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SUMMARY

In 2006, a World Health Organization report warned that neurological disorders are one of

the greatest threats to global health. A detailed understanding of the effects of these conditions

on the human brain network is therefore fundamental for early diagnosis and development of

treatments. Among the available neuroimaging techniques used to visualize and evaluate neu-

rological disorders, fMRI is valuable in describing how regions of the brain communicate. In

particular, resting state fMRI studies are fundamental for measuring the natural communica-

tions that occur throughout the brain.

One of the main goals of resting state fMRI studies is to estimate functional connectivity.

Functional connectivity is the spatial dependence in the signal of brain regions over time. A

simple approach for analyzing the difference in functional connectivity between a disease group

and healthy controls is to compare Pearson correlation coefficients of the fMRI time series

for every pair of regions under study. However, fMRI measurements exhibit a non-negligible

amount of temporal autocorrelation, violating the assumption of independence for inferences

of Pearson correlation. fMRI data analysis is also complicated by noisy data, a complicated

spatiotemporal structure, and large computational demands due to its high dimensional nature.

To make accurate inferences of functional connectivity, a deeper understanding of the ob-

served data and covariance structure between and within brain regions is required. To address

this, a spatiotemporal model for resting state fMRI data is introduced. The proposed model

serves two main purposes. First, the model smooths the noisy data to estimate the underlying
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SUMMARY (Continued)

true signal. A common challenge faced in this task is the large computational burden due to

the high dimensionality of the data. We therefore explore the lower dimensional process com-

mon to all regions that dictates how fMRI signals change over time. This reduces the number

of parameters required while still being able to estimate the connections between all regions

under study. Second, using estimated outcomes from the spatiotemporal model, the temporal

correlation that exists within each region’s time series is removed without removing the spatial

correlation across regions. Pairwise correlations of all brain regions are subsequently calculated

using the uncorrelated time series. Fisher’s z-transformation and Efron’s local false discovery

rate procedure are appropriately applied to make large sample inferences.

The proposed spatiotemporal model for resting state fMRI data has several notable prop-

erties. Statistical modeling of the fMRI signal must take spatial and temporal correlations into

account. Hierarchical models are well suited for a dynamic process that consists of multiple

levels of variation. Furthermore, to handle the large amount of data collected for each individ-

ual in a computationally feasible manner, dimension reduction is incorporated. Moran’s I basis

functions enable us to use a lower dimension latent factor dynamic model via incorporation of

an adjacency matrix. To allow for both positive and negative correlations in spatial associa-

tions, the Bessel covariance function is used. This function is specified by a shape and range

parameter. Furthermore, Bowman’s functional distance measure is used to define the distance

between every pair of regions for the adjacency matrix and Bessel function.

To estimate such a high dimensional data model, Bayesian methods are often the first

choice. However, we illustrate that model estimation can be achieved in the traditional fre-

xii



SUMMARY (Continued)

quentist framework. More specifically, estimation of the model parameters is performed by

the Expectation-Conditional Maximization algorithm. This algorithm is an extension of the

Expectation-Maximization algorithm and is useful when the maximization process becomes

simpler by performing maximization with multiple steps under conditions placed on a subset of

parameters of estimation. It is particularly suited for the proposed spatiotemporal model, which

consists of unknown latent vectors and a subset of parameters without closed-form solutions.

Resting state fMRI data from the Autism Brain Imaging Data Exchange is used to illustrate

the proposed method for analysis of functional connectivity. This initiative is a collaboration of

laboratories around the world to create a large scale collection of functional and structural brain

imaging data for autism spectrum disorder patients and healthy controls. Since autism spectrum

disorder is a heterogenous condition, a large sample size is required. Our analysis consists of

162 autism subjects and 167 typically developing controls. Using the presented approach, 5,995

links between Harvard-Oxford brain regions are analyzed for disrupted functional connections

in autism patients. We identify thirty-nine clinically relevant disrupted connections at a false

discovery rate of 0.1.
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CHAPTER 1

INTRODUCTION

In 2006, the World Health Organization (WHO) estimated that neurological disorders affect

nearly one billion people worldwide (World Health Organization, 2006). Globally, neurological

disorders are the leading cause of morbidity (as measured by disability adjusted life years) and

second leading cause of mortality in adults, resulting in an estimated nine million deaths in

2016 (Neurological Disorders Collaborator Group, 2019). In the United States, neurological

conditions are the leading cause of morbidity and mortality in children and “among the most

serious acute pediatric illnesses” (Moreau et al., 2013). In light of these trends, WHO concluded

that “there is ample evidence that pinpoints neurological disorders as one of the greatest threats

to public health” (World Health Organization, 2006).

To combat the burden of neurological diseases, a detailed understanding of the differences

in human brain networks between healthy and affected individuals is fundamental for early

diagnosis and development of treatments. The use of sophisticated neuroimaging tools is vi-

tal toward understanding the complex brain network. Current widely used brain imaging

techniques include electroencephalography (EEG), magnetoencephalography (MEG), positron

emission tomography (PET), and functional magnetic resonance imaging (fMRI). Electrical

and magnetic brain activity are measured by EEG and MEG, respectively. While they provide

highly accurate temporal measurements, they are unable to pinpoint the measured activity to a

specific location. In contrast, PET and fMRI describe neuronal activity with high spatial reso-
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lution. However, the temporal resolution of these modalities is relatively decreased (Lindquist,

2008).

Among the available neuroimaging technologies, fMRI has been particularly valuable for

gaining a greater understanding of how regions of the brain communicate. After its intro-

duction in 1990, fMRI quickly became “the tool of choice for visualizing neural activity in

the human brain” (Kim and Bandettini, 2010). It is extremely versatile and has been used

in studying a variety of clinical areas, including vision, motor, language, and cognition. One

of the principal applications of fMRI in clinical research is describing functional connectivity.

Functional connectivity is the dependence of fMRI signals between brain regions over time. It

is well recognized that the study of functional connectivity via fMRI is “of high importance,

providing new important insights in the core organization of the human brain” (VanDenHeuvel

and Pol, 2008). The study of how brain connectivity may be altered by neurological diseases

has consequently been greatly advanced with the advent of fMRI.

1.1 Functional Magnetic Resonance Imaging

The principal tool for mapping brain function is fMRI. Its dominance is attributed to its

widespread availability, non-invasive nature, relatively low cost, and high spatial resolution.

Although the temporal resolution of fMRI is decreased relative to PET and MEG, changes

in neural activity can still be measured in the low frequency range (Leopold et al., 2003). In

a typical fMRI study, a series of brain images is collected. Each image consists of uniformly

spaced volumes, known as voxels, that partition the whole brain. The images are collected at
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consecutive time points, which can vary between 100 and 2,000. This is repeated in multiple

individuals, leading to a large number of observations to be analyzed (Lindquist, 2008).

Blood oxygenation level dependent (BOLD) contrast is used by fMRI to measure local

brain activity (Ogawa et al., 1992). This contrast describes changes in deoxyhemoglobin within

a space over time. The physiological mechanism measured by BOLD that signals activity is

often referred to as the hemodynamic response function (HRF). An illustration of the HRF

is provided in Figure 1. Oxygenated and deoxygenated hemoglobin have different magnetic

properties and therefore produce different magnetic fields; while deoxyhemoglobin suppresses

magnetic resonance, oxyhemoglobin does not. Increased metabolic demands due to localized

neuronal activity lead to increased cerebral blood flow. More oxygen than consumed is sup-

plied to the active space, resulting in an increase in oxyhemoglobin and thus an increase in

the signal. However, right before activation, an initial dip in the BOLD signal occurs. An

increase in the signal is observed one to two seconds after the onset of activity and reaches

its peak at four to eight seconds. After reaching peak level, the BOLD signal decreases below

baseline for roughly ten seconds. This phenomenon is referred to as the post-stimulus under-

shoot. Local brain activity over time is thus captured by fMRI via changes in local magnetic

susceptibility (Lindquist, 2008).

1.2 Functional Connectivity

The use of fMRI is well suited for analysis of functional connectivity since it measures local-

ized activity throughout the entire brain over time. The first type of study design using fMRI

data to measure functional connectivity was task-based. In a task-based study, participants
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Figure 1: Hemodynamic response function.

are placed in the scanner and asked to alternate between performing an activity and rest. For

example, Rao et al. (1993) had study participants perform self-paced simple and complex finger

movements while scans were taken. During simple, self-paced movements, the authors iden-

tified functional changes only in the contralateral primary motor cortex. However, functional

changes occurred in multiple areas during complex, self-paced movements in addition to the

contralateral primary motor cortex, including the supplementary motor area, premotor cortex

of both hemispheres, and contralateral somatosensory cortex (Rao et al., 1993). Activation

maps that illustrate functional connections can be created after identifying areas of the brain

that are simultaneously triggered by a task (Glover, 2011).
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In 1995, Biswal and colleagues introduced a modified approach in study design for analyzing

functional connectivity with data from fMRI. The authors had study participants remain at

rest throughout the entire scan. Even though study subjects were not actively engaging in an

assigned activity, they observed a temporal correlation in the BOLD signal pattern between the

left and right sensorimotor cortices. This correlation is clinically meaningful as these regions are

functionally related. The authors concluded that the series of images collected at rest therefore

reflect the natural communication that occurs between brain regions (Biswal et al., 1995).

Biswal later referred to this phenomenon as “resting state functional connectivity” (Biswal,

2012).

Following the discovery of resting state functional connectivity, numerous authors collected

data from resting state fMRI (rsfMRI) to look into the validity and identification of resting

state connections. Several studies uncovered resting state networks that correspond well to

networks identified by task activation studies (Smith et al., 2009). For example, the dorsal

and ventral attention networks have been observed in both study designs (Lee et al., 2013).

Additional studies showed functional dependencies from rsfMRI signals across the hemispheres

of the auditory and visual primary cortices. In 2006, Damoiseaux and colleagues confirmed the

findings reported in Biswal and colleagues’ original report (Damoiseaux et al., 2006). Moreover,

the well established default mode network was identified using fMRI data by Greicius and

colleagues (Greicius et al., 2003) and subsequently confirmed in separate research (Lee et al.,

2013). Thus, across several analyses over the last twenty-five years, experimental evidence has
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repeatedly pointed to the conclusion that the human brain is made up of functionally consistent

networks.

1.3 Statistical Challenges and Literature Review

The introduction of rsfMRI has raised new statistical challenges and the need for new

frameworks for analysis. One of the main goals of rsfMRI studies is to estimate functional

connectivity by describing the dependencies that exist between brain regions over time. A

simple approach that is often utilized is to compare Pearson correlation coefficients of the

BOLD signals for every pair of regions under study. The major pitfall of this approach is that

it incorrectly treats the signals collected over time within a region as independent. The signal

within a region exhibits a non-negligible amount of temporal autocorrelation, violating the

assumption of independence for using Fisher’s z-transformation to make inferences on Pearson

correlation. Since this assumption is not valid for fMRI data, results based on the Pearson

correlation could be misleading (Caponera et al., 2018).

A deeper understanding of the observed data and covariance structure between and within

brain regions is required to make accurate inferences for functional connectivity. Once the

rsfMRI data and its dependencies are characterized, appropriate inferential tools for the anal-

ysis of functional connectivity can be utilized. However, unraveling the dependence structure

that exists in the large number of observations from a rsfMRI study is challenging (Lindquist,

2008; Zhang et al., 2015). The measurements produced by fMRI exhibit “massive amounts of

noisy data and a complicated spatiotemporal correlation structure” (Lindquist, 2008). Appro-
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priate analysis of the data therefore requires implementation of a spatiotemporal model with a

potentially large number of parameters and high computational burden (Lindquist, 2008).

Since task activation studies were the first to use fMRI for research, most statistical models

that have been developed for fMRI data focus on identifying brain regions activated by an

assigned activity. Initial strategies for modeling data from fMRI utilized a two-stage approach.

Friston et al. (1995) proposed performing univariate time series analysis at each voxel in a first

stage. While within-voxel temporal correlations are directly estimated in a time series model,

spatial correlations are not. The authors proposed analyzing spatial correlations indirectly in a

second stage. They suggested extracting voxel-specific test statistics from the time series models

and applying the theory of statistical parametric maps to make spatial inferences. Under the

statistical parametric map paradigm, it is assumed that each test statistic is a realization of

a Gaussian random field. Analysis of the test statistics from the time series using a map is

performed to determine which parts of the brain are activated following the stimulus (Friston

et al., 1995).

Worsley et al. (2002) extended the first stage of Friston and colleagues’ methodology by

expanding it to two steps. The first step involves fitting within-subject time series of each

voxel. They assumed the errors in the time series are autoregressive of order 1 (AR(1)). In

the second step, the subject-specific results for each voxel are combined in a random-effects

model to create a voxel-specific, group-level model. They recommend using the statistical

parametric map methodology utilized by Friston and colleagues to make inferences about spatial

correlations (Worsley et al., 2002).
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These univariate approaches ignore spatial dependencies in the model formulation and are

therefore not optimal for analysis of fMRI data. The test statistics from the voxel-specific

models are not independent since spatial correlations between regions exist. Furthermore, due

to the large dimensionality of the data, analysis of the vast number of test statistics leads to

multiplicity issues (Zhang et al., 2015). Several authors have presented alternative frameworks

for modeling fMRI data that directly incorporate spatial correlations in the statistical model.

The majority of these approaches follow a Bayesian paradigm. Within the Bayesian framework

for analysis, modeling temporal and spatial dependencies can be achieved by assuming a distri-

bution for the measurement error and selecting a prior distribution for the parameters (Lee et

al., 2014). A general linear model with autoregressive errors is commonly used to account for

temporal correlations. Furthermore, spatial dependencies between brain voxels are often cap-

tured by imposing a Gaussian Markov random field (GMRF) prior on the model parameters.

Several choices for the precision matrix of the GMRF prior have been considered (Zhang et al.,

2015).

Gossl, Auer, and Fahrmeir (2001) argued that one of the main advantages of the Bayesian

approach for analysis of spatiotemporal data is that spatial relationships can be easily intro-

duced into time series models. They used voxel-specific time series models to account for

temporal correlations. Spatial relationships are incorporated via the parameters of the voxel-

specific models. Intrinsic Gaussian autoregressive priors are assigned to the model parameters,

and first-order neighborhood information is included in the precision matrix of the spatial pa-

rameters. This combination of prior distribution and precision matrix can be interpreted as
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a stochastic interpolation of adjacent neighbors. Their approach therefore differs from Friston

et al. (1995) and Worsley et al. (2002) in that estimates of the voxel-specific time series are

spatially smoothed (Gossl et al., 2001).

Katanoda, Matsuda, and Sugishita (2002) introduced a generalized least squares model to

incorporate spatial autocorrelation. Similarly to the approach in Gossl, Auer, and Fahrmeir

(2001), a key assumption of their approach is that spatially adjacent voxels are jointly stimu-

lated by neural activity. Each voxel-specific model therefore includes the time series of the six

neighboring voxels in three orthogonal directions in addition to its own. Spatial and temporal

correlations are modeled assuming separability. The combined correlation structure can there-

fore be expressed as a product of the two. They chose to deal with their model in the frequency

domain using the discrete Fourier transform at the Fourier frequencies for easier manipulation

of the correlation structures. A nonparametric approach is used to estimate the spatial and

temporal covariance matrices (Katanoda et al., 2002).

Gibbons et al. (2004) focused on directly modeling the BOLD response pattern to identify

voxels activated by a stimulus. They utilized a hierarchical cubic polynomial model to fit

the voxel-specific time series, where the four polynomial coefficients are random-effects. They

assume the polynomial coefficients follow a multivariate normal distribution. Estimation is

performed via an empirical Bayes approach. The strength of this approach is that the voxel-

specific coefficients are estimated using the time series of all voxels. A clustering algorithm is

then used to identify voxels that exhibit the HRF in response to the assigned task (Gibbons et

al., 2004).
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Penny, Trujillo-Barreto, and Friston (2005) used a Bayesian approach in their single-subject

fMRI model. Temporal autocorrelation is taken into account by modeling the errors as an au-

toregressive process. Furthermore, spatial dependence is incorporated in the model via the

precision matrix of the prior distribution for the generalized linear model regression coeffi-

cients. The Laplacian prior is assumed for the precision matrix, which enforces smoothness

by penalizing differences between neighboring voxels. Local information of twelve neighboring

voxels is incorporated by this prior. The authors note that multi-subject analysis can be done in

a second stage by combining subject-specific effects into a separate model. This would require

another set of spatial priors to account for between-subject differences (Penny et al., 2005).

Harrison et al. (2007) presented a generalization of Penny, Trujillo-Barreto, and Friston’s

(2005) model by incorporating diffusion based priors. For their generalized linear model, a

diffusion kernel of a weighted graph-Laplacian is assigned as the prior for the covariance matrix

of the model parameters. Their motivation was to represent the brain as an irregular graph

defined by vertices, which correspond to voxels, and weighted edge sets, which define the neigh-

bors of each voxel. Since diffusion based models require inversion of the n×n spatial covariance

matrix, they proposed a three step strategy to make modeling computationally feasible: create

a volume with a subset of voxels, partition the volume into segments, and fit a spatial model for

each segment. In this approach, segments are not assumed to be homogeneous. A multivariate

spatial model is used for every voxel in each segment (Harrison et al., 2007).

Another Bayesian spatiotemporal model for fMRI data was presented by Quiros, Diez, and

Gamerman (2010). Like the Bayesian approaches described thus far, their model incorporates
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an intrinsic GMRF for regression parameters to model spatial connectedness. In practice, they

only considered first-order neighbors for each voxel. They parameterize the shape of the HRF

to reflect the potential increase in signal with a subsequent exponential decay in the temporal

dimension. The delay commonly seen in advance of the BOLD signal increasing is not fixed

but modeled as an unknown parameter (Quiros et al., 2010).

Lee et al. (2014) also introduced a Bayesian hierarchical model that follows the standard

Bayesian approach to analyzing fMRI data. A binary spatial Ising prior is used to incorporate

spatial relationships. This prior was selected since it includes neighborhood information as well

as spatial interactions between voxels. Different sets of neighbors can be specified. The authors

note that commonly used neighborhood structures are based on four, eight, or twelve nearest

neighbors. Spatial interaction between neighboring voxels are incorporated by prespecified

weights. In their simulation study, they define the weights as the reciprocal of the pairwise

Euclidean distances. The authors investigate an AR(1) process, second-order autoregressive

(AR(2)) process, first-order autoregressive moving average process (ARMA(1,1)), and first-

order moving average process (MA(1)) for the temporal covariance structure. They conclude

that the AR(1) structure is most appropriate for modeling the temporal component as it “seems

to be an effective compromise between inferential efficacy and computational efficiency” (Lee

et al., 2014).

Musgrove, Hughes, and Eberly (2016) developed a spatial Bayesian variable selection pro-

cedure to identify voxels activated in response to a stimulus. A spike-and-slab mixture prior is

used for the regression coefficients to reflect the prior belief that the coefficient for each brain
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region is zero or non-zero. Latent indicator variables modeled by a sparse spatial generalized

mixed model are included in the prior to induce spatial dependence. It is assumed that vox-

els are represented by the vertices of an underlying graph that reflects spatial relationships.

The graph is represented by an adjacency matrix. They set the (i, j) element of the matrix

equal to 1 if voxels i and j are related and 0 otherwise. To account for temporal correlation,

the model incorporates lagged prediction errors and a vague normal prior with zero mean for

AR(2) coefficients (Musgrove et al., 2016).

The Bayesian spatiotemporal linear regression model in Zhang et al. (2016) was also de-

signed for identification of activated brain regions following a stimulus. Zhang and colleagues

assign a hierarchical Dirichlet process prior on the regression coefficients. This prior is selected

since within-subject non-zero coefficients are assumed to come from a mixture model. Further-

more, the model incorporates correlation between the time series of voxels within and between

subjects. This is done by creating clustering among voxels at two levels: one within a subject

and another between subjects. An additional benefit of the Dirichlet process prior is that it

incorporates spatial correlations between distant voxels. Spatial proximity of possible fMRI ac-

tivations within a subject is taken into account via a Markov random field prior on the mixture

model indicators (Zhang et al., 2016).

While the spatiotemporal models discussed thus far incorporate spatial relationships, the

assumption that the BOLD signals of neighboring voxels are more similar than that of distant

voxels is not valid. In fact, high correlation in the fMRI signal may exist between distant re-

gions. Spatial correlations should therefore not be functions of physical distance or restricted to
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contiguous locations. Bowman (2005) presented a two-stage hierarchical approach to address

this limitation. In the first stage, voxel-specific time series are modeled under the assumption of

spatial independence. Voxels are then partitioned into functionally related networks. The net-

works are identified from a descriptive cluster analysis. The second stage uses an autoregressive

model to capture spatial dependencies within a network. A limiting assumption of this approach

is that it assumes that correlations are present only between voxels within a network (Bowman,

2005). Motivated by this drawback, Bowman later proposed a single spatiotemporal model with

separable temporal and spatial correlations for a pre-specified region of interest (ROI). In this

work, he also introduced a functional distance metric that is not based on geometric location to

describe the similarity between two regions. An exponential spatial covariance model is selected

based on the empirical variogram. Furthermore, a compound symmetry structure is used to

account for temporal correlations (Bowman, 2007).

The work presented in Bowman et al. (2008) and Castruccio, Ombao, and Genton (2018)

also addressed limitations in the modeling approach in Bowman (2005). Bowman et al. (2008)

introduced a more flexible Bayesian framework to capture correlations both within and between

regions. The second stage of the two-stage hierarchical model in Bowman (2005) was further

divided into between and within region components. An exchangeable correlation structure is

used to capture the pairwise dependence of voxels within a region. Furthermore, the correlation

between regions is modeled using an unstructured covariance matrix (Bowman et al., 2008).

In Castruccio, Ombao, and Genton (2018), spatial dependence is modeled within and between

anatomically defined ROIs. The second stage of their model includes both a local and regional
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structure to capture the spatiotemporal dependencies across voxel-specific fMRI time series.

To model within ROI relationships, a linear combination of independent Gaussian anisotropic

processes is used. It is assumed that each Gaussian process has a Matern covariance struc-

ture. Temporal relationships are incorporated by assigning an AR(2) process to the time series

error (Castruccio et al., 2018).

There have been few publications describing a single spatiotemporal model that incorporates

all regions and does not limit spatial relationships to neighboring voxels or ROIs. Woolrich et

al. (2004) presented a Bayesian approach in which spatiotemporal relationships are modeled

in the noise process. The process is assumed to be a space-time vector autoregressive process,

where separability is not presumed. The noise is modeled using a multivariate normal process

with an nT × nT covariance matrix, where n is the number of regions and T the number of

timepoints. Spatiotemporal relationships are parameterized via a spatial AR(1) model that is

temporally fixed and a spatially varying general order temporal autoregressive model. As noted

by the authors, a major obstacle to using this model in practice is the computational burden:

it took six hours to analyze a single fMRI slice (Woolrich et al., 2004b). Due to the intensive

process time, Woolrich, Behrens, and Smith (2004) modified this approach to only include

dependencies between neighboring voxels with a conditional autoregressive model (Woolrich et

al., 2004a).

Caponera et al. (2018) proposed the only known spatiotemporal model specifically for fMRI

data from rsfMRI studies. They describe a Bayesian latent factor hierarchical spatiotemporal

model for single-subject rsfMRI data analysis. A Gaussian process is specified for the temporal
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component and latent factor models are utilized for the spatial component. The spatial latent

model enables a low rank representation of a high dimensional process. The components of the

latent process are assumed to be independent Gaussian, and a loading factor matrix measures

dependence between regions. Temporal correlation is accounted for in the covariance function

of components in the latent process. Their resulting cross-covariance function implies that the

association between BOLD measurements is multiplicatively calibrated according to proximity

in time (Caponera et al., 2018).

1.4 Proposed Model

Several approaches have been proposed for spatiotemporal modeling of fMRI data from

task-based studies. However, these approaches are not suitable for modeling fMRI data from

rsfMRI studies with the goal of analyzing functional connectivity. First, the spatiotemporal

model covariance matrix often does not incorporate a proper spatial concept and temporal

aspect. In the majority of past approaches, spatial dependencies are estimated by assigning

priors and measuring joint activations. This does not yield an estimate of the between re-

gion covariance matrix needed to understand all spatial relationships without the presence of

a stimulus. Second, a proper spatial covariance matrix for fMRI data has not been utilized.

The exponential and Matern matrices have been used in models that parameterize a spatial

covariance matrix (Bowman, 2007; Castruccio et al., 2018). These matrices only allow for pos-

itive correlations. However, negative correlations exist in fMRI data. In fact, Bowman noted

a limitation of his exponential model is that it incorrectly treats negatively correlated voxels

as uncorrelated (Bowman, 2007). These matrices are therefore inadequate for the analysis of



16

fMRI data. Third, most of the previous approaches incorrectly limit relationships to neigh-

boring voxels. However, spatial dependences between physically distant voxels are expected.

There is therefore a need for a computationally feasible spatiotemporal model within the tra-

ditional frequentist statistical framework that incorporates all brain regions. Finally, analysis

using inference procedures for the Pearson correlation should not be performed on temporally

correlated data. Fisher’s z-transformation of the sample correlations is often applied to make

inferences. However, the corresponding hypothesis test assumes independent data. Inferences

based on correlated data could therefore be misleading.

This dissertation addresses some of the aforementioned limitations for better comparison of

functional connectivity in two groups using fMRI data from rsfMRI studies. In this work,

a spatiotemporal model that is suitable for modeling and denoising rsfMRI data is intro-

duced. A natural approach for modeling the dynamic process inherent in rsfMRI is to take

advantage of methodologies developed in the area of time series. More specifically, we use

a dynamic spatiotemporal hierarchical model formulation (Xu and Wikle, 2007; Durbin and

Koopman, 2012; Wikle, 2015). We assume separability of the spatial and temporal covariance

matrix. This assumption has been employed in fMRI studies (Bowman, 2007; George and Aban,

2015; Caponera et al., 2018) and provides an interpretable result for the analysis of functional

connectivity (Caponera et al., 2018). Furthermore, we use the Bessel function to model spatial

relationships. Unlike the exponential and Matern covariance structures, the Bessel function has

the flexibility to get both positive and negative correlation.
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A key obstacle to implementing a full spatiotemporal model for fMRI studies has been

the seemingly insurmountable computational cost due to the high dimensionality of the data.

In fact, this is one of the main reasons researchers have resorted to Bayesian approaches for

spatiotemporal applications (Xu and Wikle, 2007; Lee et al., 2014; Castruccio et al., 2018).

However, a computationally efficient model that incorporates all brain regions has not been

implemented. In this dissertation, a spatiotemporal model that does include all brain regions

is achieved by incorporating dimension reduction via basis functions. This approach recasts

the state vector to a lower dimension by including spatially referenced basis functions (Xu and

Wikle, 2007; Wikle, 2015). In our proposed model, the dimensionality of the state process

is reduced by projecting the process onto spectral basis functions derived from the Moran

operator (Bradley et al., 2015). The operator incorporates spatial relationships since it is a

function of the adjacency matrix, which represents the spatial structure of the data. Instead of

simply assigning a 1 or 0 to indicate whether a relationship between regions exists, we propose

a spatial semivariogram approach to estimate a continuous spatial weighting function. We also

use Bowman’s functional distance measure instead of geometric distance to accurately reflect

the spatial relationships between brain regions.

Estimation of a dynamic spatiotemporal model is efficiently accomplished with a state-space

framework via a Generalized Expectation-Maximization algorithm (Xu and Wikle, 2007; Durbin

and Koopman, 2012). More specifically, an Expectation-Conditional Maximization algorithm

is utilized for estimation. We use the Kalman smoother to estimate latent variables in the Ex-

pectation step. The maximization component of the algorithm consists of two conditional max-
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imization steps: updating parameters with closed-form maximum likelihood estimates (MLEs)

and parameters without closed-form MLEs via a single Newton-Raphson iteration. The results

of this algorithm are sensitive to initial values and may possibly diverge away from the global

maximum toward a local maximum. An algorithm for selecting starting values is proposed to

reduce the likelihood of divergence.

To identify disrupted functional connections in a disease group relative to healthy controls,

group-specific spatiotemporal models are used. A vector containing the estimated time series

from the spatiotemporal model for every region in each individual is formed. The temporal

autocorrelation of the observations within the vector is removed by whitening for extracting

certain theoretical properties of the Pearson correlation coefficient. Fisher’s z-transformation

and the corresponding hypothesis test of equality of spatial correlation between the disease and

control group is appropriately applied to the temporally uncorrelated time series. The large

number of regions analyzed introduces multiplicity issues: for n regions, there are n (n− 1) /2

hypothesis tests. We propose Efron’s local false discovery rate as the most suitable for our data.

The rest of this dissertation is organized as follows. Detection of autism spectrum disorder

is the clinical motivation of this dissertation and described in Chapter 2. In Chapter 2, we also

introduce the data source used for application of our approach: the Autism Brain Imaging Data

Exchange. The proposed spatiotemporal hierarchical model and details of its parameterization

are discussed in Chapter 3. Chapter 4 describes the estimating procedure used for the unknown

parameters and latent variables of the spatiotemporal model. The subsequent procedures for

estimation and inference of functional connectivity, addressing multiplicity issues, is introduced
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in Chapter 5. We detect disrupted links in autism spectrum disorder in Chapter 6. This

dissertation concludes with a discussion in Chapter 7.



CHAPTER 2

MOTIVATING EXAMPLE: FUNCTIONAL CONNECTIVITY IN

AUTISM SPECTRUM DISORDER

Autism spectrum disorder (ASD) is a pervasive and complex neurodevelopmental disorder.

Diagnostic and Statistical Manual (DSM) 5 characterizes ASD by “persistent deficits in social

communication and interaction” and “restricted, repetitive patterns of behavior, interests, or

activities” (Centers for Disease Control and Prevention, 2019). These symptoms must appear

in early development and cause significant impairment. Furthermore, ASD is a heterogenous

condition with well recognized differences in presentation of behavioral features and social

functioning across individuals. It is commonly associated with the presence of comorbidities,

including social anxiety disorder, attention-deficit/hyperactivity disorder, depression, anxiety,

immune system abnormalities, and gastrointestinal disorder (Masi et al., 2017).

In a 2014 report using data from eleven U.S. sites in the Autism and Developmental Disabil-

ities Monitoring Network, the prevalence of ASD in children aged eight was estimated to be 1 in

59. Males were four times more likely than females to receive an ASD diagnosis, with approxi-

mately 1 in 37 males diagnosed compared to 1 in 151 females. Moreover, prevalence was higher

in non-Hispanic white children compared to non-Hispanic black or Hispanic children (Baio et

al., 2018). Although these prevalence rates are informative, they must be interpreted with

caution. It is recognized that ASD is influenced by biological factors and is therefore charac-

20
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terized as a developmental condition; however, social and cultural elements greatly influence

diagnosis (Masi et al., 2017).

An ASD diagnosis is currently based on questionnaires and behavioral observations by par-

ents and health professionals. Although research into more advanced diagnosis and treatment

is ongoing, “the pace and clinical impact of the resulting findings have not kept up with the

urgency to identify ways of determining the diagnosis at earlier ages, selecting optimal treat-

ments, and predicting outcomes” (Besseling et al., 2018). This is partially attributed to the

subjective nature of an ASD diagnosis. There is therefore an unmet need to identify a set of

objective criteria for characterizing the condition (Uddin et al., 2017; Besseling et al., 2018).

The continued study of functional connectivity using data from rsfMRI studies in ASD children

and typically developing controls may yield the objective criteria necessary to fill this gap.

2.1 Functional Connectivity Studies in Autism Spectrum Disorder

The theory of functional connectivity has been enthusiastically applied to studies of ASD.

As of 2013, over fifty disrupted connections in ASD patients had been described in over 200

published studies. The majority of abnormalities have been identified from task-based fMRI

studies of adolescent and adult participants (Uddin et al., 2013b; Anderson et al., 2013). There

is almost universal agreement across studies that alterations in brain connectivity are markers

of ASD. However, the exact nature of the alterations continues to be debated (Uddin et al.,

2013b; Uddin et al., 2017).

Several fMRI studies conducted in adults have concluded that functional connectivity be-

tween brain regions is decreased in ASD. This has lead to a theory of hypoconnectivity, or a
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decrease in functional connectivity relative to controls, as a marker of ASD. Multiple task-based

studies identified abnormal connections in the default mode network (DMN). More specifically,

it has been observed that the DMN in ASD patients does not activate during “attentionally

demanding tasks”. These observations are clinically relevant, as they correspond to symp-

toms often seen in ASD patients. Furthermore, the “virtually uniform” decrease in connectivity

within the DMN is “particularly compelling in autism.” The “behaviors associated with these

brain regions (internal stimuli, internal narrative, self-focus) correspond to symptoms of autism

in which individuals may exhibit internal reflection at the expense of awareness of the outside

world” (Anderson et al., 2013).

In contrast to the theory of hypoconnectivity, some studies conducted in children have lead

to an opposing theory of hyperconnectivity in ASD. Hyperconnectivity is defined as an in-

crease in functional connections relative to controls. DiMartino et al. (2011) analyzed rsfMRI

data from twenty ASD subjects and twenty controls between the ages of seven and thirteen.

They observed an increase in functional connections “between nearly all striatal subregions

and heteromodal associative and limbic cortex previously implicated in the physiopathology

of ASD” (DiMartino et al., 2011). In a 2013 study of twenty ASD subjects and twenty con-

trols between the ages of seven and twelve, Uddin and colleagues identified hyperconnectivity

in several major brain networks important to cognitive function. These include the default

mode, salience, motor, frontotemporal, and visual networks. The salience network yielded the

lowest misspecification among all networks examined when building a classifier (Uddin et al.,

2013a). As these sample populations differ from previous studies, discrepancies in findings of
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hypoconnectivity and hyperconnectivity in ASD might therefore be reconciled by accounting

for age and pubertal stage in the selection of the population under study (Uddin et al., 2013b).

Several studies have been published utilizing data from the Autism Brain Imaging Data

Exchange (ABIDE). The ABIDE I initiative includes rsfMRI data for ASD subjects and con-

trols between the ages of six and sixty-four across seventeen sites. Data from ABIDE I is

used in this dissertation and described in Section 2.2. Nielson and colleagues (2013) used data

from 964 subjects to build a generalized linear model based on a weighted average of con-

nections. Regions that yielded the highest classification accuracy include the DMN, fusiform

and parahippocampal gyri, the posterior middle and superior temporal gyrus, and intrapari-

etal sulcus (Nielsen et al., 2013). Chen et al. (2015) used ABIDE data to build a classifier

with random forest. They found that inclusion of the somatosensory, default mode, visual, and

subcortical regions lead to the highest accuracy (Chen et al., 2015). Furthermore, Abraham

et al. (2017) observed both hypoconnectivity and hyperconnectivity in their ABIDE analysis.

They saw hypoconnectivity across symmetric regions of the temporo-parietal junctions, ante-

rior insulae, and inferior parietal lobes and between the right middle temporal gyrus and left

temporo-parietal junction. In contrast, hyperconnectivity was observed between the left middle

temporal gyrus and right supramarginal gyrus (Abraham et al., 2017). Finally, Bhaumik et al.

(2018) saw disrupted connectivities in auditory and visual cortex regions of the default mode

and salience networks (Bhaumik et al., 2018a).

Several considerations must be made as disrupted functional connectivity in ASD continues

to be explored. Functional connectivity in ASD has been studied in task-based and resting
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state studies. Similar functional relationships have been observed from both study designs.

However, the relationship between measurements from these two types of studies is not clear, as

research has not been done on the relationship between both measurements in the same subject.

Comparing results between these two study designs should thus proceed with caution (Uddin et

al., 2013b). Moreover, better characterization of ASD in children is needed. Research conducted

among younger children may enable a more accurate characterization of the neurophysiology of

ASD for purposes of diagnosis and prognosis in a clinically relevant time frame. Third, larger

sample sizes are required for increased power due to the heterogeneity of ASD and relatively

large amount of noise in fMRI data. Fortunately, efforts to combine data across institutions

have been established. Large scale efforts where data is combined and shared among researchers

will help address some of these concerns and fill the gaps in our understanding of ASD (Uddin

et al., 2013b; Anderson et al., 2013).

2.2 Autism Brain Imaging Data Exchange

The ABIDE initiative is a collaboration of laboratories around the world to create a large

scale collection of functional and structural brain imaging data. This grass roots effort to

combine data from worldwide research centers was started in recognition of the need for analyses

with larger sample sizes. The first initiative of this effort is referred to as ABIDE I. The

ABIDE I aggregation consists of rsfMRI, structural, and phenotypic data for 539 ASD subjects

and 573 controls from twenty datasets collected from seventeen sites (O’Connor and Devoto,

2016). The Preprocessed Connectomes Project systematically preprocesses fMRI data using

multiple pipelines for various data sharing initiatives, including ABIDE. We use rsfMRI data
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TABLE I ABIDE I DESCRIPTIVE STATISTICS

Site N ASD, Control, Female, Male, Age,

N (%) N (%) N (%) N (%) Mean (SD)

1.CALTECH 38 19 (50.0) 19 (50.0) 8 (21.1) 30 (78.9) 28.2 (10.6)

2.CMU 27 14 (51.9) 13 (48.1) 6 (22.2) 21 (77.8) 26.6 (5.7)

3.KKI 55 22 (40.0) 33 (60.0) 13 (23.6) 42 (76.4) 10.1 (1.3)

4.LEUVEN 1 29 14 (48.3) 15 (51.7) 0 (0.0) 29 (100.0) 22.6 (3.6)

5.LEUVEN 2 35 15 (42.9) 20 (57.1) 8 (22.9) 27 (77.1) 14.2 (1.4)

6.LUDWIG 57 24 (42.1) 33 (57.9) 7 (12.3) 50 (87.7) 26.2 (12.1)

7.NYU 184 79 (42.9) 105 (57.1) 37 (20.1) 147 (79.9) 15.3 (6.6)

8.OHSU 28 13 (46.4) 15 (53.6) 0 (0.0) 28 (100.0) 10.8 (1.9)

9.OLIN 36 20 (55.6) 16 (44.4) 5 (13.9) 31 (86.1) 16.8 (3.5)

10.PITT 57 30 (52.6) 27 (47.4) 8 (14.0) 49 (86.0) 18.9 (6.9)

11.SBL 30 15 (50.0) 15 (50.0) 0 (0.0) 30 (100.0) 34.4 (8.6)

12.SDSU 36 14 (38.9) 22 (61.1) 7 (19.4) 29 (80.6) 14.4 (1.8)

13.STANFORD 40 20 (50.0) 20 (50.0) 8 (20.0) 32 (80.0) 10.0 (1.6)

14.TRINITY 49 24 (49.0) 25 (51.0) 0 (0.0) 49 (100.0) 17.2 (3.6)

15.UCLA 1 82 49 (59.8) 33 (40.2) 11 (13.4) 71 (86.6) 13.2 (2.3)

16.UCLA 2 27 13 (48.1) 14 (51.9) 2 (7.4) 25 (92.6) 12.5 (1.5)

17.UM 1 110 55 (50.0) 55 (50.0) 26 (23.6) 84 (76.4) 13.4 (2.9)

18.UM 2 35 13 (37.1) 22 (62.9) 2 (5.7) 33 (94.3) 16.0 (3.3)

19.USM 101 58 (57.4) 43 (42.6) 0 (0.0) 101 (100.0) 22.1 (7.7)

20.YALE 56 28 (50.0) 28 (50.0) 16 (28.6) 40 (71.4) 12.7 (2.9)

TOTAL 1,112 539 (48.5) 573 (51.5) 164 (14.7) 948 (85.3) 17.0 (8.0)
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preprocessed using the Configurable Pipeline for the Analysis of Connectomes in this study.

After preprocessing, mean time series are created for several sets of ROIs. This study utilizes

the Harvard-Oxford atlas, which includes 110 spatial regions for analysis. A description of the

Harvard-Oxford regions is provided in Appendix A (Craddock et al., 2013).

Prior to data aggregation, participating sites agreed to a list of phenotypic variables to

provide to the consortium. These variables were identified by overlapping measurements taken

across sites and include age at scan, full IQ (FIQ) scores, sex, and diagnostic information (Di-

Martino, 2014). Descriptive statistics by dataset are provided in Table I. Males make up the

vast majority of ABIDE I, accounting for 85.3% of the sample. Each individual dataset is ma-

jority male, and five of the twenty datasets consist of only males. The data consists of subjects

scanned at a wide range of ages, with a maximum age of sixty-four years and a minimum age

around six years. A closer look at the between site differences in the distribution of age at scan

can be seen in the boxplot in Figure 2. The median age at scan varies widely across studies.

However, nearly 70% of scanned individuals are less than eighteen years old. A boxplot of FIQ

scores by dataset can be seen in Figure 3. Although most sites provided FIQ scores, one of the

two datasets from Leuven does not contain FIQ, and 83% of observations from SBL are missing

FIQ. For the remaining sites, within site FIQ scores vary widely. Between site variation in FIQ

is also evident.

2.3 Conclusion

The analysis of functional connectivity using fMRI data has been enthusiastically applied to

the study of ASD. Disruptions in the DMN has been consistently identified as a marker of ASD
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Figure 2: Boxplots of age at scan by dataset for ABIDE.
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Figure 3: Boxplots of full IQ at scan by dataset for ABIDE.
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across studies. As research in the area moves forward, more work needs to be done using larger

samples sizes and data from children only. This dissertation applies the proposed modeling

approach for analysis of functional connectivity described in Chapters 3 through 5 under this

guidance. We use data from children between seven and fourteen years old in ABIDE I. Details

of the analysis are provided in Chapter 6.



CHAPTER 3

SPATIOTEMPORAL MODEL

There are several considerations that must be made in specifying a spatiotemporal model for

rsfMRI data. In an fMRI time series, the current value of the process evolves from past values.

This evolutionary process is represented by a dynamic spatiotemporal hierarchical model that

incorporates data from all regions to simultaneously describe how all spatial processes change

over time (Cressie and Wikle, 2011). Furthermore, statistical modeling of the rsfMRI signal

must take spatial and temporal correlations into account. Data from fMRI is collected across

multiple regions within the brain, and spatial correlations due to functional connectivity exist

between regions. In addition, multiple measurements from repeated scanning of a region over

time exhibit temporal correlations. Hierarchical models are well suited to describe this dynamic

process that consists of multiple levels of variation.

To further define the model, several specifications that account for characteristics of rsfMRI

data must be made. In a study with data collected at T time points for n regions in m

individuals, there are m × n × T signals to be analyzed. Dimension reduction is therefore

incorporated to handle such a large amount of data in a computationally feasible manner. In

fact, “it is often the case that the essential controlling dynamics for spatio-temporal processes

reside on a relatively low-dimensional manifold” (Wikle, 2015). Incorporation of Moran’s I basis

functions enables us to use a lower dimension latent factor dynamic model. This class of basis

functions measures spatial relatedness through the incorporation of an adjacency matrix. An

30
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additional specification required is with regard to the spatial covariance matrix. To allow for

both positive and negative correlations, the Bessel function is used. This function is specified by

a shape and range parameter. As noted in Chapter 1, incorporating distance measures into the

model based on geometric location is inappropriate for fMRI data. Thus, Bowman’s functional

distance measure is used to define the relatedness of each pair of regions in the adjacency matrix

and spatial covariance function.

3.1 Hierarchical Model

The time series collected from multiple regions in an fMRI scan is described by a spatiotem-

poral dynamic process. Let Zi (sj, t) denote the observed fMRI signal at time t in region j for

individual i. Then, Zit = {Zi (s1, t) , . . . , Zi (sn, t)}
′ denotes the n-dimensional vector contain-

ing individual i’s fMRI measurements for all locations s1, . . . , sn at time t. Moreover, let Uit

denote an unobserved n× 1 vector representing the true process generating the observed data

Zit. Let Yit = {Yi (1, t) , . . . , Yi (r, t)}
′ denote an r × 1 vector for the dynamic latent process

at time t, where r << n. Furthermore, let D be an n × n matrix of pairwise distances for

all regions and ρ (D) a stationary correlation matrix. The three-stage hierarchical model for

individual i, i = 1, . . . ,m, at time t, t = 1, . . . , T , is

Zit = Uit + εit, εit ∼ N
(
0, σ2εIn

)
, (3.1)

Uit = Xiβ+ KiYit +ωit,ωit ∼ N
(
0, σ2ωρ (D)

)
, (3.2)

Yit = GtYi(t−1) + ηit,ηit ∼ N (0,Ση) ,Yi0 ∼ N (µ0,Σ0) . (3.3)
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This model can be divided into two broad components: a data model and process model. In

the spatiotemporal literature, it is often assumed that the trend is stochastic and further defined

by levels of the hierarchy. This is in contrast to other areas, where the trend is denoted by a

deterministic function (Fasso and Cameletti, 2009). In this model formulation, Equation 3.1

is the data model. The data model describes the distribution of the observed data conditional

on the true biological process, making the observations Zit conditionally independent (Wikle,

2015). Then, εit is an n× 1 vector of pure measurement error in the observed values Zit.

Equation 3.2 is the first level of the process model. The generating spatiotemporal process

Uit is a smoothed version of the spatiotemporal observations Zit. Uit is a function of covariates

with fixed-effects, a latent process Yit, and random error ωit. Xi is the n × p matrix of p

covariates for the n locations, and β is a p × 1 vector of fixed-effects. Ki is a known n × r

matrix that maps the observed data onto the reduced dimension latent process Yit. Moreover,

σ2ωρ (D) is a time-constant spatial covariance matrix for the random error ωit (Xu and Wikle,

2007; Fasso and Cameletti, 2009).

Equation 3.3 is the second level of the process model. It is a first-order autoregressive model

that describes the dynamic latent process. A first-order model was identified from the results of

the temporal autocorrelation function from all regions in the ABIDE data used for functional

connectivity analysis in ASD. Illustrations of the autocorrelation function for nine randomly

selected regions are provided in Chapter 6. However, this equation is easily generalizable to an

autoregressive model of higher order. Gt is the r×r transition or propagator matrix, defining the

relationship between Yit and Yi(t−1). The dynamic process is common to all spatial locations
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and analogous to factor analysis in multivariate statistics (Wikle, 2015). Since r << n, the

number of parameters to be estimated is greatly reduced. ηit is the innovation error, or the

difference between the observed value at time t and the optimal forecast (Fasso and Cameletti,

2009; Bradley et al., 2015). µ0 and Σ0 are nuisance parameters that initiate the latent process.

The errors εit, ωit, and ηit are uncorrelated in time and mutually independent.

Estimation of a dynamic spatiotemporal model is best accomplished using a state-space

framework (Xu and Wikle, 2007; Durbin and Koopman, 2012). Plugging Equation 3.2 into Equa-

tion 3.1 yields the two-stage hierarchical model given by

Zit = Xiβ+ KiYit + ξit,ξit ∼ N (0,Σξ) , (3.4)

Yit = GtYi(t−1) + ηit,ηit ∼ N (0,Ση) ,Yi0 ∼ N (µ0,Σ0) . (3.5)

In this formulation, Equation 3.4 is the observation equation and Equation 3.5 is the state

equation. The rationale for the state-space model is that the dynamic process is determined

by Yit according to the state equation. However, Yit is unobservable and analysis is based

on observations Zit (Durbin and Koopman, 2012). In the first stage of this two-stage model,

the error ξit = εit +ωit follows a Gaussian distribution with variance-covariance matrix Σξ =

σ2εIn + σ
2
ωρ (D). This matrix can be written as Σξ = σ

2
ωΓ (D), where

Γ (D) =


(1+ γ) In, for diagonal elements

ρ (D) , for off-diagonal elements
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and γ = σ2ε/σ
2
ω. Scaling the covariance function in this way is preferred for positive-definiteness

reasons (Xu and Wikle, 2007; Fasso and Cameletti, 2009).

3.2 Additional Model Specification

In the proposed model, it is assumed that Ki is a known matrix and must therefore be spec-

ified. Furthermore, functional forms for covariance matrix Ση and spatial correlation function

ρ (D) must be selected.

3.2.1 Specification of Ki

Ki is a known matrix of basis functions that account for the weights of the r-dimensional

vector Yit for each spatial location sj (Bradley et al., 2015). The matrix is often derived in

practice from a principle component decomposition (Fasso and Cameletti, 2009). It is possible

to select the basis function coefficients so that they “exist in the ‘spectral’ space associated

with the basis functions” (Wikle, 2015). Moran’s I basis functions maintain this property and

are therefore used to specify Ki. These basis functions are derived from the Moran operator

for X. A key component of the Moran operator is the adjacency matrix. The utilization

of the adjacency matrix permits a natural and dramatic dimension reduction. This speeds

computation to make estimation feasible for the analysis of large datasets (Bradley et al.,

2015).

3.2.1.1 Adjacency Matrix

The adjacency matrix, commonly referred to as a spatial weighting matrix, is a representa-

tion of the spatial structure of the data. Let A denote the n× n symmetric adjacency matrix

for n regions. For j = 1, 2, . . . , n and j ′ = 1, 2, . . . , n, A consists of elements ajj ′ , ajj ′ ≥ 0, that
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define the relationship between regions j and j ′. The weights in the adjacency matrix can be

based on contiguity or distance (Bailey and Gatrell, 1995).

Several options are available to construct spatial weighting matrices. Four common functions

for constructing an adjacency matrix are threshold distance weights, power distance weights,

double-power distance weights, and exponential distance weights. Illustrations of these func-

tions are provided in Figure 4. Figure 4(a) presents an example of threshold distance weights.

A value d is selected such that if the distance between two spaces is greater than d, then

no relationship exists. All distances less than or equal to d are assigned equal weight. An

illustration of power distance weights is provided in Figure 4(b). Power distance functions

place relatively large weights on shorter distances and decay rapidly. The exponential distance

weights shown in Figure 4(c) have a more gradual decline and converge to 0 as distance in-

creases. The double-power distance weights in Figure 4(d) exhibit a bell-shaped taper (Bailey

and Gatrell, 1995).

To guide selection of the adjacency matrix in practice, we propose an approach based on

the empirical spatial semivariogram. The semivariogram is a function that describes the degree

of spatial dependence of a stochastic process. For rsfMRI data, the classical estimator of the

spatial semivariogram is

ζ̂ (d) =
1

2N (d)

N(d)∑
j=1

m∑
i=1

T∑
t=1

{zit (sj) − zit (sj + d)}
2 . (3.6)

For individual i at time t, zit (sj) is the observed value at location sj and zit (sj + d) is the

observed value at a location separated by distance d from sj. N (d) is the number of pairs
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Figure 4: Spatial weighting function examples.

separated by distance d. The lower the value of ζ̂ (d), the greater the dependence. The

empirical estimates are scaled by the maximum, yielding values of dependence between 0 and

1. Complete spatial dependence is represented by 0 in ζ̂ (d) and 1 in the adjacency matrix.

Therefore, 1− ζ̂ (d)
[
max

{
ζ̂ (d)

}]−1
is used as the spatial weight for pairs of regions separated

by distance d to form the adjacency matrix.

3.2.1.2 Measuring Distance

A measure of distance must be selected for defining the adjacency matrix. Traditionally,

measures of physical distance, such as Euclidean distance, are used to describe the relationship

between two locations. These metrics assume that the correlation between two regions de-

creases as distance increases. However, this assumption is not suitable for describing functional
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relationships; regions that are further apart may exhibit high correlations, whereas regions that

are physically closer may have smaller correlations. A different measure of proximity for fMRI

data must therefore be utilized (Bowman, 2007; Caponera et al., 2018).

Bowman (2007) presented an alternative measure of distance to describe the relatedness of

functional data between regions within the brain. The proposed metric defines the similarity

between two regions by the length of the difference between the mean fMRI measurements. For

regions j and j ′, functional distance is defined as

djj ′ =
[(
µj − µj ′

) ′
M
(
µj − µj ′

)]1/2
, (3.7)

where µj − µj ′ is the T -dimensional vector of the difference between two mean activity profiles

and M is a positive definite matrix. Possible choices for M include the identity matrix or

covariance matrix of µj − µj ′ (Bowman, 2007).

Figure 5 is presented in Bowman (2007) and illustrates the need for an alternative measure

of distance when quantifying spatial relationships using neuroimaging data. The red area in Fig-

ure 5(a) highlights a region of the cerebellum that plays a role in motor function. Figure 5(b)

displays Pearson correlations of least squares residuals between the location identified by the

intersection of the cross-hairs and all other locations within the region. It is evident that the

sample correlations do not decrease with increasing physical distance. In fact, locations that

are highly correlated with the seed location are both physically close and far. In Figure 5(c),

geometric distance is used to model the relationships between locations. These values do not

accurately describe the empirical relationships seen in Figure 5(b). The use of scaled functional
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Figure 5: Functional brain activity and distance measures (Bowman, 2007).

distance is illustrated in Figure 5(d). In contrast, these measurements resemble the empirical re-

lationships in Figure 5(b). Regions with a higher correlation with the seed region in Figure 5(b)

have a smaller value of functional distance Figure 5(d) (Bowman, 2007). Thus, to accurately

measure functional relationships, the adjacency matrix in the proposed spatiotemporal model

utilizes functional distance as opposed to physical distance.

3.2.1.3 Moran Operator for X

In 1950, Moran introduced a non-parametric measure of spatial dependence (Moran, 1950).

Let In denote the n×n identity matrix, z = (z1, z2, . . . , zn)
′ the outcomes for n spatial locations,

and A the adjacency matrix. Moran’s I statistic is
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I (A) =
n

1 ′A1

z ′ (I − 11 ′/n)A (I − 11 ′/n) z

z ′ (I − 11 ′/n) z
. (3.8)

I (A) is a measure of spatial autocorrelation, taking on values between -1 and 1. The numer-

ator is the squared length of the orthogonal projection (I − 11 ′/n) “in the elliptical space” of

adjacency matrix A, while the denominator is the squared length of the orthogonal projection

“in a spherical space” (Moran, 1950; Hughes and Haran, 2013).

The generalized form of Moran’s I incorporates covariate matrix X. Let P = X (X ′X)−1X ′,

the projection onto the column space of X. Then, the projection matrix orthogonal to P is

I − P. The generalized Moran’s I statistic is defined as

IX (A) =
n

1 ′A1

z ′ (I − P)A (I − P) z

z ′ (I − P) z
. (3.9)

(I − P)A (I − P) in the numerator of the generalized form is referred to as the Moran operator

for X. It is interpreted as the squared length of the orthogonal projection in the elliptical space

of the adjacency matrix A (Hughes and Haran, 2013).

3.2.1.4 Moran Basis Functions

For the proposed model, r basis functions are collected from a subset of n eigenvectors

of the Moran operator. Incorporation of these basis functions reduces the residual spatial

autocorrelation in the error. For individual i, let

M (Xi,A) =
(
In − Xi

(
X ′iXi

)−1∗
X ′i

)
A
(
In − Xi

(
X ′iXi

)−1∗
X ′i

)
(3.10)

= EXi
AEXi

,
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where (X ′iXi)
−1∗ is the inverse of the nearest positive definite matrix or the generalized inverse,

as covariates are collected at the subject level and therefore (X ′iXi)
−1 is not full rank. Both

options yield similar matrices that are practically orthogonal to the column space of Xi. The

spectral decomposition of M (Xi,A) is denoted

M (Xi,A) =ΦiΛiΦ
′
i. (3.11)

Ki is derived from the n× r matrix formed from the first r columns of Φi, where r << n. This

enables parsimonious fitting of the distribution of Yit, which can be computationally expensive

for larger values of r (Bradley et al., 2015).

The primary rationale for using Moran’s I eigenvector approach is in its interpretation.

The eigenvectors that are taken from a transformed adjacency matrix exhibit distinct spatial

patterns. Incorporating a linear combination of a subset of these eigenvectors can therefore

capture hidden spatial patterns, making the eigenvectors a proxy for the underlying process

common to all regions (Tiefelsdorf and Griffith, 2007). In fact, Boots and Tiefelsdorf (2000)

illustrate that the eigenvectors of the operator “comprise all possible mutually distinct patterns

of clustering residual to X” while accounting for the underlying spatial relationships (Boots

and Tiefelsdorf, 2000; Hughes and Haran, 2013). Furthermore, patterns explained by the eigen-

vectors are filtered from the error. Thus, by choosing orthogonal patterns and adding them

to the spatiotemporal model, spatial dependence present in the residuals after accounting for

fixed-effects is incorporated into the model. A key issue to address in practice is how many
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eigenvectors to include (Tiefelsdorf and Griffith, 2007). We propose looking at a combination

of the variance explained and likelihood-ratio tests for selection of r.

3.2.2 Specification of Ση

Selection of Ση becomes simple with this choice of Ki. Since the columns of Ki are or-

thogonal, the elements of Yit are “approximately a posteriori uncorrelated” (Musgrove et al.,

2019). It can therefore be assumed that Ση is a diagonal matrix. Under the assumption of

equal variance, Ση is given as

Ση = σ2ηIr, (3.12)

where Ir is the r-dimensional identity matrix. Thus, only one parameter needs to be estimated.

3.2.3 Specification of ρ (D)

Any model of fMRI data must account for the spatial correlations that exist between regions.

A parametric covariance function that maps the relationship between distance and dependence

of each pair of regions is needed. Commonly used covariance structures in spatial statistics

include the exponential, spherical, and Matern matrices. However, these functions only al-

low positive correlations, and negative functional connectivity has been reported from rsfMRI

data (Chen et al., 2011). The use of these structures would treat negatively correlated regions

as uncorrelated, making them unsuitable for the proposed model.

To allow for greater flexibility in the covariance matrix, the Bessel function is used to define

ρ (D). For regions j and j ′, the Bessel function is given by
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Bν

(
djj ′

s

)
= 2νΓ (ν+ 1)

(
djj ′

s

)−ν

Jν

(
djj ′

s

)
, (3.13)

where djj ′ ∈ R is functional distance between regions j and j ′, ν ≥ −1/2 is a shape parameter,

s > 0 is a range parameter, and Γ denotes the gamma function. Jν

(
djj ′
s

)
is the Bessel function

of the first kind, given as

Jν

(
djj ′

s

)
=

∞∑
k=0

(−1)k

k!Γ (k+ ν+ 1)

(
djj ′

2s

)2k+ν
. (3.14)

The Bessel function is a rotation invariant function since its value does not change with arbitrary

rotations. The corresponding random field is therefore weakly stationary. Note that Bν

(
djj ′
s

)
is a positive definite function on R for any ν ≥ −1/2. Hence, the Bessel matrix is positive

semi-definite (Schlather, 2012)

Illustrations of the Bessel function are provided in Figure 6. The top graph provides ex-

amples of the function for a fixed s = 0.04 and changing ν. As ν decreases, the decline in

correlation is more rapid and negative correlations are more likely. The bottom graph shows

various functions for a fixed ν = 0.6 and changing s. Decreasing s also yields a more rapid

decline in correlation. However, the minimum correlation is the same across all values of s.

3.3 Conclusion

In this chapter, a hierarchical spatiotemporal model for rsfMRI data incorporating all brain

regions is presented. We assume that the observed data are a function of a true process and mea-

surement error. The true process incorporates the effects of covariates and a lower dimension

first-order dynamic latent process. The proposed model requires specification of the matrix Ki,
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Figure 6: Bessel function examples.
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variance-covariance matrix Ση, and spatial correlation matrix ρ (D). Moran’s I basis functions

are used to derive Ki, leading to a natural dimension reduction technique while maintaining

spatial interpretation. The orthogonal nature of the basis functions leads to a simple specifi-

cation of Ση as a diagonal matrix. To allow for both negative and positive spatial covariances,

the Bessel function is used. With a fully specified model, estimation of the unknown parameter

vector is subsequently performed.



CHAPTER 4

SPATIOTEMPORAL MODEL ESTIMATION

The unknown parameter vector to be estimated for the proposed spatiotemporal model is

Ψ =
(
µ0,Gt, σ

2
η, σ

2
ω,β, γ, ν, s

)
, where γ = σ2ε/σ

2
ω. Since µ0 and Σ0 are nuisance parameters

and cannot be estimated simultaneously, the lower dimensional vector µ0 is updated (Xu and

Wikle, 2007). We use the Expectation-Conditional Maximization (ECM) algorithm for esti-

mation. This algorithm was proposed by Meng and Rubin in 1993 and is an extension of the

popular Expectation-Maximization (EM) algorithm (Meng and Rubin, 1993). In the ECM

algorithm, the single maximization step of the EM algorithm is replaced with multiple con-

ditional maximization steps to achieve a computationally simpler process (Meng and Rubin,

1993; McLachlan and Krishnan, 1997). This approach is particularly suited for the proposed

spatiotemporal model, which consists of unknown latent vectors and a subset of parameters

without closed-form solutions. A procedure for selecting initial values to increase the likelihood

of convergence to the global maximum is introduced. Our simulation study illustrates that the

proposed estimation procedure yields unbiased estimates with large sample properties. We also

prove that the conditions required for convergence in the likelihood are satisfied.

4.1 Expectation-Maximization Algorithm

The EM algorithm is an iterative procedure proposed by Dempster, Laird, and Rubin in

1977 (Dempster et al., 1977). It is designed for computing maximum likelihood estimates

45
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(MLEs) that would be easily obtained if the data were complete but cannot be due to missing

data. The definition of missing data is broad; it includes unobserved values and variables that

can never be observed, such as latent variables. The incomplete data likelihood is maximized

indirectly through iterative maximization of the expected value of the complete data log like-

lihood function. Each iteration includes an expectation step (E-step) and maximization step

(M-step). Let z denote the observed data, y the missing data, and Ψ = (Ψ1, . . . , Ψd) the vector

of unknown parameters in parameter space Ω. Moreover, let L (Ψ|z) denote the incomplete

data likelihood and Lc (Ψ|z,y) the complete data likelihood if z and y were observed. For

iterations k = 0, 1, 2, . . ., the expected value of the complete data log likelihood function with

respect to y conditional on z and Ψ(k) is calculated in the E-step. This expectation is often

referred to as the Q-function and denoted

Q
(
Ψ;Ψ(k)

)
= Ey [log Lc (Ψ|z,y) |z]Ψ=Ψ(k) . (4.1)

The Q-function Q
(
Ψ;Ψ(k)

)
is subsequently maximized in the M-step. The updated estimates

Ψ(k+1) are selected such that

Q
(
Ψ(k+1);Ψ(k)

)
≥ Q

(
Ψ;Ψ(k)

)
∀ Ψ ∈Ω. (4.2)

This iterative procedure continues until a prespecified convergence criteria is satisfied (McLach-

lan and Krishnan, 1997).
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Dempster, Laird, and Rubin described key properties of the algorithm with its introduction.

One of the most notable features of the EM algorithm is that the incomplete data likelihood

function monotonically increases at each iteration, such that

L
(
Ψ(k+1)|z

)
≥ L

(
Ψ(k)|z

)
. (4.3)

This leads to the following result:

Result 4.1.1. For an iterative sequence
{
Ψ(k)
}

, if Q
(
Ψ(k+1);Ψ(k)

)
≥ Q

(
Ψ;Ψ(k)

)
for any

Ψ ∈Ω, then L
(
Ψ(k+1)|z

)
≥ L

(
Ψ(k)|z

)
.

Thus, an algorithm that satisfies Equation 4.2 yields a monotonically increasing likelihood (Demp-

ster et al., 1977; McLachlan and Krishnan, 1997).

4.2 Generalized Expectation-Maximization Algorithm

The solutions in the M-step of the EM algorithm often exist in closed-form. However, when

closed-form solutions are not attainable, finding the value of Ψ that globally maximizes the Q-

function at each iteration is challenging. For this scenario, Dempster, Laird, and Rubin defined

a generalized EM (GEM) algorithm.

Definition 4.2.1. The GEM algorithm is a type of EM algorithm and consists of an M-step

that selects Ψ(k+1) satisfying Q
(
Ψ(k+1);Ψ(k)

)
≥ Q

(
Ψ;Ψ(k)

)
.

Thus, for every iteration in a GEM algorithm, the Q-function is monotonically increasing.

Global maximization over all Ψ ∈Ω is therefore not necessary. By Result 4.1.1, this is sufficient

to ensure a monotonically increasing likelihood (McLachlan and Krishnan, 1997).
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One iteration of the Newton-Raphson algorithm is a popular choice for maximization in the

M-step of a GEM algorithm. For iteration k + 1, Rai and Matthews (1993) propose using the

updating equation

Ψ(k+1) = Ψ(k) − a(k)

∂2Q
(
Ψ;Ψ(k)

)
∂Ψ∂Ψ

′

−1

Ψ=Ψ(k)

∂Q
(
Ψ;Ψ(k)

)
∂Ψ


Ψ=Ψ(k)

, (4.4)

where 0 < a(k) < 1. Let Id denote the d-dimensional identity matrix,

Ĩ
(k)
c = −

∂2Q
(
Ψ;Ψ(k)

)
∂Ψ∂Ψ

′


Ψ=Ψ(k)

, (4.5)

and

I−1c

(
Ψ(k)

)
=

[
−
∂2 log Lc (Ψ)

∂Ψ∂Ψ ′

]−1
. (4.6)

It can be shown that Equation 4.4 satisfies Definition 4.2.1 for a GEM sequence if the matrix

A(k) = I−1c

(
Ψ(k)

){
Id −

1

2
a(k)Ĩ

(k)
c I−1c

(
Ψ(k)

)}
(4.7)

is positive-definite. Choosing a constant a(k) sufficiently small will yield a positive-definite

A(k) (Rai and Matthews, 1993; McLachlan and Krishnan, 1997).

An important property of the GEM algorithm is convergence of the likelihood. In 1983, Wu

described the conditions to be satisfied for convergence of the likelihood (Wu, 1983). He first

described the conditions for a sequence to converge to some point L∗, yielding the following

result stated without proof:
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Result 4.2.1. Let Ω denote the parameter space of Ψ. Suppose that (i) Ω is a d-dimensional

subset of Rd, (ii) ΩΨo = {Ψ ∈Ω : L (Ψ) ≥ L (Ψo)} is compact for any L (Ψo) > −∞, (iii) L (Ψ)

is continuous in Ω and differentiable in the interior of Ω. Then any sequence
{
L
(
Ψ(k)

)}
is

bounded above for any vector of initial values Ψ(0) ∈ Ω such that L
(
Ψ(0)

)
> −∞ and, hence,

the sequence converges to some point L∗ (McLachlan and Krishnan, 1997).

Assuming Result 4.2.1, Wu presented his main convergence theorem for a GEM. Let M
(
Ψ(k)

)
denote the point-to-set map of a GEM, or the choice of Ψ(k+1) such that Q

(
Ψ(k+1);Ψ(k)

)
≥

Q
(
Ψ;Ψ(k)

)
. The following result is stated without proof:

Result 4.2.2. “Let
{
Ψ(k)
}

be an instance of a GEM sequence generated by Ψ(k+1) ∈M
(
Ψ(k)

)
.

Suppose that (i) M
(
Ψ(k)

)
is closed over the complement of S, the set of stationary points in

the interior of Ω and that (ii) L
(
Ψ(k+1)

)
≥ L

(
Ψ(k)

)
for all Ψ(k) /∈ S. Then all the limit points

of
{
Ψ(k)
}

are stationary points and L
(
Ψ(k)

)
converges monotonically to L∗ = L (Ψ∗) for some

stationary point Ψ∗ ∈ S” (McLachlan and Krishnan, 1997).

By Result 4.2.2, the GEM algorithm converges to a stationary point, defined as a saddle

point, local maximum, or global maximum. In practice, one should compare results with

different sets of starting values. However, McLachlan and Krishnan (1997) state that in many

applications, the algorithm will converge to a local or global maximum and not a saddle point.

If the sequence (Ψ) is “trapped” at a saddle point Ψ∗, “a small random perturbation of Ψ

away from the saddle point Ψ∗ will cause the GEM algorithm to diverge from the saddle

point” (McLachlan and Krishnan, 1997). Thus, for any arbitrary small ε, the convergence

criteria will not be satisfied at a saddle point since successive iterations will likely result in
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a large change in the convergence criteria. The algorithm will therefore not stop at a saddle

point and, hence, the stopping point will not be a saddle point. In order to address the concern

that Ψ∗ is not a local maximum, the algorithm should be implemented with different sets of

initial values and the likelihood for each set should be calculated. If different initial values yield

different limiting points, the likelihood values should be compared to identify the maximum.

Additional sets of starting values should then be used to increase the likelihood that a global

maximum has been attained.

4.3 Expectation-Conditional Maximization Algorithm

One of the most flexible GEM algorithms is the ECM algorithm. In the ECM algorithm,

a complicated M-step can be divided into several conditional maximization (CM) steps. Each

CM-step maximizes the Q-function subject to multiple constraints on Ψ. The individual steps

are performed over a smaller dimensional space and are thus simpler, faster, and more stable

than a single maximization step (McLachlan and Krishnan, 1997).

Let S denote the number of CM steps. Furthermore, let Ψ(k+s/S) denote the value of Ψ in

the sth step of iteration k+ 1. In the sth CM-step, Ψ(k+s/S) maximizes Q
(
Ψ;Ψ(k)

)
subject to

the constraint

gs (Ψ) = gs

(
Ψ(k+

s−1
S )
)
, (4.8)

where {gs (Ψ) , s = 1, . . . , S} is the set of S prespecified functions. This maximization procedure

satisfies
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Q
(
Ψ(k+s/S);Ψ(k)

)
≥ Q

(
Ψ;Ψ(k)

)
for all Ψ ∈ Ωs

(
Ψ(k+(s−1)/S)

)
, (4.9)

where Ωs

(
Ψ(k+(s−1)/S)

)
≡
{
Ψ ∈ Ω : gs (Ψ) = gs

(
Ψ(k+

s−1
S )
)}

. By Equation 4.9,

Q
(
Ψ(k+1);Ψ(k)

)
≥ Q

(
Ψ(k+S−1

S
);Ψ(k)

)
(4.10)

≥ Q
(
Ψ(k+S−2

S
);Ψ(k)

)
...

≥ Q
(
Ψ(k);Ψ(k)

)
.

By Result 4.1.1, this is a sufficient condition for the algorithm to yield a monotonically increasing

likelihood. The ECM is therefore a GEM by Definition 4.2.1 (McLachlan and Krishnan, 1997).

In many applications of the ECM algorithm, the parameter vector Ψ is partitioned into S

subvectors Ψ =
(
Ψ
′
1, . . . ,Ψ

′
S

) ′
. The Q-function is maximized with respect to the subvector Ψs

in the sth CM-step with the other S− 1 subvectors fixed at the current values. The constraints

gs (Ψ) are therefore equal to the vector containing all subvectors of Ψ except Ψs (McLachlan

and Krishnan, 1997).

4.4 Spatiotemporal Expectation-Conditional Maximization

Due to its simplicity and key properties, the ECM algorithm is used for estimation. Let

Gt = G. The unknown parameter vector to be estimated for the proposed model is Ψ =(
µ0,G, σ

2
η, σ

2
ω,β, γ, ν, s

)
. Let Ψ =

(
Ψ ′1,Ψ

′
2

) ′
, where Ψ1 =

(
µ0,G, σ

2
η, σ

2
ω,β

)
is the subset

of parameters with closed-form MLEs and Ψ2 = (γ, ν, s) is the subset without closed-form

MLEs. The CM-step consists of two steps: conditional maximization of Ψ1 and conditional
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maximization of Ψ2 via one iteration of Newton-Raphson. The algorithm can be expressed as

follows:

1. Calculate Ψ
(k+1)
1 as the values of Ψ1 that maximizes Q

(
Ψ;Ψ(k)

)
conditional on Ψ2 = Ψ

(k)
2 .

2. Calculate Ψ
(k+1)
2 as the values of Ψ2 that maximizes Q

(
Ψ;Ψ(k)

)
conditional on Ψ1 =

Ψ
(k+1)
1 .

Since Q
(
Ψ

(k)
1 ,Ψ

(k)
2

)
≥ Q

(
Ψ

(k)
1 ,Ψ

(k−1)
2

)
≥ Q

(
Ψ

(k−1)
1 ,Ψ

(k−1)
2

)
, the conditional maximization

approach satisfies Definition 4.2.1 for a GEM algorithm (Xu and Wikle, 2007). The algorithm

converges when

∣∣L(k+1) − L(k)∣∣∣∣L(k)∣∣ < ε (4.11)

for some small ε > 0.

4.4.1 Expectation-Step

The first step of the ECM algorithm is the E-Step. Let zi = (z ′i1, z
′
i2, . . . , z

′
iT )
′ and yi =

(y ′i1,y
′
i2, . . . ,y

′
iT )
′. For the spatiotemporal model, the complete data joint distribution for

individual i, i = 1, ...,m, is f (zi,yi) = f (zi|yi) f (yi). For m independent individuals with fMRI

observations at T time points, the complete data likelihood is

Lc (Ψ; z,y) =

m∏
i=1

f (zi|yi) f (yi) (4.12)

=

m∏
i=1

{{
T∏
t=1

f (zit|yit)

}
×

{
f (yi0)

T∏
t=1

f
(
yit|yi(t−1)

)}}

∝
m∏
i=1

|Σ0|
−1/2 exp

{
−
1

2
(yi0 − µ0)

′Σ−1
0 (yi0 − µ0)

}
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×
m∏
i=1

T∏
t=1

|Ση|
−1/2 exp

{
−
1

2

(
yit − Gyi(t−1)

) ′
Σ−1
η

(
yit − Gyi(t−1)

)}

×
m∏
i=1

T∏
t=1

|Σξ|
−1/2 exp

{
−
1

2
(zit − Xiβ− Kiyit)

′Σ−1
ξ (zit − Xiβ− Kiyit)

}

The complete data log likelihood is thus

log Lc (Ψ; z,y) ∝ −mT log |Σξ|−m log |Σ0|−mT log |Ση| (4.13)

−

m∑
i=1

(yi0 − µi0)
′Σ−1

0 (yi0 − µi0)

−

m∑
i=1

T∑
t=1

(
yit − Gyi(t−1)

) ′
Σ−1
η

(
yit − Gyi(t−1)

)
−

m∑
i=1

T∑
t=1

(zit − Xiβ− Kiyit)
′Σ−1
ξ (zit − Xiβ− Kiyit) .

The Q-function is the expectation of this function (Xu and Wikle, 2007; Fasso and Cameletti,

2009).

4.4.1.1 Q-Function

Let Q
(
Ψ;Ψ(k)

)
denote Ey

[
log Lc (Ψ|z,y) |z,Ψ

(k)
]
Ψ=Ψ(k)

, the expectation of the complete

data log likelihood with respect to y. The Q-function is

Q
(
Ψ;Ψ(k)

)
= −mT log |Σξ|−m log |Σ0|−mT log |Ση| (4.14)

−

m∑
i=1

Eyit

[
(yi0 − µ0)

′Σ−1
0 (yi0 − µ0) |z.Ψ

(k)
]

−

m∑
i=1

T∑
t=1

Eyit

[(
yit − Gyi(t−1)

) ′
Σ−1
η

(
yit − Gyi(t−1)

)
|z,Ψ(k)

]
−

m∑
i=1

T∑
t=1

Eyit

[
(zit − Xiβ− Kiyit)

′Σ−1
ξ (zit − Xiβ− Kiyit) |z,Ψ

(k)
]

= −mT log |Σξ|−m log |Σ0|−mT log |Ση| (4.15)
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−tr

{
Σ−1
0

m∑
i=1

Eyit

[
(yi0 − µ0) (yi0 − µ0)

′ |z,Ψ(k)
]}

−tr

{
Σ−1
η

m∑
i=1

T∑
t=1

Eyit

[(
yit − Gyi(t−1)

) (
yit − Gyi(t−1)

) ′
|z,Ψ(k)

]}

−tr

{
Σ−1
ξ

m∑
i=1

T∑
t=1

Eyit

[
(zit − Xiβ− Kiyit) (zit − Xiβ− Kiyit)

′ |z,Ψ(k)
]}
.

Calculation of the Q-function requires estimates of Eyit

[
yity

′
i(t−1)|z,Ψ

(k)
]
, Eyit

[
yity

′
it|z,Ψ

(k)
]
,

and Eyit

[
yit|z,Ψ

(k)
]
. The Kalman filter and smoother algorithm is used to derive these esti-

mates and described in Section 4.4.1.2. Let yTit and PT
it denote the Kalman smoother mean

and variance, respectively, of yit conditional on the observations z and kth iteration parameter

estimates Ψ(k). Similarly, let PT
i(t,t−1) denote the Kalman smoother estimate of the lag-one

covariance between yTit and yTi(t−1). Using the Kalman smoother estimates, the expectation

Eyit

[
(zit − Xiβ− Kiyit) (zit − Xiβ− Kiyit)

′ |z
]

is simplified to

Eyit

[
(zit − Xiβ− Kiyit) (zit − Xiβ− Kiyit)

′ |z
]

(4.16)

= zitz
′
it − zitβ

′X ′i − zitEyit

[
y ′it|z

]
K ′

−Xiβz ′it + Xiββ
′X ′i + XiβEyit

[
y ′it
∣∣ z]K ′i

−KiE [yit|z] z
′
it + KiEyit

[yit|z]β
′X ′i + KiEyit

[
yity

′
it|z
]
K ′i

= zitz
′
it − zitβ

′X ′i − zity
T ′
it K ′i − Xiβz ′it + Xiββ

′X ′i + XiβyT
′
it K ′i

−Kiy
T
itz
′
it + Kiy

T
itβ
′X ′i + Kiy

T
ity

T ′
it K ′i + KiP

T
itK

′
i

=
(
zit − Xiβ− Kiy

T
it

)(
zit − Xiβ− Kiy

T
it

) ′
+ KiP

T
itK

′
i,

The expectation Eyit

[
(yi0 − µ0) (yi0 − µ0)

′∣∣ z] is simplified to
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Eyit

[
(yi0 − µ0) (yi0 − µ0)

′∣∣ z] (4.17)

= Eyit

[
yi0y

′
i0|z
]
− Eyit

[yi0|z]µ
′
0 − µ0Eyit

[
y ′i0|z

]
+ µ0µ

′
0

= yTi0y
T ′
i0 + PT

i0 − yTi0µ
′
0 − µ0y

T ′
i0 + µ0µ

′
0

=
(
yTi0 − µ0

)(
yTi0 − µ0

) ′
+ PT

i0.

The expectation Eyit

[(
yit − Gyi(t−1)

) (
yit − Gyi(t−1)

) ′
|z
]

is simplified to

Eyit

[(
yit − Gyi(t−1)

) (
yit − Gyi(t−1)

) ′
|z
]

(4.18)

= Eyit

[
yity

′
it|z
]
− Eyit

[
yity

′
i(t−1)|z

]
G ′ − GEyit

[
yi(t−1)y

′
it|z
]

+GEyit

[
yi(t−1)y

′
i(t−1)

]
G ′

=
(
yTity

T ′
it + PT

it

)
−
(
yTity

T ′

i(t−1) + PT
i(t,t−1)

)
G ′ − G

(
yTi(t−1)y

T ′
t + PT

i(t,t−1)

) ′
+G

(
yTi(t−1)y

T ′

i(t−1) + PT
i(t−1)

)
G ′

The Q-function to be maximized is thus

Q
(
Ψ;Ψ(k)

)
= −mT log |Σξ|−mT log |Ση|−m log |Σ0| (4.19)

−tr

{
Σ−1
0

m∑
i=1

[(
yTi0 − µ0

)(
yTi0 − µ0

) ′
+ PT

i0

]}

−tr

{
Σ−1
η

m∑
i=1

T∑
t=1

[
Sit(11) − Sit(10)G

′ − GS
′

it(10) + GSit(00)G
′
]}

−tr

{
Σ−1
ξ

m∑
i=1

T∑
t=1

[(
zit − Xiβ− Kiy

T
it

)(
zit − Xiβ− Kiy

T
it

) ′
+ KiP

T
itK

′
i

]}

where
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Sit(11) = yTit

(
yTit

)
+ PT

it,

Sit(10) = yTit

(
yTi(t−1)

) ′
+ PT

i(t,t−1),

Sit(00) = yTi(t−1)

(
yTi(t−1)

) ′
+ PT

i(t−1).

4.4.1.2 Kalman Filter and Smoother

Simplification of the Q-function requires estimates of Eyit

[
yit|z,Ψ

(k)
]
, Eyit

[
yity

′
it|z,Ψ

(k)
]
,

and Eyit

[
yity

′
i(t−1)|z,Ψ

(k)
]
. Under the state-space formulation of the spatiotemporal model

given in Equation 3.4 and Equation 3.5, Yit is defined as a latent variable that dictates the

observable dynamic process Zit. For maximization of the Q-function, the unobserved variable

yit is estimated given information in observed data zit. It is often of interest to estimate the

value of the state at a particular time t conditional on a sequence of data. If yit is estimated

conditional on data from the past, the process is referred to as prediction or forecasting. If yit is

estimated conditional on data from the past and present, the process is referred to as filtering.

Furthermore, if yit is estimated conditional on data from the past, present, and future, the

process is called smoothing (Shumway and Stoffer, 2017).

Calculation of the Q-function requires estimates of expectations of functions of yit given all

observed data zit up to time T . Smoothed estimates of yit are therefore required for the ECM

algorithm. In time series analysis by state-space methods, the Kalman filter and smoother are

often used to estimate the conditional mean and variance of yit and the lag-one covariance of yit

and yi(t−1). The smoother is a function of the filter, which estimates the conditional distribution

of yit given observed data up to time t. The estimating procedure is recursive, producing an
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updated estimate of the dynamic system each time a new observation is observed. Since zit is

assumed to be normal, the conditional distributions of yit given any subset of observed data

are also normal. The estimating procedure therefore yields minimum variance linear unbiased

estimates. Furthermore, conditional distributions of yit obtained from a frequentist approach

and posterior densities of yit derived from the standpoint of Bayesian inference yield the same

estimates of the mean vectors and variance matrices (Kalman, 1960; Durbin and Koopman,

2012).

Definitions for notation used for the Kalman estimates and updating equations are provided

in Table II. The first step of the process is calculation of the Kalman filter. Let ytit and Pt
it

denote the mean and variance, respectively, of the conditional distribution of yit given observed

data up to time t. For t = 1, ..., T , the Kalman filtered values are

ytit = yt−1it + Ait

(
zit − Xiβ− Kiy

t−1
it

)
, (4.20)

Pt
it = Pt−1

it − AitKiP
t−1
it ,

where

yt−1it = Gyt−1
i(t−1), (4.21)

Pt−1
it = GPt−1

i(t−1)G
′ + Ση,

Ait = Pt−1
it K ′i

(
KiP

t−1
it K ′i + Σξ

)−1
.

y0i0 and P0
i0 initiate the recursive procedure and are considered nuisance parameters (Xu and

Wikle, 2007; Fasso and Cameletti, 2009).
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TABLE II KALMAN NOTATION

Notation Mathematical Expression

Predicted Value yt−1it E
[
yit|z1, z2, . . . , z(t−1)

]
Pt−1
it var

(
yit|z1, z2, . . . , z(t−1)

)
Pt−1
i(t,t−1) cov

(
yit,yi(t−1)|z1, z2, . . . , z(t−1)

)
Filtered Value ytit E[yit|z1, z2, . . . , zt]

Pt
it var(yit|z1, z2, . . . , zt)

Pt
i(t,t−1) cov

(
yit,yi(t−1)|z1, z2, . . . , zt

)
Smoothed Value yTit E[yit|z1, z2, . . . , zT ]

PT
it var(yit|z1, z2, . . . , zT )

PT
i(t,t−1) cov

(
yit,yi(t−1)|z1, z2, . . . , zT

)

Using the filter values, the Kalman smoother estimates the conditional distribution of yit

given data observed at all times T . Let yTit and PT
it denote the mean and variance, respectively, of

the conditional distribution of yit given data observed at all times T . Furthermore, let PT
i(t,t−1)

denote the covariance of
(
yit,yi(t−1)

)
given data observed at all times T . To calculate the

Kalman smoother, a backward recursion is used. For t = T, T − 1, . . . , 1, the Kalman smoother

values yTi(t−1) and PT
i(t−1) are

yTi(t−1) = yt−1
i(t−1) + Ji(t−1)

(
yTit − Gyt−1

i(t−1)

)
, (4.22)

PT
i(t−1) = Pt−1

i(t−1) + Ji(t−1)

(
PT
it − Pt−1

it

)
J ′i(t−1),

where

Ji(t−1) = Pt−1
i(t−1)G

′
(
Pt−1
it

)−1
. (4.23)
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The lag-one covariance PT
i(t−1,t−2) is also estimated by a backward recursion. For t = T, T −

1, . . . , 2, the Kalman smoother value for the lag-one covariance is

PT
i(t−1,t−2) = Pt−1

i(t−1)J
′
i(t−2) + Ji(t−1)

(
PT
i,(t,t−1) − GPt−1

i(t−1)

)
J ′i(t−2). (4.24)

The smoothed estimates are used in Equation 4.19 for each iteration of the algorithm (Xu and

Wikle, 2007; Fasso and Cameletti, 2009).

4.4.2 Conditional Maximization Step

Once the E-Step is complete, the CM-step is performed.

4.4.2.1 Closed-Form Solutions

The first CM-step in iteration k + 1 of the ECM algorithm maximizes the Q-Function

in Equation 4.19 with respect to Ψ1 =
(
µ0,G, σ

2
η, σ

2
ω,β

)
conditional on Ψ2 = Ψ

(k)
2 . The solu-

tions are derived by taking partial derivatives of the Q-function with respect to each parameter

and setting to 0. The estimate for µ0, the mean of Yi0, is derived as follows:

∂Q

∂µ0
= −

∂

∂µ0
tr

{
Σ−1
0

m∑
i=1

[(
yTi0 − µ0

)(
yTi0 − µ0

) ′
+ PT

i0

]}
(4.25)

=

m∑
i=1

[
∂

∂µ0
tr
{
Σ−1
0 yTi0µ

′
0

}
+

∂

∂µ0
tr
{
Σ−1
0 µ0y

T ′
i0

}
−

∂

∂µ0
tr
{
Σ−1
0 µ0µ

′
0

}]

=

m∑
i=1

[
Σ−1
0 yTi0 + Σ

−1
0 yTi0 −

(
Σ−1
0 + Σ−1

0

)
µ0

]
= 2Σ−1

0

m∑
i=1

[
yTi0

]
− 2mΣ−1

0 µ0

0 = Σ−1
0

m∑
i=1

[
yTi0

]
−mΣ−1

0 µ̂0

µ̂0 =
1

m

m∑
i=1

yTi0.
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The estimate of the transition matrix G is derived as follows:

∂Q

∂G
= −

∂

∂G
tr

{
Σ−1
η

m∑
i=1

T∑
t=1

[
Sit(11) − Sit(10)G

′ − GS
′

it(10) + GSit(00)G
′
]}

(4.26)

=
∂

∂G
tr

{
Σ−1
η

m∑
i=1

T∑
t=1

Sit(10)G
′

}
+

∂

∂G
tr

{
Σ−1
η

m∑
i=1

T∑
t=1

GS ′it(10)

}

−
∂

∂G
tr

{
Σ−1
η

m∑
i=1

T∑
t=1

GSit(00)G
′

}

= Σ−1
η

m∑
i=1

T∑
t=1

Sit(10) + Σ
−1
η

m∑
i=1

T∑
t=1

S ′it(10) + Σ
−1
η

m∑
i=1

T∑
t=1

GS ′it(00)

+Σ−1
η

m∑
i=1

T∑
t=1

GSit(00)

0 = 2

m∑
i=1

T∑
t=1

Sit(10) + 2
m∑
i=1

T∑
t=1

ĜSit(00)

Ĝ =

m∑
i=1

T∑
t=1

Sit(10)

(
m∑
i=1

T∑
t=1

Sit(00)

)−1

.

Let E =
∑m
i=1

∑T
t=1

[
Sit(11) − Sit(10)G

′ − GS
′

it(10) + GSit(00)G
′
]
. The estimate of the diagonal

element of Ση, σ2η, is derived as follows:

∂Q

∂σ2η
=

∂

∂σ2η

{
−mT log |Ση|− tr

{
Σ−1
η E
}}

(4.27)

= −
∂

∂σ2η
mT log |σ2ηIr|−

∂

∂σ2η

1

σ2η
tr
{

I−1r E
}

= −mT × tr
{(
σ2ηIr

)−1 ∂

∂σ2η
σ2ηIr

}
+

1(
σ2η
)2 tr {E}

= −mT × 1

σ2η
tr
{

I−1r Ir

}
+

1(
σ2η
)2 tr {E}

0 = −
mrT

σ̂2η
+

1(
σ̂2η
)2 tr {E}

σ̂2η =
tr {E}

mrT
.
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Let W =
∑m
i=1

∑T
t=1

[(
zit − Xiβ− Kiy

T
it

) (
zit − Xiβ− Kiy

T
it

) ′
+ KiP

T
itK

′
i

]
. The estimate of

σ2ω is derived as follows:

∂Q

∂σ2ω
=

∂

∂σ2ω

{
−mT log |Σξ|− tr

{
Σ−1
ξ W

}}
(4.28)

= −
∂

∂σ2ω
mT log |Σξ|−

∂

∂σ2ω
tr
{
Σ−1
ξ W

}
= −

∂

∂σ2ω
mT log |σ2ωΓ|−

∂

∂σ2ω
tr

{(
σ2ωΓ

)−1
W

}
= −mT × tr

{(
σ2ωΓ

)−1 ∂

∂σ2ω
σ2ωΓ

}
+

1

(σ2ω)
2
tr
{
Γ−1W

}
= −mT × 1

σ2ω
tr
{
Γ−1Γ

}
+

1

(σ2ω)
2
tr
{
Γ−1W

}
0 = −

mnT

σ̂2ω
+

1(
σ̂2ω

)2 tr{Γ−1W}

σ̂2ω =
tr
{
Γ−1W

}
mnT

.

Finally, estimates of fixed-effect parameters β are derived as follows:

∂Q

∂β
= −

∂

∂β
tr

{
Σ−1
ξ

m∑
i=1

T∑
t=1

(
zit − Xiβ− Kiy

T
it

)(
zit − Xiβ− Kiy

T
it

) ′
(4.29)

+KiP
T
itK

′
i

}
=

m∑
i=1

T∑
t=1

∂

∂β

(
tr
{
Σ−1
ξ zitβ

′X ′i

}
+ tr
{
Σ−1
ξ Xiβz ′it

}
− tr
{
Σ−1
ξ Xiββ

′X ′i

}
−tr
{
Σ−1
ξ XiβyT

′
it K ′i

}
− tr
{
Σ−1
ξ Kiy

T
itβ
′X ′i

})
=

m∑
i=1

T∑
t=1

(
X ′iΣ

−1
ξ zit + X ′iΣ

−1
ξ zit − X ′iΣ

−1
ξ Xiβ− X ′iΣ

−1
ξ Xiβ− X ′iΣ

−1
ξ Kiy

T
it

− X ′iΣ
−1
ξ Kiy

T
it

)
=

m∑
i=1

T∑
t=1

(
2X ′iΣ

−1
ξ zit − 2X

′
iΣ

−1
ξ Xiβ− 2X ′iΣ

−1
ξ Kiy

T
it

)
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0 =

m∑
i=1

T∑
t=1

(
X ′iΣ

−1
ξ zit − X ′iΣ

−1
ξ Kiy

T
it

)
−

m∑
i=1

T∑
t=1

X ′iΣ
−1
ξ Xiβ̂

β̂ =

(
m∑
i=1

T∑
t=1

X ′iΣ
−1
ξ Xi

)−1( m∑
i=1

T∑
t=1

X ′iΣ
−1
ξ

(
zit − Kiy

T
it

))
.

4.4.2.2 Newton-Raphson

The second CM-step of iteration k+ 1 consists of maximizing Ψ2 = (γ, ν, s) conditional on

Ψ1 = Ψ
(k+1)
1 via one Newton-Raphson iteration. In this stage, the Newton-Raphson updating

equation is


γ(k+1)

ν(k+1)

s(k+1)

 =


γ(k)

ν(k)

s(k)

− a


∂2Q
∂γ2

∂2Q
∂γ∂ν

∂2Q
∂γ∂s

∂2Q
∂γ∂ν

∂2Q
∂ν2

∂2Q
∂ν∂s

∂2Q
∂γ∂s

∂2Q
∂ν∂s

∂2Q
∂s2



−1 
∂Q
∂γ

∂Q
∂ν

∂Q
∂s

 ,

where 0 < a < 1. This updating equation requires the gradient and Hessian matrix of the

Q-function with respect to parameters in Ψ2. The first partial derivative of the Q-function with

respect to γ is derived as follows:

∂Q

∂γ
= −mT

∂

∂γ
log |Σξ|−

∂

∂γ
tr
{
Σ−1
ξ W

}
(4.30)

= −mT
∂

∂γ
log |σ2ωΓ|−

∂

∂γ
tr

{(
σ2ωΓ

)−1
W

}
= −mT × tr

{(
σ2ωΓ

)−1 ∂ (σ2ωΓ)
∂γ

}
+ tr

{(
σ2ωΓ

)−1 ∂ (σ2ωΓ)
∂γ

(
σ2ωΓ

)−1
W

}

= −mT × tr
{(
σ2ωΓ

)−1
σ2ωI

}
+ tr

{(
σ2ωΓ

)−1
σ2ωI

(
σ2ωΓ

)−1
W

}
= −mT × tr

{
Γ−1
}
+

1

σ2ω
tr
{
Γ−1Γ−1W

}
.

The first partial derivative with respect to ν is derived as follows:
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∂Q

∂ν
= −mT

∂

∂ν
log |Σξ|−

∂

∂ν
tr
{
Σ−1
ξ W

}
(4.31)

= −mT
∂

∂ν
log |σ2ωΓ|−

∂

∂ν
tr

{(
σ2ωΓ

)−1
W

}
= −mT × tr

{(
σ2ωΓ

)−1 ∂ (σ2ωΓ)
∂ν

}
+ tr

{(
σ2ωΓ

)−1 ∂ (σ2ωΓ)
∂ν

(
σ2ωΓ

)−1
W

}

= −mT × tr
{
Γ−1

∂Γ

∂ν

}
+

1

σ2ω
tr

{
Γ−1

∂Γ

∂ν
Γ−1W

}
,

where

∂Γ

∂ν
=


0, for diagonal elements

∂ρ(D)
∂ν , for off-diagonal elements.

This requires the first partial derivative of ρ (D) with respect to ν, which is equal to

∂ρ

∂ν
=

{(
2s

d

)ν
Γ (ν+ 1)

}
× ∂

∂ν
Jν

(
d

s

)
+ Jν

(
d

s

)
× ∂

∂ν

{(
2s

d

)ν
Γ (ν+ 1)

}
,

where

∂

∂ν

{(
2s

d

)ν
Γ (ν+ 1)

}
=

{(
2s

d

)ν
× ∂

∂ν
Γ (ν+ 1)

}
+

{
Γ (ν+ 1)× ∂

∂ν

(
2s

d

)ν}
=

(
2s

d

)ν
Γ (ν+ 1)ψ(0) (ν+ 1) + Γ (ν+ 1)

(
2s

d

)ν
log

(
2s

d

)
=

(
2s

d

)ν
Γ (ν+ 1)

{
ψ(0) (ν+ 1) + log

(
2s

d

)}
and

∂

∂ν
Jν

(
d

s

)
=

∞∑
k=0

(−1)k

k!

[
1

Γ (k+ ν+ 1)
× ∂

∂ν

(
d

2s

)2k+ν
+

(
d

2s

)2k+ν
∂

∂ν

1

Γ (k+ ν+ 1)

]
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=

∞∑
k=0

(−1)k

k!

[
1

Γ (k+ ν+ 1)
×
(
d

2s

)2k+ν
log

(
d

2s

)
−

(
d

2s

)2k+ν
ψ(0) (k+ ν+ 1)

Γ (k+ ν+ 1)

]

= Jν

(
d

s

)
log

(
d

2s

)
−

∞∑
k=0

(−1)k

k!Γ (k+ ν+ 1)
ψ(0) (k+ ν+ 1)

(
d

2s

)2k+ν
.

ψ(0) denotes the digamma function. The first partial derivative of the Q-function with respect

to s is:

∂Q

∂s
= −mT

∂

∂s
log |Σξ|−

∂

∂s
tr
{
Σ−1
ξ W

}
(4.32)

= −mT
∂

∂s
log |σ2ωΓ|−

∂

∂s
tr

{(
σ2ωΓ

)−1
W

}
= −mT × tr

{(
σ2ωΓ

)−1 ∂ (σ2ωΓ)
∂s

}
+ tr

{(
σ2ωΓ

)−1 ∂ (σ2ωΓ)
∂s

(
σ2ωΓ

)−1
W

}

= −mT × tr
{
Γ−1

∂Γ

∂s

}
+

1

σ2ω
tr

{
Γ−1

∂Γ

∂s
Γ−1W

}
,

where

∂Γ

∂s
=


0, for diagonal elements

∂ρ(D)
∂s , for off-diagonal elements

This requires the first partial derivative of ρ (D) with respect to s, derived as:

∂ρ

∂s
= Γ (ν+ 1)

[(
2s

d

)ν
× ∂

∂s
Jν

(
d

s

)
+ Jν

(
d

s

)
× ∂

∂s

(
2s

d

)ν]
= Γ (ν+ 1)

[(
2s

d

)ν
× ∂

∂s
Jν

(
d

s

)
+ Jν

(
d

s

)
ν

(
2s

d

)ν
s−1
]

= Γ (ν+ 1)

(
2s

d

)ν [
∂

∂s
Jν

(
d

s

)
+ νs−1Jν

(
d

s

)]
,

where
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∂

∂s
Jν

(
d

s

)
=

∞∑
k=0

(−1)k

k!Γ (k+ ν+ 1)
× ∂

∂s

(
d

2s

)2k+ν
=

∞∑
k=0

(−1)k

k!Γ (k+ ν+ 1)

[
−(2k+ ν)

(
d

2s

)2k+ν−1
d

2

(
1

s

)2]

= −
d

2s2

∞∑
k=0

(−1)k

k!Γ (k+ ν+ 1)

[
(2k+ ν)

(
d

2s

)2k+ν−1]
.

The second partial derivative of the Q-function with respect to γ is:

∂2Q

∂γ2
=

∂

∂γ

{
−mT × tr

{
Γ−1
}
+

1

σ2ω
tr
{
Γ−1Γ−1W

}}
(4.33)

= −mT × ∂

∂γ
tr
{
Γ−1
}
+

1

σ2ω

∂

∂γ
tr
{
Γ−1Γ−1W

}
= mT × tr

{
−Γ−1

∂Γ

∂γ
Γ−1
}
+

1

σ2ω
tr

{
Γ−1 ×−Γ−1

∂Γ

∂γ
Γ−1W − Γ−1

∂Γ

∂γ
Γ−1 × Γ−1W

}
= mT × tr

{
Γ−1Γ−1

}
−

2

σ2ω
tr
{
Γ−1Γ−1Γ−1W

}
.

The second partial derivative of the Q-function with respect to ν is:

∂2Q

∂ν2
= −mT × ∂

∂ν
tr

{
Γ−1

∂Γ

∂ν

}
+

1

σ2ω

∂

∂ν
tr

{
Γ−1

∂Γ

∂ν
Γ−1W

}
(4.34)

= −mT × tr
{
Γ−1

∂2Γ

∂ν2
− Γ−1

∂Γ

∂ν
Γ−1

∂Γ

∂ν

}
−

1

σ2ω
tr

{
Γ−1

∂Γ

∂ν
× Γ−1∂Γ

∂ν
Γ−1W

}
+
1

σ2ω
tr
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Γ−1

∂2Γ

∂ν2
− Γ−1

∂Γ

∂ν
Γ−1

∂Γ

∂ν

]
× Γ−1W

}
= −mT × tr

{
Γ−1

∂2Γ

∂ν2
− Γ−1

∂Γ

∂ν
Γ−1

∂Γ

∂ν

}
−

1

σ2ω
tr

{
Γ−1

∂Γ

∂ν
Γ−1

∂Γ

∂ν
Γ−1W

}
+
1

σ2ω
tr

{
Γ−1

∂2Γ

∂ν2
Γ−1W

}
−

1

σ2ω
tr

{
Γ−1

∂Γ

∂ν
Γ−1

∂Γ

∂ν
Γ−1W

}
= −mT × tr

{
Γ−1

∂2Γ

∂ν2
− Γ−1

∂Γ

∂ν
Γ−1

∂Γ

∂ν

}
+

1

σ2ω
tr

{
Γ−1

∂2Γ

∂ν2
Γ−1W

}
−
2

σ2ω
tr

{
Γ−1

∂Γ

∂ν
Γ−1

∂Γ

∂ν
Γ−1W

}
,

where
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∂2Γ

∂ν2
=


0, for diagonal elements

∂2ρ(D)
∂ν2

, for off-diagonal elements.

This requires the second derivative of ρ (D) with respect to s, derived as:

∂2ρ

∂ν2
=

∂

∂ν

[{(
2s

d

)ν
Γ (ν+ 1)

}
× ∂

∂ν
Jν

(
d

s

)
+ Jν

(
d

s

)
× ∂

∂ν

{(
2s

d

)ν
Γ (ν+ 1)

}]
=

[(
2s

d

)ν
Γ (ν+ 1)× ∂2

∂ν2
Jν

(
d

s

)]
+

[
∂

∂ν
Jν

(
d

s

)
× ∂

∂ν

{(
2s

d

)ν
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}]
+
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(
d

s

)
× ∂2

∂ν2
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d
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}]
+
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d

)ν
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}
∂

∂ν
Jν

(
d

s

)]
=

[(
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d

)ν
Γ (ν+ 1)× ∂2

∂ν2
Jν

(
d

s

)]
+ 2

[
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Jν

(
d

s

)
× ∂

∂ν

{(
2s

d

)ν
Γ (ν+ 1)

}]
+

[
Jν

(
d

s

)
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∂ν2
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d
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}]
=

[(
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d
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∂ν2
Jν

(
d
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)]
+
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(
d
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d
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(
d
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)(
2s

d
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{
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(
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)}]
=

(
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d

)ν
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[
∂2

∂ν2
Jν

(
d

s

)
+ 2
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Jν

(
d
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d

s
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∂ν2
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d
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}
,

where
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∂ν2
Jν

(
d

s

)
=

∂

∂ν

{
Jν

(
d

s

)
log

(
d

2s

)
−

∞∑
k=0

(−1)k

k!Γ (k+ ν+ 1)
ψ(0) (k+ ν+ 1)

(
d

2s
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= log

(
d
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)
∂

∂ν
Jν

(
d
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)
+
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1
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(
d
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= log

(
d
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)
∂

∂ν
Jν

(
d

s

)
+
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(−1)k
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[
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1

Γ (k+ ν+ 1)
×
(
d
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log

(
d
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)
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+

(
d

2s

)2k+ν
∂2

∂ν2
1

Γ (k+ ν+ 1)

]

= log

(
d

2s

)
∂

∂ν
Jν

(
d

s

)
+

∞∑
k=0

(−1)k
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[
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(
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+
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]

= log

(
d
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)
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Jν

(
d

s

)
+
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(
d
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(
d
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]
.

ψ(1) denotes the first derivative of the digamma function. Furthermore,
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∂ν2

{(
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d

)ν
Γ (ν+ 1)

}
=

∂

∂ν

[(
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d

)ν
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{
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=
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d
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Γ (ν+ 1)× ∂

∂ν

{
ψ(0) (ν+ 1) + log
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d
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(
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)}
×
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2s

d
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{
ψ(0) (ν+ 1) + log

(
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d

)}]
.

The second partial derivative of the Q-function with respect to s is derived as:

∂2Q

∂s2
= −mT × tr

{
Γ−1

∂2Γ

∂s2
− Γ−1

∂Γ

∂s
Γ−1

∂Γ

∂s

}
+
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∂2Γ
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}
(4.35)

−
2

σ2ω
tr

{
Γ−1

∂Γ

∂s
Γ−1

∂Γ

∂s
Γ−1W

}
,

where
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∂2Γ

∂s2
=


0, for diagonal elements

∂2ρ(D)
∂s2

, for off-diagonal elements.

This requires the second derivative of ρ (D), which is derived as:
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=
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,

where
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The second partial derivative of the Q-function with respect to γ and ν is derived as:

∂2Q

∂γ∂ν
= −mT × ∂

∂ν
tr
{
Γ−1
}
+

1

σ2ω
× ∂

∂ν
tr
{
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}
(4.36)

= −mT × ∂
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+

1

σ2ω
tr

{
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}
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.

The second partial derivative of the Q-function with respect to γ and s is derived as:
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=
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+
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= −mT × ∂
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+
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.

The second partial derivative of the Q-function with respect to ν and s is derived as:

∂2Q

∂ν∂s
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,

where
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=


0, for diagonal elements
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∂ν∂s , for off-diagonal elements

and
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This is further defined as
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=
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.
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4.4.3 Initial Values

Iterative procedures such as the ECM require initial values to start the algorithm. As

previously noted, the ECM algorithm converges to a stationary point, which can be a global

maximum, local maximum, or saddle point. It is often advised to check results by running

the algorithm with several sets of values. However, running the algorithm several times comes

with challenges since spatiotemporal models require large computation times. To increase the

likelihood that the derived solution is a global maximum, an algorithm for selecting initial

values is proposed.

4.4.3.1 Selection of Initial Values

The method of moments is used to select initial values to achieve faster convergence and

increase the likelihood that the algorithm converges to the global maximum (Xu and Wikle,

2007). For parameters β,µ0,Σ0,G, σ
2
ω, σ

2
ε, σ

2
η, the following steps are used to select initial

values:

1. β(0)

(a) Run the linear regression model zij = Xiβ+ εij for each fMRI region j = 1, 2, . . . , n

to obtain the estimate β̂
(0)
j .

(b) Set β(0) = 1
n

∑n
j=1 β̂

(0)
j .

2. µ
(0)
0

(a) Estimate the latent variable at t = 1 by y
(0)
i1 = K−1

i

(
zi1 − Xiβ

(0)
)

.
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(b) Set µ
(0)
0 = 1

m

∑m
i=1 y

(0)
i1 .

3. Σ
(0)
0

(a) Set Σ
(0)
0 = diag

(∑m
i=1

(
y
(0)
i1 − µ

(0)
0

)(
y
(0)
i1 − µ

(0)
0

) ′)
.

4. G(0)

(a) For t = 2, . . . , T , estimate the latent variable at time t by y
(0)
it = K−1

i

(
zit − Xiβ

(0)
)

.

Run a linear regression model y
(0)
it = Gty

(0)
i(t−1) + ηit and obtain Ĝ

(0)
t .

(b) Set G(0) = 1
T−1

∑T
t=2 Ĝ

(0)
t .

5. σ
2(0)
ω , σ

2(0)
ε

(a) For t = 1, . . . , T , calculate ξ
(0)
it = zit − Xiβ

(0) − Kiyit.

(b) Calculate ξ̄
(0)

= 1
mT

∑m
i=1

∑T
t=1 ξ

(0)
it .

(c) Let Σ
(0)
ξ = 1

mT

∑m
i=1

∑T
t=1

(
ξ
(0)
it − ξ̄

(0)
)(
ξ
(0)
it − ξ̄

(0)
) ′

.

(d) Set σ
2(0)
ω = σ

2(0)
ε = 1

2n

∑n
j=1Σ

(0)
ξ(jj).

6. σ
2(0)
η

(a) For t = 2, . . . , T , calculate η
(0)
it = yit − G(0)yi(t−1).

(b) Calculate η̄(0) = 1
m(T−1)

∑m
i=1

∑T
t=2 η

(0)
it .

(c) Set Σ
(0)
η = 1

m(T−1)

∑m
i=1

∑T
t=2

(
η
(0)
it − η̄(0)

)(
η
(0)
it − η̄(0)

) ′
.

(d) Set σ
2(0)
η = 1

r

∑r
k=1Σ

(0)
η(kk).
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Since there is no way to measure the relative contribution of σ
2(0)
ω and σ

2(0)
ε to the diago-

nal elements of Σξ, they are each assigned 1/2 of the mean of the diagonal elements of Σ
(0)
ξ .

Furthermore, it is difficult to derive closed-form moment based estimators for Bessel function

parameters ν and s. To obtain initial values for these two parameters, the sample mean, vari-

ance, skewness, and kurtosis of the upper triangle elements of the matrix ρ are estimated. The

sum of squared differences between the sample and empirical moments for various combinations

of ν and s are calculated. The parameters of the Bessel function with the minimum sum of

squared differences is selected as the starting values.

A simulation study was performed to evaluate the accuracy of these initial values. Results

are provided in Table III. All method of moments estimators are close to the true values;

however, the estimates for ν(0), s(0), and γ(0) = σ
2(0)
ε /σ

2(0)
ω are not. These parameters are

estimated by Newton-Raphson in step 2 of CM. It is well known that the convergence of

Newton’s method depends on the shape of the function maximized and initial values. If initial

values are far from the true values, performance of Newton-Raphson is poor. Performance may

sometimes be remedied by taking smaller steps when the gradient, denoted
∂Q(Ψ;Ψ(k))

∂Ψ , is large.

Smaller steps are achieved by modifying the updating equation to

Ψ(k+1) = Ψ(k) − a

∂2Q
(
Ψ;Ψ(k)

)
∂Ψ∂Ψ

′ +
∂Q
(
Ψ;Ψ(k)

)
∂Ψ

−1

Ψ=Ψ(k)

∂Q
(
Ψ;Ψ(k)

)
∂Ψ


Ψ=Ψ(k)

, (4.39)

where 0 < a < 1 (Givens and Hoeting, 2013). This modification was incorporated into step 2

of CM. However, consistent convergence toward the global maximum was not observed.
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4.4.3.2 Updating Initial Values

The initial values for ν, s and γ are further updated to improve performance of the es-

timating procedure. The updated initial values are then used as the starting values for the

ECM algorithm. Initial values are obtained by applying a modified ECM algorithm: the pro-

cedure is applied in multiple iterations with two out of the three parameters estimated via

Newton-Raphson fixed. For a given c, the algorithm is as follows:

1. With ν and s fixed at ν(0) and s(0), respectively, update remaining parameters using the

ECM algorithm until
∣∣∣ ∂Q
∂γ(k)

∣∣∣ < c. Denote the final estimates as Ψ(0 ′1).

2. With γ and ν fixed at γ(0
′
1) and ν(0), respectively, update remaining parameters using the

ECM algorithm until
∣∣∣ ∂Q
∂s(k)

∣∣∣ < c. Denote the final estimates as Ψ(0 ′2).

3. With γ and s fixed at γ(0
′
1) and s(0

′
2), respectively, update remaining parameters using

the ECM algorithm until
∣∣∣ ∂Q
∂ν(k)

∣∣∣ < c. Denote the final estimates as Ψ(0 ′3).

4. Set the updated initial values to Ψ(0 ′) =
{
β(0 ′3),µ

(0 ′3)
0 ,G(0 ′3), σ

2(0 ′3)
ω , σ

2(0 ′3)
ε , σ

2(0 ′3)
η , γ(0

′
1), s(0

′
2),

ν(0
′
3)
}

.

A simulation study of the estimating procedure illustrates that convergence to the global max-

imum is observed when Ψ(0) = Ψ(0 ′).

4.4.4 Simulation Studies

A simulation study was performed to evaluate the accuracy and reliability of the parameter

estimation procedure. Simulations were performed in R version 3.6.1 and code was modified

from functions in the Stem package (Cameletti, 2012). 500 datasets were simulated for sample
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TABLE III INITIAL VALUES, DIAGONAL COVARIANCE

Parameter True Value Mean (SE) Middle 95%

β0 3.65 3.6498 (0.0478) (3.5633,3.7501)

β1 0.046 0.0460 (0.0017) (0.0426,0.0491)

β2 0.904 0.9039 (0.0098) (0.8864,0.9233)

β3 -2 -2.0004 (0.0197) (-2.0348,-1.9600)

σ2ε 0.3 0.3961 (0.0028) (0.3906,0.4014)

σ2ω 0.5 0.3961 (0.0028) (0.3906,0.4014)

σ2η 0.25 0.2502 (0.0028) (0.2450,0.2560)

ν 0.6 1.4495 (0.4751) (0.4745,2.0000)

s 0.2 0.1768 (0.0225) (0.1500,0.2300)

G11 0.4 0.4007 (0.0116) (0.3786,0.4251)

G12 0.2 0.1991 (0.0115) (0.1776,0.2192)

G13 0.2 0.2005 (0.0114) (0.1765,0.2243)

G21 0.2 0.2016 (0.0108) (0.1805,0.2205)

G22 0.4 0.3996 (0.0112) (0.3762,0.4199)

G23 0.2 0.2000 (0.0119) (0.1755,0.2223)

G31 0.2 0.2004 (0.0109) (0.1814,0.2210)

G32 0.2 0.2007 (0.0111) (0.1774,0.2219)

G33 0.4 0.3997 (0.0112) (0.3765,0.4198)
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TABLE IV ESTIMATING PROCEDURE SIMULATION RESULTS

Parameter True Value m Mean (SE) Bias RMSE Middle 95%

β0 3.65 100 3.6495 (0.0288) -0.0005 0.0288 (3.5908,3.7039)

200 3.6483 (0.0215) -0.0017 0.0216 (3.6066,3.6879)

400 3.6492 (0.0150) -0.0008 0.0150 (3.6186,3.6781)

β1 0.046 100 0.0460 (0.0011) 3.77e-05 0.0011 (0.0439,0.0481)

200 0.0460 (0.0008) 3.45e-05 0.0008 (0.0446,0.0476)

400 0.0460 (0.0005) 3.00e-05 0.0005 (0.0450,0.0472)

β2 0.904 100 0.9040 (0.0066) 4.17e-05 0.0066 (0.8900,0.9157)

200 0.9039 (0.0042) -0.0001 0.0042 (0.8954,0.9118)

400 0.9038 (0.0030) -0.0002 0.0030 (0.8980,0.9096)

β3 -2 100 -1.9999 (0.0126) 0.0001 0.0126 (-2.0215,-1.9764)

200 -1.9992 (0.0080) 0.0008 0.0080 (-2.0158,-1.9829)

400 -2.0001 (0.0063) -0.0001 0.0063 (-2.0126,-1.9885)

G11 0.4 100 0.3879 (0.0487) -0.0121 0.0501 (0.2939,0.4815)

200 0.3969 (0.0354) -0.0031 0.0355 (0.3225,0.4652)

400 0.3925 (0.0255) -0.0075 0.0265 (0.3369,0.4378)

G12 0.2 100 0.2023 (0.0366) 0.0023 0.0366 (0.1307,0.2702)

200 0.1990 (0.0272) -0.0010 0.0272 (0.1461,0.2568)

400 0.2005 (0.0182) 0.0005 0.0182 (0.1637,0.2385)

G13 0.2 100 0.2003 (0.0313) 0.0003 0.0312 (0.1396,0.2596)

200 0.1992 (0.0224) -0.0008 0.0224 (0.1592,0.2448)

400 0.1993 (0.0163) -0.0007 0.0163 (0.1665,0.2309)

G21 0.2 100 0.2028 (0.0374) 0.0028 0.0374 (0.1328,0.2735)

200 0.1984 (0.0274) -0.0016 0.0274 (0.1463,0.2533)

400 0.2004 (0.0187) 0.0004 0.0187 (0.1648,0.2415)

G22 0.4 100 0.3923 (0.0491) -0.0077 0.0496 (0.2929,0.4773)

200 0.3957 (0.0349) -0.0043 0.0352 (0.3245,0.4614)

400 0.3948 (0.0237) -0.0052 0.0242 (0.3433,0.4371)
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TABLE IV ESTIMATING PROCEDURE SIMULATION RESULTS (Continued)

Parameter True Value m Mean (SE) Bias RMSE Middle 95%

G23 0.2 100 0.1980 (0.0316) -0.0020 0.0317 (0.1418,0.2570)

200 0.1989 (0.0216) -0.0011 0.0216 (0.1575,0.2448)

400 0.1990 (0.0159) -0.0010 0.0159 (0.1715,0.2331)

G31 0.2 100 0.2026 (0.0330) 0.0026 0.0331 (0.1370,0.2655)

200 0.2018 (0.0241) 0.0018 0.0242 (0.1596,0.2491)

400 0.2016 (0.0179) 0.0016 0.0179 (0.1692,0.2370)

G32 0.2 100 0.1990 (0.0336) -0.0010 0.0336 (0.1365,0.2717)

200 0.2011 (0.0232) 0.0011 0.0232 (0.1583,0.2467)

400 0.2000 (0.0176) -0.0000 0.0176 (0.1674,0.2330)

G33 0.4 100 0.3952 (0.0386) -0.0048 0.0389 (0.3178,0.4662)

200 0.3973 (0.0285) -0.0027 0.0286 (0.3410,0.4471)

400 0.3981 (0.0209) -0.0019 0.0210 (0.3605,0.4394)

ν 0.6 100 0.6254 (0.1686) 0.0254 0.1703 (0.3278,0.9790)

200 0.5992 (0.1128) -0.0008 0.1127 (0.4063,0.8392)

400 0.6014 (0.0777) 0.0014 0.0777 (0.4597,0.7732)

s 0.2 100 0.1992 (0.0114) -0.0008 0.0114 (0.1787,0.2210)

200 0.2004 (0.0078) 0.0004 0.0078 (0.1852,0.2150)

400 0.2001 (0.0055) 0.0001 0.0055 (0.1890,0.2105)

σ2ε 0.3 100 0.2999 (0.0027) -0.0001 0.0027 (0.2947,0.3053)

200 0.2999 (0.0018) -0.0001 0.0018 (0.2964,0.3034)

400 0.3001 (0.0013) 0.0001 0.0013 (0.2974,0.3024)

σ2η 0.25 100 0.2522 (0.0155) 0.0022 0.0156 (0.2227,0.2819)

200 0.2498 (0.0105) -0.0002 0.0105 (0.2283,0.2721)

400 0.2511 (0.0076) 0.0011 0.0077 (0.2354,0.2672)

σ2ω 0.5 100 0.4999 (0.0041) -0.0001 0.0041 (0.4925,0.5074)

200 0.4998 (0.0029) -0.0002 0.0029 (0.4944,0.5053)

400 0.4997 (0.0019) -0.0003 0.0019 (0.4960,0.5032)
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sizes of 100, 200, and 400. Each individual’s simulated observations consisted of thirty re-

gions across sixty timepoints and were generated according to Equation 3.4 and Equation 3.5.

Three covariates and an intercept were included, where X1 ∼ N (26.59, 32.33) represents age,

X2 ∼ N (0, 1) represents standardized IQ scores, and X3 ∼ Bin (0.5) represents gender. These

parameters were derived from the CMU dataset in ABIDE I. For the latent process, the di-

mension was reduced to r = 3, or 10% of the spatial dimension. The elements of the adjacency

matrix were set to exp
(
−0.5× djj ′

)
, where djj ′ is the functional distance between regions j and

j ′ for j = 1, 2, . . . , n and j ′ = 1, 2, . . . , n. Functional distances were also derived from the CMU

dataset.

The performance of the estimating procedure is evaluated using bias, standard error (SE),

root mean squared error (RMSE), and the 0.025 and 0.975 quantiles of the estimates. The

results of the simulation are provided in Table IV. Bias across all parameters are small. As a

result, the RMSE is very close to the SE. As the sample size increases, bias decreases, RMSE

decreases, and the 0.025 and 0.975 quantiles of the estimates are closer to the true value for all

parameters. This simulation study therefore demonstrates the accuracy of the ECM algorithm

for the proposed model.

Additional simulation studies were performed to evaluate the impact of misspecification

of r, the dimension of the first-order latent dynamic model. Data was simulated based on

the specifications described for the previous simulation study for sample sizes of 100 and 200.

However, for estimation, r was underestimated at 2 and overestimated at 4. The results of the

simulation are provided in Table V and Table VI. When r is underestimated, the estimates
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TABLE V UNDERESTIMATING LATENT DIMENSION SIMULATION

Parameter True Value m Mean (SE) Bias RMSE Middle 95%

β0 3.65 100 3.6509 (0.0315) 0.0009 0.0315 (3.5961,3.7127)

200 3.6494 (0.0230) -0.0006 0.0230 (3.6052,3.6948)

β1 0.046 100 0.0460 (0.0011) -0.0000 0.0011 (0.0439,0.0480)

200 0.0460 (0.0008) 0.0000 0.0008 (0.0445,0.0475)

β2 0.904 100 0.9036 (0.0070) -0.0004 0.0070 (0.8901,0.9198)

200 0.9039 (0.0048) -0.0001 0.0048 (0.8934,0.9119)

β3 -2 100 -2.0001 (0.0129) -0.0001 0.0129 (-2.0260,-1.9765)

200 -1.9999 (0.0092) 0.0001 0.0092 (-2.0182,-1.9815)

G11 0.4 100 0.4557 (0.0449) 0.0557 0.0716 (0.3611,0.5372)

200 0.4554 (0.0328) 0.0554 0.0643 (0.3867,0.5164)

G12 0.2 100 0.2664 (0.0351) 0.0664 0.0751 (0.1969,0.3309)

200 0.2653 (0.0238) 0.0653 0.0695 (0.2242,0.3122)

G21 0.2 100 0.2657 (0.0360) 0.0657 0.0749 (0.1983,0.3374)

200 0.2672 (0.0256) 0.0672 0.0719 (0.2183,0.3212)

G22 0.4 100 0.4568 (0.0452) 0.0568 0.0726 (0.3648,0.5421)

200 0.4560 (0.0313) 0.0560 0.0641 (0.3922,0.5140)

ν 0.6 100 1.4888 (0.2887) 0.8888 0.9344 (1.0377,2.1507)

200 1.4779 (0.1868) 0.8779 0.8975 (1.1565,1.8932)

s 0.2 100 0.1544 (0.0095) -0.0456 0.0466 (0.1351,0.1718)

200 0.1543 (0.0063) -0.0457 0.0461 (0.1415,0.1664)

σ2ε 0.3 100 0.2858 (0.0029) -0.0142 0.0145 (0.2796,0.2915)

200 0.2856 (0.0020) -0.0144 0.0145 (0.2819,0.2896)

σ2η 0.25 100 0.2715 (0.0244) 0.0215 0.0325 (0.2277,0.3195)

200 0.2725 (0.0173) 0.0225 0.0284 (0.2407,0.3074)

σ2ω 0.5 100 0.5342 (0.0048) 0.0342 0.0345 (0.5250,0.5432)

200 0.5346 (0.0034) 0.0346 0.0348 (0.5282,0.5410)
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TABLE VI OVERESTIMATING LATENT DIMENSION SIMULATION

Parameter True Value m Mean (SE) Bias RMSE Middle 95%

β0 3.65 100 3.6508 (0.0294) 0.0008 0.0294 (3.5974,3.7081)

200 3.6488 (0.0218) -0.0012 0.0218 (3.6051,3.6909)

β1 0.046 100 0.0460 (0.0010) -0.0000 0.0010 (0.0440,0.0479)

200 0.0460 (0.0008) 0.0000 0.0008 (0.0445,0.0476)

β2 0.904 100 0.9033 (0.0063) -0.0007 0.0063 (0.8914,0.9153)

200 0.9039 (0.0046) -0.0001 0.0046 (0.8947,0.9115)

β3 -2 100 -2.0001 (0.0123) -0.0001 0.0123 (-2.0244,-1.9776)

200 -1.9996 (0.0092) 0.0004 0.0092 (-2.0174,-1.9823)

G11 0.4 100 0.4712 (0.0611) 0.0712 0.0938 (0.3230,0.5702)

200 0.4721 (0.0393) 0.0721 0.0821 (0.3902,0.5420)

G12 0.2 100 0.1850 (0.0452) -0.0150 0.0475 (0.1065,0.2770)

200 0.1802 (0.0293) -0.0198 0.0353 (0.1349,0.2420)

G13 0.2 100 0.1803 (0.0362) -0.0197 0.0412 (0.1193,0.2556)

200 0.1822 (0.0248) -0.0178 0.0305 (0.1390,0.2359)

G14 0 100 0.0002 (0.0328) 0.0002 0.0327 (-0.0594,0.0688)

200 -0.0010 (0.0234) -0.0010 0.0234 (-0.0431,0.0472)

G21 0.2 100 0.1819 (0.0459) -0.0181 0.0493 (0.1059,0.2817)

200 0.1801 (0.0305) -0.0199 0.0364 (0.1288,0.2441)

G22 0.4 100 0.4702 (0.0549) 0.0702 0.0891 (0.3391,0.5632)

200 0.4752 (0.0372) 0.0752 0.0839 (0.3977,0.5377)

G23 0.2 100 0.1807 (0.0358) -0.0193 0.0406 (0.1165,0.2596)

200 0.1803 (0.0239) -0.0197 0.0310 (0.1322,0.2261)

G24 0 100 -0.0023 (0.0329) -0.0023 0.0330 (-0.0628,0.0562)

200 0.0003 (0.0234) 0.0003 0.0234 (-0.0443,0.0458)

G31 0.2 100 0.1758 (0.0398) -0.0242 0.0465 (0.1044,0.2554)
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TABLE VI OVERESTIMATING LATENT DIMENSION SIMULATION (Continued)

Parameter True Value m Mean (SE) Bias RMSE Middle 95%

200 0.1785 (0.0257) -0.0215 0.0335 (0.1260,0.2355)

G32 0.2 100 0.1789 (0.0369) -0.0211 0.0425 (0.1161,0.2593)

200 0.1778 (0.0249) -0.0222 0.0333 (0.1320,0.2271)

G33 0.4 100 0.4793 (0.0439) 0.0793 0.0906 (0.3889,0.5557)

200 0.4766 (0.0321) 0.0766 0.0830 (0.4092,0.5302)

G34 0 100 0.0012 (0.0306) 0.0012 0.0306 (-0.0556,0.0607)

200 -0.0006 (0.0216) -0.0006 0.0216 (-0.0428,0.0394)

G41 0 100 -0.0014 (0.0423) -0.0014 0.0423 (-0.0823,0.0835)

200 -0.0006 (0.0304) -0.0006 0.0303 (-0.0551,0.0561)

G42 0 100 -0.0032 (0.0439) -0.0032 0.0440 (-0.0917,0.0829)

200 5.9e-05 (0.0309) 0.0001 0.0308 (-0.0603,0.0617)

G43 0 100 0.0021 (0.0437) 0.0021 0.0437 (-0.0771,0.0854)

200 0.0002 (0.0298) 0.0002 0.0298 (-0.0611,0.0631)

G44 0 100 -0.0004 (0.0428) -0.0004 0.0428 (-0.0765,0.0819)

200 0.0016 (0.0291) 0.0016 0.0291 (-0.0495,0.0544)

ν 0.6 100 0.6326 (0.1684) 0.0326 0.1713 (0.3714,0.9898)

200 0.6218 (0.1143) 0.0218 0.1162 (0.4271,0.8505)

s 0.2 100 0.1987 (0.0112) -0.0013 0.0113 (0.1762,0.2181)

200 0.1991 (0.0078) -0.0009 0.0078 (0.1842,0.2126)

σ2ε 0.3 100 0.2994 (0.0026) -0.0006 0.0026 (0.2938,0.3041)

200 0.2994 (0.0018) -0.0006 0.0019 (0.2958,0.3027)

σ2η 0.25 100 0.1757 (0.0114) -0.0743 0.0751 (0.1533,0.1978)

200 0.1771 (0.0079) -0.0729 0.0733 (0.1625,0.1933)

σ2ω 0.5 100 0.5005 (0.0040) 0.0005 0.0040 (0.4922,0.5081)

200 0.5007 (0.0029) 0.0007 0.0030 (0.4949,0.5065)
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of β are unbiased. However, the transition matrix G, σ2ω, and σ2η are overestimated while σ2ε

and s are underestimated. The parameter most affected by underestimation of r is ν; the mean

estimate of ν is far from the true value. When r is overestimated, the estimates of β are again

unbiased. σ2ε, σ
2
ω, and s are also unbiased in this scenario. The elements of the transition matrix

introduced by the inclusion of the extra latent variable are correctly estimated to be close to 0.

For the true latent variables, the diagonal elements of the transition matrix G are overestimated

while the off-diagonal estimates are underestimated. Furthermore, σ2η is underestimated, and

the estimate of ν is much closer to the truth but slightly overestimated. Thus, misspecification

caused by overestimating or underestimating r leads to subsets of biased parameters.

In practice, misspecification can be avoided by comparing likelihood values. In an additional

simulation study, 500 datasets were simulated based on the same specifications for a sample size

of 100. Estimation was performed with the correct value of r = 3, r underestimated at 2, and r

overestimated at 4. For every simulation, the likelihood was highest when the latent dimension

r was correctly set to 3. Proper selection of r by comparing likelihood values therefore resolves

the problems introduced by over and under estimation.

4.4.5 Convergence Theorem

We show theoretical convergence in the likelihood for the proposed spatiotemporal model.

We follow the incomplete data likelihood presented by Shumway and Stoffer (2017), where

the likelihood is computed using prediction error. Define prediction error as εit (Ψ) = zit −

E
[
zit|z(t−1)

]
, where
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E
[
zit|z(t−1)

]
= E

[
Xiβ+ KiYit + ξit|z(t−1)

]
(4.40)

= Xiβ+ KiE
[
Yit|z(t−1)

]
= Xiβ+ KiGyt−1

i(t−1).

εit follows a Normal distribution with mean 0 and variance

Σεit (Ψ) = var
[
zit − Xiβ− KiGyt−1

i(t−1)|z(t−1)

]
(4.41)

= var
[
Xiβ+ Ki

(
GtYi(t−1) + ηit

)
+ ξit − Xiβ− KiGyt−1

i(t−1)|z(t−1)

]
= var

[
Kiηit + ξit − KiGyt−1

i(t−1)|z(t−1)

]
= Ki

(
Gvar

[
yt−1
i(t−1)|z(t−1)

]
G ′ + var

[
ηit|z(t−1)

])
K ′i + var

[
ξit|z(t−1)

]
= Ki

(
GPt−1

i(t−1)G
′ + Ση

)
Ki + Σξ.

The likelihood is thus

L (Ψ) = (2π)−1/2
m∏
i=1

T∏
t=1

|Σεit (Ψ) |
−1/2 exp

{
εit (Ψ)

′Σεit (Ψ)
−1 εit (Ψ)

}
. (4.42)

We show that the sequence
{
L
(
Ψ(k)

)}
from the GEM algorithm for the spatiotemporal

model converges to some point L∗ = L (Ψ∗) for some stationary point Ψ∗ ∈ S, where S is the

set of stationary points in Ω.

Lemma 4.4.1. Let Ω be a compact set and L a continuous function in Ω. Let Ψo ∈ Ω,

such that L (Ψo) > −∞. Define ΩΨo = {Ψ ∈Ω : L (Ψ) ≥ L (Ψo)}. Then, ΩΨo is a closed and

bounded set and, hence, is a compact set.
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Proof: Note that ΩΨo is a subset of Ω i.e. ΩΨo ⊆ Ω. As Ω is bounded, hence

ΩΨo is also bounded.

Let
{
Ψd
}

be sequence in ΩΨo and Ψd → Ψ
d
. We want to show that Ψ

d ∈ΩΨo. As

Ψd ∈ ΩΨo and ΩΨo ⊆ Ω, hence, Ψd ∈ Ω. Thus, Ψ
d ∈ Ω, as Ω is compact. For

Ψ
d
, either (i) L(Ψ

d
) ≥ L (Ψo) or (ii) L(Ψ

d
) < L (Ψo). (i) implies that Ψ

d ∈ΩΨo. If

(ii) holds, then L(Ψ
d
) < L (Ψo) ≤ L(Ψd), ∀ Ψd ∈ Ψo. Let δ = L (Ψo)−L(Ψ

d
). Thus,∣∣∣L(Ψd) − L(Ψd)∣∣∣ > δ,∀ Ψd ∈ΩΨo, which contradicts the fact that L is a continuous

function and Ψd → Ψ
d
. This means (ii) cannot hold. Thus, Ψ

d ∈ ΩΨo, which

means ΩΨo is closed. Hence, ΩΨo is compact.

The combination of Result 4.2.1 and Lemma 4.4.1 yield the following Lemma:

Lemma 4.4.2. Assume that Ω is a compact d-dimensional subset of Rd. L (Ψ) is continuous

in Ω and differentiable in the interior of Ω and ΩΨo = {Ψ ∈Ω : L (Ψ) ≥ L (Ψo)} is a compact

set. Then any sequence
{
L
(
Ψ(k)

)}
is bounded above for any vector of initial values Ψ(0) ∈ Ω

such that L
(
Ψ(0)

)
> −∞ and, hence, the sequence converges to some point L∗

Proof: The regularity conditions of Result 4.2.1 are satisfied. The convergence of{
L
(
Ψ(k)

)}
to L∗ follows.

By Lemma 4.4.2, Result 4.2.2 applies to our GEM estimating procedure for the proposed

spatiotemporal model, yielding the following theorem:
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Theorem 4.4.1. The sequence
{
L
(
Ψ(k)

)}
from the ECM algorithm for the spatiotemporal

model converges to some point L∗ = L (Ψ∗) for some stationary point Ψ∗ ∈ S, where S is the

set of stationary points in Ω.

Proof: Lemma 4.4.2 satisfies the convergence to some point L∗. Q
(
Ψ

(k)
1 ,Ψ

(k)
2

)
≥

Q
(
Ψ

(k)
1 ,Ψ

(k−1)
2

)
≥ Q

(
Ψ

(k−1)
1 ,Ψ

(k−1)
2

)
, satisfying Definition 4.2.1 of a GEM algo-

rithm. By Result 4.2.2, the convergence of
{
L
(
Ψ(k)

)}
to L∗ = L (Ψ∗) for some

stationary point Ψ∗ ∈ S, where S is the set of stationary points in Ω, follows.

4.5 Conclusion

The ECM algorithm is a flexible estimating procedure that utilizes the well known principles

of the EM algorithm. Estimation of parameters for the spatiotemporal model is performed via

the ECM algorithm to account for the missing latent variable and optimization of parameters

without closed-form solutions. An algorithm for selecting initial values is also proposed to

increase the likelihood that the estimating procedure converges to the global maximum. Our

simulation study shows that estimates of the ECM algorithm for the spatiotemporal model

are unbiased with decreasing RMSE as the sample size increases. Furthermore, we show that

model selection for specifying r can be performed using the likelihood. Estimates for the model

parameters are therefore reliable for use in analysis of functional connectivity.



CHAPTER 5

ESTIMATING FUNCTIONAL CONNECTIVITY

Analysis of functional connectivity is extremely important for detecting disrupted connec-

tions in individuals affected with a neurological condition. A deeper understanding of the

disease specific abnormalities in communication between brain regions may lead to early diag-

nosis and targeted treatment interventions (Bhaumik et al., 2018a). The simplest approach to

measuring functional connectivity is by calculating pairwise correlations between regions of in-

terest. However, inferences made using Fisher’s z-transformation on sample correlations are not

valid due to the temporal correlation of observations within a region. Alternative approaches to

estimating functional connectivity include multivariate methods such as principal components

analysis and independent components analysis. These methodologies can help identify connec-

tivity patterns without having to make any assumptions regarding functional form (Lindquist,

2008). However, it is not clear how the false positive rate is controlled for multiple comparisons

using these methods (Bhaumik et al., 2018a).

In order to make accurate inferences about correlations, the denoised, temporally correlated

estimated outcomes within a region from the spatiotemporal model are decorrelated. From

the uncorrelated time series, estimates of the spatial correlations are derived. Through this

transformation, application of Fisher’s z-transformation and the associated inference procedures

are statistically valid. For n regions under study, there are L = n (n− 1) /2 simultaneous tests

of functional connections. We control the false discovery rate to address the issue of multiple

86
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comparisons introduced by the large number of pairwise correlations under study. Efron’s local

false discovery rate is selected as the most suitable choice for our data.

5.1 Estimating Spatial Correlation

To estimate functional connectivity, a separate spatiotemporal model is fit for each group.

Let g denote the group of individual i, where g = 0 for controls and g = 1 for cases. Fur-

thermore, let mg denote the sample size for group g. For the jth region, j = 1, . . . , n, at time

t, t = 1, . . . , T in individual i, i = 1, . . . ,mg, the estimated outcome from the spatiotemporal

model is

ẑgijt = Xgijβ̂g + Kgijy
t−1
git , (5.1)

where Xgij is the p-dimensional row vector from the jth row of the matrix Xi and Kgij is the

r-dimensional row vector from the jth row of the matrix Kgi. yt−1git = Ĝgy
t−1
gi(t−1), where yt−1

gi(t−1)

is the Kalman filter given the final parameter estimates. Then, ẑgij = (ẑgij1, ẑgij2, . . . , ẑgijT )
′ is

the T × 1 vector containing all estimated fMRI measurements for region j across time. If the

elements of ẑgij are uncorrelated, inferences using the Pearson correlation can be appropriately

made.

Uncorrelation of ẑgij is achieved by whitening. Whitening, also referred to as sphering, is

a linear transformation of a T -dimensional vector into a new uncorrelated vector of the same

dimension. Let Σ denote the positive-definite T × T covariance matrix of the dependent vector

z. The T -dimensional random vector
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z∗ = (z∗1, . . . , z
∗
n)
′ = Wz (5.2)

has variance-covariance matrix equal to the identity matrix IT . The T × T matrix W is the

whitening matrix. The resulting transformation produces orthogonality among random vari-

ables, which simplifies multivariate data analysis computationally and statistically (Kessy et

al., 2018).

The transformation requires a suitable choice for W. For a given Σ, there are an infinite

number of whitening matrices that produce orthogonal but different sphered random variables.

Common approaches to selecting W include zero-phase component analysis, principal compo-

nent analysis, and the Cholesky decomposition. The Choleksy factorization is the most suitable

for decorrelating rsfMRI time series data as it implicitly assumes an ordering of the variables.

The Cholesky factorization of the inverse of the covariance matrix is

Σ−1 = LL ′, (5.3)

where L is a unique lower triangular T × T matrix with positive diagonal values. This yields a

whitening matrix of W = L ′ (Kessy et al., 2018).

To uncorrelate the time series, an estimate of temporal covariance is needed. Let ẑgit =

(ẑgi1t, ẑgi2t, . . . , ẑgint)
′ denote the n × 1 vector of observations across all regions at time t for

individual i in group g. Furthermore, denote the covariance between ẑgit and ẑgit ′ for t =

1, 2, . . . , T and t ′ = 1, 2, . . . , T as cov
(
ẑgit, ẑgit ′

)
= σẑgitt ′ . The T × T temporal covariance

matrix is
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ΣẑgiT =



σẑgi11 σẑgi12 σẑgi13 . . . σẑgi1T

σẑgi21 σẑgi22 σẑgi23 . . . σẑgi2T

...
...

...
. . .

...

σẑgiT1 σẑgiT2 σẑgiT3 . . . σẑgiTT


.

Let L ′ΣẑgiT
denote the unique lower triangular matrix from the Cholesky decomposition of Σ−1

ẑgiT
.

The temporally uncorrelated time series for region j of the ith subject nested within the gth

group is

z∗gij = L ′ΣẑgiT
ẑgij. (5.4)

An estimate of spatial covariance is derived from this uncorrelated time series. Let σz∗
gijj ′

denote cov
(
z∗gij, z

∗
gij ′

)
for j = 1, 2, . . . , n and j ′ = 1, 2, . . . , n for individual i in group g. The

n× n spatial covariance matrix is

Σz∗gin
=



σz∗gi11 σz∗gi12 σz∗gi13 . . . σz∗gi1n

σz∗gi21 σz∗gi22 σz∗gi23 . . . σz∗gi2n

...
...

...
. . .

...

σz∗gin1
σz∗gin2

σz∗gin3
. . . σz∗ginn


.

The jj ′ element of the corresponding correlation matrix derived from Σz∗gin
is the estimate of

functional connectivity for regions j and j ′. We denote the estimated correlation matrix of the
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ith subject nested within the gth group by Rig, where Rig =
((

corr
(
z∗gij, z

∗
gij ′

)))
. Rig is a

subject and group specific correlation matrix based on temporally uncorrelated but spatially

correlated transformed variables.

5.2 Fisher’s z-Transformation

A transformation of the sample correlation is necessary to make asymptotic inference about

the value of a population correlation coefficient. R. A. Fisher described this transformation

in his book “Statistical Methods for Research Workers” published in 1925. Let r denote the

sample correlation coefficient calculated from T pairs of independent observations. When the

transformation

z =
1

2
log

(
1+ r

1− r

)
(5.5)

is applied to the sample correlation coefficient, the sampling distribution of the resulting variable

z is approximately normal. This is commonly referred to as Fisher’s z-transformation. The

standard error of z is

σz =
1− ρ2√
T − 1

, (5.6)

where ρ denotes the true correlation coefficient. ρ is unknown in practice and replaced with its

estimate r. For large samples, the standard error of z is

σ̂z =
1

T − 3
. (5.7)
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By applying this transformation, hypotheses about the population correlation coefficient ρ can

be performed using large-sample inferential procedures for the normal distribution (Fisher,

1925).

5.3 Hypothesis Testing

A z-test is used for analysis of functional connectivity. For all regions j = 1, 2, . . . , n,

j ′ = 1, 2, . . . , n, j 6= j ′, let ρ1jj ′ and ρ0jj ′ denote the population correlation coefficient of regions

j and j ′ in the disease and control groups, respectively. The hypothesis test for equality of the

correlation coefficients is

H0jj ′ : ρ1jj ′ = ρ0jj ′ , (5.8)

HAjj ′ : ρ1jj ′ 6= ρ0jj ′ .

Let m1 denote the number of individuals in the case group and m0 the number in the control

group. Then, z1jj ′ =
{
z11jj ′ , z12jj ′ , . . . , z1m1jj ′

}
and z0jj ′ =

{
z01jj ′ , z02jj ′ , . . . , z0m0jj ′

}
denote the

sets of Fisher’s z-transformations of the sample correlations r1jj ′ =
{
r11jj ′ , r12jj ′ , . . . , r1m1jj ′

}
and

r0jj ′ =
{
r01jj ′ , r02jj ′ , . . . , r0m0jj ′

}
, respectively. Let z̄1jj ′ and z̄0jj ′ denote the mean of z1jj ′ and

z0jj ′ , respectively. Using this transformation, testing procedures for the normal distribution can

be used. The z-test statistic is given by

zjj ′ =
z̄1jj ′ − z̄0jj ′√
1

m1(T−3)
+ 1
m0(T−3)

(5.9)

for all j = 1, 2, . . . , n and j ′ = 1, 2, . . . , n, j 6= j ′.
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5.4 False Discovery Rate

In a study where multiple links are tested for disrupted connectivities, multiple comparison

issues arise. The most common correction procedures for multiple comparisons control the

familywise error rate, or the probability of committing any type I error. As an alternative

method, Benjamini and Hochberg (1995) suggested controlling the “expected proportion of

errors among rejected hypotheses,” which they call the false discovery rate (FDR). Among the

set of null hypotheses rejected, let V denote the number of hypotheses that were truly null and

S the number of hypotheses that are truly not null. The proportion of hypotheses that were

rejected but are truly null is denoted Q. The FDR is the expectation of Q, or

E [Q] = E

[
V

V + S

]
. (5.10)

If V + S = 0, then Q is set to 0. Let P(1), P(2), . . . , P(L) represent the ordered p-values corre-

sponding to hypotheses H0(1), H0(2), . . . , H0(L). To control the FDR at level q∗, let k be the

largest i for which

P(i) ≤
i

L
q∗. (5.11)

The set of hypotheses to reject include all H(i), i ≤ k (Benjamini and Hochberg, 1995).

5.5 Local False Discovery Rate

Benjamini and Hochberg’s original FDR procedure requires independent test statistics to

ensure control of the FDR. Several improvements to the FDR have been proposed since its

introduction. In a comparison of the adaptive Benjamini and Hochberg procedure, Cai and
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Sun’s oracle and adaptive compound decision procedure, and Efron’s local FDR, Bhaumik

et al. (2018) identified Efron’s local FDR as “the most suitable for neuroconnectivity stud-

ies” (Bhaumik et al., 2018b). Moreover, it has also been recognized that multiple hypotheses

often “share a natural underlying group, hierarchical, nested, or network structure of depen-

dence” that should be “utilized in performing multiple comparisons” (Sankaran and Holmes,

2014). In many applications, prior information is available for formation of groups from the set

of hypotheses being tested. Efron notes that ignoring this information and applying a single

FDR procedure to the entire set of hypotheses may lead to conservative or liberal results within

a subgroup (Efron, 2008).

Currently there is not a suitable approach that incorporates group information for multiple

hypothesis testing for the data used in this dissertation. In a study with a large sample size

and large number of time points observed in the rsfMRI time series, Equation 5.9 yields large

z-test statistics and therefore small p-values. Methods of controlling the FDR that rely on

p-values therefore do not identify differences in functional connectivity that are both clinically

and statistically significant. Liu, Sarkar, and Zhao (2016) and Efron (2008) have proposed

group methods based on Efron’s local FDR. However, select equations in the approach of Liu,

Sarkar, and Zhao (2016) cannot be applied when there is a large number of links in a group (Liu

et al., 2016). Furthermore, Efron notes that his grouped approach is statistically valid when

small groups can be formed (Efron, 2008). Since small subgroups of tests cannot be created for

our data, Efron’s local FDR approach is the most suitable for the proposed procedure at this

time.
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Unlike the original FDR, which relies on p-values and is thus based on traditional frequentist

hypothesis testing approaches, the local FDR is based on an empirical Bayes approach. The

number of simultaneous tests must be “at least in the hundreds” to implement the procedure.

Let z1, z2, . . . , zL be the set of test statistics corresponding to the null hypotheses H01, H02, . . .,

H0L. The test statistics need not be independent. The L tests can be divided into two classes

of null or nonnull, each occurring with prior probabilities p0 and p1 = 1− p0, respectively. Let

f0 (z) and f1 (z) denote the densities of the null and nonnull test statistics, respectively. f1 (z)

does not need to be specified; however, it assumed to be longer-tailed than f0 (z). The mixture

density of the test statistics is

f (z) = p0f0 (z) + p1f1 (z) . (5.12)

Then, the Bayes posterior probability that a hypothesis is null given test statistic z is

qloc (z) =
p0f0 (z)

f (z)
. (5.13)

This posterior probability is the local FDR. For a preselected threshold q∗, the null hypothesis

is rejected if qloc (z) < q
∗ (Efron, 2007).

Efron notes that “the literature has not reached consensus on a standard choice of q...the

equivalent of 0.05 for single tests” (Efron, 2007). However, the Bayes factor can be used to

offer some insight into selecting a cutoff value of q for determining significance. For the two

competing hypotheses of nonnull vs. null, the posterior odds ratio in favor of the nonnull

hypothesis is related to the prior odds ratio by
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Pr (nonnull|z)

Pr (null|z)
=

Pr (z|nonnull)

Pr (z|null)
× Pr (nonnull)

Pr (null)
(5.14)

= K× Pr (nonnull)

Pr (null)
.

K is the Bayes factor and quantifies the relative evidence of the data z in favor of the nonnull

compared to the null. When a large number of tests are being conducted, it is usually assumed

that a large proportion are null, such that p0 ≥ 0.9. If a cutoff value of 0.2 is used, then

0.8

0.2
= K× 0.1

0.9
,

yielding a Bayes factor of 36 in favor of the nonnull versus the null. A q-value less than 0.2 is

therefore recommended as a cutoff for statistical significance (Efron, 2007).

5.5.1 Mixture Density Estimation

Calculation of the local FDR requires estimates of the mixture density f (z), null density

f0 (z), and prior probability of a null test-statistic p0. Lindsay’s method is used to estimate the

mixture density f (z). This method reconstructs density estimation problems in terms of Poisson

regression models, resulting in efficient and flexible parametric density estimation (Efron, 2007).

Suppose the L z-values are binned, yielding bin counts s1, s2, . . . , sK, where
∑K
k=1 sk = L. Let

z(k) denote the the midpoint value of the kth bin. It is assumed that the counts are independent

Poisson, such that

sk ∼ Po (µk (β)) , (5.15)

where
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µk (β) = cβ exp

 p∑
j=1

βjz
j
(k)

 . (5.16)

For a given p, µk (β) is fit using maximum likelihood estimation. The estimate of f (z) is

f̂ (z) = ĉβ exp

 p∑
j=1

β̂jz
j

 , (5.17)

where ĉβ is the constant that makes f̂ (z) integrate to one (Efron and Tibshirani, 1996; Efron,

2007).

5.5.2 Null Density Estimation

The null density f0 (z) plays an important role in the calculation of the local FDR. A

null distribution is often assumed when conducting a statistical test. However, when a large

number of hypothesis tests are conducted simultaneously, there is the possibility of detecting

deviations of the distribution of test statistics from the theoretical null. This may be due to

failed assumptions, unobserved covariates, and correlations between multivariate outcomes. In

cases where there is clear evidence against the theoretical null, an empirical null distribution

can be estimated (Efron, 2007).

When the theoretical null density is assumed to be standard normal, the empirical null

distribution is also assumed to be normal. However, instead of specifying a known mean and

variance, it is assumed that

f0 (z) ∼ N
(
δ0, σ

2
0

)
. (5.18)
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δ0, σ
2
0 and p0 are estimated from the distribution of test statistics near z = 0 by maximum

likelihood estimation of a truncated normal model. Let

f1 (z) = 0 for z ∈ [−x0, x0] , (5.19)

implying that the nonnull density is supported outside the interval [−x0, x0]. Furthermore,

I0 = {l : zl ∈ [−x0, x0]}, N0 equals the number of zl ∈ [−x0, x0], z0 = {zl, l ∈ I0},

H0 (δ0, σ0) = Φ

(
x0 − δ0
σ0

)
−Φ

(
−
x0 − δ0
σ0

)
, (5.20)

and

ϕ (z) =
1√
2πσ20

exp

{
−
1

2

(
z− δ0
σ0

)2}
. (5.21)

The probability that zl ∈ [−x0, x0] is

θ = p0 ×H0 (δ0, σ0) . (5.22)

(δ0, σ0, θ) are estimated by maximum likelihood. The likelihood function of the observed data

(N, z0) is

f (N, z0) =
[
θN0 (1− θ)N−N0

]∏
I0

ϕδ0,σ0 (zi)

H0 (δ0, σ0)
. (5.23)

Let
(
δ̂0, σ̂0, θ̂

)
denote the maximum likelihood estimates of (δ0, σ0, θ). The maximum likelihood

estimate of the proportion of null test statistics is
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p̂0 =
θ̂

H0
(
δ̂0, σ̂0

) . (5.24)

Then,

q (z) =
p̂0f̂0 (z)

f̂ (z)
. (5.25)

is the estimated q-value for a given z-statistic z (Efron, 2007).

5.6 Conclusion

Analysis of functional connectivity is fundamental for a deeper understanding of neurological

conditions. Although principal components analysis and independent components analysis are

optional statistical tools for understanding connectivity patterns, inference based on the sample

correlation is simple, well understood, and allows for control of the false discovery rate. In

our proposed approach, the spatiotemporal model introduced in Chapters 3 and 4 is used to

denoise the data. The denoised data within a region is subsequently decorrelated. Functional

connectivity is thus based on temporally uncorrelated but spatially correlated transformed

variables. This enables valid implementation of Fisher’s z-transformation to sample correlations

with the goal of identifying disrupted connectivity patterns. This method is applicable to a wide

range of neurological conditions and may lead to early diagnosis and targeted treatment.



CHAPTER 6

ANALYSIS OF FUNCTIONAL CONNECTIVITY IN AUTISM

SPECTRUM DISORDER

Analysis of functional connectivity in ASD is crucial for our understanding of the neurode-

velopmental disorder. A deeper understanding of the disease will ultimately lead to the devel-

opment of more objective diagnosis criteria and targeted treatment options. In this chapter,

subjects from the ABIDE I dataset described in Chapter 2 are used to illustrate the proposed

methodologies. A separate spatiotemporal model is fit for the ASD and control groups, and

the within-region time series of the estimated outcome is decorrelated. Spatial correlations are

estimated from the temporally uncorrelated observations. This allows appropriate application

of Fisher’s z-transformation for statistical inference. The fMRI data consists of 110 brain re-

gions, yielding (110× 109) /2 = 5, 995 links to be analyzed. Descriptions of the brain regions

are provided in Appendix A.

6.1 Analysis of Autism Brain Imaging Data Exchange

As described in Section 2.2, the ABIDE I dataset consists of 539 ASD subjects and 573

controls from twenty datasets collected from seventeen sites. The subjects are scanned at a wide

range of ages, with a minimum of 6.47 and a maximum of 64.00. This analysis is restricted to

individuals between the ages of seven and fourteen due to the need for better characterization

of ASD in children and the practical implications of understanding the condition at a younger

99
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Figure 7: Boxplots of age at scan and FIQ by dataset for analysis population.

age. Children from ABIDE I sites with at least ten subjects in this age range and more than

140 fMRI time points observed per region are included in this analysis. Although the “Levuen

1” dataset satisfies these criteria, the phenotypic dataset does not include full IQ scores. It was

therefore excluded from the sample population.

Table VII and Table VIII describe the typically developing controls and ASD subjects

in the analysis population, respectively. This analysis consists of 162 ASD subjects and 167

controls from eight ABIDE I sites. Males make up the vast majority of the sample; 83.3% of

ASD subjects and 74.9% of controls are male. Boxplots of age at scan and full IQ are provided

in Figure 7. Although the population has been restricted to individuals between seven and
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TABLE VII ABIDE I CONTROL SAMPLE DESCRIPTIVE STATISTICS

Site N Female, Male, Age, Full IQ,

N (%) N (%) Mean (SD) Mean (SD)

1.KKI 31 9 (29.0) 22 (71.0) 10.2 (1.3) 113.0 (9.5)

2.NYU 47 13 (27.7) 34 (72.3) 10.7 (1.9) 114.6 (14.2)

3.PITT 8 2 (25.0) 6 (75.0) 12.5 (1.4) 107.4 (10.7)

4.SDSU 10 4 (40.0) 6 (60.0) 12.6 (1.5) 104.6 (10.2)

5.STANFORD 20 4 (20.0) 16 (80.0) 10.0 (1.6) 112.1 (15.4)

6.TRINITY 6 0 (0.0) 6 (100.0) 12.8 (0.6) 108.2 (16.3)

7.UM 1 27 6 (22.2) 21 (77.8) 11.2 (1.5) 105.4 (10.2)

8.YALE 18 4 (22.2) 14 (77.8) 11.1 (2.0) 109.1 (16.2)

TOTAL 167 42 (25.1) 125 (74.9) 10.9 (1.8) 110.7 (13.2)

TABLE VIII ABIDE I ASD SAMPLE DESCRIPTIVE STATISTICS

Site N Female, Male, Age, Full IQ,

N (%) N (%) Mean (SD) Mean (SD)

1.KKI 17 3 (17.6) 14 (82.4) 10.3 (1.5) 97.1 (15.1)

2.NYU 49 4 (8.2) 45 (91.8) 10.3 (1.9) 108.6 (18.0)

3.PITT 10 4 (40.0) 6 (60.0) 12.4 (1.3) 110.0 (13.3)

4.SDSU 6 1 (16.7) 5 (83.3) 13.0 (0.8) 104.8 (14.4)

5.STANFORD 20 4 (20.0) 16 (80.0) 10.0 (1.6) 112.5 (17.8)

6.TRINITY 6 0 (0.0) 6 (100.0) 13.3 (0.8) 104.0 (10.9)

7.UM 1 37 6 (16.2) 31 (83.8) 11.4 (1.4) 100.0 (17.7)

8.YALE 17 5 (29.4) 12 (70.6) 11.2 (1.9) 96.4 (18.7)

TOTAL 162 27 (16.7) 135 (83.3) 10.9 (1.8) 104.4 (17.7)
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fourteen, between-site variability in age still exists. Full IQ scores exhibit substantial within-

site variability.

6.2 Model Specifications

As discussed in Chapter 3, several data-specific specifications for the spatiotemporal model

must be made. This includes identifying the appropriate order for the temporal process, adja-

cency matrix, and dimension of the latent factor dynamic model, r.

6.2.1 Temporal Process

The spatiotemporal model developed for rsfMRI data contains a first-order autoregressive

model for the temporal process. A first-order model was identified from the results of the

temporal autocorrelation function of rsfMRI data for the analysis population. The temporal

autocorrelation plots of nine regions are provided in Figure 8. For each of the regions, the

lag-one correlation is high, indicating that the observed data at time t is highly dependent

on the observation at time t − 1. However, for lags greater than one, the correlation between

observations is small. A first-order model was therefore identified as the most appropriate for

this dataset.

6.2.2 Adjacency Matrix

As described in Section 3.2.1, we derive the dimension reducing matrix Ki from the Moran

operator of Xi. The operator requires an adjacency matrix. The approach described in Sec-

tion 3.2.1.1 is used. For each group, nineteen bins were created between the maximum and

minimum functional distance. Within each bin, the mean of the estimated semivariogram was

taken and subtracted from one. Among the candidate spatial weighting function, the residuals
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Figure 8: Temporal autocorrelation functions for ABIDE analysis.
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Figure 9: Empirical and estimated spatial weighting functions.

were minimized for cases and controls with the double-power distance weights function seen

in Figure 4. The double-power distance weights function is given as (1− dp)p, where d is the

distance and p is a fitted parameter. We use nonlinear regression on the double-power weights

function to estimate p for each group. Plots with estimated and fitted spatial weighting func-

tions by group are provided in Figure 9. Inspecting these plots, we find a similar pattern for

both ASD and controls.

6.2.3 Reduced Dimension

As described in Section 3.2.1, a lower dimension r is selected from the SVD of the Moran

operator of X. Plots of the spatial variability explained by reduced dimensions are provided

in Figure 10. For both ASD and controls, drastic dimension reduction is achieved while explain-
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Figure 10: SVD of Moran operator for selection of r.

ing a larger percent of spatial variability. For both groups, the likelihood ratio test rejected the

null model of 65% total spatial variability in favor of 70%, but failed to reject the null model

of 70% total spatial variability versus 75%. Thus, we use spatiotemporal models with 70%

total variance explained, with reduced dimensions r = 14 and r = 13 for ASD and controls,

respectively.

6.3 Results

We fit separate spatiotemporal models as described in Chapter 3 and Chapter 4 for ASD

subjects and healthy controls. Analysis of functional connectivity as described in Chapter 5 is

subsequently performed.
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6.3.1 Spatiotemporal Model Estimates

Age at scan (X1), FIQ (X2), and sex (X3) were included as covariates. For ASD, the

estimated parameters are β̂1 = (0.048,−0.005,−0.012,−0.006) ′, σ̂2ε1 = 277.997, σ̂
2
ω1 = 160.635,

σ̂2η1 = 1002.943, ν̂1 = 1.517, ŝ1 = 0.036, and 14× 14 matrix Ĝ1 equals



0.766 −1e − 5 0.051 0.128 −0.017 −0.212 −0.170 −0.234 −0.004 −0.286 0.034 −0.197 0.434 −0.357

−0.024 0.813 −0.055 −0.027 −0.051 0.119 0.122 0.061 −0.149 0.393 0.003 0.305 −0.275 0.277

0.023 0.011 0.749 0.030 −0.031 −0.077 −0.054 0.008 0.062 −0.208 −0.026 −0.026 0.009 −0.031

−0.013 −0.011 0.016 0.758 0.040 −0.038 −0.021 1e − 4 0.014 −0.036 −0.030 −0.071 0.073 −0.062

0.009 0.027 0.008 −0.023 0.743 −0.017 −0.001 −0.024 −0.069 0.006 −0.032 0.053 0.138 −0.062

0.030 −0.009 0.041 0.044 0.007 0.677 0.015 −0.038 −0.047 −0.059 −0.021 −0.002 0.157 −0.067

0.038 0.004 −0.004 0.016 0.019 −0.015 0.697 0.020 −0.017 0.028 0.014 0.059 0.021 −0.018

0.047 0.006 0.013 −0.008 −0.049 −0.029 −0.004 0.693 0.002 −0.023 −0.015 −0.007 −0.027 0.058

0.001 0.031 0.009 −0.007 0.018 0.018 0.050 0.020 0.662 0.010 −0.006 0.044 −0.012 0.015

−4e − 5 −0.047 0.049 −0.003 0.014 0.009 −0.043 0.022 0.040 0.647 −0.028 −0.042 0.002 0.003

−0.011 0.022 0.032 0.002 −0.003 0.004 0.003 0.028 −0.013 0.030 0.656 0.030 0.001 0.019

0.020 −0.033 0.002 0.016 0.003 −0.019 −0.021 −0.013 −0.017 −0.032 −0.023 0.597 0.050 −0.023

−0.052 0.026 −0.017 −0.032 −0.047 0.012 0.019 0.010 −0.005 0.023 −0.027 −0.034 0.595 0.061

0.026 −0.036 −0.010 0.022 0.001 −0.034 0.024 −0.034 0.008 −0.070 −0.008 −0.060 0.044 0.601



.

For controls, the estimated parameters are β̂0 = (−0.017, 0.001, 1.5e− 4, 0.016) ′, σ̂2ε0 = 166.287,

σ̂2ω0 = 49.93, σ̂
2
η0 = 479.548, ν̂0 = 0.837, ŝ0 = 0.038, and 13× 13 matrix Ĝ0 equals



0.805 0.094 −0.028 −0.177 −0.032 −0.197 −0.065 −0.139 −0.719 0.214 −0.142 0.142 1.179

−0.014 0.816 −0.073 −0.223 0.232 −0.002 −0.117 0.227 −0.312 −0.073 0.441 −0.699 0.760

−0.009 0.017 0.762 0.017 0.009 0.071 −0.036 0.052 0.056 −0.150 0.187 −0.231 −0.136

0.001 0.026 −0.024 0.730 0.034 0.011 −0.007 0.037 0.050 −0.001 0.014 −0.008 −0.021

0.033 −0.057 0.038 3.8e − 4 0.704 0.081 0.036 −0.027 0.089 −0.039 0.069 0.037 −0.231

0.010 −0.003 −0.027 −0.001 0.016 0.744 0.014 0.029 0.083 −0.010 0.039 −0.094 −0.137

0.009 −0.019 0.012 0.009 −0.018 0.028 0.741 −0.018 0.054 0.006 −0.043 0.161 −0.105

0.016 −0.011 0.012 −0.024 −0.037 −0.028 0.027 0.674 −0.103 0.041 −0.055 0.105 0.191

0.040 0.009 −0.029 −0.029 −0.006 −0.050 −0.018 0.009 0.626 0.030 −0.005 −0.008 0.133

−0.008 −0.013 0.036 0.016 0.009 0.032 0.010 −0.028 0.039 0.650 0.002 0.039 −0.144

0.002 −0.028 −0.036 0.002 −0.013 −0.016 0.009 −0.022 −0.018 0.029 0.644 −0.024 0.024

−0.017 0.042 0.035 −0.008 0.017 0.034 −0.031 0.034 0.008 −0.028 0.066 0.555 0.010

−0.062 −0.058 −0.008 0.035 0.002 0.005 0.023 −0.015 0.107 0.002 −0.033 0.061 0.510



.
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There is more variability in rsfMRI measurements in ASD children relative to controls, as

indicated by higher values of σ̂2ε, σ̂
2
ω, and σ̂2η. This is consistent with the current understanding

of ASD as a heterogeneous condition across patients. Plots of the estimated Bessel functions are

provided in Figure 11. This function explains the remaining 30% of variability not incorporated

into the second level of the three-level hierarchical model via spectral decomposition of the

Moran operator. The estimated range parameters s are almost equal between the two groups.

However, the lower estimate of ν̂0 compared to ν̂1 yields more negative correlation in controls.

The transition matrix Ĝ1 for the ASD group indicates dependencies of the first two latent

variables on several latent variables from the previous time point. The remaining twelve latent

variables show within-variable dependencies only from the previous time. In controls, the

transition matrix Ĝ0 indicates dependencies of the first three latent variables on several latent

variables from the previous time point. Similarly to ASD subjects, the remaining variables only

show within-variable dependencies.

6.3.2 Functional Connectivity

The time series of the estimated fMRI signal within each subject were decorrelated. We

used the uncorrelated time series to calculate pairwise spatial correlations, and Fisher’s z-

transformation was performed on subject specific correlations. Analysis of functional connec-

tivity was performed on the difference in means of the transformed scores. Using a local FDR

level of 0.1, thirty-nine disrupted hypoconnected links were identified in ASD subjects compared

to controls.
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Figure 11: Estimated Bessel functions.

Disrupted connections are provided in Table IX and a network hub plot is provided in Fig-

ure 12. The brain region associated with each number is provided in Appendix A. As discussed

in Section 2.1, the DMN has been consistently identified as a marker of ASD when analyz-

ing fMRI data. We identified brain regions in this study as part of the DMN as defined by

Andrews-Hanna and colleagues (Andrews-Hanna et al., 2014). The numeric value in the DMN

column in Table IX corresponds to the number of regions within the link that are part of the

DMN. Fourteen (36%) links involve at least one region in the DMN.

The areas of the brain that are involved in the most disrupted connections include the left

hemisphere and the temporal lobe. Out of the thirty-nine disruptions, thirty-eight (97%) in-

volve the left hemisphere. More specifically, seventeen (44%) are within the left hemisphere and
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TABLE IX SIGNIFICANT LINKS AT FDR LEVEL 0.1

Region 1 Region 2 DMNa

Left Frontal Medial Cortex Right Middle Temporal Gyrus; posterior division 2

Left Planum Polare Left Temporal Fusiform Cortex; anterior division 0

Left Inferior Temporal Gyrus; posterior division Left Inferior Temporal Gyrus; anterior division 0

Left Temporal Fusiform Cortex; anterior division Right Superior Temporal Gyrus; posterior division 1

Left Frontal Medial Cortex Right Middle Temporal Gyrus; anterior division 2

Left Subcallosal Cortex Left Frontal Pole 0

Left Inferior Temporal Gyrus; posterior division Left Middle Temporal Gyrus; anterior division 1

Left Angular Gyrus Left Inferior Frontal Gyrus; pars triangularis 2

Left Temporal Occipital Fusiform Cortex Right Temporal Fusiform Cortex; posterior division 0

Right Planum Temporale Left Parietal Operculum Cortex 0

Left Temporal Fusiform Cortex; anterior division Left Superior Temporal Gyrus; anterior division 0

Right Middle Temporal Gyrus; posterior division Left Frontal Pole 1

Left Supracalcarine Cortex Left Central Opercular Cortex 0

Right Planum Temporale Left Central Opercular Cortex 0

Right Frontal Orbital Cortex Left Frontal Pole 0

Left Temporal Pole Left Inferior Frontal Gyrus; pars triangularis 1

Left Parietal Operculum Cortex Right Central Opercular Cortex 0

Left Inferior Temporal Gyrus; temporooccipital part Right Inferior Temporal Gyrus; posterior division 0

Left Cingulate Gyrus; anterior division Left Frontal Pole 1

Left Juxtapositional Lobule Cortex Left Frontal Pole 0

Left Occipital Fusiform Gyrus Left Lingual Gyrus 0

Left Temporal Fusiform Cortex; anterior division Left Superior Temporal Gyrus; posterior division 1

Left Inferior Temporal Gyrus; anterior division Right Middle Temporal Gyrus; posterior division 1

Right Temporal Pole Left Frontal Pole 0

Right Temporal Fusiform Cortex; anterior division Right Inferior Temporal Gyrus; posterior division 0

Left Planum Temporale Right Planum Temporale 0

Left Subcallosal Cortex Right Temporal Pole 0

Left Angular Gyrus Left Temporal Pole 1

Right Frontal Orbital Cortex Left Subcallosal Cortex 0

Left Inferior Temporal Gyrus; posterior division Right Middle Temporal Gyrus; posterior division 1

Right Frontal Orbital Cortex Left Temporal Pole 0

Left Subcallosal Cortex Left Temporal Pole 0

Left Occipital Pole Right Lateral Occipital Cortex; inferior division 0

Left Middle Temporal Gyrus; posterior division Right Middle Temporal Gyrus; posterior division 2

Left Temporal Pole Left Frontal Pole 0

Left Temporal Fusiform Cortex; anterior division Left Subcallosal Cortex 0

Left Inferior Temporal Gyrus; temporooccipital part Left Inferior Frontal Gyrus; pars opercularis 1

Left Lingual Gyrus Right Lingual Gyrus 0

Left Juxtapositional Lobule Cortex Right Pallidum 0
aThe number of regions within the link in the DMN.
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twenty-one (54%) are between the left and right hemispheres. This is consistent with previous

studies using Diffusion Tensor Imaging (DTI) in ASD that suggest greater impairment in the

left hemisphere (Perkins et al., 2014). Furthermore, twenty-seven (69%) disruptions involve

areas in the temporal lobe. This is an extremely clinically relevant finding, since “temporal

lobe abnormality in autism is a likely candidate because core symptoms of the disorder center

on deficits in language and social behavior, which are frequently accompanied by intellectual

impairment” (Bigler et al., 2003). Multiple subregions within the temporal gyrus and temporal

fusiform cortex were involved in disrupted links. The middle, inferior, and superior tempo-

ral gyrus were involved in seven, seven, and three disruptions, respectively. Moreover, seven

disrupted links were identified in the temporal fusiform cortex. As previously noted, Nielson

and colleagues identified the posterior middle temporal gyrus and fusiform gyri among regions

contributing to the highest classification accuracy in their functional connectivity analysis using

data from ABIDE (Nielsen et al., 2013). The fusiform gyrus and middle temporal gyrus are

key regions of the social brain network, which “plays an important role in social cognition”

defined as “the accumulation of cognitive processes required to comprehend and interact with

others” (Kim et al., 2015). The identified disruptions in these key regions may therefore be

associated with disruptions in social cognition in ASD.

The left anterior temporal fusiform cortex (#69) is an important region for facial processing

and involved in five disrupted connections. It has been noted that failure to incorporate fa-

cial expressions into social interactions is “among the most characteristic socialcommunicative

impairments in ASD” (Hadjikhani et al., 2007). One disruption identified is between the left
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anterior temporal fusiform cortex and the right posterior inferior temporal gyrus (#17). The

inferior temporal gyrus is involved in visual processing. Impaired facial processing in ASD may

therefore result from disruptions in visual processing. Disruptions in visual processing where

identified in Bhaumik et al. (2018a). Furthermore, four disrupted links are identified between

the left anterior temporal fusiform cortex and regions of the superior temporal gyrus, including

the right posterior superior temporal gyrus (#2), left anterior superior temporal gyrus (#110),

left posterior superior temporal gyrus (#3), and the left planum polare (#89). The superior

temporal gyrus is involved in sound processing and language comprehension, and disruptions

involving this region were also identified in Bhaumik et al. (2018a). The disruptions between

the left anterior temporal fusiform cortex and superior temporal gyrus may therefore manifest

in an inability to integrate facial queues with verbal communications.

The middle temporal gyrus is a critical component of the social brain and DMN. The right

posterior middle temporal gyrus (#10) was involved in five disrupted connections with the

left frontal medial cortex (#42), left frontal pole (#5), left anterior inferior temporal gyrus

(#16), left posterior inferior temporal gyrus (#18), and left posterior middle temporal gyrus

(#11). It is theorized that the posterior middle temporal gyrus plays a role in verbal and non-

verbal semantic cognition (Hoffman et al., 2011). Semantic cognition is defined as “our ability

to use, manipulate and generalize knowledge that is acquired over the lifespan to support

innumerable verbal and non-verbal behaviours” (Ralph et al., 2017). The DSM-5 specifically

states “deficits in nonverbal communicative behaviors used for social interaction” as a diagnostic

criteria of ASD (Centers for Disease Control and Prevention, 2019). The disruption across the
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brain between the left and right posterior middle temporal gyrus may manifest in impaired

semantic cognition. The frontal medial cortex is involved several cognitive processes, such as

decision-making, response conflict, reward, and action monitoring (Moreira et al., 2016). The

disruption observed between the right posterior middle temporal gyrus with the left frontal

medial cortex may lead to impairments in using knowledge acquired over the lifespan to make

decisions impacting behavior. Furthermore, the observed disrupted connections between the

right posterior middle temporal gyrus and regions of the inferior temporal gyrus, which are

involved in visual processing, may be associated the “deficits in understanding and use of

gestures” when communicating with others (Centers for Disease Control and Prevention, 2019).

The left frontal pole (#5) is involved in seven disrupted links, the most observed in this

study. The frontal pole is the frontal part of the prefrontal region of the human brain and is

“functionally correlated with the default mode network...which is involved in internally focused

tasks” (Liu et al., 2013). Disruptions between the left frontal pole and the right temporal pole

(#107), left temporal pole (#108), left anterior cingulate cortex (#51), and right frontal orbital

cortex (#60) may be associated with the “deficits in social-emotional reciprocity” (Centers for

Disease Control and Prevention, 2019) observed in ASD. It is theorized that regions in the

temporal poles are involved in social and emotional processing (Olson et al., 2007). Moreover,

the anterior cingulate cortex, which is part of the limbic system, is also involved in emotional

processing and vocalization of emotions. The disruptions between these regions and the left

frontal pole may therefore manifest in internal reflection at the expense of social and emotional

interactions with others. The frontal orbital cortex is also part of the limbic system and is critical
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Figure 12: Disrupted connections network.

to multiple psychological functions, including emotional and cognitive processing, learning, and

social behavior. A disruption between the left frontal pole and right frontal orbital cortex may

affect the behavior of ASD subjects with regard to social interactions and cognitive processes.

6.3.3 Conclusion

In this chapter, we apply the proposed approach to analysis of functional connectivity in

ABIDE I, a large multisite dataset of rsfMRI data for ASD subjects and typically developing

controls. The sample population consists of 162 ASD subjects and 167 controls between the ages

of seven and fourteen from eight ABIDE sites. The Harvard-Oxford atlas was used to define 110

brain regions, yielding 5,995 hypothesis tests of functional connections. We identified thirty-

nine disrupted connections at an FDR level of 0.1. Key regions identified include the temporal
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lobe, left frontal pole, temporal fusiform gyrus, and middle temporal gyrus. These regions play

key roles in decision-making, semantic cognition, social behavior, and emotional processing and

correspond well to the DSM-5 definition of ASD. These findings may therefore fill the gap in

creating objective criteria necessary for an accurate ASD diagnosis.



CHAPTER 7

DISCUSSION AND CONCLUSION

Neurological diseases contribute substantially to morbidity and mortality worldwide. A

deeper understanding of these conditions for early diagnosis and treatment is required to combat

their debilitating symptoms. Among the neuroimaging techniques available for visualizing and

evaluating these conditions, fMRI has been valuable in describing how regions of the brain

communicate. Resting state fMRI studies have played a vital role in evaluating how neurological

conditions affect the natural communications that occur within the brain while an individual

is at rest. However, application of inference procedures for comparing correlation coefficients

in a disease group have ignored the correlation within a time series, violating a key assumption

and leading to the risk of misleading results.

In this dissertation, a spatiotemporal model that denoises the observed data and is subse-

quently used for functional connectivity analysis of rsfMRI data is introduced. Unlike previously

proposed model, the model incorporates all brain regions under analysis. Unknown parameters

are estimated in a computationally feasible manner using the ECM algorithm. This is partially

attributed to incorporation of dimension reduction techniques using Moran’s operator. As seen

in analysis of functional connectivity of ASD in Chapter 6, the dimension of the dynamic latent

model in practice can be substantially reduced. Furthermore, the rsfMRI model is novel in the

use of the Bessel covariance function. This function produces greater flexibility in its ability

to incorporate negative correlations in addition to positive correlations. In the application of

115
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our approach to ASD, the estimated Bessel function does yield negative correlations. The es-

timated outcomes within region time series from the spatiotemporal model are subsequently

decorrelated, yielding temporally uncorrelated time series for appropriate application of spatial

inference procedures using Fisher’s z-transformation. We use Efron’s local FDR to adjust for

the thousands of tests performed simultaneously. We identified thirty-nine clinically meaningful

disrupted connectivities in ASD subjects using the proposed approach in a subset of data from

the ABIDE initiative.

One of the main motivations for the spatiotemporal model is to denoise the data. A natural

followup is to see what the result would be if modeling was not performed and the raw observa-

tions were used for analysis of functional connectivity. Thus, for the analysis dataset described

in Section 6.1, we decorrelated the raw observations and performed hypothesis testing at the

same FDR level of 0.1. Using this approach, none of the links were significant. We therefore

conclude the spatiotemporal model has achieved its objective of extracting the true underlying

signal from the noise.

While the proposed approach provides improvements in modeling of rsfMRI data, future

research should be explored. It has recently been identified that rsfMRI functional connectivity

is highly variable across time (Valsasina et al., 2019). This model can be modified to allow

for dynamic functional connectivity. One option is to explore the computational feasibility of

estimating the transition matrix G at every time t. Furthermore, in studies containing data

from multiple sites, between-site variabilities arise. These multisite collaborations are vital

for grasping a greater understanding of heterogenous conditions such as ASD. However, they
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introduce additional variability and require proper statistical care. A dynamic spatiotemporal

model that incorporates an additional hierarchical level for site should be explored. Meta-

analysis has been proposed as a solution to accounting for multisite variability (Bhaumik et al.,

2020). Third, the data used for this analysis was restricted to the same number of time points

across individuals. Data for subjects with more time points is therefore excluded. Missing data

techniques should be explored to improve power and incorporate all available information.

An additional area of research for analysis of functional connectivity would be development

of a model that includes multimodal imaging. Multimodal imaging is the combination of dif-

ferent imaging techniques. For example, fMRI and DTI can be performed on a patient at rest

at the same time and can improve our understanding of functional connectivity (Tagliazucchi

and Laufs, 2015). A model that incorporates data from both techniques may increase power

for detection of disruptions due to a disease. Moreover, a model that directly estimates a T × T

temporal covariance matrix to use in decorrelation while also accounting for spatial relation-

ships should be explored. Finally, although the approach described in this dissertation was

designed for fMRI data from rsfMRI studies, it may be applied to other areas where spatiotem-

poral data is collected. There are numerous sources of spatiotemporal data, such as microbiome

data, mortality and morbidity rates, and economic data, which may benefit from the approach

outlined in this work.



APPENDICES

118



119

Appendix A

DESCRIPTION OF ROIS

TABLE X DESCRIPTIONS OF HARVARD OXFORD REGIONS

Region Number Region Description

1 Left Thalamus
2 Right Superior Temporal Gyrus; posterior division
3 Left Superior Temporal Gyrus; posterior division
4 Right Frontal Pole
5 Left Frontal Pole
6 Left Caudate
7 Right Middle Temporal Gyrus; anterior division
8 Left Middle Temporal Gyrus; anterior division
9 Left Putamen
10 Right Middle Temporal Gyrus; posterior division
11 Left Middle Temporal Gyrus; posterior division
12 Left Pallidum
13 Right Middle Temporal Gyrus; temporooccipital part
14 Left Middle Temporal Gyrus; temporooccipital part
15 Right Inferior Temporal Gyrus; anterior division
16 Left Inferior Temporal Gyrus; anterior division
17 Right Inferior Temporal Gyrus; posterior division
18 Left Inferior Temporal Gyrus; posterior division
19 Right Inferior Temporal Gyrus; temporooccipital part
20 Left Inferior Temporal Gyrus; temporooccipital part
21 Left Hippocampus
22 Right Postcentral Gyrus
23 Left Postcentral Gyrus
24 Left Amygdala
25 Right Superior Parietal Lobule
26 Left Superior Parietal Lobule
27 Right Supramarginal Gyrus; anterior division
28 Left Supramarginal Gyrus; anterior division
29 Right Supramarginal Gyrus; posterior division
30 Left Supramarginal Gyrus; posterior division
31 Right Insular Cortex
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Appendix A (Continued)

TABLE X DESCRIPTIONS OF HARVARD OXFORD REGIONS (Continued)

Region Number Region Description

32 Left Insular Cortex
33 Right Angular Gyrus
34 Left Angular Gyrus
35 Right Lateral Occipital Cortex; superior division
36 Left Lateral Occipital Cortex; superior division
37 Right Lateral Occipital Cortex; inferior division
38 Left Lateral Occipital Cortex; inferior division
39 Right Intracalcarine Cortex
40 Left Intracalcarine Cortex
41 Right Frontal Medial Cortex
42 Left Frontal Medial Cortex
43 Left Accumbens
44 Right Juxtapositional Lobule Cortex
45 Left Juxtapositional Lobule Cortex
46 Right Subcallosal Cortex
47 Left Subcallosal Cortex
48 Right Paracingulate Gyrus
49 Left Paracingulate Gyrus
50 Right Cingulate Gyrus; anterior division
51 Left Cingulate Gyrus; anterior division
52 Right Cingulate Gyrus; posterior division
53 Left Cingulate Gyrus; posterior division
54 Right Superior Frontal Gyrus
55 Left Superior Frontal Gyrus
56 Right Precuneous Cortex
57 Left Precuneous Cortex
58 Right Cuneal Cortex
59 Left Cuneal Cortex
60 Right Frontal Orbital Cortex
61 Left Frontal Orbital Cortex
62 Right Parahippocampal Gyrus; anterior division
63 Left Parahippocampal Gyrus; anterior division
64 Right Parahippocampal Gyrus; posterior division
65 Left Parahippocampal Gyrus; posterior division
66 Right Lingual Gyrus
67 Left Lingual Gyrus
68 Right Temporal Fusiform Cortex; anterior division
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Appendix A (Continued)

TABLE X DESCRIPTIONS OF HARVARD OXFORD REGIONS (Continued)

Region Number Region Description

69 Left Temporal Fusiform Cortex; anterior division
70 Right Temporal Fusiform Cortex; posterior division
71 Left Temporal Fusiform Cortex; posterior division
72 Right Temporal Occipital Fusiform Cortex
73 Left Temporal Occipital Fusiform Cortex
74 Right Occipital Fusiform Gyrus
75 Left Occipital Fusiform Gyrus
76 Right Middle Frontal Gyrus
77 Left Middle Frontal Gyrus
78 Right Frontal Operculum Cortex
79 Left Frontal Operculum Cortex
80 Right Central Opercular Cortex
81 Left Central Opercular Cortex
82 Right Parietal Operculum Cortex
83 Left Parietal Operculum Cortex
84 Right Planum Polare
85 Left Planum Polare
86 Right Heschl’s Gyrus (includes H1 and H2)
87 Left Heschl’s Gyrus (includes H1 and H2)
88 Right Planum Temporale
89 Left Planum Temporale
90 Right Supracalcarine Cortex
91 Left Supracalcarine Cortex
92 Right Occipital Pole
93 Left Occipital Pole
94 Right Thalamus
95 Right Caudate
96 Right Inferior Frontal Gyrus; pars triangularis
97 Left Inferior Frontal Gyrus; pars triangularis
98 Right Putamen
99 Right Pallidum
100 Right Hippocampus
101 Right Amygdala
102 Right Accumbens
103 Right Inferior Frontal Gyrus; pars opercularis
104 Left Inferior Frontal Gyrus; pars opercularis
105 Right Precentral Gyrus



122

Appendix A (Continued)

TABLE X DESCRIPTIONS OF HARVARD OXFORD REGIONS (Continued)

Region Number Region Description

106 Left Precentral Gyrus
107 Right Temporal Pole
108 Left Temporal Pole
109 Right Superior Temporal Gyrus; anterior division
110 Left Superior Temporal Gyrus; anterior division
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Appendix B

DISSERTATION POLICY FOR TAYLOR AND FRANCIS CONTENT
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