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SUMMARY

While the standard Reinforcement Learning [1] objective is to minimize (maximize) the

expected cumulative cost (reward) over the horizon, finite or infinite, the Risk Averse RL

approach [2] tries to optimize not only the common objective function but involves also the

minimization of what is defined as Risk. There are several ways to express the Risk of the

given random cost (reward) received by the environment and the main ones are the utility

functions and the proper risk measures. However, the issue in dealing with the Risk is that

its minimization is not as simple as the standard optimization problem and sometimes it could

become also NP-hard affecting the optimality of the found solution. The common approach

historically used by the literature to find the optimal solution of this problem is based on the

idea of creating new ad hoc algorithms capable to optimize the new objective function instead

of the cumulative cost only. This, of course, makes the algorithm not general and specific to

that kind of Risk measure or Utility function. More other, there are more standard algorithms

respect to the specific ones and they are usually more studied and optimized because they

are more frequently used. This is why some researchers came up with another alternative

approach based on the transformation of the Markov Decision Process itself. Transforming

the MDP means modifying the characteristics of the optimization problem’s formalization in

terms of state space, transition kernel or Reward function to incorporate the Risk Aversion in

the structure of the problem. In this way, it is possible to apply the standard Reinforcement

Learning algorithms as if they are optimizing the usual objective function, while instead, they
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SUMMARY (continued)

are taking into account the Risk too. The issue with this method is that we should consider how

much the transformation costs in terms of computational power (and so time). Furthermore,

there could be also an increment of the cost for the optimization itself after the transformation of

the Markov Decision Process. In both these cases, the approach does not worth it and it would

be better to adopt an ad hoc algorithm following the basic strategy for Risk-Averse optimization.

My thesis deals with these problems with Risk Averse Reinforcement Learning. The idea is to

modify the Markov Decision Process via a state-space augmentation that gives a piece of partial

information about the history of the current chosen policy and then find the optimal solution

of the modified problem through a standard Reinforcement Learning algorithm. After a proper

background to present the basics needed to understand the research work, we will describe some

of the interesting papers we studied about Risk Aversion and MDP transformation that gave

me the idea of the state of the art in this field. Then we will explain the transformation that

we decided to adopt and finally how we applied the standard RL algorithm to find the optimal

Risk Sensitive policy. Finally, we will give some conclusions talking about the practical results

and some possible future works in this field.
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CHAPTER 1

INTRODUCTION

Since the modern computer’s invention in the twentieth century and the consequent birth

of the concept of nowadays Computer Science, a huge question came out for the human being:

is it possible to replicate and reproduce the human mind? If yes, how? This interrogative is

destined to become one of the most important ones more and more in the future, following the

increasing power and precision of technologies during the last years.

At the moment the attempt to answer this question is brought ahead by what is called Artificial

Intelligence and in particular by an application of it which is Machine Learning. The latter is

based around the idea that we should just be able to give machines access to data and let them

learn for themselves to make them carry out some tasks in a way we can consider somehow

”smart”.

Indeed, the core concept which is most recently studied by researchers is this enigmatic word:

Learning. Considering our human experience, we can describe our learning process as based on

the interaction with the environment, the external Reality we daily meet. When we are kids,

we learn to perform actions like walking or looking around by continuously trying to do them

and seeing the effect of our actions within the environment. The more we try, the more we

enrich our experients and so the more we learn the rules under which the reality falls and we

improve our actions to reach our small or big daily goals.

These interactions are the fundamental part to increase our knowledge about the external re-

1



2

ality, the environment and ourselves. Whenever we learn something, that could be running,

studying or handling conversations we are deeply focused on how the environment responds to

our actions and we try to change the external events with our behavior. Studying this interac-

tion between the system and the acting subject is the base of all theories which aim to replicate

learning and intelligence.

Within Machine Learning, the principal computational approach devoted to learning from in-

teraction is Reinforcement Learning [1]. Indeed, it is a goal-directed learning approach from

an interaction where an agent, the subject of the algorithm, aims at finding the best way to

maximize a certainly given reward function. It is in this specific Machine Learning sector that

my Thesis is set up trying to figure out a suitable MDP transformation to modify the objective

of the agent is not only maximizing the standard reward but also minimizing a defined function

describing the concept of Risk, as we will explain in the following sections.



CHAPTER 2

BACKGROUND

In this chapter, we will present the main basic concepts of Reinforcement Learning theory

useful to deeply understand our solution and the methods we adopted to find it. We will go

through the definitions of Markov Decision Process, Dynamic Programming for policy opti-

mization, basic Policy Gradient algorithms and some general way to formulate and approach

the Risk Aversion within Reinforcement Learning settings.

2.1 Markov Decision Process

The key concept on which Reinforcement Learning [1] is built is surely the Markov Decision

Processb[1]. To understand it we should firstly focus on the general area in which the MDP is

applied, that is the sequential decision problem. The sequential decision problem, as suggested

by the name, is when we have an agent, the proper subject of RL algorithms, that interacts

with the environment performing a series of actions devoted to achieving a determined goal.

The environment shows himself to the agent in the form of States. On the other hand, the

goal is represented through Rewards, numeric values that the environment returns to the agent

according to the state in which it is and the action it performs. Of course, the objective of

the agent (also called decision-maker or controller) is to maximize these Rewards following the

best trajectory, which consists of the series of States encountered by the agents and the Actions

3
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performed by it. According to the convention, the Reward could be replaced by the Cost that

the agent wants to minimize instead. How the decision-maker chooses the action according to

the State given by the environment (or System) is known as Policy. The environment evolves in

a stochastic way and it could be also influenced by the agent’s actions during this interaction.

The problem that seems simple in appearance hides a lot of complexities. The first is the

fact that the agent, to maximize his total Reward, needs to make a decision balancing the

maximum reward that could take immediately and the one that could cumulate in the future,

maybe following another trajectory. The total cumulative Rewards are defined as the Return.

There are several examples of applications: one of the most common ones is the managing of

a Portfolio, in which the objective is the maximization of the total earnings. The other main

setting is the so-called Grid-World in which the agent wants to reach a terminal state from a

starting position, choosing the shortest path but avoiding the obstacles that it encounters.

Usually, when we talk about the sequential decision problem beneath uncertainty, it is visualized

as in the figure Figure 1. Every time t, the agent observes the state st given by the environment

and chooses to perform an action at. As a result of performing that specific action at in that

specific state st, the agent obtains an immediate reward rt+1 (or cost) and it will move to a

new state st+1 defined by the environment with a given probability. The latter is taken from

a suitable distribution which depends on the action performed by the decision-maker. Then,

the same process is done for the time t+1 and so on. The interaction described above can be

modeled rigorously by the so-called Markov Decision Process [1]. As in [3],
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Figure 1: MDP AGENT-ENVIRONMENT INTERACTIONS

Markov Decision Processes are stochastic dynamic systems defined by the tuple <S,A,P,R,γ>,

in particular:

1. The state space S which is measurable

2. The action space A, which is measurable

3. The Markov transition kernel P: S × A × S → R

4. The Reward Function R : S × A → R

5. The discount factor γ ∈ (0,1)

Particular attention should be paid on the transition kernel P, which gives the probability,

given the state st and the action at performed in that state, to arrive in another state st+1. It

is possible to notice that it does not depend on the history of the environment, but only on the
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previous state and action. This characteristic is defined as Markvovian property [1] and, as it

is easy to understand from the name, is fundamental for Markov Decision Processes [1].

P (s, a,B) = P(St+1 ∈ B|St = s,At = a) (2.1)

Another thing to notice is that the Reward function is defined as the function which given

the state st and the action at, returns the expected reward collected under the probability

defined by the kernel function.

R(s, a) = E(Rt+1|St = s,At = a) (2.2)

2.2 The Policy

As we mentioned before, another basic concept to keep in mind dealing with Markov Deci-

sion Processes is the Policy that defines how the decision-maker chooses the action to make.

The policy is, of course, delineates the probability to take that certain actions in the given state.

There are also deterministic policies that return directly the action to perform given the state

but we are not interested in them for what we do. As we highlighted before, even here the fact

that the policy depends only on the state and not on history follows the important Markovian

property [1], however, some policies can depend on history. As history we mean all the infor-
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mation of the followed trajectory and so the sequence of states, actions reward met by the agent.

2.3 The Return

Now having the idea of the MDP and so on the formalization of the problem we can focus

on the objective function, that is what the agent wants to maximize (or minimize if we have

cost).

Of course, we start from the standard Risk Neutral optimization problem in which we have

only the concept of Return. The Total Return is defined as the discounted cumulative costs

incurred by the decision-maker starting from the time t.

Gt =
∞∑
t=0

γtRt+k+1 (2.3)

As we said this is the real objective of the agent, that has to focus on the total future

performance instead of looking simply at the immediate reward greedily encountered. The dis-

count factor is a parameter that follows this idea and allows us to change the importance that

we are giving to the Rewards (or cost) in the further future. If λ → 0, the agent will focus

on the immediate reward while with λ → 1 it will concentrate on the future. There are other

interpretations of the discount factor: the first one is that it helps convergence avoiding that

the objective sums to infinite, in case of large rewards or long-horizon term. The second one

is strictly connected to the agent orientation to the future but from the environment point of

view. Indeed, it could be seen as the representation of the uncertainty of the future, defining
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from which time on the agent does not know which reward can take.

2.4 Value functions

Given the definition of Return, we can define functions. The first one is the State-Value

Function and it is the expected discounted cumulative reward (alias the return) over the policy

starting from a given state. Thus it is what the agent expects to gain following a certain policy

π. Of course, it is interpreted as the goodness of the policy starting from the state s [3].

Vπ(s) = E[Gt|St = s] (2.4)

In the same way, we can define the State-Action Value Function as the expected discounted

cumulative reward over the policy starting from the state s and performing the action a [3].

Q(s, a) = E[Gt|St = s,At = a] (2.5)

It follows that the relationship between the two value functions is that the State one is the

sum of the State Action Value Function of all possible performed actions in that state, weighted

by the policy [3].

Vπ(s) =

∫
A
π(s, a)Qπ(s, a)da (2.6)
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These two functions are fundamental because these are the real objective functions that the

Reinforcement Learning algorithms aim at optimizing. Usually, they are represented with their

Bellman Equations [1] as below [3].

Vπ(s) = Rπ + γTπVπ(s) (2.7)

Qπ(s, a) = R(s, a) + γTaVπ(s) (2.8)

Where Ta is the transition operator taking the action a, while Tπ is the one following the

policy π [3]:

TaF (s) = E[F (St+1)|St = s,At]=a] =

∫
S
P (s, a, s′)F (s′)ds′da

TπF (s) = E[F (St+1)|St = s] =

∫
Aπ(s,a)

∫
S
P (s, a, s′)F (s′)ds′da

(2.9)

Finally, we define the Bellman expectation operator [1] as [3]

BπVπ(s) = Rπ + γTπVπ(s) (2.10)

Hence, the equation Equation 2.7 can be compacted in [3]

Vπ(s) = BπVπ(s) (2.11)
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If some simple assumptions about the reward function are satisfied, the Bellman Equation

leads to a unique solution. Thus the final goal of the agent is to find the so-called Optimal

Policy, which is the policy that maximizes the value function of every state of the environment.

That is why we need the definitions of optimal State-Value and State-Action-Value Function.

The first one is the maximum expected reward possibly gained, starting from the specific state

s [3]

V∗(s) = sup
π
Vπ(s) (2.12)

The second one is the maximum expected reward possibly gained, starting from the specif

state s and taking the action a [3]

Q∗(s, a) = sup
π
Qπ(s, a) (2.13)

The Bellman Optimality Equations are [3]

V∗(s) = sup
a
Q∗(s, a) = sup

a
{R(s, a) + γTaV∗(s =} (2.14)

Q∗(s, a) = R(s, a) + γTaV∗(s)

= R(s, a) + γ

∫
S
P (s, a, s′) sup

a′
Q∗(s

′, a′)ds′
(2.15)
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Therefore, the Optimal Policy is simply the policy that has the highest state value function

for each state for all the other possible policies [3]:

π ≥ π′ ⇔ Vπ(s) ≥ Vπ′(s)∀s ∈ S (2.16)

For any Markov Decision process, it exists an optimal policy π∗ ≥ π,∀π, and its optimal

value functions are equal to the General Optimal Value functions of the MDP.

These formulas defined properly the optimization problem in the finite time horizon. Whereas,

for the infinite horizon setting they cannot work because there are no absorbing states and we

cannot compute the real value functions. In this case, the average expected reward is used but

we are not interested in it because our implemented algorithm, as we will see, works with finite

trajectories to be performed.

2.5 Risk-Aversion in Reinforcement Learning

As we said before, the most used Risk Neutral problem which maximizes the merely expected

value of the reward is not always enough. Indeed, this assumption in many cases is not realistic.

Our daily life actions, for instance, are always based on some concept of risk that we want to

minimize while we are doing our tasks even if sometimes taking that risks can give us more in

terms of “reward”. The same case is for the agent in the Reinforcement Learning problem in

which we are trying to replicate somehow the learning method of a human being. The concept

of Risk in the Markov Decision process can be derived from two different kinds of uncertainties

(indeed the risk always deals with not being sure about something): the inherent uncertainty
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and the model uncertainty. The former is again divided into static and dynamic risk and

induces the transformation of the objective function. As the name suggests, it is linked to the

stochasticity proper of the environment as we described above with the transition kernel and

the consequent random reward.

While the model uncertainty (also called parametric uncertainty) is about robust MDPs and

is related to the not precise knowledge of the parameters of the model. So in the Risk Averse

optimization problem, the standard value function is combined with a risk measure of the total

return. There are different ways to take into account the risk parameter within the solution.

The utility approach, in which the standard value function is replaced by the expected value of

a certain utility function of the reward. The risk measures strategy, which consists in adding

a non-linear term that can be the variance or a class of functions that describe somehow the

risk, like the Conditional Value at Risk. Finally, we have the robust MDPs in which there are

no risk terms added but it is considered the worst-case scenario in terms of model parameters.

2.5.1 Utility functions

The utility-based one consists in transforming the cumulative reward by appropriate func-

tions that corresponds to our new way to define how much a state is valuable or not. The

risk sensitivity is based on the convexity of the new value functions. Given the fact that a

risk-averse decision-maker is usually predisposed to the diversification.

ρ(αX + (1− α)Y )) > αρ(X) + (1− α)ρ(Y ) (2.17)
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Where X and Y are two random variables representing two choices and α is the probability

to take the first one. Thus a risk-seeking function should be convex while a risk-averse one

should be concave.

One of the most used utility functions is the exponential ones (u(x) = eλx) applied to the

return. It is possible to notice that the second-order approximation of this function, known

also as an entropic map, it is equal to the common mean-variance optimization problem.

U(T, π) = Eπ[R] + λV arπ[R] +O(λ2) (2.18)

2.5.2 Risk Measures

The second approach includes a function that explicitly describes the risk. Indeed a risk

measure is a defined as a mapping ρ : Z → R from a random variable Z to Real values. One of

the most important and also the easiest one to visualize is the Variance of the return, which is

how much the evaluated function is distant from its expected value.

V ar(X) = E[(X − µ)2] = E[X2]− E[X]2 (2.19)

From the Variance formulation, a new objective function could be derived, like Mean-

Variance [4], which tries to maximize the expected value with a constraint on the Variance

, or Sharpe ratio, in which the expected value is multiplied by the inverse of the square root of

the Variance, balancing the maximization of the former with the minimization of the latter.
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MV ar = Eπ − βV arπ[R] (2.20)

Sh = Eπ/
√
V arπ[R] (2.21)

Other interesting functions for the representation of the risk are the so-called Coherent Risk

Measures. They are functions with some suitable properties that are helpful for the convex

optimization problems [5].For all X,Y ∈ X[2]:

1. Convexity: ∀α ∈ [0, 1], ρ(αX + (1− α)Y ≤ αρ(X) + (1− λ)ρ(Y )

2. Monotonicity: if X ≤ Y , then ρ(X) ≤ ρ(Y )

3. Translation invariance: ∀b ∈ R, ρ(X + b) = ρ(X) + b

4. Positive homogeneity: if α ≥ 0, then ρ(αX) = αρ(X)

These conditions ensure the ”rationality” of single-period risk assessments. Indeed, 1. estab-

lishes that diversifying the outcomes by a factor α reduces the risk. Thinking about a portfolio

environment, if we diversify the investment spending only the portion α on a first stock that

gives X as an outcome and the remaining amount (1− α) on a second stock leading to Y out-

come, the result is αX+ (1−α)Y . Thus applying the risk measure to this combination returns

a value less or equal than the combination of the risks with the same parameter α. 2. shows

that the higher the cost, the higher the risk associated with it. 3. ensures that the constant

part of the cost does not influence the risk. 4. finally, assures that multiplying an outcome by a
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factor and computing the risk associated with it is equal to the risk of the outcome multiplied

by the same factor.

2.5.3 Robust MDP

As we said before, the Robust Markov Decision Process is related to the model-uncertainty,

alias when the transition kernel probabilities are not precisely known. Thus, the solution is to

take the worst condition possible for the agent considering the model parameters,

V π = inf
P∈P

V π,P (2.22)

Hence, even there is not an explicit formulation of the Risk, optimizing a worst-case scenario

implies optimizing also some for of Risk.

2.6 Dynamic Programming

Before talking about the proper RL gradient-based algorithms and the mathematical basis

on top of that they work, we should first approach the analytical way to compute the optimal

policy, i.e. the Dynamic Programming [1]. Indeed, having the precise solution of the problem,

allows us to properly analyze the performance and the precision of the used algorithm.

DP, in general, is a method for solving complex problems by breaking them down into several

subproblems, whose combined solutions give the exact total solution of the starting problem.

The two main properties on which it is based are the so-called optimal substructure and the

overlapping subproblems. The first one ensures that the optimal solutions of the various sub-
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problems in which we fragmented the overall one when are combined, result in the optimal

solution of the global problem. The second one tells us that the subproblems that are resolved

once, will be resolved several times.

The good thing is that Markov Decision Processes satisfy these two properties we defined above.

The Bellman Equation is de facto the recursive decomposition of the DP following the optimal

substructure. Indeed, the equation has always the optimal part of the one-step followed by the

optimal solution of all the following steps. The second property is satisfied by the Value func-

tion that stores the information about the optimal solutions we found out before, propagating

them to the step before. Being an exact analytical solution, surely the Dynamic Programming

needs the full knowledge of the Markov Decision Process.

2.6.1 Policy Evaluation

Keeping in mind our general for MDPs, which is finding an optimal policy that maximizes

the discounted cumulative reward, the first thing we need is the evaluation of the policy. The

evaluation of the policy means that we have to evaluate every state of the environment based

on the actions selected by the policy we are currently using.

Given the Bellman equation, what we apply is an iterative method. We start with an initial

approximation of v(s) (usually setting all the values of the states to 0) and then we use the

Bellman equation substituting the value of the approximation v0 to compute the approximation

v1 of the previous state. Then we iterate the same process for every k + 1 approximation

computed through the approximation k until the values converge. Practically speaking, we

can compute the delta between the approximation k + 1 and the approximation k, taking the
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maximum difference in the update among all the states. When it becomes sufficiently small,

we can stop the Policy Evaluation.

vk+1(s) =
∑
a∈A

π(a|s)(Ras + γ
∑
s′∈S

P ass′vk(s
′))

vk+1 = Rπ + γPπvk

(2.23)

2.7 Policy Improvement

After the evaluation of the policy, we need to know how to make it better respect to its

value. This part is called Policy Improvement in Dynamic Programming. What we have to

do is checking if, for a given state, it is better to follow the currently adopted policy or to

select a different action. How we evaluate the goodness of a certain action in a certain state is

through State-Action Value Function and its Bellman equation [1]. So what we are comparing

the evaluation of the action taken by the current policy and all the other possible actions.

qπ(s, a) = E[Rt+1 + γvπ(St+1)|St = s,At = a]

=
∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)]

(2.24)

If the evaluation of any of the alternative actions is greater than the one chosen by the policy

we change it with the one having the maximum value, greedily improving the policy itself.
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qπ(s, π′(s)) = max
a∈A

qπ(s, a) = qπ(s, π(s)) = vπ (2.25)

Hence the Bellman equation [1] for the optimality is satisfied

vπ(s) = max
a∈A

qπ(s, a) (2.26)

Finally, we put together these two algorithms to find the best policy. We start with random

policy, possibly initialized with probabilities of all actions set to the same value for every state

of the system. Then we evaluate it through Policy Evaluation until the value converges as

we explained before. Having the value of the policy, we check if we can improve it greedily,

evaluating all the actions in every state respect to the one chosen by the policy. If every action

is always better than the others for every state, we have the optimal policy. Otherwise, we

change the policy with the better action discovered and we evaluate the new policy. Thus, the

algorithm stops as soon as the policy is stable which means that chooses always the best action.

This algorithm is known as Policy Iteration in the DP literature.

2.7.1 Value Iteration

However, this algorithm has a computational issue: it continuously computes the evaluation

of the policy every time the policy improvement part changes at least one action of the current

policy. So the question is, do we need to have the exact values for every state to evaluate

the policy? The answer is no and so we can truncate the convergence of the policy evaluation

algorithm to a few steps. In particular one of the best ways to truncate the policy evaluation
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step is when we stop it after just one update for each state, with the so-called Value Iteration

algorithm. Indeed, it simply turns the Bellman optimality equation of the value function onto

an update rule. The update is almost identical to the one done with the standard policy

evaluation except for the fact that we are not taking the expected value over the actions but

the maximum. Now we have to make converge this algorithm with the usual delta method and

once we have our value function for every state the optimal policy can be found simply taking

the action that maximizes the expected value of the next state, i.e. the best action for every

state.

vk+1(s) = max
a∈A

(Ras + γ
∑
s′∈S

P ass′vk(s
′))

vk+1 = max
a∈A

Ra + γPavk

(2.27)

All these algorithms converge to an optimal policy for discounted finite MDPs and as we

said we will use them to evaluate our RL algorithms results.

2.8 Reinforcement Learning

Reinforcement Learning as we said is a set of Machine Learning algorithms that aim at

solving the optimization problem of the cumulative discounted outcome, as we presented above.

They can be interpreted as computational methods for solving MDPs by interacting directly

with the system for which we may or may not know the structure of the model. Reinforcement

Learning is something in what is known as Supervised and Unsupervised Learning in the ML
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field. Indeed in the former, the algorithm has to learn the mapping between some input variables

x and an output variable y, both in Discrete (Classification) and Continuous (Regression) case.

The learner is provided with some examples of the expected behavior and the decision-maker

has to understand how to replicate it. In the latter, the goal is to find the underlying structure or

distribution of the data, deeply characterizing them, without any information from an external

supervisor. The most common example is indeed Clustering. On the other hand, in RL we have

information only in terms of Rewards, which are partial feedback of the goodness of how the

agent is performing with its actions. One of the main problems that Reinforcement Learning

algorithms have to face is the trade-off between exploration and exploitation. Indeed, the agent,

that tries to maximize the cumulative reward function, tends to take those actions it a have

already performed and have found out they gave it high rewards. This is exploitation. On the

other hand, the decision-maker should also try other actions to understand if they are better

or not, even if in this way they could perform poorly. And this is, of course, the exploration

strategy. The objective is to find a good balance between them

2.8.1 Model-Free Reinforcement Learning algorithms

There are two main classes of Reinforcement Learning algorithms: the Model-Based and

the Model-Free. The formers, as the name suggests, need to have all the information about the

underlying model. The best example is Dynamic Programming, that as we explained has the

complete knowledge of the Markov Decision Process. On the other hand, Model-Free methods

have to sample the MDP to have enough statistical information about the model. Anyhow, the

optimal state-action value function Q∗ remains the same
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∫
A
π∗(s, a)Q∗(s, a)da = sup

a
Q∗(s, a) (2.28)

However, there are three different statistics of the problem that can be approximated without

the knowledge of the Markov Decision Process:

1. Model-approximation: approximation of the MDP and then the estimation of the optimal

policy through Dynamic Programming

2. Value-approximation: approximation of V ∗ and Q∗ by sampling and then greedy compu-

tation of the optimal policy π∗

3. Policy-approximation: direct estimation of the policy

There exist also algorithms that combine these approaches.

Dealing with the first solution, Learning the model could be complex but anyway easier than

learning the policy’s value or the policy itself. However, usually, it is not possible to derive the

value functions through Dynamic Programming and to find greedily an optimal policy. We can

sample different trajectories to determine the value functions and the policy. But in this way,

the accuracy of the value function and the policy can be as good as the approximated model

so it is usually preferable to adopt the other approaches.

The second technique is one of the most used in Reinforcement Learning and it is split into

two different kinds of algorithms depending on when they perform the update of the value

function, that could be online or offline [1]. The on-policy ones approximate the value function

through samples of the same policy that is being evaluated. Whereas, the off-policy algorithms
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approximate the value of a policy which is not the one used in sampling.

Finally, the policy-approximation approach consists in storing policy and updating it to max-

imize a defined measure of performance and thus converge to the optimal policy. If we only

store the policy the algorithm is called actor-only, while if we store also the value function it is

known as the actor-critic algorithm.

2.9 Policy Gradient Algorithms

The policy gradient algorithms use the policy-approximation approach and consist in storing

and greedily approximating the optimal policy, without the total knowledge of the MDP in

which the optimization problem is defined. There two main approaches to approximate the

policy: the first one is the actor-only, in which the value function instead is not approximated

(indeed the actor step is referred to the computation of the policy), the second one is based on

the exploitation of the approximation of the value function and is divided into two phases, this

is why it is called actor-critic algorithm. The fact of storing the policy estimation derives from

the fact that, as we said before, the optimal policy can be found acting greedily, but in large or

continuous space the complexity of the optimization problem can become too high and could

too much computationally expensive to solve it. Having a policy from which we can select the

actions it is beneficial in this sense. Other advantages other value-based techniques are the

fact that the policy representation is simpler and more compact than the value one and is that

the gradient-based approach can learn also stochastic policies useful for instance in partially

observable systems. Being an approximated approach, Policy Gradient algorithms usually lead
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to a suboptimal solution to the problem. However, this is considered enough in the majority of

cases for practical reasons.

2.9.1 General idea of Policy Gradients algorithms

The Policy Gradient Methods [1] give an approximation of the optimal policy through the

adoption of a parameterized policy π : S × A × Θ → R, with parameter vector θ ∈ Θ ⊆ RDθ ,

that returns the probability of acting a being in the state s. So the objective of the algorithm

is to optimize the policy parameters θ maximizing what we defined as the objective function

that we can call J [3].

θ∗ = arg max ∗θ∈ΘJ(Θ) (2.29)

The Policy Gradient approach, which as we said is a model-free set of algorithms, is based on

the idea of updating the policy parameters step by step, according to the well-known gradient

ascent method (or descent if the objective is minimizing). It consists of adding to the previous

value of θ, of the gradient of the objective function, controlling the size of the step multiplying

by the gradient a time-dependent factor called learning rate [3].

θk+1 = θk + αk∇θ(θk) (2.30)

Anyway, if the gradient estimate is unbiased and the learning rate satisfies the Robbins-

Monro conditions the algorithm is proved to converge at least to a local optimum of the function

we want to optimize [3].
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∞∑
k=0

αk =∞

∞∑
k=0

α2
k <∞

(2.31)

2.9.2 Objective Functions

Recalling the definition of the value function, we can choose as the objective function to be

optimized the starting Value, i.e. the value of the starting state [3].

Jstart(θ) = Vπθ(s0) = Eπθ [G0|S0 = s0] (2.32)

This, as we mentioned above, works in the discrete case but not in the continuous one. If

we want to treat the second problem we should use the average value or the average reward per

time step [3].

JavV (θ) = ES∼dθ [Vπθ(S)] =

∫
S
dθ(s)Vπθ(s)ds (2.33)

JavR(θ) = ρ(θ) = ES∼dθ,A∼πθ [R(S,A)] =

∫
S
dθ(s)

∫
A
πθ(s, a)R(s, a)dads (2.34)

2.9.3 Likelihood Ratio Approach

The most common way to estimate the gradient is the Likelihood Ratio approach [1]. Having

Z as Random variable, pθ his probability density that is known, explicitly computable and

differentiable respect to the parameters θ. The gradient computed with likelihood ratio is [3]
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∇θEZ∼pθ [f(Z)] = ∇θ
∫
pθ(z)f(z)dz (2.35)

If some regularized assumptions are satisfied we can rewrite it as [3]

∇θEZ∈pθ = EZ∼pθ [∇θ log pθ(Z)f(Z)] (2.36)

In this way is easy to approximate the gradient through the straightforward estimation [3]

∇θEZ∈pθ ≈
1

M

M∑
m=1

∇θ log pθ(Zm)f(Zm) (2.37)

2.9.4 Monte Carlo methods

The main policy gradient method is the Monte Carlo one, based on the estimation of the

gradient through a set of trajectories of the MDP denoted as hst, at, with probability pθ(h)

to perform this trajectory following the policy πθ. G(h) is the expected return gained by the

trajectory h [3].

G(h) = E[G0|H = h] =
∞∑
t=0

γtR(st, at) (2.38)

Considering the start value as the objective function, being in the discrete case we can we

rewrite it as an expectation over all the possible sampled trajectories [3]

Jstart(θ) = EH∼pθ [G(H)] (2.39)
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Through the adoption of the likelihood ratio approach, we derive [3]

∇θJ(θ) = EH∼pθ [∇θ log pθ(H)G(H)] (2.40)

The most important point is that we can compute the gradient of the logarithm without

knowing the transition kernel P . Actually, only the policy depends on the parameters θ [3]

∇θ log pθ(H) =
∞∑
t=0

∇θ log πθ(st, at) (2.41)

Usually, given the fact that the expected values of the gradient are proved to be 0, a constant

known as a baseline can be subtracted without modifying the real value of the gradient [3].

∇θJ(θ) = EH∼pθ [∇θ log pθ(H)(G(H)− b)] (2.42)

This constant can be interpreted as the expected return under the policy, in this way higher

average returns turn out in positive gradient and vice versa the lower ones. Another advantage

of adding the baseline in the formula is that if suitably computed it can leverage the variance

of the estimation of the gradient. Thus, the final estimation of the gradient with H sampled

trajectories, following the policy πθ with the Monte Carlo approximation is shown below [3]

ĝRF =
1

M

M∑
m=1

[
T (m)∑
i=0

∇θ log πθ(s
(m)
i , a

(m)
i )][

T (m)∑
j=0

γjr
(m)
j+1 − b] (2.43)



27

This algorithm is known in Reinforcement Learning field as REINFORCE algorithm and

the convergence is guaranteed.

A good way to compute the baseline is when it minimizes the Variance of the Return. Here

below is shown the computation used by us too [3]

b∗k =

∑M
m=1[

∑T (m)

i=0 ∂θk log πθ(s
(m)
i , a

(m)
i ]2

∑T (m)

j=0 γjr
(m)
j+1∑M

m=1[
∑T (m)

i=0 ∂θk log πθ(s
(m)
i , a

(m)
i ]2

(2.44)

2.10 GPOMDP

However, the Monte Carlo approach leads to a high variance in the estimation, making the

computation usually too slow. Observing that future actions and past rewards are independent

unless the policy has been changed, we can derive that [3]

Eπθ [∇θ log πθ(St, At)R(Ss, As)] = 0, ∀t > s (2.45)

This simplifies the above formula in this way, generating the so-called Gradient of the

average reward in Partially Observable Markov Decision Processes (GPOMDP), which one of

the fundamental algorithms in RL and it is used a lot (indeed we will use it in our experiments)

[3].

ĝGPOMDP =
1

M

M∑
m=1

T (m)∑
i=0

∇θ log πθ(s
(m)
i , a

(m)
i )(

T (m)∑
j=0

γjr
(m)
j+1 − b) (2.46)
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2.11 Stochastic Policies

The likelihood ratio approach we have just seen can be adopted only in the case of stochastic

policies. Usually, this is not a huge problem, given the fact that stochastic policies allow the

agent to explore the state-action space, besides, to exploit what he learned and this is required

in the majority of RL settings. The most used stochastic policy (which we used too) is the

Boltzmann exploration policy, called also softmax. The formulation of the policy is the following

[3]

πθ(s, a) =
eθ
Tφ(s,a)∑

b∈A e
θTφ(s,b)

(2.47)

where φ(s, a) is the feature vector which specific to the state s and action a considered.

Then the likelihood gradient of the policy can be expressed as [3]

∇θ log πθ(s, a) = φ(s, a)−
∑
b∈A

πθ(s, b)φ(s, b) (2.48)



CHAPTER 3

RELATED WORKS

As we said, our field of application is the Risk-Averse Reinforcement Learning, in which we

want to minimize some sort of Risk instead of the usual cumulative cost. Specifically, we will

take into account the Conditional-Value-at-Risk, an important coherent risk measure that, as

we saw above, is the expected value of the cumulative costs greater or equal to the Value-at-Risk

under τ , which is the minimum value z such that the probability of the cost being less or equal

to it, is greater or equal to τ .

There are several related works we studied within the literature that helped us the derivation

of our algorithm.

To properly judge the goodness of our approach, we first need to take into account the main

CVaR optimization strategies within the literature. After reading some papers, it turned out

that on the most considered ones is the Gradient Conditional-Value-at-Risk minimization stated

by Tamar [6]. Now we will shortly explain the fundamental steps of it, giving us the possibility

to compare this solution to our approach. Then we will consider other smaller related works

about CVaR optimization.

29
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3.1 Optimizing the CVaR via Sampling

The solution proposed by Tamar [6] goes exactly in the opposite direction of our research

intentions. The whole idea behind the paper is based on the derivation of the specific gradient

for this coherent risk measure.

Thus, let’s start from the well known Conditional-VAlue-at-Risk formula [6]

ρτ (Z) = E[Z|Z ≥ vτ (Z)] (3.1)

where C is the standard cumulative cost and vτ is the VaR under τ .

To compute the gradient we need first of all three assumptions [6]:

1. C is a continuous bounded random variable for all θ

2. The gradients of CVaR, ∂ρτ (Z;θ)
∂θi

, and VaR, ∂vτ (Z;θ)
∂θi , exist and are bounded for every θi

associated to the policy

3. The gradient of the policy ∂pZ(Z;θ)
∂θi

exists and is bounded for all

parameters θi and costs z

Then, the gradient of the coherent risk measure is defined as [6]

∂ρτ (Z; θ)

∂θi
= Eπθ [

∂ log pθ(Z)

∂θ
(Z − vτ (Z; θ)|Z ≥ vτ (Z; τ)] (3.2)
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Notice that pZ(Z; θ) is the parametric probability density of the random variable Z, with θ

that are the policy parameters.

The proof is quite straightforward: Defining Lθ as the set-level {z ∈ [−d, d] : z ≥ vτ (Z; θ)},in

which [−d, d] defined the bounding values of Z, we have [6]

∫
z∈Lθ

pZ(z; θ)dz = 1− τ (3.3)

Through the derivative and Leibniz rule, we lead to [6]

0 =
d

dθi

∫ vτ (Z;θ)

−d
pZ(z; θ)∫ vτ (Z;θ)

−d

∂pZ(z; θ)

∂θi
dz +

∂vτ (Z; θ)

∂θi
pZ(vτ (Z; θ); θ)

(3.4)

Then, expressing Equation 3.1 with the integrals, we obtain [6]

ρτ (Z) =

∫
z∈Lθ

pZ(z; θ)z

1− τ
dz =

=
1

1− τ

∫ vτ (Z;θ)

−d
pZ(z; θ)zdz

(3.5)

Taking again the derivative with the Leibniz rule [6]

∂ρτ (Z; θ)

∂θi
=

1

1− τ

∫ vτ (Z;θ)

−d

∂pZ(z; θ)

∂θi
zdz +

1

1− τ
∂vτ(Z; θ)

∂θi
pZ(vτ (Z; θ); θ)vτ (Z; θ) (3.6)
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Substituting Equation 3.4 in Equation 3.5 we derive [6]

∂ρτ (Z; θ)

∂θi
=

1

1− τ

∫ vτ (Z;θ)

−d

∂pZ(z; θ)

∂θi
(z − vτ (Z; θ))dz (3.7)

Thanks to the likelihood ratio usual transformation consisting of the multiplication and

division by pZ(z; θ), allowed by Assumption 3, we prove the equality with initially expected

value expression.

The estimation of this gradient could be done via sampling of N trajectories and it is given

by [6]

ρ̂j;N =
1

1− τ
1

N

N∑
i=1

d log pθ(h
(m))

dθ
(Ci − v̂)1Ci≥v̂ (3.8)

where pθ(h
(m) is the usual probability of obtaining the trajectory h following the policy πθ.

Notice that we have also the estimation of the VaR, hatv, equal to cdτNe, having the sorted list

of the cumulative costs.

3.1.1 Considerations about the paper

The application to the Reinforcement Learning setting can be easily done, having the stan-

dard cost function C(s,a) and using a stochastic policy for the derivation of the gradient, like

the softmax (or Boltzmann), to compute the probability pa(a; θ) of taking the action a following

the policy πθ

Besides, Tamar [6] affirms two interesting things about the algorithm he derived, called Gra-

dient Conditional-Value-at-Risk (GCVaR), that will be useful for our final considerations and
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especially for the juxtaposition between out two solutions. The first one is the fact that without

a state-space augmentation, the policy found by the algorithm is not guaranteed to be optimal,

and in some cases, it will be necessary to adopt it. The second is a consideration of the CVaR

estimation having a high variance, given the fact that the averaging is effectively computed

merely over (1 − τ)N samples. This is a typical problem within techniques to estimate VaR

and CVaR through sampling. It is usually alleviated by approaches reducing the variance, like

for instance Importance Sampling. The technique is based on the idea of using samples from

different distributions and properly modifying to estimators to not make them biased. However,

this solution is not completely trivial and is highly domain-dependent.

Tamar extends also his method to all the set of coherent risk measures through a general for-

mulation of the optimization problem based on the formulation of the coherent risk measures

as a minimization over a worst-case scenario under the Envelope of the risk measure itself [5].

We will not analyze this method because it departs from our approach from the specific case of

the CVaR minimization problem considered in this thesis.

3.2 MDP tranformation

Our main idea is to find a suitable transformation of the Markov Decision Process to allow

us the application of a standard Reinforcement Learning algorithm and at the same time to

minimize not the standard objective function of the cumulative rewards, but certain Risk-Averse

objective functions. We deeply studied the state of the art in the literature, studying a different

kind of transformations for different settings and Risk Measure. Finally, we figured out that
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two main possible MDP transformations are mostly used: the Robust MDPs and the state

space augmentation. The first is well presented by Osogami in his paper about Robustness and

risk-sensitivity in Markov decision processes [7]. The second one is presented by Bauerle in

Markov Decision Processes with Average-Value-at-Risk [8] criteria and more in general in More

risk-sensitive Markov Decision Processes [9]. The basic concept behind these transformations is

the fact that giving a new formulation of the problem we are moving the optimization problem

towards the model uncertainty (in the case of robust MDPs) or adding some other important

information to the typical state to act. In the following section, we will present these types of

transformations, in particular, the second one, which is the one we have chosen to adopt, that

will be deeply analyzed in the Methods and Theoretical Results.

3.2.1 Robust Markov Decision Processes transformation

As we said one of the typical transformations applied to the MDP is the one related to the

robustness. As we said in the background chapter, a robust MDP is a Markov Decision Process

that takes the worst case of what is known as model-uncertainty. This kind of uncertainty

models the risk considering the precision in which the parameters of the model can be approx-

imated. Thus, it consists of optimizing the possible with the worst possible realization of the

parameters (the worst situation in which the environment can be presented to the agent). The

robust MDP minimization problem can be written as [7]:

minπ max
p∈Up,f∈Uf

Ep,f [CT (π)] (3.9)
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where p and f are the model parameters respectively for the transition and the cost function.

Osogami in [7] shows the relation between the optimization of the expected exponential utility

function, which is taken to minimize the Risk and a robust MDP in which we are minimizing

the worst-case expectation having a penalty parameter multiplied by the divergence of the

uncertain parameters from their nominal values. Indeed, dealing with the minimization of

E[exp(γCT (π))] for γ > 0, that is known to be equal to the minimization of the Entropic Risk

Measure (ERM): ERMγ [CT (π)] = 1
γ lnE[exp(γCT (π))], we have for [7] that Equation 3.9 is

equal to the minimization of [7]

ERMγ [Y ] = max
q∈P (q0)

{Eq0[Y ]− γKL(q||q0)} (3.10)

wherein this case, KL is the Kullback-Leibler divergence.

Furthermore, always [7] shows that the Risk-Averse optimization of an Iterated Risk Measure

in which the considered risk measure is a coherent risk measure (like the Conditional-Value-

at-Risk) is equal to a robust MDP in which we minimize the worst-case expectation in which

we use a concave function to describe the divergence of the uncertain parameters from their

nominal values.

Also in this case, Equation 3.9 is equal to [7]

min
π
ICTETα [DT (π)] (3.11)

where α is the uncertainty parameter and DT the cumulative value of D(s, a).
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3.2.2 State-Space Augmentation

The second way in which a Markov Decision Process could be transformed to embrace the

Risk-Sensitivity in the optimization problem is the State-Space Augmentation. Bauerle in his

papers presents its solution showing the possibility to apply it to CVaR optimization problem

[8] and in general the utility function optimization problem. For the sake of completeness,

we show here the bivariate MDP formulation for the Utility function case, while we will go

through the proof for the Conditional-Value-at-Risk (useful for the derivation of our solution)

in Methods and Theoretical Solution chapter [8]

Vtπ̃(x,s) = Eπ̃x[U(UT + s)], x ∈ X, s ∈ R+, π̃ ∈ Π̃

Vt(x,s) = inf
π̃∈Π̃

Vtπ̃(x,s), x ∈ X, s ∈ R+

(3.12)

in which s stores the cumulated cost along the performed trajectory. Indeed, the main

idea that underlines the solution of Bauerle is to augment the state space with a variable that

could describe useful information about history. With this trick, we are capable to resolve

non-Markovian problems finding policies that are some way can still be considered Markovian,

in the sense that they don’t depend on the history but only on a statistic of it. As we will see,

this transformation leads to the opportunity to resolve the optimization problem with Dynamic

Programming, exploiting the equations derived in [8]. Then, varying the various initial values

of this variable s for the starting state and keeping the value of τ , which controls the Risk-
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Aversion of the agent, fixed, we can easily minimize the Conditional-Value-at-Risk finding the

optimal s∗.

3.2.3 Different State-Space Augmentation for CVaR

In our research phase within the literature, we found also another interesting approach that

considers the state-space augmentation to minimize the Conditional-Value-at-Risk within finite

horizon settings. That is the case of Carpin’s paper [10]. Even in this approach, the idea

is to store some information about the history that in this case are the cumulated running

cost y and the current step z. Then, the rest is based on the computation of the occupancy

distribution and finally using a bilinear program to practically resolve the optimization problem.

The formulation is the following: the minimization of CVaR can be written as [10]

min
p,θ

min
s∈[0,Kd]

s+
1

1− τ
∑
y∈N

(y − s)+θ(y) (3.13)

where s ∈ R and τ is the Risk-Aversion parameter. More other, [10]

θ(k) =
∑

1(y = k & z = d)p(x, y, z, a), k ∈ [0, N ] (3.14)

and the occupancy measure has the following constraints [10]

∑
x′,y′,z′

∈ X ′T
∑

a∈A(x′,y′,z′)

p(x′, y′, z′, a)[δ(x, y, z)(x
′, y′, z′)−P ′((x′, y′, z′)|(x, y, z), a)] = β(x, y, z)∀(x, y, z) ∈ X ′T

(3.15)
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The equation states that ρ is a vector with |K ′| nonnegative components and these legitimate

vectors are constrained by the initial distribution β and determined by the policy π.

Hence, using unconstrained stochastic control approaches, the optimal policies can be found

with different Risk-Aversion degrees, given by much the value of τ is high.



CHAPTER 4

THEORETICAL SOLUTION AND METHODS

In this chapter, we will present the methods and the main theoretical contributes to our

thesis work. First of all, we will describe the State Space Augmentation derived by Bauerle [8]

that we adopted for our solution. Then we will go into details of the structure of the algorithm

we adopted for the minimization of the Conditional Value at Risk with the mentioned state-

space augmentation [8]. The idea is to optimize the risk measure without changing the RL

algorithm structure: indeed the State Space Augmentation, as we saw in the previous chapter,

induces also a modification of the Transition function and the Cost function. The latter returns

0 for every 2-Dimensional state, apart from the terminal one in which it is returned the variable

s in which the cumulated cost history is stored clipped to 0 in case the cumulated cost did

not exceed the initial value of s in the starting state. The only real addition will be the

optimization of the initial value of s that in any case can be separated from the algorithm for

the optimization of the policy parameters. Indeed, Bauerle and Ott [8] divides the solution for

CVaR into an inner and an outer optimization problem. To be more clear, we will call our

application of Reinforcement Learning algorithms to the augmented space MDP problem as

the Augmented Policy Gradient algorithm (APG). Then, we will describe the main differences

in terms of structure between our solution and the one gave by Tamar in [6] with his Gradient

Conditional Value at Risk algorithm, based on the derivation of the CVaR specific gradient as

we saw.

39
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4.1 Bauerle in Markov Decision Processes with Average-Value-at-Risk criteria

To present the state space augmentation of Bauerle [8] we need first to define the Conditional-

Value-at-Risk (or Average-Value-at-Risk), a particular coherent risk measure commonly used

in Risk-Sensitive Reinforcement Learning optimization problems. Then we will deeply analyze

the Dynamic Programming rules stated in the paper that we will implement allowing us to

compare the performances of our solution to the exact analytical one derived by DP.

4.1.1 The Conditional Value at Risk

The Conditional-Value-at-Risk is in turn based on the concept of Value at Risk as the name

itself suggests:

Let Z ∈ L(Ω, F, P) defined as random variable with real values and let τ ∈ (0,1].

1. The Value-at-Risk of Z at level τ is represented as [8]

V aRτ (Z) = inf{z ∈ R : P(Z ≤ z) ≥ τ} (4.1)

2. The Conditional Value at Risk of Z at level τ , is computed as

CV aRτ (Z) =
1

1− τ

∫ 1

τ
V aRτ (Z)dt (4.2)

With a continuous distribution of Z, the Conditional-Value-at-Risk can be rewritten as [8]

CV aRτ = E[Z|Z ≥ V aRτ (Z)] (4.3)



41

Thus, we want to fix the τ taking a value in (0, 1] and then optimize the risk measure. The

finite horizon version (which is the case of our setting) is as follows [8]

inf
π∈Π

CV aRπτ (CN |Z0 = z) (4.4)

in which CN is the cumulative cost over N steps and CV aRπτ is the Conditional-Value-at-

Risk taken under the policy π. The optimization problem for the finite horizon setting becomes

[8]

inf
π∈Π

CV aRπτ (CN |Z0 = z) = CV aRπτ∗(C
N |Z0 = z) (4.5)

The interesting thing of this optimization is that in this way is not a standard MDP anymore,

given the fact that the Conditional-Value-at-Risk is a convex risk measure. Anyway, we can

note that if τ → 0 the formulation is simplified to the common optimization problem over the

expectation of the cumulated costs [8].

lim
τ→0

CV aRπτ (CN |Z0 = z) = CV aRπτ∗(C
N |Z0 = z) (4.6)

Whereas, with τ → 1 we derive the Worst-Case risk measure as shown below [8]

WC(CN ) := sup
ω
CN (ω) (4.7)
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4.1.2 MDP Transformation for finite horizon

The first thing we have to do is defining the Conditional-Value-at-Risk as a solution to a

convex optimization problem. In particular [8]

CV aRτ (Z) = min
s∈R
{s+

1

1− τ
E[(Z − s)+]} (4.8)

and the minimum point s∗ is actually the Value at Risk V aRτ (X)

Ergo, we derive the following formulation of the optimization problem

inf
π∈Π

CV aRπτ (CN |Z0 = z) = inf
π∈Π

inf
s∈R
{s+

1

1− τ
E[(Z − s)+]}

= inf
s∈R

inf
π∈Π
{s+

1

1− τ
E[(Z − s)+]}

= inf
s∈R
{s+

1

1− τ
inf
π∈Π

E[(Z − s)+]}

(4.9)

Hence we have a double optimization problem, an inner one and an external one. The

inner one is the most interesting because it consists of finding an optimal policy for this kind

of modified expectation over the cumulative cost. Then we will explain also the solution to the

external problem that is less complex to solve in practice but is very interesting theoretically

speaking.

4.1.3 Inner Optimization Problem

As we said this part considers the optimization under the policy of the Expected Value of

the Cumulative Costs subtracted by ”s” (alias the Value at Risk) clipping the difference to 0
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in case it is negative. Let’s say that we are concentrating our attention on that Cumulative

costs that exceed the VaR, being coherent with the well known standard definition of CVaR.

The optimization problem can be divided in this way: for any time step t=0,1,..., T (with T as

finite horizon upper bound) [8]

wtπ(x, s) := E[(Ct − s)+], x ∈ X, s ∈ R, π ∈ Π

wt(x, s) := inf
π∈Π

wtπ(x, s), x ∈ X, s ∈ R, π ∈ Π

(4.10)

To optimize this new objective function, we need to define a different Markov Decision

Process which differs from the most common one by a state-space augmentation. Indeed, we

have this 2-dimensional state X̃ := X × R, where X is the standard State Space to which we

add a Real-Valued number, while the action space Ã is equal to the standard action space A.

So, the new single state will be described by the couple (x, s) ∈ X̃, in which the interpretation

of s will be presented better later but it is needed to store the important information about

the history of the trajectory. In fact, the agent has to decide which action to perform based

on the disturbance variable Zt = (Z1
t , Z

2
t ) = (Xt, Ct − 1) with values in X × R+ (costs should

be only positive), that is to say the choice of the decision-maker depends on the state in which

and on the past cumulative cost encountered so far. Thus, the transition function is redefined

as P : X̃ ×A×X × R+ → X̃, specifically [8]:

P̃ ((x, s), a, (z1, z2)) = (z1,
s− z2
β

) (4.11)
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The functions could seem more complex than what it is, indeed it is simply the classical

transition function used to retrieve the next state position given the previous state and the

action performed, to which it is added the update of the history to be stored in the variable s

of the augmented state. Here we show the relationship within the two, underlining the effect

of the augmentation to the transition function [8]

P̃ ((x, s), a, (x′, s′)) = P ((x, a, x′)1{s′ = s− c
β
} (4.12)

where c is the cost incurred in that transition. The huge difference is that this cost is not

returned to the agent during the run, but it is simply used to update the history variable s of

the state. The cost function C̃ : X̃ → R+ returns 0 for every augmented state apart from the

terminal one, which is [8]

C̃−1π(x, s) := C̃−1(x, s) = s− (4.13)

where s− = −min{0, s} = max{0,−s}

Now we should define the new value functions of the modified MDP to allow the analytical

solution through Dynamic Programming, as in the standard case. So, having the state value

function Ṽ : X̃ → R+ and the state-action value function Q̃ : X̃ × Ã → R+ we define the

operator T ∗ as [8]

T ∗ Q̃((x, s), a) = γ
∑
x′∈X

P (x′|x, a)Ṽ (x′,
s− c
γ

) (4.14)
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and consequently [8]

Ṽ = min
a∈Ã

Q̃((x, s), a) (4.15)

The optimal policy is easily derived as [8]

π̃∗((x, s)) = arg min
a∈Ã

Q̃((x, s), a) (4.16)

Pay attention to the notation π̃ that indicates the policies within the set ΠS that depends

also on the history but weakly, that is only on the variable s of the state, not on the entire

information about the history.

Thus, to resolve the Dynamic Program of the transformed Markov Decision Process, the fol-

lowing update equations are adopted [8]

Ṽ−1((x, s)) = C̃−1((x, s)), ∀x∀s (4.17)

Ṽ = min
a∈Ã

Q̃t(x, s), a) (4.18)

Q̃t((x, s), a) = T ∗ Q̃t−1((x, s), a) (4.19)

As in the typical DP, if there exist minimizers of V on all steps n, then optimization problem

has the Markov policy π∗ as the optimal policy.
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Here is the proof by induction for the optimality condition thanks to the adoption of the

modified MDP. For t = 0 [8],

V0π̃(x, s) = TV−1(x, s)

= β

∫
V−1(x′,

s− c
β

P (x′|x, a)

= β

∫
(
s− c
β

)−P (x′|x, a)

=

∫
(c− s)+P (x′|x, a)

= Eπx[(C0 − s)+] = ω0π̃

(4.20)

Then assuming the statement true for t, the case t+ 1 will be [8]

Vt+1π̃(x, s) = TVtπ̃(x, s)

= β

∫
Vtπ̃(x′,

s− c
β

P (x′|x, a)

= β

∫
Ex′ π̃(Ct +

s− c
β

)+P (x′|x, a)

=

∫
Ex′ π̃(βCt + c− s)+P (x′|x, a)

= Eπx[(Ct+1 − s)+] = ωt+1π̃

(4.21)

Finally, thanks to the theorem 2.2.3 in [11] we can prove that taking Σ is the non-Markovian

policies (totally dependent on the history) [8]
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inf
π̃∈Π̃

Vtπ̃(x,s) = inf
σ∈Π̃

Vtπ̃(x,s) (4.22)

thanks to which we can derive [8]

inf
π̃∈Π̃M

ωtπ̃ ≥ inf
π∈Π

ωtπ ≥ inf
σ∈Σ

Vtσ = inf
π̃∈Π̃M

Vtπ̃ = inf
π̃∈Π̃M

ωtπ̃ (4.23)

Under these three assumptions and the theorem 2.4.6 of [11], than [8] shows that this optimal

policy exists:

1. D(x) is compact for all x ∈ X

2. x → D(x) is upper semicontinuous

3. (x, a) →
∫
C(x′, s−cβ P (x′|x, a) is lower semicontinuous for all lower semicontinuous func-

tions vgeq0

4.1.4 Outer optimization problem

The second part of [8] proofs the optimality fro the outer problem, but we are not interested

in the details of it because we are focusing on the policy optimization of the inner one in our

research work. Anyway, the result is fundamental for ur solution and it is the fact that given

the outer problem formulation [8]

inf
s∈{R

(s+
1

1− τ
ωT (x, s)} (4.24)
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It exists a solution s∗ to this problem and the optimal policy found by the minimization of

the inner problem Equation 4.10 with starting state (x0, s∗) it is the policy that optimizes the

Conditional-Value-at-Risk.

4.2 Augmented Policy Gradient algorithm

As we mentioned above, our solution is based on the State Space augmentation derived by

Bauerle and that we have already explained before. So, let’s focus on the objective function of

the optimization problem that we have:

min
s∈R,θ∈Θ

{fτ (θ, s)} = min
s∈R,θ∈Θ

{s+
1

1− τ
Eπθ [(C

T − s)+]} (4.25)

where T is the length of the finite horizon.

Hence, the optimization for a RL algorithm, as in the case of the Dynamic Programming, should

split the solution in two optimization problems.

4.2.1 Inner Optimization of the policy

Dealing with the inner optimization problem, we notice that in case of a State Space Aug-

mented MDP we can apply a standard Reinforcement Learning Gradient based algorithm.

Actually:

∇θfτ =
1

1− τ
∇θEπθ [(C

T − s)+] (4.26)
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Form this formulation it seems we should adjust the computation of the gradient, because

of the modification of the Expected value’s argument where, instead of the standard discounted

cumulative cost, we have this difference between the cumulative cost itself and the s variable

of the starting state, clipped to 0 if the value of the operation is negative (i.e. the cumulative

cost does not exceed the value of s). But, taking a deeper look to the argument, we can notice

that this is exactly the definition of the new cost function of the modified MDP

(CT − s)+ = s−T = C̃−1(xT , sT ) (4.27)

in which s is the starting cumulated cost, while sT is the value of the cumulated cost variable

at time step T (terminal state).

Thus we have to compute the gradient∇Eπθ [C̃−1] that can be resolved by any RL algorithms

based on the gradient approach, such as the common REINFORCE or GPOMDP (the one we

have chosen to use for our experimental setting).

4.2.2 Outer Optimization of variable s

The outer optimization problem instead does not depend on the policy as we mentioned be-

fore. For this reason, can be resolved apart without the modification of the real Reinforcement

Learning algorithm that optimizes the parameters θ.

At this point we performed two steps to reach the results we defined to achieve: firstly, we

computed the RL solution following the same approach of the Dynamic Program presented in

the Bauerle paper [8], resolving the outer problem in a simple discretized way.

We resolved the inner optimization problem for different values of s, computing the approxima-
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tions of the various objective functions and finally, varying the value of τ , we took the minimum

of the function

fτ (θ, s) = s+
1

1− τ
+ Eπθ [(C

T − s)+] (4.28)

We said discretized approach because, of course, it is practically impossible to try every

Real value of s. That is why we took different suitable values of s to substitute and then we

minimized the discrete functions we derived by changing the values of τ , finding the optimiza-

tion of the Conditional Value at Risk.

The results, as we will see, are pretty similar to the DP ones, with some predictable approxi-

mation error given by the gradient method against the exact analytical solution.

4.2.3 Double parameters optimization

In the second step, we concentrated our attention on the estimation of the value of s to

move from the Discrete to the Continuous optimization of the function fτ .

We took into account two techniques to estimate the initial cumulated cost variable: the gradient
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estimation and the closed-form one. The first one is based on the derivation of the function fτ

with respect to s:

d

ds
fτ (θ, s) = 1 +

1

1− τ
d

ds
Eπθ [(C

T − s)+]

= 1 +
1

1− τ
Eπθ [

d

ds
max{(CT − s), 0}]

= 1 +
1

1− τ
Eπθ [(−1)1{CT − s > 0}

= 1 +
1

1− τ
(−1)Pπθ{C

T − s > 0}

= 1− 1

1− τ
Pπθ{C

T − s > 0}

(4.29)

At convergence, i.e. with the gradient close to 0, the value of stends to the Value at Risk

at level tan

1− 1

1− τ
Pπθ{C

T − s > 0} = 0

=⇒ Pπθ{C
T > s} = 1− τ

=⇒ Pπθ{C
T ≤ s} = τ

=⇒ s = V aRτ (CT )

(4.30)

Giving these premises, one of the simplest way to estimate this kind of gradient is the

following

ˆd

ds
fτ (θ, s) ∼= 1− 1

1− τ
1

N

N∑
i=1

1{ci > s} (4.31)
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TABLE I: AUGMENTED POLICY GRADIENT

Algorithm APG (ηθ, ηs, θ0, s0):
Initial Sampling N0 trajectories
for k=0,1,...

θk+1 = θk − ηθ∇̂θf(θ, s)
Sampling Nk+1 trjectories

sk+1 = sk − ηs d̂dsf(θ, s)
until convergence or max K iterations

return π∗θ optimal poliy

with N trajectories sampled from πθ.

As we said, this is a simple estimator of the gradient but allows us to define the following

general structure of our Augmented Policy Gradient algorithm.

In table 1 it is shown the pseudocode of the Augmented Policy Gradient algorithm. The

body of the computation is pretty straightforward: it consists of a continuous update of firstly

the policy parameters θ and then the value s of the initial cumulated cost. Notice that the

sampling should be done every time the policy parameters are changed, but it is not needed

after the update of s not loosing in this way in terms of time speed performance. Furthermore,

the speed of the update can also be set differently for the two equations, so we can have all

these cases:

1. One (or more) update(s) of θ and one (or more) update(s) of s

2. Convergence of θ and one (or more) update(s) of s
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3. One (or more) update(s) of θ and convergence of s

4.2.4 Closed-form aprroximation of s

Hence, there are a lot of different solutions to be explored through the adoption of Aug-

mented Policy Gradient, with different possible performances in terms of precision and speed

in finding the optimal solution. In our research work, we applied the 3rd case, with one update

for θ and then making s to converge. But we will describe the details of the implementation

later.

With the fact that we are considering the convergence of s, we can use a better estimator for

the s variable. Indeed, the gradient estimator we presented before is quite weak and with low

precision, being one of the simplest among quantiles’ estimators. Anyway, as we stated before,

s converges to the Value-at-Risk at level τ so we can apply directly the closed-form expression

of VaR to compute the final value of s for the update.

These are the steps to compute the closed-form approximation of the starting value of s:

1. Collect N trajectories from πθ

2. Define f̃N = s+ 1
1−τ

1
N

∑N
i=1(CTi − s)+

3. Compute the sub-gradient: df̃N (s)
ds = 1− 1

1−τ
1
N

∑N
i=1 1{Ci > s}

4. Ideally, we would need to find s such that: df̃N (s)
ds = 0 =⇒ 1

N

∑N
i=1 1{Ci ≤ s} = τ But

this might be impossible, or at strongly inaccurate due to the finite samples. Thus, we

can find the s that manes 1
N

∑N
i=1 1{Ci ≤ s} closest to τ . If we choose the minimum s

with this property, we can find it as:
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(a) Sort the costs CTi in ascending order: c1 ≤ c2 ≤ ...cN

(b) Take the first s such that 1
N

∑N
i=1 1{Ci ≤ s} ≥ τ

=⇒ This is equivalent to taking the dτNe element of the sorted list (d·e denotes the

ceiling operator

=⇒ We get the optimum s*=CdτN e

=⇒ This is the empirical quantile/VaR estimator used by Tamar []

This estimator is a way better estimator than the previous one in terms of precision and it

is really easy and fast to compute. The performance of the entire implemented algorithm will

be considered in the next chapter also compared to one implemented by Tamar.

4.3 Structural Comparison between APG and GCVaR

In this section we compare the skeleton of the two algorithms, highlighting the differences

and the similarities between the two. From a high-level perspective, they seem almost the same:

in fact, both compute the gradient of the policy and then estimate the Value-at-Risk of the

cumulative costs of the N sampled trajectories. The adopted estimator is the same and it is

based on the closed-form expression of VaR (taking the CdτN e element of the sorted cumulative

costs list). However, while Tamar uses this quantile just to build the baseline and the clipping

threshold for the cumulative returns in the gradient computation, APG exploits this value as

the starting cumulated cost variable which augments the state space. To understand better

the difference, let’s analyze the two formulations of the gradient of the objective function. In

Gradient Conditional-Value-at-Risk it is written as
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∇θρτ = Eπθ [
d log pθ(H)

dθ
(C − vτ (C; θ)|C ≥ vτ (C; τ)]

≈ 1

1− τ
1

N

N∑
i=1

d log pθ(H)

dθ
(Ci − v̂)1Ci≥v̂

(4.32)

with v̂ which is the empirical (1-τ)-quantile. While for Augmented Policy Gradient is

∇θfτ =
1

1− τ
∇θEπθ [(C

T − s)+]

=
1

1− τ
Eπθ [

d log pθ(H)

dθ
(C̃ − b)]

≈ 1

1− τ
1

N

N∑
i=1

d log pθ(H)

dθ
(C̃i − b)

(4.33)

recalling that C̃−1 = s−T , while the other values are equal to 0, and b is the common baseline.

Both s and v̂ are interpreted as the Value-at-Risk and are computed with the same approach

we presented before (closed-form expression).

We can notice that GCVaR derives the real gradient of the Conditional-Value-at-Risk, finding

out that it is equal to the expectation under the policy of the product between the standard

gradient of the policy multiplied by the difference between the cumulative costs and the quantile

(instead of the common baseline). The whole thing, considering only the cumulative costs

that exceed the quantile, the rest costs are clipped to 0 for the multiplication. Conceptually

speaking, also the APG does the same thing but instead of taking the standard cumulative

costs, it takes one of the modified MDP, which returns s−T in case the standard cumulative cost
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exceeds the initial value of s, 0 otherwise. Furthermore, the standard baseline is still subtracted

in the computation. This difference seems small, but it has a huge consequence theoretically

speaking. Hence, on one hand the Tamar approach needs the RL algorithm to be adapted to

compute, practically changing the code for the computation of the gradient (even if it has only

to turn to 0 all the cumulative costs on which the optimization problem is not focusing on and

it has to substitute the standard baseline with the VaR). Whereas, our approach just needs the

augmentation of the state space which induces itself the modification of the transition function

and especially of the cost function that in this way is already properly adjusted by the MDP

and the RL algorithm can optimize as if it was the typical case.

Of course, the augmentation of the space leads to a consequent augmentation of the feature

of the policy for the computation of the gradient. This augmentation makes the policy to

consider during the selection of the action another important set of information that describes

the history of the trajectory. Tamar himself recognized that in some cases this state-space

augmentation is needed to achieve the optimality of the policy. However, he did not realize

that this augmentation leads also to the possibility of application of standard RL algorithms,

without having to derive an ad hoc one.

Last but not least there is also an issue present in the Tamar solution that is not met by the

Augmented Policy Gradient algorithm. The estimation of CVaR done through GCVaR requires

the application of Importance Sampling to reduce the variance of the estimation. This approach

is not trivial to apply and highly domain-dependent. While, for our proposed solution, thanks

to the state space augmentation, the IS is not required at least for the estimation of the gradient
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of the policy (the VaR estimator instead, that it is used to find the initial cumulated cost s,

could have the same problem being the same used by Tamar).



CHAPTER 5

IMPLEMENTATION AND EXPERIMENT RESULTS

In this section we are going in-depth into the implementation of our Algorithm to judge

the practical performances, comparing them, especially to the CVaR solution. Firstly, we will

describe the domain in which the algorithms are run and the adopted environment. Then we

will show the specific implementation of the various solutions and finally, we will compare and

evaluate the performances taking into account different aspects of the optimization problem.

5.1 Domain description

The domain for a Reinforcement Learning algorithm is strictly correlated to the selection of

the environment in which the algorithms are run. Indeed, within it, the whole Markov Decision

Process’ structure is defined. First of all the state, the action and the cost spaces characteristic

of the environment, in addition to the length of the horizon, in case we are in a finite setting.

Then the transition kernel P and the Cost function C are both determined. The library used

to implement all this information is the gym package in python, that contains also a set of

commonly used prefabbed environments. Now let’s focus on the peculiarities of the one we

have chosen to adopt.

5.1.1 Grid-World Map

The environment we selected is the so-called Grid-World. It is one of the most simple

and easily readable environments available in the gym library and indeed is used a lot in

58
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Figure 2: GRID-WORLD MAP

the literature experimental implementations (the other principal environment adopted by the

researchers is the Portfolio one). The goal of the agent is pretty easy: he has to reach a certain

terminal state, starting from a certain starting position that for simplicity we will keep constant.

More other, there will be some obstacles around the map, in the forms of holes in our case,

with a high cost associated. The objective, of course, will be to reach the goal state using the

shortest path avoiding the obstacles. In order to diversify the policies of the agent in case of

Risk-Neutrality or Risk-Sensitiveness, we should add some stochasticity to the environment,

that we implemented inserting what we can call a random move: whenever the agent performs

a certain movement from a given state, it has a small probability to move in a different direction

to the chosen one. As follows, the Risk-Averse agent is supposed to go further from the obstacles

than the Risk-Neutral one.
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5.1.2 Markov Decision Process construction

The gym library makes you easily define the Markov Decision Process of the system. As a

first thing, we declare the state space (5x8) and the action space (4 actions divided as UP=0,

RIGHT=1, DOWN=2, LEFT=3). The time horizon is 30 steps long (enough to reach the goal

even trying several non-optimal actions, allowing the agent to learn the optimal one through a

proper exploration.

Then, we defined the transition kernel to designate the next state and the incurred cost associ-

ated with a certain probability. The probability is influenced by the so-called random moved in

which the agent has 1− ((Total− actions)− 1) ∗ 0.0375 = 0.8875 of going towards the selected

direction and 0.0375 per each for all the others. It should be too high, otherwise, the agent

would not be able to properly learn. The actual transition is defined by the step function, that

performs it following the probability of the transition kernel and it returns the next state and

the effective cost incurred. The latter is valued as 0.1 if it is a simple step, 1 if the agent follows

in a hole (without anyway stopping his trajectory), 0 in case he reaches the goal. It is possible

also to set the discount factor, changing how the agent focuses on the costs farther in the future

concerning the immediate ones. For our experiments we set it to 1, defining a not discounted

setting.

Another important thing to highlight is that whenever the decision-maker ends up in the goal

position (the number 0 in the grill), it stays in that state until the end of the finite horizon time

with probability 1. Finally, the reset function puts the agent in a constant starting position

which is the number 33 in the grill.
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5.1.3 Modified Markov Decision Process construction

In our experimental setting, we are applying the RL gradient algorithm which works with

the state space augmentation defined by Bauerle, the Augmented Policy Gradient. For this

reason, we had, of course, to modify some of the data about the environment construction,

referring to it as Augmented-Grid-World. Specifically, the step function that incorporates the

cost function, now returns to the agent a running cost of 0, apart from the terminal time step.

On the other hand, now the state is not only represented by the number for the grill position,

but also by a real value that describes the history of the trajectory. It is the initial cumulated

cost variable s, updated for every step as s′ = s−c
γ where c is the actual cost incurred and

gamma is the discount factor. Of course, also the reset function needs to give the information

about the initial cumulated cost to the agent who is starting the trajectory. The kernel function

and all the other settings will be the same.

5.2 Algorithms Implementation

In this section, we will go through the actual implementation of the various algorithms we

tried within the Grid-World to learn the optimal policy with different Risk-Aversion degrees.

We tried different approaches to initially understand how the environment works and how it

is resolved by the different algorithms known in the literature. We applied especially at the

beginning REINFORCE and Mean-Variance REINFORCE to see the difference between Risk-

Neutral and Risk-Averse solutions and how the performances change. However, we skip in the

results all these preliminaries experiments to focus on the implementations aimed at answer-

ing the question we posed at the beginning: is it possible to apply a standard Reinforcement
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algorithm that minimizes some notion of risk thanks to a suitable MDP transformation? We

answered this question in theory, now we want to compare the performances of our deduced

Augmented Policy Gradient algorithm (with state-space augmentation) and the ad hoc algo-

rithm derived by Tamar [6] to minimize the Conditional-Value-at-Risk. The steps through

which we developed the practical experiments is the following:

1. Implemented the Dynamic Programming to optimize the CVaR as presented by Bauerle

2. Implemented the Reinforcement Learning Gradient algorithm for the Discrete solution of

the optimization problem resolved by the DP

3. Implemented the Reinforcement Gradient algorithm which optimizes the policy and the

value of s, referring to it as Augmented Policy Gradient Algorithm (APG)

4. Implemented the Gradient Conditional-Value-at-Risk algorithm (GCVaR) of Tamar [6]

for the comparison with our solution

Now we will go through the different implementations, showing the results to make some

analysis and considerations.

5.2.1 Augmented Dynamic Programming

The Dynamic Program was implemented to resolve the inner optimization problem of the

CVaR formulation presented by Bauerle. The implementation is the well known Value Iteration

algorithm to find the analytical of the optimal policy. The main difference is the augmentation

of the state space of the environment that leads to a modification in the evaluation of the Value

function. Indeed, now it depends not only on the state position but also on the value of the s



63

Figure 3: RISK NEUTRAL vs RISK AVERSE OPTIMAL POLICY

variable, which describes the cumulated cost of the trajectory. The issue is that s is real-valued,

so it is practically impossible to compute the complete value function with the given domain.

Hence, we computed the value function, following the new operators stated in Bauerle, with

different suitable values of s. In particular, we took values in (0, T * holeCost)=(0, 30 * 1)=(0,

30) given the fact that the maximum possible cumulative cost in which the agent can incur is

obtained only if the agent passes through the holes for every time step of the finite horizon. Of

course, we should discretize the set and we did by a factor equal to the cost a single step, i.e.

0.1. We tried 300 different values of the initial value of s to compute this huge Value function

which depends on the state position, on the cumulated cost s and on the time step in which we

are, given the fact that only the terminal values should return s−, 0 for the others.

After evaluating the value function, we used it to compute the expected values useful for the
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outer optimization problem. Indeed, substituting the starting state-space position, we can

obtain the 300 expected values based on the variation of the value s. To find the solution of

the final CVaR problem, we took the minimum of the function s+ 1
1−τE[(CT − s)+], computed

as we said varying the value of s withing the bounded discrete space (0, 30, 0.1).

We resolved this discrete minimization with different values of τ to see the differences among

the various degrees of Risk-Aversion.

Figure 4: DP EXTERNAL OPTIMIZING FUNCTION

5.2.2 Augmented Discrete Reinforcement Learning solution

The discrete solution to the double optimization for CVaR minimization is the same ap-

proach we used in the Dynamic Programming case. The difference is that we used a Reinforce-

ment Learning algorithm instead of the DP to find the optimal solution to the inner problem.

The algorithm we adopted is the typical GPOMDP with sampling from a Boltzmann (softmax)

stochastic policy. The augmentation of the state space is the one we have already presented
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and induces, of course, a modification of the policy features used in the computation of the

gradient. Indeed, usually, the selected feature for the update of θ is the one-hot encoding with

dimension state space × action space. That is, the feature is a vector of dimension state space

× action space (in our case 40 * 4 = 160) with a one in the position state * action space +

action, and 0 in the other places. This makes the computation focus on only that particular

state, giving an important gain in terms of gradient value to the action performed respect to

the others.

To take into account the information given by the real-valued s variable, we cannot apply one-

hot encoding because it increases too much the computational complexity. That is why we

chose to represent it simply adding 1 cell to the feature vector’s size in which we write the value

of s itself. Of course, this is a weaker approximation of the policy feature space rather than

using the one-hot encoding technique, but it allows to lose almost nothing in terms of time

complexity of the algorithm. Furthermore, it revealed to be good enough for our case leading

the algorithm to good performances.

To handle also the outer optimization problem, we had to resolve the policy optimization with

different initial values of s. Hence, we used a discrete interval similar to the one proposed in

the DP solution but reducing the size to leverage the running time. The interval we adopted is

(0,3,0.1) which leads to run the algorithm 30 times with the specs we will describe.

Finally, we minimized the discrete function derived from these 30 approximations of the ex-

pected value, applying several τ values to the formula, that correspond to different levels of

Risk-Aversion.
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Dealing with the tuning of the algorithm we run it for 50 iterations and sampling of 750 tra-

jectories with length equal to 30 (finite horizon dimension). The learning rate of the gradient

update is 10.

Figure 5: DISCRETE RL EXTERNAL OPTIMIZING FUNCTION
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5.2.3 DP vs Discrete RL solution results

τ Optimal s (DP) Policy Optimal s (Discrete RL) Policy

0 0 RN 0 RN

0.1 0.5 RN 0.5 RN

0.3 0.5 RN 0.6 RN

0.5 0.5 RN 0.6 RN

0.7 0.7 RN 0.6 RN

0.9 1.6 RN 2 RA

0.98 2.5 RA 2.3 RA

TABLE II: OPTIMAL S VALUES FOUND BY DP AND DISCRETE RL.

Both the results are coherent and easy to read. Indeed, as we can see from the two plots of

the computed expected values, the higher the value of s, the lower the value of the expectation

E[(CT −s)+]. We can notice of course some oscillations in the graph of the RL solution, because

of the lack of precision of the approximation (with only 50 iterations for the gradient conver-

gence). Indeed, here we were only interested in the general correctness of the optimization, not

trying to perfectly approximate the result of the DP. In the images below, we can notice the
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comparison between the results of the outer optimization problem, with different values of τ

As we can see, changing the risk aversion through τ , we change also the optimal value of s found

as the outer solution. Recall that with τ → 0 the agent would act in a Risk Neutral manner,

while with τ → 1 we obtain Risk-Averse policies of the decision-maker. Indeed, the bigger

the τ , the bigger the optimal value of s. This can be interpreted as making the minimization

problem concentrate only on the higher cumulative costs, the one that exceeds the value of the

found optimal s that as we said we are increasing with bigger values of τ .

More other, in this case, the two results are comparable with some differences induced by the

approximation error that we noticed in the Expected Value approximation of the RL solution.

Anyway, the results are similar and on both sides, we see the diverse Risk-Aversion degrees.

As we can see from table Table II, the Risk-AVersion is achieved by the RL approach with

τ = 0.9 while with DP we need to have at least τ = 0.98 (we plotted the corresponding

function to be minimized in figue Figure 7
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Figure 6: COMPARISON BETWEEN DP AND DISCRETE RL
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Figure 7: τ = 0.98 LEADING TO RISK-AVERSE OPTIMAL POLICY

5.2.4 Augmented Policy Gradient algorithm

We have already presented the skeleton of the new algorithm we are trying to apply through

the pseudocode in the table[1]. We used, as in the previous experiment, the same GPOMDP

with Boltzmann stochastic policy for the sampling We implemented the version of it with

different speed of updates for the two parameters to be optimized (s and θ). For every iteration

the APG does one step for the optimization of θ, then samples N trajectories with the updated

θ and then finds the optimal value of s for that specific policy πθ, computing it through the

closed-form expression. Hence, it is like doing a step of the θ optimization and then find the

value of s at convergence.

Dealing with the parameters for the runs, we chose to take 1000 iterations, sampling of 750

trajectories with length equal to 30. The initial parameter of s is chosen randomly in a suitable

set (looking at the DP solution, the optimal ”s” takes values in (0,3)).
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As always, we have run the algorithm with the usual set of τ in (0,1) to analyze the different

Risk Sensitive behaviors and we plot the performances of the Mean Retain and the Conditional-

Value-at-Risk per iterations.

5.2.5 GPOMDP with State-Space Augmentation

In this subsection, we will describe with more details the actual effect of the State Space

augmentation on the common GPOMDP. In the Background chapter, we have already de-

scribed the typical GPOMDP Reinforcement Learning algorithm, used to find the optimal

policy through a gradient-based method. The core part of the algorithm is the computation of

the likelihood score of the stochastic policy, which in our case is the Boltzmann one. Of course,

the augmentation of the state does not change any part of the algorithm but simply requires an

expansion of the feature vector space of the policy. Indeed, usually, the policy feature consists

of a one-hot encoding for every state-action pair. In particular, we will have a vector with one

corresponding to the state-action pair we are focusing on, 0 otherwise. This is a really precise

way to represent the features because de facto, gives weight to every single state-action of the

MDP. However, applying the one-hot encoding also for every possible augmented state would

be impossible, given the fact that the variable s is a Real value. Thus, in our implementation

we have chosen to express the feature space as the common one-hot encoding for every position-

action pair, plus the exact value of the cumulated cost variable s, giving one single weight to

the entire space of the augmenting variable
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5.2.6 Gradient Conditional-Value-at-Risk algorithm

The last algorithm we implemented was the one proposed by Tamar [6], based on the deriva-

tion of the specific gradient of the considered risk measure. The algorithms are pretty similar

in his structure to APG apart from the user environment (the standard Grid-World instead

of the Augmented one) and of course the consequent dimension of the policy feature space.

The RL algorithm for the computation of the gradient and the sampling technique is the same

(GPOMDP with Boltzmann policy). The computation of the quantile is the same that we used

for the computation of the optimal s value through the closed-form (cdτNe. The difference is in

the fact that our optimals value influences the policy update but does not changes the actual

computation of the gradient. On the other hand, GCVaR [6] has to modify the computation

of the expected cumulative returns with the clipped expectation E[(CT − s)+] that the aug-

mentation we adopted had already incorporated modifying the cost function (s− only for the

terminal state, 0 otherwise). More other, Tamar uses the quantile substituting it to the typical

baseline used in the gradient computation to reduce the variance, while our algorithm still uses

it as if we were in the standard Risk Neutral optimization problem.

Consider also that we did not implement the Importance Sampling, required to reduce the Vari-

ance in the Conditional-Value-at-Risk gradient approximation, to see how this could influence

the algorithm performances and also to underline the fact that our solution does not need it.

As before, we run the algorithm for different values of τ in (0,1) plotting the Mean Return and

the CVaR at the variation of the iterations.

Talking about the specific specs of the runs, we chose the same parameters of Augmented Policy
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Gradient to compare them properly in terms of performances. Ergo, we set 1000 iterations with

a sampling of 750 trajectories with length 30.

5.2.7 APG vs GCVaR results

Looking at the plots we can easily see the differences in terms of performances considering

the Mean Return and the Conditional-Value-at-Risk per iteration. As we can see, with lower

τ the Mean Return and the CVaR have close values (indeed we are considering almost all the

cumulative cost for the expectation E[C|C ≥ V aRτ ] which turns to be close to the Neutral case

E[C]). Both the algorithms learn easily a Risk Neutral policy with τ = 0.1.

However, increasing the value of Risk-Aversion, our algorithm still performs well while the one

implemented by Tamar [6] does not find an optimal policy. As we can see from the graphs, the

APG Mean Return with lower τ is always around 0.8, which can be interpreted as the approx-

imation of the cost of the Risk Neutral path (ideally 0.5). While with big values of τ , starting

from 0.9 for APG, the Mean Return becomes a bit bigger than 1 showing that the found opti-

mal policy is the Risk-Averse one (with the exact cost of 0.7). The differences between the real

and the approximated value of the policies can be comprehended considering the stochasticity

of the environment with the random move and also the stochasticity of the Boltzmann policy.

Indeed, the algorithm after 1000 iterations can still perform a lot of exploration. These two

factors induce of course a small error in the computation. Anyway, to confirm our hypothesis,

we printed also a trajectory done performing the best action according to the learned policy,

for every met state.

On the contrary, the Mean Return of the GCVaR [6] starts to be higher than 3 as soon as we
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increase the values of τ , which means that he did not find the goal state (given the fact that

the finite time orizon is 30 steps and so not finding the goal will result in a mean return at least

of 0.1*30=3). This can due to the fact that the Tamar [6] approach without the state space

augmentation loses the optimality, being a Markovian solution to a well known non-Markovian

problem (the minimization of CVaR) that needs some information about the history. Thus

we can conclude that in this specific setting with a Grid-World environment, the state space

augmentation is needed and for this reason APG performs better than GCVaR [6].
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Figure 8: EXPECTED MEAN RETURN COMPARISON APG vs GCVaR
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Figure 9: CVaR COMPARISO APG vs GCVaR
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Figure 10: CONVERGENCE OF GCVaR WITH LONGER RUN AND τ = 0.3

In this picture we notice another thing about the different performances of the two algo-

rithms. We have seen that with τ = 0.3 GCVar [6] already performs badly, not finding the

optimal policy. However, increasing the number of iterations to 2000, we discovered that it

was just taking longer in finding a good solution, still demonstrating the difficulties met in

optimizing the return without the state space augmentation. This is an additional proof of

APG being better than Tamar’s [6] algorithm in this specific setting.

Below we can also analyze the optimization of the s parameter in Augmented Policy Gradient.

This is important to visualize given the fact that not only it is interpreted as the Value-at-Risk

of the cumulative cost, but it is only the augmenting variable of the state that directly influences

the agent’s action selection.
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Figure 11: VARIATION OF S WITH DIFFERENT τ



CHAPTER 6

CONCLUSION

So after all these experimental results, it is time to make some conclusions about what we

did. To do this, we need to restart from our initial interrogatives. The question we wondered at

the beginning of our research work was: is it possible to take into account some notion of Risk

with some suitable modification of the Markov Decision Process, without the need to derive a

new ad hoc Reinforcement Learning algorithm? If yes, is it worth it? Is the modification easy

enough without any big decrements in the time performances?

According to what we found out in theory and seen in practice, the answer seems affirmative.

Indeed, the State Space Augmentation we took from Bauerle’s idea is a simple and straight-

forward modification of the MDP. The only thing that is done, is adding the s variable to the

state which makes the agent policy depend on some information about the history, that is its

cumulated cost incurred so far.

For the rest, the transformation of the cost function C̃ (which returns 0 to the agent, until it

reaches the terminal state of the finite horizon receiving s−) has two fundamental consequences.

On one hand, it allows the optimization of the Conditional-Value-at-Risk, which consists in min-

imizing the function s + 1
1−τEπθ [C̃

N ]. On the other hand, it permits the optimization of the

inner problem through a standard RL algorithm. Actually, the latter will minimize the ex-

pected value Eπθ [C̃N ] as if it were the typical Eπθ [CN ]. However, the real function that it is

been optimized is Eπθ [(CN − s)+], the one GCVaR [6] it is adjusted for.

79
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This explains the structural differences between the two algorithms: the GCVaR modifies the

computation of the gradient(in particular, the part of the gradient related to the expectation

of the cumulative cost that we have just shown) to optimize the Conditional-Value-at-Risk

instead of the usual expected Return. While, Augmented Policy Gradient exploits the State

Space Augmentation to do that, without modifying the RL algorithm.

This causes an important effect theoretically speaking. The Tamar algorithm [6], as it is pro-

posed, requires the modification of the specific algorithm we are using to optimize the policy

and in this sense, it could not be considered a general solution to the problem. Whereas, the

proposed solution with augmentation can use whatever RL algorithm we desire (it could be

GPOMD, REINFORCE, PPO, TRPO, etc.) just through the one shot of the modification of

the MDP (i.e. of the gym environment specs).

Furthermore, it is proven (as Bauerle states) that this modification of the underlying Markov

Decision Process can be applied to different risk measures, like exponential risk measures or

other coherent risk measures rather than CVaR. Hence, also from this perspective, our approach

is more general.

Dealing with the results that we have analyzed in the last chapter, we can also notice that Gra-

dient Conditional-Value-at-Risk without State Space Augmentation does not find the optimal

solution as we increase the value of τ . Indeed, as Tamar already recognized in his paper [6], the

minimization of CVaR is a non-Markovian problem (that needs information about the history)

and trying to resolve it with a Markovian solution is not always successful (as it was on the

contrary, in its experimental results).
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Furthermore, we run the Tamar solution [6] without the use of Importance Sampling, that

according to him is necessary to reduce the approximation’s variance of the CVaR gradient.

Indeed, our algorithm does not need it (given the fact that we are not estimating the specific

gradient of the considered risk measure) and we wanted to show the possible problems induced

by the lack of this technique. Adding it would make Gradient Conditional-Value-at-Risk even

more complex than our solution.

In conclusion, Augmented Policy Gradient outperformed GCVaR [6] in the Grid-World setting

we have chosen and most importantly we have proven that is a way more generalized solution in

terms of risk measures optimizations and Reinforcement Learning algorithms to adopt. Future

works can be targeted on one side to the improvement of APG itself, considering, for instance,

other and more precise estimations of the value of s or tuning the different speeds in the update

of θ and s parameters. On a second side, it would be interesting to derive the same solution for

alternative risk measures, like the exponential ones, exploiting the generalization of the State

Space Augmentation presented by Bauerle. But after all, the most important thing to say is

yes, a suitable modification of the MDP can lead to the optimization of the measured Risk

without the derivation of specific Reinforcement algorithms.
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