 

16 0.503 

17 0.466 

18 0.376 

19 0.433 

20 0.335 

21 0.473 

22 0.472 

23 0.445 

Note. The item fit criterion is that the P value is around .5 and is not larger than .95 or smaller 

than .05. 

 

 

TABLE XXIV DESCRIPTIVE STATISTICS FOR PERSON FIT INDICES 

Statistics Value 

Mean 0.492 

Median 0.490 

Standard Deviation 0.226 

Minimum 0.037 

Maximum 0.993 

Note. The person fit criterion is that the P value is around .5 and is not larger than .95 or smaller 

than .05. 
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TABLE XXV EXAMINEE EXAMPLES OF ITEM RESPONSES  

 
Examinee  Q matrix: Attributes 

Item 23 208 481 279 331 213  1 2 3 4 5 6 7 8 9 10 11 12 13 

1 1 0 0 1 1 1  1 
         

1 
 

1 

2 1 0 0 0 1 0  
     

1 
       

3 1 0 0 1 0 0  
 

1 
    

1 
      

4 1 1 0 1 0 0  
   

1 
    

1 
    

5 1 0 0 0 0 0  
     

1 
   

1 
 

1 
 

6 1 1 0 1 1 0  
     

1 1 
      

7 1 0 0 1 1 0  1 
            

8 1 1 0 1 1 0  
    

1 
   

1 
    

9 1 0 1 1 1 1  
          

1 
  

10 0 1 1 0 0 0  
     

1 
       

11 1 1 1 1 1 0  
 

1 
     

1 
     

12 1 1 1 1 1 0  
  

1 
         

1 

13 1 1 0 1 0 1  
    

1 
        

14 1 1 0 1 1 0  
     

1 
       

15 1 0 0 1 0 1  
 

1 
         

1 
 

16 1 1 0 1 0 0  
    

1 
        

17 1 0 0 0 0 0  
   

1 
         

18 1 1 0 0 1 0  
  

1 
     

1 
 

1 
 

1 

19 0 1 1 1 0 0  
 

1 
           

20 0 1 1 1 0 0  1 
            

21 0 1 0 1 1 0  
    

1 
        

22 1 1 0 1 1 1  
 

1 
           

23 1 1 0 1 0 0  
   

1 
    

1 
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TABLE XXVI CLASSIFICATION RESULTS FOR EXAMINEE EXAMPLES

 
Classification results for each attribute 

 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 Person fit 

23 0 1 1 1 1 1 1 1 1 1 1 1 1 0.042 

208 1 0 1 1 1 1 0 1 1 0 1 0 1 0.982 

481 1 0 0 0 0 0 0 1 0 0 1 0 1 0.993 

279 1 1 1 0 1 0 1 1 1 0 1 1 1 0.582 

331 0 0 1 0 0 0 1 1 1 0 1 0 1 0.625 

213 0 0 0 0 0 0 0 0 0 0 1 1 1 0.427 
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Examinee 23 shows a misfit pattern. It can be seen from their item responses that this 

student wrongly answered items 9, 19, 20, 21, which each measures attribute 6, 2, 1, 5, 

respectively. However, this student performed well on all other items including those measuring 

attributes 1, 2, 5, 6. These patterns are inconsistent for any of the attribute mastery status. Hence, 

this student has a less satisfactory person fit index and the results estimated from BN modeling, 

that this student has mastered all attribute except for attribute 1, tend to be less reliable.  

Examinee 208 shows another misfit pattern that this student missed 8 out of 23 items. 

Specifically, this student missed items 2 and 17, which measure attribute 6 and 4 respectively. 

However, this student performed well on other harder items measuring attribute 6 alone (i.e., 

item 9 and 14 are all harder than item 2) and harder items measuring attribute 4 (i.e., item 4 and 

23). In other words, this student missed relatively easy items while correctly answered hard items 

measuring the same attributes. This responding behavior is also inconsistent with a common 

attribute mastery status.  

Similarly, Examinee 481 revealed misfit responding behavior. This student correctly 

answered the hard items 10, 19, 20 measuring attributes 1, 2, 6, respectively, but responded 

wrongly to the easy items measuring the same attributes (i.e., items 2, 7, 14, 22). This misfit 

pattern would make this estimation unreliable. 

The rest three examinees are examples of having good person fit indices. Examinee 279 

missed items 2, 5, 10, which measured attribute 6 alone or with other attributes, suggesting that 

this student had a lower probability of mastering attribute 6. According to the structural 

relationships, a lack of mastery on attribute 6 may contribute to a lower probability of mastering 

attribute 10. Consistently, this student answered Item 5 wrong which also measures attribute 10. 

Further, this student missed Item 17, which is the only item measuring attribute 4 alone, 
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indicating a potential lack of mastery on attribute 4. These responding behaviors show few 

inconsistent patterns, and the corresponding estimated mastery status for this student, indicating 

a mastery of all attributes except for attributes 4, 6, 10, also showed the good fit of the attribute 

mastery status estimated by BN modeling.  

Examinee 331 missed items 5, 10, 13, 15, 16, which measure attributes 12, 5, 6, 10 in 

some combination. These four attributes are also prerequisites to the next one in order according 

to the structural relationship. Hence, it is reasonable to find the estimated mastery status indicate 

a lack of mastery on these four attributes for this student. Further, this student wrongly answered 

items 19, 20, 23 measuring attributes 1, 2, 4, respectively, suggesting a possible lack of these 

attributes. These patterns are consistent with the estimated attribute classification by BN 

modeling as well.  

Finally, Examinee 213 tended to master attributes 11, 12, 13 as this student correctly 

answered items 1, 9, 15, 22. Although the correct answers to items 15 and 22 may also indicate a 

potential mastery of attribute 2, this student failed to answer all other questions measuring 

attribute 2. Hence, it is not surprising to find that the estimated mastery status of this student 

excludes attribute 2.  

I further conducted a correlation analysis between the raw score of each student and the 

number of mastered attributes in their mastery profile estimated by BN. The correlation estimate 

of .90 (p < .001) suggests a positively and highly consistent relationship between the raw score 

and the estimated mastery of attributes. This finding indicates that students who answered more 

items correctly would be estimated to have mastered more attributes by BN. It further manifests 

the capacity of BN modeling in adequately classifying students into mastery levels of each 

attribute.  
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To display how attributes are related to each other and how item responses are related to 

student attribute mastery status, I used Netica to draw the graphical display to showcase one part 

of these relationships. To make a straightforward and clear graph, I used attributes 5, 6, 10, 12 

and the items measuring these attributes as an illustration. As shown in Figure 24, around half of 

students tend to master attributes 5, 6, and 10, while 70% may have mastered attribute 12. With 

respect to item difficulties, students may have a 50% probability of providing correct responses 

to items 5, 13, 14, 16, and students seem to have only around a 30% probability of giving correct 

responses to items 10, 21, suggesting these two items are relatively difficult. Item 2 tends to be 

an easy item with a correctness probability of around 70%. 

Figure 25 shows the mastery profile estimated by BN and item responses of Examinee 

331. It can be found that this student may have a 50% probability of mastering attribute 12, while 

this student tends to have a relatively low likelihood to master attributes 5, 6, and 10. Viewing 

the relationships from another perspective, if we assume a student has mastered attributes 5 and 

12 but not attributes 6 and 10 as shown in Figure 25, this student’s item responses can also be 

predicted by the posterior distribution among attributes and items. Specifically, this student 

would have a relatively low likelihood of correctly answering items 2, 5, 10, 14, and 21, while 

this student would have a high probability of correctly answering items 13 and 16. Generally, the 

graphical display of the structure in attributes and its connection with items would help students 

to understand their current mastery levels and customize specific learning plans on how they 

should achieve improvement and what components they should focus on in remediation. It would 

also contribute to teachers’ instructional design from both individualized and class levels on how 

to improve students’ performance.  
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To achieve the ultimate goal of a diagnostic assessment, BN can be used to provide a 

score report with formative feedback suggesting individualized learning paths for students and 

potential instructional strategies for teachers. I used the three students with good person fit 

indices to showcase diagnostic score reports. Figure 26 shows a diagnostic report for examinee 

279. The report lists the attributes this student may not have mastered and the items they missed 

to provide students with a checklist to review. Based on the structural relationships among 

attributes, I also made some suggestions on future learning paths or instructional strategies that 

may help students and teachers to prioritize their tasks. Figure 27 shows the diagnostic report for 

examinee 311. This report involves more suggestions on the learning paths for attributes with 

structural relationships as this student failed to master more attributes. 

In addition to the individual diagnostic report, it would be practical to provide teachers 

with a group-level diagnostic report. Figure 28 displays the distribution of mastery levels for 

each attribute and the structure in attributes for the entire sample, which teachers can use to 

adjust their teaching. The diagrams in Figure 28 indicate students’ mastery of each attribute and 

suggest sequences of attribute teaching. Specifically, the hierarchy of attributes 12-5-6-10 

follows the assumption that the prerequisite (top) attributes show a higher mastery probability 

than the advanced (bottom) attributes. Similarly, the structure among attributes 13-3-11-9-4 

mostly follows the hypothesis that attributes 13, 3 and 11 as the basic attributes tend to be easier 

for students to master than attributes 9 and 4. Although attribute 9 is dependent on attribute 4, it 

seems easier to master than attribute 4. It also occurred among the hierarchy of attributes 1-2-7-8 

that, inconsistent with the hypothesis, the prerequisite attributes 1 and 2 seem to be difficult for 

students to master than its descendant attributes. These inconsistencies occurred might be due to 

two reasons: 1) the structure in attributes is inaccurate so that the posterior distribution among 
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attributes fails to present the hypothesized structure; 2) if the definitions of attributes 

demonstrate that the structure should be correct, the inconsistencies occurred probably because 

the items are not well designed to measure the target attributes or the number of items are 

insufficient to fully tap students’ performance on the measured attributes. In the TIMSS data, the 

definitions of attributes 1 and 2 tend to be the prerequisite attributes for attributes 7 and 8. In this 

case, following the fact that only two items measuring attribute 7 or 8 together with other 

attributes, the sparse Q matrix might cause that this assessment fails to measure attributes 7 and 8 

using enough items. 
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Figure 24. Graphical display of the BN posterior distribution among five selected attributes and the items measuring them. 

Note. Alpha denotes the mastery classification for each attribute, X denotes the items responses to each item. 
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Figure 25. Graphical display of the mastery status of five selected attributes for Examine 331. 

Note. Alpha denotes the mastery classification for each attribute, X denotes the items responses to each item. 
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Figure 26. The diagnostic report for Examinee 279.  
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Figure 27. The diagnostic report for Examinee 311.  
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Figure 28. The group-level report of each attribute for the TIMSS data. 

Note. Percentage refers to the percent of students who have mastered each of the attributes  
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4.2.3 Polytomous Attribute Data Analysis 

As no real data is available for tests with polytomous attributes, I used the polytomous 

attribute data for the polytomous GDINA Model simulated by Chen and de la Torre (2013). The 

data have 1000 students for a test of 30 dichotomously-score items and five polytomous 

attributes. The Q matrix is shown in Table XXVII. 

Priors. The starting values for the polytomous attribute data are slightly different from 

the TIMSS data, especially for the person parameters. In the case of polytomous attributes with 

three levels of non-mastery denoted by 0, medium mastery denoted by 1, high mastery denoted 

by 2, the person parameters λ would follow a Dirichlet distribution, which would provide a 

probability for each mastery level of attributes. Also, as the polytomous attributes in this dataset 

are not assumed to have a structural relationship, attributes are considered  independently 

contributing to item responses. Based on all the information, the priors for the probabilities of the 

three mastery levels for all attributes follow Dirichlet (2,6,2), which are .200, .606, and .193.  

Regarding priors for item parameters, I classified them into three evidence model groups 

based on the number of attributes they measure. First, for the items measuring only one attribute, 

the probabilities of correctness for students who have and have not reached the required mastery 

level of the measured attribute are assumed to follow Beta (8,2) and Beta (2,8), respectively. 

Items measuring two attributes were hypothesized to have probabilities of correctness for 

students who have reached the mastery levels of none, one, two measured attributes following 

Beta (2,8), Beta (5,5), Beta (8,2), respectively. Items measuring three attributes were assigned to 

follow Beta (2,8), Beta (4,6), Beta (6,4), Beta (8,2) for their probabilities of correctness for 

student who have reached the mastery levels of none, one, two, and three measured attributes, 

respectively.  
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TABLE XXVII Q MATRIX FOR THE TEST DATA WITH POLYTOMOUS ATTRIBUTES 

Item Number A1 A2 A3 A4 A5 

1 1 0 0 0 0 

2 0 1 0 0 0 

3 0 0 1 0 0 

4 0 0 0 1 0 

5 0 0 0 0 1 

6 1 2 0 0 0 

7 0 1 2 0 0 

8 0 0 1 2 0 

9 0 0 0 1 1 

10 2 0 0 0 1 

11 2 2 0 1 0 

12 2 1 0 0 1 

13 1 0 2 2 0 

14 0 2 1 0 1 

15 0 0 2 2 1 

16 2 0 0 0 0 

17 0 2 0 0 0 

18 0 0 2 0 0 

19 0 0 0 2 0 

20 0 0 0 0 1 

21 2 0 2 0 0 

22 0 2 0 2 0 

23 0 0 2 0 1 

24 2 0 0 2 0 

25 0 2 0 0 1 

26 1 0 0 1 1 

27 0 1 1 1 0 

28 1 1 1 0 0 

29 0 1 0 1 1 

30 1 0 1 0 1 

Note. This Q matrix was described in Chen and de la Torre (2013). 

Parameter values. Table XXVIII summarizes the statistics of the estimated person and 

item parameters, their interquartile range, their �̂� statistics resulting from 6000 iterations 

following 1500 burn-ins, and priors. As can be seen, all parameters have �̂� statistics smaller than 

1.2, suggesting the estimation of these parameters has converged. 
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Person parameters. In the polytomous-attribute case, the interpretation of each attribute 

mastery level is different from the dichotomous case. In this data, students are classified into 

non-mastery, medium mastery, high mastery on each attribute. As can be seen Table XXVIII 

three parameters are associated with each attribute, and each specifies the probability of 

mastering the attribute in the non-mastery, medium mastery, high mastery levels, respectively. I 

used attributes 3 and 5 for an illustration to explain their parameter values and MCMC chain 

mixing. We may find that the non-mastery probability for attribute 3 is .167, the medium mastery 

probability is .585, the high mastery probability is .248. As shown in Figure 29, the MCMC 

chains for the three parameters are mixing well with small variance and niggling around the 

parameter values. The density plots also indicate the posterior distribution of each parameter is 

tightly concentrated around the estimated value.  

 For another example, the mastery probabilities of attribute 5 reveal that attribute 5 is 

relatively harder to master compared to attribute 3. Specifically, the non-mastery probability is 

around .492, the medium mastery probability is .372, and the high mastery probability is .136. 

As indicated in Figure 30, the probability of non-mastery is mixing well with a tightly 

concentrated posterior distribution. However, the probabilities of medium and high mastery are 

not mixing very well with large posterior SDs which leads to the fluctuation of MCMC chains in 

a relatively large range. Consistently, the density plots have fatter tails. It may be because the 

number of students mastering attribute 5 in either medium or high level is small compared to 

other attributes, hence less evidence was provided for BN modeling to yield more stable 

parameter values. 
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TABLE XXVIII PARAMETER VALUES FOR THE POLYTOMOUS ATTRIBUTE DATA 

Parameters Mean SD 25.00% Median 75.00% Rhat Priors 

lambda_1[1] 0.288 0.016 0.277 0.287 0.299 1.001 0.200 

lambda_1[2] 0.510 0.019 0.497 0.510 0.522 1.001 0.606 

lambda_1[3] 0.203 0.015 0.192 0.203 0.213 1.001 0.193 

lambda_2[1] 0.251 0.019 0.239 0.251 0.263 1.001 0.200 

lambda_2[2] 0.501 0.023 0.485 0.501 0.516 1.003 0.606 

lambda_2[3] 0.248 0.019 0.235 0.248 0.261 1.002 0.193 

lambda_3[1] 0.167 0.020 0.153 0.166 0.180 1.002 0.200 

lambda_3[2] 0.585 0.026 0.568 0.586 0.603 1.003 0.606 

lambda_3[3] 0.248 0.020 0.235 0.247 0.261 1.001 0.193 

lambda_4[1] 0.262 0.017 0.250 0.262 0.273 1.001 0.200 

lambda_4[2] 0.547 0.021 0.533 0.546 0.561 1.001 0.606 

lambda_4[3] 0.191 0.016 0.180 0.191 0.202 1.001 0.193 

lambda_5[1] 0.492 0.018 0.481 0.492 0.503 1.008 0.200 

lambda_5[2] 0.372 0.077 0.321 0.382 0.431 1.001 0.606 

lambda_5[3] 0.136 0.076 0.076 0.125 0.186 1.001 0.193 

pai[1,1] 0.067 0.026 0.050 0.065 0.083 1.001 0.196 

pai[2,1] 0.024 0.008 0.019 0.024 0.029 1.001 0.196 

pai[3,1] 0.048 0.022 0.033 0.045 0.061 1.001 0.196 

pai[4,1] 0.261 0.018 0.249 0.261 0.273 1.002 0.196 

pai[5,1] 0.125 0.053 0.087 0.123 0.160 1.002 0.196 

pai[6,1] 0.033 0.010 0.026 0.032 0.039 1.001 0.196 

pai[7,1] 0.024 0.019 0.012 0.021 0.032 1.001 0.196 

pai[8,1] 0.012 0.006 0.007 0.011 0.015 1.001 0.196 

pai[9,1] 0.104 0.015 0.093 0.103 0.113 1.003 0.196 

pai[10,1] 0.156 0.018 0.144 0.156 0.168 1.001 0.196 

pai[1,2] 0.989 0.009 0.986 0.991 0.994 1.010 0.800 

pai[2,2] 0.894 0.039 0.869 0.897 0.922 1.001 0.800 

pai[3,2] 0.816 0.019 0.803 0.816 0.828 1.001 0.800 

pai[4,2] 0.769 0.036 0.745 0.769 0.793 1.002 0.800 

pai[5,2] 0.841 0.017 0.830 0.841 0.852 1.002 0.800 

pai[6,2] 0.748 0.043 0.719 0.748 0.777 1.002 0.800 

pai[7,2] 0.887 0.017 0.877 0.888 0.898 1.002 0.800 

pai[8,2] 0.784 0.045 0.755 0.785 0.815 1.001 0.800 

pai[9,2] 0.974 0.014 0.968 0.975 0.981 1.001 0.800 

pai[10,2] 0.972 0.013 0.967 0.973 0.978 1.003 0.800 

pai[11,1] 0.206 0.027 0.187 0.205 0.224 1.001 0.196 

pai[12,1] 0.161 0.015 0.150 0.160 0.171 1.001 0.196 

pai[13,1] 0.231 0.034 0.207 0.230 0.253 1.007 0.196 

pai[14,1] 0.145 0.014 0.136 0.145 0.155 1.001 0.196 

pai[15,1] 0.348 0.021 0.334 0.348 0.361 1.002 0.196 

pai[16,1] 0.063 0.027 0.044 0.061 0.080 1.002 0.196 

pai[17,1] 0.376 0.024 0.359 0.375 0.392 1.001 0.196 

pai[18,1] 0.082 0.015 0.071 0.081 0.092 1.001 0.196 

pai[19,1] 0.203 0.021 0.189 0.202 0.217 1.001 0.196 

pai[20,1] 0.087 0.022 0.072 0.086 0.101 1.001 0.196 

pai[11,2] 0.223 0.023 0.207 0.222 0.238 1.001 0.503 

pai[12,2] 0.164 0.028 0.145 0.163 0.181 1.001 0.503 

pai[13,2] 0.275 0.023 0.259 0.275 0.290 1.001 0.503 

pai[14,2] 0.151 0.026 0.133 0.150 0.167 1.001 0.503 

pai[15,2] 0.363 0.032 0.342 0.363 0.384 1.002 0.503 
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pai[16,2] 0.082 0.014 0.072 0.081 0.091 1.002 0.503 

pai[17,2] 0.332 0.023 0.317 0.332 0.347 1.001 0.503 

pai[18,2] 0.090 0.015 0.079 0.089 0.099 1.002 0.503 

pai[19,2] 0.171 0.021 0.157 0.171 0.185 1.001 0.503 

pai[20,2] 0.128 0.021 0.114 0.127 0.141 1.001 0.503 

pai[11,3] 0.946 0.022 0.933 0.948 0.962 1.001 0.800 

pai[12,3] 0.891 0.039 0.866 0.893 0.919 1.001 0.800 

pai[13,3] 0.941 0.025 0.925 0.942 0.959 1.001 0.800 

pai[14,3] 0.880 0.042 0.854 0.885 0.910 1.002 0.800 

pai[15,3] 0.838 0.051 0.805 0.841 0.875 1.001 0.800 

pai[16,3] 0.854 0.034 0.832 0.855 0.878 1.001 0.800 

pai[17,3] 0.920 0.026 0.904 0.922 0.938 1.001 0.800 

pai[18,3] 0.775 0.043 0.746 0.776 0.805 1.002 0.800 

pai[19,3] 0.837 0.035 0.814 0.839 0.862 1.001 0.800 

pai[20,3] 0.855 0.019 0.844 0.855 0.867 1.001 0.800 

pai[21,1] 0.056 0.038 0.028 0.048 0.075 1.001 0.196 

pai[22,1] 0.156 0.030 0.136 0.155 0.176 1.001 0.196 

pai[23,1] 0.212 0.103 0.135 0.201 0.280 1.001 0.196 

pai[24,1] 0.260 0.031 0.239 0.259 0.281 1.001 0.196 

pai[25,1] 0.202 0.040 0.175 0.200 0.228 1.001 0.196 

pai[26,1] 0.357 0.083 0.302 0.356 0.411 1.001 0.196 

pai[27,1] 0.052 0.028 0.032 0.048 0.068 1.001 0.196 

pai[28,1] 0.234 0.049 0.201 0.232 0.266 1.001 0.196 

pai[29,1] 0.299 0.067 0.254 0.296 0.343 1.002 0.196 

pai[30,1] 0.308 0.026 0.291 0.308 0.326 1.002 0.196 

pai[21,2] 0.087 0.027 0.068 0.085 0.104 1.001 0.404 

pai[22,2] 0.165 0.018 0.152 0.165 0.177 1.003 0.404 

pai[23,2] 0.182 0.046 0.151 0.181 0.212 1.003 0.404 

pai[24,2] 0.245 0.022 0.230 0.244 0.260 1.001 0.404 

pai[25,2] 0.199 0.024 0.183 0.198 0.215 1.001 0.404 

pai[26,2] 0.327 0.041 0.299 0.326 0.354 1.002 0.404 

pai[27,2] 0.053 0.015 0.043 0.052 0.061 1.001 0.404 

pai[28,2] 0.171 0.029 0.151 0.170 0.189 1.003 0.404 

pai[29,2] 0.136 0.027 0.117 0.134 0.153 1.001 0.404 

pai[30,2] 0.341 0.029 0.322 0.340 0.360 1.001 0.404 

pai[21,3] 0.102 0.028 0.084 0.100 0.118 1.001 0.594 

pai[22,3] 0.196 0.035 0.173 0.195 0.218 1.001 0.594 

pai[23,3] 0.151 0.030 0.132 0.150 0.168 1.001 0.594 

pai[24,3] 0.238 0.031 0.217 0.237 0.258 1.002 0.594 

pai[25,3] 0.204 0.023 0.189 0.204 0.219 1.001 0.594 

pai[26,3] 0.362 0.026 0.344 0.361 0.380 1.001 0.594 

pai[27,3] 0.057 0.013 0.047 0.056 0.065 1.001 0.594 

pai[28,3] 0.174 0.024 0.158 0.174 0.189 1.001 0.594 

pai[29,3] 0.193 0.027 0.175 0.192 0.210 1.001 0.594 

pai[30,3] 0.390 0.037 0.365 0.389 0.414 1.001 0.594 

pai[21,4] 0.845 0.020 0.833 0.846 0.858 1.001 0.800 

pai[22,4] 0.922 0.032 0.902 0.925 0.945 1.001 0.800 

pai[23,4] 0.786 0.023 0.771 0.786 0.800 1.005 0.800 

pai[24,4] 0.935 0.034 0.916 0.940 0.960 1.001 0.800 

pai[25,4] 0.782 0.039 0.757 0.784 0.810 1.001 0.800 

pai[26,4] 0.809 0.023 0.795 0.810 0.824 1.001 0.800 

pai[27,4] 0.696 0.045 0.666 0.696 0.727 1.002 0.800 

pai[28,4] 0.977 0.014 0.972 0.978 0.983 1.001 0.800 
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pai[29,4] 0.932 0.018 0.924 0.934 0.943 1.001 0.800 

pai[30,4] 0.922 0.036 0.901 0.927 0.949 1.001 0.800 

Note. lambda [a] denotes the ath mastery level of the λ parameter, where 1 denotes non-mastery, 

2 denotes medium mastery, 3 denotes high mastery. Pai[b,a] denotes the ath parameter associated 

with Item b, where 1 denotes none of the required mastery levels in the measured attributes are 

reached, 2 denotes one of the required mastery levels in the measured attributes is reached, etc. 

 

 

 

 

 

 

  

Item parameters. Different from the dichotomous case, the item parameters in the 

polytomous attribute case would evaluate not only whether students have mastered the measured 

attributes but also how well they master each attribute. I used three item examples to explain 

their item parameter values. Figure 31 shows that all three parameters of Item 17, which 

measures two attributes, are mixing well with tight posterior distributions. We may find that 

students who have failed to reach the required mastery levels of the two attributes or have only 

reached the required mastery level for one attribute would have the similar correctness 

probabilities around .3, while the probability of answering Item 17 correctly is .920 once 

students have reached the required mastery level for all the measured attributes. These results 

suggest that Item 17 may have a relatively high guessing parameter, as students who fail to reach 

the required mastery levels of both attributes still have 30% probability of answer this item 

correctly. 

For Item 18, students who have failed to reach the required mastery levels on none or one 

attribute would have a very low probability of correctly answering this item. Students who have 

reached the measured mastery level of both measured attributes would have a .775 probability of 
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answering Item 18 correctly. It reveals that Item 18 is harder than Item 17. The MCMC chains 

for all the three parameters are mixing well with tightly concentrated posterior distributions. 

Finally, Item 30 measures three attributes so that it has four parameters: the probabilities 

of giving a correct response for students who have achieved the measured mastery levels of 

none, one, two, or three attributes. As can be seen in Figure 32, all the parameter values are 

mixing well, and the posterior distributions are tightly centered around the estimated parameter 

values.  

Item fit and person fit. Table XXIX specifies the item fit indices, indicating that all the 

items fit well. Table XXX shows the descriptive statistics of the person fit indices for 1000 

examinees, which indicates that around 4% = (40/1000) of students have misfit indices. The 

overall model fit is .849. 

Attribute mastery classification. The correlation between students’ raw score and 

students’ sum of mastery levels on each attribute is high, r = .915 (p < .01). I then used a student 

example to demonstrate the diagnostic report in a polytomous attribute case (see in Figure 33).  

Table XXXI specifies the group-level distribution for this polytomous data. It can be 

noted that the proportion of median mastery for all attributes is around 50% in this group. The 

proportions of non-mastery and high mastery would suggest attribute difficulties. For example, 

attributes 1, 2, 5 tend to have higher probabilities of non-mastery and lower likelihood of high 

mastery, in which attribute 5 is the most difficult attribute and that of high mastery is almost 

zero. This type of group information would help teachers to learn about the difficulty of each 

attribute for the class and to design and adjust their instructional strategies to cater to their 

student’s learning needs.  
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Taken together, I used the BN approach to analyze two existing datasets. The results 

illustrate the good model fitting of the BN approach and its capacity of producing model 

parameters with good fit. Based on the reliable model parameters, the graphical display of the 

joint distribution over latent variables and item responses would contribute to diagnostic reports 

of person-level and group-level student performance for teaching and learning purposes. 
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TABLE XXIX ITEM FIT INDICES FOR POLYTOMOUS ATTRIBUTE DATA 

Item P(Obs >= Rep) 

1 0.319 

2 0.425 

3 0.444 

4 0.557 

5 0.495 

6 0.438 

7 0.346 

8 0.352 

9 0.400 

10 0.421 

11 0.416 

12 0.444 

13 0.431 

14 0.439 

15 0.561 

16 0.348 

17 0.462 

18 0.386 

19 0.455 

20 0.411 

21 0.210 

22 0.384 

23 0.376 

24 0.385 

25 0.446 

26 0.549 

27 0.176 

28 0.343 

29 0.393 

30 0.458 

Note. The item fit criterion is that the P value is around .5 and is not larger than .95 or smaller 

than .05. 
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TABLE XXX DESCRIPTIVE STATISTICS FOR PERSON FIT INDICES 

Statistics Value 

Mean 0.484 

Median 0.481 

Standard Deviation 0.255 

Minimum 0.006 

Maximum 0.988 

Note. The person fit criterion is that the P value is around .5 and is not larger than .95 or smaller 

than .05. 

 

TABLE XXXI GROUP-LEVEL CLASSIFICATION RESULTS 

 
Attributes 

Mastery 1 2 3 4 5 

Non-mastery 28.50% 27.30% 20.80% 30.40% 50.10% 

Medium mastery 52.00% 50.00% 56.10% 50.60% 49.90% 

High mastery 19.50% 22.70% 23.10% 19.00% 0.00% 

 



138 

 

 

  

Figure 29. MCMC chain plots and density plots for parameters associated with λ3. 

Note. The value in the bracket [b, a] denotes the ath parameter associated with the λ parameter. 
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Figure 30. MCMC chain plots and density plots for parameters associated with λ5. 

Note. The value in the bracket [b, a] denotes the ath parameter associated with the λ parameter. 
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Figure 31. MCMC chain plots and density plots for parameters associated with π17. 

Note. The value in the bracket [b, a] denotes the ath parameter associated with the πb parameter. 
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Figure 32. MCMC chain plots and density plots for parameters associated with π30. 

Note. The value in the bracket [b, a] denotes the ath parameter associated with the πb parameter. 
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Figure 33. Diagnostic report for Student 489.
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5. DISCUSSION 

To promote instruction and learning, we need to explore the theoretical and statistical 

approaches that can well reflect instructionally relevant and cognitively diagnostic assessment 

results. Compared to other multidimensional classification models, BN alleviates most modeling 

constraints and supports a complex modeling when there is a need to understand the underlying 

process of student knowledge. A limited number of studies provided informative feedback 

regarding students’ attribute proficiency and unpacking the structural relationships among 

attributes, therefore it is necessary to examine whether the BN approach has the capacity to 

provide diagnostic information on student attribute mastery based on a simulation study and real 

data illustration. Further, the incorporation of ECD in BN allows the integration between the 

theoretical foundation of assessment and the modeling technique of psychometrics. This 

integration would provide practical implications to help teachers customize their instruction to 

students with different learning needs and to assist students to prioritize their learning goals to 

make improvement. 

This study examines the capacity of BN modeling for diagnosing student attribute 

mastery and addresses questions related to the analysis and interpretation of assessment data for 

a formative diagnostic purpose. First, it investigates the effects of sample size, test length, Q 

matrix complexity, and attribute type on measurement quality. It then compares the performance 

of BN and GDINA in analyzing assessments under different scenarios and different levels of 

prior information on attribute structure. Finally, it applies BN into two existing datasets. This 
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chapter presents conclusions based on the results of research questions. It also discusses the 

limitations of this study and implications for further research. 

5.1 Conclusions 

This section revisits and draws conclusions on the results presented in Chapter 4.  

First, the simulation study in general shows that BN modeling can recover parameter 

values with small biases and RMSDs across different conditions of sample size and test length . 

Although small, the biases between conditions are slightly different from each other. The 

estimation and classification accuracy slightly improve as test lengths and sample sizes increase. 

It is understandable that larger sample sizes and longer test length would provide more 

information for model estimation. However, this difference across conditions does not preclude 

the application of BN modeling in analyzing small sample size and short test length. The small 

magnitude of the difference demonstrates the acceptable stability and accuracy in BN parameter 

estimation and attribute classification among different assessment contexts. As a result, the 

recovery of parameters is adequate and satisfactory for both the item parameters under the 

evidence model and the person parameters under the proficiency model, when BN is used on 

various conditions of sample size and test length. 

Second, regarding the effects of Q matrix complexity and attribute types, it is found that 

the estimation and classification accuracy tends to be higher for simple structure Q matrix than 

the complex structure. Further, the analysis of BN modeling on the dichotomous attribute 

assessment data would yield slightly higher accuracy than the polytomous attribute assessment 

data. This improvement in simpler models might be attributable to the less complicated 

relationships among attributes and items and the more straightforward specification of attributes. 

It is understandable that the reduction in complex information would help models to yield more 
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accurate estimation. However, it does not mean that BN only fits assessments with a simple 

design. Instead, the rather small difference in estimation accuracy between simple and complex 

conditions manifest the flexibility of BN modeling in analyzing assessments of different types. 

Third, this study examines the classification accuracy of student mastery diagnosis after 

BN is provided with different amount of information on the attribute structure. Intuitively, more 

information would bring more accurate classifications across all conditions of Q matrix 

complexity and attribute types. However, the results of BN modeling with partial information or 

wrong information still maintain acceptable mastery classification accuracies. When no 

information is provided, the classification accuracies tend to exhibit larger discrepancy from the 

true classifications. The graphical display of the relationships among attributes and items allow 

us to dismantle how the amount of prior information impacts the estimation on mastery 

probability of each attribute and correctness probability of each item. As it turns out, the lack of 

some information or wrong information on attribute structure would only influence the 

classification results of few students. It further supports that BN is robust to yield attribute 

classifications even with some but not all information on attribute structure. 

Fourth, the comparison with CDM evaluated the performance of the two approaches in 

analyzing the same datasets across different conditions of Q matrix complexity and attribute 

types. BN modeling tends to perform better in model fitting and produce more accurate attribute 

mastery classifications across all conditions. Moreover, BN modeling is more capable of 

incorporating attribute structure into estimation by considering all possible mastery patterns, 

providing flexibility in modeling. One limitation of CDM is its reduction in potential latent 

classes after accounting for attribute structure. Another disadvantage of using CDM is its 

incompatibility with the integration of attribute structure in the polytomous-attribute assessment. 



146 

 

 

Teachers or researchers may render it questionable to continue using CDM when designing a 

complex assessment with both a structure in attributes and polytomous attributes. 

Finally, the analyses of two existing datasets of dichotomous attributes and polytomous 

attributes show that BN modeling yield good model fit and parameter fit including item and 

person parameters. It can also help generate detailed diagnostic reports for each student that 

would contribute to their remediation learning paths. The graphical display of the relationships 

between attributes and items would further help teachers and researchers to disentangle the 

structure in content knowledge and glean an impression of individual-level and group-level 

performance on each attribute. 

5.2 Limitations  

Nevertheless, this study has several limitations. 

First, this study included a limited variety in attribute structure. For the simulation study 

design, I used the relationships among attributes proposed by Sinharay, Almond, and Yan (2004) 

because I intended to simulate an assessment that has an existing theoretical rationale and 

demonstrates a validated attribute structure and a validated Q matrix. In the TIMSS data analysis, 

the relationships among a variety of attributes are structural. However, its test length is relatively 

short, therefore not every attribute is measured by enough number of items. Future research may 

explore the performance of the BN approach for assessments of more complicated structural 

relationships among attributes with an adequate test length. 

Second, there is a lack of real data of assessments designed for different scenarios (i.e., 

different levels of Q matrix complexity, different attribute types, etc.). In this case, the 

interpretation of the results in this study is limited to simulation scenarios instead of practical 

contexts. Specifically, without a real situation, the interpretation of item and person parameters 
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are out of context and may not furnish meaningful reflections on other components of the ECD 

structure: for instance, how the current assembly rules of items can reflect a fair amount 

assessment for each attribute and how the evidence model can provide feedback to assessment 

design. 

Third, the TIMSS data has a sparse Q matrix, in which 23 items were used to measure 13 

attributes. It seems ineffective to measure a variety of attributes in a test with limited items as 

each attribute cannot be fully evaluated by enough items. Therefore, future research may 

consider narrowing down or collapsing some attributes in a sparse matrix or increasing test 

length in an effort to furnish enough information on each attribute for the measurement model to 

make reliable conclusions. 

Fourth, this study examines one scenario in the conditions of partial information and 

wrong information, respectively. Different levels of partial or wrong information may impact the 

estimation accuracy of BN differently. In practice, teachers of different grades and classes and 

educational researchers may all have various opinions on the attribute structure. Given the 

potential disparity that may occur in the attribute structure, future research can explore how 

different structures in attributes may affect the BN modeling results with more nuance.   

Finally, the application of the GDINA model was undertaken on the BN-generated data. 

However, BN and GDINA are built under the same framework of latent class models so that the 

data generated from both models are meant to identify the latent groups each person may belong 

to. In this case, the BN data should be compatible with the application of GDINA, and the 

deviances of GDINA in this study showed small differences from those of BN, further indicating 

that there should be small difference in the nature of the two approaches. For an exploratory 
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purpose, future research may use the data generated by each model to evaluate their 

performance.  

5.3 Contributions of This Study and Implications for Future Research 

This study makes several practical contributions to the field of assessment and 

psychometrics through an examination of BN in making formative diagnosis of student 

performance. This study highlights the potential benefits of BN and its integration in 

measurement models when classroom assessments are analyzed for diagnostic purposes. In this 

section, I discuss the contributions of this study and suggested future direction for research. 

The natural demonstration of ECD in BN modeling builds a bridge between the 

underlying theory of the assessed subject domain and the psychometric modeling of assessment 

data. The development of the proficiency model and the evidence model in ECD relies on theory 

and expert opinion regarding the structure in attributes and the specification of Q matrix. The 

incorporation of expert experience helps to emphasize the role of subject matter experts’ 

information in the psychometric analysis of assessment data rather than the mere dependence on 

the observed data. As such, ECD contributes to BN modeling by echoing the substantive theory 

of a subject domain in parameter estimation, which further lends support to the interpretability of 

each parameter under the guidance of the proficiency model and the evidence model. Taken 

together, the BN approach emphasizes the co-acting influences of conceptual framework of the 

learning structure in content knowledge guided by ECD and empirical operationalization of 

measurement models in making formative diagnosis of student performance. 

This study demonstrates that BN can accommodate assessments with small sample size 

and short test length. For classroom assessments, there is a tradeoff between test scale and 

analysis accuracy. For instance, it is often infeasible to administer formative diagnostic 
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assessments among a large number of students or administer a very long test, while typical 

psychometric analysis needs more students and longer tests for estimation accuracy. This study 

examines BN as a possible solution to alleviate this dilemma and reveals the utility of BN in 

producing results with acceptable accuracy for small-scale formative diagnostic assessments. 

Note that diagnostic classroom assessments, to some degree, can tolerate less accurate results of 

parameter estimation and attribute classification compared to high-stakes standardized testing. 

As such, BN opens the door for the expansion of psychometric analysis to small-scale classroom 

assessments, which are usually analyzed by raw scores.  

BN can also handle both simple and complex assessments with acceptable accuracy. 

Although complex assessment types (i.e., complex Q matrix structure and polytomous attributes) 

may lead to less accurate estimation than simple types, they play an important role in reflecting 

more formative and practical feedback on student knowledge of applying multiple attributes in 

problem-solving and on finer attribute mastery classifications. The application of BN helps to 

maintain a balance between estimation accuracy and assessment complexity by rendering 

reliable results with acceptable error rates.  

BN appears to be a useful modeling approach that can reveal student performance levels 

at both individual and group levels. BN can reveal the individualized gaps between students’ 

actual and expected performance levels and inform students and teachers with suggestions on 

how to improve their performance. Specifically, through the BN approach, the estimated 

distribution of mastery probabilities for attributes and the correctness probabilities for items 

would reveal the concepts and knowledge components that are difficult for students to 

understand and that students have mastered well. Moreover, understanding student performance 

levels may yield insights into ways of identifying the causes of knowledge gaps as well as the 
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strengths and weaknesses of a student’s understanding toward a given concept. This information 

would provide students with remediation learning paths and teachers with instructional plans 

customized for students’ needs. 

As discussed above, BN modeling relies on the ECD framework. The BN model results 

may also in turn provide feedback to future test design and the test assembly model in the ECD 

framework. For formative assessment purpose, teachers may use the latest BN diagnostic 

information to appraise whether the results are consistent with their assessment purposes and 

expectations. For example, the BN diagnostic results may indicate that students have not 

established the structure among some attributes. In the next formative assessment, teachers can 

choose to reinforce the structure and examine whether students improve their understanding after 

taking the last assessment. That is, teachers and researchers may explore better ways to teach and 

a more robust way to assess attributes at both group and individual levels.  

Future research on analyzing formative diagnostic assessment data should endeavor to 

fully develop the potentials of graphical modeling and flexibility of BN for drawing inferences 

about student understanding of domain knowledge. The posterior distribution over attributes and 

items in the BN graph can demonstrate a customized and straightforward diagnosis on how 

students may perform under different mastery profiles and how attributes are influenced by each 

other. Such information can help teachers to increase knowledge on effective instructional 

materials for students’ remediation on the attributes they have not mastered and make decisions 

regarding the development of new diagnostic assessments.  

Another topic on the diagnostic assessment that future research might delve into is the 

identification of Q matrix. It is unclear whether BN can identify or correct the mis-specified Q 

matrices. That is, under the situation where the Q matrix partially or wrongly identified the 
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measured attributes for each item, it is necessary to explore whether the BN approach can 

evaluate the quality of Q matrix and further identify the mis-specified items through the observed 

item responses and the relationships among attributes.  

On top of the potential issues with Q matrix identification, the assumption on the attribute 

structure might be inaccurate as well. As demonstrated in the results, the group-level diagnostic 

report on each attribute may allow teachers to identify any inconsistencies between the group-

level mastery of attributes and the structure in attributes. These inconsistencies would further 

guide the revision of the hypothesized attribute structure and the decision on the numbers of 

items measuring each attribute in a test. 

The flexibility of BN also reveals in its capacity of accounting for covariates. In many 

cases, assessment contexts may differ across classrooms and student of different backgrounds 

may perform diversely. Therefore, in the BN modeling, researchers can include covariates that 

possibly impact the cognitive diagnostic results and differ across students in order to better 

individualize assessments. For example, the covariate of students’ performance on previous 

classroom tests can be added to better estimate student ability level and understand students’ 

learning trajectories. 

To increase our confidence in the diagnostic results of the BN approach, we can apply 

statistical cross-validation and field-test validity study to determine the performance of the BN 

approach on additional data or contexts. Specifically, statistical cross-validation methods include 

holdout cross-validation, k-fold cross-validation, leave-one-subject-out cross-validation, leave-

one-trial-out cross-validation, etc. (Lever et al., 2016). The choice of the cross-validation method 

depends on modeling factors including the sample size and the research design (Koul et al., 

2018). In addition, a validity study can be conducted to decide whether the cognitive diagnostic 
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results generated by the BN approach are consistent with those obtained from a similar test (Liu 

et al., 2013). Furthermore, for an application of BN in a real test, we could interview teachers 

about whether the BN diagnostic results are consistent with their estimation of students’ 

understanding of attributes.  

Although BN modeling performs well in recovering parameter values and attribute 

classifications, the Bayesian inferences may rely on the assumptions about the relationships 

among attributes, the specification of Q matrix, and the starting values of parameters (i.e., 

priors). In other words, especially under the scenario of a small sample size and a short test 

length, which reveals less information provided from the observed data, the Bayesian estimation 

tends to rely more on the predetermined prior information. The subjectivity induced by the 

choice of priors are the features but sometimes disadvantages of the Bayesian approach. 

Therefore, a refined Q matrix and a relatively accurate estimation for priors are recommended to 

achieve a satisfactory estimation accuracy of the BN results, especially in small-scale 

assessments. This information would require substantial theoretical and empirical work. To scale 

up the use of the BN approach, ideally teachers or test developers may discuss with subject 

matter experts on what attributes are measured by each item and what percent of students are 

expected to master an attribute among the target population. 

In conclusion, BN serves as a flexible modeling approach that can accommodate various 

assessment scenarios. It is robust in making satisfactory and stable parameter estimation and 

student mastery classification for small-scale classroom assessments. This study highlights a 

practical consideration for the application of BN in cognitively diagnosing student mastery of 

knowledge and graphically displaying the relationships between attribute structure and item 

responses. More studies may be conducted to further explore this promising method in the future. 
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