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SUMMARY

Recent advances in CMOS VLSI technology have enabled the tremendous growth of devices at the

edge of the cloud and in indoor environments: IoT indoor appliances, mobile indoor medical assistants,

mobile indoor manufacturing platforms, indoor drone assistants, and others. As anticipated, this growth

(in edge-device numbers and capabilities) is generating large communications and data processing work-

loads for the servers in the cloud. One approach to help manage this trend is to make the edge-nodes

more intelligent and able to process more data onboard (within the edge-node) before communicating

with the servers. This thesis proposes hardware accelerator solutions to three types of onboard (within

platform) processing: Spatial Self-Localization (SSL) which localizes the platform in space, Speaker

Recognition (SpkrRec) which allows human voice control of the platform and authentication of the

human speaker, and Fully-Connected layer evaluation in Neural Networks ( FC-NN ) for accelerated

neural network processing withing the platform. Onboard processing is assumed to include a multi-core

SoC (CPU/GPU), conventional SRAM and DRAM memory as well as high bandwidth memory, HBM

or 3D-DRAM, and communication and sensing subsystems. The SSL, SpkRec, and FC-NN accelerators

can be integrated with the SoC’s peripheral bus structures such as AXI-Stream, AXI-Lite, AXI-HBM,

JESD235A, JESD235B, GPMC, DMA, and similar high-speed processor interfaces.

xvii



CHAPTER 1

INTRODUCTION

This research has been motivated by three important problems in real-time integrated hardware-

software implementations of indoor mobile robotic platforms at the edge of the cloud:

1.1 Spatial Self-Localization

Spatial self-localization (in 2D or 3D space) is performed within the device. Example applications

include simultaneous localization and mapping (SLAM) and navigation for autonomous mobile robots.

We focus on optical angle-of-arrival, AOA, localization based on fixed known position LEDs or infrared,

Ir, beacons or anchors mounted in an indoor environment and photodetectors built in the mobile plat-

form. These are lower cost localization systems when compared to 3D camera or image sensor based

AOA detection, but can offer comparable performance in most indoor cases. Recent implementations

include (Popoola and et al, 2019), (Arafa et al., 2015), and (Navarrro and et al, 2017).

1.2 Speaker and or Command Recognition

Speaker and or command recognition is performed within the device to allow human control of the

device and speaker identification. Example applications include a limited number of voice commands

from a set of known speakers, which are used to control indoor drones as in (Fuhrman and et al, 2019)

, (Sugadev and et al, 2016). Another application is spotted word (command) recognition for control of

diadic manipulator robotic arm (Elemary, 2011).

1
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1.3 Fully Connected Layers for Neural-Network Processing

Fully connected layers processing, for embedded neural-networks, is performed within the device to

achieve real-time inferencing with the DNN. Example applications include deep CNN processing such

as AlexNet or VGG-16, where a typical fully-connected layer has 4096 input features and 1000 output

neuron activations, and can increase up to 250088 input features and 4096 output neuron activations,

as in (Krizhevsky and et al, 2017) and (Simonyan and et al, 2014). Another application is bounding-

box object localization in an image using reinforcement learning for training and a Q-Network for

inferencing with several fully-connected layers as implemented in (Caicedo and et al, 2015).

The main contribution for the spatial self-localization problem is a block Least-Squares formulation

of the 3D or 2D Angle-of-Arrival (AOA) equations for increasing number of anchors. An incoming

stream of 3D or 2D AOA sensor measurements is used to define the overdetermined system of equations.

The AOA equations are then used to formulate a primal-dual linear program and solved via a novel

Recurrent Neural Network (RNN) hardware accelerator which does not use matrix inversion. Key results

for FPGA and CMOS ASIC implementations have been published in (Iliev and Trivedi, 2019) for the

3D case and in (Iliev and Trivedi, 2017) for the 2D case.

The main contribution for the speaker recognition problem is a novel online K-means cluster genera-

tor for the following Gaussian Mixture Model (GMM) evaluation (scoring). Online Euclidean distances

and K-means centroids (for incoming MFCC frames) are computed with novel low-power pipelined

datapaths. Key results for FPGA and CMOS ASIC implementations have been published in (Iliev et al.,

2019).
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The main contribution for the fully connected (FC) layers problem is a novel online accelerator

based on 8x8 processing elements (PEs) for matrix-vector multiplication, a column of blocks (tiles)

decomposition of the weights matrix, and 128 multiply-accumulate (MAC) units integrated with 128

High Bandwidth Memory (HBM) units for storing the pre-trained weights. On chip routing such as

2D mesh routing with Network on Chip, NoC, is not required. Compression of the DNNs features or

weights is not required either. The architecture can be scaled to 16x16 PEs for handling larger FC6 and

FC7 layers in AlexNet and in VGG16. Key results for CMOS ASIC implementations of the FC8 layer

accelerator have been published in the journal of IEEE Embedded Systems Letters.

1.4 Thesis Organization

This thesis is organized into four parts and 15 chapters. Descriptions of each part and each chapter

of the dissertation are as follows:

Part I, Spatial Self-Localization: This part contains an introduction to the 2D or 3D

AOA spatial self-localization (SSL) research problem, a review of the existing works and

a description of the key design features and parameters of the SSL-Accel accelerator for

edge node devices.

Chapter 2: This chapter provides the reader with the motivation for the spatial self-localization prob-

lem and identifies the research questions that the work is focused on such as handling an increased

number of anchors with low latency and keeping circuit power consumption withing limits. Our
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approach to these problems is explained and a list of related contributions is included in this

chapter, as well.

Chapter 3: In this chapter we review some background on AOA localization systems that will be ref-

erenced later in the thesis.

Chapter 4: This chapter presents the key design features and parameters of the SSL accelerator, SSL-

Accel, and FPGA and ASIC implementations. Datapath flow and controller (scheduler) diagrams

and state machines are covered as well as the RNN operation with fixed-point data types for all

layers.

Chapter 5: Simulation results are presented, and FPGA and CMOS ASIC PDK 45 nm implementation

details and performance are covered as well. A conclusion follows with complexity comparisons

of the SSL-Accel RNN dual-LP approach to various matrix-inversion architectures for solving

overdetermined systems as well as Kalman filter based and particle filter based localizers.

Part II, Speaker Recognition: This part contains a background on speaker recognition

based on Gaussian Mixture Models (GMMs), and a description of key design features

and parameters of the online k-Means clustering accelerator SpkrRec-Accel for edge

node devices.

Chapter 6: This chapter provides an overview of speaker identification using GMM models of a set of

enrolled speakers.
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Chapter 7: This chapter introduces the research problem of reducing the dimensionality of speech

features for a collection of speakers so that overall identification latency and circuit power are

reduced to meet implementation constraints.

Chapter 8: This chapter presents the key design features and parameters of the SpkrRec-Accel acceler-

ator. Datapath flow and controller (scheduler) timing diagrams and state machines are covered as

well as novel distance computing and centroid update datapaths with fixed-point data processing.

Chapter 9: Simulation results are presented, and FPGA and CMOS ASIC PDK 45nm implementation

details and performance are covered in this chapter. A comparison with other approaches is also

presented.

Part III, Fully Connected Layers in Deep Neural Networks: This part presents

current solutions to the FC layers problem in deep CNNs and DNNs such as

AlexNet and VGG-16. It then details a novel, higher performance, accelerator ar-

chitecture FC-NN-Accel and its key design features and parameters for edge node

devices.

Chapter 10: This chapter provides an introduction on the impact of FC (or dense) layers to

overall CNN and DNN performance. Current solutions for edge node devices, implemented

as CMOS ASIC or FPGAs, are reviewed and possible areas of improvement are identified.

Chapter 11: This chapter contains some background information on FC layers in DNNs, their

relation to convolutional layers, and other FC specific features relative to their hardware
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acceleration. Parallel matrix-vector multiplication algorithms are also reviewed including

rowwise block decomposition, columnwise block decomposition, and checkerboard block

decomposition of the FC layer’s weights matrix.

Chapter 12: In this chapter, a novel solution is proposed to address the areas for improvement.

The FC-NN-Accel architecture is presented in detail with its key design parameters such as

tile size for decomposition of the weigths matrix into tiles; array of High Bandwith Memory

(HBM JESD235A) for driving an array of processing elements (PEs) in a maximally parallel

organization using column of blocks (tiles) decomposition; PE design with novel matrix-

vector multiplier, accumulator, and ReLU and biasing circuits; streaming data-prefetching

from the HBM array and streaming address-generation for the output memory. A CMOS

ASIC PDK45 nm implementation is described as well.

Chapter 13: This chapter presents an ASIC implementation of FC-Accel as well as simulated

performance results for FC-NN-Accel with 128 HBM weights memories (1 MB eaech),

a 4KB input features memory (FC layer only), and compares achieved results with other

AlexNet and VGG-16 implementations with published FC layer performance results.

Part IV, Conclusion: This part contains open problems and possible extensions of

the SSL, SprkRec, and FC-NN accelerators to address some of the problems. Ex-

ample problems are robust location estimation in noisy environments with multi-

modal methods such as AOA and image-based methods, joint speaker and com-

mand recognition accuracy, and power consumption and scalability in fully con-

nected layer inference. Finally concluding remarks are presented.
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Chapter 14: This chapter discusses a few possible extensions of our work and also reviews re-

lated open problems which can be addressed by these extensions.

Chapter 15: A concluding summary of the thesis is presented in this chapter.
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Part I

Spatial
Self-Localization



CHAPTER 2

SSL INTRODUCTION

In this chapter I discuss a novel low power circuit to self-localize a mobile sensor node in three-

dimensional (3D) space using a passive optical receiver. Self-localization of sensors, where a

sensor node computes its spatial location by itself, reduces transmission demand, and improves

real-time conformity of mobile wireless sensor systems. Our approach forms an over-determined

system of angles-of-arrival (AOAs) to mobile sensor received from an optical anchor grid. Optical

AOA based localization algorithms have shown a lot of advantages for indoor localization, over

RF RSSI power, optical RSSI power, ultrasound time-of-flight, and other method as shown in our

recent survey on spatial localization (Iliev and Paprotny, 2015). The AOA system is solved with

a linear program (LP) solver, which is implemented using a non-linear feedback recurrent neural

network (RNN). To solve the primal and dual LP optimization problems in the AOA system, we

show a single multi-functional data path that does not require matrix inversions; thereby, enables

within-sensor low power computations to self-localize. Additionally, unlike other optical indoor

positioning architectures, our approach does not require measurements of received signal strength

(RSS) and, thereby, is insensitive to power and alignment imbalances in the anchor grid. We

show proof-of-concept FPGA and ASIC simulations of our approach and validate its operation

under noisy AOA data and for different numbers of anchors. An FPGA implementation in 180

9
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nm CMOS achieves a peak ∼0.12 mega localization operations per second per Watt (MOPS/W),

while ASIC design in 45 nm CMOS shows a peak ∼7.7 MOPS/W.



CHAPTER 3

SSL BACKGROUND AND NOTATION

Many emerging mobile wireless sensor networks such as mobile robotics, indoor positioning

for pick-and-place robotics, and smartphone localization in visible light communication (VLC)

systems rely on the indoor spatial localization of sensors. However, spatial-localization of sensors

faces several challenges in indoor environments. Radio frequency (RF)-based localization suffers

from multipath reflections, fading, and shadowing of the radio signals (Tang and Dodds, 2007).

Similarly, localization based on received signal strength (RSS) from optical beacons suffers from

power imbalances and fading (Harnilovic, 2004). Contrarily, indoor localization based on angle-

of-arrival (AOA) measurements, such as using a passive corner-cube photoreceiver or an image

sensor, has shown more promising performance by being insensitive to signal power (Bergen

et al., 2018), (Arafa et al., 2015). Moreover, optical localization based on AOA also obviates

synchronization between transmitter and receiver or between co-operating transmitters as needed

in optical time-of-arrival and optical time-difference-of-arrival (Wang et al., 2013).

While optical localization based on AOA measurements is promising for indoor applications, a

self-localization, where a sensor node can estimate its spatial position on its own, is also critical.

Unlike traditional schemes, where a server collects data from all sensors to estimate and com-

municate their positions, self-localization can significantly suppress communication demand and

11
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associated energy-overheads. Therefore, in this work, we focus on low power architectures to

self-localize a sensor based on its AOA measurements.

Our approach uses a recurrent neural network (RNN) to perform all computations necessary for

self-localization within the sensor node. Unlike localization methods such as Kalman filter (EKF)

(Gasparri and Pascucci, 2010) and extended information filter (EIF) (Taparugssanagorn et al.,

2013), our approach doesn’t require matrix inversions. Meanwhile, implementation of matrix

inversion methods (Yan et al., 2010), (Karkooti et al., 2005) can add significant latency to the

prediction. We discuss a digital CMOS micro-architecture for the RNN using fixed-point arith-

metic comprising time-multiplexed matrix-vector and vector-scalar multiplications along with

other arithmetic operations. The proposed micro-architecture uses a core 3×3 matrix-vector mul-

tiplier unit to solve the 3D localization problem with measurements from M anchors, where M is

in a multiple of two. Average localization error based on optical AOA measurements decreases

with an increase of available anchors. While our preliminary conference paper in (Iliev and

Trivedi, 2017) showed RNN-based self-localization in 2D, in this work, we expand the scheme

for 3D self-localization. Unlike (Iliev and Trivedi, 2017), the proposed 3D micro-architecture

is reconfigurable to a number of anchors. We also discuss novel datapaths based on distributed

matrix-vector arithmetic with dynamic bit-plane selections. Sec. II discusses our RNN formu-

lation of AOA-based 3D localization. Sec. III presents the proposed micro-architecture for 3D

localization. Sec. IV presents simulation results for FPGA and ASIC implementations. Sec. V

concludes. We use bold lowercase English and Greek letters for vectors and bold uppercase letters

for matrices.
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Figure 1: Sensor localization in 3D with 4 anchors and Angle-of-Arrival (AOA) measurements.

3.1 RNN formulation of AOA-based 3D Localization

Fig. 1 shows a test-case where an optical receiver U is localized using an anchor grid A1–A4. We

derive a system of linear equations to localize U using an arbitrary number of anchors. The angle-

of-arrival (AOA)-based localization has been analyzed in (Gavish and Weiss, 1992) in its most

general form. The problem can be solved with a Maximum Likelihood (ML) algorithm (Vaghefi

et al., 2010) when the exact positions of anchors are available and the measurement noise follows

a Gaussian distribution. In this case, the ML problem yields to a nonlinear minimization as

θML = argmin
α

(α̃−α)T ×C× (α̃−α). (3.1)
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Here, the spatial coordinates of U are estimated by θML and α̃ is the AOA measurements vector

from M anchors given as

α̃ = [α̃1α̃2...α̃M]T = α̃0 +n, (3.2)

with α̃0 as the true angle (in radians) and n is the measurement noise. C in Eq. 3.1 is the inverse

covariance matrix of n.

Notice that each αi in Eq. 14.2 corresponds to two angle measurements (longitude and latitude)

from an anchor Ai, as shown in Fig. 1; therefore, αi = (βi,γi). Here, βi and γi depend on the

location of Ai, i.e., (xi,yi,zi), and the estimate for U , i.e., (xT ,yT ,zT ), as

βi = tan−1
(yT − yi

xT − xi

)
& γi = tan−1

(
sinβi×

zT − zi

yT − yi

)
. (3.3)

For small measurement errors, (Vaghefi et al., 2010) shows that Eq. 3.1 can be reduced to the

following Least Squares problem

D×
[

xT yT zT

]T

= b, (3.4a)



15

D =



tan(β1) −1 0

tan(β2) −1 0

0 tan(γ1) −sin(β1)

...
...

...

tan(βM−1) −1 0

tan(βM) −1 0

0 tan(γM−1) −sin(βM)



, (3.4b)

b =



x1× tan(β1)− y1

x2× tan(β2)− y2

y1× tan(γ1)− z1× sin(β1)

...

xM−1× tan(βM−1)− yM−1

xM× tan(βM)− yM

yM−1× tan(γM−1)− zM−1× sin(βM−1)



. (3.4c)

Therefore, with adequate anchors, Eq. 4 forms an overdetermined system where each pair of

anchors adds three additional equations. We reformulate the system of equations as a set of

primal-dual constrained linear programs shown below

Primal problem: min
θ

cT
θ ∀ D×θ = b, (3.5a)
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Dual problem: max
φ

bT
φ ∀ DT ×φ ≤ c. (3.5b)

Here, θ = [xT yT zT ] is the objective variable of the primal problem and corresponds to the

unknown target location; and φ is the corresponding variable of the dual problem. The cost

function c can be selected arbitrarily since the main goal is to satisfy the constraints and the

cost function simply rejects spurious solutions. For the optimizations, the anchor coordinates are

translated to the first quadrant.

Constrained linear programs such as the one in Eq. 3.5 can be efficiently solved using a RNN as

discussed in (Oskoei and Amiri, 2006). The corresponding neuron equations are shown below

d
dt

θ

φ

=

 θ − (θ +DT φ − c)+

D× (θ +DT φ − c)+−b

 (3.6)

The respective discrete time RNN equations for solving the primal-dual constrained programs are

shown below θ(n+1)

φ(n+1)

=

 θ(n)+dt× (r(n)−θ(n))

φ(n)+dt× (b−D× r(n))

 (3.7a)

r(n) = max[(θ(n)+DT
φ(n)− c),0] (3.7b)

Here, r(n) is the output activation of recurrent neurons. In Eq. 7, we use Euler’s forward method

for numerical integration of the continuous time variant with dt as the time step for controlling

the rate of convergence.
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3.1.1 Complexity of Primal-Dual Linear Program Solution

The number of iterations of primal-dual algorithms for solving constrained linear programs is

given by

O(
√

N ∗ log
N
ε
) (3.8)

were N is the dimension of θ and ε is the desired accuracy with ε > 0 (epsilon away solution),

(Cai and et al, 2014).

In the proposed SSL-Accel architecture the number of operations, per iteration, is

O(2∗N2) (3.9)

multiplications with N the dimension of θ and an additional O(N) number of add, sub, and

compare-vs-zero operations. Note that since batch Least Squares is used (with a batch size of

N) generating a corresponding primal-dual linear program for each batch, an increase in the num-

ber of nodes does not affect the above complexity.



CHAPTER 4

SSL DESIGN FEATURES AND PARAMETERS

Parts of this chapter have been presented in (Iliev and Trivedi, 2017) and (Iliev and Trivedi,
2019). Copyright c© 2017-2019, IEEE.

This chapter presents the key design features and parameters of the SSL accelerator, SSL-Accel.

Datapath flow and controller (scheduler) timing diagrams and state machines are covered as well

as the RNN operation with fixed-point data types for all layers. Simulation results are presented,

and FPGA and CMOS ASIC PDK 45 nm implementation details and performance are covered as

well.

4.1 Low Power Digital Microarchitecture for RNN-based Localization

We have implemented a programmable digital fixed-point arithmetic co-processor, as shown in

Fig. 2 for RNN-based localization using Eq. 3.7. The co-processor works with the main processor

and AOA sensors. Measured AOA values for [α̃1 · · · α̃M] and the anchor’s known coordinates are

used by the main processor to compute the matrix D and column vector b using Eq. 3.4. The cost

vector c in Eq. 3.7 is set as the first three elements in the column vector of b to avoid spurious

outputs. The main processor writes D and b to the co-processor’s internal registers. The RNN

block is scalable to the number of anchors M. The value of M is a multiple of two in the current

implementation. An overdetermined D [dimension: (3M/2)×3] is handled by time-sharing 3×3

submatrices of D and 3×1 subvectors of b. The scheduler feeds each submatrix of D and each

3×1 subvector of b to the downstream solvers.

18
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Figure 2: RNN-based co-processor for 3D localization with M anchors. θ(n+1) represents the predicted target

location at step n+1.

In the co-processor in Fig. 2, the primal-dual data paths and RNN block include a matrix vector

multiplier, a vector-scalar multiplier, and five add/subtract blocks. A single vector comparator

Max(x,0) implements the neuron’s activation function. The primal variables at time step n are

θ(n) = [xT (n) yT (n) zT (n)]; the dual variables are φ(n) = [(φ1(n) · · · φ3×M/2(n))]; and D, c, and

b are the constants for a given set bearing (angle) measurements. Time step dt (programmed by

the main processor) controls the rate of convergence and the number of iterations. Fixed point

two’s complement Q17.10 representation is used for all arithmetic operations.
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Figure 3: Distributed arithmetics for vector-vector multiplication.

The dual data path shown in Fig. 2 generates dual variables(φ1(n), ...,φ3×M/2(n)) which are used

in the RNN block. The matrix-vector and vector-scalar multipliers are reused; this data path

also uses Q17.10 fixed-point representation for all its arithmetic operations. A dedicated fifteen

state FSM controller schedules all operations in both data paths, samples the input registers (D

submatrices, b and c sub-vectors, M, and dt), and drives all updates to the output registers [xT (n)

yT (n) zT (n)] and [(φ1(n) · · · φ3×M/2(n))]. The following subsections describe the main new

processing blocks contributed in the proposed micro-architecture.

4.1.1 Matrix-vector product with sub-matrix scheduling

The matrix-vector product operation in the above equations is implemented by reusing a core

3×3 matrices and 3×1 vector multiply unit implemented using distributed arithmetic for lower

power. Using 45 nm CMOS predictive development kit, the implementation of the units has been

optimized for 1 V supply voltage (VDD) using 8388 combinatorial cells. An operands register
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file holds 3×3 submatrices of D and corresponding 3×1 subvectors of b. A scheduler selects the

submatrices and respective subvectors in a time slot for the single-cycle matrix-vector product

operation. Vectors are multiplied using distributed arithmetic operations on each bit-wise element

of the data values. This is shown in Fig. 3 where for simpler illustration four-bit signed arithmetic

is used. Note that distributed bitplane arithmetic in the figure obviates power hungry multipliers

and uses cyclic iterations over the bitplane to compute the vector product. In Fig. 3, each 3×1

subvector of Y and 3×3 submatrix of D is a 4-bit two’s complement fixed point fraction in the

Q<4,0,t> format. The final DT ×Y product is read out from the products register file in N/3 time

slots. A similar datapath is used for the matrix-vector product of the N×3 D matrix and the 3×1

r(k) vector in Eq. 3.7.

4.1.2 Low Power Comparator Unit

The max() operator needed in the computation of vector r(n) in Eq. 3.7 is optimized for low power

since it’s a fully combinatorial circuit. Each 16-bit two’s complement element of the 3×1 r(n)

vector is generated as shown in Fig. 4. The E1(n), E2(n), and E3(n) busses are driven by three

bit-parallel subtractors for the difference terms in r(n). The ASIC implementation of the units

is optimized to 255 combinatorial cells, with 7.7 µW of leakage power and 6.8 µW of dynamic

power at 200k kHz processing rate.
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SSL SIMULATION AND IMPLEMENTATION RESULTS

Parts of this chapter have been presented in (Iliev and Trivedi, 2017) and (Iliev and Trivedi,
2019). Copyright c© 2017-2019, IEEE.

5.1 Simulation Results

5.1.1 Functional Simulations

The proposed RNN co-processor for low power self-localization is evaluated using functional

simulations and post-implementation fixed-point Verilog simulations using a benchmark setup

for 3D optical AOA localizations in (Bergen et al., 2018). Using the setup, we observe correct

convergence to spatial coordinates in all cases with varying numbers of anchors. An example of

four anchors is shown in Fig. 5. Verilog simulations follow the trajectory of functional simula-

tions. The coordinate estimates converge to stable values in about 600-time steps. The estimation

error is ∼3.18 cm. Our average localization error also compares favorably with the 3–5 cm av-

erage localization error published in (Bergen et al., 2018), (Arafa et al., 2015) for four anchors

in a one m3 working area. Note that the proposed architecture uses only six measured angles

instead of all eight possible angles and therefore is also a more compact solution for an embedded

implementation.

Histograms of the estimated 3D coordinates under varying Gaussian noise are shown in Fig. 6.

The average Euclidean distance for the error is∼3.1 cm as computed over all simulated test cases.
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Figure 5: The comparison of functional simulations against fixed-point Verilog. Verilog simulations are done in

Q(10,17) format.

The combined error in all three coordinate estimates increases with each increase in measurement

noise power, as shown in Fig. 7(a). Fig. 7(b) shows the localization error against increasing

number of anchors. In one m3 working area all anchors have the same z coordinate. The target is

above the z plane of all anchors. The Gaussian noise for measured AOAs is simulated with unit

degree variance. In Fig. 7(b), error decreases as the number of anchors increases. The figure also

shows that increasing the number of anchors from two to four decreases the localization error by

42%. In (Bergen et al., 2018), authors reported a similar decrease in the error by 30% when the

number of anchors is increased from three to six for AOA based positioning. Fig. 7(c) shows
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Figure 6: Histogram of the estimated coordinates. In each subplot, two thousand samples from the fixed point

Verilog simulations are used.

localization error at various anchor configurations where symmetric square shows the least error

similar to (Bergen et al., 2018).

5.1.2 FPGA Implementation Results

We also implemented the coprocessor using FPGA with the Microsemi (Actel) ProASIC3E A3PE3000

device (180 nm process) and Libero SoC v11.8 toolset. ModelSim Verilog simulations were done

by setting the internal registers with pre-computed values of D, b, c, dt, and setting a max it-

eration limit. A statistical power analysis tool in Libero SoC (SmartPower) was also used to

generate the worst possible switching activity on all inputs and derive the resulting total static

and dynamic power dissipation. The design’s clock gating and resource scheduling for the primal
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Figure 7: (a) Standard deviation of localization error at increasing standard deviation of AOA noise. (b) Average

localization error for thousand runs computed as Euclidean distance from the ground truth at varying number of

anchors. (c) Localization error at various anchor configurations considering four anchors. Results in (a) and (b)

are for configuration C2.

and dual distributed arithmetic datapaths are utilized to minimize power dissipation of the design.

Fig. 8(a) shows the power consumption and the number of mega operations per second per Watt

(MOPS/W) at the varying clock frequency. At the maximum characterization frequency, 24 MHz,
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Figure 8: Power characterization of (a) FPGA and (b) ASIC implementation. FPGA is implemented in 180 nm

technology. ASIC is implemented using 45 nm predictive technology models.

the design consumes 236 mW power and does ∼167 thousand localization operations per second

per Watt. Notably, the required localization performance of typical sensor applications is much

lower (typically hundreds of operations per second). At a moderate clock speed of 200 KHz, the

design consumes 38 mW power and performs eight thousand operations per second per Watt.

5.1.3 PDK45 ASIC Implementation

We have also implemented the proposed coprocessor in 45 nm CMOS predictive technology

models using Cadence RTL Compiler (RC) and Encounter EDI. Clock gating was used in the
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RC tool. Fig. 8(b) summarizes the achieved worst-case power and performance in terms of

MOPS/W at the varying clock frequency. The gate-level netlist from RTL compiler was analyzed

for the worst case power using RTL Compiler’s statistical power analysis tool. The dynamic

power dissipation can be reduced even further if static RAM cells are used instead of register files

for D and the other vectors in the datapaths. Compared to FPGA, ASIC design achieves higher

energy efficiency due to scaled technology and customized computing cells. At the maximum

characterized frequency, 167 MHz, the design consumes 65 mW power. The design achieves a

peak ∼ 7.7 MOPS/W at 5 MHz clock speed.

5.2 Conclusion

This work has proposed a novel micro-architecture for 3D indoor localization which allows a flex-

ible number of anchors to achieve the smallest possible localization error. We enable low power

computations by avoiding matrix inversions using an RNN to map localization computations. We

also use a distributed arithmetic matrix-vector multiplier without look-up tables with dynamic

bit-plane selections of each operand. Our FPGA implementation in 180 nm technology achieves

a peak ∼0.12 MOPS/W, while ASIC implementation in 45 nm technology achieves a peak ∼7.7

MOPS/W.

There are several matrix inversion algorithms used in embedded hardware for solving the pseudo-

inverse problem of overdetermined least-squares (LS) systems [1-3] below. Specifically, we re-

fer to the methods developed for smaller size non-sparse matrices like in our case, unlike those

designed for larger sparse matrices, often used in image processing. We find two competitive

implementation to our case, namely: (i) fixed-point Cholesky Decomposition [1], and (ii) QRD-
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RLS [2]. We qualitatively compare our approach against Cholesky Decomposition-based matrix

inversion. Prior work [1] has discussed fixed-point Cholesky Decomposition for matrix inversion.

In our CMOS 45 nm implementation, RNN-based solver operates at clock frequency of 167 MHz

and requires 600 cycles to converge. Therefore, total computing time for localization is 3.6 s.

Our present solution is for 3D localization using four anchors which is equivalent to 63 matrix

inversion (see Eq. (4a) above). Comparatively, in [1] at Table I, a total of 748 clock cycles are

needed for solving 4 x 4 matrix inversion alone when using fixed-point Cholesky decomposition

method. Therefore, at the same clock frequency, our implementation will incur lower localiza-

tion latency. Note that our implementation also handles a larger matrix size 6 3 than the 4 4 in

[1]. Our method achieves such computational efficiency by only using matrix-vector multiplica-

tion, vector addition/subtraction, and vector comparison (element-by-element greater-than-zero

comparison). Meanwhile, Cholesky decomposition requires matrix-vector multiplication, vector

scaling (element-by-element division by scalar), scalar square root, matrix-matrix multiplication,

and matrix-matrix subtraction. Similarly, in [2], authors have discussed FPGA implementation of

QRD-RLS method. In [2], to invert a 4 4 matrix, generating the upper triangular matrix requires

777 cycles and back substitution requires 156 cycles. Therefore, even as compared to QRD-RLS,

our method is less computationally expensive.

[1] Yan, Mingjian, Brighton Feng, and Tommy Song. “On matrix inversion for LTE MIMO

applications using texas instruments floating point DSP,” IEEE 10th INTERNATIONAL CON-

FERENCE ON SIGNAL PROCESSING PROCEEDINGS. IEEE, 2010. [2] Karkooti, Marjan,

Joseph R. Cavallaro, and Chris Dick. “FPGA implementation of matrix inversion using QRD-
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RLS algorithm,” Asilomar Conference on Signals, Systems, and Computers. 2005. [3] Yang,

Depeng, et al. “An FPGA implementation for solving least square problem,” 2009 17th IEEE

Symposium on Field Programmable Custom Computing Machines. IEEE, 2009. We now present

O ( ) complexity analysis for our RNN – LP architecture in the following., For a N x N matrix D

and Linear system D * x = b where x is the 3 x 1 vector of coordinates.

Our RNN-LP approach needs O ( 2*N2 ) multiplication operations and O ( N ) add, sub, compare-

vs-zero operations. For N = 3, we then have O ( 2*(3)2 ) + O ( 3 ) = 18 + 3 = 21 total operations (

fixed-point mult, add,sub,compare). N=3 and a 3 x 3 D matrix is the core matrix in the hardware

architecture. In summary, our RNN – LP approach takes 21 total operations for a N = 3 matrix

and resulting 3 x 3 linear system.

5.2.1 Comparison to Cholesky decomposition with forward/backward substitution

To solve D * x = b ( N x N system ) , first decompose D to D = L * L then forward/backward

substitution Cholesky takes O ( (N3) / 3) operations to decompose the matrix into L * L format

After L is found , forward substitution takes O ( N2 ) operations. Backward substitution also takes

O ( N2 ) operations. For N = 3, this is O ( ( 33)/3 ) + O ( 9 ) + O ( 9) = 9 + 9 +9 = 27 total

operations, greater than our total of 21 operations.

5.2.2 Comparison to QR (QRD) Decomposition using Householder transformation

To solve D * x = b , we decompose D to D = Q * R This takes O ( N3 ) total operations, using

the Householder transformation. We don’t consider a Givens rotation (transformation) since it



31

typically requires a systolic array architecture, to avoid square-root and division operations. Our

RNN-LP architecture is not based on a systolic array (but can be).

For N = 3, this is O ( 33 ) = 27 total operations, greater than our total of 21 operations.

5.2.3 Comparison wih Adjoint Matrix method for matrix inversion to solving Linear System

We quote complexity analysis results from: “ An Approach to Design a Matrix Inversion Hard-

ware Module using FPGA” G. A. Kumar et al. 2014 IEEE ICCICCT conference. This Adjoint-

Matrix inversion method needs 2*N2 + N multiplications, N2 divisions, and N2 + N + 1 adds/subs

(arithmetic operations). For N = 3, solving a 3 x 3 linear system via the Adjoint-Matrix method

takes 21 mults + 9 divisions + 13 arith ops = 43 ops in total. Again this is larger than our 21

operations.

5.2.4 Comparison with Cayley – Hamilton Method for NxN matrix inversion

The above reference also quotes the Cayley-Hamilton method’s complexity for the N=3 case: For

N=3, Cayley-Hamilton needs 45 mults + 9 divisions + 20 arith ops = 74 ops in total; larger than

our 21 operations.

In the following we also compare our RNN LP architecture to several within-sensor localizer/tracker

implementations of EKF (Extended Kalman Filter), EIF (Extended Information Filter), and SPKS

(Sigma-point, or unscented, Kalman Smoother), all based on CPU and/or GPU processors with

some hardware acceleration for scalar mathematical operations. We’ll cover a particle filter (

within-sensor ) implementation after this section on Kalman-based methods. The main motivation
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for our RNN dual linear-program solver is that it avoids completely any matrix inversions, scalar

divisions, scalar square-root operations, matrix-matrix multiplications, Jacobian matrix computa-

tions, and random variable generation (sampling from PDFs). We therefore have a much lower

hardware complexity for solving the localization problem in 3D then Kalman-based of particle-

filter based methods. We summarize the main differences in computational complexity below:

5.2.5 Comparison with EKF

The work by A. Taparugssanagorn st al. IEEE Computer Society 2013 ” A Hexagonal Coverage

LED-ID Indoor Positioning Based on TDOA with Extended Kalman Filter ” builds an EKF inside

the sensor node, and in addition to one matrix-inversion and 6 matrix-matrix multiplications,

requires two types Jacobian matrix computations: 1 - Ak-1 is the Jacobian matrix of the partial

derivaties of f (target motion law) with respect to R (error covariance of the state ) 2 - Lk is the

Jacobian matrix of the observation function l around the priori state estimate. It is clear that the

complexity of this EKF method for localization exceeds our RNN LP method by a considerable

amount.

5.2.6 Comparison with EIF

A recent EIF work by A. Gasparri et al., IEEE TRANSACTIONS ON MOBILE COMPUT-

ING, VOL. 9, NO. 10, OCTOBER 2010 ” An iterlaced Extended Information Filter for Self-

Localization in Sensor Networks ”, implements an Extended (Kalman) Information Filter inside a

sensor node: as shown in their Tables 8, 9 and 10, this requires multiple matrix inversions, matrix-

matrix multiplications, and matrix-matrix additions/subtractions. In contrast, our method uses
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only matrix-vector multiplication, vector addition/subtraction, and vector comparison (element-

by-element greater-than-zero comparison). This is a total of 3 types of operations. Computing

Cholesky decomposition, for matrix inverse, requires matrix-vector multiplication, vector scaling

(element-by-element division by scalar), scalar square root, and matrix-matrix multiplication and

matrix-matrix subtraction. This is total of 5 types of operations. This further illustrates the lower

complexity of our RNN LP method which does not use matrix inversion.

5.2.7 Comparison with SPKS

The work by A. Paul et al. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESS-

ING, VOL. 3, NO. 5, OCTOBER 2009 ” RSSI-Based Indoor Localization and Tracking Using

Sigma-Point Kalman Smoothers ” The SPKS, a type of unscented Kalman filter, is implemented

as forward and backward filters, followed by a smoothing step in the sensor node; the algo-

rithm’s steps are listed on page 867 - 869 of the reference and include: 6 matrix inversions, 3 x

N square-root operations for sigma-point calculation, when N is the number of iterations, and 11

matrix-matrix multiplications. The complexity of this SPKS method again exceeds our RNN LP

method by a considerable amount.

5.2.8 Comparison with Particle filter

The work by M. Peasegood, Proceedings of the IEEE International Conference on Mechatronics

Automation Niagara Falls, Canada • July 2005 ” Localization of Multiple Robots with Simple

Sensors ”, builds a particle filter localizer in a node (robot) with 800 particles to represent the state

(coordinate) in each direction. The main 3 steps, done at each iteration are: 1 - sampling: basically
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800 random variables have to be generated in hardware, or selected from a previous set of 800

(previous iteration). This requires a hardware random number generator, for a uniform or other

distribution 2 - state update: the state of each particle (800 total) is updated to reflect the motion

of the robots since the last iteration of the algorithm: this is vector-scalar multiplications, and

vector-vector additions/subtractions 3 - Weighting: For each particle (800 total), a weighting is

applied representing the degree of belief in the the position estimate of the particle. The weighting

factor is computed using a scalar divider, and a scalar square-root module.

In conclusion, even though the PF method does not require matrix-inversion and Jacobian ma-

trices, the large number of particles (needed for good approximation of the coordinates posterior

distribution) makes the PF complexity quite high. Our RNN LP method has a lower complexity

since at each iteration it does not have to generate and process large numbers (800 or more) of

random variables for each x, y, z dimension.
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Speaker
Recognition



CHAPTER 6

SPEAKER RECOGNITION INTRODUCTION

This chapter provides an overview of closed (enrolled) set Speaker Recognition based on Gaussian

Mixture Models, GMMs. Edge node (or IoT) devices are proliferating to all aspects of our lives.

As our reliance on IoT devices is increasing, an easier way to interact with the devices is desired.

Since humans communicate using speech, it is only natural to extend speech-based control to

IoT devices. A necessary functionality in IoT devices for this is speaker identification (SI) for

their speech-based control. However, power dissipation of typical SI is high since the number

of computations in SI for even a small database of enrolled speakers are high, which limits SI in

many low power IoTs.

This work addresses the challenge by discussing a novel microarchitecture for SI combining k-

means clustering with Gaussian mixture model (GMM) scoring that reduces hardware complexity,

operates within power constraints of typical IoT devices, and scales to a database of high number

of enrolled speakers. The most recent SI systems, such as i-Vector-based (Campbell et al., 2006),

can only meet a subset of the above constraints and usually require multi-core processors with

large memory size and footprints consuming >10 mW power in normal operation (Ramos et al.,

2013). Adding new speakers in the approaches typically requires rebuilding the classifier, which

makes it difficult to train them in an IoT device. Meanwhile, our approach consumes <2 mW

power in normal operation for twenty speakers (a typical smart home application) and achieves a

36
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Figure 9: SI computations flow: (a) The standard architecture where all N frames of MFCC vectors are processed,

for a total of N×M GMM evaluations. (b) The proposed architecture adds a clustering layer (CL) to map MFCC

frames to k centroids which reduces the total GMM evaluations to atmost k×M.

comparable accuracy to the traditional approaches on TIMIT speech corpus (Reynolds and Rose,

1995).
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Fig. 9 compares our approach against the conventional framework. SI pipeline in our approach

consists of three computing layers: (i) extracting mel-frequency cepstral coefficients (MFCC)

from an incoming audio stream, (ii) online k-means clustering of MFCCs, and (iii) GMM scoring

of cluster centroids to compute the posterior probabilities of speaker models to obtain the pre-

dicted speaker. Note that compared to the conventional framework, mapping MFCC features to

k centroids in our approach reduces the computing effort at the downstream GMM scoring. For

example, to score N speech frames against M speaker models, the conventional approach requires

N ·M GMM scores, while our approach requires k ·M (k� N) GMM scores by compressing the

feature variations to k-dimensions. However, our approach also adds an extra computing layer

(clustering) in SI. Since MFCC extraction and GMM scoring in our approach are the same as the

conventional, in this paper, we focus on the middle (clustering) layer. We discuss an energy ef-

ficient micro-architecture for the clustering layer (CL) applying pipelining and time-multiplexed

operations in 45 nm CMOS technology.



CHAPTER 7

BACKGROUND IN POWER SAVING TECHNIQUES FOR GMM

CLASSIFIERS OF SPEAKERS

Several power saving techniques have been investigated on the original GMM classifier-based SI.

In (Gianelli et al., 2019), look-up table free SI approach was discussed. In (McLaughlin et al.,

1999), the number of speech frames evaluated against speaker GMM models are reduced such

as only every nth frame is scored. Variations of the approach are described in (Pazhayaveetil,

2008) as simple downsampling (SDS) and conditional downsampling (CDS). Unlike simply re-

jecting speech frames, our approach considers all speech frames but minimizes computing load

by reducing their dimensionality by clustering. A variable frame rate (VFR) algorithm is pre-

sented in (McLaughlin et al., 1999). However, real-time determination of similarity between

high-dimensional speech frames is expensive and becomes a bottleneck to power scaling in SI.

Clustering of speakers training set features is also proposed in (Sun et al., 2003); however, batch

clustering is used to prune out GMM models of less likely speakers. In contrast, our approach

directly prunes the incoming MFCC frames and retains all speaker models.

There are CMOS implementations of k-means clustering for image segmentation (pixel cluster-

ing) applications and in real-time clustering of sensor data. We are not aware of a CMOS imple-

mentation of k-means clustering (Lloyd’s algorithm) for speaker identification, which is a novel

contribution of this work.
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7.1 Complexity of online k-Means clustering (Lloyd’s algorithm)

An upper bound of time complexity is O( k*D*N ), where k is number of clusters, D is dimensions

of the data vectors, N is number of data vectors to cluster, (Har-peled and et al, 2005).

In the proposed SpkrRec architecture, the total number of computations, per iteration, is upper-

bounded by O(D*k + 2*D) additions, O(D*k) multiplications, O(k*log(k)) 3-way comparisons,

and O(D) divides where D is dimension of the data vector and k is number of clusters.



CHAPTER 8

SPKRREC DESIGN FEATURES AND PARAMETERS

Parts of this chapter have been presented in (Iliev et al., 2019) and (Gianelli et al., 2019).
Copyright c© 2019, IEEE.

8.1 Online k-Means Clustering Architecture

We employ Lloyd’s on-line k-Means algorithm (Kinnunen et al., 2006) since it only updates one

(closest) centroid at a time instead of all centroids which saves dynamic switching power. Fig.

10 shows a high-level computing flow of the algorithm. For an incoming vector, the algorithm

computes its distance from the current centroids. The centroid with the minimum distance to the

input vector is identified and updated. Subsequently, we discuss the micro-architecture of each

building block in Fig. 10.

8.1.1 Squared Euclidean Distance Computation Unit

The distance computing unit in Fig. 10 computes the distance of the input vector to the current

centroid vectors. Fig. 11 shows our pipelined datapath for computing the distance between input

xt and centroid zi. Each distance value is saved in the output register RD. Our current implemen-

tation uses 6-bit quantization of the MFCC features. Test vectors are stored in the register file

RT . Centroids are stored in the register files RC. The datapath is time-multiplexed in k time-slots

to compute the distance between xt and each of the k centroids. In the pipeline phase 1, parallel

16-bit subtractors compute the difference between xt and the zi for the current time slot. In phase

41
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Figure 11: Datapath for computing the squared Euclidean distance between a new MFCC feature vector xt and all

k centroids zi.

2, a single square unit computes the square of a difference vector element. In phase 3, a single

adder adds the squared difference element to a single accumulator register. A dedicated controller

schedules twelve iterations of phase 2 and phase 3 using 85 internal states in order to process all

twelve elements of MFCC vectors. In phase 4, the final squared Euclidean distance value is sent

to the Nearest Centroid Identification Unit.

8.1.2 Nearest Centroid Identification Unit

This block finds the smallest of k distance values stored in RD in linear time using a systolic sorting

array. The array architecture is shown in Fig. 12(a), and the basic cell architecture is shown in

Fig. 12(b). In our current implementation, the array has k = 40 symmetric processing elements.

Data elements are received serially by the array, i.e., one per clock cycle. Data elements are sorted
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Figure 12: (a) Systolic array for sorting a serial input stream of M words in M clock cycles. (b) Processing cell in

the array.

in parallel, while the next element is clocked in. After the kth element has been clocked in, the

array is already sorted with the smallest value at the top ready to be clocked out. A synchronous

pipeline design is used in order to avoid switching activity of hierarchical trees of combinatorial

comparators. The cluster index corresponding to the smallest distance Dmin is also registered.

Only the centroid corresponding to the smallest distance value is updated in the following update

unit.
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8.1.3 Centroid Update Unit

The main processing blocks are shown in Fig. 13(a) to implement the centroid update equation

in Fig. 10. CNT BLK is a counter block with k counters, one counter per cluster to keep track of

the number of MFCC frames in the cluster. DEC RD RC is a decoder of INDEX CLUST ER (the

winning centroid index produced by the Nearest Centroid Identification Unit) and also performs

the readback of the corresponding centroid from the register file RC. SUB is a block with twelve

parallel subtractors for finding the difference between the twelve element 16-bit centroid and the

incoming MFCC frame. SER DIV is a serial divider block, used twelve times to divide each of

the twelve output elements from SUB with the current value from CNT BLK. ACCUM is a 16-

bit accumulator to add the new updated value from SER DIV to the centroid’s previous element

value. A dedicated controller schedules twelve iterations of SER DIV and ACCUM to update all

twelve elements of the selected centroid from RC. After the update is complete, the new centroid

is written back into RC. The bit-serial divider architecture is shown in Fig. 13(b).

Notably, k-means is an unsupervised algorithm that groups a dataset into a user-specified number

(K) of clusters. To determine the optimal K, we vary K over a range from 10 to 50 , ie. the ”elbow

method”, and for each case plot the sum of squared error (SSE) estimated using the Euclidean

distances between centroid estimate and data points. The plot typically looks like an arm, and the

”elbow” is the value of K that is best, with diminishing SSE returns for any further increase in

K. In our implementation, we have done off-line ”elbow” analysis to determine that K=30,40,50

will produce small SSE for the sets of speakers we consider. The hardware is given one of these

K values and then has to update (iterate for each test frame) the estimates of the K centroids. An
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Figure 13: (a) Centroid update unit for updating only the winning centroid. (b) Bit-serial divider for dividing an

element from SUB by the current value from CNT BLK. Only the quotient is used in the downstream processing.

example of these updates, for centroids 1 and 4 , is shown in Fig. 14(a). Using the ”elbow” plot,

the optimal K is determined. Our current approach to determine the optimal number of cluster

only considers the accuracy. In future research, we will expand the approach to consider energy

constraints for the hardware in addition to accuracy constraints.



CHAPTER 9

SPKRREC SIMULATION AND IMPLEMENTATION RESULTS

Parts of this chapter have been presented in (Iliev et al., 2019) and (Gianelli et al., 2019).
Copyright c© 2019, IEEE.

9.1 Simulation Setup

The speaker identification microarchitecture described in this paper was evaluated on TIMIT cor-

pus (Garofolo et al., 1990). MATLAB GMM models were trained using SI and SX database for 38

speakers with 1344 utterances from their SA1 and SA2 sentences. MATLAB model of the MFCC

clustering and the following GMM maximum-likelihood classifier was developed using the train-

ing data set and was the reference model for the fixed-point Verilog implementation. ModelSim

was used for Verilog simulations of CL. The CL stimulus was collected from functional simu-

lations which generated 500 MFCC test frames from each test speaker. In real-time test mode,

we want to keep K as small as possible to reduce the amount of time for cluster building. The

accuracy of the proposed method is sensitive to the number of clusters (K) chosen for a given

number of speakers. In Fig. 15(a), we used TIMIT-based simulations to determine the optimal K

for a fixed N, by varying K from 10 to 50. The results show that for K above 30 produce success

rate more than 90%, and for K lower than 10, the accuracy is below 80%.

We implemented the CL design with the NCSU PDK 45 nm standard cell library and the Cadence

EDI tool flow. One MHz processing clock was used for the synthesis constraint resulting in a

netlist of 75741 standard cells. Switching activity for dynamic power analysis was obtained from
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Figure 14: (a) Convergence of the cumulative error for centroids 1 and 4. Note that the residual value of 20 is

reached after 35 frames (iterations) for centroid 1 and after 54 frames for centroid 4. Different centroid estimates

converge to their residual values for a different number of frames. (b) Evolution of posterior log-probabilities of

38 test speakers.

ModelSim simulations. The proposed design dissipates 0.637 mW (not including register files)

when estimating forty centroids from a speaker’s 500 MFCC test frames. Total power dissipation

is 1.6 mW if the register files are included. This can be reduced significantly if SRAM modules

are used for storage.
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9.2 Functionality Characterization

We have simulated in fixed-point Verilog forty centroid estimates, over 500 MFCC test frames for

each test speaker, and compared them to their floating-point values as computed by MATLAB-

based clustering function. Fig. 14(a) shows an example for centroids 1 and 4 with the cumula-

tive error for all twelve elements of each vector. The error is defined as the difference between

MATLAB-based value and the final (after the 500th frame) value from the Verilog simulation.

The error is also normalized so that the largest value between fixed-point and floating-point rep-

resentations is hundred. As can be seen from the figure, a small residual error of 20% remains

for these two centroid estimates. The residual error is also less than 20% for the remaining cen-

troid estimates. Convergence is detected by using a Cluster Threshold register (user writable),

one for each cluster; if the cumulative error remains below the threshold, further iterations for the

cluster’s centroid will be ended.

Fig. 14(b) shows the simulated evolution of the posterior log-probabilities of 38 test speakers

when scored for different numbers of fixed-point centroids. The red trace in the figure shows

the winning (most-likely) speaker and the black traces are the remaining speakers. After CL,

GMM-based SI is simulated functionally using MATLAB.

9.3 Energy Efficiency Characterization

Fig. 15(a) shows the simulated recognition success rate for different numbers of test speakers

and centroids estimated in each speaker’s test frames. As can be seen from the figure, the more

speakers we add to the system, the more centroids are needed to maintain a desirable success
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Figure 15: (a) Success rate vs. number of speakers and number of centroids per speaker - 10 speakers (blue)

20(green) 38(black). (b) Reductions in number of operations: blue for GMM scoring with non-clustered frames;

orange for the proposed GMM scoring with forty centroids.

rate, eg. over 92%. However, the number of necessary centroids is still far less than total number

of speech frames (5000 for ∼5s speech test). Note that for 20 centroids, the set of 38 speakers

achieves 82 % success rate, while the sets of 20 and 10 speakers achieve 85 % or higher suc-

cess rates. Therefore, to achieve higher success rate for high number of speakers requires more

centroids. Currently, the results are shown at coarsely varying number of centroids (K). Future

research will explore this aspect in more detail and study the optimal dependence of K to the
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number of speakers. In Fig. 15(a), each point in the blue (10 speakers), green (20 speakers),

and black (38 speakers) traces was computed with 500 updates of the centroid estimates. If more

updates are used, the centroid estimation can be more accurate, resulting in better success rates;

however, energy consumption also increases. Therefore, considering the low power constraints in

our design, we limit the number of updates to 500 in our analysis. In our current methodology,

we vary the number of centroids (K) from 10 to 50 and plot the sum of squared error at varying

K. In our future work, we will explore an algorithm to automatically predict the optimal K and

number of updates given the SI parameters.

More centroids in our SI approach also incur more energy consumption. To balance energy con-

sumption and SI accuracy, we configured CL for 30 centroids for 10 and 20 speaker sets, and

for 40 centroids for a 38 speaker set. The success rate for 10 and 20 speakers starts to decrease

when the number of centroids exceeds 30. This indicates that the centroid estimates, for 10 and

20 speakers, were biased after 500 iterations, but still provided at least 90% success rate. The

biasing of the centroid estimates can occur since k-means clustering is known to be sensitive to

outliers in the data.

The success rate for 10 and 20 speakers starts to decrease when the number of centroids exceeds

30. This indicates that the centroid estimates, for 10 and 20 speakers, were biased after 500

iterations (frames), but still provided at least 90 % success rate for these two sets of speakers.

The biasing of the centroid estimates can occur since k-means clustering is known to be sensitive

to outliers in the data. In our approach we avoid this case by configuring the CL hardware to

30 centroids for the 10 and 20 speaker sets. Such instability of the centroid estimates typically
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results when the dataset is not naturally separable into K clusters but we are attempting to find

K clusters in the dataset. For large K, k-means clustering can be sensitive to outliers in the data

and biased centroids can result. Lloyd’s clustering as well as Ward clustering and cosine-PLDA

clustering can exhibit this; see Fig. 3 in “Hierarchical speaker clustering methods for the NIST

i-vector Challenge” by E. Khoury et a. where Ward and cosine-PLDA clustering shows increasing

success rate (decreasing FRR error rate) for 101000 to 161000 clusters; then shows decreasing

success rate from 161000 to 301000 clusters.

In Fig. 15(b), the reduction in the number of multiplications, additions, 3-way comparisons,

and table lookups (GMM log and exp processing) in our approach are due to the much smaller

number of frames (only centroids). The division operation is unique to the CL, and we discuss its

overheads subsequently.

Fig. 16(a) shows the dissipated energy in mJ as the number of test speakers grows for the standard

GMM approach (blue trace) vs. our centroid-based approach (red trace). The standard approach

consumes T ·N ·M ·PGMM energy, where T is 10 msec frame duration; N is the total number of

frames, 500 in our case; M is the number of speaker models; and PGMM is the total power for

scoring a GMM model. We use power dissipation value of 1.24 mW per MFCC vector element

from (Kai, 2009) for a CMOS 65 nm implementation which we normalize for CMOS 45 nm used

in our implementation to estimate the power of MFCC and GMM scoring units. Our k centroid-

based approach reduces GMM scoring power to T ·K ·M ·PGMM where k�N. It adds a negligible

overhead of T ·N ·PC of dissipated energy for estimating the k centroids from N frames. PC is

the power of the proposed centroid estimator architecture and is 0.637 mW as extracted from
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Figure 16: (a) Energy dissipation vs. number of speakers. Blue trace is scoring all 500 MFCC test frames with all

GMM models. Red trace is scoring forty centroids with all GMM models. (b) Breakdown of power dissipation

for the centroid estimator architecture.

our implementation. Therefore, we observe a 6 fold (from 8569 to 1462.2 mJ) decrease in the

dissipated energy for classifying among ten speakers. Fig. 16(b) shows the breakdown of power

dissipation for each major block in the proposed architecture.

9.4 Comparison to alternative frame reduction approaches

In Fig. 17, we compare our implementation to an alternate LBG k-means implementation for

frame reduction and to fixed rate frame skipping as described in (Kinnunen et al., 2006). The data

in Fig. 7 in (Kinnunen et al., 2006) is reproduced in the figure. We focus on the decimation and
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clustering-based methods since averaging and random-subsampling have not shown acceptable

performance with the TIMIT corpus of speaker data as shown in (Kinnunen et al., 2006). In

the frame-skipping approach, extending frame skipping to greater skipping frequency results in

even worse error rate (Woszczyna, 1998). The LBG clustering method proposed by (Kinnunen

et al., 2006) also prunes speakers with low probabilities and therefore achieves a slightly better

performance than frame-skipping after running for more than 50 ms. Similar to (Kinnunen et

al., 2006), a non-monotonic decrease in the error rate is observed in Fig. 17 due to randomness

of MFCC features. Some MFCC features are “outliers,” much farther away from the cluster’s

centroid; therefore, updates based on the features shows non-monotonicity in error trends. As

can be seen from Fig. 17, our method provides the best error rate at the smaller test lengths by

considering all speech frames but only lowering their dimension by online clustering. Thus, our

approach can further minimize SI energy by only considering a smaller spoken segment.

9.5 CONCLUSION

We have discussed a novel low-power architecture for SI by combining k-means clustering and

GMM scoring of the cluster centroids. To minimize overhead of the additional CL for SI, we have

discussed novel Euclidean distance computing and online centroid updating low-power micro-

architectures. Our implementation has achieved a 6× decrease in total dissipated energy for

classifying among ten speakers with an integrated GMM-centroid scoring system.
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Fully Connected
Layers in DNN



CHAPTER 10

INTRODUCTION TO ACCELERATION OF FULLY CONNECTED LAYERS

An important problem in real-time integrated hardware-software implementations of devices at

the edge of the cloud is low-latency evaluation (inference) of fully connected (FC) layers for

neural-network processing performed within the device. Example applications include deep CNN

processing such as AlexNet or VGG-16, where a typical FC layer such as FC8 has 4096 input fea-

tures and 1000 output neuron activations. Another application is bounding-box object localiza-

tion in an image using reinforcement learning for training and a Q-Network for inferencing with

several FC layers. Typical commercial neural network hardware accelerators, such as Intel’s Mo-

vidius and Google’s TPU dedicate specific micro-instructions and micro-architectural processing

resources for FC layer evaluation. GPUs and multi-core SoCs rely on software implementations

of FC layers and are therefore limited in the amount of parallelism that can be exploited from

the FC layer’s structure. ASIC and FPGA based FC implementations, as accelerators for GPU

and/or SoC, allow the greatest amount of parallelism in FC implementations and is our proposed

approach. FC layer evaluation is usually a dense matrix-vector multiplication problem of consid-

erable size and a very large number of weights, in the 1 million to 100 million range. External

DRAMs are typically used for weights storage and therefore DRAM read accesses are the major

contributor to FC evaluation latency (limited DRAM bandwidth) and to power consumption for

each inference pass (Sze and et al, 2017). This is one area for improvement in FC evaluation. We
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solve the bandwidth problem by using High Bandwith Memory, HBM, as shown in the following

chapters. As an example, AlexNet has an FC8 layer with 4096 input neurons and 1000 outputs,

which is similar to the FC8 layer in VGG-16 with 4 million weights. An HBM2 (Flashbolt from

Samsung) can easily store all the weights in its 16 GB of paged banks. It has been shown (Sze and

et al, 2017) that dense FC layer evaluation is a major contributor to latency during CNN and DNN

inferencing, when compared to the initial sparse convolutional layers. Therefore recent research

has focused on hardware acceleration of FC layers in particular. Fig. 18 shows such an FC layer

which is the focus of our work.

The evaluation of the FC layer in the figure, for one vector of input features, is formulated as a

matrix-vector multiplication problem as shown in Fig. 19 .

Hardware acceleration of DNNs has typically focused on both convolutional (CONV) and FC

layers. This imposes some restrictions on the micro-architecture which has to handle both sparse

CONV specific kernels, as well as dense, weights based FC layers. Yuran et al. (Yuran and et al,

2017) accelerate FC and CONV layers with a common processing element (PE) which is based

on a matrix multiplier. Convolutions are unrolled to matrix multiplications for the PEs to process.

The same PEs have to acccelerate the FC layers as well which can create a resource contention

problem. Our solution differs from this approach since we have PEs dedicated to the FC layers

only, and the sizes of the FC weights tiles (sub-matrices) are not dictated by CONV kernel and

loop-unrolling considerations. Instead our PEs are optimized to reduce latency processing of the

FC layer and minimize number of passes to process the entire FC layer. Jiantao et al. (Jiantao and

et al, 2016) propose to compress the FC layer weights by using Singular Value Decomposition
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(SVD) This approach may not always work since SVD may not exist or be numerically stable for

some large FC weights matrices. In his implementation PEs are shared for CONV and FC pro-

cessing and are not optimized for FC layers specifically as in our proposed FC-Accel architecture.

Ning et al. (Ning and et al, 2016) present a global summation architecture to completely replace

the matarix multiplications in the FC layers. A mathematical identity replaces multiplications

with accumulators for each feature map. This places a large hardware resource requirement for

FC layers with large feature maps; only small image sizes of 32x32 have been processed with the

global summation method. In contrast, our FC-Accel can handle FC 25088-4096 feature layers

in VGG16. (Huimin and et al, 2016) propose an accelerator PE for both CONV and FC layers,

with a batch-based computing method for the FC layers only. This differs from FC-Accel which

operated on the entire FC layer (all feature maps) and uses tiles (batches) only for the weights

matrix. Their solution also has to apply two different computing patterns on FC layers which is

not needed in our approach: FC-Accel uses the same computing pattern for all FC layers. (Li,

2018) proposes a PE architecture for matrix-vector multiplication in FC layers. An entire row

of weights is fetched from off-chip memory for the PEs to process. FC-Accel fetches only tiles

(sub-matrices) of weights from a given column for all PEs to process and processes all rows simul-

taneously, column by column. The recent NVIDIA Volta GV100 architecture (NVIDIA, 2018)

uses Tensor Cores for matrix arithmetic. HBMs (JEDEC, 2020) are used for weights and data

storage. Each Tensor Core can complete 64 floating point mixed-precision operations per clock.

FC-Accel computes 128 16-bit fixed point operations per clock. The CNAPS ASIC (Hammer-

strom, 1990) has a SIMD architecture with an array of 16x8 scalar multipliers for matrix-vector
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multiplication, MVM, while FC-Accel uses 8x8 or 16x16 arrays of scalar multiplier for MVM.

The DianNao series of ASICs (Chen and et al, 2014) implement an array of 64 16-bit integer

MACs. FC-Accel uses 128 16-bit fixed-point MACs instead. The DaDianNao and ShiDianNao

ASICs (Du and et al, 2015) store all weights on chip (eDRAM or SRAM) while FC-Accel uses

on-chip HBMs with silicon interposers for storing weights for all FC layers and input features

to these layers. Google’s recently announced Edge Tensor Processing Unit, Edge TPU, (Google,

2020) uses up to 65536 8-bit MAC units which limits forward inference to 8-bit precision. HBM

is also used for weights and features storage. By contrast, FC-Accel maintains 16-bit fixed point

precision in forward inference passes. The recently described EIE ASIC (Han and et al, 2016)

accelerates both CONV and FC layers by using compression to derive a compressed network

model. The resulting matrix-vector multiplications are of smaller dimensions however an 800

MHz processing clock is needed to achieve 102 GOPS for FC8 layer processing. In comparison,

the proposed FC-Accel needs an 662 MHz clock for FC8 processing and achieves 1048 GOPS

without using compression. This performance improves on the Tetris DNN accelerator which

also uses 3D memory (Hybrid Memory Cube, HMC, similar to HBM) (Gao and et al, 2017). The

published Tetris performance for 16 3D engines (14 x 14 PEs) and 16 HMC vaults is 16*39.2

GOPS = 627.2 GOPS. which is 40.15 % less than FC-Accel’s performance.
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Figure 18: Fully Connected FC8 layer in AlexNet or VGG-16: 4096 input and 1000 outputs. Groups of 8 are

indicated in the input and output vectors respectively.
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Figure 19: The equivalent matrix-vector multiplication for the FC layer in Fig. 1. The weights are grouped in 8x8

sub-matrices (tiles) W1, W2, etc. Each column of sub-matrices is mapped, during its time-slot, to a set of 128

MACs and 128 PEs. This is the columnwise block(tile) decomposition used in FC-Accel. The same set of MACs

and PEs is reused for all 512 time-slots during processing.



CHAPTER 11

BACKGROUND ON FULLY CONNECTED LAYERS IN CNNS

A typical CNN consists of several types of layers as shown in Fig. 20. Each CONV layer pro-

cesses 2D input features with 2D convolutional kernels and produces stacks (in the 3rd vertical

dimension) of 2D output feature maps. Each CONV layer is followed by a pooling or downsam-

pling layer. The function of the downsampling layer is to reduce the spatial size of its input to

a smaller size. As shown in the figure the last downsampling layer, S4, is followed by a fully

connected, FC F5-F6 layer which receives a 1D vector of 120 scalar values (features) generated

by the last downsampling layer S4. The FC layer’s input is F5 with 120 inputs. The FC layer’s

output is F6 with 10 output features. The number of weights in the FC F5-F6 layer is 1200 = 120

* 10. The output features are then mapped to a set of 10 output classes. This can be done in a

variety of ways, for example using a SoftMax activation function which is not shown. Notice that

processing 1200 16-bit fixed-point multiplications can incur a FC processing latency which grows

with the FC layer size: as we will see later, some FC layers in large CNNs can have between 4

million to 103 million fixed-point multiplications. These multiplications can have few zero terms

and are non-sparse or dense. The resulting processing latency for all FC layers can be very large,

especially if it is all done in software.

The output yl for a fully connected layer l is mathematically represented as shown in the equation
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Figure 20: Fully Connected layer FC F5-F6 in a typical CNN. F5 is a 1D vector of 120 input scalar features and

F6 is a 1D vector of 10 output scalar features.

yl = s(yl−1 ∗W l +bl) (11.1)

where, Wl and bl are the weights and the bias vectors of the layer l, and s is the activation function

used. (Alecci, 2017) .

Notice that a weight for a single connection between an F5 input and an F6 output is not shared

(reused) with any other connection. This is unlike convolutional layers, where weights (param-

eters) can be shared accross several input and output connections. Because of non-sharing of

weights, FC layers require substantial storage memories for all their weights and lots of train-

ing data and training time for the off-line learning of these FC weights. In addition, low latency

weights read out from the large memories requires high bandwidth and 3D stacks of DRAMs such

as wide-IO, HBM, and HMC memory, has been specifically developed to address this high band-
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width requirement. In the following chapters on FC-Accel we show our HBM-based architecture

for overall latency reduction of FC processing.

Pooling layers don’t have weigths to be learned during training. They consists of filters that slide,

with a preset stride value, across its input layer and a reduction operator such as max or average.

Recent developments of 3D stacks of SDRAMs (synchronous DRAMs also refered to as DRAMs

below) include wide-IO memory, High Bandwidth Memory (HBM), and Hybrid Memory Cube

(HMC) memory. They all improve on the basic DD4 SDRAM limitation of a 64 bit physical bus

width. Wide-IO is targeted at smartphones, and has a maximum physical bus width of 512 bits,

starting at 128 bits. HBM is targeted at high performance graphics engines (GPUs) and general

purpose computing. It has a maximum physical bus width of 1024 bits in one stack, or 4096 bit

bus width in four stacks. It’s also a recent JESD235 standard, with HBM2,HBM3, and HBM4 as

latest standard editions, each one reducing power consumption from the initial 3.2 W (HBM1) of

power consumption with a 500 MHz bus clock. HMC is targeted at high-end servers in the cloud

and has been adopted by Intel and Micron for their high-end server chipsets. It uses high-speed

serial data links in order to implement bus widths of 4096 bits or more and uses parallel-to-serial

and serial-to-parallel converters on both ends.

Fig. 21 shows 8 DRAM stacks, each providing a 128 bit physical write/read bus interface. The

combined bus width is 1024 bits as shown on the Silicon interposer layer. The combined bus

speed can be 500MHz. The JESD235C HBM standard does not show a physical bus of 1024

bits but 8 128-bit transactions over a 128 bit bus. User logic, such as our DPR FIFO BUF block

described later (part of each PE), has to assemble 1024 bits from the 8 128-bit transcations. The
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Figure 21: HBM 3D SDRAM memory stack technology (left) and GPU or general purpose (FC Accelerator

instead of GPU) application (right).

block can be implemented in the silicon interposer layer, or in the PE (GPU replaced by PE in the

diagram).

We have chosen HBM memory for our FC layer accelerator since it can be integrated with the

3D/2D localization (SSL-Accel) and speaker recognition (SpkrRec-Accel) accelerators in one

mobile robotic platform. A smartphone form factor does not support the mobile robotic require-

ment, for example it does not have a robotic arm. Further integration between the 3 accelerators

can allocate unused memory in the HBM stacks between the accelerators, as required, and under

the supervision of the real-time OS memory manager.
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The matrix-vector multiplication problem for very large matrices has been the subject of intensive

research since the advent of parallel multi-core processing systems and parallel programming

techniques for them, see (Quinn, 2004). Sequential (non-parallel) matrix-vector multiplication (2

nested loops) has a time complexity of :

O(m∗n) (11.2)

for multiplication of mxn matrix and nx1 vector. The number of scalar multiplications and addi-

tions is

O(m∗2(n−1)) (11.3)

To improve on this, parallel matrix-vector multiplication decomposes matrix m using three types

of decompositions (Quinn, 2004):

- rowwise matrix decomposition (or rowwise block striped decomposition)

- columnwise matrix decomposition (or columnwise block striped decomposition)

- checkerboard matrix decomposition (or checkerboard block decomposition)
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In each case the decompostion generates sub-matrices of smaller dimensions which are then

mapped to processing tasks, or processing units (PUs). A communications network is assumed

between all PUs, and message-based communication protocols are required such as all-gather,

all-to-all, and 2D grid collective communications.

We have chosen columnwise matrix decomposition (or colum of tiles (blocks) decomposition)

for the proposed FC-Accel architecure due to its high performance as shown in (Quinn, 2004). It

also has a simple communications protocol which is easy to implement with a 1D array of HBM

memories mapped to a 1D array of processing elements (PEs).

A lower bound on the execution time is

T p(calc) = [n∗ (2∗ ceil(n/p)–1)+n]∗d + comms−T (11.4)

where d is the execution time of a basic scalar operation (multiplication or addition)p and p is

m/t PEs. comms-T is time for communications between PEs to exchange input data, weights,

and status message exchanges between PEs; we don’t status messages in FC-Accel, and can set

comms-T to 1 cycle for HBM read out and 1 cycle for partial result accumulation in a PE. In the

following we will expand on the implementation of column of tiles decomposition of the weights

matrix m.
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DESIGN FEATURES AND PARAMETERS OF FC-ACCEL

FC-Accel solves the DDR4 SDRAM’s limited (64-bits) bandwidth constraint by storing all FC

layer weights in Hight Bandwidth Memory (HBM, see JESD235A/B/C standard (JEDEC, 2020) )

in order to maximize the memory bandwidth of each read-out access from the weights memories.

In this first design exploration study, we consider 128 HBMs driving 128 PEs (1D array of PEs).

The HBM read-out bus is 128 bits wide which allows the read out of 64 16-bit weights for each

PE’s matrix multiplier in two read requests (two column addresses) resulting in 8 128-bit bus

cycles, using the BL4 mode of the memory. The timing is shown in Fig. 23. Fig. 22 shows a

high-level view of the proposed architecture. It implements a column of tiles decomposition of

the original weights matrix. The 128 HBMs connect to each PE’s data-prefetch and on-chip buffer

unit, DPR-BUF. This unit schedules a stream of two reads to two sequential column addresses so

that a stream of 8 128-bit read bus cycles is generated. The read-out data for each set of 8 128-bit

cycles is stored in 8 FIFOs inside DPR-BUF, one FIFO per Da or Db sequential transaction in

Fig. 23. The FIFOs match the HMB bus rate, 500MHz (typical rate for GPU applications), to

the PE’s 662MHz processing clock rate. In a following section we show our pipelined PE design

which runs at 662 MHz. For this choice of clock rates, a FIFO depth of 5 is sufficient. The 8

FIFOs in DPR-BUF then drive a 1024 bit on-chip buffer in DPR-BUF. This on-chip buffer is then

transfered to its PE in 1 cycle. The 128 PEs are reused in each of the 512 time slots which map
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to the 512 columns of Fig 19. The weights matrix in Fig 19 is broken up in 8x8 tiles of weights,

which dictates the 8x8 PE design as well as the DPR-BUF’s 1024 read-out on-chip buffer from

the PE’s HBM. Accordingly the input data is divided up into tiles of 8 elements each. Input data

is stored in an HBM IN and is read out in 1 clock cycle, overlapped with the read-out cycle from

weights memories HBM1 to HBM128. Other tile sizes, multiples of 8x8, are therefore possible

for example 512 columns and 512 rows (square matrix in Fig 19 ) or 4096 inputs and 4096 outputs

(FC7 in AlexNet and VGG16), 25088 inputs and 4096 outputs (FC6 in VGG16) and so on. The

following sections detail the micro-architecture of each PE sub-block.

In this first design exploration study with a 1D array of 128 PEs, our choice of an HBM dedicated

to each row of PEs avoids the need for complex 2D mesh routing and newtork-on-chip, NoC,

hardware required to implement the routing infrastructure, as described in (Kim et al., 2016).

Notice that off-line training may produce several sets of weights (for several training optimality

criteria) which can be stored in different pages in each HBM. During real time operation, between

inferencing passes, a new page may be selected in some or in all HBMs and the FC layer will use

a new set of weights for the next inference pass. Therefore HBM-based weights storage allows

dynamic (real-time) weights selection between inference passes.

12.1 HBM Data-Prefetch Unit and On-chip Buffer, DPR-BUF

The weights tiles stored in an HBM contain a set of 64 16-bit two’s complement values for a

specific 8x8 matrix-vector multiplier (MV-mult). The scheduler has to drive all inputs of the MV-

mult in one clock cycle during its scheduled time slot. The MV-mult inputs include 8 16-bit two’s
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Figure 22: High level architecture block diagram. Each HBM has a dedicated data-pre-fetch and on-chip buffer

unit, DPR-BUF, with 8 rate matching FIFOs. An HBM’s DPR-BUF ensures that 1024 bits of weights, stored

in the on-chip buffer, are aligned for a single cycle read by the PE. Input and output memories have dedicated

address generators. One top-level controller schedules the data flow in all 128 PE channels.

complement values of input features from HBM IN (1 cycle 128 bits read out from HBM IN) as

well as 64 16-bit weight values, which form a 1024 bit parallel bus of weights to the MV-mult.

The DPR-BUF ensures that this 1024 bit bus is driven by 8 128-bit bus outputs of each HBM
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as shown by 4 Da and 4 Db transactions in Fig.23. Note that an HBM’s 8 DRAMs make up a

stack and each DQ[127:0] output of a DRAM contributes to a portion of the DPR-BUF’s 1024-bit

on-chip buffer after being rate-matched by its FIFO. Two clock domains, a 500MHz wr clk (write

into FIFO), and a 662 MHz rd clk (read from FIFO), are used in the DPR-BUF. This matches the

HBM’s 500MHz DQ[127:0] bus to the 662 MHz clock domain used in the pipeliend PEs and up

to the ReLU’s output FIFO write port.

Fig. 23 is from the JESD235C HBM2 standard and shows how 1024 bits can be read out with two

read requests, using burst length of 4, BL4, with R=6 to two column addresses in the same bank.

The two read requests generate 8 128-bit transactions on the DQ[127:0] bus which is sampled

by the DPR-BUF. Following the main controller’s sequence, the DPR-BUF initiates two read

accesses to all HBMs during cycles T0 to T9 overlapped with a read access to the Input features

memory HBM IN for the next input value in order for them to align at the MV-mult interface.

This is shown in the following Fig. 24 .

The 8 128-bit read out cycles, in the 500 MHz clock domain, from an weights HBM (in BL4

mode) fill up its DPR-BUF’s 1024-bit buffer. In the 662 MHz clock domain, the 1024 bit buffer

is read in 1 cycle, Rd, overlapped with read out of the input from HBM-IN. The following 3 662

MHz cycles are processing cycles P1, P2, P3. If not empty, the FIFO is then read in the next Rd

cycle and so on. In the 500 Mhz domain, the HBM is read in cycles m1 to m8. After each mx

cycle, the FIFO is written in its corresponding wrx cycles. This is shown in Fig. 25. Note that

cycle m8 is followed by cycle sw, to allow for HBM bank switching if the two read commands

map to different banks. The main control sequence can allow for more sw cycles if needed.
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Figure 23: Read access timing from JESD235C. The access starts with the first read request to column address Ca.

After R T-cycles (T0 to T6 for R=6 example) a burst of 4 128-bit words, Da to Da+3, is available on DQ[127:0].

Similarly, the second read request to column address Cb generates a burst of 4 128-bit words, Db to Db+3. The

DPR-BUF combines the 8 128-bit words and writes them into 8 corresponding FIFOs. The 8 FIFOs are then read

into the 1024 bit on-chip buffer.

12.2 Matrix-Vector Multiplier Unit

Each PE contains a dedicated 8x8 MV-mult for fixed-point data in the Q(17,10) format. The

choice of an 8x8 tile in the weights matrix in Fig. 19 determines the size of the MV-mult as well

as the number of HBMs and PEs in the system. We use 8x8 tiles of weights as an example im-

plementation and other sizes are possible in the proposed architecture as well. MV-mult contains
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Figure 24: Data prefetcher and on-chip buffer for HBM read accesses. One HBM is shown driving weights to its

PE. The main contoller issues two read requests to column addresses Ca and Cb. Each request generates a burst

of 4 128 bit transactions on DQ. The pefetcher write 8 128 bit DQ values into 8 corresponding FIFOs. A read

request is then issued to all FIFOs, and their output is stored in a single 1024 bit register. This aligns the weights

read-out cycle with the HBM-IN read out of the next 8 16-bit input feature values.

an array of 64 scalar multipliers where both operands have the same bit width in the Q(17,10)

format. Each product is also truncated and rounded to fit into Q(17,10). The selection of 17 bits

from the total of 34 bits (before truncation) is configurable and can be decided by the dynamic
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Figure 25: DPR-BUF HBM memory read out cycles m1 to m8 in the 500MHz domain and FIFO write cycles wr1

to wr8. FIFO read cycle Rd and PE processing cycles P1 to P3 are in the 662 MHz domain. The FIFO is read

every 4th cycle.

range of the FC layer from offline calibration. A two-stage pipeline is implemented by a dedi-

cated register at the output of each scalar multiplier. Note that a different 7 stage pipeline is used

to break up the adder tree, as described below in a section on a pipelined PE design. An adder tree

of seven Q(17,10) adders sums all partial products for each of the 8 rows. A zero-detector is used

for each operand to gate off switching within the module when one or both operands are zero.

The output 8x1 vector of products is available in 1 100 MHz clock cycle in an ASIC PDK 45 nm

implementation. Fig. 26 shows the details of MV-mult. Note that for the pipelined PE described

later, the critical path in the seven adder tree is reduced to 1.51 nsec using a seven stage pipeline.

This allowed us to run the pipelined design of a PE at 662 MHz and increase the max throughput

of the accelerator considerably.
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Figure 26: MV-mult micro-architecture for 8x8 tile of weights.

12.3 Vector Accumulator Unit

Each PE in Fig. 22 has an 8x1 vector accumulation unit (V-Accum) for adding up the partial

products generated during each of the 512 time-slots. A V-Accum maps to each 8x1 row of the

weights matrix in Fig. 19 ; for example V-Accum-1 to o1-o8, V-Accum-2 to o9-o16 and so on.

Each V-Accum receives the prod-1 to prod-8 outputs from its upstream MV-mult. A new partial

product is accumulated in 1 clock cycle. Fig. 27 shows the details of V-Accum.
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Figure 27: Vector accumulator V-Accum datapath.

12.4 ReLU and Bias Addition Unit

The activation function we use is a rectified linear unit (ReLU) which introduces the max() non-

linearity as out = max( in, 0). A set of bias vectors can be added to each PE output as shown in Fig.

22. Each bias vector, biasN...biasN+7, has 8 Q(17,10) elements which are added with 8 adders

to the corresponding PE output vector elements oN.. oN+7. The outputs of each adder are then

compared with 0. The combined addition and comparison are done in one clock cycle. Note that

this is done only after the 512th (last) time-slot as indicated by the t512 en signal in Fig. 22. Each
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Figure 28: Main controller sequence. All 128 PEs are processing a new 8x1 feature vector from In-MEM in each

state ST1 ... ST512. In each state an 8x8 tile of weights is read from the HBM corresponding to each PE.

element is then written into an output FIFO for streaming to the Output Feature Memory. A 2kB

16-bit wide SRAM memory is used for storing the output features. The output FIFO’s write clock

is 100 MHz (non-pipelined PE) and 662 MHz (pipelined PE), the output FIFO’s read clock is 150

MHz, and it implements rate matching to the Output Feature Memory. A FIFO depth of 774 16

bit words, or approximately 2 kB is required for this choice of write/read clock frequencies.

12.5 Main Processing Sequence

The main controller shown in Fig.22 implements the processing sequence shown in Fig.28.
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The sequence is for a 4096-1000 layer such as Alex-8 (FC8) in AlexNet or VGG-16 (FC8) in

VGG16, as in Table III in (Han and et al, 2016). Using 8x8 tiles for the weights matrix in Fig 19,

the equivalent matrix of tiles is 128x512. The main control sequence therefore has 512 states,

ST1 to ST512 as shown. All 128 PEs are processing an input 8x1 feature vector with their

corresponding tile of weights in each state. Note that in ST1 reads to input features memory,

HBM IN, and reads from the weights FIFO in the PE’s DPR BUF are overlapped. Each column

in the weights matrix is processed in sequence, and all rows in a column are processed in parallel

with each row’s dedicated PE. We call this a column-row-column schedule. This schedule ensures

that the computing load is equally shared among all PEs. It also achieves almost optimal load

balancing among all PEs since all are utilized in each control time slot. Using this schedule we

read the entire input features memory only once, where each read transaction returns a 8x1 (for

8x8 PE) or 16x1 (for 16x16 PE) vector of inputs. Similarly each row’s HBM weights memory is

also read only once. This minimal access pattern to the memories contributes to low processing

latency and minimizes power consumption due to memory accesses. The same control sequence,

ST1 to ST512, can be applied to 4096-4096 layers such as FC7 Alex-7 and FC7 VGG-7 in (Han

and et al, 2016). To maximize throughput, 512 8x8 PEs in one pass, can be used for processing

in each state. Alternatively, 128 16x16 PEs can be used in two passes to cover all 256 rows, for

details see section ”Up-Scaling to Larger FC Layers” below. For the larger layers, eg. FC6 Alex-6

, 9216-4096, the control sequence has ST1 to ST1152 or 1152 states. The number of 8x8 PEs

remains at 512 for one pass or 128 16x16 PEs with two passes. For FC6 VGG-6, 25088-4096,
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the control sequence has ST1 to ST3136 or 3136 states.The number of 8x8 PEs remains at 512

for one pass or 128 16x16 PEs with two passes.



CHAPTER 13

SIMULATION AND ASIC IMPLEMENTATION RESULTS OF FC-ACCEL FOR

FC LAYERS IN ALEXNET AND VGG16

The FC-Accel microarchitecture for the Alex-8/VGG-8 4096-1000 FC8 layer was implemented

in fixed-point Q(17,10) (data and weights) Verilog and simulated in ModelSim SE. A Python

floating-point implementation of the same layer was used as reference. Pipelined and non-

pipelined PEs were implemented with 662 MHz and 100 MHz clocking respectively. The seven

adders tree in the original PE was pipelined to reduce its critical path delay to 1.51 nsec with a

662 MHz clock. Non-zero values were used for all data features and for all weights. The follow-

ing Fig. 29 summarizes the achieved processing latency for the specified design parameters and

compares with recent comparable benchmarks. For FC8, FC-Accel achieves a 63% reduction in

processing latency (VGG-16) when compared to EIE from (Han and et al, 2016) which is also an

ASIC implementation in a TSMC 45 nm process.

The fully connected layer FC8 in both AlexNet and in VGG16 has the same 4096-1000 dimen-

sions. Our FC-Accel latency is based on non-zero values for all input features and all weights.

The data for GPU Titan X and EIE is from (Han and et al, 2016). We summarize a pipelined 8x8

PE FC-Accel implementation using an 662 MHz clock and 7 pipeline stages for the 7 adder tree

in Fig. 26. The non-pipelined version uses 100 MHz clocking. Using pipelining brings the worst

80
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Figure 29: Processing latency for FC8 in usec for several benchmarks.

case critical path delay to 1.51 nsec and considerably improves latency. However it increases

power dissipation as shown below.

Fig. 30 reports the operations/sec for each major processing block in FC-Accel.
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Figure 30: Processing Blocks performance.

The total (dynamic and leakage) power consumption in the pipelined 8x8 PE is shown in Fig. 31

for each processing block along with the cell counts.

Fig. 32 compares the achieved Giga operations per second, GOPS, for the 4096-1000 FC8 layer

with other comparable benchmarks (all units are in GOPS) and shows the speedups achieved by
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Figure 31: Power per PE processing block.

FC-Accel in ASIC PDK 45 nm technology. The FPGA implementations are from Table 17 in (Li,

2018). The TETRIS implementation is from (Gao and et al, 2017).

We note that the TETRIS accelerator uses 16 Hybrid Memory Cubes, 16 HMCs, a type of 3D

DRAM memory different from HBM.

13.1 CMOS ASIC Implementation

We have implemented the Alex-8/VGG-8 FC8 layer using the CMOS ASIC PDK 45 nm standard

cell library for synthesis. The Cadence RTL Compiler (RC) tool was used and the design achieved
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Figure 32: GOPS comparison with ASIC and FPGA platforms for FC8 acceleration.

timing closure with a 100 MHz clock for the non-pipeliend PE and 662 MHz for the pipelined

PE.

Fig. 33 summarizes timing, area, and power for the non-pipelined and pipelined FC-Accel de-

sign, with 128 8x8 pipelined or non-pipelined PEs. Note that power consumption due to HBM,
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Figure 33: FC-Accel with 128 PEs. PDK 45mm standard cells implementation.

input, and output memories and their interfaces (input DPR BUF and output ReLU FIFO) is not

included.

13.2 Characterization of a pipelined 16x16 PE

In this section we present ASIC PDK 45 nm implementation results for a pipelined 16x16 PE

which is used in the up-scaling of the proposed architecture to the larger FC7 and FC6 layers.

The 16x16 design is similar to the 8x8 PE design the main difference being MV-mult which is

now a 16x16 matrix-vector multiplier. Fig. 26 now has 16 rows S mult 11 to S mult 16 1 and 16
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Figure 34: Implementation data for pipelined 16x16 PE at 662 MHz. The y axis is log( ) base 10.

columns S mult 11 to S mult 1 16. A 15 adder tree sums all partial products for each row. The

adder tree is pipelined with a 15 stage pipeline which reduces the critical path delay to 1.51 nsec

or 662 MHz clocking.

The accumulator data path is also derived from Fig. 27 and has 16 product inputs, prod 1 to

prod 16 and 16 accumulated outputs, O 1 to O 16.

Fig.34 summarizes cell count and worst-case statistical power for the 16x16 PE with a 662 MHz

clock. The pipelined 8x8 PE implementation is also listed for comparison.
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AlexNet VGG-16

8x8 PE 16x16 PE 8x8 PE 16x16 PE

FC8 latency in usec 396 173 396 173

Number of read accesses to a single HBM 128 256 128 256

TABLE I: FC8 LATENCY FOR 8X8 AND 16X16 PE WITH 1 HBM AND 128 PE MODULES. THE NUMBER
OF READ ACCESSES TO THE HBM ARE LISTED FOR EACH PE DIMENSION.

13.3 FC8 Latency for 1 HBM Shared by 128 PEs

We have also analysed FC8 latency performance for a reduced architecture with 1 HBM shared

by all 128 PEs, for both 8x8 and 16x16 dimensions. The HBM has to be read for a tile of weights

for each PE in a row; the result of the matrix-vector multiplication is then used to update the PE’s

accumulator in the row. The number or read accesses depends on the size of the tile; for 8x8 tiles

128 accesses are required, for 16x16 tiles 256 accesses are required. For the 16x16 case, there’s

64 rows, however the HBM has to be read 4 times for each row in order to deliver 4096 bits to

the row’s PE. As expected the latency for FC8 processing increases significantly due to a single

HBM shared among all PEs. By contrast, if an HBM is dedicated to each row’s PE, a single read

access is needed (for 8x8 PE), or 4 read accesses (for 16x16 PE) resulting in a minimal latency.

Table I summarizes the increase in latency for each tile size. As can be seen from the data, the

larger 16x16 PE does reduce latency as expected (compared to the 8x8 PE), even though twice as

many read accesses have to be done to HBM for its weigths. The advantage of a single shared

HBM is reduction in the total power dissipation.
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A similar analysis of the reduced architecture with a single shared HBM is shown for the larger

FC7 and FC6 and the resulting significant latency increases are shown in the following section on

”Up-Scaling to Larger FC Layers”.

13.4 FC-Accel Complexity Analysis

The time complexity for multiplication of nxm matrix and mx1 vector is O(n*m ). This is the num-

ber of scaler fixed-point multiplications. Using 1 clock per scalar multiplication, that is O(n*m)

clock cycles. Here a scalar is a 16-bit fixed point value. Using square tile of size t (1 tile per PE)

we have O (m/t) iterations using n/t parallel PEs. Each PE does t*t scalar multiplications and t

scalar additions in 1 clock cycle. The O(m/t) iterations, to process all columns, take O(m/t) clock

cycles, with all n/t PEs computing in parallel.

Total time complexity is

O(n∗m) (13.1)

clock cycles, with one scalar multiplicaton and addition per cycle. The total number of operations

(multiplications and additions), for all m/t iterations, is

O(n∗m+
n∗m

t
) (13.2)

These are the operations running in parallel in each PE, in a 1D array of n/t PEs.
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13.5 Up-Scaling to Larger FC Layers

In this section we present estimated performance with an up-scaling of the proposed micro-

architecture for the larger FC6 and FC7 layers in AlexNet and VGG16. We use the 16x16 PE

described above for these layers in order to efficiently process the larger sizes of the weight matri-

ces. The 16x16 tile of weights reduces the number of rows and columns of matrix in Fig. 19 and

simplifies the processing schedule as well. Both layers have 256 matrix rows with 16x16 PEs.

Since a 16x16 PE has 256 weights for its matrix-vector multiplier, this is 256 x 16 = 4096 bits

of weights for each PE in each row. The HBM’s DPR BUF 8 FIFOs for that row can be read in

4 cycles (1024 bits per cycle, from 4 consecutive locations in each FIFO) to deliver these bits to

the row’s PE. The up-scaled micro-architecture has 256 16x16 PEs and 256 HBMs to supply the

weights and process the inputs in a single pass. To save resources, we propose 128 16x16 PEs

and 128 HBMs and two passes to process all the inputs.

We also use an HBM for the input memory so that 16 16 bit words can be read out in 1 cycle

to provide the 16x1 input vector to each of the 16x16 PEs. The main control sequence in Fig.

28 therefore increases by 3 cycles to 7 cycles: 4 for reading the HBM’s DPR BUF 8 FIFOs

with weights (overlapped with 1 cycle for reading the HBM with inputs), and 3 for matrix-vector

multiplication, accumulation, and write back.

Fig. 35 shows the scheduling with the up-scaled micro-architecture for FC6 and FC7 when 128

16x16 PEs and 128 HBMs are used with two passes. In the horizontal (time) direction, AlexNet

FC6 requires 576 (9216/16) time slots per pass, VGG16 FC6 requires 1568 (25088/16) time slots

per pass, and FC7 requires 256 (4096/16) time slots for either network.
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Two pages in each HBM are required to store all the weights for the HBM’s row (PE). The first

page is used in pass 1 and the second page in pass 2. The maximum number of weights for the

FC6 layer in VGG16 is 25088x4096 or 102,760,448 weights. Using 2 bytes per weight, this

requires 268 MB of storage which is easily stored in the new HBM2 16 GB part (Flashbolt) from

Samsung. Each page stores 134 MB of weigths. The FC6 layer in AlexNet is 9216x4096 so it has

less weights and can also fit in the 16 GB HBM2.

The switching between pages in an HBM is assumed to be negligible as well as the saving of the

128 PE’s outputs after each pass to output memory. Using the largest layer, FC6 VGG16, each

pass will require 1568 time slots; using a pipelined 16x16 PE at 662 MHz and 7 cycles per time

slot will therefore require 16.6 usec for a pass. Both passes will take 33.2 usec for processing the

entire layer. This is compared to 34.4 usec as reported in Table IV in (Han and et al, 2016) which

uses compression and is a considerable improvement since the saving is accumulated over each

forward inference.

Fig. 36 below summarizes the estimated total latency for FC6 and FC7 processing in both net-

works with the proposed up-scaled micro-architecture with 128 pipelined 16x16 PEs. For com-

parison, latency from Table IV in (Han and et al, 2016), which uses compression in each layer, is

also included.

A reduced architecture with a single shared HBM for all PEs will severely increase processing

latency as shown in Table II. As can be seen from the data, the larger 16x16 PE does reduce

latency as expected (compared to the 8x8 PE), for both FC6 and FC7, even though twice as many
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Figure 35: Up-scaling the propsed micro-architecture for handling FC6 and FC7 layers. In each pass 128 HBMs

and 128 16x16 PEs are reused. The input and output memories are connected as in Fig.3
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read accesses have to be done to HBM for its weigths. The advantage of a single shared HBM is

reduction in the total power dissipation.
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AlexNet VGG-16

8x8 PE 16x16 PE 8x8 PE 16x16 PE

FC7 latency in msec 1.58 0.693 1.58 0.693

FC6 latency in msec 3.56 1.56 9.7 4.2

Number of read accesses to a single HBM 512 1024 512 1024

TABLE II: FC8 LATENCY FOR 8X8 AND 16X16 PE WITH 1 HBM AND 128 PE MODULES. THE NUMBER
OF READ ACCESSES TO THE HBM ARE LISTED FOR EACH PE DIMENSION.

Part IV

Conclusion



CHAPTER 14

OPEN PROBLEMS AND ACCELERATOR EXTENSIONS FOR THEM

Parts of this chapter have been presented in (Iliev and Paprotny, 2015), (Salarian et al.,
2016) and (Salarian et al., 2018). Copyright c© 2015-2018, IEEE.

This chapter discusses a few possible extensions of our work and also reviews related open prob-

lems.

14.1 Spatial Localization - SSL Extensions

14.1.1 Non-Linear Cost Function for AOA based Estimation

An open problem in non-linear optimization theory is how to efficiently minimize a non-linear,

non-convex, cost function such as the one in Chapter 3

θML = argmin
α

(α̃−α)T ×C× (α̃−α). (14.1)

Here, the spatial coordinates of U are estimated by θML and α̃ is the AOA measurements vector

from M anchors given as

α̃ = [α̃1α̃2...α̃M]T = α̃0 +n, (14.2)

with α̃0 as the true angle (in radians) and n is the measurement noise. C in Eq. 3.1 is the inverse

covariance matrix of n.

94
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Direct minimization of this cost function gives the maximum-likelihood solution θML and algo-

rithms such as Non-linear Least squares Levenberg–Marquardt, NLS-LM, have been applied with

some success. However NLS-LM is very expensive computationally since it uses matrix inver-

sion and Jacobian and Hessian matrix computations. To illustrate this point, we briefly present

a MATLAB floating point model of NLS-LM processing and ensuing hardware architecture that

we have considered before selecting our RNN dual-LP approach in Chapter 4.

The processing pipeline for NLS-LM with 3D AOA measurements is presented in Fig. 37 below.

We have developed a floating point MATLAB model of the NLS-LM processing pipeline and

used it to simulate 3D AOA localization testcases. Fig. 38 below shows a 3D MATLAB plot of

estimated 3D coordinates vs ground truth. A possible systolic array realization is then described

in the block diagram.

The very large amount of arithmetic processing in the NLS-LM approach is now clear.

We now present an extension of our RNN approach for minimizing a quadratic approximation

of the cost function. One possible extension of the SSL accelerator is to apply the following

approximation of the arctan function

βi = tan−1
(yT − yi

xT − xi

)
∼= (π/4)∗

(yT − yi

xT − xi

)
f or−1≤

(yT − yi

xT − xi

)
≤ 1 (14.3)

This will generate quadratic terms as well as linear terms for the cost function above. We then

have a constrained quadratic program and the RNN dual-primal Quadratic architecture can be

used to solve it. Figure 39 shows the datapath extentions required for solving a quadratic program
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3D AOA Coordinate equations  

• The 3D localization problem, with 2 anchors and 1 
unknown node measuring AOA to both anchors can be 
mathematically modelled as a highly non-linear cost 
function of a parameter vector p :

•

• J(p) =  S ( y(ti)  - y_est(ti; p) )^2  

• i= 1..m
• Where y(ti) is a set of 3 AOA measurements at time ti;
• y_est(ti;p) is the best current estimate for y(ti)
• Vector (3x1) p is the best current estimate of coordinates 

x_est_i,y_est_i,z_est_i of the unknown node
• There’s m measurements, i= 1..m, each taken at time ti

3D AOA processing pipeline 

• The above non-linear cost function J(p)  of squared error between 
measured AOAs and estimated AOAs can be efficiently minimized by 
the state-of-the-art Levenberg-Marquardt algorithm. Computations for 
each iteration include Jacobian matrix, Hessian matrix, matrix inverse, 
and dot product of vectors, and scalar / vector division and scaling.

Compute Jacobian
And evaluate 

At current parameters

Evaluate the distance 
Error At the current

parameters And compute 
the Hessian matrix

Apply damping factor to
Hessian, compute new 

Update parameters

Evaluate the distance (cost)
Function 

At the updated parameters
And increase/decrease

The damping factor

Figure 37: NLS-LM processing pipeline for 3D AOA measurements. The processing iterations continue until

parameters updates (3D coordinate updates) become smaller than a threshold value.

: a QP block is muxed in using the ”select QP or LP” signal. The QP block is the addition of the

identity matrix I and the AOA matrix A.
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Note that the π/4∗ x approximation is different than the small AOA measurement error approxi-

mation we used in Chapter 3. That approximation transformed the non-linear cost function to an

overdetermined Least squares problem. The RNN dual-primal linear program solver architecture

in Chapter 4 was then applied to it.

Since the π/4∗ x approximation transforms the original cost function to a quadratic program, we

expect better estimation accuracy and more robust behaviour with stronger measurement noise.

14.1.2 Multi-Modal methods

Another open problem in AOA based localization is the growth of uncertainty in the estimated

coordinates as the noise in the angle measurements becomes too strong or when the positions

(configurations) of the anchors results in reduced accuracy, as shown in Chapter 5 Fig. 7 (c) .

Multi-modal methods can be applied in this case: the AOA based localization system can be re-

configured as an image-based coordinate estimator. An example of a multi-modal localizer is the

work by (Georgiev and et al, 2004). Their mobile robotic platform uses two methods. The first

method uses odometry, compass, GPS, and an Extended Kalman Filter (EKF). The second method

uses camera pose estimation using an onboard camera. The second method is used when the

uncertainty in the EKF generated estimates is too large. Their second method is also economical

since it does not use LIDAR or optical-flow sensors. We choose to enhance the SSL AOA based

localizer with a camera pose estimation system. This is a software-hardware co-design, with

software implementing the image search (matching) and SFM portions described in the following.

Camera pose estimation can be done using Horn’s transform (coordinate registration) algorithm,
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a Structure From Motion, SFM, algorithm, an image feature search (matching) algorithm, and

a database (off-line generated) of images of anchors in the indoor environment of the mobile

robot. We have implemented all of the above algoritihms, as reported in (Salarian et al., 2018)

and in (Salarian et al., 2016), in software. The Horn transform is one of most computationally

expensive of all, so it is a good candidate for hardware acceleration. The key step is eigenvalue

decomposition of a matrix, and we propose to extend the SSL accelerator with a neural network

for Principle Component Analysis, PCA, which will also generate the eigenvalue decomposition.

The figures below illustrate the basic Horn accelerator extension and its integration with SFM (

SFM generates the P’1 to P’5 coordinates).

The GPS tags in the figures are replaced with indoor anchors known coordinates. The estimated

Query GPS tag5 is the robot’s camera center 3D coordinate in the indoor anchor’s coordinate sys-

tem, based on the 4 matching images. AOA measurements have not been used in this processing.

14.2 Speaker Recognition - SpkrRec Extensions

14.2.1 Learning the Optimal Number of Clusters

An open problem in unsupervised k-Means clustering is the a-priori selection of the number of

clusters K. Our current SpkrRec accelerator is given the value of K before the start of all process-

ing of the incoming MFCC feature frames. One possible extension to SpkrRec is to add a Cluster

Discovery module, ClustD, and associated controller interacting with the existing k-Means cen-

troid computing engine. ClustD will iterate several times over the entire training dataset starting

with K=1, and after each iteration increasing the value of K by one. After reaching a stoping
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criteria, the final value of K will be used by SpkrRec in future on-line centroid estimation. During

each iteration, the error (Euclidean distance) between each dataset element and the current clus-

ter’s centroid (computed via k-Means) is computed in ClustD. The sum of all element’s squared

errors, SSE, is also computed in each iteration and stored for that iteration. The stoping criteria

can check SSE versus a threshold; when SSE remains below the threshold for several iterations,

the optimal K value has been reached. Figure 42 below illustrates the discovery of the optimal K

(3) value for a hypothetical dataset.

For K=3, the SSE value is always below threshold Th1. The Th1 value can be estimated during

off-line training and should result in a K value which satisfies the SpkrRev classification accuracy

requirement.

This is the so-called elbow method for determining the K value and is easy to integrate with the

existing k-Means centroid computing engine.

14.2.2 Simulated Anealing schedule

Another open problem in on-line k-Means clustering with Lloyd’s online algorithm is the optimal

division factor applied to the difference term during each iteration. This is the 1/n division in Fig.

10 in Chapter 7. We propose to extend SpkRec to use the following update rule instead of 1/n :

zi = zi +α ∗ (x− zi)withα ∈ (0,1) (14.4)

where
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α = exp[−β ∗ rxz j ] (14.5)

here

β =
1
T

(14.6)

the inverse temperature, x is the a new candidate member for current cluster, and

rxz j (14.7)

is the Euclidean distance between x and the cluster’s centroid z j.

This new learning rule will require an additional exp( ) operation, control registers, controller states, and

a look-up table for implementing it. Simulated annealing learning rule for k-Means has been shown to

avoid the problem of locally optimal solutions (estimated centroids) due to initial value dependence of

k-Means and also due to its sensitivity to outliers, see (Takano, 2018).

14.2.3 Integration with a GMM-scoring block and Command Recognition for Robotic Arm control

A natural extension of our SpkrRec work is integration with the GMM scoring block such as the one in

(Gianelli et al., 2019) or (Chan et al., 2004). The resulting GMM processor can then be used to generate

log-likelihood estimates of word models (spotted words in a sentence). Spotted word recognition is also

based on MFCC features and is very similar to speaker recognition we considered earlier. Fig. 43 shows

a spotted word (isolated word) recognizer from (Elemary, 2011) which combines GMM and Hiden
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Markov Models, HMMs, for a known set of command words, used to control a diadic manipulator

robotic arm TR45. Both GMM and HMM models are independently developed and trained with the

same set of command words characterized by k-dimensional MFCC feature vectors. Both models are

used in real time robotic arm operation for increased recognition accuracy.

The Likelihood block after the GMM processor (SpkrRec and GMM-score) implements the following

equation:

LGMM =
1
T

T

∑
t=1

logPGM(Xt) (14.8)

Here

PGM(Xt) (14.9)

is the Gaussian mixture density with M Gaussian k-dimensional components, evaluated at the t-th ob-

servation of input k-dimensional word X. The likelihood of the HMM model’s output is computed as

well and the final Decision block selects an Action for the robotic arm based on the winning likelihood

value.

14.3 Fully Connected layers in DNNs - FC-Accel Extensions

One extension of FC-Accel, to reduce total power at the expense of a small increase in latency, can

target a reduction of the number of HBMs in the system. We can reduce the 128 HBMs for 128 PEs

(1D array 128x1 of 128 PEs) architecture to a 16 x 1 1D hardware array of PEs. The number of HBMs
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is reduced to 16, and each is dedicated to one of the 16 PEs. This direct 16-to-16 mapping also avoids

the need for a NoC routing infrastructure. We call this a 1D-16-FC-Accel architecture where each PE is

still based on a 8x8 matrix-vector multiplier. To evaluate the entire matrix-vector product in Fig. 22 will

require 8 passes of the new 16 x 1 array. 16 HBMs dedicated to the 16 PEs are used for storing weights

for each pass. Each pass uses a dedicated page of weights from the HBMs.
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CMOS VLSI architecture for NLS Levenberg-Marquardt 
Hardware Accelerator 

• Node architecture includes CPU with hardware accelerators : systolic array 
processing for low power. Self-timed (clock-less) processing is used in specific cases 
to obtain lowest possible power in each accelerator and fastest real-time response. 

• Acceleration of 3D coordinate computation : ultra low power sub-threshold design ; 
architectural techniques for low power : dense (super) pipelining ; two-phase latch-
based design ; architectural optimizations to reduce idle time of any memory cells in 
order to reduce leakage energy.

•Solve system of 3 linear equations in 3 unknowns ( for 3D )
or  2 linear equations in 2 unknowns ( for 2D) ; assume fixed-point math
Equations require tan( ) of an angle : - can use systolic CORDIC algorithm; fixed-point math
• To handle angle measurement errors, a Maximum-Likelihood algorithm, such as Stansfield algorithm can be implemented in a systolic array : it requires 
matrix multiplication and matrix inversion : example likelihood function =  (AtR-1S-1A)-1 AtR-1S-1 b
• For Ultra-Low-Power (ULP) design, use sub-threshold circuit techniques :

these have been used for an FFT hardware accelerator  (Univ. Michigan):
for example a supply voltage of 270 mW , clock frequency of 30 MHz, and resulting throughput of 240 Msamples/sec

3D AOA Coordinates Computation Hardware Accelerator 

• Current Results from floating point sims  : 3D coordinates via non-linear Least 
squares Levenberg-Marquardt (non-Bayesian estimation )  - simulation examples : 
Red-True Target, Blue-Estimates

Figure 38: Matlab simulation of NLS-LM processing pipeline and a possible systolic array realization.
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Figure 39: RNN architecture extension for solving a constrained Quadratic Program, QP, as well as an LP. .



105

p4

x

y

z

C4

p3

C3

C2

p2

C1
p1

Query

C5

p5

5 Similar Objects in  

camera’s reference frame :  

P’1 , P’2, P’3, P’4, P’5  from 

(u1;v1)..(u5;v5) and

K , R;t , S1

u3

v3

u4

v4

 u5

 v5

GPS_tag1

GPS_tag2

GPS_tag3

GPS_tag4

Query’s GPS_tag5 = ?  See Next Page

For any pX, for example 

p3 (u3;v3)  :

U3

V3

1
S1* =

fu  0  u0

0  fv  v0
0   0   1

R t
P’3(x)

P’3(y)

P’3(z)

Intrinsic camera model K

P’2(x,y,z)

P’1(x,y,z)

P’3(x,y,z)

P’4(x,y,z) P’5(x,y,z)

Figure 40: SFM processing to generate P’1...P’5 in local camera coorinate system .
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Horn Algorithm with 
Neural Net for PCA
eigendecomposition

P’1(x;y;z)

P’2(x;y;z)

P’3(x;y;z)

P’4(x;y;z)

GPS_tag1(x;y;z)

GPS_tag2(x;y;z)

GPS_tag3(x;y;z)

GPS_tag4(x;y;z)

Matrix R_q  3x3, 
orthonormal

Vector t_q   3x1 

Scaler s_q

Query’s GPS_tag5 = t_q + s_q*R_q*P’5

Example  Intrinsic Camera Model K  :  
For Virtual Calibrated Camera with resolution  640x480

Principal (center) point  (u_c ; v_c) = (320;240)
Effective focal lengths f_u = f_v = 800

Figure 41: Module for Horn acceleration, with neural network for PCA and eigenvalue decomposition.
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Figure 43: Spotted word recognition for control of diadic manipulator robotic arm TR45.



CHAPTER 15

CONCLUSION

The problems of algorithm-hardware co-design for smart home AI devices require many innovative

technical solutions as we have seen in the previous chapters. In this concluding chapter I’ll summarize

the main contributions of my research to each of the three AI-enabling technology areas considered

above.

In Part I, Spatial Self-Localization, as the number of edge nodes increases in a network, their localization

and tracking will increase the computational load on the existing anchors, who are neighbors to the new

node. This can be solved if the newly added edge node has on-board self-localization capability, such

as a dedicated low-power, low latency processor accelerator for estimating the new node’s position and

a AOA measurement sensor.

We have shown that accelerators based on our RNN architecture, for 2D and 3D

cases with small AOA measurement error, can provide low-power, low-latency, and

accurate 2D and 3D coordinate estimation. Matrix inversion, Jacobian, and Hessian

matrix processing is avoided with the proposed RNN architecture. An increase in

the number of new nodes does not increase the complexity of the proposed RNN.

Our number of iterations for the primal-dual solution is:

109
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O(
√

N ∗ log
N
ε
) (15.1)

where N is the number of coordinates and ε is the desired accuracy ε > 0 (epsilon away).

The proposed RNN architecture has the following number of operations complexity, per iteration :

O(2∗N2) (15.2)

this is multiplications with N the dimension of θ . An additional O(N) number of additions, subtractions,

and compare-vs-zero operations is required. Note that since batch Least Squares is used (with a batch

size of N) generating a corresponding primal-dual linear program for each batch, an increase in the

number of nodes does not affect the above complexity.

In Part II, Speaker Recognition, real-time scoring (evaluation) of all GMM models (for all enrolled

speakers) with every incoming MFCC frame can present a considerable computational challenge with

implications on overall hardware latency, power, and area.

To solve this problem we have proposed a novel low-power architecture for SI by combining real-

time k-means clustering and GMM scoring of each cluster’s centroid. This has achieved drastic

reduction in number of MFCC frames to process with the same number of speaker models. To

minimize overhead of the additional Cluster building Layer, CL, for SI, we have discussed novel

parallel Euclidean distance computing and online centroid updating micro-architectures. Our

implementation has achieved a 6x decrease in total dissipated energy for classifying among ten

speakers with an integrated GMM-centroid scoring system
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The proposed solution has an upper bound on time complexity as

O(k ∗D∗N) (15.3)

, where k is number of clusters, D is dimensions of the data vectors, N is number of data vectors to

cluster.

The total number of computations, per iteration, is upper-bounded by O(D*k + 2*D) additions, O(D*k)

multiplications, O(k*log(k)) 3-way comparisons, and O(D) divides where D is dimension of the data

vector and k is number of clusters

In Part III, Fully Connected Layers in DNNs, the dense (non-sparse) weights matrix can limit real-time

inferencing performance of the DNN due to large latencies of the FC layers. Storing the weights in off-

chip DDR4 64-bit wide SDRAM places severe bandwidth and number of read-accesses constraints on

any accelerator (or Processing Element, PE) design that attempts to solve the FC layer latency problem.

To solve this problem we have proposed a novel HBM based FC layer accelerator with a very

wide 1024-bit read-access bus, a novel 8x128 to 1024 FIFO based data-prefetch architecture, and

a novel pipelined PE for matrix-vector multiplication. A 1D array of 128 8x8 PEs and HBMs

does not need mesh routing (or Network On Chip, NoC, routing) and does not use compression

of the DNN model’s weights. We use full 16 bit fixed-point precision for both data and weigths.

The proposed FC-Accel architecure is based on column of block(tiles) decomposition of the

original weights matrix. The proposed architecture can be up-scaled to the larger FC6 and FC7

layers in AlexNet and in VGG-16. For AlexNet FC6 our accelerator achieves a 60 % latency

reduction over a compression-based FC accelerator. For VGG16 FC6 our accelerator achieves a

3.5 % latency reduction over a compression-based FC accelerator.
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Total time complexity is O( n*[2*ceil(n/p-1) -1) + n]*d ) clock cycles for a m x n matrix of weights, with

tile size of t, p =m/t PEs, and d is the time for a basic scalar addition or multiplication. Total number of

operations ( multiplications and additions ) is O( m*2(n-1)).
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thesis.

The list of the articles include (Iliev and Trivedi, 2019) IEEE Sensors Letters, (Iliev et al., 2019) IEEE

Embedded Systems Letters, (Iliev and Trivedi, 2017) IEEE International Conference on Computer De-
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