
X-ray Studies of Ions at Liquid-liquid Interfaces in Model Systems for Solvent Extraction

BY

ZHU LIANG
B.S. China University of Geosciences, Wuhan, 2012

M.S. University of Illinois at Chicago, 2015

THESIS

Submitted as the partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Physics

in the Graduate College of the
University of Illinois at Chicago, 2020

Chicago, Illinois

Defense Committee:
Mark Schlossman, Chair and Advisor
Anjum Ansari
Christoph Grein
Vivek Sharma, Chemical Engineering
Ying Liu, Chemical Engineering

 ii

To my parents, who led me to the world of science and have been supporting me

unconditionally through the course of my life.

To my advisor, Mark Schlossman, who excels in scientific research while staying humble

in teaching, and who patiently guides me through this adventure.

 iii

TABLE OF CONTENTS

CHAPTER PAGE

LIST OF TABLES .. VI
LIST OF FIGURES ... VII
LIST OF ABBREVIATIONS .. XIII
SUMMARY ... XIV
1 INTRODUCTION .. 1

1.1 Nuclear Fuel Cycle and Solvent Extraction .. 1
1.2 Actinide Lanthanide Separation Process (ALSEP) ... 2
1.3 Ion Transfer Across the Interface ... 3

2 OVERVIEW OF X-RAY SCATTERING THEORY .. 5
2.1 X-ray reflectivity (XR) ... 5

2.1.1 X-ray Refractive Index and critical angle ... 5
2.1.2 X-ray Reflectivity from an Ideally Flat Interface ... 7
2.1.3 Reflectivity from a Graded Interface – The Parratt Method 9
2.1.4 Electron Density Profile of Multiple Interfaces .. 11

2.2 X-ray Fluorescence Near Total Reflection (XFNTR) .. 13
2.2.1 X-ray emission line ... 13
2.2.2 X-ray Fluorescence Near Total Reflection (XFNTR) .. 14

3 EXPERIMENTAL SETUPS AND DATA ANALYSIS .. 18
3.1 X-ray Liquid Surface Instrument and Sample Cell ... 18

3.1.1 X-ray Liquid Surface Reflectometer ... 18
3.1.2 Thermostat and solvent-extraction sample cell ... 21

3.2 Sample Preparation ... 22
3.3 Level and Flatten The Sample Interface. .. 24
3.4 Basic Alignment and 𝑸𝒛 Offset .. 28
3.5 Data measurement and analysis .. 33

3.5.1 Measuring XR Data With MW_Xreader software ... 33
3.5.2 Analyzing XR Data With XR Analyzer Software .. 33
3.5.3 Extract Fluorescence Data With Jupyter Notebook .. 36
3.5.4 Analyze Fluorescence With XFNTR Software ... 39

4 NANOSCALE VIEW OF ASSISTED ION TRANSPORT ACROSS THE LIQUID-
LIQUID INTERFACE .. 43

4.1 Introduction ... 43
4.2 Results ... 46
4.3 Discussion ... 53

4.3.1 Static Interfacial Structures. .. 53
4.3.2 Consequences for the Mechanism of Extraction. ... 54

4.4 Materials and Methods .. 59
4.4.1 Materials and Sample Cell. ... 59
4.4.2 Fraction Extracted. .. 59
4.4.3 X-Ray Reflectivity and XFNTR. .. 59
4.4.4 MD Simulations. ... 60
4.4.5 Acknowledgments ... 60

4.5 Cited Literature ... 61

 iv

4.6 Supporting Information ... 65
4.6.1 X-Ray Fluorescence near Total Reflection Analysis of Y Samples 65
4.6.2 Composition of the Head Group Region in the Inverted Bilayer 66
4.6.3 Analysis of Y Inverted Bilayer Structure .. 66
4.6.4 Simulation Results .. 70
4.6.5 Fraction of Protonated Head Groups in DHDP Monolayer 70
4.6.6 Literature Values for κ, λ, and Csp .. 71

5 PROBING THE INTERFACIAL ION DISTRIBUTION IN ALSEP BACK-
EXTRACTION USING X-RAY FLUORESCENCE .. 77

5.1 Abstract ... 77
5.2 Introduction ... 78
5.3 Materials and Methods .. 81

5.3.1 Solution Preparation .. 81
5.3.2 ICP Measurements .. 83
5.3.3 Measurement Methods .. 83
5.3.4 X-ray fluorescence Near Total Reflection (XFNTR) Technique 84

5.4 Results and Discussion ... 98
5.5 Conclusion .. 103
5.6 Cited Literature ... 104

6 CONCLUSIONS .. 110
7 CITED LITERATURE ERROR! BOOKMARK NOT DEFINED.
APPENDIX A ... 112

A.1 Code for extracting data points from a fluorescence spectrum .. 112
A.1.1 beamprofile.ipynb ... 112
A.1.2 mca_plot-automatic.ipynb ... 114
A.1.3 mca_profile.py .. 117
A.1.4 mca_routines.py .. 117
A.1.5 mca_plot_routines.py .. 119
A.1.6 fit_routine.py ... 122

A.2 Code for XFNTR software ... 124
A.2.1 main.py .. 124
A.2.2 mplwidget.py ... 125
A.2.3 fit_ref.py .. 125
A.2.4 flu_geometry_routines.py ... 130
A.2.5 flu_routines_new.py .. 131
A.2.6 mainwindow.py ... 138
A.2.7 flu_geometry_2.py .. 152

A.3 Python functions for other calculations ... 153
A.3.1 Critical Angle .. 154
A.3.2 Electron density for a solution with given mass density ... 154
A.3.3 Electron density for a solution with mass density not given 155
A.3.4 Electron density profile calculation .. 156
A.3.5 Calculate Fresnel Reflectivity ... 157
A.3.6 Contribution of given element to absorption coefficient for water solutioin 158
A.3.7 Interfacial roughness using Capillary Theory ... 158
A.3.8 Ratio of reflectivity to Fresnel reflectivity 𝑹/𝑹𝑭 ... 159

 v

APPENDIX B ... 161
APPENDIX C ... 165

C.1 Beam Profile measurement. Beamtime: 2019 July; beamline: APS15-IDC. 165
C.2 Fits for CRL lens .. 167

APPENDIX D ... 170
D.1 Other important data for sample height scan on HDEHP sample 170

D.1.1 2019 December ... 170
D.2 Other important data for [HEH]EHP sample ... 179

D.2.1 2018 November run .. 179
D.2.2 2019 April run ... 181

 vi

LIST OF TABLES

TABLE PAGE

Table 1. Absorption coefficiens and electron densities for typical biphase systems investigated in

this thesis. Beam energy at 20 keV (and 8.542keV for Eu emission line), temperature at 297 K. . 9

Table II. Energies and intensities of X-ray emission lines for the elements in this article. 14

Table III Main parameters in xfntr software as seen in Chapter 5. ... 41

Table IV. Best-fit parameters to the X-ray reflectivity data ... 52

Table V Bending rigidity 𝜅 from the literature ... 74

Table VI Line tension 𝜆 from the literature .. 75

Table 7. Typical sample compositions in the experiments ... 83

Table 8 Averaged X-ray results of ion distributions of four samples for three different aqueous

composition: pure water, 1mM HNO3 and 0.5M Citric, compared with ICP-MS results (below X-

ray restuls) ... 99

 vii

LIST OF FIGURES

FIGURE PAGE

Figure 1. Molecular structure of important chemicals in this thesis. Top left: HEH[EHP]; top right:

HDEHP; middle: DHDP, lower left: citric acid and lower right: DTPA. 3

Figure 2. Left: Refraction and reflection at the interface; right: Fresnel reflectivity (y-axis) as a

function of 𝑄𝑧 (x-axis). ... 6

Figure 3. (a) illustration of how electron density profile is divided into layers in Parratt method.

(b) Illustration of the propagation of electromagnetic wave with each layer. 10

Figure 4. Schematic electron transition process for emission lines from each shell. 13

Figure 5. (a)-(c) X-ray transmissivity, reflectivity and penetration depth as a function of

momentum transfer. (d)-(e) XFNTR data (dots) and analysis (line) in 𝑄𝑧 mode for samples with

metal ions at the interface, in aqueous phase and in organic phase. (d) shows the monolayer of

DHDP complexed with Y3+ at the interface that produces the data shown in (a) from an interface

between 10−4 M DHDP in dodecane and 3 × 10−7 M YCl3 in water (pH 2.5) at 28 °C. (e) shows

the XFNTR data for 50mM Eu(NO3)3 in aqueous phase and pure dodecane in organic phase, (f)

shows 10mM HDEHP loaded with 1mM Eu in organic phase and pure water in aqueous phase.

... 16

Figure 6. XFNTR data (dots) and analysis (line) in sample height mode for samples with metal

ions in aqueous phase (left), in organic phase as well at at the interface (right). 17

Figure 7. Illustration of the liquid surface reflectometer installed at APS 15-ID-C operated by

ChemMatCARS (top) and the beam reflection and displacement used to refine 𝛼𝑖 = 0 direction of

𝑘𝑖𝛼𝑖 (bottom). ... 19

Figure 8. Illustration of sample cell. ... 21

 viii

Figure 9 Illustration of leveling the sample. ... 25

Figure 10. Top: illustration of a transmission scan for a flat interface and an interface that is high

or low. Bottom: a screenshot of MW_XReader solfware showing an example of a series of

transmission scans while adjusting the interface. Y-axis is the beam intensity recorded by

Pilatus1M detector; x-axis is the sample height in mm. ... 26

Figure 11. (a) Sketch of sample height scan. (b) Illustration of the curved edge. (c) MW_Xreader

software showing a real sample scan data. ... 27

Figure 12. The reflectivity data for the interface of a water-dodecane whose oil phase contains

58mM HEH[EHP] and 1mM Eu, and water phase contains 0.5M Citric acid pH=3; The solid line

is fitted with a 𝛿𝑄𝑧 = 4 × 10 − 4	Å − 1. ... 29

Figure 13. Illustration of “oscan” in which the height and orientation of the outcoming arm pivots

around the center of the sample. The plot of intensity vs oh also shows a plateau whose center

indicates the real height of oh. .. 30

Figure 14. Dialogs for 𝐿2 (top) and 𝐿3 (bottom) calculation. .. 31

Figure 15. A screenshot for MW-XReader software. ... 33

Figure 16. The screenshot of MW_Xreader software ... 35

Figure 17. In the 2nd cell, choose the scan number you want to analyze. It should be a list containing

at least one scan. For example: scans = [312,315,318]. ... 37

Figure 18. In the 3rd cell, choose which spectrum to plot. For example, qz_indeces=[6,8,11]

will plot 7th, 9th, and 12th of all the spectra. errorbar=True will also plot error bars. You can

also choose to plot all the spectra by setting show_all=1. Note that this option overrides your

previous selection, so set show_all=0 if you want to selectedly plot. 37

Figure 19. Example of fitting Eu 𝐿𝛼 emission line into a four-gaussian model. 38

 ix

Figure 20. Cell 6 serves to adjust the first column of data to be saved, according to the type of the

scan. type_str defines the scan to be either a 𝑄𝑧-scan or an 𝑠ℎ scan. If it is a 𝑄 scan, 𝑄𝑧 values

will be copied to the first column as it is. If it is an 𝑠ℎ scan, the first column have to be changed to

sample height range defined through left, right and number of points through the code

above. .. 39

Figure 21. Dialogs for setting limits on varying parameters (left), and dialogs for setting varying

steps for the parameter for which you want to calculate the error bar. ... 42

Figure 22. Plots for the scattering geometry created by “flu_geometry_2.py”. 𝑥 axis is the

horizontal dimension and 𝑦 axis is height enlarged by 1000 times. Critical information such as

𝑄𝑧, incident angle 𝑠ℎ, curvature and footprint size are annotated to the lower right corner. 42

Figure 23 (A) The variation of X-ray reflectivity RðQz Þ with wave vector transfer Qz

(perpendicular to the interface) normalized to the calculated Fresnel reflectivity RFðQzÞ, as

measured from the interface between metal (Y, Er, Sr) chlorides in water (pH 2.5 for Y and Er, pH

5.3 for Sr) and 10−4 M DHDP in dodecane. Samples were prepared as described in the text and

measured at a temperature a few degrees below each sample’s adsorption transition To. The upper

three curves were shifted for clarity, although R=RF → 1 as Qz → 0 for all measurements. Curves

labeled ErHD and ErLD refer to high-density and low-density Er interfaces. Lines are the best fits

to the model described in the text. (B) Electron density profiles determined by the fits in A, where

the right three curves were shifted for clarity, although ρwater → 0.333e ·Å as z → − 20 Å for all

curves before shifting. The profiles are rounded as the result of capillary wave roughness of the

interface; the dashed line for Y shows an example of the underlying zero-roughness profile. (C)

X-ray fluorescence near total internal reflection (XFNTR) data (dots) and analysis (line) from an

interface between 10−4 M DHDP in dodecane and 3 × 10−7 M YCl3 in water (pH 2.5) at 28 °C.

 x

Error bars (±1 SD) are generally smaller than or similar to the size of the dots in A and C. (D-F)

Molecular representations of the interfacial structures with zero interfacial roughness. (D) Cartoon

of the measured monolayer with Sr(II). (E) Cartoon of a hypothetical maximum density inverted

bilayer. (F) Cartoon of the measured low-density (LD) inverted bilayer of DHDP with Er(III).

High-density (HD) inverted bilayers containing Y(III) or Er(III) consist of an intermediate

configuration of ion-extractant complexes to those shown in D and E, as described in the text. Red

and blue boxes identify the ionextractant complexes; red indicates the “up” orientation, and blue

is the “down” orientation. Panels E and F are modified and reprinted with permission from ref. 19

(Copyright 2014, American Chemical Society). ... 47

Figure 24. MD simulation results. (A) Snapshot of inverted bilayer from the last frame of the

simulation—water (Bottom, red and white), dodecane (Top, green), inverted bilayer: ions in blue,

dodecane that started in the top leaflet is shown in green, dodecane that started in the bottom leaflet

is colored cyan, DHDP molecules that started in the top leaflet are colored gold, and DHDP that

started in the bottom leaflet is colored black. Topmost layer of dodecane is ordered at the vapor

interface, which is not relevant for comparison with the results of X-ray measurements. A smaller,

disordered layer of dodecane exists immediately adjacent to the inverted bilayer. (B) MD electron

density profile averaged over the final 100 ns of the simulation: total density profile in solid green,

water in black, dodecane in red, Er ions in blue, and DHDP in dashed green. (C) Er coordination

showing only DHDP head groups and water molecules. .. 51

Figure 25. Domain budding mechanism. (A) A flat region of bare interface (dodecane above, water

below) becomes (B) spontaneously curved due to the adsorption of extractants and their

interactions with ions (not shown) at the interface. (C) The reduction in length of the domain edge

(dashed line) reduces the line tension energy, which balances the bending energy required to form

 xi

a spherical reverse micelle. (D) Separation of the micelle from the interface extracts the ions (not

shown) in the interior of the reverse micelle into the bulk organic phase. 57

Figure 26. Cartoon of the interaction of a bulky branched-chain extractant DEHP with (A) a

divalent ion (and two DEHP molecules) and (B) a trivalent ion (and three DEHP molecules) at the

liquid-liquid interface (represented by the line), which illustrates how the interaction with the ion

produces a spontaneous curvature of the interface. .. 58

Figure 27 (A) Example of fluorescence data with the Y Kα	X-ray emission line at ∼14.9 keV. (B)

Background fitting with an exponential decay function. (C) Peak fitting after background

subtraction. (D) Fit with Gaussian peak and exponential background. Error bars represent ±1 SD.

... 72

Figure 28. Number of oxygen atoms within 3 Å of the Er ion. The red line represents a 100-ps

sliding average. ... 72

Figure 29. Distribution of O–Er–O angles for the closest six O atoms surrounding each Er ion,

averaged over the 100-ns length of the trajectory. Atoms surrounding each ion were identified by

first calculating all Er–atom distances that are closer than 8 Å, and then selecting the closest six

(which were always oxygen atoms). ... 73

Figure 30. Radial distribution functions g(r) between (Left) Er and water oxygen, (Right) Er and

the four oxygen atoms bound to the DHDP phosphorus, where the black line represents the P–O

oxygen, the blue line represents the P=O oxygen, and the red and green lines represent the two

ester oxygen atoms. ... 73

Figure 31. Radial distribution function g(r) between Er and the DHDP phosphorus 74

Figure 32. Molecular structure of (a) HDEHP and (b) citric acid. ... 82

 xii

Figure 33 (a) Schematic of liquid-liquid interface with incident X-ray beam. (b) Illustration of the

form of the three terms in Equation (5.1) that represent fluorescence emitted by ions in three

different regions: bulk dodecane phase , bulk water phase and the interface between them. 85

Figure 34. (a) Schematic diagram of X-ray paths used for the calculation of the fluorescence

intensity. Red, brown and green rays strike the interfaces along the x-direction at values 𝑥′ < −𝑙/2,

−𝑙/2 < 𝑥′ < 𝑙/2 and 𝑥′ > 𝑙/2 , respectively where 𝑥′ indicates the position on the curved

interface and the x-axis is positive to the left of center. (b) detailed view of the geometry around

the position where red ray strikes the interface. Note that 𝑥′ < 0 in this region. The incident angle

and interfacial curvature are exaggerated for clarity. ... 88

Figure 35. XFNTR the citric acid sample containing 0.5 M citric acid and 0.1 mM DTPA in the

aqueous phase and 1 mM Eu 10 mM HDEHP in the oil phase. (a) 𝑄𝑧-scan; (b) 𝑠ℎ-scan at 𝑄𝑧 =

0.006	Å − 1; (c) 𝑠ℎ-scan at 𝑄𝑧 = 0.015	Å − 1. Vertical lines mark values discussed in the text.

... 96

Figure 36 (a) the 𝐿𝛼 and 𝐿𝛽 emission line of Europium and the fitted gaussian peaks. (b)

Representative X-ray fluorescence near total reflection (XFNTR) data as a function of 𝑄𝑧 from

the liquid-liquid interface between an n-dodecane solution of 1 mM Eu with 10 mM HDEHP and

different aqueous phases: pure water (red), 1mM HNO3 pH=3 solution (green) and 0.5M citric

acid pH=3 solution (blue). .. 99

Figure 37. (a) Example of normalized distribution of excess ions with different Debye length; (b)

Total fluorescence created by ions in the evanescent region. ... 103

 xiii

LIST OF ABBREVIATIONS

ALSEP Actinides-Lanthanides Separation Process

TALSPEAK Trivalent Actinide Lanthanide Separation with Phosphorus- Reagent
Extraction from Aqueous Complexes

XFNTR X-ray Fluorescence Near Total Reflection

XR X-ray Reflectivity

R/Rf X-ray Reflectivity Normalized to Fresnel Reflectivity

MD Molecular Dynamics

ED Electron Density

HDEHP Bis(2-ethylhexyl-phosphoric) acid

HEH[EHP] 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester

DTPA Diethylenetriamine pentaacetate

SC Steering Crystal

AMW Rinsing with Acetone, Methanol and Water in order

 xiv

SUMMARY

This thesis describes X-ray studies of interfacial phenomenon in solvent extraction processes,

specifically those using X-ray reflectivity and Fluorescence technique to investigate the metal ion

distributions at the liquid-liquid interface. The research described herein consists of two separate

sets of investigations: the first probes a model system for the forward extraction process and the

second probes a model system for the back extraction process. Forward extraction involves the

transport of ions from organic to aqueous phases and back extraction involves their transport in

the opposite direction, from aqueous to organic phases. Back extraction is often referred to as

stripping in the solvent extraction literature.

During solvent forward extraction, amphiphilic extractants assist the transport of metal ions

across the liquid-liquid interface from an aqueous ionic solution to an organic solvent.

Investigations of the role of the interface in ion transport challenge our ability to probe fast

molecular processes at liquid-liquid interfaces on nanometer-length scales. Recent development

of a thermal switch for solvent forward extraction has addressed this challenge, which has led to

the characterization by X-ray surface scattering of interfacial intermediate states in the extraction

process. Here, we review and extend these earlier results. We find that trivalent rare earth ions,

Y(III) and Er(III), combine with di-hexadecyl phosphoric acid (DHDP) extractants to form

inverted bilayer structures at the interface; these appear to be condensed phases of small ion-

extractant complexes. The stability of this unconventional interfacial structure is verified by

molecular dynamics simulations. The ion-extractant complexes at the interface are an intermediate

state in the extraction process, characterizing the moment at which ions have been transported

across the aqueous-organic interface, but have not yet been dispersed in the organic phase. In

contrast, divalent Sr(II) forms an ion-extractant complex with DHDP that leaves it exposed to the

 xv

water phase; this result implies that a second process that transports Sr(II) across the interface has

yet to be observed. Calculations demonstrate that the budding of reverse micelles formed from

interfacial Sr(II) ion-extractant complexes could transport Sr(II) across the interface. Our results

suggest a connection between the observed interfacial structures and the extraction mechanism,

which ultimately affects the extraction selectivity and kinetics.

Solvent extraction is a primary technology for separating actinide from lanthanide elements

in the recycling of used nuclear fuel. During solvent extraction, the distribution of the solvent

between two phases at equilibrium is determined by their relative solubility in those phases, while

the kinetics of phase transfer is believed to be driven by liquid-liquid interfacial process. Despite

the importance of understanding the kinetics of phase transfer and the corresponding role of the

liquid-liquid interface, there have not been any prior studies of solvent back extraction that probe

the liquid structure on the nanoscale. Numerous challenges are encountered in this sort of study,

including those posed by demands of using synchrotron X-rays to probe a deeply buried liquid-

liquid interface, the necessity to stabilize the ion distribution at the liquid-liquid interface, and the

extraneous signals produced by ions in the neighboring bulk phases. Here we report the

observation of the interfacial europium ion distribution in a model system for back extraction

process that mimics chemical conditions within the Actinide-Lanthanide Separation Process

(ALSEP). In addition, we report on advances in the X-ray technique used in this study, X-ray

Fluorescence Near Total Reflection (XFNTR), which were required to complete the study. The

system studied consists of the liquid-liquid interface between a dodecane solution and an aqueous

solution. The dodecane solution was loaded with trivalent europium ions Eu(III) complexed with

the extractant Bis(2-ethylhexyl-phosphoric) acid (HEH[EHP]). The aqueous solutions were either

pure water or contained nitric acid or citric acid. The concentrations of europium in the bulk

 xvi

solutions was measured by XFNTR and ICP-MS, while analysis of the XFNTR data also measured

the interfacial density of ions. These measurements detected Eu(III) ions at the interfaces with

nitric and citric acid solution, though larger density of ions were measured when nitric acid

solutions were used. These experimental results demonstrate the capability of XFNTR to

quantitatively characterize the presence of ions at the liquid-liquid interface in the presence of ions

in both adjoining bulk phases, which is a requirement for further in situ investigations of the role

of the liquid-liquid interface in the ALSEP process.

 1

1 INTRODUCTION

1.1 Nuclear Fuel Cycle and Solvent Extraction

The nuclear fuel cycle refers to the process of treating nuclear fuel from the initial stage of

the mining of uranium, to its use in the production of energy, to its disposal as nuclear waste.

Reprocessing the used fuel makes it available for a new round of nuclear reaction, hence closing

the nuclear cycle.

During the nuclear reaction inside a reactor, the fissile isotopes in nuclear fuel are

consumed and become fission products, most of which are radioactive waste. The nuclear cycle

will eventually come to a stop as fissile isotopes are consumed and fission products produced,

yielding spent nuclear fuel. For 3% low enriched uranium fuel, the spent fuel typically consists of

roughly 1% 235U, 95% 238U, 1% Pu and 3% fission products. Spent fuel and other high-level

radioactive waste are extremely hazardous. Safe management of these byproducts of nuclear power,

including their storage and disposal continues to be a challenging problem.

In addition to disposal, spent fuel can be reprocessed for reuse through solvent extraction

process, which focuses on the recovery of uranium, co-extraction of uranium and plutonium, minor

actinides (Np, Am, Cm) and some fission products (e.g., Cs and Sr).

One of the well-known solvent extraction processes is the PUREX process (plutonium

uranium reduction-extraction), which has been practiced at industrial scale in the nuclear industry

for over six decades. Other methods to extract uranium from the dissolved used fuel solution

includes the UREX process (Uranium Extraction), which uses acetohydroxamic acid (AHA) to

reduce plutonium in the acidic feed solution to the trivalent state, and to form unextractable

complexes of plutonium and neptunium, preventing tributylphosphate (TBP) from extracting them.

This process is followed by the separation of transmuting americium, because of the chemical

 2

similarity of americium and curium, their separation from each other is a very difficult approach.1

TALSPEAK, which is a robust one-step An/Ln separation process, is designed to solve this

problem. It relies on the strong complexation of actinides and lanthanides by an organic extractant

such as bis(2-ethylhexyl-phosphoric) acid (HDEHP), and the complexation of the actinides in the

aqueous phase by a complexant such as diethylenetriamine pentaacetic acid (DTPA), in the

presence of a buffer such as citric acid. 2

1.2 Actinide Lanthanide Separation Process (ALSEP)

In addition to the advanced TALSPEAK process, researchers at Argonne National

Laboratory (ANL) and Pacific Northwest National Laboratory (PNNL) have been investigating

new solvent formulations that combine the functional steps achieved by the TRUEX and

TALSPEAK processes into a single solvent extraction cycle.3 This approach “has led to the

development of two processes that involve combining a neutral extractant with an acidic extractant.

The neutral extractant serves to co-extract the trivalent actinides and lanthanides from HNO3

solutions (much like the TRUEX process), while the acidic extractant serves to hold the trivalent

lanthanides in the organic phase while the actinides are selectively stripped (i.e., back extracted)

into a carboxylate-buffered solution containing a polyaminocarboxyllate ligand (a so-called

reverse TALSPEAK process). One such approach is the Actinide Lanthanide Separation process

(ALSEP), which utilizes TODGA or TEHDGA as the neutral extractant and HEH[EHP] as the

acidic extractant. This new acidic complexing agent varies from conventional HDEHP in that one

of the diethylhexyl groups is bonded directly to the phosphorus atom, rather than through an ether

oxygen.”

 3

Figure 1. Molecular structure of important chemicals in this thesis. Top left: HEH[EHP]; top right:
HDEHP; middle: DHDP, lower left: citric acid and lower right: DTPA.

1.3 Ion Transfer Across the Interface

The transfer of metal ions from aqueous to organic phase and back underlies the process

of solvent extraction. It is assisted by the formation of supramolecular complexes with a soluble

organic extractant.4 Acidic organo-phosphorus extractants are used extensively and will be studied

in this thesis. They are amphiphilic molecules with a phosphoric acid head group that binds to

metal ions and hydrophobic alkyl tail groups that provide sufficient solubility in the organic phase.

After extraction into the organic phase, metal ions are found in supramolecular ion–extractant

complexes in the form of either coordination complexes or reverse micelles.5–7 Although the

interaction of metal ions with solutes at the organic–aqueous interface is likely to determine the

efficiency and kinetics of extraction,6 little is known about the mechanism of ion transport across

this interface. Conventional hydrodynamic analysis assumes that ions diffuse across the interface

on the nanoscale, although interfacial instabilities are predicted and observed on larger spatial

scales.7 In this thesis, we extend recent investigations of solvent extraction on the nanoscale to

 4

relate the observed interfacial intermediates to the extraction mechanism and efficiency, as well as

suggest a role for nonequilibrium interfacial instabilities on the nanoscale.

 5

2 OVERVIEW OF X-RAY SCATTERING THEORY

2.1 X-ray reflectivity (XR)

X-ray reflectivity (XR) probes the structure of interface by measuring the variation in

electron density along the interfacial normal, the so-called electron density profile, with angstrom

to sub-nanometer resolution. The electron density profile is the result of the arrangements of atoms

and molecules at the interface. X-ray reflectivity is used to probe interfaces with both ordered and

disordered arrangements of atoms and molecules. It is widely used in the fields of chemistry,

physics and materials science to characterize surfaces and interfaces.

An X-ray beam is reflected from an interface and its intensity measured. If the interface is

not well represented by a step function variation in the electron density along the interfacial

normal, then the reflected intensity will deviate from that predicted by Fresnel reflectivity. The

deviation can be analyzed to obtain the electron density profile of the interface.

The technique was first applied by Lyman G. Parratt in 1954,8 whose initial work explored

the surface of copper-coated glass, but since that time it has been extended to a wide range of both

solid and liquid interfaces.

2.1.1 X-ray Refractive Index and critical angle

The simplest example of X-ray reflectivity is the reflection from a flat planer interface

between vacuum and a single-component material. Assuming an X-ray beam of wave number

𝑘! = 2𝜋/𝜆 in vacuum is reflected from such an interface, then the value of the index of refraction

of 𝑛 can be calculated by

 F𝑘"GGG⃗ F/𝑘! = 𝑛 = 1 − 𝜁 + 𝑖𝛽 (2.1)

 6

where F𝑘"GGG⃗ F is magnitude of the wavevector of the transmitted beam. The real and imaginary part

of 𝑛 account for the phase shift and attenuation of X-ray by the material and are given by

𝜁 = 2𝜋𝜌#𝑟$/𝑘!%

 𝛽 = 𝜇/2𝑘!
(2.2)

where 𝑟$ = 𝑒%/(𝑚𝑐%) ≈ 2.818 × 10&'(m is the classical radius of an electron, 𝜌# is the average

electron density of the bulk, and 𝜇 is the linear absorption coefficient for that particular material.

Figure 2. Left: Refraction and reflection at the interface; right: Fresnel reflectivity (y-axis) as a
function of 𝑄) (x-axis).

For common aqueous and organic solutions and a typical X-ray energy of ~20keV

(wavelength 𝜆 = 0.62Å), 𝜁 ≈ 2 × 10&* and 𝛽 ≈ 10&+. In light of the fact that 𝛽 ≪ 𝜁, taking 𝛽 =

0 is often a good approximation. Therefore, Snell’s law corresponds to cos 𝛼, = 𝑛 cos 𝛼" where

𝑛 ≈ 1 − 𝜁 , and 𝛼, and 𝛼" are incident and transmitted angle, respectively. For small angles

Snell’s law can be rewritten as 𝛼,% ≈ 𝛼"% + 2𝜁. Clearly, the beam is totally reflected with incident

angle smaller than a threshold: 𝛼, ≤ 𝛼-. This threshold 𝛼- is critical angle and its expression is

given by

 𝛼- ≈ sin&'\]2𝜁^ ≈]2𝜁 (2.3)

whose value is typically of the order of milli-radians for 20keV X-ray. Wavevector is a natural

variable to describe X-ray scattering process. Here we define wavevector transfer as the difference

between the wavevector of reflected and incident beam as

 7

 𝑄) = F𝑘!GGGG⃗ − 𝑘.GGGG⃗ F = 2𝑘! sin 𝛼, (2.4)

Together with Eq. (2.2), The critical wave-vector transfer is thus given by

 𝑄- = 2𝑘! sin 𝛼- ≈ 4]𝜋𝑟$𝜌# (2.5)

 If the interface is between two different materials, rather than between one material and

vacuum, then the critical angle is estimated with Δ𝜁 = 𝜁" − 𝜁, instead of 𝜁 where 𝜁,," refers to 𝜁

for the materials containing the incident and transmitted beam. The critical wave-vector transfer is

then given by

 𝑄- ≈ 4]𝜋𝑟$Δ𝜌# (2.6)

where 𝜌# = 𝜌#," − 𝜌#,, is the difference of the electron density between two bulk materials. The

typical value of 𝑄- for the water-dodecane interface falls in the range 0.010 ~ 0.011 Å-1 . Table 1

lists the electron densities and the critical angles for typical liquid-liquid interfaces.

2.1.2 X-ray Reflectivity from an Ideally Flat Interface

As shown in Figure 2, the incident wave vector is 𝑘,, and the amplitude is 𝑎,. Similarly,

the reflected and transmitted wave vectors (at angle 𝛼") are 𝑘. and 𝑘", respectively, and amplitudes

are 𝑎. and 𝑎" . By imposing the boundary conditions that the wave and its derivatives at the

interface 𝑧 = 0, the amplitudes are related by

 𝑎, + 𝑎. = 𝑎0 (2.7)

 𝑎,𝑘, , +𝑎.𝑘. = 𝑎"𝑘" (2.8)

Taking the components of 𝑘G⃗ parallel and perpendicular to the surface yields respectively

 𝑎,𝑘 𝑐𝑜𝑠 𝛼, + 𝑎.𝑘 𝑐𝑜𝑠 𝛼, = 𝑎"(𝑛𝑘) 𝑠𝑖𝑛 𝛼" (2.9)

 −(𝑎, − 𝑎.)𝑘 𝑠𝑖𝑛 𝛼, = −𝑎"(𝑛𝑘) 𝑠𝑖𝑛 𝛼" (2.10)

from which one can readily derive Snell’s law for an incident wave at 𝛼,:

 8

 𝑐𝑜𝑠 𝛼, = 𝑛 𝑐𝑜𝑠 𝛼" (2.11)

and

Plugging in equation (2.1) and as 𝛼, and 𝛼" are small, equation (2.11) can be expanded to yield

𝛼,% = 𝛼"% + 2𝜁 − 2𝑖𝛽

= 𝛼"% + 𝛼-% − 2𝑖𝛽
(2.13)

If 𝛽 is neglected, we can see that Fresnel equation can be derived from equation (2.12):

𝑟 ≡
𝑎.
𝑎,
=
𝛼, − 𝛼"
𝛼, + 𝛼"

=
𝛼, − (𝛼,% − 𝛼-%)'/%

𝛼, + (𝛼,% − 𝛼-%)'/%
;	

𝑡 ≡
𝑎"
𝑎,
=

2𝛼,
𝛼, + 𝛼"

=
2𝛼,

𝛼, + (𝛼,% − 𝛼-%)'/%

(2.14)

In the context of reflection and refraction, wavevector transfers are more useful than regular

variables, one can rewrite equation (2.14) in terms of wavevector transfer:

𝑅2(𝑄)) = |𝑟|% = h
𝑄) −]𝑄)% − 𝑄-%

𝑄) +]𝑄)% − 𝑄-%
h
%

𝑇(𝑄)) = |𝑡|% = j
2𝑄)

𝑄) +]𝑄)% − 𝑄-%
j
%

(2.15)

where subscript F represents Fresnel; 𝑄) ≡ 2𝑘 𝑠𝑖𝑛 𝛼, ≈ 2𝑘𝛼, and 𝑄- ≡ 2𝑘 𝑠𝑖𝑛 𝛼- ≈ 2𝑘𝛼- is the

critical wavevector transfer derived in equation (2.6). Note that while the critical angle 𝛼- depends

on the X-ray wavelength, critical wavevector transfer 𝑄- is independent of it, 𝑅2(𝑄)) = 1 for

𝑄) < 𝑄-.

When 𝑄) ≪ 𝑄-, total external reflection (i.e., 𝑅2(𝑄)) = 1) takes place, whereas for 𝑄) ≫

𝑄-, equation (2.15) reduces to

𝑎, − 𝑎.
𝑎, + 𝑎.

= 𝑛
sin 𝛼"
sin 𝛼,

≈
𝛼"
𝛼,

 (2.12)

 9

 𝑅2(𝑄)) ∼ m
𝑄-
2𝑄)

n
3

 (2.16)

which indicates that Fresnel reflectivity falls off as 𝑅2(𝑄)) ∼ 𝑄)&3 (Figure 2).

Table 1. Absorption coefficiens and electron densities for typical biphase systems investigated in
this thesis. Beam energy at 20 keV (and 8.542keV for Eu emission line), temperature at 297 K.

Oil phase 𝜇 (cm-1) 𝜌!,# (Å-3) Aqueous phase 𝜇 (cm-1) 𝜌!,$ (Å-3) 𝑄% (Å-1) 𝛼% (mrad)
Dodecane
and other
dodecane
solutions*

0.273
(7.451)

0.2591 Pure water and
1mM HNO3

0.702
(26.58)

0.333 0.01023 0.505

50mM
Eu(NO3)3

1.015
(28.38)

0.335 0.01036 0.511

0.5M citric acid 0.762
(28.68)

0.348 0.01122 0.553

 * Other dodecane solutions include 10-4 DHDP solution, 10mM HDEHP/1mM Eu solution, they
all have the same electron density and absorption coefficient as pure dodecane to the accuracy
listed above.

Note that 𝛼" is a complex number to be derived from equation (2.13) for a given incidence

angle 𝛼,. By decomposing 𝛼" into its real and imaginary parts 𝛼" = Re(𝛼") + 𝑖Im(𝛼"), it can be

seen that the transmitted wave falls off with increasing depth into the material as

 𝑎"e,(56!)) = 𝑎"e,589(6!))e&5:;(6!))

The intensity therefore falls off with a 1/e penetration depth Λ given by

 Λ =
1

2𝑘 ⋅ Im(𝛼")
 (2.17)

2.1.3 Reflectivity from a Graded Interface – The Parratt Method

In real life experiments, the idealized interface is not realistic on the length scale probed

by X-ray. In fact, many chemical and biological system form a buried layer between the two

immiscible phases, in which case the average electron density varies along the surface normal at

an atomic length scale comparable to the X-ray wavelength.

 10

The solution to an arbitrary electron density profile 𝜌(𝑧) was first touched by Kiessig who

explored the X-ray propagation in a stratified medium.9 Later in 1954, Parratt developed a fully

dynamical theory of X-ray propagation in a series of layers separating two infinite thick medium.8

The typical way of slicing the electron density profile 𝜌(𝑧) into 𝐽 layers is shown in Figure

3(a). Layer 𝑗 in (b) represent 𝑗"< layer in this scenario, bounded by the two interfaces at 𝑧=&' and

𝑧=, with a thickness of 𝑑=. Layer 𝑗 = 0 represents the semi-infinite layer of lower bulk and 𝑗 = 𝐽 +

1 the semi-infinite vacuum or upper bulk.

Figure 3. (a) illustration of how electron density profile is divided into layers in Parratt method.
(b) Illustration of the propagation of electromagnetic wave with each layer.

 In general, there are two plan waves propagating within the 𝑗"< layer, one propagates

downward to the lower bulk denoted by 𝐸=&(𝑧), and one propagates upward to the top phase

denoted by 𝐸=>(𝑧). The total field at position 𝑧 are thus represented as a two-element matrix:

 𝑬=(𝑧) = z
𝐸=&(𝑧)
𝐸=>(𝑧)

{ = z
𝐴= 𝑒𝑥𝑝\−𝑖𝑘=,)𝑧^
𝐵= 𝑒𝑥𝑝\𝑖𝑘=,)𝑧^

{ (2.18)

where 𝐴= and 𝐵= are the magnitude of the plane wave 𝑒𝑥𝑝\∓𝑖𝑘=,)𝑧^ . Specifically, 	𝐸=\𝑧=^

represents the total field in 𝑗"< layer at its upper boundary 𝑧=, while 𝐸=&'\𝑧=&'^ represents the total

field in the neighboring (𝑗 − 1)"< layer at its upper boundary 𝑧=&'. The relation between these two

waves, given by the following equation

 11

 𝐸=&'\𝑧=&'^ = 𝐼=&',=𝐸=\𝑧=&'^ = 𝐼=&',=𝑷=𝑬=\𝑧=^ (2.19)

works as a building block of the Parratt method. Here 𝑃= is called the propagation matrix within

layer 𝑗, and 𝐼=&',= the interface matrix from layer 𝑗 to layer (𝑗 − 1). They are giving by

𝑃= = z
𝑒𝑥𝑝\𝑖𝑘=,)𝑑=^ 0

0 𝑒𝑥𝑝\−𝑖𝑘=,)𝑑=^
{

𝐼=&',= =
1

1 + 𝑟=&',=
�
1 𝑟=&',=

𝑟=&',= 1 �

(2.20)

 Applying equation (2.19) successively on all the neighboring layers allows us to construct

the relation of the electromagnetic fields between lower and upper bulk phase with

 𝐸!(𝑧!) = 𝑀𝐸?>'\𝑧?>'^

or

 �
𝐸!&(𝑧!)
𝐸!>(𝑧!)

� = �𝑀'' 𝑀'%
𝑀%' 𝑀%%

� z
𝐸?>'& \𝑧?>'^
𝐸?>'> \𝑧?>'^

{ (2.21)

where 𝑀 is given by successive products of propagation matrix and interface matrix for each layer:

 𝑀 = �𝑀'' 𝑀'%
𝑀%' 𝑀%%

� = 𝐼!,'𝑃'𝐼',%𝑃%…𝐼?&',?𝑃?𝐼?,?>' (2.22)

In view of the fact that the upward propagating wave in lower bulk phase is zero, i.e. 𝐸!>(𝑧!) =

0,the reflection coefficient and reflectivity are given by

𝑟 = 𝐸?>'> \𝑧?>'^/𝐸?>'& \𝑧?>'^

𝑅 = |𝑀%'/𝑀%%|%
(2.23)

2.1.4 Electron Density Profile of Multiple Interfaces

 Modeling the electron density profile have being widely investigated in the past century.10

Consider the simplest example that constrains the electron density values far from the interface to

 12

be 𝜌@ and 𝜌A, corresponding to the electron density of gas and liquid, respectively. The interfacial

profile then can be modeled as

 𝜌(𝑧) =
1
2 �\𝜌@ + 𝜌=^ + \𝜌@ − 𝜌A^𝑓

(𝑧)� (2.24)

where 𝑓 is a universal monotonic function such that 𝑓(±∞) = ±1. The most common profile, first

introduced by Buff, Lovett, and Stillinger,11 is the error function:

 	𝑓(𝑧) = erf m
𝑧
√2𝜎

n = �
1

√2𝜋𝜎
exp z−

𝑧′%

2𝜎%{ d𝑧′
)

&#
 (2.25)

where 𝜎 is the interfacial roughness, which can be calculated from capillary wave theory:12

 𝜎% =
𝑘B𝑇
2𝜋𝛾 ln

4√2
𝑄)Δ𝛽𝑟

 (2.26)

where 𝑘B is the Boltzmann constant, 𝑇 is the temperature in Kelvin, 𝛾 is the interfacial tension,

and 𝑟 is the average molecular radius. The angular acceptance of the detector is defined as ±Δ𝛽 =

ℎC/2𝐿C where 𝐿C is the distance from sample to slit 3 (Figure 7) and ℎC is the vertical opening of

slit 3.10 For a sample whose aqueous phase is pure water and organic phase dodecane with DHDP,

its roughness is 4.8 ± 0.1 Å. If a sample has metal ions, e.g. ErBr3, in the water phase, the

roughness of the interface can be as low as 3.8 ± 0.2 Å.13

In most cases of interfacial study, a single error function is insufficient to describe the

interfacial structure between two phases. For example, the adsorption of DHDP onto the water-oil

interface creates an electron density profile as a sum of multiple slabs. Equation (2.24) are then

extended to be the following to account for multiple interface:

 𝜌(𝑧) =
1
2� 𝑓(𝑧 − 𝑧,)(𝜌, − 𝜌,>')
D&'

,E!

+
𝜌! + 𝜌D

2 (2.27)

 13

where 𝑓(𝑧 − 𝑧,) is the error function given in Eq. (2.23); N is the number of internal interfaces;

𝜌, , 𝜌! and 𝜌D is the electron density of slab I, the bulk aqueous and the bulk organic phase,

respectively; 𝑧, and 𝑑, = |𝑧, − 𝑧,&'|are the vertical height and the thickness of each slab i,

respectively. The calculation of X-ray reflectivity for a given electron density profile described in

equation (2.27) is carried out with the Parratt method. Nonlinear least-square fitting is used to

determine the minimum number, 𝑁 − 1, required to fit the X-ray reflectivity data, as well as 𝜌,

and 𝑑, for each slab. The data was normalized to the Fresnel reflectivity 𝑅2(𝑄)) before the fitting.

2.2 X-ray Fluorescence Near Total Reflection (XFNTR)

2.2.1 X-ray emission line

When materials are exposed to X-rays with an energy greater than their ionization energy,

one or more electrons from the inner orbital in the component atom may be kicked out, leaving a

hole behind. The electronic structure of the atom then becomes unstable, and electrons in higher

orbitals fall into the lower orbital to fill the hole left behind. In such process, energy is released in

the form of a photon, the energy of which is equal to the energy difference of the two orbitals

involved. Thus, the material emits radiation, or fluorescence, which has the energy characteristic

of the atom present.14

Figure 4. Schematic electron transition process for emission lines from each shell.

 14

Table II listed the energies and intensities of the emission lines for Yttrium, Erbium,

Strontium and Europium used in this research. The value 100 represents the maximum intensity

an emission line can be for a specific element, while the absolute intensity varies between elements.

Since each atom has electronic orbitals of characteristic energy, and there are a limited number of

ways in which the fluorescence emission can happen, as shown in Figure 4. X-ray fluorescence is

a useful technique to distinguish contributions from different types of atoms. In addition, the

emission line intensity is directly related to the amount of ions/atoms present in the system, so it

can also be used to find the concentration of a particular element in the system. In this thesis, the

fluorescence technique is used to trace the Europium concentration around interface in a solvent

back-extraction system.

Table II. Energies and intensities of X-ray emission lines for the elements in this article.

Element Line Energy(keV) Relative intensity
Y Kα1 14.958 100

Kα2 14.883 52
Er Lα1 6.949 100

Lα2 6.905 11
Sr Kα1 14.165 100

Kα2 14.098 52
Eu Lα1 5.846 100

Lα2 5.817 11
2.2.2 X-ray Fluorescence Near Total Reflection (XFNTR)

XFNTR is a technique that measures the ion distribution for a given liquid-liquid sample

using X-ray fluorescence. The method takes advantage of the dramatic change of three quantities

¾ transmission coefficient, Fresnel reflectivity and penetration depth ¾ below and above the

critical angle. Those three quantities dominate the fluorescence signal produced by ions at the

interface, in bulk oil phase and in bulk water phase, respectively. The detail of the XFNTR

technique is described in Chapter 3.5.3 and Chapter 5.3.4.

 15

An example of a system that contains metal ions at the interface is one that contains

3 × 10&F M YCl3 in water and 10&3 M DHDP in dodecane. The head groups of surfactants in the

oil phase will complex with all metal ions and adhere to the interface, with metal ions merged in

water phase. The fluorescence created by those metal ions are dominated by the transmission

coefficient of the incident X-ray beam. The fluorescence data for such a sample as shown in Figure

5 (b) looks very similar to the plot of the transmission coefficient as a function of wavevector

transfer derived from equation (2.15) for the same system.

The ion distribution in the organic phase is characterized by Fresnel reflectivity 𝑅2(𝑄)) in

equation (2.15). Figure 5 (d) shows a sample containing 10mM HDEHP loaded with 1mM Eu in

its oil phase in contact with water. The fluorescence intensity produced by ions in organic phase

has two origins: the incident beam and the reflected beam. While the intensity of incident beam is

kept constant, the intensity of reflected beam follows Fresnel reflection, which equals to the

incident intensity below critical angle and tumbles down to zero above critical angle as shown in

Figure 5 (c). Therefore, the total fluorescence intensity features a 2:1 ratio below and above critical

angle.

Furthermore, fluorescence intensity produced by ions in aqueous phase is not only affected

by the transmission but also affected by the depth into the transmitted beam can reach into the

material which raises from 60 ∼ 80Å below critical angle to 1 ∼ 2	𝜇𝑚 around critical angle

(Figure 5 (e)). An example is a sample containing 50mM Eu(NO3)3 in its aqueous phase in contact

with pure dodecane as shown in Figure 5 (f).

 16

Figure 5. (a)-(c) X-ray transmissivity, reflectivity and penetration depth as a function of
momentum transfer. (d)-(e) XFNTR data (dots) and analysis (line) in 𝑄) mode for samples with
metal ions at the interface, in aqueous phase and in organic phase. (d) shows the monolayer of
DHDP complexed with Y3+ at the interface that produces the data shown in (a) from an interface
between 10−4 M DHDP in dodecane and 3 × 10−7 M YCl3 in water (pH 2.5) at 28 °C. (e) shows
the XFNTR data for 50mM Eu(NO3)3 in aqueous phase and pure dodecane in organic phase, (f)
shows 10mM HDEHP loaded with 1mM Eu in organic phase and pure water in aqueous phase.

 Finally, the overall fluorescence intensity also relies on the geometry of the sample cell

configuration, particularly on the position of the beam within the detection region. By changing

a

b

c

d

e

f

 17

the beam position, one can tune the weight of the fluorescence intensity from each phase. This can

be done by changing the sample height, which will be addressed in detail in Chapter 5.

Figure 6. XFNTR data (dots) and analysis (line) in sample height mode for samples with metal

ions in aqueous phase (left), in organic phase as well at at the interface (right).

 18

3 EXPERIMENTAL SETUPS AND DATA ANALYSIS

3.1 X-ray Liquid Surface Instrument and Sample Cell

Two facts related to the X-ray scattering at the liquid-liquid interface set high standard for

the instruments. One is that the weak interaction of X-ray with matter results very weak reflectivity

signals. Only X-ray synchrotron sources are able to produce X-rays with high enough intensity.

For example, the “third-generation” light sources produced at Advanced Photon Source (APS) at

Argonne National Laboratory (ANL) provide high brilliance and highly monochromatic X-ray

beams. All the experiments in this thesis are done at APS.

The other fact has to do with changing incident angles of X-ray shining striking the sample

surface. For solid sample, it is relatively easy rotate the sample while X-ray beam is kept fixed.

However, it is impossible to do so for liquid-liquid interface due to the nature of liquid surface

requiring it to be horizontal all the time. The reflectometer for liquid surface experiment has the

capability of changing the direction of X-ray beam while keeping the liquid sample still. The

incoming X-ray beam is reflected from a so-called steering crystal so that its path is bended off by

a small angle. Rotating the crystal in either parallel or perpendicular direction of the X-ray path

effectively results in the change in the direction of X-ray beam, thus changing the incident angle

with respect the horizontal plane.

3.1.1 X-ray Liquid Surface Reflectometer

All the experiments in this thesis use the reflectometer installed on the ChemMatCARS

beam line at APS (15-ID-C), which is designed specifically to study horizontal liquid interfaces.

An illustration of this reflectometer is shown in Figure 7.10

 19

Figure 7. Illustration of the liquid surface reflectometer installed at APS 15-ID-C operated by
ChemMatCARS (top) and the beam reflection and displacement used to refine 𝛼, = 0 direction of
𝑘GGGG⃗ (𝛼,) (bottom).

Before the experiment starts, a series of careful alignments can place the beam and the

sample at the right position, e.g. when incident angle 𝛼, = 0, beam points in horizontal direction

and sample height 𝑠ℎ = 0 . However, these are just provisional position and more accurate

measurements are needed to refine the zeros of 𝛼, and 𝑠ℎ. Assume that when beam is set horizontal

by the instrument, the nominal direction (when the machine thinks the beam is horizontal, i.e.

𝛼HIJ = 0) deviates from the true horizontal by 𝛼.$KA = 𝛿𝛼,L > 0 as sketched in Figure 7 (bottom).

The point where the beam would intercept the 𝑜𝑟-plane would be higher than SC level (SC stands

for steering crystal) by

 	𝛿𝑜ℎL ≈ (𝐿% + 𝐿C)𝛿𝛼,L (3.1)

 20

Likewise, the vertical position at which the sample intercept the beam would be also be higher

than SC level by an amount given by

 𝛿𝑠ℎL = 𝐿%𝛿𝛼,L (3.2)

In a condition where incident angle is nonzero, the instrument would bend down the beam by 𝛼HIJ

and lower the sample height by

 𝑠ℎ(𝛼HIJ) = 𝐿%𝛼HIJ (3.3)

in order for the beam to hit the interface, therefore the real sample height (with respect to SC level)

is 𝑠ℎ(𝛼HIJ) − 𝛿𝑠ℎL ≈ 𝐿%(𝛼HIJ − 𝛿𝛼,L). Since the reflected angle is the same as the incident

angle, the instrument would “think” that the reflected beam will intercept 𝑜ℎ-plane at an angle

𝛼HIJ, thus it will move 𝑜ℎ position to

 𝑜ℎ(𝛼HIJ) ≈ 𝐿%𝛼HIJ − 𝐿C𝛼HIJ (3.4)

However, the true angle at which the beam strikes a flat horizontal surface is 𝛼, = 𝛼HIJ −

𝛿𝛼,L, and the true reflected angle 𝛼M = 𝛼,. The actual position of 𝑜ℎ is lowered by

 𝑜ℎ(𝛼,) ≈ 𝐿%(𝛼HIJ − 𝛿𝛼,L) − 𝐿C(𝛼HIJ − 𝛿𝛼,L) + 𝛿𝑜ℎL (3.5)

From equation (3.4) and (3.5) we can calculate the offset in incident angle

 𝛿𝛼,L = [𝑜ℎ(𝛼,) − 𝑜ℎ(𝛼HIJ)]/(2𝐿C) (3.6)

from which 𝑄) offset is obtained 𝑄)
INN = 2𝑘!𝛿𝛼,L . The deviation 𝛿𝛼,L can be corrected by

centering the beam on 𝑜ℎ after it has been moved by

 𝛿𝑜ℎL ≈ (𝐿% + 𝐿C)[𝑜ℎ(𝛼,) − 𝑜ℎ(𝛼HIJ)]/(2𝐿C). (3.7)

The procedure used for correcting the 𝛿𝛼,L error will reset all of the motors that are involved in

tracking the incident arm, the sample position, and the detector.10

 21

3.1.2 Thermostat and solvent-extraction sample cell

X-ray surface scattering in this thesis requires a very small incident angle (~5×10-4 rad), so

it is critical for the interface to be flat. A good solution to this requirement is to increase the

dimension of the interface along X-ray path. However, it will also increase the volume of the upper

phase X-ray ray passes through, which will significantly increase the absorption of X-ray for

liquid-liquid sample. A customized sample cell is designed to balance the two competing effects.

Figure 8. Illustration of sample cell.

 As shown in Figure 8, the sample cell is made of Teflon-coated aluminum to increase the

thermal conductivity (part a). A glass tray placed at the bottom of the sample cell holds the water

phase, and the oil phase fills the rest of the space in the sample cell (part b-d). Two stirring motors

are mounted on the lid so their propellers (part p) can stir the oil phase. A magnetic stir bar in the

bottom of the glass tray serves to stir the water phase. The height of the glass tray is about the

same as the center line of the Mylar window (part j) so that X-ray passing through the window

reflects off the liquid-liquid interface. A tubing is inserted through the hole on the lid, one end

touching the bottom of glass tray and the other end connected to a syringe (part n) containing the

same aqueous solution. The whole sample cell sits on a tilting stage that is not drawn in the figure.

 22

The interface can be flattened by adjusting the volume of the water phase and changing the tilting

angle of the sample cell.

 A stainless steel collimator is mounted at the center of the lid (part e-g), the bottom of

which is a piece of Kapton film (part k). A vortex-60EX multi-cathode energy dispersive X-ray

detector (SII Nano Technology USA, Inc., part m) is placed in the cylindrical well of the collimator.

To minimize the absorption of X-ray by dodecane, the bottom of the well can be adjusted to as

low as ~0.5mm above the interface without altering the interfacial shape.

3.2 Sample Preparation

All the aqueous and organic solutions are prepared in advance either at UIC or in the wet

lab at APS sector 15ID.

At the beginning of each beamtime, the sample cell is thoroughly cleaned. Mylar window

and o-rings are replaced with new ones. To disassemble the sample cell, all the screws on the side

of the body are taken out and soaked in acetone for half an hour. Every piece of the sample cell

should be rinsed in the order of acetone, methanol and water (AMW) before drying under the cover

of Alphawipes (ITW Texwipe TX1009). The Kapton window at the bottom of the collimator is

replaced with a 3" × 3" piece of Kapton film (7 μm), which is pre-cleaned with AMW. Note that

this process is only required at the beginning of the beamtime, while for the following samples

during the same beamtime, the body and the lid of the sample cell only need to be cleaned rinsing

(AMW).

To reassemble the sample cell, the screws around the side window are tightened evenly to

prevent leakage. After being put back together, the sample cell is filled with chloroform and sits

for half an hour. Then the chloroform is replaced with Hexane and the sample cell is heated on a

heater until the Hexane boils. To clean the sample lid with water, the Kapton window is rinsed for

 23

at least two minutes to minimize its chance to capture charges. Failing to do so might cause the

Kapton film to catch charges that, when placed about 0.6 mm above the interface, will distort the

interface and make it hard to flatten.

Every glass tray sits in the acid bath for at least half an hour before being placed in the

sample cell. The acid bath is a beaker containing ~1600 mL sulfuric acid is used. For every

1000mL of sulfuric acid, there is 18.6g ammonium persulfate((NH4)2S2O8) added into the beaker

to enhance the dehydrating power of the bath. The glass tray is rinsed with water after being taken

out form the acid bath, then dried with high pressure nitrogen gas. The top of the glass tray is

wetted all over its edges with a few drops of dodecane. This step allows the interface to catch the

edge well thus makes it easy to flatten. Finally, a magnetic stir bar is placed in the glass tray before

loading the glass tray into the sample cell.

When the sample cell with a glass tray placed inside is mounted to the sample stage, about

45 mL aqueous phase is immediately added into the glass tray with a 25 mL pipette. The water

surface now should be slightly higher than then edge. The sample cell is then covered by

Alphawipe and sits for 15 minutes for the dusts, if any, in aqueous phase to come to the interface.

Next, the surface is aspirated by the tip of a 2mL Kimble disposable pipette connected to an

aspirator, until the surface is about the same level of the glass edge. Flowing this step, 100mL oil

phase is immediately loaded into the sample cell with a 50 mL pipette. After oil phase is added,

the tubing the a syringe filled with the same aqueous solution is mounted onto the lid with its tip

inserted all the way to the bottom of the aqueous phase. The syringe is then mounted to a Harvard

syringe pump, which is used to add or remove as little as 10μL of liquid each time to fine adjust

the height of the interface (see next section).

 24

3.3 Level and Flatten The Sample Interface.

Most X-ray measurements are performed at an incident angle of a few miliradians. This is

so small an angle that the footprint of a typical beam will span a few centimeters on the interface.

For example, the X-ray beam produced at Advanced Photon Source 15-ID-C has a shape of a

gaussian function whose full width half maximum is around 10μm. The minimum incident angle

for an XFNTR scan is 𝑄) = 0.005 Å-1, or 𝛼, = 0.247 mrad for 20keV. The footprint of the

incident beam at a flat interface is 40.67 mm, which takes half of the interface. Therefore, the

measured result is very sensitive to the flatness of the interface. However, the interface of a fresh

made sample is usually far from being flat. It is crucial to flatten the interface before measurement.

Usually it takes three steps to flatten the interface of a sample: visual leveling, transmission scan

and sample height scan.

The first step is visual leveling. In this step the leveling of the sample cell is adjusted with

the tilting stage, and the height of the interface adjusted with the syringe. As an example, the

interface is lower than the glass edge as shown in Figure 9. One needs to make sure the sample is

leveled, or placed horizontal, before adjusting the height of the interface. The distortion of the

reflection renders a black stripe at the edge of the interface. That strip will vanish as one adjusts

the tilting until the interface closer to the observer is leveled to the edge of the glass tray (Figure

9.b). The tilting stage now reads 𝑡'for its current angular position. The same adjustment can be

done for interface at the other edge of the glass tray (Figure 9.c) with reading 𝑡%. The average of

the two (𝑡' + 𝑡%)/2 is plainly the angular position for a leveled interface (Figure 9.a). The black

strip now appears again since the interface is lower than the glass tray to begin with. One can pump

in more liquid with the syringe until the black stripe vanishes.

 25

Figure 9 Illustration of leveling the sample.

Visual leveling flattens the interface coarsely with human efforts. In most cases, however,

The flatness required by X-ray measurement cannot achieved by visual leveling only. One should

rely on X-ray for further flattening, which involves two steps. The first step is the so-called

transmission scan, whose intensity drop resolves the height of the interface at a much finer scale.

In a transmission scan, X-ray is incident at 𝛼, = 0 as the sample moves from a lower position

where the full beam penetrates through organic phase, all the way up until the glass tray completely

blocks the beam. Figure 10 (top) shows the intensity recorded by Pilatus1M detector (Figure 7 top)

drops from maximum to zero within a few dozen micrometers of sample height change when the

beam starts to hit the sample. The height change for the intensity to vanish depends on the height

of the liquid-liquid interface with respect to the glass tray edge. For a perfectly flat interface, the

intensity drop is sharp and takes as little as 20μm (Figure 10 bottom, cyan), which is about the size

of the beam. However, the interface of a newly made sample is usually low, and the intensity

decreases slowly and spans ~50μm (Figure 10 bottom, blue). When this happens, one injectes 25

~50 μL aqueous solution into aqueous phase and take a transmission scan to examine the height

again. The adding of liquid followed by a transmission scan is repeated until the interface becomes

flat and the intensity drop becomes sharp (Figure 10 bottom, cyan). Then the sample is moved to

 26

a position where the beam is roughly half-cut by the interface (point 9 on the cyan curve) and reset

to zero.

Figure 10. Top: illustration of a transmission scan for a flat interface and an interface that is high
or low. Bottom: a screenshot of MW_XReader solfware showing an example of a series of
transmission scans while adjusting the interface. Y-axis is the beam intensity recorded by
Pilatus1M detector; x-axis is the sample height in mm.

 The transmission scan is followed by a sample height scan for an even finer adjustment.

The sample height scan is usually performed at 𝑄) = 0.06 Å-1, or the incident angle 𝛼,=2.96 mrad

(20keV). Given the size of the beam (FWHM) which is ~ 10μm, the footprint of the beam on the

interface is ~4 mm. Similar to transmission scan, the sample sets out at a lower position where the

whole beam penetrates the oil phase, and moves up until the sample completely blocks the beam.

 27

The motion is completed as a series of discrete steps Figure 11 (a). The reflected intensity at each

step can thus be plotted as a function of sample height. Since only the reflected beam is recorded

by the Pilatus1M detector, the plot features a plateau of non-zero intensity signal, whose width

characterizes the flat area of the sample by 𝑠ℎO,M"< = 𝑑 ∗ tan𝛼, where 𝑑 is the length of the flat

part of the interface in the X-ray direction and 𝛼, is the incident angle.

Figure 11. (a) Sketch of sample height scan. (b) Illustration of the curved edge. (c) MW_Xreader

software showing a real sample scan data.

 Plateau width is very sensitive to, therefore a good indicator of, the flatness of the interface.

Adding or removing as little as 10μm liquid from aqueous phase can lead to a change to the width.

For a perfectly flat interface with 𝑑 = 75.6 mm, which is the inner dimension of the glass tray,

𝑠ℎO,M"< can be as large as 219 μm. Although in practice, 200 μm is a reasonable target width

 28

indicating that the interface is flat enough for X-ray measurement, a width smaller than 200 μm

reveals no more information than that the interface is not flat. For example, from a sample height

scan with a width of 160 μm one cannot tell whether the interface is high or low, or whether the

sample cell is tilted in one direction or the other. A practical way is to discern that information

from the CCD image of the reflection at the edge of the sample, or the left corner of the sample

height scan. Figure 11 (b) shows the profile of the beam reflected from the edge of interface when

the interface is flat, low and high. For the flat interface, the reflected beam has the same shape as

the incident beam, so its CCD image is a dispersed flat dot. When the interface is lower than the

edge, the reflection off the edge will be higher than that of the main beam, thus the CCD image

shows an upward stroke from the main dot. Likewise, when the interface is higher than the edge,

the reflection will be lower at the edge and the stroke in the CCD image will be downward. Figure

11 shows the reflection of the downstream side only, but one can readily derive that this effect is

opposite for the upstream side. Combining this knowledge for both sample edge, one can tell the

height and tilting of the interface, thus adjust it by adding/removing/tilting the sample as one does

for visual leveling. Figure 11(c) shows a set of real sample height data loaded in the MW_Reader

software.

3.4 Basic Alignment and 𝑸𝒛 Offset

As discussed in Chapter 3.1.1, there is a discrepancy between the set value of 𝑄) and the

actual value. It is crucial that the difference, or 𝛿𝑄) = 𝑄)K-"QKA − 𝑄)R$", is measured and minimized

before the measurement of sample. Failing to do so will introduce a large offset of 𝑄) in the data

that will leave us uncertain about where the data point is in 𝑄) space.

 29

Figure 12. The reflectivity data for the interface of a water-dodecane whose oil phase contains
58mM HEH[EHP] and 1mM Eu, and water phase contains 0.5M Citric acid pH=3; The solid line
is fitted with a 𝛿𝑄) = 4 × 10&3	Å&'.

The typical value of 𝛿𝑄) are of the order of 10-4, either negative or positive. Figure 12

shows a plot of 𝑅/𝑅N with a fitted 𝛿𝑄) = 6.0 × 10&3 Å-1, which causes the spike near zero. The

practice of model optimization favors a fixed 𝛿𝑄) because more fitting parameters will add to the

complexity of the model. However, because the calculation of 𝛿𝑄) is based on the measurements

of many different variables, and each variable introduces an error bar that propagates and

magnifies through the chain of calculation, the measured 𝛿𝑄) ends up bearing a big uncertainty

thus the benefit of having it fixed becomes very limited. Moreover, the reflectivity data on

HEH[EHP] or HDEHP have few features as shown in Figure 12, therefore it is more dependent

upon minimizing the number of fitting parameters.

A more practical way is to first minimize the measured 𝛿𝑄), then fit the 𝛿𝑄) parameter as

well as other key fitting parameters while analyzing reflectivity data. The advantage of doing this

is one knows approximately what 𝛿𝑄) should be, which places an upper limit for the fitted value

of it. Chapter 3.1.1 elucidates the correction of 𝛿𝛼,L hence the correction of 𝛿𝑄), and the correction

relies on the measurement on 𝐿% and 𝐿C obtained by fitting the sample height and the height of the

outcoming arm measured different incident angles to equation (3.3) and (3.4). Figure 14 shows an

example of measuring 𝐿% and 𝐿C using “g_l2 & g_l3 calculation” dialog in the WM_Reader

 30

software (it can be found in the “Calculations” dropdown manu). The chosen angles are 𝑄) =

0.06, 0.09, 0.12	and	0.15	Å&' , or 𝛼HI.J = 2.96, 4.44, 5.92	and	8.88	mrad , respectively. For

each angle, a sample height scan and an “oscan” (explained below) are performed. The center

position for the sample height scan is the real sample height 𝑠ℎ(𝛼HIJ), and all four values are

typed in to the software (Figure 14, top) to fit to equation (3.3) from which 𝐿% can be obtained.

Figure 13. Illustration of “oscan” in which the height and orientation of the outcoming arm

pivots around the center of the sample. The plot of intensity vs oh also shows a plateau whose
center indicates the real height of oh.

The “oscan” is a combined scan by moving motor oh, which controls the height of the

outcoming arm, and moter or, which controls the rotation of the outcoming arm, together so that

the outcoming arm is always pointing toward the spot where the beam hit the interface. “oscan”

requires the beam hit the center of the sample, therefore one should perform a sample height scan

at the same incident angle first and relocate the sample at the center of the scan before moving

forward to an “oscan”. Each sample height scan above is followed by an “oscan” (with the sample

height centerd), whose center position is the real value of 𝑜ℎ(𝛼HI.J). All four center values are

 31

typed into the software (Figure 14 bottom) to fit to equation (3.4) from which 𝐿% − 𝐿C can be

obtained. Note that 𝑄) = 0.012	Å&'.

With newly measured 𝐿% and 𝐿C one readily calculates the offset 𝛿𝛼L hence 𝑄)
INN using

Eq.(3.6). However, setting 𝐿% and 𝐿C to the new values does not automatically eliminate 𝛿𝛼L.

One should go back to 𝑄) = 0.006	Å&' and make sure the sample is centered to the sample height

scan, then type “zero_angle” in the command line for final correction. The command calls a

procedure that utilizes equation (3.7), and it involves resetting certain motors.10 The procedure

updates with a new smaller 𝛿𝛼L, which can be calculated by repeating the steps above.

Figure 14. Dialogs for 𝐿% (top) and 𝐿C (bottom) calculation.

 As shown in Figure 7 (bottom), 𝐿% and 𝐿C measure the distance from the SC to the sample

center, and from the sample center to the rotating center of the outcoming arm, respectively.

 32

Therefore, their values may vary according to the position of the sample. Whereas 𝐿% + 𝐿C, which

measures the distance from the SC to the rotating center of the outcoming arm, is independent of

the position of the sample. However, the misalignment of the three-circle goniometer10 may place

the beam off the SC center and introduce an offset on 𝐿% + 𝐿C to begin with. In fact, the measured

value of 𝐿% + 𝐿C from the above correction has a variation of up to 20 mm, indicating the beam

might hit the SC somewhere rather than the center. Moreover, there is usually a clearance of ~3

mm for the sample to move freely on the sample stage, and the glass tray can also move freely by

~2mm inside a sample cell. As a result of all these freedoms as well as the fitting error, the

uncertainty of both 𝐿% and 𝐿C can be up to 10mm. A typical value ranges from 1235 mm to 1245

mm for 𝐿% and 535 mm to 545mm for 𝐿C.

 Correction to 𝐿% is also critical to XNFTR measurement too. The movement of the sample

height is calculated using Eq.(3.2). If 𝐿% is different from its actual value by 𝛿𝐿%, sample height

will be off by 𝛿𝑠ℎ = −𝛿𝐿%𝛼, , and the footprint position where the beam strikes the interface will

be off by 𝛿𝐿% as well. However, the above correction bears too big an uncertainty of 𝐿% to precisely

position the sample height. For an uncertainty of up to 10 mm in 𝐿%, the uncertainty in the footprint

position will be 10 mm, which is significant given the detector region is 12.7mm. One should do

the correction within the 𝑄) range for the XFNTR measurement, or 0.006~0.016 Å-1. The

suggested angle is 𝑄) = 0.006, 0.009, 0.012	and	0.015	Å&'. In some cases, the critical angle falls

very close to one of the chosen angles above. For example, the critical angle for the sample

containing 0.5M citric acid in water and 10mM HDEHP in oil is 0.0112 Å-1, which is very close

to 0.012 Å-1. One my substitute 0.013 Å-1 for it to stay away from critical angle. After the “zero

angle” correction, one can check the alignment is by performing sample height scan at 𝑄) =

 33

0.006	and	0.015. If the center of the scan is off the nominal position by less than 1 μm, the

alignment is considered successful. Sketch

3.5 Data measurement and analysis

3.5.1 Measuring XR Data With MW_Xreader software

X-ray scattering measurement as well as sample alignment can produce huge amount of

data, including up to a thousand CCD images, which makes it challenging to extract and visualize

data by hand as the experiment goes. All the data used in thesis is taken with a python software

called MW_XReader that can be obtained from the ChemMatCARS website.

Figure 15. A screenshot for MW-XReader software.

3.5.2 Analyzing XR Data With XR Analyzer Software

X-ray reflectivity analysis is carried out with the help of another python software:

Xray_analyzer that can be obtained from the ChemMatCARS website.

 34

 The software has four main functions: Reflectivity, Rod, Fluorescence and GIXOS. Only

Reflectivity is used in this thesis. Fluorescence part is migrated to a new software named “xfntr”

that will be discussed in the following section.

 The software is divided into three columns (Figure 16). The column on the far left serves

as a space to load data to the software, the middle area serves to plot data, fitting results and

electron density profile, while the right column is the parameter panel with which one can adjust

fitting parameters.

The upper box titled “Loaded Reflectivity Files” in the left column displays data files to be

fitted. Supported file format is a text file that contains 3 columns of values separated by

whitespaces (either Tab or Space) representing (𝑥, 𝑦, 𝑦𝑒𝑟𝑟). The name of such a file should end

with “_ref.txt” or “_rrf.txt”, or the software won’t recognize it. Imported data files appear in the

box as selectable items, and one can select multiple files at once. The data of the selected files will

appear as a series of dots in the upper plot area at the center of the software. The box in the middle

titled “Loaded Reflectivity Fit Files” could also display additional sets of data imported by the

user, as well as curves calculated from the fit parameters shown in the right most column.

Supported file format is the same as that required for the upper box, except that the 3rd column, or

yerr, is not required. The name of such a file ends with but not limited to “*_fit.txt”. The data of

the selected files in this box usually contains a lot more points, thus appear as solid lines in the

plot, and they don’t interfere with the fitting procedure. The lower box hosts electron density file

which can be sent to the lower plot area as a solid line. They should have same file format as

“*_fit.txt” files.

 The panel on the right is a place to change parameters.

 35

Figure 16. The screenshot of MW_Xreader software

Multi reflectivity fitting function can be invoked by clicking the “multifit” button on the

right. The panel appears as a separate dialog which allows the fitting of up to 5 data sets

simultaneously. This feature allows the interfacial electron density profile to be fitted more

accurately by fitting up to 5 data sets simultaneously. The sample configurations that underly those

data sets should share the same interfacial structure while having different electron density in

aqueous phase (i.e. different 𝜌!). For example, a liquid-liquid sample that has DHDPa adsorbed

onto the interface will generate a characteristic 𝑅/𝑅N data revealing the height (𝑑,) and density (𝜌,)

information of the DHDP layer at the interface. However, the 𝑑, and 𝜌, obtained from the fitting

are often correlated and subject to big error bars.

X-ray reflectivity method favors enhanced electron density contrast. The more the electron

density of a slab differs from each other, the better 𝑅/𝑅N data resolves the height and density of

each slab. One way to increase the electron density contrast between the two phase is to add

Iohexol into the aqueous phase. Iohexol, or Omnipaque in trade name, contains Iodine and is a

contrast agent used during X-rays.15 The Iohexol is very chemically inert in aqueous phase, and its

 36

water mixture has an electron density ranging from 0.3 Å-3 (none in the water) to 0.43 Å-3 (0.74

M Iohexol in the water) Repeating X-ray measurement on samples containing same oil

components but different fraction of Iohexol in water phase, one can obtain several data sets that

are expected to yield same 𝜌, , 𝑑, and 𝜌Dwith different 𝜌!. Fitting those data all together will place

a greater constraint on the parameter space, and eventually reduce the uncertainty of the fitting

result. The operation on this panel is exactly the same as single-fitting panel, except that you need

assign all the values of 𝜌! for the selected 𝑅/𝑅N data.

3.5.3 Extract Fluorescence Data With Jupyter Notebook

The immediate fluorescence data taken at APS 15-ID-C is the electronic response of the

detector to the incoming X-ray over a spectrum of energy. If the element of interest is present in

the system, the responses to its fluorescence will be strong at its emission energies. Figure 19

shows the response peaks for Europium at its 𝐿𝛼 (5.84 keV) and 𝐿𝛽 (6.45 keV) emission energy.

The 𝐿𝛼 peak is fitted to a Gaussian function, and the fluorescence intensity is calculated as the

product of the height and FWHM of the Gaussian function.

This is a Jupyter notebook that works on extracting the intensity from raw spectrum data

(Appendix A.1.2: “mca_plot-automatic.ipynb”). The “mca_profile.py” (see Appendix A) in a

specific beamtime folder is configured to reflect that beamtime: “work_dir” for the absolute path

of working directory; “vortex_dir” for the path where fluorescence raw spectrum is saved;

“mca_head” (the prefix of the mca file name) for the name of the spec file for that beamtime. (e.g.

“20191206_” for 2019Dec beamtime).

Once “mca_profile.py” is configured, one can go to “mca_plot-qutomatic.ipynb” and

execute all the cells from the top down. A few modifications are explained below:

 37

Figure 17. In the 2nd cell, choose the scan number you want to analyze. It should be a list containing
at least one scan. For example: scans = [312,315,318].

Figure 18. In the 3rd cell, choose which spectrum to plot. For example, qz_indeces=[6,8,11]
will plot 7th, 9th, and 12th of all the spectra. errorbar=True will also plot error bars. You can
also choose to plot all the spectra by setting show_all=1. Note that this option overrides your
previous selection, so set show_all=0 if you want to selectedly plot.

 The 4th cell and 5th cell plot out and fit the selected spectra, respectively. The 5th cell will

also plot out all the fitted curve for each spectrum, and one can view the fitting result and decide

whether to accept it. The cell implements a fitting procedure that can fit the data to a model

containing up to 4 gaussian peaks with a background of either linear type or exponential type.

Their parameters can be set in the gauss_model function in “fit_routine.py” (see Appendix A).

 38

Figure 19. Example of fitting Eu 𝐿𝛼 emission line into a four-gaussian model.

One should pick a clean peak—a peak that contains only the element of interest—to be

used for calculating the intensity. In the case shown in Figure 19, the 𝐿𝛼 peak instead of 𝐿𝛽 peak

is chosen because 𝐿𝛽 peak is contaminated by iron 𝐾𝛼 peak at 6.4keV. One will need to fit the

data to a multi-peak model whose positions can be set by changing g_center parameters in the

gauss_model function in the “fit_routine.py” file. Other fine controls such as the range, height

and width for gaussian peak, slope and offset for linear background, as well as amplitude and decay

for exponential background can also be achieved by manually changing the code of the function.

The fitting procedure calculates the intensity as the multiplication of the fitted height and

width of the emission peak (in this case the 𝐿𝛼 peak). Although the area calculated this way is not

the true area, it is calculated consistently for all the data. Therefore, its ratio to the true area can

counted in the calibration factor. Error bars are also calculated through error propagation. The

same calculation is done for the spectrum at each Qz, and the result along with error bar are

grouped as an entry and stacked as rows of a 2-D array, which can be exported to a text file. Once

satisfied with the fitting result, one can proceed to cell 6 to confirm the type of the scan being

analyzed as illustrated in Figure 20.

Lα Lβ

 39

Figure 20. Cell 6 serves to adjust the first column of data to be saved, according to the type of the
scan. type_str defines the scan to be either a 𝑄)-scan or an 𝑠ℎ scan. If it is a 𝑄 scan, 𝑄) values
will be copied to the first column as it is. If it is an 𝑠ℎ scan, the first column have to be changed to
sample height range defined through left, right and number of points through the code
above.

 The following cell plots out the final data as a function of 𝑄) or 𝑠ℎ. And the data is ready

to be saved at this stage.

3.5.4 Analyze Fluorescence With XFNTR Software

The software has three tabs in appearance: Data Extraction, Fluorescence and Geometry.

Only the second tab is active and consists the main function for this software. The first tab—Data

Extraction, which was covered in Chapter 3.5.3, and the third tab—Geometry, which will be

explained later, will be implemented into this software in the future in a collaborative manner.

a. Installation

The software can be downloaded and installed through pip install command. First

install anaconda and activate a python 3 environment, then type the command below:

 40

pip install xfntr

and it will install the software as well as all its dependencies into the Anaconda environment. To

execute the software, simply type xfntr in the command line while you are in your Anaconda

python 3 environment.

b. Fluorescence tab

Similar to Data analysis software covered in Chapter 3.5.2. Again, it is divided into three

columns, they are, from left to right, file, parameter and plot. The left most column hosts data and

fit files as described previously.(see page 33); the middle column is the fitting panel which

provides the values of all the parameters that characterize a fluorescence scan. The parameters fall

into two categories. System parameters preset the sample and are known and fixed in the fitting.

They include the energy and profile of the X-ray beam, its interaction with two bulk phases in

terms of electron density, absorption coefficient, and the detection range of the fluorescence

detector. Fitting parameters include all the unknown parameters to be optimized through the least-

 41

square fitting. Their corresponding symbols in the xfntr model described in Chapter 5 are listed in

Table III.

Table III Main parameters in xfntr software as seen in Chapter 5.

Name Symbol Name Symbol Name Symbol
Width 2.355𝜎S mu_top(inc) 𝜇,,I mu_top(flu) 𝜇$,I

Det_range 𝑙 mu_bot(inc) 𝜇,,O mu_bot(flu) 𝜇$,O
top_scale 𝐶' bot_scale 𝐶% top_con. 𝑁T𝑛I,A

Bg Constant sur_den. 𝜎,H" bot_con. 𝑁T𝑛O
Curvature 𝑅U Sh offset Δ𝑠ℎ Qz offset Δ𝑞)
L2 offset Δ𝐿%

The first line in fitting parameters allows user to toggle between 𝑄) scan mode and 𝑠ℎ scan

mode. The simulation range and fit range along with “L2 offset” will change accordingly while all

other parameters stay the same in each mode. The “Limits” button allows user to set lower and

upper limit on selected parameters.

Every parameter is preceded by a checkbox which, if checked, marks the parameter as

being fitted. Clicking “Fit” button will fit all the checked parameters to the data file highlighted in

the “Loaded Fluorescence Files” to the left. Be aware that only one file can be selected while

fitting. Clicking the “Simulate” button will calculate the theoretical fluorescence curve using the

current values of all parameters and send the result to the plot area to the right if the “show”

checkbox is checked.

If “Uncertainty Calculation” button is clicked, a dialog will pop up for users to set a

sequence of values for the parameter to be calculate. Parameter of interest will be fixed at those

values while all other parameters are fitted to minimum 𝜒%. A horizontal bar representing the target

𝜒% value is plotted whose intersection with the fitted 𝜒% curve will determine the left and right

error bar for that parameter.

 42

Figure 21. Dialogs for setting limits on varying parameters (left), and dialogs for setting varying
steps for the parameter for which you want to calculate the error bar.

(describe the fitting procedure)

c. Geometry plot

Another feature to add to the software is plotting out scattering geometry of the interface.

This feature is currently achieved by running “flu_geometry_2.py”. One can change the geometric

parameters in the file. The output is shown in Figure 22.

Figure 22. Plots for the scattering geometry created by “flu_geometry_2.py”. 𝑥 axis is the
horizontal dimension and 𝑦 axis is height enlarged by 1000 times. Critical information such as 𝑄),
incident angle 𝑠ℎ, curvature and footprint size are annotated to the lower right corner.

 43

4 NANOSCALE VIEW OF ASSISTED ION TRANSPORT ACROSS THE LIQUID-LIQUID

INTERFACE

This chapter was originally a paper published on PNAS under PNAS license (PNAS 2019

116 (37) 18227-18232). According to PNAS copyright policy (Appendix B), author has the right

to include this paper into this thesis.

4.1 Introduction

The transfer of metal ions from aqueous to organic phases underlies the process of solvent

extraction. Ongoing developments of this process are aimed at optimizing the efficiency and

kinetics of the separation and recovery of base, rare earth, and precious metals (1), as well as the

reprocessing of spent nuclear fuel and nuclear waste (2). In the latter case, for example, the

efficient separation of trivalent minor actinides (Am/Cm) from lanthanides in spent nuclear fuel

would reduce the demands imposed on the geological repositories proposed for the long-term

storage of nuclear waste (2). Although the interaction of metal ions with solutes at the organic-

aqueous interface is likely to determine the efficiency and kinetics of extraction (3), little is known

about the mechanism of ion transport across this interface. Conventional hydrodynamic analysis

assumes that ions diffuse across the interface on the nanoscale, although interfacial instabilities

are predicted and observed on larger spatial scales (4). Here, we extend recent investigations of

solvent extraction on the nanoscale to relate the observed interfacial intermediates to the extraction

mechanism and efficiency, as well as suggest a role for nonequilibrium interfacial instabilities on

the nanoscale.

Metal ion extraction is assisted by the formation of supramolecular complexes with a soluble

organic extractant (5). Acidic organo-phosphorus extractants are used extensively and will be

studied here (1). They are amphiphilic molecules with a phosphoric acid head group that binds to

 44

metal ions and hydrophobic alkyl tail groups that provide sufficient solubility in the organic phase.

After extraction into the organic phase, metal ions are found in supramolecular ion-extractant

complexes in the form of either coordination complexes or reverse micelles (6-8).

Studies of the kinetics of metal ion extraction indicate that ions and extractants interact at or

near the organic-aqueous interface (3, 9). Different authors have suggested that the extractant binds

metal ions either in the aqueous phase near the interface, or in the organic phase near the interface,

or at the interface itself. For instance, the mass transfer with chemical reaction (MTWCR)

mechanism (9) postulates that acidic extractants are transferred into the aqueous boundary layer

near the organic-aqueous interface, where they are deprotonated and interact with metal ions to

form aqueous ion-extractant complexes, which subsequently diffuse into the organic phase.

MTWCR has achieved partial success in describing the extraction kinetics of divalent metal ions

with organo-phosphorus extractants (10, 11). On the other hand, it has been suggested that when

the interface is occupied by stronger amphiphiles that exclude the extractants, the extractants in

the organic phase near the interface can form ion-extractant complexes when fingers of water that

contain metal ions reach into the organic phase (12). Somewhat between these two cases, there is

evidence that the amphiphilic character of extractants leads to their interaction with ions directly

at the interface (13-16); these studies include the suggestion that reverse micelles of extractants

that enclose metal ions can form at the interface (17). Largely missing from these investigations

has been the application of experimental techniques that can locate and identify metals, extractants,

and ion-extractant complexes in the liquid-liquid interfacial region, although recent X-ray and

neutron scattering studies have begun to do just that (18-22).

Here, we use interface-sensitive X-ray scattering and fluorescence techniques to locate and

identify interfacial species in model extraction systems. The challenge of measuring fast ion

 45

transport processes with slow X-ray techniques formerly led us to develop a thermal process that

switches between fast and slow rates of extraction (19). This allowed us to characterize

intermediate states in the extraction process of a trivalent lanthanide Er(III) and a divalent main

group ion Sr(II). One such state consisted of supramolecular erbium-extractant complexes

condensed into an inverted bilayer structure in the form of a two-dimensional layer of Er ions

sandwiched between two layers of extractant (19). These Er-extractant complexes were formed at

the dodecane-water interface within the timescale of minutes used to toggle the thermal switch,

and possibly much faster. Similar experiments with strontium ions revealed, instead, a

conventional monolayer of extractants with bound Sr(II) ions located on the aqueous side of the

interface (20), with no obvious route to transfer ions into the organic phase. Nevertheless, toggling

the thermal switch led to extraction of both types of ions, although a larger fraction of erbium than

strontium was extracted.

The unexpected structure of inverted bilayers at an organic solvent-water interface is

confirmed by the X-ray studies presented here of a model solvent extraction system with Y(III)

cations. The inverted bilayer structure contains hydrophobic alkyl tail groups in direct contact with

water—illustrated later in Figure 23—instead of the conventional arrangement of amphiphiles in

which polar head groups are in contact with water. The stability of this unconventional interfacial

structure is confirmed by molecular dynamics (MD) simulations. Comparing the results from these

three ions, Y(III), Er(III), and Sr(II), suggests that the electronic configuration of the ion is

secondary or irrelevant, whereas the ion charge or oxidation state plays the primary role in

determining the extraction mechanism. The form of the interfacial ion-extractant complexes

provides insight into the mechanism of ion transport across the interface, which is discussed in the

context of dynamical distortions of the interface.

 46

In recent years, MD simulations have clarified the role of interfacial fluctuations in the case

of ion transport across bare electrochemically controlled interfaces, although the mechanism of

transport under these conditions remains under investigation (23). The degree to which interfacial

fluctuations play an important role in the extractant-assisted ion transport processes discussed here

is also an open issue.

4.2 Results

Our experimental system consists of a macroscopically flat liquid-liquid interface between a

dilute, acidic aqueous solution of metal chlorides [where the metal ion is Y(III), Er(III), or Sr(II)]

and a dilute organic solution of the extractant bis(hexadecyl) phosphoric acid (DHDP)

([CH3(CH2)15O]2POOH) (10−4 M) in n-dodecane [CH3(CH2)10CH3]. In the absence of metal ions,

the extractant DHDP will form a high-density, ordered monolayer at the dodecane-water interface

below an adsorption temperature T0 = 38.2 °C, which varies with pH (19). Under these conditions,

DHDP molecules are close-packed with the long axis of the molecule oriented perpendicular to

the interface, similar to those shown in Figure 23D. As the temperature is raised above T0, DHDP

desorbs from the interface, leaving behind a disordered partial monolayer (19). When metal ions

are present, we have shown previously that changing the temperature from above to below to

retards the passage of ions from the water to the dodecane phase, thereby acting as a thermal switch

for ion extraction; similarly, the rate of extraction is enhanced if the temperature is raised from

below to above T0 (19). By preparing a model extraction system under conditions with normal

rates of extraction (T > T0), then reducing the temperature to below T0 to retard the rate of

extraction, ion-extractant complexes formed in the midst of extraction when T > T0 can be trapped

at the interface when T < T0. This metastable interfacial state is then characterized with X-ray

reflectivity and X-ray fluorescence near total reflection (XFNTR).

 47

Figure 23 (A) The variation of X-ray reflectivity RðQz Þ with wave vector transfer Qz
(perpendicular to the interface) normalized to the calculated Fresnel reflectivity RFðQzÞ, as
measured from the interface between metal (Y, Er, Sr) chlorides in water (pH 2.5 for Y and Er, pH
5.3 for Sr) and 10−4 M DHDP in dodecane. Samples were prepared as described in the text and
measured at a temperature a few degrees below each sample’s adsorption transition To. The upper
three curves were shifted for clarity, although R=RF → 1 as Qz → 0 for all measurements. Curves
labeled ErHD and ErLD refer to high-density and low-density Er interfaces. Lines are the best fits
to the model described in the text. (B) Electron density profiles determined by the fits in A, where
the right three curves were shifted for clarity, although ρwater → 0.333e ·Å as z → − 20 Å for all
curves before shifting. The profiles are rounded as the result of capillary wave roughness of the
interface; the dashed line for Y shows an example of the underlying zero-roughness profile. (C)
X-ray fluorescence near total internal reflection (XFNTR) data (dots) and analysis (line) from an
interface between 10−4 M DHDP in dodecane and 3 × 10−7 M YCl3 in water (pH 2.5) at 28 °C.
Error bars (±1 SD) are generally smaller than or similar to the size of the dots in A and C. (D-F)
Molecular representations of the interfacial structures with zero interfacial roughness. (D) Cartoon
of the measured monolayer with Sr(II). (E) Cartoon of a hypothetical maximum density inverted
bilayer. (F) Cartoon of the measured low-density (LD) inverted bilayer of DHDP with Er(III).
High-density (HD) inverted bilayers containing Y(III) or Er(III) consist of an intermediate

C

 48

configuration of ion-extractant complexes to those shown in D and E, as described in the text. Red
and blue boxes identify the ionextractant complexes; red indicates the “up” orientation, and blue
is the “down” orientation. Panels E and F are modified and reprinted with permission from ref. 19
(Copyright 2014, American Chemical Society).

Figure 23A shows X-ray reflectivity data, which measures the electron density profile of

the liquid-liquid interface (Figure 23B), and cartoons that represent molecular ordering at the

interface. Two different structures were measured for multiple Er samples: a structure labeled ErHD

that contains a high-density of Er ions and one labeled ErLD with a low density of Er ions. Inverted

bilayer structures at the interface (Figure 23E and F) can be identified by a unique experimental

signature in the low 𝑄) region of the data, as exhibited in Figure 23A by the Y(III) and Er(III)

samples. As shown previously, X-ray reflectivity data of this form cannot be due to a conventional

monolayer, bilayer, or trilayer with DHDP head groups exposed to the water subphase (19).

Instead, the head groups are located in the middle of an inverted bilayer (Figure 23 E and F). As

shown in Figure 23B for the Y and ErHD structures, the peak in electron density in the middle of

the bilayer structure is a region of high electron density, which is due to the location of electron-

dense components [phosphoric acid head groups and Y(III) or Er(III) ions]. The uneven shoulders

of this peak represent the alkyl chains of the two DHDP layers. The absence of a peak just at the

interface, at 𝑧 ≈ 0, indicates an absence of DHDP head groups that are directly exposed to the

water subphase, in contrast to the conventional expectation that polar head groups of amphiphiles

should interact with water. On the other hand, measurements of systems with Sr(II) exhibit a

conventional monolayer (Figure 23D) with a peak in the electron density at 𝑧 ≈ 0 representing Sr

ions bound to DHDP head groups exposed to the water subphase, as well as a shoulder representing

tail groups exposed to the dodecane (Figure 23B).

Quantitative analysis of the X-ray reflectivity utilizes a representation of the interfacial

structure in terms of slabs of uniform electron density, an example of which is shown in Figure

 49

23B as a dashed-line profile, which is roughened by capillary waves to produce the solid lines in

Figure 23B. Each slab represents a different region of the interfacial layer, such as the head groups

or tail groups. Table IV shows that most of the tail group electron densities vary from 0.30 to 0.33

𝑒!Å!" , values that are characteristic of all-trans close-packed crystalline or rotator phases of

alkanes (24). Exceptions include the terminal portion of DHDP tail groups in the upper leaflet (in

contact with dodecane), which has a lower electron density that reveals molecular disorder near

the end of the alkyl chains (24). The other exception is the lower density liquid-like tail groups

observed in the lower leaflet of the ErLD measurement. Table IV and Figure 23B show that inverted

bilayers containing Y ions were structurally similar to the high-density ErHD inverted bilayers.

The tail group thickness of the DHDP monolayer bound to Sr(II) is 20 ± 1 Å, given by the

sum of the thicknesses of slabs 2 and 3, which matches the all-trans length, 20.6 Å, of the DHDP

tail groups. This indicates that the tail groups are arranged as shown roughly in Figure 23D,

although the disorder near the terminal methyl group is not shown. Similar thickness values are

observed for the lower leaflet of the Y and ErHD inverted bilayers. Smaller thicknesses of 18-19 Å,

as observed for the low-density Er inverted bilayer, may correspond to chains tilted on the order

of 25° from the interfacial normal. Even smaller values, as observed for slab 3 of the Y and ErHD

inverted bilayers, require a fourth slab to account for the rest of the tail group. In these cases, good

fits to the data require four slabs.

Additional information on the ionic content of the interface is provided by XFNTR, which

measures the total number of a specific ion (Y, Er, or Sr) per interfacial area (25, 26). Although

ions within a distance of roughly 15 nm from the interface can contribute to this measurement, the

small bulk concentration of ions (∼10−7 M for Y and Er solutions) limits the measurable signal to

those ions within the interfacial structure. The line shown in Figure 23C is the result of data

 50

analysis described in Appendix, which yields the interfacial area per Y, AY = 68 ± 3 Å2. Previously

published values include 81 ± 5 Å2 for the low-density ErLD inverted bilayer and 90 ± 9 Å2 for the

Sr monolayer (at pH 5.3) (19, 20). By combining XFNTR measurements of the area per ion with

X-ray reflectivity results, the analysis described in Appendix, shows that the head group region of

the inverted bilayer contains enough electrons to account for three DHDP head groups for each

metal ion (Y or Er) plus roughly 0 to three water molecules.

A molecular interpretation of the Y inverted bilayer is the result of modeling that is

constrained by the measured values of electron density and thickness of each slab (from X-ray

reflectivity), the measured area per Y ion (from X-ray fluorescence), and the constraint that the

upper and lower leaflets must occupy equivalent interfacial areas. An earlier analysis, subject to

similar constraints, of the low-density inverted bilayer of Er showed that it is equivalent to a

condensed state of charge-neutral ion-extractant complexes Er(DHDP)3(H2O)m (19), where the

structure of the complex is shown in the blue box in Figure 23F. Here, we assume that the Y

inverted bilayer comprises charge-neutral ion-extractant complexes Y(DHDP)3(H2O)m. If all

complexes were oriented down (blue boxes in Figure 23 E and F) as in the low-density Er bilayer

(Figure 23F), then the area per Y would be twice the area per close-packed DHDP, AY ≈ 79

Å2(Analysis of Y Inverted Bilayer Structure). If complexes alternate their orientation (with the

same number of up and down orientations, as illustrated in Figure 23E), then the area per Y would

be 1.5 times the area per DHDP, AY ≈ 59 Å2. The intermediate value measured by XFNTR for the

Y inverted bilayer, AY = 68 ± 3 Å2, suggests an intermediate arrangement. Proceeding beyond this

point in the analysis requires an assumption about the mixing of dodecane and DHDP tail groups

because our X-ray techniques do not distinguish between them. If we assume that the lower leaflet

consists of only DHDP tail groups, but that dodecane can mix into the upper leaflet, then the

 51

analysis presented in Analysis of Y Inverted Bilayer Structure, shows that there are 1.5(5)

dodecane molecules for each DHDP molecule in slabs 3 and 4 that model the upper leaflet and the

fraction of complexes pointing down is 0.3(1). Although other assumptions about the location of

dodecane within the inverted bilayer lead to different numerical values, the analysis shows that the

structure of the Y inverted bilayer can be described as a condensed phase of ion-extractant

complexes at the interface. Although the lack of XFNTR data for the observation of the high-

density Er inverted bilayer does not allow for this type of analysis, the similarity of its electron

density profile to the Y system suggests that it too can be described as a condensed phase of

interfacial ion-extractant complexes.

Figure 24. MD simulation results. (A) Snapshot of inverted bilayer from the last frame of the
simulation—water (Bottom, red and white), dodecane (Top, green), inverted bilayer: ions in blue,
dodecane that started in the top leaflet is shown in green, dodecane that started in the bottom leaflet
is colored cyan, DHDP molecules that started in the top leaflet are colored gold, and DHDP that
started in the bottom leaflet is colored black. Topmost layer of dodecane is ordered at the vapor
interface, which is not relevant for comparison with the results of X-ray measurements. A smaller,
disordered layer of dodecane exists immediately adjacent to the inverted bilayer. (B) MD electron
density profile averaged over the final 100 ns of the simulation: total density profile in solid green,
water in black, dodecane in red, Er ions in blue, and DHDP in dashed green. (C) Er coordination
showing only DHDP head groups and water molecules.

We performed classical MD simulations to investigate the stability of the inverted bilayer

structure. Figure 24A shows the last frame of this simulation, and Figure 24B shows the time-

 52

averaged electron density profile. Both illustrate the qualitative features of the measured electron

density profiles of the high-density inverted bilayers containing Y and Er (Figure 24B), namely, a

high-density peak from the head groups and metal ions, with shoulders from the DHDP tail groups

in the upper and lower leaflets of the bilayer. The experimental electron density profiles appear

more disordered because they are roughened by capillary wave fluctuations of the interface (𝜎 in

Table IV), which have a much smaller effect on profiles calculated from small simulation boxes.

This roughening will smear the dips in electron density at the bottom and top of the bilayer

observed in the simulations, but not observed in the experiments.

 Table IV. Best-fit parameters to the X-ray reflectivity data
Ion 𝜎#(Å) 𝑑#(Å) 𝜌#(𝑒!Å!") 𝑑$(Å) 𝜌$(𝑒!Å!") 𝑑"(Å) 𝜌"(𝑒!Å!") 𝑑%(Å) 𝜌%(𝑒!Å!")

Y 3.1(2) 21.5(2) 0.303(1) 6(1) 0.42(1) 16(1) 0.332(1) 9(1) 0.265(2)

ErHD 3.4(3) 20.6(1) 0.318(1) 8(2) 0.40(2) 15(2) 0.319(5) 5(2) 0.25(1

ErLD 3.6(3) 18.9(7) 0.279(3) 9(3) 0.33(1) 18(3) 0.324(3) ¾ ¾

Sr 4.3(2) 4(2) 0.6(1) 17(1) 0.333(2) 3(1) 0.21(3) ¾ ¾

Fits to data from interfaces between 10−4 M DHDP in dodecane and (line 1) 3 × 10−7 M YCl3 in
water (pH 2.5) at 28 °C; (line 2) 10−7 M ErCl3 in water (pH 2.5) at 28 °C with a high density of
Er ions; (line 3) 5 × 10−7 M ErBr3 in water (pH 2.5, adjusted with HBr) at 28 °C (19) with a low
density of Er ions; (line 4) 10−5 M SrCl2 in water (pH 5.3, adjusted with acetate buffer) at 36.7
°C (20). The electron densities of the bulk aqueous and organic phases are 0.333𝑒!Å!" (28 °C) and
0.2574 𝑒!Å!", respectively. The thicknesses of the four slabs (d1, d2, d3, and d4), the electron
densities of the slabs (ρ1, ρ2, ρ3, and ρ4), and the interfacial roughness σ are fitting parameters. For
the Y and Er samples: slab 1 represents the DHDP tail groups of the lower leaflet (in contact with
water) of the inverted bilayer, slab 2 represents the DHDP head group region that includes metal
ions and possibly water, and slabs 3 and 4 represent the tail groups of the upper leaflet (in contact
with dodecane). For the Sr sample: slab 1 represents the DHDP head group and Sr ions, and slabs
2 and 3 represent the DHDP tail group. Parenthetical numbers represent 1 SD in the last significant
digit.

These simulations were designed to test the stability, but not the formation, of the low-

density Er inverted bilayer. The initial state of the simulation placed one-half the number of DHDP

molecules in the lower leaflet than in the upper leaflet; the extra space in the lower leaflet was

 53

filled with dodecane. This led to a higher electron density in the lower leaflet than observed in

experiments of the low-density Er inverted bilayer, but similar to the electron density measured in

the high-density inverted bilayer. The simulations demonstrated that the structure of the inverted

bilayer is stable at the interface for the 100-ns span of the simulation, with occasional motion of

dodecane molecules between the two leaflets.

Figure 24C shows a mesh-like coordination of Er with water molecules and DHDP head

groups. The low density of Er ions used for the simulation (86 Å2 per Er) produces blank regions

in Figure 24C. The geometry of Er-O coordination is octahedral (Figs. S2 and S3) with

coordination to six oxygen atoms, as observed in Er-DHDP complexes that have been extracted

into the bulk dodecane (19). Radial distribution functions from the Er ion (Figs. S4 and S5)

demonstrate that bond lengths are different in the inverted bilayer and in bulk extracted Er-DHDP

complexes (19), most likely as the result of constraints placed upon the geometrical arrangement

of the DHDP tail groups in the inverted bilayer.

4.3 Discussion

4.3.1 Static Interfacial Structures.

The measurements reported here characterized the static structure of interfacial states

formed in the midst of solvent extraction, as ions are transported across the water-dodecane

interface. They show that small rare earth ions with oxidation state +3, Y(III) and Er(III), form

inverted bilayers at the liquid-liquid interface upon thermally retarding the extraction process.

Although we have observed different variations of the inverted bilayer, all have a single layer of

ions sandwiched between back-to-back layers of DHDP extractants. The X-ray measurements are

consistent with a model of the inverted bilayer as an interfacial condensed state of supramolecular

ion-extractant complexes of the form M(DHDP)3(H2O)m, where M is Er or Y and m varies roughly

 54

from 0 to 3. Although the inverted bilayer is not expected to be an equilibrium state, since it was

formed under nonequilibrium conditions, MD simulations confirmed the short-term stability of

this structure.

Studies of Sr(II) extraction with DHDP under similar conditions exhibited a different

intermediate state, in which Sr(II) ions remained in the water phase and were bound (or located

adjacent) to the head groups of an interfacial monolayer of DHDP. Comparison of the intermediate

states of these three ions, Y(III), Er(III), and Sr(II), suggests that the oxidation state of the ion, or

possibly just ionic charge, is the primary factor that determines the form of the intermediate state.

These studies also allow for a comparison of the effect of electronic configuration on the

intermediate state. We note that Sr(II) and Y(III) have the same closed-shell electronic

configuration (4p6) of the unreactive noble gas Kr, whereas Er(III) has a more complex 4f11

electronic configuration. It appears that the electronic configurations of these ions are not the

determining factor in the structure of the intermediate state, in contrast to previous suggestions

from kinetic studies of divalent ion extraction (17). Further studies are required to explore other

effects. For example, since the ionic radius of Sr(II) (118 pm) is substantially larger than that of

either Er(III) (89 pm) or Y(III) (90 pm), which are roughly equal, future studies will explore the

role of ion size (27).

4.3.2 Consequences for the Mechanism of Extraction.

Our results demonstrate that Y(III) and Er(III) are more effective at coordinating with

DHDP than Sr(II). For instance, the formation of inverted bilayers containing Y(III) and Er(III),

as well as their extraction at temperatures above the adsorption transition To, were observed with

pH 2.5 water for which 94% of the phosphoric acid head groups would have been protonated and

uncharged in the absence of metal ions (Fraction of Protonated Head Groups in DHDP

 55

Monolayer). However, Sr(II) binding to the charge-neutral DHDP monolayer under similar low-

pH conditions was not observed (20). Instead, Sr(II) binding was observed only at higher pH, with

one Sr(II) for every two DHDP measured at pH 5.3 and higher pH values. Even under these

conditions of Sr saturation of the interface, combined X-ray reflectivity and XFNTR results show

that approximately one-third of the interfacial Sr(II) ions are not closely bound to the DHDP head

groups, but exist only in a diffuse electrical double layer near the interface (20).

Y(III) and Er(III) are also more efficiently extracted from the aqueous phase than Sr(II).

Analysis of the metal content in the aqueous phase before and after extraction by inductively

coupled plasma atomic emission spectroscopy (ICP-AES) and ICP mass spectroscopy showed that

87 (3)% of the Y(III) was extracted at 50 °C, more than 80% of the Er(III) was extracted at 55 °C

(19), but only 45% of Sr(II) was extracted at 50 °C (pH 5.3) (20).

The interfacial state of Y(III) and Er(III) sandwiched between layers of DHDP extractants

suggests the prompt transfer of these cations from the aqueous side of the liquid-liquid interface

to a coordinated ion-extractant environment on the organic side. These ion-extractant complexes

represent an intermediate state in which ions have been transported across the aqueous-organic

interface, but have not yet been dispersed in the organic phase. In contrast to this, the observation

of a conventional monolayer of DHDP extractants with Sr(II) bound to DHDP head groups, but

remaining in contact with the water phase, suggests a slower kinetics of transfer of Sr(II) from

water to dodecane, whose mechanism involves at least one additional step to transport the ion

across the aqueous-organic interface.

Insight into this additional step may be provided by small angle neutron scattering

measurements by Steytler et al. (6) of the metal salts Mn+(DEHP)n dissolved in cyclohexane. The

extractant bis(2-ethylhexyl) phosphoric acid (DEHP) has shorter, branched chains, but the same

 56

head group as DHDP. Steytler et al. studied the trivalent ion Al(III) and several divalent ions,

including Ca(II) that is similar to the Sr(II) studied here. Although they observed small spherical

complexes of Al-DEHP that were similar in size to Er-DHDP complexes that had been fully

extracted into bulk dodecane (19), they observed larger rod-like reverse micelles of several

different divalent ions, including Ca(II).

If reverse micelles form in our Sr(II)-DHDP extraction system, then budding of the micelle

at the interface could be the additional, unobserved step in the ion transport across the aqueous-

organic interface (17). A plausible mechanism for this process consists of three stages: (i) DHDP

adsorption onto the interface and binding to Sr(II) ions, (ii) formation of interfacial domains of

Sr(DHDP)2 complexes, and (iii) domain budding of reverse micelles into the organic phase. To

explore the plausibility of budding of reverse micelles at the interface, we consider circular domain

budding into a spherical reverse micelle (Figure 25), as described in the following equation

introduced by Lipowsky to model the energy E of bud formation in biomembranes (28):

 𝐸 = 𝐸V$HM + 𝐸$M@$ = 2𝜋𝜅\𝐿𝐶 − 𝐿𝐶RW^
% + 2𝜋𝜆𝐿]1 − (𝐿𝐶/2)% (4.1)

The first term in Equation (4.1) is the energy Ebend required to bend the domain into a spherical

cap, or full sphere, of curvature C different from its spontaneous curvature Csp. The domain is

further characterized by its bending rigidity κ and domain area πL2 (Figure 25). Spontaneous

curvature of the domain can arise from the asymmetry of the monolayer-containing interface,

which has ions on one side interacting with extractants on the other. The second term in Equation

(4.1) expresses the energy Eedge of the domain edge in terms of its line tension λ, where dashed

lines in Figure 25 illustrate the domain edge. Formation of a complete spherical bud leads to the

extraction of enclosed ions when the bud separates from the interface and goes into the organic

phase (Figure 25D).

 57

A minimum size Lo is required for the domain to form a complete bud. A domain can

increase its size to this value by the aggregation of interfacial Sr(DHDP)2 complexes. The larger

domain size that results from this aggregation has a longer domain edge and, consequently, larger

edge energy. This larger edge energy can be recovered: as the domain bends to form a more

complete sphere, illustrated by progressing from Figure 25B to Figure 25C, the reduction in edge

length reduces the edge energy. This reduction balances the cost in bending energy required to

form a spherical bud.

Figure 25. Domain budding mechanism. (A) A flat region of bare interface (dodecane above, water
below) becomes (B) spontaneously curved due to the adsorption of extractants and their
interactions with ions (not shown) at the interface. (C) The reduction in length of the domain edge
(dashed line) reduces the line tension energy, which balances the bending energy required to form
a spherical reverse micelle. (D) Separation of the micelle from the interface extracts the ions (not
shown) in the interior of the reverse micelle into the bulk organic phase.

Lipowsky showed that complete budding is energetically favorable for domain sizes L ≥

Lo, where 𝐿I = 8𝜅/𝜆 ¦1 + \4𝜅|𝐶XY|/𝜆^
%/C§

C/%
 (28). Literature values for κ, λ, and Csp for

compounds similar to our extractant DHDP are discussed in Appendix, and yield a range of values

for the ratio κ=λ, given by 4nm ≤ 𝜅/𝜆 ≤ 20nm , and for Csp, given by 0.1nm&' ≤ 𝐶XY ≤

 58

0.3nm&'. These values produce a range of limiting lengths, 4nm ≤ 𝐿I ≤ 14nm, whose lower

value of 4 nm describes a bud that contains the same number of extractants as the aggregation

number of the reverse micelles measured by Steytler et al. (6). Note that the DEHP studied by

Steytler et al. will have values of Csp at the higher end of the stated range, thereby leading to values

of Lo at the lower end of our prediction. These calculations suggest that Sr-DHDP reverse micelles

can be formed at the interface by spontaneous budding, although additional experiments are

required to confirm this result.

Figure 26. Cartoon of the interaction of a bulky branched-chain extractant DEHP with (A) a
divalent ion (and two DEHP molecules) and (B) a trivalent ion (and three DEHP molecules) at the
liquid-liquid interface (represented by the line), which illustrates how the interaction with the ion
produces a spontaneous curvature of the interface.

Equation (4.1) indicates that interfacial ion-extractant complexes that produce larger values

of spontaneous curvature Csp will require less bending energy to make a complete bud. Larger

values of Csp may result from the interaction of bulky extractants with ions at the interface—these

include extractants that are commonly used in solvent extraction processes, like DEHP that has

branched alkyl tail groups (Figure 26A), or malonamides and diglycolamides (29) that have bulky

head groups. Bulky extractants form smaller complete buds since the spontaneous curvature is

closer to the value of curvature C = 2/L required to make a complete spherical bud. Higher

oxidation state ions that coordinate a larger number of extractants are expected to produce an even

larger spontaneous curvature (Figure 26B). This physical picture suggests the formation of small

 59

supramolecular complexes relevant to the extraction of Y(III) and Er(III). Further research is

required to establish a quantitative relationship between the shape and chemical properties of the

extractant molecule, the interfacial elastic properties—κ, λ, and Csp—and the extraction kinetics.

4.4 Materials and Methods

4.4.1 Materials and Sample Cell.

N-Dodecane [CH3(CH2)10CH3] (>99%; Sigma-Aldrich) and bis(hexadecyl) phosphoric

acid (DHDP) [CH3(CH2)15O]2POOH] (>98%; SigmaAldrich) (Scheme 1) were purified as

described previously (19). Aqueous solutions of yttrium chloride hexahydrate (YCl3·6H2O)

(>99.99%; Sigma-Aldrich) were purified as described previously for ErBr3 (19). Water was

produced by a Nanopure UV Barnstead system. Hydrochloric acid (Optima grade; Fisher Scientific)

was used to adjust the pH values of YCl3 solutions. Dodecane-water interfaces (2.2:1 volume ratio)

were temperature controlled (±0.03 °C) (20).

4.4.2 Fraction Extracted.

Aqueous and organic phases were heated to 50 or 55 °C, placed into contact in a glass dish,

and sat for periods varying from 1/2 to 24 h. A portion of the aqueous phase was extracted and

analyzed by ICP-MS (Galbraith Laboratories) for Y or by ICP-AES for Er and Sr.

4.4.3 X-Ray Reflectivity and XFNTR.

X-ray measurements from liquid-liquid interfaces were made at ChemMatCARS Sector 15

of the Advanced Photon Source at an X-ray energy of 20 keV. X-ray reflectivity R(Qz) was

measured as a function of wave vector transfer normal to the interface 𝑄) = (4𝜋/𝜆Z) sin 𝛼, where

λx is the X-ray wavelength and α is the angle of incidence. The reflected intensity (with background

subtracted) was normalized to the incident intensity. The R(Qz)/RF(Qz) data in Figure 23A

represent the measured reflectivity normalized to the calculated Fresnel reflectivity (30). Data are

 60

analyzed with a slab model described previously (19, 30). XFNTR data consisted of measurements

of fluorescence spectra for values of Qz slightly below and above the condition for total reflection

(Fig. 1C). Measurement and analysis methods were published previously (20).

4.4.4 MD Simulations.

Classical MD simulations were performed with Schrodinger Desmond (academic release)

using the OPLS-2015 force field (31). The inverted bilayer system was built from two back-to-

back monolayers on a 65.6 × 65.6-Å2 rectangular grid (x-y) of 100 DHDP (initial all-trans state)

with phosphate head groups in the x-y plane and tail groups oriented along the z axis. Fifty DHDP

molecules were removed from the lower leaflet, and dodecane added into the intervening spaces.

Monolayer leaflets were separated by 8 Å, which was filled with 50 Er(III) ions and 150 water

molecules to mimic the low-density Er inverted bilayer. A preequilibrated slab of SPC-E water

molecules was placed in proximity to the tail groups of the lower leaflet and a preequilibrated slab

of dodecane molecules was placed in proximity to the tail groups of the upper leaflet. The box

dimension in the z direction was set to 200 Å, allowing for two liquid-vapor interfaces at the top

and bottom of the periodic box. Equilibration occurred in stages, first by restraining the ions and

head groups of the surfactant with a harmonic potential and allowing the water and dodecane to

equilibrate. Harmonic restraints were then removed and further equilibration was performed for

50 ns before data production for 100 ns commenced.

4.4.5 Acknowledgments

We acknowledge support from US Department of Energy (DOE), Office of Basic Energy

Sciences (OBES) (DE-SC0018200) (to M.L.S. and I.B.), the National Science Foundation (CHE-

1363076) (to I.B.), the University of Illinois at Chicago (UIC) Department of Physics (M.L.S.),

UIC Contest (J.S.H.), UIC Chancellor’s Undergraduate Research Award (to D.J.W.), and support

 61

of earlier studies (19, 20) of Er and Sr through US DOE, OBES, Chemical Sciences, Geosciences,

and Biosciences Division, under Contract DE-AC02-06CH11357 (subcontract to M.L.S. from Dr.

Lynda Soderholm). This research used resources of the Advanced Photon Source, a US DOE

Office of Science User Facility operated for the DOE Office of Science by Argonne National

Laboratory under Contract DE-AC02-06CH11357. ChemMatCARS is supported by National

Science Foundation Grant CHE-1346572.

4.5 Cited Literature

1. Tasker PA, Plieger PG, West LC (2004) Metal complexes for hydrometallurgy and

extraction. Comprehensive Coordination Chemistry II: From Biology to Nanotechnology,

eds McCleverty JA, Meyer TJ (Elsevier, Oxford), Vol 9, pp 759-808.

2. Lumetta GJ, Nash KL, Clark SB, Friese JI (2006) Separations for the Nuclear Fuel Cycle

in the 21st Century, ACS Symposium Series 933 (American Chemical Society,

Washington, DC).

3. Danesi PR, Chiarizia R (1980) The kinetics of metal solvent extraction. Crit Rev Anal

Chem 10:1-126.

4. Sternling CV, Scriven LE (1959) Interfacial turbulence: Hydrodynamic instability and the

Marangoni effect. AIChE J 5:514-523.

5. Wilson AM, et al. (2014) Solvent extraction: The coordination chemistry behind extractive

metallurgy. Chem Soc Rev 43:123-134.

6. Steytler DC, Jenta TR, Robinson BH, Eastoe J, Heenan RK (1996) Structure of reversed

micelles formed by metal salts of bis(ethylhexyl) phosphoric acid. Langmuir 12:1483-

1489.

 62

7. Gannaz B, Antonio MR, Chiarizia R, Hill C, Cote G (2006) Structural study of trivalent

lanthanide and actinide complexes formed upon solvent extraction. Dalton Trans 38: 4553-

4562.

8. Ellis RJ, Anderson TL, Antonio MR, Braatz A, Nilsson M (2013) A SAXS study of

aggregation in the synergistic TBP-HDBP solvent extraction system. J Phys Chem B 117:

5916-5924.

9. Hughes MA, Rod V (1984) A general model to account for the liquid/liquid kinetics of

extraction of metals by organic acids. Faraday Discuss Chem Soc 77:75-84.

10. Dreisinger DB, Cooper WC (1989) The kinetics of zinc, cobalt, and nickel extraction in

the D2EHPA-heptane-HClO4 system using the rotating diffusion cell technique. Solvent

Extr Ion Exch 7:335-360.

11. Dreisinger DB, Cooper WC (1986) The kinetics of cobalt and nickel extraction using

HEHEHP. Solvent Extr Ion Exch 4:317-344.

12. Qiao B, Muntean JV, Olvera de la Cruz M, Ellis RJ (2017) Ion transport mechanisms in

liquid−liquid interface. Langmuir 33:6135-6142.

13. Hunt EC (1969) The interaction of alkyl phosphate monolayers with metal ions. J Coll Int

Sci 29:105-115.

14. Szymanowski J (2000) Kinetics and interfacial phenomena. Solvent Extr Ion Exch 18: 729-

751.

15. Testard F, Berthon L, Zemb T (2007) Liquid-liquid extraction: An adsorption isotherm at

divided interface? C R Chim 10:1034-1041.

 63

16. Watarai H (2014) Interfacial molecular aggregation in solvent extraction systems. Ion

Extraction and Solvent Extraction: A Series of Advances (CRC, Boca Raton, FL), Vol 21,

pp 159-195.

17. Plucinski P, Nitsch W (1992) Kinetics of the interfacial ion exchange in Winsor II

microemulsion systems. J. Coll. Int. Sci. 154:104-112.

18. Bu W, et al. (2011) X-ray fluorescence from a model liquid/liquid solvent extraction

system. J Appl Phys 110:102214.

19. Bu W, et al. (2014) Observation of a rare earth ion-extractant complex arrested at the oil-

water interface during solvent extraction. J Phys Chem B 118:10662-10674.

20. Bu W, et al. (2014) X-ray studies of interfacial strontium-extractant complexes in a model

solvent extraction system. J Phys Chem B 118:12486-12500.

21. Scoppola E, et al. (2015) Structure of a liquid/liquid interface during solvent extraction

combining X-ray and neutron reflectivity measurements. Phys Chem Chem Phys 17:

15093-15097.

22. Scoppola E, et al. (2016) Solvent extraction: Structure of the liquid-liquid interface

containing a diamide ligand. Angew Chem Int Ed Engl 55:9326-9330.

23. Benjamin I (2015) Reaction dynamics at liquid interfaces. Annu Rev Phys Chem 66: 165-

188.

24. Small DM (1986) The Physical Chemistry of Lipids (Plenum, New York).

25. Bloch JM, Yun W (1990) Condensation of monovalent and divalent metal ions on a

Langmuir monolayer. Phys Rev a 41:844-862.

26. Bu W, Vaknin D (2009) X-ray fluorescence spectroscopy from ions at charged vapor/water

interfaces. J Appl Phys 105:084911.

 64

27. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic

distances in halides and chalcogenides. Acta Crystallogr A 32:751-767.

28. Lipowsky R (1992) Budding of membranes induced by intramembrane domains. J Phys II

2:1825-1840.

29. Ansari SA, Pathak P, Mohapatra PK, Manchanda VK (2012) Chemistry of diglycolamides:

Promising extractants for actinide partitioning. Chem Rev 112:1751-1772.

30. Pershan PS, Schlossman ML (2012) Liquid Surfaces and Interfaces: Synchrotron X-ray

Methods (Cambridge Univ Press, Cambridge, UK).

31. Bowers KJ, et al. (2006) Scalable algorithms for molecular dynamics simulations on

commodity clusters. Proceedings of the ACM/IEEE Conference on Super-Computing

(SC06) (ACM, New York), 84.

 65

4.6 Supporting Information

4.6.1 X-Ray Fluorescence near Total Reflection Analysis of Y Samples

 X-ray fluorescence near total reflection (XFNTR) data were measured immediately after

the reflectivity measurements. The measured variation of fluorescence intensity with Qz shown in

Fig. 1C is determined by the distribution of yttrium. The interfacial density of yttrium is given

by I=CTL, where I is the fluorescence intensity from the interface (upon accounting for

background fluorescence and fluorescence from the bulk solution as described in ref. 1), C is a

scale factor, L is an integration over X-ray paths through the sample, and T is the Fresnel

transmission coefficient. To extract the scale factor C described in ref. 1, which takes into account

the geometry of scattering, XFNTR data were also measured from a reference sample interface

between pure dodecane and a 0.1 M YCl3 aqueous solution. Since the coefficient T has a sharp

peak at the critical wave vector transfer Qc, the rounded top in the experimental data shown in Fig.

1C implies that interfacial curvature cannot be ignored. The fit shown by the solid line in Fig. 1C

models the interface as a spherical surface with radius of curvature of 100(+35/−65) m. The

analysis of XFNTR data shown in 2 Fig.1CyieldsaninterfacialareaperYionAY =68±3Å.

Figure 27 shows an example of the measured fluorescence spectrum from an inverted

bilayer containing yttrium at the reflection condition for Qz = 0.014Å-1

The peak position of the 𝐾𝛼 emission line for yttrium located at ∼14.9 keV contains both the Kα1

emission at 14.9584 keV and Kα2 at 14.8829 keV (2). Figure 27A shows that the peak is well

separated from the direct beam at 20 keV and its Compton peak. The background at the location

of the Y Kα line is fit with an exponential (Figure 27B). After background subtraction, the peak is

fit to a Gaussian function (Figure 27C). The total fit is shown in Figure 27D. The total intensity is

the area under the peak represented by the product of its amplitude and width. The values of

 66

intensity as a function of Qz shown in Figure 27C in the main paper were then analyzed as

described in ref. 1.

4.6.2 Composition of the Head Group Region in the Inverted Bilayer

The middle region (slab 2) of the inverted bilayer has a thickness d2=6(1)Å and an electron

density ρ2 =0.42(1)Å. Under the assumption that the second slab consists of head groups of DHDP,

Y3+	or Er3+	ions, and water molecules, and that each metal ion is complexed with three DHDP

molecules, the total number of electrons per area of the metal ion in slab2 is given by the following:

 𝑑%𝜌%𝐴[= 3𝑒\]"# + 𝑒[$% + 𝑁^&_𝑒^&_ (4.2)

where eH2O=10, e 3+ =36, eEr3+ =65, and ePO− = 48 are the electron number of each species,

and NH2 O is the number of water molecules per area occupied by a metal ion. Using the values

in Table1ofthemainpaper,aswellasA =68±3Å2 andA = 2 Y Er 81± 5 Å , indicates that NH2O = 0

± 2 for the Y inverted bilayer and NH2O = 3 (+10/−3) for the low-density Er inverted bilayer. This

calculation cannot be done for the high-density Er bilayer because XFNTR data were not measured

for those samples.

4.6.3 Analysis of Y Inverted Bilayer Structure

As described in the main paper, the area per Y ion, AY, measured by XFNTR suggests that

the Y inverted bilayer has a structure that is intermediate between the maximum density inverted

bilayer (Fig. 1E) and the low-density inverted bilayer (Fig. 1F). Since our X-ray measurements

cannot distinguish between dodecane and the alkyl tails in DHDP, further analysis to reveal the

structure of this highdensity inverted bilayer requires some assumptions about the location of

dodecane within the inverted bilayer. Although these assumptions are not unique, the following

model is offered as an example of a self-consistent analysis of these data. The results of this model

indicate that the measured structure of the Y inverted bilayer can be explained as a condensed

 67

phase of ion–extractant complexes of the form Y(DHDP)3(H2O)m with a ratio of down to up

complexes intermediate between the 1:1 value of the maximum density bilayer (Fig. 1E) and the

1:0 value of the low-density bilayer (Fig. 1F). Note that Composition of the Head Group Region

in the Inverted Bilayer demonstrated that the number of water molecules in the Y ion–extractant

complex is m = 0 ± 2.

The model is constrained by the following values:

i. Measured values of electron densities and thickness of each slab (from X-ray reflectivity)

as given in Table 1 in the main paper;

ii. Measured area per Y ion (from X-ray fluorescence, XFNTR), AY =68±3Å2;

iii. The areas occupied by the upper and lower leaflets have to be the same.

Assumptions are as follows:

i. The lower leaflet (slab 1) consists of only DHDP tails.

ii. The midregion (slab 2) consists of DHDP head groups, Y ions, and possibly water.

iii. The upper leaflet (slabs 3 and 4) consists of DHDP plus dodecane.

iv. AllDHDPandYionsarein3:1complexes(3DHDPto1Y ion) that are oriented either up (2

DHDP in lower leaflet and 1 in upper leaflet; red box in Fig. 1D), or down (2 DHDP in

upper leaflet and 1 in lower leaflet; blue box in Fig. 1D). This assumption is suggested by

the measurements of the lowdensity Er inverted bilayer, where it was demonstrated that

the structure of the inverted bilayer could be explained as a condensed phase of ion–

extractant complexes of the form Er(DHDP)3(H2O)3. Note that the analysis of the low-

density Er inverted bilayer did not require assuming a 3:1 ratio of DHDP to Er, but allowed

this to be determined from the data (3).

 68

First, we analyze slab 1. The measured thickness of slab 1, d1 = 21.5 Å, is within 1 Å of

the all-trans length of hexadecyl chains,𝐿`abcX15 × 1.27Å(C − C) + 1.5Å(C − H) = 20.6Å . A

measure of the area per DHDP using slab 1 is as follows:

 𝐴S' = 258/(𝑑'𝜌') = 39.6	Å% (4.3)

where there are 258 electrons in the two hexadecyl tails of DHDP. This value of AD1 is twice the

known cross-sectional area of a single all-trans alkyl chain (A0 = 19.83 Å2) (4). The measured

electron density of slab 1, 𝜌' = 0.303	𝑒&Å&C , is consistent with electron densities measured for

close-packed alkane rotator phases (5).

If all ion–extractant complexes were oriented up, then the area 2 per Y ion would have

been 𝐴d = 2𝐴e' ≈ 79	Å%. If complexes alternate their orientation, resulting in the same number

of up and 2 down orientations, then 𝐴d = 1.5𝐴e' ≈ 59	Å%. Our XFNTR measurements of the area

per Y ion yielded 𝐴d = 68 ± 3	Å%, suggesting an intermediate arrangement.

Now, we apply the constraints and assumptions listed above to determine this intermediate

arrangement. For each up configuration of an ion-extractant complex, let there be x down

configurations. Define the “effective area” as the area occupied by an up complex and x associated

down complexes. Equating the areas in the lower leaflet and the midregion,

 (2 + 𝑥)𝐴S' = (1 + 𝑥)𝐴d (4.4)

Let there be f dodecane molecules for each DHDP molecule in the upper leaflet, then the area per

DHDP/dodecane unit is given by the following:

 𝐴f =
258 + 98𝑓
𝑑C𝜌C + 𝑑3𝜌3

 (4.5)

where there are 258 electrons in the two hexadecyl tails of DHDP and 98 electrons in dodecane.

 Equating the effective areas in the lower and upper leaflet yields the following:

 69

 (2 + 𝑥)𝐴S' = (1 + 2𝑥)𝐴f (4.6)

Substituting AU from Eq. S4 into Eq. S5 produces the following:

 𝑓 =
𝑏 − 258
98 (4.7)

where

 𝑏 = [𝐴S'(𝑑C𝜌C + 𝑑3𝜌3)][(2 + 𝑥)/(1 + 2𝑥)] (4.8)

Now, we solve Eq. S3 for x and Eq. S6 for f to produce the configuration in the inverted bilayer.

Solving Eq. S3 for x, the number of down complexes associated with each up complex,

𝑥 = (𝐴g − 2𝐴S')/(𝐴S' − 𝐴g)	

= (68 − 2 × 39.6)/(39.6 − 68)	

= 0.39

(4.9)

We use this value of x to solve for the constant b in Eq. S7,

𝑏 = [𝐴S'(𝑑C𝜌C + 𝑑3𝜌3)][(2 + 𝑥)/(1 + 2𝑥)]	

= [39.6 × (16 × 0.332) + 9 × 0.265][(2 + 0.39)/(1 + 2 × 0.39)]	

= 409

(4.10)

The constant b is substituted into Eq. S6 to solve for the number f = 1.54 of dodecane

molecules for each DHDP molecule in the upper leaflet.

This model shows that there are 1.5 ± 0.5 dodecane molecules for each DHDP molecule in

slabs 3 and 4 that model the upper leaflet and the fraction of complexes pointing down is given by

𝑥/(1 + 𝑥) = 0.3 ± 0.1. These specific numerical values depend upon the assumption that the

lower leaflet consists of only DHDP molecules and the upper leaflet is a mixture of DHDP and

dodecane molecules. Other assumptions of this nature are possible, although our data are not

consistent with the assumption that the upper leaflet consists of only DHDP. The utility of this

 70

model is to show that the measured electron density and ion interfacial density can be explained

as a condensed layer of ion–extractant complexes.

4.6.4 Simulation Results

Figure 28 and Figure 29 demonstrate the octahedral coordination of oxygen about erbium

in the inverted bilayer. Figure 30 and Figure 31 illustrate the radial distribution functions.

4.6.5 Fraction of Protonated Head Groups in DHDP Monolayer

We consider a monolayer of DHDP at the dodecane–water interface with pH 2.5 water

adjusted by adding HCl. Although similar calculations have been presented before, we present it

here for the convenience of the reader. According to the Poisson–	 Boltzmann theory for

monovalent ions, the electrical potential is given by the following:

 𝜓(𝑧) = −
2𝑘B𝑇
𝑒 ln z

1 + 𝛾𝑒&)/h'
1 − 𝛾𝑒&)/h'

{ (4.11)

With Debye screening length 𝜆S = (𝜖!𝜖.𝑘B𝑇/2𝑒%𝑛V)'/% ≈ 55	Å for 𝑛V = 10&%.(= 3.16 ×

10&C	Mn, and 𝛾 = − tanh(𝑒𝜓(0)/4𝑘B𝑇) determined by the interfacial potential. The boundary

condition can be obtained by considering the electric field strength at the interface (𝑧 → 0&) from

the potential given above and Gauss’s law, expressed as follows:

 −
d𝜓(𝑧)
d𝑧 │)→!# = −

2𝑘B𝑇
𝑒𝜆S

sinh
𝑒𝜓(0)
2𝑘B𝑇

=
|𝜎R|
𝜖!𝜖.

 (4.12)

where 𝜎R is the interfacial charge density. For a fully deprotonated close-packed DHDP monolayer,

𝜎R = −𝑒/𝐴, where A is the molecular area.

However, the proton H+ can bind to and neutralize the charged head group, and as a result,

the interfacial charge density is reduced by a factor 𝛼. That reaction is given by H> + PO3& ⟺

PO3H, and the equilibrium condition by [H>][PO3&]/[PO3H] = 𝐾K . The fraction of dissociated

sites	𝛼, defined by [PO3&]/([PO3&] + [PO3H]), is related to 𝐾K by the following:

 71

 𝛼 =
1

1 + 10(Yk(&Yl)𝑒&$m(!)/5)0
 (4.13)

with pKa = 2.1 for the phosphate head group. This result is derived by noting that the Ka and α are

given by values at 𝑧	 = 	0, but pH	 = 	− log[H>]#	, where the z = 0 value is given by the following:

 [H>] ≡ [H>])E! = [H>]# exp[−𝑒𝜓(0)/𝑘B𝑇] (4.14)

As a result, the self-consistent boundary condition is given by the following:

 sinh
𝑒𝜓(0)
2𝑘B𝑇

= −
𝛼𝑒%𝜆S

2𝜖!𝜖.𝑘B𝑇𝐴
= −

𝑒%𝜆S
2𝜖!𝜖.𝑘B𝑇𝐴

1
1 + 10(Yk(&Yl)𝑒&$m(!)/5)0

 (4.15)

Numerical solution of 𝜓(0) from Eq. S14 yields α for any given pH and A. As a result, α is

essentially constant at 0.059 for pH values between 2.5 and 6.5 for our experimental conditions (A

≈ 45Å2, T = 301 K, and 𝜖. = 80).Therefore, only about 6%of the head groups are deprotonated in

the absence of metal ions; however, α could be much larger in the presence of other counterions,

monovalent or higher valency.

4.6.6 Literature Values for κ, λ, and Csp

Values of spontaneous curvature for a variety of biological lipids that are similar in structure

to the DHDP extractant were taken from Kollmitzer et al. (6). Values of bending rigidity and line

tension were estimated from the literature values listed in Tables S1 and S2.

 72

Figure 27 (A) Example of fluorescence data with the Y Kα	X-ray emission line at ∼14.9 keV. (B)
Background fitting with an exponential decay function. (C) Peak fitting after background
subtraction. (D) Fit with Gaussian peak and exponential background. Error bars represent ±1 SD.

Figure 28. Number of oxygen atoms within 3 Å of the Er ion. The red line represents a 100-ps
sliding average.

 73

Figure 29. Distribution of O–Er–O angles for the closest six O atoms surrounding each Er ion,
averaged over the 100-ns length of the trajectory. Atoms surrounding each ion were identified by
first calculating all Er–atom distances that are closer than 8 Å, and then selecting the closest six
(which were always oxygen atoms).

Figure 30. Radial distribution functions g(r) between (Left) Er and water oxygen, (Right) Er and
the four oxygen atoms bound to the DHDP phosphorus, where the black line represents the P–O
oxygen, the blue line represents the P=O oxygen, and the red and green lines represent the two
ester oxygen atoms.

 74

Figure 31. Radial distribution function g(r) between Er and the DHDP phosphorus

Table V Bending rigidity 𝜅 from the literature

 75

1. Farago B, Richter D, Huang JS, Safran SA, Milner ST (1990) Shape and size fluctuations

of microemulsion droplets: The role of cosurfactant. Phys Rev Lett 65:3348–3351.

2. Langevin D, Meunier J (1994) Interfacial tension: Theory and experiment. Micelles,

Membranes, Microemulsions, and Monolayers, eds Gelbart WM, Ben-Shaul A, Roux D

(Springer, New York), pp 485–520.

3. Kucerka N, et al. (2005) Structure of fully hydrated fluid phase DMPC and DLPC lipid

bilayers using X-ray scattering from oriented multilamellar arrays and from unilamellar

vesicles. Biophys J 88:2626–2637.

4. Yi Z, Nagao M, Bossev DP (2009) Bending elasticity of saturated and monounsaturated

phospholipid membranes studied by the neutron spin echo technique. J Phys Cond Matt 21:

155104.

5. Chu N, Kucerka N, Liu Y, Tristram-Nagle S, Nagle JF (2005) Anomalous swelling of lipid

bilayer stacks is caused by softening of the bending modulus. Phys Rev E 71:041904.

Table VI Line tension 𝜆 from the literature

1. Steffen P, Wurlitzer S, Fischer TM (2001) Hydrodynamics of shape relaxation in viscous

Langmuir monolayer domains. J Phys Chem A 105:8281–8283.

 76

2. Seul M (1993) Dynamics of domain shape relaxation in Langmuir films. J Phys Chem

97:2941–2945.

3. Mann EK, Hénon S, Langevin D, Meunier J, Léger L (1995) Hydrodynamics of domain

relaxation in a polymer monolayer. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip

Topics 51: 5708–5720.

4. Benvegnu DJ, McConnell HM (1992) Line tension between liquid domains in lipid

monolayers. J Phys Chem 96:6820–6824.

5. Mann EK, Primak SV (1999) Stability of two-dimensional foams in Langmuir monolayers.

Phys Rev Lett 83:5397–5400.

6. Wurlitzer S, Steffen P, Wurlitzer M, Khattari Z, Fischer TM (2000) Line tension in

Langmuir monolayers probed by point forces. J Phys Chem 113:3822–3828.

7. Li M, Tikhonov A, Schlossman ML (2002) An x-ray diffuse scattering study of domains

in F(CF2)10(CH2)2OH monolayers at the hexane-water interface. Europhys Lett 58:80–

86.

 77

5 PROBING THE INTERFACIAL ION DISTRIBUTION IN ALSEP BACK-EXTRACTION USING

X-RAY FLUORESCENCE

5.1 Abstract

Metal ions are transferred between aqueous and organic phases during solvent extraction

for the purpose of separating target ions from other types of ions and ultimately isolating them in

an aqueous phase. The liquid-liquid interface is believed to be the site where complexation of ions

changes substantially as the ion passes from the aqueous to the organic side of the interface or vice

versa. One of the challenges in the experimental study of these interfacial processes is the

measurement of the interfacial density of ions independent of their presence in the nearby bulk

aqueous and organic phases. Here, we demonstrate advances in the measurement and analysis of

X-ray fluorescence near total reflection (XFNTR) in the back-extraction of Eu ions from an organic

phase to an aqueous phase. XFNTR measures both the ion concentration in the two neighboring

bulk phases and its interfacial density. Liquid-liquid interfaces studied by XFNTR are formed by

placing n-dodecane solutions of bis(2-ethylhexyl-phosphoric) acid loaded with trivalent europium

placed in contact with either pure water, nitric acid, or citric acid solutions. In addition, ICP-MS

analysis of the bulk solutions provided a test of the XFNTR. These measurements detected Eu ions

at interfaces with nitric and citric acid solutions, though a larger density was measured at the

interface with nitric acid solutions. Europium was not present at the interface with pure water.

These demonstrated capabilities of XFNTR are relevant for further in situ investigations of the

role of the liquid-liquid interface in solvent back-extraction within a variety of processes including

the ALSEP process that has been proposed for the separation of minor actinides from lanthanides.

 78

5.2 Introduction

Used nuclear fuel contains the radioactive by-products of nuclear fission, including long-

lived lanthanides and actinides. Certain actinides retain high radiotoxicity for hundreds of

thousands of years, posing a challenge for their safe disposal. The separation of long-lived trivalent

actinides from lanthanides is a key step for closing the nuclear fuel cycle but remains an open issue

due to their similar radii, charge, and bond character. Several separation processes have been

developed, which rely upon solvent extraction as the primary technology for large scale

hydrometallurgical reprocessing of used nuclear fuel. These processes include Transuranic

Extraction (TUREX) and Trivalent Actinide-Lanthanide Separations by Phosphorus-reagent

Extraction from Aqueous Complexes (TALSPEAK).16–18 Recycling lanthanides and actinides

from used nuclear fuel not only reduces the required capacity of geological depositories for used

nuclear fuel,19,20 but offers other substantial benefits, including the recovery and reuse of the

nuclear fuel.

Solvent extraction is a scalable separations technique based upon the distribution of

chemical species between two immiscible liquids, usually an aqueous phase in contact with an

organic phase. The extraction cycle consists of both forward- and back-extraction processes. In

forward extraction, a target metal ion contained within a complex chemical mixture in an aqueous

environment is extracted into an organic phase by forming a complex with an organic soluble

extractant. The subsequent back-extraction process, also known as metal stripping, involves

contact of the metal-loaded organic phase with a fresh aqueous solution to transfer the metal ions

to the aqueous solution for further processing. The intended result of running the two processes

sequentially is to separate the target metal ions from many other types of metal ions and isolate

 79

them in an aqueous phase containing only the target metal ions, along with aqueous complexants

and acid buffers that may have been used to optimize the back-extraction process.

The separation of actinide and lanthanide metal ions with solvent extraction processes can

be based upon their relative affinity for organic-soluble cation exchange extractants such as

HDEHP (bis(2-ethylhexyl-phosphoric) acid) and aqueous complexants such as DTPA (diethylene

triamine pentaacetate). While the extractants exhibit a strong affinity for both lanthanides and

actinides, aqueous complexants are actinide-selective.21 In its simplest mode of forward extraction

from the water to the organic phase, each trivalent metal ion will bind six HDEHP molecules.22

Complicating the separation of actinides from lanthanides, HDEHP co-extracts both of them. The

distribution ratio significantly overlaps those of the actinides,16 indicating the co-extraction of both

lanthanides and actinides with HDEHP. One way to increase their discrimination is to use an

aqueous solution of complexants to retain actinides in the aqueous phase. However, a back-

extraction stage may be necessary to further strip actinides from the co-extracted mixture.

The recent development of ALSEP (Actinide Lanthanide Separation) addresses the

challenge of optimizing the selective separation of minor actinides (Am, Cm) from lanthanides.20,23

The process was designed to simplify separation steps and minimize chemical consumption and

waste, hence optimizing cost and scalability to the industrial level.19 ALSEP utilizes a combination

of solvating extractants (e.g. TODGAN,N,N′,N′‐Tetraoctyl diglycolamide or TODGA), cation

exchange extractants (e.g. Bis(2-ethylhexyl) phosphate or HDEHP) dissolved in the aliphatic

organic phase (e.g., n-dodecane), and aqueous complexants. The process involves both forward

and back extraction. In the forward extraction stage, lanthanide and actinide metal ions are co-

extracted from an acidic aqueous solution into an organic solution containing the mixture of neutral

 80

and acidic extractants. In the subsequent back-extraction, the minor actinides are selectively

stripped into an acidic aqueous solution of complexant such as DTPA.23

 Characterization of the ALSEP process has included measurements of distribution ratios and

separation factors in chemical systems that utilize different choices of the neutral/acidic extractant

pair, the complexant, and the acidity of the aqueous phase.20,23 Related to these studies are

measurements of x-ray absorption spectroscopy that reveal the competitive binding of lanthanide

and actinide ions to neutral and acidic extractants within bulk liquid phases.22,24–26 Despite these

studies, optimizing the kinetics and efficiency of back-extraction in the ALSEP fuel processing

cycles remains a challenge. The major complexants (DTPA or HEDTA) have exhibited slow

complexing effects across the lanthanide series and with americium. We hypothesize that the

interaction of aqueous complexants and buffers with ion-extractant complexes at the organic-

aqueous interface plays a significant role in the mechanism of the back-extraction of metal ions,

and that knowledge of the interfacial complexes can lead to optimization of the extraction

selectivity and kinetics in the ALSEP process.

Currently, no consensus exists on the interfacial metal ion concentration or the molecular

species and complexes present at the interface during the back-extraction processes. Investigations

of the nanoscale structure of the organic-aqueous interface under conditions relevant to ALSEP

back-extraction are needed to address these issues. Recently, we have used synchrotron X-ray

reflectivity and interface-sensitive X-ray fluorescence to characterize ion-extractant complexes at

the organic-aqueous interface in model systems for forward extraction, including the extraction of

Er(III), Y(III), and Sr(II) ions by organo-phosphorus acidic extractants.27–31 These results

demonstrated that ion-extractant complexes are formed directly at the interface, and subsequently

transported into the bulk organic phase.

 81

In this paper, we report the first x-ray study of the organic-aqueous interface under

chemical conditions that are relevant for understanding back-extraction in the ALSEP process. In

this first stage of a larger project we address the need to characterize the surface density of metal

ions at the organic-aqueous interface under conditions that include metal ion concentrations of

roughly 1 mM in both the organic and aqueous bulk phases on either side of the interface. Here,

we modify the measurement and analysis of x-ray fluorescence near total reflection (XFNTR), and

apply these modifications to a spare model system of back-extraction that is relevant to the ALSEP

process. In this spare system, we utilize an n-dodecane phase of a single extractant, HDEHP, and

a single lanthanide, Eu(III), and measure the back-extraction of Eu into aqueous solutions

containing either pure water, nitric acid, or citric acid. Subsequent work is planned to include more

chemical components in the model system to increase the relevance of x-ray measurements of

liquid-liquid interfaces to understanding and optimizing ALSEP processes.

5.3 Materials and Methods

5.3.1 Solution Preparation

The organic solvent n-dodecane (CH3(CH2)10CH3, >99%) was purchased from Alfa-Aesar

and purified by passing it six times through a chromatography column containing activated

alumina,32 then subsequently filtered through Omnipore filter paper. Ultrapure water was produced

either from a Nanopure UV Barnstead system or a Millipore Milli-Q systems and was used for all

aqueous solutions. Bis(2-ethylhexyl)-phosphoric acid (HDEHP, >99.9%) was purchased from

Alfa-Aesar purified via a third-phase formation procedure33 and preloaded with Europium. Sample

concentrations and pH values indicated in Table 7 were chosen to mimic values that might be used

in ALSEP process.

 82

Figure 32. Molecular structure of (a) HDEHP and (b) citric acid.

Organic phases are diluted from a stock solution made by extracting Eu cations from aqueous

solution into an n-dodecane solution of HDEHP. The feed water phase for the extraction is 100

mM Eu(NO3)3 solution. Four millimoles of Eu(NO3)3•5H2O was dissolved into 40 mL of water

and 24.8 mmol of pure acetic acid (>99.99%, Alfa-Aesar) added as buffer. The value of pH was

adjusted to 4.7 by titrating 1M NaOH solution (NaOH, 99.8%, Fisher), to ensure that the pH

remains above 3 throughout the extraction, as required for full extraction of europium into organic

phase.16 The organic phase for the extraction is 0.1 M of HDEHP in n-dodecane. HDEHP is

obtained from Alfa-Aesar (97%) and purified via a third-phase formation procedure. 33 Dodecane

purchased from Sigma-Aldrich (>99%) is further purified by passing it six times through activated

alumina in a chromatography column. The two phases were shaken and separated in a separation

funnel, and the oil phase was taken out and centrifuged for 10 min before transferred to a glass

bottle. Then 10g of anhydrous NaSO4 was added in the glass bottle and left over night to dry out

the remaining water in the oil phase. The final oil stock solution is obtained by filtering out the

NaSO4 with a membrane filter.

A concentrated stock solution (0.5 M) of Eu(NO3)3 with neutral pH was made with europium

nitrate (Eu(NO3)3•5H2O, 99.9%, Aldrich) without further purification. Nitrate solutions (1 mM)

and citrate solutions (0.5 M) were made with nitric acid (HNO3, 70% concentration, >99.999%

trace metal basis, Aldrich) and citric acid (C6H8O7, anhydrous, >99.9%, Aldrich), respectively.

All water solutions were filtered through Omnipore membrane paper. Ammonium hydroxide

(NH4OH, certified ACS plus, Fisher) was used to adjust the acidity of citric acid to pH 3.

 83

Table 7. Typical sample compositions in the experiments
Samples Organic Phase Aqueous phase pH

1 1 mM Eu 10 mM HDEHP Pure water Neutral

2 1 mM Eu 10 mM HDEHP 1 mM nitric acid 3

3 1 mM Eu 10 mM HDEHP 0.5 M citric acid 3

5.3.2 ICP Measurements

Aliquots from the aqueous and organic phase liquids were removed from the X-ray sample

cell for all the samples after X-ray measurements. They were stored in 2 mL glass vials for further

analysis by ICP-MS. Vials containing aqueous phase were sent to Galbraith Laboratory Inc.

Organic phases were placed in contact with 5M HNO3 at 20:1 aqueous: organic ratio to extract all

the Europium in organic phase into aqueous phase,34 which was then analyzed by ICP-MS at

UNLV.

5.3.3 Measurement Methods

X-ray fluorescence near total reflection (XFNTR) measurements from liquid-liquid

interfaces were performed at ChemMatCARS, Sector 15 of the Advanced Photon Source.

Dodecane-water interfaces (2.2:1 volume ratio of the bulk phases) were prepared in a custom

sample cell described elsewhere.27,30 All measurements were performed at room temperature. A

beam of monochromatic X-rays of wavelength 𝜆Z = 0.61992 Å passed through the organic phase,

which lies above the water, and reflected from the dodecane-water interface. X-ray fluorescence

from the sample passed through a Kapton film window placed roughly 0.5 mm above the interface

and was then recorded by a Vortex-EX multi-cathode x-ray detector (SII Nano Technology USA,

Inc.). Fluorescence intensity was normalized to the incident intensity measured before x-rays

entered the sample cell.

 84

XFNTR data was measured in two different ways. A so-called Q-scan measures the

fluorescence intensity as a function of wave vector transfer normal to the interface

𝑄)=	(4π/𝜆Z) sin 𝛼, where 𝛼 is incident angle measured from the interfacial plane. A so-called

sh-scan, on the other hand, measures the fluorescence intensity as a function of sample height sh,

measured along the direction normal to the interface, at a fixed incident wave vector transfer below

(Qz = 0.006 Å-1) or above (Qz = 0.015 Å-1) the critical wave vector transfer for total reflection

(0.010 ~ 0.011 Å-1).

Samples were equilibrated before XFNTR measurements. Although the back-extraction

process begins immediately after the organic phase is placed in contact with the water phase,

XFNTR measurements did not usually start until about two hours later because of the time required

for sample alignment. Besides, the bulk aqueous and organic phases were gently stirred for 15 to

20 minutes. The aqueous phase was stirred by a Teflon-coated stir bar resting on the bottom of the

glass try and the organic phase was stirred by two rotating propellers inserted from above. A set

of test data have shown that stirring helps the sample reach a steady state (see sample 9 in Appendix

D.1.1)

5.3.4 X-ray fluorescence Near Total Reflection (XFNTR) Technique

XFNTR is used to measure the distribution of Eu throughout our samples by measuring the

Eu interfacial number density (per nm2) and its concentration in each of the neighboring bulk

phases. First introduced by Bloch and Yun, the elemental selectivity and surface sensitivity of

XFNTR has been used to detect the existence and coverage of metal ions at liquid-vapor

interfaces,35 31,36–38 with a more recent application to the study of solvent extraction processes at

liquid-liquid interfaces.27,28,30 Despite successful studies of the liquid-liquid interface, the

application of XFNTR has been limited to studying interfacial ion densities when the aqueous bulk

 85

concentration of ions is small enough to produce negligible fluorescence and the organic bulk

concentration of ions is zero. However, during the process of solvent back-extraction, ions may

have a substantial concentration in both bulk phases, as well as at the interface. Here, we discuss

modifications to the measurement and analysis of XFNTR that allows us to measure the

concentration of ions in both bulk phases, as well as the interfacial density of ions.

Figure 33 (a) Schematic of liquid-liquid interface with incident X-ray beam. (b) Illustration of

the form of the three terms in Equation (5.1) that represent fluorescence emitted by ions in three
different regions: bulk dodecane phase , bulk water phase and the interface between them.

To account for the fluorescence generated throughout the entire sample we follow the

formalism in Bu et al. 27 to write the fluorescence intensity as a function of wave vector transfer

Qz as

𝐼(𝑄)) = 𝐶 �𝑛I.@¶𝐼(𝑥, 𝑧, 𝑄))𝑑𝑥𝑑𝑧

+ 𝑛Kn¶𝐼(𝑥, 𝑧, 𝑄))𝑑𝑥𝑑𝑧 + 𝜎,H"�𝐼(𝑥, 0, 𝑄))𝑑𝑥� + 𝐼V@

(5.1)

where 𝑛Kn, 𝑛I.@ and 𝜎,H" are the volume density of ions in the aqueous and organic bulk phases,

and the surface density of ions at the interface, respectively. The three terms represent symbolically

the X-ray fluorescence generated by metal ions in the three regions illustrated in Figure 33 (a). The

detector records X-ray fluorescence emitted by ions located in the region spanned by the two

vertical lines in the figure, known as the detection volume. The background term 𝐼V@ is generated

 86

by secondary scattering from the top phase, in which an X-ray elastically scattering from the

organic phase into the aqueous phases produces fluorescence metal ions in the aqueous phase. This

background contribution can contribute substantially to the signal from the aqueous phase at low

𝑄).The green, dark blue and red areas in the figure represent the region of overlap between the

detection volume and the incident X-rays within, respectively, the bulk dodecane phase, the

interface, and the bulk aqueous phase. This formalism lacks dependence on the y-direction because

the size of the footprint in that direction, which is given by the beam width of roughly 200 μm, is

small compared with the detector region (12.7 mm) and the interfacial curvature (~100 m). Thus

the y dependence is considered a constant and accounted for by the calibration factor C.

X-ray fluorescence from the three regions have a different dependence on the normal

component of the wave vector transfer 𝑄) = 4𝜋/𝜆 sin 𝛼 where 𝛼 is the incident angle of the

incoming X-rays shown in Figure 33.a. Fluorescence from the organic phase includes fluorescence

generated by ions within the path of the incident and reflected beams. Below the critical wave

vector for total reflection (i.e., below a critical angle of incidence), the two components are nearly

the same, whereas above the critical wave vector the reflected intensity is reduced rapidly to zero

with increasing incident angle. These effects produce a roughly 2:1 ratio of the fluorescent

intensity as the wave vector varies from below to above the condition for total reflection, as

illustrated by the green curve in Figure 33. Fluorescence from the lower, aqueous phase occurs

when X-rays penetrate the lower phase, which occurs either as an evanescent wave for wave vector

transfers below that of total reflection or as a transmitted wave for larger wave vector transfers.

Assuming a uniform distribution of ions in the interfacial region and the bulk aqueous phase, the

penetration depth varies from roughly 10 nm well below the critical wave vector transfer to a

maximum of several micrometers above the critical value over the experimental range of 𝑄) (0.005

 87

Å-1 ≤ 𝑄) ≤ 0.016 Å-1). This variation in X-ray penetration depth into the aqueous phase produces

a significant rise in the fluorescence signal above the critical wave vector transfer of 0.0103 Å-1

shown by the red curve in Figure 33. Fluorescence intensity due to the enrichment of metal ions at

the interface will be dominated by the Fresnel transmissivity since the penetration depth is

negligible, giving rise to the shape of the blue curve in Figure 33.39

The fluorescence intensity is calculated from Equation (5.1) by integrating the X-ray

intensity weighted by the concentration of metal ions along the X-ray pathways illustrated in

Figure 34. Only the part of the x-ray paths that falls within the detection volume, i.e., the two

vertical lines, produces fluorescence measured by the detector. Figure 34 illustrates an X-ray beam

striking the sample interface with incident angle 𝛼. The intensity of the incident beam is measured

to have a nearly gaussian variation with standard deviation 𝜎S = 4.6 ± 0.01 μm (FWHM	 =

	10.85 ± 0.16 µm). Calculations of the fluorescence utilize a beam height ℎ = 6𝜎S to account

for 99.7% of the beam intensity. X-rays strike a slightly curved dodecane-water interface whose

curvature is modeled by a constant radius of curvature 𝑅U that is measured by x-rays to be typically

100 m.10 Curvature of the interface in the transverse direction (the 𝑦-direction) can be neglected

because the dimension of the x-ray footprint (on the interface) in this direction is small (200 μm).

The dimension of the footprint along the x-direction, ℎ/𝛼 (for small 𝛼), is larger than the length 𝑙

(= 12.7 mm) of the detection volume for the range of measured values of 𝑄). These values span

the critical 𝑄- , which varies from 0.0103 Å-1 to 0.0112 Å-1, depending upon the chemical

composition of the phases.

 88

Figure 34. (a) Schematic diagram of X-ray paths used for the calculation of the fluorescence
intensity. Red, brown and green rays strike the interfaces along the x-direction at values 𝑥o < −𝑙/2,
−𝑙/2 < 𝑥′ < 𝑙/2 and 𝑥o > 𝑙/2 , respectively where 𝑥o indicates the position on the curved
interface and the x-axis is positive to the left of center. (b) detailed view of the geometry around
the position where red ray strikes the interface. Note that 𝑥o < 0 in this region. The incident angle
and interfacial curvature are exaggerated for clarity.

Rays within the X-ray beam are shown to be parallel in Figure 34 because the angles of

incidence a are roughly 100 times larger than the beam divergence. Figure 34 illustrates three rays

colored red, brown and green, to represent rays that strike the surface beyond (red and green) and

within (brown) the detector region. The red ray shown in Figure 34(b) passes through position

(𝑥, , 𝑧,) in the organic phase and strikes the interface at (𝑥o, 𝑧′) with incident angle 𝛼o ≈ 𝛼 − 𝑥o/𝑅U

(for 𝑅U ≫ ℎ/𝛼). The transmitted ray passes through (𝑥O , 𝑧O) in aqueous phase and the reflected

ray passes through (𝑥. , 𝑧.) in the organic phase. The brown ray is chosen to pass through the origin

(0, 0) for the convenience of normalization. The dashed line connecting (𝑥, , 𝑧,) on red ray and

point P on brown ray is perpendicular to both rays, hence the X-ray intensity at (𝑥, , 𝑧,) on the red

ray is given by

 𝐼I.@,H- (𝑥, , 𝑧,) ≈ 𝐼(0,0) ⋅ 𝑒&p*,,(Z
-&)*&)

-

6), 𝑥′ ∈ [−𝑙/2, 𝑓/2] (5.2)

where the approximations are made to 𝒪(𝛼%) for the range of nominal angles of incidence 𝛼

2.5× 10&3 ≤ 𝛼 ≤ 7.9 × 10&3 over the range of measured values of 𝑄); 	𝜇𝑖,𝑜 is the absorption

 89

coefficient of the incident beam in the organic phase (0.273 cm-1 at 20 keV)40 that determines the

exponential decay in X-ray intensity with distance along the beam path; f is the footprint on the

interface of the X-ray beam of height ℎ = 6𝜎S . Similarly, the intensity for the reflected and

transmitted at positions (𝑥. , 𝑧.) and (𝑥O , 𝑧O), respectively, are given by

and the intensity of the transmitted ray at position (𝑥O , 𝑧O) is given by

 𝐼()#*%(𝑥+ , 𝑧+) ≈ 𝐼(0,0) ⋅ 𝑇(𝛼,)𝑒
-.

!

. (0
!-0")

2
Λ(.!)𝑒-3#,% 5! , 𝑥, ∈ [−𝑓/2, 𝑙/2] (5.4)

where 𝑅(𝛼o) = F\𝛼o −]𝛼o% − 𝛼-%^/\𝛼o +]𝛼o% − 𝛼-%^F
%
 is the Frenel reflectivity and 𝑇(𝛼o) =

F2𝛼o/\𝛼o +]𝛼o% − 𝛼-%^F
%
 is the Fresnel transmissivity (where 𝛼- = 𝑄-/2𝑘! is the critical angle);

the radius of curvature 𝑅U is measured for some samples and used as a fitting parameter for

others;10Λ(𝛼o) = 1/�2𝑘!Im\]𝛼o% − 𝛼-% + 2𝑖𝛽^� is the X-ray penetration depth that determines

the exponential decay in X-ray intensity along the direction perpendicular to the surface (where β

is the imaginary part of the refractive index of the aqueous phase). Note that for the red ray in

Figure 34(b), the depth in the aqueous phase is 𝛼′(𝑧o − 𝑧O)/𝛼, in the presence of curvature, instead

of the apparent depth 𝑧o − 𝑧O.

The emitted X-ray fluorescence undergoes an additional absorption along the path from its

point of emission to the detector. Recalling that all intensities are scaled to a normalized intensity

at 𝐼(0,0), an absorption factor 𝑒p.) is needed for the energy of the fluorescence emission. Finally,

the fluorescent intensity is written under that assumption that the metal ion distribution in the

organic and aqueous phases is uniform, except along the z-direction within the interfacial region.

Therefore, the fluorescence intensity produced by metal ions at a certain position is proportional

 𝐼678
79:(𝑥7 , 𝑧7) ≈ 𝐼(0,0) ⋅ 𝑅(𝛼,)𝑒

-3#,%(5!;
0&-0!

.-<5!/>'
)
, 𝑥, ∈ [−𝑓/2, 𝑙/2]	 (5.3)

 90

to the incident X-ray intensity and ion number density. Integrating the above equations along the

𝑧 direction yields the total fluorescence produced by the ray that strikes at (𝑥o, 𝑧′),

 𝐼NAQ(𝑥o, z′)
𝐼(0,0) = 𝑛I,A »�

𝐼I,A,H-

𝐼(0,0) e
p.,,)*d𝑧, +�

𝐼I,A
.$N

𝐼(0,0) e
p.,,)/ d𝑧.¼

+ 𝑛OK"$.�
𝐼Kn,H-

𝐼(0,0) e
p.,0)0d𝑧O + 𝜎,H"

𝐼Kn,H-

𝐼(0,0)j
)0E)o

(5.5)

where 𝑛I.@	and	𝑛OK"$. , and 𝜇$,I	and	𝜇$,O , are the ion number densities, and fluorescence

emission line absorption coefficients, for the organic and aqueous phases, respectively, where

values of the latter are 𝜇$,O= 26.58 cm-1 and 𝜇$,I= 7.451 cm-1 for the Eu 𝐿𝛼 line at 5.842 keV.40

Fluorescence intensity that originates from the interfacial region (0 < |[(𝑧o − 𝑧O)𝛼o/𝛼]| <

Λ(𝛼o)) is not negligible if there is an interfacial excess of metal ions with density 𝜎,H" (i.e., per

area), which can be considered to sufficient accuracy by setting 𝑧O = 0 . All the integration results

up to this point can be written in analytical form. Also note that whether a term in equation (5.5)

contributes to the measured fluorescence depends on the position the ray hits the interface. For

example, the brown ray contributes all the terms, while the red ray contributes reflected and

transmitted intensity only, and for the green ray the only non-zero component is the incident

intensity.

Integrating each term in equation (5.5) involves careful consideration of the x-ray paths.

For the incident component, and recalling that 𝑓 > 𝑙 in our experiments, the first term in equation

(5.5) can be written as,

 91

�
𝐼I.@,H-

𝐼(0,0) 𝑒
p.,,)*𝑑𝑧, =

⎩
⎪
⎨

⎪
⎧
0 −𝑓/2 < 𝑥′ < −𝑙/2

� 𝑒&p*,,Z1
)*,&

)o	
𝑒p.,*)*𝑑𝑧, −𝑙/2 < 𝑥′ < 𝑙/2

� 𝑒&p*,,Z1
)*,&

)*,2	
𝑒p.,*)*𝑑𝑧, 𝑙/2 < 𝑥′ < 𝑓/2

	

=
1
𝜇$,,

𝑒&p*,,Z1

⎩
⎪
⎨

⎪
⎧
0, −𝑓/2 < 𝑥′ < −𝑙/2

𝑒p.,*)*,&	 − 𝑒&p.,*)- , −𝑙/2 < 𝑥′ < 𝑙/2

𝑒p.,*)*,&	 − 𝑒p.,*)*,2	, 𝑙/2 < 𝑥′ < 𝑓/2

(5.6)

where 𝑥! = 𝑥o + 𝑧o/𝛼 is the intersection of the incident ray with the 𝑥-axis illustrated in Figure

34(b), 𝜇$,, = 𝜇,,I/𝛼 + 𝜇$,I is an effective absorption coefficient; 𝑧,,' = (𝑥! − 𝑙/2)𝛼 and 𝑧,,% =

(𝑥! + 𝑙/2)𝛼 are the heights illustrated in Figure 34 (a) of the incident X-ray at the boundaries of

the detection volume.

The geometry is similar for the reflected beam,

:
𝐼6#?
79:

𝐼(0,0)
e3(,%0&d𝑧7 = 𝑅(𝛼,)

⎩
⎪
⎨

⎪
⎧: 𝑒-3#,%5)𝑒3(,&0&d𝑧7

0&,*

0&,)
, −𝑓/2 < 𝑥′ < −𝑙/2

: 𝑒-3#,%5)𝑒3(,&0&d𝑧7
0&,*

0!
−𝑙/2 < 𝑥′ < 𝑙/2

0, 𝑙/2 < 𝑥′ < 𝑓/2

	

=
1
𝜇9,7

𝑒-3#,%5)𝑅(𝛼′)

⎩
⎪
⎨

⎪
⎧
𝑒3(,&0&,* − 𝑒3(,&0&,) −𝑓/2 < 𝑥′ < −𝑙/2

𝑒3(,&0&,* − 𝑒3(,&0! , −𝑙/2 < 𝑥′ < 𝑙/2

0, 𝑙/2 < 𝑥′ < 𝑓/2

(5.7)

where 𝑥' = 𝑥o − 𝑧o/(𝛼 − 2𝑥o/𝑅U) is the intersection of the reflected X-ray with the 𝑥 -axis

illustrated in Figure 34(b), 𝜇$,. = −𝜇,,I/(𝛼 − 2𝑥o/𝑅U) + 𝜇$,I is an effective absorption

coefficient; 𝑧.,' = −(𝑥! + 𝑙/2)(𝛼 − 2𝑥′/𝑅U) and 𝑧.,% = −(𝑥! − 𝑙/2)(𝛼 − 2𝑥′/𝑅U) are the

heights illustrated in Figure 34(a) of the reflected X-ray at the boundaries of the detection volume.

The term for the aqueous phase is evaluated as follows:

 92

:
𝐼()#*%

𝐼(0,0)
𝑒-3(,"|0"|d𝑧+

= 𝑇(𝛼′)𝑒-3#,% 5,𝑒
- .,0,
AB(.!) 	

⎩
⎪
⎨

⎪
⎧: 𝑒-|0"|BC(.!)

0#,*

0#,)
d𝑧+ −𝑓/2 < 𝑥′ < −𝑙/2

: 𝑒-|0"|/BC(.!)
0!

0#,)
d𝑧+ −𝑙/2 < 𝑥′ < 𝑙/2

0 𝑙/2 < 𝑥′ < 𝑓/2

= ΛF(𝛼,)𝑇(𝛼,)𝑒
-3#,%5!-

.,0,
AB(.!)

⎩
⎪
⎨

⎪
⎧𝑒

0#,*
BC(.!)−𝑒

0#,)
BC(.!) −𝑓/2 < 𝑥′ < −𝑙/2

𝑒
0!

BC(.!)−𝑒
0#,)
BC(.!) −𝑙/2 < 𝑥′ < 𝑙/2

0 𝑙/2 < 𝑥′ < 𝑓/2

(5.8)

where 1/ΛÁ(𝛼o) = (𝛼o/𝛼) ⋅ 1/Λ(𝛼o) + 𝜇$,O is an effective penetration depth of the incident beam

into the aqueous phase that accounts for X-ray absorption of the incident and fluorescent X-rays.

Equation (5.8) calculates the fluorescence intensity created by ions in regions where 𝑧O ≤

𝑧′ which includes the entire aqueous phase, including the interfacial region. However, this

calculation, by itself, does not fully account for interfacial ions because it does not account for a

difference between the density of interfacial ions and those in the bulk aqueous phase. This can be

seen by noting that the equation (5.5) contains a product of a constant aqueous phase density

𝑛OK"$. and the fluorescence calculated by equation (5.8). This is equivalent to assuming that the

constant density 𝑛OK"$. is uniformly extended up to a mathematically defined interface, such as a

Gibbs dividing surface. Note that this effect can be easily observed in a standard XFNTR aqueous

calibration sample by noting the increase of fluorescence data below the critical 𝑄 (see Appendix

D.2.2 sample 6, inset figure). This increase occurs because the evanescent wave penetration depth

increases as 𝑄 varies from far below 𝑄-, say, 0.005 Å-1, to near, but still below, say 0.01 Å-1. These

uniformly distributed ions account for some of the ions in the interfacial region, but may

undercount them or overcount them, respectively, if there is a positive or negative surface excess

 93

of ions in the thermodynamic sense. In addition, spatial variations in the interfacial ion density

with the normal coordinate 𝑧 are not considered.

If there are excess metal ions at the interface, for example, in the form of ions bound to

interfacial species, such as amphiphilic extractants, then the interfacial region occupied by these

ions is much smaller than the evanescent wave decay length Λ(𝛼o), which has its smallest value

of 10 nm at its smallest measured value of 𝑄 , 0.005 Å-1.27 Under these circumstances, the

exponential decay in the 𝑧-direction vanishes from the integration and the interfacial fluorescence

is obtained by setting 𝑧O = 𝑧′:

𝐼Kn,H-

𝐼(0,0)j
)0E!

= Â𝑇(𝛼
o)𝑒&p*,,Z- −𝑙/2 < 𝑥′ < 𝑙/2
0 otherwise

 (5.9)

 However, a positive or negative excess of metal ions may exist throughout the interfacial

region defined, for the purpose of these measurements, as that probed by the X-ray evanescent

wave. For example, if the interface is charged or if there is an electric potential difference between

the two bulk phases, then an electrical double layer may extend throughout the interfacial region.

Alternatively, an interfacial structure may have nucleated at the interface, then grown throughout

the interfacial region towards the bulk aqueous phase. Under these circumstances the exponential

decay in the 𝑧-direction cannot be neglected when accounting for excess ions. One way to cut off

the decay is to choose 𝑧O in the range where |(𝑧o − 𝑧O)𝛼′/𝛼| < 5Λ(𝛼o), where we have chosen

5Λ(𝛼o) because that accounts for 99.7% of the evanescent wave region. Now, the interfacial term

will become

 �
𝐼Kn,H-

𝐼(0,0) d𝑧 = Ä𝑇(𝛼
o)𝑒&p*,,Z- � 𝑒

& 6-
6r(6-)()

-&)0)	d𝑧O
)o

)-&s
−𝑙/2 < 𝑥′ < 𝑙/2

0 otherwise

 94

= Ä𝑇(𝛼o)𝑒&p*,,Z
- 𝛼Λ(𝛼o)

𝛼o
(𝑒

6-s
6r(6-) − 1) −𝑙/2 < 𝑥′ < 𝑙/2

0 otherwise

where Δ = 5Λ(𝛼o)𝛼/𝛼′. Qualitatively, one expects that if the distribution of excess ions varies

over the length scales that are either much smaller or much larger than the range of the evanescent

wave decay lengths below 𝑄- that are probed by the measurement, then the variation of the

fluorescent intensity with 𝑄) will not be sensitive to the form of the ion distribution. However,

measurements of XFNTR may be sensitive to the form of the ion distribution when the distribution

varies over length scales that lie within the length of evanescent decay lengths utilized by the

experiment.

Finally, the total fluorescence intensity detected by the fluorescence detector can be

obtained by summing the fluorescence produced by all X-rays but weighting the beam intensity to

account for the beam profile.

𝐼(𝛼)
𝐼!

= 𝐶� 𝑤(𝑥o)
𝐼NAQ(𝑥′)
𝐼!

N/%

&N/%
d𝑥o + 𝐼V@ (5.10)

where C is the scale factor for a given emission line that accounts for the effect of the scattering

geometry and 𝑤(𝑥o) follows a normal distribution 𝑁(0, (𝑒/𝛼)%) in a given range:

 𝑤(𝑥o) = Ä
1

√2𝜋𝜎S/𝛼
𝑒
& Z-&
%	(t'/6)& −

3𝜎S
𝛼

< 𝑥o <
3𝜎S
𝛼

0 otherwise
 (5.11)

The integral in Eq. (5.10) is calculated numerically.

The model described above assumes the alignment of three things: the center of detector

region, the center of the interface (𝑥 = 0) and the center of the X-ray footprint on the interface. In

practice however, even a careful alignment could produce an offset in sample height Δ𝑠ℎ	in an

order of micrometers over the 𝑄) range of measurement. This leads to an equivalent horizontal

 95

offset of the center of the X-ray footprint by Δ𝑠ℎ/𝛼 of several millimeters, which is significant

compared to the detector range (12.7mm). Moreover, the horizontal misplacement of the detector

could shift the detector region off the 𝑥 = 0 position by as much as 2~3 mm, and this can also be

viewed as an offset of X-ray footprint to the detector region. It also causes the center of the (𝑥, 𝑧)

coordinate system attached to the interface to move away its origin, which is negligible with a big

curvature. As a result, equation (5.10) should be rewritten to include the offset

𝐼(𝛼, Δ𝑠ℎ)

𝐼!
= 𝐶� 𝑤(𝑥o +

Δ𝑠ℎ
𝛼)

𝐼NAQ(𝑥′)
𝐼!

&sR<6 >N/%

&sR<6 &N/%
d𝑥o + 𝐼V@ (5.12)

From the equation above, the measured fluorescence is a function of the offset Δ𝑠ℎ of the

sample height, as well as the incident angle 𝛼. In fact, instead of being considered as a source of

error, variations in Δ𝑠ℎ can be used as an extra dimension to study the fluorescence intensity. In

other words, an sh-scan, a scan that varies Δ𝑠ℎ at a fixed incident angle, might provide

complementary information to a 𝑄)-scan, a scan that varies the incident angle 𝛼 only.

Figure 35 shows the two different kinds of scans for samples containing citric acid as an

example. We have chosen to illustrate this with citric acid samples because the fluorescence signal

is nearly featureless as a result of the coincidental addition of the signals from the bulk organic

and aqueous phases. Figure 33b illustrated the form of the signal from these bulk phases, which

suggests that an appropriate bulk concentration of metal ion in each of the phases might produce

a nearly featureless total XFNTR signal in the absence of an interfacial signal. This is illustrated

by the 𝑄)-scan in Figure 35a for which the rise in the XFNTR signal above 𝑄- from the bulk water

phase is similar in magnitude to the fall in the signal from the bulk organic phase. For this sample,

the slight increase in XFNTR signal below 𝑄- indicates the presence of excess metal ions at the

interface, but the interface signal is weak. The overall effect is that the measured XFNTR signal

 96

is nearly featureless and a skeptic might be concerned that something is wrong with the

measurement. In cases like this, stronger signals from each of the bulk phases are evident in an

XFNTR 𝑠ℎ-scan, which can provide a confirmation of the analysis of an XFNTR 𝑄)-scan.

Figure 35. XFNTR the citric acid sample containing 0.5 M citric acid and 0.1 mM DTPA in the
aqueous phase and 1 mM Eu 10 mM HDEHP in the oil phase. (a) 𝑄)-scan; (b) 𝑠ℎ-scan at 𝑄) =
0.006	Å&'; (c) 𝑠ℎ-scan at 𝑄) = 0.015	Å&'. Vertical lines mark values discussed in the text.

In the XFNTR 𝑄)-scan in Figure 35(a), Δ𝑠ℎ is a fitting parameter. The fitting result yields

Δ𝑠ℎ = −2 μm, meaning there is a negative sample height offset due to the misalignment of the

instrument. The two XFNTR 𝑠ℎ-scans in (b) and (c) were performed below (𝑄) = 0.006	Å&') and

above (𝑄) = 0.015	Å&') the critical angle, at the values indicated by the two black vertical lines

in (a), respectively. For low sample height positions (Δ𝑠ℎ ≪ 0), the X-ray beam pases above the

interface and penetrates through the bulk organic phase; therefore, the fluorescence intensity

consists of only that created by the incident beam, which is nearly constant (~1.9 × 10&%)

 97

regardless of the sample height. The reflected and transmitted beam start to move into the detection

region as the sample moves up, and the intensity above the critical angle consists of all the terms

in Equation (5.5). At even higher sample heights, part of the beam strikes the wall of the glass tray

and is partially blocked. Note that the wall, which is ~3.2 mm in thickness, does not fully prevent

the X-ray from passing through the glass wall. These X-rays create fluorescence signal from the

aqueous phase, and produce the shoulder in the fluorescence for Δ𝑠ℎ = 0.03 to 0.06 mm. Our model

doesn’t account for this effect; therefore, the predicted fluorescence is lower than the data in this

range of Δ𝑠ℎ. There is also a universal background (~0.12 × 10&%) that is the result of second

scattering from the organic phase. The secondary scattering is the result of elastic scattering of X-

rays from the organic phase that travel into the aqueous phase and create fluorescence from metal

ions in the aqueous phase.

The total intensity, along with its components, as the function of Δ𝑠ℎ is drawn in Figure

35 (b) and (c) using the number densities derived from the fit in in Figure 35(a). The intensity

arising from interface is small and bears a large error bar in all three cases, suggesting the difficulty

of demonstrating the existence of interfacial ions in this sample. The fluorescence from the bulk

aqueous phase below critical angle is zero due to total reflection. Above the critical angle a

significant part of the intensity comes from aqueous phase in the Δ𝑠ℎ > 0 region. This

contribution peaks at around Δ𝑠ℎ = 0.01 mm before being reduced to zero as the detection volume

in the aqueous phase decreases. As a result, the total intensity features a peak at the same location,

which confirms the fitting result for the metal ion concentration in the aqueous phase. Therefore,

the XFNTR sh-scans can provide a separation of fluorescence signals from the organic bulk phase

and aqueous bulk phase signals that are otherwise summed in an XFNTR 𝑄) -scan. This is

particularly useful when the XFNTR 𝑄)-scan is nearly featureless as in Figure 35a.

 98

One can also fit the 𝑠ℎ-scan data directly to equation (5.12) to obtain a number density in

the organic and aqueous phases, as well as the interface. This suggests the possibility of measuring

XFNTR in a two-dimensional grid in (𝛼, Δ𝑠ℎ) space, which might reduce the error bars on the

fitted parameters, i.e., the bulk ion concentrations and interfacial ion density. This could be an

interesting extension to the original XFNTR method.

5.4 Results and Discussion

The Europium 𝐿𝛼 emission line at 5.849 keV in the raw fluorescence spectrum is fitted to

a Gaussian peak as shown in Figure 36(a). The product of the height and FWHM of the Lα peak

is used to produce data points in Figure 36(b), which shows one example set of fluorescence

measurements fitted to equation (5.12) to find 𝑛I.@, 𝑛Kn and 𝜎,H", hence ion concentrations, for

each phase of the samples in Table 7. The averaged results of this fitting for four different samples

are shown in Table 8. All of the data and results can be found in Appendix D). The X-ray result

for the neutral (pure) water sample shows no ions in water phase (0&!.!'F>!.!'(mM), a result that is

confirmed by ICP-MS (< 3 × 10&(mM). The interfacial distribution (2.9&!.(>!.* × 10&C	Å&%) is the

average of three measurements, two of which show no interfacial ions whereas the third shows an

interfacial density of 8.74&!.+F>'.*+ × 10&C	Å&%. The results from a sample without interfacial ions are

plotted in Figure 36(b). The intensity below the critical wave vector transfer (Qc = 0.01023 Å-1) is

flat, which is typical of XFNTR data when ions are present only in the dodecane phase, as

illustrated in Figure 33(b). The data are slightly curved near Qc due to the presence of a positive

curvature of the interface. The ratio of intensity at 𝑄) = 0.006	Å&' to that at 𝑄) = 0.016	Å&' is

roughly 1.88, which is lower than the ideal 2:1 ratio as the result of a small positive sample height

offset in the measurement that enhances the fluorescence signal from the aqueous phase.

 99

Figure 36 (a) the 𝐿6 and 𝐿u emission line of Europium and the fitted gaussian peaks. (b)
Representative X-ray fluorescence near total reflection (XFNTR) data as a function of 𝑄) from the
liquid-liquid interface between an n-dodecane solution of 1 mM Eu with 10 mM HDEHP and
different aqueous phases: pure water (red), 1mM HNO3 pH=3 solution (green) and 0.5M citric
acid pH=3 solution (blue).

The nitrate sample was made from the same solutions as the pure water sample with the

addition of 1mM HNO3 in the aqueous phase (pH = 3 ± 0.1). The XFNTR data mostly follows

the trend of the pure water sample, indicating a similar equilibrium dominated by Eu ions in the

oil phase. The fitted concentration of Eu ions in the organic phase is 0.96&!.!'>!.!' mM, the ICP-MS

result is 1.020 ± 0.1 mM. Moreover, the positive slope below the critical wave vector transfer for

total reflection, 𝑄- ≈ 0.01	Å&' , indicates the presence of an interfacial excess of ions, as

illustrated by the interfacial contribution shown in Figure 33 (b). Quantitative analysis yields an

Eu surface number density of 6.28&!.%3>!.%+ × 10&CÅ&%, or one Eu ion for every 159.2&*.+>F.'	Å% of the

interface. The result also shows absence of metal ions (0&!.!'C>!.!%% mM) in the water phase as

confirmed by ICP-MS results (< 3.85 × 10&(mM).

Table 8 Averaged X-ray results of ion distributions of four samples for three different aqueous
composition: pure water, 1mM HNO3 and 0.5M Citric, compared with ICP-MS results (below

X-ray restuls)

Aqueous phase Ion Concentration (X-ray / ICP-MS)

 Bulk Organic (mM) Interface (10-3Å-2) Bulk Aqueous (mM)

Water 1.05(+0.11/-0.011) 2.91(+0.60/-0.54) 0 (+0.015/-0.017)

 100

* all the ICP-MS results are subject to an error bar of 10% of its measured value.

For the citrate sample, the ion concentration is 0.44&!.!'>!.!(mM in organic phase and

0.68&!.!%>!.!% mM in aqueous phase. The fluorescence data is relative featureless across the whole

measuring range of 𝑄). The curves for the bulk aqueous and organic phases shown in Figure 33

(b) suggest that an appropriate distribution of metal ions in the two bulk phases can lead to

relatively flat variation of fluorescence with 𝑄). Besides, the small positive slope below the critical

wave vector transfer, 𝑄- ≈ 0.01	Å&' , suggests a small density of Eu at the interface

(0.35&!.'v>!.'* 	× 10&C	Å&%).

In equation (5.9), we assumed that all the interfacial metal ions were bound to surfactants

right at the interface, or close enough to it — that is, closer than 5 to 10 nm — that 𝑧O = 𝑧o is a

valid approximation. Now we discuss an alternative situation to inquire about its applicability to

these experiments, namely that the concentration of metal ions is enhanced but decay along 𝑧 to

the value of the bulk concentration in the aqueous phase. However, during the dynamic solvent

extraction, it is possible that the concentration of near interfacial ions is enhanced but decays to

the bulk concentration along z direction into the aqueous phase. One possible way that this

distribution could arise is if there is a difference between the bulk aqueous and organic phases.

Here, we consider the resultant ion distribution that has been described by the Gouy–Chapman

theory, 41,42 thought the limitations of this theory are well known. Solving the Poisson–Boltzmann

 1.089* N/A < 3 × 10&(

Nitrate 0.961(+0.005/-0.096) 6.28(+0.26/-0.24) 0 (+0.022/-0.013)

 1.020 N/A < 3.85 × 10&(

Citrate 0.443(+0.054/-0.005) 0.35(+0.16/-0.19) 0.683(+0.016/-0.016)

 0.71 N/A 0.62

 101

equation in the presence of an infinite charged plane with positive potential 𝜙(0) at the surface of

the plane, one can obtain the near interfacial distribution in the z direction for ions of valence Z:

 𝑛±(𝑧) = 𝑛Kn z
1 ∓ 𝑒&)/h' tanh[𝑍±𝑒𝜙(0)/4𝑘B𝑇]
1 ± 𝑒&)/h' tanh[𝑍±𝑒𝜙(0)/4𝑘B𝑇]

{
%

 (5.13)

where the plus and minus signs in 𝑛±(𝑧) represent cations and anions, respectively; 𝑛Kn is the

aqueous bulk concentration, 𝑍±𝑒 is the electrical charge carried by the ions and 𝜆S is the Debye

length that measures the spatial extent of charge screening on a single ion, given below:

 𝜆S = É
𝜀!𝜀.𝑘B𝑇

𝑒% ∑ 𝑍,%𝑐,VQA5,E±
≈

3
]𝑐VQA5[M]

[Å] (5.14)

where the approximation holds for a monovalent (𝑍± = ±1) strong electrolyte. This

approximation yields 𝜆S ≈ 100	Å for a 1mM solution. Solutions of trivalent ions, containing ions

such as EuC>, of concentration on the order of 1 mM, might be expected to have 𝜆S ≈ 30	Å.

Thought the applicability of this classical ion distribution theory to trivalent ions has been

questioned, we anticipate that the Debye length will be an upper limit to the correct relevant length

scales.

Far below the critical angle at 𝑄) = 0.005	Å&' , the evanescent wave decay length is

Λ(𝛼) ≈ 100	Å, and the interfacial region probed by the evanescent wave is thus roughly 5Λ(𝛼) ≈

500	Å. Considering the evanescent wave region below a flat interface in which the excess metal

ions follow a distribution 𝑛(𝑧O), the excess fluorescence produced by excess ions at position

(𝑥O , 𝑧O) is given by rewriting equation (5.4) as follows

𝐼9D(
:?E(𝑥+ , 𝑧+)
𝐼(0,0)

≈ 𝐶 ⋅ 𝑛(𝑧+) ⋅ 𝑇(𝛼)𝑒
-3#,%F5"-

0"
. G 𝑒

-|0"|
Λ(.) 𝑒-3(,"|0"|

= 𝐶 ⋅ 𝑛(𝑧+) ⋅ 𝑇(𝛼)𝑒-3#,%5" 𝑒-|0"|/B
C(.)

(5.15)

 102

where 1/ΛÁ(𝛼) = 1/Λ(𝛼) + 𝜇$,O − 𝜇,,I/𝛼 ≈ 1/Λ(𝛼) . The total fluorescence created by the

evanescent wave region is therefore the integration of the above equation over a rectangular area

below the interface. The integration area spans the entire detector region in the 𝑥 direction from

the interface down to 3Λ(𝛼) into the aqueous phase in the 𝑧 direction:

 𝐼9D(
:?E

𝐼(0,0)
= 𝐶 ⋅ 𝑇(𝛼): 𝑒-3#,%5" d𝑥+

?/<

-?/<
: 𝑛(𝑧+)𝑒

- |0"|
BC(.)d𝑧+

H

-3Λ(𝛼)
 (5.16)

 We then calculated the integrated fluorescence intensity for different distributions:

 𝑛(𝑧O) = Ä
𝜎,H"𝛿(𝑧O) bound

𝑛Kn z
1 ∓ 𝑒&|)0|/h' tanh[𝑍±𝑒𝜙(0)/4𝑘B𝑇]
1 ± 𝑒&|)0|/h' tanh[𝑍±𝑒𝜙(0)/4𝑘B𝑇]

{
%

Gouy	– Chapman
 (5.17)

For ions bound to extractants at the interface, the ions can be modeled to be located in a

mathematical plane 𝑛(𝑧O) = 𝜎,H"𝛿(𝑧O) because this calculation assumes a planner interface. and

the top equation in (5.17) reduces to equation (5.9), with 𝑥′ replaced by 𝑥 and 𝛼′ replaced by 𝛼.

Note that bounded ions can also be modeled to follow Gouy–Chapman distributions with a rather

high negative interfacial potential. Figure 37 shows the normalized ion distribution for trivalent

cations that have a Debye length of 30 Å, but under different interfacial potentials. For 𝜙(0) =

−0.05	V, almost all the ions are within 10 Å from the interface, and the calculated fluorescence

intensity from this distribution barely differs from having all the ions bound extractants located at

𝑧 = 0 (red solid and black dashed lines).

a b

 103

Figure 37. (a) Example of normalized distribution of excess ions with different Debye length; (b)
Total fluorescence created by ions in the evanescent region.

 Figure 37 (b) shows the dependence of fluorescence intensity on the incident angle. The

intensities above the critical angle are the same regardless of the ion distribution. This is because

the penetration depth Λ(𝛼) becomes 1~10	µm (see Figure 5) above critical angle and the

exponential decay in equation (5.16) has no effect along 𝑧 direction. Below the critical angle, the

decay of the X-ray intensity the within evanescent region is significant. Ions closer to the interface

create more fluorescence intensity. However, there is no significant difference between the slope

of the integrated intensity below the critical 𝑄 , making it nearly impossible to identify the

distribution of the ions in the evanescent region. The intensity profile of the excess ions bounded

to the interface can be interpreted as that of the non-bounded excess ions with a higher

concentration, and the difference between the two is within measurement error bars.

 It is plausible that ion distributions that extend over length scales of 100 to 300 Å, which

would be of comparable dimensions to the evanescent decay lengths, would exhibit an integrated

fluorescent intensity below the critical Q that has a different shape than shown in Figure 37b. In

this case the form of the ion distribution could be probed by XFNTR. Although it is unlikely that

these long decay lengths would be present in 1 mM solutions of trivalent electrolytes, they might

be expected in dilute solutions of monovalent electrolytes with concentrations of roughly 0.1 mM

to 1 mM.

5.5 Conclusion

We have extended the XFNTR method and used it to measure in situ the interfacial ion

density and the concentrations of ions in neighboring bulk phases. The method measures the

fluorescence intensity as a function of incident angle (a 𝑄) -scan) or the footprint position

 104

(equivalently the sample height Δ𝑠ℎ) of the incident beam on the interface (an 𝑠ℎ-scan). Using this

technique, we measured the interfacial ion density and the ion concentrations in the two

neighboring bulk phases of a model system for back extraction. Europium ions were detected at

the interface for samples with nitric and citric acid solutions, but not for pure water. The 𝑄)-scan

demonstrated that the measured excess ion interfacial density for samples containing citric acid

solutions is smaller than for those containing nitric acid solutions. The density of excess interfacial

ions in samples with citric acid was close to the statistical limit of the detection capabilities of

these 𝑄) -scan XFNTR measurements. The 𝑠ℎ -scan XFNTR measurement was used as a

complementary tool to support the existence of excess interfacial ions in the citric acid samples.

More 𝑠ℎ-scan data near the Δ𝑠ℎ = 0 position is needed in future experiments to fully reveal the

interfacial feature. These results suggest that measuring XFNTR data in a two dimensional grid in

(𝑄) , Δ𝑠ℎ) space, which could take advantage of the complementary features of both sh-scan and

Qz-scan XFNTR, might reduce the statistical errors on the fitting parameters.

5.6 Cited Literature

1. Todd TA. Development in the U . S . Fuel Cycle Program. 2011.

2. Todd TA. Separations research for advanced nuclear fuel cycles. In: ACS Symposium Series.

Vol 1046. American Chemical Society; 2010:13-18. doi:10.1021/bk-2010-1046.ch002

3. Mincher BJ, Peterman DR, Mcdowell RG, Olson LG. Radiation Chemistry of Advanced

TALSPEAK Flowsheet. 2013:20.

4. Wilson AM, Bailey PJ, Tasker PA, Turkington JR, Grant RA, Love JB. Solvent extraction:

The coordination chemistry behind extractive metallurgy. Chem Soc Rev. 2014;43(1):123-

134. doi:10.1039/c3cs60275c

5. Steytler DC, Jenta TR, Robinson BH, Eastoe J, Heenan RK. Structure of Reversed Micelles

 105

Formed by Metal Salts of Bis(ethylhexyl) Phosphoric Acid. Langmuir. 1996;12(6):1483-

1489. doi:10.1021/la950669x

6. Gannaz B, Antonio MR, Chiarizia R, Hill C, Cote G. Structural study of trivalent lanthanide

and actinide complexes formed upon solvent extraction. J Chem Soc Dalt Trans.

2006;(38):4553-4562. doi:10.1039/b609492a

7. Ellis RJ, Anderson TL, Antonio MR, Braatz A, Nilsson M. A SAXS Study of Aggregation

in the Synergistic TBP–HDBP Solvent Extraction System. J Phys Chem B.

2013;117(19):5916-5924. doi:10.1021/jp401025e

8. Parratt LG. Surface studies of solids by total reflection of x-rays. Phys Rev. 1954;95(2):359-

369. doi:10.1103/PhysRev.95.359

9. Kiessig H. Interferenz von Röntgenstrahlen an dünnen Schichten. Ann Phys.

1931;402(7):769-788. doi:10.1002/andp.19314020702

10. Pershan PS, Schlossman M. Liquid Surfaces and Interfaces: Synchrotron X-Ray Methods.

Vol 9780521814. Cambridge University Press; 2012. doi:10.1017/CBO9781139045872

11. Buff FP, Lovett RA, Stillinger FH. Interfacial Density Profile for Fluids in the Critical

Region. Phys Rev Lett. 1965;15(15):621-623. doi:10.1103/physrevlett.15.621

12. Pershan PS, Schlossman M. Liquid Surfaces and Interfaces. Cambridge University Press;

2012. doi:10.1017/cbo9781139045872

13. Bu W, Yu H, Luo G, et al. Observation of a rare earth ion-extractant complex arrested at

the oil-water interface during solvent extraction. J Phys Chem B. 2014;118(36):10662-

10674. doi:10.1021/jp505661e

14. https://en.wikipedia.org/wiki/X-ray_fluorescence.

15. https://en.wikipedia.org/wiki/Iohexol.

 106

16. Nilsson M, Nash KL. Review article: A review of the development and operational

characteristics of the TALSPEAK process. Solvent Extr Ion Exch. 2007;25(6):665-701.

doi:10.1080/07366290701634636

17. Philip Horwitz E, Kalina DC, Diamond H, Vandegrift GF, Schulz WW. THE TRUEX

PROCESS - A PROCESS FOR THE EXTRACTION OF THE TKANSURANIC

ELEMENTS EROM NITRIC AC In WASTES UTILIZING MODIFIED PUREX

SOLVENT*. Solvent Extr Ion Exch. 1985;3(1-2):75-109.

doi:10.1080/07366298508918504

18. Weaver B, Kappelmann FA. TALSPEAK, ORNL-3559. 1964.

19. Gelis A V., Kozak P, Breshears AT, et al. Closing the Nuclear Fuel Cycle with a Simplified

Minor Actinide Lanthanide Separation Process (ALSEP) and Additive Manufacturing. Sci

Rep. 2019;9(1):1-11. doi:10.1038/s41598-019-48619-x

20. Gelis A V., Lumetta GJ. Actinide lanthanide separation process - ALSEP. Ind Eng Chem

Res. 2014;53(4):1624-1631. doi:10.1021/ie403569e

21. Nash KL. The Chemistry of TALSPEAK: A Review of the Science. Solvent Extr Ion Exch.

2015;33(1). doi:10.1080/07366299.2014.985912

22. Ellis RJ. Acid-switched Eu(III) coordination inside reverse aggregates: Insights into a

synergistic liquid-liquid extraction system. Inorganica Chim Acta. 2017;460:159-164.

doi:10.1016/j.ica.2016.08.008

23. Lumetta GJ, Gelis A V., Carter JC, Niver CM, Smoot MR. The Actinide-Lanthanide

Separation Concept. Solvent Extr Ion Exch. 2014;32(4):333-347.

doi:10.1080/07366299.2014.895638

24. Gannaz B, Antonio MR, Chiarizia R, Hill C, Cote G. Structural study of trivalent lanthanide

 107

and actinide complexes formed upon solvent extraction. J Chem Soc Dalt Trans.

2006;(38):4553-4562. doi:10.1039/b609492a

25. Antonio MR, McAlister DR, Horwitz EP. An europium(iii) diglycolamide complex:

Insights into the coordination chemistry of lanthanides in solvent extraction. Dalt Trans.

2015;44(2):515-521. doi:10.1039/c4dt01775g

26. Gullekson BJ, Brown MA, Paulenova A, Gelis A V. Speciation of Select f-Elements with

Lipophilic Phosphorus Acids and Diglycol Amides in the ALSEP Backward-Extraction

Regime. Ind Eng Chem Res. 2017;56(42):12174-12183. doi:10.1021/acs.iecr.7b02379

27. Bu W, Mihaylov M, Amoanu D, et al. X-ray studies of interfacial strontium-extractant

complexes in a model solvent extraction system. J Phys Chem B. 2014;118(43):12486-

12500. doi:10.1021/jp508430e

28. Bu W, Yu H, Luo G, et al. Observation of a rare earth ion-extractant complex arrested at

the oil-water interface during solvent extraction. J Phys Chem B. 2014;118(36):10662-

10674. doi:10.1021/jp505661e

29. Liang Z, Bu W, Schweighofer KJ, et al. Nanoscale view of assisted ion transport across the

liquid–liquid interface. Proc Natl Acad Sci U S A. 2019;116(37):18227-18232.

doi:10.1073/pnas.1701389115

30. Bu W, Hou B, Mihaylov M, et al. X-ray fluorescence from a model liquid/liquid solvent

extraction system. J Appl Phys. 2011;110(10):1-6. doi:10.1063/1.3661983

31. Bu W, Vaknin D. X-ray fluorescence spectroscopy from ions at charged vapor/water

interfaces. J Appl Phys. 2009;105(8). doi:10.1063/1.3117487

32. Goebel A, Lunkenheimer K. Interfacial tension of the water/n-alkane interface. Langmuir.

1997;13(2):369-372. doi:10.1021/la960800g

 108

33. Zhengshui H, Ying P, Wanwu M, Xun F. Purification of Organophosphorus Acid

Extractants. Solvent Extr Ion Exch. 1995;13(5):965-976. doi:10.1080/07366299508918312

34. Svantesson I, Persson G, Hagström I, Liljenzin JO. Distribution ratios and empirical

equations for the extraction of elements in Purex high level waste solution-II: HDEHP. J

Inorg Nucl Chem. 1980;42(7):1037-1043. doi:10.1016/0022-1902(80)80397-6

35. Bloch JM, Yun W. Condensation of monovalent and divalent metal ions on a Langmuir

monolayer. Phys Rev A. 1990;41(2):844-862. doi:10.1103/PhysRevA.41.844

36. Shapovalov VL, Ryskin ME, Konovalov O V., Hermelink A, Brezesinski G. Elemental

Analysis within the Electrical Double Layer Using Total Reflection X-ray Fluorescence

Technique. J Phys Chem B. 2007;111(15):3927-3934. doi:10.1021/jp066894c

37. Bu W, Flores K, Pleasants J, Vaknin D. Preferential Affinity of Calcium Ions to Charged

Phosphatidic Acid Surface from a Mixed Calcium/Barium Solution: X-ray Reflectivity and

Fluorescence Studies. Langmuir. 2009;25(2):1068-1073. doi:10.1021/la803161a

38. Vaknin D, Bu W. Neutrally charged gas/liquid interface by a catanionic langmuir

monolayer. J Phys Chem Lett. 2010;1(13):1936-1940. doi:10.1021/jz1005434

39. Als-Nielsen J, McMorrow D. Elements of Modern X-Ray Physics, 2nd Edition. 2nd ed.

Wiley https://www.wiley.com/en-

ao/Elements+of+Modern+X+ray+Physics,+2nd+Edition-p-9780470973943. Accessed

February 18, 2020.

40. http://henke.lbl.gov/optical_constants/.

41. Chapman D. A contribution to the theory of electrocapillarity. Philos Mag. 1913;25:475–

481.

42. M G. Sur la constitution de la charge électrique a la surface d’un électrolyte. J Phys.

 109

1910;9:457–468.

 110

6 CONCLUSIONS

This thesis describes investigations of metal ion distributions at the liquid-liquid interface in

model systems for forward and backward solvent extraction by X-ray surface scattering techniques.

For the forward extraction system, we characterized interfacial intermediate states using X-ray

reflectivity and fluorescence techniques. We find that trivalent rare earth ions, Y(III) and Er(III),

combined with di-hexadecyl phosphoric acid (DHDP) extractants to form inverted bilayer

structures at the interface; these appear to be condensed phases of small ion-extractant complexes,

an intermediate state in the solvent extraction process. Ions have been transported across the

aqueous-organic interface but have not yet been dispersed into the organic phase. In contrast,

divalent Sr(II) forms an ion-extractant complex with DHDP that leaves it exposed to the water

phase; this result implies that a second process that transports Sr(II) across the interface has yet to

be observed. Calculations demonstrate that the budding of reverse micelles formed from interfacial

Sr(II) ion-extractant complexes could transport Sr(II) across the interface. Our results suggest a

connection between the observed interfacial structures and the extraction mechanism, which

ultimately affects the extraction selectivity and kinetics.

We also investigated the interfacial europium ion distribution in a model system for back

extraction that mimics chemical conditions within the Actinide-Lanthanide Separation Process

(ALSEP). The measurements detected Eu(III) ions at the interfaces with nitric and citric acid

solution, though larger density of ions were measured when nitric acid solutions were used. In

addition, we report on advances in the X-ray technique used in this study, X-ray Fluorescence Near

Total Reflection (XFNTR), which were required to complete the study. These experimental results

demonstrate the capability of XFNTR to quantitatively characterize the presence of ions at the

 111

liquid-liquid interface in the presence of ions in both adjoining bulk phases, which is a requirement

for further in situ investigations of the role of the liquid-liquid interface in the ALSEP process.

The study of the back extraction system suggests new directions in the future. First, 𝑄)-

scans in the XFNTR technique can be combined with 𝑠ℎ-scans to produce a two-dimensional

surface. Fits to this surface are expected to produce results with lower error bars. This may be

particularly helpful for measuring the interfacial ion density in samples with citric acid solution

which has ions in both bulk phases and whose XFNTR data is relatively featureless. Second,

investigations into the effect of different components dissolved in the aqueous solution on the back

extraction process can be explored.

 112

Appendix A

A.1 Code for extracting data points from a fluorescence spectrum

This set of code in A.1 is mobile. There are copies of them in every beamtime folder where

“mca_profile.py” is customized to specific beamtime.

A.1.1 beamprofile.ipynb

#!/usr/bin/env python
coding: utf-8

In[1]:

get_ipython().run_line_magic('pylab', 'inline')
from profile import *

In[7]:

file_name = file_dir + 'Scan 125.txt'
bp = np.loadtxt(file_name)

plt.errorbar(bp[:,0],bp[:,1],bp[:,2],ls='-')
plt.errorbar(d[:,0],d[:,1],d[:,2],ls='',color='r')
plt.plot(bp[:,0],init,ls='-',color='r',alpha=0.5)
plt.plot(bp[:,0],fit,ls='-',color='k')
plt.grid(1)
plt.show()

In[10]:

cut_range = [[-0.075,-0.055]]
d = ft.fit_range(bp,cut_range)

number_of_peaks = 0
mod,pars = ft.gauss_model(number_of_peaks,d,bg='linear')
pars['li_slope'].set(-5.849,vary=True)
pars['li_intercept'].set(-0.159,vary=True)

init = mod.eval(pars, x=bp[:,0])
out = ft.fit_data(d,mod,pars)
fit = mod.eval(out.params, x=bp[:,0])

plt.errorbar(bp[:,0],bp[:,1],bp[:,2],ls='-')
plt.errorbar(d[:,0],d[:,1],d[:,2],ls='',color='r')
plt.plot(bp[:,0],init,ls='-',color='r',alpha=0.5)
plt.plot(bp[:,0],fit,ls='-',color='k')
plt.grid(1)
plt.show()
print lm.fit_report(out)

In[14]:

cut_range = [[-0.10,-0.055]]
d = ft.fit_range(bp,cut_range)

number_of_peaks = 1
mod,pars = ft.gauss_model(number_of_peaks,d,bg='linear')

 113

pars['li_slope'].set(-4.3246,vary=False)
pars['li_intercept'].set(-0.2364,vary=False)
pars['g1_center'].set(-0.08,min=-0.09,max=-0.07)
pars['g1_sigma'].set(0.01,min=0,max=1)
pars['g1_amplitude'].set(1,min=0,max=10)
init = mod.eval(pars, x=bp[:,0])
out = ft.fit_data(d,mod,pars)
fit = mod.eval(out.params, x=bp[:,0])

In[19]:

out.params['g1_sigma'].value

In[15]:

print lm.fit_report(out)

In[16]:

plt.errorbar(bp[:,0],bp[:,1],bp[:,2],ls='-',alpha=0.5)
plt.errorbar(d[:,0],d[:,1],d[:,2],ls='',color='r')
plt.plot(bp[:,0],init,ls='-',color='r',lw=2,alpha=0.5)
plt.plot(bp[:,0],fit,ls='-',color='k')
plt.grid(1)
plt.show()

In[29]:

def trapezoid(x, center, height, top, bottom):
 x = x - center # center x
 a = (x>=-top/2)*(x<=top/2) # mask for top region
 aa = x/np.abs(x) * a # mask for left(-1) and right(+1)
 b = (x>=-bottom/2)*(x<=bottom/2) * aa # mask for shoulder region
 # add the top region and shoulder region
 z = x * a * top + height/(bottom-top)*(bottom-2*(x*b))
 return z

def residual(pars,x,data=None,yerr=None):
 bg_slope = pars['bg_slope']
 bg_const = pars['bg_const']
 center = pars['center'].value
 height = pars['height'].value
 top = pars['top'].value
 bottom = pars['bottom'].value

 model = trapezoid(x,center,height,top,bottom) + bg_slope * x + bg_const
 if data is None:
 return model
 elif yerr is None:
 return model-data
 else:
 return (model-data)/yerr

In[30]:

params = lm.Parameters()
params.add_many(('bg_slope', -4.3246, 0, None, None, None, None),
 ('bg_const', -0.2364, 0, None, None, None, None),
 ('center', -0.09, 1, None, None, None, None),
 ('height', 10.00, 1, None, None, None, None),
 ('top', 0.005, 1, None, None, None, None),
 ('bottom', 0.015, 1, None, None, None, None))
result = lm.minimize(residual, params, args=(bp[:,0],),

 114

 kws={'data':bp[:,1],'yerr':bp[:,2]})

In[31]:

In[]:

A.1.2 mca_plot-automatic.ipynb

#!/usr/bin/env python
coding: utf-8

In[1]:

get_ipython().run_line_magic('pylab', 'inline')
%matplotlib notebook
from mca_profile import *

In[6]:

data = [] # initialize data list
scans = [312] # add frames in scan into data dict

for scan in scans:
 filename = vortex_dir + mca_head + str(scan) + mca_tail
 q, dd = mca.readMcaScan(filename,calib=calibration)
 for i in range(len(q)):
 data.append((q[i],dd[i]))
qz = np.array([dd[0] for dd in data])

qz

In[18]:

#!!!!!! plot selected q !!!!!#
qz_indices = [6]
errorbar = True
show_all = 0 # if show all scans
if show_all:
 qz_indices = range(len(qz))

In[22]:

plot
fig = plt.figure(figsize=(10,5),dpi=100)
ax = fig.add_subplot(111)
ax.grid(1)
ax.set_title("fluorescence spectrum for scan %d" %(scans[0]),fontsize=20)
ax.set_xlabel("Energy(KeV)",fontsize=15)
ax.set_ylabel("Fluorescence Intensity",fontsize=15)
ax.set_xlim([4.00,10.000])
ax.set_ylim([0,0.002])
ax.set_yscale('log')
for i in qz_indices:
 q = qz[i]
 d = data[i][1]
 if errorbar==False: d[2]=0
 if i in [12,13]:

 115

 ax.errorbar(d[0]/1000,d[1],yerr=d[2], markersize=5,
 marker='s', linestyle='', alpha=.5,
 label=str(i)+' qz='+str(qz[i]))
 else:
 ax.errorbar(d[0]/1000.,d[1],yerr=d[2],
 marker='.', linestyle='', alpha=1,
 label=str(i)+' qz='+str(qz[i]))
ax.legend(loc="best",fontsize=10)
plt.show()

In[24]:

#!!!!!! plot out single scan!!!!!#
type_str = 'qz_'
def average(a,b):
 c = np.zeros(a.shape)
 c[0] = a[0]
 c[1] = (a[1] + b[1]) * 1/2
 c[2] = np.sqrt(a[2]**2 + b[2]**2) * 1/2
 return c

def add_integral(x,out):
 global intensity1
 p = out.params
 area1 = peak_integral(p['g1_height'],p['g1_fwhm'],fac=1e5)
 intensity1 = np.vstack((intensity1,np.array([x,area1.n,area1.std_dev])))

intensity1 = np.zeros((1,3)) # container for fluorescence intensity
for idx in qz_indices:
for idx in [-2]:

 # read data
 cut_range = [[4500,7200],[8500,12000]]
 q, d_fit = fit_range(data,qz,idx,cut_range)
 print(d_fit[-1])
cut_plot(qz, idx, errorbar = errorbar,
x_range=(3500,12000),
y_range=(0,100))

 number_of_models = 4
 mod,pars = build_model(number_of_models)
 try: # if 'out' is defined, use 'out.params'
pars = out.params
 pass
 except NameError: # otherwise use 'pars'
 pass
 finally:
 init = mod.eval(pars, x=d_fit[:,0])
 out,comps = fit_data(mod,pars)

guess_plot(qz,idx,init,
x_range=(3500,9000),
y_range=(0,200))

 errorbar_off = False
 fit_plot(qz,idx,errorbar,
 x_range=(3500,9000),
 y_range=(0,200))

 add_integral(q,out)
intensity1 = intensity1[1:]
print('Done!')

In[23]:

q_str = 'qz{}_'.format(0.015)
type_str = 'sh_'
left = -0.1
right = 0.1

 116

points = len(intensity1)
sh = np.linspace(left,right,points)
if type_str == 'sh_':
 for i,entry in enumerate(intensity1):
 entry[0] = sh[i]
print(intensity1)
print('\n\n')

In[24]:

import numpy as np
import matplotlib.pyplot as plt

#!!! plot (independent code) !!!#
fig = plt.figure(figsize=(10,6),dpi=100,facecolor='white')
ax = fig.add_subplot(111)
ax.set_title('Fluorescence data',fontsize=20)
ax.set_xlabel('Qz(A^-1)',fontsize=15)
ax.set_ylabel('Normalized Intensity',fontsize=15)
ax.grid(1)
ax.set_xlim([-0.1,0.1])
ax.set_xlim([0.004,0.017])
ax.set_ylim([0.00,0.14])
ax.errorbar(intensity1[:,0],intensity1[:,1], yerr=intensity1[:,2],
 color='r',marker='^',linestyle='',
 label='#'+str(scans)[1:-1].replace(', ','&'))

b = np.loadtxt(work_dir + "sample3_50mMEu(NO3)3_shscan_s1h1_qz0.015_flu.txt")
ax.errorbar(b[:,0], b[:,1], yerr=b[:,2], color='r',
marker='d',linestyle='',label='303&305')

b = np.loadtxt(work_dir + "sample3_50mMEu(NO3)3_shscan_s1h2_qz0.006_289_flu.txt")
ax.errorbar(b[:,0], b[:,1], yerr=b[:,2], color='g',
marker='v',linestyle='',label='#289')

b = np.loadtxt(to_save+".txt")
ax.errorbar(b[:,0], b[:,1], yerr=b[:,2], color='y',
marker='o',linestyle='',label='640')

ax.legend(loc='best')
plt.show()

In[25]:

sample_str = 'sample{}_'.format('3')

abs_str = 'abs{}_'.format(8)
scan_str = '{}_'.format(scans[0])
sample_description = 'water_calibration'
to_save = type_str + sample_str + scan_str + sample_description +
"s1h0.2_" + abs_str + q_str + "flu"
print(to_save)

In[52]:

np.savetxt(work_dir + to_save + ".txt", intensity1, fmt="%.4f\t%.4e\t%.4e\t")
fig.savefig(work_dir + to_save + ".png")

In[]:

 117

A.1.3 mca_profile.py

import sys
import os
import numpy as np
np.set_printoptions(suppress=True)
import matplotlib as mpl
import matplotlib.pyplot as plt
plt.style.use('classic')
mpl.rc('figure',facecolor='white')

import os
import mca_routines as mca
from scipy.optimize import curve_fit
from lmfit import Model

from mca_plot_routine import *
import fit_routine as ft

read data into mca_scans with "scan#: mca data(3 rows)" pair
work_dir = '/Users/zhuzi/Documents/work/data/201912Dec/'
vortex_dir = '/Users/zhuzi/Documents/work/data/201912Dec/vortex/'
mca_head = '20191206_'
mca_tail = '_mca'

calibration = [0,8,0] # read from MCA file

A.1.4 mca_routines.py

#!/usr/bin/env python
'''
This nobg file is used to process ".mca" files.
'''

import sys
import numpy as np
np.set_printoptions(suppress=True)
import subprocess
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt

__all__ = ['flatten','chop','readMcaScan','fit_curve']

def expo(x,const,inten,decay,off_set):
 return const + inten*np.exp(-(x-off_set)/decay)

def expDecay(x,const,inten,off_set,decay):
 '''
 y = const + inten * exp(-(x-off_set)/decay)
 '''

 x = np.array(x)
 y = const + inten * np.exp(-(x-off_set)/decay)
 return y

def gaussian(x,position,height,width):
 '''
 y = inten * exp(-(x-off_set)**2/width)
 '''
 c = width / 2.3548 * 1.414
 y = height * np.exp(-(x-position)**2/c**2)
 return y

 118

def flatten(block,calib=None,raw_count=False):
 '''
 takes in a scan block in an mca file, gives out an two dimensional array
 with rows: channel/counts/errors
 A scan block is a text block of .mca file that starts with "#S".

 calib is used to transform channels into energies, it has to be in the form
 of list, tuple, or an ndarray.
 if calib = None, there is no callibration, data are in channels
 if calib = "in file", use the calibration coefficients in "@CALIB" line.
 E = calib[0] + calib[1] * x + calib[2] * x**2

 Returns

 flatten: tuple.
 0: qz for this scan block.
 1: a two-dimensonal list with
 '''
 for i,line in enumerate(block):
 if line.startswith('#Q'):
 qz = float(line.split()[3])
 if line.startswith('#Monc'):
 if raw_count: monc = 1 # get the raw counts from detector.
 else: monc = float(line.split()[1]) # monc
 if line.startswith('#@CTIME'):
 real = float(line.split()[1]) # the amount of time it should take
 live = float(line.split()[3]) # the amount of time it actually takes
 try:
 factor = real / live / monc
 except ZeroDivisionError:
 print ("Error: float division by zero, check @CTIME or @Monc")
 if line.startswith('#@CALIB'):
 calib_ = map(float,line.split()[1:])
 # find the data block that starts with "@A"
 if line.startswith('@A '):
 block[i] = line[2:] # adjust the first line of data, take away '@A'.
 start = i # mark the line where true data begins.
 break
 # calibration
 if calib==None:
 calib = [0,1,0] # linear term only, which is 1.
 elif calib=="in place":
 calib = calib_ # use the calibration factor in file.
 g = lambda x: calib[0] + calib[1] * x + calib[2] * x**2 # calibration, qudratic form

 d = []
 for i,line in enumerate(block[start:]):
 b=[int(i) for i in line.split('\\')[0].split() if len(line)>10]
 d += b # concatenate each data line
 # calculate energy, intensity, err for each channel
 energy = [g(i) for i in range(1,len(d)+1)]
 intensity = [i*factor for i in d]
 err = [np.sqrt(i+i**2/monc)*factor for i in d] # consistant with Wei's code: plmca_15

 return (qz,[energy,intensity,err])

def chop(filename):
 '''
 Takes in an mca filename, returns a list containing blocks of lines of a
 single frame. This returns a block that could be put in "flatten()" to produce
 final data.
 '''
 with open(filename,'r') as fid:
 f = fid.readlines()
 # find the index for each scan line
 scan_index = [i for i,l in enumerate(f) if l.startswith('#S')]

 # divide the whole file into scan blocks.
 scan_blocks = []
 for i,j in enumerate(scan_index):
 if i+1!=len(scan_index):
 scan_blocks.append(f[j:scan_index[i+1]])

 119

 else:
 scan_blocks.append(f[j:])
 return scan_blocks

def readMcaScan(filename,calib=None,raw=False):
 '''
 takes in an mca scan filename, returns the whole data in the form of:
 data[i][energy:intensity:error]
 Also works for those non-scan .mca files(which only have one mca scan)

 Parameters

 filename: the file needed to be processed
 calib: calibration used to transform channels into energies, it has to be in the form
 of list, tuple, or an ndarray.
 if calib = None, there is no callibration, data are in channels
 if calib = "in file", use the calibration coefficients in "@CALIB" line.
 E = calib[0] + calib[1] * x + calib[2] * x**2
 raw: if True return the counts as it is in file; if False, normalize counts to monc.

 Returns

 readMcaScan: tuple.
 0: a list of all the qz's scanned
 1: an ndarray of data corresponding each qz. for each qz, the strucute
 is [energy intensity error]
 '''
 data, q = [],[]
 blocks = chop(filename) # get data blocks in the file.

 for block in blocks:
 qz, d = flatten(block,calib=calib,raw_count=raw) # process each data block
 data.append(d)
 q.append(qz)
 data = np.array(data)
 return (q,data)

def fit_curve(func,x,y,yerr,guess):
 '''
 Fit a data into a function using curve_fit method provided by scipy.optimize.
 Parameters

 func: functions to fit into
 x: numpy array. x value
 y: numpy array. y value
 y_err: numpy array. error
 guess: initial guess for the fitting parameters

 Returns

 fit_curve: tuple
 0: numpy array. parameters that best fit the data
 1: numpy array. error of parameters that best fit the data.
 '''
 pk_par,pk_cov = curve_fit(func,x,y,p0=guess,sigma=yerr)
 pk_err = np.sqrt(np.diag(pk_cov))
 return (pk_par,pk_err)

if __name__ == "__main__":
 filename = '/Users/ZhuZi/work/data/2015_Apr_15ID/vortex/20150408_483_mca'
 q,x = readMcaScan(filename)
 print (np.amax(x[0][2]))

A.1.5 mca_plot_routines.py

import sys
sys.path.append('/Users/ZhuZi/work/modules/')
import numpy as np
np.set_printoptions(suppress=True)
import matplotlib.pyplot as plt
import os

 120

import mca_routines as mca
from scipy.optimize import curve_fit
import lmfit as lm
from lmfit import Model,fit_report
from lmfit.models import GaussianModel, ExponentialModel, LinearModel
import copy

def fit_range(data,qz,idx,cut_range):
 '''
 data: input data, all the frames in a mca scan
 qz: indexes of qz
 index: which index to choose
 cut_range: list of ranges in which the data is fitted.
 e.g. [[range1_left,range1_right],[range2_left,range2_right]]
 '''

 global d, q, d_fit
 factor=1e5
 q = qz[idx]
 d = copy.copy(data[idx][1]) # make a copy of selected data for operating later
 d[1] = d[1]*factor # both data and errors are scaled up by factor
 d[2] = d[2]*factor

 #!!! cut off the signal and show !!!#

 d_fit = [0] # basically empty fit range initialized.
 for sub_range in cut_range:
 d_ = np.transpose(d)
 # cut out the signal
 fit_left,fit_right = 0,0
 for i,row in enumerate(d_):
 if row[0]<sub_range[0]:
 fit_left = i
 elif row[0]<sub_range[1]:
 fit_right = i
 try:
 d_fit = np.vstack((d_fit,d_[fit_left:fit_right]))
 except: d_fit = d_[fit_left:fit_right]

 return q, d_fit

def cut_plot(qz, idx, errorbar=True, x_range=(4000,8000),y_range=(0,16)):
 fig = plt.figure(figsize=(16,5),dpi=100)
 ax = fig.add_subplot(111)
 ax.grid(1)
 ax.set_xlim(list(x_range))
 ax.set_ylim(list(y_range))
 ax.set_title("Data & fit")
 ax.set_xlabel('Energy(eV)',fontsize=20)
 ax.set_ylabel('intensity 1e-5',fontsize=20)
 if not errorbar: d[2]=0
 ax.errorbar(d[0],d[1],yerr=d[2],
 marker='o', linestyle='',
 label=str(idx)+' qz='+str(qz[idx]))
 ax.errorbar(d_fit[:,0],d_fit[:,1],yerr=d_fit[:,2],
 marker='o', linestyle='',color='r',
 label='fit range')
 ax.legend(loc="upper left")
 plt.show()

def build_model(model_num,bg='linear'):
################### lmfit model #################
 global mod, init, pars
 while True:
 if bg=='linear':
 bg_mod = LinearModel(prefix='li_')
 pars = bg_mod.guess(d_fit[:,1], x=d_fit[:,0])
 pars.update(bg_mod.make_params())
 pars['li_slope'].set(-1.267e-5,vary=True)
 pars['li_intercept'].set(1.5776,vary=True)
 elif bg=='exponential':

 121

 bg_mod = ExponentialModel(prefix='exp_')
 pars = bg_mod.guess(d_fit[:,1],x=d_fit[:,0])
 pars.update(bg_mod.make_params())
 pars['exp_amplitude'].set(1e-5,vary=True)
 pars['exp_decay'].set(10, vary=True)

 if model_num==0:
 mod = bg_mod; break

 gauss1 = GaussianModel(prefix='g1_')
 pars.update(gauss1.make_params())
 pars['g1_center'].set(5900, min=5500, max=6300)
 pars['g1_sigma'].set(100, min=50,max=1000)
 pars['g1_amplitude'].set(26000, min=4)
 if model_num==1:
 mod = bg_mod + gauss1; break

 gauss2 = GaussianModel(prefix='g2_')
 pars.update(gauss2.make_params())
 pars['g2_center'].set(6470, min=6000, max=7000)
 pars['g2_sigma'].set(120, min=50,max=1000)
 pars['g2_amplitude'].set(20000, min=4)
 if model_num==2:
 mod = bg_mod + gauss1 + gauss2; break

 gauss3 = GaussianModel(prefix='g3_')
 pars.update(gauss3.make_params())
 pars['g3_center'].set(6850, min=6500, max=7200)
 pars['g3_sigma'].set(80, min=50,max=300)
 pars['g3_amplitude'].set(60000, min=4)
 if model_num==3:
 mod = bg_mod + gauss1 + gauss2 + gauss3; break

 gauss4 = GaussianModel(prefix='g4_')
 pars.update(gauss4.make_params())
 pars['g4_center'].set(5200, min=5000, max=5500)
 pars['g4_sigma'].set(100)
 pars['g4_amplitude'].set(60000)
 if model_num==4:
 mod = bg_mod + gauss1 + gauss2 + gauss3 + gauss4; break

 return mod,pars

def guess_plot(qz,idx, init, x_range=(4000,8000),y_range=(0,16)):
 fig = plt.figure(figsize=(16,5),dpi=100)
 ax = fig.add_subplot(111)
 ax.grid(1)
 ax.set_xlim(list(x_range))
 ax.set_ylim(list(y_range))
 ax.set_title("Initial guess")
 ax.set_xlabel('Energy(eV)',fontsize=20)
 ax.set_ylabel('intensity',fontsize=20)
 ax.errorbar(d[0],d[1],yerr=d[2],
 marker='o', linestyle='',
 label=str(idx)+' qz='+str(qz[idx]),zorder=0)
 ax.plot(d_fit[:,0], init,
 marker='', linestyle='-',lw=5, color='y',
 label=str(idx)+' qz='+str(qz[idx]),zorder=10)
 ax.legend(loc="upper left")
 plt.show()

def fit_data(mod, pars):
 global out,comps
 weights = 1/d_fit[:,2] # weight*(y-fit) is minimized in leastsq sense, so weight=1/error
 out = mod.fit(d_fit[:,1],pars, x=d_fit[:,0],weights=None)
 comps = out.eval_components(x=d_fit[:,0])
 return out,comps

def fit_plot(qz,idx,errorbar, x_range=(4000,8000),y_range=(0,16)):
 fig = plt.figure(figsize=(16,10),dpi=100)
 ax1 = fig.add_subplot(211)
 ax1.grid(1)
 ax1.set_xlim(list(x_range))

 122

 ax1.set_ylim(list(y_range))
 # ax.set_yscale("log",nonposy='clip')
 ax1.set_title("Data & fit")
 ax1.set_xlabel('Energy(eV)',fontsize=20)
 ax1.set_ylabel('intensity',fontsize=20)
 if errorbar==False: d[2]=0
 ax1.errorbar(d[0],d[1],yerr=d[2],
 marker='o', linestyle='', alpha=0.5,
 label=str(idx)+' qz='+str(qz[idx]),zorder=0)
 ax1.plot(d_fit[:,0], out.best_fit,
 marker='',linestyle='-',color='r',lw='2',zorder=10)
 ax1.legend(loc="upper left")

 plt.show()

def peak_integral(height,gwhm,fac=1e5):
 from uncertainties import ufloat as uf
 try:
 height = uf(height.value,height.stderr)
 except AttributeError:
 height = uf(height.value,0)
 try:
 width = uf(gwhm.value, gwhm.stderr)
 except AttributeError:
 width = uf(gwhm.value,0)
 area = height*width/2/fac
 return area

A.1.6 fit_routine.py

import sys
sys.path.append('/Users/ZhuZi/work/modules/')
import numpy as np
np.set_printoptions(suppress=True)
import matplotlib.pyplot as plt
import os
import mca_routines as mca
from scipy.optimize import curve_fit
import lmfit as lm
from lmfit import Model,fit_report
from lmfit.models import GaussianModel, ExponentialModel, LinearModel
import copy

def fit_range(data,cut_range):
 '''
 data: input data, columns are: [x,y,err]
 index: which index to choose
 cut_range: list of ranges in which the data is fitted.
 e.g. [[range1_left,range1_right],[range2_left,range2_right]]
 '''
 d = data.transpose()
 #!!! cut off the signal and show !!!#

 d_fit = [0] # basically empty fit range initialized.
 for sub_range in cut_range:
 d_ = np.transpose(d)
 # cut out the signal
 fit_left,fit_right = 0,0
 for i,row in enumerate(d_):
 if row[0]<sub_range[0]:
 fit_left = i
 elif row[0]<sub_range[1]:
 fit_right = i
 try:
 d_fit = np.vstack((d_fit,d_[fit_left:fit_right]))
 except: d_fit = d_[fit_left:fit_right]

 return d_fit

 123

def cut_plot(qz, idx, errorbar=True, x_range=(4000,8000),y_range=(0,16)):
 fig = plt.figure(figsize=(16,5),dpi=100)
 ax = fig.add_subplot(111)
 ax.grid(1)
 ax.set_xlim(list(x_range))
 ax.set_ylim(list(y_range))
 ax.set_title("Data & fit")
 ax.set_xlabel('Energy(eV)',fontsize=20)
 ax.set_ylabel('intensity 1e-5',fontsize=20)
 if not errorbar: d[2]=0
 ax.errorbar(d[0],d[1],yerr=d[2],
 marker='o', linestyle='',
 label=str(idx)+' qz='+str(qz[idx]))
 ax.errorbar(d_fit[:,0],d_fit[:,1],yerr=d_fit[:,2],
 marker='o', linestyle='',color='r',
 label='fit range')
 ax.legend(loc="upper left")
 plt.show()

def gauss_model(model_num,data,bg='linear'):
################### lmfit model #################
 global mod, init, pars
 while True:
 if bg=='linear':
 bg_mod = LinearModel(prefix='li_')
 pars = bg_mod.guess(data[:,1], x=data[:,0])
 pars.update(bg_mod.make_params())
 pars['li_slope'].set(-1.267e-5,vary=True)
 pars['li_intercept'].set(1.5776,vary=True)
 elif bg=='exponential':
 bg_mod = ExponentialModel(prefix='exp_')
 pars = bg_mod.guess(data[:,1],x=data[:,0])
 pars.update(bg_mod.make_params())
 pars['exp_amplitude'].set(1e-5,vary=True)
 pars['exp_decay'].set(10, vary=True)

 if model_num==0:
 mod = bg_mod; break

 gauss1 = GaussianModel(prefix='g1_')
 pars.update(gauss1.make_params())
 pars['g1_center'].set(5900, min=5500, max=6300)
 pars['g1_sigma'].set(100, min=50,max=1000)
 pars['g1_amplitude'].set(26000, min=4)
 if model_num==1:
 mod = bg_mod + gauss1; break

 gauss2 = GaussianModel(prefix='g2_')
 pars.update(gauss2.make_params())
 pars['g2_center'].set(6470, min=6000, max=7000)
 pars['g2_sigma'].set(120, min=50,max=1000)
 pars['g2_amplitude'].set(20000, min=4)
 if model_num==2:
 mod = bg_mod + gauss1 + gauss2; break

 gauss3 = GaussianModel(prefix='g3_')
 pars.update(gauss3.make_params())
 pars['g3_center'].set(6850, min=6500, max=7200)
 pars['g3_sigma'].set(80, min=50,max=300)
 pars['g3_amplitude'].set(6000, min=4)
 if model_num==3:
 mod = bg_mod + gauss1 + gauss2 + gauss3; break

 gauss4 = GaussianModel(prefix='g4_')
 pars.update(gauss4.make_params())
 pars['g4_center'].set(5200, min=5000, max=5500)
 pars['g4_sigma'].set(100)
 pars['g4_amplitude'].set(500)
 if model_num==4:
 mod = bg_mod + gauss1 + gauss2 + gauss3 + gauss4; break

 return mod,pars

 124

def fit_data(data,mod,pars):

 weight = 1/data[:,2] # weight*(y-fit) is minimized in leastsq sense, so weight=1/error
 out = mod.fit(data[:,1],pars, x=data[:,0],weights=weight)
 #components = out.eval_components(x=data[:,0])
 return out #,components

def fit_plot(qz,idx,errorbar, x_range=(4000,8000),y_range=(0,16)):
 fig = plt.figure(figsize=(16,10),dpi=100)
 ax1 = fig.add_subplot(211)
 ax1.grid(1)
 ax1.set_xlim(list(x_range))
 ax1.set_ylim(list(y_range))
 # ax.set_yscale("log",nonposy='clip')
 ax1.set_title("Data & fit")
 ax1.set_xlabel('Energy(eV)',fontsize=20)
 ax1.set_ylabel('intensity',fontsize=20)
 if errorbar==False: d[2]=0
 ax1.errorbar(d[0],d[1],yerr=d[2],
 marker='o', linestyle='', alpha=0.5,
 label=str(idx)+' qz='+str(qz[idx]),zorder=0)
 ax1.plot(d_fit[:,0], out.best_fit,
 marker='',linestyle='-',color='r',lw='2',zorder=10)
 ax1.legend(loc="upper left")

 plt.show()
def peak_integral(height,gwhm,fac=1e5):
 from uncertainties import ufloat as uf
 height = uf(height.value,height.stderr)
 width = uf(gwhm.value,gwhm.stderr)
 area = height*width/2/fac
 return area

A.2 Code for XFNTR software

A.2.1 main.py

import sys
import os

define an exception hook to prevent the app from crashing on exception
reference: https://stackoverflow.com/questions/38020020/pyqt5-app-exits-on-error-where-pyqt4-
app-would-not
sys._excepthook = sys.excepthook
def exception_hook(exctype, value, traceback):
 print(exctype, value, traceback)
 sys._excepthook(exctype, value, traceback)
sys.excepthook = exception_hook

Use absolute path instead of relative path ('./') to avoid trouble when installed by pip
dir_path = os.path.dirname(os.path.realpath(__file__))
sys.path.append(dir_path)

from PyQt5.QtCore import pyqtRemoveInputHook
from PyQt5.QtWidgets import QApplication
from mainwindow import MainWindow

def main():
 # create application
 pyqtRemoveInputHook()
 app = QApplication(sys.argv)
 app.setApplicationName('15ID-C XFNTR Analyzer')

 # create widget
 w = MainWindow()
 w.setWindowTitle('15ID-C XFNTR Analyzer')

 125

 # w.setWindowIcon(QIcon('logo.png'))
 w.show()

 # connection
 app.lastWindowClosed.connect(app.quit)

 # execute application
 sys.exit(app.exec_())

if __name__ == '__main__':

 main()

A.2.2 mplwidget.py

from PyQt4 import QtGui

from PyQt5.QtGui import *
from PyQt5.QtWidgets import *

import matplotlib
matplotlib.use("Qt4Agg")
from matplotlib.backends.backend_qt5agg \
 import FigureCanvasQTAgg as FigureCanvas
from matplotlib.figure import Figure
from matplotlib.backends.backend_qt4agg import NavigationToolbar2QT as NavigationToolbar

class MplCanvas(FigureCanvas):
 def __init__(self):
 self.fig = Figure()
 self.ax = self.fig.add_subplot(111)
 FigureCanvas.__init__(self, self.fig)
 FigureCanvas.setSizePolicy(self, QSizePolicy.Expanding, QSizePolicy.Expanding)
 FigureCanvas.updateGeometry(self)

class MplWidget(QWidget):
 def __init__(self, parent = None):
 QWidget.__init__(self, parent)
 self.canvas = MplCanvas()
 self.toolbar = NavigationToolbar(self.canvas, parent)
 self.vbl = QVBoxLayout()
 self.vbl.addWidget(self.canvas)
 self.vbl.addWidget(self.toolbar)
 self.setLayout(self.vbl)

A.2.3 fit_ref.py

import sys
import math as m
import numpy as np
from numba import jit
from numba.typed import List
import matplotlib.pyplot as plt
import periodictable
from lmfit import minimize, Parameters, Parameter, report_fit, fit_report
from scipy.special import erf

e_radius = periodictable.constants.electron_radius*1e10
energy = 20 # keV

data generating ####

def sldCalFun(d,rho,sigma,x):

 N = len(rho) - 1 # number of internal interfaces
 z = [0] + [sum(d[:j+1]) for j in range(len(d))] # height of each interface
 sld_tot = np.zeros(x.shape)

 # sld calculation model in Wei's paper

 126

 for i in range(N):
 erfx = (x-z[i])/sigma[i]/np.sqrt(2)
 sld = 0.5 * (erf(erfx) * (rho[i+1]-rho[i]))
 sld_tot = sld_tot + sld
 sld_tot = sld_tot + 0.5 * (rho[0]+rho[N])

 return sld_tot

def refCalFun(d,rho,mu,sigma,x,rrf=False):

 if sigma[0] <= 0: sigma[0] = 1e-5 # eliminate zero
 sigma = sigma[0] * np.ones(len(sigma)) # fixed sigma

 erad = e_radius
 slab=0.25

 x_ = List()
 for xx in x: x_.append(xx)

 k0=2*np.pi*float(energy)/12.3984 # wave vector
 lamda=2*np.pi/k0
 theta=x/2/k0 # convert q to theta

 # total length of inner slabs plus 4 times roughness for both sides
 length = np.sum(d) + 4* (sigma[0]+sigma[-1])
 steps=int(length/slab) # each sliced box has thickness of ~ 0.25 A
 xsld=np.linspace(-4*sigma[0],np.sum(d)+4*sigma[-1],steps) # get the z-axis for sld

 sd=length/steps # thickness for each slab
 intrho=sldCalFun(d,rho,sigma,xsld) # rho for all the steps
 intmu=sldCalFun(d,mu,sigma,xsld) # mu for all the steps

 # was....
 d, sdel, sbet = List(), List(), List()
 sdel.append(float(rho[0])) # delta for the top phase
 sbet.append(float(mu[0]/2/k0/1e8)) # beta for the top phase
 for rho_ in intrho: # add rho for the interface
 sdel.append(float(rho_))
 sdel.append(float(rho[-1])) # delta for the bottom phase
 # add delta for the interface
 for mu_ in intmu: # add beta for the interface
 sbet.append(float(mu_/2/k0/1e8))
 sbet.append(float(mu[-1]/2/k0/1e8)) # beta for the bottom phase
 for i in sdel: d.append(slab)
 ref,refr=parratt(x_, lamda, d, sdel, sbet)

 d_, sdel_, sbet_ = List(), List(), List()
 for i in [0.0,1.0]: d_.append(i)
 for i in [sdel[0],sdel[-1]]: sdel_.append(i)
 for i in [sbet[0],sbet[-1]]: sbet_.append(i)
 frsnll,frsnl1=parratt(x_, lamda,d_, sdel_, sbet_)

 if rrf == True:
 return ref/frsnll
 else:
 return ref

def ref2min(params,x,y,yerr,fit=True):

 ndata = len(x)

 # allocate parameters to different lists
 sigma_t, rho_b, mu = [], [], []
 d, sigma, rho, qoff = [], [], [], []

 par = params.valuesdict()
 for p in par:
 if p.startswith('sigma'):
 if p.endswith('0'):
 sigma_t.append(par[p]); continue
 else:
 sigma.append(par[p]); continue

 127

 if p.startswith('d'):
 d.append(par[p]); continue
 if p.startswith('mu'):
 mu.append(par[p]); continue
 if p.startswith('qoff'):
 qoff.append(par[p]); continue
 if p.startswith('rho'):
 if '_b' in p:
 rho_b.append(par[p]); continue
 else:
 rho.append(par[p]); continue

 if fit==True: # return residual: 1D array
 residual = np.array([])
 for i in range(ndata):
 yy = refCalFun(d,
 rho+[rho_b[i]],
 mu,
 [sigma[i]]+sigma_t,
 x[i])
 residual = np.append(residual, (yy-y[i])/yerr[i])
 return residual
 else: # return model: (y1,y2,y3,y4,y5)
 model = []
 for i in range(ndata):
 yy = refCalFun(d,
 rho + [rho_b[i]],
 mu,
 [sigma[i]] + sigma_t,
 x[i])
 model.append(yy)
 return tuple(model)

def iterCallBack(params,iteration,resid,x,y,err,fit=True):
 if fit== False: return None
 m = sum([params[p].vary for p in params]) # number of parameters
 n = sum([len(xx) for xx in x]) # number of points
 df = n - m # degree of freedom
 redchisq = sum(resid**2) / df
 if (iteration<=10) or (iteration%10==0): #display reduced chisq every 10 iteration
 print(iteration,redchisq)

def initParameters(name_list,para_list):

 if len(name_list)!=len(para_list):
 print(" Does name_list and value_list match, please check ")
 return
 params = Parameters()
 for i,name in enumerate(name_list):
 p = para_list[i]
 params.add(name,value=p[0],vary=p[1],min=p[2],max=p[3])
 return params

def updateParameters(mrefpar,refparaname,refpara):
 '''Return the parameter name for the items selected in the table.'''
 ui = mrefpar # it only accepts ref_multiFit_par.ui as ui

 parameter_list = refpara
 name_list = refparaname
 index_dict = name2index(name_list,reverse=True)

 # update the value of each cell in the table
 for index in index_dict:
 row, col = index
 value = float(ui.parTW.item(row,col).text())
 i = name_list.index(index_dict[index])
 parameter_list[i][0] = value # update parameter value
 parameter_list[i][1] = False # clear the vary status first

 # update "vary" status in the selected cells
 selected_items = ui.parTW.selectionModel().selectedIndexes()
 selected_names = []
 for item in selected_items:

 128

 selected_index = (item.row(), item.column())
 selected_name = index_dict[selected_index]
 i = name_list.index(selected_name)
 parameter_list[i][1] = True # update vary status

 return parameter_list

def name2index(name_list, reverse=False):
 ''' Create a mapping from table index to parameter name, or vice versa.
 If reverse=False, create a dict in the form of {name:position}, otherwise
 {position:name}.'''
 ndata = len([p for p in name_list if p.startswith('qoff')])
 nlayer = len([p for p in name_list if p.startswith('d')])

 index_dict = {}
 k = 0
 for row in range(ndata+nlayer+1):
 for col in range(4):
 if (row==0) & (col==0): continue
 elif (row>nlayer) & ((col==0)|(col==3)): continue
 else:
 index_dict[name_list[k]] = (row,col)
 k = k + 1
 if reverse == False:
 return index_dict
 else:
 name_dict = {v:k for k,v in index_dict.iteritems()}
 return name_dict

def readData(rrf_files,sel_rows,fit_range,err_type=0):

 '''read multiple data set and cut them to fit range'''

 if sel_rows == []: return None
 if fit_range == None: fit_range = [0,1]
 # import pdb; pdb.set_trace();
 rrf = [np.loadtxt(rrf_files[r],comments='#') for r in sel_rows]
 for i,d in enumerate(rrf):
 select = (d[:,0]>=fit_range[0])&(d[:,0]<=fit_range[1])
 rrf[i] = d[select]
 qz = tuple([a[:,0] for a in rrf]) # tuple: (qz1,qz2,...)
 y = tuple([a[:,1] for a in rrf]) # tuple: (data1,data2,...)
 if err_type==0: # tuple: (err1,err2,...)
 yerr = tuple([a[:,2] for a in rrf])
 elif err_type==1:
 yerr = tuple([np.sqrt(a[:,1]) for a in rrf])
 elif err_type==2:
 yerr = tuple([a[:,1] for a in rrf])
 else:
 yerr=tuple([np.ones(a[:,0].shape) for a in rrf])

 return (qz, y, yerr)

@jit(nopython=True)
def parratt(q, lamda, d, rho, beta):
 """
 Calculation of reflectivity by Parrat Recursion Formula without any roughness.
 Directly translated from a fortran subroutine 'parratt' in xr_ref.f90, which is
 attached as following:

 subroutine parratt(q,lambda,d,rho,beta,Rgen,Rgenr,M,N)
 !***
 !Calculation of reflectivity by Parratt Recursion Formula without any roughness
 !
 !M = No. of data points
 !N = No. of slabs
 !lambda = wavelength
 !d = list of thicknesses of each slab
 !rho=list of Electron densities of each slab
 !beta=list of Absorption coefficient in each slab
 !Rgen = generated reflectivtiy data
 !Rgenr= generated reflectance data
 !q = change in wave vector

 129

 !***
 integer :: M,N
 double precision :: q(0:M), Rgen(0:M)
 double precision :: d(0:N+1), rho(0:N+1), beta(0:N+1), qc2(0:N+1)
 double precision :: lambda
 double complex :: X, fact1, fact2, r(0:N+1), k1, k2, fact,Rgenr(0:M)
 double precision, parameter :: re=2.817938e-5, pi=3.14159

 do j=0,N+1
 qc2(j)=16.0d0*pi*re*(rho(j)-rho(0))
 enddo

 do i = 0,M
 r(N+1)=dcmplx(0.0d0,0.0d0)
 do j=N,0,-1
 k1=cdsqrt(dcmplx(q(i)**2-qc2(j),-32.0d0*beta(j)*pi**2/lambda**2))
 k2=cdsqrt(dcmplx(q(i)**2-qc2(j+1),-32.0d0*beta(j+1)*pi**2/lambda**2))
 X=(k1-k2)/(k1+k2)
 fact1=dcmplx(dcos(dble(k2)*d(j+1)),dsin(dble(k2)*d(j+1)))
 fact2=dexp(-aimag(k2)*d(j+1))
 fact=fact1*fact2
 r(j)=(X+r(j+1)*fact)/(1.0+X*r(j+1)*fact)
 enddo
 Rgenr(i)=r(0)
 Rgen(i)=cdabs(r(0))**2
 enddo
 end subroutine parratt

 """
 M = len(q) - 1
 N = len(d) - 2
 r = np.ones(N+2) * (0+0j) # this definition is compatible to numba
 qc2 = np.zeros(N+2)
 Rgen = np.zeros(M+1)
 Rgenr = np.ones(M+1) * (0+0j)

 for j in range(N+2):
 qc2[j] = 16.0 * np.pi * e_radius * (rho[j] - rho[0])

 for i in range(M+1):
 r[N+1] = 0+0j
 for j in range(N,-1,-1):
 k1 = np.sqrt(q[i]**2-qc2[j] - 32.0*beta[j]*np.pi**2/lamda**2*1j)
 k2 = np.sqrt(q[i]**2-qc2[j+1] - 32.0*beta[j+1]*np.pi**2/lamda**2*1j)
 X = (k1 - k2) / (k1 + k2)
 fac1 = m.cos(k2.real*d[j+1]) + m.sin(k2.real*d[j+1])*1j
 fac2 = m.exp(-k2.imag*d[j+1])
 fact = fac1 * fac2
 r[j] = (X + r[j+1]*fact) / (1.0+X*r[j+1]*fact)
 Rgenr[i] = r[0]
 Rgen[i] = abs(r[0])**2
 return (Rgen, Rgenr)

if __name__ == '__main__':
 rho_t = 0.25913738441154344
 rho_b = 0.337
 itMu = 2.792661024598891e-09
 ibMu = 7.0179999999999995e-09
 qz = np.array([0.00879463, 0.00878271, 0.00877078, 0.00875884, 0.00874688,
 0.0087349 , 0.00872291, 0.0087109 , 0.00869887, 0.00868683,
 0.00867477, 0.00866269, 0.0086506 , 0.00863849, 0.00862636,
 0.00861422, 0.00860205, 0.00858987, 0.00857768, 0.00856546,
 0.00855323, 0.00854098, 0.00852872, 0.00851643, 0.00850413,
 0.00849181, 0.00847948, 0.00846712, 0.00845475, 0.00844236,
 0.00842995, 0.00841752, 0.00840507, 0.00839261, 0.00838012,

 130

 0.00836762, 0.0083551 , 0.00834256, 0.00833 , 0.00831742,
 0.00830483, 0.00829221, 0.00827958, 0.00826692, 0.00825425,
 0.00824156, 0.00822884, 0.00821611, 0.00820336, 0.00819059,
 0.0081778 , 0.00816498, 0.00815215, 0.0081393 , 0.00812643,
 0.00811353, 0.00810062, 0.00808769, 0.00807473, 0.00806176,
 0.00804876, 0.00803574, 0.0080227 , 0.00800964, 0.00799656,
 0.00798346, 0.00797033, 0.00795719, 0.00794402, 0.00793083,
 0.00791762, 0.00790439, 0.00789113, 0.00787785, 0.00786455,
 0.00785123, 0.00783788, 0.00782452, 0.00781112, 0.00779771,
 0.00778427, 0.00777081, 0.00775733, 0.00774382, 0.00773029,
 0.00771673, 0.00770316, 0.00768955, 0.00767593, 0.00766227,
 0.0076486 , 0.0076349 , 0.00762118, 0.00760743, 0.00759365,
 0.00757985, 0.00756603, 0.00755218, 0.0075383 , 0.0075244 ,
 0.00751048, 0.00749652, 0.00748255, 0.00746854, 0.00745451,
 0.00744045, 0.00742637, 0.00741226, 0.00739812, 0.00738396,
 0.00736977, 0.00735555, 0.0073413 , 0.00732703, 0.00731272,
 0.00729839, 0.00728403, 0.00726965, 0.00725523, 0.00724079,
 0.00722631, 0.00721181, 0.00719728, 0.00718272, 0.00716813,
 0.00715351, 0.00713886, 0.00712418, 0.00710947, 0.00709473])
 ref = refCalFun([], [rho_t, rho_b], [itMu,ibMu], [3.0], qz)
print(ref)

A.2.4 flu_geometry_routines.py

import numpy as np
import matplotlib.pyplot as plt

def laser_gun(origin, alpha, wall=None,celling=None):
 '''
 Define a laser starting from a point with a certain angle,
 until it hits a wall/celling.
 Input: origin: np.array([x,y])
 Returns the x/y of the hitting point.
 '''
 if wall != None:
 x = wall
 y = origin[1] + np.tan(alpha) * (x - origin[0])
 elif celling != None:
 y = celling
 x = origin[0] + 1/np.tan(alpha) * (celling - origin[1])
 else:
 print("please define a stop")
 return None
 return np.array([x, y])

def central_dist(point, line):
 '''
 Calculate the distance from a point to a line.
 Line is defined as: A*x + B*y + C = 0.
 Input line takes in (A,B,C), point takes in [x,y]
 '''
 x, y = point[0], point[1]
 A, B, C = line
 d = np.abs(A*x+B*y+C)/np.sqrt(A**2+B**2)
 return d

def surf_points(x,R):
 '''return an array of surface points given x coordinates
 Input: x, 1D array; curvature in m '''
 x = np.array(x)
 theta = -x / R # sin(theta) = theta, no difference
 y = - R * theta**2/2 # cos(theta) = 1 - theta**2/2, no difference
 surface = np.array([x,y])
 return np.transpose(surface), theta

def hit_surface(point, alpha, curvature, span, sh=0):
 '''
 Given a point and angle, calculate its laser interactig with the surface
 input: points, 1-D array

 131

 output: points, 2-D array
 source: http://mathworld.wolfram.com/Circle-LineIntersection.html.
 Note that this algorithm applies to circle center at (0,0), sh is the sample height relative
NOM position.

 '''
 # if point[0]==0.: return np.array([0,0])
 R = curvature
 cell_left = - span / 2
 cell_right = span / 2
 pt1 = np.array([point[0],point[1]+(R-sh)]) # raise the line up by R.
 pt2 = laser_gun(pt1,alpha,wall=-50) # second point for the line

 dx = pt2[0] - pt1[0]
 dy = pt2[1] - pt1[1]
 dr = np.sqrt(dx**2+dy**2)
 D = pt1[0] * pt2[1] - pt2[0] * pt1[1]
 delta = (R*dr)**2-D**2
 if delta < 0:
 hit = np.array([np.inf,np.inf])
 else:
 x1 = (D*dy + dy/abs(dy)*dx*np.sqrt(delta)) / dr**2
 y1 = (-D*dx + abs(dy)*np.sqrt(delta)) / dr**2
x2 = (D*dy + sign(dy)*dx*np.sqrt(delta)) / dr**2
y2 = (D*dx + abs(dy)*np.sqrt(delta)) / dr**2
 hit = np.array([x1,y1-(R-sh)]) # put the line down by R-sh.
 if hit[0] > cell_right or hit[0] < cell_left:
 hit = np.array([hit[0], np.inf])
return hit

A.2.5 flu_routines_new.py

from collections import OrderedDict
import periodictable as pdtb
import lmfit as lm
import multiprocessing

r_e = pdtb.constants.electron_radius * 1e10 # classical electron radius, in A
N_A = pdtb.constants.avogadro_number # Avogadro number, unitless
k_B = 1.38065e-23 # Boltzman constant, in J/K
p_igMu = (1/1.717)*1e-7 # absorption coefficient of 20keV beam by glass
p_thick = 3.5 * 1e7 # thickness of glass tray in A

define an function that will be used in the program a lot.
absorb = lambda x: np.nan_to_num(np.exp(x))

import numpy as np
import scipy.stats as stat
import fit_ref as mfit
import flu_geometry_routines as gm

def penetrate(beta, delta, alpha, k0):
 alpha[alpha == np.inf] = 0
 alpha = alpha.astype(complex)
 beta_top, beta_bot = beta
 delta_top, delta_bot = delta
 alpha_c = np.sqrt(2 * (delta_bot - delta_top))
 trans = 4 * np.abs(alpha / (alpha + np.sqrt(alpha ** 2 - alpha_c ** 2))) ** 2
 penetration_coeff = 2 * k0 * np.imag(np.sqrt(alpha ** 2 - alpha_c ** 2 + beta_bot * 2j))
 return 1/penetration_coeff, trans

def update_flu_parameters(p, *args):

 assert type(p) is OrderedDict
 # *args have to be at least fitting parameters
 flu_par = args[0]

 # update the fitting parameter whatsoever
 try:

 132

 p['hisc'] = flu_par['hisc'].value # scale factor for the top phase, unitless.
 p['losc'] = flu_par['losc'].value # scale factor for the bottom phase, unitless.
 p['bg'] = flu_par['bg'].value # background intensity, unitless.
 p['tC'] = flu_par['upbk'].value # ion concentration of the top phase, in M.
 p['bC'] = flu_par['lobk'].value # ion concentration of the bottom phase, in M.
 p['sC'] = flu_par['surd'].value # ion surface number density, in A^-2.
 p['qoff'] = flu_par['qoff'].value # q off set for the data
 p['soff'] = flu_par['soff'].value * 1e7 # det range offset for the measurement
 p['l2off'] = flu_par['loff'].value * 1e7 # l2 offset for the measurement
 p['curv'] = flu_par['curv'].value * 1e10 # the curvature of the interface, in A.
 if p['curv'] == 0: p['curv'] = 10000 * 1e10
 except KeyError as e:
 print("Please check your parameter:{}".format(e))

 if len(args) == 1:
 return p

 # if the *args is tuple (flu_par, sys_par, flu_elements), do the following
 try:
 sys_par = args[1]
 flu_elements = args[2]
 except IndexError:
 print("update_flu_parameters takes 3 extra arguments!")

 # parameterize beam profile
 width = sys_par['width'] * 1e7 # width or FWHM of the beam, in A
 beam_profile = sys_par['beam']
 steps = 500
 if beam_profile == 'Uniform':
 beam_size = width
 weights = np.ones(steps + 1)
 elif beam_profile == 'Gaussian':
 stdev = width / 2.355 # FWHM of the beam, i.e. 2.355 sigma
 beam_size = 2 * (3 * stdev) # keep the beam up to +/-3 standard deviation, or 99.73% of
intensity.
 rays = np.linspace(-beam_size/2, beam_size/2, steps+1) # devide the beam into 500 rays
 weights = stat.norm(0, stdev).pdf(rays) * width # weight normalized to the total intensity
 else:
 print("Error: please choose the right beam profile: uniform/gaussian")
 return None

 # unwrap system parameters
 E_inc = float(sys_par['E_inc']) # energy of incidence, in KeV
 E_emit = float(sys_par['E_emt']) # energy of emission, in KeV
 mu_top_inc = float(sys_par['mu_top_inc'] / 1e8) # abs. coef. of top phase for incidence, in
1/A
 mu_top_emit = float(sys_par['mu_top_emt'] / 1e8) # abs. coef. of top phase for emission, in
1/A
 mu_bot_inc = float(sys_par['mu_bot_inc'] / 1e8) # abs. coef. of bot phase for incidence, in
1/A
 mu_bot_emit = float(sys_par['mu_bot_emt'] / 1e8) # abs. coef. of bot phase for emission, in
1/A
 rho_top = sys_par['rho_top'] # electron density of top pahse, in A^-3
 rho_bot = sys_par['rho_bot'] # electron density of top pahse, in A^-3

 det_len = sys_par['det_len'] * 1e7 # detector length, in A
 span = sys_par['span'] * 1e7

 # calculate abosrption parameters.
 k0 = 2 * np.pi * E_inc / 12.3984 # wave vector for incidence, in A^-1
 k1 = 2 * np.pi * E_emit / 12.3984 # wave vector for emission, in A^-1

 # construct elemental parameters
 vol_top, vol_bot = 0, 0 # vol_bot for ions for 1 L subphase
 ne_top, ne_bot = 0, 0 # total number of electrons from 1 L subphase
 bet_top_inc_ele, bet_top_emit_ele = 0, 0 # beta: for top phase at inc.& emit.
 bet_bot_inc_ele, bet_bot_emit_ele = 0, 0 # beta: for bot phase at inc.& emit.
 flupara_ele = {} # setup dict for all elements in the subphase
 for i, e in enumerate(flu_elements):
 flupara_ele[i] = \
 [e[0], float(e[1]), float(e[2]), # name, composition, ionic radius
 pdtb.elements.symbol(e[0]).number,
 pdtb.elements.symbol(e[0]).xray.scattering_factors(energy=sys_par['E_inc'])[1],

 133

 pdtb.elements.symbol(e[0]).xray.scattering_factors(energy=sys_par['E_emt'])[1]]
 for i, p_ in flupara_ele.items():
 n_top_density = p['tC'] * p_[1] * N_A / 1e27 # atoms per A^3 in top phase
 n_bot_density = p['bC'] * p_[1] * N_A / 1e27 # atoms per A^3 in bot phase
 vol_top += n_top_density * 4 / 3 * np.pi * p_[2] ** 3
 vol_bot += n_bot_density * 4 / 3 * np.pi * p_[2] ** 3
 ne_top += n_top_density * p_[3] # electrons per A^3
 ne_bot += n_bot_density * p_[3] # electrons per A^3
 bet_top_inc_ele += n_top_density * 2 * np.pi * r_e * p_[4] / k0 ** 2
 bet_top_emit_ele += n_top_density * 2 * np.pi * r_e * p_[5] / k1 ** 2
 bet_bot_inc_ele += n_bot_density * 2 * np.pi * r_e * p_[4] / k0 ** 2
 bet_bot_emit_ele += n_bot_density * 2 * np.pi * r_e * p_[5] / k1 ** 2
 # absorption coefficient and electron density modified by solvent.
 rho_top = ne_top + (1 - vol_top) * rho_top
 rho_bot = ne_bot + (1 - vol_bot) * rho_bot

 # re-evaluate mu
 mu_top_inc = 2 * k0 * bet_top_inc_ele + (1 - vol_top) * mu_top_inc
 mu_top_emit = 2 * k1 * bet_top_emit_ele + (1 - vol_top) * mu_top_emit
 mu_bot_inc = 2 * k0 * bet_bot_inc_ele + (1 - vol_bot) * mu_bot_inc
 mu_bot_emit = 2 * k1 * bet_bot_emit_ele + (1 - vol_bot) * mu_bot_emit

 # calculate beta
 bet_top_inc = mu_top_inc / k0 / 2
 bet_top_emit = mu_top_emit / k1 / 2
 bet_bot_inc = mu_bot_inc / k0 / 2
 bet_bot_emit = mu_bot_emit / k1 / 2

 # calculate delta
 del_top_inc = 2 * np.pi * r_e * rho_top / k0 ** 2 # del=2*PI*re*rho/k^2, unitless
#self.flutopdel
 del_top_emit = 2 * np.pi * r_e * rho_top / k1 ** 2
 del_bot_inc = 2 * np.pi * r_e * rho_bot / k0 ** 2
 del_bot_emit = 2 * np.pi * r_e * rho_bot / k1 ** 2

 p['k0'] = k0 # incident ray Energy, in KeV.
 p['k1'] = k1 # emission ray energy, in KeV.
 p['detR'] = det_len # detector range, in mm.
 p['wt'] = weights # weights for the beam profile, the length of which is the total amount of
steps.
 p['bmsz'] = beam_size # the size of the beam for footprint calculation, in A.
 p['tRho'] = rho_top # electron density of top phase, in A^-3.
 p['bRho'] = rho_bot # electron density of bottom phase, in A^-3.
 p['itMu'] = mu_top_inc # mu for incident beam in top phase, in cm^-1
 p['etMu'] = mu_top_emit # mu for emitted beam in top phase, in cm^-1
 p['ibMu'] = mu_bot_inc # mu for incident beam in bottom phase, in cm^-1
 p['ebMu'] = mu_bot_emit # mu for emitted beam in bottom phase, in cm^-1
 p['itBt'] = bet_top_inc # beta for incident beam in top phase, in cm^-1
 p['etBt'] = bet_top_emit # beta for emitted beam in top phase, in cm^-1
 p['ibBt'] = bet_bot_inc # beta for incident beam in bottom phase, in cm^-1
 p['ebBt'] = bet_bot_emit # beta for emitted beam in bottom phase, in cm^-1
 p['itDt'] = del_top_inc # delta for incident beam in top phase, in cm^-1
 p['etDt'] = del_top_emit # delta for emitted beam in top phase, in cm^-1
 p['ibDt'] = del_bot_inc # delta for incident beam in bottom phase, in cm^-1
 p['ebDt'] = del_bot_emit # delta for emitted beam in bottom phase, in cm^-1
 p['span'] = span # the length of the sample cell, "the span", in A.

 return p

def fluCalFun_core(a0,sh,p):

 '''takes in flupara_fit, qz, return fluorescence data.
 Note that 'weights' contains the info of the steps for integration
 a0: the incident angle of X-ray beam, corrected with Qz_offset, in rad.
 sh: the sample height shift w.r.t. its norminal position, in A.
 p['wt']: weights for the beam profile, the length of which is the total amount of steps.
 p['k0']: wavevector for incident ray Energy, in KeV.
 p['detR']: detector range, in mm.
 p['hisc']: scale factor for the top phase, unitless.
 p['losc']: scale factor for the bottom pahse, unitless.
 p['bg']: background intensity, unitless.
 p['k1']: wavevector for emission ray energy, in KeV.
 p['tC']: ion concentration of the top phase, in M.

 134

 p['bC']: ion concentration of the bottom phase, in M.
 p['sC']: ioin surface number density, in A^-2.
 p['qoff']: q off set for the data
 p['soff']: sample height offset (effoct of detector offset included) for the measurement
 p['l2off']: l2 offset for the measurement
 p['tRho']: electron density of top phase, in A^-3.
 p['bRho']: electron density of bottom phase, in A^-3.
 p['itMu']: mu for incident beam in top pahse, in A^-1
 p['etMu']: mu for emitted beam in top phass, in A^-1
 p['ibMu']: mu for incident beam in bottom pahse, in A^-1
 p['ebMu']: mu for emitted beam in bottom phass, in A^-1
 p['itBt']: beta for incident beam in top pahse, in A^-1
 p['etBt']: beta for emitted beam in top phass, in A^-1
 p['ibBt']: beta for incident beam in bottom pahse, in A^-1
 p['ebBt']: beta for emitted beam in bottom phass, in A^-1
 p['itDt']: delta for incident beam in top pahse, in A^-1
 p['etDt']: delta for emitted beam in top phass, in A^-1
 p['ibDt']: delta for incident beam in bottom pahse, in cm^-1
 p['ebDt']: delta for emitted beam in bottom phass, in cm^-1
 p['span']: the length of the sample cell, "the span", in A.
 p['curv']: the curvature of the interface, in A.
 p['bmsz']: the size of the beam for footprint calculation, in A.
 '''

 steps = len(p['wt']) - 1
 fprint = p['bmsz'] / np.sin(a0) # foortprint of the beam on the interface.
 stepsize = fprint / steps
 center = - sh / a0
 del_detR = 0 # horizontal shift of detector.

 # initialize fluorescence data, rows: total, aqueous, organic, interface

 # get the position of single ray hitting the surface
 x0 = np.linspace(center-fprint/2, center+fprint/2, steps+1) # beam is equivalently shited by
"center"
 surface = np.array([gm.hit_surface([xx, 0], -a0, p['curv'], p['span']) for xx in x0])
 hit = np.isfinite(surface[:,0]) * np.isfinite(surface[:,1]) # rays that hit the liquid-liquid
interface
 # block = np.isfinite(surface[:,0]) * np.isinf(surface[:,1]) # rays that are blocked by the
tray
 block = (surface[:,0]<-p['span']/2) * np.isinf(surface[:,1]) # rays that are blocked by the
tray
 x_s = surface[:, 0][hit] # x' for rays that hit on the interface
 z_s = surface[:, 1][hit] # z' for rays that hit on the interface
 wt_s = p['wt'][hit] # weight for rays that hit on the interface
 x_g = surface[:, 0][block] # x' for rays blocked by glass tray
 z_g = surface[:, 1][block] # z' for rays blocked by glass tray
 wt_g = p['wt'][block] # weight for rays that are blocked by the glass tray

 # (x,z) and other surface geometry for points where beam hit at the interface.
 theta = -x_s / p['curv'] # incident angle
 a_new = a0 + theta # actual incident angle w.r. to the surface
 # a1 = a0 + 2 * theta
 a1 = a0
 x_inc = x_s + z_s / a0 # x position where the inc. xray passes z=0 line
 x_ref = x_s - z_s / a1 # x position where the ref. xray passes z=0 line.
 x_inc_g = x_g + z_g / a0 # x position where the inc. xray passes z=0 line
 x_ref_g = x_g - z_g / a1 # x position where the ref. xray passes z=0 line.

 mu_eff_inc = p['etMu'] + p['itMu'] / a0 # eff.abs.depth for incident beam in oil phase
 mu_eff_ref = p['etMu'] - p['itMu'] / a1 # eff.abs.depth for reflected beam in water phase

 # z coordinate of the intersection of ray with following:
 # detector range shifted by 'del_detR' is the same as beam shifted by '-del_detR'.
 z_inc_l = (x_inc - del_detR + p['detR']/2) * a0 # incidence with left det. boundary: x=-l/2
 z_inc_r = (x_inc - del_detR - p['detR']/2) * a0 # incidence with right det. boundary: x=l/2
 z_ref_l = (-x_ref + del_detR - p['detR']/2) * a1 # reflection with left det. boundary: x=-l/2
 z_ref_r = (-x_ref + del_detR + p['detR']/2) * a1 # reflection with right det. boundary: x=l/2
 z_inc_l_g = (x_inc_g - del_detR + p['detR']/2) * a0 # incidence with left det. boundary: x=-
l/2

 135

 z_inc_r_g = (x_inc_g - del_detR- p['detR']/2) * a0 # incidence with right det. boundary: x=l/2
 z_ref_l_g = (-x_ref_g + del_detR - p['detR']/2) * a1 # reflection with left det. boundary:
x=-l/2
 z_ref_r_g = (-x_ref_g + del_detR + p['detR']/2) * a1 # reflection with right det. boundary:
x=l/2

 # two regions: region3: [-h/2a0,-l/2] & region 2: [-l/2,l/2]
 x_region = [(x_s <= (-p['detR']/2+del_detR)),\
 (x_s > (-p['detR']/2+del_detR)) * (x_s < (p['detR']/2+del_detR))]

 ################### for redgion 1: region x>= l/2 ########################
 x0_region1 = x0[surface[:, 0] > p['detR']/2] # choose x0 with x'>l/2
 wt_region1 = p['wt'][surface[:, 0] > p['detR']/2] # choose weight with x'>l/2
 upper_bulk1 = wt_region1 * \
 absorb(-x0_region1 * p['itMu']) / mu_eff_inc * \
 (absorb((x0_region1 + p['detR']/2) * a0 * mu_eff_inc) -
 absorb((x0_region1 - p['detR']/2) * a0 * mu_eff_inc))

 # define the initial intensity to be just background value
 flu = np.array([p['bg']] * 7)

 # if beam miss the surface entirely, do the following:
 if len(x_s) == 0: # the entire beam miss the interface, only incidence in upper phase.
 # sh_offset_factor = absorb(-mu_top_emit * center[i] * a0)
 usum_inc = stepsize * np.sum(upper_bulk1)
 flu[3] += p['hisc'] * usum_inc * N_A * p['tC'] / 1e27 # oil phase incidence only +
background
 flu[0] = flu[3] # total intensity only contains oil phase
 return flu

 ref = mfit.refCalFun([], [p['tRho'], p['bRho']], [p['itMu'], p['ibMu']], [3.0], 2 * p['k0'] *
a_new)
 p_depth, trans = penetrate((p['itBt'],p['ibBt']), (p['itDt'],p['ibDt']), a_new, p['k0'])
 p_depth_eff = 1 / (p['ebMu'] + a_new/a0 / p_depth)

 ################### for region -l/2 < x < l/2 #################
 lower_bulk2 = x_region[1] * wt_s * absorb(-x_s * p['itMu'] - z_s / p_depth) * trans * p_depth
* \
 (absorb(z_s / p_depth_eff) - absorb(z_inc_r / p_depth_eff))
 interface = x_region[1] * wt_s * trans * absorb(-p['itMu'] * x_s)
 upper_bulk2_inc = x_region[1] * wt_s * \
 (absorb(-x_inc * p['itMu']) / mu_eff_inc * (
 absorb(z_inc_l * mu_eff_inc) - absorb(z_s * mu_eff_inc)))
 upper_bulk2_inc[np.isnan(upper_bulk2_inc)] = 0 # if there is nan, set to 0
 upper_bulk2_ref = x_region[1] * wt_s * \
 (absorb(-x_ref * p['itMu']) / mu_eff_ref * ref * (
 absorb(z_ref_r * mu_eff_ref) - absorb(z_s * mu_eff_ref)))
 upper_bulk2_ref[np.isnan(upper_bulk2_ref)] = 0 # if there is nan, set to 0

 ###################### for region x<=-l/2 ########################
 lower_bulk3 = x_region[0] * wt_s * absorb(-x_s * p['itMu'] - z_s / p_depth) * trans * p_depth_eff
* \
 (absorb(z_inc_l / p_depth_eff) - absorb(z_inc_r / p_depth_eff))
 upper_bulk3 = x_region[0] * wt_s * absorb(-x_ref * p['itMu']) / mu_eff_ref * ref * \
 (absorb(mu_eff_ref * z_ref_r) - absorb(mu_eff_ref * z_ref_l))

 # if there are rays that are blocked by tray, their intensity is still significent
 if np.sum(block) > 0:
 edge = None
 # combine the two regions and integrate along x direction by performing np.sum.
 bsum = stepsize * np.sum(lower_bulk3 + lower_bulk2)
 ssum = stepsize * np.sum(interface)
 usum_inc = stepsize * (np.sum(upper_bulk1) + np.sum(upper_bulk2_inc))
 usum_ref = stepsize * (np.sum(upper_bulk3) + np.sum(upper_bulk2_ref))

 # add the rays blocked by glass tray
 thick_glass = 3.5 * 10e7 # thickness of the side of glass tray, in A.
 mu_ig = 5.824 * 10e-8 # absorption coefficient of glass at 20keV, in A^-1.
 if len(wt_g) != 0:
 mu_eff_w = p['ebMu'] + p['ibMu'] / a0 # eff.abs.depth for incident beam in oil phase
 lower_bulk_glass = 1/mu_eff_w * absorb(p['itMu']*(p['span']/2+thick_glass)) \
 * absorb(-mu_ig*thick_glass) \

 136

 * absorb(-p['ibMu']*(p['span']/2+z_g/a0+x_g)) \
 * (absorb(mu_eff_w*z_inc_l_g) - absorb(mu_eff_w*z_inc_r_g))
 gsum = stepsize * np.sum(lower_bulk_glass)
 int_lobk_gls = p['losc'] * gsum * N_A * p['bC'] / 1e27 # blocked by glasses
 else:
 int_lobk_gls = 0

 # vectorized integration method is proved to reduce the computation time by a factor of 5 to
10.
 int_lobk = p['losc'] * bsum * N_A * p['bC'] / 1e27 # bulk water phase
 int_upbk_inc = p['hisc'] * usum_inc * N_A * p['tC'] / 1e27 # metal ions in the upper phase.
 int_upbk_ref = p['hisc'] * usum_ref * N_A * p['tC'] / 1e27 # metal ions in the upper phase.
 int_sur = p['losc'] * ssum * p['sC']

 flu += np.array([int_lobk + int_lobk_gls + int_sur + int_upbk_inc + int_upbk_ref,
 int_lobk, # 3. lower bulk
 int_sur, # 4. interface
 int_upbk_inc+int_upbk_ref, # 5. upper bulk
 int_upbk_inc, # 6. upper bulk incidence
 int_upbk_ref, # 7. upper bulk reflection
 int_lobk_gls])
 return flu

def flu2min(pars, x, p, data=None, eps=None): # residuel for flu fitting
 sh, qz = x
 p = update_flu_parameters(p, (pars))

 alpha = (qz + p['qoff']) / p['k0'] / 2 # include the qz offset.
 a0006 = 0.006 / p['k0'] / 2 # incident angle for qz=0.006

 # initialize fluorescence data 3-D matrix
 flu = np.zeros((len(sh), len(qz), 9))
 try:
 for i, ds in enumerate(sh):
 for j, a0 in enumerate(alpha):
 dsh = -p['l2off'] * (a0 - a0006) + p['soff'] + ds*1e7
 flu[i, j, 0] = ds
 flu[i, j, 1] = qz[j]
 flu[i, j, 2:] = fluCalFun_core(a0, dsh, p)
 except KeyError as e:
 print("Please check parameter: {}".format(e))
 if data is None:
 return flu
 if eps is None:
 return (flu[:,:,2].flatten() - data)

 return (flu[:,:,2].flatten() - data) / eps

def fluErrorFitSingleCore2(i, value_list, sh, qz, pname, flu_par, flucal_par, data_to_fit):
 flu_par[pname].value = value_list[i] # change value of the chosen parameter
 fluerr_result = lm.minimize(fl.flu2min, flu_par,
 args=((sh, qz), flucal_par),
 kws={'data': data_to_fit[:, 1], 'eps': data_to_fit[:, 2]})
 return ([i, value_list[i], fluerr_result.nfree, fluerr_result.redchi])

def multiCore(func, iterable):
 pool = multiprocessing.Pool()
 result = pool.map(func, range(len(iterable)))
 pool.close()
 pool.join()
 return result

if __name__ == '__main__':
 '''
 This piece of code does the job of testing. Feel free to change it for different sample
 setup.
 '''
 import os
 import matplotlib.pyplot as plt
 from mpl_toolkits import mplot3d

 p = OrderedDict()
 sys_par = OrderedDict(

 137

 [('E_inc', 20.0),
 ('E_emt', 5.842),
 ('mu_top_inc', 0.273),
 ('mu_top_emt', 7.451),
 ('mu_bot_inc', 0.7018),
 ('mu_bot_emt', 26.58),
 ('rho_top', 0.2591),
 ('rho_bot', 0.348),
 ('width', 0.01),
 ('det_len', 12.7),
 ('beam', 'Gaussian'),
 ('span', 75.6)]
)
 flu_par = lm.Parameters()
 # add with tuples: (NAME VALUE VARY MIN MAX EXPR BRUTE_STEP)
 flu_par.add_many(
 ('losc', 5.27e-9 , False, None, None, None, None),
 ('hisc', 5.27e-9, False, None, None, None, None),
 ('lobk', 0.0545, False, None, None, None, None),
 ('upbk', 0.0545, False, None, None, None, None),
 ('surd', 0.0, False, None, None, None, None),
 ('bg', 0.0, False, None, None, None, None),
 ('qoff', 3.37e-4, False, None, None, None, None),
 ('curv', 0, False, None, None, None, None),
 ('loff', 5.0e-3, False, None, None, None, None),
 ('soff', 0, False, None, None, None, None)
)
 flu_elements = [['Eu', 1, 0.947]]
 p = update_flu_parameters(p, flu_par, sys_par, flu_elements)

 type_ = 'sh'

 dir_path = os.path.dirname(os.path.realpath(__file__)) # the current directory
 data_file = 'q_sample03_312_50mMEu(NO3)3_s1h0.2_flu.txt'
 data = np.loadtxt(os.path.join(dir_path,'test',data_file))

 qz = np.linspace(0.005, 0.016, 10)
 sh = np.linspace(-0.05, 0.05, 10)
 flu = flu2min(flu_par, (sh,qz), p)

 fig = plt.figure()
 ax = plt.axes(projection='3d')
 ax.plot_surface(flu[:,:,0],flu[:,:,1],flu[:,:,2],
 rstride=1, cstride=1,
 cmap='viridis',edgecolor='none')
 ax.set_title('surface')
 ax.set_xlabel('sh')
 ax.set_ylabel('qz')
 ax.set_zlabel('fluorescence')

 plt.show()

fig = plt.figure()
ax = fig.add_subplot(111)
ax.errorbar(data[:,0],data[:,1],yerr=data[:,2],ls='',marker='.')
if type_ == 'sh':
qz = np.array([0.006])
sh = np.linspace(-0.1, 0.1, 100)
sh = np.array([0.0])
flu =flu2min(flu_par, (sh,qz), p)
ax.set_xlim([-0.11,0.11])
ax.plot(flu[:,0,0],flu[:,0,2],ls='-',marker='.')
ax.plot(flu[:,0,0],flu[:,0,8],ls='-',marker='.')
elif type_ == 'qz':
qz = np.linspace(0.005, 0.016, 100)
sh = np.array([flu_par['soff']])
flu =flu2min(flu_par, (sh,qz), p)
ax.set_xlim([0.004,0.018])
ax.plot(flu[0,:,1],flu[0,:,2],ls='-')
ax.plot(flu[0,:,1],flu[0,:,8],ls='-')
ax.grid()

 138

plt.show()

A.2.6 mainwindow.py

import sys
import os
Use absolute path instead of relative path ('./') to avoid trouble when installed by pip
dir_path = os.path.dirname(os.path.realpath(__file__)) # the current directory
dir_path_test = os.path.join(dir_path,'test')
print(dir_path)
UI_path = dir_path + '/GUI/'
import time
import multiprocessing

This block of code is needed for properly working with PyInstaller

import the following three modules in order to work with PyInstaller

mplwidget is imported explicitly here because PyInstaller needs to find it.

Define function to import external files when using PyInstaller.
https://stackoverflow.com/questions/37888581/pyinstaller-ui-files-filenotfounderror-errno-2-no-
such-file-or-directory
def resource_path(relative_path):
 """ Get absolute path to resource, works for dev and for PyInstaller """
 try:
 # PyInstaller creates a temp folder and stores path in _MEIPASS
 base_path = sys._MEIPASS
 except Exception:
 # when not bundled by PyInstaller, normal method is used.
 base_path = os.path.abspath(".")
 return os.path.join(base_path, relative_path)

from collections import OrderedDict

from PyQt5 import uic
from PyQt5.QtWidgets import *
from PyQt5.QtCore import *

from scipy.interpolate import interp1d
from scipy.special import *
import numpy as np
import matplotlib.pyplot as plt
from cycler import cycler
default_cycler = (cycler(color=['b','g','c','m','y','k']))
plt.rc('axes', prop_cycle=default_cycler)
plt.rc('lines',markersize=3, linewidth=1)

import lmfit as lm # fitting module
import periodictable as pdtb # a module for periodic table
r_e = pdtb.constants.electron_radius * 1e10 # classical electron radius, in A
N_A = pdtb.constants.avogadro_number # Avogadro number, unitless
k_B = 1.38065e-23 # Boltzman constant, in J/K

user defined module
import flu_routines_new as fl

Here the absolute path is used because PyInstaller needs to find it.
(Ui_MainWindow, QMainWindow) = uic.loadUiType(resource_path(UI_path + 'mainwindow.ui'))

class myThread(QThread):
 def __init__(self,func):
 QThread.__init__(self)
 self.func = func

 139

 def run(self):
 self.func

def fluErrorFitSingleCore2(i, value_list, sh, qz, pname, flu_par, flucal_par, data_to_fit):
 flu_par[pname].value = value_list[i] # change value of the chosen parameter
 fluerr_result = lm.minimize(fl.flu2min, flu_par,
 args=((sh, qz), flucal_par),
 kws={'data': data_to_fit[:, 1], 'eps': data_to_fit[:, 2]})
 return ([i, value_list[i], fluerr_result.nfree, fluerr_result.redchi])

def multiCore(func, iterable):
 pool = multiprocessing.Pool()
 result = pool.map(func, range(len(iterable)))
 pool.close()
 pool.join()
 return result

class MainWindow (QMainWindow):
 """MainWindow inherits QMainWindow"""

 def __init__(self, parent = None):
 QMainWindow.__init__(self, parent)
 self.ui = Ui_MainWindow()
 self.ui.setupUi(self)
 self.ui.tabWidget.setCurrentIndex(1)
 self.directory=os.getcwd()

 self.halftab = ' '
 self.flusavefitindex = 0
 self.flufiles = []
 self.flufitfiles = []
 self.fludata = []
 self.flufitdata = []
 self.beam = 'uniform'
 self.flucal_par = OrderedDict()
 self.flu = 0
 self.selectedflufiles_rows = []
 self.selectedflufitfiles_rows = []
 self.eleradius = pdtb.constants.electron_radius*1e10
 self.avoganum = pdtb.constants.avogadro_number
 self.boltzmann = 1.38065e-23
 self.errorlist = np.array([[1, 1.074], [2, 1.204], [3, 1.222],
 [4, 1.220], [5, 1.213], [6, 1.205],
 [7, 1.198], [8, 1.191], [9, 1.184],
 [10, 1.178], [11, 1.173], [12, 1.168],
 [13, 1.163], [14, 1.159], [15, 1.155],
 [16, 1.151], [17, 1.148], [18, 1.145],
 [19, 1.142], [20, 1.139], [22, 1.134],
 [24, 1.129], [26, 1.125], [28, 1.121],
 [30, 1.118], [32, 1.115], [34, 1.112],
 [36, 1.109], [38, 1.106], [40, 1.104],
 [42, 1.102], [44, 1.100], [46, 1.098],
 [48, 1.096], [50, 1.094], [60, 1.087],
 [70, 1.081], [80, 1.076], [90, 1.072],
 [100, 1.069], [120, 1.063], [140, 1.059],
 [160, 1.055], [180, 1.052]]) #, [3000, 1.050]])

 self.setupUI()
 self.updatePar()
 self.debugErr()

 def setupUI(self):
 self.ui.addflufilePB.clicked.connect(self.addFluFile)
 self.ui.flufileLW.itemSelectionChanged.connect(self.updateSelectedFluFile)
 self.ui.rmflufilePB.clicked.connect(self.removeFluFile)
 self.ui.addflufitfilePB.clicked.connect(self.addFluFitFile)
 self.ui.flufitfileLW.itemSelectionChanged.connect(self.updateSelectedFluFitFile)
 self.ui.rmflufitfilePB.clicked.connect(self.removeFluFitFile)
 self.ui.fluxaxisCB.currentIndexChanged.connect(self.updateUI)
 self.ui.fluqcCB.stateChanged.connect(self.updateFluPlot)
 self.ui.flulineCB.stateChanged.connect(self.updateFluPlot)
 self.ui.flulegendCB.stateChanged.connect(self.updateFluPlot)

 140

 self.ui.flulegendlocCoB.currentIndexChanged.connect(self.updateFluPlot)
 self.ui.flulogyCB.stateChanged.connect(self.updateFluPlot)
 self.ui.flugridCB.stateChanged.connect(self.updateFluPlot)
 self.ui.flushowCB.stateChanged.connect(self.updateFluPlot)
 self.ui.flucompCB.stateChanged.connect(self.updateFluPlot)
 self.ui.flusimuPB.clicked.connect(self.updateFluCal)
 self.ui.flufitPB.clicked.connect(self.fitFlu)
 self.ui.flusaveCB.activated.connect(self.saveFlu)
 self.ui.fluloadCB.activated.connect(self.loadFlu)
 self.ui.insflusubPB.clicked.connect(self.insFluIon)
 self.ui.rmflusubPB.clicked.connect(self.rmFluIon)
 self.ui.fluErrPB.clicked.connect(self.fluErrorInit)
 self.ui.flulimitPB.clicked.connect(self.setupLimitsUI)
 # connect system parameter signals
 self.ui_syspar = OrderedDict(
 [('E_inc',self.ui.fluIncEnLE),
 ('E_emt',self.ui.fluEmtEnLE),
 ('mu_top_inc',self.ui.flumutopincLE),
 ('mu_top_emt', self.ui.flumutopemtLE),
 ('mu_bot_inc', self.ui.flumubotincLE),
 ('mu_bot_emt',self.ui.flumubotemtLE),
 ('rho_top', self.ui.flurhotopLE),
 ('rho_bot', self.ui.flurhobotLE),
 ('width', self.ui.fluwidthLE),
 ('det_len',self.ui.fludetLE)]
)
 for p,u in self.ui_syspar.items():
 u.returnPressed.connect(self.updatePar)
 u.returnPressed.connect(self.updateFluCal)
 self.ui.flubmpfCombo.currentIndexChanged.connect(self.updatePar)

 # connect fitting parameter signals
 self.ui_params = OrderedDict(
 [('losc', [self.ui.flubotscaleLE, self.ui.flubotscaleCB]),
 ('hisc', [self.ui.flutopscaleLE, self.ui.flutopscaleCB]),
 ('lobk', [self.ui.flubotbulkLE, self.ui.flubotbulkCB]),
 ('upbk', [self.ui.flutopbulkLE, self.ui.flutopbulkCB]),
 ('surd', [self.ui.flusurdLE, self.ui.flusurdCB]),
 ('bg', [self.ui.flubgLE, self.ui.flubgCB]),
 ('qoff', [self.ui.fluqoffLE, self.ui.fluqoffCB]),
 ('curv', [self.ui.flucurvLE, self.ui.flucurvCB]),
 ('loff', [self.ui.fluloffLE, self.ui.fluloffCB]),
 ('soff', [self.ui.flusoffLE, self.ui.flusoffCB])]
)
 for p,u in self.ui_params.items():
 u[0].returnPressed.connect(self.updatePar)
 u[0].returnPressed.connect(self.updateFluCal)
 u[1].stateChanged.connect(self.updatePar)

 # set up a container for parameter limits
 self.par_limits = OrderedDict()
 for p,u in self.ui_params.items():
 if p in ['lobk','upbk','surd','bg','curv']:
 self.par_limits[p] = [0, 1000]
 elif p in ['hisc','losc']:
 self.par_limits[p] = [1e-10, 1000]
 else:
 self.par_limits[p] = [None, None]

 def updateUI(self,index=None, fresh=True):
 '''
 This function also works as a slot for qcombobox signal, so the first arg/kws by default
 is reserved for receiving signal argument, which can be either index or text.
 '''
 print("{}, {}".format(index,fresh))
 # set text for fitting parameters
 for p, u in self.ui_params.items():
 if p in ['curv', 'loff']:
 u[0].setText(format(self.flu_par[p].value, '.4f'))
 else:
 u[0].setText(format(self.flu_par[p].value, '.2e'))

 # set text for system parameters

 141

 for p, u in self.ui_syspar.items():
 u.setText(format(self.sys_par[p], '.4f'))

 # set beam profile
 index = self.ui.flubmpfCombo.findText(self.beam)
 self.ui.flubmpfCombo.setCurrentIndex(index)
 self.xaxis = self.ui.fluxaxisCB.currentText()

 if fresh == True:
 if self.xaxis == 'Qz':
 _xrange = '0.005:0.016'
 self.ui.fluloffCB.setCheckable(True)
 self.ui.fluloffCB.setText('L2 offset')
 self.ui.fluloffqzlabel.setText('mm')
 elif self.xaxis == 'Sh':
 _xrange = '-0.1:0.1'
 self.ui.fluloffCB.setText('Qz')
 self.ui.fluloffLE.setText(format(0.006, '.4f'))
 self.ui.fluloffqzlabel.setText(self.ui.fluqofflabel.text())
 self.ui.fluSimuRangeLE.setText(_xrange)
 self.ui.fluFitRangeLE.setText(_xrange)
 else:
 try:
 _simu_range = ':'.join(str(self.flu_simu_range)[1:-1].split(','))
 _fit_range = ':'.join(str(self.flu_fit_range)[1:-1].split(','))
 self.ui.fluSimuRangeLE.setText(_simu_range)
 self.ui.fluFitRangeLE.setText(_fit_range)
self.ui.fluloffLE.setText(str(self.qz[0]))
 except Exception as e:
 self.updateUI(fresh=True)

 self.updatePar()

 def updatePar(self): #initialize the flu parameters

 # system parameters for fluorescence
 self.beam = str(self.ui.flubmpfCombo.currentText()) # beam profile
 self.sys_par = OrderedDict()
 for p, u in self.ui_syspar.items():
 self.sys_par[p] = float(u.text())
 self.sys_par['beam'] = self.ui.flubmpfCombo.currentText()
 self.sys_par['span'] = 75.6 # the length of sample cell, in mm.

 # fitting parameters for fluorescence
 self.flu_par = lm.Parameters()
 try:
 for name,par in self.ui_params.items():
 self.flu_par.add(name, value=float(par[0].text()), vary=par[1].isChecked(),
 min=self.par_limits[name][0],
max=self.par_limits[name][1],
 expr=None, brute_step=None)
 except ValueError as VE:
 print("ValueError: ", VE)
 else:
 # fitting (if any) parameters for reflectivity
 self.ref_par = lm.Parameters()
 # add tuples: (NAME VALUE VARY MIN MAX EXPR BRUTE_STEP)
 self.ref_par.add_many(('rho_t', self.sys_par['rho_top'], 0, None, None, None, None),
 ('rho_b', self.sys_par['rho_bot'], 0, None, None, None, None),
 ('mu_t', self.sys_par['mu_top_inc'], 0, None, None, None,
None),
 ('mu_b', self.sys_par['mu_bot_inc'], 0, None, None, None,
None),
 ('sigma0', 3.0, 0, None, None, None, None),
 ('q_off', 0, 0, None, None, None, None))
 # info of element in the system
 self.flu_elements = [['Eu', 1, 0.947]] # name, composition, Ionic Radius(A)

 # update the list of sh and qz
 try:
 self.flu_simu_range = [float(i) for i in
str(self.ui.fluSimuRangeLE.text()).split(':')]
 self.flu_fit_range = [float(i) for i in str(self.ui.fluFitRangeLE.text()).split(':')]

 142

 except:
 print("Error: Check if the range is right.")
 self.xaxis = self.ui.fluxaxisCB.currentText()
 if self.xaxis == 'Qz':
 self.sh = np.array([0])
 self.qz = np.linspace(self.flu_simu_range[0], self.flu_simu_range[1], 200)
 elif self.xaxis == 'Sh':
 self.qz = np.array([float(self.ui.fluloffLE.text())])
 self.sh = np.linspace(self.flu_simu_range[0], self.flu_simu_range[1], 200)

 # update parameters for flurescence calculation
 self.flucal_par = fl.update_flu_parameters(self.flucal_par,
 self.flu_par,
 self.sys_par,
 self.flu_elements)

 def updateLimits(self):
 ui = self.ui_limits
 try:
 for p, u in self.ui_par_limits.items():
 if u[0].isChecked():
 try:
 self.par_limits[p][0] = float(u[1].text())
 self.par_limits[p][1] = float(u[2].text())
 assert self.par_limits[p][1] >= self.par_limits[p][0]
 except ValueError as e:
 print("{} Please provide a valid limit for '{}'. ".format(e,u[0].text()))
 raise
 except AssertionError:
 print("Max should be larger than Min for {}".format(u[0].text()))
 raise
 else:
 self.par_limits[p][0] = None
 self.par_limits[p][1] = None
 except:
 print("An Error occurs... See above")
 else:
 self.updatePar()
 ui.close()

 def setupLimitsUI(self):

 ui = uic.loadUi(UI_path + 'err4.ui', QDialog(self))
 ui.cancelPB.clicked.connect(ui.close)
 ui.confirmPB.clicked.connect(self.updateLimits)
 self.ui_par_limits = OrderedDict(
 [('losc', [ui.flubotscaleCB, ui.minbotscaleLE, ui.maxbotscaleLE]),
 ('hisc', [ui.flutopscaleCB, ui.mintopscaleLE, ui.maxtopscaleLE]),
 ('lobk', [ui.flubotbulkCB, ui.minbotbulkLE, ui.maxbotbulkLE]),
 ('upbk', [ui.flutopbulkCB, ui.mintopbulkLE, ui.maxtopbulkLE]),
 ('surd', [ui.flusurdCB, ui.minsurdLE, ui.maxsurdLE]),
 ('bg', [ui.flubgCB, ui.minbgLE, ui.maxbgLE]),
 ('qoff', [ui.fluqoffCB, ui.minqoffLE, ui.maxqoffLE]),
 ('curv', [ui.flucurvCB, ui.mincurvLE, ui.maxcurvLE]),
 ('loff', [ui.fluloffCB, ui.minloffLE, ui.maxloffLE]),
 ('soff', [ui.flusoffCB, ui.minsoffLE, ui.maxsoffLE])]
)
 for p, u in self.ui_par_limits.items():
 if self.par_limits[p][0] is None and self.par_limits[p][1] is None:
 u[0].setChecked(False)
 continue
 else:
 u[0].setChecked(True)
 try:
 u[1].setText(format(self.par_limits[p][0], '.2e'))
 except TypeError:
 pass # leave empty if limit is None
 try:
 u[2].setText(format(self.par_limits[p][1], '.2e'))
 except TypeError:
 pass
 self.ui_limits = ui
 ui.show()

 143

 def addFluFile(self): #add flu files into the listwidget and deselect all flu files in the
listwidget

 f, _ = QFileDialog.getOpenFileNames(
 caption='Select Multiple Fluorescence Files to import',
 directory=self.directory,
 filter='Flu Files (*.flu*;*_flu.txt)'
)
 self.flufiles = self.flufiles + f
 self.directory = str(QFileInfo(self.flufiles[0]).absolutePath())
 self.updateFluFile()

 def updateFluFile(self): # update flu files in the listwidget
 self.ui.flufileLW.clear()
 for i, f in enumerate(self.flufiles):
 try:
 self.ui.flufileLW.addItem('#'+str(i+1)+self.halftab+str(f.split('\\')[-
2])+'\\'+str(f.split('\\')[-1]))
 except:
 self.ui.flufileLW.addItem('#'+str(i+1)+self.halftab+str(f.split('/')[-
2])+'/'+str(f.split('/')[-1]))

 def updateSelectedFluFile(self): #update the selected flu files in the listwidget
 self.fludata = []
 selectedflufiles = self.ui.flufileLW.selectedItems()
 self.selectedflufiles_rows = [self.ui.flufileLW.row(item) for item in selectedflufiles]
 self.selectedflufiles_rows.sort()
 if len(selectedflufiles) != 0:
 try:
 for i, r in enumerate(self.selectedflufiles_rows):
 data = np.loadtxt(str(self.flufiles[r]),comments='#')
 for d in data: # replace zero error bar with 10% error
 if d[2]==0:
 print('Error bar replaced with 10% of value for entry {}'.format(d))
 d[2] = float(d[1]) / 10
 print('\n')

 self.fludata.append(data)
 except OSError as e:
 print(e)
 self.updateFluPlot()

 def removeFluFile(self): #remove flu files in the listwidget and deselect all flu files in the
listwidget

 to_del = [self.ui.flufileLW.row(item) for item in self.ui.flufileLW.selectedItems()]
 self.flufiles = [f for i,f in enumerate(self.flufiles) if i not in to_del]

 self.ui.flufileLW.clear()
 self.updateFluFile()

 def addFluFitFile(self): #add flu fit files into the listwidget and deselect flu fit files in
the listwidget
 try:
 f, _ = QFileDialog.getOpenFileNames(
 caption = 'Select Multiple Fluorescence Fit Files to import',
 directory = self.directory,
 filter = 'FIT Files (*.fit*; *_fit.txt)'
)
 self.flufitfiles = self.flufitfiles + f
 self.directory = str(QFileInfo(self.flufitfiles[0]).absolutePath())
 self.updateFluFitFile()
 except IndexError as IE:
 pass # ignore IndexError
 except:
 print("Something went wrong when reading fit files!")
 def updateFluFitFile(self): #update flu fit files in the listwidget
 self.ui.flufitfileLW.clear()
 for i, f in enumerate(self.flufitfiles):
 try:
 self.ui.flufitfileLW.addItem(

 144

 '#' + str(i + 1) + self.halftab + str(f.split('\\')[-2]) + '\\' +
str(f.split('\\')[-1]))
 except:
 self.ui.flufitfileLW.addItem(
 '#' + str(i + 1) + self.halftab + str(f.split('/')[-2]) + '/' +
str(f.split('/')[-1]))

 def updateSelectedFluFitFile(self): #update the selected flu fit files in the listwidget
 self.flufitdata = []
 selectedflufitfiles = self.ui.flufitfileLW.selectedItems()
 self.selectedflufitfiles_rows = [self.ui.flufitfileLW.row(item) for item in
selectedflufitfiles]
 self.selectedflufitfiles_rows.sort()
 try:
 if len(selectedflufitfiles) != 0:
 for i, r in enumerate(self.selectedflufitfiles_rows):
 data = np.loadtxt(str(self.flufitfiles[r]),comments='#')
 self.flufitdata.append(data)
 except OSError as OE:
 print(OE)
 self.updateFluPlot()

 def removeFluFitFile(self): #remove flu fit files in the listwidget and deselect all flu fit
files in the listwidget

 to_del = [self.ui.flufitfileLW.row(item) for item in self.ui.flufitfileLW.selectedItems()]
 self.flufitfiles = [f for i, f in enumerate(self.flufitfiles) if i not in to_del]

 self.ui.flufitfileLW.clear()
 self.updateFluFitFile()

 def updateFluPlot(self): #update the plot in the flu plotwidget

 ax1 = self.ui.fluPW.canvas.ax
 ax1.clear()

 if self.ui.flulineCB.isChecked():
 ls = '-'
 else:
 ls = ''

 if len(self.fludata) != 0: #plot flu files
 for i,d in enumerate(self.fludata):
 ax1.errorbar(d[:,0],d[:,1],yerr=d[:,2],
 marker='o', ls=ls,
 label='#'+str(i+1))

 if len(self.flufitdata) != 0: #plot flu fit files
 for i, d in enumerate(self.flufitdata):
 ax1.plot(d[:, 0], d[:, 1],marker='', ls='-', label=' fit #'+str(i + 1))

 self.xaxis = self.ui.fluxaxisCB.currentText()
 if self.ui.flushowCB.isChecked():
 if np.all(self.flu==0):
 print('Please print simulate button first!!')
 return
 else:
 if self.xaxis == 'Qz':
 x = self.qz
 y = self.flu[0, :, 2:]
 x_range = [x[0]-0.001, x[-1]+0.001]
 x_label = r'Q_z' + ' ' + r'$[\AA^{-1}]$'
 if self.ui.fluqcCB.isChecked():
 ax1.axvline(self.qc_true, color='black',ls='--', alpha=0.5)
 ax1.axvline(self.qc, color='black', alpha=0.5)
 elif self.xaxis == 'Sh':
 x = self.sh
 y = self.flu[:, 0, 2:]
 x_range = [x[0]-0.001, x[-1]+0.001]
 x_label = r'Δsh' + ' ' + r'$[mm]$'
 try:
 ax1.set_xlabel(x_label)

 145

 ax1.set_ylabel(r'$Intensity [a.u.]$')
 ax1.set_xlim(x_range)
 ax1.plot(x, y[:,0], ls='-', label='total', color='r')
 if self.ui.flucompCB.isChecked():
 ax1.plot(x, y[:,1], ls='-', label='water',color='b', alpha=0.5)
 ax1.plot(x, y[:,2], ls='-', label='interface',color='purple', alpha=0.5)
 ax1.plot(x, y[:,3], ls='-', label='oil', color='g', alpha=0.5)

 except ValueError as VE:
 print(VE)
 if self.ui.flulegendCB.isChecked():
 ax1.legend(loc = str(self.ui.flulegendlocCoB.currentText()),
 frameon=False,
 scatterpoints=0,
 numpoints=1)
 if self.ui.flugridCB.isChecked():
 ax1.grid(1)
 if self.ui.flulogyCB.isChecked():
 ax1.set_yscale('log')
 else:
 ax1.set_yscale('linear')

 self.ui.fluPW.canvas.draw()

 def setFluPlotScale(self): #set the scale of each data in the flu plot
 if len(self.selectedflufiles_rows)+len(self.selectedflufitfiles_rows)==0:
 self.messageBox('Warning:: No Fluorescence or Fit files selected!')
 else:
 row_flu=len(self.selectedflufiles_rows)
 row_fit=len(self.selectedflufitfiles_rows)
 row=row_flu+row_fit
 Dialog=QDialog(self)
 self.uiplotscale=uic.loadUi(UI_path + 'plotscale.ui', Dialog)
 self.uiplotscale.scaleTW.setRowCount(row) #set the table size; 4 column is fixed
 self.uiplotscale.show()
 self.uiplotscale.scaleLabel.setText('Fluorescence Plot Scale Setup:
X=X*Factor+Offset')
 self.uiplotscale.scaleTW.setHorizontalHeaderLabels(QStringList()<<"X Factor"<<"X
Offset"<<"Y Factor"<<"Y Offset") #set the horizontal header
 vlabel=QStringList() #set the vertical header
 for i in range(row_flu):
 vlabel.append("Flu #"+str(self.selectedflufiles_rows[i]+1))
 for i in range(row_fit):
 vlabel.append("Fit #"+str(self.selectedflufitfiles_rows[i]+1))
 self.uiplotscale.scaleTW.setVerticalHeaderLabels(vlabel)
 for i in range(row_flu): #set the initial values
 for j in range(4):

self.uiplotscale.scaleTW.setItem(i,j,QTableWidgetItem(str(self.fluscale[i][j])))
 self.uiplotscale.scaleTW.item(i,j).setTextAlignment(Qt.AlignCenter)
 for i in range(row_fit):
 for j in range(4):

self.uiplotscale.scaleTW.setItem(i+row_flu,j,QTableWidgetItem(str(self.flufitscale[i][j])))
 self.uiplotscale.scaleTW.item(i+row_flu,j).setTextAlignment(Qt.AlignCenter)
 self.connect(self.uiplotscale.scaleTW, SIGNAL('cellChanged(int,int)'),
self.updateFluPlotScale) #update the flu scale and plot
 self.connect(self.uiplotscale.closePB,SIGNAL('clicked()'), self.closePlotScale)
#close the scale setup window

 def updateFluCal(self): # calculate the flu based on current parameters.

 self.updatePar()
 # p is the parameter set taken by the core function, must be initialized before updatding
 p = OrderedDict()
 p = fl.update_flu_parameters(p, self.flu_par, self.sys_par,self.flu_elements)
 if not self.ui.flushowCB.isChecked():
 return # if show is not checked, do nothing.
 if self.xaxis == 'Qz':
 self.qc_true = np.sqrt(2*(p['ibDt']-p['itDt'])) * 2 * p['k0']
 self.qc = self.qc_true - p['qoff']
 self.flu = fl.flu2min(self.flu_par, (self.sh, self.qz), p)

 146

 self.updateFluPlot()

 def fitFlu(self, uncertainty_calculation=False):

 selectedflufiles = self.ui.flufileLW.selectedItems()
 try:
 assert len(selectedflufiles) == 1
 except:
 print("Error: please select one data to fit.")
 return
 data = self.fludata[0]

 self.updatePar()

 self.data_to_fit = data[(data[:,0] >= self.flu_fit_range[0]) * (data[:, 0] <=
self.flu_fit_range[1])]

 if self.xaxis == 'Qz':
 self.qz = self.data_to_fit[:,0]
 elif self.xaxis == 'Sh':
 self.sh = self.data_to_fit[:,0]

 # for uncertainty calculation, this function is only used to get preparaed for multicore
processing
 if uncertainty_calculation == True: return

 self.flu_result = lm.minimize(fl.flu2min, self.flu_par,
 args=((self.sh, self.qz), self.flucal_par),
 kws={'data':self.data_to_fit[:,1],
'eps':self.data_to_fit[:,2]}
)
 self.flu_par = self.flu_result.params

 # for uncertainty calculation, the following is not needed

 tb = self.ui.fluparaTB
 tb.clear()
 tb.append(lm.fit_report(self.flu_result))

 self.updateUI(fresh=False) # it has to be before updateFluCal()
 self.updateFluCal() # self.updateUI() has to be excucated before it reads parameters from
GUI

 def saveFlu(self):
 if str(self.ui.flusaveCB.currentText())=='Save Fit':
 self.saveFluFitDig()
 elif str(self.ui.flusaveCB.currentText())=='Save Para':
 self.saveFluPara()

 def saveFluPara(self):

 self.updatePar()

 self.saveFileName = QFileDialog.getSaveFileName(caption='Save Fluorescence Fitting
Parameters',
 directory=self.directory)
 with open(self.saveFileName[0] + '_par.txt','w') as fid:
 try:
 try:
 fid.write('Chi_Square\t' + format(self.flu_result.redchi, '.3f') + '\n') #
chisquare
 except:
 fid.write('Chi_Square\tNA\n')

 fid.write('Fitting_Parameters\n')
 for p, u in self.ui_params.items():
 fid.write(p + '\t\t' + format(float(u[0].text()),'.3e') + '\n')

 fid.write('\nSystem_Parameters\n')
 fid.write('Beam_Profile\t\t' + self.beam +'\n')
 for p, u in self.ui_syspar.items():
 fid.write(p + '\t\t' + format(float(u.text()), '.4f') + '\n')

 147

 print("Parameters saved!")

 except:
 print('Oops! Something went wrong, please check your parameters!')

 def loadFlu(self):
 if str(self.ui.fluloadCB.currentText())=='Load Para':
 self.loadFluPara()

 def loadFluPara(self):

 try:
 filename, _ = QFileDialog.getOpenFileName(caption='Select Parameter File to read',
 directory=self.directory,
 filter='Par Files (*.par*;*_par.txt)')
 self.directory = str(QFileInfo(filename).absolutePath())
 with open(str(filename)) as fid:
 fdata=fid.readlines()
 except IOError: # if the dialog is canceled.
 return
 # set ui values with loaded value
 line_num = 0
 line_type = 0 # 0: not a parameter line; 1: fitting parameter line; 2: system parameter
line
 while True:
 try:
 line = fdata[line_num].split()
 except IndexError: # end of file
 break
 if line == []:
 line_type = 0
 else:
 if line[0] == 'Fitting_Parameters':
 line_type = 1
 elif line[0] == 'Beam_Profile':
 self.beam = line[1]
 line_type = 2
 elif line_type == 1:
 self.flu_par[line[0]].value = float(line[1])
 elif line_type == 2:
 self.sys_par[line[0]] = float(line[1])
 line_num += 1

 # update parameter with new ui values
 self.updateUI(fresh=False)
 self.updateFluCal()

 def saveFluFitDig(self):

 Dialog=QDialog(self)
 self.uiflusavefit = uic.loadUi(resource_path(UI_path+'refsave.ui'), Dialog)
 self.uiflusavefit.label.setText('Save Fluorescence Fit/Calcualtion!')
 try:
 self.uiflusavefit.xminLE.setText(str(self.flu_simu_range[0]))
 self.uiflusavefit.xmaxLE.setText(str(self.flu_simu_range[1]))
 except:
 pass
 self.uiflusavefit.numpointLE.setText(str(200))

 self.uiflusavefit.cancelPB.clicked.connect(self.cancelSaveFluFit)
 self.uiflusavefit.okPB.clicked.connect(self.saveFluFit)

 self.uiflusavefit.show()

 def cancelSaveFluFit(self):
 self.uiflusavefit.close()
 self.flusavefitindex=0

 def saveFluFit(self):

 try:
 self.flusavefitindex = 1
 self.flunp = float(self.uiflusavefit.numpointLE.text())

 148

 self.fluxmin = float(self.uiflusavefit.xminLE.text())
 self.fluxmax = float(self.uiflusavefit.xmaxLE.text())
 assert (self.fluxmin < self.fluxmax), "Maximum smaller than Minimum"

 self.saveFileName = QFileDialog.getSaveFileName(caption='Save Fluorescence Fit Data',
 directory=self.directory)
 fname = self.saveFileName[0] + '_fit.txt'
 if self.xaxis == 'Qz':
 fit_to_save = self.flu[0,:,(1,2)].transpose()
 elif self.xaxis == 'Sh':
 fit_to_save = self.flu[:,0,(0,2)]
 np.savetxt(fname, fit_to_save, fmt='%.4e\t%.4e')

 self.flusavefitindex=0
 self.uiflusavefit.close()
 except AssertionError as AE:
 print("Error: {0}".format(AE))
 except IndexError as IE:
 pass # Ignore IndexError
 except:
 print("An error happens while saving fit file!")

 def debugErr(self):
 parfile = os.path.join(dir_path_test,
 'sh_sample03_318_50mMEu(NO3)3_s1h0.2_qz0.0015_par.txt')
 self.updateFluFile()

 with open(str(parfile)) as fid:
 fdata = fid.readlines()
 # set ui values with loaded value
 line_num = 0
 line_type = 0 # 0: not a parameter line; 1: fitting parameter line; 2: system parameter
line
 while True:
 try:
 line = fdata[line_num].split()
 except IndexError: # end of file
 break
 if line == []:
 line_type = 0
 else:
 if line[0] == 'Fitting_Parameters':
 line_type = 1
 elif line[0] == 'Beam_Profile':
 self.beam = line[1]
 line_type = 2
 elif line_type == 1:
 self.flu_par[line[0]].value = float(line[1])
 elif line_type == 2:
 self.sys_par[line[0]] = float(line[1])
 line_num += 1
 # update parameter with new ui values
 self.updateUI()
 self.updateFluCal()

 def fluErrorInit(self):

 # choose the parameter for which the chisq is calculated
 self.fluerr_pname = [] # initialize # of the chosen parameters
 try:
 self.fluerr_pname = [p for p,u in self.ui_params.items() if u[1].isChecked()]
 if len(self.fluerr_pname) != 1:
 raise ValueError
 print("Calculating Chi-square for:", *self.fluerr_pname)
 except ValueError:
 print(" Did u pick the right number of parameters to fit?\n\n")
 # if multiple para's r checked, uncheck all and raise error
 for name in self.fluerr_pname:
 self.ui_params[name][1].setChecked(False)
 return

 self.uifluerr1=uic.loadUi(UI_path + 'err1.ui',QDialog(self))

 149

 self.uifluerr1.label.setText('Uncertainty Calculation for Parameter:' +
self.fluerr_pname[0])

 best_value = float(self.ui_params[self.fluerr_pname[0]][0].text())
 half_range_to_fit = abs(best_value*0.1)
 # the length of left and right half of range for the chosen values.
 self.uifluerr1.bestvalLE.setText(format(best_value, '.2e'))
 self.uifluerr1.leftLimitLE.setText(# set left limit
 format(best_value - half_range_to_fit, '.2e'))
 self.uifluerr1.rightLimitLE.setText(# set right limit
 format(best_value + half_range_to_fit, '.2e'))

 self.uifluerr1.numIntervalLE.setText(format(10 ,'d'))

 # connect the pushbutton to next step
 # self.uifluerr1.cancelPB.clicked.connect(lambda x: self.uifluerr1.close())
 self.uifluerr1.cancelPB.clicked.connect(self.uifluerr1.close)
 self.uifluerr1.nextPB.clicked.connect(self.fluErrorPara)
 self.uifluerr1.show()

 def fluErrorPara(self):

 self.uifluerr1.close()
 # calculate a list of values the parameter should take where the chisq is calculated.
 self.fluerr_best_value = float(self.uifluerr1.bestvalLE.text())
 self.fluerr_left_limit = float(self.uifluerr1.leftLimitLE.text())
 self.fluerr_right_limit = float(self.uifluerr1.rightLimitLE.text())
 self.fluerr_num_points = int(self.uifluerr1.numIntervalLE.text())+1
 # append the fittted value for that parameter for displaying that
 # value in the chisq plot as the red dot.
 self.fluerr_fit_range = np.append(self.fluerr_best_value,
 np.linspace(self.fluerr_left_limit,
 self.fluerr_right_limit,
 self.fluerr_num_points))
 self.fluerr_chisq_list = np.zeros(self.fluerr_fit_range.shape)

 # automatically toggle the state of fiting and fixed parameters
 for p, u in self.ui_params.items(): u[1].toggle()

 # close the first dialog and open a new dialog
 self.uifluerr2 = uic.loadUi(UI_path + 'err2.ui', QDialog(self))
 self.uifluerr2.label.setText('Please check parameters to fit')
 self.uifluerr2.fluErrorProgress.setValue(0)
 # self.fluErroFit = myThread()
 # self.fluErrorFit.started.connect()
 # self.fluErrorFit.finished.connect(self.fluErrorResult)
 self.uifluerr2.fluErrorProgress.setMaximum(len(self.fluerr_fit_range))
 self.uifluerr2.cancelPB.clicked.connect(self.uifluerr2.close)
 self.uifluerr2.nextPB.clicked.connect(self.fluErrorFit)

 self.uifluerr2.show()

 def fluErrorFitSingleCore(self, q, i, flu_par,flucal_par,data_to_fit):
 fluerr_result = lm.minimize(fl.flu2min, flu_par,
 args=((self.sh, self.qz), flucal_par),
 kws={'data': data_to_fit[:, 1], 'eps': data_to_fit[:, 2]})
 q.put([i, fluerr_result.nfree, fluerr_result.redchi])

 def fluErrorFit(self):
 self.uifluerr2.label.setText('Calculating the uncertainty for ' + self.fluerr_pname[0])
 self.uifluerr2.nextPB.setEnabled(False) # unable the next push button
 # create a Parameter() object for fitting
 self.updatePar() # update parameters to fit with GUI

 # make a copy of parameter just for uncertainty calculation
 fluerr_pname = self.fluerr_pname[0]
 fluerr_par = self.flu_par
 fluerr_cal_par = self.flucal_par
 fluerr_par[fluerr_pname].vary = False # make sure the chosen parameter does not vary

 # time the calculation

 150

 start_time = time.time()
 # self.ErrorFit = myThread(self.fitFlu,errorbar=True,args={})

 # self.fitFlu(uncertainty_calculation=True)
 # fluErrorFitSingleCore_i = partial(fluErrorFitSingleCore2,
 # value_list = self.fluerr_fit_range,
 # sh = self.sh,
 # qz = self.qz,
 # pname = fluerr_pname,
 # flu_par = fluerr_par,
 # flucal_par = fluerr_cal_par,
 # data_to_fit = self.data_to_fit)
 #
 #
 # results = multiCore(fluErrorFitSingleCore_i, range(len(self.fluerr_fit_range)))
 # for pp in results: print(pp)
 # print("Uncertainty calculation takes:", time.time() - start_time, "seconds")
 # for result in results:
 # self.fluerr_chisq_list[result[0]] = result[3]
 # self.fluerr_nfree = results[-1][2]
 # print(self.fluerr_chisq_list)

 self.fitFlu(uncertainty_calculation=True)
 processes = [] # create a pool for processes
 q = multiprocessing.Queue()
 for i,value in enumerate(self.fluerr_fit_range):
 fluerr_par[fluerr_pname].value = value # change value of the chosen parameter
 p = multiprocessing.Process(target=self.fluErrorFitSingleCore,
 args=(q, i, fluerr_par,fluerr_cal_par,self.data_to_fit))
 processes.append(p)
 p.start()
 for process in processes:
 process.join()
 results = [q.get(True) for process in processes]

 for pp in results: print(pp)
 print("Uncertainty calculation takes:", time.time()-start_time, "seconds")
 for result in results:
 self.fluerr_chisq_list[result[0]] = result[2]
 self.fluerr_nfree = results[-1][1]
 print(self.fluerr_chisq_list)

 # # fit data and calculate chisq at each grid point
 # for i,para_value in enumerate(self.fluerr_fit_range):
 # self.fluerr_parameters[self.fluerr_pname_to_fit].value = para_value
 # fluresult=lm.minimize(self.flu2min, self.fluerr_parameters, args=(x,y,yerr))
 # self.fluerr_chisq_list[i] = fluresult.redchi
 # # update progress
 #
 # self.progressDialog.hide()

 self.uifluerr2.close()
 self.fluErrorResult()

 def fluErrorResult(self):
 # calculate the left/right error for the parameter
 funChisqFactor=interp1d(self.errorlist[:,0],self.errorlist[:,1],kind='cubic')
 chisq_factor = funChisqFactor(self.fluerr_nfree) # chisq_factor corresponding to degree of
freedom
 idx_min_chisq = np.argmin(self.fluerr_chisq_list[1:]) + 1
 min_chisq = np.min(self.fluerr_chisq_list[1:])
 self.target_chisq = min_chisq * chisq_factor
 try: # interpolate function of left values against various chisq's
 funChisqListLeft = interp1d(self.fluerr_chisq_list[1:idx_min_chisq+1],
 self.fluerr_fit_range[1:idx_min_chisq+1],
 kind='linear')
 left_err = self.fluerr_best_value - funChisqListLeft(self.target_chisq)
 left_err_str = format(float(left_err),'.2e')
 except:
 left_err_str = "not found"

 151

 try: # interpolate function of right values against various chisq's
 funChisqListRight = interp1d(self.fluerr_chisq_list[idx_min_chisq:],
 self.fluerr_fit_range[idx_min_chisq:],
 kind='linear')
 right_err = funChisqListRight(self.target_chisq) - self.fluerr_best_value
 right_err_str = format(float(right_err),'.2e')
 except:
 right_err_str = "not found"

 self.uifluerr3=uic.loadUi(UI_path + 'err3.ui',QDialog(self))
 self.uifluerr3.label.setText('Plot for Chi-square vs Parameter:'+self.fluerr_pname[0])
 self.uifluerr3.minchiLE.setText(format(min_chisq,'.2f'))
 self.uifluerr3.tarchiLE.setText(format(self.target_chisq,'.2f'))
 self.uifluerr3.lefterrLE.setText(left_err_str)
 self.uifluerr3.righterrLE.setText(right_err_str)
 self.uifluerr3.logyCB.stateChanged.connect(self.fluErrorPlot)
 self.uifluerr3.closePB.clicked.connect(lambda x: self.uifluerr3.close())
 self.uifluerr3.closePB.clicked.connect(self.uifluerr3.close)
 self.uifluerr3.savePB.clicked.connect(self.fluErrorSave)
 self.uifluerr3.show()
 self.fluErrorPlot()

 def fluErrorPlot(self):
 the_ax = self.uifluerr3.plotWidget.canvas.ax
 the_ax.clear()
 the_ax.set_xlabel(self.fluerr_pname[0])
 the_ax.set_ylabel('Chi-square')
 # check if y axis is logscale
 if self.uifluerr3.logyCB.checkState()!=0:
 the_ax.set_yscale('log')
 else:
 the_ax.set_yscale('linear')

 # plot the calculated chisq
 the_ax.plot(self.fluerr_fit_range[1:], self.fluerr_chisq_list[1:],
 marker='o',ls='-')

 # plot the fitted parameter value and corresponding chisq
 the_ax.plot(self.fluerr_fit_range[0], self.fluerr_chisq_list[0],
 marker='o',color='red')

 # plot the target chisq
 the_ax.plot(self.fluerr_fit_range[[1,-1]],
 self.target_chisq * np.array([1,1]),
 ls='-',color='green')

 self.uifluerr3.plotWidget.canvas.draw()

 def fluErrorSave(self):
 print("Save function to be released...")

 def insFluIon(self): # add one ion in the subphase
 insrows=self.ui.flusubTW.selectionModel().selectedRows()
 insrows=[self.ui.flusubTW.row(self.ui.flusubTW.itemFromIndex(insrows[i])) for i in
range(len(insrows))]
 if len(insrows)!=1:
 self.messageBox('Warning:: Only one row can be seleted!')
 else:
 self.ui.flusubTW.insertRow(insrows[0])
 for i in range(3):
 self.ui.flusubTW.setItem(insrows[0],i,QTableWidgetItem('Cl/2/1.80'.split('/')[i]))

 def rmFluIon(self): #remove one ion in the subphase
 rmrows=self.ui.flusubTW.selectionModel().selectedRows()
 removerows=[]
 for rmrow in rmrows:
 removerows.append(self.ui.flusubTW.row(self.ui.flusubTW.itemFromIndex(rmrow)))
 removerows.sort(reverse=True)
 if len(removerows)==0:
 self.messageBox('Warning:: No ion is selected!!')
 else:
 for i in range(len(removerows)):
 self.ui.flusubTW.removeRow(removerows[i])

 152

A.2.7 flu_geometry_2.py

import sys
sys.path.append('/Users/zhuzi/work/data_analysis_20190514/')

import flu_geometry_routines as gm

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.rc('xtick',labelsize=20)
mpl.rc('ytick',labelsize=20)
mpl.rc('axes',labelsize=25)
mpl.rc('axes',titlesize=25)
mpl.rc('font',family='serif')
mpl.rc('mathtext',default='regular',fontset='custom')

if __name__ == '__main__':

 sample_height = 0.02121+4.51e-3 # sample height in mm.
 # beam
 E = 20 # Energy in Ke
 qz = 0.006-3.37e-4 # Qz in A^-1
 D = 0.025477 # the thickness of the beam in mm

 # sample cell
 L = 12.7 # the length of the detector area in mm
 gap = 0.5 # the gap between the collamator and interface in mm
 glass_tray = 75.6
 curvature = 215.4 # curvature radius in m
 R_cur = curvature * 1000

 ###

 pt_density = 500 # the number of points drawn with the length of L.
 a = qz / 1.0134 / E
 print("width: {}".format(glass_tray * a))
 F = D / np.sin(a) # footprint of the beam if the surface is not curved
 l = np.linspace(-L/2, L/2, pt_density+1)
 # a series of points on surface for plotting
 x_cell = np.linspace(glass_tray/2, -glass_tray/2, pt_density+1)
 surface, _ = gm.surf_points(x_cell,R_cur)

 ###
 fig = plt.figure(figsize=(12,6),dpi=100)
 ax = fig.add_subplot(111)

 # display y_scale in micron.
 ticks_y = mpl.ticker.FuncFormatter(lambda x, pos: '{0:g}'.format(x*1000))
 ax.yaxis.set_major_formatter(ticks_y)
 ax.set_ylim([-0.04,0.06])
 ax.set_xlim([50,-100])
 ax.set_xlabel(r'$X\/(mm)$')
 ax.set_ylabel(r'$Z\/(\mu m)$')

 # axes and detector level height
 ax.axhline(0,color='b',alpha=0.2)
 ax.axvline(0,color='b',alpha=0.2)
 ax.vlines(x=-L/2, ymin=-gap, ymax=gap,linewidth=1, color='b',alpha=0.2)
 ax.vlines(x=L/2, ymin=-gap, ymax=gap,linewidth=1, color='b',alpha=0.2)

 # curved interface and sample edge
 ax.plot(surface[:,0],surface[:,1],linewidth=1,color='r',alpha=1) # curved interface
 ax.vlines(surface[0,0],ymin=-9.8, ymax=surface[0,1], linewidth=1,color='r',alpha=1)
 ax.vlines(surface[-1,0],ymin=-9.8, ymax=surface[-1,1], linewidth=1,color='r',alpha=1)

 # left and right edge of the beam hitting at the surface
 center = [-sample_height/a,0]
 ray_list = [[center[0] - F/2, center[1]],

 153

 center,
 [center[0] + F/2, center[1]]]

 color_list = ['blue','black','green']
 alpha_list = [1, 0.5, 1]
 # X-rays: incident and reflection
 hit_position = np.zeros(3)

 for i, ray in enumerate(ray_list):

 ax.plot(ray[0],ray[1],marker='.',color='black') # intersection of with horizontal
 print(ray)
 hit = gm.hit_surface(ray, -a, R_cur, glass_tray)
 if not np.isinf(hit[1]): # ray hit the sample.
 _, theta = gm.surf_points([hit[0]],R_cur)
 hit_line = np.array([gm.laser_gun(hit, -a, wall=-80),
 hit,
 gm.laser_gun(hit, a+2*theta, wall=80)])
 ax.plot(hit_line[:, 0], hit_line[:, 1], linewidth=1,
 color=color_list[i], alpha=alpha_list[i])
 else: # ray missed sample
 ray_line = np.array([gm.laser_gun(ray, -a, wall=80),
 ray,
 gm.laser_gun(ray, -a, wall=-80)])
 if np.isinf(hit[0]): # ray miss the surface
 theta = a
 hit = [R_cur * np.sin(theta), R_cur * (np.cos(theta) - 1)]
 hit_line = np.array([gm.laser_gun(hit, -theta, wall=80),
 hit,
 gm.laser_gun(hit, -theta, wall=-80)])
 if hit[0] > x_cell[0]: # tangential line beyond sample
 hit = surface[0]
 hit_line = np.zeros(hit_line.shape)
 ax.plot(ray_line[:, 0], ray_line[:, 1], linewidth=1,
 color=color_list[i], alpha=alpha_list[i])
 elif hit[0] > x_cell[0]: # ray hit surface but too high
 hit = surface[0]
 hit_line = np.array([gm.laser_gun(hit, -a, wall=80),
 hit,
 gm.laser_gun(hit, -a, wall=-80)])
 ax.plot(ray_line[:, 0], ray_line[:, 1], linewidth=1,
 color=color_list[i], alpha=alpha_list[i])
 else: # ray hit surface but too low
 hit = surface[-1]
 hit_line = np.array([gm.laser_gun(ray, -a, wall=-80),
 ray,
 gm.laser_gun(ray, -a, wall=x_cell[-1])])
 ax.plot(hit_line[:, 0], hit_line[:, 1], linewidth=1,
 color=color_list[i], alpha=alpha_list[i])

 hit_position[i] = hit[0]
 ax.plot(hit[0], hit[1], marker='.', color='red')
 print(hit)

 # print out text
 ax.text(-8,-0.021, "Sample Height: %.6fmm" %(sample_height),
 fontsize=15)
 ax.text(-8,-0.028, "Qz:%.4f, Alpha:%.3fmrad" %(qz,a*1000),
 fontsize=15)
 footprint = hit_position[2]-hit_position[0]
 ax.text(-8,-0.035, "Curv:%dm, Footprint: %.2fmm" % (curvature, footprint),
 fontsize=15)

 ax.grid(1)

plt.show()

A.3 Python functions for other calculations

global constants

 154

PI = np.pi # PI = 3.1415926...
re = 2.818e-5 # classical electron radius, r_e = 2.818e-15 m
N_A = 6.02e23 # Avogadro's number

A.3.1 Critical Angle

def criticalAngle(rho1,rho2):
 '''
 simple formula to calculate the critical angle between two liquid pahses
 using Qc=4*sqrt(PI*re(rho_bottom - rho_top))
 "J. Phys. Chem. B 2014, 118, 12486−12500" page5, shortly after equation(2).
 Parameters

 rho1: electron density with larger value, in A^-3 (0.3346 for water)
 rho2: electron density with smaller value, in A^-3 (0.2595 for dodecane)

 Notes

 for 3 HNO3: the electron density is 0.362, critical angle: 0.0122
 print criticalAngle(0.0334,0.2596) -> Qc=0.01026 consistant with Wei's
 print criticalAngle(0.3618,0.2596) -> Qc=0.0120
 print criticalAngle(0.348,0.2672) -> Qc=0.0107
 Returns

 criticalAngle: critical angle between two phases.

 '''
 Qc = 4*np.sqrt(PI*re*(rho1-rho2))
 return Qc

A.3.2 Electron density for a solution with given mass density

def eDensity(solvent=(18,10),solute=[],mass_density=(1,0)):
 '''
 Parameters

 solute: list of solvents with each component in the form of tuple containing
 molecular weight, electrons per molecule and concentration of that component
 e.g. 10e-4 DHDP (546.85,306,1e-4), 0.5M HEH[EHP] (306.4,170,0.5)...
 the mixture of DHDP and HEH[EHP]: [(546.85,306,1e-4),(306.4,170,0.5)]
 Note: concentration in unit of mole/L
 solvent: tuple of the molecular weight and electrons per molecule for the solvent.
 e.g. water (18,10), dodecane(170.34,98)
 mass_density: mass density of the solution and the uncertainty of the measurement , in g/ml

 Notes

 Calculation, multi-component solutions likewise
 rho_e = (Ne_solute + Ne_solvent)/V # Ne is the number of electrons in the solution
 Ne_solute = N_A * Cons * V * ne_solute # ne is the electrons per mlecule
 Ne_solvent = N_A * (mdens*V-cons*V*mwght1)/mwght2 * ne_solvent
 ==> rho_e = N_A*(cons*ne_solute+(mdens-cons*mwght1)/mwght2*ne_solvent)

 10e-4 DHDP in dodecane: -> 0.2596 A^-3
 eDensity(solvent=(170.34,98),solute=[(546.85,306,1e-4)],mass_density=(0.7495,0))
 3M HNO3 in water: -> 0.3618 A^-3
 eDensity(solvent=(18,10),solute=[(63,32,3)],mass_density=(1.098,0))
 0.5M HEH[EHP] and 10mM Eu in dodecane: -> 0.2672

eDensity(solvent=(170.34,98),solute=[(306.4,170,0.5),(151.96,63,0.01)],mass_density=(0.7774,0))
 0.5M citrate in water: -> 0.348
 eDensity(solvent=(18,10),solute=[(192.12,100,0.5)],mass_density=(1.047,0))
 Return

 eDensity: electron density of that solution, in A^-3
 '''
 mdens = uf(mass_density[0]*1e-24,mass_density[1]*1e-24)# convert to g/A^3

 155

 # mdens = mass_density * 1e-24 # convert to g/A^3
 c_n = sum([k[1]*k[2]*1e-27 for k in solute])
 c_m = sum([k[0]*k[2]*1e-27 for k in solute])
 rho_e = N_A*(c_n + (mdens-c_m)/solvent[0]*solvent[1])
 return rho_e

A.3.3 Electron density for a solution with mass density not given

def eDensitySolution(ne=10,r=0.097,C=1,V=None,flag=1):

 '''
 returns the electron density for a given aqueous solution.

 Parameters

 ne: number of electrons for each salt "molecule"
 r: ionic radius in solution, see:
 "Marcus, Y. Ionic Radii in Aqueous Solutions. Chem. Rev. 1988, 88, 1475−1498"
 C: concentration of the solution(mol/L)
 rho_0: electron density of pure water.rho_0 = 0.33357A^-3
 rho_w: mass density of pure water. rho_w = 0.997g/ml
 rho_sol: electron density of the solution(A^-3)
 V: partial molor volume of the salt(ml)
 N_A: Avogadro constant. 6.02E23
 1 ml = 1E24 A^3, 1L = 1E27 A^3

 Note:

 Unit rule:
 volume: ml, electron density: A^-3
 Calculation are based on 1L of water solution. V is the partial volume for 1mol salt,
 so the real partial volume is CV.

 Calculation of partial molar volume (in cm^-3):
 (for 1mole/L solution, sphere packed up)
 v = 2522.5*r^3 (J. Phys. Chem. B 2009, 113, 10285–10291)
 for ErBr3: v = 2522.5*(0.097^3+3*0.198^3) = 61.0441， consistant with Wei's result.
 for YCl3: v = 2522.5*(0.097^3+3*0.180^3) = 46.4359
 for SrCl2 v = 2522.5*(0.125^3+2*0.180^3) = 34.3492, consistant with Wei's result.

 electron density of pure water for arbiturary volume V_0
 rho_0 = (rho_w*V_0/18) * N_A * 10 / V_0
 = rho_w*10/18 * N_A
 where 10 is the electron number for water molecule and 18 is the molar mass for water.

 the amount of electrons from water molecules are:
 N_water = (1000-V)*rho_w*10/18 * N_A
 where 10 is the electron number for water molecule and 18 is the molar mass for water.

 the amount of electrons from salt are:
 N_salt = C*ne*N_A

 for C mol/L solution:
 rho_sol = (N_water + N_salt) / 1E27
 plug the equation above you will get:
 rho_sol = rho_0 + (ne*N_A/1E27-V*rho_0/1000)*C

 Return

 eDensitySolution for flag:
 1: coeffecient for : rho_sol = rho_0 + coeffecient * C
 2: rho for solution: rho_sol
 3: mass density of water part
 4: partial molar volume for the specific ion (1M)

 For testing

 V_Cl = eDensitySolution(r=0.180, flag=4)
 V_Y = eDensitySolution(r=0.097, flag=4)
 V_Sr = eDensitySolution(r=0.125,flag=4)
 V_NO3 = eDensitySolution(r=0.177, flag=4)
 V_Eu = eDensitySolution(r=0.106, flga=4)

 156

 YCl3 = V_Y + 3*V_Cl #--> 46.4359
 SrCl2 = V_Sr + 2*V_Cl #--> 34.3492
 Eu(NO3)3 = V_Eu + 3 * V_NO3 # --> 44.9679

 print eDensitySolution(ne=173,V=61.044, flag=1) #--> 0.08378 for ErBr3
 print eDensitySolution(ne=90,V=46.4359, flag=1) #--> 0.03869 for YCl3
 print eDensitySolution(ne=72,V=34.3492, flag=1) #--> 0.03189 for SrCl2
 print eDensitySolution(ne=156,V=44.9679, flag=1) #--> 0.0789 for Eu(NO3)3
 # edensity for 42mM Eu(NO3)3 is 0.33357 + 0.0789*0.042 = 0.33688
 '''
 rho_0 = 0.33357

 N_A = 6.02E23
 if V==None:
 V = 2522.5 * r**3
 mdensity = (1000-V) * 0.997 / 1000
 coeff = ne*N_A/1E27 - V*rho_0/1000
 rho_sol = rho_0 + coeff * C
 if flag == 1:
 return coeff
 if flag == 2:
 return rho_sol
 if flag == 3:
 return mdensity
 if flag == 4:
 return V

A.3.4 Electron density profile calculation

def densityProfile(rhos, ds, roughness, rho_0=0.333003, rho_N=0.2574):
 '''
 Takes in the electron density for each layer and calculate the electron
 density profile. The length of the input arrays is the count of sublayers.
 We use same roughness for all interfaces.
 The arguement "rhos" and "ds" themselves only imply layers between two
 phases, i.e., [rho1,rho2,...,rhoN-1],they are then modified to include the
 two bulk phase, resulting "rhos" to be: [rho0,rho1,rho2,...,rhoN], and
 "ds" to be likewise.

 Parameters

 rhos: array_like
 An array of electron density of the layers, from water side to oil side.
 ds: array_like
 An array of thickness of the layers, from water side to oil side.
 roughsness: floating number
 roughness which is same for all the interfaces.
 rho_0: floating number
 The electron density of bottom phase, 0.333003 for water.
 rho_N: floating number
 The electron density of upper phase, 0.2574 for dodecane.
 See also

 Wei, Journal of pyical chamistry B, 2014 Equation(1)

 Returns

 densityProfile: electron density along z direction.
 '''
 # N is the number of interfaces
 layers = len(rhos)
 N = layers + 1
 # includes upper and bottom phase as first and last layer.
 rhos = np.hstack(([rho_0],rhos,[rho_N]))
 ds = np.hstack(([10000],ds,[10000]))
 # z0 is the position of each interface along z directoin.
 z0 = np.zeros(N)
 for i in range(layers):
 # does not include bulk (ds[0],ds[-1])
 z0[i+1] = z0[i] + ds[i+1]
 # z0[-1] is the sum of the thickness of all the layers.
 d_total = z0[-1]

 157

 # the range of z is 4 times the thickness of the whole interface.
 z = np.arange(-d_total*2,4*d_total,6*d_total/1500) #length=1500 points.
 # calculate rho(z) (Wei, Journal of pyical chamistry B, 2014 Equation(1))
 rho = np.zeros(len(z))
 sqrt_2 = np.sqrt(2)
 for i in range(N):
 x = (z - z0[i])/(sqrt_2*roughness)
 rho = rho - (rhos[i]-rhos[i+1])*errFunction(x)
 rho = 0.5 * (rho + (rho_0+rho_N))

 out = np.vstack((z,rho))
 return out

def errFunction(x):
 '''
 Takes a one dimensional array, gives the error functoin of that array.
 numeric approximation comes from wiki, Abramowitz and Stegun.
 (maximum erroe: 5e-4) (Tested)

 Parameters

 x : array_like
 The source array

 See also

 http://en.wikipedia.org/wiki/Errorfunction#Approximation_with_elementary_functions

 Returns

 errFunction: ndarray
 The returned array has the same type as "a".

 Examples

 '''

 a1, a2, a3, a4 = 0.278393, 0.230389, 0.000972, 0.078108
 z = np.zeros(len(x))
 for i,t in enumerate(x):
 if t>0:
 y = 1 + a1*t + a2*t**2 + a3*t**3 + a4*t**4
 z[i] = 1 - 1/y**4
 elif t<0:
 y = 1 - a1*t + a2*t**2 - a3*t**3 + a4*t**4
 z[i] = 1/y**4 - 1
 else: z[i] = 0
 return z

A.3.5 Calculate Fresnel Reflectivity

def fresnel(q,qc):
 '''
 calculate fresnel reflectivity. (Tested)

 Parameters

 q : array_like
 An array of Q's, usually [0,0.02,...,0.5]
 qc : floating number
 Critical angle

 Returns

 fresnel: an array containing the resnell reflectivity for each q value.
 '''
 q = q * (q>qc) + qc * (q<qc)
 fre = ((q-np.sqrt(q**2-qc**2))/(q+np.sqrt(q**2-qc**2)))**2

return fre

 158

A.3.6 Contribution of given element to absorption coefficient for water solutioin

class muElement():
 '''
 calculate the contribution of given element to mu(inverse of attenuation) in water solution.

 Pamameters

 rho_0: the mass density of simple substance of the element, can be found in the database
 in unit (g/cm^3)
 attenul: attenuation length of that element for rho_0 (and a given energy!)
 in unit micron(1 micron=1E-4cm)
 amass: atomic mass for that element
 concentr: concentration in water solution, it is 1M by default.

 Returns

 muElement: the contribution of that element

 Note

 The mu, inverse attenuation length, is proportional to massdensity
 mu_0/rho_0 = mu_1/rho_1, thus mu_1 can be calculated

 For testing

 Er = muElement(9.05, 21.71, 167.26)
 print "Er:\n", Er
 Y = muElement(4.46, 32.50, 88.906)
 print "Y:\n", Y
 Br = muElement(3.12, 59.76, 79.9, concentr=3)
 print "Br:\n", Br
 Cl = muElement(0.321E-2, 4.2142E5,35.453,concentr=3)
 print "Cl:\n", Cl
 print "mu for ErBr3: %6.2f" %(Er.mu+Br.mu) #--> mu for ErBr3: 21.37
 print "mu for ErCl3: %6.2f" %(Er.mu+Cl.mu) #--> mu for ErCl3: 9.30
 print "mu for YCl3: %6.2f:" %(Y.mu+Cl.mu) #--> mu for YCl3: 6.921
 '''
 def __init__(self,rho_0,attenul,amass,concentr=1.):
 self.rho_0 = rho_0
 self.rho_1 = 0 # mass density in solution
 self.amass = amass
 self.mu_0 = 10000/attenul # conversion from micron^-1 to cm^-1
 self.mu = 0
 self.concentration = concentr
 self.rho_w = 0
 self.calculate()
 def __str__(self):
 print_str = \
 "atomic mass %6.2f,\
 \nRaw material: mass density %6.3fg/cm^3, mu %6.2fcm^-1, \
 \nCconcentration %4.2fM in water: mass density %6.3fg/cm^3, mu %6.2fcm^-1\n"\
 %(self.amass,self.rho_0,self.mu_0,self.concentration,self.rho_1,self.mu)
 return print_str
 def calculate(self):
 self.rho_1 = float(self.concentration)/1000 * self.amass
 self.mu = self.mu_0 * (self.rho_1/self.rho_0)

A.3.7 Interfacial roughness using Capillary Theory

def roughness(t,gamma,kappa=1,Qz=0.5,db=0.67,r=4.8,qmax=1.2566,rho=1,flag=1):
 '''
 calculate the interfacial roughness using capillary wave theory.
 Paramerers

 t: temperature, in C
 gamma: interfacial tension, in mN/m
 kappa: bending rigidity

 159

 Qz: maximam Qz in reflectivity data, usually ~0.45 in inverse A.
 db: detector acceptence, in Rad. db=v3/L3, v3 is the vertical width of electronic
 slit, while L3 is the distance between sample and the detector. If flag=1,db
 is in unit "mrad", for YAP detector, L3~670. For Pilatus1M detector, each
 pixel is 172um*172um, usually v3=0.172*11=1.892mm; for CCD detector, each
 picxel is 60um*60um, usually v3=0.06*31=1.86mm.
 L3 can be found in "SD Dist" under "Apex" tab in MW_XR software.
 r: average distance between molecules, r=4.8 for DHDP.
 qmax: defaul 2pi/5=1.2566 in Glenn's code, see more in eq1.26 in Mark's book
 rho: mass density difference between lower phase and upper fhase, in g/cm^3
 for system like 1E-7YCl3(water)/1E-4DHDP(dodecane), rho=1-0.78
 flag: choose which equation to use.
 Returns

 roughness:the interfacial roughness in A.
 flag = 1: reference equation(2) in J.Phys. Chem B 2014, 118, 10662-10674.
 flag = 2: reference eq 3.135 in Mark's book,and in Glenn's mathematica code.
 flag = 3: include kappa(bending regidity in the calculation)
 flag = 4: same as flag=3,except that quadratic term in the integrant is omitted...
 For testing

 rf = roughness(301-273.5,38,Qz=0.45,db=0.58e-3,r=4.8,flag=1) #->3.72, data in the reference,
tested.
 r = roughness(25,51.5,Qz=0.25, db=0.6/676, rho=1-0.78,flag=2) #->3.4452, data in Glenn's code,
tested.
 r = roughness(25,25.2,Qz=0.2, db=0.3/638, rho=1.203-1,flag=2) #->5.1466,
nitrobenzene/water,tested.
 r = roughness(23.3,47.52,kappa=1,qmax=2*np.pi/8.9,Qz=0.5,db=0.8/672,rho=1.01,flag=3)
 #->3.0987, (3.0833 in Glenn's code:roughness_bending_rigidity.nb),tested.
 r = roughness(23.3,47.52,kappa=1,qmax=2*np.pi/8.9,Qz=0.5,db=0.8/672,rho=1.01,flag=4)
 #->3.3820, (3.2632 in Glenn's code:roughness_bending_rigidity.nb),tested.
 r = roughness(22.5,17.86,kappa=1,Qz=0.3,db=1.0/1695,r=4.8,rho=1.047-0.7774,flag=2)
 r = roughness(22,45.84,Qz=0.38,db=1.892/2745,flag=1) #->3.38, (0.5Mcitrate/dodecane)
 '''
 kBT = 1.38e-23 * (273.15+t) * 1e7 #1e7: convert from N*m into dyne*cm
 PI = np.pi # pi=3.1415926...
 qmax = 2*PI/5 # qmax = 2pi/5=1.2566... see more in eq 1.26 in Mark's book
 g = 981.0 # gravitational acceleration in cm/s^2
 qg = np.sqrt(g*rho/gamma)*1e-8 # inverse capillary length in A^-1
 C = kBT/(2*PI*gamma) * 1e16 # some coefficient; 1e16:convert cm^2 into A^2
 if flag==1:
 sigma_square = C * np.log(4/(Qz*db*r))
 elif flag==2:
 sigma_square = C * np.log(qmax/(Qz*db/4+np.sqrt(qg**2+(Qz*db/4)**2)))
 elif flag==3:
 q2 = gamma/kappa/kBT*1e-16 # in A^-2
 integrant = lambda q: q/(q**2+qg**2+q**4/q2)
 sigma_square = C * integrate.quad(integrant,Qz*db/2,qmax)[0] # quad returns a tuple:
(result,error)
 elif flag==4:
 q2 = gamma/kappa/kBT*1e-16
 integrant = lambda q: q/(q**2+qg**2)
 sigma_square = C * integrate.quad(integrant,Qz*db/2,qmax)[0] # quad returns a tuple:
(result,error)

return np.sqrt(sigma_square)

A.3.8 Ratio of reflectivity to Fresnel reflectivity 𝑹/𝑹𝑭

def RRF(q, ref, err, q_off=0, qc=0.0103):
 '''
 Cauculate the ratio R/R_f for a given set of data. (Tested)

 Parameters

 q : array_like
 An array of Q's, usually [0,0.02,...,0.5]
 q_off: floating number
 q offset.
 qc : floating number
 Critical angle, is 0.0103 for water and dodecane interface.

 160

 ref: array_like
 an array of raw reflectivity data for each q value.
 err: array_like
 an array of error for each raw reflectivity data

 Returns

 RRF: ndarray
 Returns a 2-D array with rows: q+q_off, ref/frsnell, err/fresnell
 '''
 # convert input into nparray, q_off set included ->
 (q,ref,err) = map(np.array, (q+q_off,ref,err))
 #calculate fresnel reflectivity ->
 frs = fresnel(q,qc)
 # calculate the ratio for signal and error ->
 refFresnelRatio = np.divide(ref,frs)
 errFresnelRatio = np.divide(err,frs)
 # pack the data into 3 columns ->
 out = np.vstack((q,refFresnelRatio,errFresnelRatio))
 out = np.transpose(out)

return out

def RtoRRf(openfile, q_off=0, qc=0.0103, save=None):
 '''
 Read reflectivity raw data from a file, and convert it to R/Rf. The
 return value of this function is optimized for saving the result directly
 into a file (see more in Reurns).

 Parameters

 openfile: the file containing the raw data
 q_off: q offset is zero if not specified.
 q_c: critical qz is 0.0103 if not specified.
 save: (if specified) the file to which converted data is saved.

 Returns

 convert: always return a 2-D array with columns
 qz+q_off, R/Rf, err/Rf
 '''
 #load the raw reflectivity data ->
 ref_data = np.loadtxt(openfile)

 # split the raw data into three numpy arrays ->
 q = ref_data[:,0]
 ref = ref_data[:,1]
 err = ref_data[:,2]
 # calculate R/Rf, and transpose it into columns(q,ref,err) ->
 R_Rf = np.transpose(RRF(q,ref,err,q_off=q_off,qc=qc))
 print("data converted with q_off=%6.4f,qc=%6.4f" %(q_off,qc))
 # save R_Rf to file ->
 if save != None:
 np.savetxt(save, R_Rf,fmt="%.4f\t%.8f\t%.8f")
 print("Saved to file:", save)

return R_Rf

 161

Appendix B

Liberalization of PNAS copyright policy: Noncommercial use freely allowed

(PNAS August 24, 2004 101 (34) 12399)

We have changed our copyright and permissions policies to make it easier for authors and

readers to use material published in PNAS for research or teaching. Our guiding principle is that,

while PNAS retains copyright, anyone can make noncommercial use of work in PNAS without

asking our permission, provided that the original source is cited. For commercial use (e.g., in books

for sale or in corporate marketing materials), we approve requests on an individual basis and may

ask for compensation. We have revised our copyright assignment form to make the changes clear

(www.pnas.org/misc/copyright.pdf) and added to our web site a “frequently asked questions”

(FAQ) section on author and reader rights (www.pnas.org/misc/authorfaq.shtml).

As a PNAS author, you automatically have the right to do the following:

1. Post a PDF of your article on your web site.

2. Post a webcast containing material from your article.

3. Make electronic or hard copies of articles for your personal use, including classroom use.

4. Use, after publication, all or part of your article in a printed compilation of your work, such

as collected writings or lecture notes.

5. Include your article in your thesis or dissertation.

6. Reuse your original figures or tables in your future works.

7. Post a preprint of your article on a public electronic server, provided that you do not use

the files created by PNAS.

8. Present your paper at a meeting or conference, including those that are webcast, and give

copies of your paper to meeting attendees before or after publication in PNAS. For

 162

interactions with the media prior to publication, see the PNAS policy on media coverage

(www.pnas.org/misc/forms.shtml).

9. Permit others to use your original figures or tables published in PNAS for noncommercial

use (e.g., in a review article), provided that the source is cited. Third parties need not

request permission to use figures and tables for such use.

Given that authors and readers can automatically use original material in PNAS for research or

teaching, why do we request copyright transfer? We do so for three reasons: to allow us to publish,

archive, and migrate articles to new media; to remove the administrative burden of rights and

permissions management from authors; and to provide protection from copyright abuse.

We do not feel that this or any copyright policy is the only one possible. In fact, our policy has

changed through our 90 years of publishing and surely will change again. We have requested that

authors transfer copyright only since 1993. From the first issue of PNAS in 1915 through 1992,

authors held copyright to their articles. From 1978 to 1992, we registered copyright for each

journal issue as a collected work but did not request copyright for individual articles. In 1993, we

began requiring that authors transfer copyright “in all forms, languages, and media now or

hereafter known,” which granted us the rights to publish papers online in 1997 and to then digitize

selected back issues and post them online.

We think that our current policy best meets the needs of readers, authors, and the journal, for the

following reasons:

1. To store and migrate archival formats of the journal. We are committed to facilitating

permanent, freely accessible archives of the scientific literature. PNAS is a charter member

of PubMed Central, a digital archive of the life sciences journal literature

(www.pubmedcentral.nih.gov), and is a participant in the National Library of Medicine's

 163

effort to digitize and post back issues of journals. Not holding copyright to individual

articles from 1915 to 1992 delayed our posting of this older material online because we do

not have the legal rights to do so. In the end we proceeded without explicit permission from

the original authors or their heirs. We accept the risk in doing so because we believe it is

clearly in everyone's best interest. If a copyright holder objects, however, we will

immediately remove the article from our online collection. Full copyright transfer allows

publishers explicit rights to invest in long-term archiving strategies.

2. To provide an administrative convenience for everyone. Despite our liberal rights and

permissions policies, PNAS still receives more than 50 commercial and noncommercial

permission requests per week. We routinely agree to noncommercial use, so such requests

waste everyone's time.

Unfortunately, PNAS cannot provide permission for others to use all or part of articles published

from 1915 to 1992 because we do not hold copyright. Only the original authors or their designees

can grant permission. Researchers are frustrated when they contact us for permission to use

seminal works and we are unable to grant their requests.

3. To provide international protection regarding infringement or plagiarism. On the rare

occasion that material is misused, authors appeal to PNAS to intervene on their behalf to

enforce copyright protection. In such cases, a formal query from PNAS or the threat of a

copyright infringement lawsuit has prompted expeditious action. In cases of redundant

publication we sanction authors for violating journal and copyright policy. Because

international standards and copyright law are complex, PNAS leaves interpretation of

global copyright standards to our expert legal counsel.

 164

We also support creative efforts such as charting, mining, analyzing, sorting, navigating, and

displaying information contained in PNAS. The highly successful Sackler Colloquium “Mapping

Knowledge Domains” (www.pnas.org/content/vol101/suppl_1) is a prime example (1). We

encourage authors to use standard forms of data presentation to facilitate this process.

 165

Appendix C

C.1 Beam Profile measurement. Beamtime: 2019 July; beamline: APS15-IDC.

A 4 mm thick and round-edged W blade was mounted on the sample stage — a position

where the beam would otherwise hit the sample. The blade was housed in JJ slits slot with its edge

facing up. A sample height scan collects the X-ray intensities at 100 different sample height

positions from where the blade completely misses the beam to fully block the beam. Deconvoluting

the intensities with the blade shape yields the real beam profile.

Below is the deconvoluted beam profile with CRL lens. Spec file: pre alignment, not part

of 20190718. Scan 124 was done with “s1h 1 1” and scan 125 with “s1h 0.1 0.1”. The resulted

beam profile was fitted to a gaussian function. Bigger horizontal opening of slit 1 yields bigger

FWHM of the beam size in vertical dimension.

Scan 124 in spec file 20190717. sigma=4.6 µm

Scan 125 in spec file 20190717. sigma=3.2 µm

 166

Below is the deconvoluted beam profile with MRO lens. Spec file: 20190718. Scan 287

was done with “s1h 1 1” and scan 288 with “s1h 0.1 0.1”. The resulted beam profile was fitted to

a gaussian function. Bigger horizontal opening of slit 1 yields bigger FWHM of the beam size in

vertical dimension. Smaller slit size “s1h 0.1 0.1” was used for measurement. The FWHM is 9.6

μm. Before 201907 beamtime, the wider slit, therefore the wider beam with FWHM=15 μm, was

used; after 201907 beamtime, FWHM=10 μm.

Scan 287 in spec file 20190718. sigma=5.97µm

Scan 288 in spec file 20190718. sigma=4.09µm

 167

C.2 Fits for CRL lens

The data is from SPEC file 20190717.

Data is obtained by scanning a slit edge across the beam and recording transmitted intensity,

normalized to incoming beam intensity. Typical data shown in Fig. 1

Assuming the beam profile is Gaussian, the result of the scan is reversed error function, possibly

combined with some background. Therefore, fitting to error function (with linear background)

will yield, among other fit parameters, the - value of the Gaussian. The FWHM value (if

required) is obtained multiplying σ by .

s

()ln 256 2.355»

 168

Alternatively, we can perform numerical differentiation of the data above, which will yield an

(inverted) Gaussian and then fit the result to a Gaussian. In such case a correction is needed since

numerical differentiation using a finite size step introduces some broadening. The correction is

straightforward, though, and following the correction the results of both types of fits are, within

margin of error, the same. In general, though, fitting to error function, with no differentiation, is

preferable, since numeric differentiation is susceptible to noise.

The fit results are shown on the next page. The red curve represents the data, the green

curve is the fit. Usually little of the red curve is visible since the fit covers it. For perfect fit it

would cover it perfectly.

Scan #124:

Fit results (error values in parentheses):

()
()

4.700 0.033

FWHM 11.068 0.078

s µ µ

µ µ

=

=

 169

Scan #125:

Fit results (error values in parentheses):

()
()

3.444 0.053

FWHM 7.875 0.126

s µ µ

µ µ

=

=

 170

Appendix D

Data for HDEHP and [HEH]EHP measurement.

All data are stored in:

Box/research_group_mark_box/Group Members/Zhu/data/

Folders for different beamtime:

2018 November beamtime: 201811Nov/; 2019 April beamtime: 201904Apr/;

2019 July beamtime: 201907Jul/; 2019 December beamtime: 201912Dec/.

Data with each scan are named with the corresponding scan number, the sample it belongs to and

the composition of the sample, for the sake of quick reference. All the data associated with the

same scan number have the same file name, except for the suffix corresponding to different data

type. Data files end with “_flu.txt”; parameter files end with “_par.txt”; fitted curve end with

“_fit.txt”.

D.1 Other important data for sample height scan on HDEHP sample

D.1.1 2019 December

In this beamtime we measured samples with DTPA added in the aqueous phase. All samples have

1mM Eu/10mM HDEHP in dodecane as the organic phase. All aqueous phases contain 0.1mM

DTPA, except for pure water, in addition to the complexant. Sample details are listed in the table

below:

Sample
ID

Oil Phase Water phase Notes

3 Pure dodecane 50mM Eu(NO3)3 Water Calibration
4 1mM Eu 10mM HDEHP

(organic phase unclean,
filtered oil solution twice
for sample 6)

HNO3/0.1mM DTPA pH=3 Nitrate concentration: 0.55mM
5 Pure water Oil Calibration
6 Pure water Oil Calibration

7 1mM Eu 10mM HDEHP
(new oil solution)

Citric/0.1mM DTPA pH=3 Citric concentration: 0.95mM
8 HNO3/0.1mM DTPA pH=3 Nitrate concentration: 0.55mM
9 0.5M Citric/0.1mM DTPA pH=3 Repeat sample 7 (0.5M citrate)

 171

10 0.5M Citric/0.1mM DTPA pH=3 Repeat sample 9 (0.5M citrate)

Sample 3: 50 mM Eu(NO3)3 in water / pure dodecane

This sample is calibration sample to obtain the calibration factor for XFNTR measurement.

We also performed a sample height scan at Qz = 0.015 Å-1 (blue dots, scan number 315) Qz = 0.006

Å-1 (green dots, scan number 309)

Sample 4: 1 mM Eu, 10 mM HDEHP in dodecane / 0.55mM HNO3, 0.1 mM DTPA pH=3 in

water

 172

585 was at nominal sample height position, #595 repeated #585 by shifting the sample height

position up by 6.8 μm. Clearly, the offset of sample height has an big impact on data above critical

angle due to the change of the fluorescence volume in aqueous phase.

Sample height shscan was done at Qz = 0.006 Å-1 (top: #587) and Qz = 0.015 Å-1 (Bottom: #586

& #592). Sh-scan above critical angle confirm the amount of Eu ions in aqueous phase.

 173

Sample 6. 1 mM Eu, 10 mM HDEHP / pure water

This Qz-scan was also used to obtain the oil calibration factor. Scan number: 648. The non-zero

interfacial ion distribution is later confirmed by sh-scan.

 174

Below are a set of sample height scans at Qz = 0.006 Å-1 with best fitting on top. Scan numbers:

#640, 641, 649, 651. The small bump at the edge of the fall indicates non zero distribution of ions

in the evanescent wave region below the interface.

 175

Sample 7. 1 mM Eu, 10 mM HDEHP / 0.95mM citric acid, 100 µM DTPA pH=3 (no adjustment)

Qscan: scan number: 585 (Green). The data is significant lower than #648 from sample 6 (blue)

below critical angle even if there is commensurate amount of Eu ions in organic phase.

Shscan: left Qz = 0.006 Å-1, #687&688 (green & cyan), compare with #640 sample 6 (blue); right

Qz = 0.015 Å-1 #691 compared with #688(blue). Data is lower than the sample 6 data to a less

extent. The sample height san at Qz = 0.015 Å-1 explains why the data is significantly lower than

pure water sample: there is a big sh offset.

Sample 8. 1 mM Eu, 10 mM HDEHP /0.55 mM nitric acid, 0.1 mM DTPA, pH=3 (no adjustment)

Qscan #736 compared with #595 from sample 4. Sample 8 is the repetition of the sample 4. Data

is quite reproducible.

 176

Sample 9. 1 mM Eu 10 mM HDEHP / 0.5M Citric 0.1mM DTPA pH=3 (adjusted with NH4OH)

Qscan: #760, #761, #767, stir 20min, #772. This sample is not equilibrated when taking

fluorescence data. Sample 10 was then measured to confirm the equilibrium.

Shscan Qz = 0.006 Å-1. Scan number: #765 (cyan); #774 (blue) was taken after stirring for 20min,

then #776 (green, Qz = 0.015 Å-1) was taken.

 177

Sample 10. 1 mM Eu, 10 mM HDEHP / 0.5 M Citric acid, 0.1 mM DTPA, pH=3 (adjusted with

NH4OH)

Qscan: #802 (green) was taken first. After stirring for 10min, #804 (cyan) was taken, in comparison

with #772 from sample 9 which was not equilibrated yet.

 178

Shscan: Qz = 0.006 Å-1 #806 (green) compared with #774 (blue from sample 9).

Qz = 0.015 Å-1: #807 (green) compared with #776 (blue) from sample 9. The intensity in the

aqueous phase region (~0.04 mm) is higher than sample 9, indicating more Eu was extracted into

aqueous phase.

 179

D.2 Other important data for [HEH]EHP sample

D.2.1 2018 November run

A wider beam was used for this run with “s1h 1 1”. FWHM is 15 μm.

The concentration of Eu in dodecane is limited to be 0.1 mM to avoid precipitates. As a

result, the fluorescence intensity measured from the citric sample has very large error bars. More

data needs to be taken to further demonstrate the fluorescence.

Sample 5 pure water / 5.8 mM HEHEHP, 0.1 mM Eu

It requires the existence of Eu on the interface, with the surface density 1.42(+0.20/-0.22)E-

3 Å-2. It is the first HEH[EHP] sample that provides evidence for the existence of excess Eu ions

at the interface. Scan number: #368.

 180

Sample 6 1mM HNO3 pH=3 / 5.8mM HEHEHP 0.1mM E

This sample indicates the excess interfacial ion in the presence of HNO3. Scan number:

447,448,449 combined.

Sample 7 0.5M citric pH=3 / 5.8mM HEHEHP

 181

The pH value of the sample was adjusted with NH4OH. The simplest model to fit the data

was to have ions in both bulk phases but not at the interface. Citric acid extracts Eu ions back into

water phase.

Critical Angle: Water/dodecane: 0.0103 Å-1; 0.5M Citric/dodecane: 0.0112 Å-1

Elemental analysis result

 Eu in aqueous
(µg/L, mM)

Eu in dodecane
(mM)

1 water/1mM Eu w/ 10mM HDEHP 5, 3.29E-5 1.089
2 Citrate/1mM Eu w/ 10mM HDEHP 9.4E5, 6.19 0.71
3 Nitrate/1mM Eu w/ 10mM HDEHP 5.85, 3.85E-5 1.02
4 0.05mM Eu/dodecane 6.64E6, 43.69 0
5 water/0.1mM Eu w/ 5.8mM HEHEHP N/A N/A
6 Nitrate/0.1mM Eu w/ 5.8mM HEHEHP 44.1, 2.90E-4 0.121
7 Citrate/0.1mM Eu w/ 5.8mM HEHEHP 1.07E5, 0.704 0.077

Atomic mass for Eu 152g/M. 1µg/L of Eu is 6.58E-6mM.

D.2.2 2019 April run

HEHEHP data from this run confirms the result obtained from Nov2018 run. But more data with

higher statistics on the citric sample is still needed.

Sample 6 dodecane / 50mM Eu(NO3)3

 182

Sample 9 & 13 0.1mM Eu / 5.8mM HEHEHP/ pure water

Two samples with pure water: blue data is sample 9 with scan number 72 & 82 combined;

green is sample 13 with scan number 431 & 432 combined. The red line fits to sample 13 data.

Sample 10 0.1mM Eu /HEHEHP 1mM HNO3

 183

Sample 11 0.1 mM Eu/HEHEHP, 0.5 M Citrate pH=3 (adjusted with NH4OH)

Scan 294, 299 and 306 merged.

Sample 13 0.1mM Eu 5.8 HEHEHP pure water

 184

