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SUMMARY

Patient pain can be detected highly reliably from facial expressions using a set of facial muscle-

based action units (AUs) defined by the Facial Action Coding System (FACS). A key characteristic of

facial expression of pain is the simultaneous occurrence of pain-related AU combinations, whose auto-

mated detection would be highly beneficial for efficient and practical pain monitoring. Existing general

Automated Facial Expression Recognition (AFER) systems prove inadequate when applied specifically

for detecting pain as they either focus on detecting individual pain-related AUs but not on combinations

or they seek to bypass AU detection by training a binary pain classifier directly on pain intensity data

but are limited by lack of enough labeled data for satisfactory training.

Inspired by the clinical demand for automated pain evaluation in end-of-life patient care, our re-

search focuses on seeking an end-to-end automated pain detection approach that mimics the decision-

making strategy of FACS-certified human coders by following the procedures below:

Facial Expression
Inspection →

AU
Scoring →

AU Combination
Identi f ication →

Pain
Detection

As our major contribution of this research, we proposed a new FACS-based automated pain de-

tection framework comprised of two independent machine learning networks to infer the presence of

Action Unit (AU) combinations that signify pain. The two networks are trained independently and are

linked by novel AU-based data structures that are created by mapping single AU measurements per

frame into pain-related low-dimensional feature vectors representing AU combinations. The decoupled

architecture of two independent machine learning networks utilizes AU codings as the intermediate re-

xii



SUMMARY (Continued)

sults and performs pain analysis in a low-dimensional AU score space, which would be more justifiable

and efficient than the direct method.

The architecture of two independent machine learning networks not only improves data utilization

from existing different pain-oriented video datasets, but also improves data fusion incorporating future

acquired data, which addresses the most challenging problem arising from the data insufficiency. The

decoupled architecture lends itself to flexible customization using different implementation techniques

in the modules. The AFER system is realized with three types of configurations, including one con-

ventional CVML system and two types of deep learning architectures. The automated pain detection

is modeled as a weakly supervised problem, and the APD system is realized by two multiple instance

learning frameworks (MIL and MCIL). AU combination are encoded from single AU scores by two nov-

el data structures (Compact and Clustered), and the multiple instance learning frameworks are trained

with low-dimensional features based on the pain-related AU combinations. In particular, we followed an

end-to-front research strategy to develop the decoupled pain detection system in three research phases,

with the ultimate goal of establishing a robust and generic automated pain analysis system for clinical

applications.

Experimental results on the UNBC-McMaster Shoulder Pain Expression dataset show that the deep-

learning based multi-label AFER system outperforms state-of-the-art AFER system that are based on

classical machine learning (ML) techniques. Further tests with the Wilkie video dataset of lung caner

patients suggest the proposed decoupled framework has strong promise for effective pain monitoring in

clinical settings, where segment-level patients’ self-report pain is the only available ground truth.

xiii



CHAPTER 1

INTRODUCTION

Patient pain can be detected highly reliably from facial expressions using a set of facial muscle-based

action units (AUs) defined by the Facial Action Coding System (FACS). In this chapter we describe

FACS, its use in pain detection, and the relevant cues for pain detection. We also describe the motivation

of our work and outline the main contributions of this dissertation.

1.1 Facial Expression and Pain

Pain assessment is essential to providing proper patient care and assessing its efficacy under clin-

ical settings. A patients’ self-report is commonly used as the ‘gold standard’ to report pain through

manual pain measurement tools, including the verbal numerical scale (VNS) and visual analogue scale

(VAS). However, human sensing and judgement of pain is subjective and the VAS or VNS report may

vary significantly among individuals. Behavioral observation of a patient, in particular the use of facial

expression, as a key behavioral indicator of pain, has been identified as an important modality for assess-

ing pain (Williams, 2002) , especially when the patient’s ability to communicate pain is impaired (HH,

2000). Patients who are dying, intellectually disabled (McGuire et al., 2010), critically ill and sedated

(Payen et al., 2001)(Arif-Rahu and Grap, 2010), or have dementia (Manfredi et al., 2003), head and neck

cancer, or brain metastasis (Herr et al., 2006)(Hadjistavropoulos et al., 2007) (Puntillo et al., 2004) are

particularly vulnerable and in need of technology that could provide reliable and valid alerts about their

pain to busy clinicians. The American Society for Pain Management Nursing (ASPMN), in its position

1
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statement on pain assessment in the nonverbal patient (Herr et al., 2006), describes a hierarchy of pain

assessment in which the observation of behavior including facial expressions is noted to be a valid ap-

proach to pain assessment. McGuire et al (McGuire et al., 2010) concluded that “pain in the intellectual

disability population may be under-recognized and under-treated, especially in those with impaired ca-

pacity to communicate about their pain”. A study of patients undergoing procedural pain (Puntillo et al.,

2004) showed a strong relationship between procedural pain and behavioral responses and it identified

specific procedural pain behaviors that included facial expressions of grimacing, wincing, and shutting

of eyes. It was relatively rare for facial expressions to be absent during a painful procedure. Findings

by Payen et al (Payen et al., 2001) strongly support the use of facial expression as a pain indicator in

critically ill sedated patients. A study of pain assessment (Manfredi et al., 2003) in elderly patients with

severe dementia provides evidence that patients with pain show more pronounced behavioral response

compared with patients without pain and notes that clinician observations of facial expressions are ac-

curate means for assessing the presence of pain in patients unable to communicate verbally because of

advanced dementia. Research has shown that facial expressions can provide reliable measures of pain

across human lifespan and culture varieties (Williams, 2002) and there is also good consistency of facial

expressions corresponding to painful stimuli. Assessment of facial expression of pain not only brings

added value when verbal report is available but also serves as a key behavior indicator for pain in the

scenario of non-communicating patients.
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1.2 Pain Metrics based on FACS

1.2.1 Facial Action Coding System

There are two major approaches to study facial behaviors, namely message-based judgements and

sign-based judgements. (Ekman and Friesen, 1969). The message-based judgements make inferences

about emotions that underlie facial expressions including basic emotions and pain, while sign-based

judgments focus on facial expressions itself by describing the surface of behavior created by muscu-

lar movement. The Facial Action Coding System (FACS) provides an objective description of facial

expressions with 30 main action units(AU) based on the unique changes produced by muscular move-

ments, where 12 action units are in the upper face and 18 are in the lower face. The action units are

defined on the anatomical basis of muscular movement that are common to all people. Depending on

the research question, observers commonly use two schemes to score AUs. The comprehensive scheme

codes all AUs in a chosen video segment, and the selective scheme only codes predetermined AUs. The

reliability of AU scoring, also referred to as inter-observer agreement, is assessed by considering four

criteria: the occurrence of an AU, the intensity of an AU, the AU temporal precision defined as onset,

apex, offset and neutral stage, and the aggregates that code certain AUs in combination. While the oc-

currence of AU is most widely used criterion to evaluate an AFER system, the latter three are evaluated

depending on specific research problems. For example, a pain facial video event can be decomposed

into a set of action units that overlap in time, which can be identified via AU aggregates coding. In this

way, a message-based judgement can be inferred using predictions from the sign-based FACS system.
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1.2.2 PSPI Pain Metric

Detailed coding of facial activity provides a mechanism for understanding of different parameters

of pain that are unavailable in self-report measures (Craig et al., 1992). The Facial Action Coding

System (FACS) (Ekman and Friesen, 1978)(Ekman, 2002)(Wilkie, 1995) has been found to be useful

in assessing pain among seniors with and without cognitive impairment in research studies, in which

pain behaviors are observed while a patient undergoes a series of structured activities (Keefe and Block,

1982). Research findings converge to support the validity of AUs 4, 6, 7, 9, 10, 20, 26, 27 and 43

defined in Table I as elements of the facial pain profile in adults with nonmalignant pain (Craig et al.,

1991)(LeResche, 1982)(LeResche and Dworkin, 1984)(LeResche and Dworkin, 1988)(Prkachin and

Mercer, 1989). The list of pain-related AUs has been further expanded in more extensive research

(Williams, 2002) to include lip corner puller (AU12) and lips part (AU25). Prkachin et al (Prkachin

and Mercer, 1989) proposed that AUs are displayed as a sequence that depends on pain intensity and

durations. First eyebrows are lowered (AU 4), eyelids are narrowed (AU 7 then AU 6 with cheek raising

and deepened nasolabial furrow), and then eyelids are closed (AU 43). Next the upper lip is raised (AU

10) and the nose wrinkled (AU 9). Finally, the mouth is opened (AU 26 proceeding to AU 27) and then

the lips are stretched horizontally (AU 20). This finding leads to the development of an intensity-based

metric known as Prkachin and Solomon Pain Intensity (PSPI) (Deyo et al., 2004) (Prkachin, 2009). The

PSPI has been widely accepted in automated pain detection research in the engineering field, which is



5

a 16-level scale based on the contribution of individual intensity of pain related AUs and is defined as

(Prkachin, 2009):

Pain = AU4+max(AU6,AU7)+max(AU9,AU10)+AU43 (1.1)

1.2.3 Wilkie’s Pain Metric

Inspired by the work in (LeResche and Dworkin, 1984)(LeResche and Dworkin, 1988)(Prkachin and

Mercer, 1989), Wilkie first adopted the FACS system to study patients with cancer pain (Wilkie, 1995),

and proposed the collection of core pain-specific Action Units that occur singly or in combination as

candidates for a cancer pain facial expression profile. Wilkie’s pain metric measures the presence of

AU 6 or 7, 20, or 27 alone, or combinations of AUs 4 and 6 or 7 or 43, 4 and 9 or 10, 4 and 26 or 27,

9 or 10 and 26, or 9 or 10 and 27, as summarized in Table I, which serves as the conceptual basis of

our research. Note that although AU 27 (mouth stretch) is included in the pain expression recognition,

it is excluded for the pain detection task from this study as it was found to occur highly infrequently.

Facial expression annotation of videos using FACS is generally performed offline by trained experts

who closely examine the video of a patient’s face. Pain is assessed across the entire sequence based on

the occurrence and frequency of pain-related AUs, where AUs are coded at each time step (i.e. each

video frame) within the video subsequence. However, full FACS coding procedures are laborious, and

they require 100 units of time coding for every unit of real-time, which makes its real-time clinical use

prohibitive (Lucey et al., 2009),(Ashraf et al., 2009). Therefore, the development of an efficient real-
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time automated FACS-based pain detection would be a significant innovation for enhanced patient care

and clinical practice efficiency.

TABLE I: ACTION UNIT DEFINITION AND PAIN-RELATED AU COMBINATIONS

AU Description Pain-Related Combinations

4 eye brow lower 6/7

6 cheek raiser 20

7 eye lid tightener 4+6/7/43

9 nose wrinkler 4+9/10

10 upper lip raiser 4+26

20 lip stretcher 9/10+26

26 jaw drop

27 mouth stretch

43 eyes closed

1.3 Motivations and Challenges for Automated Pain Detection

Over the past two decades, significant progress has been achieved in automated facial expression

recognition. Advances in computer vision (CV) techniques have established robust facial image percep-
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tion and modeling under naturalistic environments, and state-of-the-art machine learning (ML) methods

have been adopted in the research on spontaneous facial expression recognition. The end-to-end solu-

tions for facial expression recognitions propelled by recent advances in deep learning techniques have

greatly motivated researchers seeking practical solutions to various affect-related problems, where the

term “affect” in psychology is associated with experience of feeling or emotion. Identifying pain from

facial expressions can be viewed as an extension to the spontaneous facial expression recognition prob-

lem, which is a more general research area for affect-related learning. An APD framework can be

built naturally atop an AFER system as they can share most modules of system design. In addition,

pain facial action units are also associated with other affects, including disgust, sadness, fear or anger

(Williams, 2002). However, only a handful of studies have focused on automated pain detection from

facial expressions. A literature survey conducted from 1982 to June 2014 with keywords “facial action

coding system pain” by Rojo et al (Rojo et al., 2015) found only 26 relevant references. Prkachian notes

that “information technology-based systems are currently relatively primitive, but there is little doubt

that their use in assessing pain expression is feasible and their capacities will become more powerful

with further research.” (Prkachin, 2009). One major challenge is the difficulty in collecting sufficient

examples of annotated pain-related expressions, especially in the case of facial pain data collection from

critically ill patients. Most publicly available video datasets are not targeted for pain, and only a small

portion of labeled action units are pain-related. Existing pain expression datasets are mostly developed

for targeted studies, which are small in size, highly imbalanced and lack sufficient diversity (Sikka et

al., 2015)(Hamm et al., 2011) to train a robust automated system in general. As a result, current APD

research has access to a very limited selection of pain datasets and has mainly focused on acute pain
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elicited by a single type of stimuli, which is typically in a laboratory environment (Hammal and Cohn,

2014). On the other hand, human ability to perceive pain in others is significantly developed by the age

of five to six and the sensitivity to more subtle facial signs of pain generally increases with age (Deyo et

al., 2004), which suggests that an APD system mimicking human decision procedures of accessing pain

is within the scope of present CVML techniques. Before we actually design our pain detection system,

we first conduct a systematic review of APD development, with focus on how it can benefit from the

advances in AFER research as well as from the progress in deep learning technology. In particular, we

refer to AFER/APD methods that use only classic CVML techniques and are not based on deep learning

as conventional approaches.

1.4 Main Contributions of This Research

Our research is inspired by the clinical demand for automated pain evaluation in end-of-life patient

care. As our major contribution of this research, we proposed a decoupled pain detection framework

that mimics the decision-making strategy of FACS-certified human coders by following the procedures

below:

Facial Expression
Inspection →

AU
Scoring →

AU Combination
Identi f ication →

Pain
Detection

The proposed system decoupled the entire task into two sub-problems, pain expression (AU) detec-

tion and pain prediction from the detected pain expressions (AU). The two sub-problems are handled by

an AFER system and an APD system, which are trained independently. The architecture of two indepen-
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dent machine learning networks not only improves data utilization from existing different pain-oriented

video datasets, but also improves data fusion incorporating future acquired data, which addresses the

most challenging problem arising from the data insufficiency. The decoupled architecture lends itself

to flexible customization using different implementation techniques in the modules. The AFER system

is realized with three types of configurations, including one conventional CVML system and two types

of deep learning architectures. The APD system is realized by two types of weakly supervised learning

tools (MIL and MCIL) that are trained with low-dimensional features derived from predictions of AU

combinations. We followed an end-to-front research strategy to develop the decoupled pain detection

system in three research phases, and our ultimate goal is to establish a robust and generic automated

pain analysis system for clinical applications.

The rest of the thesis is organized as follows, Chapter 2 reviews the progress in research that has

contributed to automated pain detection, with focus on a) the framework-level similarity between spon-

taneous AFER and APD problems; b) the evolution of system design including the recent development

of deep learning methods; c) the strategies and considerations in developing a FACS-based pain de-

tection framework from existing research; and d) introduction of the most relevant databases that are

available for FACS based AFER and APD studies. Chapter 3 presents the decoupled structure of the

proposed automated pain detection framework comprised of an AFER and an APD system. Chapter 4

provides a demonstration of the advantages of the proposed framework based on the results of testing

our method on the UNBC dataset and a unique dataset of lung cancer pain in terms of frame-level AU

encoding and sequence-level pain detection. Chapter 5 discusses future work that should lead to a com-
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mercialized product for automated pain detection. Finally, Chapter 6 presents the conclusions of this

research.



CHAPTER 2

REVIEW OF PROGRESS IN AUTOMATED PAIN DETECTION

Parts of this chapter have been presented in a preprint (Chen et al., 2018) that has been uploaded to

arXiv.
In this chapter, the relevant research that has contributed to automated pain detection is reveied. The

focus is on a) the framework-level similarity between spontaneous AFER and APD problems; b) the

evolution of system design including the recent development of deep learning methods; c) the strategies

and considerations in developing a FACS-based pain detection framework from existing research; and

d) the most relevant databases that are available for FACS based AFER and APD studies. We begin by

describing the relevant databases.

2.1 Facial Expression Datasets

Availability of representative datasets is the fundamental basis for training and testing an AFER

system. The performance evaluation of and comparison among different AFER approaches would not

be fair or meaningful without context to the datasets used in the evaluation. Before proceeding to an

overview of specific AFER and APD approaches, we will present an introduction to selected publicly

available facial expression datasets in this section. The datasets are grouped depending on the context of

the problem and presented in a chronological order of availability. These datasets were all FACS-coded

and used in the studies to be covered in this thesis.

11
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2.1.1 Standard Facial Expression Datasets for Conventional AFER

MMI (2005): The MMI dataset (Pantic et al., 2005) contains 740 static images and 780 video

sequences captured in frontal and profile views from 19 subjects who were students and research staff.

Two thirds of image samples and frames of 169 video sequences have been annotated by two certified

FACS coders for 30 AUs. The temporal phases of an AU event (onset, apex, offset) are also coded for

the 169 sequences. The MMI is a dataset of posed (not spontaneous) facial expressions under controlled

settings.

RU-FACS (2005): The RU-FACS (or M3) dataset (Bartlett et al., 2006) captures spontaneous fa-

cial expressions from video-recorded interviews of 100 young adults of varying ethnicity. Each video

segment lasts about 2 mins on average, where the head pose is close to frontal view with small to a

moderate out-of-plane rotation. 33 subjects have been coded by two certified FACS coder for 19 AUs.

CK+ (2010): The extended Cohn-Kanade dataset (Lucey et al., 2010) was constructed by build-

ing upon the Cohn and Kanade's DFAT-504 dataset [CK (2000)] (Kanade et al., 2000). The CK+

dataset contains 593 videos captured under controlled conditions from 123 subjects with various ethnic

backgrounds. Each brief video segment (approximately 20 frames on average) begins with a neutral

expression and finishes at the apex phase. The entire dataset is annotated for 30 AUs at frame-level.

The CK+ dataset has been made available since 2010 and is widely used for prototype and benchmark

AFER systems.

GEMEP-FERA (2011): The GEMEP-FERA dataset (Valstar et al., 2012) is a fraction of the GEne-

va Multimodal Emotion Portrayal (GEMEP) corpus (Bänziger and Scherer, 2010) employed as a bench-

mark dataset for the first facial expression recognition challenge (FERA2011). The original GEMEP
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corpus consists of over 7000 portrayals with 18 posed facial expressions portrayed by 10 actors. The

GEMEP-FERA dataset employs 158 portrayals for AU detection sub-challenge and 289 portrayals for

emotion sub-challenge. Ground truth is provided as frame-by-frame AU coding for 12 AUs and event

coding of 5 discrete emotions.

GFT (2012): The Sayette Group Formation Task (GFT) dataset (Sayette et al., 2012) captures spon-

taneous facial expressions from multiple interacting participants in a psychological study to evaluate

socioemotional effects of alcohol. The dataset include 172,800 video frames from 96 participants in

32 three-person groups (Girard et al., 2017). Multiple FACS coders are recruited for binary occurrence

coding for 19 AUs on frame-level, and 5 AUs are selected for intensity coding (level: A-E). The base-

line results are presented in a recent publication (Girard et al., 2017) for 10 AUs using maximal-margin

framework (linear SVM) and deep learning framework (AlexNet).

2.1.2 Facial Expression Dataset for Automated Pain Detection

Establishing a pain-oriented facial expression dataset is much more challenging than establishing

a general AFER dataset. UNBC-McMaster (2011): The UNBC-McMaster Shoulder Pain Expression

Archive Dataset (Lucey et al., 2011) is the only publicly available spontaneous facial expression dataset

targeting pain. It contains 48,398 FACS coded frames in 200 video sequences. The video segments are

captured from patients suffering from shoulder pain and facial expressions are triggered by moving their

affected and unaffected limbs. All frames are coded by certified FACS coders for 10 single pain-related

AUs and the frame-level pain score is rated by the Prkachin and Solomon Pain Intensity (PSPI). A

sequence-level pain label is assigned by self-reported VAS and Observer-rated Pain Intensity (OPI). In

addition, 66-point facial landmarks from Active Appearance Model (AAM) are also provided for each
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frame to facilitate the development of a user-customized AFER system. It is the only publicly available

pain-oriented facial expression video dataset in which the spontaneous facial expressions are evoked

solely by acute pain.

2.1.3 Facial Expression Datasets for Deep Learning Based AFER

SEMAINE (2012): As part of a project, Sustained Emotionally colored Machine-human Interac-

tion using Nonverbal Expression, the SEMAINE dataset (McKeown et al., 2012) provides high-quality,

multimodal recording to study social signals occurring during interaction between human beings and

virtual human avatars. The video frames were recorded from 150 participants of varying age and par-

titioned into subsets for training (48,000), development (45,000), and testing (37,695). Spontaneous

facial expressions were annotated by three certified FACS coder for 6 AUs at frame-level. SEMAINE

was selected as a benchmark dataset in the FERA 2015 challenge (Valstar et al., 2015).

DISFA (2013): The Denver Intensity of Spontaneous Facial Action (DISFA) Database (Mavadati et

al., 2013) captures spontaneous facial expressions elicited by viewing a 4-mins video clip from 27 young

adults via stereo video recording under uniform illumination condition. 4845 frames were recorded for

each participant and coded by a single FACS coder for 12 AUs (5 upper face AUs and 7 lower face

AUs) with 6 (0-5) level of intensities. The number of events (from onset to offset) and the number of

frames for each intensity level were also recorded. A second FACS coder was recruited for annotating

the videos from 10 randomly selected participants and resulted in a high interobserver reliability (ICC)

ranging from 0.80 to 0.94.

BP4D (2014): The Binghamton-Pittsburgh 4D Spontaneous Expression Database (BP4D) (Zhang

et al., 2014) contains spontaneous facial expression elicited by well-validated emotion instructions as-
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sociated with eight tasks, which are captured from a diverse group of young adults. A total of 639,224

frames are produced from forty-one participants and annotated for 27 AUs by FACS certified coders in

a 20-second segment interval. The video is available in both 3D and 2D, where geometric features are

represented by an 83-point 3D temporal deformable shape model (3D-TDSM) and a 49-point 2D shape

model tracked by a constrained local model (CLM). BP4D was also selected as a benchmark dataset in

FERA 2015 (Valstar et al., 2015).

2.1.4 Selected Private Facial Expression Dataset for Pain Study

Wilkie (1995): One major distinguishing feature of our study is that we also conduct research on

a unique dataset created by D.J.Wilkie (Wilkie, 1995), containing videos of 43 patients suffering from

chronic pain caused by lung cancer. The videos are captured in natural settings in the subjects’ homes.

The patients were required to repeat a standard set of randomly ordered actions as instructed such as sit,

stand up, walk, and recline, in a 10-minute video with a camera focused on the face area to record their

facial expressions. Each video was partitioned into 30 equal-duration, 20-second subsequences. The

subsequences were reviewed and scored for 9 AUs, possibly occurring in combination, by three trained

human FACS coders independently, and the results were entered in a scoresheet that served as ground

truth. Pain was declared to occur in a video subsequence if at least two coders agree with each other

on the occurrence of a set of specific AU combinations listed on the scoresheet. The intensity of pain

for the entire video was measured on the total number of subsequences that were associated with pain

labels. Due to the issue in illumination and video quality degradation, only 1164 out of the total 1290

video subsequences are amenable for processsing by Emotient, an AFER software described later and

of these about 600 subsequences are suitable for pain analysis.
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There are also other efforts seeking to provide publicly available pain-oriented datasets. Wener et

al (Werner et al., 2013) addressed multi-modality pain detection by introducing the BioVid Heat Pain

dataset, which includes 90 participants suffering from induced thermode pain in 4 levels. A recent

Emotion and Pain project extends the option for chronic pain analysis by introducing a fully labeled

multimodal dataset (named EmoPain) (Aung et al., ) targeting chronic lower back pain (CLBP). The

details of both datasets and the baseline implementations are presented in section 2.3.6. However, the

pain data in the BioVid dataset was collected under highly controlled settings, and the patients’ self-

report pain was not included, while the EmoPain dataset is still under construction without public access

available at this time. Therefore we do not include these two datasets in this study.

2.2 FACS-Based General AFER Framework

Over the past two decades, research in general Automated Facial Expression Recognition systems,

not necessarily pain-related, has generally adopted a framework that is comprised of four core modules:

face detection, face alignment, feature extraction and facial expression classification.

2.2.1 Face Detection

The face detection module locates face regions with a rectangular bounding box in a video frame so

that only localized image patches are extracted for further processing. One example of a state-of-the-

art face detector is the real-time Viola-Jones detection framework (Viola et al., 2001) that employs the

popular Adaboost learning algorithm in a cascade structure for classification. The ready-to-use Viola-

Jones detector is capable of robustly detecting multiple faces over a wide range of poses and illumination

conditions, as a result of which it is widely employed in most AFER research in practice. An extensive

review for available face detection approaches is presented in (Zhang and Zhang, 2010).
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2.2.2 Face Alignment in 2D

The face alignment module tracks a set of fiducial points on the detected face area in every video

frame. The fiducial points are typically defined along the cues that best describe features of a face,

including jawline, brows, eyes, nose, and lips. The set of fiducial points is also referred to as the shape

model when a parametric model is applied to human face. While facial expressions produce non-rigid

facial surface change, head pose rotations account for rigid motions. Although rigid motions are negli-

gible in controlled experimental settings for posed facial expression datasets, occurrence of spontaneous

facial expressions in natural environment is frequently accompanied by obvious rigid motions, where

challenges arise for accurate feature extraction in the next step. Rigid motion normalization can be

embedded within an alignment framework via a similarity or affine transform. Alternatively, an aligned

face model can be rotated and frontalized with the estimated head pose parameters and registered to a

front view mean face template with neutral facial expression.

Faces can be modelled as deformable objects which vary in terms of shape and appearance. The

active appearance model (AAM) (Cootes et al., 2001)(Baker and Matthews, 2004) is one of the most

commonly used face alignment method, where the optimization process relies on jointly fitting a shape

model and an appearance model via the steepest decent algorithm over the holistic face texture. The o-

riginal AAM is subject-dependent where the model is tuned specifically to the environmental conditions

of the training dataset. This, however, may cause performance degradation on face images of an ‘unseen’

subject. This problem can be addressed by using the constrained local model (CLM) (Cristinacce and

Cootes, 2006)(Cristinacce and Cootes, 2008), which is comprised of a shape model and an appearance

model similar to AAM. It only utilizes rectangular local texture patches around the shape feature points
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to optimize the shape model through a non-linear constrained local search. The appearance templates in

CLM are represented by a small set of parameters that can be effectively used to fit unseen face images.

Therefore a CLM framework can be conveniently modified as a subject-independent model (Asthana et

al., 2013) for generic face alignment applications. The result in (Chew et al., 2012) indicates that CLM

is generally more computationally efficient than AAM but it is slightly outperformed by AAM when

rigid motions are presented.

Follow-up research led to continuous improvement to the family of AAM and CLM methods in

terms of fitting accuracy and computational efficiency, which involvs adaptation to the fitting methodol-

ogy (Tzimiropoulos and Pantic, 2017), feeding rich annotated training data in unconstrained conditions

(Zhu and Ramanan, 2012), combination with new appearance descriptors (Xiong and De la Torre, 2013),

and fine tuning with cascaded regression techniques (Asthana et al., 2014). Such evolutions have boost-

ed the performance of face alignment to handle illumination variations, out-of-plane rigid motions, as

well as partial occlusions. It is worth noting that typical AU coding scenario is at close-to-front (±30◦)

view, which can be adequately handled by recent 2D alignment methods. Although 3D alignments

provide much denser geometric modeling as well as depth information, computational inefficiency and

difficulty in data acquisition makes it currently infeasible in many practical AFER and APD application-

s. Therefore we shall focus on automated pain detection from 2D facial expression recognition in this

study. For an adequate survey on facial expression modeling in 3D, readers are referred to the survey

(Sandbach et al., 2012).
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2.2.3 Feature extraction

Facial expressions are revealed by non-rigid facial muscular movement. A feature extraction mod-

ule is added between raw input pixels and classifiers and serves as an important interpreter to extract

relevant non-rigid information for manifesting Action Units from computer vision perceptions, which

is highly customizable in the framework structure with a rich option of feature descriptors. Features

can be categorized into geometric-based and appearance-based. Geometric features extract geometric

measurements related to coordinates of fiducial points, while appearance features are derived from pixel

intensities. Predefined distance, curvatures and angles from displacement of the fiducial points were an

intuitive way to extract geometric features in early AFER research (Tian et al., 2001)(Pantic and Patras,

2006). Static geometric measurements can be used as midlevel representations to extract dynamic fea-

tures by encoding with temporal information for a more detailed description of neuromuscular facial

activities (Valstar and Pantic, 2012). Geometric features are typically low in dimension and simple to

compute and focus on describing the deformation of the conspicuous feature cues. However, geometric

features are insufficient to model muscular actions off the feature cues and they are sensitive to regis-

tration errors from shape alignment. Therefore geometric features are typically applied in conjunction

with other feature descriptors in the spontaneous AFER scenario.

On the other hand, appearance features could be extracted directly from the alignment modality

(Ashraf et al., 2009), either by similarity normalized appearance (S-APP) that normalizes the rigid

motion or by canonical appearance (C-APP) that warps the texture to the mean shape template. The

resulting appearance descriptor is then concatenated in a high-dimensional feature vector based on raw

pixel intensity for classification. In this case, facial-expression-related muscular activities are encod-
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ed together with a large portion of person specific features without discrimination, which potentially

attenuates the discriminating power of the feature vector towards target AUs. Subtle texture changes

like deepening the nasolabial furrow, raising the nostril wing, cheek raising, pushing the infraorbital

triangle up, provide important reference for coding of certain AUs (Ekman and Friesen, 1978). These

non-rigid motions are nonstructural, which are infeasible to be effectively described by raw geometric

or pixel-based features. Descriptors developed for object detection are introduced in AFER research in

order to exploit the features more in depth. These descriptors detect local intensity variations as feature

points, edges, phase or magnitudes and assemble the low level appearance features into high-level fea-

ture representations, from which a meaningful classification can be made. A series of studies (Bartlett

et al., 2006)(Wu et al., 2010)(Littlewort et al., 2011)(Wu et al., 2012) have applied a Gabor filter bank

to extract features in 8 directions and 9 spatial frequencies and the output magnitudes are concatenated

into a single feature vector for AU classification. The local binary pattern (LBP) encodes local intensity

variation in the neighbourhood and as an extension to LBP, the local phase quantization (LPQ) captures

local phase information from Fourier coefficients, and a histogram is assembled from the local descrip-

tors as a high-level feature representation. If the facial video volume is sliced by three orthogonal planes

(TOP), both LBP and LPQ static feature descriptors are then expanded to encode temporal information

from x− t and y− t planes, which are known as LBP-TOP and LPQ-TOP (Jiang et al., 2011). A de-

tailed survey of the application of the family of LBP descritpors to facial image analysis can be found

in (Huang et al., 2011). More geometric-invariant feature descriptors have been successfully applied

to AFER including the histogram of oriented gradient (HOG) (Chew et al., 2012) and scale-invariant

feature transform (SIFT) (Girard et al., 2015). The appearance descriptors can also be associated with
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an image pyramid representation to extract feature with multiple scales and resolutions (Dhall et al.,

2011)(Sun et al., 2014).

In addition to extracting static features from a single frame, it is also beneficial to extract dynamic

features comprised of spatially repetive, time-varying patterns (Chetverikov and Péteri, 2005) to model

motion-based information from an image sequence. Koelstra et al (Koelstra et al., 2010) employ two

representation methods, motion history image (MHI) and free-form deformation (FFD), to derive non-

rigid motions from consecutive frames. A MHI descritpor computes a motion vector field from a set of

weighted binary difference images within a predefined time window, while a FFD descriptor captures

non-rigid motions via a B-spline interpolation that computes local variations of a control point lattice.

A quad-tree decomposition method is then applied to decompose the face region in a non-uniform grid

representation, where most grids are placed on areas with high motion response. The quad-tree decom-

position is performed in three orthogonal planes to extract features in terms of magnitude, horizontal

motion, and vertical motions. This work (Koelstra et al., 2010) provides an example on feature cus-

tomization in terms of geometric and appearance feature combination, dynamic feature extraction by

utilizing temporal information, as well as a balance between global and local feature extraction. Each

AU is activated by a combination of facial muscles, which can be geometrically located in a specific

region on the face. Appearance features extracted from corresponding region of interests (ROI) bound-

ed by geometric features potentially help to reduce the feature dimensionality and boost computation

efficiency. Hamm et al (Hamm et al., 2011) divided a face image into 14 rectangular regions based

on geometric landmarks’ layout, from which a 72-dimensional Gabor response is pooled to generate

a histogram-based feature representation. If multiple feature descriptors are employed in an AFER
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framework, a feature fusion problem should also be considered. Wu et al (Wu et al., 2012) evaluate

the performance multi-layer architectures for feature extraction involving a combination of two texture

descriptors, the Gabor Energy Filter (GEF) and LBP. However, a more common way for feature fusion

is to perform it in the classification stage, which will be addressed in the next section.

2.2.4 AU classification and regression

FACS-based AFER studies typically focus on two core problems in Action Unit recognition: 1)

which AUs are displayed in the input images or videos, and 2) how to measure the intensity of the

observed AUs. Conventional AFER research frequently treats the detection of AU occurrence as a binary

classification problem, where a binary classifier is trained for each of the target AU independently, and a

separate set of classifiers or regressors are trained to discriminate AU intensity of different levels. Static

classification approaches serve as the basis for AU recognition, which rely on features extracted from

one static image frame. However, psychological studies (Bassili, 1979) suggest that facial behavior can

be more reliably recognized from an image sequence than from a still image. Hence dynamic approaches

include additional analysis steps on static predictions by utilizing temporal information from adjacent

frames to improve reliability of frame-level AU estimations or perform high-level AU event coding

across the video sequences.

Static Approach

Support vector machine (SVM) and boosting-based classifiers are commonly employed for the AU

classification task. A binary support vector machine seeks a subset from training data known as support

vectors, which defines a hyperplane that maximizes the margin between the hyperplane and closest

points of both classes. In practice, the feature spaces can be lifted to a higher-dimensional feature
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space using kernels (Szeliski, 2010), where linear and radial basis function (RBF) kernels are frequently

used in SVM settings for AU classification. In fact, SVM was used as part of the baseline system in

most facial expression datasets (Bartlett et al., 2006)(Lucey et al., 2010)(Lucey et al., 2011)(Mavadati

et al., 2013)(Girard et al., 2017). A boosting-based approach learns a set of weak binary classifiers in a

sequential order, where mis-classified samples are assigned higher weights and are considered as ‘hard’

problems to be handled with the next weak classifier. The final decision is made by a strong classifier

that is generated from a linear combination of the set of weak classifiers.

Bartlett et al (Bartlett et al., 2006) assessed both SVM (linear and RBF kernels) and Adaboost (up to

200 features selected per AU) classifiers for facial action classification on 20 AUs, where Gabor wavelet

features were extracted from the RU-FACS (spontaneous) and CK (posed) datasets. Chew et al (Chew

et al., 2012) employ a linear SVM to test pixel-based features and more complex appearance features

(HOG, Gabor Magnitudes) extracted from multiple datasets (CK+, M3, UNBC-McMaster and GEMEP-

FERA) under different face alignment accuracy. The experiment suggests that the more complex appear-

ance descriptors are robust to alignment errors on AU detection, but their advantages are limited under

close-to-perfect-alignment. Jiang et al (Jiang et al., 2011) performed recognition of 23 upper and lower

face AUs on MMI dataset with four different SVM kernel settings, including Linear, Polynomial, RBF

and Histogram intersection. The SVM classifiers were trained with a set of features from LBP family

with optional Block and Pyramid extensions, including LBP, LPQ, B-PLBP and B-PLPQ. Experimental

results indicated that a SVM with histogram intersection provided slightly better performance than oth-

er kernel settings, and the block-pyramid based B-PLPQ feature outperformed other features but at the

cost of increased computational complexity. Jeni et al (Jeni et al., 2013b) proposed a continuous AU in-
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tensity estimation framework using support vector regression (SVR). Sparse features were learned from

local patches via personal mean texture normalization followed by non-negative maxtrix factorization.

A L2-loss regularized least-squares SVM (LS-SVM) model was trained for AU intensity regression in 6

ordinal levels (0-5). The proposed AU intensity estimation system was tested on 14 AUs on posed data

from CK+ as well as on spontaneous data from BP4D for AU12 and AU14. Chu et al (Chu et al., 2017)

investigated the problem of personalizing a classifier trained on a generic facial expression dataset with

respect to unlabeled person-specific data through a transductive learning method, which is referred to

as Selective Transfer Machine (STM). The idea behind STM is to re-weight the samples in the gener-

ic training set by minimizing the training and person-specific test distribution mismatch, such that a

person-specific SVM classifier can be generated from the reweighted training data. The proposed sys-

tem was evaluated for cross-subject AU detection on CK+ and RU-FACS, and cross-dataset AU detetion

in terms of RU-FACS→GEMEP-FERA and GFT→RU-FACS. The experimental results demonstrated

that STM consistently outperformed generic SVM on both tasks.

Dynamic Approach

A dynamic approach for AU classification takes input from static AU predictions of multiple con-

secutive frames to perform temporal analysis that targets three problems in general: 1) improving pre-

diction reliability on the current frame using information from past frames, 2) generating segment-level

AU detection from frame-level prediction, and 3) locating AU events in a video sequence by modeling

temporal phase transition (i.e. onset, apex, offset, and neutral) of an Action Unit.

Koelstra et al (Koelstra et al., 2010) trained a one-versus-all GentleBoost classifier for each AU in

onset or offset phase indepdently with spatiotemporal features derived from Free-Form Deformations
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(FFD) or Motion History Image (MHI). The outputs of each pair of onset and offset GentleBoost clas-

sifier were combined into one AU recognizer through a continuous Hidden Markov Model (HMM).

The four-state HMM performed as a temporal filter as well as AU event encoder by modeling temporal

phase transition for each AU, where the prior and transition matrices were estimated from the train-

ing set and the emission matrix was estimated from the outputs of the GentleBoost classifiers. The

proposed system was tested for 27 AUs in MMI and 18 AUs in CK+. A follow-up study in (Valstar

and Pantic, 2012) proposed a hybrid SVM-HMM framework to estimate the temporal phases of an AU

event. A one-versus-one multi-class SVM was trained for each of the four temporal phases using 2520-

dimensional geometric features. The outputs of SVMs were converted to probability measures via a

sigmoid function, which were used to estimate the emission matrix of a HMM. Rudovic et al noticed

the temporal phase of AUs are correlated with their intensities and proposed an approach based on Con-

ditional Ordinal Random Field (CORF) to utilize the ordinal relations embedded in intensity levels. The

proposed LAP-KCORF framework (Rudovic et al., 2012) extends the CORF model by introducing a

kernel-induced Laplacian regularizer to the optimization process. The Composite Histogram Intersec-

tion (CHI) kernel was selected in the framework settings, which takes the input of LBP features from

aligned training images. The LAP-KCORF model was trained for each AU separately. While neutral

and apex phases can be discriminated solely from the ordinal score, the onset and offset phases have

to be discriminated from the dynamic features. Experimental results on 9 upper face AUs drawn from

MMI datasets demonstrated the advantages of the ordinal model over the SVM-HMM model on both

AU detection and temporal phase estimation. Hamm et al (Hamm et al., 2011) proposed an AFER sys-

tem to perform dynamic analysis of facial expressions on a private video dataset featuring patients with
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neuropsychiatric disorders and healthy controls. A one-versus-all GentleBoost classifier was trained for

each of the 15 selected AUs using Histogram of Gabor Features extracted from multiple pre-defined

local regions. The dynamic analysis was measured by single and combined AU frequencies and affec-

tive flatness and inappropriateness, which was derived from the temporal profiles of AU predictions on

frame level.

A complete AU event refers to activation of an AU in terms of its duration and start/stop boundaries.

Realizing the event-based detection is more desirable than frame-based detection in many application

scenarios in practice, Ding et al (Ding et al., 2016) carried out AU detection on frame-level, segment-

level and transition encoding in a sequential order, and integrated the results from three detectors to

Cascade of Tasks (COT) architecture to perform AU event coding. The frame-level detector was trained

with SVM on SIFT features, where the frame-level detection was used to augment segment-level train-

ing data in both feature representation and sample weight. The segment-level data were represented by

a Bag of Words (BOW) structure with geometric features. A weighted-margin SVM was employed for

segemnt-level detection, where samples (segments) containing many positive frames (scored by frame-

level detector) were associated with higher weights. Two transition detectors were then trained to refine

the onset and offset boundaries from the detected AU segments using the segment-level features. The

scores for segment-level prediction and transition predictions were linearly combined to predict the oc-

currence of AU events. The start and end frames of an AU event were determined based on the highest

event score. Multiple events could be scored in a given video sequence using dynamic programming

(DP) via a branching-and-bounding strategy. The proposed system was trained and tested for different

set of AUs on CK+, RU-FACS, FERA and GFT datasets respectively. Sikka et al modeled an affective
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event as a sequence of discriminative sub-events, and solved the event detection as a weakly supervised

problem with ordinal constraints by the proposed Latent Ordinal Model (LOMo) (Sikka et al., 2016).

A LOMo model seeks a prototypical appearance template to represent each sub-event, and the order

of all sub-event permutations is associated with a cost value, where permutations far from the ground

truth order were penalized with higher cost. A score function originating from a linear SVM was de-

fined to measure the correlations between a weakly labeled frame (with only sequence-level label) and

the templates with consideration of the ordinal cost. The entire model was learned using an algorith-

m based on stochastic gradient descent (SGD) with respect to a margin hinge loss minimization. The

proposed method selected multiple frame-level feature descriptors (SIFT, LBP, geometric and deep-

learned features) and was trained and evaluated on four facial expression datasets including CK+ and

UNBC-McMaster.

Discovering AU Relations

The aforementioned methods consider single AU detection as one-versus-all classification problem.

There are also efforts that attempt to make better use of FACS by exploiting dependencies and relations

among AUs, which are potentially helpful in improving detection on highly skewed AUs in spontaneous

facial video datasets. Tong et al (Tong et al., 2007) proposed a system based on Dynamic Bayesian

Network (DBN) to model relations among different AUs in a probabilistic manner taking into consider-

ation temporal changes in an AU event. An Adaboost classifier trained on Gabor features was employed

as a baseline static AU detector. A Bayesian Network (BN) was used to model the relations of AUs in

terms of their co-occurrence and mutual exclusivity. A DBN network is comprised of interconnected

time slices of static BNs, where the state transitions between the consecutive time slices is modeled by a
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HMM. The structure and parameters of the DBN were obtained by training it offline and AU recognition

under temporal evolution was performed online with the trained DBN network. The DBN-based system

was learned for 14 AUs from the CK+ dataset and the validation was further generalized using selected

samples from the MMI dataset. Zhao et al (Zhao et al., 2015) formulated patch learning and multi-label

learning problems in AU detection as a joint learning framework known as Joint Patch and Multi-label

Learning (JPML). Patch learning sought local feature dependencies for each AU, where adaptive patch

descriptors were placed around 49 facial fiducial points to extract 128D SIFT features from each patch.

Multi-learning exploited strong correlations among AUs from a AU relation matrix that was learned on

over 350,000 FACS annotated frames from multiple datasets. Positive correlation and negative com-

petition were defined for relations of likely and rarely co-occurring AU pairs based on the correlation

coefficients in the AU relation matrix. The JPML framework integrated the patch learning and multi-

label learning into a logistic loss in the form of a patch regularizer and a relational regularizer, which

were then jointly solved as an unconstrained problem. The JPML framework was trained and tested

on CK+, GPT, BP4D datasets, from which specific active patch regions were identified for 11 AUs.

Altogether 8 positive correlation and 14 negative competition pairs were discovered among 11 AUs.

2.2.5 Performance Metrics

After training a proposed AFER system on selected datasets, the next step is to evaluate the sys-

tem performance with proper metrics. The criteria to select measure metrics depends on the type of

classification problem, e.g. binary AU classification or multi-level AU intensity estimation.

Accuracy, F1 score and Area Under the receiver operating Characteristic (AUC) curve are three

most frequently used metrics to evaluate a binary classifier. Accuracy is the percentage of correctly
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classified positive and negative samples. F1 score is the harmonic mean of between precision (PR) and

recall (RC), so that the two measures are reflected through one score. The metric “AUC is equal to the

probability that a classifier will rank a randomly chosen positive instance higher than a randomly chosen

negative one” (Fawcett, 2006).

Evaluation of multi-level intensity classification and regression depends on two types of perfor-

mance metrics in general. The first type includes the root mean square error (RMSE) and mean absolute

error (MAE) metrics that effectively capture the difference between predicted value and the ground truth.

While MAE is more intuitive for interpretation, RMSE possesses the benefit of penalizing large errors

more, and is easier to be manipulated in many mathematical calculations. The second type of metric

is correlation-based including Pearson’s correlation coefficients (PCC) and Intraclass correlation (ICC),

which measure the trend of prediction following the ground truth without considering a potential abso-

lute bias (Egede et al., 2017). The ICC is similar to PCC except the data are centered and scaled using a

pooled mean and standard deviation (Girard et al., 2015), which require raters (e.g. a human coder and

an AFER) to provide the same rating without multiplicative difference to achieve agreement on ICC.

RMSE/MAE and ICC are often used simultaneously as complimentary metrics in AFER studies, as a

low ICC is possible with deceptively low RMSE/MAE scores and vice-versa (Egede et al., 2017).

Most spontaneous facial expression datasets contain a significantly larger fraction of negative sam-

ples than the fraction of positive samples in practice, where the data imbalance can be defined by the

skew ratio as Skew = negativeexamples
positiveexamples . Jeni et al (Jeni et al., 2013a) studied the influence of skew on mul-

tiple metrics and reported Accuracy, F1, Cohen’s κ and Krippendorf’s α were attenuated by skewed

distribution. Although AUC was unaffected by skew ratio, it may mask poor performance due to data im-
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balance. The author suggested reporting skew-normalized scores along with original ones to minimize

skew-biased performance evaluation. This finding was also taken into account by several studies (Tősér

et al., 2016)(Zhao et al., 2015)(Rodriguez et al., 2017). It is worth mentioning that all metrics discussed

above are also applicable to pain detection and deep learning based AFER approaches. We shall use the

same abbreviations (as emphasized in italic) when referring to these metrics in the following sections.

2.3 Automated Pain Detection from Facial Expressions

Present APD studies generally follow two modalities to detect pain from facial expressions. In

the indirect way video frames are first encoded with FACS-based Action Units and pain is then iden-

tified from pain-related AU predictions. Alternatively, a mapping can be learned directly from high-

dimensional features to assign pain labels without going through the AU coding procedure. The progress

in APD has benefited vastly from advances in AFER techniques which are applicable in both the direct

and the inderect modalities, as AFER is the core module in the indirect method and most functional

blocks in an AFER framework can be applied within a direct pain detection architecture with minor

modifications. In fact, with few exceptions, all APD studies reviewed in this section are linked to some

preliminary AFER research. The correlation between the frameworks used in addressing the AFER and

APD problems is illustrated in figure 1.

Aside from the similarity to the AFER problem, there are additional considerations that should be

factored in the design of an APD system. These stem from the nature of the pain data, methods used in

labeling pain data, the system performance metrics used, and availability of supplemental pain data from

non-facial sensing. For example, pain data may be collected under controlled, spontaneous, or clinical

conditions; the ground truth may be obtained from patients’ self-report, or certified FACS coder; a pain
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Figure 1: Correlation between the frameworks used in addressing the AFER and APD problems

event may be scored per frame or per segment for the binary pain decision or pain intensity estimation;

acute and chronic pain may be distinguished from onset phase duration (Hammal and Cohn, 2014);

suitable metrics could be used for performance evaluation and for comparison with human coders’

decision. Last but not the least, signals from channels other than facial expressions may also help

in pain detection. In this section, we will review existing APD research in a case study manner by

addressing these considerations.

2.3.1 Genuine Pain Vs. Posed Pain

A pioneering APD study examined the problem of distinguishing posed pain from genuine pain

through AU coding (Littlewort et al., 2007)(Littlewort et al., 2009). Facial expressions induced by

posed pain and genuine pain are mediated by two neural pathway and thus have subtle differences in

terms of muscular movements and dynamics. The system implementation was comprised of a two-level

machine learning module. The first stage solved a general AFER problem by training independant linear

SVM binary classifiers for a list of 18 single AUs and 2 AU combinations about prototypical expression
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of fear and distress. Features were extracted by Gabor filters and selected by Adaboost. Differences of

Z-scores were computed for three pain conditions consisting of real pain, fake pain, and absence of pain

(baseline). AU 1, 4, and the distress brow combination were considered statistically significant for real

vs. fake pain discrimination. Window-based statistics and event-based statistics were obtained from the

first stage of AU prediction, and a second layer non-linear SVM was trained to discriminate genuine

pain from faked pain. The AFER system was trained on 3 datasets (2 posed and 1 spontaneous), while

the pain data were collected from 26 subjects subjected to cold pressure pain. The system was evaluated

by AUC and 2FAC, and the reported performance found to be superior to naive human judges. Although

accuracy of individual AU classifier is still below that of human coders, this is among the first efforts to

extend AFER to APD study.

2.3.2 Binary Pain Classification

Following the first study based on UNBC-McMaster dataset, (Ashraf et al., 2009) proposed a frame-

work to detect pain at both frame and sequence level. The face video was aligned by AAM and a com-

bination of geometric features (similarity normalized shape points - S-PTS) and appearance features

(canonical appearance - C-APP) was extracted. A linear SVM was used to perform binary classification

of “pain” vs. “no-pain” , and prediction of pain score at frame level was defined as the distance of the

test observation from the separating hyperplane of SVM. Pain scores for every frame are summed and

normalized for the duration of the sequence to produce a cumulative score for sequence level pain mea-

sure, and the decision threshold was determined by Equal Error Rate (EER) derived from ROC. In the

follow-up research Lucey et al(Lucey et al., 2011) reported on recovering 3D pose from 2D AAM (Xiao

et al., 2004) and performing statistical analysis based on ground truth to reveal that patients suffering
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from pain displayed larger variance in head positions. A set of binary linear SVM classifiers was trained

for 10 pain related AUs to replace the single binary pain SVM classifier in the previous work (Ashraf et

al., 2009). Frame-level pain measurement was then derived from the output scores of AU detectors that

were fused using linear logistical regression (LLR). A combination of S-PTS, S-APP and C-APP yields

the best average AU recognition performance of 0.78 measured by AUC (Ashraf et al., 2009), and the

performance was further improved to 0.81 by compressing the spatial information with a discrete cosine

transform (DCT) (Lucey et al., 2008). Continuous research based on this framework was conducted in

(Lucey et al., 2012), where OPI label was employed for sequence level pain evaluation to mimic the

decision making of human observers. The OPI labels are segmented into three classes based on inten-

sity (0-1, 2-3, and 4-5), and a one-versus-all binary SVM classifier was trained for each OPI group to

generate a confusion matrix. The frame-level pain label assigned by the classifier model produced the

highest probability score and a sequence level pain label is generated from all its member frames via

a majority vote scheme. Although reasonable classification rate was obtained for no pain class (OPI

0-1), the system did not report desired performance to discriminate low pain level (OPI 2-3) from high

pain level (OPI 4-5). Further findings from the testing results suggests that rigid head motions do not

necessarily contribute to prediction of OPI intensities. This series of studies is valuable as it paves the

way for APD research to replicate the job of a care-giver when monitoring the pain of a patient.

2.3.3 Pain Intensity Estimation

Hammel et al (Hammal and Cohn, 2012) built a pain intensity classification system for the UNBC-

McMaster dataset using the AAM-CAPP-SVM framework. A Log-Normal filter bank tuned to 15

orientations and 7 central frequencies was applied to the C-APP features to enhance the modeling of
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deepening and orientation change of appearance features that characterize pain expressions. The pain

metric is measured with the PSPI scale and the intensities are categorized into 4 classes (0,1,2,≥ 3) and

four linear SVM are trained with the Log-Normal filtered C-APP feature map for the four levels of pain

intensity. The pain intensity is estimated on a frame-by-frame basis and the performance is evaluated

by F1 for 5-fold (91%− 96%) and leave-one-subject-out (45%− 67%) cross-validation. Moderate to

high consistency between manual and automatic PSPI pain intensity was measured by ICC for the two

cross-validation schemes.

Irani et al (Irani et al., 2015) adopted spatiotemporal oriented energy features to model facial mus-

cular motions in a pain intensity detection framework on the same pain dataset. The face sequence was

segmented and aligned using AAM, and then a face patch was further divided into 3 regions based on

the prior knowledge of location of pain expression muscular activities. Facial muscular activities were

extracted at the frame level by steerable and separable energy filters that were implemented by a second

derivative Gaussian followed by a Hilbert transform tuned to 4 directions. A histogram was generated

from pixel-based energy features as per directions and regions to form region-based energy descriptors.

Vertical motion and horizontal motion were computed from the histogram of spatial features in up-down

and left-right directions respectively. Frame-level motion features were summed in time domain to gen-

erate a final spatiotemporal descriptor for each region. Pain intensity was estimated by a weighted linear

combination of the vertical and horizontal motion scores. Experimental results reveal an improvement

in no-pain and weak-pain recognition in the work of (Hammal and Cohn, 2012).

Lundtoft et al (Lundtoft et al., 2016) modified the pain intensity framework in (Irani et al., 2015) by

introducing a super pixel approach for face region segmentation. They argued a better recognition rate
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for no pain category can be achieved by only exploiting vertical motions of the spatiotemporal descriptor

from the middle region of the face.

2.3.4 Pain Detection in Clinical Settings

An encouraging clinical application of automated pain detection was reported in (Sikka et al.,

2015)(Sikka, 2014). This study applied CVML models to assess pediatric postoperative pain and

demonstrated good-to-excellent classification accuracy and strong correlation with pain ratings from

human observers (parents and nurses). In the data collection stage, a single camera recorded video of

50 youth, 5 to 18 years old, for transient and ongoing pain conditions during 3 study visits after laparo-

scopic appendectomy. Facial activities were recorded for 5 minutes as a measure of ongoing pain. Then

the surgical site was manually pressed for two 10-second periods to stimulate transient pain, and video

recorded. Pain ratings from patients’ self-report, parents, and nurses were recorded independently in a

11-point Numerical Rating Scale (NRS), where self-report pain rates were considered as the subjective

ground truth and time since surgery provided the objective ground truth alternatively. Video segments

with NRS rating≥ 4 are defined as trials with pain, while those with NRS ratings of 0 are defined as tri-

als without pain. The computer expression recognition toolbox (CERT) was employed to independently

score 10 pain-related single AUs, one smile-related AU combination, and rigid head motion in 3D (yaw,

pitch and roll) per frame. Three statistics (mean, 75th percentile, and 25th percentile) were computed

for each of the 14 frame-level raw features across the duration of a pain event (ongoing and transient),

which were comprised of a 42-dimensional feature vector for the pain event. Two linear regression

models with L1 regularization are trained on the same set of feature vectors for binary pain classification

and pain intensity estimation tasks.
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Performance of a binary pain model was evaluated via a 10-fold cross validation with two metric-

s, where AUC (in the range of 0.84-0.94) demonstrates good-to-excellent detection rate and Cohen’s

κ provides phycological measurement on categorical agreement between raters with consideration of

chance agreement. Categorical agreement evaluated for transient and ongoing pain was fair to sub-

stantial (κ = 0.36−0.61) for the model trained on self-report ratings and substantial (κ = 0.61−0.72)

for the model trained on objective ground truth, where the prediction of automated system was more

consistent than human observers on ongoing pain according to the κ measurement. The pain intensity

estimation model was evaluated by the Pearson correlations metric (both within and across subjects)

using a leave-one-subject-out cross validation scheme. The best performance was achieved when the

PIE system was trained with objective ground truth for both pain conditions, and the within-subject cor-

relation (r = 0.80−0.86) was consistently higher than the correlation for all subjects (r = 0.55−0.59).

The CVML model performance was at least equivalent to or exceeded that of a nurse for both BPC

and PIE tasks, but was only equivalent to that of parents in PIE task. The analysis of results from PIE

also supports the tendency for nurses to underestimate pain severity (Williams, 2002) when compared

with children’s self-report, especially under the ongoing pain condition. Model performances were not

affected by including demographic information in the training features. This research outlines general

procedures for applying a CVML model in clinical settings, which involve experimental design and

data collection, CVML tools, model evaluation from both engineering and phycology aspects, as well

as performance comparison with human observers. Therefore the methodology in this research serves

as an important modality for future APD research.
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2.3.5 Detecting Pain Event with ‘Weakly Labelled’ Data

A patient’s self-report is the gold standard for pain evaluation in patient care. A pain label is com-

monly available for a video sequence but not for every single frame. Such a situation is encountered

frequently in computer vision since it is easier to obtain group labels for the data rather than individual

labels, and is known as ‘weakly supervised’ learning problem. Sikka et al (Sikka et al., 2014) modeled

a video sequence with a bag of words (BOW) structure that is comprised of multiple segments to handle

the ‘weakly labelled data’, and solved the ‘weakly supervised’ pain detection problem with a multiple

instance learning framework (MIL). Two partitioning schemes, normalized cuts (Ncuts) and scanning

window (scan-wind), were employed to generate multiple segments (referred to as instances) from a

video sequence (referred to as bag). According to BOW definition, a positive (pain) bag contains at

least one positive instance while a negative (no pain) bag contains only negative instances. The frame-

level feature extraction learns a mapping from the pixel space to a d-dimensional feature vector. Choice

for frame-level feature descriptor is highly flexible, the multi-scale dense SIFT (MSDF) with a 4-level

spatial pyramid was selected in this work (Sikka et al., 2014). The segment-level feature representation

was then generated from all frames in the segment via a max pooling strategy, such that an instance in

a bag is also represented by a d-dimensional vector. A Milboost (Zhang et al., 2006) framework based

on gradient boosting was used to learn the posterior probabilities for both bags and instances, which

were directly related to pain event prediction on segment level or sequence level. The frame-level pain

score was also derived from posterior probability of segments by assigning the maximum score among

all the segments to which it belongs. The frame level pain score can be used for pain localization in time

domain. The proposed APD framework was trained and validated on the UNBC-McMaster dataset,
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where sequences with OPI rating≥ 3 are selected as positive samples and those with OPI rating = 0 are

selected as negative samples. The binary pain detection was evaluated with EER (83.7%) in the ROC.

The pain localization task was evaluated as pain intensity estimation on frame level with ground truth of

PSPI, and the performance was evaluated by F1 socre (.471) and Spearman’s rank correlation (Kendall,

1938) (.432).

The MIL framework detects pain (pain vs. no pain) in a Multi-Instance-Classification (MIC) set-

ting, where the sequence-level intensity labels (VAS, OPI) of pain are binarized. It is, therefore, not

suitable for a multi-level classification/regression problem like the pain intensity detection task. Ruiz

et al embedded an ordinal structure of labels to the bag representation, which naturally corresponds to

various rating or intensity estimation tasks. In the proposed Multi-Instance Ordinal Regression (MIOR)

weakly supervised settings, a video sequence was modeled as a bag where instances are consecutive

video frames in the sequence. The bag label belongs to an ordinal set and instance labels were treated

as latent ordinal states, which were inferred from a learned mapping from feature space to the structural

output space. A multi-instance dynamic ordinal random fields (MI-DORF) framework built upon the

hidden conditional ordinal random fields (HCORF) (Kim and Pavlovic, 2010) framework was employed

to handle the multiple instance learning (MIL) problem incorporating both ordinal and temporal data

structures, where the temporal dynamics within the instances was encoded by transitions between or-

dinal latent states. The proposed MI-DORF framework was then applied to pain intensity estimation

task on UNBC-McMaster dataset, where a total of 157 sequences from 25 subjects were selected based

on the low-discrepancy criteria between sequence- and frame-level pain label. The sequence-level pain

label in an ordinal scale (OPI label) between 0 and 5 was used to train the system, and the frame-level
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label in PSPI was also normalized to the same scale and used for results validation. The frame-level

(instance) features are represented by 49 fiducial points tracked by AAM. For a fair comparison with

MIL in (Sikka et al., 2014), this study followed a similar experimental setup as in (Sikka et al., 2014),

while the output probability for binary pain classification in MIC methods was also normalized to 0−5

as a representation of pain intensity. The performance on sequence-level prediction was measured by

PCC (0.67), MAE (0.80), ICC (0.66), Accuracy (0.52), and F1 (0.34), which outperformed other MIL

methods (Sikka et al., 2014) (Hsu et al., 2014) as well as the baseline model (Kim and Pavlovic, 2010).

Furthermore, the proposed approach achieved a comparable performance on frame-level pain intensity

estimation (ICC = 0.40) using only sequence-level ground truth towards the state-of-the-art fully super-

vised (using frame level ground truth) Context-sensitive Dynamic Ordinal Regression method (Rudovic

et al., 2015) (ICC = 0.59− 0.67). This result suggests a good trade-off between system performance

and labor intensive frame-level annotation.

2.3.6 Multi-Modality in Pain Detection

Pain is a subjective experience, which is possibly caused by various stimuli (e.g., spinal stenosis,

rotator cuff tear, cardiac conditions or sickle-cell disease) and manifested through signals from multiple

modalities including voice, facial and body expressions (Hammal and Cohn, 2014). Present efforts in

APD largely focused on acute pain that is elicited by a single stimulus in a controlled environment,

which poses a gap between existing APD research and requirements of practical pain-related clinical

applications. The UNBC-McMaster is the first publicly available dataset with well-annotated data for

acute pain that has facilitated APD research since its first availability in 2011. Although it has been
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widely employed to benchmark the performance of both AFER and APD systems, its contribution is

limited by its inability to lend itself to study other types of pain such as chronic pain.

A recent Emotion and Pain project extends the option for chronic pain analysis by introducing a

fully labeled multi-modal dataset (named EmoPain) (Aung et al., ) targeting chronic lower back pain

(CLBP). The data in EmoPain contains multiple signals collected with and across different modalities,

including high-resolution multi-view face videos, full-body 3D motion capture, head-mounted and room

audio signals, and electromyography signals from back muscles. Participants are requested to perform

both instructed and non-instructed exercise to simulate therapist-directed and home-based-self-directed

therapy scenarios. Level of pain from facial expressions was labelled by 8 raters, while six pain-related

body behaviors were annotated by 4 experts. 22 CLBP patients together with 28 healthy control subjects

were recruited as final participants for the CLBP study. The baseline experiment on facial expressions

of pain used the full length of 34 unsegmented trials video captured by frontal-view camera from 17

patients, which are comprised of a total of 317,352 frames (33.3% contained pain). The baseline sys-

tem tracked 49 inner facial landmarks that were aligned by a similarity transform. Two local appearance

descriptors, the local binary pattern (LBP) and discrete cosine transform (DCT), are employed to extract

features from local patches with a radius of 10 pixels centered on 30 fiducial points. The two sets of

appearance features together with geometric features from the landmark points are fed separately into

a linear SVM for binary pain recognition task. The best performance was achieved by the geometric

feature, which is measured by AUC (.658) and F1 (.446). Given facial expression as a communicative

modality and body behavior as both communicative and protective (Sullivan et al., 2004), the authors

further performed a qualitative analysis of the relation between pain-related facial and body expressions.
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The results supported the finding that facial expressions of pain (70%) occur in connection with a pro-

tective behavior, which may help the pain research community to better understand the relation among

movement, exercise, and pain experience.

Werner et al (Werner et al., 2013) addressed multi-modality pain detection by introducing the BioVid

Heat Pain dataset, which include 90 participants suffering from induced thermode pain in 4 levels.

Multi-view face videos were recorded from three synchronized optical cameras in conjunction with

depth map from a Kinect sensor. The physiological signals are captured from the skin conductance

level (SCL), the electrocardiogram (ECG), the electromyogram (EMG), and the electroencephalogram

(EEG). The pain detection experiment was based on only the video data in this study, where data anal-

ysis based on physiological data would be conducted in future research. A 6D (3D position and 3D

orientation) head pose vector was computed from a 3D point cloud recovered from the Kinect depth

map. The face expression was uncoupled from rigid motion by projecting the tracked fiducial points

(from 2D video frames) via a pinhole camera model onto the surface of a generic face model in 3D

according to the current head pose. Geometric features are defined by 8 distance measures from the

fiducial points. Some texture changes, including nasal wrinkles, nasolabial furrows, and eye closure

are synthesized with mean gradient magnitudes extracted from local rectangular regions centered at 5

selected fiducial points. The final feature descriptor per frame was in 13D, which is a combination of

geometric and appearance features. The temporal features are extracted from the 6D head pose vector

and 13D facial expression feature vector within a 6s temporal window. This resulted in a 21D descriptor

per signal defined by 7 statistic measures (mean, median, range, standard and median absolute deviation,

interquartile and interdecile range) for each of the smoothed signal and its first and second derivatives
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(Werner et al., 2013). A binary SVM classifier with radial basis function (RBF) kernel to discriminate

pain from no pain was trained for each of the 4 pain levels, and the performance was measured by the F1

metric. Further experiments on the highest pain level data suggested that including head pose features

would improve system performance of both person-specific and general pain classifiers. However this

finding may be dataset-dependent as a contradictory conclusion was reported by studies (Lucey et al.,

2011) using UNBC-McMaster dataset. A literature survey on machine-based pain assessment for in-

fants (Zamzmi et al., 2016) reviewed progress on multimodal tools including behavior-based approaches

(e.g. facial expression, crying sound, body movements) and physiological-based approaches (e.g. vital

signs, and brain dynamics). However this is outside the scope of our review that is focused on pain

experienced primarily by adult patients.

2.4 Evolution with Deep Learning

2.4.1 AFER with Deep Learning

Recent advances in deep learning techniques, especially the convolutional neural network (CNN),

have provided an ‘end-to-end’ solution to learn facial action unit labels directly from raw input images,

which significantly reduces the dependence on designing functional modules in a conventional CVML

framework. The high-level deep features are learned from mass-scale simple features through a pipeline

architecture which facilitates developing pose-invariant applications for AU detection. In fact, spon-

taneous facial expression datasets with large rigid motions that are challenging to conventional AFER

studies, for example BP4D and DISFA, have been widely employed in recent deep learning-based re-

search. On the other hand, the structure of multi-class outputs in a deep neural network (DNN) can be

conveniently modified at the output layer to handle a multi-label AU detection problem. In this case,
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AUs are jointly predicted by taking account for their co-occurrence and dependencies that are insuf-

ficiently exploited in previous one-versus-all binary classification settings. However, training a DNN

from scratch relies on large labeled training datasets (100K+ samples in (Parkhi et al., 2015) ), which is

generally not available in most facial expression datasets due to the labor-intensive FACS coding pro-

cedure. Therefore, deep learning-based AFER with partially labelled data has also received attention in

recent studies. The literature review in this section will focus on the three problems presented above as

these are important common problems in APD studies using deep learning.

2.4.1.1 AU Recognition Model with a Deep Learning Architecture

A deep learning-based system generally follows a different paradigm than a conventional CVM-

L system in performing the AU detection task, which focuses on three problems consisting of pre-

processing, the DNN configuration and post-processing. In pre-processing, the input images are cropped,

normalized and aligned with image processing and computer vision tools so that they have a uniform

format when applied to the input layer of a DNN. The DNN combines the feature extraction and classifi-

cation module into a single network, where the architecture, training scheme, and optimization settings

need to be specified. Finally the post-processing step determines how the intermediate data from the

output layer are interpreted to determine the targeted AUs.

An example of the deep learning-based framework (Gudi et al., 2015) for FACS AU occurrence and

intensity estimation was proposed in FG 2015 Facial Expression Recognition and Analysis challenge

(FERA 2015). The core architecture of the 7-layer CNN is composed of 3 convolutional layers and a

max-pooling layer as feature descriptor and a fully connected layer to provide classification output. In

the pre-processing step, faces are detected, aligned and cropped into a fixed size from the input images
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followed by a global contrast normalization before they are fed to the CNN. The raw output values from

the activation of the output layer are used as confidence scores to determine AU occurrence, where the

optimal decision threshold is learned from a validation set based on highest F1 measure. The proposed

deep learning AFER system is trained from scratch on both BP4D and SEMAINE datasets, where the

performance for binary AU detection was measured by F1 (0.522 for BP4D, 0.341 for SEMAINE) and

the intensity estimation is evaluated on BP4D only with MSE (1.181), PCC (0.621) and ICC (0.613).

A more extensive combination of features and learning framework is carried out (Tősér et al., 2016)

for frame-level AU detection under large head pose variations. Three types of features are extracted in

the pre-processing step, including histogram of oriented gradients (HOG), similarity normalized facial

images and a mosaic representation (cut and put together from patches around landmark positions). The

AU detection is formulated with either single- or multi-label settings. Four types of network settings

based on SVM and a customized small-scale CNN are investigated: 1) a single-label SVM with HOG

features, 2) a single-label CNN with the normalized images, 3) a multi-label CNN with the normalized

images, and 4) a multi-label CNN with the mosaic features. All the systems are trained on the BP4D

dataset from the FERA 2015 challenge and tested on an augmented dataset that is created using 3D

information and renderings of faces from BP4D with large pose variations. The performance is evaluated

for binary detection task of 11 AUs with F1 score, skew-normalized F1 score, and AUC. In general,

the single-label CNN selects similarity normalized features yielded the best performance over all four

framework settings. Further testing with large head pose variation (0◦ to −72◦ for yaw and −36◦ to 36◦

for pitch) indicated that the F1 score is a weak function of pose, which suggests that the deep-learning

technique is capable of handling facial data under large pose variations.
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Zhou et al addressed the AU intensity estimation under large pose variations by developing a multi-

task deep network (Zhou et al., 2017) for the sub-challenge of FERA 2017. They investigate a pose-

invariant model and a pose-dependant model, which are both built upon the bottom five layers of a pre-

trained VGG16 network (Simonyan and Zisserman, 2014) via transfer learning as the feature descriptor.

A two-layer fully connected regressor was trained for each AU independently in the pose-invariant

model using data from one AU across all poses as the AU intensity estimator. In the pose-dependent

model, the data of each AU were categorized into three groups based on the pitch pose. Three pose-

dependent regressors were trained jointly with an auxiliary pose estimator under the assumption that the

output of pose estimator is equal to the pose ground truth, and the final AU estimates were made from

the dot product between the estimated pose vector and the three pose-dependent AU intensity estimates.

Both models were trained on the BP4D datasets, and evaluated with the metrics of RMSE, PCC and

ICC. The pose-invariant models using appearance features significantly outperform the baseline model

in (Valstar et al., 2017) that relies on geometric features. Two likely reasons that the performance is

affected are (i) the high failure rate on tracking geometric features under extreme pose change, and

(ii) distortion to the facial structure introduced by the warping and alignment operation to the tracked

landmarks. Comparison between the pose-dependent model and the pose-invariant model in terms of

ICC revealed improvement on AU 1, 4, 12, and 17, but no improvement on AU 6, 10, and 14. Hence a

mixed model (pose-invariant or pose-dependent) can be selected for each specific AU to further improve

the performance.
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2.4.1.2 Multi-label AU Detection

In practice, AUs frequently occur in combinations so that a single image frame may carry positive

labels from multiple AUs. The one-versus-all binary classification in conventional AFER studies either

perform region-specific AU detection or ignore the dependencies among co-occurring AUs. As a result

AUs are detected independently in most cases and certain AU combinations are also treated as a single

variable for classification. On the other hand, the architecture of a DNN is naturally designed for

multi-classification problem, which can be conveniently converted to handle multi-label learning with a

proper loss function (e.g. multi-class sigmoid entropy), such that the sum of probabilities from all the

output classes are not necessarily equal to one. The multi-label setting combined with deep learning

provides improvement in handling imbalanced samples in many spontaneous facial expression datasets.

Furthermore, the joint estimation of multiple AUs provides high flexibility in describing various AU

combinations, which is advantageous in encoding high-level event like pain or emotions.

The deep region and multi-label (DRML) (Zhao et al., 2016) framework solved the problem of

region-based feature extraction and joint estimation of multiple AUs in a unifying deep learning net-

work. The core architecture of DRML is a CNN comprised of five convolutional layers and one max-

pooling layer, and the multi-label option is enabled by configuring the output layer as a multi-label

sigmoid cross-entropy loss. An additional region layer is attached after the first convolutional layer and

the feature map is partitioned from the convolutional layer with a fixed 8 by 8 grid. Each sub-region

is processed by the same sub-network architecture formed by a batch normalization (BN) layer with

ReLU activation and a convolutional layer. The coefficients of each sub-network in the region layer are

updated independently with respect to local features and AU correlations, and the output of the region
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layer is a concatenation of all re-weighted patches. However, this settings requires good face alignment

such that local features can be consistently captured in the same sub-regions. The entire network is

trained from scratch with data from BP4D (12 AUs) and DISFA (8 AUs) respectively and the perfor-

mance is evaluated with F1 (0.483 on BP4D, 0.267 on DISFA) and AUC (0.560 on BP4D, 0.523 on

DISFA). The experimental results indicated that the detection of AUs with higher skewness benefited

from multi-label learning, and the region layer also improves the detection rate of most AUs by better

exploiting structural information from local facial regions.

Region segmentation paradigm based on geometric features in conventional AFER can also be ex-

tended to deep learning-based approach. Li et al (Li et al., 2017) built a deep learning frame-level binary

AU detection framework for region of interest (ROI) adaptation, multi-label, and LSTM based temporal

fusing. Twenty regions of interest (14×14) related to local muscular motions that activate correspond-

ing AUs are generated from and centered around 20 fiducial points derived from the shape model. A

VGG16 network is used as the base feature descriptor, where the output from 12th convolutional layer

(224×224) was chosen as the feature map and cropped by the pre-defined sub-regions. A CNN-based

ROI cropping net (ROI Net) is trained for each individual sub-region as an AU-specific feature descrip-

tor. The AU detection is formulated as a multi-label problem at the output layer to jointly predict all AUs

per frame. The static predictions are then fed into a LSTM network to refine the AU estimates using

temporal information from the past 24 frames. The proposed framework is trained for 12 AUs in the

BP4D dataset and and tested on both BP4D and DISFA datasets. Experimental results demonstrate the

contributions from all three aspects of region cropping, multi-label, as well as LSTM. The settings with

multi-label ROI nets followed by a single layer LSTM yieldes the best performance based on F1 score
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(0.661 on BP4D, 0.523 on DISFA). The performance improvement over existing DRML approach is

attributed to the adaptive way of sub-region selection and the adoption of a deeper pre-trained network

(VGG) as base feature descriptor.

Walecki et al (Walecki et al., 2017) integrated a conditional graph model to the output of a CNN to

learn the the co-occurrence structure of AU intensity levels from deep features in a statistical manner.

The CNN is comprised of 3 convolutional layers each with RELU activation followed by max-pooling,

which is used as a feature descriptor to extract deep features from input image frames. Each image

frame in the dataset bears a label vector of all AUs of interest and each entry in a label vector as-

sumes a value from a six-point ordinal scale. The ordinal representation of AU intensities and their

pairwise co-occurrence relations are defined by unary (ordinal) and binary (copula) cliques in the output

graph that is learned by a Conditional Random Fields (CRF) model. The CRF framework estimates

the posterior probability of a label vector conditioned on the deep features in the form of a normalized

energy function, which is defined by a set of unary and pairwise potential functions. The parameters

of CNN, unary, and pairwise potential functions are then jointly optimized through a 3-step iterative

balanced batch learning algorithm. A data augmentation learning approach is also applied to leverage

information from multiple datasets, such that a single ’robust’ model is trained across multiple datasets

instead of training an individual ’weak’ model on each dataset. Under the data-augmentation settings,

the CNN is trained using data from multiple datasets simultaneously. However different CRF pairwise

connections for AU dependencies are learned seperately for each dataset, as these datasets may contain

non-overlapping AUs with considerable variation in dynamics. The training process of the frame-level

based CRF-CNN AU intensity framework involves data from BP4D in FERA 2015, DISFA and UNBC-
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McMaster dataset, where the UNBC-McMaster dataset was only used for data augmentation purpose.

The settings of CRF-CNN with iterative balanced batch approach and data-augmentation option achieve

the best performance, which is measured using ICC (0.63 on BP4D, 0.45 on DISFA) and MAE (1.23 on

BP4D, 0.61 on DISFA). The DISFA dataset benefits from the augmentation yielding a 7% improvement

of ICC.

2.4.1.3 AU Detection with Partially Labeled Data

In general, FACS-based data annotation is far more labor-intensive than facial expression data ac-

quisition, such that a complete label assignment to all the training images in a dataset is not always

available. By assuming intra-class similarity on feature extraction or a distribution depicting the de-

pendencies among AUs, labels of unannotated images may be inferred using the set of labeled data.

Learning with partially labeled data could enrich the feature space by improving utilization of all avail-

able data, which is especially beneficial to deep learning-oriented approaches requiring training with

extensive data.

In addition to the binary label set {−1,1} that indicates negative samples and positive samples, a

0 label is assigned to an unlabeled sample in the partial label learning problem. Wu et al proposed a

multi-label learning with missing labels (MLML) framework (Wu et al., 2015) to solve this problem

in a multi-label setting, which is applicable to AU recognition. The goal of this method is to learn

a mapping that is specified by a set of coefficients between the extracted frame-level feature and the

predicted label. The missing labels are handled based on two local-label assumptions. An instance-level

smoothness assumes that two frames with similar features should have label vectors that are close, and

a class-level smoothness assumed that two classes with close semantic meanings should have similar
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instantiations across the whole dataset. The consistency between predicted labels and provided labels

is enforced on the MLML objective functions, which is comprised of a Hinge loss and constraints from

two smooth matrices generated upon the label smoothness assumptions. The AU classification task is

tested on the CK+ dataset with the available portion of labels on four levels ranging from 20% to 100%.

The performance is evaluated by average precision (PR) (0.81−0.92) and AUC (0.892−0.949).

The label smoothness assumption in (Wu et al., 2015) could be invalid as the closeness of two

samples in feature space may arise because the subject is same rather than indication of the same AU.

Wu et al argued that regular spatial and temporal patterns embedded in AU labels can be described

probabilistically as a label distribution, and AU labels including the missing ones can be modeled as

samples from such underlying AU distributions (Wu et al., 2017). In their method, a deep neural network

is used as a feature descriptor to extract high-level features from a raw input image, where only the top

hidden layer and the output layer are involved in learning AU label distributions and AU classifiers. A

Restricted Boltzmann Machine (RBM) is employed to learn AU distributions with respect to the partially

annotated ground truth labels from the bias of AU labels in the output layer, bias of the hidden layer,

and the weights between the output layer and the hidden layer. More specifically, the weights between

the two layers are assumed to capture the mutually exclusive and co-occurrence dependencies among

multiple AUs. Multiple SVMs are used as classifiers for multiple AU classification based on the high-

level features. The object loss function is a Hinge loss constrained by the log-likelihood of the learnt AU

label distributions. The loss function is modified such that all data are utilized in the training process

but only the annotated data contributed to the loss optimization. The two-step procedure first trained the

DNN with the partially annotated data in an unsupervised manner and then fine-tuned the parameters of
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both DNN and SVM with respect to the object function. The system is first trained and tested with fully

annotated data from BP4D and DISFA respectively and minor improvement is reported on the proposed

system toward other state-of-the-art methods (e.g. DRML) in term of F1 measure. Further testing with

partially labeled data also demonstrates that the proposed system outperforms MLML with missing data

ratio ranging from 0.1 to 0.5.

2.4.2 Applications of Deep Learning in Pain Detection

Deep learning techniques have also been adopted in recent APD research, with focus on improving

feature representation and exploiting temporal dynamics by utilizing corresponding deep neural network

architectures. To our best knowledge, the handful of studies on APD involving deep learning are all

based on UNBC-McMaster dataset.

An end-to-end deep learning pain detector presented in (Rudovic et al., 2015) is an upgrade of the

classic pain detection framework that is based on hand-crafted features. The proposed two-stage deep

learning framework is comprised of a convolutional neural network (CNN) and long short-term memory

network (LSTM). The CNN takes raw images as input and predicts pain at frame level, which is built

upon a pre-trained VGG-16 CNN and served as a baseline system. The feature frames (4096 dimension-

s) from the fully connected layer (fc6) before the output layer of the CNN are grouped into sequences

of length 17, and all the frames are assigned the label from the preceding frame in the sequence. The

frame-level features are fed into the LSTM network to improve the pain prediction of a frame by tak-

ing into account the past 16 frames. The input images are preprocessed in several settings including:

1) alignment with generalized Procrustes Analysis followed by cropping to a fixed size, 2) removal of

background with a binary mask, and 3) frontalization with down sampled shape model (C-APP). The



52

proposed system is trained on UNBC-McMaster dataset with frame-level pain labels, and the best per-

formance on binary pain detection task (Accuracy = 90.3%, AUC = 0.913 is reported by the Aligned

Crop scheme combined with exploiting temporal information using LSTM. The author argues that re-

moving background information causes worse performance as the zero background value is converted

to nonzero in training CNN. Further test with skew-normalization on the dataset shows that the Accu-

racy measurement varies significantly with skew in testing data while AUC is less affected, which is in

accordance with the findings in (Jeni et al., 2013a).

One obstacle in applying deep learning to the APD problem is that the size of a pain-oriented dataset

is too limited to support training a deep neural network from scratch. Egede et al (Egede et al., 2017)

addressed this issue by combining hand-crafted and deep-learned features to estimate pain intensity as a

multi-modality fusing problem that is tailored to small sample settings on the UNBC-McMaster dataset.

The deep-learned features are obtained from two pre-trained CNN models for AU detection task on

BP4D dataset (Jaiswal and Valstar, 2016), which are associated with the eye and mouth region of the

face respectively. A difference descriptor is applied to the local patch sequences with a temporal win-

dow of 5 frames to obtain frame-level features in the form of image intensity and binary mask, which

are combined and fed as input of CNN. The output of the last fully connected convolution layer (3072D)

of each CNN is retrieved and combined into a (6144D) deep-learned feature vector. In addition, a 218D

geometric feature vector extracted from the 49-points shape model and 2376D HOG feature vectors

extracted from local patches around facial points are employed as hand-crafted features at frame-level.

A relevance vector regressor (RVR) is trained for each of the geometric, HOG, and deep features, and a

seconde-level RVR is trained to fuse the RVR predictions from each modality in the first level. All RVR
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learners are trained on the frame level ground truth annotated by PSPI. System performance is evalu-

ated by RMSE (0.99) and PCC (0.67), with the most significant contributions from HOG, followed by

geometric feature and least from deep learned feature. The authors attribute these findings to the likeli-

hood that the deep features are fine-tuned to the original AU detection problem in (Jaiswal and Valstar,

2016), whereas the hand-crafted features are more generic in nature. The author further concludes that

MSE effectively measures the difference between the predictions and the ground truth, while Pearson’s

correlation measures how well the prediction follows the ground truth trend. Although a good system

performance should possess low RMSE and high Pearson’s correlation at the same time, a good rating

on either metric is not necessarily correlated with the same good rating of the other.

Liu et al (Liu et al., 2017) proposed a direct estimation framework based on the UNBC-McMaster

dataset to predict the subjective self-report pain intensity score represented by VAS via hand-crafted

personal features and multi-task learning. The proposed DeepFaceLIFT (LIFT = Learning Important

Features) framework is a two-stage personalized model, which is comprised of a 4-Layer neural net-

work (NN) with ReLU activation, and Gaussian process (GP) regression models. A fully connected NN

is trained on frame-level AAM facial landmark features to predict frame-level VAS score in a weakly

supervised manner, where all frames within a sequence carry the sequence VAS label. Personal fea-

tures (complexion, age, and gender) are also involved in the training stage via three separate settings

(Not used, Appended to the 3rd layer of NN, Appended to Input Features), and the multi-task learning

is referred to the training data labeled with VAS, and labeled with both VAS and OPI. Instead using

a temporal model as in typical APD settings, the authors solve the sequence-level pain estimation as

a static problem based on sequence-level statistics. A set of ten statistics (mean, median, minimum,
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maximum, variance, 3rd moment, 4th moment, 5th moment, sum of all values, interquartile range)

is generated from frame-level predictions of pain score, as these sufficient statistics (Hogg and Craig,

1995) capture important information that help to infer unknown parameters in distribution models. The

ten-dimensional statistical sequence-level feature vectors are fed into a GP regression model to obatian

a personalized estimate of VAS on sequence-level. The system performance is evaluated by MAE (2.18)

and ICC (0.35), where the first stage NN is trained with both VAS and OPI label in conjunction with per-

sonal features appended to the 3rd NN layer, and the second stage GP input uses only the predicted VAS

feature. This result suggests that using OPI scores from an external observer contribute to estimation of

the subjective VAS score by exploiting the benefits of multi-task learning.

In the past decades, significant progress in computer vision and machine learning techniques (CVM-

L) has led to the development of increasing sophisticated systems for Automated Facial Expression

Recognition (AFER). There is growing demand for facial expression applications, as a result of which

the emphasis of AFER research evolved from posed expressions acquired in a controlled setting to spon-

taneous expressions captured in a natural setting. The details of AFER progress can be found in survey

papers (Bousmalis et al., 2013)(Corneanu et al., 2016)(Zeng et al., 2009). Meanwhile, studies that ex-

plore machine learning-based pain interpretation from facial expressions have seen only a limited effort.

Ashraf et al. (Ashraf et al., 2009) studied the UNBC-McMaster dataset and proposed the use of Active

Appearance Model (AAM) to extract three feature types to train SVM pain classifiers. In their method

the sequence-level labels are generated using an average scheme. In their follow-up studies (Lucey et

al., 2011)(Lucey et al., 2012), the same set of features is used to train a binary classifier for each single

pain-related AU at the frame level while a pain intensity classifier is adopted at the sequence level using
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the OPI labels. The temporal dynamics of AUs are investigated by Chen et al (Chen et al., 2012) in a

simple rule-based method to detect pain of patients suffering from lung cancer in the Wilkie’s dataset

(Wilkie, 1995). Sikka et al (Sikka et al., 2015) proposed a CVML-based model to assess pediatric

postoperative pain on a video dataset of neurotypical youth. In their method, a total of 14 single AUs

are extracted under 3 statistics to form a 42-dimensional descriptor for each pain event.

There is other research about deep learning-based AFER application on the estimation of pain ex-

pression intensity. Wang et al extend a face verification network (Wang et al., 2017a) to the expression

intensity regression task using a regularized regression loss, and a weighted evaluation metric is pro-

posed to address the issue of imbalanced expression intensity data in the UNBC-McMaster Dataset

(Wang et al., 2017b). Majumder et al (Majumder et al., 2016) addressed the same imbalanced data

issue by introducing over-sampling techniques, and introduced a system based on Gaussian Mixture

Regression (GMR) and trained on geometric features to recognize the fifteen different intensity levels

in the PSPI scale. Irani et al (Irani et al., 2015) adopted spatiotemporal oriented energy features to

model facial muscular motions in a pain intensity detection framework on the same dataset, where pain

intensities are estimated by a weighted linear combination of the vertical and horizontal motion scores.

Neshov et al (Neshov and Manolova, 2015) employed a classical CVML framework to detect binary

pain with SVMs and solved the problem of continuous pain intensity estimation with linear regression.

2.4.3 Problems in Previous Research

Our research is also built on existing AFER methods and benefits from the progress in deep learning

techniques. However, we noted four shortcomings in previous research : (1) AU recognition and pain

recognition are treated as separate problems which are handled by an AU classifier and a pain classifier
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respectively, without giving sufficient attention to their relationship; (2) pain analysis is more focused on

single AU detection rather than pain-relevant AU combinations; (3) Existing research on pain intensity

estimation is largely focused on frame-level PSPI, which tends to be benchmarking-driven. As noted

by Werner et al (Werner et al., 2017): “The PSPI of a single frame should not be confounded with

the feeling of pain at this particular moment, as it only measures the facial expression of pain”. We

move one step beyond by investigating the relationship between machine predicted FACS scores of pain

expressions and patients’ self-report of pain that is more commonly available in clinical applications in

practice.



CHAPTER 3

DECOUPLED AUTOMATED PAIN DETECTION FRAMEWORK

Parts of this chapter have been presented in (Chen et al., 2019) and (Chen et al., 2019).Copyright ©

2019, IEEE.
3.1 Research Motivation

An important observation that motivated our research is that existing research on FACS-based auto-

mated AU recognition focuses on detection of single AUs. We note that pain-related AUs could occur

in conjunction with other AUs to form combinations irrelevant to pain. Therefore inference based only

on occurrence of individual AUs is not sufficient for pain identification. While the ground truth of facial

expressions and action units in video databases is available at frame level, the ground truth about pain is

typically available at sequence level and only via self-report, which is an example of ‘weakly labeled’

data. In early attempts of automated pain analysis, pain is declared to occur in a video if the average

output of frame-level pain score exceeds a threshold (Lucey et al., 2009)(Ashraf et al., 2009). However,

pain-related frames may constitute a small fraction of all frames in a long video, the averaging paradigm

could therefore severely attenuate the signal of interest. Recent research (Sikka et al., 2014) suggest-

s that video-based pain detection can be formulated as a weakly supervised learning problem, which

can be effectively handled by a machine learning tool called multiple instance learning (MIL). In this

study (Sikka et al., 2014), a binary pain classifier is trained directly via the high-dimensional features

extracted from video frames without going through the AU coding procedure. Although encouraging

results are reported from experiments on UNBC-McMaster dataset, this setting is vulnerable to perfor-

57



58

mance degradation for trans-dataset application, due to interference from person-specific features and

demographic variations encoded in the high-dimensional features.

In a commonly used procedure for the manual detection of pain, FACS-certified coders first perform

AU coding for every video frame and then infer the sequence-level pain label from the occurrence and

frequency of pain-related AU combinations. On the other hand, most existing automated pain detection

research involving segment-level pain label preferred to learn a direct mapping between raw features

and self-reported pain with a unified machine learning framework, as shown in Figure 2(a). In general,

AU occurrence is highly correlated with the appearance of pain in facial expressions, and the reliability

of pain detection strongly depends on the accuracy of AU coding. AU coding relies on observable

facial muscular movements or facial expressions, whereas pain is more like a latent variable and is not

always manifested continuously in facial expressions, especially in the scenario of chronic pain. Facial

expressions of pain are more likely to appear when the pain intensity level is high or when intensity

of pain changes to a higher level. Due to the sparsity of pain expressions, video captured in clinical

settings usually lacks sufficient positive samples to train a reliable pain classifier by learning a direct

mapping between high-dimensional facial features and self-report pain labels. On the other hand, texture

variations can be sufficiently synthesized by the deep learning technique to learn a reliable mapping

between the high-dimensional facial features and the underlying muscular movement corresponding to

Action Units.

Inspired by these observations, we proposed a new FACS-based automated pain detection frame-

work comprised of two independent machine learning networks to infer the presence of Action Unit

(AU) combinations that signify pain (Chen et al., 2019). The two networks are trained independently
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and are linked by novel AU-based data structures that are created by mapping single AU measurements

per frame into pain-related low-dimensional feature vectors representing AU combinations, as shown in

2(b). The decoupled architecture of two independent machine learning networks utilizes AU codings as

the intermediate results and performs pain analysis in a low-dimensional AU score space, which would

be more justifiable and efficient than the direct method. In addition, the decoupled framework alleviates

the difficulty in training large scale pain-specific datasets by facilitating data fusion from different pain-

labelled video datasets, which helps to develop a robust and generic automated pain analysis system

with potentials for analyzing multiple types of pain.

(a)

(b)

Figure 2: (a) Unified Pain Detection Framework.(b) Proposed Decoupled Pain Detection Framework.
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3.2 The Decoupled Framework and An End-to-Front Research Strategy

The proposed automated pain detection system is comprised of a cascade of two machine learn-

ing systems: an Automated Facial Expression Recognition (AFER) system that computes frame-level

confidence scores for single AUs (shown on the left side of Fig.3) and a MIL system that perform-

s sequence-level pain prediction based on contributions from a pain-relevant set of AU combinations

(shown on the right side of Fig.3). MIL is well-suited to handle the ‘weakly labelled’ pain data that

can be conveniently represented by a bag of word (BOW) structure, and details will be covered in the

following sections. AU combinations are described by two distinct low-dimensional novel feature struc-

tures: (i) a compact structure that encodes all AU combinations of interest into a single vector, which

is then analyzed in the MIL framework; (ii) a clustered structure that uses a sparse representation to

encode each AU combination separately followed by analysis in the multiple clustered instance learning

(MCIL) framework, which is an extension of MIL. To our knowledge, this is the first work that applies

MCIL in facial expression-related research. Both machine learning systems are trained on the UNBC-

McMaster dataset independently with frame-level and sequence-level labels, as illustrated by the three

circular blocks in the center of Fig.3.

After an adequate literature survey presented in Chapter 2, we realized recent state-of-the-art generic

AFER systems (iMotions A/S, 2016)(McDuff et al., 2013) have proved to be robust to context variations,

especially illumination and rigid motions, and have shown good performance on new datasets with

different demographics. Meanwhile, little attention has been paid to the problem of learning pain from

pain expressions. In order to minimize risk while boosting progress of our research, we divided the

development of the decoupled automated pain detection system into three phases, as shown in Fig. 4.
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Figure 3: The Decoupled Pain Detection Framework

We start the work of Phase I by focusing on the APD system at the end of the diagram in Fig. 4,

by assuming that the problem in preceding blocks has been perfectly solved. Next we move one step

backward to improve the performance of AFER with deep learning techniques as the major goal of Phase

II task, while we still assume performance of the face alignment is sufficiently reliable. Finally we move

one more step backward for Phase III by upgrading the classic face alignment module with a state-of-

the-art deep learning network for robust face alignment in both 2D and 3D, and establish an end-to-end

multi-stage deep learning based APD system for clinical applications. In contrast to the typical front-
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to-end learning process of a CVML framework, we are actually implementing an end-to-front research

strategy.

Figure 4: The End-to-Front research strategy

3.3 Automated Facial Expression Recognition

We employed three different AFER architectures corresponding to each phase of system implemen-

tation as shown on the left side of Fig.3. The details are discussed in the following subsections.

3.3.1 Conventional CVML Based Emotient

The AFER architecture in Phase I is based on conventional CVML techniques, which can be con-

veniently described with four key blocks consisting of face detection, feature representation, feature

selection, and classification. The first block identifies the face area with a rectangular boundary box in

every video frames. The second block aligns the detected face areas and employs various descriptors to

extract features from the facial images. The third block selects features most relevant to the non-rigid

motions caused by facial expressions, and applies dimension reduction techniques to compress the fea-
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ture vector to a size that is tractable for the classifier. The fourth block contains a set of one-versus-all

classifiers that are trained on the refined feature vectors for each AU of interest, and the output could

be either binary decisions or soft scores that reflect the probability or confidence about the target AUs.

Existing research (Bartlett et al., 2006)(Koelstra et al., 2010)(Lucey et al., 2011)(Jiang et al., 2011)

on spontaneous facial expression recognition shows AFER systems are highly customizable, and more

blocks could be added to this framework to boost performance depending on the application. In the

proprosed decoupled framework settings, the AFER system can be trained and updated independent of

the pain detection system using FACS labels as the ground truth.

One example of such an AFER system is the computer expression recogntion toolbox (CERT) (Lit-

tlewort et al., 2011), which is the core of the Emotient (iMotions A/S, 2016) system. In the system

setup, face detection is based on an extentsion of the classic Viola-Jones approach. Ten facial feature

points are tracked using GentleBoost and the detected face area is aligned to a canonical template patch

through an affine warp estimated from the feature positions. A Gabor filter bank is then applied to

extract features in 8 directions and 9 spatial frequencies and the filter outputs are concatenated into a

single feature vector. The feature vector is then fed into separate linear support vector machines (SVM)

for individual AU recognition.

We use Emotient to track and label a set of eight AUs {4,6,7,9,10,20,26,43}, that are commonly

used in most pain-oriented research. The processing results are represented by the flow of Evidence

numbers, where an Evidence number, ranging between−2 to 2 (iMotions A/S, 2016), is assigned to each

AU on every frame. The Evidence output for an expression channel represents the odds in logarithm

(base 10) scale of a target AU being present. For example: Evidence = 2 (102 = 100) means the observed
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expression is 100 times more likely than not to be categorized by an expert human coder as target AU

and Evidence = 0 means the chances that the expression to be categorized by an expert human coder

as target AU or not are equal. The Evidence scores can be conveniently transformed to Probability

measurements by the following equation:

Probability =
1

1+10−Evidence (3.1)

The probability measurements derived from the Evidence scores are used as the features of pain analysis

framework. The evidence/probability score profile of every AU can be viewed as a 1D time domain

signal. The sample output from Emotient about two patients selected from the UNBC-McMaster dataset

and the Wilkie’s dataset are presented in Fig. 5

3.3.2 Deep Learning Based Hybrid AFER

In the Phase II study, we employed a convolutional neural network (CNN) architecture (Zhao et

al., 2016) to detect pain-related AUs at the frame level, and trained it with combined data from the

UNBC-McMaster dataset and the extended Cohn-Kanade dataset (CK+). The CK+ dataset is annotated

for a collection of 30 AUs, which not only add positive samples to reduce the data skewness for pain

expressions, but also enrich the data diversity with non-pain-related AUs when it is used jointly with the

UNBC-McMaster dataset. In observation of the fact that a single frame can be annotated with multiple

AUs, the CNN is configured to solve a multi-label problem where multiple AUs are jointly learned as

a single classification problem. This multi-label setting will also improve detection of highly skewed

AUs in turn by taking AU correlations into account (Zhao et al., 2016). Meanwhile the classic face
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(a)

(b)

Figure 5: Sample output from Emotient about (a) a patient from UNBC-McMaster Dataset, (b) a patient from

Wilkie’s dataset.
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tracking and alignment modules are preserved in the Phase II AFER architecture, and we refer this type

of implementation as Hybrid CNN AFER.

3.3.2.1 Face Tracking and Alignment

The first block is responsible for reliably detecting faces and aligning a set of facial fiducial points

on the detected face area in every video frames. The fiducial points are typically defined along the cues

that best describe features of a face, including jawline, brows, eyes, nose, and lips. While the Viola-

Jones face detector (Viola et al., 2001) and Active Appearance Models (AAM) (Cootes et al., 2001) are

classic tools in many AFER research, recent deep learning based research (Bulat and Tzimiropoulos,

2017) also provides an end-to-end solution to the face tracking and alignment task. It is worth noting

that in recent AFER studies, the face detection and alignment modules were less emphasized, as state-

of-the-art algorithms are available as off-the-self toolboxes.

3.3.2.2 Preprocessing

In the preprocessing procedure, a video frame is first cropped and centralized to the detected face

patches. A 2D-similarity transform is then applied to normalize the in-plane rigid face motions. The

background is removed using a convex hull generated from the face alignment result in the following

step since it is unrelated to facial expressions. Finally, the resulting face image is resized to 170×170

and is passed to the input layer of the convolutional neural network, as shown in Fig.7.

In Fig. 6 (a) and (e) an example facial image from the CK+ and UNBC-McMaster dataset is shown.

The aligned and masked version of this image is shown in Fig. 6 (d) and (h). Deep neural networks are

not shift- and rotation-invariant. Therefore, aligning the image is necessary to increase the recognition

rate of AUs.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 6: (a) Original image from CK+ dataset. (e) Original image from UNBC-McMaster shoulder pain dataset.

(b), (f) Image with landmarks. (c), (g) Aligned image. (d), (h) Aligned and masked image

3.3.2.3 Convolutional Neural Network Architecture

We employed an 8-layer convolutional neural network architecture described in (Zhao et al., 2016)

to synthesize deep features from the raw face images as shown in Fig.7. The RGB face images received

at the input layer is passed to the first convolutional layer (conv1) comprised of 32 convolutional kernels

of size 11× 11, and the output feature map has a size of 160× 160. The layer can be conveniently

described by the notation of 32×11×11@160×160. Note that the depth of the convolutional kernels

should match the channel of input feature maps, and the number (channel) of feature maps at the out-

put of a convolutional layer equals to the number of convolutional kernels. The pooling layer (pool2)

following conv1 performs max operation over 2×2 spatial neighbourhood with a stride 2 on all the 32

feature maps, which is noted as 32×2×2@80×80. Another 4 convolutional layers (conv3-conv6) are

connected subsequently to the pool2 layer for advanced local feature abstraction. Finally two fully con-

nected layers are employed to explore global correlations from features extracted by the convolutional

layer (conv6), which results a 2048D vector as the deep feature representation of the entire face image.
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Figure 7: CNN based Automated Facial Expression Recognition Framework

3.3.2.4 Multi-label AU output

Classical deep learning networks (Krizhevsky et al., 2012)(Taigman et al., 2014) are capable of

handling classification among thousands of categories, where each positive sample is only labeled for

one category. On the other hand, the pain-related action units involved in the facial expression problem

is small in number, and each positive sample frame could have multiple AUs activated and labeled.

The label for a frame is represented by a 1×M vector {0,1}1×M, where M is the number of AUs of

interest. Let NF be the total number of frames, the ground truth matrix Y is given by Y = {0,1}NF×M,

and Ynm is the label of the mth AU in frame n. The loss function in a multi-class CNN is modified for

the multi-label case with a multi-label sigmoid cross-entropy loss that is defined as,

L(Y,Ŷ ) =
1

NF

NF

∑
n=1

M

∑
m=1

[YnmlogŶnm +(1−Ynm)log(1− Ŷnm)] (3.2)
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where Ŷ is the prediction of Y , which has been normalized to the range [0,1]. We trained the CNN to

jointly track a set of 11 AUs {4,6,7,9,10,12,20,25,26,27,43}, where AU12 and AU25 are included to

help improve dataset imbalance by exploring AU correlations under the multi-label settings.

3.3.3 Deep Learning Based End-to-end AFER

We attempt to further extend the application of deep learning techniques in the Phase III implemen-

tation by developing an end-to-end deep learning based AFER that jointly detects the complete set of

pain-related AUs (Chen et al., 2019). The proposed system is a two-phase learning model that is com-

prised of two deep neural networks (DNN) connected sequentially. The first DNN is a face detection

module that is used to extract facial landmarks robustly under challenging conditions. The second DNN,

is a Convolutional Neural Network (CNN) that is used for AU detection. We refer to this end-to-end

deep learning architecture as two-stage DNN AFER.

3.3.3.1 Deep Neural Network For Face Detection and Alignment Network

The first module of our system is responsible for reliably detecting a face in a frame, and accurately

tracking a set of facial fiducial points in every video frame. This block is expected to work in close to

real time and the tracked fiducial points are used to align the detected face with respect to a frontal-view

face with neutral expressions. The aligned face patches are then fed into the deep learning network in

the second stage after necessary pre-processing procedures, where we follow the same pre-processing

settings as described in Phase II.

We take advantage of the progress made in a state-of-the-art deep learning-based landmark detection

method called Face Alignment Network (FAN) (Bulat and Tzimiropoulos, 2017), which is capable of

handling the face alignment problem in existing 2D and 3D datasets. The FAN network is able to
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handle not only ‘traditional’ face alignment challenges including large rigid head motions, initialization

and resolutions, but also features for the capability to convert 2D landmark annotations to 3D. The FAN

network is pre-trained and ready to use, and the details may be found in (Bulat and Tzimiropoulos,

2017).

The FAN network is used in our study to track 68 fiducial points from an image containing a face,

which is comprised of a face detection and a landmark detection parts. The first part is implemented us-

ing the Single-Shot Scale-Invariant Face Detector (S3FD)(Zhang et al., 2017), a real-time face detector

based on a CNN, which is capable of detecting faces at different scales. The landmark detection of the

FAN is based on a stack of four Hourglass networks followed by a hierarchical, parallel and multi-scale

convolution block.

3.3.3.2 Deep Neural Network For Multi-Label AU Recognition

In order to extract relevant features for the problem of AU recognition, we used the deep neural

network model Inception-ResNet-v1 (Szegedy et al., 2017). The architecture is composed of 24 blocks

as shown in Figure 8.

The main part of the model consists of the inception modules. These modules apply 1x1, 3x3 and

7x7 convolutions to the input image, and the results are concatenated and the output goes through an

ReLu activation layer. These modules are interleaved with a reduction block whose purpose is to reduce

the dimensions of the grid while keeping the number of channels the same. The Inception-ResNet-

v1 is a very deep network and has been pre-trained for tasks not directly related with pain expression

recognition. Therefore we use the same data from the combination of the UNBC-McMaster and CK+

datasets to fine-tune the Inception-ResNet-v1 network for AU recognition via transfer learning.
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Figure 8: The Inception-Resnet-v1 architecture schema

The bottleneck of the architecture consists of an average pooling layer, followed by a dropout layer

and two fully connected layers whose dimensions are 512 and 11, respectively. We have a total of

11 classes in this network. Our goal is to recognize the 9 AU’s described in Fig.1. In addition we

included two other classes corresponding to neutral expressions and another class representing all the

other AUs of the FACS. Since some AUs co-occur frequently, we model the problem as that of multi-

label prediction. In order to do this, we use the softmax activation function for the last dense layer and

the model is trained using the multi-label cross entropy loss, defined as:

LE(y, ŷ) =−
1
L

L

∑
l=1

1[y > 0] log ŷl +1[y < 0] log(1− ŷl) (3.3)

where L is the number of labels, and 1[x] is the indicator function returning 1 if x is true and 0 otherwise.
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3.4 Action Unit Combination Encoding

3.4.1 Compact Structure Vs. Clustered Structure

In practice, Action Units 6/7 are the most frequently observed pain-related AUs in FACS coding

(Prkachin, 2009). Multiple AU combinations could also be activated in a video segment for pain evalua-

tion. When we define feature vectors based on AU combinations, it is important to have a comprehensive

characterization including individual AU contribution, activation of individual AU combination, as well

as correlation among activation of multiple AU combinations. The measurement for AU combination-

s can be conveniently derived from the single AU predictions. Two different feature vector structures

based on AU combination scores, which are referred to as compact or clustered, are proposed as follows,

Compact Structure: Let A = {4,6,7,9,10,20,26,43} be the set of single pain-related AUs. The

AU combination feature vector for frame i of a video sequence S is an 11-dimensional column vector

vi =[PAU6 PAU7 PAU20 PAU4⊕6 PAU4⊕7 PAU4⊕43

PAU4⊕9 PAU4⊕10 PAU4⊕26 PAU9⊕26 PAU10⊕26 ]
T

in which each entry of the feature vector is the probability estimate of corresponding AU or AU combina-

tion and the ⊕ operator denotes the co-occurrence of AUs. In our method, we have chosen to assign the

probability of combination AUi⊕ j as the smaller of PAUi and PAU j so that PAUi⊕ j = min(PAUi ,PAU j),∀i, j ∈

A. As a result, the pain information about frame i is conveyed by the probability measurement of all

pain-related AU combinations that are compressed in a single low-dimensional vector, as shown in Fig.

9(a).
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Figure 9: AU combination structure: (a)Compact Structure, (b)Clustered Structure
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Clustered Structure: Here we follow Wilkie’s coding strategies (Wilkie, 1995) to group the 11

pain-related single AU and AU combinations into clusters according to two criteria, 1) there is a com-

mon AU shared by the combinations in the cluster and 2) the AU combinations within a cluster are

actuated in adjacent area on the face. Six clusters are formed in this way, including {AU6/7},{AU20},

{AU4⊕6/7/43},{AU4⊕9/10}, {AU4⊕26} and {AU9/10⊕26}. The AU combination feature representation of

a video frame i under the clustered structure is composed of an 8× 6 matrix, where the column j is

highlighted in Fig. 9(b) by all the single AUs involved in the combinations belonging to cluster j, where

j ∈ {1,2,3,4,5,6}. The non-zero entries in column j are the probability measurements of the highlight-

ed AUs in cluster j and all the remaining entries of the feature matrix are set to zero, which results in a

sparse representation of features, as shown in Fig. 9(b).

3.4.2 Bag of Words representation

A patient’s self-report is still the golden rule for pain evaluation in patient care. A pain label is

commonly available for video segment but not for every single frame. Such a situation is encountered

frequently in computer vision since it is easier to obtain group labels for the data rather than individual

labels, and is known as ‘weakly supervised’ learning problem. On the other hand, although temporal

dynamics of spontaneous facial expressions have good intra-dataset consistency, it could vary signifi-

cantly under clinical settings depending on the level and type of pain a patient is suffering. While AUs

evoked by acute pain usually last less than a second, those evoked by chronic cancer pain could last

for minutes. Hence conventional temporal modeling with a fixed moving window or a preset duration

parameter(Lucey et al., 2009)(Koelstra et al., 2010) is inadequate to handle practical applications. To
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address the challenges from weakly labeled data and complicated temporal dynamics, we employ the

bag of word (BOW) representation as suggested in (Sikka et al., 2012)(Sikka et al., 2014).

A video sequence Si in a dataset can be represented as a bag that contains a number of segments

generated from Si. The bag is defined as {si j}Ni
j=1, where si j is the jth segment in the bag containing

Ni j frames i.e. si j = { f m j
i , f m j+1

i , . . . , f Ni j−m j+1
i }. si j contains only contiguous frames and Ni j is the

total number of frames in si j taken from Si and f m j
i is the m jth frame in Si and the 1st frame in si j.

The bags are then associated with the label of sequence Si as B = {Si,yi}N
i=1, yi ∈ {0, 1}, which defines

two kinds of bags, positive and negative. A positive bag contains at least one positive instance, while

a negative bag contains no positive instances (Sikka et al., 2014). Adopting this representation for

the pain detection problem, a positive bag refers to a video sequence that contains pain-related facial

expressions, and a negative bag refers to a video sequence that does not contain any pain-related facial

expression. In practice, pain-related AU temporal segments occupy only a small portion of the entire

video sequence. The sparsity of positive training samples fits well in the context of BOW structure,

which is another motivation to adopt this type of data structure. It takes three steps, S1-S3 as described

below, to generate a BOW representation from the feature space.

(S1) Feature Extraction at Frame Level: Define a mapping φF : Rm×n→ Rd as the feature extrac-

tion process on frame level that maps a frame of size m× n in image space to a d-dimensional feature

vector, where d = 11 for the case of the compact structure. In the case of the clustered structure, the

mapping is defined as φF : Rm×n→ RD, where RD refers to the space of 8× 6 sparse feature matrices.

Feature vectors are typically of very high dimension in existing unified framework. However, Rd or
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RD in our case is simply the low-dimensional AU combination feature vector space in the proposed

decoupled pain detection framework.

(S2) Multiple Segment Generation: The instances in a bag are video segments containing consec-

utive frames belonging to the sequence. The boundary of each segment can be generated conveniently

in two ways. A typical way is to run overlapping temporal scanning windows at multiple scales known

as Sc-Wind. A parallel way is clustering the frames in a sequence using normalized cuts (Ncuts). Each

element of the weight matrix of Ncut algorithm is obtained by a similarity measure between frames f u
i

and f v
i in sequence i measured by

Wi(u,v) = exp(−|φF( f u
i )−φF( f v

i )

σ f
|2)+ exp(−| tu− tv

σt
|2) (3.4)

where tu refers to frame index of f u
i , and σ f and σt are constants selected for feature domain and time

domain respectively. Details of Ncuts are provided in(Shi and Malik, 2000) (Sikka et al., 2014).

(S3) Feature Representation at Segment Level: The feature representation of a video segment

is denoted by the mapping φS : S → Rd that transform video segment in sequence space S to a d-

dimensional feature vector for the compact case, and φS : S→ RD for the clustered case accordingly.

This mapping is specified by a max-pooling strategy from the feature representation of all the frames in

the segment as:

φS(si j) = max
k

(φF( f k
i ) | f k

i ∈ si j) (3.5)
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The instance in a bag is now represented by a single feature vector with the same dimension d as the

frame-level feature vector. After associating the pain label to the bag, a multiple instance learning (MIL)

framework can be trained on the BOW data for automated pain detection.

3.5 Weakly Supervised Automated Pain Detection

3.5.1 Multiple Instance Learning

The general idea for solving machine learning problems is to establish a classifier and optimize it

with respect to a loss function. Viola et al. (Viola et al., 2005) first solved the MIL problem with a

boosting framework, which is known as MILboost, and discussed its application in object detection

from images. In this section, we give a brief overview of MILboost and how it can be customized for

pain detection. The decision on the presence of pain is based on the probability of bags being positive.

The posterior probabilities of bags and instances are defined as:

pi = P(yi = 1|Si) (3.6)

pi j = P(yi = 1|si j) (3.7)

The only available ground truth is the label of the bag, and all the instances in a bag carry the same label

as the bag.

To help readers follow the derivation, we summarize the key annotations in Table II. The posterior

probability of a segment may be extended to all the frames in it by placing a Hamming window centered

within the segment. While each frame in a sequence may be members of multiple segments in practice,
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TABLE II: KEY ANNOTATIONS IN THE MIL DERIVATION

Annotation Description Level

Si Bag i Sequence

pi Probability of Bag i Sequence

si j Instance j in Bag i Segment

φS(si j) Feature Representation of si j Segment

pi j Probability of Segment si j Segment

GM General Mean Softmax Segment

h(si j) Weak Classifier trained on Segments Segment

H(si j)
Strong Classifier constructed by

combing Weak Classifiers via Boosting
Segment

f k
i Frame k in Bag i Frame

φF( f k
i ) Feature Representation of f k

i Frame
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we assign the maximum scores from all these segments as the posterior probability of the frame (Sikka

et al., 2014), i.e.

p f i
k
= P(yi = 1| f i

k) = max
j
(ω(si j)∗ pi j| f i

k ∈ Si j) (3.8)

A classifier HT : Rd → R is trained on the feature vectors of instances, and a posterior probability is

assigned to each instance based on the classifier output, s.t.

pi j = σ(HT (φs(si j))) (3.9)

where σ() is a sigmoid function s.t.

σ(x) =
1

1+ exp(−x)
, ∀x ∈ R (3.10)

The loss function is defined by negative log-likelihood, which is the same as that used in the logistic

regression problem:

L =−
N

∑
i
(yi ∗ pi +(1− yi)(1− pi)) (3.11)

Since a positive bag contains at least one positive instance, the probability pi of a bag being positive

depends on the probability of the instance that is most likely to be classified as positive, i.e.

pi = max
j
(pi j) (3.12)
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The MILboost uses the boosting procedure to construct a strong classifier HT (si j) by iteratively

combining a set of weak classifiers ht(si j) as,

HT (si j) =
T

∑
t=1

αtht(si j) (3.13)

where HT denotes the classifier constructed in the T th iteration and all weak classifiers are the same

type of learners that are generated from space H . Note HT (si j) and ht(si j) are simplified notations

of HT (φs(si j)) and ht(φs(si j)) respectively. The boosting algorithm updates the weight of instances at

the end of each iteration by taking the gradient of the loss function L w.r.t HT (si j). A weak classifier

ht is added for each iteration that gives the lowest error on the weighted data, and the coefficient αt is

determined by the error of the classifier. Details about the MILboost algorithm can be found in (Viola

et al., 2005).

ωi j =−
∂L

∂HT (si j)
=−∂L

∂ pi

∂ pi

∂ pi j

∂ pi j

∂HT (si j)
(3.14)

The instance weights are then normalized as ω ′i j =
|ωi j|

∑i j |ωi j| . Misclassified instances will be assigned

higher weights and a weak classifier hT+1(si j) is trained on the reweighted data and added to HT+1 in

the (T +1)th iteration

hT+1 = arg max
h∈H

N

∑
i

Ni

∑
j

ω
′
i jh(si j) (3.15)

where N is the total number of bags and Ni is the number of instances in the ith bag. However, since the

max function is not differentiable, a soft-max function g is used as an approximation. Define a vector
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pi = [pi1 pi2 ... piNi ], then the softmax function with respect to the subscript j, j ∈ {1,2, ...,Ni} is given

by:

pi = g(pi)≈ max
j
(pi j) (3.16)

Among all the options for soft-max function, the generalized mean (GM) is a preferable model as

suggested by past research (Sikka et al., 2014). For the instances{si j}Ni
j=1 in the bag of Si, the GM

approximation is given by:

gGM(pi) = (
1
Ni

∑
j

pu
i j)

1
u (3.17)

where u is the parameter that controls sharpness and accuracy in the GM model s.t. gGM(pi)→max j(pi j)

as u→ ∞. Now the gradient of the GM soft-max is given by:

∂ pi

∂ pi j
= pi

p(u−1)
i j

∑
Ni
s=1 pu

is

(3.18)

3.5.2 Multiple Clustered Instance Learning

In the compact structure feature settings, scores of all AU combinations are encoded in one feature

vector, which can be conveniently handled by the original MIL framework. However, it may be desir-

able to distinguish the contribution of individual AU combinations for more precise analysis of different

types of pain. In practice, the clustered representation is a more natural way that is used by human

coders and a positive decision on any of the clusters is sufficient to identify pain. Multiple Clustered

Instance Learning (MCIL) proposed by Xu et al.(Xu et al., 2014) is an extension of MIL that was pro-

posed to provide patch-level clustering of 4 subclasses of cancer tissues, and facilitates both image-level
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classification and pixel level segmentation (cancer vs. non-cancer). Based on the structural similarity of

the problems, we have adapted the MCIL framework to handle the clustered feature structure for pain

recognition.

MCIL assumes there are K clusters in a positive bag and an associated hidden variable yk
i j ∈ {0,1}

that indicates whether the instance si j belongs to the kth cluster. An instance could be considered

positive if it belongs to one of the K clusters and a bag is labeled as positive bag only if it contains at

least one positive instance. The goal of MCIL is to learn one boosting classifier Hk
T (s

k
i j) for each of

the K clusters. In our clustered data representation settings, each video frame is encoded by a 8× 6

matrix. If we treat each column vector as an independent instance, all the instances in one bag will form

six clusters naturally. A MCIL learner can be trained and the overall decision is based on the cluster

classifier that gives maximum output:

HT (si j) = max
k

(Hk
T (si j)) (3.19)

Similar to the core of MIL, the posterior probability of bag i is given by,

pi = max
j

max
k

(pk
i j) (3.20)

where j ∈ {1,2, ...,Ni} and k ∈ {1,2, ...,K}.

Define a vector pK
i = [p1

i1 ... p1
iNi

p2
i1 ... p2

iNi
... pK

i1 ... pK
iNi
]. The max function is approximated by a

soft-max function,

pi = gK(pK
i ) (3.21)
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Taking the GM model as an example, derivation of the softmax function for the care of K clusters

goes as follows,

gK
GM(pK

i ) = (
1
K ∑

k
(gGM([pk

i1 pk
i2 ... pk

iNi
]))u)

1
u

= (
1
K ∑

k
((

1
Ni

∑
j
(pk

i j)
u)

1
u )u)

1
u

= (
1

KNi
∑
k, j
(pk

i j)
u)

1
u

(3.22)

Finding the strong classifier of a cluster follows a standard boosting procedure and all the classifiers

are trained on the same set of BOW instances. However, the weight of instances are updated per cluster,

ω
k
i j =−

∂L

∂Hk
T (si j)

=−∂L

∂ pi

∂ pi

∂ pk
i j

∂ pk
i j

∂Hk
T (si j)

(3.23)

The partial derivative of ∂ pi
∂ pk

i j
for the GM model is given by,

∂ pi

∂ pk
i j
= pi

(pk
i j)

(u−1)

∑
Ni
s=1 ∑

K
t=1(pt

is)
u

(3.24)

For the remaining two terms in the partial derivative of the weight update expression, ∂L
∂ pi

is the same as

in MILboost and
∂ pk

i j

∂Hk
T (si j)

= pk
i j(1− pk

i j), which is the derivative w.r.t a sigmoid function.



CHAPTER 4

EXPERIMENTAL RESULTS

4.1 Frame-level Pain-Related Action Units Prediction on UNBC-McMaster Dataset

4.1.1 Dataset Skew

Data imbalance is a significant challenge for system training using spontaneous facial expression

dataset, where the number of positive training examples is often much smaller than that of negative

examples for action unit detection. The imbalance of data is measured by the skew ratio, as defined in

(Jeni et al., 2013a):

Skew =
negativeexamples
positiveexamples

(4.1)

Common procedures to address this issue include employing over-sampling techniques (Majumder

et al., 2016) or weighted metrics (Wang et al., 2017b). The UNBC-McMaster dataset is only encoded

for 11 pain-related AUs and the AU data is highly imbalanced with skew varying from 4.86 to 2243.

In this study, we use the CK+ as an auxiliary dataset, which contains generic facial expressions and

is encoded for a complete set of 30 AUs. Data consolidation from CK+ to UNBC-McMaster dataset

not only augmented available positive examples for each AU classes, but also introduced non-pain-

related AUs as negative examples to increase the system robustness. As a result, the AU skew ratio after

consolidation varies from 5.58 to 68.86, and the dataset is more balanced across all pain-related AUs,

as illustrated in Table III , column 2-3.

84
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4.1.2 AFER Performance Evaluation

Accuracy and F1 score are frequently used metrics to evaluate a binary classifier (Chen et al., 2018).

Accuracy is the percentage of correctly classified positive and negative samples, where the decision

threshold is set to 0.5 in general. F1 score is the harmonic mean between precision (PR) and recall

(RC), so that the two measures are reflected through one score. We evaluated the Hybrid CNN AFER

and the Two-Stage DNN AFER on the UNBC-McMaster dataset with a 5-fold validation, and the result

is reported by Accuracy and F1. The performance metric is normalized with dataset skew as per the

methods in (Jeni et al., 2013a). The Multi-Label AU predictions on two sample frames is shown in 10.

We also employ the commercialized Emotient (iMotions A/S, 2016) for performance comparison with

the multi-label deep learning networks on the pain-related AU detection task. Although tracking results

are not available for AU12, AU25, and AU27 using Emotient, this does not affect the performance of

other AUs as Emotient treats the prediction of single AUs independently. The results are summarized

in TableIII, column 4-9, which indicate the deep learning-based techniques outperform state-of-the-art

AFER system built with conventional CVML techniques. In addition, the performance of the trained-

from-scratch CNN in small scale does not differ significantly from state-of-the-art very deep Inception-

Resnet fine-tuned with transfer learning. This finding is also supported by a survey on deep learning-

based facial expression recognition (Li and Deng, 2018). Note that the two-stage DNN was tested with

a setting (Chen et al., 2019) that is slightly different from those the Hybrid CNN, so the result is not

a strict like-for-like comparison. Taking advantage of the block-based design of the entire system, it is

preferable to use the FAN face alignment network as the front end of the 10-layer CNN in the Hybrid

CNN schema at the current stage of research, because it allows a better control of the entire system.
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Unless stated otherwise, the core AFER system in the following experiments is based on the 10-layer

CNN architecture.

Figure 10: Multi Label AU Predictions on Sample Frames

4.1.3 AU Relations

Concurrence rate is a common measure for evaluating the relations between two AUs. We evaluate

this relation as the chance that AUi is activated given AU j is activated, s.t.

P(AUi|AU j) =
number of AUi &AU j activated examples

number of AU j activated examples
(4.2)
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TABLE III: AFER PERFORMANCE ON AUGMENTED UNBC-MCMASTER

Action Orig. Comb. F1-Score Accuracy

Unit Skew Skew Emo- Hybrid 2-Stage Emo- Hybrid 2-Stage

tient CNN DNN tient CNN DNN

4 36.61 12.97 0.743 0.872 0.874 0.838 0.967 0.977

6 6.27 7.03 0.802 0.910 0.922 0.736 0.954 0.980

7 11.00 10.3 0.557 0.865 0.900 0.849 0.970 0.978

9 94.50 41.5 0.715 0.825 0.725 0.935 0.928 0.984

10 75.95 68.86 0.610 0.850 0.681 0.598 0.939 0.986

12 4.86 5.59 - 0.903 - - 0.951 -

20 56.2 30.7 0.370 0.848 0.785 0.882 0.937 0.981

25 15.78 7.7 - 0.810 - - 0.919 -

26 18.30 19.9 0.374 0.901 0.833 0.931 0.935 0.980

27 2243 54.6 - 0.839 0.710 - 0.861 0.984

43 15.60 21.68 0.670 0.901 0.851 0.798 0.957 0.985
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Figure 11: AU relations in UNBC McMaster (a)Ground Truth, (b)Predictions

where AUi and AU j are in the pain-related AU sets. The ground truth of AU relations for UNBC-

McMaster dataset is summarized in Fig.11(a), and the pairwise conditional probabilities computed from

the CNN predictions is summarized in Fig.11(b). Note that the matrices are not symmetric due to the

different skewness for each AU, and the relation of AU27 is not fully revealed as there is a very limited

number of AU27 samples in UNBC-McMaster dataset. The deep-learned AU relations match the ground

truth statistics precisely, with an average element-wise Euclidean distance between the two matrices in

Fig.11 at 0.04. The information of AU relations is embedded in the CNN training through the multi-label
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setting, which improves AU predictions at frame level. In addition, exploring such relations through AU

combinations also helps to learn the correlations between pain expressions and self-reported pain of

patients.

4.2 Sequence-level Pain Detection In UNBC-McMaster Datasets

4.2.1 Correlations Between Pain Expression And Self-Report Pain

The UNBC-McMaster dataset provides two types of labels for the study of pain: the pain expression

label at frame level (PSPI), and the patients’ self-report pain label at sequence level (VAS, OPI). In order

to evaluate the correlation between these two types of ground truth on pain, we first divided sequences

in this dataset into 3 categories, namely No Pain, Weak Pain and Strong Pain, based on the maximum

frame-level PSPI score in each sequence similar to the settings in (Irani et al., 2015). Next, the PSPI-

OPI relations were plotted in a stacked bar chart for each OPI level as shown in Fig. 12, where the

portion of sequences in each PSPI category was marked in blue, orange, and yellow for the cases of No

Pain, Weak Pain and Strong Pain respectively. Pain expression with higher intensity is observed with

increasing level of pain feeling in general. However, we do notice that pain expressions are less likely

to be evoked by low-level pain (OPI = 1,2). Past research (Ashraf et al., 2009)(Lucey et al., 2008) uses

the protocol that treats video sequences with OPI ratings ≥ 3 as positive samples and those with OPI

= 0 are treated as negative samples. This yielded the same set of 147 sequences from 23 subjects as in

(Sikka et al., 2014).

4.2.2 Evaluation Of The MIL Based Pain Detection

In this study, we also trained and validated the pain detection system on the UNBC-McMaster

dataset. Video squences are first fed frame-by-frame into the deep learning-based AFER to generate
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Figure 12: Relations between frame-level and sequence-level ground truth on pain

predictions on pain-related AUs. Dataflows of the jointly detected single AUs are then encoded with the

compact and clustered AU combination structures separately. Finally, these two types of BOW features

about AU combinations are used to train MIL (refered to as Compact-MIL) and MCIL (referred to

as Clustered-MCIL) models. Instances in a bag are generated by two temporal aggregation methods,

Sc-wind and Ncuts. We set the multiple scaling window size at 30,40,50 for Sc-wind. The size of

segment in a cluster is limited between 21 and 81 for Ncuts, and σ f = 1, σt = 30 in computing the

frame correlation matrix, where the parameter values are selected via a grid search. In order to illustrate
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the flexibility of the decoupled framework as well as its benefit by utilizing deep learning techniques,

we also replaced the CNN-based AFER with Emotient and report the performance for comparison.

Four metrics are chosen to evaluate the performance of MIL and MCIL learners, including Accuracy,

Accuracy-EER, F1 score and Area Under the receiver operating Characteristic (AUC). Here Accuracy-

EER refers to the Accuracy computed at Equal Error Rate (EER) in the Receiver Operation Curve (ROC)

(Ashraf et al., 2009)(Lucey et al., 2008), and AUC metric equals to the probability that a classifier will

rank a randomly chosen positive instance higher than a randomly chosen negative one.

TABLE IV: COMPARISON OF THE DECOUPLED FRAMEWORK WITH MS-MIL (Sikka et al., 2014)

Pain Label

Framework Configuration Sc-wind Ncuts

AFER APD Accuracy(%)
Accuracy (%)

at EER
AUC F1 Accuracy(%)

Accuracy (%)

at EER
AUC F1

OPI ≥ 3

MS-MIL(Sikka et al., 2014) 83.7 82.99

Emotient Compact-MIL 83.96 83.93 0.875 0.776 85.04 85.7 0.9 0.783

Emotient Clustered-MCIL 85.18 85.6 0.92 0.824 86.84 88.3 0.936 0.836

CNN Compact-MIL 87.07 87.5 0.914 0.854 88.43 89.47 0.907 0.857

CNN Clustered-MCIL 89.11 89.47 0.924 0.862 90.47 91.23 0.948 0.876

OPI ≥ 2
Emotient Clustered-MCIL 81.18 82.50 0.888 0.809 80.39 81.67 0.876 0.796

CNN Clustered-MCIL 87.05 87.5 0.894 0.869 88.23 88.75 0.907 0.875

We first select video sequences with OPI ratings ≥ 3 as positive samples (i.e. examples with OPI

= 1,2 are excluded), and evaluate the performance of MIL and MCIL learners with two segmentation
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scheme referred to as Sc-Wind and Ncuts. As part of the flexibility feature of the decoupled framework,

we also report the performance using Emotient and the CNN network respectively as the frontend to

the APD system, which makes a total of 8 different configurations. We consider the study in (Sikka et

al., 2014), referred to as MS-MIL, for comparison and the results based on a 10-fold cross-validation

are summarized in Table IV, Row 3-7. In general, Clustered-MCIL outperforms Compact-MIL as a

pain detection system. This improvement may be attributed to the feature sparsity from the clustered

representation, which not only increases the margin on features but also follows more naturally a hu-

man coder’s decisions. On the other hand, the decoupled framework configurations using CNN as the

frontend outperform their Emotient-based counterparts. The best performance is achieved by the MCIL

framework using Ncuts in conjunction with the CNN based AFER. This observation is further demon-

strated through a more challenging pain detection experiment by including video sequences with OPI= 2

as the positive examples, as shown in Table IV, Row 8-9. The accuracy of pain-related AU encoding is

increased by introducing deep learning based AFER, which leads to the overall improvement on pain

detection at sequence level using the weakly supervised MIL framework.

AU coding is a ‘hard’ problem involving learning a mapping from a very high-dimensional pixel

space to the low-dimensional AU space in a complex environment. However, due to the fact that AUs

are evoked by certain facial muscular movement, reliable AU coding can be achieved by a robust AFER

system if trained on sufficient data. On the other hand, pain is a subjective measure and can be viewed as

a latent variable. It will be easier to synthesize similarity from low-dimensional features that are highly

correlated to pain under the impact of problem uncertainty. It is worth pointing out that the selected data
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has skew = 1.607 for OPI≥ 3 and skew = 1.05 for OPI≥ 2 respectively with sequence-level binary pain

label in contrast to the highly imbalanced FACS labels on frame-level data.

4.2.3 Multi-label AU Predictions And PSPI

(a)

(b)

Figure 13: Frame Level Pain Prediction on Two Sample Video Sequences

Pain expression intensity estimation using the PSPI scale and pain localization based on temporal

analysis are two topics covered in past research (Wang et al., 2017b)(Majumder et al., 2016)(Egede et



94

al., 2017)(Sikka et al., 2014). Although this study focuses on modeling relations between patients’ self-

report pain and observable pain expressions, we are able two address both problems to certain extent.

The AFER system in the proposed decoupled framework is trained on binary AU labels. However, the

summation of corresponding AUs from its output may be used to simulate the PSPI scale at frame level.

We plot the ground truth of PSPI vs. its estimation using the single AU predictions from CNN, and

the posterior probability p f k
i

derived from the MIL predictions for two sample video sequences in Fig.

13(a),(b). All three types of scores have been normalized between 0 and 1 for the comparison purpose.

The results indicate that using the AFER output directly is more efficient than using MIL predictions for

pain localization task in terms of the precision to follow the PSPI variation both in time and amplitude.

4.3 Trans-dataset Validation For Human Coders With Wilkie’s Dataset

4.3.1 Pain Expression Evaluation Via AU Combinations

Wilkie’s dataset was created in 1990 with videos captured by analog cameras, and was not targeted

for automated analysis. The issues of video quality, illuminations and rigid motions pose significant

challenges to build a robust AFER system. The highly imbalanced dataset with insufficient pain ex-

pression samples also prevent training an end-to-end APD system using this dataset alone with most

available state-of-the-art CVML techniques. We solved this problem with the decoupled structure in the

proposed framework, where person-specific features are isolated from the pain prediction task. The de-

coupled framework also facilitates consolidation of newly acquired video data with patients’ self report

to train a more robust pain detector. Results of the experiment on the UNBC-McMaster datasets sug-

gest that identifying pain from reliable predictions of pain expression improved performance compared

with that obtained with high-dimensional features extracted directly from video frames. We applied the
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TABLE V: VALIDATION WITH SELECTED PATIENTS FROM WILKIE DATASET

Patient No Human Coder Scored System Scored

(Segment 1,2,3) AU Combinations AU Combinations

P21 6/7 6/7, 20, 4+6/7/43

P24 6/7, 20, 27 6/7, 4+6/7/43, 4+9/10

P27 6/7,20 6/7

P41
6/7, 4+6/7/43, 4+9/10 6/7, 4+6/7/43

4+26/27, 9/10+26 4+26/27

P44
6/7, 20 6/7, 20, 4+6/7/43

4+6/7/43 4+9/10, 4+26/27

deep learning-based AFER that was trained on the combined data from the UNBC-McMaster and CK+

datasets to perform a trans-dataset validation of pain expressions on Wilkie’s dataset.

Our previous study on Wilkie’s dataset (Wilkie, 1995) supports the findings that 1) types of facial

display in people with cancer pain are similar to those with acute and chronic pain; and 2) pain intensity

was weakly correlated (r = 0.30, p < 0.05) and state anxiety was moderately correlated (r = 0.45, p <

0.05) with more than one action unit present in an interval. In addition, there was strong support for

the notion that people with cancer pain are stoic in their facial expression of pain. Such stoicism may

contribute to undertreatment of cancer pain. Therefore, we employ the Wilkie’s metric based on the



96

occurrence of AU combinations instead of the PSPI metric based on intensity of pain expression in this

study.

Each test sequence in Wilkie’s dataset is divided into 30 subsequences and each subsequence has

a duration of 20 seconds. Three human expert coders performed FACS coding on each subsequence

and pain is identified if any pain-related AU combination is detected by at least two human expert

coders in the original research. The FACS coders recorded the observed pain-related AU combinations

in a score sheet, and a sample score sheet is shown in Fig.14. However, the AU combinations were

scored at subsequence level such that frame-level FACS label is not available. We selected the first

three subsequences of videos from 5 patients (P21,P24,P27,P41 and P44) for validation purpose, where

the patients displayed close-to-front-view faces. The face images of the 5 selected patients are shown

in Fig.15. The evaluation is based on comparison of pain-related AU combinations scored by FACS

coders (ground truth) and that scored by out system in the video of 1-minute duration. The result is

summarized in Table V, which indicates the proposed system followed FACS coders’ decisions well in

general.

4.3.2 Consistency Evaluation Between The Automated System And FACS Coders

Next, we employ the Clustered-MCIL settings with GM approximation to train a pain detector on

UNBC-McMaster dataset and test it on video sequences from selected patients in Wilkie’s dataset. 393

subsequences from 27 patients are selected for this experiment, where at least 50% of each subsequence

is analyzable by Emotient. A subsequence is considered as positive (pain) if AU combinations are coded

by at least two coders (more credible) or only one coder (less credible). A subsequence is negative (no

pain) if no AU combination is scored by any coder. As a result, 82 subsequences are identified as positive
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Figure 14: A sample score sheet filled by human coders for pain analysis

by at least two coders, 121 subsequences are identified as positive by only one coder, and the remaining

190 subsequences are identified as negative samples. However, since the human coding does not reveal

pain intensity information and coders do not always agree with each other, this ground truth is more

suitable for qualitative analysis. The automated system is used as an independent coder and it checks

the consistency between machine prediction and human coder decisions and the results are summarized

in Table VI. Note that the system has no prior knowledge about the test dataset. In general, observe

that the decisions of automated system are highly correlated with that of a majority of human coders on

both pain and no pain videos. Additionally, a 68.6% consistency rate is observed between the system

and the case where a single coder scored pain. However this is more likely due to the ambiguity in less
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(a) (b) (c) (d) (e)

Figure 15: Selected patients for test (a) P21, (b) P24, (c) P27, (d) P41 (e) P44

credible videos rather than to the accuracy degradation. As a result, the system shows its potential in

pain assessment for long videos and may be applicable to patient monitoring task under clinical settings.

Patients’ self report pain intensity was collected via PAINReportIt® (Wilkie et al., 2003) after video

recording using the VAS scale in Wilkie’s dataset, which ranges from 0-9.8. Therefore, each video

sequence carries only one VAS label for the entire 10mins video, which is insufficient to support training

an automated system to detect pain intensities at the current stage of our study. Considering the variation

in pain intensity distribution of different datasets as well as of different pain types, we believe binary

pain detection is a good starting point to evaluate patients’ self-report pain in the context of trans-dataset

learning. The preliminary binary pain detection experiment on Wilkie’s dataset using trans-dataset

learning paves the way for the task of automated detection of cancer pain. We will advance our study

with more focus on problems in clinical settings, including the influence of stoicism on pain expression

intensity for pain estimation.



99

TABLE VI: COMPARISON OF MACHINE PREDICTION WITH HUMAN CODER DECISION ON SUBSE-

QUENCES IN WILKIE DATASET (Wilkie, 1995)

Subsequences

Label

Pain

(2+ coders

scored)

Pain

(1 coder

scored)

No Pain

(3 coders

agreed)

Human Coder 82 121 190

Automated System 68 83 169

Consistency Rate 82.9% 68.6% 88.9%



CHAPTER 5

DISCUSSION AND FUTURE WORK

A highly customizable FACS automated pain detection system is proposed based on a decoupled

structure. In our design, the end-to-end pain detection from patients’ videos are decoupled into two

consecutive tasks, namely FACS based pain express detection and pain estimation from the estimated

pain expressions. The system for each task is developed independently, which maximizes utilization of

existing data and facilitates fusion of new data collected in the future. The customizable design allows

us to take advantage of its flexible configuration and try various combinations of state-of-the-art CVML

and deep learning techniques to tailor the system for our need. We followed an end-to-front research

strategy by dividing the system development and optimization into three phases, which allow us to focus

on the high priority design goals in each stage while minimizing risks. However, given the very limited

accessibility to pain-oriented video data containing patients’ facial expressions, the space to further

adapt the system to clinical application is limited in practice. With the recently approved NIH grant

1R43DA046973-01, we are proceeding to develop a commercialized product based on the decoupled

APD system, and four targets have been identified for the future work.

First, we will integrate all the modules in the decoupled framework to a user interface (UI). The UI

is expected to provide convenient visualizations of intermediate results from the APD system, which is

important for the prototype demonstration and future product deployment.

Second, although patients’ self-report pain is typically represented by OPI and VAS, the PAINReportIt®

tool provides much richer description about pain associated with each patient, such as Pain Rating Index

100
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(of Sensory, Affective, Evaluative), Number of Words Selected (NWS), comparable pain experience

(worst pain intensity for toothache the patient has had). We will integrate the text information from

PAINReportIt® as an important auxiliary input to the final stage of the APD system to reinforce the

bond between pain expressions and self-report pain. To our best knowledge, there is no peer research

addressing this problem so far.

Third, if our phase II proposal of the SBIR project is granted, we will establish a new pain-

expression dataset in clinical settings with specific considerations of data acquisition protocol, multi-

camera deployment, FACS labeling and PAINReportIt® recording etc, which is oriented to automated

video analysis. The new dataset is expected to enrich the availability of pain data, and will further

improve our proposed system via data fusion.

Finally, one of the most critical challenges in facial expression recognition is the performance im-

pairment from person-specific features. The decoupled structure is capable of isolating person-specific

features from the decision of pain, because pain detection is based on low-dimensional features of AU

combinations. This conclusion is build on the premise that the predictions of pain expression must also

be reliable. Therefore we are also keen on seeking a way to isolate person-specific features from the

feature space of facial expressions. As part of our preliminary work, we investigated a novel 3D face

tracking and alignment system called OptiTrack® that captures face fiducial points in real time with IR

camera arrays, as shown in Fig.16. The output of OptiTrack® known as control points flows (as shown

in Fig.17a) is fed in the AutoDesk SoftImage® software to drive an avatar to replicate human facial

expressions (as shown in Fig.17b). Now that the facial expressions are produced from the identical sub-

ject, all person-specific features are suppressed. The OptiTrack® system cannot be applied to existing
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facial expression datasets and the system settings are also complicated so that we did not pursue this

idea initially. However, with the FAN framework, we are able to reliably track fiducial points in 3D

even from existing 2D videos. Therefore it is very plausible for us to integrate the Avatar-based AFER

in our decoupled system.

Figure 16: OptiTrack IR camera arrays setup
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(a) (b)

Figure 17: (a) SoftImage compatible 33 control points layout in Optitrack. (b) Facial expression replication by

Avatar.



CHAPTER 6

CONCLUSION

This thesis proposed and investigated the performance of automated pain detection via spontaneous

facial expressions in the context of clinical applications. The work was motivated to a large extent by

finding solutions for automated pain analysis of Wilkie’s dataset. By conducting an adequate literature

survey of state-of-the-art research, we are able to identify the most relevant techniques and challenges for

the automated pain detection problem. We proposed a decoupled pain detection framework that mimics

the decision strategy of FACS-certified human coders. The architecture of two independent machine

learning networks facilitates data fusion from different pain-oriented video datasets, which helps to

develop a robust and generic automated pain analysis system. We followed an end-to-front research

strategy to develop three different implementations of the decoupled framework, each corresponding

to a research phase. The proposed system not only demonstrates improvement over existing state-of-

the-art work, but also shows flexibility on framework customization. In future work, we will conduct

comprehensive test on new pain-oriented video dataset and we expect to commercialize our work to

facilitate clinical pain analysis.
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