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SUMMARY 

Allowing individuals with disabilities to the upper limbs to have access to smartphones is an 

ongoing challenge. One solution, developed in the Wearable Technology and Sensory 

Enhancement laboratory, comprises of Bluetooth-enabled assistive devices to be placed discreetly 

inside the oral cavity. For this work, two devices have been adopted: one button-based and one 

trackpad-based. The devices are positioned on the palate, encased in a discreet dental retainer, and 

controlled by the tongue. This work presents a custom-made application to be paired with the two 

tongue-controlled assistive devices.  

The application aims at allowing simple interaction by the user, who is enabled to perform a 

plethora of different functionalities, identified through a survey distributed among disabled 

individuals. The most requested functionalities are access to 911 calls, interaction with keyboards 

and communication means, and control of a wheelchair, which have been implemented.  

To develop the needed interfaces, the framework React Native was adopted, due to its cross-

platform compatibility and the high flexibility it allows. The application was then tested on an 

Android phone, to assess its performance. Keystroke Level Model analysis of the main 

functionalities was executed, demonstrating the theoretical usability of the interfaces. Interaction 

by an expert user further tested the functioning of the application, comparing it to the default 

environment of the phone. This confirmed the hypothesized simplifications estimated by applying 

Fitts Law’s principle to the design of custom-made components, such as a keyboard.   

A tongue training environment was included in the application’s development, aiming to increase 

the strength and precision of the tongue and ease interaction with the assistive technology placed 

on the palate. The environment is made up of six games, each focusing on a specific movement 

required by the user.  

The interfaces, jointly with the assistive devices, could represent a solution to close the 

technological gap that involves people with injuries that paralyze the upper limbs.  
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INTRODUCTION [56] 

1.1 Upper Limb Impairment 

According to the “World report on disability”, presented by the World Health Organization 

(WHO) and World Bank, 13.3% of the global population experiences some form of disability, 

either mental or physical [1]. For this thesis work, we will concentrate on totally or partially 

paralyzing disabilities. In the USA, 1.9% of the population lives with paralysis [2][3], due to stroke 

in 34% of cases, spinal cord injuries in 27%, multiple sclerosis for 19% and to cerebral palsy in 

8%. All other causes amount to 12%.  

Stroke can be defined as a neurological deficit due to focalized damage to the Central Nervous 

System (CNS). This is often linked to infarction or hemorrhaging in the interested area [5]. When 

this happens to impact on the motor cortex, specifically the areas of it which are intended for the 

control of the upper limbs, either one or both hands and arms are not controlled efficiently 

anymore. These instances can be approached both on a compensatory level, with assistive devices 

which intend to substitute the lost function, but also on a rehabilitation level. A complete gain of 

the lost function is difficult, but different approaches have shown results in the post-stroke 

rehabilitation, both with and without the aid of devices for that purpose. This may mean either a 

complete loss of function or a high diminishment in the finetuning of movements. Both these 

conditions are a strong obstacle in the interaction with essential technologies such as phones, 

computers and tablets.  

When the paralysis is due to an injury in the spinal cord, rehabilitation is often not possible. A 

spinal cord injury causes the interruption of communication in the nervous pathways. The 

symptoms are usually comprised of loss of function, control and sensation in the body parts located 

inferiorly to the injury level. The injury can be either considered complete, with total loss of 

sensation and muscle function, or incomplete, with some residual nervous signals.  As can be seen 

in Figure 1, in 47,6% of cases the cases of spinal cord injury in the USA the outcome is incomplete 
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tetraplegia, namely the incomplete loss of function to all four limbs. 19,9% of cases result in 

incomplete paraplegia, effecting only the lower limbs. Complete loss of function is experienced 

by 31,9% of patients, respectively 19,6% for paraplegia, and 12,3% for tetraplegia. Only less than 

1% of individuals who have been, at some point, affected by spinal cord injury are able to 

completely recover and revert to their previous condition. [6][7] 

 

 

Figure 1:Effects of spinal cord injuries as found in “Spinal Cord Injury Facts and Figures at a 

Glance Re-Hospitalization” by Level et al.  

 

These conditions, in the cases which affect the upper limbs, are key in the exclusion of individuals 

from having full access to the new and always evolving technological advancements. Not having 

complete control of ones arms, hands and fingers, is an increasing cause of isolation for disabled 

individuals, who are forced to have assistance in interacting with modern day technology, such as 

tablets, computers and smartphones, either in the form of personal assistance (thus incurring in a 

complete lack of privacy) or assistive devices.  

1.2 Available Assistive Devices 

The range of available assistive devices, used for both mobility and interaction with technological 

interfaces, is wide and strongly differentiated.  

0,60%
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Devices based on bio-signal acquisition include all mechanisms of interface or mobility control 

which are related to the reading and analysis of bio signals. They include brain-computer interfaces 

(BCI), centered on electroencephalography (EEG), and electromyography (EMG) procedures. 

Both incorporate surface electrodes, positioned either on the scalp or on the limbs where subjects 

still retain varying degrees of control. The signal from the electrodes is recorded, filtered and 

classified by algorithms which vary in speed and precision. The application of electrodes, both 

wet electrodes, used in combination with gel, and dry ones is often complex and, on top of 

providing varying stages of discomfort for the users, entails high levels of noise due to reciprocal 

movement between skin and electrode or general interferences which render the signal-to-noise 

ratio (SNR) not always optimal for a correct classification of controls. EMG and EEG are often 

also used in combination.  

Regarding the mechanical-based control systems, the most common are sip-and-puff and switches. 

The former are comprised of a tube, position in the users’ mouth. By regulation of the strength 

and direction of the airflow (so, by “sipping” and “puffing” with different intensities), the user can 

interact with various systems and interfaces. Another common device family is made up of switch-

based interface-controllers. These are devices made up of buttons and the closure of the switches 

linked to the buttons is used as input. These are often used either as learning aides or as controls 

for mobility devices, such as electric scooters or motorized wheelchairs. The detected input acts 

as either activation or deactivation of certain actions. The use of this technology requires some 

residual control of motion in the upper limbs, at least in the hands and fingers.  [8] 

In the most severe cases of quadriplegia or similarly disabling diseases, the preferred technology 

consists of eye-tracking based computer systems. This technology uses a recognition system for 

the position of the eye and its movements. These systems usually involve cameras and support 

structures, which are mounted in specific environments, such as beds and chairs, often in hospitals 

or hospices. 
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An alternative can be found in BLUI, an interface built based on a microphone, therefore adaptable 

to all kinds of computers, which recognizes the area against which the user blows. The 

environment is event-based; therefore, the interface reacts differently according to the different 

directions of the airflow [9]. 

A common denominator in the presented devices, though, is the lack of discreetness. Although 

many of these propose a viable solution for the individuals making use of them, the devices are 

either cumbersome or eye-catching.  An alternative can be found in speech recognition software. 

This technology can be found in everyday systems, such as the latest types of smartphones and 

computers. This alternative only requires a dedicated software, which is usually compatible with 

most environments, and a functioning microphone. This can also easily integrate in smart-homes 

and Internet of Things (IoT) environments. The drawbacks can be found in the absence of privacy 

for the user, who must distinctly voice all interactions they wish to achieve with the device, and 

in the difficulty the software manifests with the recognition of specific accents and inflections. An 

effective alternative can be found in silent-speech recognition devices, which rely on the EMG 

recordings from electrodes positioned on the lower half of an individual’s face. These may 

compensate for the absence of privacy, but are extremely cumbersome and invasive, being placed 

directly on the subject’s face.[10] 

All assistive devices which attract further attention to individuals, who already have characteristics 

that may differentiate them from their peers, are contributing to emphasize the stigma which is 

linked to disability. This is often linked to a high abandonment rate for assistive devices, with 

users preferring compensating mechanisms over the unwanted attention such devices entail[11] 

1.3 Intraoral Devices 

In most of the previously described conditions which lead to disability, the subjects retain a nearly 

perfect control of the tongue muscle. This is due to it bypassing the spinal cord and having a direct 
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link to the brain stem. It is, in fact, controlled by the brain stem through the lower cranial nerves. 

Specifically, the Hypoglossal nerve controls all extrinsic and intrinsic muscles of the tongue, 

responsible for all movements. [12] The only exception is the palatoglossus muscle, responsible 

for the initiation of swallowing, which is controlled by the Vagus nerve.[13]  

These characteristics make the tongue the ideal method of interaction for those individuals who 

have lost use of their upper and lower limbs. Recent research has, therefore, focused on the 

development of intraoral tools to be controlled by contacts of the tongue. 

The state of the art for these devices sees many prototypes, most of which still result cumbersome 

for the user, or highly invasive. They either need an activation unit, which might be either stuck 

[14] or pierced in the tongue, or external receptive elements [15][16][17].  

Always relying on the tongue as an interface, but similar to the ‘sip and puff’ for what regards the 

physical aspect of the device, which develops outside of the user’s mouth, we can find the 

technology developed at Carnegie Mellon University, comprised of a physical component, much 

like a flower, with petals the user can interact with to achieve different tasks. [18] 

The WTSE Lab has been working on the development of retainer-like devices to be positioned on 

the upper palate of an individual, containing electronic components and enabling the user to 

interact with different setups through this device. The devices are independent from any accessory 

element and don’t require neither an activation unit nor external elements. This, combined with 

the wireless BLE communication, allows the device to be minimally invasive. 
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Figure 2: a) O-UIC device with 8 capacitive pads; b) Tongue Trackpad device with capacitive 

rows and columns  

 

The first device shown in Figure 2 is the third generation of oral assistive technologies developed 

in the WTSE Lab. It was built upon the UIC-C [19] and the TTS [20] and is called Oral User 

Interface Controller (O-UIC) [21]. It is based on eight capacitive sensors, positioned in reachable 

sections of the palate. Each capacitive pad is able to detect the touch of the tongue. The information 

– which pad is being touched – is then sent via Bluetooth Low Energy (BLE) and is read by the 

developed interface. 

Further advancements have been achieved in the WTSE Laboratory, producing the fourth 

generation of the device, a Tongue Trackpad positioned on the palate of the user, which acts as a 

HID mouse.   

This work presents the two iterations of a mobile application intended as accessible user interfaces, 

each iteration adapted to one of the two devices presented in Figure 2.  
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1.4 Enabling Technology and Quality of Life 

One may easily think that, with the progress technology makes on an everyday basis, disabled 

individuals are bound to be more and more integrated in the society. This has been proven to not 

always be the case. Disabled people face participation barriers at every step, as devices and 

software can be badly tailored to their specific needs and difficult or inaccessible. This results on 

a great gap between the online presence of abled and disabled people, with the latter being 20% 

less likely to be on the internet. [22] 

There has always been a great gap between the plethora of available mainstream technology and 

the specific and dedicated assistive devices. These have, usually, been extremely expensive. The 

smaller the intended user group, the more specialized the device, the higher the cost. Furthermore, 

the offered technology has shown to be limited in versatility and in the number of functionalities 

each device offered.  

A tailoring of the software, hardware and integration to the specific needs of a user class, with a 

strong consideration of the adaptability of such solution, is the necessary step towards the 

integration of disabled individuals in society.[23] 

The ideal situation would be the one where mainstream technology, ideally already owned by the 

intended user, is made compatible with the proposed software and hardware. This aims at bridging 

the gap between the user and the device. [22] This is the principle that was followed in the 

development of the presented work. The proposed interface is an application, deployed on the 

Android Operational System but applicable to iOS as well, which enables the user to interact, 

through the assistive devices presented, with the basic but essential functionalities of a 

smartphone.  
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1.5 State of the Art: interfaces for Accessible Interaction 

The variety of interfaces, either for computer-based systems or for smartphones, controlled by 

assistive devices, is limited. The devices presented in paragraphs 1.2 and 1.3 typically do not 

provide a custom user interface and are, therefore, used to interact with systems that have not been 

thought for those interactions. For example, smartphone interfaces are thought for touch-based 

interactions. This results in a difficulty for the users, which contributes to the high rate of 

abandonment of assistive devices.  

An example of a technology which combines the hardware with an interface is the custom built 

ACAT [Assistive Context Aware Toolkit] [24]. This was designed specifically with a single, 

notorious, user in mind: Professor Stephen Hawking, who has been affected by ALS (Amyotrophic 

Lateral Sclerosis) for most of his life. The interaction is based on the recognition of movements 

of facial muscles. The different movements are connected to specific commands with which the 

interface is controlled. Professor Hawking is therefore able to interact with a computer in order to 

select letters, words and phrases based on his personal patterns, learned by the software, which 

has been trained on his lectures and speeches. These are then read aloud and this permits him to 

communicate, an ability lost due to his disease. [25] 

An application which, though, allows any user to reproduce normal interactions with a computer 

or phone, which is controlled by a non-invasive and discreet oral device is not yet available.  

There are cases in which the assistive devices presented allow the user to control the entire 

Operating System. The Tongue Trackpad, for example, offers this possibility. This, while being 

without doubt useful, especially when thinking of an expert user who has developed great dexterity 

with the technology, is often uncomfortable for the user. The mobile interfaces in particular have 

been optimized for touch-based interaction, not for a cursor controlled from an external device. 

While still functional, the combination of cursor and mobile interface may result strenuous for the 
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user, especially due to the presence of small buttons and icons. A custom-made application which 

allows for the most important functions while strongly focusing on ease of use is one possible 

solution to enable more individuals to access the new technologies. The interface is intended to be 

modular, allowing for easy future development and personalization, based on each subject’s needs. 

The implemented functionalities have been chosen based on literature and data collected from a 

survey. They intend to cover the most essential and immediate needs and can be accompanied by 

leisure-related functionalities. 

1.6 Tongue Training  

It has been demonstrated that the tongue’s muscle can undergo training, like all other muscles of 

the human body. [26] By continuously executing the same movements, tasks or exercises, the 

tongue increases both in its strength and its precision. Practicing the common movements 

necessary to interact effectively with an assistive device, such as the Tongue Trackpad or the O-

UIC device, can result in an increase in precision, dexterity and ease of use.  

Literature review has revealed common practice exercises, based especially on therapies aimed at 

thwarting the effects of dysphagia, though a general lack of interactive environments for such 

exercises, which combine visual feedback and entertaining or motivational setups, has emerged.  

Dysphagia is a common symptom, related to either advancing tongue sarcopenia or neuromuscular 

consequences of brain injuries. It entails a loss of function in the swallowing motion. The 

movements that require exercise in order to counter the effects of dysphagia are principally four: 

elevation, lateralization, protrusion and swallowing [27]; these exercises increase lingual strength 

and therefore counter the symptom. The elevation of the tongue refers to the contact of either the 

anterior or posterior area of the tongue against the palate. Lateralization is the movement to the 

sides, either from the center towards one of the two cheeks or from one to the other. Protrusion is 

the act of pushing the tongue outside the oral cavity, surpassing the teeth and extending as far as 
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possible. Lastly, the act of swallowing, either forced -meaning with nothing to swallow- or natural 

-therefore including a bolus to be swallowed-, is the act itself, which can be practiced.  

The rehabilitation through these four movements can be divided in two different approaches, direct 

or indirect. The direct approach regards the swallowing movement and includes either a liquid or 

solid edible prop, that the patient is expected to swallow and ingest. The indirect approach, which 

is of greater relevance for this work, is made up of different combinations of the first three actions 

described: lateralization, elevation and protrusion.  

To achieve the goal, enhancing the performance of potential users of the Tongue Trackpad, and 

the related application, the specific movements which constitute tongue-palate interaction must be 

practiced. The main actions include clicking, therefore an exercise compatible with the 

aforementioned elevation action, and pointing, a movement from one point to another either 

laterally or front-to-back and vice versa. The diagonal movement is also one of the milestones to 

accomplish with the intention of reaching better ease in the control of the application. 

The second version of the interface, related specifically to the Tongue Trackpad, has been 

equipped with a training area, where specific interactive games allow the user to address their aim 

of enhancement of specific tongue abilities to improve the experience of interaction with the 

application and an operative system, being it computer or mobile based.  



 

11 

 

 MATERIALS & METHODS [56]  

2.1 Hardware 

Two versions of the interface were developed, each one optimized to interact with one of the two 

devices presented. The functioning of both devices is, in a way, similar, but they completely 

diverge when it comes to the communication with the mobile phone and the application. The touch 

of the tongue is, in both cases, detected by capacitive sensors which trigger a voltage change when 

touched. This is due to a parallel capacitance that develops when the tongue contacts the pad or 

the line-column intersection. The thresholds have been optimized for interaction with the tongue 

in the impervious environment which is the mouth, characterized by high humidity and the 

presence of saliva.  

2.1.1 O-UIC Device 

The O-UIC device is based on an Espruino MDBT42Q board with an NRF52832BLE chip, which 

incorporates both the capacitive sensing and the BLE communication necessary for this device to 

function as needed.[28] [29] 

The communication between the O-UIC device and the developed application is based on a 

Bluetooth Low Energy (BLE) connection, directly from the device to the application. This implies 

that the distinction between commands happens at a software level. Only the detection of the touch 

is handled by the firmware uploaded on the device. The code used to detect the touches was 

developed during the implementation of the O-UIC. [21] This code was originally divided in two 

modes, one where the output of the device is transmitted to the receiving computer as Human 

Interface Device (HID) keyboard commands, and a debugging mode which writes the information 

on the console, by serial communication. The debugging mode of the code was used as a starting 

point which lead, after little change, to the functional communication with the application.  
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The communication frequency was changed from the original 10Hz to 2.5 Hz, one string of 

information sent every 400 milliseconds. The reason this number was chosen was based on the 

medium reaction time of the human brain, which is 200ms. Due to the complexity of mapping the 

interface’s layout to the location of the pads in the mouth, the time period was doubled. This was 

also confirmed to be the best frequency by trial and error. The string sent is composed by eight 

characters, each identifying a different pad, and usually set to “_”. Once a specific pad gets 

touched, not only does the corresponding character change, but it also assumes the number related 

to the specific pad, making decoding on the app side easier. The passed string, for example after 

the touching of pad 4, would be “_ _ _ _ 4 _ _ _”. The following code represents the 

segment of the firmware uploaded on the Espruino board to control the serial print of the touches. 

 

 

 

 

 

Figure 3: Code snippet of the communication between the O-UIC device and the mobile phone’s 

application. The resulting string of characters is stored in a characteristic of the BLE 

communication 

 

The decoding of this information is then handled in the code of the interface, which is therefore 

crucial for the device to interact with smartphones. The decoding process will be explained in 

detail in paragraph 2.5.1.   

// Prints Touch Status for each pad  

    base += "TS: "; 

    for (i = 0; i < 8; i++) { 

      if (touch[i] > -1) { 

        base += touch[i] + " "; 

      } 

      else { 

        base += "_ "; 

      } 

    } 

    base += "|  "; 
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2.1.2 Tongue Trackpad 

The Tongue Trackpad is the latest version of intra-oral assistive devices developed by WTSE Lab. 

It is built upon capacitive sensing, the same principle as the O-UIC device, but is based on a matrix 

of rows and columns of capacitive elements that substitute the previous 8 pads and are able to 

detect the tongue’s touch. The peculiarity of this latest version is the adaptation of the device to 

function as a Human Interface Device (HID) mouse. This is possible by detecting the incremental 

movement of the tongue in the x and y direction, so the changes in rows and columns touched. 

This information is sent via BLE characteristics in two packets, one per direction to whatever 

device the Tongue Trackpad is connected to. It is then translated into a command to move the 

cursor in said direction. A third packet of information signals the intention of the user to click in 

the current position of the cursor. 

The main difference between the interaction’s methods of the two devices, therefore, relies mainly 

on where the information is processed and transformed into commands for the interface. The O-

UIC device communicates via BLE directly with the application, which is therefore responsible 

for the computational load of the communication. For the tongue trackpad, on the other hand, the 

translation of the packets’ information in commands is handled by the phone (or computer’s) 

Operative System (OS), therefore allowing greater freedom of interaction to the user and creativity 

to the developer.  
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Figure 4: Communication between (a) O-UIC device and (b) Tongue Trackpad and application. 

The first entails a direct handling of the information on the application’s end, the latter has the 

OS of the phone bridging between device and application. The device’s output is seen as a usual 

control for HID mouse cursor. 

2.2 Preliminary data collection  

In order to develop an interface which responds to the needs of the target population, made up of 

individuals suffering from disabilities which impact the upper limbs, a survey was developed 

through Qualtrics and distributed via email and flyers, upon IRB approval [(Institutional Review 

Board) protocol number 2017-0550]. [30] 

The criteria followed in the development of the interfaces have been the same.  In order to produce 

an application which resulted user friendly and usable, the gold standard process of iterative design 

was followed, adapted to the circumstance of the specificity of the intended user population. The 

information was first collected by analyzing the target population theoretically, through literature 

research and analysis. A second iteration and optimization were done following the retrieval of 

the survey data. 

The questions asked in the survey aim to gather a well-rounded knowledge on the necessities of 

the considered population, looking at all-encompassing details. The survey is divided in sections, 
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each approaching a different aspect of the inquiry. Overall, it is comprised of 72 questions, nested 

into one another and therefore not always appearing in toto to each user. 

The first section focuses on general data, such as age, type of ailment and living situation, as well 

as an open-ended question regarding the specifics of everyday challenges faced by the user. This 

portion was aimed at obtaining a general overview of the intended population. 

The central section was developed around inquiries concerning assistive devices previously or 

currently owned by the users. The aim was to have an idea about the habits and knowledge of the 

population. 

Questions regarding the usual approaches to new assistive devices were asked in the fourth section, 

in order to analyze the difficulties encountered when approaching new technologies. 

To conclude, eight questions were asked, focusing specifically on technology and technological 

needs of the users. The aim was to obtain information as to what was present in the users’ life in 

terms of technology and what specific functionalities were lacking in the available interfaces for 

assistive devices. This ensures the correct prior knowledge necessary to approach the development 

of the interface. The questions asked were both multiple choices and open ended.  

2.3 Interface Development  

With the purpose of achieving an interface which encompasses all necessary aspects of the 

intended users’ requests, the presented applications were developed. Both are structured in a semi-

modular manner, which allows for easy modifications and tailoring to the user’s needs, on a code 

basis. This permits the developer to change the displayed screens, and the sequence of the 

navigation, so that it presents functions which are effective for the specific user. For the purpose 

of this work, all developed functionalities have been left accessible. The two iterations of the 
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application, as mentioned in the presentation of the used hardware, have been intended to be 

optimized for interaction with the two devices.  

The functionalities developed, which will be presented in detail in paragraph 3.2, have been 

inspired by the answers to the survey described previously. The focus was put on allowing, 

primarily, communication with others. For this reason, the developed functionalities were focused 

on an automated SOS call to 911, interaction with the mobile’s embedded phone-call system to 

allow all numbers to be dialed and the compilation of an email, which results in the triggering of 

the related email app with pre-filled fields.  

The development of new functionalities was then limited to interaction with the trackpad. The 

difference in the nature of the interaction, explained in the previous section, resulted in an ease of 

development for the functionalities of this second iteration, and a lessening of the computational 

burden on the application. This allowed for more functions to be developed, starting with a 

simulation of wheelchair control, mimicked through the communication with an Elegoo car 

(details can be found in paragraph 2.5.2). The remaining functionalities listed together with the 

used libraries in the consumptive Table 5, have been added to ensure the best user experience 

possible.  

2.3.1 React Native 

The interface application was developed in React Native, a framework developed by Facebook in 

2015 specifically for cross platform optimization. It allows to develop applications in JavaScript, 

the de-facto standard for front-end development, declaring the behavior of the application and then 

passing it on to the native environment to ensure the best user experience.  [31] 

The code can be written once and then optimized, regarding the authorizations necessary for the 

app to function (for example Bluetooth and position necessary for BLE communication) and 
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library installation, for both Android and iOS. For the purpose of this work, the application was 

finalized only for Android, but can be easily optimized for iOS in future developments.  

Together with the simplicity of the coding language and the adaptability to both most common 

operative systems, React Native was chosen due to the extensive number of libraries which are 

continuously built and optimized by the developer’s community. This, though, entails a drawback: 

most of the libraries and functionalities are still in beta version, therefore not yet optimized for use 

and application development, and this has proven to be a hindrance in some parts of the coding 

process.  

2.3.2 Custom-made components  

React Native allows the developer to create custom components, such as buttons and other 

elements of the screen’s functioning. Using this possibility, it is possible to include special features 

to the screens. This was used to implement components which are especially versatile and 

adaptable, to answer to those requirements that developing an interface for assistive devices has.  

Having self-made components also allows for a more personalized (and modifiable) look and feel 

of the whole interface. The buttons and icons are both clickable (so controllable with the trackpad 

or the finger) and act as placeholders to indicate to the user which pads relate to which actions.  

With the aid of an open source online resource [32], a personalized palette was created. The colors 

are in tune with each other and the choices made aim at creating a welcoming and peaceful feeling 

in the user. The choice of the primary color, starting point for the creation of the palette, is a light 

blue (Figure 5). This color was demonstrated being between the most chosen internationally for 

the development of country-specific websites, according to a 2006 study which analyzed 15 

countries and the predominance of color in their websites. The most present tones were black and 

white, but blue and all its shades was the first color present in all the countries analyzed, thus 

confirming the tendency to choose this color in interface design [33].  
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Figure 5:Specific color palette used during the application's development 

The custom-made components called My_Button and Icon, used in all screens as buttons and 

touch-sensitive icons, follow the same idea. Taking advantage of a wrapper, TouchableOpacity 

[34], which is a parent view, that wraps around whatever one positions inside it, it is possible to 

interact with contents. It is able to recognize touch events, in particular the onPress() handler, 

which calls a predetermined function, or set of functions, to be executed when the user interacts 

with the wrapped elements. This was selected to be used to create clickable icons and custom 

made buttons because it gives greater freedom and allows the customization of the area one can 

interact with, making it possible to increment the surface and therefore facilitate the user’s 

interaction with the application.  

Using the My_Button component, the keyboard used in the messaging and email functionalities 

and the number buttons in the phone screen were developed. They were built aiming at optimizing 

the distribution of the key-buttons to facilitate cursor interaction. The principle followed was the 

optimization of the ratio between distance and the area of the button itself, based on Fitts Law 

[35]. According to Fitts’ studies, the time required for a person to point to a certain target is 

appraisable with a formula that takes into account the distance from the beginning and the width 

of the objective. The original law presented by Fitts derives from a parallel between information 

transfer and human movement, which is said to be modellable with Shannon’s 17th theorem (2.1).  
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𝐶 = 𝐵 log2
𝑆+𝑁

𝑁
      (2.1) 

The channel capacity (C) is compared to the index of performance, obtained by dividing the Index 

of Difficulty (ID) of a proposed task (2.2) by the time needed to execute it. B is the bandwidth of 

the considered target and is therefore constant. The ID was identified by Fitts as (2.2), where A is 

the distance from the target and W is the width of the target itself. 

𝐼𝐷 = log2 (
2𝐴

𝑊
)       (2.2) 

The original formulation of Fitts Law is a regression of the Movement Time (MT) on the ID 

obtaining (2.3), with a and b being empirically determined constants of the regression. 

𝑀𝑇 = 𝑎 + 𝑏 log2 (
2𝐴

𝑊
)         (2.3) 

This has been demonstrated to apply to Human Computer Interaction and can therefore be used to 

estimate the improvements in usability introduced by custom-made components such as the 

keyboard [36]. The introduction of a constant c is a modification to Fitts Law proposed by Weford 

and confirmed by Fitts himself. It is a constant equal to either 0,5 or 1, added in order for the 

difficulty index to never be negative, even for overlapping targets 

𝑀𝑇 = 𝑎 + 𝑏 log2 (
𝐴

𝑊
+ 𝑐) [37]    (2.4) 

The final version of the Difficulty Index is given by the second part of (2.4):  

 log2 (
𝐴

𝑊
+ 𝑐)       (2.5) 

Considering that the width and height of the screen are constant, therefore the maximum distance 

between targets (A) can also be considered constant, we can compare exclusively the effect of the 

width of the button in the calculation of the ID, which can be computed, for this work, as 1/W. 

The android development guide was used as a source as to how big and distanced each pad is in 

the default screens. The distance between small elements, such as icons or small keys, is set to 4 



20 

 

 

 

dpi (device-independent-pixels), each equivalent to one physical pixel on a 160dpi screen. 

Applying this logic to the Xiaomi mi mix 2 phone [dpi: 403 [38]], used to execute the tasks 

presented in paragraph 2.7, the dimensions in pixels of the inter-button distance is equivalent to 

10.1 pixels, obtained as follows: 

1: 160 = 𝑥: 403                    

𝑥 = 2.51
𝑝𝑥

𝑑𝑝𝑖
                    

4𝑑𝑝𝑖 ∗ 2.51
𝑝𝑥

𝑑𝑝𝑖
= 10.1𝑝𝑥     (2.6) 

Multiplying this value by twice the number of buttons present in the keyboard, considering a 

margin present on both sides, the number of pixels taken up by margin is equivalent to 201.5 

pixels. To identify the maximum width of the native key-pads, the screen definition – subtracted 

of the margin pixels – was divided by the number of keypads present in the most dense row (the 

first, with 10 pads), thus obtaining 87.85 pixels, equivalent to 35.14 dpi. The dimensions of the 

buttons of the custom-made keyboard have been set to 60dpi.  The horizontal margin of each 

button is 10dpi, so equivalent to 25.2 pixels.  

The buttons present in the default phone screen are wider than the keypads, thus an intervention 

to increase the width was not strictly necessary. What was necessary was a better definition of the 

edges of the button, to make the target more easily identifiable. The distance between the buttons 

was also optimized, in the custom application, to reduce unvoluntary clicks.  
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2.4 Usability and inclusivity of the interface 

To ensure the best user experience, the gold standard of usability principles was applied, to the 

extent that was possible considering the peculiar use case of the presented application. These 

principles, presented by Jakob Nielsen and Rolf Molich in 1990 [39], encompass all good practices 

that should be adopted in the development of user interfaces. All aspects of this presented work 

were ideated and brought forth keeping in mind the Heuristics presented in Nielsen’s studies. The 

nine principles presented in 1990 were enhanced and dogmatized in 10 postulates that define 

interface development [40]. 

Considering the nature of the developed interfaces, both aiming at a user population comprised of 

individuals with more or less severe ailments, another important aspect that was considered was 

the inclusivity of the final product. To ensure the highest level possible, the principles presented 

by Hammad et al. were analyzed and adapted to the particular case [41]. These rely on six cardinal 

elements (derived from Nielsen’s heuristics) that must be respected to achieve an inclusive 

interface, which were followed in this work: 

1. Visibility of system status 

2. Match between system and the real world 

3. User control and freedom 

4. Consistency and standards 

5. Error prevention 

6. Recognition rather than recall 

7. Flexibility and efficiency of use 

8.  Aesthetic and minimalist design 

9. Help users recognize, diagnose, and recover 

from errors 

10. Help and documentation 

1. Readability  

2. Affordance 

3. Error tolerance  

4. Organization and color coordination 

5. Natural flow of information 

6. Vigilance to users’ abilities  
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2.5 Bluetooth communication 

Both iterations of the interface require Bluetooth Low Energy connection. This relies on the 

communication through services and characteristics that are at the base of BLE communication 

protocol. A service is a specific packet of information, which comprises multiple characteristics. 

All services and characteristics are each identified by a UUID (Universal Unique Identifier). Each 

characteristic is described by descriptors, that identify if a characteristic is readable, writeable and 

notifiable. A writeable characteristic allows the connected phones and computers to send 

information to the device. A readable characteristic allows to read what the device is 

communicating.  

In the specific case of the O-UIC, the characteristic where the string of touches was stored and 

transferred was not readable, but notifiable, which identifies a characteristic that continuously 

sends data to the receiving device. 

The O-UIC device, as illustrated in Figure 4, relies completely on Bluetooth communication to 

control the interface. This connection is handled on the application side, and the code for it was 

written during the development. For what regards the second iteration and the connection to the 

Tongue Trackpad, this is handled by the Operative System of the phone.  The BLE connection, in 

this case, is needed to control a wheelchair-like Arduino Elegoo car.   

The React Native library which was used to handle all BLE communications is react-native-

ble-plx, which was found to be the most effective for the required use. It allows to both read 

and write on the Bluetooth characteristics of the devices connected to the application.  [42] 

For both uses the initial process of BLE connection and identification of the correct characteristic 

to interact with was handled the same way. The whole connection process and handling of the 

communication was done in the componentDidMount() function, which identifies the instant 

in which the screen first loads. For the O-UIC device’s interface this screen is the first one the user 
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loads, called SigninScreen; for the trackpad interface this happens in the commandScreen, 

where the handling of the wheelchair controls happens. 

 The first step required to create a so called BleManager, a component which would be the bridge 

between the outside device and the application itself. The library provides a function, nested in 

the manager itself, which allows to scan and identify all available devices. From these, only the 

device with the correct name was extracted. For both applications the device’s name and the 

specific services and characteristics used were saved in constants initialized at the beginning of 

the code. The id (equivalent to the MAC address of the chosen device) is extracted and used to 

identify all services and characteristics. At this point the two processes divide and differ. 

2.5.1 O-UIC device BLE control 

The value passed from the device’s characteristic to the application first needs to be decoded by 

the first screen of the interface and saved in a variable. The string of underscores and numbers is 

read, and the first touched pad is isolated and saved. The distribution of the numbers on the pads 

can be seen in Figure 6. 

  

Figure 6: O-UIC device with eight capacitive pads numbered to 

illustrate the location of the input given by the user 
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This variable will then be memorized in a reducer, which is a native component of React Native 

that stores the states of the variable, the actions that may be triggered by specific dispatches and 

the resulting changes in the variable’s state.[43]  

For the aims of this application a global reducer was created, which receives the data from the 

screen that handles the BLE communication and then elaborates this depending on the screen that 

is currently loaded. This is achieved by having each screen pass information to the reducer (called 

“deviceValue”). This information controls which kind of decoding of the command must be 

implemented and therefore what kind of information must be passed back to the screen to control 

it.  

In particular, the different decoding methods regard navigation, typing and numbers.  

Whenever a pad is touched, it dispatches a ‘TOUCHED’ action that has the number of the pad as 

payload. This then is handled differently if we find ourselves in one of three states: the keyboard 

state – where the touches are seen as T9 commands- the number state -with a T9 based compilation 

of phone numbers -, and the navigation state -where each touched electrode causes the navigation 

to a different screen. For the first two, the typed number or sentence is passed over to the screen 

we find ourselves in and displayed or used there, in the navigation state the number of the pad that 

has been touched is passed over once again to the screen and used to direct the navigation. The 

selection of which state is to be executed is handled by the information passed from the screens to 

the reducer. Every time a screen is loaded it communicates to the reducer the enabling or disabling 

of keyboard, numbers and navigation mode. Once that is saved in the reducer, touching a pad 

triggers a different action depending on the state the screen is in. 

The handling of typing for both numbers and letters is similar. It is based on the re-invention of a 

T9 style keyboard, which had been proven usable in the development of the device [21]. An array 



25 

 

 

 

of arrays containing four letters/numbers (or commands like ‘xx’ to delete or ‘BACK’ to trigger 

a change of screen) was created. Every time a pad is touched, the first index of the array assumes 

that number, the second index goes to zero: this way the first element of the sub array is selected. 

If the same pad is touched in less than one second, time compatible with the sampling frequency 

chosen for this use, the second index is incremented, selecting the next element of the sub array. 

The state element word or number is then updated, containing the typed sentence or number. 

This is then passed on to the screen, and for each screen the details of the decoding process are 

explained in the respective paragraph. 

The schematic of the interconnection between the screens and the state is illustrated in Figure 7. 

 

Figure 7: Information flow between the user and the screens. The reducer acts as a control 

center, receiving the instructions from the screen, executing the requested case and forwarding 

the resulting command 

2.5.2 BLE control for mock-wheelchair 

In order to simulate the control of a BLE wheelchair, a connection with an Elegoo Arduino car 

was established. This connection consists of three different steps, as can be seen in Figure 8. 

Figure 8: Communication flow from the application to the Elegoo’s Arduino Uno board. The BLE 

communication is between the App itself and an Espruino Puck.js, which is connected via serial 

communication to the Arduino board. 
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The first part is the code uploaded on the Arduino placed on the car, which is the example code 

provided with the Elegoo kit. The only change that was made regards the speed of the motors, 

which was set to 80 to allow for a more realistic control. The second part is the code uploaded on 

the Puck.js board, constituted of the same module as the O-UIC device and the same chip [29][28]. 

This has two sections, one dedicated to creating the characteristics needed for the Bluetooth 

communication. This characteristic has to be writeable in order for the application to communicate 

with it. It has a specific identification number, the UUID, which is searched and recognized by the 

application’s BleManager. The second part of the Espruino code is dedicated to the passing of the 

commands to the Arduino it is connected to. It writes on the serial port and sends a character (“b”, 

“f”, “l”, “r” or “s”) to communicate the direction – backwards, forwards, left and right- and 

weather the car should stop. The Arduino decodes this character and controls the motors 

accordingly. On the application’s side, four buttons trigger the writing of a corresponding 

character (with the same encoding as the Arduino-Puck.js communication) on the identified 

characteristic. When each button is pressed, the application writes the corresponding letter in the 

BLE characteristic of the Puck.js, which then decodes it and writes it on the serial communication 

to the Arduino. The firmware uploaded on the Espruino board can be seen in Figure 9 [44].  

 

 

 

 

 

 

NRF.setServices({ 
  "6e400001-b5a3-f393-e0a9-e50e24dcca9e": 
{"6e400002-b5a3-f393-e0a9-e50e24dcca9e": { 
      readable: false, writable: true,  
      onWrite: function(evt) {  
        toggle(String.fromCharCode(evt.data[0])); 
        console.log("Got ", evt.data);}}}}); 
 
function toggle(command) { 
   
  if(command === 'f') { 
    digitalPulse(LED2, 1, 500); 
    Serial1.write('f'); 
  } 
…} 
  
Serial1.setup(9600, {rx:29, tx:28}; 

Figure 9:Example code of the firmware updated on the Puck.js to set the characteristic and 

service needed and control the serial communication to the Arduino  
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2.6 Navigation between screens 

To handle the navigation, the gold standard of React Native navigation is adopted, react-

native-stack-navigation, which is based on a stack-like method. The screens are rendered 

one at a time, each called from the previous one. In order to avoid an overload of memory usage, 

instead of piling the stack with screens, each re-rendered a new time at every call, the “replace” 

function was used; this pushes the current screen from the stack and replaces it with the called 

one. This allows more memory space for in-screen computation, necessary to handle both the 

Bluetooth communication and the keyboards created in the second iteration. Each screen was 

developed aiming at allowing one of the necessary functionalities 

2.6.1 SOS call 

In order to allow users to call 911 with ease, with no need to type out the number and risk errors 

and delays, one of the developed functionalities is an immediate call to 911 triggered by the press 

of an icon on the screen by the cursor or the press of pad 3 (positioned at the top of the device, as 

shown in Figure 6). This is obtained with a simple line of code that calls the react-native-

immediate-phone-call library’s function, that triggers a call to whatever valid number has 

been passed on to the function, as shown below. The variable click is the value passed on by 

deviceValue.  

if (click === 3) {RNImmediatePhoneCall.immediatePhoneCall('911')} 

 

2.6.2 Generic phone-call  

Using the same library that was installed for the emergency call, a functionality to allow users to 

call whatever number they’d want was developed. This differs in the interface optimized for the 

O-UIC device and the one for the Tongue Trackpad. 
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In the first one, it has been deemed important to explicit the commands and numbers linked with 

each pad, therefore an image of the schematic was added to the screen. The rest of the screen is 

only composed by a textbox, where the typed number appears, and an icon exemplifying the 

possibility to call. This icon is wrapped in a TouchableOpacity component which, as explained 

in the general overview of the app, renders the enclosed elements reactive to clicks. This was 

added to allow anyone to trigger the call once the number has been typed, either by use of the O-

UIC device or by direct interaction with the screen. The code reported in Figure 10 shows two key 

elements in the functioning of the phone-call. First, the calling of three functions: these are 

essential to dispatch to deviceValue the information regarding what part of the reducer’s 

function this screen needs. The navigation is disabled, the keyboard as well, whilst the number-

typing function is enabled.  

Secondly, it is visible how the screen receives two different variables, saved in number and in 

control. In the first, the typed phone number is saved, and displayed in the textbox, as well as 

passed to the state that updates what gets called by the function. The latter, control, is used to pass 

    this.props.navigationDisabled();  

    this.props.keyboardDisabled(); 

    this.props.numberEnabled(); 

   

    const number = this.props.numero; 

    const control = this.props.pippo; 

 

    if (control === 'BACK') { console.log(new Date() + ' PHONE.BACK'); navigate('Ho

me'); } 

    if (control === 'CALL') { 

      console.log(new Date() + ' PHONE.CALL'); RNImmediatePhoneCall.immediatePhoneC

all(this.state.phoneNumber); 

    } 

    if (control != 'BACK' && control != 'CALL') { 

      this.state = { phoneNumber: number } 

      console.log(new Date() + ' PHONE NUMBER ' + number); 

    } 

Figure 10: Code snippet from the O-UIC PhoneScreen showing how the commands 

received from the reducer are decoded in the screen itself and transformed into numbers 

to call 



29 

 

 

 

the current selected item in the array. It is used to pass on commands such as call or back, to allow 

the user functionalities other than simply typing.  

For the Tongue Trackpad interface, the screen comprises of big buttons with which the user can 

type the phone number, stored in an internal state which gets updated when each button is pressed. 

The same storage system accounts for the pressed pads in the O-UIC version.  

The phone number is than, in both cases, passed on to 

RNImmediatePhoneCall.immediatePhoneCall('{phone number}') which triggers the 

call.  

2.6.3 Email and Messaging  

Like the phone call, also the compiling of an email has been developed in two versions, one 

specific to the O-UIC device and one for the Tongue Trackpad.  

For the O-UIC device, two screens were created for this functionality, one to allow users to 

practice typing (called KeyboardScreen) and one specifically for the compiling and sending of 

the email. This latter functionality, though, has a limitation: due to the required password and 

username necessary to enter an email account, the developed interface only extends to filling in 

different elements of the email, but still requires the send button to be pressed in the mailing 

application. This is a strong limitation for the interaction with the O-UIC device, which is only 

able to interact inside the React Native interface. This hindrance is not present in the second 

iteration, as the trackpad’s cursor can press send in the original mailing app. To allow a user to, 

anyway, fill in the body of the email using the O-UIC device a similar code to that presented in 

the phone call functionality was developed, allowing deviceValue to pass both the wholly typed 

sentence and the commands (to send the mail, go back to homepage or delete if a mistake occurs).  

The possibility to send emails (and messages) was also implemented for the Trackpad device, with 

some modifications. The presence of a custom keyboard allows the user to select the letters to 
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compose the desired address and body of the email to send. The choice to keep the order of the 

keys based on the QWERTY model was adopted, though the number of buttons on each line does 

not allow the complete reproduction of the standard keyboard. 

2.7 Functioning Evaluation 

To test the functioning of the developed interfaces, an experienced user was asked to execute a set 

of assignments with each device, as well as complete the same tasks using the default interface of 

the phone with the Tongue Trackpad and using a single finger. For all tests, the recorded times 

refer to the first time the user was asked to perform such tasks, though the user is defined as an 

“expert”, due to ample knowledge of the technology and practice in tongue-palate interaction. 

Using the console.log() function, strategically placed messages were added to the code. This 

way, once the test was over it was possible to extract the console’s log and review a trace of the 

whole process, along with timestamps of each action. This provides a well-structured overview of 

every step taken by the user and allows a further confirmation of the time needed for the different 

tasks.  

The messages were positioned at the loading of each screen, and then linked to each action which 

can be executed inside of the screens. The function componentDidMount() is used to identify 

the moment in which the screen first loads; it is placed at the beginning of each screens file and 

contains the functions necessary for the correct functioning of the screen together with the 

console.log(‘NAME SCREEN LOADED') message. An example can be seen in the code 

fragment added below. 
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Figure 11: Example of the code use to print the console logs 

 Along with the timestamps and information regarding the loaded screens, the console.log 

()function was used to log information regarding the actions taken in each screen. For example, 

for the home screen the logged information regards the pressed buttons linked to navigation. 

Similar approaches were applied to all screens. In the following figure, an example of the logging 

information for the expert user is available. The logging of the commands sent by the device to 

the application, this limited to the O-UIC device, is also present, and is useful to recognize which 

pad is identified by the device as “touched”.  

componentDidMount() { 
  
 console.log(new Date() + 'KEYBOARD SCREEN LOADED'); //timestamp and scre
en 
  
  } 

Figure 12::  Example of a console.log of the execution of 6 tasks by the expert user, 

interacting with the two versions of the app through the O-UIC device (a) and Tongue 

Trackpad (b). The timestamps are used to calculate the time needed by the user to 

perform the tasks 
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2.7.1 O-UIC Interface  

The expert user was asked to perform three tasks interacting through the O-UIC device with the 

application installed on a Xiaomi mi mix 2 (Android 9.0.1). The tested tasks are summarized in 

the table below.  

TABLE 1: TASKS FOR O-UIC DEVICE INTERFACE TESTING 

Task 1 Open the application and trigger the SOS call 

Task 2 Open the phone screen, type in a phone number and call  

Task 3 Open the email screen and send an email typing ‘hello world’ 

2.7.2 Tongue Trackpad  

The same process was followed for the Tongue Trackpad. The same tasks were executed by the 

same user, with the Tongue Trackpad interacting with the default environment of a Xiaomi mi 

mix 2 (Android 9.0.1) and interacting with the custom application. The tasks (Table 2) are the 

same as the ones used for the O-UIC device, with the addition of a fourth task, verifying the 

sending of a Short Message Service (SMS). 

TABLE 2:TASKS FOR TONGUE TRACKPAD INTERFACE TESTING 

Task 1 Call 911 

Task 2 Open the phone system, type in a phone number and call  

Task 3 Open the email screen and send an email typing ‘HELLO WORLD’ 

Task 4 Open the messaging system and send ‘SILVIA’ the text ‘HELLO’ 
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2.8 Keystroke Level Model 

To assess the theoretical performance of the screens, the Keystroke Level Model (KLM) approach 

was adopted. This model is used to assess the usability, in particular the efficiency, of a specific 

user interface. It is a theoretical computation of the estimated time needed to complete a task. The 

task is broken down in finite elements, each relative to a specific interaction the user has with the 

machine.  

TABLE 3: KLM TIMES FOR EACH FINITE ACTION NECESSARY TO EXECUTE A 

TASK 

Action Operator Duration 

[s] 

Key or button press K 0.20 

Pointing P 1.10 

Drawing D varies 

Mental preparation M 1.35 

Homing from mouse to keyboard and vice versa H 0.4 

Representation of the response  R depends on system 

 

The theoretical calculations of the times were performed for both interfaces, for the same tasks 

that were proposed in the functioning evaluation. The only operands that were used were K, P and 

M.  [45] 
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The sequences of actions necessary to perform each action were identified by studying the 

interaction expected from an expert user when completing the tasks. An ideally completed task 

was considered, where no errors were made. This was done to assess the usability of the interface 

after a transitioning period in which the user gets familiar with the intended movements of the 

tongue and eliminates the unnecessary errors due to inexperience. The identified sequences can 

be found in Table 4. Mental preparation was included at every step, to account for the need of a 

user to identify the correct location of the pad or the button. 

TABLE 4: SEQUENCES OF ACTIONS NECESSARY TO EXECUTE EACH TASK IN 

EACH INTERFACE (TASK FOUR IS ONLY EXECUTABLE WITH THE TONGUE 

TRACKPAD) 

 911 Call Phone call Email SMS 

O-UIC M+P+K [M+P+K+K]*3 + 

[M+K+K]*4 + 

[M+K]*3 + 

M+P+K 

M+K+[M+K*2]*2+ 

[M+K*3]*2+M+K*4+ 

[M+P+K*3]*2+[M+P+K*4]*4 

--- 

Tongue 

Trackpad 

M+P+K [M+P+K] *11 [M+P+K]*13 [M+P+K]*14 

2.9 Tongue Training Interface 

To allow the user to train their tongue in those movements presented in paragraph 1.6, six 

interactive games were developed, each aiming at the enhancement of one specific ability of the 

tongue. Six corresponding hypotheses were identified, which will be tested and validated, or 

disregarded, in future developments of this work.  
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• Hypothesis I: horizontal and vertical exercises improve tongue strength and precision [46]  

• Hypothesis II: horizontal exercises improve vertical strength and precision (and vice versa) 

[47] 

• Hypothesis III: elevation exercises increase the speed of the tongue’s elevation to the palate 

[26] 

• Hypothesis IV: elevation and maintenance of an elevated position of the tongue increase 

tongue strength. (based on dysphagia therapy presented by Namiki et al. [48]) 

• Hypothesis V: training increases precision of tongue movement towards random points on 

the screen [49] 

• Hypothesis VI: training increases speed of tongue motion against the palate. [49] 

To develop the games, which will be presented in paragraph 3.7, the same principles that were 

described for the development of the interfaces were followed. The layout and colors are 

maintained in accordance to the rest of the work, to allow for coherence and consistency of look 

and feel. The interfaces are kept simple, with easy instructions and straight forward layouts. The 

incentive needed to keep users focused and motivated during the training is achieved by the 

exploitation of the setTimeout() function, which allows to call an action that is executed after 

a set number of milliseconds. In particular, all interfaces were set to have a 60000ms countdown 

start when the screen is loaded, giving the user a minute to interact with the game and achieve as 

many points as possible, except for the screen developed for hypothesis four which, taking into 

account the 10 seconds holding  period, allows the user to exploit a longer time period, up to 90s. 

Once the timer ends, the user is either brought back to the selection page, where they can choose 

the next game (if a minimum number of points is achieved, or the screen reloads to give the user 

the chance to perform the game again.  
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The data is stored locally, exploiting the React Native storage Async Storage [50], which allows 

to save strings of information and retrieve them in different screens. Restarting the application 

does not affect the storage, and the data are secured unless the user desires to delete them. The 

user can see the data in graphs, created with the react native library react-native-chart-kit 

[51].  

The games were first tested, during the development, with one finger interacting with the 

application on a physical android phone, Xiaomi mi MIX2, and also with an on-screen emulator 

to verify the functioning with a cursor interaction. An expert user was also asked to play the games, 

three times each, using the Tongue Trackpad, to assess the functioning of the code and its 

compatibility with the device. 

2.10 User Feedback Survey  

Once all applications were developed and implemented, a follow-up survey was distributed to the 

target population via an online Qualtrics questionnaire. The survey included a description of the 

applications and aimed to assess the user’s feedback in regards to the implemented functionalities 

for both the application customed to the Tongue Trackpad and to the O-UIC Device. The survey 

was structured in two parts, corresponding to each device which included a description of the three 

core functionalities and a photograph of all screens and devices presented. The survey presented 

the potential users with five multiple choice questions based on an agreement scale and two open 

ended questions.   The following figures depict the introductory descriptions for both devices and 

applications. 
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Figure 13: Screenshots of the presented functionalities for the section regarding the O-UIC Device 

 

 

Figure 14: Screenshots of the presented functionalities for the section regarding the Tongue 

Trackpad
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RESULTS AND DISCUSSION [56] 

3.1 Survey Data 

Eighteen potential users filled the survey in its entirety, answering directly. One more complete 

answer was registered, by a family member of a potential user on their behalf. All answers were 

by users of age comprised between 18 and 74. Of these, only 31.58% declared to be living alone, 

while the rest relies on family assistance due to a lack of independence. Of the eighteen surveyed, 

50% expressed interest in adopting this technology to interact with either phones or tablets. The 

most requested functionalities for the application, selected each by 14% of the users, were control 

of a wheelchair, easy access to 911 calls and interactions with keyboards. Open ended questions 

confirmed, in 23% of the cases, the need to have easy access to keyboards and communication. 

These functionalities were therefore implemented in the application. The possibility to interact 

with an on-screen keyboard and have easy access to a 911 call is available in both iterations, the 

Figure 15: Survey data; a) respondents’ living situation; b)desired functionalities of 

a tongue-controlled wearable device; c)type of ailment of the individuals who 

answered the survey; d)gender distribution of the individuals who answered 
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control of the wheelchair only in the Tongue Trackpad version.  A summary of this data can be 

found in Figure 15.  

Complaints about the current available technology that facilitates the use of one’s hands, but does 

not bypass it, have been registered. In particular, two subjects mentioned discomfort in the use of 

their hands, though they retain partial control of them. This indicates the possibility to expand the 

target population to those users who, though still having partial motor control in the upper limbs, 

may experience hardship in leveraging them in interacting with technology. Using the proposed 

assistive devices combined with the interfaces the user could mix up the input to the phone, using 

both hands and tongue. Therefore, all the screens that were developed were both controllable 

through the input devices and by touch of fingers.  

Most answers that were recorded were completed by the potential users through the adoption of 

voice recognition software, that were though identified as a less than ideal option by those 

individuals who filled in the open ended questions regarding any problems linked to current 

interaction with technological devices. The main issues noted were in the efficiency of recognition 

of the user’s voice, as well as a complaint about the lack of privacy this solution entails. 

The analysis of the survey data also highlighted the need to have an interface accessible for poor-

sighted users or blind individuals. Using the built-in functionality of React Native 
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accessibilityLabel and accessibilityHint, each component was rendered compatible 

with a voice-over reader of the device the application is ran on.  

3.2 Developed Functionalities 

For each of the presented functionalities, one or more specific screens were implemented. These 

screens can be seen in Figure 16. All screens have been designed following the principles 

presented in the Materials and Methods section, and function according to the code that was 

presented there.  

For what regards the Home screen, Figure 16 (a) , it is important to note that the icon that is linked 

to the emergency call has been positioned in the upper part of the screen. This is both an easy 

location for the cursor to reach from every point of the screen and an immediate link to the position 

of the pad on the top of the palate. This pad has been chosen to minimize accidental triggering of 

the emergency call, but also facilitate its location. The triggers for the most frequent actions were 

linked to the six pads located in the front of the palate, which are easier to reach and more 

comfortable to interact with, as the backwards motion of the tongue is the most uncomfortable. 

This is countered, though, by the closeness of the pads in the front of the device, which have 

resulted more difficult to discern [21].  

As far a as the wheelchair control screen is concerned, the main emphasis was put on simplifying 

and facilitating the interaction. The buttons have been designed to be big and easily reached, as 

well as clearly marked. They have been kept close together in order to reduce the time needed to 
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move from one to the other. This prudence aims at reducing the chances of making a mistake on 

the user’s part, which could be dangerous when controlling a wheelchair.  

Figure 16: Developed screens for the implemented functionalities; a) Home screen; b) 

Wheelchair Control screen; c) Phone screen for the O-UIC; d) Phone screen for the Tongue 

Trackpad; e) Email screen for the O-UIC; f) Email/SMS screen for the Tongue Trackpad. 
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The screens related to the phone call and typing tasks are very different for the two versions of the 

application. The O-UIC screens present the user with a replica of the device, useful to identify the 

location of the letters and numbers of the T9 interaction. As can be seen the design is minimalistic 

and intuitive, but still encompassing of all necessary functionalities for the phone call to work. 

Like the icon in the PhoneScreen, the button with the send-email icon acts as both placeholder and 

TouchableOpacity for necessities. The typed sentence would appear next to “BODY:”. The “to:” 

field is precompiled to simplify testing. Both screens, in the Tongue Trackpad version, have big, 

distanced, buttons which are easily reachable with the cursor.  

Table 5 summarizes the developed functionalities, the libraries used for each and the device they 

are optimized for. 

 Further functionalities were developed in collaboration with the Early Research Scholars Program 

(ERSP).  The group was supervised in the implementation of three screens, allowing the user to 

have a custom-made calculator, settings screen and interaction with maps. These functionalities 

were adapted to the Tongue Trackpad version of the application. The principle followed in the 

implementation was the simplification of useful functionalities. The calculator screen, much like 

the phone screen presented before, has more distanced buttons, bigger and with greater contrast to 

the background, when compared to the default Android calculator. The settings screen addresses 

the issues of the hardware buttons present on most mobile phones for volume control. The controls 

have been developed as sliders, though a future implementation could aim at substituting them 

with buttons, which ensure an even easier interaction. The map interaction was optimized in the 

simplified identification of one’s location, which could be further implemented in an emergency 

SMS sent to selected contacts. Also, the zoom function which requires two-finger interaction in 
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the default versions of maps was substituted with two on-screen buttons selectable with the 

Trackpad-controlled cursor.  

TABLE 5: DEVELOPED FUNCTIONALITIES; THE X IDENTIFIES WHICH VERSION OF 

THE INTERFACES SUPPORTS THE DEVELOPED FUNCTIONALITY 

Functionality Device Library 

O-UIC TT 

SOS call   react-native-immediate- 

phone-call [52] 

Generic phone call   react-native-immediate- 

phone-call [52] 

Mock-wheelchair 

control 

  react-native-ble-plx [42] 

Opening of other Apps   React-native-send-intent [53] 

SMS    React-native-send-intent[53] 

Email   react-native-email[54] 

Tongue Training    Async Storage [50] 

React-native-chart-kit [51] 

Voice-Over    React Native functionality [55] 
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3.3 Usability and inclusivity 

In all screens developed one can see how the principles presented in paragraph 2.4 have been 

followed and implemented. When focusing on the ten heuristics, one can underline some aspects 

related to each principle. 

The visibility of system status is achieved by the use of TouchableOpacity to convey to the 

user the change in status of the button or icon, with an increase in opacity when pressed. This is, 

though, lacking in the first iteration, where the commands are executed and only after the 

execution the result is available for the user.  

To ensure both a minimalistic design and a real-world feeling, icons are used to identify the actions 

linked to specific buttons. Though these icons can appear, to a novice user, somewhat confusing, 

after a short period of time the icons allow for recognition of what a certain action entails. The 

size, shape and color of buttons and icons is consistent throughout the application, and across both 

versions, according to the color palette presented in Figure 5. This is also important for the 

inclusivity of the interface, as it ensures greater readability. To ensure affordance, regarding the 

accessibility of the application for blind users, the voice-over function can give the user audio 

feedback as to what would be triggered by pressing certain buttons, while the visual feedback is 

ensured by the aforementioned icons. The color of the buttons ensures a good contrast with the 

icons positioned inside of them, allowing for a greater ease of use. The use of only one color 

scheme takes into account the issue color-blind users would have in using hue to recognize an 

element.  
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To allow the user to easily recover from a wrong navigation, the possibility to go back to the home 

screen is always clearly marked and coherently positioned. For the O-UIC version, it is always the 

touch on the same pad (pad 0) that triggers the navigation to the home screen.  

The possibilities offered by the second version of the application are limitless, because of the 

possibility to trigger the opening of any application installed on the phone by adding it to the icons 

presented. This allows for a greater flexibility, though it requires a back-end intervention to link 

the installed applications to the buttons on the interface. Future developments of the application 

could look at an automatization of the process, which would allow the user to automatically add 

the link to a pre-existing app installed on the phone. Momentarily, the present triggers regard the 

camera, the car sharing services and a custom-made application, developed in the WTSE Lab 

which presents to the user a 3D model of the tongue.  

The most important precaution taken in preventing important errors regards the SOS call, for the 

first version of the application. To thwart false calls, the device’s pad chosen to trigger the call is 

pad number 3, positioned on the top of the device and easily recognizable and avoidable during 

other functions.  

Both versions of the application have been thought as an interface to allow users with disabilities 

to achieve an interaction with the  smartphone and those essential functionalities that it offers, and 

therefore are built upon the concept of vigilance to the user’s abilities.  
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3.4 Fitts Law  

TABLE 6: DIFFICULTY INDEX OF THE DEFAULT KEYBOARD COMPARED TO THE 

CUSTOM-MADE ONE 

 

The results of the optimization of the button’s width for the custom-made keyboard can be found 

in Table 6, which also includes the calculated Difficulty Index based on the width of the button. 

As can be seen, the increase in width warrants a 43% decrease of the difficulty of interaction with 

the keyboard, thus allowing for a greater ease of use of the application. In the figure below, the 

two keyboards are displayed, to highlight the increased usability.  

 Default Keyboard Custom-made Keyboard 

Width (dpi) 35.14 60 

Difficulty coefficient (1/dpi) 0.028 0.016 
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A sure limitation of the custom-made keyboard is the boundaries it imposes, such as only writing 

in capitalized letters and not allowing for numerical entries. Further developments could aim to 

address these issues and allow greater freedom.  

Figure 18 shows the custom-made phone screen keyboard and the default one. The greater ease of 

use is evident in the custom-made screen, where the buttons are not only well defined, but also 

spaced wider and across a greater area. Also, the easily accessible delete button eases the process 

of error correction.  

Figure 17: a) Custom-made keyboard with wider buttons; b) default Android 

keyboard 
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Figure 18: a) Custom made phone keyboard with distanced and well-defined buttons; b) default 

phone keyboard 

3.5 Keystroke-Level Model 

The following table summarize the theoretical times, estimated for the three tasks when executed 

without error by an expert user. Table 8 shows the time needed by the expert user to perform the 

same tasks with the default interfaces using a single finger. 

TABLE 7: THEORETICAL TIMES NEEDED TO COMPLETE THE THREE TASKS USING 

THE TWO DEVICES 

 911 Call Phone Call Email 

O-UIC 2.65 s 22.85s 30.2s 

TT 2.65 s 29.15s 34.45s 
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TABLE 8: SECONDS NEEDED BY EXPERT USER TO COMPLETE THE TASKS 

PRESENTED DURING THE EVALUATION OF THE INTERFACES.  

 

 

 

 

 

The time needed to call the emergency number (in the United States, 911) is compatible with the 

estimated time. It is presumable that the time needed to process the information as to how the 

emergency call is made would be less with experience, therefore allowing to decrease the time of 

mental preparation and making the call even faster than with the natural interaction. Regarding 

the second task, both devices estimate an interaction of more than 21 seconds, positioning 

themselves at more than triple the time needed during the normal interaction of a user controlling 

the default operating system with their finger. While this may seem a great difference, needing 

less than a minute to complete a phone-call when interacting with a tongue-controlled device is an 

acceptable result. The task of writing ‘hello world’ and sending the email is faster than the writing 

of both recipient and body of a message, so the third task is simpler for the two devices than the 

fourth task for the Trackpad. All the results, though, show a time which is more than four times 

the natural one for a typing task. This is due, for the Tongue Trackpad device, presumably, to the 

elevated number of pointing motions necessary to reach each letter, when compared to the touch-

based selection of a keypad with the finger on the touch screen. For the O-UIC device, the T9 

911 Call 2s 

Phone Call 7s 

Email 6s 
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nature of the interaction together with the limited number of pads, that warrant for a high number 

of clicks to reach each desired letter.  

3.6 Functioning Evaluation 

The following tables summarize the results of the expert user’s interaction with the two versions 

of the application, when performing the tasks analyzed in the evaluation.  

TABLE 9:SECONDS NEEDED TO COMPLETE TASKS AND ERRORS MADE BY 

EXPERT USER INTERACTING WITH THE O-UIC DEVICE AND THE APPLICATION 

 

 

 

 

 

As can be seen, the time needed, and the errors performed are compatible with the needs of a user. 

Both the phone-call and the simple email are executable in under a minute. Though the errors 

made by the user when interacting through the device are more than with the natural interaction -

where no errors are usually made-, the number is still low enough not to hinder the usability of the 

device in combination with the custom-made application. It is expected that the time needed 

lowers, at least to the value estimated with the KLM theoretical calculations. This would be due 

to a reduction in the errors made by the user with the increase of experience.  

Table 10 and Table 11 illustrate the times needed by an expert user to complete the tasks assigned 

to the functional evaluation of the Tongue Trackpad version of the interface, first in the interface 

 Time needed  Errors made 

911 Call 2s 0 

Phone Call 36s 4 

Email 53s 5 
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itself and then in the native environment of the phone. In Table 10 one can see how the number of 

errors is null, a great advantage when compared to the number of errors performed in similar task 

with the O-UIC device. The time, though, is greater for the first three tasks, which are equivalent. 

Though this may seem discouraging, it is arguable that an increase in dexterity, for example 

through the completion of the proposed tongue-training exercises, could positively affect the speed 

of a user’s control of the cursor, therefore lowering the times. The KLM analysis is presumably 

the target of the decrease in time needed. This is an interesting aspect to assess in future 

developments of this work. 

TABLE 10: SECONDS NEEDED TO COMPLETE THE TASKS AND ERRORS MADE AN 

EXPERT USER INTERACTING WITH THE APPLICATION WITH THE TONGUE 

TRACKPAD 

 

 

 

 

 

 

Table 11 shows the time needed to execute the same tasks as the ones executed within the interface, 

but in the default environment. Both the time needed, and the errors made, increase when 

interacting with an interface that has not been ideated and optimized for cursor-based interaction, 

especially for a cursor controlled by muscles not trained for such movements. Though the time 

needed to perform a phone call is not significantly higher, the still results more prone to errors. 

 Time needed Errors made 

911 Call 4s 0 

Phone Call 64s 0 

Email 67s 0 

SMS 91s 0 
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These results confirm the theoretical simplification that increasing the width of the buttons and 

distance was expected to provide.  

TABLE 11: SECONDS NEEDED TO COMPLETE THE TASKS AND ERRORS MADE AN 

EXPERT USER INTERACTING WITH THE PHONE’S DEFAULT SYSTEM WITH THE 

TONGUE TRACKPAD 

 

 

 

 

 

 

3.7 Observations and Discussion 

During the performance of the proposed tasks, the expert user was observed and asked to provide 

feedback regarding the experience of interacting with the interfaces. Though the information 

gathered by observing only one user’s interaction with the interfaces is limited (the study had to 

be cut short due to Covid-19 pandemic) it is still possible to infer useful cues for modifications 

and future developments of the applications. The user’s feedback was collected after the 

conclusion of the tasks. 

When using the O-UIC device’s application, it was noticed that the images representing the link 

between numbers and letters and the respective pads were useful to the user. It was noticed that 

the user relied on the images to identify the correct pads to touch and the identify the number of 

 Time needed Errors made 

911 Call 21s 0 

Phone Call 65s 1 

Email 76s 0 

SMS 104s 2 
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touches necessary (Figure 19). The modality of interaction, based on a T9-like selection of 

numbers and letters, was easily identified and applied by the user. Possible modifications to the 

layout that might aid the user in the interaction could include the engorgement of the images of 

the device in the phone and email screen, to facilitate the reading of the letters in each pad, and 

also the experimentation with different distributions of letters and commands between the pads. 

For example, redistributing the letters on the pads in order to include x and y and free up the eighth 

pad to only include the sending option could simplify the action. Multiple Studies have been 

conducted and have shown that the  letters should be distributed according to the frequency of 

occurrence. 

 

Figure 19:  O-UIC device's phone interface displaying the link between the pads and the letters 

In regards to the Tongue Trackpad’s application, the main focus was centered on the optimization 

of the interaction with the interface compared to the native phone interface. It was observed that 

the user performs the tasks with ease, which suggests the user-friendliness of the developed 

application screens. For the phone-screen, no particular issues were noted . The interface 

developed for composing emails or SMS were also quickly understood by the user, who managed 

to interact with them after initial short training. The main issue was identifying how to select the 
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recipient field or the body field and compile the correct one. This is achieved by clicking on the 

field itself on the upper part of the screen, as seen in Figure 20. A potential adjustment that  could 

improve the user experience would be a redistribution of the available real-estate. This 

redistribution should dedicate more space to the input fields, in order to allow for the user to make 

a simplified selection of the field, also a wider textbox should be incorporated to facilitate 

readability of the inputted letters. To achieve this, the button which triggers the opening of the 

default email or SMS application could be made smaller, and possibly moved to a different 

location on the screen such as the upper right corner. Furthermore, future developments should 

include changing of the keyboard, and incorporating a punctuation keyboard and a number 

keyboard, as well as a toggle between the uppercase and lowercase letters. This change could lead 

to a more encompassing and natural experience for the user.  

 

Figure 20: Recipient and body field in the email and SMS screens 

The expert user commented on the enhanced ease of use that the increased dimensions of the 

buttons provided in comparison to the native phone environment, especially in the typing tasks. 

Furthermore, a comment regarding the concept of the app itself was made: the presence of all the 

buttons linking to the essential tasks on the homepage facilitates the interaction of the user with 

the phone, by providing immediate access to the core functionalities required. This could be 
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leveraged in the future developments to include the possibility for the user to add links to specific 

applications (which were for the moment limited to camera and weather applications) to be opened 

from the app. The presence of the big buttons and icons was essential in achieving this simplified 

access to the functionalities, according to the comments form the user. After the three rounds 

performed in the tongue training environment, the user demonstrated an interest in the possibility 

of leveraging the games to effectively improve their performance in the execution of both the 

games and the everyday life tasks available in the interface.  

For both interfaces, what could be improved would be including the possibility to switch the 

interaction of the device with the application on and off. This would allow the user to only interact 

with the interfaces when desired, limiting the false triggers and false positive inputs. An issue that 

would be present when developing this functionality would be due to the impossibility for the user 

to interact with the smartphone unless through the device itself. This entails that, once the 

connection is switched off, external input would be necessary to restore the communication and 

allow the user to control the interface again. A possibility would be the leveraging of voice 

recognition control, to open and close the application and activate the communication.  

Another functionality that would limit false triggers would be adding a confirmation popup to the 

SOS call. In both interfaces the user achieves the call to 911 either by pressing on the uppermost 

pad (for the O-UIC) or on the icon (for the Tongue Trackpad) once. To avoid false triggers, an 

additional pop-up was added for the Tongue Trackpad and three touches are required for the O-

UIC.    
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3.8 Tongue Training  

To test hypothesis one and two, both related to the vertical and horizontal movements of the 

tongue, two games were developed, following the same principle. The user is presented with two 

squares positioned next to each other in the center of the screen. They are prompted to click on 

the squares in order, first the one marked as “1” and then the one marked as “2”. Every time the 

user clicks on a button, they are awarded half a point, making it a whole point for each pair. When 

the second button is clicked the distance between them increases and the size decreases. This 

makes it progressively harder for the user. The games are indirectly based on the difficulty index 

presented in 2.3.2. This time, the distance between the buttons increases making it harder to move 

from one to the next and requiring more time. Once the minute is up, the user can either go back 

to the selection screen or restart the game, according to the number of points they gathered, with 

5 being the minimum score needed to pass. If the user reaches ten points the buttons disappear and 

the game ends. 
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Figure 21: Screens developed to test hypotheses one and two; a) trains the vertical movement of 

the tongue from the front of the palate to the back; b) trains the horizontal movement from the 

left of the palate towards the right 

 

To test hypothesis three and four, the user needs to click on a button, as often as possible. For 

hypothesis three only holding the click for 10 seconds would ensure the point, while any click 

would provide a point in the other case. To count the 10 seconds, the function onLongPress () 

was used, that allows the developer to set a timer during which the element must be continuously 

pressed for the function to then be executed. The layout is different to allow the user to recognize 

the game at a glance. The developed screens can be seen in Figure 21.  

For the last two hypotheses, randomly appearing circles are presented to the user, who is required 

to click on them as fast as possible. The easier version, testing hypothesis five, only has the dot 

appear in random locations and staying there until the user clicks on it. To test the speed the user 

acquires when training, hypothesis six is tested by a dot appearing like in the previous game, but 

disappearing after a set time, and reappearing in a different location. If the user manages to click 

on it in time, they gain a point, but the interval in which the dot disappears is reduced. The starting 

interval is 10s and is reduced by 100ms every time. An example in shown in Figure 22. 
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Figure 22: Screens developed to test hypotheses three, four, five and six; a) trains elevation and 

maintenance of the tongue-palate contact, tested in hypothesis four b) trains the speed in 

elevation of the tongue; c) the screenshot refers to the game developed for the fifth and sixth 

hypothesis. Since the goal is the same, click on the dot as it moves around, the layout was left 

identical; what changes is the speed with which the dot moves around 

 

 

Figure 23: a) Data representation of the scores for two games, shown as an example. The user 

can update the graphs to show all the recent repetitions of the games; b) Notes section, where 

either the user or eventually a physician can add comments regarding the progress.  
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As mentioned in paragraph 2.9, the data is stored locally. There is, therefore, no threat to one’s 

privacy, though developing a cloud-based storage of the information could be an interesting 

development, especially if the games are used in rehabilitation and clinical settings and require a 

physician to have access to the data. The scores are then presented to the user in graph form, in a 

separate screen where a summary of all games is shown. There is also the possibility for the user 

to add notes, which are also stored asynchronously.  These screens can be seen in Figure 23. 

 

Figure 24: Results of trials of the games with the Tongue Trackpad; (a) results for 10 seconds 

holding game and tapping on the palate game; (b) results for vertical and horizontal movements; 

(c) results of games clicking on the dot appearing randomly and accelerating. The last game 

displays the frequency of tapping the dot, in Hertz, while the other games display the scores. 

The screens in Figure 24 show the results obtained by the expert user when playing the games 

using the Tongue Trackpad. It is not useful to search for learning curves or improvement patterns 

in the reported data, as the games were solely performed to assess the functioning of the code. 

What is important to note, though, is the absence of results in the  10-second elevation game. Due 

to the long-press press gesture being necessary, but not yet implemented in the device’s hardware, 
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the game is not yet playable with the device. This implementation, together with the effective 

testing of the hypotheses, is the natural progression of this work. 

3.9 Feedback Survey 

Eleven potential users participated in the survey, of which five completed the entire survey. The responses 

are summarized in Table 12. Each user was asked to select (on a scale of 1 to 5, with 1 being “strongly 

disagree” and 5 being “strongly agree” ) their agreement level to four statements regarding the application.  

TABLE 12: USER RESPONSES TO THE FEEDBACK SURVEY ON THE DEVELOPED 

APPLICATIONS. THIS TABLE PRESENTS THE MEAN VALUE AND STANDARD 

DEVIATION (FROM 1 TO 5) OF N=5 RESPONSES  

 O-UIC Device Tongue Trackpad 

I think that I would like to use this 

wearable device and application 

frequently. 

2.4±1.35 2.6 ±1.2 

I think that I would be able to use 

this system independently after it 

is placed inside the oral cavity. 

4.6±0.49 4.4±0.8 

I think this system would assist me 

in my interaction with my 

smartphone and computer. 

3.4±1.02 3.2±1.32 

On a scale of 1-5, 5 being the best, 

what is your overall interest in the 

wearable device and the associated 

application. 

2.8±0.97 3.2±1.32 

As shown by the results, though the sample size is limited, there is a potential interest by the targeted 

population towards the proposed application and devices. Responses show a strong agreement of the users 

in regards to the independence the application and devices would allow. The overall opinion asked in 

question four shows a preference towards the Tongue Trackpad and cursor control system, compared to the 

O-UIC device and T9 selection (mean 3.2 against mean 2.8). 
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The users were also presented with open ended questions, in order to provide their general feedback and 

thoughts.  The suggestions that emerged could be a starting point for future development of the application: 

one user wrote “The typing feature has the letters grouped in alphabetical order. It might be better to group 

the letters by frequency of use, putting the most frequently used letters in the easiest positions to reach. It 

would have a longer learning curve, but would result in less fatigue.”, therefore suggesting experimentation 

with the layout of the letters in the T9-like pads, confirming the idea to test different layouts as a future 

development that had been hypothesized during the observation of user testing. Another user expressed a 

preference for the cursor like control, as they stated that double and triple clicks “can cause confusion on 

repetitive numbers or letters”. There was a suggestion to substitute one pad with a rolling ball that could 

act as a joystick to control a mouse, reinforcing the preference towards cursor control rather than T9 

selection. Which has been developed by the WTSE group in the past.  The tongue training environment 

was not presented to the users in this survey, but one of them suggested it as a possible addition to the 

application, thus confirming its potential in user engagement. 
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CONCLUSIONS AND FUTURE STEPS [56] 

In this work two smartphone interfaces were developed, that aimed at allowing user-friendly 

access for individuals with upper limb impairment to core functionalities of smartphones. The 

interfaces were developed for two tongue-controlled assistive devices. I acknowledge the limited 

testing of the interfaces in my thesis, partly due to the Covid-19 pandemic that resulted in a 

shortening of my research period. Conclusions were reached based on only one healthy expert 

user’s interaction with the interface. I acknowledge that the inclusion of more subjects, especially 

from the target population, could result in different outcomes and that this is a limitation to my 

thesis, though the presented outcomes and results are the ones that have been currently obtained 

and represent a starting point for future work. 

To further ease the interaction of novice users with the proposed technology, a Tongue Training 

environment was developed, based on the studies on the biomechanical of the human tongue. The 

six Tongue Training environment could be used to test the hypotheses that training different 

movements of the tongue ensures enhancement in the strength and precision of motions: vertical 

and horizontal movement, elevation of the tongue to the palate and speed and dexterity in selecting 

a specific point on the screen. 

Preliminary functionality tests were conducted. An expert user tested the core functionalities of 

both devices and the corresponding applications. The observation of these interactions results in 

understanding the ways the applications should be improved for possible future developments. 

Some examples are addition of a second verification confirmation in the executing the SOS call, 

which has been implemented in a final iteration of the design. Furthermore, a feedback survey was 

distributed online, to assess the target population’s response to the proposed application. The 

responses suggested interest in the devices and applications. 

Additional user testing, to further analyze the impact of the design on the user experience, is 

necessary, together with implementation of supplementary functionalities to cater to diverse user 
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needs. The testing of the training hypotheses could also be an interesting development for this 

project. To ensure the most information to be gathered with the future user testing phases, the 

observations gathered with the preliminary test should be implemented and tested. In particular, 

the different layouts of the interface, especially regarding the disposition of the letters in the T9 

keyboard and the QWERTY keyboard, should be tested, to identify the best solution. Furthermore, 

the survey that was presented to the users could be adapted to in-person testing, to allow for a 

comparison between the response given to the applications after the user has experienced them, 

compared to the responses gathered after an online presentation of the solution.  

In conclusion, we expect that through the correct training, a user could reach the desired dexterity 

to make interacting with their tongue and the palate-mounted assistive device simple. This, 

combined with the developed custom-made interfaces, could be a solution that allows disabled 

individuals access to smartphones.  
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