
GraphPointNet: Graph Convolutional Neural Network

for Point Cloud Denoising

BY

FRANCESCA PISTILLI
B.S, Politecnico di Torino, Turin, Italy, 2017

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Chicago, 2020

Chicago, Illinois

Defense Committee:

Dan Schonfeld, Chair and Advisor

Rashid Ansari

Maurizio Martina, Politecnico di Torino

Enrico Magli, Politecnico di Torino

ACKNOWLEDGMENTS

I would like to thank my family, whose support and affection gave me a solid and unwavering

pillar on which shaping my future. The most sincere gratitude is also devoted to my friends,

who have supported and helped me during these most exciting and more troubling times in

Chicago and these years of study.

FP

ii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Point Clouds . 1
1.2 Neural Networks . 2
1.3 Signal Processing application of Neural Network: Convolu-

tional Neural Network . 7
1.4 Graph Signal Processing . 11
1.4.1 Graph Fourier Transform . 15
1.4.2 Dynamic Edge-Conditioned Convolution 19

2 STATE OF THE ART ON POINT CLOUD PROCESSING . . . 22
2.1 Point Cloud Denoising . 22
2.2 Notable Methods for Point Cloud Processing 23
2.2.1 PointNet . 23
2.2.2 PointCleanNet . 25
2.2.3 3-D Point Cloud Denoising via Deep Neural Network Based

Local Surface Estimation . 28

3 PROPOSED APPROACH FOR POINT CLOUD DENOISING 31
3.1 General Structure . 31
3.2 Dataset creation . 33
3.3 White Noise Application . 34

4 GRAPH NEURAL NETWORK FOR POINT CLOUD DENOIS-
ING . 37
4.1 Architecture design . 37
4.1.1 Overview . 37
4.1.2 Design choice . 38
4.2 Block Diagram . 43
4.2.1 Pre-Processing Block . 43
4.2.2 Residual Block . 45
4.2.3 Graph Convolutional layer . 46

5 VALIDATION AND RESULTS . 49
5.1 Simulations with noisy point clouds at high level of noise . . . 51
5.1.1 Quantitative Results . 51
5.1.2 Qualitative Results . 64
5.2 Simulations with noisy point clouds at low level of noise . . . 66

iii

TABLE OF CONTENTS (continued)

CHAPTER PAGE

5.2.1 Quantitative Results . 66

6 CONCLUSIONS AND FURTHER DEVELOPMENTS 80
6.1 Conclusion . 80
6.2 Future works . 80

CITED LITERATURE . 82

VITA . 84

iv

LIST OF TABLES

TABLE PAGE

I AIRPLANE TESTSET CORRUPTED BY WHITE NOISE WITH
σ = 0.02. 52

II BENCH TESTSET CORRUPTED BY WHITE NOISE WITH σ =
0.02. 53

III CAR TESTSET CORRUPTED BY WHITE NOISE WITH σ = 0.02. 54

IV CHAIR TESTSET CORRUPTED BY WHITE NOISE WITH σ =
0.02. 55

V LAMP TESTSET CORRUPTED BY WHITE NOISE WITH σ = 0.02. 56

VI PILLOW TESTSET CORRUPTED BY WHITE NOISE WITH σ =
0.02. 57

VII RIFLE TESTSET CORRUPTED BY WHITE NOISE WITH σ =
0.02. 58

VIII SOFA TESTSET CORRUPTED BY WHITE NOISE WITH σ = 0.02. 59

IX SPEAKER TESTSET CORRUPTED BY WHITE NOISE WITH
σ = 0.02. 60

X TABLE TESTSET CORRUPTED BY WHITE NOISE WITH σ =
0.02. 61

XI CATEGORY MEAN FOR SIMULATION FOR WHITE NOISE WITH
σ = 0.02. 62

XII COMPARISON BETWEEN GRAPHPOINTNET WITH 66 AND
120 LEARNING FEATURES. 63

XIII AIRPLANE TESTSET CORRUPTED BY WHITE NOISE WITH
σ = 0.01. 67

v

LIST OF TABLES (continued)

TABLE PAGE

XIV BENCH TESTSET CORRUPTED BY WHITE NOISE WITH σ =
0.01. 68

XV CAR TESTSET CORRUPTED BY WHITE NOISE WITH σ = 0.01. 69

XVI CHAIR TESTSET CORRUPTED BY WHITE NOISE WITH σ =
0.01. 70

XVII LAMP TESTSET CORRUPTED BY WHITE NOISE WITH σ = 0.01. 71

XVIII PILLOW TESTSET CORRUPTED BY WHITE NOISE WITH σ =
0.01. 72

XIX RIFLE TESTSET CORRUPTED BY WHITE NOISE WITH σ =
0.01. 73

XX SOFA TESTSET CORRUPTED BY WHITE NOISE WITH σ = 0.01. 74

XXI SPEAKER TESTSET CORRUPTED BY WHITE NOISE WITH
σ = 0.01. 75

XXII TABLE TESTSET CORRUPTED BY WHITE NOISE WITH σ =
0.01. 76

XXIII CATEGORY MEAN FOR SIMULATION FOR WHITE NOISE WITH
σ = 0.01. 77

XXIV CATEGORY MEAN FOR SIMULATION FOR WHITE NOISE WITH
σ = 0.01. 78

vi

LIST OF FIGURES

FIGURE PAGE

1 Example of a Point Cloud. 2

2 Neuron. 3

3 Example of a neural network with one hidden layer. 4

4 Convolution operation example. Input matrix 5x5 and filter 3x3 (top
left), computation of the element (1,1) (top right), of the element (1,2)
(bottom left), of elements (2,1) and (3,3) (bottom right). The computa-
tions reported regard a convolution operation between the input matrix
and the filter in the top left with slide equal to 1. 9

5 CNN example. 10

6 Graph examples. Directed Graph (top left), undirected graph (center)
and weighted graph (right). 12

7 PointNet: architecture for point cloud classification. 25

8 PointCleanNet: architecture of the outlier removal step. 27

9 PointCleanNet: architecture of the denoising step. 28

10 Neural Projection Denoising: architecture of the whole network. 30

11 Block diagram of the general structure proposed. 32

12 Examples of corrupted point cloud. Ground truth (left) and noisy cor-
rupted by white noise with σ=0.02 (right). 36

14 Relu vs. LeakyRelu. 38

13 GraphPointNet: architecture of the network proposed. 39

15 ResNet: building block of residual learning. 41

16 Architecture of pre-processing block. 44

vii

LIST OF FIGURES (continued)

FIGURE PAGE

17 Architecture of a residual block. 46

18 Architecture of graph convolution layer: H l is the input of the layer l
and H l+1 is the output of the graph convolution layer that will be the
input of the (l + 1) layer. 48

19 Airplane point clouds. First row: original (left) and corrupted (right)
by white noise with σ= 0.02. Second row: PointCleanNet (Left), GLR
(Right). Third row: GraphPointNet. 65

viii

LIST OF ABBREVIATIONS

PC Point Cloud

NN Neural Network

CNN Convolutional Neural Network

DPN Deep Neural Network

ECC Edge Conditioned Convolution

GPN Graph Point Net

ix

SUMMARY

The proposed project is focused on developing a novel neural network for point cloud de-

noising based on graph convolution operations.

A point cloud is a representation of an object composed of a collection of points expressed in

3-D space coordinates. This type of data is usually acquired by radars, lasers, sensors, electro-

optical systems or by reconstruction of 2-D images: all these acquisition methods lead to point

clouds typically affected by noise. The project aims to design a network able to efficiently

reproduce cleaned 3-D point clouds from noisy observations.

The denoising task is a typical problem addressed in image processing and the current state-

of-the-art are Convolutional Neural Networks (CNN), that lead to promising results. The idea

developed in this project is to exploit a deep neural network structure composed of convolutional

layers also for point cloud denoising.

The novelty of the project is the introduction of a graph-convolutional layer, that implements

the Edge-Conditioned-Convolution [1](ECC) to perform a graph-convolution operation over

point clouds.

A graph is a generic collection of nodes and edges; in the case under study a graph is

build for each point cloud where the nodes are the points of the cloud and the edges are

weighted connections between them. The ECC is performed in a dedicated deep neural network,

where the feature vector associated to one node at layer l + 1 is computed as a weighted local

aggregation of the feature vectors at layer l of the node itself and its k-nearest-neighbors points.

x

SUMMARY (continued)

Several works are available in literature for point cloud denoising; traditional methods are

geometrical algorithms, that can be based on local or non-local operators. Some widely used

techniques involve the estimation of surfaces of point clouds from noisy observations, others

exploit the graph representation of point clouds and apply graph-regularization methods. All

these approaches address the task as a classic optimization problem.

Recently, due to the increasing interest in point clouds and point cloud denoising, new

approaches have been explored. In particular, several neural networks able to outperform the

traditional methods have been published.

None of these networks exploits a graph representation of the data, neither a convolutional

structure, proposing instead a quite simple architecture, based on fully connected layer and

max-pooling.

To our knowledge, the network proposed in this thesis, called GraphPointNet, is the first

neural network based on convolution able to successfully denoise point clouds.

First of all, an introduction of the basic concepts of neural network and graph theory

together with the current state-of-the-art are presented. Then the development of the project

from the creation of the dataset to the presentation of the architecture is described and analyzed

in details.

Finally, the performance evaluation of the proposed network is reported. Quantitative and

qualitative tests are performed in order to evaluate the quality of the obtained results. It is

shown that the proposed method is able to outperform or at least match the current state-of-

the-art.

xi

CHAPTER 1

INTRODUCTION

In the introduction chapter the background concepts of the project are presented: first a

brief description of the input data then an overview of neural network and graph theory are

given.

1.1 Point Clouds

3-D point clouds are collections of data points that may represent cities, environments,

artificial systems or objects of any dimensions. The data are collection of points expressed in

3-D space coordinates (x, y, z), sampled from the surface of the analyzed shape.

Point clouds are becoming increasingly popular thanks to the ability to provide a detailed

representation of the real world and the wider use in different areas, such as architecture,

medical imaging, virtual reality, aeronautics applications and so on.

Recently, there has been a growing interest regarding the acquisition and processing of point

clouds: new techniques to increase the quality of the data and different applications have been

investigated.

1

2

0.4
0.3

0.2
0.1

0
-0.1

-0.2

-0.2

-0.1

-0.3

0

0

0.1

-0.4

0.2

Figure 1: Example of a Point Cloud.

Various approaches to the point clouds acquisition are presented in literature as electro-optical

systems, laser scanning, sensors, radars, reconstruction starting from 2-D images.

1.2 Neural Networks

In this section the basic concepts of neural network are presented to provide a general

background.

The basic element of a neural network is a neuron; it is a mathematical function that

emulates the behaviour of biological neurons: several signals arrive at a nerve cell, where they

are processed and a response is eventually produced.

A neuron is an algorithm, that takes as inputs vectors of numbers, weights them element

by element, sums them together and applies to the results a nonlinear function to obtain the

3

output. The output is a binary classifier, able to make a decision, True or False, according to

the weighted input. An example of an artificial neuron is reported in Figure 2.

w1

w2

w3

x1

x2

x3

w1x1

w2x2

w3x3

bias

Activation
function

y

Figure 2: Neuron.

In Figure 2 it can be seen that weighted inputs are summed together with a bias, a scalar

quantity inserted to move the decision threshold far from the origin.

The artificial neuron was originally designed for binary classification tasks, as image recog-

nition, and the nonlinear function, also called activation function, was a simple function with

only two possible outputs, 0 or 1, i.e. True or False. Afterwards, neural networks have been

exploited to perform more complex tasks and particularly to approximate any function able

to map inputs to the correct outputs. The operations and therefore the structures became

gradually more complex.

4

If several artificial neurons are connected together a neural network is created, see Figure 3

as example. A network can be more or less deep according to the number of hidden layers

inserted; a layer can be fully connected, if each output of intermediate layers is an input to all

neurons of the following layer. How many layers and how to connect them are design decisions,

made taking into account the specific task of the network.

x1

x2

x3

o1

o2

Input layer Hidden layer Output layer

w1

w12

w13

w20

Figure 3: Example of a neural network with one hidden layer.

During the development of a neural network, after the design of the general structure of the

net, the weights and the bias are initialized, typically to random values, and the network starts

to learn the necessary values to obtain the desired results.

5

Neural networks are generally characterized by three phases: training, validation and test-

ing.

The training phase is the learning process where the parameters are optimized in order to

obtain the desired functionality.To evaluate the network predictions a loss function is defined,

able to describe the discrepancy between the output of the net and the desired target output.

A common function is the mean squared error (MSE), which computes the squared difference

between the predicted and the true value:

MSE =
1

N

N∑
i

(y − ŷ)2, (1.1)

where N is the total number of elements, y is the target output and ŷ is the output of the net.

It is straightforward to understand that the goal of the training phase is to minimize the

loss function: to fulfill this task an optimization method is applied to the loss function in order

to optimize the trainable parameters of the network. A widely used optimization algorithm

is the gradient descent, that is able to iteratively find a local minimum computing the partial

derivatives of the loss function with respect to each trainable variable.

Considering the variable w1 of the net reported in Figure 3 the variable update would be:

w1 ← w1 − η
∂L

∂w1
, (1.2)

where L is the loss function and η is the learning rate, a parameter that controls how much the

variables can change at each update.

6

Decreasing the learning rate leads to a slower but more stable learning of the parameters;

otherwise increasing it leads to a more oscillating and non-monotonic minimization of the loss

function.

During the training phase, a specific training dataset is exploited; a dataset is a collection

of data together with the correspondingly true information that has to be predicted. For

instance, if the network addresses an image classification task, the dataset would be a collection

of images, each associated to a category, usually called label, that is the information that has

to be predicted. Instead if the network is focused on image denoising task, the dataset would

be composed of noisy images and their clean version as label, as the goal of the network is

to reconstruct the original clean images. A learning task where the ground truth is available,

i.e. the true information that has to be predicted, is called supervised learning ; otherwise it is

defined unsupervised.

The validation phase consists in momentarily stopping the training and evaluate the net

as far as trained over a validation set. The validation set is composed of data belonging to

the same original dataset from which the training dataset is extrapolated but not included in

the latter one to ensure that the net has never seen the validation data during the learning

phase. The validation phase is performed in order to check if the network is over-adapting the

parameters to the training dataset, i.e. the noticed decrease of the loss is due to an over fitting

and the same performances are not met with unknown inputs. Notice that only during the

training phase the parameters are updated, whereas the validation is an off-running check of

7

the performance. Finally the testing is performed when the network is trained and completely

different data are employed.

1.3 Signal Processing application of Neural Network: Convolutional Neural Network

A Convolutional Neural Network (CNN) is a class of deep neural networks that has be-

come extremely popular for image processing tasks such as image recognition, classification

and denoising. In this section a description of the architecture and the operations involved is

provided.

A CNN is a deep neural network that exploits the convolution operation instead of simple

matrix multiplication between input and weights. For instance, it takes images as input, each

one represented by a tensor with dimensions (height×width× channels), where the parameter

channels is the depth of the data (one for gray-scale or to three for RGB images) and returns

as output the category associated to what is represented in each image.

The internal structure is characterized by several hidden layers, consisting of convolutional

layers, followed by activation functions and other additional layers such pooling or fully con-

nected layers.

The main block of the net is the convolutional layer that convolves the input matrix with

convolutional filters. A convolutional filter is a matrix of dimension (heightfilter×widthfilter×

channels), where the parameter channels has to be equal to the image’s depth, and all the

elements of the filters are the trainable weights of the network.

8

The network is able to detect and identify information and features from the data that can

be used to fulfill the addressed task; to do so the input data are convolved by specific filters

in order to extract important characteristics. Each neuron can only see and process as input a

portion of data, defined as receptive field, to predict the output. If several fields are considered

it is possible to cover the whole area of interest.

To perform a convolution operation a filter slides over the input matrix, isolating windows

of data, and linearly combines the selected elements with the filter values. A fixed number of

shifts is performed to slide the window over the whole matrix and the number of shifts, called

strides, is set during the design. During the training phase, the network learns and optimizes

the filter’s elements in order to extract information meaningful for the established task. An

example to clarify the operations of a generic CNN is reported in Figure 4.

One advantage of the architecture concerns the decrease of the learning complexity, due to

the reduction of the number of parameters involved and the reuse of weights with respect to a

network with only fully connected layers.

9

1 0 1 0 1

0 0 1 0 0

1 1 1 0 1

0 1 1 0 0

1 1 0 0 1

1 0 1

0 1 0

1 1 1

1x1 0x0 1x1 0 1

0x0 0x1 1x0 0 1

1x1 1x1 1x1 0 1

1 1 0 0 1

1 1 0 0 1

5 ? ?

? ? ?

? ? ?

1+0+1+0+0+0+1+1+1

1 0x1 1x0 0x1 1

0 0x0 1x1 0x0 1

1 1x1 1x1 0x1 1

1 1 0 0 1

1 1 0 0 1

5 4 ?

? ? ?

? ? ?

0+0+1+0+1+0+1+1+0
5 4 ?

4 ? ?

? ? 3

1 0 1 0 1

0 0 1 0 0

1 1 1 0 1

0 1 1 0 0

1 1 0 0 1

Figure 4: Convolution operation example. Input matrix 5x5 and filter 3x3 (top left), computa-

tion of the element (1,1) (top right), of the element (1,2) (bottom left), of elements (2,1) and

(3,3) (bottom right). The computations reported regard a convolution operation between the

input matrix and the filter in the top left with slide equal to 1.

An activation function is inserted after each convolution layer; one popular non-linear func-

tion exploited is the Rectified Linear Unit (ReLu):

y

x

f(x)
f(x) = max(0, x). (1.3)

10

Furthermore, a pooling layer is often inserted in a convolutional network architecture: this

type of layer is capable of reducing the number of parameters, taking into account only the most

significant ones by spatially downsampling the feature maps. For instance, a common choice is

to perform a Max Pool : only the maximum parameter over a selected window is retained.

In Figure 5 an example of a CNN for a classification problem is reported.

Input Image
4 filters

32x32x1

Conv

28x28x4

5x5
Pool

Max Pool

14x14x4

16 filters

Max over pairs

First layer

Conv

10x10x16

5x5
Pool

Max Pool

5x5x16

Max over pairs

400 Output
Channels

Second layer Fully Connected layer

16 filters

5x5

Figure 5: CNN example.

11

CNN is the state-of-the-art with respect to neural networks for image processing for the

high performance achieved. The novel idea presented in GraphPointNet is to introduce a

convolutional network suitable for more types of data, which exploits signal representation

on graphs. Graphs are generic structures able to represent complex collections of data and

to provide a flexible and powerful way of describing relationships between elements; they are

especially useful for describing data that lie on non regular structure, like point clouds.

1.4 Graph Signal Processing

In this section a brief introduction to the graph theory is presented to understand the basic

concepts and the operations involved in the project.

A generic graph G is constituted by a collection of vertices or nodes and edges, the connection

between the nodes, respectively denoted with symbols V and E ⊂ V × V.

A graph can be undirected or directed: in the first case, choosing two random vertices i

and j, if the vertex i is connected to the vertex j then the vertex j is connected to vertex i;

otherwise the direction of the edge is univocal, specified by an arrow, as shown in Figure 6.

12

1

2
6

4

3

5 1

2
6

4

3

5
1

2
6

4

3

5

0.54
0.14 0.26

0.45

0.31

0.75

0.62

0.11

Figure 6: Graph examples. Directed Graph (top left), undirected graph (center) and weighted

graph (right).

Considering a generic graph G = (V, E), where V = {vi}, i ∈ {1, ...N}, is the set of N nodes,

and E = {eij}, i, j ∈ {1, ...N}, is the collection of all the edges, the adjacency matrix can be

defined: a matrix A ∈ N×N , where the element aij is equal to 1 if and only if the edge between

the node i and the node j exists, otherwise its value is zero.

The adjacency matrix of the undirected graph in Figure 6 (center) is shown below as an

example.

13

A=



0 1 0 0 0 0

1 0 1 1 1 1

0 1 0 0 0 1

0 1 0 0 1 0

0 1 0 1 0 1

0 1 1 0 1 0



.

It is straightforward to understand that for an undirected graph the adjacency matrix would

be symmetric.

A specific quantity, called weight, can be associated to each edge, in order to add information

to the representation of the signal: in this scenario the graph is denoted as weighted.

Considering a weighted graph, the adjacency matrix W can be defined as:

Wi,j =


0 if eij 6∈ E

wij if eij ∈ E
,

where wij represents the specific weight related to the edge eij .

The degree matrix related to the weighted graph in Figure 6 (right) is reported as example.

14

W=



0 0.54 0 0 0 0

0.54 0 0.31 0.14 0.26 0.45

0 0.31 0 0 0 0.11

0 0.14 0 0 0.75 0

0 0.26 0 0.75 0 0.62

0 0.45 0.11 0 0.62 0



.

After the definition of the adjacency matrix, the degree matrix can be introduced: it is a

diagonal matrix, where the diagonal element dii is equal to the total summation of all incoming

and outgoing edges relative to the node i:

dii =

N∑
j=1

wij for i = 1, ...N,

where N is the number of nodes and wij is the weight associated to the edge that connects

point i and point j.

The degree matrix of the graph of Figure 6 (right) is:

15

D=



0.54 0 0 0 0 0

0 1.70 0 0 0 0

0 0 0.42 0 0 0

0 0 0 0.89 0 0

0 0 0 0 1.63 0

0 0 0 0 0 1.18



.

In the case of directed graph, edges in different directions have different signs associated to the

weights.

Finally, the Graph Laplacian matrix, that plays a key role in graph signal processing, is

presented. This matrix is defined as follows:

L = D−W. (1.4)

1.4.1 Graph Fourier Transform

Frequency domain signal analysis allows to obtain information and study several character-

istics of signals; analogously it is interesting to investigate the frequency domain analysis for

graph signals.

In order to perform a frequency domain analysis of a graph signal it is necessary to convert

them from the graph domain to the frequency domain. One commonly exploited operator is the

graph Fourier transform, whose formulation exploits the previously introduced graph Laplacian

matrix. Following a brief mathematical introduction of the transform is reported.

16

The L matrix defined at the end of the previous section is symmetric and positive definite,

and represents an approximation of the Laplacian operator: it is therefore possible to formulate

a Fourier-like transform.

A generic graph signal f : V → R, defined over a graph with V set of vertices, can be

represented as a vector f = [f(1) f(2)...f(N)]T ∈ RN , where N is the number of nodes in the

graph and each f(i) component is the function f valued at the i-th nodes. A neighborhood Ni

is defined for each node i as the set of nodes connected to the node i. Given a graph signal

f = [f(1) f(2)...f(N)]T ∈ RN , as previously defined, the graph Laplacian operator can be seen

as a difference operator [2] since:

(Lf)(i) =
∑
j∈Ni

wij(f(i)− f(j)). (1.5)

The quadratic form the graph Laplacian matrix is particularly interesting because gives in-

formation about the smoothness of the graph signal f according to the following formulation

[3]:

fTLf =
1

2

∑
j∈Ni

wij(f(i)− f(j))2. (1.6)

The graph Laplacian matrix is real and symmetric, therefore it is possible to define orthonormal

eigenvectors and eigenvalues:

Lχi = λiχi, (1.7)

where χi 6= 0 is an eigenvector of L and λi the corresponding eigenvalue.

17

The matrix L can be factorized as:

L = QΛQT , (1.8)

where each column of the matrix Q is an eigenvector of L and the Λ is the diagonal matrix

whose non-zero elements are the eigenvalues of L.

The eigen-decomposition in Equation 1.8 can be easily proved by the eigenvector-eigenvalue

theory expanding the eigenvalue formulation reported in Equation 1.7.

For any continuous-time signal fc the classic Fourier transform and its inverse are defined

as:

f̂c(ω) =

∫ (
eiωx

)∗
fc(x)dx (1.9)

fc(x) =
1

2π

∫
f̂c(ω)eiωxdω. (1.10)

The complex exponents
(
eiωx

)∗
in Equation 1.9 are the eigenfunctions of 1-D Laplacian operator

d
dx2 .

Similarly, for any graph signal f ∈ RN , as previously defined, the graph Fourier transform

GFT and its inverse IGFT [4] can be defined as:

f̂(l) =

N−1∑
n=0

χ∗l (n)f(n), (1.11)

f(n) =

N−1∑
l=0

f̂(l)χl(n). (1.12)

18

An interesting application of the graph Fourier transform is the definition of a convolution

operation over graphs in the spectrum domain.

The convolution operation in time domain is defined as follow:

(fc ∗ gc)(x) =

∫ +∞

−∞
fc(x− t)gc(t)dt, (1.13)

where fc, gc are continuous time signals defined in R.

It has to be noticed that it is not possible to directly apply the classic formulation to graph

signals because in the graph domain the signal translation f(x − t) is not defined. Therefore,

a new formulation for convolution over graph is given exploiting the graph spectral domain.

Equation 1.13 can be re-written exploiting the Fourier transform, symbol F , and its inverse,

symbol F−1, as:

(fc ∗ gc)(x) = F−1
{
F{(fc ∗ gc)(x)}

}
= F−1

{
F{fc(x)}F{gc(x)}

}
, (1.14)

for the convolution theorem which states that the Fourier transform of two convolved signals is

equal to the multiplication of the Fourier transforms of the two signals.

The same reformulation can be applied to the graph domain; the graph-convolution op-

eration between two graph signals f and g can be defined in the spectral domain applying

Equation 1.12 and Equation 1.11:

(f ∗ g)(n) =

N−1∑
l=0

f̂(l)ĝ(l)χl(n), (1.15)

19

where f̂(l) and ĝ(l) are respectively the graph Fourier transform of the graph signal f and g.

Therefore it is possible to define a convolution operation over a graph signal exploiting the

graph Fourier transform and the spectrum domain.

1.4.2 Dynamic Edge-Conditioned Convolution

In this section the Dynamic Edge-Conditioned Convolution [1] (ECC), a generalization of

the convolution operation conceived by Martin Simonovsky and Nikos Komodakis, is described

and examined.

As previously discussed, the classic convolution operation can only be applied to data that

lies on a regular grids. Due to the numerous applications of the classic convolution operation,

it results tremendously interesting to formulate a definition of a convolution operation suitable

for any type of signal, even the ones that can not be represented by regular structures or lie on

non-Euclidean domains but can be easily defined on graphs, as point clouds.

In section 1.4.1 a graph convolution operation formulated in the spectrum domain is pre-

sented; however it is affected by several limitations. The most critical ones are the high compu-

tational cost and the unsuitability to deal with data with variable graph structure, due to the

fact that the filters are fixed and computed in the context of the spectrum of the graph Lapla-

cian which, to be consistent, has to be the same for all the graphs in a dataset. An alternative

approach is to define the operation in the spatial domain and obtain a generalization of the clas-

sic convolution operation suitable for any type of signals, as the Edge-Conditioned-Convolution

operation [1].

20

In [1] the convolution operation is interpreted as a local weighted aggregations over a neigh-

borhood, involving spatial operations rather than moving to the spectral domain. One advan-

tage of such a definition is the possibility to consider various types of graphs, with no restriction

on structure and size.

We consider a generic graph G = (V, E), constituted by n vertices and m edges. To im-

plement the ECC a feed-forward neural network with lmax number of layers is exploited and

the considered graph G has to be vertex and edge labeled: at each node and edge is associated

a label according to a specific function. The function H l associates to each vertex a feature

vector at layer l, H l : V −→ Rdl , where dl is the dimension of the feature vector at layer l, and

the function L associates to each edge an attribute, L : E −→ Rs, where s is the dimension of

the attributes.

A key concept in the algorithm is the definition of neighborhoods. A neighborhood N l(i)

related to a node i at layer l is a collection of its adjacent nodes plus the node i itself:

N l(i) = {j; (j, i) ∈ E} ∪ {i}. (1.16)

As previously mentioned, the ECC operation computes the feature vector H l+1(i) related to

the i vertex as a local weighted summation of signals H l(j) belonging to its neighborhood. In

particular, the ECC is performed as a local operation since convolution for a node only employs

feature vectors of its neighbors. Due to the locality of the operation, it is possible to manage

different structures of graphs without any constraints.

21

A topic worthy of discussion is the definition and computation of the weight matrix Θl
ji

involved in the local weighted aggregation. We defined a filter-generating network F l : Rs −→

Rdl+1×dl , that takes as input the label associated to each edge L(j, i) and gives as output the

matrix Θl
ji = F l

wl(L(j, i)) ∈ Rdl+1×dl , where dl+1 and dl are respectively the dimensions of

feature vectors at layer (l + 1) and l. Notice that the function F l
wl is generated through a

neural network and the term wl represents the weights of such network.

In the case under study, the edge labeling function considered at each layer l is the difference

between the features associated to the two nodes that an edge connects together at the layer l:

L(j, i) = hl
j − hl

i, j ∈ N(i)l, (1.17)

where the vector hl
i is the feature vector of node i at l-th layer.

In conclusion the equation that describes the ECC is defined as:

hl+1
i =

1

|N(i)l|
σ

(∑
j∈N(i)l

F l
wl(L(j, i))hl

j + bl
)

=
1

|N(i)l|
σ

(∑
j∈N(i)l

F l
wl(h

l
j − hl

i)h
l
j + bl

)

=
1

|N(i)l|
σ

(∑
j∈N(i)l

Θl
jih

l
j + bl

)
, (1.18)

The symbol σ represents the activation function selected for the neural network.

CHAPTER 2

STATE OF THE ART ON POINT CLOUD PROCESSING

Different typologies of point cloud processing that address various tasks such as classifica-

tion, segmentation and denoising [5] [6] [7] [8] [9] are available in literature, revealing a growing

interest in point clouds and their applications.

In this section particular attention is given to point cloud denoising: the importance of this

task is discussed and the state-of-the-art methods are presented, highlighting the differences

and common points among them.

2.1 Point Cloud Denoising

All the available point cloud acquisition methods, such as radars, lasers, sensors or even

CAD tools able to create point clouds from images, insert non-negligible noise, corrupting the

collected information and requiring a denoising pre-processing before any further use. Therefore,

the task of point cloud denoising has become a problem investigated by several researchers

developing different techniques.

Traditional approaches can be mainly divided into two categories: local and non-local oper-

ator based. Local operator based methods generally implement surface fitting of noisy inputs;

the Moving Least Squares (MLS) is one of the most common, it projects each noisy input point

to a surface approximated from the noisy observation. Other widely used approaches are based

on sparse representations of geometric characteristics, such as normals to the surface, estimated

22

23

solving minimization problems. On the other hand, the methods belonging to the second cat-

egory exploit self similarities to re-construct noiseless point clouds; one of its most promising

branch is a graph-based approach, which exploits graph representation of point clouds and

graph properties. In particular, methods that involve signal smoothness and regularization

such as graph Laplacian regularization or total variation are particularly efficient.

Recently new techniques involving neural networks have been investigated. A few networks

have been presented and the most relevant are PointCleanNet [6] and Neural Projection De-

noising (NPD) [7], a network based on local surface estimation. Both networks are based on

the architecture of PointNet[5], the first neural network designed to deal with point clouds for

classification and segmentation tasks.

None of the neural networks proposed for the denoising of point clouds implements a con-

volutional network, it is coarsely emulated using multilayer layer perceptrons and max-pooling

layers.

2.2 Notable Methods for Point Cloud Processing

In the following a brief review of representative and notable projects concerning the point

cloud processing is reported.

2.2.1 PointNet

PointNet [5] is the first neural network able to efficiently deal with point clouds for classifica-

tion and segmentation tasks. The architecture, shown in Figure 7, is quite simple, characterized

by several multilayer perceptrons, MLP , and maxpooling layers, MP .

24

It can be seen in Figure 7 that two transformer blocks STN1 and STN2 are inserted, both

have an internal architecture similar to the global structure of PointNet: several fully connected

layers with a final maxpooling layer. The STN1 block is an input transformer that creates a

3 × 3 matrix from 3-D input point cloud in order to constrain the network to be rotation

invariant. The second block, STN2, is a feature transformer similar to the previous one but

returns as output a 64× 64 matrix. Each transformer consists in shared multilayer perceptrons

with output dimensions (64,128,1024), a maxpooling and two fully connected layers to regress

the dimensions.

The number of input points and the size of the maxpooling layer’s output have a great

impact on the performances of the net, hence it is reasonable utilize only point clouds with a

limited number of points.

PointNet is a neural network designed for point clouds, characterized by a simple archi-

tecture and able to achieve promising results for the addressed tasks. Several networks, which

exploit similar architectures but address different processing tasks, have been realized; the most

notables are PCPNet [8] for estimation of local shape properties such as normals or curvature

of the points, PointCleanNet [6], for point cloud denoising, which is inspired by PCPNet, and

Neural Projection Denoising [7], NPD, based on local surface estimation.

In the following PointCleanNet and NPD are well discussed; instead an in-depth review of

PCPNet is not presented because the architecture would not introduce any novel aspects and

the task is beyond the topic of the thesis.

25

STN1

MLP

h1
h2
.
.

H1
H2
.
.

MLP K Outputs
Noisy Point Cloud

STN2

MLP MAXPOOL

Global Features

3x3

nx3

nx3

64x64

nx64nx64 nx1024 nx1024
(64,64) (64,128,1024) (512,256,k)

Figure 7: PointNet: architecture for point cloud classification.

2.2.2 PointCleanNet

PointCleanNet [6] is a deep neural network able to remove outliers and denoise the remaining

points. Outliers are defined as additional points outside of the original surface of the point cloud

and they can be removed in order to increase the quality of the data. Given as input a noisy

point cloud, the network is first trained to learn surface patches to identify the outliers and

then to estimate the displacements of the remaining points affected by white additive noise.

The training set is a collection of patches created by selecting a point and its closest points

within a specific radius; the algorithm only performs the denoising of the center point of the

patch, which depends only on a local neighborhood, treating the denoising task as a local

problem.

The network is divided into two stages. The first stage is dedicated to the outlier removal,

where an outlier probability oi associated to each point is predicted and if it is larger than a

threshold the point is considered an outlier. After this procedure the identified outliers are

26

removed from the input and then the second stage is performed. The displacements di of the

remaining points to the original and unknown surface are estimated and applied to the noisy

point cloud without outliers in order to obtain the denoised point cloud.

The structure exploited in both of the steps can be seen in Figure 8 and Figure 9. The

global architecture is largely drawn from PCPNet [8], which is inspired from PointNet. The

goals of the network are to move the noisy points as close as possible to the original surface

and maintain a regular distribution avoiding clustering. The total loss function in Equation 2.2

exploits the distance between each denoised points and its closer point in the ground truth point

cloud to move the point closer to the surface, Ls term in Equation 2.1, and a regularization

term to avoid clustering, Lr in Equation 2.1.

Ls(p̃i,Pp̃i
) = min

pj∈Pp̃i

||p̃i − pj||22 , Lr(p̃i,Pp̃i
) = max

pj∈Pp̃i

||p̃i − pj||22 , (2.1)

La = αLs + (1− α)Lr. (2.2)

In Equation 2.1 p̃i is the denoised point i, pi is the original point i and Pp̃i
is the neighborhood

of points closer to the denoised point i in the original point cloud. In Equation 2.2 α is a

parameter to weight the importance of the regularization term in the total loss.

In Figure 8 and Figure 9 the architecture of the networks proposed in [6] is shown, where

spatial transformer layers, QSTN and STN blocks, and fully connected layers, FNN, are ex-

ploited. Both the networks, for outlier removal or denoising, share the same architecture. The

first layer, QSTN is used to constrain the network to be rotation invariant, notice that the

27

same block is applied again at the end of network to restore the original rotation and make it

consistent with the input data. The QSTN block has the same function of the first transformer

block in PointNet, but differs for the output dimension that in this case is a quaternion. The

subsequent layers perform the feature extraction, which is realized with several fully connected

layers and a full linear transformation, the STN block. The features of each points, hi, are

combined together with a symmetric operation, a maxpool or a summation, to obtain an order

invariant feature vector, Hi. At last, a regressor, composed of fully connected layers, estimates

the desired output: the displacements di or the outlier probability oi.

QSTN STN1

FNN1

c1
c2
.
.

h1
h2
.
.

FNN2

H1
H2
.
. FNN3 oi

Pi
Symmetric op

(3,64,64) (64,64,128,k)

nxk 1xk

(k,512,256,nout)

Figure 8: PointCleanNet: architecture of the outlier removal step.

28

QSTN2 STN2

FNN4

c1
c2
.
.

h1
h2
.
.

FNN5

H1
H2
.
. FNN6

Pi\Oi

pi, noisy

pi, denoised

di

Symmetric op

(3,64,64) (64,64,128,k)

nxk 1xk

(k,512,256,nout)

Figure 9: PointCleanNet: architecture of the denoising step.

PointCleanNet is able to outperform currently state-of-the-art traditional methods, exploit-

ing the simple architecture of PointNet re-arranged for the denoising task. Furthermore, it is a

blind network: the network is not trained for a specific amount of noise, but the same network

can denoise point clouds affected by white additive noise with different standard deviations.

However, the network is able to denoise just the center point of the patch by time, performing

a point training rather than a patch training.

2.2.3 3-D Point Cloud Denoising via Deep Neural Network Based Local Surface

Estimation

The Neural Projection Denoising [7], NPD, is a novel network which exploits the estimation

of geometrical properties to denoise a corrupted point cloud.

The network predicts reference planes from a noisy input and projects the points to the

surfaces. The network has to learn from local and global features the reference planes T̂i

29

characterized by normal vector âi and intercept ĉi for each noisy point p̃i and then obtain the

denoised point p̂i performing a projection:

p̂i = p̃i − âT
i p̃iâi + ĉiâi. (2.3)

During a pre-processing phase, the true reference planes are computed from the original point

cloud with graph-based methods. The ground truth reference planes jointly with the noiseless

point cloud are used to supervise respectively the estimation of the surfaces and the final

denoised version of the data. To evaluate the quality of the final denoised point clouds with

respect to the original one the mean squared error is computed:

MSE =
1

N

N∑
i=0

||p̂i − pi||22, (2.4)

where p̂i is the estimated denoised point i, pi is the original point i and N is the number of

points.

Instead, the cosine similarity is exploited as loss function to constrain the reference plane

estimation:

cos({âi, ĉi}, {ai, ci}) =
1

N

N∑
i

∣∣∣1− [aT
i , ci]

T [âT
i , ĉi]

||[aT
i , ci]||2||[âT

i , ĉi]||2

∣∣∣, (2.5)

where N is the number of points, âi is the estimated normal vector of point i, ĉi is the esti-

mated intercept of point i and ai and ci the respectively ground truths. The total loss is the

combination of Equation 2.4 and Equation 2.5.

30

The architecture is shown in Figure 10. It can be seen that the transformer blocks, typical of

the PointNet architecture, are not inserted. A MLP is exploited to extrapolate local features and

a maxpooling operation to extract global information. The concatenation of the two features

such predicted is the input of a series of MLP that estimates the reference planes. Finally,

the noisy points are projected on the estimated reference planes, obtaining the denoised point

cloud. The strength of the method is the simplicity of the architecture: it directly estimates

surfaces and project the points.

MLP
Noisy Point Cloud

MLP MAXPOOL

Global Features

nx3
(64,64, 64, 128) (128,512)

Local Features

1x512nx512

nx640

MLP

(640,256,128)

MLP

(128,64,4)
nx4

Estimated Reference Planes

f

Denoised Point Cloud

nx3

Figure 10: Neural Projection Denoising: architecture of the whole network.

CHAPTER 3

PROPOSED APPROACH FOR POINT CLOUD DENOISING

In this section different aspects of the first stages of network’s design are described: the

general structure and the creation of the datasets.

3.1 General Structure

The method proposes a deep neural network to denoise point clouds based on graph-

convolutional layers, the first step of the design is to outline a general structure of the network.

In the context of image denoising, it has been recently demonstrated [10] that convolutional

neural networks achieve better results if trained to estimate the residual, the difference between

the noisy and the clean image, rather than directly the denoised image. Residual learning of

convolutional neural network, introduced in [11], was originally conceived to address the perfor-

mance degradation with increasing network depth phenomenon. Also the proposed architecture

adopts the residual learning principles: the network is trained to predict the residual between

the noisy and the clean point cloud, i.e. the additive white noise.

The core of the architecture is composed of several blocks, called Residual Block, drawn by

[11], able to detect and remove the correlations of the input of the block itself: the ground-

truth point cloud is gradually removed from the noisy observation, ideally obtaining only white

additive noise at the end of the net. The estimated noise is subtracted to the noisy input in

31

32

order to finally obtain the denoised point cloud. An in-depth discussion of the structure is

reported in section 4.2.3.

The proposed network is based on graph-convolutional layers, which are the basic compo-

nents of each residual block. All the operations of these blocks are defined in the feature space

rather than in the 3-D space, then a Pre-Processing Block is introduced at the beginning of the

network to project the noisy point cloud from the 3-D space to the feature space, extrapolating

meaningful information.

In Figure 11 it is possible to observe the general architecture described: only two residual

blocks are reported as an example, the actual number is discussed in section 4.2.3, where a

wider explanation of each block is reported.

Preprocessing
Block

Residual
Block

Residual
Block

Xn Xrnr

Figure 11: Block diagram of the general structure proposed.

33

3.2 Dataset creation

An important aspect worthy of discussion is the creation of the dataset: the ModelNet40 [12]

database is exploited for the training and validation set; instead the Shapenet [13] repository

for the testing set.

Both the previous cited archives store 3-D representations of objects belonging to different

common categories: airplane, bath, bed, car, chair and so on.

ModelNet40 is provided by the University of Princeton and it is constituted by a collection

of 3-D CAD models of objects divided into 40 different categories, all cleaned by the authors.

The data are stored in .OFF format file and each point cloud is represented by a collection of

meshes, which are geometrical portions of the surface. In each file the spatial coordinates of

the vertices and the faces, expressed as indices of vertices that compose them, are reported.

On the other hand, Shapenet, released by the University of Stanford, is a large-scale dataset of

3-D data, including 55 common object categories with more than 50.000 models in .obj format

file, where the data are reported as in the other cited dataset.

All the data that constitute the training, the validation and the testing set have to be

pre-processed in order to apply the denoising method to point clouds with the same initial

conditions. As first step a mesh-sampling on the faces is performed, obtaining a collection of

points in spatial coordinates: for the training and validation data 20.000 points per point cloud

are sampled, instead for the testing data 30.720. The points are sampled following a normal

distribution to avoid clustering.

34

After the sampling, all the point clouds are normalized: each point cloud is scaled in order

to be contained in a sphere with unitary diameter. The diameter is defined as the measure

of the maximum distance between two points in the point cloud. This operation is necessary

because point clouds can have an arbitrary diameter that would not affect the representation

itself of the data, but it has to be taken into account when an addictive white noise is applied:

noise with same value of standard deviation would have different effects if applied to point

clouds with different scales and diameters. A further explanation about the application of the

noise is reported in section 3.3.

The last step of the data pre-processing consists in the patch division of the data only for the

training and validation set. As already explained, the graph-convolutions perform operations

upon points and their neighborhoods, therefore the patch has to be created accordingly. For

the training and the validation set several points and their 1023 closest points are selected from

all the sampled and normalized point clouds, the central points are chosen sufficiently spaced to

obtain non-overlapped patches; each center point and its 1023 closest points constitute a single

patch. The final datasets for the training and validation phase are respectively composed of

117.000 and 100 different patches extracted from ModelNet. Instead the testing set is composed

of 100 point clouds extracted from Shapenet, belonging to ten categories not included in the

training or validation set. For the testing set the patch division is not implemented.

3.3 White Noise Application

Point clouds from the datasets described in section 3.2 are artificially corrupted in order to

model a noisy data observation. In particular, white additive noise is considered in this project;

35

it affects point clouds changing the position of each points, modifying the value of the three

spatial coordinates.

An easy way to emulate this behaviour is to create a matrix of the same dimension of the

clean input filled with normally distributed values with zero mean and σ as standard deviation

and add the obtained matrix to the noise-free input, the outcome would be a noisy version of

the clean input:

Xn = X + n, (3.1)

n = N (0, σ2), (3.2)

where Xn is the noisy point cloud, X is the original clean input, n is the white additive noise

and N (0, σ2) is a normal distribution with standard deviation σ.

It is clear that in order to directly apply the chosen value of standard deviation and have

consistent noisy point clouds, all the original input has to be normalized with a diameter equal

to one, otherwise applying same standard deviation would have different effects to point clouds

with different diameter.

The proposed neural network is able to learn how to reconstruct data affected by a specific

amount of noise, therefore the training and the testing have to be performed exploiting data

characterized by the same standard deviation in order to obtain consistent results.

36

0.3

0.2

0.1

0

-0.3

0.1
-0.1

-0.2

0 -0.2

-0.1

-0.3-0.1

0

0.1

0.2

0.3

0.3
0.2

0.1
0

-0.3

0.1

-0.2

-0.1
0

-0.1

-0.2

0

-0.3-0.1

0.1

0.2

0.3

0.4

Figure 12: Examples of corrupted point cloud. Ground truth (left) and noisy corrupted by

white noise with σ=0.02 (right).

CHAPTER 4

GRAPH NEURAL NETWORK FOR POINT CLOUD DENOISING

In this section an in-depth analysis of the network proposed and the details of the main

blocks are reported.

4.1 Architecture design

4.1.1 Overview

An overview of the proposed architecture, called GraphPointNet, is shown in Figure 13. It

can be seen from the figure that the network is divided into three big blocks: the pre-processing

block, two residual blocks and the final block where the reconstruction of the denoised point

cloud is performed.

The pre-processing block is designed to project the noisy observation from the 3-D space

to the feature space. During the training, the network progressively learns an efficient feature

description, able to detect meaningful information for the required task.

After, the feature expansion, the data are processed by several residual blocks. The network

exploits the residual learning and predicts the white additive noise instead of directly the

denoised point cloud. Each block detects and removes correlations in the input of the block

itself to provide as output a progressively better estimation of the white additive noise; the idea

is to gradually eliminate the true point cloud and obtain only white noise.

37

38

Finally, in the last step, the estimated white additive noise in the feature space is projected

back to the 3-D domain to be consistent with the noisy input, then it is subtracted to the noisy

point cloud and the denoised point cloud is obtained.

4.1.2 Design choice

The core of the architecture is composed of several graph-convolutional layers, followed by

batch normalization blocks and Leaky Relu as activation functions as shown in Figure 13.

The Leaky Relu function is a variant of the Relu function described in section 1.4.2: for

positive values it is equal to the Relu function and for negative ones it returns small negative

rate instead of being equal to zero. The Leaky Relu function is used to overcomes the ”dying

Relu” problem: in a network with only Relu functions, if a neuron receives a negative input it

would return as output always zero, as shown in equation Equation 1.3, in the case in which

many neuron’s input become negative for any reason, random initialization or wrong learning

rate, they would never work.

y

x

y

x

y=x

y=ax

y=x

y=0

ReLu Leaky ReLu

Figure 14: Relu vs. LeakyRelu.

39

Conv 1D

Conv 1D

Conv 1D

GCONV

BN

LeakyReLu

GCONV

BN

LeakyReLu

GCONV

BN

LeakyReLu

G
ra

ph

GCONV

BN

LeakyReLu

GCONV

BN

LeakyReLu

GCONV

BN

LeakyReLu

G
ra

ph

GCONV

Pr
e-

Pr
oc

es
si

ng
R

es
id

ua
l B

lo
ck

R
es

id
ua

l B
lo

ck

F
ig

u
re

1
3
:

G
ra

p
h

P
oi

n
tN

et
:

ar
ch

it
ec

tu
re

of
th

e
n
et

w
or

k
p

ro
p

os
ed

.

40

A noisy point cloud can be represented as:

Xn = X + n, (4.1)

where Xn is the noisy point cloud, X is the clean point cloud and n is the additive white noise,

all matrices have the same dimension N × 3, N number of points in the point cloud.

As already mentioned, the network learns to predict the white noise n, that represents the

discrepancy between the noisy observation and the clean point cloud. This structural choice

is based on the work of Zhang et al. [10], where it has been shown that a residual network

is very efficient for image denoising tasks. Zhang et al. propose an architecture for image

denoising characterized by a single residual unit: a sequence of convolutional layers, batch

normalizations and Relu functions. It can be noticed that the same structure can be exploited

to train either the residual mapping or directly the denoised image, it depends only on the loss

function. The advantages of the residual learning are exposed in [11], where the phenomenon of

performance degradation when increasing the depth of the net is analyzed. Contrary to what

might be expected, adding layers to an optimized network leads to increment of the training

error, solvers are not able to find a solution as good as the one associated to the original

structure even if the deeper version of an architecture is created only with identity mapping as

additional layers. A deep residual network is proposed [11] to overcome this degradation, the

net instead of predicting the desired mapping H(x), estimates the residual R(x) = H(x) − x,

41

where x is the input of the net. An inverse operation is applied to finally recover the original

desired function H(x): H(x) = R(x)+x. An example of building block is reported in Figure 15.

Generic Layer

Generic Layer

x

R(x)

x

H(x)

Figure 15: ResNet: building block of residual learning.

It is possible to assume that a network is not able to well approximate an identity function based

on the fact that even networks with inserted identical mapping present degradation problem and

therefore the network reformulation with residual learning is justified and useful. Exploiting a

residual learning can bring advantages if the desired function is close to the identity: the network

learns the discrepancies between the reference and the identity rather than a new function. The

residual formulation H(x) = R(x)+x is realized just inserting a short connection that turns the

original design into its residual version without increasing the complexity or adding parameters.

42

In the proposed denoising network several residual connections are inserted; as shown in

Figure 13, two internal residual blocks are designed besides the connection between the noisy

input and the estimated noise to recover the denoised point cloud.

The main novel contribution of the method proposed is the insertion of graph-convolutional

layers, that allows to design a CNN-like structure also for input that relies on a non regular

structure such point clouds. Each graph-convolutional layer implements the Edge-Conditioned-

Convolution defined as:

hl+1
i =

1

|N(i)l|
σ

(∑
j∈N(i)l

F l
wl(h

l
j − hl

i)h
l
j + bl

)

=
1

|N(i)l|
σ

(∑
j∈N(i)l

Θl
jih

l
j + bl

)
,

where the vector hl+1
i is the feature vector of the node i at the (l+ 1)-th layer, hl

i is the feature

vector of node i at l-th layer, N(i)l is the neighborhood of the node i at l-th layer, σ is the

activation function and b is a bias. The term F l
wl(h

l
j − hl

i) represents a function computed

through a deep neural network with training parameters wl at layer l that takes as input the

difference between the feature vector at layer l of the center point i and its neighbor j and

returns a weight matrix Θl
ji. The matrix Θl

ji stores the weights associated to each point j

in the neighborhood of the point i. The function Fwl is originally designed in [1] as a deep

neural network of two fully connected layers, but this implementation negatively affects the

training with over-parameterization. In order to overcome this problem, a partially structured

matrix is exploited in the last layer of the network that implements the Fwl function: multiple

43

row-subsampled circulant matrices are stacked, decreasing the number of parameters. Partial

circulant matrices with three rows for each has been chosen, constraining the network to have

a feature number multiple of three.

The proposed network is finalized to denoise point clouds, therefore the Mean Squared Error

between the denoised point cloud x̂ and its ground truth x is exploited as loss function:

MSE =
1

N

N∑
i=1

||x̂i − xi||2, (4.2)

where N is the number of points in the point cloud. The loss function is computed after the

estimated noise is projected in the 3-D space and subtracted to the noisy point cloud.

4.2 Block Diagram

A brief focus on the most characteristic building blocks is reported. In particular the

functionality and the implementation of the blocks are discussed.

4.2.1 Pre-Processing Block

The pre-processing block is in charge of the feature expansion of the noisy observation: in

this specific section, the network should extract the important information from the input data

that will be used for the denoising task.

Intuitively, the more features are involved in the features domain, the more information

the network is able to detect. On the other hand, enlarging the number of feature causes a

non negligible increment of occupied memory and after a specific performance the network is

not able to detect more information, even after further expansions. It has to be highlighted

44

that the computation of the graph convolution, the main operation of the network, requires a

large amount of memory, therefore it is necessary to find a trade-off between the number of

features and the memory occupancy. In early simulations the number of features chosen is 66,

successively enlarged to 120.

Several 1-D convolutions are exploited for the implementation of the feature extraction.

Each of these operations can be seen as a multiplication by a matrix plus a scalar quantity, called

bias. In Figure 16 it is possible to observe the implementation with 66 features: the number

of features is progressively increased from 22 to 44 and finally to 66. Gradually enlarging the

features number in a deep structure achieves better results and a more stable representation

than performing the expansion directly with one layer. The batch normalization layers are

inserted in order to obtain consistent data with the rest of the network.

C
on

v
1D

C
on

v
1D

C
on

v
1D

Le
ak

yR
eL

u

Le
ak

yR
eL

u

Le
ak

yR
eL

u

(11, 1024, 3) (11, 1024, 22) (11, 1024, 44)

BN BN BN

(11, 1024, 66)

Figure 16: Architecture of pre-processing block.

45

4.2.2 Residual Block

The purpose of the residual blocks has been largely discussed in the previous chapters, here

just the design description is reported. The simulations are performed with two residual blocks,

due to the high-time consuming operations involved; adopting a deeper model would only have

slowed down the process, especially in the first stages of the development.

Each residual block is composed of three layers of graph-convolution which takes two inputs:

the feature vectors of all the points and a graph, which is computed at the beginning of each

block. A graph is a matrix that stores the difference between all the feature vectors. Notice

that the graph construction is dynamic, i.e. the graph is updated after every residual block but

shared among the graph convolutional layers inside a block to limit computational complexity.

Each graph-convolutional layer in a residual block is followed by a batch-normalization layer

and an activation function, as visible in Figure 17. The input data are normally distributed, an

important characteristic that helps the network in the training phase, but as the network gets

deeper this property is easily lost, the batch normalization block is in charge of the normalization

of the data through the net. The activation function exploited in the whole project is the Leaky-

ReLu function, as reported in the Figure 17.

46

G
C
O
N
V

BN

Le
ak
yR

eL
u

Graph

G
C
O
N
V

BN

Le
ak
yR

eL
u

G
C
O
N
V

BN

Le
ak
yR

eL
u

Figure 17: Architecture of a residual block.

4.2.3 Graph Convolutional layer

The Graph Convolutional layer is the core of the network: it takes as input the feature

vector matrix at layer l and a graph and returns for each point i the feature vector hl+1
i that

becomes the input of the following layer (l + 1). The output is computed by performing a

weighted local aggregation over a neighborhood identified by the graph:

hl+1
i =

1

|N(i)l|
σ

(∑
j∈N(i)l

Θl
jih

l
j + bl

)
,

where N(i)l is the neighborhood of the point i at layer l, hl
j is the feature vectors associated to

the node j at layer l, Θl
ji is the weight matrix at layer l of node j in N(i)l, σ is the activation

function and b is a bias.

The term ”local” used in the description of the operation means local in the feature space.

The peculiarity of the graph convolution operation is to consider close into the feature space

47

not the points that are spatially nearby, but points that share similarities according to some

metric.

In order to detect the points belonging to the neighborhood of each point, it is necessary to

build the edge-labeled graph of the point cloud. In our network the label of each edge is the

difference between the feature vector associated to the nodes that the edge connect together.

First of all, the distances between all the points are computed, then the neighborhood of each

node can be defined: for each node i a fixed number of closest points is selected, building a

k-nearest neighbors graph. Different numbers of neighbors are tested: early simulations employ

eight points and then the value is increased, reflecting an increment of the network global

performance. After the definition of the neighborhood the weighted aggregation is performed.

In Figure 18 the implementation of the graph-convolution operation is reported. The block

takes as input the feature vector matrix Hl, which contains the feature vectors at layer l

associated to all the points, and the graph, implemented by the block called Graph outside the

main element Gconv in Figure 18. In the Graph block the distances between all the points in

terms of Square Euclidean Distance are computed. Inside the Gconv block a sub-block called

Non-local/local aggregation is reported, where the weighted aggregation is implemented for each

point j in the neighborhood of the center point i, except for the point i itself. Our experiments,

reported in chapter 5.2.1, consider eight neighbors for each point. An additional block, called

1-D convolution block, is exploited to take into account the contribution of self loops, i.e. the

center point i of each neighborhood, in the local weighted aggregation. The mean of the nine

48

components, eight neighbors and one self-loop, described above is considered to obtain the

output feature vector matrix Hl+1.

Graph

Conv 1D

Non local/local
 aggregation

M
ea

nHl Hl+1

GCONV

Figure 18: Architecture of graph convolution layer: H l is the input of the layer l and H l+1 is

the output of the graph convolution layer that will be the input of the (l + 1) layer.

CHAPTER 5

VALIDATION AND RESULTS

Once the network is trained, several tests are performed in order to evaluate the perfor-

mances, the quality of the results and make comparisons with other methods.

The dataset of the training phase is composed of non-overlapped patches extrapolated from

a point cloud. A patch is created selecting a point, that will be the center of the patch, and

its 1023 nearest neighbors points, a detailed explanation is in section 3.2. During the testing

phase the convolutional structure of the training data has to be replicated properly, but the

point cloud has to be denoised without points overlapping.

For each point cloud in the testset the nearest 32 neighbors are individuated and saved in a

matrix, called nearest-neighbors matrix, that the network takes as input with all the points of

the point cloud. A specific code for the testing net is edited to perform properly the convolution

operation over the whole point cloud. All the non-convolutional operations remain unchanged

from the description in the training code because they can be directly computed over the

whole point cloud. Instead, the convolutional operations are executed just over one point at a

time extracting its nearest neighbors from the nearest-neighbors matrix computed a priori: a

convolution operation takes as input the feature vectors associated to one center point and to

the points in its neighborhood and returns as output just the feature vector of the center point.

This operation is executed in parallel and the whole point cloud after a graph-convolutional

layer is collected and becomes the input for the following layer.

49

50

Once the denoised point clouds are obtained, the Chamfer measure, also called Cloud-to-

Cloud distance (C2C), is exploited to evaluate the quality of the method. This metric is adopted

in several papers concerning the point cloud denoising, such as [6] and [9], but occasionally called

in different ways despite the same computation. It consists in measuring the mean distance

between the points of the denoised and the clean point cloud. More in detail, it computes the

mean of the square root of the squared Euclidean distances between each point of the ground

truth and its closest denoised point, then computes the opposite mean distance, between each

denoised point and its closer point in the ground truth point cloud; the final C2C distance is

the mean between the two distance estimations. In the following the equation is reported:

C2C =
1

2

[1

N1

∑
xi∈N1

√
min
x̂j∈N2

||xi − x̂j ||22 +
1

N2

∑
x̂i∈N2

√
min
xj∈N1

||x̂i − xj ||22
]
, (5.1)

where N1 and N2 are respectively the points of the clean and of the denoised point cloud, x is

the clean point cloud and x̂ is the denoised point cloud.

The testset is composed by ten different point clouds from ten categories of the dataset

Shapenet [13]; the data are pre-processed as discussed in section 3.2. In the tables below the

results of several simulations are reported, exploiting different feature numbers and applying

several levels of noise.

For each simulation one table for each category is reported, where the results for each of the

ten models are presented; the Shapenet [13] dataset contains a large amount of point clouds for

each category, therefore the number of each point cloud is shown in the left column.

51

The simulations differ for number of features and standard deviation, the presented tests

are performed with the following characteristics:

• Network with 66 number of features and 0.02 of standard deviation

• Network with 66 number of features and 0.01 of standard deviation

• Network with 120 number of features and 0.02 of standard deviation

The Graph Laplacian Regularization [9] method and PointCleanNet [6] are taken into ac-

count as state-of-the-art methods for point cloud denoising. The authors of the first project

(GLR) kindly provided the MATLAB code that is executed over the same testing set of Graph-

PointNet, in order to have comparable results. The code of PointCleanNet and a pre-trained

model for a blind denoising are available on github. The network is tested over the same testset

of our experiments.

Following the results in terms of C2C distances are reported and discussed.

5.1 Simulations with noisy point clouds at high level of noise

5.1.1 Quantitative Results

The first test performed considers GraphPointNet trained for 900.000 iterations, with feature

number equal to 66. The testset is the same for all three methods and it is affected by additive

white noise with standard deviation 0.02.

52

TABLE I: AIRPLANE TESTSET CORRUPTED BY WHITE NOISE WITH σ = 0.02.

Airplane

Model Noisy GLR PointCleanNet GraphPointNet

model 000492 0.009181 0.007496 0.005488 0.004984

model 003733 0.009728 0.008604 0.007418 0.003890

model 006263 0.009083 0.007373 0.006298 0.005559

model 022125 0.009274 0.007216 0.007489 0.007102

model 022283 0.009245 0.007257 0.005614 0.005459

model 023833 0.009129 0.007313 0.005672 0.005188

model 026886 0.009108 0.007240 0.005680 0.005946

model 031422 0.009492 0.007565 0.006623 0.006224

model 034021 0.009658 0.007728 0.006093 0.005029

model 044620 0.008440 0.006912 0.006156 0.005521

53

TABLE II: BENCH TESTSET CORRUPTED BY WHITE NOISE WITH σ = 0.02.

Bench

Model Noisy GLR PointCleanNet GraphPointNet

model 005965 0.009481 0.007239 0.007655 0.007404

model 016245 0.001003 0.008126 0.006851 0.004236

model 022257 0.009937 0.008197 0.006523 0.005727

model 033008 0.007714 0.006276 0.005726 0.005402

model 033970 0.009340 0.007057 0.005943 0.004966

model 035602 0.009721 0.008139 0.006334 0.006332

model 040561 0.008675 0.006786 0.006535 0.005313

model 040935 0.009151 0.007274 0.006271 0.004408

model 048967 0.009819 0.007458 0.00671 0.005335

model 050060 0.00952 0.006739 0.006249 0.005086

54

TABLE III: CAR TESTSET CORRUPTED BY WHITE NOISE WITH σ = 0.02.

Car

Model Noisy GLR PointCleanNet GraphPointNet

model 001096 0.009414 0.007283 0.009541 0.007176

model 0002211 0.009288 0.007016 0.007817 0.005669

model 002988 0.010157 0.007051 0.007793 0.005976

model 004618 0.009796 0.007378 0.007732 0.006265

model 009175 0.010911 0.008789 0.01092 0.008767

model 020513 0.009728 0.007317 0.008953 0.007138

model 021318 0.009947 0.007129 0.008292 0.006390

model 039792 0.010131 0.006880 0.008023 0.006149

model 043510 0.010083 0.007716 0.009729 0.007565

model 044420 0.010051 0.007271 0.008735 0.006635

55

TABLE IV: CHAIR TESTSET CORRUPTED BY WHITE NOISE WITH σ = 0.02.

Chair

Model Noisy GLR PointCleanNet GraphPointNet

model 002602 0.010282 0.007583 0.006740 0.006211

model 005508 0.010152 0.007256 0.007842 0.006793

model 008114 0.010432 0.007821 0.008380 0.007036

model 014993 0.010784 0.007965 0.006952 0.006467

model 017670 0.010684 0.007894 0.008055 0.006793

model 022491 0.010424 0.007902 0.007554 0.007648

model 039695 0.011569 0.008108 0.009014 0.006487

model 042555 0.010087 0.007619 0.008246 0.007648

model 044466 0.010623 0.008095 0.006204 0.004595

model 049987 0.009745 0.007236 0.008232 0.007227

56

TABLE V: LAMP TESTSET CORRUPTED BY WHITE NOISE WITH σ = 0.02.

Lamp

Model Noisy GLR PointCleanNet GraphPointNet

model 001682 0.009445 0.007927 0.005579 0.006005

model 001821 0.010817 0.008352 0.008466 0.005646

model 006388 0.009392 0.008274 0.006045 0.005988

model 014733 0.009733 0.008468 0.007239 0.005218

model 015980 0.008610 0.007243 0.005429 0.005160

model 027566 0.008063 0.006922 0.005277 0.006450

model 027833 0.009990 0.008928 0.007990 0.003452

model 030995 0.009267 0.008065 0.006349 0.005404

model 046317 0.011031 0.007982 0.004864 0.004792

model 048527 0.010961 0.007739 0.006688 0.005411

57

TABLE VI: PILLOW TESTSET CORRUPTED BY WHITE NOISE WITH σ = 0.02.

Pillow

Model Noisy GLR PointCleanNet GraphPointNet

model 001024 0.011881 0.007448 0.007472 0.005202

model 003839 0.011492 0.007652 0.007206 0.005278

model 012495 0.010478 0.007599 0.006926 0.005012

model 015547 0.011244 0.007752 0.00709 0.005095

model 018375 0.011871 0.007406 0.007382 0.004979

model 019730 0.011936 0.007311 0.007624 0.005120

model 020595 0.010800 0.007841 0.008739 0.006460

model 027534 0.010878 0.007924 0.007523 0.006310

model 028384 0.011332 0.007549 0.006639 0.005243

model 035045 0.01131 0.007891 0.006135 0.005370

58

TABLE VII: RIFLE TESTSET CORRUPTED BY WHITE NOISE WITH σ = 0.02.

Rifle

Model Noisy GLR PointCleanNet GraphPointNet

model 002980 0.006804 0.005897 0.004607 0.003962

model 006695 0.010485 0.007897 0.006605 0.005813

model 013613 0.008701 0.007431 0.005565 0.006480

model 015732 0.009340 0.007797 0.005465 0.006985

model 025491 0.008957 0.005897 0.005365 0.005742

model 034448 0.007649 0.007897 0.005445 0.006036

model 036775 0.009966 0.007431 0.005815 0.006460

model 039833 0.008168 0.007797 0.005353 0.005697

model 042254 0.008131 0.007596 0.005789 0.004493

model 044289 0.009169 0.006415 0.005621 0.006872

59

TABLE VIII: SOFA TESTSET CORRUPTED BY WHITE NOISE WITH σ = 0.02.

Sofa

Model Noisy GLR PointCleanNet GraphPointNet

model 003801 0.010484 0.008274 0.009275 0.006563

model 004439 0.009515 0.007312 0.006411 0.005604

model 006149 0.009437 0.007510 0.008397 0.007068

model 09749 0.010993 0.008737 0.010912 0.008312

model 010543 0.010958 0.007960 0.008881 0.007398

model 022992 0.011716 0.007662 0.008785 0.005891

model 035915 0.011521 0.008918 0.010647 0.008386

model 041298 0.008940 0.007542 0.005913 0.006830

model 042238 0.010782 0.008317 0.010042 0.007509

model 048440 0.011509 0.007814 0.010334 0.006829

60

TABLE IX: SPEAKER TESTSET CORRUPTED BY WHITE NOISE WITH σ = 0.02.

Speaker

Model Noisy GLR PointCleanNet GraphPointNet

model 001031 0.011605 0.008948 0.012321 0.009635

model 007663 0.011398 0.007568 0.010699 0.006660

model 008001 0.011705 0.008430 0.011304 0.007673

model 013073 0.012051 0.007312 0.009543 0.005797

model 021870 0.011140 0.007515 0.007913 0.005909

model 036904 0.012007 0.007351 0.009715 0.005696

model 043338 0.011774 0.007391 0.011380 0.006690

model 048797 0.012235 0.007995 0.010275 0.006907

model 049049 0.011598 0.008055 0.011599 0.007589

model 050580 0.011491 0.008178 0.01089 0.007547

61

TABLE X: TABLE TESTSET CORRUPTED BY WHITE NOISE WITH σ = 0.02.

Table

Model Noisy GLR PointCleanNet GraphPointNet

model 000287 0.010379 0.007332 0.010276 0.007662

model 000585 0.010493 0.007786 0.010412 0.008122

model 001276 0.011480 0.007817 0.009086 0.007441

model 006528 0.009003 0.007076 0.008329 0.006787

model 011565 0.009279 0.007027 0.006684 0.006265

model 017383 0.010297 0.007482 0.009406 0.006962

model 021726 0.008840 0.006893 0.006376 0.005856

model 028591 0.010119 0.007731 0.009910 0.007430

model 047791 0.009644 0.006701 0.006874 0.006391

model 048607 0.009726 0.006790 0.006120 0.005732

62

TABLE XI: CATEGORY MEAN FOR SIMULATION FOR WHITE NOISE WITH σ = 0.02.

Category GLR PointCleanNet GraphPointNet

Airplane 0.007470 0.006253 0.005491

Bench 0.007329 0.006481 0.005422

Car 0.007383 0.008754 0.006774

Chair 0.007748 0.007722 0.006691

Lamp 0.007990 0.006393 0.005353

Pillow 0.0076373 0.007274 0.005407

Rifle 0.007268 0.005563 0.005855

Sofa 0.008005 0.008960 0.007039

Speaker 0.007874 0.010561 0.007011

Table 0.007264 0.008348 0.006865

In Table XI the mean over all the models of each category is shown, in order to easily

understand which method achieves on average the best results.

It can be seen that GraphPointNet achieves the best results in almost all the categories.

The only exception is the Rifle category, where our graph-network provides a denoised version

of the point clouds slightly worse than the one denoised by PointCleanNet; however it is able

to outperforms the GLR method’s results. It has to be noticed that the improvement in the

63

performance of our network with the respect to the other two methods is particularly high at

this level of noise, highlighting the advantages brought by the insertion of graph convolution

layers.

TABLE XII: COMPARISON BETWEEN GRAPHPOINTNET WITH 66 AND 120 LEARN-

ING FEATURES.

Category 66 Features 120 Features

Airplane 0.005491 0.005434

Bench 0.005422 0.005346

Car 0.006774 0.006783

Chair 0.006691 0.006548

Lamp 0.005353 0.005105

Pillow 0.005407 0.005210

Rifle 0.005855 0.005535

Sofa 0.007039 0.006945

Speaker 0.007011 0.006951

Table 0.006865 0.006904

64

Enlarging the number of features is a possible improvement of the network to further increase

the performance. Therefore, a network with the same architecture of the one presented in the

previous simulations but with the number of features incremented from 66 to 120 is trained and

tested. A comparison between the original net with 66 features and the one with 120 trained

with corrupted data at high level of noise (σ = 0.02) is analyzed and reported in Table XII.

Expanding the number of features, the network is able to extract more information from the

input data, therefore an increasing of the performance is expected. It can be seen from Table XII

that on average an improvement is registered. Only in two categories a slightly degradation of

the performance can be noticed; even with this, the proposed network still achieves the best

performance with respect to GLR and PointCleanNet. The reduction in terms of C2C can be

attributed to overfitting phenomena.

A more relevant observation regards the Rifle category. Increasing the number of feature

GraphPointNet is able to provide the best performance also in the Rifle category, where with

a lower number feature, as shown in Table XI, PointCleanNet is more effective.

5.1.2 Qualitative Results

As additional comparison, qualitative results of the denoising methods are reported. In

Figure 19 the original point cloud of an airplane, its noisy version, corrupted by additive white

noise with standard deviation equal to 0.02, and the different denoised versions of the airplane

are shown.

65

0.4

0.2

0

-0.4

0.1

-0.3

-0.2

-0.2

0

-0.1

-0.4-0.1

0

0.1

0.2

0.3

0.4

0.5

0.4

0.2

-0.5

0.2 0

-0.4

-0.3

0.1

-0.2

-0.20

-0.1

-0.1

0

-0.4

0.1

0.2

0.3

0.4

0.5

0.5
-0.5

-0.4

00.2

-0.3

0.1

-0.2

-0.1

0

0

-0.1

0.1

-0.5

0.2

0.3

0.4

0.5

0.4

0.2
-0.5

-0.4

00.2

-0.3

0.1

-0.2

-0.2

-0.1

0

0

-0.1 -0.4

0.1

0.2

0.3

0.4

0.5

0.4

0.2
-0.5

0

-0.4

-0.3

0.1 -0.2

-0.2

0

-0.1

-0.4

0

-0.1

0.1

0.2

0.3

0.4

0.5

Figure 19: Airplane point clouds. First row: original (left) and corrupted (right) by white noise

with σ= 0.02. Second row: PointCleanNet (Left), GLR (Right). Third row: GraphPointNet.

66

In the denoised point cloud provided by PointCleanNet the presence of several outliers that

surround the whole shape of the point cloud can be seen. It is clear that this method is not

able to efficiently project all the points upon the point cloud surfaces at high level of noise.

Instead, the GLR algorithm is not able to effectively recover details of the global shape of the

point cloud: the denoised version remains wider than the original one and the details are not

well defined. GraphPointNet is able to sufficiently reconstruct the shape of the original point

cloud, with fewer outliers points. In particular our network is able to well reconstruct several

details of the original point cloud such as the head of the plane, as visible in Figure 19.

5.2 Simulations with noisy point clouds at low level of noise

5.2.1 Quantitative Results

A further simulation concerning point clouds affected by additive white noise with standard

deviation equal to 0.01 is performed. This test is performed over a GraphPointNet model

trained in the same conditions of the previous one reported.

67

TABLE XIII: AIRPLANE TESTSET CORRUPTED BY WHITE NOISE WITH σ = 0.01.

Airplane

Model Noisy GLR PointCleanNet GraphPointNet

model 000492 0.005592 0.003385 0.003570 0.003551

model 003733 0.005168 0.003358 0.003583 0.002564

model 006263 0.005766 0.003799 0.004015 0.003766

model 022125 0.006631 0.005343 0.00637 0.005135

model 022283 0.005830 0.003933 0.004498 0.003939

model 023833 0.005484 0.003630 0.004018 0.003753

model 026886 0.005739 0.003823 0.004157 0.003919

model 031422 0.005982 0.004391 0.004737 0.004159

model 034021 0.005610 0.003559 0.003759 0.003351

model 044620 0.005267 0.003695 0.004382 0.003741

68

TABLE XIV: BENCH TESTSET CORRUPTED BY WHITE NOISE WITH σ = 0.01.

Bench

Model Noisy GLR PointCleanNet GraphPointNet

model 005965 0.006597 0.005010 0.005068 0.004885

model 016245 0.005822 0.003370 0.003526 0.003211

model 022257 0.005916 0.003678 0.003515 0.003655

model 033008 0.005205 0.004201 0.005584 0.004603

model 033970 0.005690 0.004097 0.004575 0.004400

model 035602 0.005917 0.003836 0.003534 0.003843

model 040561 0.005459 0.004337 0.005323 0.004590

model 040935 0.005304 0.003571 0.004062 0.003966

model 048967 0.005827 0.003839 0.004188 0.004111

model 050060 0.005640 0.004285 0.005066 0.004667

69

TABLE XV: CAR TESTSET CORRUPTED BY WHITE NOISE WITH σ = 0.01.

Car

Model Noisy GLR PointCleanNet GraphPointNet

model 001096 0.006849 0.005803 0.006687 0.005422

model 002211 0.006033 0.004649 0.005252 0.004267

model 002988 0.006588 0.004525 0.005561 0.004463

model 004618 0.006326 0.004410 0.004892 0.004242

model 009175 0.008037 0.006970 0.007712 0.006584

model 020513 0.006876 0.005732 0.006717 0.005514

model 021318 0.006650 0.004784 0.005832 0.004714

model 039792 0.006751 0.004644 0.005633 0.004700

model 043510 0.007111 0.005801 0.006716 0.005401

model 044420 0.006797 0.004945 0.005889 0.004848

70

TABLE XVI: CHAIR TESTSET CORRUPTED BY WHITE NOISE WITH σ = 0.01.

Chair

Model Noisy GLR PointCleanNet GraphPointNet

model 002602 0.006392 0.004401 0.004486 0.004603

model 005508 0.006533 0.004911 0.005461 0.005052

model 008114 0.006850 0.004863 0.005721 0.004933

model 014993 0.006687 0.004199 0.004419 0.004202

model 017670 0.006868 0.004644 0.005517 0.004632

model 022491 0.006910 0.004802 0.004734 0.004551

model 039695 0.007308 0.004469 0.005394 0.004262

model 042555 0.006843 0.005258 0.005260 0.005012

model 044466 0.006031 0.003441 0.003344 0.003685

model 049987 0.006793 0.005652 0.007685 0.005720

71

TABLE XVII: LAMP TESTSET CORRUPTED BY WHITE NOISE WITH σ = 0.01.

Lamp

Model Noisy GLR PointCleanNet GraphPointNet

model 001682 0.005727 0.003700 0.003238 0.003636

model 001821 0.005960 0.004039 0.005225 0.004223

model 006388 0.005358 0.003285 0.002797 0.003546

model 014733 0.005327 0.003332 0.003508 0.002831

model 015980 0.005123 0.003386 0.003202 0.003564

model 027566 0.005232 0.003845 0.004318 0.003973

model 027833 0.004921 0.003228 0.003354 0.002072

model 030995 0.005378 0.003411 0.003246 0.003468

model 046317 0.006705 0.003320 0.00338 0.003377

model 048527 0.006874 0.003907 0.004095 0.003716

72

TABLE XVIII: PILLOW TESTSET CORRUPTED BY WHITE NOISE WITH σ = 0.01.

Pillow

Model Noisy GLR PointCleanNet GraphPointNet

model 001024 0.007435 0.003885 0.004945 0.004044

model 003839 0.007106 0.003625 0.004165 0.003840

model 012495 0.006422 0.003614 0.004047 0.003620

model 015547 0.006901 0.003638 0.003973 0.003668

model 018375 0.007322 0.003631 0.004633 0.003864

model 019730 0.007409 0.003698 0.004876 0.004002

model 020595 0.007069 0.004497 0.005624 0.004401

model 027534 0.006962 0.004244 0.004825 0.004091

model 028384 0.007101 0.003761 0.004232 0.003825

model 035045 0.007011 0.003595 0.003886 0.003607

73

TABLE XIX: RIFLE TESTSET CORRUPTED BY WHITE NOISE WITH σ = 0.01.

Rifle

Model Noisy GLR PointCleanNet GraphPointNet

model 002980 0.003869 0.002941 0.002839 0.003148

model 006695 0.006620 0.003906 0.004082 0.004002

model 013631 0.005499 0.003719 0.003339 0.003697

model 015732 0.006059 0.003949 0.003183 0.003791

model 025491 0.005434 0.003408 0.003102 0.003482

model 034448 0.005101 0.003958 0.004034 0.004036

model 036775 0.006315 0.003744 0.003602 0.003735

model 039833 0.005024 0.003573 0.003319 0.003711

model 042254 0.004462 0.003129 0.002856 0.003396

model 044289 0.005970 0.004087 0.003637 0.003846

74

TABLE XX: SOFA TESTSET CORRUPTED BY WHITE NOISE WITH σ = 0.01.

Sofa

Model Noisy GLR PointCleanNet GraphPointNet

model 003801 0.006857 0.005231 0.006073 0.004152

model 004439 0.006114 0.004144 0.004674 0.004236

model 006149 0.006517 0.005243 0.005717 0.004876

model 009749 0.007974 0.006748 0.007798 0.006228

model 010543 0.007327 0.004898 0.005506 0.004676

model 022992 0.007504 0.004224 0.005689 0.004226

model 035915 0.007929 0.005747 0.006959 0.005245

model 041298 0.005948 0.004090 0.003604 0.003993

model 042238 0.007339 0.005606 0.006768 0.005279

model 048440 0.007614 0.005020 0.006635 0.004884

75

TABLE XXI: SPEAKER TESTSET CORRUPTED BY WHITE NOISE WITH σ = 0.01.

Speaker

Model Noisy GLR PointCleanNet GraphPointNet

model 001031 0.008568 0.007517 0.00859 0.006700

model 007663 0.007652 0.005363 0.006987 0.005124

model 008001 0.008016 0.006200 0.007498 0.005647

model 013073 0.007671 0.004356 0.006105 0.004461

model 021870 0.007087 0.004316 0.004958 0.004029

model 036904 0.007637 0.004443 0.006060 0.004517

model 043338 0.007787 0.005448 0.007594 0.005204

model 048797 0.007913 0.004629 0.006579 0.004757

model 049049 0.008012 0.006124 0.007741 0.005787

model 050580 0.007672 0.005489 0.007043 0.005247

76

TABLE XXII: TABLE TESTSET CORRUPTED BY WHITE NOISE WITH σ = 0.01.

Table

Model Noisy GLR PointCleanNet GraphPointNet

model 000287 0.007309 0.006072 0.007894 0.006170

model 000585 0.007697 0.006773 0.008212 0.006635

model 001276 0.007653 0.005577 0.006659 0.005398

model 006528 0.006379 0.005364 0.006648 0.005260

model 011565 0.006036 0.004703 0.006793 0.005168

model 017383 0.007138 0.005888 0.006483 0.005923

model 021726 0.005665 0.004434 0.005372 0.004864

model 028591 0.007178 0.006230 0.007551 0.006250

model 047791 0.006474 0.005259 0.006274 0.005531

model 048607 0.006123 0.004804 0.005144 0.005196

77

TABLE XXIII: CATEGORY MEAN FOR SIMULATION FOR WHITE NOISE WITH σ =

0.01.

Category GLR PointCleanNet GraphPointNet

Airplane 0.003892 0.004309 0.003788

Bench 0.004022 0.004444 0.00419

Car 0.005226 0.006089 0.005016

Chair 0.004664 0.005202 0.004666

Lamp 0.003545 0.003636 0.003441

Pillow 0.003819 0.004520 0.003897

Rifle 0.003641 0.003399 0.003685

Sofa 0.005095 0.005942 0.00478

Speaker 0.005389 0.007692 0.005148

Table 0.005510 0.006703 0.005640

As previously, the Table XXIV shows the mean per category for a better comparison between

the methods analyzed.

78

TABLE XXIV: CATEGORY MEAN FOR SIMULATION FOR WHITE NOISE WITH σ =

0.01.

Category GLR PointCleanNet GraphPointNet

Airplane 0.003892 0.004309 0.003788

Bench 0.004022 0.004444 0.00419

Car 0.005226 0.006089 0.005016

Chair 0.004664 0.005202 0.004666

Lamp 0.003545 0.003636 0.003441

Pillow 0.003819 0.004520 0.003897

Rifle 0.003641 0.003399 0.003685

Sofa 0.005095 0.005942 0.00478

Speaker 0.005389 0.007692 0.005148

Table 0.005510 0.006703 0.005640

Analyzing the results shown in Table XXIV, it can be seen that GLR and PointCleanNet

become more competitive, but our network achieves the best results in the majority of the

categories.

Notice that at this level of noise the GLR method obtains promising results, with perfor-

mance similar to the proposed method. This optimization method achieves particularly good

79

results if the point cloud is corrupted with a low level of noise, otherwise, as shown in the

previous experiments, it is not able to provide denoised point clouds able to compete with the

results of the other methods considered. Instead, GraphPointNet is able to produce denoised

point clouds with performances very close to GLR and to outperform PointCleanNet.

For most of the categories taken into account the GLR method and GraphPointNet yield

denoised point clouds with close performance in terms of C2C, characterized by a slightly

predominance of GraphPointNet.

It is visible from the simulations reported in Table XI that at high level of noise GraphPoint-

Net achieves the best results overcoming all the other methods with a large margin. Otherwise,

at lower level of noise it still provides a good denoised version of point clouds, comparable to the

results provided by the state-of-the-art, but the gain margins are reduced. The other denoising

methods become more effective at low level of noise, providing a competitive denoised version

of point clouds, instead our network is able to produce promising results at all level of noise.

CHAPTER 6

CONCLUSIONS AND FURTHER DEVELOPMENTS

6.1 Conclusion

An innovative convolutional neural network designed for point cloud denoising is presented.

The novelty lies in the introduction of the graph-convolutional layers, which exploit the Edge

Conditioned Convolution, a general graph convolution formulation.

The network is able to outperform the current state-of-the-art and in particular, it achieves

promising results when the original point cloud is corrupted by a high level of noise, as pre-

sented in Table XI, where the network provides the best denoised point cloud in almost all the

categories selected for the testset. Concerning point clouds corrupted by a lower additive white

noise, the GLR method becomes more effective and competitive, achieving similar performance

to that of our network, as shown in Table XXIV. The proposed method obtains the best perfor-

mance in the majority of the category. It is clear that the extremely good results are obtained

thanks to the graph convolutional structure of the network.

6.2 Future works

As previously discussed, GraphPointNet is able to compete with the state-of-the-art point

cloud denoising methods, even with its simple design.

During the training, the network learns to improve the denoised point clouds just having

information about the closeness of the estimated points with respect to original clean one,

80

81

exploiting a generic loss function as the mean squared error and not one specifically designed

for the point cloud denoising. In fact, it is not necessary to recover the exact position of each

point to obtain a high quality denoised point cloud, but it is important to move the noisy points

uniformly distributed on the original surfaces of the point cloud.

Therefore, it could be useful to include this information in the network and insert a block

specialized in surface estimation to constrain the denoised points to lie on the point cloud sur-

faces. In particular, it is possible to estimate the normal at the surface for each of the denoised

point, compare it with the original normal and force the network to decrease the discrepancy.

The new loss can be obtained adding a regularization term to the original mean squared error

that takes into account the normals of the points and minimize the difference between the esti-

mated values and the original ones. This improvement would produce a network able to better

estimate the denoised point cloud avoiding outliers and increasing the performance.

CITED LITERATURE

1. Martin Simonovsky and Nikos Komodakis: Dynamic Edge-Conditioned Filters in Convo-
lutional Neural Networks on Graphs. ArXiv e-prints, 2017.

2. Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., and Vandergheynst, P.: The emerg-
ing field of signal processing on graphs: Extending high-dimensional data analysis
to networks and other irregular domains. IEEE Signal Process. Mag., 30(3):83–98,
2013.

3. Dong, X., Thanou, D., Frossard, P., and Vandergheynst, P.: Learning laplacian matrix in
smooth graph signal representations. IEEE Trans. Signal Processing, 64(23):6160–
6173, 2016.

4. David K. Hammond, Pierre Vandergheynst, R. G.: Wavelets on graphs via spectral graph
theory. Applied and Computational Harmonic Analysis, Elsevier, 30(2):p.129–150,
2011.

5. Qi, C. R., Su, H., Mo, K., and Guibas, L. J.: Pointnet: Deep learning on point sets for 3d
classification and segmentation. arXiv preprint arXiv:1612.00593, 2016.

6. Rakotosaona, M.-J., La Barbera, V., Guerrero, P., Mitra, N. J., and Ovsjanikov, M.:
Pointcleannet: Learning to denoise and remove outliers from dense point clouds.
Computer Graphics Forum, 2019.

7. Chaojing Duan, Siheng Chen, J. K.: 3d point cloud denoising via deep neural network
based local surface estimation. Computer Vision and Pattern Recognition, 2019.

8. Guerrero, P., Kleiman, Y., Ovsjanikov, M., and Mitra, N. J.: PCPNet: Learning local
shape properties from raw point clouds. Computer Graphics Forum, 37(2):75–85,
2018.

9. Zeng, J., Cheung, G., Ng, M., Pang, J., and Yang, C.: 3d point cloud denoising using
graph laplacian regularization of a low dimensional manifold model. arXiv preprint
arXiv:1803.07252, 2018.

82

83

CITED LITERATURE (continued)

10. Zhang, K., Zuo, W., Chen, Y., Meng, D., and Zhang, L.: Beyond a Gaussian denoiser:
Residual learning of deep CNN for image denoising. IEEE Transactions on Image
Processing, 26(7):3142–3155, 2017.

11. He, K., Zhang, X., Ren, S., and Sun, J.: Deep residual learning for image recognition.
arXiv preprint arXiv:1512.03385, 2015.

12. Jianxiong Xiao, Z. S. A. L. X.: 3D ShapeNets: A Deep Representation for Volumetric
Shapes. Proceedings of 28th IEEE Conference on Computer Vision and Pattern
Recognition, 2015.

13. Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Fisher Yu, Qixing Huang, Qixing
Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song,, H. J. L. F.:
ShapeNet: An Information-Rich 3D Model Repository. Proceedings of 28th IEEE
Conference on Computer Vision and Pattern Recognition, 2015.

14. Pistilli, F.: GraphPointNet: Graph Convolutional Neural Network for Point Cloud Denois-
ing. Master’s thesis, Politecnico di Torino, 2019.

VITA

NAME Francesca Pistilli

EDUCATION

Master of Science in “Electrical and Computer Engineering, University
of Illinois at Chicago, March 2020, USA

Specialization Degree in “ Electronic Engineering ”, Oct 2019, Poly-
technic of Turin, Italy

Bachelor’s Degree in Electronic Engineering, Sept 2017, Polytechnic of
Turin, Italy

LANGUAGE SKILLS

Italian Native speaker

English Full working proficiency

2017 - IELTS examination (7.0/9)

A.Y. 2018/19 One Year of study abroad in Chicago, Illinois

A.Y. 2017/18. Lessons and exams attended exclusively in English

WORK EXPERIENCE AND PROJECTS

2018 Top-down design of a custom DLX processor

Design of digital micro and macro-architectures: design, VHDL de-
scription, simulation, synthesis, place & route of DLX microprocessor
in all its part starting from scratch, pipelined version, data and control
hazard management.

2018 Design of AES Hardware Trojan

Group Project finalized to the development of two different Hardware
Trojan to attack an AES Encryption system. The first Trojan consist
in the insertion of a capacitor used stealthy force a certain value to
the encryption key; the second, exploits a non-reliable realization of a
Control Unit to insert a malicious state, reached through the insertion
of a Clock signal whose frequency violates the required time constraints.

2017-2019 Other Experiences:

84

85

VITA (continued)

Use of prototyping boards, micro controllers, FPGAs, inside a bigger
system or stand-alone (experience: realization of some measuring and
control systems, simulations of designed components on FPGA)

Development of all the parts of the software needed to realize measuring
systems, data processing systems or mechanical control

Scripts for simulation and synthesis of integrated circuits

Multi-process and multi-thread C programs (in particular for encryp-
tion)

