

Multi-Scale Simulation of Cerebral Blood Flow and

Oxygen Exchange for the Entire Mouse Brain

BY

Grant Hartung

B.S., University of Illinois at Chicago, 2012

M.S., University of Illinois at Chicago, 2015

THESIS

Submitted as partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Bioengineering

in the Graduate College of the

University of Illinois at Chicago, 2020

Chicago, Illinois

Defense Committee:

Andreas Linninger, Chair and Advisor

Ali Alaraj, Neurosurgery

Simon Alford, Anatomy and Cell Biology

Dieter Klatt, Bioengineering

Richard Magin, Bioengineering

ii

 This thesis is dedicated to my father (V. Adam Hartung) and to the memory of my brother

Alexander M. Hartung. Without your influence and support throughout my life, I would never

have attempted, nor made it through this work.

iii

Acknowledgements

 I would like to thank my thesis committee - Dr. Alaraj, Dr. Alford, Dr. Magin and Dr. Klatt

- for all their assistance and guidance in accomplishing this research. They helped me to progress

through the research and enjoy the process of academic enlightenment. I would also like to thank

other advisors, Dr. Hetling, Dr. Patton, and Dr. Khetani, for offering advice on graduate studies

and research. I would also like to thank all the members of the lab past and present who assisted

with all this work. Without the great effort of my colleagues, this work may never have come to

fruition.

I would like to specifically thank Ryan Morley, Shoale Badr, and Claudia Vesel for their help.

Their contributions were instrumental in streamlining the data curation process.

I would like to thank Ian Gould for laying the groundwork and establishing the fundamentals

on which this thesis was built. His methods began a shift from small simulations of the brain (only

a few segments at a time) to large simulations of massive microcirculatory structures. Without his

breakthroughs, this work could not have been accomplished.

I would most importantly like to thank my PI, Dr. Andreas Linninger, for all his guidance and

teachings throughout the duration of my dissertation. The countless hours spent programming,

deriving, and designing approaches to solve new problems were essential to the success of this

project.

iv

Contribution of Authors

Section 1, 2 and 4 of this manuscript is an introduction to the topics and relevance of the thesis

written entirely by me.

Chapter 3 is a reprinting of a manuscript (Mathematical synthesis of the cortical circulation for

the whole mouse brain-part I. theory and image integration. A Linninger, G Hartung, S Badr, R

Morley, Computers in Biology and Medicine, 2019) for which I was the second author and held

the duties of data curation, algorithm advancement, figure design, and data analysis. Shoale and

Ryan (3rd and 4th authors) assisted in data curation by executing codes generated by me and Dr.

Linninger.

Chapter 5 was previously published (as Simulations of blood as a suspension predicts a depth

dependent hematocrit in the circulation throughout the cerebral cortex

G Hartung, C Vesel, R Morley, A Alaraj, J Sled, D Kleinfeld, A Linninger, PLoS Computational

Biology, 14(11), e1006549, 2018). I am the first author and am responsible for the code

implementation, procurement of data, data analysis and figure/text design. Claudia, the second

author, was primarily responsible for assisting in literature research related to comparable models

and Ryan was responsible for executing codes generated by me. Dr. Kleinfeld and Dr. Sled

generously shared empirical data to which all synthetic structures were compared (as ground truth)

and Dr. Alaraj assisted in the design of the manuscript.

Portions of Section 33-34 were printed (as Modeling the diffusion of D-2-hydroxyglutarate

from IDH1 mutant gliomas in the central nervous system. A Linninger, GA Hartung, BP Liu, S

Mirkov, K Tangen, RV Lukas, D Unruh, CD James, JN Sarkaria, C Horbinski, Neuro-Oncology,

v

20(9), 1197–1206, 2018) to which I am the 2nd author. Only the portion of the manuscript generated

by me was added to this thesis.

Portions of Section 23 were printed (as Starling forces drive intracranial water exchange during

normal and pathological states. A Linninger, C Xu, K Tangen, G Hartung, Croatian Medical

Journal, 58, 384-394, 2017.) but only the portions constructed by me are included in this thesis.

Portions of Section 30 are included in a manuscript (Quantification of blood flow patterns in

the cerebral arterial circulation of individual (human) subjects. Chang Sub Park, Grant Hartung, Ali

Alaraj, Xinjian Du, Fady T Charbel, Andreas A. Linninger. in print) however only the portions

generated by me are included in this thesis.

Table of Contents

vi

 INTRODUCTION .. 1

 IMAGE-BASED CIRCULATORY NETWORK (ICNS) SYNTHESIS PART I: THEORY AND IMAGE INTEGRATION . 9

2.1 INTRODUCTION ... 9
2.2 METHODOLOGY.. 11

2.2.1 The formal optimization problem. .. 12
2.2.2 Image-guided segment addition .. 20
2.2.3 Synthesis of closed networks (=microvascular closure) .. 21
2.2.4 Neuroimage data for validation of synthetic growth ... 22

2.3 IMPLEMENTATION ... 22
2.4 APPLICATIONS AND RESULTS ... 25

2.4.1 Simple application of open arterial trees. .. 25
2.4.2 Synthesis of closed cortical blood supply with microcirculatory closure 25
2.4.3 Mathematical network model of the entire MCA territory .. 30
2.4.4 Cortical blood supply (whole brain circulation) .. 32

2.5 DISCUSSION ... 35
2.6 LIMITATIONS. ... 38
2.7 CONCLUSIONS .. 38
2.8 DERIVATION OF FLOW RATIOS IN BALANCED TREE .. 39
2.9 MICROVASCULAR CLOSURE PSEUDOCODE .. 42
2.10 SAMPLE GENERATOR PSEUDOCODES ... 42

 IMAGE-BASED CIRCULATORY NETWORK (ICNS) SYNTHESIS PART II: AUTOMATED MATCHING OF
NETWORK TOPOLOGY ... 43

3.1 INTRODUCTION ... 43
3.2 METHODS ... 44

3.2.1 Automated topological characteristic matching .. 44
3.2.2 Automated matching of two cumulative density functions ... 52

3.2.2.1 Using a non-constant modifier to match CDFs ... 54
3.3 APPLICATIONS .. 56

3.3.1 Microcirculatory subsections .. 56
3.3.2 MCA/hemisphere .. 60
3.3.3 Human .. 62

3.4 DISCUSSION ... 64

 LARGE MICROVASCULAR NETWORKS REVEAL DEPTH DEPENDENT HEMATOCRIT GRADIENT 66

4.1 INTRODUCTION ... 66
4.1.1 Regulation. ... 67

4.2 MATERIALS AND METHODS .. 69
4.2.1 Pial surface data acquisition .. 71
4.2.2 Microcirculatory data acquisition .. 71
4.2.3 Synthesis of large circulatory networks .. 72
4.2.4 Blood flow ... 72

4.3 RESULTS .. 74
4.3.1 Morphometrics ... 74
4.3.2 Synthetic data sets ... 75
4.3.3 Branching patterns ... 76
4.3.4 Network Effects in large-scale models ... 78
4.3.5 Path analysis of hematocrit and layer dependence ... 79
4.3.6 Extension to brain-wide hemodynamic simulations ... 83
4.3.7 Complete circulation of the MCA territory including arterial and venous side 84
4.3.8 Blood flow ... 86

4.4 DISCUSSION ... 90

Table of Contents (continued)

vii

4.4.1 Morphometrics ... 90
4.4.2 Blood Flow .. 91
4.4.3 Hematocrit ... 92
4.4.4 Synthesis ... 94
4.4.5 MCA .. 95
4.4.6 Boundary conditions ... 96
4.4.7 Limitations .. 97
4.4.8 Conclusions ... 98

4.5 DEFICITS IN DIFFERENT HEMATOCRIT SPLIT RULES .. 100
4.6 IMPLEMENTATION OF THE BIPHASIC BLOOD FLOW .. 103
4.7 HEMATOCRIT DEPENDENCE ON DIAMETER .. 106

 IMPROVED OXYGEN SIMULATION FOR LARGE MICROVASCULAR NETWORKS 107

5.1 INTRODUCTION ... 107
5.1.1 Computational paradigms .. 108

5.2 METHODS ... 110
5.2.1 Oxygen tension measurement acquisition in young and aged brain 110
5.2.2 Vascular structure acquisition .. 110
5.2.3 Mathematical blood flow and oxygen model ... 111
5.2.4 Vascular masking for a Cartesian mesh ... 112
5.2.5 Implementation .. 115

5.3 RESULTS .. 116
5.4 DISCUSSION ... 124
5.5 APPENDIX A: VESSEL IDENTIFICATION IN 3D ... 128

 DISCUSSION ... 131

 APPENDICES .. 133

7.1 APPENDIX A: CEREBROVASCULAR SYNTHESIS IMPLEMENTATION ... 133
7.1.1 Segment addition ... 133
7.1.2 Validating the optimal bifurcation point .. 135
7.1.3 Assigning diameter ... 137
7.1.4 Staged growth algorithm implementation ... 138

7.1.4.1 Pial Surface ... 139
7.1.4.1.1 Projecting bifurcation point to surface ... 141

7.1.4.2 Penetrating arterioles and ascending venules .. 143
7.1.4.3 Capillaries ... 146
7.1.4.4 Microcirculatory closure ... 148
7.1.4.5 Hemisphere implementation notes .. 151

7.2 APPENDIX B: SAMPLE GENERATOR IMPLEMENTATION AND VALIDATION ... 153
7.2.1 Analytic X-Y plane sampler ... 153
7.2.2 Analytic hexahedral sampling .. 154
7.2.3 Triangle sample generator ... 154
7.2.4 Triangle prism sample generator ... 159
7.2.5 Tetrahedral sampling ... 159

7.2.5.1 Method 1: using the vector norms ... 160
7.2.5.2 Method 2: using the random length sampling ... 161
7.2.5.3 Method 3: mirroring ... 163

7.3 APPENDIX C: CALCULATING CORTICAL DEPTH FROM A MESH .. 165
7.4 APPENDIX D: RAW DATASET TOPOLOGICAL ANALYSIS ... 166

7.4.1 Calculating Murray coefficient ... 166
7.4.2 Spectra of Murray coefficient from µCT data ... 169
7.4.3 The spectra of Murray coefficient from 2PLSM microcirculation ... 171

Table of Contents (continued)

viii

7.4.3.1 Anatomical characteristics of cerebral microcirculatory networks .. 176
7.5 APPENDIX E: PERPENDICULAR LINE CONNECTIONS, ALTERNATIVE METHODS .. 183
7.6 APPENDIX F: MODIFYING TORTUOSITY OF A SPLINE .. 188

7.6.1 Adding tortuosity .. 188
7.6.2 Reducing Tortuosity .. 190

7.7 APPENDIX G: USING A QUADRATIC MODEL WITH Y-OFFSET OF L0 TO MATCH CDFS .. 194
7.7.1 Relevant codes.. 197

7.7.1.1 Code for bifurcation volume optimization evaluation .. 197
7.7.1.2 Code for tetrahedral sample generation evaluation .. 199
7.7.1.3 Code for intersecting a point with a line at a 90 degree angle in Matlab ... 202
7.7.1.4 CDF matching case study and code in Matlab .. 202

7.8 APPENDIX H: PIAL GROWTH MODEL FOR HUMAN CORTEX ... 222
7.8.1 Growth from expansion .. 223

7.8.1.1 Case Studies: ... 224
7.8.2 Using ridge detection (paraboloid fitting method) ... 229

7.8.2.1 Case studies .. 240
7.8.2.2 Growth along the valleys .. 242

7.9 APPENDIX I: RECONSTRUCTING NETWORK GEOMETRY .. 245
7.9.1 Overview ... 245
7.9.2 Reconstructing with VMTK ... 247

7.9.2.1 Step 1. run vesselness filter .. 247
7.9.2.2 Step 2. Run VMTK ... 248
7.9.2.3 Step 3. run VTP-to-case/nwk converter .. 252

7.10 APPENDIX J: MESH RECONSTRUCTION ... 254
7.11 APPENDIX K: NETWORK ANALYSIS .. 256

7.11.1 Modeling with networks ... 256
7.11.2 Problem Formulation and solving .. 257
7.11.3 Tellegen theorem.. 260
7.11.4 Linear flow (Hagen Poiseuille) .. 261

7.11.4.1 Accounting for turbulent flow in HP ... 264
7.11.4.2 Problem simplification .. 267

7.11.5 Examples of Network Analysis .. 267
7.12 APPENDIX L: ALTERNATIVE MODELS OF COMPUTING HEMATOCRIT AND BIPHASIC VISCOSITY 277

7.12.1 Viscosity: ... 277
7.12.1.1 Pries In Vitro and In Vitro Modified models ... 281
7.12.1.2 Pries In Vivo model ... 283
7.12.1.3 Charm and Kurland, marginal zone layer .. 286
7.12.1.4 Kiani and Hudetz model .. 288
7.12.1.5 Viscosity trends ... 290

7.12.2 Plasma skimming ... 291
7.12.2.1 Pries and Secomb model .. 293
7.12.2.2 Linninger – KPSM (2015) and Beta Model (2017): .. 294
7.12.2.3 Dellimore .. 296
7.12.2.4 Fenton .. 297
7.12.2.5 Plouraboue ... 298
7.12.2.6 Balogh and Bagchi (3D immersive boundary method) ... 299
7.12.2.7 Plasma skimming implementation ... 302
7.12.2.8 Modified m-coefficient model .. 302

7.12.3 Application to networks ... 304
7.12.4 Comparison of plasma skimming models to empirical data .. 306
7.12.5 Closer look: variation of viscosity with diameter .. 308
7.12.6 Closer look: variation of viscosity with hematocrit level .. 309
7.12.7 Closer look: Variation in plasma skimming trends with diameter: ... 311
7.12.8 Closer look: Balogh and Bagchi (3D immersive boundary method) ... 312

7.13 APPENDIX M: METHODS FOR INTERROGATING MODEL PREDICTIONS ... 321

Table of Contents (continued)

ix

7.13.1 Measuring goodness of fit .. 321
7.13.1.1 The coefficient of determination (R2) for linear fit: .. 321
7.13.1.2 Adjusted coefficient of determination (for use with higher order fits): ... 323
7.13.1.3 Nonlinear goodness of fit Akaike Information Criterion (AIC): ... 324
7.13.1.4 Linear Regression Examples:... 325
7.13.1.5 Validation by direct minimization of residual error surface ... 329

7.13.2 Investigating simulation results ... 330
7.13.2.1 3D immersive visualizations ... 330
7.13.2.2 Calculating Perfusion .. 331
7.13.2.3 Path analysis ... 332

7.13.3 Logarithmic and power scaling .. 336
7.13.3.1 Surface flow divergence visualization ... 337
7.13.3.2 Volume flow divergence visualization .. 341
7.13.3.3 Displaying lognormal network trends ... 341
7.13.3.4 Case Study 1: Flow in a Microcirculatory KF dataset .. 343
7.13.3.5 Case study 2: calculation of mean and standard deviation .. 346
7.13.3.6 Case study3: calculation of median, interquartile range and median absolute deviations 347

7.14 APPENDIX N: DISCRETIZATION SCHEMES .. 351
7.14.1 Translating between analytic and discretized form in 1D .. 351

7.14.1.1 Graphical example .. 353
7.14.2 Two dimensions .. 355

7.14.2.1 Graphical example of numerical discretization .. 355
7.14.3 Three dimensions ... 356

7.14.3.1 Graphical example .. 357
7.14.4 Finite mesh discretization ... 359

7.15 APPENDIX O: BOUNDARY CONDITIONS .. 361
7.15.1 Dirichlet and Neumann .. 362
7.15.2 Proportional flow .. 362
7.15.3 Periodic ... 363
7.15.4 Constant Gain ... 364
7.15.5 Implementation .. 364

7.15.5.1 Choosing bulk flow BCs ... 365
7.15.5.2 Choosing hematocrit BCs .. 366
7.15.5.3 Choosing oxygen BCs .. 366

7.15.6 BCs from empirical measurements and optimization .. 367
7.15.6.1 Mathematical formulation of the optimization equation ... 368
7.15.6.2 Using the Fourier Transform to produce time-dependent BCs .. 374

7.15.7 Case studies .. 380
7.15.7.1 Intermediate network .. 384
7.15.7.2 Steady-state simple brain with circle of Willis .. 385
7.15.7.3 Steady-state patient ... 386

7.15.8 Dynamic inversion case studies .. 387
7.15.8.1 Simple tube ... 387
7.15.8.2 Time-Dependent Patient .. 393
7.15.8.3 Optimization from measurements that are out of phase ... 396

7.15.9 Findings .. 398
7.15.10 Fourier filtering and Gibbs phenomena .. 398
7.15.11 Considering phase shifts ... 400
7.15.12 Hand calculated symbolic validation: ... 405

7.15.12.1 Manual Implementation ... 410
7.15.13 Case study for frequency independence in the Fourier domain representation of the

optimization problem ... 410
7.16 APPENDIX P: VALIDATION OF MATRIX IDENTITIES .. 413
7.17 APPENDIX Q: DISCRETE FOURIER SERIES .. 416

7.17.1 Discrete Fourier Transform (DFT) - complex arithmetic ... 417
7.17.1.1 Truncation of Order N ... 417

Table of Contents (continued)

x

7.17.1.2 DFT in Matrix, Component and Index Format .. 418
7.17.2 Inverse DFT (IDFT) in Matrix, Component and Index Form ... 419

7.17.2.1 Reconstruction .. 421
7.17.2.2 Illustration of the Principal Roots ... 422

7.17.3 Applications .. 425
7.17.3.1 Reconstruction and noise removal for a heartbeat signal .. 427

7.17.4 Special topic: different indexing scheme of the DFT with implementation 430
7.17.4.1 Quarteroni implementation ... 433
7.17.4.2 Matlab/Trefethen implementation .. 433
7.17.4.3 Conventional implementation .. 434

7.17.5 Discrete Fourier Transform (DFT) – real arithmetic .. 439
7.17.6 Matlab implementation of DFT and iDFT ... 443
7.17.7 Matlab implementation of case study in section 31.3.1 with different methods for solving for

even coefficients ... 445
7.17.8 Matlab implementation of case study in section 31.3.2 .. 447
7.17.9 Matlab implementation of Figure 8.145 .. 448
7.17.10 Implementation notes .. 450
7.17.11 Non-Uniform Sampling Rates ... 451
7.17.12 Code for generating and sampling wavelengths of different frequencies 453
7.17.13 evaluation of the DFT matrices using real algebra ... 456

7.18 APPENDIX R: COPYRIGHT PERMISSIONS FOR PREVIOUSLY PUBLISHED MATERIAL ... 457
7.19 APPENDIX S: VALIDATING OXYGEN MODEL GENERATION ... 460

7.19.1 Introduction .. 461
7.19.2 Linear flow .. 462
7.19.3 Linear flow + convection ... 463
7.19.4 Linear flow + convection + rxn .. 465
7.19.5 Linear flow + convection + tissue diffusion (no reaction) ... 467
7.19.6 Linear flow + convection + tissue diffusion + vascular reaction.. 469
7.19.7 Linear flow + convection + tissue diffusion + vascular rxn(0th) + tissue rxn(0th) 471
7.19.8 Flow + convection + tissue diffusion + tissue rxn(0th) + MT (Dirichlet BC) 473
7.19.9 Tissue diffusion + Neumann BC .. 475
7.19.10 Tissue diffusion + Neumann BC + rxn(0th) ... 476
7.19.11 Flow + convection + tissue diffusion + tissue rxn(0th) + MT (Neumann BC) 477
7.19.12 Flow + convection + tissue diffusion + tissue rxn(1st) + MT (Neumann BC) 479
7.19.13 Conclusion .. 481

7.20 APPENDIX T: PETSC IMPLEMENTATION AND VALIDATION ... 482
7.20.1 Summary .. 482
7.20.2 Introduction .. 484
7.20.3 Working precision of a matrix .. 485
7.20.4 Using BCGS and GMRES ... 487

7.20.4.1 Solver Validation ... 487
7.20.4.2 Validating Binary reading/writing ... 490
7.20.4.3 Validating Using Initialization Vector .. 494
7.20.4.4 Solving Networks using ma48 Solution to Initialize and Converge Diverging Solvers 497

7.20.5 Simple diagonal matrix conditioning .. 500
7.20.5.1 Matrix Conditioning .. 501

7.20.6 PETSc block Jacobi preconditioner .. 505
7.20.7 Time to solve networks ... 509
7.20.8 Using a two-step solving method for lowering residuals ... 510
7.20.9 Solving Meshes ... 512

7.20.9.1 Diffusion Problem with Coarse-Grid Interpolation ... 512
7.20.10 Large meshes .. 513
7.20.11 Solving Dual-mesh problems .. 514

7.20.11.1 Mass Transfer Problem with Coarse-Grid Interpolation ... 514

Table of Contents (continued)

xi

7.20.11.2 Splines ... 516
7.20.11.3 Using connection vs boundary conditions ... 516
7.20.11.4 Investigation of units on solver ... 517

7.20.12 Testing Different Solvers... 518
7.21 APPENDIX U: CARTESIAN MESH... 519

7.21.1 Creating a Cartesian mesh ... 519
7.21.2 Creating a Cartesian mesh in memory ... 521
7.21.3 Making flux balances without mesh data structures ... 521
7.21.4 Connecting a 2-point network with a mesh ... 522
7.21.5 Splitting the network to match length scale of mesh (vascular re-segmentation) 523
7.21.6 Benefits from using mesh without data structures .. 525
7.21.7 Validation of mesh from memory compared to dense mesh ... 526
7.21.8 Interpolating a coarse-mesh guess for initializing solvers for fine-grid results 526

7.22 APPENDIX V: ILLUSTRATION OF DIFFUSION ... 529
7.23 APPENDIX W: STARLING LAW AND REVISED STARLING LAW ... 531

7.23.1 Summary .. 531
7.23.2 Introduction .. 532
7.23.3 Methods ... 533
7.23.4 Results .. 536

7.23.4.1 Considerations of the basolateral concentrations: ... 541
7.23.4.2 Parametric study of water and solute fluxes for different hydrostatic and osmotic pressure gradients

 542
7.23.5 Discussion: .. 544
7.23.6 Sample Matlab codes ... 546
7.23.7 Derivation of the Patlack Equation from conservation .. 552
7.23.8 Deriving revised Starling law from Patlack equation ... 557
7.23.9 Analytic solution to linear ODE of 2nd order ... 559
7.23.10 Example problem .. 562

7.23.10.1 Solution of diffusion/convection through a membrane .. 567
7.23.10.2 Solutions Prepared by Grant Hartung, 9/2018 .. 572
7.23.10.3 Code Listing ... 577

7.24 APPENDIX X: NEWTON METHOD FOR SOLVING NONLINEAR EQUATIONS ... 580
7.24.1 Theory ... 580
7.24.2 Implementation .. 582

7.24.2.1 Stepsize control .. 583
7.24.3 Case Study 1 - Two Nonlinear Equations: .. 585
7.24.4 Case Study 2, 2 nonlinear equations .. 588
7.24.5 Matlab N-dimensional Newton code .. 590
7.24.6 Derivation of Armijo linesearch optimal stepsize ... 593

7.25 APPENDIX Y: PROPERTIES OF LINEAR ALGEBRAIC SET OF EQUATIONS .. 597
7.25.1 Residual .. 597
7.25.2 Gradient ... 599
7.25.3 Energy ... 601

7.26 APPENDIX Z: IDEALIZED BRAIN GEOMETRY ... 603
7.27 APPENDIX AA: VALIDATION OF SPHERICAL GEOMETRY FOR DIFFUSION REACTION SYSTEM 608

7.27.1 1D symmetric simulation with a range of production rates and diffusivity rates 609
7.27.1.1 Consistency test of the production rate ... 609

7.27.2 Validation ... 612
7.27.2.1 Finite Volume Method compared to Finite Element Analysis .. 614

7.27.3 Mesh Independence ... 617
7.27.4 Material properties .. 618
7.27.5 The validation of flux balance .. 621

7.28 APPENDIX AB: OXYGEN IN THE BRAIN ... 623
7.28.1 Introduction .. 623

Table of Contents (continued)

xii

7.28.2 Problem formulation .. 625
7.28.3 Boundary conditions and material properties .. 626
7.28.4 Numerical Implementation .. 628

7.28.4.1 Solving a 3D block using successive 2D sweeps for initialization routine ... 629
7.28.5 1D problem ... 629

7.28.5.1 1D diffusion only ... 630
7.28.5.2 1D problem with reaction and mass transfer ... 637

7.28.6 2D problem ... 647
7.28.6.1 Diffusion in cylindrical coordinates ... 647
7.28.6.2 Problem formulation .. 648
7.28.6.3 Implementation .. 653

7.28.7 3D problem ... 662
7.28.7.1 3D blood flow (Darcy flow) and 3D convection-diffusion-rxn ... 664
7.28.7.2 1D blood flow projected to 3D mesh .. 673
7.28.7.3 1D blood flow, 1D convection, 3D diffusion-rxn, mass transfer ... 674

7.29 APPENDIX AC: MODELS OF AGING BRAIN .. 680
7.29.1 Physiological background to aging brain ... 681
7.29.2 Implementation .. 685

7.30 APPENDIX AD: PROPOSAL OF A FUNCTIONAL HYPEREMIA MODEL ... 687
7.30.1 Summary .. 687
7.30.2 Strategy .. 691
7.30.3 Implementation .. 693
7.30.4 Dynamically solving a steady problem ... 693

7.30.4.1 Validation .. 693
7.30.5 Dynamic solving of constant NO generation, vasculature unchanged 695
7.30.6 Dynamic solving of 0.04s impulse, 1 second simulation, NO generation, vasculature unchanged

 696
7.30.7 Dynamic solving of impulse NO generation, vasculature expansion .. 699
7.30.8 Dynamic solving of impulse NO generation, vasculature signaling.. 702
7.30.9 Dynamic biphasic blood flow .. 703

7.31 APPENDIX AE: TIME INTEGRATION SOLVERS ... 706
7.31.1 Introduction .. 706
7.31.2 Methods ... 707
7.31.3 Case study 1: cyclic reaction system ... 708
7.31.4 Matlab implementation of different solvers on the case study .. 712

7.32 APPENDIX AF: EDGE DETECTION IN A CARTESIAN MESH .. 718
7.32.1 Vessel edge detection in 2D Cartesian mesh .. 718
7.32.2 Validating implementation with diffusion .. 721
7.32.3 Identifying vessel edge in 3D .. 723

7.32.3.1 Case Studies .. 724
7.32.3.2 Simulation case studies .. 727

7.33 APPENDIX AG: PARAMETRIC STUDIES (PARAMETER SENSITIVITY) ON 1D-3D COUPLING .. 729
7.33.1 Mass Transfer ... 730
7.33.2 Reaction (kk) ... 732
7.33.3 Diffusivity (DD) ... 734
7.33.4 Volumes .. 736

7.34 APPENDIX AH: PHYSICAL CHEMISTRY BEHIND OXYGEN COMPOSITION IN BRAIN: .. 737
7.34.1 Background .. 737
7.34.2 Unit conversion between concentration and partial pressure ... 738
7.34.3 Conversion of CMRO2 from medical units to moles/s ... 743

7.35 APPENDIX AI: CALCULATING FREE OXYGEN CONCENTRATION HEMOGLOBIN BINDING KINETICS 745
7.36 APPENDIX AJ: THE HILL EQUATION .. 749

7.36.1 Effects of catalyzed oxygen unbinding on Hill equation ... 750
7.37 APPENDIX AK: MODELS OF THE NEUROVASCULAR UNIT .. 754

Table of Contents (continued)

xiii

7.37.1 Idealized networks .. 754
7.37.2 Realistic vasculature ... 763
7.37.3 Further information: building of the Greens functional parts in full .. 780

7.38 APPENDIX AL: MODELS FOR SYNTHESIZING VASCULAR NETWORKS .. 797
7.39 APPENDIX AM: DATA INVENTORY .. 803

7.39.1 Empirical Kleinfeld networks .. 803
7.39.2 Generation 1, biphasic blood flow paper data ... 804
7.39.3 Synthetic Kleinfeld second generation, 100-series, paper 2 (growth paper 1) 809
7.39.4 Empirical Boas .. 818
7.39.5 Synthetic Boas second generation, 100-series ... 819
7.39.6 Empirical Dunn ... 820
7.39.7 Synthetic Dunn second generation, 100-series ... 821
7.39.8 Mouse 1 (Sled reconstruction) .. 822
7.39.9 Mouse 2 hemispheres (reconstructed from Allen Brain Institute images) 825
7.39.10 Horowitz heart reconstructions .. 827
7.39.11 Human pial growth ... 829

 CITED LITERATURE ... 836

 VITA .. 853

xiv

LIST OF TABLES

Number Title Page

TABLE 2.1. REFERENCE TABLE FOR THE SUPPLEMENTAL DATA IN THIS DOCUMENT .. 7
TABLE 3.1. NOMENCLATURE .. 13
TABLE 3.2. PHYSIOLOGICAL PARAMETERS NECESSARY FOR ANATOMICAL GROWTH IN MOUSE. .. 28
TABLE 3.3. STATISTICS FOR FOUR LARGE SYNTHETIC ANATOMICAL NETWORK STRUCTURES, SPECIFICALLY TWO MOUSE MCA TERRITORIES

(SMCA1.101, SMCA2.101) AND TWO COMPLETE HEMISPHERES (SH1.101, SH2.101) ... 35
TABLE 3.4. PSEUDOCODE FOR MICROVASCULAR CLOSURE ALGORITHM .. 42
TABLE 3.5. PSEUDOCODE FOR GENERATING SAMPLE POINTS IN A TRIANGULAR MESH ... 42
TABLE 3.6. PSEUDOCODE FOR GENERATING SAMPLE POINTS IN A TRIANGULAR MESH ... 42
TABLE 3.7. PSEUDOCODE FOR GENERATING SAMPLE POINTS INSIDE A CARTHESIAN BOUNDING BOX .. 42
TABLE 4.1. PSEUDOCODE FOR GROUPING FACES FROM A 2-POINT NETWORK BETWEEN BIFURCATIONS .. 48
TABLE 4.2. PSEUDOCODE FOR CONVERTING A 2-POINT NETWORK TO SPLINED NETWORK .. 48
TABLE 4.3. PSEUDOCODE FOR CALCULATING A CDF FROM A SORTED VALUE ARRAY ... 50
TABLE 5.1. SUMMARY OF BOUNDARY CONDITIONS ... 73
TABLE 5.2: TOPOLOGICAL FEATURE COMPARISON BETWEEN EXPERIMENTAL 2PLSM AND SYNTHETIC DATA SETS 74
TABLE 5.3. PIAL NETWORK PARAMETERS USED IN THIS WORK IN COMPARISON TO PRIOR RESEARCH .. 87
TABLE 5.4. PHYSIOLOGICAL ASSESSMENT OF PLASMA SKIMMING MODELS .. 103
TABLE 6.1. PARAMETERS USED IN THE PREDICTION OF OXYGEN TENSION THROUGHOUT THE MURINE CORTEX 112
TABLE 8.1. PSEUDOCODE FOR THE SEGMENT ADDITION WITH VOLUME OPTIMIZATION ... 134
TABLE 8.2. COMPARISON FOR TOPOLOGICAL VALUES OF A BIFURCATION BEFORE AND AFTER OPTIMIZATION 135
TABLE 8.3. TOPOLOGICAL VALUES OF A BIFURCATION AFTER TWO DIFFERENT DIAMETER ASSIGNMENTS ... 135
TABLE 8.4. COMPARISON FOR TOPOLOGICAL VALUES OF A BIFURCATION BEFORE AND AFTER OPTIMIZATION 136
TABLE 8.5. TOPOLOGICAL VALUES OF A BIFURCATION AFTER TWO DIFFERENT DIAMETER ASSIGNMENTS ... 137
TABLE 8.6. PSEUDOCODE FOR STAGED GROWTH ... 139
TABLE 8.7. PSEUDOCODE FOR GROWING PENETRATING VESSELS .. 145
TABLE 8.8. PSEUDOCODE FOR GENERATING A SAMPLE POINT INSIDE A TRIANGULAR PRISM .. 145
TABLE 8.9. PSEUDOCODE FOR TETRAHEDRALSAMPLEGENERATOR1 .. 160
TABLE 8.10. PSEUDOCODE FOR TETRAHEDRALSAMPLEGENERATOR2 .. 162
TABLE 8.11. PSEUDOCODE FOR CALCULATING PERPENDICULAR DISTANCE FROM A TRIANGLE ... 165
TABLE 8.12. PSEUDOCODE FOR ADDING TORTUOSITY TO A GROUP OF SPLINES .. 189
TABLE 8.13. PSEUDOCODE FOR MAKING A SPLINE LONGER ... 190
TABLE 8.14: SUMMARY OF FRICTIONAL LOSSES DUE TO TURBULENT FLOW IN A TUBE ... 267
TABLE 8.15. SEGMENT RESISTANCE FOR SIMULATING THE NETWORK IN FIGURE 8.69 .. 268
TABLE 8.16. INVENTORY OF EQUATIONS USED FOR SIMULATING THE NETWORK IN FIGURE 8.69 .. 268
TABLE 8.17: HAGEN POISEUILLE LAW APPLIED ON EACH FACE IN THE COW ... 271
TABLE 8.18. FLOW BALANCES AND DIRICHLET BOUNDARY FOR EACH POINT IN THE COW .. 272
TABLE 8.19: RESISTANCE VECTOR USED IN FLOW COMPUTATIONS FOR THE COW (MMHG MIN/ML) .. 272
TABLE 8.20: RESULTS OF SOLVING LINEAR FLOW EQUATIONS FOR SIMPLIFIED CIRCLE OF WILLIS MODEL .. 274
TABLE 8.21: SIMULATION RESULTS FOR AN OCCLUSION USING DIFFERENT PROBLEM FORMULATIONS .. 275
TABLE 8.22: SIMULATION RESULTS FOR A VERY SHORT VESSEL (RESISTANCE = 0) USING DIFFERENT PROBLEM FORMULATIONS 276
TABLE 8.23: OVERVIEW VISCOSITY MODELS .. 281
TABLE 8.24: TABLE OF VARIABLES FOR PRIES’S IN VITRO VISCOSITY MODELS ... 282
TABLE 8.25: VARIABLES FOR PRIES’S IN VIVO VISCOSITY MODEL ... 286
TABLE 8.26: VARIABLES FOR CHARM AND KURLAND’S VISCOSITY MODEL .. 288
TABLE 8.27: VARIABLES FOR KIANI AND HUDETZ’S VISCOSITY MODEL ... 289
TABLE 8.28: COEFFICIENTS USED FOR PRIES’S PLASMA SKIMMING MODEL ... 294
TABLE 8.29: VARIABLES USED IN PLOURABOUÉ’S PLASMA SKIMMING MODEL ... 299
TABLE 8.30: STATISTICAL ANALYSIS OF NETWORKS USED FOR BIPHASIC BLOOD FLOW SIMULATIONS .. 305
TABLE 8.31. DATA FOR LINEAR FIRST ORDER FITTING PROBLEM.. 325

xv

TABLE 8.32. DATA FOR LINEAR SECOND ORDER FITTING PROBLEM .. 327
TABLE 8.33. DATA FOR LINEAR FITTING PROBLEM IN 3D .. 328
TABLE 8.34: OPTIMIZED VALUES FOR TERMINAL PRESSURES AND OVERALL MASS CONSERVATION ... 385
TABLE 8.35: MEASURED VALUES (𝑓) FROM NOVA REPORT ... 394
TABLE 8.36. DFT FOURIER TRANSFORMATION MATRIX T AND IDFT TRANSFORMATION MATRIX C FOR 2, 4, AND 6 DATA POINTS. 424
TABLE 8.37. FOURIER POLYNOMIAL AND ITS COEFFICIENTS TO RECONSTRUCT SIGNAL WITHOUT NOISE USING QUATERONI INDEXING

(N=84). .. 428
TABLE 8.38. COMPARISON OF INDEXING SCHEMES. QUARTERONI (K-N/2), TREFETHEN (K), AND MATLAB (K-1), N=4 435
TABLE 8.39. DFT FOURIER TRANSFORMATION MATRIX T AND IDFT TRANSFORMATION MATRIX C FOR 2, 4, AND 6 DATA POINTS USING

TREFETHEN INDEXING. .. 439
TABLE 8.40. COEFFICIENT C AND T MATRICES FOR THE DFT AND IDFT USING REAL ALGEBRA .. 443
TABLE 8.41: SUGGESTED PARAMETERS IN HUMAN FOR THE CALCULATIONS OF THE RSL ... 535
TABLE 8.42: PARAMETERS FOR CALCULATION BASED ON RAT KIDNEY. HERE, 𝛱P STANDS FOR 𝛱C. .. 536
TABLE 8.43: PARAMETERS USED FOR MY RECREATION OF THE CURVES FROM THE MANUSCRIPT. .. 536
TABLE 8.44: PARAMETERS USED FOR MY RECREATION OF THE CURVES FROM THE MANUSCRIPT. .. 541
TABLE 8.45: VALUES USED FOR THE COMPUTATION OF SCENARIO 1-5 IN FIGURE 8.166 .. 542
TABLE 8.46: RESULTING VALUES COMPUTED USING EQUATION (8.379) AND (8.382) USING VALUES IN TABLE 8.45. 543
TABLE 8.47. THIS SECTION DETAILS A DERIVATION OF THE REVISED STARLING LAW. ... 553
TABLE 8.48: VARIABLES USED FOR SECTION 8.23.3 .. 553
TABLE 8.49: PARAMETERS USED IN THIS CASE STUDY, EMPIRICALLY DERIVED .. 565
TABLE 8.50. SOLUTION FOR 𝑗𝑤 AND 𝑃𝑒 USING NEWTON METHOD ... 575
TABLE 8.51: THE GIVEN VALUES USED TO PREDICT THE GENERATION RATE OF THE PROTEIN ... 605
TABLE 8.52.THE GIVEN VALUES USED TO PREDICT THE GENERATION RATE OF THE PROTEIN .. 609
TABLE 8.53. CORRESPONDING DIFFUSIVITIES TO THE PLOTTED VARIABLES .. 611
TABLE 8.54. DIFFERENTIAL PRODUCTION RATES (RA) USED IN BIOMETRIC STUDY. (MOL/CM3/S) .. 611
TABLE 8.55. COMPARATIVE ERROR AND COMPUTATION TIME BETWEEN DIFFERENT DISCRETIZATION METHODS 618
TABLE 8.56. SIMULATION PARAMETERS NECESSARY FOR QUANTIFYING THE CONCENTRATION PROFILE. .. 619
TABLE 8.57. DATA CONVERSION FROM ORIGINAL UNITS TO STANDARDIZED UNITS AND SIMULATED UNITS. RED INDICATES A SECOND VALUE

FOR MINIMUM VALUE. ... 620
TABLE 8.58. PARAMETER AND BOUNDARY CONDITION CHOICES FOR THIS MODEL .. 628
TABLE 8.59. TIME LAPSE FOR SOLVING A 3D PROBLEM WITH SUCCESSIVE 2D SWEEPS .. 629
TABLE 8.60. VALUES USED TO GRAPHICALLY EVALUATE THE ANALYTIC SOLUTION TO DIFFUSION EQUATION IN CYLINDRICAL COORDINATES.

.. 652
TABLE 8.61.RESULTING FLOWS AT THE INITIAL AND TERMINAL SEGMENTS WHEN VARYING THE VESSEL RADIUS (A) 655
TABLE 8.62. RESULTING FLOWS AT THE INITIAL AND TERMINAL SEGMENTS WHEN VARYING THE VESSEL RADIUS (A) 656
TABLE 8.63. COMPARISON OF VASCULAR TOPOLOGICAL CHANGES OBSERVED IN THE AGED BRAIN .. 681
TABLE 8.64. COMPARATIVE ERROR BETWEEN NUMERICAL INTEGRATORS. .. 711
TABLE 8.65. COMPARATIVE PERFORMANCE BETWEEN NUMERICAL INTEGRATORS. ... 711
TABLE 8.66. PSEUDOCODE FOR VASCULAR LABELING OF 2D CARTESIAN MESH ... 719
TABLE 8.67. PSEUDOCODE FOR GETTING CELL INDEX SURROUNDING A POINT IN 2D CARTESIAN MESH .. 719
TABLE 8.68. MOLECULAR PROPERTIES OF OXYGEN AND WATER ... 739

xvi

LIST OF FIGURES

FIGURE 3.1. OVERVIEW OF CCO METHOD BY SCHREINER AND KARCH STARTING WITH ONE SEGMENT. .. 13
FIGURE 3.2. RECURSIVE TREE RESISTANCE COMPUTATIONS. .. 19
FIGURE 3.3. SYNTHESIS OF OPEN ARTERIAL STRUCTURES WITH SAMPLE GENERATORS. .. 27
FIGURE 3.4. A COLLECTION OF SYNTHETIC MICROCIRCULATORY NETWORKS OF THE SOMATOSENSORY CORTEX IN MOUSE. 29
FIGURE 3.5. FOUR STAGESOF THE PIAL LEPTOMENENGIAL ARTERIAL NETWORK GROWTH IN MOUSE. .. 31
FIGURE 3.6. COMPARISON OF GROWTHS WITH VASCULAR ATLAS. ... 33
FIGURE 3.7. ILLUSTRATION OF THE PIAL VASCULAR GROWTH FOR THE MOUSE HEMISPHERE. .. 34
FIGURE 3.8. NETWORK STRUCTURE AND SELECT SIMULATION RESULTS FROM BIPHASIC BLOOD FLOW FOR THE COMPLETE CEREBRAL

HEMISPHERE IN MOUSE. ... 37
FIGURE 4.1. WORKFLOW DIAGRAM FOR MATCHING THE LENGTH AND TORTUOSITY SPECTRA OF A SYNTHETIC NETWORK TO EMPIRICAL

NETWORK. ... 45
FIGURE 4.2. COMPARISON BETWEEN EMPIRICAL AND SYNTHETIC NETWORKS BEFORE AND AFTER ADDING TORTUOSITY. 46
FIGURE 4.3. A DIAGRAM EXEMPLIFYING TWO CASES WHERE A LINE IS SEGMENTED INTO AN ARBITRATY NUMBER OF SECTIONS. 47
FIGURE 4.4. GRAPHICAL REPRESENTATION OF THE TORTUOSITY OF A LINE. ... 51
FIGURE 4.5. TWO CUMULATIVE DENSITY FUNCTIONS THAT DO NOT MATCH. ... 53
FIGURE 4.6. CDF MATCHING BETWEEN TWO DATASETS ARE NOT THE SAME NUMBER OF VALUES. .. 55
FIGURE 4.7. TOPOLOGICAL COMPARISON BETWEEN 1 NETWORK FROM THE DUNN GROUP, 5 NETWORKS FROM THE BOAS GROUP AND 4

NETWORKS FROM THE KLEINFELD GROUP. .. 57
FIGURE 4.8. PROBABILITY DENSITY FUNCTIONS OF THE TORTUOSITY AS A FUNCTION OF NEUROANL LAYER IN THE EMPIRICALLY-DERIVED

NETWORKS OF BOAS, KLEINFELD, AND DUNN. .. 57
FIGURE 4.9. COMPARISON BETWEEN EMPIRICAL AND SYNTHETIC KLEINFELD NETWORKS. .. 58
FIGURE 4.10. COMPARISON BETWEEN SYNTHETIC AND EMPIRICAL BOAS NETWORKS. .. 59
FIGURE 4.11. COMPARISON BETWEEN SYNTHETIC AND EMPIRICAL DUNN NETWORKS. ... 59
FIGURE 4.12. WORKFLOW DIAGRAM OF THE ANATOMICAL GROWTH ALGORITHM. .. 61
FIGURE 4.13. NETWORK STRUCTURE AND SELECT SIMULATION RESULTS FROM BIPHASIC BLOOD FLOW FOR THE COMPLETE CEREBRAL

HEMISPHERE IN MOUSE. ... 62
FIGURE 4.14. THE PENETRATING ARTERIOLES APPLIED ACROSS AN ENTIRE REGION OF THE HUMAN BRIAN... 63
FIGURE 4.15. FURTHER VISUALIZATIONS OF CAPILLARY SYNTHESIS IN HUMAN CORTEX. ... 64
FIGURE 5.1. MULTI-MODAL IMAGING DATA USED TO CONSTRUCT REALISTIC MODELS OF CEREBRAL CIRCULATION FOR ENTIRE MOUSE BRAIN.

.. 70
FIGURE 5.2. MORPHOMETRIC COMPARISON BETWEEN EXPERIMENTAL AND SYNTHETIC MICROCIRCULATORY NETWORKS FROM THE MURINE

VIBRISSA PRIMARY SENSORY CORTEX. ... 77
FIGURE 5.3. PREDICTIONS OF HEMODYNAMIC STATES IN PRIMARY CORTEX SIMULATIONS SHOW LARGE VARIATIONS DUE TO NETWORK

ARCHITECTURE. ... 79
FIGURE 5.4. DEPTH DEPENDENT PATH ANALYSIS OF HEMATOCRIT TRAJECTORIES THROUGH THE CORTEX. ... 81
FIGURE 5.5. STATISTICS OF HEMATOCRIT DISTRIBUTION AND RBC FLUXES IN CORTICAL LAYERS OF CEREBRAL MICROCIRCULATORY

NETWORKS. .. 82
FIGURE 5.6. SCHEMATIC OF MULTISCALE BIPHASIC BLOOD FLOW SIMULATIONS IN THE ARTERIAL SIDE OF THE MCA TERRITORY. 85
FIGURE 5.7. BLOOD FLOW OF THE COMPLETE ARTERIAL AND VENOUS CIRCULATION FOR THE MCA TERRITORY IN MOUSE. 88
FIGURE 5.8. DEPTH DEPENDENCE OF HEMATOCRIT ON TOTAL BLOOD FLOW IN THE LEFT MCA TERRITORY. ... 89
FIGURE 5.9. SCHEMATIC OF THE DEPTH DEPENDENT HEMATOCRIT NETWORK EFFECT. ... 94
FIGURE 5.10. HEMATOCRIT FIELDS PORTRAYED ON TWO SIMPLIFIED MICROCIRCULATORY MODELS. .. 101
FIGURE 5.11. FLOW DIAGRAM FOR MAIN STEPS IN THE FIXED POINT ITERATION FOR BIPHASIC BLOOD FLOW COMPUTATIONS. 105
FIGURE 5.12. DIAMETER DEPENDENCE OF HEMATOCRIT IN MICROCIRCULATORY NETWORKS. ... 106
FIGURE 6.1. VASCULAR MASKING OF THE CARTESIAN MESH AND VESSEL SEGMENTATION. ... 114
FIGURE 6.2. MATRIX STRUCTURE OF DIFFUSION WITH DIFFERENT MESH TYPES. ... 117
FIGURE 6.3. EXAMPLE LABELING OF A CARTESIAN MESH AT DIFFERENT DENSITY LEVELS. .. 118
FIGURE 6.4. VALIDATION OF SIMULATION PARADIGM AGAINST THREE SETS OF EXPERIMENTAL DATA. .. 119
FIGURE 6.5. DETAILED ANALYSIS OF EXTRAVASCULAR SPACE IN AN OXYGEN SIMULATION FOR A SINGLE EMPIRICAL NETWORK. 120
FIGURE 6.6. DETAILED ANALYSIS OF EXTRAVASCULAR SPACE IN AN OXYGEN SIMULATION FOR A SECOND EMPIRICAL NETWORK. 121
FIGURE 6.7. OXYGEN PREDICTIONS THROUGHOUT THE EXTRAVASCULAR SPACE. .. 122

xvii

FIGURE 6.8. OXYGEN PREDICTIONS THROUGHOUT THE EXTRAVASCULAR SPACE IN A SECOND CASE. ... 123
FIGURE 6.9. EXAMPLES OF OXYGEN TENSION AT DIFFERENT CORTICAL DEPTHS IN YOUNG AND AGED MOUSE. 125
FIGURE 6.10. COMPARISON BETWEEN OXYGEN TENSION IN YOUNG AND AGED MOUSE. ... 126
FIGURE 6.11. SCHEMATIC DIAGRAM OF A CYLINDER. ... 129
FIGURE 8.1. WORKFLOW DIAGRAM FOR GROWING A SINGLE SEGMENT. .. 134
FIGURE 8.2. OPTIMIZATION SPACE FOR BIFURCATION LOCATION. ... 136
FIGURE 8.3. OPTIMIZATION SPACE FOR BIFURCATION LOCATION. ... 137
FIGURE 8.4. WORKFLOW DIAGRAM OF THE ANATOMICAL GROWTH ALGORITHM. .. 138
FIGURE 8.5. WORKFLOW DIAGRAM FOR PIAL SURFACE GROWTH. ... 140
FIGURE 8.6. PIAL GROWTH ALGORITHM AT DIFFERENT STAGES OF GROWTH. .. 141
FIGURE 8.7. UNITY IMAGES OF SLED MOUSE. IMAGES OF AN ARTERIAL TREE, VENOUS TREE, AND THE SLED MOUSE SURFACE MESH LOADED

IN UNITY. .. 141
FIGURE 8.8. EXPLANATORY DIAGRAM OF THE PROJECTION OF A POINT TO THE SURFACE MESH. .. 142
FIGURE 8.9. THE GRAPHICAL REPRESENTATION OF A TRIANGLE WITH REFERENCE TO A NEW POINT (PN). .. 143
FIGURE 8.10. (A) WORKFLOW DIAGRAM FOR GROWING PENETRATING VESSELS AND (B-C) EXAMPLE VIEWS OF ASCENDING VEINS IN AN

MCA TERRITORY. .. 146
FIGURE 8.11. WORKFLOW DIAGRAM FOR CAPILLARY GROWTH. ... 147
FIGURE 8.12. DEMONSTRATION OF ONE PASS OF THE CLOSURE ALGORITHM. ... 149
FIGURE 8.13. WORKFLOW DIAGRAM FOR CLOSURE GROWTH. ... 150
FIGURE 8.14. ANATOMICAL GROWTH OF A KLEINFELD-LIKE MICROCIRCULATORY NETWORK. ... 150
FIGURE 8.15. VALIDATION OF SAMPLE PLANAR SAMPLE GENERATOR. ... 154
FIGURE 8.16. VALIDATION OF DEPTH SAMPLE GENERATOR. .. 154
FIGURE 8.17. THE GRAPHICAL REPRESENTATION OF A TRIANGLE. ... 156
FIGURE 8.18. VISUALIZATION OF THE MIRRORING EFFECT WHEN A SAMPLE IS THROWN OUTSIDE A TRIANGLE. 157
FIGURE 8.19. DIFFERENT TRIANGLE SAMPLE GENERATOR BIAS EVALUATIONS. ... 158
FIGURE 8.20. TRIANGULAR PRISM USED IN ANATOMICAL GROWTH. .. 159
FIGURE 8.21. IN THIS CASE, THE PROJECTION INTO THE DOMAIN IS VALIDATED. ... 161
FIGURE 8.22. VISUALIZATION OF HOW THREE RANDOM VARIABLES CREATE A VECTOR OUTSIDE A TETRAHEDRON. 161
FIGURE 8.23. THE SECOND METHOD FOR TETRAHEDRAL SAMPLING. ... 163
FIGURE 8.24. THE SECOND METHOD FOR TETRAHEDRAL SAMPLING. ... 164
FIGURE 8.25. GRAPHICAL REPRESENTATION OF CALCULATING DEPTH FROM A SURFACE TRIANGLE. ... 165
FIGURE 8.26. THE SOLUTION OPF CASE STUDY 1 IS VALIDATED BY BOTH MATLAB AND DELPHI AT 𝛾=0.87. 167
FIGURE 8.27. SOLUTION TO CASE STUDY 2 IS 𝛾=2.165 AS VERIFIED BY MATLAB AND DELPHI. .. 168
FIGURE 8.28. CASE STUDY 3 DOES NOT HAVE A SOLUTION. IN THIS CASE, THE DOUBLE-ROOT OCCURS WITH A VERY LARGE RESIDUAL VALUE,

MEANING IT IS NOT A SOLUTION. .. 169
FIGURE 8.29. HISTOGRAMS OF THE MURRAY COEFFICIENT FOR THE 20 MICRON PIAL SURFACE, SOLVED FOR USING NEWTON METHOD. 170
FIGURE 8.30. DATASET PREDICTIONS OF PARENT DIAMETER (WITH VARYING COEFFICIENT, 𝛾) COMPARED TO EXPERIMENTAL PARENT

DIAMETER. ... 170
FIGURE 8.31. HISTOGRAMS OF THE MURRAY COEFFICIENT FOR THE 7 MICRON PIAL SURFACE, SOLVED FOR USING NEWTON METHOD. ... 171
FIGURE 8.32. MICRON DATASET PREDICTIONS OF PARENT DIAMETER (WITH VARYING COEFFICIENT, 𝛾) COMPARED TO EXPERIMENTAL

PARENT DIAMETER. .. 171
FIGURE 8.33. THE COMPARISON OF THE 4 EMPIRICAL DATASETS AND THEIR RESPECTIVE MURRAY COEFFICIENT AS DERIVED USING THE

NEWTON METHOD. ... 172
FIGURE 8.34. THE COMPARISON OF THE FIRST 2 EMPIRICAL DATASETS AND THEIR RESPECTIVE MURRAY COEFFICIENT AS DERIVED USING THE

NEWTON METHOD. ... 173
FIGURE 8.35. THE COMPARISON OF THE LAST 2 EMPIRICAL DATASETS AND THEIR RESPECTIVE MURRAY COEFFICIENT AS DERIVED USING THE

NEWTON METHOD. ... 174
FIGURE 8.36. HISTOGRAMS OF THE MURRAY COEFFICIENT FOR ACCUMULATED 4 EMPIRICAL MICROCIRCULATORY DATASETS. 175
FIGURE 8.37. THE COMPARISON OF THE CUMULATIVE EMPIRICAL DATASETS AND THEIR RESPECTIVE MURRAY COEFFICIENT AS DERIVED

USING THE NEWTON METHOD. .. 175
FIGURE 8.38. VISUALIZATION OF THE AUTOMATICALLY LABELED PENETRATING ARTERIES AND ASCENDING VEINS IN THE EMPIRICAL

NETWORKS. .. 176
FIGURE 8.39. VISUALIZATION OF THE WHOLE E1.1 NETWORK WITH PENETRATING VESSELS HIGHLIGHTED. 177

xviii

FIGURE 8.40. VISUALIZATION OF SHORT PENETRATING VESSELS THAT WERE INITIALLY OVERLOOKED BY THE LABELING ALGORITHM. 178
FIGURE 8.41. PICTORAL REPRESENTATION OF THE TWO CLASSIFICATIONS OF PENETRATING VESSELS ON THE ARTERIAL SIDE. 178
FIGURE 8.42. THE GRAPHICAL REPRESENTATION OF A FACE (AS VECTOR V IN BLUE) IN AN X, Y, AND Z COORDINATE SYSTEM. 179
FIGURE 8.43. PROBABILITY DENSITY FUNCTION OF THE VERTICAL ALIGNMENT OF EMPIRICAL NETWORKS. ... 180
FIGURE 8.44. VISUALIZATION OF VERTICAL ALIGNMENT OF EMPIRICAL NETWORK EKF1.1. ... 181
FIGURE 8.45. SCHEMATIC REPRESENTATION OF A NEW SAMPLE (P4) AND THE INTERSECTION POINT WITH THE EXISTING FACE (P1-P3) AT

POINT P2. .. 183
FIGURE 8.46. SIMPLE TEST OF PERPENDICULAR DISTANCE BETWEEN A POINT AND A LINE. ... 185
FIGURE 8.47. SCHEMATIC REPRESENTATION OF EVALUATION IF NEW BIFURCATION POINT (P2) LIES ALONG THE VECTOR <P1 – P3> BY

EVALUATING THE AREA OF THE TRIANGLE MADE BY 3 POINTS <P1, P2, P3>. ... 185
FIGURE 8.48. SCHEMATIC REPRESENTATION OF VARIABLES NECESSARY FOR ADDING TORTUOSITY TO A SPLINED SEGMENT. 188
FIGURE 8.49. WORKFLOW DIAGRAM FOR ADDING TORTUOSITY TO A SPLINED NETWORK. ... 190
FIGURE 8.50. VISUALIZATION OF A CLOSURE SEGMENT THAT CONNECTS ARTERIES TO VEINS THROUGH AN ACUTE ANGLE. 191
FIGURE 8.51. THE CONTROL AND TERMINAL POINTS TO TWO BEZIER CURVES OF 3RD ORDER LINKED TOGETHER TO MAKE A SPLINED

SEGMENT. .. 192
FIGURE 8.52. THE CONTROL AND TERMINAL POINTS TO TWO BEZIER CURVES OF 3RD ORDER LINKED TOGETHER TO MAKE A SPLINED

SEGMENT. .. 193
FIGURE 8.53. THE FINISHED PRODUCT OF REDUCING TORTUOSITY CHANGES THE LONG, SMOOTH CURVE INTO THE SHORTER SMOOTH

CURVE. .. 193
FIGURE 8.54. COMPLETELY DIFFERENT NETWORKS (GENERATED WITH SIMILAR ALGORITHMS BUT AT DIFFERENT SCALES AND DIFFERENT

DENSITIES) MATCHED WITH 2, 5, 10, AND 100 BINS. ... 196
FIGURE 8.55. MATCHING CDFS BETWEEN EKF1.1 AND SKF1.101. .. 197
FIGURE 8.56. VISUALIZATION OF AUTOMATED CDF MATCHING USING CASE STUDY 1. ... 203
FIGURE 8.57. EXAMPLE OF ATTACHING TWO POINTS ON A HUMAN PIAL SURFACE. ... 222
FIGURE 8.58. PREDICTION OF MAX AND MINIMUM CURVATURE FOR AN ANALYTIC SURFACE DEFINED BY A SERIES OF POINTS USING A PRE-

KNOWN FUNCTION. ... 234
FIGURE 8.59. PREDICTION OF MAXIMUM AND MINIMUM CURVATURE FOR AN ANALYTIC SURFACE DEFINED BY A SERIES OF POINTS USING A

PRE-KNOWN FUNCTION USING OFF-CENTER SAMPLING. ... 235
FIGURE 8.60. THE ANALYTIC CURVE GIVEN BY EQUATION (8.46) IS RECREATED FROM THE POINT COORDINATES OF A TRIANGULAR SURFACE

MESH. ... 236
FIGURE 8.61. THE NEW COORDINATE SYSTEMS FOR EACH TRIANGLE IN THE MESH AS IT SITS ON THE PLANE. FOR SCALING PURPOSES, THE Z-

COORDINATE SHOWN HERE IS THE SQUARE ROOT OF THE Z-COORDINATE DEFINED BY EQUATION (8.46). THE BLUE LINES ON EACH

TRIANGLE CORRELATE TO 𝑒𝑛, THE RED LINE IS 𝑒1, AND THE GREEN LINE IS 𝑒2. THE BLUE LINES REPRESENT 𝑒𝑛, THE GREEN LINES

REPRESENT 𝑒2, AND THE RED LINES REPRESENT 𝑒1. ... 238
FIGURE 8.62. TRANSLATING THE (LEFT) ORIGINAL STRUCTURE IN CARTESIAN COORDINATES TO (RIGHT) THE COORDINATE SYSTEM DEFINED

BY THE BLUE TRIANGLE. ... 239
FIGURE 8.63. VISUALIZATION OF MANY TYPES OF CURVATURE CALCULATIONS ACROSS A SMALL SECTION OF THE HUMAN CORTICAL

SURFACE. ... 241
FIGURE 8.64. CURVATURE CALCULATIONS ON THE HEMISPHERE REVEAL EXCELLENT IDENTIFICATION OF RIDGES AND VALLEYS. 242
FIGURE 8.65. SCREENSHOT OF THE VMTK SOFTWARE AFTER SUCCESSFUL COMPILING OF THE CODE AND EXECUTION OF THE FIRST LINES.

.. 249
FIGURE 8.66. SCREENSHOT OF THE VMTK SOFTWARE AFTER SUCCESSFUL IDENTIFICATION OF THE BA, LCA, AND RCA AND PLACEMENT OF

RED SPHERES ON THESE LOCATIONS. .. 251
FIGURE 8.67. ANATOMICAL RECONSTRUCTION SHOWING A MOUSE BRAIN IN TWO VIEWPOINTS. RECONSTRUCTION WAS PERFORMED WITH

ITK-SNAP AND MESHING/LABELING WAS PERFORMED BY ICEM. .. 255
FIGURE 8.68: A SIMPLIFIED NETWORK OF NODES (P) AND ARCS (F). ... 259
FIGURE 8.69: SIMPLIFIED CEREBRAL ANGIOARCHITECTURE (FLOW IS FROM LEFT TO RIGHT) .. 268
FIGURE 8.70: REPRESENTATIONS OF THE HUMAN CIRCLE OF WILLIS (COW). ... 270
FIGURE 8.71: FAHREUS AND FAHREUS-LINDVQVIST EFFECT ILLUSTRATION. .. 279
FIGURE 8.72: EXPERIMENTAL DATA FOR CHANGES IN APPARENT VISCOSITY WITH DIAMETER. ... 280
FIGURE 8.73:APPARENT VISCOSITY OF FOR THE (A,B) PRIES IN-VITRO MODEL AND (C,D) PRIES IN-VITRO MODIFIED MODEL. 283
FIGURE 8.74: APPARENT VISCOSITY FOR PRIES’S IN VIVO MODEL. .. 286
FIGURE 8.75: RELEVANT DIMENSIONS IN A SINGLE TUBE. ... 288

xix

FIGURE 8.76: APPARENT VISCOSITY AS PREDICTED BY KIANI AND HUDETZ VISCOSITY MODEL. .. 290
FIGURE 8.77. PARAMETRIC INVESTIGATION OF VISCOSITY OVER A RANGE OF DIAMETER AND HEMATOCRIT. 291
FIGURE 8.78. PLASMA SKIMMING IN SMALL VESSELS. IN VESSELS WITH SMALL DIAMETER, THE RED BLOOD CELLS AGGREGATE AT THE

CENTER OF THE CAPILLARY, CREATING A CELL FREE LAYER. .. 292
FIGURE 8.79: GRAPHIC REPRESENTATION OF A BASIC BIFURCATION. ... 292
FIGURE 8.80: VISUALIZATION OF THE M VALUE AS A FUNCTION OF HEMATOCRIT. .. 303
FIGURE 8.81. THE PREDICTED EFFECTS OF CHANGING DIAMETER AND HEMATOCRIT AS A FUNCTION OF DIFFERENT SPLIT RULES APPLIED TO A

SINGLE BIFURCATION. ... 305
FIGURE 8.82. THE NETWORK EFFECT OF HEMATOCRIT DISTRIBUTION. ... 306
FIGURE 8.83: COMPARING THE VARIATION IN HEMATOCRIT SPLIT (TOP) AND RBC FLUX FRACTION (BOTTOM) WITH THE FLOW SPLIT..... 307
FIGURE 8.84. GENERAL TRENDS OF VISCOSITY OVER DIAMETER FOR A HEMATOCRIT OF 0.4. .. 308
FIGURE 8.85. VISCOSITY COMPARISON BETWEEN PRIES IN VITRO MODIFIED AND PRIES IN VIVO MODELS. .. 309
FIGURE 8.86. PREDICTED VISCOSITY BY ALL MODELS AT HIGH HEMATOCRIT VALUES. .. 310
FIGURE 8.87. PREDICTED VISCOSITY BY ALL MODELS FOR DIAMETERS <20ΜM. ... 311
FIGURE 8.88. BRANCH HEMATOCRIT AND FLOW VARIATION AS A FUNCTION OF THE DIAMETER FOR ONE BIFURCATION. 312
FIGURE 8.89: LINEAR FIRST ORDER FITTING BETWEEN DATA POINTS (BLUE CIRCLES) AND LINE OF BEST FIT (ORANGE LINE) USING LINEAR

REGRESSION. .. 326
FIGURE 8.90: SECOND ORDER LINEAR FITTING MODEL (BLUE LINE) AND SOURCE DATA (ORANGE POINTS). .. 327
FIGURE 8.91: LINEAR FIT OF A PLANE THROUGH 5 POINTS IN 3D.. 328
FIGURE 8.92. BLOOD PRESSURE AND HEMATOCRIT VISUALIZED IN AN IMMERSIVE 3D ENVIRONMENT FOR QUALITATIVE ANALYSIS OF GLOBAL

TRENDS. .. 331
FIGURE 8.93. ANATOMICAL NETWORK OF A COMPLETE CIRCLE OF WILLIS (LENGTHS NOT TO SCALE) WITHOUT DIAMETER INFORMATION.

.. 333
FIGURE 8.94. A WORKFLOW DIAGRAM FOR THE PATH ANALYSIS. ... 334
FIGURE 8.95. EXAMPLE OF LOOP IN ARTERIAL TREE. .. 335
FIGURE 8.96. THE COMPARISON OF LINEAR, LOG, AND POWER LAW BETWEEN THE VALUES OF -1 AND 1 SHOWS A POWER LAW CAN

OVERCOME THE ASYMPTOTE IN THE LOG PLOT AT Y < 1. .. 336
FIGURE 8.97. THE COLORATION OF THE PREVIOUSLY PROPOSED LOG PLOTS SHOWS THE POWER LAW HAS A DISTINCT ADVANTAGE OVER THE

LOG SCALING. ... 337
FIGURE 8.98. VISUALIZATION OF SURFACE FLOW VECTORS. .. 338
FIGURE 8.99. STEP 1 OF THE SURFACE DIVERGENCE CALCULATING ALGORITHM. .. 339
FIGURE 8.100. STEP 2 OF THE SURFACE DIVERGENCE CALCULATING ALGORITHM. .. 339
FIGURE 8.101. STEP 3 OF THE SURFACE DIVERGENCE CALCULATING ALGORITHM. .. 339
FIGURE 8.102. COLORATION COMPARISON BETWEEN LINEAR AND LOG SCALING FOR PIAL SURFACE DIVERGENCE. 340
FIGURE 8.103. VISUALIZATION OF THE VOLUME DIVERGENCE IMPLEMENTED OVER A NETWORK AND A 10X10X10 CARTESIAN MESH. ... 341
FIGURE 8.104: PROBABILITY DENSITY FUNCTION OF FLOW IN LAYER 1 AFTER PIAL VESSELS HAVE BEEN REMOVED. 344
FIGURE 8.105: PROBABILITY DENSITY FUNCTION OF FLOW IN LAYER 1 AFTER PIAL VESSELS HAVE BEEN REMOVED WITH A LOGARITHMIC X-

AXIS. ... 344
FIGURE 8.106: ANNOTATED PDF OF FLOW IN LAYER 1 OF THE MICROCIRCULATORY BED. ... 345
FIGURE 8.107: ANNOTATED PDF OF FLOW IN LAYER 1 OF THE MICROCIRCULATORY BED. ... 345
FIGURE 8.108: THE GRAPHICAL INTERPRETATION OF STANDARD DEVIATION ON A PDF WITH A NORMAL DISTRIBUTION. 347
FIGURE 8.109:. IDENTIFICATION OF THE MEDIAN, 25% AND 75% LOCATION ON A GAUSSIAN DISTRIBUTION. 348
FIGURE 8.110: AN EXAMPLE OF AN ARRAY BEFORE AND AFTER SORTING. .. 348
FIGURE 8.111: A SORTED ARRAY WITH ANNOTATIONS FOR THE MEDIAN AND INTERQUARTILE RANGE (25% - 75%). 349
FIGURE 8.112: AN EXAMPLE OF A SORTED ARRAY BEFORE AND AFTER SUBTRACTING THE MEDIAN VALUE FROM THE EVERY ELEMENT OF THE

VECTOR. .. 349
FIGURE 8.113: AN EXAMPLE OF FINDING THE MAD VALUE OF A MAD ARRAY (SEE FIGURE 8.112 FOR MORE DETAILS). 350
FIGURE 8.114: AN EXAMPLE OF A MAD ARRAY COMPARED TO THE OUTLIER VALUE, 3∙(MAD VALUE). .. 350
FIGURE 8.115. GRAPHICAL REPRESENTATION OF THE DISCRETIZED 1D DOMAIN ON WHICH THE DIFFUSION-REACTION PROBLEM WILL BE

FORMULATED. NOTE, Δ𝑥 IS UNIFORM. .. 353
FIGURE 8.116. 2-DIMENSIONAL GRID SYSTEM ON WHICH THE TRANSPORT EQUATIONS WILL BE DISCRETIZED. 356
FIGURE 8.117. 2-DIMENSIONAL GRID SYSTEM ON WHICH THE TRANSPORT EQUATIONS WILL BE DISCRETIZED. 358
FIGURE 8.118. SCHEMATIC OF DOMAIN ON WHICH THE CURRENT 1D IMPLEMENTATION IS BEING SOLVED. 359

xx

FIGURE 8.119. CASE STUDY 1. .. 381
FIGURE 8.120. CASE STUDY 2. .. 382
FIGURE 8.121. VISUALIZATION OF CASE STUDY 3. ... 383
FIGURE 8.122. THE NETWORK USED FOR THE PRESENT CASE STUDY. ... 384
FIGURE 8.123. SIMPLIFIED CEREBROVASCULAR NETWORK USED FOR OPTIMIZING REAL-WORLD DATA TO SIMULATION CONSTRAINTS. 386
FIGURE 8.124. OPTIMIZATION GIVES BEST BC TO MATCH MEASURED FLOWS. .. 386
FIGURE 8.125. A STEADY STATE SIMULATION USING THE NOMINAL VALUES FROM NOVA. ... 387
FIGURE 8.126. THE DYNAMIC INLET AND OUTLET PRESSURES AND FLOW MEASUREMENTS. ... 388
FIGURE 8.127. THE DYNAMIC INLET AND OUTLET PRESSURES AND FLOW MEASUREMENTS. ... 389
FIGURE 8.128. THE DYNAMIC INLET AND OUTLET PRESSURES AND FLOW FROM MEASUREMENTS. .. 390
FIGURE 8.129. THE DYNAMIC INLET AND OUTLET PRESSURES AND FLOW FROM MEASUREMENTS. .. 391
FIGURE 8.130. THE DYNAMIC INLET AND OUTLET PRESSURES AND FLOW FROM MEASUREMENTS. .. 392
FIGURE 8.131. THE ALIGNMENT OF THE NOVA RESULTS AND PREDICTED FLOW PATTERNS USING FOURIER SERIES OPTIMIZATION. 395
FIGURE 8.132. THE RESULTING FLOW OF TWO SEGMENTS WHEN THE INLET AND OUTLET BCS ARE NOT IN PHASE WITH ONE ANOTHER AND

THE MEASUREMENTS HAVE KNOWN ERROR. .. 396
FIGURE 8.133. OPTIMIZATION ON A SIMPLE BIFURCATION WITH KNOWN ERROR IN AMPLITUDE AND PHASE OF MEASUREMENTS. T 397
FIGURE 8.134. THE RECONSTRUCTED BA FLOWS USING A MULTITUDE OF FREQUENCIES. .. 399
FIGURE 8.135. THE RESULTING PRESSURE AND FLOW CURVES IN TIME AFTER BEING OPTIMIZED WITH NO ERROR. 400
FIGURE 8.136. THE DYNAMIC INLET AND OUTLET PRESSURES AND FLOW MEASUREMENTS. ... 401
FIGURE 8.137. THE RESULTING PRESSURE AND FLOW WHEN THE INLET AND OUTLET BCS ARE NOT IN PHASE WITH ONE ANOTHER AND THE

MEASUREMENTS ARE COMMENSURATE WITH THE FORWARD SIMULATION. ... 403
FIGURE 8.138. THE RESULTING PRESSURE AND FLOW WHEN THE INLET AND OUTLET BCS ARE NOT IN PHASE WITH ONE ANOTHER AND THE

MEASUREMENTS HAVE KNOWN ERROR... 404
FIGURE 8.139. VISUALIZATION OF THE FIRST 4 PRINCIPLE ROOTS IN THE DISCRETE FOURIER SERIES. .. 422
FIGURE 8.140. VISUALIZATION OF THE POWERS OF THE FOURTH PRINCIPLE ROOT NEEDED IN DFT FOR DATA SETS WITH N=4 POINTS. .. 423
FIGURE 8.141. GRAPHICAL REPRESENTATION OF THE PRINCIPLE ROOT BEING ROTATED (RAISED TO DIFFERENT POWERS) AND SCALED BY

F(XJ). .. 425
FIGURE 8.142. (BLUE) ORIGINAL SIGNAL AND (ORANGE) RECONSTRUCTION USING DISCRETE FOURIER SERIES AND INVERSE DISCRETE

FOURIER SERIES. ... 427
FIGURE 8.143. A) NOISY PERIODIC SIGNAL. B) BLUE CURVE IS CONSTRUCTED BY USING ALL COEFFICIENTS IN IDFT WITH A LOW-PASS FILTER

APPLIED. .. 429
FIGURE 8.144. COMPARISON OF INDEXING SCHEMES BETWEEN 3 DIFFERENT DFT INDEXING PARADIGMS. 431
FIGURE 8.145. COMPARISON OF INDEXING SCHEMES BETWEEN TWO DIFFERENT DFT INDEXING PARADIGMS. 432
FIGURE 8.146. GRAPHICAL REPRESENTATION OF INTERPOLATION VECTORS CALCULATED WITH INDEXING SCHEMES OF TREFETHEN (LEFT)

AND QUARTERONI (RIGHT). .. 436
FIGURE 8.147. A GRAPHICAL REPRESENTATION OF TWO MIXED MESH SYSTEMS (WITH REACTION, DIFFUSION, MASS TRANSFER, AND

CONVECTION). .. 460
FIGURE 8.148. THE INTERFACE USED TO RUN ALL CASE STUDIES... 462
FIGURE 8.149. THE COMPARISON OF DIFFERENT ITERATIVE SOLVING ALGORITHMS WITH SIMPLE DIAGONAL PRECONDITIONER. 493
FIGURE 8.150. THE COMPARISON OF DIFFERENT ITERATIVE SOLVING ALGORITHMS WITH SIMPLE DIAGONAL PRECONDITIONER. 504
FIGURE 8.151. THE COMPARISON OF DIFFERENT ITERATIVE SOLVING ALGORITHMS WITH PETSC BLOCK JACOBI PRECONDITIONER. 509
FIGURE 8.152. COMPARISON OF THE RUNTIMES FOR DIFFERENT SIZE SYSTEMS WITH DIFFERENT SOLVERS. 510
FIGURE 8.153. DESIGN OF THE RECURSIVE ALGORITHM THAT SPLITS THE NETWORK INTO SMALLER SEGMENTS UNTIL THE CRITERIA OF BEING

ON THE SAME SCALE AS THE MESH IS CONFIRMED. .. 523
FIGURE 8.154. THE RE-SEGMENTATION ALGORITHM CLEARLY INCREASES THE VASCULAR SEGMENT DENSITY WITHOUT ALTERING THE

SEGMENT STRUCTURE. .. 524
FIGURE 8.155. COMPARISON OF COMPUTATIONAL EFFORT TO SOLVE A SIMPLE DIFFUSION PROBLEM WITH ALL MESH DATA STRUCTURES

(DENSE MESH) AND WITH ONLY MINIMAL DATA STRUCTURES (WITHOUT MESH). .. 525
FIGURE 8.156. GLOBAL AND LOCAL CO-ORDINATE SYSTEM FOR THE HEXAHEDRON ELEMENT. .. 527
FIGURE 8.157. EVALUATION OF TRANSPORT FLUX AND DIVERGENCE ON UNSTEADY CONCENTRATION PROFILE IN 1-DIMENSION. 530
FIGURE 8.158. OPPOSING PRESSURES THAT EXIST IN A SYSTEM WITH A SEMI-PERMEABLE MEMBRANE AND A PRESSURE GRADIENT. 532
FIGURE 8.159. CARTOON OF THE A SECTION OF THE BBB AND THE RELEVANT STATES. ... 535
FIGURE 8.160. RECREATED CURVE FROM [252]. .. 537

xxi

FIGURE 8.161. PICTOGRAPHIC REPRESENTATION OF THE TWO SYSTEMS BEING EVALUATED. .. 538
FIGURE 8.162. VISUALZIATION OF TRENDS IN DIFFERENT MODELS IN RELATIONSHIP TO WATER FLUX AND INTERSTITIAL PRESSURE. 539
FIGURE 8.163. THE SCHEMATIC REPRESENTATION OF THE SIMULATED SYSTEM. .. 540
FIGURE 8.164. THE EFFECT OF PECLET NUMBER ON THE CONCENTRATION PROFILE. .. 540
FIGURE 8.165. THE EFFECT OF ENFORCING POSITIVE DEFINITE CONCENTRATION FOR CI. ... 542
FIGURE 8.166. CLASSIC AND REVISED STARLING’S LAW ACROSS A MEMBRANE WITH HYDROSTATIC (P1-P2) AND OSMOTIC (C1-C2)

PRESSURE DRIVING FORCES. ... 544
FIGURE 8.167. (A) A CARTOON REPRESENTATION OF THE PRESSURE GRADIENTS THAT OCCUR ACROSS THE BBB THROUGH A SINGLE PORE.

.. 563
FIGURE 8.168. CONCENTRATION PROFILE, C(X) IN µMOL/µM3, AS A FUNCTION OF LENGTH, X IN µM, BETWEEN X=0 AND X=L. 574
FIGURE 8.169. RESIDUAL ERROR LINE PLOT (1D) AND SURFACE (2D) COMPUTED WITH EXHAUSTIVE ENUMERATION. 575
FIGURE 8.170. PLOT OF RESULTING FLOW WHEN CHANGING PARAMETRICALLY VARYING THE ARTERIAL PRESSURE (FROM PC=1-

100MMHG). ... 576
FIGURE 8.171. INFORMATION FLOW DIAGRAM AND PSEUDO-CODE FOR THE NEWTON METHOD USING STESIZE CONTROL. 582
FIGURE 8.172. THE VISUALIZATION OF ERROR OF THE NONLINEAR FUNCTION IN THE NEWTON DIRECTION. 584
FIGURE 8.173. RESIDUAL ERROR SURFACE FOR EQUATION (8.497). .. 585
FIGURE 8.174. FIRST NEWTON STEP WITH ARMIJO LINESEARCH EMPLOYED. .. 586
FIGURE 8.175. THE SECOND NEWTON STEP WITH ARMIJO LINESEARCH EMPLOYED. .. 586
FIGURE 8.176. THIRD NEWTON STEP WITH ARMIJO LINESEARCH EMPLOYED. ... 587
FIGURE 8.177. SOLUTION TO THE NONLINEAR EQUATIONS IS FOUND AFTER A FEW MORE SMALL UPDATES (NOT VISIBLE IN THE FIGURE).587
FIGURE 8.178. FIRST NEWTON STEP WITH ARMIJO LINESEARCH EMPLOYED. IN THIS STEP, THE STEPSIZE NEEDS TO BE REDUCED IN ORDER

TO GIVE A REASONABLE UPDATE. .. 588
FIGURE 8.179. SECOND NEWTON STEP WITH ARMIJO LINESEARCH EMPLOYED. IN THIS STEP, THE STEPSIZE NEEDS TO BE REDUCED IN ORDER

TO GIVE A REASONABLE UPDATE. .. 589
FIGURE 8.180. THIRD NEWTON STEP WITH ARMIJO LINESEARCH EMPLOYED. IN THIS STEP, THE STEPSIZE NEEDS TO BE REDUCED IN ORDER

TO GIVE A REASONABLE UPDATE. .. 589
FIGURE 8.181. SOLUTION TO THE NONLINEAR EQUATIONS IS FOUND AFTER A FEW MORE SMALL UPDATES (NOT VISIBLE IN THE FIGURE).590
FIGURE 8.182. VISUALIZATION OF THE RESIDUAL ERROR ON A 2X2 SYSTEM OF EQUATIONS. .. 599
FIGURE 8.183. GRAPHIC REPRESENTATION OF THE COORDINATE TRANSFORMATION EXPRESSING THE GRADIENT OF THE FUNCTION IN TERMS

OF THE MATRIX A AND VECTORS B AND X GUESS. ... 601
FIGURE 8.184. SCHEMATIC REPRESENTATION OF THE IDEALIZED SYSTEM. .. 604
FIGURE 8.185. BIOMETRIC STUDY OF DIFFERING D2HG RELEASE RATES AND DIFFUSIVITIES... 606
FIGURE 8.186. SCHEMATIC REPRESENTATION OF THE IDEALIZED SYSTEM. .. 608
FIGURE 8.187. BIOMETRIC STUDY OF DIFFERING MATERIAL DIFFUSIVITIES AND TUMOR PRODUCTION RATES. 611
FIGURE 8.188. THE COMPARISON OF THE FINITE VOLUME METHOD AGAINST THE ANALYTIC SOLUTION SHOWS EXCELLENT AGREEMENT. 613
FIGURE 8.189. COMPARISON BETWEEN THE FEM AND FVM ON THE SPHERICAL GEOMETRY SYSTEM. .. 614
FIGURE 8.190. THE COMPARISON OF THE FINITE VOLUME METHOD WITH THE FINITE ELEMENT METHOD. .. 616
FIGURE 8.191. THE COMPARISON OF THE FINITE VOLUME METHOD WITH THE FINITE ELEMENT METHOD WHERE EACH HAS A SUFFICIENT

MESH DENSITY TO PROVIDE MESH INDEPENDENCE. ... 617
FIGURE 8.192. COMPARATIVE ERROR AS A FUNCTION OF MESH DENSITY. .. 618
FIGURE 8.193. OVERVIEW OF RELEVANT TRANSPORT PHENOMENA RELATED TO THE LIFESPAN OF OXYGEN IN THE BRAIN. 626
FIGURE 8.194. SCHEMATIC OF DOMAIN ON WHICH THE CURRENT 1D IMPLEMENTATION IS BEING SOLVED. 630
FIGURE 8.195. GRAPHICAL REPRESENTATION OF TWO DISCRETIZATION TECHNIQUES IN 1-DIMENSION. ... 634
FIGURE 8.196. COMPARISON OF DIFFERENT MESH SIZES WITH THE ANALYTIC SOLUTION OF THE PEAK CONCENTRATION (COMPUTED

ABOVE). .. 634
FIGURE 8.197. COMPARISON OF DIFFERENT MESH SIZES WITH THE ANALYTIC SOLUTION OF THE PEAK CONCENTRATION (COMPUTED

ABOVE). .. 635
FIGURE 8.198. COMPARISON OF DIFFERENT MESH SIZES. ... 637
FIGURE 8.199. OVERVIEW OF DOMAIN ON WHICH THE CURRENT 1D IMPLEMENTATION IS BEING SOLVED. 638
FIGURE 8.200. SCHEMATIC LAYOUT OF THE 1D SIMPLIFIED PROBLEM. .. 638
FIGURE 8.201. PROFILE SHAPE COMPARISON OF DIFFERENT BOUNDARY CONDITIONS AND REACTION MODELS FOR A 1D

DIFFUSION/REACTION PROBLEM. .. 640
FIGURE 8.202. COMPARISON BETWEEN DIFFERENT REACTION RATES AND BOUNDARY CONDITIONS IN THE 1D OXYGEN SIMULATION. 641

xxii

FIGURE 8.203. THREE METHODS (MODELS) FOR MASS TRANSFER BETWEEN VASCULATURE AND TISSUE. .. 642
FIGURE 8.204. COMPARISON OF DIFFERENT MASS TRANSFER MODELS ON MESH INDEPEDENCE CONVERGENCE BETWEEN DIFFERENT

BOUNDARY CONDITIONS. .. 643
FIGURE 8.205. COMPARISON BETWEEN DIFFERENT METHODS OF MASS TRANSFER IN A 1D MODEL. ... 644
FIGURE 8.206. COMPARISON OF MESH INDEPENDENCE FOR INSULATED TISSUE BOUNDARIES (FLUX=0) AND 1ST ORDER REACTION). 645
FIGURE 8.207. COMPARISON OF MESH INDEPENDENCE FOR PERIODIC TISSUE BOUNDARY CONDITIONS AND 1ST ORDER REACTION. 646
FIGURE 8.208. VALIDATION OF THE IMPLEMENTATION OF THE RADIAL DIFFUSION PROBLEM BY VERIFYING BOUNDARY CONDITIONS 652
FIGURE 8.209. VARYING THE RADIUS OF THE CYLINDER SOURCE (A) AND ITS EFFECT ON THE FLUX THROUGH THE SYSTEM.................... 655
FIGURE 8.210. VARYING THE RADIUS OF THE CYLINDER SOURCE (A) AND ITS EFFECT ON THE FLUX THROUGH THE SYSTEM USING DISCRETIZED

IMPLEMENTATION. .. 656
FIGURE 8.211. COMPARISON OF DIFFERENT DISCRETIZATION SCHEMES. .. 658
FIGURE 8.212. COMPARISON OF ANALYTIC TO DISCRETE SIMULATIONS OF CONCENTRATION PROFILES WITH VARYING THE SOURCE VESSEL

RADIUS (𝑎). ... 660
FIGURE 8.213. 3D PROFILES OF THE CONCENTRATION SIMULATED WITH NUMERICAL IMPLEMENTATION WHILE VARYING THE MESH

DENSITY. .. 661
FIGURE 8.214. 3D PROFILES OF THE CONCENTRATION SIMULATED WITH NUMERICAL IMPLEMENTATION WHILE VARYING THE VESSEL

RADIUS, A. ... 662
FIGURE 8.215. VASCULAR FLOW AND PRESSURE SIMULATED IN A FULL 3D VOXEL MATRIX USING DARYC’S LAW. 668
FIGURE 8.216. EXAMPLES OF VESSEL INTERIOR CELLS THAT ONLY SHARE A SINGLE NEIGHBORING INTERIOR CELL. 669
FIGURE 8.217. EXAMPLES OF CONVECTION IN NETWORKS THAT USE A DIFFUSIVE-LIKE EQUATION TO ACCOUNT FOR ORPHANED CELLS. .. 670
FIGURE 8.218. SAMPLE CASE STUDY OF CONVECTION WITH A VERY LOW DARCY CONSTANT, K, (=VERY LOW FLOW). 671
FIGURE 8.219. CASE STUDY FOR CONVECTION - MASS TRANSFER - DIFFUSION – REACTION SYSTEM PERFORMED USING ONLY A 3D MESH.

.. 672
FIGURE 8.220. SCHEMATIC DIAGRAM OF A NETWORK CYLINDER (WITH EMBEDDED FLOW VECTOR) REGISTERED TO A VOXEL MATRIX IN 2

DIMENSIONS. .. 673
FIGURE 8.221. GRAPHIC DEPICTION OF FOUR SCENARIOS WHEN CLASSIFYING MASK ON MESH TO DETERMINE EQUATIONS. 677
FIGURE 8.222. THE SLICE (LEFT) AND TRANSPARENCY (MIDDLE) VIEW OF THE OXYGEN DISTRIBUTION AROUND THE SIMPLIFIED SYNTHETIC

NETWORK SHOWS REASONABLE AND CONSISTENT TRENDS BETWEEN THE DENSE MESH (MIDDLE) AND COASE MESH (RIGHT). 679
FIGURE 8.223. FIRST ORDER IMPULSE RESPONSE MODEL AS IN EQUATION (8.572). .. 689
FIGURE 8.224. SCHEMATIC REPRESENTATION OF THE TWO MODELS FOR FUNCTIONAL HYPEREMIA. .. 690
FIGURE 8.225. WORKFLOW DIAGRAM FOR FUNCTIONAL HYPEREMIA FOR SIMPLIFIED VASCULAR OXYGEN BINDING. 690
FIGURE 8.226. WORKFLOW DIAGRAM FOR FUNCTIONAL HYPEREMIA FOR SIMPLIFIED VASCULAR OXYGEN BINDING. 691
FIGURE 8.227. THE CHEMICAL REACTION SYSTEM OF A,B AND C SPECIES USED FOR THIS CASE STUDY. .. 709
FIGURE 8.228. COMPARISON BETWEEN TOP LEFT) IMPLICIT EULER (IE), TOP RIGHT) ADAMS BASHFORD (AB), BOTTOM LEFT) RUNGE-

KUTTA 4, AND BOTTOM RIGHT) RUNGE-KUTTA 5 INTEGRATORS AT DIFFERENT TIMESTEP SIZES. ... 710
FIGURE 8.229. EXAMPLE OF EDGE DETECTION ALGORITHM VISUALIZED WITH MATLAB. ... 720
FIGURE 8.230. EXAMPLES OF EDGE DETECTION AT VARYING MESH DENSITIES FROM 10X10 (TOP LEFT) TO 500X500 (BOTTOM RIGHT).721
FIGURE 8.231. VISUALIZATION OF THE DISCRETE LABELING ON TWO MESHES. .. 722
FIGURE 8.232. VISUALIZATION OF THE AMALGAMATED MESHES INTO A SINGLE LABELED MATRIX. .. 723
FIGURE 8.233. CONCENTRATION PROFILE OF THE CIRCULAR DOMAIN SIMULATION. ... 723
FIGURE 8.234. PICTORAL REPRESENTATION OF THE VESSEL LABELING ALGORITHM IN 3 DIMENSIONS. .. 725
FIGURE 8.235. VISUALIZATION OF NETWORK EDGE DETECTION USING DICOM VIEWER TOOLS. ... 726
FIGURE 8.236. VISUALIZATION OF SIMULATION FOR TWO NETWORKS USING VESSEL EDGE DETECTION VISUALIZED WITH DICOM IMAGE

REVIEWING TOOLS. .. 727
FIGURE 8.237. VISUALIZATION OF OXYGEN SIMULATION IN MANY DICOM REVIEW TOOLS. .. 728
FIGURE 8.238. RAYTRACES FOR DIFFERENT RAYS THROUGH THE 3D BLOCK WITH VARYING MASS TRANSFER COEFFICIENT CORRESPONDING

TO THE ABOVE TABLE. ... 731
FIGURE 8.239. RAYTRACES FOR DIFFERENT RAYS THROUGH THE 3D BLOCK WITH VARYING THE METABOLIC RATE (CMRO2)

CORRESPONDING TO THE ABOVE TABLE. ... 733
FIGURE 8.240. RAYTRACES FOR DIFFERENT RAYS THROUGH THE 3D BLOCK WITH VARYING DIFFUSIVITY CORRESPONDING TO THE ABOVE

TABLE.. 735
FIGURE 8.241. PARAMETRIC STUDY OF MOLAR FRACTION OF OXYGEN AND THE CALCULATION OF (LEFT) MOLES OF OXYGEN AND (RIGHT)

PARTIAL PRESSURE OF OXYGEN. .. 742

xxiii

FIGURE 8.242. EFFECT OF SHIFTING THE EQUILIBRIUM CONCENTRATION ON THE RESULTS OF THE HILL EQUATION. 753
FIGURE 8.243. IMPLEMENTATION OF GREEN’S FUNCTION WITH A SHORT SEGMENT (YELLOW REGION) THAT TERMINATES MIDWAY

THROUGH THE DOMAIN. ... 772

xxiv

LIST OF ABBREVIATIONS

HP:

RBC:

RHS:

CCO:

mCCO :

MCA:

ACA

PCA

ICA

BA

FSI:

SNR:

STL:

BBB:

MCA:

ACA:

PCA:

SSS:

KPSM:

iCNS:

FEA:

FVM:

FEM:

BS:

PDF:

CDF:

AD:

2PLSM

μCT

MRI

GB

fL

nL

s

min

m

L

mm

mm

g

kg

Pa

2D

3D

MINLP

Hagen Poiseuille

Red blood cell

Right hand side

Constrained constructive optimization

Modified constrained constructive optimization

Medial cerebral artery

Anterior cerebral artery

Posterior cerebral artery

Internal carotid artery

Basilar artery

Fluid-structure interaction

Signal-to-noise-ratio

Stereo lithography

Blood brain barrier

Middle cerebral artery

Anterior cerebral artery

Posterior cerebral artery

Superior sagittal sinus

Kinetic plasma skimming model

Image-based circulatory network synthesis

Finite element analysis

Finite volume method

Finite element method

Boundary condition

Probability density function

Cumulative density function

Alzheimer’s Disease

Two-photon laser scanning microscopy

Micro-computed tomography

Magnetic resonance imaging

Gigabyte(s)

Femtoliter(s)

Nanoliter(s)

Second(s)

Minute(s)

Meter(s)

Liter(s)

Micrometer(s)

Millimeter(s)

Gram(s)

Kilogram(s)

Pascals

Two-dimension(al)

Three-dimension(al)

Mixed-integer nonlinear programming

xxv

NP

mmHg

nsgm

RAM

CPU

SMCA

SH

Trs

Crhv

Rrhv

SL

RSL

BOLD

fMRI

CBF

ANOVA

A

PA

C

AV

V

Hct

SS

Non-polynomial

Millimeters of mercury

Number of segments

Random access memory

Computer

Synthetic MCA

Synthetic hemisphere

Transverse sinuses

Caudal rhinal vein

Rhostral rhinal vein

Starling law

Revised Starling law

Blood oxygen level-dependent

Functional MRI

Cerebral blood flow

Analysis of variance

Arteries

Penetrating arteries

Capillaries

Ascending venules

Veins

Hematocrit

Steady-state

xxvi

SUMMARY

This thesis discusses novel breakthroughs in mathematical modeling of cerebral vasculature

and extravascular space in mouse. Previous limitations in modeling this neurovascular unit were

overcome with improvements to (i) vascular synthesis, leading to creation of vascular models

spanning a much larger domain than image reconstructions, (ii) robust solving techniques and

analysis for stable convergence of nonlinear biphasic blood flow on such large networks, and (iii)

novel 1D-3D coupling between the compartments of the neurovascular unit effectively removing

the limitations exhibited by previous models.

The improvements to vascular synthesis models incorporated (i) growth from pial surface

reconstruction meshes, (ii) microvascular closure (for closing an arterial tree and a venous tree

through a realistic capillary bed, and (iii) automatic matching of topological properties to produce

realistic vascular structures. These models were validated against empirical reconstructions of

microvasculature from 2-Photon laser-scanning microscopy by comparing length, diameter,

surface area, volume and tortuosity spectra. These models were also capable of constructing

complete cerebrovascular models for the entire MCA territory and entire hemisphere in mouse.

Robust fixed-point solving methods were implemented for consistent simulation convergence

for the nonlinear equations of biphasic blood flow (red blood cells + plasma). These improved

simulations, when interrogated, revealed a depth-dependent hematocrit (=red blood cell volume

fraction) gradient in the microcirculation which was previously unknown. This finding was

verified between empirical and synthetic vascular networks including the MCA territory and

hemisphere.

A novel 1D-3D coupling methodology was also created to resolve the interface between the

vascular network and extravascular tissue space in the brain with greatly enhanced solvability.

This method derives from a Cartesian mesh masking logic greatly enhancing simulation

xxvii

solvability. Validation of the model was performed against 2-photon phosphorescence lifetime

microscopy measurements and was expanded to large portions of the mouse cortex. The model

was also capable of simulating a larger subsection of the cortex than previously performed

(3x3x1mm3) with a mesh density of ~95 million elements, significantly larger than other models

of the same type.

These new adaptations lay the groundwork for simulating the neurovascular unit at the scale

of the entire mouse brain (hemisphere) and even the human brain. Included appendices propose

detailed models for adaptation of the work in this thesis to the aged brain, functional hyperemia,

and human vascular synthesis.

1

 Introduction

Many late-onset neurodegenerative diseases involve degradation of the dynamic coordination

between vascular blood flow and neural tissue oxygenation. These diseases are hallmarked by the

generation of hypoxia-related events, such as an increase in beta-amyloid production in

Alzheimer’s Disease (AD)[1,2]. Many forms of dementia suffer from decreased oxygen tension

while also exhibiting significant morphological changes in vascular structure. Unfortunately,

healthy aging (aging without dementia) also suffers from similar morphological changes to

vascular structure and oxygen tension [3]. While the link between vascular restructuring and

changes in cerebral oxygen content have been established, no single intervention methodology can

treat all changes simultaneously. Moreover, the healthy aging brain changes morphology as well,

so some changes to vascular topology may be necessary to maintain homeostasis. In order develop

methods for treating these age-related dementia, it is imperative to quantitatively explore changes

to the vascular topology and the corresponding alteration to oxygen tension in the brain.

Animal studies have attempted to elucidate the detailed neurovascular coupling and quantify

age-related neurodegeneration[4–8] including investigations investigating the link between

hypoxia, β-Amyloid production, and plaque formation leading to AD [1,2]. A recent study, for

example, investigated oxygen distribution in neurological tissue to identify age-related formation

of hypoxic pockets[4]. Other studies were able to identify changes in the rate of temporary

blockage of capillary vessels in older subjects [5–8]. Despite all the neuroimaging progress,

simultaneous data for detailed microcirculatory structure during age-related impaired oxygen

delivery is still missing. This gap in knowledge can be bridged by computational paradigms.

In order to investigate the causal link between cerebral blood flow, oxygen distribution, and

oxygen metabolism, many computational studies have been proposed [9–20]. Models with

2

simplified vasculature give great insight into the role of vascular structure on changes to oxygen

tension, yet suffer from the drawback that they are incapable of resolving the complex

heterogeneous oxygen distribution as in the cerebral micro-environment. In light of this,

anatomically consistent neurovascular models have been proposed [9,21–25].

In order to predict the oxygen tension throughout the cerebral domain, a computational model

of the vasculature and extravascular space (meshing) must be provided. The spatial density of the

cerebrovasculature in mouse is ~11,000 segments/mm3 [26,27] in mouse spanning ~300 mm3

(estimate from reconstructed images [28]) which gives 3,300,000 segments in just the small mouse

brain. The human brain (~1.45 ∙ 106 mm3) is roughly 4800x the size of the mouse brain (by

volume), generating ~16 billion vessels. To create an unstructured mesh out of such a large

network would create an astronomical number of elements. Even with the most advanced Cartesian

mesh simplifications of such a domain, as presented by Ghaffari et al [29], the estimated number

of mesh elements is ~64 trillion volume elements (64 ∙ 1012 volume elements) for the vasculature

alone (Equation (2.13)).

1.958𝑀 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

482 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠
= 4062 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠/𝑠𝑒𝑔𝑚𝑒𝑛𝑡 (1.1)

Compounding this number with the four unknown values per element when solving blood flow

using the Navier-Stokes equations gives 247 trillion unknowns (247 ∙ 1012). With the upper limit

of published linear algebraic solvers in the mere hundreds of millions (1011) [30], this scale of

simulation is infeasible.

One way to drastically reduce the number of equations is to model linear segments as cylinders

in 3D space. This model assumes radial and azimuth symmetry (uniform plug flow), leaving only

3

the axial dimension for spatial variation in state. This simplifies to a 1D simulation (in a 3D

domain) represented as a graph where the lines represent the arcs (each arc is endowed with a

radius value) and the junctions in the network are represented by points. This mesh will preserve

the number of equations for a blood flow simulation to the originally anticipated 3.3 million

equations, which is well within reason for linear algebraic solvability. The theory and

implementation of network analysis for 1D linear flow networks can be found in Section7.11 .

To model the extravascular oxygen tension, many models have attempted the coupling of

oxygen transport through the vasculature and extravascular transport. Models that propose a 1D-

3D analytic or semi-analytic solution to oxygen distribution are computationally prohibitive for

models larger than a few hundred segments [25,31–33]. The traditional approach for such a

simulation is to apply a body-fitted tetrahedral mesh of extra- or intra-vascular space, due to the

plethora of professional toolboxes for these types of meshes, however the amount of mesh

elements to accurately simulate large, dense microcirculatory networks (>11,000 vessels/mm3) is

computationally prohibitive. Fortunately, Cartesian vascular structures have recently been

developed to offer a significant computational simplification of the 3D blood vessel domain, yet

these methods have not yet been applied to the dense microcirculatory networks [29,34,35].

In light of these drawbacks, a few groups recently proposed homogenization methods for the

microcirculatory domain [36,37]. These methods proposed to represent the anisotropy of

generalized capillary flow by reducing the problem to a series of Cartesian mesh volumes and an

anisotropic diffusion tensor. Unfortunately, while these methods offer great scalability, this

method is not amenable to the discrete network of segments that the blood must adhere to while

traversing the cerebral microcirculation.

4

A final method for 1D-3D coupling was proposed using a mass transfer flux between each 1D

network element and the closest 3D mesh volume. This method was robust and capable of solving

very large vascular structures due to the simplicity of the coupling mechanism.

Unfortunately, none of the proposed methods are stable for scalability to an entire mouse brain.

This means boundary effects remain apparent throughout the current simulation community. These

effects can cast doubt over the results, given that they are artificial (do not exist in the actual brain).

This thesis will build the framework for a whole-brain scale investigation of the neurovascular

unit. A method is proposed for informed anatomical synthesis of cerebral microvasculature at the

whole-brain scale uses the information of dense microcirculatory network reconstructions to

generate every vessel in a mouse hemisphere with matching topological properties. Linear and

biphasic blood flow are predicted on these vast networks to reveal a depth-dependent trend in red

blood cell concentration. Finally, a method is proposed for a stable, scalable neurovascular mesh

coupling that has the potential for scaling to the scale of the entire hemisphere.

To overcome the limited spatial extent as in 2PLSM reconstructions or limited reconstruction

resolution as in μCT image reconstructions, an image-based circulatory network synthesis (iCNS)

methodology was created. This algorithm uses an information from 2PLSM networks and scales

the growth to the scale of an entire mouse brain. The synthesis of every vessel in an anatomically-

consistent hemisphere (~1 million vessels) took less than 2 hours and 6GB of memory on a

personal computer. This breakthrough marks a significant contribution to anatomically-accurate

cerebrovascular modeling.

The advanced implementation of large, sparse linear algebraic solvers with a robust successive

over-relaxation (SOR) and physically-consistent plasma skimming formula allowed the prediction

of the nonlinear relationship between red blood cell (RBC) distribution and network geometry

5

throughout the entire hemisphere in mouse. The investigation of the RBC distribution in smaller

microcirculatory networks (both image-based and synthetic) led to the discovery of an RBC depth-

dependent gradient in the brain. This finding was also confirmed by the larger simulations of the

hemisphere, showing this is not simply a boundary effect but a systemic characteristic of the

network structure. This discovery was later validated with animal experiments from another

group [38].

To improve the scalability of full 3D meshing while preserving its ability to resolve the

distributed endothelial layer mass transfer at the scale of the point-volume coupling, we have

developed a novel Cartesian mesh masking technique with vessel detection. This method combines

the benefits of 3D endothelial resolution for larger vessels while allowing significant expandability

to large microcirculatory sections of the cerebral cortex. This new model can also be applied to

the models of the aging brain to investigate independent contribution of vascular structure changes

on the cortical oxygen tension.

The proposed methodology will bridge the knowledge gap by removing the artificial boundary

edge thus improving the accuracy of the results. In order to expand current methodologies for

stable convergence at the whole-brain scale novel methods were derived for generating

physiologically-consistent cerebrovascular networks at the whole-brain scale, solvability was

improved for computations of biphasic blood flow, and a new, highly stable and scalable paradigm

for coupling a 1-dimensional (1D) vascular network with a 3-dimensional tissue domain was

created. These advancements will propel the next level of simulations to the whole-brain scale

without sacrificing anatomical detail.

The main manuscript (Sections 0-0) describes the major advancements of this thesis, although

a significant amount of derivation, validation, and implementation was necessary for achieving

6

these goals. While this information is highly necessary for the development of the models used for

the main manuscript, the details were too lengthy to appear in the main body. This is exemplified

by the high number of supplemental chapters in this thesis (Sections 7.1-7.38). To assist the reader

with traversing this long list of available information contained within this thesis a reference table

is offered:

7

Table 1.1. Reference table for the supplemental data in this document

Section

number Relevance/Topic

Relevant

Thesis

Section

7.1 Vascular synthesis implementation notes 2-3

7.2
Detailed analysis of sample generator implementation and sample

bias
2-3

7.3 Calculation of cortical depth from a triangulated mesh surface 2-4

7.4 Extended topological analysis of empirical networks 3

7.5
An alternative method for connecting a point to a nearby line

segment using an orthogonal connection
2-3

7.6
A detailed method for reducing the tortuosity of a spline to a

finite number
3

7.7
Derivation and implementation of an alternative model for

automated CDF matching
3

7.8
Next-generation methods for expanding pial vascular network

synthesis to the human cortex
2

7.9 Methods for reconstructing vascular networks from images 2-5

7.10 Methods for reconstructing brain meshes 2-4

7.11 An introduction to network analysis of blood flow 5

7.12
History and description of biphasic nature of blood flow, namely

models of plasma skimming and hematocrit-dependent viscosity
4

7.13 Methods for visualizing and interrogating model predictions 2-5

7.14
Methods for discretizing a mesh or network during computational

analysis
4-5

7.15
Implementation and derivation of different boundary condition

choices
4-5

7.16 Matrix derivative validation 22

7.17 Discrete Fourier series derivation and implementation notes 22

7.19
Validation of oxygen simulation implementation with case

studies
5

7.20 Validation of PETSc implementation with case studies 4-5

7.21 Cartesian mesh implementation and benefit 5

7.22 Diffusion: an illustrative description and example 5

7.23 Starling law and revised Starling law derivation and notes 5

7.24 Newton method for solving nonlinear equations 4

7.25 Properties of linear algebraic sets of equations 4-5

7.26 Simulations of idealized brain geometry 5

7.27 Validation of spherical geometry for diffusion-reaction system 32

7.28
Detailed implementation of oxygen transport in the neurovascular

unit in 1D, 2D and 3D
5

7.29 Proposed methods for modeling the aged brain 5

7.30 Proposed functional hyperemia model 5

7.31
Implementation and comparison of different time integration

schemes
36

8

7.32
Implementation and derivation of edge detection in a Cartesian

mesh
5

7.33 Parametric studies of oxygen transport in the brain 5

7.34
Derivation of calculating molar concentration of oxygen given

partial pressure oxygen tension
5

7.35
Calculating free oxygen tension using hemoglobin binding

kinetics
36

7.36 The Hill equation derivation and implementation 41

7.37 Description of competing models for the neurovascular unit 5

7.38 Description of alternative models for vascular synthesis 2-3

9

 Image-based circulatory network (iCNS) synthesis Part I: theory and

image integration

Parts of this chapter were previously published as Linninger, Andreas, Grant Hartung, Shoale

Badr, and Ryan Morley. "Mathematical synthesis of the cortical circulation for the whole mouse

brain-part I. theory and image integration." Computers in Biology and Medicine (2019).

2.1 Introduction
Detailed anatomical models of cerebral circulation can serve as virtual surrogates enabling a

quantitative analysis of functional mechanisms in the brain. To ensure consistency, digital vascular

models should match physiological and anatomical topology of in vivo cerebral angioarchitecture.

Image-segmentation is an essential technique to acquire necessary physiological information such

as the number, position, and connectivity of arterial and venous segments. Specific

implementations of many algorithms for anatomical reconstructed are outlined in Section 7.9.

Accordingly, several groups have created microcirculatory models from neuroimages [25,39–42].

However, segmentation of image data faces several challenges. The number of microvascular

segments is staggering; the human brain is estimated to have more than 10 billion capillaries, or

~8,000 segments/mm3 [42]. Morphometric studies on cadaver brains [42,43] are also problematic,

because blood flow ceases and capillary networks may collapse post-mortem. In vivo imaging

acquisition looks at microcirculation through a cranial window that affords only a narrow glimpse

of the brain covering a range of hundreds of microns to a millimeter. At the edges of the imaging

window, it is unavoidable that all pial connections of larger arteries, deeper arterioles, and

capillaries are severed. These artificial cut-off boundaries expose mathematical models to

boundary effects, whose detrimental impact on reliable predictions has been pointed out by

Lorthois [40,44]. Moreover, raw neuroimaging data require extensive post-processing to fill gaps,

10

remove dangling segments, or reconcile noisy or missing information at the imaging threshold

[45]. No single imaging modality can directly image all blood vessels in the brain at the macro-

and micro-anatomical scale reliably, although there is progress towards this goal [46–48]. This

limitation leaves gaps in data acquired at the macro[49–52] and micro [25,41,42] anatomical scale.

More details on reconstructions can be found in Section 7.9.

Synthetic vascular models offer an alternative to purely image-based approaches that may

suffer from uncertainty in the microscale [36,37,53,54]. Bui et al. used a fractal tree model with a

level set distance function [55]. Schreiner and Karch [56–61] generated coronary arterial trees

artificially by combining the principle of volume minimization (=minimum blood lumen) with

random segment addition. Their constrained constructive optimization (CCO) algorithm is capable

of synthesizing branched structures that resemble natural arterial trees. They successfully created

physiologically sound arterial trees in flat sheets (2D) and slabs (3D). The algorithm also

synthesized trees whose morphometrics closely matched coronary arteries. However, constructive

synthesis of tree-like structures breaks down for microcirculatory networks, because they have

loops and anastomoses, thus they are not binary trees. It is therefore not possible to performed tree

lumen minimization by recursion, thus rendering the required combinatorial optimization

intractable. Accordingly, the most critical limitation of classical CCO is its inability to create

circulatory networks which connect the arterial side to the venous circulation through a

physiologically consistent capillary bed. More information on previous vascular synthesis models

can be found in Section 7.38 .

Recently, Linninger presented an alternative method for building realistic microcirculatory

beds using Voronoi tessellation [62]. They synthesized the cortical blood supply in a sizable

section of the human cortex with physiologically sound multi-scale representation of arteries, the

11

capillary bed and the venous circulation [62]. However, that solution requires expensive Delaunay

and Voronoi tessellations followed by diameter smoothing procedures. This article introduces a

novel microvascular closure that employs construction principles directly, so that closed networks

encompassing an arterial and a venous tree with capillary connection can be synthesized with a

single algorithm.

This section presents a novel methodology entitled image-based Circulatory Network

Synthesis (iCNS) that combines the critical advantages of image-based models with synthetic

vascular growth. The methodology and implementation sections will present mathematical

background and procedures. Section 2.4 will demonstrate the creation of realistic models for the

circulation in major vascular territories (MCA territory) and present the successful application of

the methodology to synthesize a realistic model of the cortical circulation for the entire mouse

brain.

2.2 Methodology
Image-based Circulatory Network Synthesis (iCNS) is also based on constrained constructive

optimization principles developed by the pioneering work by Karch and Schreiner [56–61].

Foundation of vascular synthesis within a mathematical programming (=optimization) theory has

been implied by their work, but not been presented formally. Therefore, we derive constrained

constructive optimization principles from a formal mixed integer nonlinear programming

(MINLP) framework in Section 2.2.1. We generalize the method of Karch and Schreiner in two

critical aspects: First, a novel scale-invariant nonlinear programming formulation enables the

incorporation of anatomical features from image data (Section 2.2.2). Second, a novel

microcirculatory closure algorithm for synthesizing capillary networks provides the critically

missing connection between arterial and venous circulation (Section 2.3). Note, more application

12

details for the microcirculatory closure and anatomical topological matching are offered in the next

chapter and in Section 7.1.

2.2.1 The formal optimization problem.

A vascular tree can be created artificially by starting with a single cylindrical segment (=root

branch), see Figure 2.1. The tree is expanded by spawning additional segments until a desired

number of branches is reached. Branches are added by connecting a close segment from an existing

branch to a new terminal node at a random location. Branch addition must obey geometrical and

physiological constraints to ensure that the artificial tree matches real vascular topology. This is

ensured by imposing the objective of minimizing the overall tree volume with the side constraint

that blood conveyed through the tree segments perfuse the domain evenly. For each segment

addition step, tree volume minimization subject to hemodynamic constraints can be formally

expressed as a mixed integer non-linear program (MINLP) given by system (2.1). It is a global

minimization problem with binary variables, 𝑦, that decide the location (=existing branch) where

the new segment should be attached. Only one connection can be made at each step as expressed

by the logical constraint in (1b). Moreover, morphometric parameters (=segment length and

diameters, for nomenclature see Table 2.1) appear in the highly non-linear resistance computations

of fluid flow equations, 𝐹(𝑥, 𝑦) = 0, in Equation (1a).

min
x,y

𝑉(𝑥, 𝑦)
(2.1)

 𝑠. 𝑡. 𝐹(𝑥, 𝑦) = 0 (1a)

∑𝑦

𝑁

𝑖=1

= 1 (1b)

𝑥 = {𝛼, 𝑝, 𝑞}, 𝑦𝜖{0,1}𝑁

13

Table 2.1. Nomenclature

Symbol Description

𝐴 Diagonal resistance matrix

𝑎 Accumulated downstream resistance

Bif(ξ∗, η∗) Unknown bifurcation position

C1 Connectivity matrix

C2 Incidence matrix

𝑑,d0 Segment diameter, root segment diameter

𝐹(𝑥) Flow equations (mass, momentum, conservation)

𝑁 Number of possible choices for connecting new terminal

𝑝, 𝑝0, 𝑝𝑡 Vascular nodal pressure, inlet pressure, terminal pressure

Q, Q0 Vascular flow, root segment flow

𝑟 Segment reduced resistance*

𝑟0 root segment reduced resistance=total reduced resistance of tree*

𝑉 Vascular tree volume

𝑥 Vector of unknowns (resistances, flows, and pressures)

𝑦 Binary decision to choose connection

𝛼 Vascular segment resistance

𝛼, 𝛼0 Single segment resistance, root segment resistance

𝛽 Diameter ratio

𝜉 x coordinate of bifurcation

𝜅 Power law parameter (set to 3)

𝜂 y coordinate of bifurcation

𝜌 Accumulated downstream reduced resistance*
*Reduced resistance is the length-dependent portion of the resistance that does not contain diameter dependence

Figure 2.1. Overview of CCO method by Schreiner and Karch starting with one segment.

Arterial tree growth begins with an initial segment, R0-T1. Segment addition at a random point,

T2, defines a new segment, Bif-T2. The optimal coordinates in the bifurcation plane

(𝜉∗, 𝜂∗) minimize the tree volume and balance the tree by adjusting all segment diameters.

Segment-T3 addition entails a logical decision to select the globally smallest tree out of 𝑁 = 3

possible segment connections. In this example, segment addition at the segment root is optimal.

At each stage, the balanced tree discharges equal blood flow to all terminal nodes (T1-T3).

14

Each volume minimization step is a non-polynomial (NP) hard problem, because it contains

logical (=new possible connection to multiple existing segments) and parametric decisions

(=optimal positions Bif(ξ∗, η∗) which in turn determine segment lengths, diameters, resistances, 𝛼,

blood flows, 𝑞, and pressures, 𝑝, along the vascular tree). Two admissible heuristics help prune

the search:

 Only consider 𝑁 segments closest to the new terminal as possible connections (near-

vicinity heuristic)

 Search bifurcation locations in the two dimensional subspace spanned by the bifurcation

topology (parent node and two child nodes - planar bifurcation heuristic).

The near vicinity heuristic allows problem decomposition into independent nonlinear

subproblems given in system (2.2), one volume minimization problem, 𝑉(𝑥), for each possible

connection, 𝑦, in the 𝑁 nearest neighborhood of the new terminal node. The first constraint relates

the flow, 𝑞, to pressure drops, 𝑝, which is compactly expressed in matrix form using the diagonal

resistance matrix, 𝐴 = diag(α(ξ, η)), which holds the segment resistances, α(ξ, η), as functions of

the unknown bifurcation position, (ξ, η). The incidence matrix 𝐶1 stores the node connectivity for

each segment. The second constraint, 𝐶2 𝑞 = 0, enforces flow conservation for each node. More

details on the use of incidence matrices 𝐶1 and 𝐶2 for formulating network flow problems can be

found elsewhere [63–65]. The planar bifurcation heuristic limits the position of new connections

to two independent spatial coordinates (ξ, η) inside the bifurcation plane, which reduces the

computational burden. The desired solution is the globally best connection with planar bifurcation

15

coordinates (𝜉∗, 𝜂∗) that determine associated tree metrics (=length, diameters) which in turn fixes

fluid flows and pressures.

𝐹𝑜𝑟 𝑁 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 𝑛𝑒𝑤 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑇 𝑑𝑜 (𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑦 𝑑𝑜)

 min
x
𝑉(𝑥)

 𝑠. 𝑡. [
𝐴(𝜉, 𝜂) 𝐶1

𝑇

𝐶2 0
] (
𝑞
𝑝) = (

0
0
) x(α(ξ, η) , p(ξ, η), q(ξ, η))

(2.2)

Problem reduction. Each constrained NLP in Equation (2.2) can be further simplified into a

single unconstrained nonlinear function minimization problem in merely two variables (=the

bifurcation position, (ξ, η)). The volume in a balanced tree can be precisely determined with the

help of Equation (2.3)-(2.5) for a desired perfusion ratio 𝑄0/𝛥𝑃 and segment lengths determined

by the bifurcation position (ξ, η). Balancing the tree brings the substantial benefit that instead of

solving for all pressures, 𝑝, and flows, 𝑞, only the total tree resistance, 𝑎0, needs to be computed.

Accordingly, the total tree resistance is a function of only the root radius and the total accumulated

reduced resistance. In effect, all flows and pressures as well as all branch diameters (except the

root diameter, 𝑑0) can be eliminated by recursive formulae. It will be shown that total tree

resistance, 𝑎0, is only a function of total diameter-independent resistance 𝑟0 and the root

diameter, 𝑑0.

min
𝜉,𝜂

𝑉(𝑑0(𝜉, 𝜂)) (2.3)

𝑎0𝑄0 = 𝛥𝑃 = 𝑃0 − 𝑃𝑡

𝑎0 =
𝑟0
𝑑0
4

(2.4)

16

𝑑0 = (𝑟0
𝑄0
𝛥𝑃
)
1/4

 (2.5)

Recursive total tree resistance computations. Each connected tree segment 𝑖 has resistance, 𝛼𝑖 .

The cumulative resistance, 𝑎𝑖 , sums the accumulated resistances of its subtree, as in

Equation (2.6), where the subscripts 𝑖, 𝑗, and 𝑘 indicate the parent, the existing branch of the tree

at a given bifurcation, and the newly added daughter branch, see Figure 2.2. Terminal segments

with no subtrees have 𝑎𝑖 = 𝛼𝑖 .

𝑎𝑖 = 𝛼𝑖 +
1

1
𝑎𝑗
+
1
𝑎𝑘

(2.6)

To obtain cumulative tree resistance, 𝑎𝑖, it is advantageous to split it into two separate

contributions: the diameter-independent reduced resistance, 𝑟𝑖, and the segment diameter, 𝑑𝑖. This

choice will bring the benefit of enabling the expression of the entire tree resistance in terms of the

root diameter d0. Reduced resistances also have a cumulative, 𝑟𝑖, and segment component, 𝜌𝑖, as

defined in Equation (2.7).

𝑟𝑖 =
𝑎𝑖
𝑑𝑖
4 𝜌𝑖 =

𝛼𝑖
𝑑𝑖
4 (2.7)

Fortunately, cumulative tree resistances in a balanced tree can be expressed in terms of

diameter ratios that only depend on the bifurcation point coordinates, 𝑟i(𝜉, 𝜂). Specifically, a

recursive relation for the reduced resistance, 𝑟𝑖, can be obtained in terms of diameter ratios

 𝛽𝑗 , 𝛽𝑘 as in Equation (2.8).

17

𝑎𝑖 =
𝑟𝑖
𝑑𝑖
4 = 𝛼𝑖 +

1

1
𝑎𝑗
+
1
𝑎𝑘

=
𝜌𝑖
𝑑𝑖
4 + (

𝑑𝑗
4

𝑟𝑗
+
𝑑𝑘
4

𝑟𝑘
)

−1

𝑟𝑖 = 𝑑𝑖
4 (
𝜌𝑖
𝑑𝑖
4 + (

𝑑𝑗
4

𝑟𝑗
+
𝑑𝑘
4

𝑟𝑘
)

−1

) = 𝜌𝑖 + (
𝑑𝑗
4

𝑑𝑖
4

1

𝑟𝑗
+
𝑑𝑘
4

𝑑𝑖
4

1

𝑟𝑘
)

−1

 | 𝛽𝑗 =
𝑑𝑗
𝑑𝑖
 , 𝛽𝑘 =

𝑑𝑘
𝑑𝑖

𝑟𝑖 = 𝜌𝑖 + (
𝛽𝑗
4

𝑟𝑗
+
𝛽𝑘
4

𝑟𝑘
)

−1

(2.8)

Next we need a method to compute daughter branch ratios. Parent to daughter branch ratios

should obey Murray’s law expressed in Equation (2.9). We set 𝜅 = 3 following physiological

ranges given in the literature [56,66] and is supported by our data analysis in Section 7.4.

𝑑𝑖
𝜅 = 𝑑𝑘

𝜅 + 𝑑𝑗
𝜅 (2.9)

Moreover, tree balancing imposes the condition in Equation (2.10) on the diameter ratios of

the daughter branch 𝛽𝑗 , 𝛽𝑘. The derivation in Section 2.8 proves that the scalar ratio 𝑚 is known,

because cumulative diameter-independent resistances and the number of terminals connected to

each daughter branch (𝑁𝑗 and 𝑁𝑘) are set for a segment addition at position (𝜉, 𝜂).

𝛽𝑗 = (1 + 𝑚
𝜅)−1/𝜅

 𝛽𝑘 = (1 +𝑚
−𝜅)−1/𝜅

where

𝑚 = (
𝜌𝑘𝑁𝑘
𝜌𝑗𝑁𝑗

)

1/4

(2.10)

18

With diameter ratios for all segments now known, the cumulative diameter-independent

resistance for the entire tree, 𝑟0(𝜉, 𝜂), can be recursively computed. Finally, the tree root diameter,

𝑑0 , is found from Equation (2.5) for a desired perfusion flow rate 𝑄0, and perfusion pressure, 𝛥𝑃.

The total tree volume, V, is computed by adding up cylindrical segment volumes, using Equation

(2.10). Actual daughter segment diameters, 𝑑𝑖 , are recursively calculated by multiplying the

diameter ratios from the root downwards to segment 𝑖 as in Equation (2.11), where the index set 𝑗

signifies the path leading from the root segment to segment 𝑖.

 𝑑𝑖 = 𝑑0∏𝛽𝑗 𝑗 ∈ 𝑝𝑎𝑡ℎ(𝑖)

𝑖

𝑗=0

 (2.11)

min
𝜉,𝜂

𝑉 (𝑑0(𝜉, 𝜂)) = ∑ 𝑙𝑖 𝜋𝑑𝑖
2

𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠

0

 (2.12)

The optimal position (𝜉∗, 𝜂∗) in the bifurcation plane gives the minimum tree volume for a

possible segment connection. The tree with the smallest volume among the 𝑁 trees with

structurally different segment connections gives the optimal segment addition. Repeated segment

additions, each one performing the global optimization process described in Equation (3-12) yields

a synthetic blood flow network with the desired number of segments, nSegments.

19

Figure 2.2. Recursive tree resistance computations.

For a segment addition to the existing segment i, the accumulated subtree resistance (aj) of

the split segment, j, can be recursively computed because all terminal nodes discharge at

the terminal pressure 𝑃𝑡. (Nomenclature: parent node, i; existing branch of the tree, j; newly

added daughter branch, k)

Illustrated example of the construction principle for generating vascular trees. Constrained

constructive segment addition discovered by Karch and Schreiner is illustrated with the help of

Figure 2.1. Initiation. Define a cylindrical segment R0-T1 with vascular lumen determined by its

length and diameter. Next, randomly chose end point coordinates for a new branch, (terminal node

T2). Tentatively connect T2 to the middle of the initial segment at location Bif. The simple vascular

tree has now three segments (R0-Bif, Bif-T1, and Bif-T2). All diameters are precisely computed to

balance the tree, a physiological condition that will ensure uniform tissue perfusion by discharging

exactly the same blood flow in the terminal nodes (T1 and T2). Moreover, Murray’s law sets parent

to daughter diameter ratios [67]. Next, move the bifurcation coordinates, Bif(𝜉, 𝜂), to minimize the

tree volume, while maintaining the tree balanced by segment radii adjustments. The optimal

position, Bif(𝜉∗, 𝜂∗), gives the desired minimal volume tree.

20

Continuation. Next, begin another segment conveying blood to a new random terminal

location, T2. From T2, three structurally different connections each one to another existing tree

segment are possible. From among the three optimized candidate trees, the global minimum is

chosen. Repeated segment addition gradually builds large balanced vascular trees with minimum

volume.

2.2.2 Image-guided segment addition

The original CCO is well suited for synthesizing space-filling trees, but specific anatomical

configurations for organs with complex anatomy are not amenable to constructive growth. For

example, the special arrangement of arteries in the Circle of Willis need not be synthesized. Instead,

it is more practical to incorporate specific anatomical configurations directly from neuroimage or

anatomical atlas data. Our new construction methodology has two options to integrate anatomical

information:

 Growth from backbone

 Physiological constraints from neuroimages (sample-guided segment addition)

Growth from backbone. This paradigm enables the initiation of vascular synthesis from an

existing binary tree (backbone) with known connectivity and dimensions (point coordinates,

segment length and diameters obtained from an image). Fine-grained additional segments can be

added by tree minimization with backbone geometry remaining fixed. If desired, original diameter

measurements obtained from image segmentation software [68,69] can be imposed on the

backbone segments after the growth algorithm has completed.

21

Physiological constraints from neuroimages (sample-guided segment addition). We propose

to enforce physiological constraints by SampleGenerator operators that precisely control

subspaces where anatomical segment growth should occur. Using well-established computational

meshing methods, arbitrarily complex shapes can be precisely delineated.

2.2.3 Synthesis of closed networks (=microvascular closure)

Constructive synthesis of tree-like structures breaks down for microcirculatory networks,

because loops and anastomoses break the binary tree logic. The required tree lumen minimization

cannot be performed recursively, so that segment addition becomes an intractable combinatorial

optimization problem. Thus, CCO by Karch and Schreiner is not able to create circulatory

networks, which connect the arterial side to the venous circulation.

To overcome the limitation of CCO, we introduce a novel microvascular closure. We create

circulatory networks whose arterial side connects to the venous circulation through a

physiologically consistent capillary bed. A TerminalNodeSampleGenerator directs segment

formation between each open arterial terminal (=nodes at the precapillary and capillary level) to a

nearby venous segment (=near terminal venous segments). The pseudocode listed in Section 2.9

naturally “grows” contiguous connections between the arterial and venous trees. The

microcirculatory closure produces circulatory models with arterial and venous trees linked by a

network-like capillary water shed region. When all arterial terminals are attached to the venous

segments (=connected), the process is repeated for open venous terminals.

22

2.2.4 Neuroimage data for validation of synthetic growth

We based main anatomical features of the large arteries and veins on data acquired with µCT

[63,70] and mouse atlases [71]. Microvascular network growth was validated with metrics from

two-photon laser scanning microscopy (2PLSM) data acquired previously [41]. More details on

data acquisition are given in Section 4.2.2.

2.3 Implementation

This section provides guidelines for implementing the proposed algorithmic framework on

existing computer hardware. An overview of the information flow diagram and pseudocodes are

given in Section 7.1.4.

Binary tree representation. Vascular trees can be conveniently encoded as binary graphs. An

object-oriented implementation should include two key attributes: An adjacency matrix (faceMx,

C1) whose row indices correspond to vascular segment indices, and row entries holding segment

point indices (=two element integer array of point indices). The point coordinate matrix

(ptCoordMx) is a double precision matrix where each row encodes the point coordinates of the

corresponding point (=three element array of double precision). The constructor allocates

contiguous memory blocks for a desired number of segment additions, with Npoints and

Nsegments serving as counters for the number of node and vascular segments, respectively. The

binary graph class also has iterators to navigate to binary tree structures recursively: traverse tree

upwards from terminal node, traverse tree downwards from root node.

Sample generators. Sample generators are functors that control terminal nodal positions during

segment addition. A base class implementation of a TriangleSampleGenerator is given in

Section 2.10. GeometricGenerators produce random coordinates confined to 2D surfaces or three-

23

dimensional volumes (analytical functions, Rectangle, Circle, Slab, Cube, Cylinder sampler).

MeshSampleGenerator issues sample points from anatomical surfaces (STL files), or within the

cortical volume (3D Cartesian, tetrahedral unstructured or hexahedral structured meshes [34]).

Computational meshes can be reconstructed from neuroimage data [68,69]. SampleGenerators can

also hold a hard coded (predefined), editable list of sample coordinates. For example, the

TerminalNodeSampleGenerator supplies coordinates of terminals of arterial and venous sections

of an emerging (=still unconnected) vascular network. Pseudocodes for a selection of sample

generators are listed in Section 2.10.

Strategy factory class. The vascular strategy follows the factory design pattern. It owns all the

data structures (binary arterial and venous trees) and provides the application with control over

different stages of growth (sample generators, and constraint functors [72]). It also keeps counters

for the current and desired number of segments additions.

Anatomical constraints in arterial and venous generation. Arterial trees can be synthesized

from a backbone, unsupervised growth on an anatomical surface (cortical surface), or a tissue

space (subcortical gray matter) based on 3D image data. In each case, SampleGenerators can be

customized to the needs of the respective anatomy. Venous trees can be created with the same

methods as arterial trees when observing lower perfusion pressures (ΔPA=40-60 mmHg, ΔPV=10-

30 mmHg) which produces thicker (=lower resistance) branches for the same perfusion rate, 𝑄0.

Since arterial and venous trees inhabit the same tissue space, collisions between the main branches

or individual sections should be avoided.

In case a new sample is too close to a prior terminal, it can be discarded and replaced with a

new random point. Specifically, terminal node duplication between the arterial and venous sides

is prevented by a vicinity test (is-close procedure). Significant performance enhancements can be

24

achieved when supplying properly spaced sample sets a-priori (SampleGeneratorFromPointList),

instead of performing vicinity search during each step of the evolving network.

Topological constraints. Constraint enforcement provides control over the candidate tree

topology after structural optimization. In case the best candidate tree violates a structural constraint

(for example, segment intersection), it is removed from the candidate list and the next best solution

in the stack is examined. Multiple exclusion constraints can be enforced or combined with AND

or OR logic. Topological constraints avoid segment collisions between previously generated

branches or to all segments of a complimentary venous tree. Useful implementations include

“segments too long”, “too short”, “angle too blunt”, “too acute”, etc…

Microcirculatory closure strategy. The crucial innovation of the proposed microvascular

closure rests on two advantageous implementation ideas: (i) deployment of

TerminalNodeSampleGenerator that guarantees closure segments find all open terminals in

arterial and venous trees and (ii) maintenance of binary tree logic of arterial and venous networks

during closure. The TerminalNodeSampleGenerator uses an emptying index list to avoid

repetitious connections to the same terminal. We usually prefer to connect one segment of the

arterial tree followed by one segment in venous tree, so that tree growth and diameter updates are

spatially balanced. If desired, arterial and venous trees can be fused into a single network for

graphical display or further computational purposes.

For a realistic microcirculatory network, it is necessary to adjust tortuosity, which can be

achieved by a Bezier Spline approach introduced in previous work [62]. More details on

microcirculation can be found in part II of this series.

25

2.4 Applications and Results

2.4.1 Simple application of open arterial trees.

Figure 2.3 demonstrates the versatility of confining vascular growth to arbitrary shapes. For

example, Figure 2.3A shows the letters LPPD - the acronym of our lab - serving as a highly

irregular template to grow balanced arterial trees covering the letter-shaped domain. Note that

synthetic arterial trees entwining each letter are perfectly balanced, so that all terminals discharge

equal amounts of blood. The circular triangular surface mesh sample generator in Figure 2.3B

confines growth to a flat disc. Figure 2.3C depicts a cubic tissue sample with a partial view of the

pial surface arteries, the penetrating arterioles, and a few hierarchies of branching arterioles.

2.4.2 Synthesis of closed cortical blood supply with microcirculatory closure

Most prior work produced arterial trees without physiological connection to the

microcirculation or the venous drainage. This case study illustrates the synthesis of the complete

circulation of the somatosensory cortex in mouse. It proceeds through five stages with outcomes

presented in Figure 2.4 and pseudocode given in Section 7.1.4. In step-1, the leptomeningeal

arteries and veins are synthesized with methods described in Section 2.2. To ensure anatomically

consistent surface coverage by leptomeningeal blood vessels, we control the number of penetrating

arteries [41] in the strategy (here 12-14 penetrating arteries per mm2). The number of veins was

set between 13 and 39 veins per mm2 in accordance to morphometric data acquired from the

2PLSM data, which also agrees with prior literature values [41,73]. The cortical synthesis is

informed by a database of values obtained from the open literature with key entries listed in Table

2.5. Step-2 ensures that the territories of the main leptomeningeal trunks are orientated

perpendicular to the cortical surface. We use LineNumberGenerator that create endpoints vertical

26

to the cortical surface up to a depth of 1mm. The addSegment procedure attaches a straight vertical

segment at a specific arterial pial terminal. In step-3, subcortical arterial segments grow off main

penetrating vessels by volume minimization until a segment count of about half of the total

segment number is reached. Note, the penetrating arterioles and ascending venules branch in a

tree-like fashion into the capillary bed. In step-4, the incomplete, not yet confluent arterial and

venous sides of the network are sequentially connected by the microvascular closure. From each

terminal arterial node, exactly one segment is grown to a close micro-segment of the venous side.

In analogue fashion, venous terminals are grown to near arterial capillary segments, step-5. Thus,

microcirculatory closure adds Nterminals*2 additional microvascular segments.

Tortuosity. Many microvascular segments do not conform to straight cylindrical shapes but

exhibit significant tortuosity. We imposed a tortuosity of 𝜏 =1.1-1.81 for segments in the

d<150μm diameter range to create realistic microvessels. Anatomical consistency was imposed by

matching the cumulative density functions of the synthetic and corresponding empirical network.

Tortuosity was added to the synthetic networks within each bin until the two CDFs agreed.

Validation. Visual inspection of Figure 2.4 shows a striking structural similarity between

synthetic networks and microcirculatory images (2PLSM) at all hierarchical levels for length,

orientation and diameters of pial arteries, to number and direction of penetrating arteries and the

connectivity of the tortuous capillary network. Also the venous subnetworks seem almost

indistinguishable.

27

Figure 2.3. Synthesis of open arterial structures with sample generators.

(A) To show the versatility of the algorithm, the letters LPPD- the acronym of our lab –

served as a highly irregular template to grow balanced arterial trees covering the letter-

shaped domain. Note that each terminal node discharges exactly the same amount of fluid.

(B) A flat arterial tree was created on a disk using a two-dimensional triangular mesh. (C)

A snapshot of an incomplete subcortical arterial network grown with the help of a 3D

unstructured CarthesianMeshSampleGenerator.

28

Table 2.2. Physiological parameters necessary for anatomical growth in mouse.

Parameter Value Units Source
Penetrating arterioles (PA) density 12-13 Nsgm/mm2 [41]

Ascending venule (AV) density 13-39 Nsgm/mm2 [41]

PA/AV ratio 3.0 -- [41]

MCA root diameter 143 ± 8 µm [74]
ACA root diameter 138 ± 9 µm [74]
PCA root diameter 121 ± 6 µm [74]

Brain volume 453 ± 19 mm3 [75]
509 ± 23 mm3 [76]
415 ± 24 mm3 [77]

Sagittal Length 10-14 mm [77–80]
Axial Height 8-10 mm [77–79]

Coronal Width 5-6 mm [77–80]
Cortical surface area 380 ± 20 mm2 [75]

348 ± 3 mm2 [76]
Density of splined segments (Nsgm) 11,474 ± 1,216 Nsgm/mm3 [41]

Cortical Thickness 1139 µm [41]

1154 ± 7 µm [81]

1210 µm [82]

We also performed detailed statistical analysis of critical morphometic properties in the

2PLSM and synthetic networks. Figure 2.4 show very close statistical agreement between 80

synthetic networks and four 2PLSM data as measured by the cumulative density functions (CDF)

of diameter, length, volume and surface area. In fact, the variation between the four experimental

datasets is larger than the difference between synthetic and matching experimental datasets.

Moreover, the total count of segments (Nsgm) belonging to pial surface arteries, arterioles,

capillaries, venules, and veins are virtually the same. Figure 2.4H summarizes additional similarity

metrics characterizing critical properties of the entire network (=cumulative structural properties).

Specifically, the total vascular length, cumulative vascular volume, and total endothelial surface

area show excellent agreement between the synthetic and empirical networks.

Taken together, network connectivity (=assessed by visual inspection) as well as statistical

comparison at the segment level (= CDF for segment-to-segment comparison) and total network

level (= cumulative properties overall sample comparison) indicate that the iCNS is capable of

synthesizing artificial microcirculatory networks that match morphometrics of microimaging

29

Figure 2.4. A collection of synthetic microcirculatory networks of the somatosensory cortex in

mouse.

(A)-(E) show synthetic structures (S2.102, S1.101, S3.101, S1.103 and S4.102) that were

generated to match 2PLSM samples with similar morphometric statistics [41]. Note, red

indicates arteries, blue corresponds to veins and white shows capillaries. (G) The statistical

30

(=2PLSM) counterparts. The statistical analysis suggest that the 80 synthetic datasets are

statistically equivalent to the four 2PLSM counterparts.

2.4.3 Mathematical network model of the entire MCA territory

Arterial circulation. The cortical surface growth was achieved by a SurfaceMeshSampler

customized to delineate the mouse cortex (STL surface mesh generated from a mouse atlas). First,

the M1 segment of the middle cerebral artery and the main orientation of the main branches were

established using growth from backbone as depicted in Figure 2.5. Initially, new arteries were

restricted to a close neighborhood of existing arterial branches. This strategy avoided pial arteries

cutting into the curved cortical surface, which is not physiological. Optionally, surface adherence

of the leptomeningeal segments can be improved by normal projection of the bifurcation points

(Bif) to the cortical surface. We precisely controlled the number of pial terminals [41] that connect

to penetrating arteries by generating 12-14 terminals per mm2 on the triangular elements of the

cortical SurfaceMeshSampler. Note, all sample generators with the exception of the tetrahedral

sample generator (not used in the present work) are shown to exhibit no signs of sample bias (see

Section 7.2 for more details).

For the venous circulation of the MCA territory, we departed from the superior sagittal sinus

backbone and traversed in reverse direction of the blood flow towards cortical bridging veins. The

backbone also contained anatomical information of the Transverse sinuses (Trs), Caudal rhinal

properties (CDFs of diameter, length, volume and surface area) of experimental (N=4, dotted

black line) and synthetic (N=80, transparent blue line) datasets are reasonably aligned. For

comparison, frame F shows an original 2PLSM dataset (E1.1), which looks similar to the

synthetic ones. (H) The cumulative statistics for the empirical and synthetic networks are

comparable (comparison between number of total segment count, nSgm, accumulated vascular

length, VL, total vascular volume, VV, and total endothelial surface area, VSA).

31

vein (Crhv), and Rhostral rhinal vein (Rrhv), see Figure 2.6A. During segment addition, collision

avoidance was enforced with Topological constraint functors.

Figure 2.5. Four stagesof the pial leptomenengial arterial network growth in mouse.

The arterial growth was guided by a triangular mesh surface sample generator that delineated

the cortical surface, which was reconstructed from in vivo microCT images [63,70]. The

SurfaceMeshSampleGenerator uses integer random numbers to generate terminal node samples

at the center of STL surface mesh triangles. The smallest pial arteries feeding into penetrating

arteries are evenly distributed and discharge the same amount of flow.

The cortical microvasculature was synthesized as described in Section 4.2, but with

microcirculatory branch terminal positions drawn by a VolumeSampler which penetrated 1 mm

into the subcortical tissue. The final network encompasses the complete arterial and venous left

middle cerebral artery (LMCA) territory with microcirculatory closure. It covers an area 40 times

larger than the 2PLSM data sets. This network spanning the entire MCA territory of the first

sample, SMCA1.101, totaled 11,092 arteries, 11,206 veins, and 433,042 capillaries (11,537

segments per mm3). The statistics of a second MCA territory, SMCA2.101, is given in Table 2.3.

Segment numbers and dimensions agree with our 2PLSM data as well as prior literature data listed

in Table 2.5. The synthesis took less than 2 CPU hours and 6 GB of RAM on a personal computer.

32

2.4.4 Cortical blood supply (whole brain circulation)

Figure 2.6A displays the intricate circulatory connections from a detailed mouse atlas [71],

which we aimed to recreate with a concise mathematical network model. Arterial trees. For the

arterial side, orientation and anatomical connectivity of the first few segments of the anterior

(LACA), posterior (LPCA) and middle (LMCA) cerebral arteries were supplied as arterial

backbones, see Figure 2.7A. The surface mesh generators were encoded by an STL surface mesh

shown in Figure 2.6B. The completed synthetic arterial networks are depicted in Figure 2.6C and

D. More detailed views of the expanded LACA, LMCA, LPCA territories are depicted in Figure

2.7B. The pial networks were constructed with the methods of Section 2.2, but with

SurfaceSampleGenerators guiding growth along the tilted surfaces of the ACA, MCA and PCA

territories. Venous trees. Venous system synthesis for the whole brain required a few adaptations.

The venous trees were grown in reverse flow direction. The completed venous networks are

depicted in Figure 6D. Several backbones of the venous circulation depicted in Figure 2.7C were

assembled from segmented image data. Microcirculation. The microcirculation was created as

discussed on Section 2.3. At the smallest length scale, the thinnest microvessels and closure

segments are relatively short (of d=1-3µm, L<50µm). For the microscale, it is possible to accelerate

performance by replacing the volume optimization objective with a simple nearest segment

objective.

33

Algorithmic complexity of the methodology. For two mice specimen, the cerebral circulation

for the left hemispheres with complete cortical circulation were synthesized. The synthetic growth

performed on two specimen-specific pial surfaces required approximately 8 CPU hrs on a personal

Figure 2.6. Comparison of Growths with Vascular Atlas.

(A) Arteries (red) and veins from the Xiong mouse atlas [71]. (B) Cortical surfaces supplied by

main cerebral arteries. The colors correspond to different brain territories; RMCA (green),

RACA (pink), RPCA (red), LACA (light blue), LMCA (dark blue), and LPCA (yellow). (C)

Synthetic arterial networks and (D) venous circulation for the entire mouse brain (abbreviations:

Transverse sinuses, Trs, Caudal rhinal vein, Crhv, and Rhostral rhinal vein, Rrhv). The

denomination of SH1.102 signifies the synthetic hemisphere version 102 grown from mouse 1.

34

computer and less than 8 GB of memory. Anatomical data for the automatic construction and

statistical information for the massive computer model are provided in Table 2.3.

Figure 2.7. Illustration of the pial vascular growth for the mouse hemisphere.

(A) Cortical surface and initial arterial/venous backbones. (B) Partially completed pial

networks grown from backbones for the LACA, LMCA, and LPCA regions. (C)

Synthetically grown territory of the inferior cerebellar vein (partial veinous network

draining the MCA arteries), and the sinus confluence including the superior sagittal and

traverse sinuses. For the arteries of the complete brain, six different backbones are used

and later connected to the Circle of Willis.

35

Table 2.3. Statistics for four large synthetic anatomical network structures, specifically two

mouse MCA territories (SMCA1.101, SMCA2.101) and two complete hemispheres (SH1.101,

SH2.101)

Parameter MCAs Hemispheres

 SMCA1.101 SMCA2.101 SH1.101 SH2.101 Units Ref
Penetrating arterioles density 13.00 13.03 13.01 13.03 Nsgm/mm2 [41]

MCA root diameter 142.5 142.5 142.5 142.5 µm [74]
ACA root diameter -- -- 138.3 138.3 µm [74]
PCA root diameter -- -- 120.5 120.5 µm [74]
SSS root diameter 142.5 142.5 250 250 µm --

Mouse brain volume 238.2 297.9 238.2 297.9 mm3 --

Sagittal Length 13.7 13.7 13.7 13.7 mm [77–80]
Axial Height 8.0 7.9 8.0 7.9 mm [77–79]

Coronal Width 5.5 5.5 5.5 5.5 mm [77–80]
Cortical surface area 236.8 281.7 236.8 281.7 mm2 --

Cortical Depth 1000 1000 1000 1000 µm --

Density of splined segments (Nsgm) 11,537 11,545 11,518 11,541 Nsgm/mm3 [41]

2.5 Discussion

We offered a derivation of network synthesis which placed the construction algorithm into a

framework of mathematical programming. We introduced a novel methodology to recreate the

cortical circulation in the entire mouse brain on a computer. Because anatomical data have limited

spatial coverage or resolution, they are insufficient for synthesizing complete mathematical models

of functional circulatory networks. This shortcoming was overcome by combining anatomical data

with synthetic construction principles. The proposed methodology fills the gaps between data from

different length scales pertaining to diverse imaging modalities. Network synthesis can also be

used to complement in vivo data sets in the smallest diameter range where imaging data may be

unreliable or simply missing. In addition, one can envision applications in which the center of the

simulation domain is populated with actual image data but are linked with synthetic

microcirculatory models at the boundaries to avoid boundary effects.

We also introduced a novel microvascular closure to connect arterial and venous trees with a

realistic capillary bed. A novel microcirculatory closure was seamlessly integrated with tree

36

generation principles. We point out that microcirculatory closure can further be accelerated by

replacing the volume minimization objective with the nearest neighbor heuristic.

While this paper focuses on image-based circulatory network synthesis (iCNS), its main

purpose is not limited to faithful reproduction of anatomical structures, but aims at supporting

mathematical modeling of hemodynamic and metabolic functions in the brain. The synthetic

anatomical networks are ideal for performing blood flow simulations with some computational

results shown in Figure 3.13. Biphasic simulations of the cerebral blood flow in the left hemisphere

took less than 30 CPU min using preconditioned GMRES and required 13.5GB of memory. A

description of the mathematical modeling of biphasic blood flow and oxygen exchange is beyond

the scope of this paper, but is discussed elsewhere [25,63,83–85]. It is important to note that

construction principles enforce simplified hemodynamic constraints as a side condition, which

leads to remarkably realistic vascular network structures. Simplified hemodynamic principles used

during the synthesis phase do not preclude choices for rigorous blood flow simulations after the

vascular networks have been generated. For example, Coutey et al. [86] used constrained

constructive optimization with diameter-dependent viscosity.

All synthesis algorithms were implemented on inexpensive computer hardware in serial

execution. The run time could be drastically reduced by parallel processing. Parallelization is most

beneficial in at least two locations: (i) delegate one candidate tree optimization (=volume

minimization) of 𝑁-closest segment connections to 𝑁 processors, (ii) run the list of topological

constraints, especially collision tests, in separate threads.

37

Figure 2.8. Network structure and select simulation results from biphasic blood flow for the

complete cerebral hemisphere in mouse.

(A) The anatomical hierarchy of the network encompasses blood vessels including pial

arteries, penetrating arterioles, precapillaries, capillaries, post-capillaries, ascending venules

and final drainage through the pial veins and sinuses. (abbreviateions: MCA pial/pen/precap

indicates pial vessels, penetrating arterioles and precapillaries belonging to the MCA

territory, respectively. Likewise for ACA and PCA. Ven postcap, asc ven, and ven pial

indicate venous post-capillaries, ascending venules and pial veins respectively). (B) Blood

flow was simulated by solving the hemodynamic flow-pressure equations for the entire

hemisphere in less than 30 CPU min for biphasic blood flow. (C) Simulating blood as a

biphasic suspension shows cortical depth dependent hematrocrit distribution [63]. (D) The

pressure distribution across all territories confirms earlier findings that the largest resistance

to blood flow occurs in the microcirculation (E) A zoomed view shows tortuous

microvasculature (red-blue) with detailed rendering of the endothelial cell layer (vessel wall)

38

and perivascular spaces (pink). (Note, the segments are rendered as open cylinders because

closed parametric surface meshing is computationally very expensive).

2.6 Limitations.

In the case studies, morphometric parameters of the growth algorithm of the entire cortical

surface were set equal to somatosensory cortex statistics, for which accurate 2PLSM data were

available. Several other groups have also produced microanatomical data, but these datasets are

not publically available [25,85]. Regional differences in brain anatomy are expected, but these can

readily be incorporated by adjusting vessel density and topological constraints, thus not limiting

the proposed methodology.

We also noticed the occurrence of very small diameters close to the imaging threshold of the

four 2PLSM data sets [41] (some segments have d<3 um); other authors working with the same

data scale the original diameter information to avoid very small diameter occurrence [39]. Since

this is a limitation of the diameter reconstruction in the original 2PLSM acquisition and not of the

synthesis method, we chose not to alter the original diameters.

For the growth algorithm, we chose constant perfusion pressure and equal terminal node

pressure, which caused uniform perfusion of the tissue. Previous studies experimented with

variable terminal pressures or flows using probabilistic arguments [56], but the relationship

between these more elaborate choices and the impact they had on the structure was not obvious.

2.7 Conclusions

High resolution image data and construction principles were incorporated in an algorithmic

framework for synthesizing anatomically detailed models of the cortical blood supply in the mouse

brain. The approach combined the advantages of image segmentation with synthetic network

39

generation. The proposed principles are adaptable for circulatory network generation in other

organs. The flexibility for incorporating image data, controlling topological growth with sample

generators and the ability to synthesize microcirculatory closures should make the proposed iCNS

methodology suitable for other complex anatomical spaces that occur in lung, heart, or kidney.

Mathematical models of cerebral circulation that incorporate anatomically sound

morphometric properties are expected to help address open questions regarding blood flow control

after neuronal firing (=functional hyperemia), resilience exhibited after stroke (=vascular reserve

and collateral blood supply) and autoregulation. The brain-wide scope of the synthetic cortical

circulatory networks with anatomically consistent representation of blood vessels spanning

multiple length scales is an essential milestone towards computer models able to render

mechanistic insights concerning the brain’s remarkable adaptability. Based on the encouraging

results for the mouse brain, the final goal of creating predictive mathematical models of the human

brain seems within the grasp of approaches presented in this paper.

2.8 Derivation of flow ratios in balanced tree

Recall that the definition of cumulative resistances in Equation (2.13) and Murray’s law in

Equation (2.14)

𝑟𝑖 = 𝜌𝑖 +
1

𝛽𝑗
4

𝑟𝑗
+
𝛽𝑘
4

𝑟𝑘

 (2.13)

𝑑𝑖
𝜅 = 𝑑𝑘

𝜅 + 𝑑𝑗
𝜅

1 = 𝛽𝑘
𝜅 + 𝛽𝑗

𝜅

(2.14)

40

At a given bifurcation, the following relationship holds between the flow rates in each daughter

branch of a balanced tree.

𝑎𝑗 𝑄𝑗 = 𝑃𝑖 − 𝑃𝑇

𝑎𝑘 𝑄𝑘 = 𝑃𝑖 − 𝑃𝑇

(2.15)

Since each daughter branch may have a subtree supplying N terminal nodes of even terminal

flow, where 𝑁𝑖 is the number of terminal segments downstream from the ith segment, the ratio

expressed in Equation (2.17) between the cumulative resistances must hold.

𝑄𝑗 = 𝑁𝑗 𝑞

𝑄𝑘 = 𝑁𝑘 𝑞

(2.16)

𝑎𝑗𝑁𝑗
𝑎𝑘𝑁𝑘

= 1 (2.17)

This required ratio imposes a condition on diameter ratios in the two daughter branches as in

Equation (2.18).

𝑟𝑗

𝑑𝑗
4

𝑑𝑘
4

𝑟𝑘

𝑁𝑗
𝑁𝑘
 = 1

𝛽𝑘
4

𝛽𝑗
4

𝑟𝑗
𝑟𝑘

𝑁𝑗
𝑁𝑘
 = 1

(2.18)

41

We introduce the scalar, m, which is known for a tree with given segment lengths (=in terms

of its diameter-independent resistances and number of nodes in terminal subtrees). Its value

dictates the necessary diameter ratios in any bifurcation of the balanced tree as in Equation (2.19).

𝛽𝑘 = 𝑚𝛽𝑗

Where

𝑚 = (
𝜌𝑘𝑁𝑘
𝜌𝑗𝑁𝑗

)

1/4

(2.19)

Substituting this daughter branch relation into Murray’s law gives the desired formula for

relative diameters, 𝛽𝑗 and 𝛽𝑘 in Equation (2.20).

1 = 𝛽𝑗
𝜅 + (𝑚𝛽𝑗)

𝜅

𝛽𝑗 = (1 +𝑚
𝜅)−1/𝜅

(2.20)

For the second branch, we obtain

𝛽𝑘 = 𝑚𝛽𝑗 = 𝑚(1 +𝑚
𝜅)−1/𝜅 = (𝑚−𝜅[1 + 𝑚𝜅])−1/𝜅 = (𝑚−𝜅 + 1)−1/𝜅

𝛽𝑘 = (1 +𝑚
−𝜅)−1/𝜅

(2.21)

42

2.9 Microvascular closure pseudocode

Table 2.4. Pseudocode for microvascular closure algorithm

1. FOR all terminals aT in TerminalSampleGeneratorList do

2. Choose closest vS ∈ close_segment_list(venous_tree)

3. add_fork (venous_tree, aT, vS) // with or without optimizing

4. remove(TerminalSampleGeneratorList , aT)

5. balanceTree(venous_tree, d0) // update venous_tree diameter ratios

6. ENDFOR

2.10 Sample generator pseudocodes

Table 2.5. Pseudocode for generating sample points in a triangular mesh

1. function ooTriangularMeshSampler.getSamplePoint(aFaceIdx:integer)

2. u := randomFloat(0,1); v:=randomFloat(0,1)

3. IF u+v > 1 THEN temp = u; u = 1-v; v = 1- temp; // mirror pt if outside triangle

4. [p0,p1,p2] := SurfaceMesh.getPointsTriangle(aFaceIdx)

5. result := plus([p0, scale(u,Vector(p0,p1)), scale(v,Vector(p0,p2))])

Table 2.6. Pseudocode for generating sample points in a triangular mesh

1. function ooTriangularMeshSampler.getSamplePoint(aFaceIdx:integer)

2. u := randomFloat(0,1); v:=randomFloat(0,1)

3. IF u+v > 1 THEN temp = u; u = 1-v; v = 1- temp; // mirror pt if outside triangle

4. [p0,p1,p2] := SurfaceMesh.getPointsTriangle(aFaceIdx)

5. result := plus([p0, scale(u,Vector(p0,p1)), scale(v,Vector(p0,p2))])

Table 2.7. Pseudocode for generating sample points inside a Carthesian bounding box

1. function ooVolumeSampler.getSamplePoint(abb:BoundingBox)

2. xMin=abb[0]; xMax=abb[1]; yMin=abb[2]; yMax=abb[3]; zMin=abb[4];zMax = abb[5];

3. u := randomFloat(0,1); v := randomFloat(0,1); w := randomFloat(0,1);

4. xVal = (xMax-xMin)*u + xMin;

5. yVal = (yMax-yMin)*v + yMin;

6. zVal = (zMax-zMin)*w + zMin;

7. Result := [xVal, yVal, zVal];

43

 Image-based circulatory network (iCNS) synthesis Part II: automated

matching of network topology

3.1 Introduction

In order to investigate such topics as the aging brain and functional hyperemia, simulations

have been able to overcome shortcomings in imaging paradigms. These simulations have been

greatly improved by recent advancements in vascular reconstructions leading to new availability

of vascular network structures for large portions of the mouse cortex available for simulation.

Unfortunately, these networks do not span the entire cortex, leading to artificial computational

boundaries at the edge of the imaging window. At these edges the modeler must make choices of

how to model this tissue, and this choice directly affects the predictions. To avoid these artificial

boundaries, recent advancements in anatomically accurate vascular synthesis allows extrapolation

of these empirically-derived structures to the scale of an entire hemisphere (see Section 2).

The previously proposed image-based cerebrovascular network synthesis (iCNS) algorithm

(Section 2) builds the microvascular closure from a space-filling sample generation with a novel

closure step to connect arterial and venous trees seamlessly. Also proposed was a method for

assigning a diameter approximation (Murray’s law and setting root radius of each tree). This is a

reasonable diameter approximation with a Murray coefficient of ~3 as described by empirical

network interrogation offered in Section 7.4. While this network shares comparable vascular

density with empirical counterparts, it does not mirror the same tortuosity and diameter spectra of

empirical networks. For instance, the diameter spectra of empirical data have peaks at the imaging

threshold whereas the diameter approximation from Murray’s law enforces a smooth diameter

spectrum with no sharp peaks.

44

To improve the topological characteristics, details of the microvascular growth and closure for

smaller (non-pial) vessels will be expanded here. An automated method for matching the topology

of two networks is investigated. These additions are shown to automatically produce synthetic

networks with matching topology to empirical counterparts.

3.2 Methods

3.2.1 Automated topological characteristic matching

In order to align the topology of the synthetic network to the empirical ones, the spectra of

diameter and length must be matched. For best results, the tortuosity spectra were matched and the

growth constraints were tuned such that the tortuosity and length matched simultaneously. The list

of steps given below and an overview of the algorithm is given in Figure 3.2:

1. Agglomerate segments until all segments between bifurcations are considered a single

vessel (splining procedure)

2. Reduce tortuosity in all segments to straight lines (start with clean tortuosity spectra)

3. Calculate length and diameter CDF of synthetic and empirical networks

4. Match large vessel (pial arteries/veins) diameter spectra

5. Match small vessel (arterioles/venules and capillaries) diameter spectra

6. Calculate empirical and synthetic tortuosity spectra

7. Calculate tortuosity necessary to match the length spectra (relative difference in length

between synthetic network as-is and synthetic network with matching length spectra)

8. Match tortuosity CDF of empirical and synthetic networks

45

Figure 3.1. Workflow diagram for matching the length and tortuosity spectra of a synthetic

network to empirical network.

Note, by matching these properties the length, surface area, and volume spectra also match.

46

A)

B)

C)

Figure 3.2. Comparison between empirical and synthetic networks before and after adding

tortuosity.

(A) empirical, tortuous networks, (B) fully synthetic, straight tree segments and (C) tortuous

synthetic networks. Note, tortuosity in this figure was assigned manually.

Step 1, Splining. Splining is the process of grouping all adjacent segments into a single

structure between bifurcations. Splining is necessary for comparing vascular structures, as single

segments are frequently broken arbitrarily (into more than 1 segment) due to variations in direction

or length (see Figure 3.3 for examples). These agglomerated structures can then be represented by

a series of 3rd order Bezier curves to give smooth representation of the blood vessel lumen. This

new vascular structure is represented by only segments connecting bifurcations to other

bifurcations or bifurcations connected to terminals.

47

Figure 3.3. A diagram exemplifying two cases where a line is segmented into an arbitraty

number of sections.

(Left) a line segment with a bend and (Right) a line segment with varying diameter. While both

images can represent a single, continuous blood vessel, they have been cut into an arbitrary

number of lines based on diameter and bending (tortuosity) information.

Calculating control/terminal points for each Bezier curve. The Bezier curves must define the

control and terminal points from the original network structure. Note, if multiple curves represent

the same vessel segment, these curves should adhere to C0 and C1 continuity as described

elsewhere [34]. These parametric curves are represented by Equation (3.1) with C0 and C1

continuity expressed in Equation (3.2) and (3.3), respectively. Note, all equations are given in the

x-dimension, but are computed with the same equations in the y and z directions by replacing the

x variable with y and z.

𝑥(𝑡) = 𝑃0
𝑥𝑡3 + (1 − 𝑡)𝑡2𝐶0

𝑥 + (1 − 𝑡)2𝑡𝐶1
𝑥 + (1 − 𝑡)3𝑃1

𝑥 𝑡 ∈ 0. .1
(3.1)

𝑥(𝑡)𝐿 = 𝑥(𝑡)𝑟

𝑥(1)𝑖−1 = 𝑥(0)𝑖
(3.2)

𝑥′(𝑡)𝐿 = 𝑥
′(𝑡)𝑟

𝑥′(𝑡) = 3(1 − 𝑡)2(𝐶0 − 𝑃0) + 6(1 − 𝑡)𝑡(𝐶1 − 𝐶0) + 3𝑡
2(𝑃1 + 𝐶1)

(3.3)

Here 𝑃0
𝑥 𝐶0

𝑥, 𝐶1
𝑥, and 𝑃1

𝑥 are the origin point, 1st control point, 2nd control point, and terminal

point of the curve, respectively. A pseudocode for grouping faces into a single vessel is given in

48

Table 3.1, while the overarching code for converting an entire network into splines is given in

Table 3.2.

Table 3.1. Pseudocode for grouping faces from a 2-point network between bifurcations

1. groupSegmentsIntoSplines(nwk):IntArray;

2. splineIdx = 1; splineIdxPerFace = iVector(nwk.nFaces+1, 0);

3. FOR i = 1 TO nwk.nFaces DO

4. IF splineIdxPerFace[i] = 0 THEN continue; //skip face if already labeled

5. getPointsForFace(p1,p2);

6. recurseUpToBifurcationAndLabelFaces(p1, splineIdx);

7. recurseDownToBifurcationAndLabelFaces(p2, splineIdx);

8. splineIdx = splineIdx + 1;

9. ENDFOR;

10. result = groupFacesByIdx(splineIdxPerFace); //group all faces with same spline

index

11. END;

Table 3.2. Pseudocode for converting a 2-point network to splined network

1. Convert2PointNetworkToSplinedNetwork(nwk, diaArray):splinedNWK;

2. groupedFaceArray = groupSegmentsIntoSplines(nwk);

3. FOR i = 1 TO length(groupedFaceArray)

4. faceList = groupedFaceArray[i];

5. aSpline = createSpilneFromFaceList(i, faceList,p0,c0,c1,p1);

6. splinedNWK.addFace(aSpline);

7. splinedNWK.setDia(getSubVector(faceList,diaArray);

8. ENDFOR;

9. Result = splinedNWK;

10. END;

The function setDia can use any model for identifying the diameter from a list of values (=list

of diameters for the segments prior to grouping). The diameter model could be a constant (=mean

value) or a model parameterized in t where the model coefficients can be obtained through linear

regression. This fitting model requires a value of t for each diameter recorded. The value of t can

be approximated by finding the cumulative length to the cylinder center for the ith segment as in

Equation (3.4) where i denotes the ith segment in the list, n is the total number of faces in the list,

and ti is an approximation of t at length li.

49

𝑡𝑖 =
∑ 𝑙𝑗
𝑖
𝑗=1

∑ 𝑙𝑘
𝑛
𝑘=1

(3.4)

Step 2, Reducing tortuosity of segments to straight lines. The penetrating vessel stage and

closure stage of the synthesis algorithm generates segments consisting of acute angles in

continuations (for an example, see Section 7.6). These segments can have tortuosity values outside

the range of empirical reconstructions. The best value for the maximum tortuosity was observed

to be a value of 1.0 (straight lines), although a method for reducing the tortuosity to a fixed value

is also given in Section 7.6.

The reduction of all segments to straight lines must not apply to the penetrating arterial-pial

vessel interface, as that curve is reflected in the empirical networks and does not exceed

physiological values. The remainder of the vessels are reduced to straight lines, effectively

flattening the tortuosity spectra of the synthetic network.

Step 3, Calculating length, tortuosity, and diameter cumulative density functions. The discrete

cumulative density function (CDF) of a parameter list (such as a list of segment lengths or

diameters) can be generated by probing and sorting these values from the network. The length of

each vascular segment is approximated by segmenting each spline into N-divisions and summing

the linear distance between the discrete points. Once the length and diameter vectors are identified,

they are sorted from smallest to largest value.

The vectors can now be simplified to CDFs by cycling through the elements of the vector and

tracking the iteration number at every new value. The CDF does not generate a new point in the

event the adjacent values in the array are the same (if two indices have the same value, that bin in

the CDF has 2 elements). To identify if a new value is significantly different than the previous

50

value, a tolerance must be set, here taken as 𝜇 = 1𝑒 − 9. The iterator is the non-normalized y-

value in the CDF and the vector value is the x-coordinate. After all x and y values for the CDF are

calculated, the y-values are normalized by dividing by the length of the array. A pseudocode is

offered:

Table 3.3. Pseudocode for calculating a CDF from a sorted value array

1. FUNCTION getCDF(sortedDia);

2. Counter = 0;

3. FOR i = 0 TO sortedDia.Length-1 DO

4. IF (sortedDia[i+1] – sortedDia[i] < tol) THEN

5. yVector[counter] = I; xVector = sortedDia[i];

6. ENDIF

7. ENDFOR

8. yVector = Scale(1/Length(sortedDia), yVector);

Step 4-5, Matching diameter spectra. The pial vessels are significantly larger than the other

microvessels because they carry large quantities of collateral blood to portions of the brain that are

outside the imaging domain. Due to the large disparity between the diameter range for the pial

vessels and the smaller vessels (arterioles, venules, and capillaries), the diameter spectra for these

two ranges should be matched independent of the microvessels.

Matching the pial diameter spectra follows the CDF matching algorithm proposed in

Section 3.2.2 but restricts the matching to only the pial diameter spectra in both networks. In the

case of datasets with very large penetrating arteries, the penetrating vessels (penetrating arteries

and ascending veins) are matched in the pial phase instead of in the microvessel stage. In the event

that the empirical data does not include anatomical labelling, N-largest vessels in the empirical

diameter spectra are used for pial matching, where N refers to the number of pial vessels in the

synthetic network. The capillary diameter spectra are then matched using the remainder of the

spectra.

51

Step 6, Calculating empirical tortuosity spectra. The tortuosity spectra for the synthetic and

empirical networks are calculated as defined in Equation (3.5).

𝜏 =
𝐶

𝐿

(3.5)

Here, C is the length along the curve and L is the Euclidean distance between endpoints of the

curve. This is expressed graphically in Figure 3.4.

Figure 3.4. Graphical representation of the tortuosity of a line.

C represents the distance traversed by the line and L is the Euclidean distance between two

points. If the line is a straight line between two points, the value of tortuosity (𝜏) is 1.

Step 7, Calculate tortuosity necessary to match the length spectra. The method of matching

the length spectra of two networks inherently enforces a least-tortuosity matching algorithm, which

leads to a non-physiological tortuosity spectrum. A method of informed tortuosity spectra

matching was developed to execute the simultaneous matching of length and tortuosity.

When comparing the sorted length spectra (length CDF) between the synthetic and empirical

networks, a new variable is created known as the normalized length difference. This value is

52

calculated by finding the difference between the current length (synthetic length) and desired

length (empirical length). This value is then divided by the current synthetic length to result in the

normalized length difference. This gives the amount of tortuosity required to match the length

spectra (𝜏𝑖):

𝜏𝑖 =
𝑙𝑖
𝑒 − 𝑙𝑖

𝑠

𝑙𝑖
𝑠 + 1

(3.6)

Where 𝑙𝑖
𝑒 is the empirical face length and 𝑙𝑖

𝑠 is the synthetic face length. This new vector (𝜏𝑖)

is a measure of the necessary tortuosity to match the synthetic network to the empirical one. In

order to match the length and tortuosity spectra, this new required tortuosity measurement is

sorted.

Step 8, matching the tortuosity spectra. After obtaining the sorted empirical tortuosity the

synthetic required tortuosity spectra, the CDFs of these vectors can be computed. The actual

tortuosity spectra can then be matched according to the required tortuosity spectra and methods in

Section 3.2.2. The method for adding tortuosity to splined segments can be found elsewhere ([62]

and in Section 7.6.1).

3.2.2 Automated matching of two cumulative density functions

It is time consuming and inaccurate to match the topological spectra (CDFs) of two networks

by hand. Instead, a method for binning two CDFs and matching the values within each bin has

been proposed.

53

Figure 3.5. Two cumulative density functions that do not match.

The close-up picture highlights 20% of the vessels pertaining to the thick curve have a length of

7μm, whereas the same number of vessels pertaining to the thin branch have a length of 9μm.

The vessels from the thick-line group would need to be lengthened to match the thin line.

A CDF adjustment can then be applied to every value within the bin to match the original line

(thick line in Figure 3.5) to the target line (thin line in Figure 3.5). In this simple example, consider

the first 20% of the vessels all within the same bin and consider a constant model for adjustment

(single multiplier for every value). To match the CDFs, all vessels in this bin would be multiplied

by a factor of 9/7 in order to make the values larger (to match the thin line). This can be validated

by evaluating the test point at the 20% line:

𝑒𝑟𝑟𝑜𝑟 = 𝑠𝑜𝑢𝑟𝑐𝑒 ∗ 𝑚𝑜𝑑𝑖𝑓𝑒𝑟 − 𝑡𝑎𝑟𝑔𝑒𝑡

𝑒𝑟𝑟𝑜𝑟 = 7 (
9

7
) − 9 = 0

(3.7)

Calculating bins. The bin edges correspond to an index in the sorted array of values of each

CDF. The first (𝑣0) and last (𝑣1) index of a bin can be found as follows:

54

𝑣0 = 𝑣𝑎𝑙𝑢𝑒𝐴 [𝑓𝑙𝑜𝑜𝑟 ((𝑖𝐵𝑖𝑛 − 1) ∙
𝑛𝐹𝑎𝑐𝑒𝑠

𝑛𝐵𝑖𝑛𝑠
)] (3.8)

𝑣1 = 𝑣𝑎𝑙𝑢𝑒𝐴 [𝑓𝑙𝑜𝑜𝑟 (𝑖𝐵𝑖𝑛 ∙
𝑛𝐹𝑎𝑐𝑒𝑠

𝑛𝐵𝑖𝑛𝑠
)] (3.9)

With the final bin arising from the final value for v1 and ending at nFaces.

3.2.2.1 Using a non-constant modifier to match CDFs

To identify the modifier to apply to the elements within a single bin, a first approximation

could use a constant factor. Due to the inherent nonlinearity of the sigmoid-like shape that CDFs

exhibit, a model with a fixed coefficient is unsuitable. A more advanced method could derive a

model that varies within the bin to match all elements within the bin more aggressively. Two

models for such a calculation have been identified; (i) using a linear shape function and (ii) using

a quadratic function with known y-offset parameter:

𝜙(𝑥) = 𝑚𝜙𝐿 + 𝑏
(3.10)

𝜙(𝑥 − �̅�) = 𝑚𝜙𝐿
2 + 𝜙𝐿𝑏 + 𝜙𝐿

(3.11)

Here, 𝜙(𝑥) represents the CDF values (𝜙) at any position along the 𝑥-axis. 𝜙𝐿 and 𝜙𝑅 are the

values at the left and right edges of the bin, respectively. The two options give effectively the same

result, so method (i) is preferred due to simplicity. Method (ii) is further discussed in Section 7.7.

The algorithm begins with two cumulative density functions that initially do not match as in Figure

3.6.

55

Figure 3.6. CDF matching between two datasets are not the same number of values.

The choice of a uniform tortuosity measure is not ideal for this pseudo-length parameter not

only because higher order models have a higher number of parameters (automatically giving a

better goodness-of-fit) but also because the change of tortuosity within a single bin may not be

a fixed value of tortuosity (frequency 0% - 10% is highlighted for reference). This is visualized

by black arrows indicating two different slopes (which are bin-dependent). The choice of

binning is also important, as the CDF curves are nonlinear, so in areas of high curvature a higher

bin density may be necessary.

To update the length CDF using a linear model the following equation must be executed:

𝑙′ = 𝜏0 + 𝜏1 ∙ 𝑙
(3.12)

Here, 𝑙 is the starting length (length of the synthetic network prior to adding tortuosity), and 𝑙′

is the final length (corresponding length in the empirical network). In this equation, 𝜏0 and 𝜏1 are

unknowns. As can be seen, there are 2 unknowns, so the system needs 2 equations to be fully

determined.

To supply 2 equations, the two bin edges can serve as two independent equations. The start

and end of the bin can be derived from Equations (3.8) - (3.9) and serve as the start lengths (𝑙0 for

first index and 𝑙1 for last index in the synthetic bin) and end lengths (𝑙0
′ for first index and 𝑙1

′ for

56

last index in the empirical bin). When using these 2 data points, the unknown coefficients in

Equation (3.12) defines a fully determined system to be solved (assuming the matrix is regular).

𝑙0
′ = 𝑙0

𝑒𝑚𝑝
 𝑙1

′ = 𝑙1
𝑒𝑚𝑝

𝑙0 = 𝑙0
𝑠𝑦𝑛
 𝑙1 = 𝑙1

𝑠𝑦𝑛

(3.13)

Fortunately, the diameter spectra are easily manipulated. Unfortunately, the length of a Bezier

curve is non-analytic. Due to this, the value for the tortuosity factor, α, is not analytically

calculable. In order to execute the setControlPointsForFace(aFace, p0, c0, c1, p1) procedure, a

fixed-point iteration must be used. A code snippet is offered in Matlab in Section 7.7.1.4 along

with a case study.

3.3 Applications

3.3.1 Microcirculatory subsections

Characterization of empirical networks. Empirical networks were generously provided for

detailed analysis by the Kleinfeld, Boas and Dunn group. These samples showed variability both

within the samples from each group and between the groups. The length spectra reflected more

similarity between datasets than diameter as reflected in Figure 3.7. The number of segments,

tissue domain extent, and volume fractions also showed significant variability between groups.

The tortuosity spectra, broken by neuronal layers, reflects similar trends between the datasets as

well (Figure 3.8).

57

Figure 3.7. Topological comparison between 1 network from the Dunn group, 5 networks from

the Boas group and 4 networks from the Kleinfeld group.

The sample variability inside each group is large while the sample variability between groups is

even larger. Top) overall statistics of the agglomerated network and Bottom) spectra of

topological properties are offered.

Figure 3.8. Probability density functions of the tortuosity as a function of neuroanl layer in the

empirically-derived networks of Boas, Kleinfeld, and Dunn.

Not all empirical networks reached the lower layers of the cortical surface and only the Kleinfeld

structures penetrated all the way to Layer VI.

58

The topology of the synthetic structures matches that of the empirical counterparts as expressed

by Figure 3.9. The same approach was validated with networks produced by the Boas group

(Figure 3.10) and Dunn group (Figure 3.11).

Figure 3.9. Comparison between empirical and synthetic Kleinfeld networks.

The intravaruability among the empirical networks is larger than the variability between

synthetic and empirical networks. The diameter, length, volume and surface area distributions

show excellent alignment between empirical (black lines) and a selection of synthetic (red lines)

networks. The tortuosity also shows excellent agreement between empirical (black lines) and

synthetic (green lines) datasets. 3D rendering of synthetic and empirical networks are also

offered to exemplify similarity.

59

Figure 3.10. Comparison between synthetic and empirical Boas networks.

The intravaruability among the empirical networks is larger than the variability between

synthetic and empirical networks. The diameter, length, volume and surface area distributions

show excellent alignment between empirical (black lines) and a representative synthetic (red

lines) networks. The tortuosity also shows excellent agreement between empirical (black lines)

and synthetic (green lines) datasets. 3D rendering of synthetic and empirical networks are also

offered to exemplify similarity.

Figure 3.11. Comparison between synthetic and empirical Dunn networks.

The intravaruability among the empirical networks is larger than the variability between

synthetic and empirical networks. The empirical network is in black while the synthetic network

is in red.

60

3.3.2 MCA/hemisphere

The growth model used for the Kleinfeld-like networks were averaged and applied to the MCA

territory of a single mouse and the hemisphere of 2 mice. These growths resulted in the generation

of 11 hemispheres and 1 MCA territory using statistics described in Sections 2.4.3 and 4.3.7. These

case studies are apt for future investigations of blood flow and collateral reperfusion.

In order to grow such asymmetric trees and territories as exist in the mouse hemisphere, a new

method for segment growth was created that relied on growing each tree independently prior to

the closure stage, as opposed to simultaneously. This alternative method (called Method 2) grows

the arterial tree(s) independently, then grows the venous tree(s) before connecting the two. This is

especially important when growing structures like the hemisphere where a single venous tree

drains the blood from 3 non-intersecting arterial trees. The overview of Method 2 is offered in

Figure 3.12 and a full hemisphere colored by hierarchical labeling is given in Figure 3.13.

To avoid sample bias generated from pial surface mesh indexing, it is imperative to randomly

sample from a list of triangles prior to sampling within the triangle. As described elsewhere, this

removes inherent bias in the growing procedure [57]. More elaboration on this growth was offered

in Section 2.4.4. A full list of completed structures is offered in Section 7.39.8-7.39.9.

Implementation details are offered in Section 7.1.

61

Figure 3.12. Workflow diagram of the anatomical growth algorithm.

The diameter is assigned and the vasculature is saved with a new name at the end of every step.

62

Figure 3.13. Network structure and select simulation results from biphasic blood flow for the

complete cerebral hemisphere in mouse.

The anatomical hierarchy of the network encompasses blood vessels including pial arteries,

penetrating arterioles, precapillaries, capillaries, post-capillaries, ascending venules and final

drainage through the pial veins and sinuses. Abbreviateions: MCA pial/pen/precap indicates pial

vessels, penetrating arterioles and precapillaries belonging to the MCA territory, respectively.

Likewise for ACA and PCA. Ven postcap, asc ven, and ven pial indicate venous post-capillaries,

ascending venules and pial veins respectively. File location is:
tShare:\03_Mouse\aritifialNetworks\artificialSledMouse\Gen1_BiasSampling\hemisphereV4_16704_density\

hemisphereArtVenClosureWithClosurev3.AddedTortuosity.resultsLinninger2015Pries_In_Vitro.cs31

3.3.3 Human

The growth algorithm for the hemisphere was also extended to the arterial tree of the human

brain. This preliminary case study exemplifies the robustness of the algorithm when adapted to the

highly tortuous gyrations of the human cortex. These gyrations do, however, pose problems when

using an un-biased sampling throughout the cortical region-of-interest. Methods for overcoming

this dilemma are offered in Section 7.8 where curvature estimation gives rise to ridge detection.

63

Also offered in the same section is a method for growing via expansion and a paradigm for pial

growth identifying continuations and bifurcations using advanced methods. Visualizations of the

current methods are offered in Figure 3.14-Figure 3.15.

Figure 3.14. The penetrating arterioles applied across an entire region of the human brian.

This visualization (MCA territory) shows concentration of vessels around ridges, where all

penetrators point towards each other. This is in opposition to the gyrations of the cortex where

the penetrators flare outwards from each other.

64

20caps/mm2 for entire MCA 20caps/mm2 for entire MCA (zoomed in)

1000 caps/mm2 small section 1000 caps/mm2 small section (zoomed in)

Figure 3.15. Further visualizations of capillary synthesis in human cortex.

The growth with a defined backbone and (from MRI reconstructions) and pial surface growth at

different densities and focal areas. The entire MCA region of the surface is grown to a

predetermined number of penetrators. Penetrators and capillaries were then grown in Top Row)

the entire MCA territory at a density of 20 capillaries/mm2 surface area coverage and Bottom

Row) a small user-defined section of the cortex to a density of 1000 capillaries/mm2.

3.4 Discussion

The automated topology matching algorithm proposed here allows, for the first time, a post-

processing alignment of topological property spectra from any synthetic network to an empirical

counterpart. This is a pivotal advancement to automatic construction of anatomically-consistent

cerebrovascular models. This automation removes the most difficult and time-consuming part of

65

anatomical growth; tuning the growth constraints, while producing realistically tortuous segments.

An expansion of these methods could allow application of different topological profiles to different

regions without modifying the core growth algorithm itself (once these data are acquired).

Limitations. While these methods produce topologically consistent structures, our team has

identified previously undescribed properties of empirical networks including vertical alignment

bias and extraneous unidentified penetrating arterioles (see Section 7.4). The implementation of

these new discoveries into the growth paradigm is outside the scope of the current work.

66

 Large microvascular networks reveal depth dependent hematocrit

gradient

Parts of this chapter was previously published as Hartung, Grant, Claudia Vesel, Ryan Morley,

Ali Alaraj, John Sled, David Kleinfeld, and Andreas Linninger. "Simulations of blood as a

suspension predicts a depth dependent hematocrit in the circulation throughout the cerebral

cortex." PLoS computational biology 14, no. 11 (2018): e1006549.

4.1 Introduction

Metabolic activity of the brain is controlled by a complex system of neuroreceptors, small

molecular regulators such as nitric oxide, hormones and proteins. The supply, clearance, and

balance of metabolites, oxygen, glucose and waste are controlled by the cerebral circulation which

is coupled with the cerebrospinal and interstitial fluid (CSF/ISF) subnetworks [87,88]. The

coordination between oxygen extraction and increased cerebral blood flow after neuronal firing

has garnered intense research interest in blood oxygen-level dependent (BOLD) signal, which is

the basis of functional magnetic resonance imaging (fMRI). Recent work [89] has begun to

quantify the microvascular origin of the BOLD fMRI signal in a microsection of a mouse brain.

The study integrated state-of-the-art neuroimaging of anatomical spaces, tissue oxygen tension

measurements and a mechanistic model of blood-bound oxygen supply and converted changes in

cerebral blood flow and oxygen extraction into synthetic BOLD signals using Monte Carlo

simulations. The main achievement was a successful first principles correlation between measured

oxygen and cerebral blood flow (CBF) levels generating fMRI signals.

67

A recent paper from our group [90] aimed at widening the spatial coverage of coupled blood

flow and oxygen simulations. Our model also offered detailed saturation and dissociation kinetics

of plasma and red blood cell-bound oxygen, endothelial mass transfer and tissue oxygen extraction.

Our study quantified vascular network effects by coupling biphasic (=suspension of red blood cells

in plasma) hemodynamics and nonlinear blood rheology with oxygen kinetics. In addition, the

number, distribution and position of neuronal and glial cell nuclei were acquired in a sizable

section (~1x1x1 mm3) of vibrissa primary sensory cortex. We also predicted oxygen saturation in

arterioles, capillaries and veins within experimental error bounds. By adopting a probabilistic

approach to account for mitochondria respiration associated with specific neuronal and glial

somata, the model was used to compute subcellular oxygen gradients between the extracellular

matrix, the cyctoplasm and individual neuronal/glial mitochondria. The remaining open question

concerns the spatiotemporal coordination inside the neurovascular unit.

4.1.1 Regulation.
There is agreement that the neurovascular unit locally controls the cerebral blood flow

response. Yet, oxygen supply exceeds the metabolic demand of neuronal activation for reasons

that still remain uncertain [91]. Because of the massive size of the mammalian brain with its

immense number of neurons and capillaries, the precise temporal and spatial coordination among

cellular components still eludes exact physiological description. For example, studies suggest that

functional hyperemia causes local neuronal metabolism increase of 5%, which in turn augments

local blood flow by 30% up to almost 130% of base line perfusion [92]. However, the exact timing,

regulation, and extent of dilation in individual spatially distributed vascular compartments during

functional hyperemia are still being investigated [89,93–95].

68

The cerebral circulation also exercises a second blood flow control mechanism known as

cerebral autoregulation [96–103]. Clinical observation [97] suggests that the total CBF remains

constant over a wide range in perfusion pressure (±50 mmHg, ±6666 Pa). Many excellent

contributions [104–106] correctly attribute the constancy of cerebral blood supply to global

resistance adjustments. Yet, the involvement of specific vascular compartments, speed and spatial

coverage of local vasodilatory/vasoconstrictive districts remains elusive [11,18–20]. Moreover,

quantification of network effects and control principles among vascular compartments requires an

anatomically accurate mathematical model of the cerebral circulation.

Propelled by the advances in neuroimaging, several groups have begun to integrate medical

image data with large-scale computer models [89,90,95,107–109]. Generally, these efforts fall into

two types. One type adopts a reductionist approach using simplified networks to highlight global

blood flow distribution patterns [93,110–114]. The second type follows a bottom-up strategy

which aims at replicating relevant microcirculatory components down to the level of the cellular

ensemble. Noteworthy examples include quantifying the neurovascular coupling in functional

hyperemia [89], analysis of pressure drop dependence on cortical depth [108], predictions of blood

flow control by intra-cortical arterioles [95], and cortical oxygen distribution [115,116]. The

ultimate goal of bottom-up models is a hemodynamic simulation of the entire brain, yet virtual

circulation models of the whole brain have been perceived as intractable due to size and

nonlinearity of the mathematical coupling between blood flow and oxygen kinetics [110].

This manuscript will introduce a computational procedure that integrates multimodal

neuroimage data covering different length scales into a unified virtual representation of the murine

cortical circulation. Two-photon imaging provides data for the reconstruction of capillary

networks. High resolution micro computed tomography (µCT) imaging is used to capture the

69

connectivity between main arterial branches and pial blood vessels. The morphometrics of the

micro, meso- and macro-scale vascular models have been statistically analyzed in order to

synthesize virtual blood flow networks with anatomically equivalent statistics, but without being

confined to the limited field-of-view or resolution of imaging modalities.

The aim of this paper was to quantify network effects of uneven red blood cell distribution in

the cerebral circulation. Although uneven red blood cell distribution also known as plasma

skimming can be observed in single bifurcations, neuroimaging of the entire cerebral circulation

has so far not been accomplished. To overcome this shortcoming, we integrated physiological data

from several neuroimaging modalities covering three different lengths scales. Massive computer

simulations of large microcirculatory networks of the murine primary cortex revealed a trend of

depth-dependent hematocrit, which is a significant finding indicating that the intricate architecture

of the cortical microcirculation serves a self-regulating function to maintain uniform oxygen

perfusion.

4.2 Materials and Methods

An overview of the data structures used in this study is presented in Figure 4.10.

70

Figure 4.1. Multi-modal imaging data used to construct realistic models of cerebral circulation

for entire mouse brain.

(A,B) Main blood vessels and pial arterial network. (A) High resolution µCT image of the

vascular tree in mouse. (B) Synthetic pial arterial tree generated by modified constrained

constructive optimization and morphological data from the µCT images. Note that the synthetic

circulatory network does not perfectly reproduce the layout of the pial vessels in the µCT, but

merely possesses similar morphometrics. (C,D) Cortical microcirculation (C1-C4) Experimental

microcirculatory networks acquired with two-photon laser imaging [26]. (D1-D4) Synthetic

microcirculatory data sets. The synthesized data sets are statistically equivalent to the

71

reconstructed networks from 2PLSM. Arterial (red) and venous side (blue) are color coded for

better visibility.

4.2.1 Pial surface data acquisition

Nine female C57BL/6 mice were imaged for pial vascular network structures following

intravascular injection of a lead pigment contrast agent as described elsewhere [117–120]. The

mice were perfusion fixed prior to micro computed tomography (µCT) imaging with 7-20 µm

isotropic resolution of the cerebral angioarchitecture. The resulting 3D images were filtered and

the vascular lumen reconstructed as previously described [121–123]. Figure 4.10A shows raw µCT

samples of the mouse vasculature from a 20µm resolution image. The pial network statistics such

as penetrating arteriole density and vessel diameter were compiled with results summarized in

Table 4.2.

4.2.2 Microcirculatory data acquisition

Four volumes (N=4) that encompassed the murine vibrissa primary sensory cortex [26] were

imaged using two-photon laser scanning microscopy (2PLSM) and are shown in Figure 4.10C.

2PLSM was employed to extract the spatial arrangement, length and orientation of blood vessels

in the vibrissa primary sensory cortex [26,124,125]. Blood vessels in four data sets (~1x1x1 mm3)

were labeled as pial arteries, penetrating arterioles, capillaries, ascending venules, or pial veins.

Categorization was based on size and branching level according to Strahler order rather than

physiological markers. No effort was made to differentiate pre-capillary arterioles from post-

arteriole capillaries because it requires differential labeling of smooth muscle and pericytes.

Capillaries were differentiated from ascending venules by a diameter cutoff of 6 µm and

72

penetrating venules were differentiated from pial veins for vessels within a depth of 100 µm below

the pia and a diameter less than 12 µm. Diameter information was also derived from images. The

network information was stored using sparse connectivity matrices. Length, diameter, and

tortuosity spectra are depicted in Figure 4.2. More details on image acquisition [26,124,125],

image reconstruction [126], as well as the formulation of the network equations [115] can be found

elsewhere.

4.2.3 Synthesis of large circulatory networks

Artificial microvascular networks (N=60) for large sections of the cortex (~1x1x1 mm3) were

synthesized using a previously described vascular growth algorithm (Sections 2-3). Four examples

are displayed in Figure 4.10D. The algorithm preserved dimensions of the experimentally acquired

cortical samples, pattern and dimension of pial arteries, number, orientation and connectivity of

penetrating arterioles, and morphometrics of the capillary bed, draining venules and pial veins, as

listed in Table 4.3. Statistics and morphometric comparisons of experimental and synthetic data

sets are displayed in Figure 4.2.

The arterial network of the entire MCA territory spanning three orders of magnitude in length

from large arteries (~1 mm range) down to the entire capillary bed (~1 µm) was synthesized based

on morphometric statistics of source data from multimodal images (µCT and 2PLSM).

4.2.4 Blood flow

Microcirculatory blood flow was modeled as a biphasic suspension comprised of red blood

cells and plasma. Bulk blood flow was described by Poiseuille law relating volumetric flow to

73

pressure drop as a function of resistance which in turn depends on diameter, d, and hematocrit-

dependent viscosity [127]. In addition, a kinetic plasma skimming model (KPSM) presented

previously [115] accounted for the uneven RBC distribution, known as plasma skimming. An in-

depth inventory of alternative plasma skimming models is offered in Section 7.12.

This model has only one adjustable parameter, the skimming coefficient, m. It was set to value

of m=8 in all microcirculatory models, although this parameter could be refined as shown recently

[128–130]. The nonlinear systems of conservation balances in system (1) were solved iteratively

to calculate blood pressures, p, flow, Q, and hematocrit, h. Here, R is the resistance matrix, C1 and

C2 are fundamental connectivity matrices [131] and C3 is the advection flux matrix. Boundary

conditions are summarized in Table 4.1. More details on the mathematical background are given

in Section 4.6; implementation details are discussed elsewhere [115].

𝐺(𝑄, 𝑝, ℎ) = 0 {

𝑅(ℎ, 𝑑)𝑄 − 𝐶1𝑝 = 0
𝐶2𝑄 = 0

𝐶3(𝑄, 𝑑)ℎ = 0
 (1)

Table 4.1. Summary of boundary conditions

Arterial Inlet p=120 mmHg (15,999 Pa)

Venous Outlet p=5 mmHg (667 Pa)

Inlet Hematocrit h=0.35

Outlet Hematocrit Fully developed, ∇h=0

lower boundaries (GM/WM interface) confined domain (zero flux, ∇Q = 0)

sides boundaries (vertical tissue boundary) cyclic boundary conditions or confined

domain (zero flux, ∇Q = 0)

74

4.3 Results

4.3.1 Morphometrics

We first assessed morphometrics of experimental data obtained from murine primary

somatosensory cortex samples (N=4, E1.1-E4.1). The indexing and naming scheme for the data

sets is listed in Table 4.2. The total microvascular segment count was 24,669±9,594 splines. An

important property is that all four original two-photon laser scanning microscopy (2PLSM) data

sets contained blood vessels that divide into more than two daughter branches (multifurcations).

Specifically, the four data sets contained 654, 725, 1686, 1440 multifurcations, respectively.

Table 4.2: Topological feature comparison between experimental 2PLSM and synthetic data sets

Experimental 2PLSM

(N=4)

Synthetic data sets

(N=60)

 Data name (labels) E1.1, E2.1, E3.1, E4.1 S{1,2,3,4}.1-15

Number of splined segments

(Nsgm)

24,669 ± 9594 24,679 ± 8389

Segments per pial surface

(Nsgm/mm2)

16,704 ± 2816 16,710 ± 2464

Bifurcations 14,842 ± 5652 16,451 ± 5592

Multifurcations 1172 ± 584 <250

Length (m) 1.38 ± 0.47 1.33 ± 0.47

Intravascular volume (nL) 24.3 ± 12.0 27.0 ± 6.1

Blood-brain barrier surface area

(mm2)

16.3 ± 6.3 17.7 ± 5.4

Coverage of pial surface area (mm2) 1.6 ± 0.3 1.77 ± 0.5

Tissue volume (mm3) 2.2 ± 0.8 2.2 ± 0.7

Statistics on cumulative metrics including vascular surface area, path length and luminal

volume are compiled in Table 4.2. Although the data originate from the same cortical region, there

are subject-specific variations between different specimens. There was higher variability in the

low end of the vascular diameter spectra, because unavoidable uncertainty affects the thinnest

75

vessels close to image resolution threshold as observed previously [124]. We also estimated the

surface area to tissue volume ratio of the blood-brain-barrier (BBB) of the microvascular network

as 8.8±1.1 mm2 vasculature/mm3 tissue. This number was obtained by summing the (endothelial)

surface area of the capillary bed; this estimate compares to experimental values of the BBB surface

of about 10-17 mm2/mm3 in humans [132–134].

4.3.2 Synthetic data sets

A modified constructive growth algorithm (mCCO [116,135], as described in Sections 2-3)

was used to create 60 synthetic data sets (S1.1-S4.15) of the murine primary sensory cortex. For

each of the four experimental data sets, 15 clones with statistics matching closely their

experimental original were created, so that the S1.1-15 series matched the original E1.1, and S4.1-

15 matched data set E4.1. Artificial networks smoothly connect arterial vessels through the

capillary bed to the veins without gaps or the need to insert artificial segments as observed with

other methods [113]. In addition, since blood vessels are not exactly straight, realistic tortuosity

values were imposed by a Bezier spline-based technique described previously [116]. Moreover, at

the boundaries of the synthetic data sets neither pial surface vessels, nor deeper laying arterioles,

capillaries, or venules were severed or had to be pruned thanks to the precise geometric control of

the vasogenic growth algorithm. Artificial network growth took less than five minutes for each

dataset on a personal computer.

76

4.3.3 Branching patterns

We also compared morphometrics of experimental (N=4) against synthetic vibrissa primary

somatosensory cortex data sets (N=60, S1.1-S4.15). No discernible feature differences can be

inferred from visual inspection as shown for three experimental (E2.1, E3.1, E4.1) and six

synthetic data sets (S2.5, S3.3, S4.5, S2.3, S3.4, S4.8) in Figure 4.2A. Total count amounted to

24,679 ± 8389 spline segments and 16,451 bifurcations. Spline segments were defined as tubular

connections (splines) between branching points (bifurcations or multifurcations). This counting

method ensured that the final tally is independent of image grid resolution or number of segment

sub-partitions. The comparison of cumulative properties and probability density functions shows

excellent agreement between the experimental and synthetic networks as seen in the plots Figure

4.2B and C. The synthetic networks are different realizations, but statistically equivalent replica

(clones) of the original image samples.

77

Figure 4.2. Morphometric comparison between experimental and synthetic microcirculatory

networks from the murine vibrissa primary sensory cortex.

(A) Three 2PLSM experimental [26] data sets (E2.1, E3.1, E4.1, three shown out of four) are compared

to synthetic (S2.5, S3.3, S4.5, S2.3, S3.4, S4.8) microcirculatory networks (six shown, out of sixty total).

(B) Cumulative microcirculatory morphometrics for experimental (N=4) and synthetic (N=60) networks

(segment number-Nsgm, intravascular length, vascular surface area-VSA, and vascular volume-VV are

statistically similar, p>0.05 in all cases using one-way ANOVA). (C) Probability density functions show

that the synthetic data sets are not identical, but match the topology of experimental data sets. Taken

together, the morphometric analysis shows that experimental and synthetic networks are statistically

equivalent.

78

4.3.4 Network Effects in large-scale models

The nonlinear biphasic blood flow, pressure and hematocrit equations for all four experimental

networks and all sixty synthetic networks converged within five minutes [115]. Results were

visualized with 3D rendering software Walk-In Brain developed at our institution [136,137]. Path

analysis was conducted based on flow trajectories traversing the network along streamlines.

Biphasic blood flow and network effects determining blood pressure and hematocrit distribution

through large experimental (N=4) and synthetic (N=60) networks perfusing a large portion of the

cortex were studied.

Typical pressure distributions along the microcirculatory network hierarchy are shown in

Figure 4.3. Pressure drop trajectories through the microcirculation showed patterns consistent with

experimental data [138–140]. Results of the path analysis in Figure 4.3 also depict the wide

variations of hemodynamic states when blood traverses the dense microcirculatory network from

the pial surface vessels through penetrating arterioles into the capillary bed and finally back to the

collecting veins. The trajectories of individual paths (green, blue, magenta and yellow) display

wide variability of hemodynamic states along the flow direction. Flow analysis reflected that a

perfusion pressure drop in the microcirculatory networks from 120 to 5 mmHg (15,999-667 Pa)

resulted in a mean tissue perfusion of 68.9 ml/100g/min (11 ∙ 10−6 m3/kg/s) which is within

experimentally observed ranges [141,142].

79

Figure 4.3. Predictions of hemodynamic states in primary cortex simulations show large

variations due to network architecture.

(A) Path analysis (N = 2,300-22,052 paths per dataset) of blood pressure as a function of

diameter. (It should be noted that some paths in the experimental data sets e.g. E1.1 exhibit

zigzagging which is probably due to uncertainty in the diameter information). (B) Blood

pressure as a function of path length in four microcirculatory data sets. Representative path

trajectories have been plotted in green, blue, magenta and yellow (A-arteries, PA-penetrating

arteries, C-capillaries, AV-ascending venules, V-veins).

4.3.5 Path analysis of hematocrit and layer dependence

We further inspected the RBC flux distribution as a function of network hierarchy (=vascular)

and position inside the cortical hierarchy (=neuronal). The results were acquired for both empirical

and synthetic data sets. Two representative specimens are highlighted in Figure 4.4A and B; eight

80

more examples are displayed in Figure 4.4C. Typical paths belonging to different cortical layers

are color coded in Figure 4.4. Flow paths were generated by tracing the flow from arterial inlet

nodes downstream through the capillary bed until reaching a venous outlet. Paths were sorted

according to their tissue supply function as follows: a path depth label equal to the cortical depth

of the deepest segment was assigned to each flow path. Thus, all paths were uniquely ordered

within a spectrum of shallow to deep reaching paths according to the neuronal layer (I-VI)

hierarchy in agreement with previously reported values [26,143,144]. Figure 4.4 depicts

hematocrit values along representative paths in shallow (layer I-green) and deeply penetrating

paths (layer V/VI-yellow). Along each path and between different paths there is high variability

along the flow direction. For example, discharge hematocrit in data set S1.1 reaches values as high

as hmax~0.7, and as low as hmin~0.18. However, there is an overall trend of higher hematocrit being

carried to lower cortical levels (layer-V/VI paths). The trend of relatively higher hematocrit, h,

conveyed to deeper tissue layers (p-value<0.01, using one-way ANOVA test in Matlab) was

observed consistently in all experimental and synthetic data sets. The bulk flow, Q, showed the

opposite trend; it was reduced in segments of deeper layers which are connected by longer paths

as is summarized in Figure 4.5. In contrast to bulk flow and hematocrit, the RBC flux (=volumetric

flow rate of the RBC phase) exhibited weak layer dependency, it was almost constant irrespective

of the cortical depth. We also observed that the variance of capillary RBC fluxes decreased with

cortical depth, thus RBC fluxes in deeper layers show lower variability than paths on the surface.

Taken together, biphasic blood rheology and network effects seem to induce depth dependent

hematocrit supply to the cerebral cortex which leads to more homogenized RBC fluxes in deeper

layers (=lower variance in RBC fluxes). Further analysis of diameter dependence on hematocrit

81

Figure 4.4. Depth dependent path analysis of hematocrit trajectories through the cortex.

The visualization of the hematocrit field in three dimensions shows a higher (red) level of

discharge hematocrit in the deeper segments than in segments closer to the pial surface. This

82

trend is observed in experimental (A, E4.1) and synthetic (B, S4.2) networks. Plots for all paths

(N=2,300-22,052 paths per dataset) trace the grayed region, depicted here for experimental data

set E4.1 and synthetic data set S4.2. For better visibility, representative paths descending to

different depths are shown with color coding by layer (I-VI). Deeper reaching paths (layer V/VI-

yellow) tend to carry higher hematocrit levels than shallower paths (layer I-green). (C)

Additional data sets show consistently depth dependent hematocrit in synthetic (N=5, S1.1, S2.1,

S3.2, S2.3, S4.1) and experimental (N=3, E1.1, E2.1, E3.1) networks (eight examples depicted).

Figure 4.5. Statistics of hematocrit distribution and RBC fluxes in cortical layers of cerebral

microcirculatory networks.

 (A) Statistics over an ensemble of experimental (N=4) and synthetic (N=12) data sets show

higher discharge hematocrit in deeper segments (N=1,234,412 with p<0.01 using one-way

ANOVA). The median (red line), 25-75th percentile (blue box) and limits (black lines, excluding

outliers) of hematocrit in all blood vessels for each layer obtained for all data sets. (B) Statistics

in three individual data sets (S1.1, E2.1, S4.1, N=59830, 94842, and 108833 respectively,

p<0.01 in all cases). In all case, layer V has higher hematocrit levels than the layers closer to

the cortical surface. In general, shorter surface paths (layer I) tend to have higher flow rate, Q,

but lower hematocrit levels, h. The total red blood cell flux (RBC) is rather uniform for all

cortical layers, because the flow effect (Q, lower in deep layers) and hematocrit (h, higher in

deep layers) balance each other out. The variance of the RBC fluxes, VarRBCFlux, decreases

with depth; accordingly there is more homogenous RBC flux distribution in deeper layers.

83

confirmed the high degree of hematocrit variability across the diameter spectra as previously

observed [90] (Section 4.7).

The agreement between the simulation results obtained for experimental and synthetic data

confirms that the synthetic networks are hemodynamically equivalent to the experimental

networks. The satisfactory match in morphometrics and hemodynamics between experimental and

synthetic data justifies the extension of network synthesis to large anatomical regions as described

next.

4.3.6 Extension to brain-wide hemodynamic simulations

Vascular networks covering the circulation of the entire MCA territory were generated with

the help of our modified CCO (mCCO) algorithm as described in Gould et. al [116]. The mCCO

algorithm was launched with the MCA M1 as the first segment. The location of the MCA territory

within the context of the mouse cortex is shown in Figure 4.6 top-row. Sequentially, more

segments were added at the cortical surface depicted in Figure 4.6 top-row, while minimizing the

vascular tree volume subject to blood flow constraints. Thus, gradually the algorithm generated all

arterial branches of the pial network on the cortical surface. Then, it was directed to proceed with

penetrating arterioles and microcirculatory growth to a depth of approximately 1 mm below the

pial surface, until a preset vessel density was reached. At each step of the segment generation,

connectivity and bifurcation position were optimized to obtain minimum tree volume. The

diameters of the network branches were recursively recomputed in accordance with

hemodynamically-inspired principles [145]. The total number of splined segments in the artificial

MCA territory was 993,185. This was roughly 60 times the number of segments in the cortical

samples.

84

The topology of the synthetic MCA territory resembled maps available in mouse atlases

[146,147]. Branching density and pattern of the pial arteries as well as the number of penetrating

arterioles was within ranges of the reconstructed sets of µCT images as listed in Table 4.3. Detailed

views in Figure 4.6 show pial, microcirculatory and individual capillary scales illustrating different

aspects of the massive network model covering three length scales ranging from the MCA M1

segment with a diameter [74] of 142 µm down to the capillary bed [26], d<6 µm. Morphometrics

of the synthetic MCA networks are summarized in Table 4.3. Figure 4.6A-C depicts the pressure,

flow and hematocrit field from the outflow of the Circle of Willis (MCA M1), down to the smallest

capillaries in the microcirculation. The anatomical detail and branching pattern is depicted for the

highly irregular, tortuous microcirculatory network.

4.3.7 Complete circulation of the MCA territory including arterial and venous side

The simulation of the entire MCA territory included the compartments of pial arteries,

penetrating arterioles, pre-capillaries, capillaries, post-capillaries, ascending venules and pial

veins. To complete the MCA circulation, the venous tree including venules was synthesized in

reverse and connected to the capillary bed as described previously [30]. Figure 4.7 depicts the

distribution of pressure, flow and hematocrit throughout the MCA territory. Figure 4.7A shows

comprehensive three-dimensional maps of the anatomical hierarchy, pressure distribution, blood

flow in the MCA territory, and uneven biphasic hematocrit. Figure 4.7B-E highlights the

anatomical grouping, pressure, flow, and hematocrit distribution throughout individual

compartments. In these views, explosion diagrams separating the anatomical groups (pial arteries,

penetrating arterioles, pre-capillaries, capillaries, post-capillary venules, venules and pial veins)

were used to better delineate the hemodynamic states in each group. Visual inspection of the

85

Figure 4.6. Schematic of multiscale biphasic blood flow simulations in the arterial side of the

MCA territory.

86

The large-scale cerebrocirculatory model connects the Circle of Willis to the territory of the

middle cerebral artery with its complete pial arterial network and microvasculature. Simulation

results show snapshots of pressure distribution, flow rates, and hematocrit at three length scales

(1mm, 100µm, 10µm). The three views roughly correspond to the resolution of several imaging

modalities: top layer, A, depicts the major arteries and anatomical features at the millimeter

scale as seen in µCT imaging; the middle layer, B, shows arterioles at the micron range; the

bottom layer, C, reaches cellular resolution as seen in 2PLSM or with confocal imaging.

microcirculatory compartments (pre-capillaries, capillaries, and post-capillaries) depicted in

Fig 6E reveal higher hematocrit levels in deeper cortical layers than on the surface.

4.3.8 Blood flow

Simulations conducted for the entire circulation on the MCA territory required boundary

conditions at only two points; MCA M1 arterial blood pressure (p=120mmHg, 15,999Pa),

hematocrit level (h=0.35), and venous outlet pressure (p=5mmHg, 667Pa). The solution

encompassed blood pressure, flow and hematocrit for 5452 pial vessels, 27,374 segments

perpendicular to the pial surface, and 960,359 capillaries of the entire left MCA territory, for a

total of 993,185. In total, the proposed iterative method succeeded in bringing to convergence a

total of 2,648,853 equations for biphasic blood flow.

87

Table 4.3. Pial network parameters used in this work in comparison to prior research
Parameter Value Units Citation

Penetrating arterioles surface coverage 13 ± 3 Nsgm/mm2 Nishimura [148]

 13 Nsgm/mm2 This work (entire MCA territory)

Average penetrating arterioles diameter 11 µm Blinder [26]

 11 µm This work (entire MCA territory)

Larger artery diameter 143 ± 8 µm Kidoguchi [74]

 142 µm This work (entire MCA territory)

Mouse brain volume 453 ± 19 mm3 Ma [75]

 509 ± 23 mm3 Badea [76]

 415 ± 24 mm3 Kovačevič [77]

Sagittal Length 13 mm Kovačevič [77]

 13.7 mm Diem [149]

 13 mm Clavaguera [150]

 14 mm Natt [151]

 13.7 mm This work (entire MCA territory)

Coronal Height 10 mm Kovačevič [77]

 8 mm Diem [149]

 9 mm Natt [151]

 8.0 mm This work (entire MCA territory)

Coronal Width 5 mm Kovačevič [77]

 5.5 mm Diem [149]

 5.5 mm Clavaguera [150]

 6 mm Natt [151]

 5.7 mm This work (entire MCA territory)

Cortical surface area 380 ± 20 mm2 Ma [75] (young mice)

 348 ± 3 mm2 Badea [76]

Number of splined segments 993,185 Nsgm This work (entire MCA territory)

Segments per pial surface 25,144 Nsgm/mm2 This work (entire MCA territory)

*Nsgm – number of splined segments

88

Figure 4.7. Blood flow of the complete arterial and venous circulation for the MCA territory in

mouse.

This large-scale model contains the MCA M1 segment branching from the Circle of Willis as

inflow and covers the entire territory of the middle cerebral artery with a complete pial network

and microvasculature encompassing PiA-pial arteries, PeA-penetrating arterioles, PeC-pre-

capillaries, C-capillaries, PoC-post-capillaries, AV-ascending venules, PV-pial veins. (A) Three

dimensional snapshots of the spatial distribution of anatomical grouping, blood pressure, blood

flow (perfusion), and hematocrit. Explosion diagram of anatomical compartments of the

angioarchitecture in the MCA territory; color-coding depicts (B) anatomical groups, (C) blood

pressure, (D) flow (perfusion) and (E) hematocrit distribution. This large-scale model contains

5,452 spline segments of the pial network, 27,374 splines encompassing penetrating arterioles

and ascending venules, and 960,359 capillaries. The volume of the pial arteries is 143 nL

89

(16.5%), penetrating arterioles is 75.1nL (8.7%), precapillary arterioles is 101.9nL (11.8%),

capillaries is 96.8nL (11.2%), post-capillary venules is 100.7nL (11.6%), ascending venules is

75.8nL (8.7%) and pial veins including portions of the superior sagittal sinus is 273.8nL (31.5%).

The predicted perfusion rate for the MCA territory was 50 ml/100g/min

(=8.3 ∙ 10−6 m3/kg/s) which is in agreement to literature ranges [141,142] of 40-163 ml/100g/min

(=6.7-27.2 ∙ 10−6 m3/kg/s). The trend of higher hematocrit levels in deeper cortical layers seen in

the smaller cortical samples was also confirmed in the massive simulations for the MCA territory

as shown in Figure 4.8.

Figure 4.8. Depth dependence of hematocrit on total blood flow in the left MCA territory.

Biphasic blood flow simulations for the entire MCA territory were analyzed statistically to

illustrate depth dependence of hemodynamic states. In a large subsection cut out of the left MCA

cortical vasculature (with volume=4.1 mm3 and surface area=4.2 mm2 which equals 11% of the

MCA territory), 188,865 microvascular segments in layers I-V were assessed. (A) Blood flow

slightly decreases in deeper paths (p < 0.01 using one-way ANOVA test). (B) Hematocrit

increase along deeper cortical layers (p < 0.01, one-way ANOVA test). (C) The product of bulk

blood flow and hematocrit gives the RBC flux, which is almost constant with a mild decrease

with depth (p < 0.01 using one-way ANOVA test). (D) The variance of RBC flux (VarRBCFlux)

decreases with depth, so RBC flux distribution is more homogenous in deeper layers than close

to the surface.

90

It should be noted that the simulations showed virtually no boundary effects in the center of

the MCA territory where the primary sensory cortical samples were located. The suppression of

boundary effects that can be achieved by large-scale simulation is extremely important for

simulating hemodynamic blood flow control such as it occurs in functional hyperemia or under

autoregulatory control. A full simulation of the entire MCA territory (arterial and venous side)

required 65 iterations and ~2 hours on multicore workstations.

4.4 Discussion

4.4.1 Morphometrics

We performed multiscale morphometric analysis of the cerebral circulation in mouse over

three length scales. On both the macro and the mesoscale, statistical data for the Circle of Willis,

the middle cerebral artery and its pial arterial network were extracted from high quality micro-CT

(µCT) data [117]. Microcirculatory morphometrics were acquired by two-photon imaging

(2PLSM) delineating the micro-angioarchitecture down to the level of individual capillaries for

sizable sections (~1x1x1 mm3) of the vibrissa primary sensory cortex. There were statistical

differences between the 2PLSM microcirculatory data sets especially in the diameter information

as can be expected from a high resolution analysis of cortical microcirculatory networks. However,

these variations did not significantly alter hemodynamic flow patterns. The morphometrics

(arterial, capillary and venous segment number, connectivity and branching patterns, probability

density functions for length, diameter and surface area spectra) informed a synthetic vascular

growth algorithm. Because the statistics (e.g. segment numbers) could directly be input into the

mCCO algorithm, we were able to create 15 synthetic replica for each of the four data sets. In total,

91

we synthesized artificial vascular networks (N=60) with morphometrics and blood perfusion

patterns that are statistically equivalent to the experimental data. The wealth of experimental and

synthetic data used in this study provided a testbed for hemodynamic analysis of biphasic blood

flow through the cortical microcirculation.

4.4.2 Blood Flow

Hemodynamic simulations were performed using computer algorithms described and tested

extensively [115]. We performed biphasic blood flow simulations on both experimental (N=4) and

synthetic microcirculatory networks (N=60). Simulation results predicted patterns of blood flow,

pressure and hematocrit within ranges currently known from experiments. Even though our blood

flow computations are deterministic [90,115], computed hemodynamics states varied widely

within the labyrinth of paths traversing the microcirculation. We pinpointed randomness of the

angioarchitecture as the origin of the wide range of predicted hemodynamic states. The finding of

variability in hemodynamic states due to network architecture is significant, because it suggests

that there are no characteristic properties (e.g. average hematocrit, mean capillary pressure) that

would justifiably represent a typical physicochemical state of a microvascular compartment

(arterioles, capillary bed, venules). It also explains why idealized trees such as binary ordered

hierarchical graphs [112] are unsuitable surrogates for microcirculatory flow networks, because

their regular and symmetric branching patterns lack the randomness in network topology seen in

the murine anatomy. Specifically, ordered trees have equal states in all branches of a given

hierarchy, which leads to even hematocrit splits due to symmetry in daughter branching diameters.

Variability in hemodynamic states reported previously [90] has implications for neuroimaging

research. Specifically, even exact measurements at an individual point within the limited

92

neuroimaging field of view (e.g. ~1 mm2 surface in two-photon images) would be prone to exhibit

wide variations. The patchiness (variability) obtained by image acquisition at a single point cannot

be overcome by more accurate imaging. Instead, an effective response to counteract variability

due to network randomness is to adopt imaging protocols that emphasize spatially distributed

samples over point measurements. In other words, measurements intended to infer global trends

necessitate spatially distributed samples. Specifically, point observations acquired for single blood

vessels can be expected to exhibit wide variations due to network effects, even if measurements

are precise.

4.4.3 Hematocrit

Our large-scale computer simulations suggest a depth dependent hematocrit gradient in the

cortical blood supply as summarized conceptually in Figure 4.9. Detailed analysis of the spectrum

of individual microcirculatory blood flow paths illuminated a clear trend; namely that deeply

penetrating microvessels convey more red blood cells than paths running closer to the pial surface.

The observation of higher hematocrit in deeper paths was observed in all simulation experiments

for the primary sensory sets (experimental data sets, N=4; synthetic microcirculatory networks,

N=60 as seen in Figure 4.5) as well as for the large-scale blood flow simulations covering the

entire MCA territory shown in Figure 4.8. The predicted homogenization effect results in more

uniform RBC fluxes, because shorter superficial paths tend to have higher bulk flow, Q, but carry

less hematocrit, h. On the other hand, longer deeper penetrating paths have to overcome higher

resistance leading to lower flows, but enjoy increased hematocrit as summarized in Figure 4.5 and

Figure 4.8. As a consequence, this phenomenon also suggests that shorter surface paths which tap

into fresh arterial oxygen supply have fewer RBCs, while deeper paths have higher concentrations

93

of RBCs which on average carry lower O2 saturation. Another effect of hematocrit gradient is that

net oxygen fluxes conveyed to different cortical layers are more evenly balanced than would be

the case if RBCs distributed uniformly (no plasma skimming). We also noticed that the variance

of RBC fluxes decreased with cortical depth. Accordingly, the distribution of RBC fluxes in deeper

layers is more homogeneous than in surface layers. Random network architecture together with

non-uniform hematocrit distribution due to the complex biphasic blood rheology seems to be two

synergetic factors for ensuring homogenous oxygen supply irrespective of the cortical tissue depth.

Since this homogenization effect needs no external feedback, it is plausible to infer that layer

dependency of hematocrit and reduction of RBC flux variance serves a self-regulatory mechanism

to balance oxygen supply to all cortical layers.

The plasma skimming effect describes a phenomenon seen in microvascular bifurcations

(d<300 µm) [152,153] in which thinner side branches syphon disproportionately large amounts of

plasma from the parent segment than thicker daughter branches. Our mechanistic simulations

illustrate how plasma skimming phenomena apply over thousands of bifurcations and

multifurcations in a tortuous vessel network, effectively overcoming the geometrical

unavoidability of path length differences as shown in Figure 4.9.

 Our recently developed kinetic plasma splitting model (KPSM) was our choice for computing

large-scale network effects in this study. The main critical reasons include: (i) the KPSM split rule

is able to handle multifurcations that occur in the murine microcirculatory anatomy (7.1%, 5.9%,

8.9%, 6.7% of all segments had multifurcations in experimental data sets), (ii) its predictions fall

within physiologically meaningful property ranges. Specifically, it does not lead to predictions of

zero or excessive hematocrit, and (iii) its linear and differentiable mathematical properties

94

guarantee convergence of massive network computations. A full account documenting the KPSM

model can be found in Section 4.6.

Figure 4.9. Schematic of the depth dependent hematocrit network effect.

At the microcirculatory level, blood is a suspension of red blood cells in plasma with a thin

boundary layer close to the vascular wall which contains little or no red blood cells. When red

blood cells suspended in plasma flow through a bifurcation of a penetrating artery, they tend to

concentrate in the thicker daughter branch, while the thinner side branch syphons a

comparatively higher fraction of plasma from the cell free layer near the wall of the parent

branch. This effect is known as plasma skimming. When plasma skimming repeats over many

bifurcations of the cortical microcirculation, deeper reaching paths through the capillary bed

tend to have higher hematocrit than surface paths. Longer path length incurs higher flow

resistance leading to less bulk flow. In effect, total RBC flux, which is the product of hematocrit

times flow, is more balanced than if RBC splits were even. The network effect also reduces

variability in RBC fluxes, so that deeper layers are more evenly perfused. Our simulations

implicated network effects due to biphasic blood rheology for the predicted hematocrit gradients

and increased RBC flux homogenization.

4.4.4 Synthesis
The previously introduced network synthesis used a modified constrained constructive

optimization (mCCO) [116] algorithm. The mCCO algorithm originally conceived by Schreiner

[145] deploys two very simple principles: (i) minimization of vascular volume, and

(ii) hemodynamic flow principle constraints which enforce that the total blood flow entering the

95

network discharges in exactly equal amounts through the terminal outflow segments. Remarkably,

this approach builds network structures whose topology resembles vascular network anatomy

observed in vivo. One major task consisted of testing whether realistic network representations

with arterial-capillary-venous closures could be synthesized with morphometric and hemodynamic

properties matching networks acquired with neuroimaging modalities. The results showed that

synthetic data (N=60) created with a modified mCCO algorithm were statistically and

hemodynamically equivalent to experimental cortical data sets (N=4). More details on the vascular

synthesis algorithm are provided in the previous chapters.

4.4.5 MCA

The hemodynamically inspired vascular growth procedure enabled the construction of realistic

representations of the cortical blood supply of the entire MCA territory spanning multiple length

scales from the large arteries (mm range) to the smallest capillaries (µm range), and draining

through the pial veins (mm range) or three orders of magnitude in length scales. It allowed us to

seamlessly integrate state-of-the-art topological data acquired from two entirely different imaging

modalities (µCT and 2PLSM) into a single, coherent multiscale representation of the entire MCA

territory with unprecedented anatomical detail that includes both the arterial and the venous side

of the cerebrocirculation. Because simple, blood flow inspired construction principles are applied

at all length scales, the resulting MCA circulation has no discontinuities or gaps between the main

cerebral arteries, the pial arterial network, or the microcirculation. Morphometrics, anatomical

details such as the shape of the cortical surface and hemodynamic principles, are incorporated at

each stage of the growth algorithm. Thus, our proposed methodology may serve as an alternative

to the practice of merely stitching together data from different locations or length scales.

96

The application of biphasic blood flow simulations for the entire MCA territory shows that

large-scale blood flow and hematocrit simulations are feasible with existing computer resources.

The large-scale simulations confirmed the trend of hematocrit layer dependence predicted for the

smaller cortical samples. The massive simulations also elucidate the spatiotemporal coordination

between different vascular compartments at different length scales (arteries vs arterioles vs

capillary bed). The anatomical detail achieved with the MCA model may serve as a starting point

for dynamic simulations that elucidate the involvement of different vascular components in

regulating functional hyperemia, autoregulation or collateral blood supply in stroke. Because the

network extended over a sizable portion of the mouse cortex, predictions for the center of the

primary sensory cortex were free of boundary effects.

4.4.6 Boundary conditions

The synthetic MCA circulatory network also has the critical advantage that boundary

conditions, which have been reported to hamper simulations on thin data sets [95], are applied very

far away from the area of investigation. For example, Figure 4.6 displays typical subsections

comparable in size to the 2PLSM data sets which are located far away from the MCA boundaries

(MCA M1 segment and veins of the superior sagittal sinus). Thus, in samples situated at the center

of the MCA territory, boundary conditions have negligible impact on hemodynamic predictions.

The blood flow simulation for the entire MCA territory required only the arterial inlet pressure at

the M1 segment and the blood pressure at the venous side.

We point out three additional reasons why the ability to synthesize morphologically and

hemodynamically equivalent data sets is significant. (i) Artificial networks continuously connect

the arterial side and the venous side without gaps. In 3D neuroimages assembled from two-

97

dimensional image stacks, it is easy to miss segment connections or segments running between

two slices. (ii) No segments are severed nor is there a need to prune dangling segments at domain

bounds (this cleanup is unavoidable in image reconstructions [89,109]). In particular,

fragmentation to pial arteries and many microcirculatory segments running perpendicular to the

pial surface lead to boundary effects that can substantially affect predictions [95]. (iii) The most

important benefit is the ability to expand the scope of data acquired by neuroimages without being

confined to the bounded field-of-view or limited resolution of the imaging modality.

The ability to conduct brain-wide simulations would free the modeler from the burden of

making uncertain assumptions at the boundaries of the artificial domain (edge of the image or

simulation domain boundary). Because our algorithm succeeded in converging blood flow

computations with hematocrit split for the entire MCA circulation in about two hours of CPU time,

our group is confident that the proposed computational approach will enable blood flow

simulations and oxygen transport on a brain-wide level in the near future.

4.4.7 Limitations

Despite the evidence for trends such as depth dependent hematocrit, it should be emphasized

that individual flow paths may experience substantially weaker or even reverted trends, as can be

expected from the inherent randomness of the microcirculatory network architecture.

The 2PLSM technique provided a very detailed inventory of the cortical microcirculation. The

four data sets did not include information about the subcortical blood supply to the white matter.

White matter subcortical circulation is physiologically separated from the cortical blood supply.

Accordingly, we assumed that the white matter supply is hydraulically separated from the cortical

blood supply. However, certainty about this point would require a model of both the cortical and

98

the subcortical networks (white matter blood supply). This task is intriguing, but is currently

beyond the reach of 2PLSM, which is limited to ~1 mm depth. This is clearly a point for future

research, but is currently outside the scope of this paper.

The main finding of depth dependency of hematocrit supply to the cortical layers is the result

of a model prediction whose basis rests on experimental observations about plasma skimming and

uneven hematocrit splits observed in capillaries outside the brain [154–156]. Therefore, the next

logical step is to experimentally verify layer dependent hematocrit with deep imaging such as

adaptive optics (AO) two-photon imaging [157]. If experiments confirm depth dependence and

homogenization of RBC flux distribution, it would constitute a remarkable mathematical modeling

contribution, which actually predicted, instead of merely explained, cortical blood supply. In the

adverse case, the model would have prompted the need to revise our understanding of biphasic

blood flow rheology as it relates to the cortical microcirculation (=diameter and hematocrit

dependent viscosity laws, and hematocrit split rules), since so far it has been assumed that plasma

skimming is active in capillaries throughout the entire circulatory system including the brain.

The conclusions about oxygen supply also need to be verified experimentally and

computationally. The methods presented previously might be a first step in this direction [90].

However, oxygen predictions require discretization of the extracellular space which can be done

in principle using the methods presented in Gould et. al [115], but is beyond the scope of this

paper.

4.4.8 Conclusions

We predicted uneven depth dependent hematocrit distribution due to the complex biphasic

blood rheology. Because our simulation did not include external factors such as gravity, we

99

conclude that the result of depth dependent hematocrit arises from the combination of structural

and hemodynamic properties of the network. Our findings suggest that network effects due to

biphasic blood rheology and randomness of the network architecture are a controlling factor for

ensuring adequate oxygen supply irrespective of the cortical depth. Since the observed

homogenization of RBC variability requires no feedback, depth dependent hematocrit gradient

may serve an important self-regulatory mechanism to balance oxygen supply to all cortical layers.

Uneven distribution of hemodynamic states in the microcirculation as well as the notion of

layer-dependent hematocrit also have implications on the interpretation of the fMRI BOLD signal

where it is usually assumed that hemodynamic states and hematocrit are homogeneous and evenly

distributed throughout the microcirculation. The predictions in this work suggest that focal analysis

of the fMRI BOLD signal would be more relevant than assuming global constants for the entire

cortex.

We demonstrated that the modified constrained constructive optimization algorithm (mCCO)

is successful in synthesizing artificial microcirculatory networks with topological and

hemodynamic properties that are statistically equivalent to experimental data sets from different

imaging modalities and length scales.

Simulations of the entire MCA circulation, which until recently would have to be considered

intractable, are now becoming accessible to rigorous numerical analysis due to stable, efficient and

physiologically consistent plasma skimming algorithms implemented on existing computer

hardware. The synthesis of anatomically faithful cerebrocirculatory networks with desired

topology closes the gap between large-scale blood flow simulations performed on image-derived

data sets on one hand, and simulations on purely synthetic data sets on the other.

100

The successful synthesis of biphasic blood flow in the entire territory of the MCA constitutes

a step towards the ultimate goal of first principle simulations of cerebrocirculatory blood and

oxygen distribution patterns for the entire brain.

4.5 Deficits in different hematocrit split rules

We first attempted to make use of a hematocrit splitting rule for biphasic blood flow

computations derived from experiments in the rat mesentery. At first, we tried three different

versions of the Secomb-Pries split rule developed for small networks of the rat mesentery which

do not exhibit multifurcations, and for which numerous different parameter choices can be found

in the literature [158,109,159–161]. However, none of the different versions can be applied to in

vivo data sets with multifurcations (654, 725, 1868, and 1440 in the four experimentally-derived

microcirculatory networks). We also tried to simulate biphasic blood flow of two midsize network

of a cortical microcirculation with about 2000 and 10,000 splined segments, see Figure 4.10 and

Table 4.4. However, all simulations with the Secomb-Pries splitting rule contained segments with

physiologically problematic results. Table 4.4 summarizes convergence results and problematic

predictions by their splitting rule. For the large-scale MCA blood flow simulations, the Secomb-

Pries model rapidly diverged in all simulation runs.

Zero RBC flow. For example, the 2005 version [158] had numerous segments without RBCs.

The 2011 version [1] and the 2015 version [2] did not converge for larger networks (Table 4.4).

101

Figure 4.10. Hematocrit fields portrayed on two simplified microcirculatory models.

Obtained with the Pries 2005 splitting rule [158] showing many segments with non-

physiological results. Many segments had zero RBC flux (Hct ~0), other segments reached

hematocrit levels that fell outside the definition space of the hematocrit-dependent viscosity (Hct

> 0.9). Red indicates excessive hematocrit and dark blue indicates vessels with zero RBC flux.

Taken together, these data and more results listed in Table 4.4 explain why the Pries splitting

rule, with any combination of parameters, was not applicable to simulate large-scale network

effects in the mouse cortex. Instead, the KPSM model with implementation in Section 4.6 was

used which gave consistently, physiologically meaningful results in all cases as listed in Table

4.4

Excessive RBC flow. Moreover, all predictions based on the Pries family of models

[109,158,159] led to segments with excessive discharge hematocrit greater than 0.9 (h > 0.9). This

value is outside the validity range of the viscosity law, which is only valid [154–156,162] for

hematocrit up to up to 0.7 (h 0.7). The 2005 version [158] of coefficients had up to 11.8%

vessels above the excessive hematocrit threshold. Numerical complications were also noted in a

study [1] which deployed the Pries split model, stating the following comments on the splitting

rule:

“… a threshold of 0.8 for the hematocrit in the daughter branches was prescribed …”

“… hematocrit was set to zero in daughter branches with flow below a given threshold …”

102

In a recent report [161], the authors retorted our earlier findings [115] about the inconsistencies

of their split rules. They updated their formulae with a new set of three parameters in their highly

non-linear functions to reduce the number of occurrences of RBC free vessels. The effort to

eliminate RBC free vessels stands in contrast to another recent review [163] which suggests that

zero RBC predictions are a necessary feature as expressed in the following quote:

“This approach (KPSM model by Gould et al, 2015) excludes the possibility of zero hematocrit

in low-flow branches, whereas such behavior can be observed in vivo…”

In our view, zero RBC flow prediction for a stationary simulation is not physiologically

meaningful. The prediction of RBC free blood flow points to a structural problem of the empirical

split rule by Pries that cannot be remedied by parameters adjustments. Inspection of the split

formula shows a discontinuous “if-statement” which sets one branch of the Secomb-Pries split

formula artificially to zero to avoid transgressing the definition space of the logit function.

We have no further comment on the applicability of the Secomb-Pries split rule for single

bifurcations or small mesentery networks. However, simulations for large cerebral

microcirculatory networks as shown in this and in prior studies [90,115] point to two principal

reasons why the KPSM model was chosen:

• First, the KPSM model can address multifurcations which occur in realistic data sets

(654, 725, 1868, and 1440 in four vibrissa primary sensory cortex networks), while the

Secomb-Pries models in all their variants cannot.

• Second, the implementation of the KPSM model with a single parameter, m, predicts

hematocrit distribution within physiological ranges for large cerebrocirculatory networks.

103

Table 4.4. Physiological assessment of plasma skimming models
 Segments with h=0 Segments with discharge h > 0.9

Simplified Microcirculation 1

KPSM

Pries [158] 2005 ● 2 ● 231 217

Lorthois et. al [109] 2011 ● ● ● ● ● ●

Chebbi et. al [159] 2015 ● ● ● ● ● ●

Simplified Microcirculation 2

KPSM

Pries [158] 2005 316 ● 54 1397 ● 2159

Lorthois et. al [109] 2011 ● ● ● ● ● ●

Chebbi et. al [159] 2015 ● ● ● ● ● ●

Massive MCA Simulation

KPSM

Pries [158] 2005 ● ● ● ● ● ●

Lorthois et. al [109] 2011 ● ● ● ● ● ●

Chebbi et. al [159] 2015 ● ● ● ● ● ●

V1 = Pries In Vitro, V2 = Pries In Vitro Modified, V3 = Pries In Vivo, ●=not converged, =converged

without faces (h~0, h>0.9, h discharge hematocrit)

4.6 Implementation of the biphasic blood flow

Biphasic blood flow was solved computationally by enforcing three conservation laws:

conservation of mass, linear momentum, and RBC fluxes using a plasma skimming model. For the

RBC splitting rule, we used the KPSM model [115] with a constant plasma skimming coefficient,

104

m, although the accuracy could be further improved by adjusting the m-value as a function of

hematocrit and diameter as shown by Yang et al. [128–130].

The system of conservation laws in Eq. (1) in S2 Supplement is highly nonlinear and coupled.

We showed previously a beneficial decomposition technique that enables the consecutive but

separate convergence of linear algebraic subsystems [115]. The advantages of our implementation

include the ability for each subsystem to be solved separately with highly efficient sparse iterative

linear algebraic solvers. Additionally, no derivative information is necessary. In effect, we perform

the fixed point iteration algorithm depicted in Fig A in S2 Supplement. Given an initial hematocrit

field (initially set to systemic hematocrit h = 0.35), solve for the pressure in the first equation set

using the resistance matrix, 𝑅, which incorporates the nonideal hematocrit dependent viscosity

law. With the converged pressure field, 𝑝, compute the flow field, Q, using the connectivity matrix

𝐶2. Finally, update the hematocrit field, ℎ, using the kinematic plasma skimming (KPSM) law to

determine how the hematocrit in parent segments splits into two or more daughter branches. In

order to limit the magnitude of hematocrit updates, we use an underrelaxation parameter α=0.5 for

stabilization. More details on implementation and stabilization can be found elsewhere [115].

𝐺(𝑄, 𝑝, ℎ) = 0 {

𝑅(ℎ, 𝑑)𝑄 − 𝐶1𝑝 = 0
𝐶2𝑄 = 0

𝐶3(𝑄, 𝑑)ℎ = 0
 (1)

105

Figure 4.11. Flow diagram for main steps in the fixed point iteration for biphasic blood flow

computations.

Here, 𝐸 means an evaluation step; S signifies simultaneous solution of linear algebraic equation

sets.

 We also implemented cyclical boundary conditions at side faces perpendicular to the pial

surface. This was achieved by connecting boundary segments located near one vertical face of the

domain to a corresponding node at an opposite face. Matching boundary blood vessel facets in all

cortical layers, the domain boundaries were effectively extended to infinity, without losing blood

flow or RBCs. We also implemented no flux boundary conditions and compared the results to

cyclic boundary conditions. Because of the large domain size and similar conditions governing

opposite faces, simulation results between those two choices were very close (total flow

differences less than 0.0001%).

106

4.7 Hematocrit dependence on diameter

This section plots hematocrit distribution as a function of diameter. Fig A in S1 Supplement

reflects wide variability in discharge hematocrit levels. Path analysis discussed in the main paper

in Fig 2 and Fig 3 revealed a depth-dependent trend in hematocrit distribution independent of

diameter.

Figure 4.12. Diameter dependence of hematocrit in microcirculatory networks.

The analysis confirms the high degree of hematocrit variability along the microcirculatory bed.

Diameter hierarchy did not correlate with hematocrit level (N = 2,300-22,052 paths per dataset).

107

 Improved oxygen simulation for large microvascular networks

5.1 Introduction

Many late-onset neurodegenerative diseases involve degradation of the coordination between

vascular blood flow and neural tissue oxygenation. These diseases are hallmarked by the

generation of hypoxia-related events, such as an increase in beta-amyloid production in

Alzheimer’s Disease (AD) [1,2]. Many forms of dementia suffer from decreased oxygen tension

while also exhibiting significant morphological changes in vascular structure. Unfortunately,

healthy aging (aging without dementia) also suffers from similar morphological changes [3]. While

the link between vascular restructuring and changes in cerebral oxygen content have been

established, the contribution of each factor to abnormal oxygen distribution is not understood. In

order to develop methods for treating these age-related dementia, it is imperative to quantitatively

explore changes to the vascular topology and the corresponding alteration to oxygen tension in the

brain.

Multimodal medical images are now capable of acquiring detailed measurements about the

microcirculation such as oxygen concentration in the vasculature, in the extravascular space at

different positions in the cortex and at different time points, hematocrit measurements, blood flow

velocities, etc. [1,2,4–8]. However, multimodal imaging typically collects these data from different

specimen or at different times or even different locations or imaging modalities. In order to

reconstruct a closed picture of the interesting neurovascular coupling, it is important to not

interrogate these measurements one-by-one, but instead to create a close understanding of the

physical phenomena pertaining to cerebral autoregulation and functional hyperemia.

108

Many groups have pursued methods of assembling or integrating measurements from

multimodal imaging on the computer to create a mechanistic model of blood flow and oxygen

exchange [9–20]. Computational modeling has the advantage that the measurements at different

length scales and using different imaging modalities can be combined simultaneously and a causal

relationship between blood flow and oxygen relationships can be obtained to test medical

hypothesis as well as predictions from a physico-chemical point of view. Therefore, we pursue

here a combined approach that uses medical image data from multiple sources but integrates them

of a mechanistic model of the mouse cortex.

5.1.1 Computational paradigms

In order to capture the inherent heterogeneity of the neurovascular unit, anatomically consistent

neurovascular models have been proposed [9,21–25,31–33,164,165]. Analytic 1D-3D approaches

are capable of resolving complex heterogeneous oxygen tension but are computationally

prohibitive for models larger than a few hundred segments [25,31–33,164,165].

Body-fitted unstructured meshes offer more expandability than analytic methods, but are

limited by the massive number of elements needed to resolve the tortuous extravascular space and

interface with the dense vascular structure [9,23,25]. For instance, the extravascular space of a

~4x4x4μm cube was simulated with ~82 million tetrahedrons recently [30].

Homogenization methods have been proposed to overcome the spatial limitations [36,37] but

unfortunately, these methods does not accurately represent the heterogeneous flows in the realistic

microvascular structure. In other words, the homogenous medium, even endowed with an

anisotropic diffusion tensor, does not represent the discrete and deliberate paths blood travels in

the cerebral microcirculation.

109

Another approach that we have pursued for large vessels, but is not shown here, is parametric

meshing of the vasculature which was shown to drastically reduce the mesh size required for

modeling tubular network structures as shown in the cerebroarterial tree simulations stemming

from the Circle of Willis and extending to throughout the pial territories of the MCA, PCA and

ACAs. This approach is not pursued here but references can be found elsewhere [29,34,35].

Here we propose the use of a parametric meshing technique, specifically a Cartesian mesh,

which is capable of drastically reducing the mesh cells that would otherwise be needed, like in an

unstructured tetrahedral mesh. The advantages of parametric meshes have been recognized and

discussed in prior work, but proposed here for the first time for the interface between the

intravascular and extravascular space. The parametric meshing is giving two advantages: (i) the

mesh size to resolve the interface between the endothelium and the extravascular space is much

smaller than when using tetrahedral meshing and (ii) the connectivity of the Cartesian mesh is

fixed to 8 faces, whereas the bandwidth in the tetrahedral mesh is not controllable which impacts

not only the size of the model but also the solvability (as visualized in Figure 5.2). Therefore, we

advocate the use of a Cartesian mesh that is interfaced with the vasculature through a binary mask

of the endothelium. The use of Cartesian mesh for the endothelium and extravascular space has

the second advantage that it does not require the introduction of singularity removal techniques

because the interfaces are sharply defined and fluxes can be formulated on each face rigorously.

This new methodology will allow simulations of large cortical microcirculatory networks,

extending the interior domain whose predicted oxygen tension is primarily a result of network

topology, and not boundary effects; a breakthrough necessary for investigating oxygen tension in

age-related structural changes to vascular morphology.

110

5.2 Methods

5.2.1 Oxygen tension measurement acquisition in young and aged brain

A custom two-photon imaging system was used to image oxygen content in the murine cortex

through a thinned skull window. The light sequence employed 150fs pulses at 80 MHz with a

wavelength of 820nm. The oxygen content was imaged with a focal window of 400x400μm up to

a depth of 300μm using 30-40μm intervals. The phosphorescence lifetime microscopy required a

slow injection ~300μm below the cortical surface of PtP-C343 dye (~150μM concentration). The

lifetime recordings converted to oxygen tension (pressure, mmHg) using a calibration curve.

5.2.2 Vascular structure acquisition

Four sections of the murine vibrissa primary sensory cortex [26] were reconstructed from two-

photon laser scanning microscopy (2PLSM) images. These images represented the length and

orientation of the blood vessels [26,124,125]. These structures were then labeled with an

automated algorithm as described in the original manuscript. The categorization used size and

branching level information (Strahler order) to differentiate between pial vessels, penetrators and

capillaries. Capillaries were identified by a diameter cutoff of 6 µm and penetrating vessels

differentiated from pial vessels with depth and diameter thresholds. The final reconstructed

network topology and diameter information was stored using sparse connectivity matrices. More

details on image acquisition [26,124,125], image reconstruction [126], as well as the formulation

of the network equations [115] can be found elsewhere.

111

5.2.3 Mathematical blood flow and oxygen model

The blood flow will be modeled with Poiseuille flow throughout the vascular structures as

given in [21,27] in Equation (7.564). Oxygen enters the domain through the vasculature where it

moves via convection through the network and permeates the blood brain barrier (BBB) through

a mass transfer flux (=a diffusive-like flux) into the surrounding tissue (=extravascular space) as

in Equation (7.565). The boundary conditions follow previously published values [22].

∆p = 𝛼𝑓; 0 = ∇⃑⃑ ∙ 𝑓 (36)

 𝑈𝐴
𝑐𝑣 − 𝑐𝑡
𝑡

= ∇⃑⃑ ∙ (𝑐𝑣 𝑓) (37)

Here, f is the bulk flow field derived from Equation (7.564), 𝑈 is the transmembrane

permeability of the endothelial layer, 𝑡 is the endothelial layer thickness, 𝐴 is the endothelial layer

surface area, 𝑐𝑣 is the concentration of oxygen in the vasculature, and 𝑐𝑡 is the concentration in the

tissue.

The oxygen that enters the tissue domain (through aforementioned mass transfer across the

BBB) where it is permitted to diffuse while being metabolized following Equation (7.566). This

model is a diffusion-reaction domain with a mass transfer source from the vasculature:

∇⃑⃑ ∙ (𝐷 ∇⃑⃑ 𝑐𝑡) + 𝑈𝐴
𝑐𝑣 − 𝑐𝑡
𝑑𝑥

= −𝑘𝑚𝑒𝑡𝑐𝑡𝑉 (38)

Where D is the isotropic diffusivity, 𝑐𝑂 is the oxygen concetration, 𝑘𝑚𝑒𝑡 is the 1st order cerebral

metabolic rate of oxygen (CMRO2), and 𝐴𝑣𝑎𝑠𝑐 is the cross sectional area for the vasculature. All

112

physiological parameters are similar to previously reported values for oxygen in the brain as

reflected by Table 5.1. These values were estimated from experimental data and were found within

the range of reported values.

Table 5.1. Parameters used in the prediction of oxygen tension throughout the murine cortex

Property symbol value units ref

Diffusivity D 18 femtoMoles/fL [166]

Transmembrane permeability U 2.4 femtoMoles/fL [167]

Metabolic rate k1 14.17 1/ms [9,25]

Endothelial layer thickness t 1 μm [62]

Pressure drop (BC) p 115 mmHg [22,115]

Concentration inlet (BC) c 68.5 mmHg [115]

5.2.4 Vascular masking for a Cartesian mesh

To accurately represent the mass transfer between the largest and smallest vessels alike, an

edge detection algorithm was identified for resolving the endothelial layer inside a Cartesian mesh.

This was achieved through a masking procedure that detects the vessel edge using a fuzzy logic.

The algorithm cycles across every vessel (=every cylinder in network) and for each vessel, it

defines the coordinates (i, j, and k indices in Cartesian mesh) of the bounding box encompassing

the cylinder. These values are calculated using the radius and the centerline with the help of a

getSurroundingCell computation, which can be directly computed from the Cartesian mesh.

The distance is then calculated between each mesh element center and the vessel centerline. If

the cell center is inside the endothelial layer (defined by a thickness from the vessel edge), then it

is labeled as an edge volume. If it is not an edge but is inside the vessel radius, it is labeled with

as an interior node. The remainder of nodes are, by default, labeled an extravascular node. A

pseudocode is offered in Appendix A. Note, each cylindrical vessel is endowed with a sphere at

113

each terminal to ensure a smooth connection between adjacent segments. An example of mesh

labeling is offered in Figure 5.1A and C.

The fluxes in the mesh are described in one of four methods: (i) diffusion exists between two

adjacent extravascular elements, (ii) mass transfer exists between an endothelial element and an

extravascular element or mass transfer elements, (iii) a mass transfer flux (hindered diffusion)

exists between adjacent endothelial elements, and (iv) no flux between any cell and an

intravascular element.

In the event a segment does not span more than 1 mesh element (the diameter is thinner than

the mesh edge length), the mass transfer is discharged entirely into the single mesh element. If

many mesh elements are assigned to the endothelial layer of a single vessel, the total area is evenly

divided amongst the mass transfer mesh elements. When forming the equations for the mesh

elements identified as blood vessel elements, a simple equation is used to assign the vascular

element value to the mesh element value:

𝑐𝑡𝑖𝑠𝑠
𝑗

= 𝑐𝑣𝑎𝑠𝑐
𝑖 (39)

Note, all mesh elements other than vascular (blood) elements observes reactions.

Vascular segmentation. In order to ensure similar characteristic length between the Cartesian

mesh and vascular network, we propose a method for re-segmenting the vascular structure

dynamically (re-cutting the segments) defined by the Cartesian mesh. The method, similar to the

mesh labeling algorithm, can identify the mesh indices (i, j, and k dimensions for x, y, and z

dimensions, respectively) of the start and end point in the network. If the difference between start

and end indices in any dimension is greater than 1, the vessel is split in half. The process is

114

recursively completed until the sub-segments all span a maximum of 2 adjacent mesh elements.

An example of vascular segmenting is offered in Figure 5.1B and C.

Figure 5.1. Vascular masking of the Cartesian mesh and vessel segmentation.

A) A penetrating arterial tree with the overlay of a Cartesian mesh reflects a network whose

straight segments span more than two adjacent volumes. B) The vasculature is segmented (cut)

until no single segment spans more than two adjacent volumes. C) A labeled vessel inside a

mesh shows the extravascular elements in blue, intravascular segments in red, and endothelial

segments in grey.

D) The original centerline before and after segmentation compared to the mesh used for

segmentation of a penetrating arteriole sub-tree reveals the network is segmented to a higher

density after the algorithm. The coloration of the centerline is green (segment origin) and red

(segment terminal).

115

5.2.5 Implementation

Equation generation was written with proprietary object-oriented codes. All linear algebraic

computations were performed in PETSc using the GMRES solver and a block Jacobi

preconditioner [168,169]. The linear algebraic system for highly dense meshes (large number of

elements) does not directly converge in some cases. To converge these simulations, we offer a

simplified mesh multigrid technique where coarse mesh solutions are linearly interpolated to

initialize the solver of a denser mesh. Our method differs from the classic multigrid as it does not

solve a dual-stage problem using the residual vector to improve the update direction, but rather

uses consecutively more refined meshes using an interpolated solution vector to initialize the

solver (=initial guess). This method does not improve convergence but instead stabilizes it,

preventing divergence by filtering high frequency updates and preventing them from overtaking

the solution. We note the user could use deflation or algebraic multigrid to converge such a system,

but these methods are outside the scope of this work.

In order to account for the intravascular volume contained within mesh elements who entirely

enclose vessels, the volume of the vessel within each mesh element is removed from the respective

mesh element volume.

When simulating occlusions, many vessels remain with no flow, causing singularity in the

convection equations. To resolve this, these vessels are endowed with special equations replaced

by equations of assignment to the same concentration as the upstream vessel. This maintains

numerical stability in the equations.

116

To avoid solving inconsistencies during multigrid solving (due to the vascular segmentation

procedure) and enhance numerical stability, the blood flow is solved only once at the coarsest

vascular resolution. When segmenting the vasculature, the flow and pressure of each newly-cut

segment can be directly calculated from the coarse resolution.

5.3 Results

The Cartesian mesh discretization significantly improves the structure of the diffusion matrix

formulation as opposed to the tetrahedral mesh formulation as exemplified by Figure 5.2. The

matrix representation of finite volume diffusion in the tetrahedral mesh has a highly irregular

structure while that of the Cartesian mesh shares a tri-diagonal block structure. This is more

amenable to block preconditioners and, due to the regularity in the coefficient magnitude, a more

stable convergence. Moreover, the number of elements in this case study is significantly larger in

the unstructured mesh than the Cartesian mesh, revealing a significant problem reduction of at

least 8-fold when using the proposed meshing scheme. In other words, a hexahedral mesh is, by

default, at least 1/8 the size of a tetrahedral mesh encompassing the same space with the same

characteristic edge length. Specifically, the breaking of a hexahedral domain into tetrahedrals

using ANSYS ICEM [Canonsburg, PA] resulted in a ratio of tetrahedral volumes to hexahedral

volumes of 9.2:1 when using similar characteristic edge length. Note, for reference the labeling of

the Cartesian mesh does not break the diagonal dominance or structured block tri-diagonal format

of the matrix (as seen in Figure 5.2, Right).

117

Figure 5.2. Matrix structure of diffusion with different mesh types.

Left) tetrahedral mesh compared to a Middle) Cartesian mesh of the same size and similar

characteristic edge length. Right) The labeling procedure does not destroy this structure. Note,

the labeled mesh is applied to a realistic vascular structure, resulting in a larger domain and

larger mesh size.

The masking procedure has been applied to a mesh surrounding one of the empirical networks.

This labeling and the associated network are given in Figure 5.3. The smaller vessels discharge

into a single endothelial element (isolated white elements) while larger vessels that span many

elements lead to elements labeled as endothelium and vasculature (blood). Note, the majority of

the mesh elements are labeled as uninterrupted extravascular elements.

118

Figure 5.3. Example labeling of a cartesian mesh at different density levels.

A-C) The full E1.1 network has labeled a mesh visualized at many resolutions with the majority

of the structure accounting for extravascular space (blue), some intravascular elements (red) and

mass transfer elements (grey). D) The vascular structure of E1.1 reflects the blood pressure field

flowing from high pressure (red, 120mmHg) to low pressure (blue, 5mmHg). E) The labeling

near the surface shows large vessels constituting many intravascular mesh elements while F)

Deeper into the cortical surface the structure shows less large vessels and more capillary mass

transfer elements.

Predictions of oxygen tension utilizing this mesh masking technique shows qualitative and

quantitative similarities to experimental distributions as reflected by Figure 5.4. The simulation

distribution shows an excellent agreement with the experimental data with a few exceptions

attributed to differences in vascular structure above and below the focal plane. The parameters

used to align these two data are listed in Table 5.1 and agree well with empirically derived values.

119

Figure 5.4. Validation of simulation paradigm against three sets of experimental data.

The experimental results were obtained with 2-photon phosphorescence lifetime oxygen

imaging. The simulations were performed with two different mesh resolutions; a coarse 20x20

and a dense 200x200. The close match between the concentration profiles was used to determine

tissue diffusivity, reaction rate, and mass transfer coefficient. The 3D perspective illustrates the

steep concentration gradients along two penetrating arterioles.

The investigation mesh convergence revealed excellent stability as visualized in Figure 5.5.

The individual plots of rays through the extravascular block reveals a convergence each ray to a

unique profile. The rays also show peaks near penetrating arterioles and valleys near ascending

venules.

120

Figure 5.5. Detailed analysis of extravascular space in an oxygen simulation for a single

empirical network.

A) The 3D image shows the dispersion of oxygen originating in the vascular inlets and

dispersing throughout the tissue domain. B) The convergence of values for many rays at

y=718μm shows stable convergence and an acceptable tolerance at ~105 mesh elements per

dimension. C) Raytraces through the domain exemplify the spatial complexity of oxygen

tension. Note, the plateau in ray 6 corresponds to a vessel segment aligned the ray. All results

show a deviation from the highest density mesh (305x305x305 volumes per dimension).

121

Figure 5.6. Detailed analysis of extravascular space in an oxygen simulation for a second

empirical network.

A) The 3D image shows the dispersion of oxygen originating in the vascular inlets and

dispersing throughout the tissue domain. B) The convergence of values for many rays at

y=718μm shows stable convergence and an acceptable tolerance at ~205 mesh elements per

dimension. C) Raytraces through the domain exemplify the spatial complexity of oxygen

tension. Note, the plateau in ray 6 corresponds to a vessel segment aligned the ray. All results

show a deviation from the highest density mesh (305x305x305 volumes per dimension).

122

To further investigate the detailed microgradients of the extravascular space within the

framework of a large microcirculatory network, networks were simulated for oxygen exchange.

Detailed 3D oxygen maps and 2D planar distributions are shown in Figure 5.7 and Figure 5.8 for

two representative oxygen distributions. Tall plateaus can be seen where large penetrating

arterioles span more than a few mesh elements and flat basins (upside-down plateaus) can be seen

for the venules with comparable width. Near each of these major vessels, the mesh in the vicinity

reveals a concentration profile with a steep gradient.

Figure 5.7. Oxygen predictions throughout the extravascular space.

A) Visualization of a portion of the extravascular space with a block cutout defined by 5

observation planes (107.5, 167.5, 242.5, 317.5, and 392.5μm below the cortical surface). B-F)

The visualization of oxygen at different cortical layers shows peaks and steep microgradients

surrounding main feeding and draining vessels.

123

Figure 5.8. Oxygen predictions throughout the extravascular space in a second case.

A) Visualization of a portion of the extravascular space with a block cutout defined by 5

observation planes (120, 280, 480, 680, and 880μm below the cortical surface). B-F) The

visualization of oxygen at different cortical layers shows peaks and steep microgradients

surrounding main feeding and draining vessels.

These distributions show excellent resolution of the microgradients surrounding larger

vessels while maintaining stable convergence. The normalized infinity norm of the residual is on

the order of 0.1x10-6 and the normalized mass transfer residual is on the order of 1x10-15
 in all

simulations.

124

5.4 Discussion

This methodology offers a novel and robust approach for stable convergence on very large

meshes. This method has proven capable of simulating massive microcirculatory networks with

stable convergence at an unprecedented mesh density. With recent advancements in

microcirculatory network construction [27,170], this highly-scalable oxygen simulating paradigm

offers a timely method for scaling these simulations to much larger networks. Moreover, the stable

mesh convergence showed limitations only at the local memory bandwidth of local workstation

personal computers (>95 million equations).

Applications to larger networks. The stable convergence of this methodology offers the far-

reaching impact of making predictions of the neurovascular unit on larger vascular domains. This

stability can be exemplified by simulating a topologically equivalent cerebroanatomical vascular

network much larger than ever simulated before spanning ~9mm2 of the cortical surface of a

mouse. This model (seen in Figure 5.10 related to the aging brain) exemplifies the scalability of

the proposed methodology to such large structures.

 Applications to the aging brain. Another application for such a robust system is to attempt to

recreate experimental observations of hypoxic micro-pockets in the brain. The aged brain suffers

from a variety of vascular changes. These include; (i) a decrease vessel density (nSgm/mm3) of

~20% [3,8,171–174], (ii) a decreased hematocrit by ~30% [8], and (iii) an increase in micro-

occlusion occurrence ~30% [6]. These changes can be modeled by modifying the vascular

structure (vessel reduction and occlusion) or boundary conditions (hematocrit) and investigate the

resulting change in oxygen distribution that may lead to hypoxic micro pockets. This type of

125

simulation requires high resolution simulations capable of resolving such microgradients while

maintaining stable solvability. An example of such resolution has been offered in Figure 5.9.

Figure 5.9. Examples of oxygen tension at different cortical depths in young and aged mouse.

Top Row) normal young conditions, Second Row) aged brain with capillary micro-occlusions,

Third Row) aged brain with reduced systemic hematocrit, and Bottom Row) aged brain with

reduced hematocrit and microocclusions. The region containing tissue regions of low oxygen

content greatly increase in the aged models with the largest hypoxic regions created in lower

regions with both aging models.

126

Figure 5.10. Comparison between oxygen tension in young and aged mouse.

(Left) young mouse and (Right) aged mouse suffering from reduced hematocrit in a synthetic

vascular network spanning 3x3x1mm3 of the mouse cortex. The oxygen levels are significantly

reduced in the aged brain and hypoxic pockets (red) are created as shown by the volume

occurrence rate of tissue that were <5, <10, and <15 mmHg of oxygen tension. Note, the mesh

density was 455x455x455 dimensions, correlating to over 95M equations.

These predictions help to compare the different models of aging on the cerebrovasculature.

Such an application can be explored in future work, along other simulations, to investigate the

mechanistic sources of age-related oxygen tension changes.

127

Another advantage of this method is that it uses a hexahedral cell-based logic. This implies a

simulation could be generated from a voxelized set of data, such as a direct medical image. In other

words, this simulation could be applied directly to image stacks without the need of first

reconstructing a mesh.

Limitations. This method can be improved with the use of profile assumptions [165] using the

centerline distance as the source, or by using partial volume approximation for removing the partial

volumes inside the mass transfer elements. These methods would advance the implementation

convergence.

128

5.5 Appendix A: vessel identification in 3D

If a new point is determined to be between the first and second point, axially, then the

perpendicular distance between the point and the segment characterizes whether or not the point

is within the cylinder (distance < radius). Due to the gaps between adjacent segments modeled as

perfect cylinders, the ends of the cylinder should be endowed with a sphere. A pseudocode has

been offered:

1. FUNCTION Label3DMesh(mesh,nwk):PDblArray

2. setLength(result,mesh.nVolumes+1);

3. FOR iFace = 1 TO nwk.nFaces DO

4. getPointsForFace(iFace, p1Idx, p2Idx);

5. dia = nwk.dia[iFace];

6. getMinMaxIJKFromFace(p1,p2,mesh, dia/2, minI,minJ,minK,maxI,maxJ,maxK);

7. FOR i = minI TO maxI DO

8. FOR j = minJ TO maxJ DO

9. FOR k = minK TO maxK DO

10. cellIdx = mesh.getGlobalIdxFromIJK(i,j,k);

11. cellCenter = mesh.getCellCenter(cellIdx);

12. IF isCellInCylinder(p1,p2,cellCenter,dia) THEN result[cellIdx] = interior;

13. ENDFOR

14. ENDFOR

15. ENDFOR

1. FUNCTION getMinMaxIJKFromFace(p1,p2,mesh,r,minI,minJ,minK,maxI,maxJ,maxK)

2. setLength(iA,4); setLength(jA,4); setLength(kA,4);

3. Mesh.getIJKOfSurroundingBox(plus(r, p1), iA[0]. jA[0], kA[0]);

4. Mesh.getIJKOfSurroundingBox(plus(r, p2), iA[1]. jA[1], kA[1]);

5. Mesh.getIJKOfSurroundingBox(plus(-r, p1), iA[2]. jA[2], kA[2]);

6. Mesh.getIJKOfSurroundingBox(plus(-r, p2), iA[3]. jA[3], kA[3]);

7. minI = getMin(iA); minJ = getMin(jA); minK = getMin(kA);

8. maxI = getMax(iA); maxJ = getMax(jA); maxK = getMax(kA);

129

Identifying whether a point lies in a cylinder or not can be performed with vector operations.

This efficient algorithm simply calculates the centerline of the cylinder as a vector, and uses sine

and cosine operations to evaluate the distance (see Figure 5.11).

Figure 5.11. Schematic diagram of a cylinder.

The cylinder is defined by 2 points (p1 and p2) and a radius (r). A new point (aPt) will be

evaluated for whether or not it lies within the cylinder.

The minimum distance between a new point (cell center) and a segment centerline is given by

the following pseudocode:

130

1. FUNCTION isCellInCylinder(p1,p2,cellCenter,dia):boolean;

2. v1 = getAsVector(p1,p2); v2 = getAsVector(p1, cellCenter);

3. c = dot(v1,v2)/(norm(v1)*norm(v2)); H = norm(v2);

4. d = H*power(1-c*c, 0.5);

5. IF (c == 1) AND (norm(v1) + r > H) THEN result=true;

6. ELSEIF (abs(c-1) > 0) AND (H*c < norm(v1)) AND (d < r) THEN result = true;

7. ELSEIF (abs(c-1) > 0) AND (d < r) THEN result = true;

8. ELSEIF (d < r) THEN result = true;

9. ELSE result = false;

Where line 5 evaluates a point that is parallel to the centerline and line 6 checks the

perpendicular distance to cylinder centerline. Line 7 and 8 evaluate whether the point lies in the

sphere at the first point of the face or the last point of the face, respectively.

131

 Discussion

Mathematical modelling is necessary to piece together experimental measurements (made

across different imaging modalities, different specimen, and at different times). These models,

however, are frequently simplified to small sub-sections or simplified geometric structures to

enhance implementation. This limits all insights, as the simplifications often create artifacts in the

simulation domain that heavily impact predictions. In other words, the simplifications skew the

simulation results. In order to create mathematical models capable of investigating mechanistic

relationships in the cerebral anatomy, such assumptions must be avoided.

To date, the largest simulations of anatomically consistent microvascular structures were

limited to ~1mm3 and oxygen distribution in and around these vascular structures were not readily

expandable to the whole-brain scale. In this thesis, a methodology was proposed to synthesize

vascular structures with topology matching microvascular reconstructions. A methodology was

also proposed for automated matching of the topology between synthesized networks and

empirical counterparts by matching tortuosity and diameter spectra.

The mathematical implementation was expanded from recent models to converge the KPSM

model of nonlinear biphasic blood flow on a massive hemisphere and MCA network. This (along

with predictions on empirical networks and synthetic clones) led to the discovery of a depth-

dependent gradient in RBC density which was later validated by experimentation by an

independent lab.

A novel paradigm for resolving the complex 3D structure of the microvascular network offers

stable simulation of the neurovascular coupling at much higher densities than simulated

previously. This simulation not only offers investigation of the steep micro-gradients of oxygen

132

surrounding large feeding vessels, but also offers stable scalability to larger structures than ever

simulated before.

This work marks a major advancement towards simulating the neurovascular unit at the scale

of the whole-brain. This kind of simulation will eliminate artificial boundary effects which will be

replaced by real boundary effects from the real-life boundaries.

133

 Appendices

7.1 Appendix A: Cerebrovascular synthesis implementation

While the main algorithm of cerebrovascular synthesis is offered in Section 2-3, the

implementation is not straightforward. This section offers further clarification for implementation

of the vascular synthesis and topological matching algorithms.

7.1.1 Segment addition

The most core algorithm used in vascular synthesis is the segment addition procedure as each

step of growth requires the addition of new segments. The generalized workflow for segment

addition is given in Figure 7.1. Note, if none of the trees satisfies all constraints, the segment

addition procedure fails, a new sample is generated, and the procedure runs again. This cycle

repeats until a suitable candidate is identified.

134

Figure 7.1. Workflow diagram for growing a single segment.

Note, the segment addition assumes only 3 near-segments for each addition. This value can be

modified to include more options if the user finds it necessary.

The general implementation of this code can be seen below:

Table 7.1. Pseudocode for the segment addition with volume optimization

1. Algorithm 1- SegmentAddition with Volume Optimization

2. WHILE i<= nSegments do

3. xP:=SampleGenerator.getNextSample(tree)

4. closeSegmentsList := findClosestSegments(nMaxSegments,xP)

5. FOR all s in closeSegmentsList do begin

6. candidateTree:= getShallowCopy(tree)

7. x0 := segmentsCenter(s)

8. candidateTree.bifC := findOptimalBifuractionPointCoord(x0, candidateTree)

9. candidateTree.recAdjustDiameterAndComputeVolume(rootRadius)

10. IF passesConstraints(candidateTree) THEN SolutionList.addSorted(candidateTree)

11. ENDFOR

12. IF SolutionList <> empty then continue // sample point is invalid

13. i++ // tree has grown one segment

14. tree := SolutionList[0] // first element is smallest feasible volume tree

15. ENDWHILE

135

7.1.2 Validating the optimal bifurcation point

The derivation of the optimal bifurcation point with minimum volume is offered in

Section 2.2.1 however this section validates the optimal bifurcation point with case studies.

One way to validate the solution to the optimization of bifurcation location is to exhaustively

enumerate the region around the bifurcation and show that the volume is the lowest point. This

was performed with the results presented in 2 case studies. Note, the method for calculating the

point on original segment that makes a perpendicular connection is given in Section 5.5.

Case study 1. The original network was balanced and the results reported. For comparison, the

same values were reported post-optimization (Table 7.2). The code for this case study is offered

in Section 7.7.1.1.

Table 7.2. Comparison for topological values of a bifurcation before and after optimization
 Root D Total V Total α Inlet Flow Left flow Right flow

Original Tree 9.2137 336.946 1e-4 10,000.00 5,000.0 5,000.0

Optimized Tree 9.0149 302.714 1e-4 10,000.00 5,000.0 5,000.0

After the bifurcation point was identified by exhaustive enumeration, the root diameter was

reassigned to a fixed value and the topological statistics were revisited. The results in Table 7.3

reflect a change in all parameters.

Table 7.3. Topological values of a bifurcation after two different diameter assignments
 Root D Total Volume Total α Inlet Flow Left branch flow Right branch flow

Dopt 9.0129 302.714 1e-4 10,000.00 5,000.0 5,000.0

Dset 10 372.651 6.599e-5 15,154.45 7,577.2 7,577.2

136

Source data:

ptCoordMx = [-1.0001 1.0001; 0.00001 0.49999; 3.0001 -1.0001; 2.0001 2.0001];

faceMx = [1 2; 2 3; 2 4];

Figure 7.2. Optimization space for bifurcation location.

(Top Left) when the root diameter is variable. The solution space for bifurcation location

(fBif(x,y)) is shown in (Top Right) contours and (Bottom Left) surface plots. The optimal

location (fBif(x*,y*) is chosen for the bifurcation point and diameters are assigned (Bottom

Right).

Case study 2. The second case study follows the same procedure but with a different geometry.

Table 7.4. Comparison for topological values of a bifurcation before and after optimization

 Root D Total V Total α Inlet Flow Left flow Right flow

Original Tree 9.2616 348.975 1e-4 10,000.00 5,000.0 5,000.0

Optimized

Tree

9.0905 325.032 1e-4 10,000.00 5,000.0 5,000.0

137

Table 7.5. Topological values of a bifurcation after two different diameter assignments
 Root D Total Volume Total α Inlet Flow Left branch flow Right branch flow

Dopt 9.088 325.065 0.1e-3 10,000.00 5,000.0 5,000.0

Dset 10 393.598 6.82e-5 14,661.03 7,330.5 73,30.5

Source data:

ptCoordMx = [-1.0001 3.0001; 0.00001 0.49999; 2.0001 -1.0001; 2.0001 1.0001]; %modify 2nd point

faceMx = [1 2; 2 3; 2 4];

Figure 7.3. Optimization space for bifurcation location.

(Top Left) when the root diameter is variable for a second tree. The solution space for bifurcation

location (fBif(x,y)) is shown in (top right) contours and (bottom left) surface plots. The optimial

location (fBif(x*,y*) is chosen for the bifurcation point and diameters are assigned (bottom

right).

7.1.3 Assigning diameter

Once a tree is completed it must be assigned a root diameter (either with constant tree resistance

as in the original implementation or from empirically-derived root radii, whichever the modeler

has more confidence in) which can recursively be used to compute downstream diameters for all

138

segments in the tree. This can be accomplished by using the same values for β computed in

Section 7.1.2 and successively assigning daughter diameters of each downstream bifurcation.

7.1.4 Staged growth algorithm implementation

This section will explain more details on the implementation of staged growth for a

cerebrocirculatory structure. The overview of the anatomical growth algorithm is given in Figure

7.4.

Figure 7.4. Workflow diagram of the anatomical growth algorithm.

139

A pseudocode is also offered:

Table 7.6. Pseudocode for staged growth

1. Algorithm – Vascular Strategy for Cortical Slab

2. maxAdditions := 20000

3. artTree := ooPropertyTree.create(maxAdditions)

4. venTree := ooPropertyTree.create(maxAdditions)

5. makePialNetwork (surfaceSampleGenerator)

6. makePentratingVessels; // adds penetrating Arteries at random length

7. makeMicroVessels(CubeSampleGenerator)

8. END

9. Algorithm PialNetwork - oKFCapillaryApp.makePialNetwork;

10. sampleGenerator := PlanarSampler.create(SetSurfaceSlab (X0, X1))

11. // First arterial segment only

12. pts := growPialNetworkAutomatic(artTree, artB1,artB2, [artS1, artS2])

13. pts := growPialNetworkAutomatic(venTree,venB1,venB2, [venS1, venS2])

14. // 2D arterial tree on cortex

15. FOR ii:= 1 to nPialTerminals do begin

16 setPialConstraintsForArteries;

17. pts := growPialNetworkAutomatic(artTree,1,artB1,artB2)

18. setPialConstraintsForVeins

19. pts2 := growPialNetworkAutomatic(venTree,1,venB1,venB2)

20. ENDFOR

7.1.4.1 Pial Surface

The pial surface growth requires a surface mesh to identify locations of new points to add to

the network. The mesh is first grouped into territories manually. The user selects a group name

(integer value used as ID for the group, denoted GroupID) and the mesh faces corresponding to

that group are put into a list. This list is fed into a sampleGenerator to generate a list of point

coordinate samples on the surface mesh (see Section 7.2.3 for more information on triangle sample

generators). The bifurcation point may not lie on the surface mesh after optimizing its location, so

a post-optimization step is employed that projects the point to the nearest surface triangle (see

Section 7.1.4.1.1 for projecting a point to a surface). The workflow for this can be seen in Figure

7.5.

140

Figure 7.5. Workflow diagram for pial surface growth.

Note that the surface growth hits every surface element in the group before it returns for a

second addition. This allows the tree to grow evenly distributed without sample bias. A time-lapse

of the pial growth and the finished pial surface can be seen in Figure 7.6. Finished products of pial

growth on a surface mesh are offered in Figure 7.7.

141

Figure 7.6. Pial growth algorithm at different stages of growth.

A-D) Different stages along the growth where the pial network is increasing in size with A as

the most sparse and D is the most dense network. E) Rotated visual of the final network.

Figure 7.7. Unity Images of Sled Mouse. Images of an arterial tree, venous tree, and the sled

mouse surface mesh loaded in Unity.

7.1.4.1.1 Projecting bifurcation point to surface

The cortex of a mouse brain is generally a convex shape. This means that any line between two

points on the surface give cuts through the surface. When the bifurcation point is identified, it is

142

coplanar with the three points on the mesh surface, meaning the bifurcation point also lies inside

this convex shape. In order to rectify this, and force all pial vessels to follow the pial surface, all

bifurcations points are projected to the pial surface after optimization as illustrated in Figure 7.8.

Figure 7.8. Explanatory diagram of the projection of a point to the surface mesh.

Notice the in-plane bifurcation (fBif) is placed inside the convex structure. The final, projected

point will lie inside a surface triangle maintaining the surface adherence of the pial vessel

structure.

In order to ensure all points lie on the surface, the bifurcation point needs to be relocated

(projected) to the surface. This procedure can be executed as depicted in Figure 7.9 and

mathematically expressed in Equations (7.1) - (7.2).

143

Figure 7.9. The graphical representation of a triangle with reference to a new point (Pn).

These symbols are consistent with the mathematical description of the projection procedure

given below. n is the normal vector to the triangle and Pn is the new point to be projected to the

surface.

𝑉1 =< 𝑃1 − 𝑃𝑛 >
𝑇

(7.1)

𝑝𝑝 = 𝑃𝑛 +
𝑉1 ∙ 𝑛

𝑛𝑇 ∙ 𝑛
 𝑛

(7.2)

Where Pp is the projected point coordinate (the new point inside the triangle). The appropriate

surface mesh element (triangle) used for projection is identified by closest distance to the point Pn.

7.1.4.2 Penetrating arterioles and ascending venules

The penetrating arterioles and ascending venules, as opposed to the surface growth, penetrate

beneath the surface with a relevant depth parameter. The user defines the maximum depth (distance

from the surface) and possibly a minimum depth that the penetrating vessel can reach inside the

cortex.

The first step to identify the depth-dependent random sample is to identifies a random depth

between the minimum depth and the maximum depth. This depth is then used to scale the normal

144

vector, Equation (7.3), and is added to the triangle sample point (in the case of penetrating vessels,

this sample point is the pial terminal node as in Equation (7.4)). Of course, this requires identifying

and maintaining a list of the available pial terminals. The Kleinfeld datasets have prescribed depth

to use, but in the reconstructed mouse brain growth, a default value of 1mm is chosen. The

workflow for this can be seen in Figure 7.10.

𝑉 =
𝑑

|𝑛|
∙ 𝑛

(7.3)

𝑝𝑛 = 𝑝𝑡 + V
(7.4)

Where 𝑝𝑡 is the point coordinate of the pial network terminal node, 𝑛 is the normal to the mesh

surface triangle, 𝑑 is the depth generated from the random number generator, V is a new vector,

and 𝑝𝑛 is the new terminal point. The new terminal point and the old terminal point are connected

by a single arc to make the penetrating arteriole or ascending venule. One way to improve the

horizontal bias of attachments to the penetrators (make more horizontal segments) is to generate

the penetrating vessel with many divisions (10 or 20). The workflow and finished product are

offered in Figure 7.10. A pseudocode is also offered for adding penetrators and generating sample

points:

145

Table 7.7. Pseudocode for growing penetrating vessels

1. FUNCTION growPenetrators(previousCaseFileName:string; groupId:integer;
rootRadius, depth:double; aMesh:ooMesh);

2. aTree := CreateTreeFromBackbone(fileName);
3. faceIdxList := getIdxListFromGroup(aMesh,groupID);
4. aSmplGen := sampleGenerator.Create(aMesh,faceIdxList,depth);
5. setConstraints(nil);

6. terminals := aTree.findOutletTerminalPorts();
7. GrowNIterationsInSection(nRemainderFaces, faceIdxList);
8. GrowNIterationsInSection(nRemainderFaces, faceIdxList);
9. FOR i = low(terminals) TO high(terminals) DO
10. aPoint = generateSamplePoint(aTree,terminals[i]);
11. aTree.addPolyLineAtKnownPoint(aTree,terminals[i], aPoint);
12. ENFOR
13. END

Table 7.8. Pseudocode for generating a sample point inside a triangular prism

1. FUNCTION generateSamplePoint(aPointIdx:integer):PDblArray;

2. aPtCoord := aTree.getPointCoord(aPointIdx);

3. n := getFaceNormal(aMesh,nearestSurfaceFaceIdx);

4. n := scale(depth/norm(n), n); //need to scale the norm to the depth we want

5. result := plus(aPtCoord,n); //new point coordinate

6. END

146

A)

B)

C)

Figure 7.10. (A) Workflow diagram for growing penetrating vessels and (B-C) example views

of ascending veins in an MCA territory.

7.1.4.3 Capillaries

The capillary bed is a highly dense structure. This structure has two unique criteria that are not

present in the previous stages of growth; (i) it is very dense leading to many short segments and

147

(ii) the optimization of the tree for bifurcation location does not substantially impact the topology.

These qualities allow the capillary growth to work with more liberal constraints such as replacing

the objective function with a minimum distance heuristic with constraints such as

minimum/maximum segment length. One important constraint is the newVesselMinimumLength

which requires a different length (longer) than the existing vessel lengths. This new constraint

allows generation of many segments without shortening the entire vascular structure spectra.

Without needing to optimize the bifurcation location, all sort routines and recursive computing

routines are no longer necessary, tremendously reducing growth time. The workflow diagram for

capillary growth is expressed in Figure 7.11.

Figure 7.11. Workflow diagram for capillary growth.

*denotes that only certain group ID’s are allowed for connection, giving more control over

bifurcating depth.

148

7.1.4.4 Microcirculatory closure

Closure segments are a key advancement of the anatomical growth developed by our lab. As

the growth of a new segment uses a randomly generated sample, it can simply use a sample from

a list of point coordinates. Such a sample point coordinate list is created using the terminal list of

the opposite tree after all capillaries have finished growing. The growth then continues to add

segments to the tree (except from the new sample generator instead of a random sample generator)

until all terminals of each tree have been attached to the other tree and vice versa. An example of

one cycle of attaching terminals is offered in Figure 7.12. The steps of the closure algorithm are

offered below:

1. Grow a new venous branch to every arterial terminal

2. Grow a new arterial branch to every venous terminal

3. Rebalance trees

4. Merge trees

5. Remove duplicate points in merged network

6. Add boundary conditions

7. Save to file

149

Figure 7.12. Demonstration of one pass of the closure algorithm.

Left) The algorithm first eliminates a single venous terminal by using it as a new terminal to be

attached to the arterial tree. Right) The second step uses an arterial terminal as the newest

terminal to be connected to the venous tree.

When the trees become excessively large (>200,000 points), the merging of the steps and

removal of duplicating points becomes time prohibitive. In order to circumvent this problem, all

trees are attached first and the closure is performed on the connected network using anatomical

group information to identify points and relevant segments. Again, constraints have not been

employed and diameter is merely assigned during each step as seen in Figure 7.13. Some

constraints can be implemented here, but all constraints must be flexible, as no sample can be

disregarded if it fails all constraints. A hierarchical “loosening” of the constraints may be necessary

for adding more weight to some constraints than others. An image of the trees prior to closure and

after closure segments have been added is offered in Figure 7.14.

150

Figure 7.13. Workflow diagram for closure growth.

*denotes that only certain group ID’s are allowed to be used for closest segment.

Figure 7.14. Anatomical growth of a Kleinfeld-like microcirculatory network.

(Left) Before and (Right) after closure segments have been added. On the zoomed in panels

(lower panels), the closure is more apparent. Note, blue indicates veins, arteries in red. Closure

segments are also colored in dark blue.

151

After both trees have grown new segments to every terminal of the opposite tree, the balanced

trees are merged together. This simply adds the points and faces of the venous tree to the end of

the point coordinate list and face list of the arterial tree, respectively. This, of course, duplicates

the points used for closure (they already existed on the opposite tree and were added as new

terminals to the new tree). A simple duplicatePointRemoval algorithm can remove these and

reattach the two connected faces to the same point. Note, an efficient version of this method has

been implemented by the author which is necessary for any structure larger than a Kleinfeld-like

structure (such as MCA or hemisphere).

7.1.4.5 Hemisphere implementation notes

In order to generate the two networks (arteries and veins), a backbone for each network was

provided accompanying each of the two meshes (a reconstruction from images provided by the

Sled group and the open-source Allan brain institute images). The files necessary to instantiate

growth are a triangular pial surface mesh (with corresponding anatomical grouping), an arterial

backbone, and a venous backbone.

In order to grow an entire mouse territory, the algorithm loads the backbone, calculates the pial

density based on how many penetrating arterioles or ascending venules are needed (hardcoded to

13 terminals/mm2 as defined by previous work [26]). Once the pial surface is complete, the

interface visualizes this network so the user can review it and ensure it is physiologically

meaningful. This avoids growing microcirculatory structures on a pial network that cuts through

the cortex. Upon closing the visualization window, the user is prompted to accept or reject the

network. If the user rejects the network, a new one is generated and the process is repeated until a

152

successful pial surface has been created. If the user accepts the pial surface, the growth can

continue. The next step involves loading the pial surface and growing penetrating arterioles from

every terminal in the binary tree (excluding he inlet) and the network is saved again. The pials +

penetrating arterioles structure is then loaded and the capillaries are grown until the desired density

is reached. Once this has been completed for both arterial and venous networks, the two networks

are loaded and the closure is grown onto the structure.

Once the capillaries are grown, the three arterial networks are connected to the venous network

and the closure is grown between the arterial trees and the venous tree using anatomical group

indexing for connections (instead of connecting 2 independent trees). Because the networks are

not symmetrical, there is a finishing step which closes the last terminals of the arterial or venous

tree (whichever has more terminals).

153

7.2 Appendix B: Sample generator implementation and validation

In order to ensure no sampling bias in the sample generators, many samples were generated

and the probability density functions calculated. The results indicate the sample generators do not

have any inherent bias except the tetrahedral sampler (not used in any of the current growth

algorithms).

7.2.1 Analytic X-Y plane sampler

The simplest sample generator is the X-Y planar sample generator. This samples in the analytic

domain defined by the minimum point coordinate (𝑝𝑜) and base vectors (𝑣𝑥⃑⃑⃑⃑ and 𝑣𝑦⃑⃑⃑⃑) which are the

vectors <xmax - xmin> and <ymax - ymin> respectively. These vectors each simplify to two

independent scalar values that represent the edge length of the hexahedral domain in x, 𝛿𝑥, and y,

𝛿𝑦. The result shows no bias as visualized in Figure 7.15. The generation of a sample point (𝑝𝑛)

follows:

𝑢 = 𝑟𝑎𝑛𝑑{0,1} (7.5)

𝑤 = 𝑟𝑎𝑛𝑑{0,1} (7.6)

𝑝𝑛 = 𝑝𝑜 + 𝑢 𝑣𝑥⃑⃑⃑⃑ + 𝑤 𝑣𝑦⃑⃑⃑⃑ (7.7)

Which simplifies to:

𝑝𝑛 = [𝑝𝑥
𝑜 + 𝑢 𝛿𝑥, 𝑝𝑦

𝑜 +𝑤 𝛿𝑦]
𝑇
 (7.8)

154

Figure 7.15. Validation of sample planar sample generator.

100,000 samples are binned into 10 bins by Matlab. The sample generator has a uniform

probability distribution.

7.2.2 Analytic hexahedral sampling

A small variation to the X-Y planar sample generator is the addition of a depth parameter. This

is a third random number and the calculation of a 3rd dimension which also shows no sample bias

(Figure 7.16).

𝑘 = 𝑟𝑎𝑛𝑑{0,1} (7.9)

𝑝𝑛 = [𝑝𝑥
𝑜 + 𝑢 𝛿𝑥, 𝑝𝑦

𝑜 +𝑤 𝛿𝑦, 𝑝𝑧
𝑜 + 𝑘 𝛿𝑧]

𝑇
 (7.10)

Figure 7.16. Validation of depth sample generator.

100,000 samples are binned into 10 bins by Matlab. The sample generator reveals a uniform

probability distribution.

7.2.3 Triangle sample generator

Most sample generators only sample from a 1-dimensional PDF of either normal or Gaussian

distribution. This has been shown capable of representing a hexahedral domain yet this method

155

must be modified in order to sample inside an arbitrarily defined triangulated shape. This kind of

sample generator will define any random sample by characterizing a single triangle and creating a

random sample inside the triangle. Such a sample generator has been designed and implemented

as in Figure 7.18.

Note, this procedure follows previously published methods of staged growth [57]. In short, a

PDF is generated with uniform distribution among the possible sample triangles:

𝜆 ⊆ {1, 𝑛} (7.11)

Where 𝜆 is the set of samples (list of triangles in the surface structure) and n is the number of

mesh triangles in the given list. The PDF for this is a uniform distribution following:

𝑝(𝜆) = 𝑈(1, 𝑛)
(7.12)

∫ 𝑝(𝜆)
𝑛

1

= 1
(7.13)

As described in previous work [57], sampling the subdomain (surface mesh triangle list)

randomly before prescribing a random coordinate within the subdomain (within the triangle) is

important to remove growth bias. This bias would be apparent when growing consecutively

through the domains, as the tree structure would always look the same (always attach new

segments from triangles in the same order). A sample triangle is depicted in Figure 7.17 with

labeled point coordinates.

156

Figure 7.17. The graphical representation of a triangle.

The symbols are used in the mathematical expression below.

The first step is to define the base vectors of the triangle:

𝛼 =< 𝑝2 − 𝑝1 >, 𝛽 =< 𝑝3 − 𝑝1 > (7.14)

A random point is located inside the triangle if the scale of the 2 base vectors adds to 1:

𝑝𝑡 = 𝛼 𝑢 + 𝛽𝑣𝑤 (7.15)

𝑝𝑡 = (𝑢 − 𝑣)𝑝1 + 𝑢𝑝2 + 𝑣𝑝3 (7.16)

Where 𝑢 and 𝑣 are scalars between 1 and 0. Given that 𝑢 + 𝑣 = 1:

𝑡 = (𝑢 − (1 − 𝑢))𝑝1 + 𝑢𝑝2 + 𝑣𝑝3

𝑝𝑡 = 𝑝1 + 𝑢𝑝2 + 𝑣𝑝3

(7.17)

157

This shows that the update vector is just the source point (p1) offset by a linear combination of

p2 and p3. In the event 𝑢 + 𝑣 = 1, the combinations of 𝑢 and 𝑣 describe the line < 𝑝3 − 𝑝2 >. To

define a point within the triangle, the evaluation becomes an inequality 𝑢 + 𝑣 ≤ 1. In the event

the point is outside the triangle, it can be mirrored over the vector < 𝑝3 − 𝑝2 > by a reassignment

as in Equation (7.18). The mirroring is visualized in Figure 7.18.

𝑢 = 1 − 𝑣; 𝑣 = 1 − 𝑢 (7.18)

Figure 7.18. Visualization of the mirroring effect when a sample is thrown outside a triangle.

The mirroring procedure to enforce all samples in an analytic domain (represented by base

vectors of 2 lines in a triangle) are always within the bounds of the triangle. Left) The right

triangle example shows how the point is perfectly mirrored across the triangle edge using a grid

for reference. Right) The procedure also works with an oblique triangle, only that the sampling

domain must be shifted from 0..L in two dimensions to p0..�⃗� and p0..�⃑⃗� where p0 is the source

point (vertex) and �⃗� and �⃑⃗� are the base vectors (red and orange).

158

Figure 7.19. Different triangle sample generator bias evaluations.

Different sample generators (termed V for 2-6 new versions) all had unique trends in the base

vector scaling coefficients (u, v) leading to different distributions of samples in the triangle (right

column, triangle is below red line). Only the final version (V6) shows a uniform distribution.

159

The distribution of different triangular sampling methods are compared in Figure 7.19. Only

the mirroring technique (V6) gives unbiased samples. Note, the biased generators are not described

here.

7.2.4 Triangle prism sample generator

A triangular prism is simply a triangle with a depth as shown in Figure 7.20. As such, the

triangular prism generator (used for penetrating vessels and capillary growth when growing from

a surface mesh) uses a triangle sample generator and applies a depth by offsetting the triangle

surface sample by a scaled version of the triangle normal vector. Note, this method requires all

normal vectors are unified and pointing towards the center of the mesh. The scaling of the normal

vector is defined by a random value between 0 and maximum depth as described in Section 7.2.2.

Figure 7.20. Triangular prism used in anatomical growth.

This is used to project a triangulated surface into a 3D depth easily and inexpensively.

7.2.5 Tetrahedral sampling

Tetrahedral sampling in an analytic domain is not as simple as in a 2-dimensional triangle, as

the mirroring of a point across a face can result in being placed outside the domain on the other

side of the tetrahedral. To avoid this, two methods have been implemented. Code is given in

Section 7.7.1.2. Note, the probability is geometrically biased towards the center of the tetrahedral

160

because there is a natural bias away from the corners (1,0,0), (0,1,0) and (0,0,1) in the base vector

length (u, v, w). This bias arises similar to the low probability of rolling 2 die and obtaining a 2

(only 1 permutation, 1/36 probability) vs rolling a 6 (5 permutations, 5/36 probability).

7.2.5.1 Method 1: using the vector norms

The ad-hoc method for sampling within a tetrahedral uses the norm of the base vectors to

rescale in the event that the length of the resulting vector is too long. This method has a bias

towards the middle of the region as it does not address the bias discussed previously. The results

visualized in Figure 7.21 reveal a bias towards the center of the tetrahedron. A pseudocode is

offered:

Table 7.9. Pseudocode for tetrahedralSampleGenerator1

1. translatePtCoordToWithinTetrahedron(newPt,aVolIdx,u);

2. getFacesAsVectors(v1,v2,v3,v4,aVolIdx,newPt);

3. vNewA = scale(v1,u[0], v2,u[1], v3,u[2]);

4. IF sum(u) > 1 THEN DO

5. temp[0] = norm(u) – norm(u[1],u[2]); temp[1] = norm(u) – norm(u[0],u[2])

6. temp[2] = norm(u) – norm(u[0],u[1]); u = temp;

7. END;

8. END;

161

Figure 7.21. In this case, the projection into the domain is validated.

Original points in blue and final, translated points in pink. All final points lie within the

tetrahedron.

7.2.5.2 Method 2: using the random length sampling

An alternative method uses a random length variable applied to all vectors only when the sum

of the scaling parameters is greater than 1. The 3 coordinate vectors determine the direction and

another random variable calculates the length. This has been shown graphically:

Figure 7.22. Visualization of how three random variables create a vector outside a tetrahedron.

The original tetrahedron compared to the sampling vectors (𝑣1, 𝑣2, and 𝑣3) scaled by the

corresponding randomly selected weighting variables (𝑢1, 𝑢2, and 𝑢3). In this case, the sum of

weighting variables is greater than 1, so the new vector is outside the tetrahedron.

162

The triangle (T(x,y,z)) opposite the origin point can be characterized by all permutations of

𝑢1, 𝑢2, and 𝑢3 that sum to a value of 1:

𝑇(𝑥, 𝑦, 𝑧) =∑𝑢𝑖𝑣𝑖(𝑥, 𝑦, 𝑧)

3

𝑖=1

Where

1 =∑𝑢𝑖

3

𝑖=1

(7.19)

The sum of 𝑢1, 𝑢2, and 𝑢3 describes the length of the vector, where ∑ 𝑢𝑖
3
𝑖=1 = 0. .1 designates

a point inside the tetrahedron. In the event that the value is greater than 1 (or less than 0 which

does not occur in any of the calculations because the random numbers are bounded at 0), the length

can be set by an independent random variable (i.e. L=rand(0,1)). This method fixes the bias

towards the tetrahedral corner of origin, but does not fix the bias away from the other corners of

the tetrahedral as seen in Figure 7.23. A pseudocode for this method is offered:

Table 7.10. Pseudocode for tetrahedralSampleGenerator2

1. translatePtCoordToWithinTetrahedron(newPt,aVolIdx,u);

2. getFacesAsVectors(v1,v2,v3,v4,aVolIdx,newPt);

3. vNewA = scale(v1,u[0], v2,u[1], v3,u[2]);

4. IF sum(u) > 1 THEN DO

5. L = rand(0,1); delta = L/sum(u); u = scale(delta,u);

6. ENDIF;

7. END;

163

Figure 7.23. The second method for tetrahedral sampling.

Original points in blue and final, translated points in pink. All final points lie within the

tetrahedron.

7.2.5.3 Method 3: mirroring

A method inspired by the mirroring developed for the triangle sample generator also found a

bias towards the center of the tetrahedron as seen in Figure 7.24. The method first checks that the

value is inside all 3 base triangles independently. This method has a bias towards the origin, as the

majority of the space in the analytic domain (hexahedron surrounding the tetrahedral) is very large.

The method is implemented by repetitively mirroring across the triangular sides of the tetrahedral

until the point lies within the structure.

164

Figure 7.24. The second method for tetrahedral sampling.

Original points in blue and final, translated points in pink. All final points lie within the

tetrahedron.

165

7.3 Appendix C: Calculating cortical depth from a mesh

The steps to calculating the cortical depth follows the variables outlined in Figure 7.25.

Figure 7.25. Graphical representation of calculating depth from a surface triangle.

This is computed by calculating the perpendicular distance to that triangle. This is the calculation

used to identify depth in the MCA territory.

Pseudocode for calculating depth for all segments in a network is offered:

Table 7.11. Pseudocode for calculating perpendicular distance from a triangle
1. calculateDepthForAllFacesInNetwork(nwk, mesh, faceMatchingList):DBLArray;
2. FOR iFace =1 TO nwk.nFaces DO
3. meshFace = faceMatchingList[iFace]; n = getFaceNormal(mesh, meshFace);
4. faceCenter = getFaceCenter(nwk, iFace); meshCenter = getFaceCenter(mesh,

meshFace);
5. V = getAsVector(faceCenter, meshCenter);
6. Depth[iFace] = norm(V)*dot(n,V)/(norm(V)*norm(n));
7. ENDFOR;
8. END;

166

7.4 Appendix D: Raw dataset topological analysis

7.4.1 Calculating Murray coefficient

Murray’s law (Equation (7.20)) is a nonlinear relationship between parent diameter and

daughter diameter. Finding the unknown coefficient (𝛾) can be formulated as a least square

optimization problem (Equation (7.21)). Under the assumption the minimum value is Z=0, the

minimization becomes a nonlinear equation (Equation (7.22)) which can be solved using the

Newton method with the gradient defined in Equation (7.23).

𝑑𝑝
𝛾
= 𝑑1

𝛾
+ 𝑑2

𝛾
 (7.20)

min
γ
𝑍(𝛾)

Where

𝑍(𝛾) = [𝑑𝑝
𝛾
− (𝑑1

𝛾
+ 𝑑2

𝛾
)]
2

(7.21)

[𝑑𝑝
𝛾
− (𝑑1

𝛾
+ 𝑑2

𝛾
)]
2
= 0 (7.22)

𝑑𝑍

𝑑𝛾
= 2[𝑑𝑝

𝛾
− (𝑑1

𝛾
+ 𝑑2

𝛾
)] [ln(𝑑𝑝) 𝑑𝑝

𝛾
− (ln(𝑑1) 𝑑1

𝛾
+ ln(𝑑2) 𝑑2

𝛾
)] (7.23)

Validation of the implementation can be seen graphically where the residual error nonlinear

1-dimensional equation (Equation (7.22)) gives optical identification of the solution region (Figure

7.26). This value is identified by the Newton method for two case studies; an idealized geometry

(not from images) and an image-based reconstructed bifurcation for which the Murray coefficient

is a positive number. The following case studies were examined:

167

Type Parent diameter (μm) D1 diameter (μm) D2 diameter (μm) coefficient

1 Idealized 4 2 1.5 0.8371

2 μCT reconstruction 37.721925 32.6994 20.46435 2.165

The findings show a solution (if one exists) occurs in the positive domain, yet the Newton

method sometimes converges to an asymptotic value of 0 in the negative domain (no solution

exists). In other words, the solution takes the form of Figure 7.27 Top Left where a solution may

not exist and a numerical method may converge to a false solution in the negative domain (0+0=0).

Figure 7.26. The solution opf case study 1 is validated by both Matlab and Delphi at 𝛾=0.87.

168

Figure 7.27. Solution to case study 2 is 𝛾=2.165 as verified by Matlab and Delphi.

A case study with no solution. A case study was generated from a reconstructed bifurcation

that iteratively converged to a negative Murray coefficient. In the cases where a negative value is

obtained, the reasoning is that the minimum of the Murray residual equation (Equation (7.22)) is

a negative number. This results in a significant residual magnitude for all meaningful regions for

the Murray coefficient (Figure 7.28 Left).

Type Parent diameter (μm) D1 diameter (μm) D2 diameter (μm) coefficient

3 μCT reconstruction 37.721925 36.75 21.947925 -2.3581

169

𝑍(𝛾) = [𝑑𝑝
𝛾
− 𝑑1

𝛾
+ 𝑑2

𝛾
]
2

𝑍(𝛾) = 𝑑𝑝
𝛾
− 𝑑1

𝛾
+ 𝑑2

𝛾

Figure 7.28. Case study 3 does not have a solution. In this case, the double-root occurs with a

very large residual value, meaning it is not a solution.

7.4.2 Spectra of Murray coefficient from µCT data

Anatomical reconstructions of µCT images of mouse vasculature were performed using

previously published methods [68–70]. This network is apt to calculating the Murray coefficient.

The distribution is offered in Figure 7.29. The diameter coefficients are offered with the lines for

different values of γ in Figure 7.30. The values obtained from a reconstruction at an imaging

resolution of 20µm is shown in Figure 7.29 - Figure 7.30. The values obtained from a

reconstruction at an imaging resolution of 7µm is shown in Figure 7.31 - Figure 7.32.

170

Figure 7.29. Histograms of the Murray coefficient for the 20 micron pial surface, solved for

using newton method.

Note, range is 2.465-6.069, in many cases the newton method did not converge (but more

converged than did not).

Figure 7.30. Dataset predictions of parent diameter (with varying coefficient, 𝛾) compared to

experimental parent diameter.

The most reasonable coefficient lies between 0.8 and 1.0.

171

Figure 7.31. Histograms of the murray coefficient for the 7 micron pial surface, solved for using

newton method.

Note, range is -120 to 20, in many cases the newton method did not converge (but more

converged than did not).

Figure 7.32. micron dataset predictions of parent diameter (with varying coefficient, 𝛾)

compared to experimental parent diameter.

The most reasonable coefficient lies between 0.8 and 1.0.

7.4.3 The spectra of Murray coefficient from 2PLSM microcirculation

Four anatomical reconstruction of 2 photon laser scanning microscopy (2PLSM) images of

mouse microvasculature was performed using previously published methods [26]. The distribution

172

of Murray coefficients is offered in Figure 7.33. The diameter coefficients are offered with the

lines for different values of γ in Figure 7.34 - Figure 7.35 for individual datasets. The cumulative

distributions are offered in Figure 7.36 - Figure 7.37.

Figure 7.33. The comparison of the 4 empirical datasets and their respective Murray coefficient

as derived using the Newton method.

Note, all negative values are a result of non-convergence of the Newton method (See section

7.4.1).

173

Figure 7.34. The comparison of the first 2 empirical datasets and their respective Murray coefficient

as derived using the Newton method.

174

Figure 7.35. The comparison of the last 2 empirical datasets and their respective Murray coefficient

as derived using the Newton method.

175

Figure 7.36. Histograms of the murray coefficient for accumulated 4 empirical microcirculatory

datasets.

Figure 7.37. The comparison of the cumulative empirical datasets and their respective Murray

coefficient as derived using the Newton method.

The plotted lines indicate 𝛾 = 1,2,3,4 for scatter plots in red, magenta, light blue, and dark blue

respectively.

176

7.4.3.1 Anatomical characteristics of cerebral microcirculatory networks

Small penetrators. The primary dataset for investigation in this section is the Kleinfeld datasets

[41], as they are significantly larger than other datasets [24,25] and are anatomically labeled. These

datasets came prescribed with large penetrating vessels pre-labeled:

E1.1 E2.1 E3.1 E4.1

Figure 7.38. Visualization of the automatically labeled penetrating arteries and ascending veins

in the empirical networks.

(Top) the penetrating arterial trees show higher pressure (red) than the (Bottom) ascending

venules (blue). Note, not all penetrating vessels of the same group exhibit the same pressure.

When interrogating these trees of vessels, the relevant topological parameter for vascular

synthesis is the number of purely vertically-aligned vessels. These have been counted in the labeled

structures to reveal the ratio of penetrating arteries to ascending venules is in the range=0.45-0.72

with a mean of 0.66 and a standard deviation of 0.16. Moreover, the longer penetrating vessels

177

were noted to bifurcate primarily in the bottom ½ of the domain (not many branches near the pial

surface).

During this investigation, many small vessels appeared that stemmed from the pial vasculature

but only penetrated into the top 1/3 of the dataset. Images of these short penetrators can be seen in

Figure 7.39 with close-up views in Figure 7.40. These small pial vessels also were noted to have

different bifurcating patterns; namely, they branch fairly uniformly along their length. A schematic

of these branching patterns has been drawn in Figure 7.41 to exemplify this finding.

Figure 7.39. Visualization of the whole E1.1 network with penetrating vessels highlighted.

These vessels penetrate 1/4 - 1/3 into the depth of the network. With these new penetrators, an

estimated ~80 total penetrating vessels/mm2 surface area coverage is estimated.

178

Figure 7.40. Visualization of short penetrating vessels that were initially overlooked by the

labeling algorithm.

Note, many of these are short and narrow, so they were originally classified as capillaries.

Figure 7.41. Pictoral representation of the two classifications of penetrating vessels on the

arterial side.

Left) the penetrating arteries are larger in diameter, penetrate deeper into the tissue, and do not

branch until reaching the lower portions of the dataset. Right) the penetrating arterioles a shallow

and branch throughout the depth they cover.

A total of ~80 penetrators have been identified by manual inspection. To account for this, the

model could be adapted to grow the deep penetrators (~30) allowing the penetrators to angle up to

10 degrees from direct-vertical alignment. The method would then grow ½ the capillary bed before

179

growing the additional 50 small, short penetrators. Then the remaining capillary bed would be

finished before continuing with connection and topological agreement. The results of this

adaptation are outside the scope of this work.

Vertical alignment bias. Another notable characteristic of the empirical networks is a

propensity of vessels to align parallel or perpendicular to the Z-axis. The centerline of every vessel

can be characterized by a vector (v) has 3 components, the x, y, and z component as pictured in

Figure 7.42.

Figure 7.42. The graphical representation of a face (as vector v in blue) in an x, y, and z

coordinate system.

The proportional magnitude of the z component (vz) can be calculated using:

𝛼 =
|𝑣𝑧|

|𝑣|
 (7.24)

And the angle from the z-axis can be calculated following:

180

𝜃 = arccos(𝛼) (7.25)

And the resulting distribution for empirical and synthetic networks is offered:

Figure 7.43. Probability density function of the vertical alignment of empirical networks.

Note, the values are plotted at the center of each bin.

The network segments that share an alignment with the z-axis can be defined by the cosine of

the angle between the z-axis and the segment centerline being close to 1 (>0.9). The segments

perpendicular to this axis have a small cosine (<0.1). The vessels of network E1.1 (also designated

by EKF1.1) have been characterized by these parameters and visualized in Figure 7.44.

181

<0.1 >0.9 0.1< & <0.9

Figure 7.44. Visualization of vertical alignment of empirical network EKF1.1.

Left) horizontal, Middle) vertical and Right) all other segments. Note even with very tight

criteria, a very large number of segments are identified by the alignment to horizontal or

vertical angles.

Proposed adaptation to algorithm. In order to synthesize anatomically consistent

cerebrovascular networks, it is not sufficient to use a random space-filling algorithm alone, as this

algorithm will not account for inherent bias in the empirical network. In order to incorporate these

topologically consistent characteristics of cerebral microcirculatory networks into the previously

proposed iCNS algorithm, the penetrator growth stage should only grow the deep penetrators, then

grow ~1/2 the capillary bed (using multiple stages of consecutively relaxing constraints). The

shorter penetrators (~1/2 of the total ~78 penetrators/mm2 pial surface coverage) are then added

and the remainder of the capillaries grown. This will help limit the random sample generating bias

of the segments near the pial vessels towards the small penetrators and ensure these vessels attach

to the short penetrators and trees from larger penetrators alike (as happens in empirical networks).

Another modification is to add the large penetrators as a series of 10 extensions, as opposed to

a single vessel. This will assist in the horizontal bias when attaching to these vessels. The

penetrating vessel should begin straight and have some degree of angle from the Z-axis by

182

allowing the x-y coordinate of the penetrator to vary by a random number giving 0-10 degrees of

skewedness to the new terminal point coordinate. After the coordinate is set and the addition of 10

segments (signifying a single penetrator) takes place, some vessels (~4 per penetrator) should be

grown within a cylinder surrounding the vessel (~100-125μm).

183

7.5 Appendix E: Perpendicular line connections, alternative methods

To characterize the distance between a new sample and a selected face in the network, a

calculation of the perpendicular distance between a point and a line is necessary. To do this, the

intersection point must be defined along the segment arc that guarantees the two vectors are

perpendicular (dot product is 0) as in Equation (7.27):

Figure 7.45. Schematic representation of a new sample (P4) and the intersection point with the

existing face (P1-P3) at point P2.

0 = [𝑥3 − 𝑥1, 𝑦3 − 𝑦1] ∙ [
𝑥2 − 𝑥4
𝑦2 − 𝑦4

] (7.26)

This equation is written in the x-dimension but can likewise be written in y and z. The solution

to this dot product can be written in the unknown value (x2):

0 = (𝑥3𝑥2 − 𝑥1𝑥2 − 𝑥3𝑥4 + 𝑥1𝑥4) + (𝑦3𝑦2 − 𝑦1𝑦2 − 𝑦3𝑦4 + 𝑦1𝑦4)

(𝑥3𝑥4 − 𝑥1𝑥4) + (𝑦3𝑦4 − 𝑦1𝑦4) = [𝑥3 − 𝑥1 𝑦3 − 𝑦1] [
𝑥2
𝑦2
]

(7.27)

184

Which gives 1 equation with 2 unknowns. A second equation should enforce that the second

point lies on the line <p1-p3>. This can be accomplished by fitting an analytic line encompassing

both p1 and p3 and ensuring the new point obeys to that line. This can be accomplished by first

fitting a line to the two points in the original network face:

[
𝑦1
𝑦3
] = [

𝑥1 1
𝑥3 1

] ∙ [
𝑚
𝑏
] (7.28)

Which will result in a value of m and b. This can be used to ensure:

𝑦2 = 𝑚𝑥2 + 𝑏

Which can be rewritten as:

𝑏 = −𝑚𝑥2 + 𝑦2

(7.29)

Which can be added to the original equation (Equation (7.27)) resulting in a final set of

equations:

[
(𝑥3𝑥4 − 𝑥1𝑥4) + (𝑦3𝑦4 − 𝑦1𝑦4)

𝑏
] = [

𝑥3 − 𝑥1 𝑦3 − 𝑦1
−𝑚 1

] [
𝑥2
𝑦2
] (7.30)

This has been implemented in Matlab for validation. Code is offered in Section 7.7.1.3.

185

Figure 7.46. Simple test of perpendicular distance between a point and a line.

The new line (thin line) intersects the original line (thick line) at a 90 degree angle in both cases.

Another method for finding the second equation (that the point lies on the line prescribed by

the segment arc) can be proposed. This second method would guarantee the area of the triangle

made by connecting the new point to both terminals of the segment is 0. A graphic depiction of

this new triangle is offered:

Figure 7.47. Schematic representation of evaluation if new bifurcation point (P2) lies along the

vector <P1 – P3> by evaluating the area of the triangle made by 3 points <P1, P2, P3>.

The area is defined using a cross product of the base vectors of the triangle:

186

𝑣1 = 𝑝2 − 𝑝1; 𝑣2 = 𝑝3 − 𝑝1

0 = 𝐴 =
|𝑣1 × 𝑣2|

2

(7.31)

Which implies:

|𝑣1 × 𝑣2| = 0 (7.32)

Which needs to be written in terms of the unknowns:

𝑣1 × 𝑣2 = [
𝑥
𝑦
𝑧
] = [

𝑣1(𝑦)𝑣2(𝑧) − 𝑣1(𝑧)𝑣2(𝑦)

𝑣1(𝑧)𝑣2(𝑥) − 𝑣1(𝑥)𝑣2(𝑧)

𝑣1(𝑥)𝑣2(𝑦) − 𝑣1(𝑦)𝑣2(𝑥)
] (7.33)

Which simplifies to:

𝑣1 × 𝑣2 = [

(𝑝2 − 𝑝1)(𝑦)𝑣2(𝑧) − (𝑝2 − 𝑝1)(𝑧)𝑣2(𝑦)

(𝑝2 − 𝑝1)(𝑧)𝑣2(𝑥) − (𝑝2 − 𝑝1)(𝑥)𝑣2(𝑧)

(𝑝2 − 𝑝1)(𝑥)𝑣2(𝑦) − (𝑝2 − 𝑝1)(𝑦)𝑣2(𝑥)
]

|𝑣1 × 𝑣2| = √

[(𝑝2 − 𝑝1)(𝑦)𝑣2(𝑧) − (𝑝2 − 𝑝1)(𝑧)𝑣2(𝑦)]
2 +

[(𝑝2 − 𝑝1)(𝑧)𝑣2(𝑥) − (𝑝2 − 𝑝1)(𝑥)𝑣2(𝑧)]
2 +

[(𝑝2 − 𝑝1)(𝑥)𝑣2(𝑦) − (𝑝2 − 𝑝1)(𝑦)𝑣2(𝑥)]
2

(7.34)

187

Because this value is 0, the square root can be simplified:

0 = [(𝑝2 − 𝑝1)(𝑦)𝑣2(𝑧) − (𝑝2 − 𝑝1)(𝑧)𝑣2(𝑦)]
2

+ [(𝑝2 − 𝑝1)(𝑧)𝑣2(𝑥) − (𝑝2 − 𝑝1)(𝑥)𝑣2(𝑧)]
2

+ [(𝑝2 − 𝑝1)(𝑥)𝑣2(𝑦) − (𝑝2 − 𝑝1)(𝑦)𝑣2(𝑥)]
2

(7.35)

Which is a nonlinear set of equations, so it is not a desirable approach. This method will not

be used.

188

7.6 Appendix F: Modifying tortuosity of a spline

In many instances, it is necessary to add or remove tortuosity of a spline. This section describes

how to achieve both of these modifications.

7.6.1 Adding tortuosity

In order to increase tortuosity in a spline (a Bezier spline of 3rd order will be used for this

explanation), the control points can be moved and the curve will have a longer or shorter arc length.

The control point in a network is assigned using the topological connectivity:

Figure 7.48. Schematic representation of variables necessary for adding tortuosity to a splined

segment.

C0 is the control point for the P0 terminal point. P’1 and P’2 are points connected to splines

sharing the terminal point P0.

The calculation for point C0 are as follows:

𝑝′′ =
1

𝑛𝐶𝑜𝑛
∑ 𝑝𝑖

′

𝑛𝐶𝑜𝑛

𝑖=1

(7.36)

189

𝑐0 = 𝑝0 + 𝛼(𝑝0 − 𝑝
′′)

(7.37)

Where 𝑝0 is the point coordinate of the current terminal point of a face, 𝑐0 is the control point

of interest (the control point on the current spline closest to this point), 𝑛𝐶𝑜𝑛 is the number of

connected faces to the current point, 𝑝𝑖
′ denotes downstream points connected to ith bifurcation

point, and 𝑝′′ is the average of all 𝑝𝑖
′ coordinates. This process is repeated for both control points

in the spline.

The length of a Bezier curve, however, is not linearly proportional to the tortuosity. With no

analytic expression for the length of a Bezier spline of 3rd order as a function of control point

location, a fixed-point iterative scheme was developed that iteratively adds length and checks

tortuosity until the length of the spline matches the desired length. This scheme begins at the

original length (l0) and adds tortuosity until a final length (α l0) is achieved. A pseudocode is

offered:

Table 7.12. Pseudocode for adding tortuosity to a group of splines

1. FUNCTION addTortuosity(aSynSplinedNwk, anEmpSplinedNWK:ooSplinedTubeMesh);

2. FOR iBin := 1 TO nBins DO

3. α := matchCDF(sortedSynNwkLL, sortedSynNwkLL, iBin)

4. FOR iFace := 1 TO nFacesInBin DO

5. connectedFaces := getConnectedFaces(iFace);

6. WHILE abs(aSynSplinedNWK.getL(iFace)- α* SynNwkLL[iFace])>tolerance DO

7. stretch(aSynSplinedNWK[iFace].c0, α,connectedFaces,c0,c1)

8. ENDWHILE

9. ENDFOR

10. ENDFOR

11. END

190

Table 7.13. Pseudocode for making a spline longer

1. FUNCTION Stretch(aSpline, alfa, lNew, vNew);

2. controlPointVector= scale(alfa, vNew);

3. aSpline.C0 = add(controlPointVector, aSpline .P0);

4. aSpline.updateLengthIteratively;

5. END

The matchCDF algorithm is described in Section 3.2.2. The stretch procedure involves moving

the control points (C0 and C1) following Equation (7.37). Note, both control points in a curve must

be stretched, so the total length matches the desired value.

Figure 7.49. Workflow diagram for adding tortuosity to a splined network.

This workflow overwrites the old control points with new control points. The terminal points of

each spline remain unchanged.

7.6.2 Reducing Tortuosity

The closed network from Section 7.1.4 gives a network of splines each with two control points

and two terminal points. The closure stage of growth, however, can create vessels with highly

191

acute angles, which creates splined segments with tortuosity outside of the empirical range (1 - 8)

as visualized in Figure 7.50. This arises from an enforcement of minimum/maximum length

conditions outright, while an acute angle constraint is relaxed if no suitable candidate segment can

be found for a given terminal.

Figure 7.50. Visualization of a closure segment that connects arteries to veins through an acute

angle.

This segment has a high degree of tortuosity.

These segments and terminal points are synthesized, and not reconstructed, allowing the

freedom to modify the location of the control and terminal points in the spline as needed. The

tortuosity can be reduced by simply reducing the amount of linear length the segment has. This

can be accomplished by shrinking the spline towards the center between terminal points of the

segment:

192

Figure 7.51. The control and terminal points to two bezier curves of 3rd order linked together to

make a splined segment.

The first curve is in blue and the second curve is in green. Note the p1 point for the first curve is

the same as the p0 point for the second curve.

The midpoint between the first and last terminal points in the spline dictate an origin point

(ptc). From this point, vectors can be defined for all intermediate points (all except p0 from the first

curve and p1 from the second curve in this case). These vectors can be scaled by a constant value

to generate a smaller curve:

Another option is to set these segments to a tortuosity value of 1 which helps offset the lack of

extremely short segments that appear in empirical data (near the image-threshold range). The

option to reduce the tortuosity to 1 has shown the best results among all values for maximum

tortuosity.

193

Original spline Shortened spline

Figure 7.52. The control and terminal points to two bezier curves of 3rd order linked together to

make a splined segment.

The first curve is in blue and the second curve is in green. Note, the spline is shortened by simply

shortening the vectors between ptc and the control/terminal points of each Bezier curve.

An application to the case study in Figure 7.50 can be seen for full and reduced tortuosity:

Figure 7.53. The finished product of reducing tortuosity changes the long, smooth curve into the

shorter smooth curve.

194

7.7 Appendix G: Using a quadratic model with y-offset of L0 to match CDFs

Another model for matching two CDF functions is to assume a quadratic model where the

vertical offset is the starting length. This model can be formulated as:

𝜏 = 𝜏0 + 𝜏1 ∙ 𝑙
(7.38)

𝑙𝑛 = 𝑙(1 + 𝜏)
(7.39)

By combining (7.38) and (7.39) into a single equation:

𝑙′ = 𝑙(1 + 𝜏0 + 𝜏1 ∙ 𝑙)
(7.40)

Which takes the form of:

𝑦 = 𝑐 + 𝑏𝑥 + 𝑎𝑥2
(7.41)

As:

𝑙′ = 𝑙 + 𝜏0𝑙 + 𝜏1 ∙ 𝑙
2

(7.42)

This problem can be solved for unknowns 𝜏0 and 𝜏1 using linear regression. Here, the

coefficients a and b are unknown (corresponding to 𝜏0 and 𝜏1 respectively) and the coefficient c

is already known to be l0. Here, 𝑙 is the starting length (length of the synthetic network prior to

195

adding tortuosity), and 𝑙′ is the final length (corresponding length at the same bin edge in the

empirical network). The to provide two pieces of information and solve for the unique solution for

the unknowns, the start and end of the bin can be sampled from the sorted array for empirical and

synthetic networks (for example, 𝑙0 to 𝑙0
′ and 𝑙1 to 𝑙1

′ for start and end bin lengths for synthetic and

empirical network lengths, respectively):

𝑙0
′ = 𝑙0

𝑒𝑚𝑝
 𝑙1

′ = 𝑙1
𝑒𝑚𝑝

𝑙0 = 𝑙0
𝑠𝑦𝑛
 𝑙1 = 𝑙1

𝑠𝑦𝑛

(7.43)

When using these 2 data points, the unknown coefficients in (7.40) constitute a perfectly

defined system to be solved:

[
𝑙0 𝑙0

2

𝑙1 𝑙1
2] (

𝜏0
𝜏1
) = (

𝑙0
′ − 𝑙0
𝑙1
′ − 𝑙1

)
(7.44)

This will give a quadratic fit to align 𝜏0 and 𝜏1. The algorithm can then apply this tortuosity

(Equation (7.38)) to the faces with indices in the sortedIdxA with a preexisting procedure.

Case study 1: small networks. Implementation of the quadratic model of CDF fitting on two

sample datasets renders excellent alignment of the CDFs:

196

Figure 7.54. Completely different networks (generated with similar algorithms but at different

scales and different densities) matched with 2, 5, 10, and 100 bins.

Green corresponds to initial synthetic network, blue is empirical network, and red is aligned

synthetic (after tortuosity added). In this case, the results are meaningless, but it is a good test

for proof of concept.

Case study 2: synthetic KF1. Implementation of the quadratic model of CDF fitting on a full

KF dataset renders excellent alignment of the CDFs:

197

Figure 7.55. Matching CDfs between EKF1.1 and SKF1.101.

Statistical cumulative density functions and probability density functions for automatically

matching raw synthetic (grey lines) to empirical (black dots) statistics. Note the shifted empirical

(black line) aligns nicely with the empirical datasets.

7.7.1 Relevant codes

7.7.1.1 Code for bifurcation volume optimization evaluation

The code provided here visualizes optimal point of bifurcation location in 2D.

198

% % GH 2/16/2019 -- a procedure to generate statistics figures for growth paper

function showOptimizedBifurcations

close all;

global MY,

MY = 3.5e-3;

ptCoordMx = [-1.0001 1.0001; 0.00001 0.49999; 3.0001 -1.0001; 2.0001 2.0001]; %modify 2nd point

plotOptimizationSpace(ptCoordMx,100);

ptCoordMx = [-1.0001 3.0001; 0.00001 0.49999; 2.0001 -1.0001; 2.0001 1.0001]; %modify 2nd point

plotOptimizationSpace(ptCoordMx,15);

end

function plotOptimizationSpace(ptCoordMx,d0)

figure, disp([' ']); p2Orig = ptCoordMx(2,:);

xRange = -2:0.1:3; yRange = -1:0.1:3;

totalVolume = zeros(length(xRange),length(yRange)); %allocate memory

subplot(2,2,1), hold on, [L1,L2,L3] = getL(ptCoordMx);

plotNetwork(ptCoordMx,calculateDiameter(L1,L2,L3),'k'); title('original layout');

xlim([min(xRange),max(xRange)]); ylim([min(yRange),max(yRange)])

disp('original tree'); makeReport(L1,L2,L3,calculateDiameter(L1,L2,L3)); disp(' ');

% % use optimized diameter

for x = 1:length(xRange)

 for y = 1:length(yRange)

 ptCoordMx(2,:) = [xRange(x) yRange(y)]; [L1,L2,L3] = getL(ptCoordMx);

 dia = calculateDiameter(L1,L2,L3); totalVolume(x,y) = V(L1,dia(1)) + V(L2,dia(2))

+ V(L3,dia(3));

 end

end

subplot(2,2,2), hold on, contour(xRange,yRange,log(totalVolume'),100),

title('volume of tree after optimization within space'); xlim([min(xRange),max(xRange)]);

ylim([min(yRange),max(yRange)])

subplot(2,2,3), surf(xRange,yRange,totalVolume','edgecolor','none'), set(gca,'zScale','log')

title('volume of tree'); xlim([min(xRange),max(xRange)]);

ylim([min(yRange),max(yRange)])

subplot(2,2,2); hold on,

val = min(min(totalVolume)); [x,y] = find(totalVolume == val);

ptCoordMx(2,:) = [xRange(x) yRange(y)]; [L1,L2,L3] = getL(ptCoordMx);

finalDia = calculateDiameter(L1,L2,L3); xlim([min(xRange),max(xRange)]);

ylim([min(yRange),max(yRange)])

scatter([ptCoordMx(2,1) p2Orig(1,1)], [ptCoordMx(2,2) p2Orig(1,2)],'k','filled');

quiver(p2Orig(1),p2Orig(2), ptCoordMx(2,1)-p2Orig(1),ptCoordMx(2,2)-

p2Orig(2),'k','markersize',10,'maxheadsize',20,'linewidth',1);

subplot(2,2,4), hold on, plotNetwork(ptCoordMx,finalDia,'k'), title('optimized tree');

 disp('optimized tree'); makeReport(L1,L2,L3,finalDia);

 dia = recSetRootRadius(L1,L2,L3,10); makeReport(L1,L2,L3,dia);

end

function makeReport(L1,L2,L3,dia)

 disp(' '); [p,f] = simulate(dia,L1,L2,L3); disp(['root dia: ' num2str(dia(1))]);

disp(['inlet flow: ' num2str(f(1))]); disp(['left branch sum: ' num2str(f(2))]);

disp(['right branch sum: ' num2str(f(3))]);

alfa = getAlfa(dia,[L1,L2,L3]); alfaT = alfa(1) + alfa(2)*alfa(3)/(alfa(2)+alfa(3));

disp(['total alfa: ' num2str(alfaT)]);

VTotal = V(L1,dia(1)) + V(L2,dia(2)) + V(L3,dia(3));

disp(['total Volume: ' num2str(VTotal)]);

end

function alfaV = getAlfa(dia,L)

alfaV = [r(L(1))/(dia(1)^4); r(L(2))/(dia(2)^4); r(L(3))/(dia(3)^4)];

end

function [p,f,alfa] = simulate(dia,L1,L2,L3)

d1 = dia(1); d2 = dia(2); d3 = dia(3);

alfa = getAlfa(dia,[L1,L2,L3]);

A(1,:) = [1 0 0 0]; b(1) = 1;

199

A(2,:) = [1/alfa(1) -1/alfa(1)-1/alfa(2)-1/alfa(3) 1/alfa(2) 1/alfa(3)];

A(3,:) = [0 0 1 0]; b(3) = 0;

A(4,:) = [0 0 0 1]; b(4) = 0;

p = A\b';

f = [(p(1)-p(2))/alfa(1); (p(2)-p(3))/alfa(2); (p(2)-p(4))/alfa(3)];

end

function [L1,L2,L3] = getL(ptCoordMx)

L1 = norm(ptCoordMx(1,:)-ptCoordMx(2,:));

L2 = norm(ptCoordMx(2,:)-ptCoordMx(3,:));

L3 = norm(ptCoordMx(2,:)-ptCoordMx(4,:));

end

function dia = calculateDiameter(L1,L2,L3)

q0 = 10000; %ml/min - total tree flow

delP = 1; %mmHg

kappa = 3;

m = (r(L2)/r(L3))^(1/4);

beta2 = (1 + m^(-kappa))^(-1/kappa); %can be reduced in this problem

beta3 = (1 + m^kappa)^(-1/kappa); %can be reduced in this problem

rTot = r(L1) + (beta3^4/r(L3) + beta2^4/r(L2))^(-1);

d1 = (rTot*q0/delP)^(1/4);

d2 = beta2*d1; d3 = beta3*d1; dia = [d1;d2;d3];

% d1^4/rTot

% alfaT1 = r(L1)/(d1^4) + ((r(L2)/(d2^4))*(r(L3)/(d3^4)))/(r(L2)/(d2^4)+r(L3)/(d3^4));

% alfa = getAlfa(dia,[L1,L2,L3]);

% alfaT2 = alfa(1) + alfa(2)*alfa(3)/(alfa(2)+alfa(3));

% [p,f,alfa] = simulate(dia,L1,L2,L3)

% alfaT3 = alfa(1) + alfa(2)*alfa(3)/(alfa(2)+alfa(3));

end

function dia = recSetRootRadius(L1,L2,L3,d0)

q0 = 10000; %ml/min - total tree flow

delP = 1; %mmHg

kappa = 3;

m = (r(L2)/r(L3))^(1/4);

beta2 = (1 + m^(-kappa))^(-1/kappa); %can be reduced in this problem

beta3 = (1 + m^kappa)^(-1/kappa); %can be reduced in this problem

d1 = d0; d2 = beta2*d1; d3 = beta3*d1; dia = [d1;d2;d3];

end

function R = r(L), global MY, R = (128*MY*L/(pi)); end

function plotNetwork(ptCoordMx,dia,clr)

faceMx = [1 2; 2 3; 2 4];

for i=1:length(faceMx)

 plot([ptCoordMx(faceMx(i,1),1) ptCoordMx(faceMx(i,2),1)],[ptCoordMx(faceMx(i,1),2)

ptCoordMx(faceMx(i,2),2)],...

 clr,'linewidth',dia(i)/2);

end

end

function vol = V(L,dia)

vol = pi*(dia/2)^2*L;

end

7.7.1.2 Code for tetrahedral sample generation evaluation

The code provided in this section evaluates polyhedron sampling bias.

200

% % GHartung 2/26/2019 -- a program to develop and test a tetrahedral

% sample generator

function testPolyhedralMirroring

close all

global faceMx

faceMx = [1 2 3; 1 3 4; 3 4 2; 2 4 1]; i = 1;

% % % case study 3

figure, hold on

ptCoordMx = [1 1 1; 1 1.5 3; 2 2 2; 2 1 1]; newPt = [0.6 0.5 0.6];

%to get statistics

 figure, hold on

for i = 1:1000

 movePtIntoTetrahedralAndPlotV3(ptCoordMx,rand(1,3),{},i,false)

end

end

function movePtIntoTetrahedralAndPlotV2(ptCoordMx,L,names,i, useLgd)

v1 = ptCoordMx(2,:) - ptCoordMx(1,:); v2 = ptCoordMx(3,:) - ptCoordMx(1,:);

v3 = ptCoordMx(4,:) - ptCoordMx(1,:);

newPt = ptCoordMx(1,:) + L(1)*v1 + L(2)*v2 + L(3)*v3;

v4 = newPt - ptCoordMx(1,:);

scatter3(newPt(1),newPt(2),newPt(3),'oc','filled'); names{i} = 'original pt'; i = i+1;

drawTetrahedral(ptCoordMx); %put last so that legend makes sense

plotBaseVectors(v1,v2,v3,ptCoordMx(1,:))

if sum(L) > 1

 r = rand(1,1); L = r/sum(L)*L;

end

newPt = ptCoordMx(1,:) + L(1)*v1 + L(2)*v2 + L(3)*v3;

scatter3(newPt(1),newPt(2),newPt(3),'om','filled'); names{i} = 'new pt'; i = i+1;

drawTetrahedral(ptCoordMx); %put last so that legend makes sense

if useLgd, legend(names{:}); end

end

function movePtIntoTetrahedralAndPlotV3(ptCoordMx,L,names,i, useLgd)

v1 = ptCoordMx(2,:) - ptCoordMx(1,:); v2 = ptCoordMx(3,:) - ptCoordMx(1,:);

v3 = ptCoordMx(4,:) - ptCoordMx(1,:);

newPt = ptCoordMx(1,:) + L(1)*v1 + L(2)*v2 + L(3)*v3;

v4 = newPt - ptCoordMx(1,:);

scatter3(newPt(1),newPt(2),newPt(3),'oc','filled'); names{i} = 'original pt'; i = i+1;

drawTetrahedral(ptCoordMx); %put last so that legend makes sense

plotBaseVectors(v1,v2,v3,ptCoordMx(1,:))

if sum(L) > 1

 r = rand(1,1); L = 1/(2*sum(L))*L;

end

newPt = ptCoordMx(1,:) + L(1)*v1 + L(2)*v2 + L(3)*v3;

scatter3(newPt(1),newPt(2),newPt(3),'om','filled'); names{i} = 'new pt'; i = i+1;

drawTetrahedral(ptCoordMx); %put last so that legend makes sense

if useLgd, legend(names{:}); end

end

function movePtIntoTetrahedralAndPlot(ptCoordMx,scalingValues,names,i, useLgd)

v1 = ptCoordMx(2,:) - ptCoordMx(1,:); v2 = ptCoordMx(3,:) - ptCoordMx(1,:);

v3 = ptCoordMx(4,:) - ptCoordMx(1,:);

newPt = ptCoordMx(1,:) + scalingValues(1)*v1 + scalingValues(2)*v2 + scalingValues(3)*v3;

v4 = newPt - ptCoordMx(1,:);

scatter3(newPt(1),newPt(2),newPt(3),'oc','filled'); names{i} = 'original pt'; i = i+1;

L = getL(ptCoordMx,newPt); Lx = L(1); Ly = L(2); Lz = L(3);

drawTetrahedral(ptCoordMx); %put last so that legend makes sense

plotBaseVectors(v1,v2,v3,ptCoordMx(1,:))

if Lx+Ly+Lz > 1

 temp1 = Lx; temp2 = Ly; temp3 = Lz;

 Lx = norm([temp1,temp2,temp3]) - norm([temp2,temp3]);

 Ly = norm([temp1,temp2,temp3]) - norm([temp1,temp3]);

 Lz = norm([temp1,temp2,temp3]) - norm([temp1,temp2]);

201

end

 newPt = ptCoordMx(1,:) + Lx*v1 + Ly*v2 + Lz*v3;

 L = getL(ptCoordMx,newPt);

 scatter3(newPt(1),newPt(2),newPt(3),'om','filled'); names{i} = 'new pt'; i = i+1;

drawTetrahedral(ptCoordMx); %put last so that legend makes sense

if useLgd, legend(names{:}); end

end

function L = getL(ptCoordMx,newPt)

v1 = ptCoordMx(2,:) - ptCoordMx(1,:); v2 = ptCoordMx(3,:) - ptCoordMx(1,:);

v3 = ptCoordMx(4,:) - ptCoordMx(1,:); %plotBaseVectors(v1,v2,v3,ptCoordMx(1,:));

v4 = newPt - ptCoordMx(1,:);

A = [v1(1) v2(1) v3(1); v1(2) v2(2) v3(2); v1(3) v2(3) v3(3)];

b = [v4(1); v4(2); v4(3)];

L = A\b;

end

function plotBaseVectors(v1,v2,v3,aSrcPt)

quiver3(aSrcPt(1),aSrcPt(2),aSrcPt(3), v1(1),v1(2),v1(3),'m','markersize',10,'linewidth',1);

quiver3(aSrcPt(1),aSrcPt(2),aSrcPt(3), v2(1),v2(2),v2(3),'m','markersize',10,'linewidth',1);

quiver3(aSrcPt(1),aSrcPt(2),aSrcPt(3), v3(1),v3(2),v3(3),'m','markersize',10,'linewidth',1);

end

function distanceToFace = getDistanceToFace(ptCoordMx,newPt,aFaceIdx)

N = getFaceNormal(aFaceIdx,ptCoordMx);

faceCenter = getFaceCenter(ptCoordMx,aFaceIdx);

V = newPt-faceCenter;

distanceToFace = norm(V)*(N*V')/(norm(V)*norm(N));

end

function faceN = getFaceNormal(closestFace,ptCoordMx)

global faceMx

pt1 = ptCoordMx(faceMx(closestFace,1),:); pt2 = ptCoordMx(faceMx(closestFace,2),:);

pt3 = ptCoordMx(faceMx(closestFace,3),:);

u = pt2 - pt1; v = pt3 - pt1;

faceN = cross(u,v);

end

function x = cross(a,b)

x(1)=a(2)*b(3)-a(3)*b(2);

x(2)=-(a(1)*b(3)-a(3)*b(1));

x(3)=a(1)*b(2)-a(2)*b(1);

end

function center = getFaceCenter(ptCoordMx,faceIdx)

global faceMx

pt1 = ptCoordMx(faceMx(faceIdx,1),:);

pt2 = ptCoordMx(faceMx(faceIdx,2),:);

pt3 = ptCoordMx(faceMx(faceIdx,3),:);

center = (pt1+pt2+pt3)./3;

end

function result = getClosestFace(ptCoordMx,aPt)

global faceMx

for i = 1:4

 faceCenter(i,:) = getFaceCenter(ptCoordMx,i);

 length(i) = norm(faceCenter(i,:) - aPt);

end

[val, result] = min(length);

scatter3(faceCenter(result,1),faceCenter(result,2),faceCenter(result,3),'or')

end

function drawTetrahedral(ptCoordMx)

global faceMx

for i = 1:4

 pt1 = ptCoordMx(faceMx(i,1),:);

 pt2 = ptCoordMx(faceMx(i,2),:);

 pt3 = ptCoordMx(faceMx(i,3),:);

202

 plot3([pt1(1) pt2(1) pt3(1) pt1(1)],[pt1(2) pt2(2) pt3(2) pt1(2)],[pt1(3) pt2(3) pt3(3)

pt1(3)],'-ok');

end

view(125,45)

end

7.7.1.3 Code for intersecting a point with a line at a 90 degree angle in Matlab

% % GH 2/16/2019 -- a procedure to generate statistics figures for growth paper

function plotReverseStrahler

close all;

ptCoordMx = [-1.0001 1.0001; 0.00001 0.49999; 3.0001 -1.0001; 2.0001 2.0001]; %modify 2nd point

p2 = findP2(ptCoordMx); ptCoordMx(2,:) = [p2(1) p2(2)];

subplot(2,1,1),hold on, plotNetwork(ptCoordMx,[5;5;1],'k'), axis equal

ptCoordMx = [-1.0001 1.0001; 0.00001 0.49999; 1.0001 -2.0001; 1.0001 2.0001]; %modify 2nd point

p2 = findP2(ptCoordMx); ptCoordMx(2,:) = [p2(1) p2(2)];

subplot(2,1,2),hold on, plotNetwork(ptCoordMx,[5;5;1],'k'), axis equal

end

function p2 = findP2(ptCoordMx)

x1 = ptCoordMx(1,1); x3 = ptCoordMx(3,1); x4 = ptCoordMx(4,1);

y1 = ptCoordMx(1,2); y3 = ptCoordMx(3,2); y4 = ptCoordMx(4,2);

xx = [x1 1; x3 1]\[y1;y3]; mm = xx(1); bb=xx(2); %%linear fit of first line

b = [(x4*x3-x1*x4)+(y4*y3-y1*y4); bb];

A = [(x3-x1) (y3-y1); -mm 1];

p2 = A\b;

end

function R = r(L), global MY, R = (128*MY*L/(pi)); end

function plotNetwork(ptCoordMx,dia,clr)

faceMx = [1 2; 2 3; 2 4];

for i=1:length(faceMx)

 plot([ptCoordMx(faceMx(i,1),1) ptCoordMx(faceMx(i,2),1)],[ptCoordMx(faceMx(i,1),2)

ptCoordMx(faceMx(i,2),2)],...

 clr,'linewidth',dia(i)/2);

end

ylim([min(ptCoordMx(:,2)) max(ptCoordMx(:,2))]); xlim([min(ptCoordMx(:,1))

max(ptCoordMx(:,1))]);

end

7.7.1.4 CDF matching case study and code in Matlab

Case study. The length spectra of two simple networks were generated for comparing bin size

and automated CDF matching accuracy. The networks show reasonable alignment even with only

2 bins, however increasing the number of bins is computationally inexpensive and results in an

excellent agreement (Figure 7.56).

203

Figure 7.56. Visualization of automated CDF matching using case study 1.

Completely different networks (generated with similar algorithms but at different scales and

different densities) matched with 2, 5, 10, and 100 bins. Green corresponds to initial synthetic

network, blue is empirical network, and red is aligned synthetic (after tortuosity added).

The code in this section shows CDF matching using Matlab.

204

% % GH 2/20/2019 -- a program that tests automated CDF matching

function testCDFMatching

%% enough fucking around -- time to use a real fucking cdf

close all

 [xEmp,cdfEmp] = getCDF(1); %long

[xSyn,cdfSyn] = getCDF2; %short

figure,

subplot(2,2,1), matchCDFAndPlot(2,cdfEmp,cdfSyn,xEmp,xSyn)

subplot(2,2,2), matchCDFAndPlot(5,cdfEmp,cdfSyn,xEmp,xSyn)

subplot(2,2,3), matchCDFAndPlot(10,cdfEmp,cdfSyn,xEmp,xSyn)

subplot(2,2,4), matchCDFAndPlot(100,cdfEmp,cdfSyn,xEmp,xSyn)

legend('syn','emp','syn modified2','syn modified5','syn modified10','syn modified100')

figure,

subplot(2,2,1), matchCDFAndPlotV2(2,cdfEmp,cdfSyn,xEmp,xSyn)

subplot(2,2,2), matchCDFAndPlotV2(5,cdfEmp,cdfSyn,xEmp,xSyn)

subplot(2,2,3), matchCDFAndPlotV2(10,cdfEmp,cdfSyn,xEmp,xSyn)

subplot(2,2,4), matchCDFAndPlotV2(100,cdfEmp,cdfSyn,xEmp,xSyn)

legend('syn','emp','syn modified2','syn modified5','syn modified10','syn modified100')

end

% % % % % % % % % version 2

function matchCDFAndPlotV2(nBins,cdfEmp,cdfSyn,xEmp,xSyn)

nFacesEmp = length(xEmp); nFacesSyn = length(xSyn);

synSortedLengthIdx = xSyn; empSortedLengthIdx = xEmp;

plot(xEmp,cdfEmp,'-*b','linewidth',2), hold on, plot(xSyn,cdfSyn,'-*g','linewidth',2)

binEdgesSyn = getBinEdges(cdfSyn,nBins);

binEdgesEmp = getBinEdges(cdfEmp,nBins);

for i = 1:nBins

 startIdxSyn = binEdgesSyn(i); endIdxSyn = binEdgesSyn(i+1);

 startIdxEmp = binEdgesEmp(i); endIdxEmp = binEdgesEmp(i+1);

 l0 = synSortedLengthIdx(startIdxSyn); l1 = synSortedLengthIdx(endIdxSyn);

 l0Prime = empSortedLengthIdx(startIdxEmp); l1Prime = empSortedLengthIdx(endIdxEmp);

 A = [1 l0; 1 l1]; b = [l0Prime; l1Prime];

 scatter([l0], [cdfSyn(startIdxSyn)],'r');

scatter([l1],[cdfSyn(endIdxSyn)],'m','fille')

 scatter([l0Prime],[cdfEmp(startIdxEmp)],'y','filled');

scatter([l1Prime],[cdfEmp(endIdxEmp)],'k','filled')

 alfaV = A\b; alfa0 = alfaV(1); alfa1 = alfaV(2);

 for j = startIdxSyn:endIdxSyn

 x3(j) = alfa0 + alfa1*synSortedLengthIdx(j);

 end

end

plot(x3,cdfSyn,'-r','linewidth',4),

% show the direction of shift

for i = 1:nBins

 startIdx = binEdgesSyn(i); endIdx = binEdgesSyn(i+1);

 plot([synSortedLengthIdx(startIdx) x3(startIdx)],[cdfSyn(startIdx) cdfSyn(startIdx)],'-

or') %show line from start to finish for startIdx

 plot([synSortedLengthIdx(endIdx) x3(endIdx)], [cdfSyn(endIdx) cdfSyn(endIdx)],'-or')

%show line from start to finish for startIdx

end

legend('empirical','synthetic','synModified','matching points');

xlabel('pseudo-length'); ylabel('CDF')

end

 % right now, assumes same length array for each

function matchCDFAndPlot(nBins,cdfEmp,cdfSyn,xEmp,xSyn)

nFacesEmp = length(xEmp); nFacesSyn = length(xSyn);

synSortedLengthIdx = xSyn; empSortedLengthIdx = xEmp;

plot(xEmp,cdfEmp,'-*b','linewidth',2), hold on, plot(xSyn,cdfSyn,'-*g','linewidth',2)

binEdgesSyn = getBinEdges(cdfSyn,nBins);

binEdgesEmp = getBinEdges(cdfEmp,nBins);

for i = 1:nBins

205

 startIdxSyn = binEdgesSyn(i); endIdxSyn = binEdgesSyn(i+1);

 startIdxEmp = binEdgesEmp(i); endIdxEmp = binEdgesEmp(i+1);

 l0 = synSortedLengthIdx(startIdxSyn); l1 = synSortedLengthIdx(endIdxSyn);

 l0Prime = empSortedLengthIdx(startIdxEmp); l1Prime = empSortedLengthIdx(endIdxEmp);

 A = [l0 l0^2; l1 l1.^2]; b = [l0Prime-l0; l1Prime-l1];

 scatter([l0], [cdfSyn(startIdxSyn)],'r');

scatter([l1],[cdfSyn(endIdxSyn)],'m','fille')

 scatter([l0Prime],[cdfEmp(startIdxEmp)],'y','filled');

scatter([l1Prime],[cdfEmp(endIdxEmp)],'k','filled')

 alfaV = A\b; alfa0 = alfaV(1); alfa1 = alfaV(2);

 for j = startIdxSyn:endIdxSyn

 x3(j) = synSortedLengthIdx(j)*(1 + alfa1*synSortedLengthIdx(j) + alfa0);

 end

end

plot(x3,cdfSyn,'-r','linewidth',4),

% show the direction of shift

for i = 1:nBins

 startIdx = binEdgesSyn(i); endIdx = binEdgesSyn(i+1);

 plot([synSortedLengthIdx(startIdx) x3(startIdx)],[cdfSyn(startIdx) cdfSyn(startIdx)],'-

or') %show line from start to finish for startIdx

 plot([synSortedLengthIdx(endIdx) x3(endIdx)], [cdfSyn(endIdx) cdfSyn(endIdx)],'-or')

%show line from start to finish for startIdx

end

legend('empirical','synthetic','synModified','matching points');

xlabel('pseudo-length'); ylabel('CDF')

end

function binEdgeLocations = getBinEdges(cdf,nBins)

binEdges = 1/(nBins); N = length(cdf); edgeCounter = 1; binEdgeLocations(1) = 1;

for i = 1:N-2

 if cdf(i)<binEdges*edgeCounter && cdf(i+1)>= binEdges*edgeCounter

 edgeCounter = edgeCounter + 1;

 binEdgeLocations(edgeCounter) = i;

 end

end

binEdgeLocations(edgeCounter+1) = N;

end

function [x,val] = getCDF(multiplier)

x = [3.15961680500000 3.49628381400000 3.64051316200000 3.74690444700000

3.94330247000000 3.94421309700000 4.03927267900000 4.05825486100000 4.08731872200000

4.13771245500000 4.13820667900000 4.16623742100000 4.18764810600000 4.24194896900000

4.25257232800000 4.27416107300000 4.34313159600000 4.38837417300000 4.39378303700000

4.39832855100000 4.41882031800000 4.43657856100000 4.43906534900000 4.45455841500000

4.46096711400000 4.46787950200000 4.47657003700000 4.49174957000000 4.49637264000000

4.49767622800000 4.52968388400000 4.54287188100000 4.54294079000000 4.54306028600000

4.54600386500000 4.54791618800000 4.56467003700000 4.57122757800000 4.57919246400000

4.59227432200000 4.59710932500000 4.62605577000000 4.62656154900000 4.63094862800000

4.63371437000000 4.63442597900000 4.63777356500000 4.63849705700000 4.64345022900000

4.64365690300000 4.64812114900000 4.64816751300000 4.64837404900000 4.67238411100000

4.67296832400000 4.67350883200000 4.67438169000000 4.67456403400000 4.68117814600000

4.68267981000000 4.68418837600000 4.68448375400000 4.69580500500000 4.70135166400000

4.72091857300000 4.72155993700000 4.72160801700000 4.73171476300000 4.73348405100000

4.74735877400000 4.75445216000000 4.75487664700000 4.75564037200000 4.75605669100000

4.75636733500000 4.75867854400000 4.76432281700000 4.77308673800000 4.78453823500000

4.78457703700000 4.78464317800000 4.78553630500000 4.79472403400000 4.79544978900000

4.80045312800000 4.80205194600000 4.80356913100000 4.81017597000000 4.81597498100000

4.81685184500000 4.81718927100000 4.81896580000000 4.82042495400000 4.82051917500000

4.82736958500000 4.83006921900000 4.83157796400000 4.83386410600000 4.83412124600000

4.83461758300000 4.84246710700000 4.84339388400000 4.84494321200000 4.84855861300000

4.85359012200000 4.85481141500000 4.85566038700000 4.86765078100000 4.87307448600000

4.87526754300000 4.87941397200000 4.88276250500000 4.88396506300000 4.88553632000000

4.89981908300000 4.90371489800000 4.90421008700000 4.90486800900000 4.91129349400000

4.91588073600000 4.92616367300000 4.92890228700000 4.93053322500000 4.93642303200000

4.93960442200000 4.94132648400000 4.94532523300000 4.94667733300000 4.94878010200000

4.95024039600000 4.95280157200000 4.95533458400000 4.95563664000000 4.95653050100000

4.95952465500000 4.95968458500000 4.96253637200000 4.96466623500000 4.96494912200000

4.96603035900000 4.96626785400000 4.97184736500000 4.97414392900000 4.98675009100000

4.98682673100000 4.98964163800000 4.99461376300000 4.99587487300000 4.99686734400000

4.99734092200000 4.99760532200000 4.99961743800000 5.00286006300000 5.00359088100000

206

5.00479732300000 5.01175284500000 5.01642347900000 5.01757976200000 5.01869644700000

5.01922974300000 5.02600011400000 5.02766389600000 5.03415917700000 5.04564407600000

5.04610396700000 5.04662426600000 5.04680842800000 5.04775797000000 5.04991856400000

5.05040052300000 5.05149930800000 5.06376128900000 5.06643715300000 5.07187898800000

5.07224621100000 5.07312186800000 5.07766504300000 5.07771706900000 5.07845071700000

5.08066962500000 5.08093006400000 5.08710972800000 5.09066797900000 5.09751469900000

5.10176410000000 5.10215343600000 5.10241904400000 5.10430217100000 5.10589383500000

5.11001159500000 5.11832660100000 5.12313956400000 5.12470282100000 5.12473571600000

5.12922163500000 5.13158071900000 5.13191188700000 5.13495806700000 5.13934496300000

5.14201931700000 5.14237693200000 5.14615232900000 5.14623386300000 5.14798333000000

5.14811361100000 5.15656803600000 5.16146201600000 5.16442166000000 5.16512823500000

5.17066122800000 5.17070330000000 5.17342830100000 5.17376605900000 5.17438315000000

5.17553127000000 5.17977454900000 5.18286918000000 5.18673000600000 5.18738217600000

5.19321876500000 5.19791405900000 5.20073778400000 5.20415027400000 5.20588731300000

5.21891992400000 5.22654100200000 5.22804484300000 5.22879990500000 5.23319680400000

5.23513860900000 5.23736151600000 5.23809042000000 5.23965638300000 5.24047063200000

5.24222419100000 5.24363200300000 5.24414813000000 5.25307822000000 5.25611961300000

5.25642195000000 5.26027819000000 5.26156610800000 5.26335247200000 5.26714402900000

5.26861688600000 5.27482259900000 5.27743560600000 5.27915391800000 5.28024835800000

5.28202928800000 5.28901300600000 5.28953223900000 5.29017180800000 5.29281257800000

5.29465423300000 5.29855017900000 5.29926630700000 5.30210804400000 5.30322683000000

5.30589709600000 5.30639128500000 5.30819948000000 5.30926878500000 5.31373600900000

5.32114441600000 5.32336581400000 5.32624630700000 5.32649632200000 5.32847449100000

5.33043332300000 5.33242890200000 5.33951846100000 5.34278754500000 5.34360261900000

5.34424488800000 5.34576435700000 5.34753985200000 5.34854353200000 5.34902723700000

5.35295006100000 5.35346769100000 5.35796173600000 5.36380377600000 5.36550722400000

5.36993563600000 5.38407672000000 5.39465889200000 5.39494185700000 5.39711285100000

5.40730383500000 5.41002018700000 5.41241109400000 5.42008839100000 5.42062559000000

5.42070890100000 5.42177700000000 5.42235726200000 5.42644999000000 5.42665400600000

5.43000249400000 5.43352190300000 5.43562883800000 5.43617708700000 5.45286876000000

5.45564279700000 5.46487629200000 5.46635368100000 5.46711478900000 5.46756408900000

5.47138928900000 5.47242641900000 5.47447147500000 5.47601550200000 5.48746682400000

5.49242889900000 5.49327456400000 5.49398540200000 5.49615814300000 5.49624287300000

5.49662358300000 5.49998837700000 5.50346127300000 5.50384140200000 5.50674744100000

5.50741332000000 5.50936956600000 5.51019189900000 5.51028727400000 5.51289722000000

5.51760331300000 5.51894151800000 5.52131162200000 5.52442866600000 5.52797723900000

5.52842757300000 5.53096637400000 5.53321408400000 5.53464370600000 5.53924585900000

5.53970065800000 5.54369817500000 5.54475659500000 5.54742092500000 5.54869172800000

5.54912394300000 5.54914640800000 5.55196340300000 5.55727336300000 5.56486767400000

5.56552920800000 5.56628841400000 5.56913204800000 5.56960817200000 5.57002284100000

5.57126421700000 5.57758606700000 5.57781877900000 5.58770505900000 5.58886333200000

5.59280735200000 5.59609741100000 5.60110792900000 5.60338267600000 5.60870237300000

5.60941804600000 5.61178439400000 5.61386045700000 5.61625937900000 5.63189507200000

5.63489737500000 5.63649541300000 5.63667269100000 5.63803019200000 5.63897747300000

5.64140040100000 5.64728096000000 5.64741697700000 5.65665273700000 5.66042375700000

5.66710276400000 5.66730527900000 5.66927013100000 5.67126338400000 5.67416029100000

5.68263464100000 5.68275315500000 5.68737890300000 5.68775797200000 5.69815304000000

5.70155050300000 5.70426497200000 5.70749577200000 5.70926497400000 5.71523810200000

5.71713289200000 5.72126705100000 5.72332666000000 5.72721241400000 5.73402387000000

5.73859473700000 5.74062414800000 5.75552774400000 5.75981936400000 5.76322380000000

5.76439305500000 5.76993625800000 5.77189475000000 5.77605572600000 5.77930831700000

5.78005834400000 5.78387271400000 5.78926511500000 5.79546648100000 5.79850801300000

5.79863935000000 5.80132582100000 5.80408384500000 5.80418611700000 5.80994087600000

5.82035727800000 5.82460937400000 5.82625987500000 5.82809991600000 5.82878368100000

5.83763495200000 5.83960614300000 5.84616190400000 5.85051088700000 5.85629488600000

5.85930114100000 5.86309880300000 5.86921313700000 5.87704610700000 5.87719622300000

5.87786373700000 5.88006786900000 5.88033094300000 5.88063008500000 5.88166227000000

5.88706339700000 5.88720314900000 5.88946675800000 5.89337380600000 5.89590274100000

5.90412730100000 5.90415017600000 5.90494278200000 5.90539289500000 5.90606366100000

5.90832199600000 5.91029121200000 5.91293371900000 5.91352744000000 5.91883600200000

5.92263526800000 5.92418918500000 5.92435807500000 5.92563741100000 5.92594468300000

5.93020450400000 5.93266421100000 5.93703021400000 5.94089999200000 5.94577564100000

5.95241698600000 5.95330951600000 5.95644359100000 5.96208955800000 5.96704361200000

5.96948852300000 5.97317319100000 5.97374677900000 5.97594084700000 5.97712387900000

5.98548796400000 5.98841665400000 5.98960892500000 5.99161162700000 6.00105568400000

6.00265715600000 6.00650270100000 6.00859208600000 6.01237173300000 6.02655029700000

6.02775549000000 6.03025988400000 6.03087880100000 6.03686685300000 6.04575802700000

6.05268936200000 6.05516284000000 6.05834486000000 6.05900628100000 6.06018337300000

6.06209054000000 6.06339178700000 6.06354179600000 6.07110048500000 6.07296678300000

207

6.07564621000000 6.07917886100000 6.08495973200000 6.08514749000000 6.08861719300000

6.09102434400000 6.09740177600000 6.09992226600000 6.10076577600000 6.10186427900000

6.10223126000000 6.10441423700000 6.10477912700000 6.10570890000000 6.10711833300000

6.11243544700000 6.11469767800000 6.12172252900000 6.13274735900000 6.13500561100000

6.14056827200000 6.14081199800000 6.14245328800000 6.14384565000000 6.14828220100000

6.14829966500000 6.15268329000000 6.15628807000000 6.16059138000000 6.16087743200000

6.16428454500000 6.16445227200000 6.16490791700000 6.16752042300000 6.17247230600000

6.17727201300000 6.17736737700000 6.18554453900000 6.18784301000000 6.19548063600000

6.19773621200000 6.19798440000000 6.20043467400000 6.20242939800000 6.20711120600000

6.21070527500000 6.21250942400000 6.21362235800000 6.22107281700000 6.22538582800000

6.22885492500000 6.23318921700000 6.23331745600000 6.23365921700000 6.23867954400000

6.23952282300000 6.24098185300000 6.24338086000000 6.24424563200000 6.24427406600000

6.24437710600000 6.24488366100000 6.24691219700000 6.24840920500000 6.25357185700000

6.26123983900000 6.26455183500000 6.26515846800000 6.27295611700000 6.27331072600000

6.27623161500000 6.27723098300000 6.28232093300000 6.29037771700000 6.29372748800000

6.29380851300000 6.29606938000000 6.29771707800000 6.30172138700000 6.30453722100000

6.30737865500000 6.30747609700000 6.31367360200000 6.32181782400000 6.32406323500000

6.32919707600000 6.32948179900000 6.33076235600000 6.33232855300000 6.33835000400000

6.33887671700000 6.34094824400000 6.34560874600000 6.34749534800000 6.35276368200000

6.35895037100000 6.35921245700000 6.36084060400000 6.36112083000000 6.36339221800000

6.36953164700000 6.37016941700000 6.37374935000000 6.37581939500000 6.37659939600000

6.38057485000000 6.38201589100000 6.38429147300000 6.38553637600000 6.38614237900000

6.38678252000000 6.39127262200000 6.39329207300000 6.39712290100000 6.40162468700000

6.40835894600000 6.40974204500000 6.42695235200000 6.43032448100000 6.43039934700000

6.44075959600000 6.44244705300000 6.44655037800000 6.45154529500000 6.45315345800000

6.45604870200000 6.45783021800000 6.45811327100000 6.46461459600000 6.46684958900000

6.46781263800000 6.46893830100000 6.47443903400000 6.47494974000000 6.47645200300000

6.47913124500000 6.48224781600000 6.48828745700000 6.49034007900000 6.49431023200000

6.49995355200000 6.50109563500000 6.50157079500000 6.50412163300000 6.50520236400000

6.50906298300000 6.50951451800000 6.50981147200000 6.51925912200000 6.52397801500000

6.52588460600000 6.52797338300000 6.52916107500000 6.53032557400000 6.53406381000000

6.53473082100000 6.53498457900000 6.53744089300000 6.53760482300000 6.53801134600000

6.54060347800000 6.54492007500000 6.54611170800000 6.54658202500000 6.54680508700000

6.55186488400000 6.56069206600000 6.56457787900000 6.56611178500000 6.56927822100000

6.56999278900000 6.57777366900000 6.58245020500000 6.59283141700000 6.59386052900000

6.59738974200000 6.60102507600000 6.60534132500000 6.61023994300000 6.61546012600000

6.61849625100000 6.61932565200000 6.61980279100000 6.62451616700000 6.62545084300000

6.62600087600000 6.62627352000000 6.62807398800000 6.62828053800000 6.63683533700000

6.63775468800000 6.64290104600000 6.65083579400000 6.65210549000000 6.66468780400000

6.66525953200000 6.66615301400000 6.66682476900000 6.66695113100000 6.67077405200000

6.67380626500000 6.67523507900000 6.67543575700000 6.68070795800000 6.68205879500000

6.68829326500000 6.69538842000000 6.69912186900000 6.70004193200000 6.70270458300000

6.70988119400000 6.72515793800000 6.72823227400000 6.72979308300000 6.73195994100000

6.73618425300000 6.73998948800000 6.74385584000000 6.74715411100000 6.75260619800000

6.75290111200000 6.75354358400000 6.76018437900000 6.76439399600000 6.76576556500000

6.77210090200000 6.77268972600000 6.77333401200000 6.77360412000000 6.77865894600000

6.80035176800000 6.80363386000000 6.80486285600000 6.80620118900000 6.81097561600000

6.81725772200000 6.82873142900000 6.82895217500000 6.83971310600000 6.84266431600000

6.84497481600000 6.84811176000000 6.85356791800000 6.85404848000000 6.85569206200000

6.85724640900000 6.86373985100000 6.87037197100000 6.87607566700000 6.87927313500000

6.88344227600000 6.88379788400000 6.89095646600000 6.89654851500000 6.89721120500000

6.90212072400000 6.90261392800000 6.90886269600000 6.91191146300000 6.91716564100000

6.91717006800000 6.92414748100000 6.92655041000000 6.93115071500000 6.93446808800000

6.93816932500000 6.94337123100000 6.94362173900000 6.95088279800000 6.95288582000000

6.95382113800000 6.95719750600000 6.96032087400000 6.96046391600000 6.96058273500000

6.96112502600000 6.96310912500000 6.96324353100000 6.96956566900000 6.97239347500000

6.98293482400000 6.98397492000000 6.98873380400000 6.98912321800000 6.99186244200000

6.99306519900000 6.99340670200000 6.99514337600000 6.99572839900000 6.99658890800000

6.99967362900000 7.00392184400000 7.00498360600000 7.00757652700000 7.01499212400000

7.01717236600000 7.01756819000000 7.01923867700000 7.01942443600000 7.02220316000000

7.02342847000000 7.02448800200000 7.02547257800000 7.03705446800000 7.03758018600000

7.04267913300000 7.04785169500000 7.05667248700000 7.05995451200000 7.06293452900000

7.06379228500000 7.06510624100000 7.07019010000000 7.07794783800000 7.07935457100000

7.08804676700000 7.10025394900000 7.10064413500000 7.10138313000000 7.10166130400000

7.10459672000000 7.10922508400000 7.11277814500000 7.11548128500000 7.11872184900000

7.11902084700000 7.12879666800000 7.13311958500000 7.13427720400000 7.13917353900000

7.14463097700000 7.14481472500000 7.14612236100000 7.15330308300000 7.15868696300000

7.16604101600000 7.16808211400000 7.17139125900000 7.17227506000000 7.17733167700000

7.17995996200000 7.18424955700000 7.18919745800000 7.19070922800000 7.19145021000000

208

7.19502832100000 7.19924410100000 7.20793417400000 7.20977848500000 7.21235191900000

7.22101992200000 7.22609734100000 7.22799584500000 7.23566846000000 7.23841724700000

7.24862395400000 7.24957970800000 7.25176988600000 7.25235385700000 7.25445539900000

7.25899207600000 7.25987912900000 7.26119817200000 7.26953706800000 7.27384731600000

7.27491228300000 7.27831822600000 7.27868057000000 7.28373838000000 7.28594181200000

7.29349708500000 7.29464661200000 7.29478373700000 7.29994530800000 7.30274224700000

7.30959897900000 7.31358820600000 7.32834830900000 7.33110988400000 7.34008153600000

7.34216730900000 7.34581810500000 7.34997964600000 7.35251677400000 7.35256052600000

7.35475267900000 7.35985133300000 7.38662973500000 7.39925716600000 7.40102802700000

7.40412948800000 7.40717819000000 7.41646901100000 7.41987446000000 7.42054581500000

7.42254333100000 7.43034498200000 7.43589894900000 7.44442966600000 7.44764680100000

7.45055770400000 7.45543718100000 7.45914909600000 7.46838291600000 7.47317775400000

7.47513586200000 7.48116922000000 7.48162678600000 7.48398891200000 7.48461119000000

7.48469396200000 7.48850205700000 7.49590792700000 7.50310605400000 7.50524314300000

7.50804289500000 7.51113118400000 7.51637956000000 7.51768983700000 7.52248475800000

7.52382027500000 7.53079144000000 7.53883904700000 7.54579627700000 7.54986401800000

7.55291076100000 7.56001150900000 7.56640963700000 7.56852058300000 7.56927690700000

7.56986058700000 7.57249934700000 7.57494577100000 7.58780242100000 7.59317327200000

7.60169867700000 7.60899284900000 7.61615274800000 7.62661930000000 7.62695763600000

7.62969707800000 7.63693576800000 7.64098544800000 7.64223613700000 7.64463444600000

7.64606188900000 7.64626404800000 7.65791392700000 7.65929935200000 7.66042852200000

7.66184146500000 7.66334426500000 7.67096087900000 7.67314698600000 7.68680225800000

7.68705749100000 7.70094933600000 7.71630405800000 7.72260909400000 7.73499556500000

7.74520310300000 7.74654471500000 7.75108541100000 7.75197463700000 7.75389046700000

7.75787783900000 7.76571620200000 7.77041515900000 7.78134517000000 7.78667769600000

7.78819461800000 7.78858267300000 7.79412474500000 7.79826935900000 7.80154897000000

7.80251549000000 7.80396765100000 7.80951129500000 7.81826364400000 7.82430056400000

7.82883480500000 7.83591564200000 7.83993662000000 7.84192717600000 7.84257444600000

7.84276976500000 7.84381460400000 7.84840053600000 7.87118311800000 7.87120465200000

7.87739770600000 7.88135564400000 7.88412446200000 7.88876392000000 7.88879772800000

7.88882662300000 7.89029499200000 7.89569948400000 7.89657218900000 7.90698767400000

7.91065318600000 7.91746540500000 7.92032043700000 7.92039428700000 7.92480034900000

7.92899612900000 7.93171388100000 7.93260401600000 7.93904823300000 7.94373363600000

7.94672838100000 7.96127607800000 7.96714070800000 7.96841837400000 7.97019085300000

7.97180407300000 7.97621142400000 7.97818138900000 7.99167639400000 7.99346469500000

7.99601436800000 8.00974601900000 8.01234705700000 8.01646400900000 8.01715950700000

8.01763626600000 8.01819580800000 8.02432073600000 8.02493050800000 8.02683610100000

8.02764983300000 8.02789076400000 8.02893570300000 8.03429222500000 8.03634248900000

8.04382682800000 8.04643042800000 8.04718172600000 8.05330930600000 8.05386866100000

8.05423569200000 8.05492010400000 8.05554310900000 8.05587498500000 8.05608994200000

8.05729809700000 8.06769787000000 8.07478315900000 8.10691341400000 8.11098471400000

8.11141213100000 8.11532789400000 8.11685650600000 8.13215241700000 8.15913105600000

8.17159578800000 8.17517374300000 8.17656414100000 8.17870017300000 8.17961739200000

8.18021830000000 8.18522544200000 8.18579209300000 8.18602873000000 8.20014872800000

8.20244740900000 8.20348552300000 8.20363131100000 8.20508751700000 8.21767992200000

8.22813631900000 8.23660962800000 8.23797541000000 8.24341576500000 8.24387530400000

8.24901372500000 8.25437749300000 8.26243266400000 8.26595261900000 8.26869191100000

8.27780078300000 8.28014949900000 8.28441338800000 8.29175839000000 8.30894675100000

8.31206186300000 8.31506568900000 8.32256169900000 8.32323239900000 8.32356507000000

8.32775732800000 8.32842927900000 8.34171464000000 8.35679865300000 8.36089222100000

8.36481572800000 8.36572302800000 8.36684283900000 8.36707763000000 8.36714269300000

8.37914424900000 8.38041582800000 8.38313381100000 8.38488776500000 8.39095307600000

8.40535169600000 8.40979217900000 8.41270068200000 8.42204750600000 8.43080075900000

8.43532720500000 8.43534978600000 8.43730030500000 8.44120022500000 8.44717278400000

8.45774445000000 8.45970756000000 8.46285949400000 8.46992296700000 8.48431455600000

8.48629453900000 8.48805869200000 8.48908789300000 8.49087517400000 8.49743196400000

8.49994489600000 8.50812749400000 8.50999702400000 8.51620831700000 8.52315134500000

8.52400587200000 8.53865518100000 8.53936569600000 8.55284234700000 8.55896784900000

8.55906723500000 8.55964086100000 8.56715023200000 8.56813601400000 8.57031313900000

8.57139049700000 8.57263921800000 8.58282001200000 8.58450307500000 8.58641859000000

8.58721463600000 8.58974691600000 8.59264398800000 8.59373627300000 8.59452730900000

8.60306175600000 8.60932165200000 8.61648669000000 8.61724311800000 8.62263302000000

8.63241998100000 8.63504079200000 8.63823396000000 8.65300883600000 8.65486854100000

8.66712313600000 8.68779170600000 8.69052618100000 8.70573741600000 8.70645962200000

8.70743337000000 8.72820143900000 8.73922781600000 8.74057606300000 8.75089645300000

8.75374295900000 8.75788743200000 8.76048996800000 8.76173619800000 8.77123214000000

8.79963998800000 8.80156282700000 8.80728742100000 8.81857338900000 8.84826473600000

8.86673532500000 8.87007347500000 8.88095562100000 8.88467236800000 8.89640622600000

8.90089601900000 8.90530991800000 8.90727896300000 8.91455172300000 8.92084727800000

209

8.92732196600000 8.93363144200000 8.94202479100000 8.94374158900000 8.95569209800000

8.95697281400000 8.96393603700000 8.96630119500000 8.97302429600000 8.97634915800000

8.98685279500000 8.98756237300000 9.00357603200000 9.01717577300000 9.04094294500000

9.04545250600000 9.05436419000000 9.05469788100000 9.05882298000000 9.06296030500000

9.06819543300000 9.07676103000000 9.08373299400000 9.09525330100000 9.10073208800000

9.10179198600000 9.10229909700000 9.10971431200000 9.11245339000000 9.11284917200000

9.11312160300000 9.11645646800000 9.12014569300000 9.12385613100000 9.13040572100000

9.13181299800000 9.13900238900000 9.14182908200000 9.14854374500000 9.16307593300000

9.16639255600000 9.17124225800000 9.18406772100000 9.18797364300000 9.20301986200000

9.22675354900000 9.23727668600000 9.23817864800000 9.25186442700000 9.25629110700000

9.25985121400000 9.26098714000000 9.26599660600000 9.26687206800000 9.29207675400000

9.30273999200000 9.33799543900000 9.34762585200000 9.35689838000000 9.36904075300000

9.37791731100000 9.38614296200000 9.38623421900000 9.38791657800000 9.38908007600000

9.39474513200000 9.40706659400000 9.40797119600000 9.43000582600000 9.43467062800000

9.43783947300000 9.45007336000000 9.45559102200000 9.45613397300000 9.45941978300000

9.46163702600000 9.46602499000000 9.47090345800000 9.47471044200000 9.47711855200000

9.48248939200000 9.49923645600000 9.53853970900000 9.55775120200000 9.56712474200000

9.57379754200000 9.60326332200000 9.61564730900000 9.63007894400000 9.63150032300000

9.65548861700000 9.66534994300000 9.66706122000000 9.66978612300000 9.67072324600000

9.67293174400000 9.67356901700000 9.68080825400000 9.70552524000000 9.72956363700000

9.76286781500000 9.77127517500000 9.77442239800000 9.77827499100000 9.77915680600000

9.78332410000000 9.78838704400000 9.79201828600000 9.79440997500000 9.79525808300000

9.79857524700000 9.80867989300000 9.82285233400000 9.83136821200000 9.83593168600000

9.83714492400000 9.85177781100000 9.85583343400000 9.89070317400000 9.89478138700000

9.89866337600000 9.89872831200000 9.91415681400000 9.91940874900000 9.92668131500000

9.92963659400000 9.93782046600000 9.94627352300000 9.95116291000000 9.95172415300000

9.95544729700000 9.95595782600000 9.96899477400000 9.98859534200000 10.0009964500000

10.0051200100000 10.0110168400000 10.0318999600000 10.0382478400000 10.0481446100000

10.0541879900000 10.0558560200000 10.0603640600000 10.0682628700000 10.0901951500000

10.0916781600000 10.0943152600000 10.0970864700000 10.1024242700000 10.1122600800000

10.1272799700000 10.1345632500000 10.1363672600000 10.1406480800000 10.1461657800000

10.1462373800000 10.1691077900000 10.1722042100000 10.1782966000000 10.2014390400000

10.2118416500000 10.2553206300000 10.2748251700000 10.2762707000000 10.2873328500000

10.2943693300000 10.2986303800000 10.3117923000000 10.3311937600000 10.3476043600000

10.3754168400000 10.3858875700000 10.4017607900000 10.4040043500000 10.4137297700000

10.4312376200000 10.4346470900000 10.4395370100000 10.4424010700000 10.4604183800000

10.4671873600000 10.4893191000000 10.4928150800000 10.4980569900000 10.5020721800000

10.5103743500000 10.5591862600000 10.5654262600000 10.5723378900000 10.5759913800000

10.5785626900000 10.5805042700000 10.5852681600000 10.6078677900000 10.6107014200000

10.6180739200000 10.6364954000000 10.6440137100000 10.6475090200000 10.6565019300000

10.6825684400000 10.6990291300000 10.7025750500000 10.7031760400000 10.7112691400000

10.7118944200000 10.7325446000000 10.7699411100000 10.7702231500000 10.7874403400000

10.7926459900000 10.7954927700000 10.8100210600000 10.8172727600000 10.8307423400000

10.8392846500000 10.8890376800000 10.9142872500000 10.9191182200000 10.9222854700000

10.9273603300000 10.9308217200000 10.9455041600000 10.9845186600000 10.9860564200000

10.9993343800000 11.0044970100000 11.0325849800000 11.0804910300000 11.0845745100000

11.0931385500000 11.0943851300000 11.0953826200000 11.1032897600000 11.1050113600000

11.1054122300000 11.1166139100000 11.1383427000000 11.1436513500000 11.1508790900000

11.1647022500000 11.1807584500000 11.1872651700000 11.1966940000000 11.2010962500000

11.2128401500000 11.2167323200000 11.2310439300000 11.2534526700000 11.2720371300000

11.2797557100000 11.3211422800000 11.3252490700000 11.3423819300000 11.3425704900000

11.3685749600000 11.3759031300000 11.3784429700000 11.3809856300000 11.3855762200000

11.3914071700000 11.4053808000000 11.4241142900000 11.4291929800000 11.4585091800000

11.4712143900000 11.4732848200000 11.4850126800000 11.4867918700000 11.4991451700000

11.5011062400000 11.5153024100000 11.5318495300000 11.5664908300000 11.5696685600000

11.5770821800000 11.6090903200000 11.6174217200000 11.6222990500000 11.6532983400000

11.6594080400000 11.6754016900000 11.6905526000000 11.6942685400000 11.7030494900000

11.7366227800000 11.7469482000000 11.7639130500000 11.7741851300000 11.7813569200000

11.8140044900000 11.8287942700000 11.8663468600000 11.8679342900000 11.8732692900000

11.8761064700000 11.8816764800000 11.9011965300000 11.9094686200000 11.9263116900000

11.9949937700000 12.0270207600000 12.0448795400000 12.0550822200000 12.0552536900000

12.0678719100000 12.0778750800000 12.0940171200000 12.0950726800000 12.0973211300000

12.1119591100000 12.1128273600000 12.1319566800000 12.1326946600000 12.1752727900000

12.1769805200000 12.2100602500000 12.2162192000000 12.2185167100000 12.2330585500000

12.2434685600000 12.2485452300000 12.2914422500000 12.2990358600000 12.3058967600000

12.3145906200000 12.3391563500000 12.3415108300000 12.3478562700000 12.3593308400000

12.3685990000000 12.3694372400000 12.3741511100000 12.3757201300000 12.3761728700000

12.3837187400000 12.3858455200000 12.3965997000000 12.4173843400000 12.4206137700000

12.4292056200000 12.4524940600000 12.4537575900000 12.4903683100000 12.4904289100000

210

12.5252937700000 12.5255377200000 12.5379498100000 12.5419651600000 12.5855424300000

12.5962926500000 12.5990860100000 12.6031577700000 12.6163892000000 12.6396196800000

12.6438633900000 12.6460223300000 12.6651832200000 12.6780125100000 12.6848442700000

12.6875830700000 12.7026491000000 12.7182820300000 12.7343091200000 12.7509412100000

12.7694832200000 12.7738684200000 12.7801828000000 12.7804139000000 12.7864545100000

12.7945399600000 12.7967915000000 12.7985885600000 12.8082343900000 12.8333064500000

12.8748969400000 12.8870508400000 12.9145091200000 12.9182689900000 12.9243982300000

12.9649910800000 12.9799186300000 12.9939266900000 12.9945204400000 13.0086451900000

13.0127124600000 13.0285575800000 13.0395633900000 13.0501333800000 13.0821895500000

13.1076949400000 13.1349538000000 13.1383774400000 13.1392548900000 13.1463478800000

13.1488106100000 13.1493206600000 13.1539787100000 13.1709541400000 13.2000996200000

13.2320226600000 13.2436871600000 13.2760001300000 13.3371286900000 13.3643119700000

13.3788902300000 13.3895753000000 13.4213768100000 13.4308047900000 13.4345133500000

13.4687000500000 13.4857340200000 13.4894830500000 13.5027841500000 13.5675898400000

13.5835528600000 13.5882359600000 13.6162917500000 13.6406638900000 13.6482133100000

13.6829525000000 13.6943921600000 13.6979563400000 13.7314980000000 13.7478556800000

13.7480065100000 13.7505301000000 13.7674321400000 13.7851854500000 13.7860050400000

13.7930192600000 13.7994580400000 13.8043469600000 13.8629941400000 13.9148367400000

13.9229062600000 13.9899274200000 13.9982233400000 14.0223564000000 14.0650638100000

14.0888614500000 14.0984529400000 14.1127396100000 14.1268654300000 14.1309432900000

14.1630484200000 14.1698119400000 14.2160447200000 14.2560474900000 14.2710105000000

14.2720560000000 14.3118409300000 14.3237803300000 14.3611379500000 14.3730214300000

14.3757116100000 14.3900865700000 14.4188944400000 14.4360226300000 14.4689297000000

14.4847862900000 14.5316687600000 14.5571304700000 14.5878758600000 14.6154125600000

14.6513144400000 14.6657813000000 14.6757710600000 14.6968637500000 14.7291209900000

14.7304382700000 14.8375252100000 14.8447722600000 14.8549508600000 14.9505178900000

14.9945474900000 15.0157456800000 15.0363974000000 15.1243522700000 15.1268078700000

15.1804374600000 15.1839076400000 15.2230478500000 15.2896637000000 15.3990759300000

15.4442771300000 15.4496080300000 15.4967728800000 15.5290392100000 15.5591799700000

15.6691282100000 15.6773682800000 15.6794036100000 15.6860641500000 15.7591698100000

15.8911740600000 15.9926791100000 16.0228619800000 16.0598395000000 16.0638632300000

16.0663152100000 16.2081911800000 16.2112482400000 16.2345742000000 16.3757793700000

16.3880825800000 16.4195535300000 16.4355350000000 16.5134174000000 16.5329213800000

16.5895427900000 16.6547459800000 16.6585859400000 16.6987383100000 16.7617687400000

16.7987609100000 16.8568485900000 16.8845196800000 16.9499808900000 16.9829532000000

16.9962806900000 17.0420975700000 17.0472981600000 17.0865455600000 17.1993933000000

17.2061769500000 17.2090102600000 17.2528678300000 17.2906944500000 17.3160615600000

17.3520216600000 17.3568249000000 17.4034573500000 17.4045274600000 17.4912017900000

17.4984129200000 17.5420290500000 17.5448868200000 17.5478943200000 17.5808059900000

17.6654629100000 17.7771791700000 17.8965867100000 17.8979597600000 17.9681277900000

18.0012586900000 18.0105018400000 18.1327670200000 18.1751817200000 18.2276345800000

18.3139160100000 18.3392016200000 18.4287033300000 18.4753907000000 18.5729354900000

18.6283169400000 18.6762159500000 18.7594103800000 18.7736788800000 18.8470143000000

18.8942911200000 18.9344428100000 18.9843382200000 18.9895975400000 19.0059583600000

19.0214329600000 19.0531623100000 19.0923493000000 19.1036296300000 19.1294529100000

19.1330077100000 19.1784277300000 19.3120800200000 19.3274322100000 19.3334677100000

19.3621820800000 19.4079642500000 19.4192937100000 19.4471426500000 19.4549381200000

19.4704833700000 19.4732580600000 19.4810469600000 19.5141877600000 19.5422117800000

19.5569242600000 19.6271792700000 19.6358285000000 19.6448880900000 19.6477484900000

19.6816614200000 19.7043219700000 19.7131585400000 19.7241521700000 19.7951877800000

19.7968028000000 19.8020482200000 19.8176104300000 19.8401327100000 19.8781368200000

19.8792298300000 19.8950217300000 19.9204289200000 19.9398863400000 19.9484829600000

20.0256016100000 20.0621643300000 20.1743708900000 20.2097600300000 20.2396165300000

20.2716697300000 20.3925968600000 20.5021506800000 20.5143759200000 20.5561579100000

20.6290231100000 20.6367622700000 20.6842104600000 20.7909748000000 20.8136375300000

20.8946119600000 21.0081067800000 21.0946326800000 21.1426189000000 21.2338378200000

21.2760801800000 21.3519484800000 21.4002161600000 21.4682925800000 21.4952012100000

21.5532981200000 21.6807199400000 21.6837510400000 21.7628703000000 21.7688526500000

21.8383046100000 21.8468855700000 21.8770683900000 21.9364578100000 21.9384582100000

21.9931931200000 22.0353676200000 22.0385692500000 22.0897205500000 22.1266817800000

22.1660825500000 22.1792883400000 22.2088924200000 22.2098440600000 22.2814805100000

22.2868987300000 22.5318184900000 22.5353185500000 22.5889632600000 22.6748623200000

22.8035301700000 22.8709241800000 22.8872914300000 22.9844841300000 22.9849511200000

23.0763943000000 23.1076600400000 23.1527160100000 23.1531752900000 23.4473956300000

23.8072484900000 23.8578840900000 23.9361504200000 24.0122216200000 24.2059412500000

24.2439052300000 24.4217423700000 24.4393587100000 24.5355457700000 24.8924099400000

24.9308892900000 25.0209648300000 25.0215672700000 25.0800839300000 25.1407112200000

25.1515035800000 25.2084549900000 25.2268798300000 25.2308285000000 25.2537310800000

25.2864002700000 25.4031852600000 25.4706311200000 25.5257988600000 25.8071853600000

211

25.8197001100000 25.8664989300000 25.8774986800000 26.1782555600000 26.2316746900000

26.2628409300000 26.3133465100000 26.4271464600000 26.8371625000000 26.8648572200000

26.9567626500000 27.0196912400000 27.0718617000000 27.1354142800000 27.2274720400000

27.4968353000000 27.6527167900000 28.2757838700000 28.5725343400000 29.3965578300000

29.4130749100000 31.5469206800000 31.9821147900000 32.4035854000000 32.5900642400000

33.0236893800000 33.0438207000000 33.1946815600000 33.9540847600000 33.9785921600000

36.0012540200000 37.0678674900000 37.5049695700000 41.6222704900000 41.6603388200000

42.3568765100000 42.3725722100000 42.7555267800000 45.8217166000000 45.8694732300000

48.2254364300000 48.2447011000000 48.4651680300000 49.8419387300000 49.9867247700000

50];

val = [0.000508646999000000 0.00101729399800000 0.00152594099700000 0.00203458799600000

0.00254323499500000 0.00305188199400000 0.00356052899300000 0.00406917599200000

0.00457782299100000 0.00508646999000000 0.00559511698900000 0.00610376398800000

0.00661241098700000 0.00712105798600000 0.00762970498500000 0.00813835198400000

0.00864699898300000 0.00915564598200000 0.00966429298100000 0.0101729399800000

0.0106815869800000 0.0111902339800000 0.0116988809800000 0.0122075279800000

0.0127161749700000 0.0132248219700000 0.0137334689700000 0.0142421159700000

0.0147507629700000 0.0152594099700000 0.0157680569700000 0.0162767039700000

0.0167853509700000 0.0172939979700000 0.0178026449600000 0.0183112919600000

0.0188199389600000 0.0193285859600000 0.0198372329600000 0.0203458799600000

0.0208545269600000 0.0213631739600000 0.0218718209600000 0.0223804679600000

0.0228891149500000 0.0233977619500000 0.0239064089500000 0.0244150559500000

0.0249237029500000 0.0254323499500000 0.0259409969500000 0.0264496439500000

0.0269582909500000 0.0274669379500000 0.0279755849400000 0.0284842319400000

0.0289928789400000 0.0295015259400000 0.0300101729400000 0.0305188199400000

0.0310274669400000 0.0315361139400000 0.0320447609400000 0.0325534079300000

0.0330620549300000 0.0335707019300000 0.0340793489300000 0.0345879959300000

0.0350966429300000 0.0356052899300000 0.0361139369300000 0.0366225839300000

0.0371312309300000 0.0376398779200000 0.0381485249200000 0.0386571719200000

0.0391658189200000 0.0396744659200000 0.0401831129200000 0.0406917599200000

0.0412004069200000 0.0417090539200000 0.0422177009200000 0.0427263479100000

0.0432349949100000 0.0437436419100000 0.0442522889100000 0.0447609359100000

0.0452695829100000 0.0457782299100000 0.0462868769100000 0.0467955239100000

0.0473041709100000 0.0478128179000000 0.0483214649000000 0.0488301119000000

0.0493387589000000 0.0498474059000000 0.0503560529000000 0.0508646999000000

0.0513733469000000 0.0518819939000000 0.0523906409000000 0.0528992878900000

0.0534079348900000 0.0539165818900000 0.0544252288900000 0.0549338758900000

0.0554425228900000 0.0559511698900000 0.0564598168900000 0.0569684638900000

0.0574771108900000 0.0579857578800000 0.0584944048800000 0.0590030518800000

0.0595116988800000 0.0600203458800000 0.0605289928800000 0.0610376398800000

0.0615462868800000 0.0620549338800000 0.0625635808700000 0.0630722278700000

0.0635808748700000 0.0640895218700000 0.0645981688700000 0.0651068158700000

0.0656154628700000 0.0661241098700000 0.0666327568700000 0.0671414038700000

0.0676500508600000 0.0681586978600000 0.0686673448600000 0.0691759918600000

0.0696846388600000 0.0701932858600000 0.0707019328600000 0.0712105798600000

0.0717192268600000 0.0722278738600000 0.0727365208500000 0.0732451678500000

0.0737538148500000 0.0742624618500000 0.0747711088500000 0.0752797558500000

0.0757884028500000 0.0762970498500000 0.0768056968500000 0.0773143438500000

0.0778229908400000 0.0783316378400000 0.0788402848400000 0.0793489318400000

0.0798575788400000 0.0803662258400000 0.0808748728400000 0.0813835198400000

0.0818921668400000 0.0824008138400000 0.0829094608300000 0.0834181078300000

0.0839267548300000 0.0844354018300000 0.0849440488300000 0.0854526958300000

0.0859613428300000 0.0864699898300000 0.0869786368300000 0.0874872838300000

0.0879959308200000 0.0885045778200000 0.0890132248200000 0.0895218718200000

0.0900305188200000 0.0905391658200000 0.0910478128200000 0.0915564598200000

0.0920651068200000 0.0925737538100000 0.0930824008100000 0.0935910478100000

0.0940996948100000 0.0946083418100000 0.0951169888100000 0.0956256358100000

0.0961342828100000 0.0966429298100000 0.0971515768100000 0.0976602238000000

0.0981688708000000 0.0986775178000000 0.0991861648000000 0.0996948118000000 0.100203458800000

0.100712105800000 0.101220752800000 0.101729399800000 0.102238046800000 0.102746693800000

0.103255340800000 0.103763987800000 0.104272634800000 0.104781281800000 0.105289928800000

0.105798575800000 0.106307222800000 0.106815869800000 0.107324516800000 0.107833163800000

0.108341810800000 0.108850457800000 0.109359104800000 0.109867751800000 0.110376398800000

0.110885045800000 0.111393692800000 0.111902339800000 0.112410986800000 0.112919633800000

0.113428280800000 0.113936927800000 0.114445574800000 0.114954221800000 0.115462868800000

0.115971515800000 0.116480162800000 0.116988809800000 0.117497456800000 0.118006103800000

0.118514750800000 0.119023397800000 0.119532044800000 0.120040691800000 0.120549338800000

0.121057985800000 0.121566632800000 0.122075279800000 0.122583926800000 0.123092573800000

0.123601220800000 0.124109867800000 0.124618514800000 0.125127161700000 0.125635808700000

212

0.126144455700000 0.126653102700000 0.127161749700000 0.127670396700000 0.128179043700000

0.128687690700000 0.129196337700000 0.129704984700000 0.130213631700000 0.130722278700000

0.131230925700000 0.131739572700000 0.132248219700000 0.132756866700000 0.133265513700000

0.133774160700000 0.134282807700000 0.134791454700000 0.135300101700000 0.135808748700000

0.136317395700000 0.136826042700000 0.137334689700000 0.137843336700000 0.138351983700000

0.138860630700000 0.139369277700000 0.139877924700000 0.140386571700000 0.140895218700000

0.141403865700000 0.141912512700000 0.142421159700000 0.142929806700000 0.143438453700000

0.143947100700000 0.144455747700000 0.144964394700000 0.145473041700000 0.145981688700000

0.146490335700000 0.146998982700000 0.147507629700000 0.148016276700000 0.148524923700000

0.149033570700000 0.149542217700000 0.150050864700000 0.150559511700000 0.151068158700000

0.151576805700000 0.152085452700000 0.152594099700000 0.153102746700000 0.153611393700000

0.154120040700000 0.154628687700000 0.155137334700000 0.155645981700000 0.156154628700000

0.156663275700000 0.157171922700000 0.157680569700000 0.158189216700000 0.158697863700000

0.159206510700000 0.159715157700000 0.160223804700000 0.160732451700000 0.161241098700000

0.161749745700000 0.162258392700000 0.162767039700000 0.163275686700000 0.163784333700000

0.164292980700000 0.164801627700000 0.165310274700000 0.165818921700000 0.166327568700000

0.166836215700000 0.167344862700000 0.167853509700000 0.168362156700000 0.168870803700000

0.169379450700000 0.169888097700000 0.170396744700000 0.170905391700000 0.171414038700000

0.171922685700000 0.172431332700000 0.172939979700000 0.173448626700000 0.173957273700000

0.174465920700000 0.174974567700000 0.175483214600000 0.175991861600000 0.176500508600000

0.177009155600000 0.177517802600000 0.178026449600000 0.178535096600000 0.179043743600000

0.179552390600000 0.180061037600000 0.180569684600000 0.181078331600000 0.181586978600000

0.182095625600000 0.182604272600000 0.183112919600000 0.183621566600000 0.184130213600000

0.184638860600000 0.185147507600000 0.185656154600000 0.186164801600000 0.186673448600000

0.187182095600000 0.187690742600000 0.188199389600000 0.188708036600000 0.189216683600000

0.189725330600000 0.190233977600000 0.190742624600000 0.191251271600000 0.191759918600000

0.192268565600000 0.192777212600000 0.193285859600000 0.193794506600000 0.194303153600000

0.194811800600000 0.195320447600000 0.195829094600000 0.196337741600000 0.196846388600000

0.197355035600000 0.197863682600000 0.198372329600000 0.198880976600000 0.199389623600000

0.199898270600000 0.200406917600000 0.200915564600000 0.201424211600000 0.201932858600000

0.202441505600000 0.202950152600000 0.203458799600000 0.203967446600000 0.204476093600000

0.204984740600000 0.205493387600000 0.206002034600000 0.206510681600000 0.207019328600000

0.207527975600000 0.208036622600000 0.208545269600000 0.209053916600000 0.209562563600000

0.210071210600000 0.210579857600000 0.211088504600000 0.211597151600000 0.212105798600000

0.212614445600000 0.213123092600000 0.213631739600000 0.214140386600000 0.214649033600000

0.215157680600000 0.215666327600000 0.216174974600000 0.216683621600000 0.217192268600000

0.217700915600000 0.218209562600000 0.218718209600000 0.219226856600000 0.219735503600000

0.220244150600000 0.220752797600000 0.221261444600000 0.221770091600000 0.222278738600000

0.222787385600000 0.223296032600000 0.223804679600000 0.224313326600000 0.224821973600000

0.225330620500000 0.225839267500000 0.226347914500000 0.226856561500000 0.227365208500000

0.227873855500000 0.228382502500000 0.228891149500000 0.229399796500000 0.229908443500000

0.230417090500000 0.230925737500000 0.231434384500000 0.231943031500000 0.232451678500000

0.232960325500000 0.233468972500000 0.233977619500000 0.234486266500000 0.234994913500000

0.235503560500000 0.236012207500000 0.236520854500000 0.237029501500000 0.237538148500000

0.238046795500000 0.238555442500000 0.239064089500000 0.239572736500000 0.240081383500000

0.240590030500000 0.241098677500000 0.241607324500000 0.242115971500000 0.242624618500000

0.243133265500000 0.243641912500000 0.244150559500000 0.244659206500000 0.245167853500000

0.245676500500000 0.246185147500000 0.246693794500000 0.247202441500000 0.247711088500000

0.248219735500000 0.248728382500000 0.249237029500000 0.249745676500000 0.250254323500000

0.250762970500000 0.251271617500000 0.251780264500000 0.252288911500000 0.252797558500000

0.253306205500000 0.253814852500000 0.254323499500000 0.254832146500000 0.255340793500000

0.255849440500000 0.256358087500000 0.256866734500000 0.257375381500000 0.257884028500000

0.258392675500000 0.258901322500000 0.259409969500000 0.259918616500000 0.260427263500000

0.260935910500000 0.261444557500000 0.261953204500000 0.262461851500000 0.262970498500000

0.263479145500000 0.263987792500000 0.264496439500000 0.265005086500000 0.265513733500000

0.266022380500000 0.266531027500000 0.267039674500000 0.267548321500000 0.268056968500000

0.268565615500000 0.269074262500000 0.269582909500000 0.270091556500000 0.270600203500000

0.271108850500000 0.271617497500000 0.272126144500000 0.272634791500000 0.273143438500000

0.273652085500000 0.274160732500000 0.274669379500000 0.275178026400000 0.275686673400000

0.276195320400000 0.276703967400000 0.277212614400000 0.277721261400000 0.278229908400000

0.278738555400000 0.279247202400000 0.279755849400000 0.280264496400000 0.280773143400000

0.281281790400000 0.281790437400000 0.282299084400000 0.282807731400000 0.283316378400000

0.283825025400000 0.284333672400000 0.284842319400000 0.285350966400000 0.285859613400000

0.286368260400000 0.286876907400000 0.287385554400000 0.287894201400000 0.288402848400000

0.288911495400000 0.289420142400000 0.289928789400000 0.290437436400000 0.290946083400000

0.291454730400000 0.291963377400000 0.292472024400000 0.292980671400000 0.293489318400000

0.293997965400000 0.294506612400000 0.295015259400000 0.295523906400000 0.296032553400000

0.296541200400000 0.297049847400000 0.297558494400000 0.298067141400000 0.298575788400000

0.299084435400000 0.299593082400000 0.300101729400000 0.300610376400000 0.301119023400000

213

0.301627670400000 0.302136317400000 0.302644964400000 0.303153611400000 0.303662258400000

0.304170905400000 0.304679552400000 0.305188199400000 0.305696846400000 0.306205493400000

0.306714140400000 0.307222787400000 0.307731434400000 0.308240081400000 0.308748728400000

0.309257375400000 0.309766022400000 0.310274669400000 0.310783316400000 0.311291963400000

0.311800610400000 0.312309257400000 0.312817904400000 0.313326551400000 0.313835198400000

0.314343845400000 0.314852492400000 0.315361139400000 0.315869786400000 0.316378433400000

0.316887080400000 0.317395727400000 0.317904374400000 0.318413021400000 0.318921668400000

0.319430315400000 0.319938962400000 0.320447609400000 0.320956256400000 0.321464903400000

0.321973550400000 0.322482197400000 0.322990844400000 0.323499491400000 0.324008138400000

0.324516785400000 0.325025432300000 0.325534079300000 0.326042726300000 0.326551373300000

0.327060020300000 0.327568667300000 0.328077314300000 0.328585961300000 0.329094608300000

0.329603255300000 0.330111902300000 0.330620549300000 0.331129196300000 0.331637843300000

0.332146490300000 0.332655137300000 0.333163784300000 0.333672431300000 0.334181078300000

0.334689725300000 0.335198372300000 0.335707019300000 0.336215666300000 0.336724313300000

0.337232960300000 0.337741607300000 0.338250254300000 0.338758901300000 0.339267548300000

0.339776195300000 0.340284842300000 0.340793489300000 0.341302136300000 0.341810783300000

0.342319430300000 0.342828077300000 0.343336724300000 0.343845371300000 0.344354018300000

0.344862665300000 0.345371312300000 0.345879959300000 0.346388606300000 0.346897253300000

0.347405900300000 0.347914547300000 0.348423194300000 0.348931841300000 0.349440488300000

0.349949135300000 0.350457782300000 0.350966429300000 0.351475076300000 0.351983723300000

0.352492370300000 0.353001017300000 0.353509664300000 0.354018311300000 0.354526958300000

0.355035605300000 0.355544252300000 0.356052899300000 0.356561546300000 0.357070193300000

0.357578840300000 0.358087487300000 0.358596134300000 0.359104781300000 0.359613428300000

0.360122075300000 0.360630722300000 0.361139369300000 0.361648016300000 0.362156663300000

0.362665310300000 0.363173957300000 0.363682604300000 0.364191251300000 0.364699898300000

0.365208545300000 0.365717192300000 0.366225839300000 0.366734486300000 0.367243133300000

0.367751780300000 0.368260427300000 0.368769074300000 0.369277721300000 0.369786368300000

0.370295015300000 0.370803662300000 0.371312309300000 0.371820956300000 0.372329603300000

0.372838250300000 0.373346897300000 0.373855544300000 0.374364191300000 0.374872838300000

0.375381485200000 0.375890132200000 0.376398779200000 0.376907426200000 0.377416073200000

0.377924720200000 0.378433367200000 0.378942014200000 0.379450661200000 0.379959308200000

0.380467955200000 0.380976602200000 0.381485249200000 0.381993896200000 0.382502543200000

0.383011190200000 0.383519837200000 0.384028484200000 0.384537131200000 0.385045778200000

0.385554425200000 0.386063072200000 0.386571719200000 0.387080366200000 0.387589013200000

0.388097660200000 0.388606307200000 0.389114954200000 0.389623601200000 0.390132248200000

0.390640895200000 0.391149542200000 0.391658189200000 0.392166836200000 0.392675483200000

0.393184130200000 0.393692777200000 0.394201424200000 0.394710071200000 0.395218718200000

0.395727365200000 0.396236012200000 0.396744659200000 0.397253306200000 0.397761953200000

0.398270600200000 0.398779247200000 0.399287894200000 0.399796541200000 0.400305188200000

0.400813835200000 0.401322482200000 0.401831129200000 0.402339776200000 0.402848423200000

0.403357070200000 0.403865717200000 0.404374364200000 0.404883011200000 0.405391658200000

0.405900305200000 0.406408952200000 0.406917599200000 0.407426246200000 0.407934893200000

0.408443540200000 0.408952187200000 0.409460834200000 0.409969481200000 0.410478128200000

0.410986775200000 0.411495422200000 0.412004069200000 0.412512716200000 0.413021363200000

0.413530010200000 0.414038657200000 0.414547304200000 0.415055951200000 0.415564598200000

0.416073245200000 0.416581892200000 0.417090539200000 0.417599186200000 0.418107833200000

0.418616480200000 0.419125127200000 0.419633774200000 0.420142421200000 0.420651068200000

0.421159715200000 0.421668362200000 0.422177009200000 0.422685656200000 0.423194303200000

0.423702950200000 0.424211597200000 0.424720244200000 0.425228891100000 0.425737538100000

0.426246185100000 0.426754832100000 0.427263479100000 0.427772126100000 0.428280773100000

0.428789420100000 0.429298067100000 0.429806714100000 0.430315361100000 0.430824008100000

0.431332655100000 0.431841302100000 0.432349949100000 0.432858596100000 0.433367243100000

0.433875890100000 0.434384537100000 0.434893184100000 0.435401831100000 0.435910478100000

0.436419125100000 0.436927772100000 0.437436419100000 0.437945066100000 0.438453713100000

0.438962360100000 0.439471007100000 0.439979654100000 0.440488301100000 0.440996948100000

0.441505595100000 0.442014242100000 0.442522889100000 0.443031536100000 0.443540183100000

0.444048830100000 0.445066124100000 0.445574771100000 0.446083418100000 0.446592065100000

0.447100712100000 0.447609359100000 0.448118006100000 0.448626653100000 0.449135300100000

0.449643947100000 0.450152594100000 0.450661241100000 0.451169888100000 0.451678535100000

0.452187182100000 0.452695829100000 0.453204476100000 0.453713123100000 0.454221770100000

0.454730417100000 0.455239064100000 0.455747711100000 0.456256358100000 0.456765005100000

0.457273652100000 0.457782299100000 0.458290946100000 0.458799593100000 0.459308240100000

0.459816887100000 0.460325534100000 0.460834181100000 0.461342828100000 0.461851475100000

0.462360122100000 0.462868769100000 0.463377416100000 0.463886063100000 0.464394710100000

0.464903357100000 0.465412004100000 0.465920651100000 0.466429298100000 0.466937945100000

0.467446592100000 0.467955239100000 0.468463886100000 0.468972533100000 0.469481180100000

0.469989827100000 0.470498474100000 0.471007121100000 0.471515768100000 0.472024415100000

0.472533062100000 0.473041709100000 0.473550356100000 0.474059003100000 0.474567650100000

0.475076297000000 0.475584944000000 0.476093591000000 0.476602238000000 0.477110885000000

214

0.477619532000000 0.478128179000000 0.478636826000000 0.479145473000000 0.479654120000000

0.480162767000000 0.480671414000000 0.481180061000000 0.481688708000000 0.482197355000000

0.482706002000000 0.483214649000000 0.483723296000000 0.484231943000000 0.484740590000000

0.485249237000000 0.485757884000000 0.486266531000000 0.486775178000000 0.487283825000000

0.487792472000000 0.488301119000000 0.488809766000000 0.489318413000000 0.489827060000000

0.490335707000000 0.490844354000000 0.491353001000000 0.491861648000000 0.492370295000000

0.492878942000000 0.493387589000000 0.493896236000000 0.494404883000000 0.494913530000000

0.495422177000000 0.495930824000000 0.496439471000000 0.496948118000000 0.497456765000000

0.497965412000000 0.498474059000000 0.498982706000000 0.499491353000000 0.500000000000000

0.500508647000000 0.501017294000000 0.501525941000000 0.502034588000000 0.502543235000000

0.503051882000000 0.503560529000000 0.504069176000000 0.504577823000000 0.505086470000000

0.505595117000000 0.506103764000000 0.506612411000000 0.507121058000000 0.507629705000000

0.508138352000000 0.508646999000000 0.509155646000000 0.509664293000000 0.510172940000000

0.510681587000000 0.511190234000000 0.511698881000000 0.512207528000000 0.512716175000000

0.513224822000000 0.513733469000000 0.514242116000000 0.514750763000000 0.515259410000000

0.515768057000000 0.516276704000000 0.516785351000000 0.517293998000000 0.517802645000000

0.518311292000000 0.518819939000000 0.519328586000000 0.519837233000000 0.520345880000000

0.520854527000000 0.521363174000000 0.521871821000000 0.522380468000000 0.522889115000000

0.523397762000000 0.523906409000000 0.524415056000000 0.524923703000000 0.525432349900000

0.525940996900000 0.526449643900000 0.527466937900000 0.527975584900000 0.528484231900000

0.528992878900000 0.529501525900000 0.530010172900000 0.530518819900000 0.531027466900000

0.531536113900000 0.532044760900000 0.532553407900000 0.533062054900000 0.533570701900000

0.534079348900000 0.534587995900000 0.535096642900000 0.535605289900000 0.536113936900000

0.536622583900000 0.537131230900000 0.537639877900000 0.538148524900000 0.538657171900000

0.539165818900000 0.539674465900000 0.540183112900000 0.540691759900000 0.541200406900000

0.541709053900000 0.542217700900000 0.542726347900000 0.543234994900000 0.543743641900000

0.544252288900000 0.544760935900000 0.545269582900000 0.545778229900000 0.546286876900000

0.546795523900000 0.547304170900000 0.547812817900000 0.548321464900000 0.548830111900000

0.549338758900000 0.549847405900000 0.550356052900000 0.550864699900000 0.551373346900000

0.551881993900000 0.552390640900000 0.552899287900000 0.553407934900000 0.553916581900000

0.554425228900000 0.554933875900000 0.555442522900000 0.555951169900000 0.556459816900000

0.556968463900000 0.557477110900000 0.557985757900000 0.558494404900000 0.559003051900000

0.559511698900000 0.560020345900000 0.560528992900000 0.561037639900000 0.561546286900000

0.562054933900000 0.563072227900000 0.563580874900000 0.564089521900000 0.564598168900000

0.565106815900000 0.565615462900000 0.566124109900000 0.566632756900000 0.567141403900000

0.567650050900000 0.568158697900000 0.568667344900000 0.569175991900000 0.569684638900000

0.570193285900000 0.570701932900000 0.571210579900000 0.571719226900000 0.572227873900000

0.572736520900000 0.573245167900000 0.573753814900000 0.574262461900000 0.574771108900000

0.575279755800000 0.575788402800000 0.576297049800000 0.576805696800000 0.577314343800000

0.577822990800000 0.578331637800000 0.578840284800000 0.579348931800000 0.579857578800000

0.580366225800000 0.580874872800000 0.581383519800000 0.581892166800000 0.582400813800000

0.582909460800000 0.583418107800000 0.583926754800000 0.584435401800000 0.584944048800000

0.585452695800000 0.585961342800000 0.586469989800000 0.586978636800000 0.587487283800000

0.587995930800000 0.588504577800000 0.589013224800000 0.589521871800000 0.590030518800000

0.590539165800000 0.591047812800000 0.591556459800000 0.592065106800000 0.592573753800000

0.593082400800000 0.593591047800000 0.594099694800000 0.594608341800000 0.595116988800000

0.595625635800000 0.596134282800000 0.596642929800000 0.597151576800000 0.597660223800000

0.598168870800000 0.598677517800000 0.599186164800000 0.599694811800000 0.600203458800000

0.600712105800000 0.601220752800000 0.601729399800000 0.602238046800000 0.602746693800000

0.603255340800000 0.603763987800000 0.604272634800000 0.604781281800000 0.605289928800000

0.605798575800000 0.606307222800000 0.606815869800000 0.607324516800000 0.607833163800000

0.608341810800000 0.608850457800000 0.609359104800000 0.609867751800000 0.610376398800000

0.610885045800000 0.611393692800000 0.611902339800000 0.612410986800000 0.612919633800000

0.613428280800000 0.613936927800000 0.614445574800000 0.614954221800000 0.615462868800000

0.616480162800000 0.616988809800000 0.617497456800000 0.618006103800000 0.618514750800000

0.619023397800000 0.619532044800000 0.620040691800000 0.620549338800000 0.621057985800000

0.621566632800000 0.622075279800000 0.622583926800000 0.623092573800000 0.623601220800000

0.624109867800000 0.624618514800000 0.625127161700000 0.625635808700000 0.626144455700000

0.626653102700000 0.627161749700000 0.627670396700000 0.628179043700000 0.628687690700000

0.629196337700000 0.629704984700000 0.630213631700000 0.630722278700000 0.631230925700000

0.631739572700000 0.632248219700000 0.632756866700000 0.633265513700000 0.633774160700000

0.634282807700000 0.634791454700000 0.635300101700000 0.636317395700000 0.636826042700000

0.637334689700000 0.637843336700000 0.638860630700000 0.639369277700000 0.639877924700000

0.640386571700000 0.640895218700000 0.641403865700000 0.641912512700000 0.642421159700000

0.642929806700000 0.643438453700000 0.643947100700000 0.644455747700000 0.644964394700000

0.645473041700000 0.645981688700000 0.646490335700000 0.646998982700000 0.647507629700000

0.648016276700000 0.648524923700000 0.649033570700000 0.649542217700000 0.650050864700000

0.650559511700000 0.651068158700000 0.651576805700000 0.652085452700000 0.652594099700000

0.653102746700000 0.653611393700000 0.654120040700000 0.654628687700000 0.655137334700000

215

0.655645981700000 0.656154628700000 0.656663275700000 0.657171922700000 0.657680569700000

0.658189216700000 0.658697863700000 0.659206510700000 0.659715157700000 0.660223804700000

0.660732451700000 0.661241098700000 0.661749745700000 0.662258392700000 0.662767039700000

0.663275686700000 0.663784333700000 0.664292980700000 0.664801627700000 0.665310274700000

0.665818921700000 0.666327568700000 0.666836215700000 0.667344862700000 0.667853509700000

0.668362156700000 0.668870803700000 0.669379450700000 0.669888097700000 0.670396744700000

0.670905391700000 0.671414038700000 0.671922685700000 0.672939979700000 0.673448626700000

0.673957273700000 0.674465920700000 0.674974567700000 0.675483214600000 0.675991861600000

0.676500508600000 0.677009155600000 0.677517802600000 0.678026449600000 0.678535096600000

0.679043743600000 0.679552390600000 0.680061037600000 0.680569684600000 0.681078331600000

0.681586978600000 0.682095625600000 0.682604272600000 0.683112919600000 0.683621566600000

0.684130213600000 0.684638860600000 0.685147507600000 0.685656154600000 0.686164801600000

0.686673448600000 0.687182095600000 0.687690742600000 0.688199389600000 0.688708036600000

0.689216683600000 0.689725330600000 0.690233977600000 0.690742624600000 0.691251271600000

0.691759918600000 0.692268565600000 0.692777212600000 0.693285859600000 0.693794506600000

0.694303153600000 0.694811800600000 0.695320447600000 0.695829094600000 0.696337741600000

0.696846388600000 0.697355035600000 0.697863682600000 0.698372329600000 0.698880976600000

0.699389623600000 0.699898270600000 0.700406917600000 0.700915564600000 0.701424211600000

0.701932858600000 0.702441505600000 0.702950152600000 0.703458799600000 0.703967446600000

0.704476093600000 0.704984740600000 0.705493387600000 0.706002034600000 0.706510681600000

0.707019328600000 0.707527975600000 0.708036622600000 0.708545269600000 0.709053916600000

0.709562563600000 0.710071210600000 0.710579857600000 0.711088504600000 0.711597151600000

0.712105798600000 0.712614445600000 0.713123092600000 0.713631739600000 0.714140386600000

0.714649033600000 0.715157680600000 0.715666327600000 0.716174974600000 0.716683621600000

0.717192268600000 0.717700915600000 0.718209562600000 0.718718209600000 0.719226856600000

0.719735503600000 0.720752797600000 0.721261444600000 0.721770091600000 0.722278738600000

0.722787385600000 0.723296032600000 0.723804679600000 0.724313326600000 0.724821973600000

0.725330620500000 0.725839267500000 0.726347914500000 0.726856561500000 0.727365208500000

0.727873855500000 0.728382502500000 0.728891149500000 0.729399796500000 0.729908443500000

0.730417090500000 0.730925737500000 0.731434384500000 0.731943031500000 0.732451678500000

0.732960325500000 0.733468972500000 0.733977619500000 0.734486266500000 0.734994913500000

0.735503560500000 0.736012207500000 0.736520854500000 0.737029501500000 0.737538148500000

0.738046795500000 0.738555442500000 0.739064089500000 0.739572736500000 0.740081383500000

0.740590030500000 0.741098677500000 0.741607324500000 0.742115971500000 0.742624618500000

0.743133265500000 0.743641912500000 0.744150559500000 0.744659206500000 0.745167853500000

0.745676500500000 0.746185147500000 0.746693794500000 0.747202441500000 0.747711088500000

0.748219735500000 0.748728382500000 0.749237029500000 0.749745676500000 0.750254323500000

0.750762970500000 0.751271617500000 0.751780264500000 0.752288911500000 0.752797558500000

0.753306205500000 0.753814852500000 0.754323499500000 0.754832146500000 0.755340793500000

0.755849440500000 0.756358087500000 0.756866734500000 0.757375381500000 0.757884028500000

0.758392675500000 0.758901322500000 0.759409969500000 0.759918616500000 0.760427263500000

0.760935910500000 0.761444557500000 0.761953204500000 0.762461851500000 0.762970498500000

0.763479145500000 0.763987792500000 0.764496439500000 0.765005086500000 0.765513733500000

0.766022380500000 0.766531027500000 0.767039674500000 0.767548321500000 0.768056968500000

0.768565615500000 0.769074262500000 0.769582909500000 0.770091556500000 0.771108850500000

0.771617497500000 0.772126144500000 0.772634791500000 0.773143438500000 0.773652085500000

0.774160732500000 0.774669379500000 0.775178026400000 0.775686673400000 0.776195320400000

0.776703967400000 0.777212614400000 0.777721261400000 0.778229908400000 0.778738555400000

0.779247202400000 0.779755849400000 0.780264496400000 0.781281790400000 0.781790437400000

0.782299084400000 0.782807731400000 0.783316378400000 0.784333672400000 0.784842319400000

0.785350966400000 0.785859613400000 0.786368260400000 0.786876907400000 0.787385554400000

0.787894201400000 0.788402848400000 0.788911495400000 0.789420142400000 0.789928789400000

0.790437436400000 0.790946083400000 0.791454730400000 0.791963377400000 0.792472024400000

0.792980671400000 0.793489318400000 0.793997965400000 0.794506612400000 0.795015259400000

0.795523906400000 0.796032553400000 0.796541200400000 0.797049847400000 0.797558494400000

0.798067141400000 0.798575788400000 0.799084435400000 0.799593082400000 0.800101729400000

0.800610376400000 0.801627670400000 0.802136317400000 0.802644964400000 0.803153611400000

0.803662258400000 0.804679552400000 0.805188199400000 0.805696846400000 0.806205493400000

0.806714140400000 0.807222787400000 0.807731434400000 0.808240081400000 0.809257375400000

0.809766022400000 0.810274669400000 0.810783316400000 0.811291963400000 0.811800610400000

0.812309257400000 0.812817904400000 0.813326551400000 0.813835198400000 0.814343845400000

0.814852492400000 0.815361139400000 0.815869786400000 0.816378433400000 0.816887080400000

0.817395727400000 0.817904374400000 0.818921668400000 0.819430315400000 0.820447609400000

0.820956256400000 0.821464903400000 0.821973550400000 0.822482197400000 0.822990844400000

0.823499491400000 0.824008138400000 0.824516785400000 0.825025432300000 0.825534079300000

0.826042726300000 0.826551373300000 0.827060020300000 0.828077314300000 0.828585961300000

0.829094608300000 0.829603255300000 0.830111902300000 0.830620549300000 0.831129196300000

0.831637843300000 0.832146490300000 0.833163784300000 0.834181078300000 0.834689725300000

0.835198372300000 0.835707019300000 0.836215666300000 0.837232960300000 0.837741607300000

216

0.838758901300000 0.839267548300000 0.839776195300000 0.840284842300000 0.840793489300000

0.841302136300000 0.841810783300000 0.842319430300000 0.842828077300000 0.843336724300000

0.843845371300000 0.844354018300000 0.844862665300000 0.845371312300000 0.845879959300000

0.846388606300000 0.846897253300000 0.847405900300000 0.847914547300000 0.848423194300000

0.848931841300000 0.849440488300000 0.849949135300000 0.850457782300000 0.850966429300000

0.851475076300000 0.851983723300000 0.852492370300000 0.853001017300000 0.853509664300000

0.854018311300000 0.855035605300000 0.855544252300000 0.856052899300000 0.856561546300000

0.857070193300000 0.857578840300000 0.858087487300000 0.858596134300000 0.859104781300000

0.859613428300000 0.860122075300000 0.860630722300000 0.861139369300000 0.861648016300000

0.862156663300000 0.862665310300000 0.863173957300000 0.863682604300000 0.864191251300000

0.864699898300000 0.865208545300000 0.865717192300000 0.866225839300000 0.866734486300000

0.867243133300000 0.867751780300000 0.868260427300000 0.868769074300000 0.869277721300000

0.869786368300000 0.870295015300000 0.870803662300000 0.871820956300000 0.872329603300000

0.872838250300000 0.873346897300000 0.873855544300000 0.874364191300000 0.874872838300000

0.875381485200000 0.875890132200000 0.876398779200000 0.877416073200000 0.877924720200000

0.878433367200000 0.878942014200000 0.879450661200000 0.879959308200000 0.880467955200000

0.880976602200000 0.881485249200000 0.881993896200000 0.882502543200000 0.883011190200000

0.883519837200000 0.884028484200000 0.884537131200000 0.885045778200000 0.885554425200000

0.886063072200000 0.886571719200000 0.887080366200000 0.887589013200000 0.888097660200000

0.888606307200000 0.889114954200000 0.889623601200000 0.890132248200000 0.890640895200000

0.891149542200000 0.891658189200000 0.892166836200000 0.892675483200000 0.893184130200000

0.893692777200000 0.894201424200000 0.894710071200000 0.895218718200000 0.895727365200000

0.896236012200000 0.896744659200000 0.897253306200000 0.897761953200000 0.898270600200000

0.898779247200000 0.899287894200000 0.899796541200000 0.900305188200000 0.900813835200000

0.901322482200000 0.901831129200000 0.902339776200000 0.902848423200000 0.903357070200000

0.903865717200000 0.904374364200000 0.904883011200000 0.905391658200000 0.905900305200000

0.906408952200000 0.906917599200000 0.907426246200000 0.907934893200000 0.908443540200000

0.908952187200000 0.909460834200000 0.909969481200000 0.910478128200000 0.910986775200000

0.911495422200000 0.912004069200000 0.912512716200000 0.913021363200000 0.913530010200000

0.914547304200000 0.915055951200000 0.915564598200000 0.916073245200000 0.916581892200000

0.917599186200000 0.918616480200000 0.919125127200000 0.919633774200000 0.920142421200000

0.920651068200000 0.921159715200000 0.921668362200000 0.922177009200000 0.922685656200000

0.923194303200000 0.923702950200000 0.924211597200000 0.924720244200000 0.925228891100000

0.925737538100000 0.926246185100000 0.926754832100000 0.927263479100000 0.927772126100000

0.928789420100000 0.929298067100000 0.929806714100000 0.930824008100000 0.931332655100000

0.931841302100000 0.932858596100000 0.933367243100000 0.933875890100000 0.934384537100000

0.934893184100000 0.935401831100000 0.935910478100000 0.936419125100000 0.937436419100000

0.937945066100000 0.938453713100000 0.938962360100000 0.939471007100000 0.939979654100000

0.940488301100000 0.940996948100000 0.941505595100000 0.942014242100000 0.942522889100000

0.943031536100000 0.943540183100000 0.944048830100000 0.944557477100000 0.945066124100000

0.945574771100000 0.946083418100000 0.946592065100000 0.947100712100000 0.947609359100000

0.948118006100000 0.948626653100000 0.949135300100000 0.949643947100000 0.950152594100000

0.950661241100000 0.951169888100000 0.952187182100000 0.952695829100000 0.953204476100000

0.954221770100000 0.954730417100000 0.955239064100000 0.955747711100000 0.956256358100000

0.956765005100000 0.957273652100000 0.957782299100000 0.958290946100000 0.958799593100000

0.959308240100000 0.960325534100000 0.960834181100000 0.961342828100000 0.961851475100000

0.962360122100000 0.962868769100000 0.963886063100000 0.964394710100000 0.964903357100000

0.965412004100000 0.965920651100000 0.966429298100000 0.966937945100000 0.967446592100000

0.967955239100000 0.968463886100000 0.968972533100000 0.969989827100000 0.970498474100000

0.971007121100000 0.972024415100000 0.972533062100000 0.973550356100000 0.974059003100000

0.974567650100000 0.975076297000000 0.975584944000000 0.976602238000000 0.977110885000000

0.977619532000000 0.978128179000000 0.978636826000000 0.979145473000000 0.979654120000000

0.980162767000000 0.980671414000000 0.981180061000000 0.981688708000000 0.982197355000000

0.982706002000000 0.983723296000000 0.984231943000000 0.984740590000000 0.985249237000000

0.985757884000000 0.986266531000000 0.986775178000000 0.987283825000000 0.987792472000000

0.988301119000000 0.988809766000000 0.989318413000000 0.989827060000000 0.990335707000000

0.990844354000000 0.991353001000000 0.991861648000000 0.992370295000000 0.992878942000000

0.993387589000000 0.993896236000000 0.994404883000000 0.994913530000000 0.995422177000000

0.995930824000000 0.996439471000000 0.996948118000000 0.997456765000000 0.997965412000000

0.998474059000000 0.998982706000000 1];

x = multiplier*x;

end

function [x,val] = getCDF2

val =

[[0.000635324015200000,0.00127064803000000,0.00190597204600000,0.00381194409100000,0.0044472681

0700000,0.00508259212200000,0.00571791613700000,0.00635324015200000,0.00698856416800000,0.00762

388818300000,0.00825921219800000,0.00889453621300000,0.00952986022900000,0.0101651842400000,0.0

108005082600000,0.0114358322700000,0.0133418043200000,0.0165184244000000,0.0184243964400000,0.0

217

203303684900000,0.0209656925000000,0.0216010165200000,0.0222363405300000,0.0228716645500000,0.0

235069885600000,0.0254129606100000,0.0260482846300000,0.0279542566700000,0.0285895806900000,0.0

292249047000000,0.0298602287200000,0.0304955527300000,0.0311308767500000,0.0343074968200000,0.0

349428208400000,0.0355781448500000,0.0362134688700000,0.0368487928800000,0.0374841169000000,0.0

381194409100000,0.0387547649300000,0.0393900889500000,0.0425667090200000,0.0432020330400000,0.0

463786531100000,0.0470139771300000,0.0476493011400000,0.0482846251600000,0.0489199491700000,0.0

495552731900000,0.0501905972000000,0.0508259212200000,0.0514612452400000,0.0520965692500000,0.0

527318932700000,0.0533672172800000,0.0540025413000000,0.0546378653100000,0.0552731893300000,0.0

571791613700000,0.0578144853900000,0.0584498094000000,0.0590851334200000,0.0609911054600000,0.0

616264294800000,0.0622617534900000,0.0641677255400000,0.0648030495600000,0.0654383735700000,0.0

660736975900000,0.0667090216000000,0.0673443456200000,0.0679796696300000,0.0686149936500000,0.0

705209656900000,0.0762388818300000,0.0832274460000000,0.0838627700100000,0.0844980940300000,0.0

876747141000000,0.0883100381200000,0.0889453621300000,0.0895806861500000,0.0927573062300000,0.0

946632782700000,0.0952986022900000,0.101016518400000,0.102922490500000,0.103557814500000,0.1041

93138500000,0.106099110500000,0.106734434600000,0.107369758600000,0.109275730600000,0.109911054

600000,0.113087674700000,0.114993646800000,0.115628970800000,0.116264294800000,0.11689961880000

0,0.117534942800000,0.118170266800000,0.121346886900000,0.121982210900000,0.123888183000000,0.1

24523507000000,0.128970775100000,0.129606099100000,0.130241423100000,0.132147395200000,0.132782

719200000,0.133418043200000,0.135324015200000,0.135959339300000,0.136594663300000,0.14231257940

0000,0.144218551500000,0.144853875500000,0.145489199500000,0.153748411700000,0.154383735700000,

0.155019059700000,0.155654383700000,0.156289707800000,0.156925031800000,0.158831003800000,0.160

736975900000,0.162642947900000,0.164548919900000,0.165184244000000,0.167090216000000,0.16772554

0000000,0.168360864000000,0.168996188100000,0.169631512100000,0.172808132100000,0.1734434562000

00,0.174078780200000,0.174714104200000,0.175349428200000,0.175984752200000,0.179161372300000,0.

183608640400000,0.184243964400000,0.184879288400000,0.185514612500000,0.186149936500000,0.18678

5260500000,0.187420584500000,0.188055908500000,0.188691232500000,0.190597204600000,0.1912325286

00000,0.195679796700000,0.196315120700000,0.196950444700000,0.197585768700000,0.200762388800000

,0.203939008900000,0.204574332900000,0.205209656900000,0.205844980900000,0.206480305000000,0.20

7115629000000,0.207750953000000,0.208386277000000,0.209021601000000,0.210927573100000,0.2115628

97100000,0.212198221100000,0.212833545100000,0.213468869100000,0.215374841200000,0.216010165200

000,0.216645489200000,0.219822109300000,0.220457433300000,0.233799237600000,0.235705209700000,0

.236340533700000,0.236975857700000,0.237611181700000,0.243329097800000,0.247776365900000,0.2484

11690000000,0.250317662000000,0.252223634100000,0.252858958100000,0.253494282100000,0.254129606

100000,0.254764930100000,0.256670902200000,0.258576874200000,0.261753494300000,0.26238881830000

0,0.263024142300000,0.263659466300000,0.264294790300000,0.264930114400000,0.266836086400000,0.2

67471410400000,0.268106734400000,0.275095298600000,0.275730622600000,0.277636594700000,0.278271

918700000,0.280177890700000,0.282083862800000,0.283989834800000,0.284625158800000,0.28526048280

0000,0.285895806900000,0.286531130900000,0.287166454900000,0.290343075000000,0.290978399000000,

0.291613723000000,0.292249047000000,0.292884371000000,0.293519695000000,0.294155019100000,0.294

790343100000,0.296696315100000,0.299872935200000,0.300508259200000,0.301143583200000,0.30304955

5300000,0.303684879300000,0.304320203300000,0.304955527300000,0.305590851300000,0.3062261753000

00,0.306861499400000,0.307496823400000,0.308132147400000,0.311308767500000,0.311944091500000,0.

313850063500000,0.317026683600000,0.317662007600000,0.319567979700000,0.320203303700000,0.32210

9275700000,0.322744599700000,0.327191867900000,0.327827191900000,0.328462515900000,0.3303684879

00000,0.331003811900000,0.331639136000000,0.332274460000000,0.332909784000000,0.333545108000000

,0.335451080100000,0.336086404100000,0.336721728100000,0.337357052100000,0.337992376100000,0.34

1168996200000,0.344345616300000,0.344980940300000,0.348157560400000,0.348792884400000,0.3506988

56400000,0.352604828500000,0.353240152500000,0.355146124500000,0.355781448500000,0.357687420600

000,0.362134688700000,0.362770012700000,0.363405336700000,0.364040660700000,0.365946632800000,0

.367852604800000,0.369758576900000,0.370393900900000,0.371029224900000,0.371664548900000,0.3748

41169000000,0.375476493000000,0.376111817000000,0.378017789100000,0.378653113100000,0.380559085

100000,0.381194409100000,0.384371029200000,0.385006353200000,0.385641677300000,0.38627700130000

0,0.386912325300000,0.387547649300000,0.388182973300000,0.388818297300000,0.389453621300000,0.3

90088945400000,0.394536213500000,0.395171537500000,0.395806861500000,0.396442185500000,0.409783

989800000,0.410419313900000,0.411054637900000,0.415501906000000,0.425031766200000,0.42566709020

0000,0.426302414200000,0.426937738200000,0.430114358300000,0.432020330400000,0.435196950400000,

0.435832274500000,0.436467598500000,0.438373570500000,0.439008894500000,0.440914866600000,0.441

550190600000,0.443456162600000,0.444091486700000,0.447268106700000,0.447903430700000,0.44853875

4800000,0.456797967000000,0.461245235100000,0.461880559100000,0.462515883100000,0.4631512071000

00,0.463786531100000,0.477128335500000,0.477763659500000,0.478398983500000,0.479034307500000,0.

479669631500000,0.481575603600000,0.482210927600000,0.487928843700000,0.488564167700000,0.48919

9491700000,0.489834815800000,0.495552731900000,0.496188055900000,0.498094028000000,0.5000000000

00000,0.503176620100000,0.503811944100000,0.504447268100000,0.507623888200000,0.509529860200000

,0.516518424400000,0.520965692500000,0.521601016500000,0.524777636600000,0.525412960600000,0.52

8589580700000,0.529224904700000,0.533672172800000,0.535578144900000,0.536213468900000,0.5368487

92900000,0.537484116900000,0.538119440900000,0.538754764900000,0.539390088900000,0.540025413000

000,0.540660737000000,0.542566709000000,0.543202033000000,0.547649301100000,0.548284625200000,0

.548919949200000,0.549555273200000,0.550190597200000,0.550825921200000,0.551461245200000,0.5520

96569300000,0.552731893300000,0.554637865300000,0.555273189300000,0.555908513300000,0.560355781

218

400000,0.560991105500000,0.561626429500000,0.562261753500000,0.564167725500000,0.56734434560000

0,0.569250317700000,0.573697585800000,0.574332909800000,0.576238881800000,0.576874205800000,0.5

77509529900000,0.579415501900000,0.580050825900000,0.581956798000000,0.582592122000000,0.583227

446000000,0.588945362100000,0.589580686100000,0.594027954300000,0.594663278300000,0.59529860230

0000,0.595933926300000,0.600381194400000,0.601016518400000,0.601651842400000,0.602287166500000,

0.602922490500000,0.603557814500000,0.604193138500000,0.604828462500000,0.605463786500000,0.606

099110500000,0.606734434600000,0.607369758600000,0.608005082600000,0.609911054600000,0.61181702

6700000,0.612452350700000,0.613087674700000,0.613722998700000,0.614358322700000,0.6149936468000

00,0.615628970800000,0.618805590900000,0.619440914900000,0.620076238900000,0.620711562900000,0.

621346886900000,0.621982210900000,0.622617534900000,0.623252859000000,0.625158831000000,0.62579

4155000000,0.626429479000000,0.627064803000000,0.627700127100000,0.630876747100000,0.6315120712

00000,0.632147395200000,0.632782719200000,0.634688691200000,0.637865311300000,0.638500635300000

,0.639135959300000,0.639771283400000,0.640406607400000,0.642312579400000,0.642947903400000,0.64

3583227400000,0.645489199500000,0.646124523500000,0.648030495600000,0.648665819600000,0.6493011

43600000,0.652477763700000,0.654383735700000,0.657560355800000,0.658195679800000,0.658831003800

000,0.659466327800000,0.663913595900000,0.664548919900000,0.665184244000000,0.665819568000000,0

.666454892000000,0.669631512100000,0.674078780200000,0.674714104200000,0.675349428200000,0.6772

55400300000,0.681702668400000,0.682337992400000,0.684243964400000,0.684879288400000,0.685514612

500000,0.686149936500000,0.686785260500000,0.687420584500000,0.688055908500000,0.68869123250000

0,0.689326556500000,0.689961880600000,0.690597204600000,0.691232528600000,0.691867852600000,0.6

92503176600000,0.693138500600000,0.695044472700000,0.695679796700000,0.696315120700000,0.696950

444700000,0.697585768700000,0.698221092800000,0.698856416800000,0.707115629000000,0.70775095300

0000,0.708386277000000,0.710292249000000,0.710927573100000,0.711562897100000,0.712198221100000,

0.716645489200000,0.718551461200000,0.719186785300000,0.719822109300000,0.720457433300000,0.721

092757300000,0.721728081300000,0.722363405300000,0.722998729400000,0.726175349400000,0.72681067

3400000,0.729987293500000,0.730622617500000,0.733799237600000,0.734434561600000,0.7350698856000

00,0.739517153700000,0.741423125800000,0.742058449800000,0.742693773800000,0.743329097800000,0.

743964421900000,0.745870393900000,0.746505717900000,0.747141041900000,0.757941550200000,0.75857

6874200000,0.759212198200000,0.761118170300000,0.761753494300000,0.762388818300000,0.7630241423

00000,0.763659466300000,0.765565438400000,0.766200762400000,0.766836086400000,0.767471410400000

,0.768106734400000,0.770012706500000,0.770648030500000,0.771283354500000,0.774459974600000,0.77

5095298600000,0.775730622600000,0.776365946600000,0.777001270600000,0.777636594700000,0.7782719

18700000,0.778907242700000,0.779542566700000,0.780177890700000,0.784625158800000,0.785260482800

000,0.785895806900000,0.786531130900000,0.787166454900000,0.787801778900000,0.788437102900000,0

.789072426900000,0.789707751000000,0.790343075000000,0.790978399000000,0.791613723000000,0.7922

49047000000,0.792884371000000,0.793519695000000,0.794155019100000,0.794790343100000,0.797966963

200000,0.798602287200000,0.799237611200000,0.799872935200000,0.800508259200000,0.80114358320000

0,0.803049555300000,0.803684879300000,0.804320203300000,0.804955527300000,0.805590851300000,0.8

06226175300000,0.806861499400000,0.810038119400000,0.810673443500000,0.811308767500000,0.811944

091500000,0.812579415500000,0.813214739500000,0.813850063500000,0.818297331600000,0.81893265570

0000,0.819567979700000,0.820203303700000,0.820838627700000,0.821473951700000,0.822109275700000,

0.822744599700000,0.823379923800000,0.824015247800000,0.824650571800000,0.825285895800000,0.825

921219800000,0.826556543800000,0.827191867900000,0.827827191900000,0.828462515900000,0.83036848

7900000,0.833545108000000,0.834180432000000,0.834815756000000,0.835451080100000,0.8360864041000

00,0.836721728100000,0.838627700100000,0.840533672200000,0.841168996200000,0.841804320200000,0.

842439644200000,0.845616264300000,0.846251588300000,0.846886912300000,0.847522236300000,0.84815

7560400000,0.848792884400000,0.849428208400000,0.850063532400000,0.850698856400000,0.8513341804

00000,0.851969504400000,0.853875476500000,0.854510800500000,0.855146124500000,0.855781448500000

,0.856416772600000,0.857052096600000,0.857687420600000,0.858322744600000,0.860228716600000,0.86

2134688700000,0.862770012700000,0.863405336700000,0.864040660700000,0.865946632800000,0.8665819

56800000,0.867217280800000,0.867852604800000,0.868487928800000,0.869123252900000,0.871029224900

000,0.872935197000000,0.873570521000000,0.874205845000000,0.874841169000000,0.875476493000000,0

.876111817000000,0.876747141000000,0.877382465100000,0.878017789100000,0.878653113100000,0.8792

88437100000,0.879923761100000,0.880559085100000,0.881194409100000,0.883100381200000,0.883735705

200000,0.884371029200000,0.885006353200000,0.885641677300000,0.886277001300000,0.88691232530000

0,0.887547649300000,0.888182973300000,0.888818297300000,0.889453621300000,0.890088945400000,0.8

90724269400000,0.891359593400000,0.891994917400000,0.893900889500000,0.894536213500000,0.895171

537500000,0.895806861500000,0.896442185500000,0.897077509500000,0.897712833500000,0.89834815760

0000,0.898983481600000,0.902160101700000,0.902795425700000,0.903430749700000,0.904066073700000,

0.904701397700000,0.905336721700000,0.905972045700000,0.909148665800000,0.911054637900000,0.912

960609900000,0.913595933900000,0.914231257900000,0.914866582000000,0.915501906000000,0.91613723

0000000,0.916772554000000,0.917407878000000,0.918043202000000,0.918678526000000,0.9193138501000

00,0.919949174100000,0.921855146100000,0.925031766200000,0.926937738200000,0.927573062300000,0.

928208386300000,0.928843710300000,0.932020330400000,0.932655654400000,0.933290978400000,0.93392

6302400000,0.934561626400000,0.935196950400000,0.935832274500000,0.936467598500000,0.9371029225

00000,0.937738246500000,0.938373570500000,0.940279542600000,0.942185514600000,0.944091486700000

,0.944726810700000,0.945362134700000,0.945997458700000,0.947903430700000,0.949809402800000,0.95

0444726800000,0.951080050800000,0.951715374800000,0.953621346900000,0.954256670900000,0.9574332

91000000,0.958068615000000,0.958703939000000,0.959339263000000,0.959974587000000,0.960609911100

219

000,0.961245235100000,0.961880559100000,0.963786531100000,0.965692503200000,0.966327827200000,0

.970775095300000,0.971410419300000,0.972045743300000,0.972681067300000,0.974587039400000,0.9752

22363400000,0.978398983500000,0.979034307500000,0.979669631500000,0.980304955500000,0.980940279

500000,0.981575603600000,0.982210927600000,0.982846251600000,0.983481575600000,0.98411689960000

0,0.986022871700000,0.986658195700000,0.988564167700000,0.989199491700000,0.989834815800000,0.9

90470139800000,0.991105463800000,0.991740787800000,0.992376111800000,0.993011435800000,0.993646

759800000,0.994282083900000,0.994917407900000,0.995552731900000,0.996188055900000,0.99682337990

0000,0.997458703900000,0.998094028000000,0.998729352000000,1]];

x=[[1.26798070000000,1.27278826000000,1.41384638000000,1.49171484600000,1.50042305900000,1.5254

5557200000,1.57917514500000,1.59464533500000,1.60421594500000,1.63159981700000,1.63175524000000

,1.63944141600000,1.69928813400000,1.71192467100000,1.72507001000000,1.72636114200000,1.7309306

4800000,1.74287067500000,1.74575690200000,1.74586574700000,1.74626079800000,1.74874435500000,1.

75972185000000,1.77427104900000,1.77582426200000,1.78431550200000,1.78522134600000,1.7874601640

0000,1.78974879200000,1.79097565900000,1.81182468200000,1.81279147800000,1.81886632200000,1.830

78846600000,1.83681101900000,1.85847429900000,1.85850437300000,1.86318281100000,1.8637604720000

0,1.86761547000000,1.87878135000000,1.87930824200000,1.88671641100000,1.88808354000000,1.894720

62300000,1.89513233700000,1.89703076000000,1.90001944600000,1.90036565700000,1.90231200300000,1

.90278899800000,1.90523032300000,1.91782664700000,1.92235011000000,1.92362175100000,1.931779244

00000,1.93409185700000,1.93506762500000,1.93832131000000,1.93986591400000,1.93990761200000,1.94

213435800000,1.94643366400000,1.95092273000000,1.95210904700000,1.95264623200000,1.954457385000

00,1.96110977600000,1.96228928700000,1.96231748900000,1.96517442400000,1.98417431600000,1.99042

646500000,1.99198293800000,1.99797430100000,2.00311920500000,2.01214687200000,2.01667557500000,

2.02196594500000,2.02854149600000,2.03900657800000,2.03923750000000,2.04180302100000,2.04187745

600000,2.04629047200000,2.04682725700000,2.05242880800000,2.05870004400000,2.06145557900000,2.0

6433647600000,2.06477991900000,2.06563292500000,2.06610257000000,2.06973800300000,2.08119619800

000,2.08701963500000,2.08811277300000,2.09290577600000,2.09551878100000,2.09670488000000,2.0977

5052500000,2.09920935900000,2.10269052400000,2.10463346000000,2.10890626300000,2.11274552400000

,2.11694702600000,2.11831513200000,2.12008459700000,2.12816645600000,2.12948754800000,2.1297620

1300000,2.13385699200000,2.13427431300000,2.13680599000000,2.13713160800000,2.14231783800000,2.

14410164500000,2.14439743300000,2.14918036400000,2.15328730500000,2.16727371500000,2.1677660830

0000,2.17245992400000,2.17391170800000,2.17607024600000,2.17625827900000,2.17863896900000,2.179

94504100000,2.18056984100000,2.18289300500000,2.18705135200000,2.18820044600000,2.1882348700000

0,2.19107995600000,2.19474428900000,2.19799370900000,2.20008124400000,2.20014848300000,2.201264

53100000,2.20394208200000,2.21011438300000,2.21250563000000,2.21807427600000,2.21993070000000,2

.22161466500000,2.22172378900000,2.22801012500000,2.22914591000000,2.23049934800000,2.234662093

00000,2.23738866300000,2.23937503200000,2.24070957400000,2.24318839100000,2.24602231700000,2.24

921929600000,2.25060776600000,2.25283492200000,2.26123825700000,2.26355957500000,2.268289335000

00,2.28110642500000,2.28154938900000,2.28463985600000,2.28511731200000,2.28520662500000,2.29052

121000000,2.29248703100000,2.29795174400000,2.29885968200000,2.30062483200000,2.30327866300000,

2.30438403400000,2.30915192000000,2.31247225400000,2.31922892600000,2.32645065600000,2.32888087

300000,2.32889518300000,2.32913882000000,2.33112134600000,2.33491191200000,2.33599986000000,2.3

4264976100000,2.34495665900000,2.35254600200000,2.35293586700000,2.35397071400000,2.35428576600

000,2.35450388200000,2.35664916600000,2.36031400200000,2.36512602300000,2.36847853900000,2.3738

6001900000,2.38248336900000,2.38500564200000,2.38897194100000,2.38924048900000,2.39654596900000

,2.39924988700000,2.40530121900000,2.41002653900000,2.41066753000000,2.41130053600000,2.4126510

2500000,2.42130194900000,2.42205921700000,2.42399771700000,2.43009301500000,2.43270865700000,2.

43310606900000,2.43576228600000,2.43860492900000,2.44336714000000,2.45343859000000,2.4565506280

0000,2.45724891400000,2.45891533900000,2.46055510900000,2.46401317400000,2.46452471000000,2.466

11075700000,2.46721484700000,2.46804607000000,2.46912681200000,2.47021048700000,2.4715508050000

0,2.47171979500000,2.47230557800000,2.47641494700000,2.47685064000000,2.48281923100000,2.487349

44400000,2.48828700100000,2.48986244600000,2.49090742000000,2.49196167800000,2.49475247400000,2

.50487464900000,2.50951452200000,2.51628254100000,2.51691689600000,2.52293156700000,2.529273706

00000,2.52974952600000,2.53839688800000,2.54139765000000,2.54442110200000,2.54521555400000,2.55

181003500000,2.55707594800000,2.56127624000000,2.56489642900000,2.56738521800000,2.567995509000

00,2.57261618800000,2.57283805000000,2.57338303500000,2.57405215500000,2.58175750500000,2.58218

593700000,2.59177619100000,2.59415891600000,2.59543015400000,2.59717170500000,2.59945749100000,

2.59954730000000,2.60072196300000,2.60712013800000,2.60748095200000,2.61120163000000,2.61273128

400000,2.61813154400000,2.61893218300000,2.61945641300000,2.62716941500000,2.64114490700000,2.6

4398263800000,2.64634096500000,2.65144480400000,2.65893700700000,2.66373169900000,2.66374698700

000,2.67099751900000,2.67833196600000,2.68035228800000,2.68976611800000,2.69123975500000,2.7003

2664100000,2.70788131900000,2.71069047900000,2.71364644700000,2.71749180200000,2.72223332000000

,2.73251015600000,2.73927043800000,2.74001583500000,2.74286074500000,2.74580201400000,2.7484125

2700000,2.74954200700000,2.75022914900000,2.75179760700000,2.75410007300000,2.75686177400000,2.

75780239400000,2.75842734100000,2.75895905200000,2.76577075500000,2.79121961300000,2.7933784280

0000,2.79623175300000,2.79978175000000,2.80038754800000,2.80118777200000,2.80827276600000,2.816

68492200000,2.81974963700000,2.82355318500000,2.82436999700000,2.82563418200000,2.8335550750000

0,2.83366667700000,2.83399023800000,2.83440694700000,2.84284018900000,2.84816850300000,2.854465

56500000,2.85608521300000,2.85850304800000,2.86846088000000,2.87106091000000,2.87309238100000,2

.87443633500000,2.87982516000000,2.88574654200000,2.89434675700000,2.89636145400000,2.908232605

220

00000,2.92304941100000,2.92861720900000,2.93055282000000,2.93150416300000,2.93453220700000,2.93

503308400000,2.94340894800000,2.94822652700000,2.95505390700000,2.96943353600000,2.970681369000

00,2.97947942700000,2.98106354900000,2.98156371600000,2.98466107800000,2.98508064300000,2.98657

045600000,2.98888227800000,2.99287640900000,2.99508992500000,2.99621874900000,2.99853649900000,

3.01721648100000,3.02116303500000,3.02521803000000,3.02845895200000,3.03029066500000,3.03180260

300000,3.04031865000000,3.04509461600000,3.04963080100000,3.05006433700000,3.05191763300000,3.0

5239061900000,3.05780267000000,3.06076988300000,3.06441776600000,3.06750722400000,3.06795996200

000,3.06921695800000,3.06952116500000,3.07462730200000,3.07748601800000,3.09733075700000,3.1071

6871500000,3.11562588300000,3.12468172600000,3.12796564400000,3.13194883000000,3.13725962500000

,3.14697919200000,3.16201377500000,3.16486492800000,3.16661383700000,3.16697332000000,3.1700186

1600000,3.17238682400000,3.17317069300000,3.17645222600000,3.17721100500000,3.17984192400000,3.

18919515000000,3.19371459100000,3.19939585900000,3.20021424200000,3.20253642300000,3.2146432730

0000,3.22294439800000,3.23377260000000,3.23768037200000,3.24926015700000,3.27576539500000,3.283

01966800000,3.28363933200000,3.28601882200000,3.28812236600000,3.28993696800000,3.2907341190000

0,3.29539893300000,3.30642115700000,3.31054564200000,3.31569991600000,3.31869648400000,3.326990

80700000,3.33110196100000,3.33265948600000,3.33521761200000,3.33863454700000,3.33928560200000,3

.34043276200000,3.34420788400000,3.34709962300000,3.34762843700000,3.34985869200000,3.362577266

00000,3.36285588400000,3.36609059800000,3.36847993600000,3.37346833200000,3.37732176700000,3.39

991202500000,3.40708675800000,3.41487123900000,3.42060855300000,3.42439821700000,3.425959347000

00,3.42730210600000,3.44519030800000,3.45003697500000,3.45659990100000,3.45997547300000,3.47012

647800000,3.47066443400000,3.47189490600000,3.47478000800000,3.47606242200000,3.48892272900000,

3.49097765700000,3.49316680500000,3.50224841900000,3.50237315600000,3.51075431500000,3.51082832

800000,3.51326923400000,3.51891416900000,3.52046184000000,3.52521339100000,3.52738497100000,3.5

4031721100000,3.54209330000000,3.57015662500000,3.57165404000000,3.57472393500000,3.58020260600

000,3.58272025000000,3.59356381800000,3.60729003500000,3.60736788900000,3.61085399200000,3.6550

5708800000,3.67865413200000,3.68000729900000,3.68399848500000,3.68567099600000,3.68960601700000

,3.69905046100000,3.70618288200000,3.70981579600000,3.71606072500000,3.71839569400000,3.7269578

7500000,3.75744271700000,3.76848837300000,3.77728067400000,3.77894151200000,3.78450950700000,3.

78979778900000,3.79658438000000,3.79961562900000,3.80777118400000,3.81947510100000,3.8274637850

0000,3.84485058700000,3.84657493300000,3.86022484200000,3.86128513600000,3.86857185400000,3.873

15521000000,3.87445202100000,3.87957670300000,3.88648517800000,3.88703357400000,3.8946720490000

0,3.91276097200000,3.91623260500000,3.93273174700000,3.93654447800000,3.93754762900000,3.943568

33800000,3.95167142300000,3.96967144400000,3.97491150800000,3.97643099400000,3.98429712900000,3

.99117450700000,3.99719558400000,4.00029544500000,4.00078997800000,4.00212342900000,4.016982517

00000,4.02002178600000,4.02311635200000,4.02763838000000,4.03165077100000,4.03851146300000,4.03

972215200000,4.04204815600000,4.04376343000000,4.07468697800000,4.07652609400000,4.094214641000

00,4.09774710900000,4.10609232200000,4.12335276600000,4.15548371100000,4.15778266400000,4.16207

769100000,4.16554056500000,4.16792855900000,4.17193905500000,4.17851263000000,4.19226263800000,

4.19227539100000,4.19230640100000,4.20015475000000,4.20377315100000,4.20661176400000,4.21751192

000000,4.22532084800000,4.23264591600000,4.24494568300000,4.26982342200000,4.29023241100000,4.3

1679915200000,4.32501055100000,4.32941913000000,4.33059315600000,4.33095103400000,4.36237386200

000,4.37499086800000,4.39690319300000,4.40744498200000,4.40898170100000,4.41158309700000,4.4572

9169000000,4.45894705500000,4.48863705500000,4.51458329100000,4.52546783100000,4.52845991000000

,4.54041376200000,4.54844983700000,4.57478454000000,4.57865211700000,4.59026168200000,4.5924766

5800000,4.59577749700000,4.59800925200000,4.60146440600000,4.63968080300000,4.64515001700000,4.

64766527900000,4.67503334100000,4.67824921000000,4.68338453000000,4.69643111500000,4.7076490580

0000,4.73207681600000,4.75119337400000,4.78821210600000,4.83107914500000,4.83395777100000,4.854

58338400000,4.85977062500000,4.90093947400000,4.91135990200000,4.91957466200000,4.9211295060000

0,4.92881998400000,4.94145551500000,4.94191535400000,4.95303632400000,4.96888872200000,4.981422

87700000,4.98379252700000,4.98660642800000,5.00490750800000,5.01423414900000,5.01634396400000,5

.02464558800000,5.03414034200000,5.05888464600000,5.07312479200000,5.07912202500000,5.085151324

00000,5.10273525000000,5.10477022500000,5.11189752200000,5.12271793400000,5.14774391800000,5.14

958297500000,5.15757892700000,5.17444833500000,5.18115784000000,5.19610559300000,5.212102121000

00,5.22933723700000,5.25429512700000,5.26856514900000,5.28974253100000,5.29131605000000,5.29913

836900000,5.33359527200000,5.33475155300000,5.33970473100000,5.37093916800000,5.39606419600000,

5.40701729000000,5.42050257200000,5.43379627400000,5.44116559600000,5.44422663400000,5.48502892

600000,5.49292940200000,5.51019456100000,5.52744181800000,5.55491216600000,5.56672739800000,5.5

7397866500000,5.59144008500000,5.60510694600000,5.60935895700000,5.65203034600000,5.65693099000

000,5.69318721700000,5.70343025900000,5.71044336200000,5.71443100500000,5.72051156000000,5.7286

0958300000,5.73213527800000,5.76405555900000,5.77302209900000,5.77528171200000,5.80211267100000

,5.81140606300000,5.81931879500000,5.82113114200000,5.83875409900000,5.84230007300000,5.8527533

9400000,5.87300527900000,5.92116575700000,5.93975544200000,5.96617076600000,5.98783700900000,6.

03979349800000,6.11147539800000,6.17589775700000,6.19231146700000,6.33114361600000,6.3312619210

0000,6.34192686800000,6.40089326800000,6.41399834100000,6.44625510300000,6.46560481000000,6.481

14076900000,6.60154682300000,6.61615050200000,6.63114606400000,6.67155633200000,6.6876967810000

0,6.73819397800000,6.74326769600000,6.76557745100000,6.98357348000000,7.11024381700000,7.141018

12700000,7.14518235800000,7.34079238100000,7.44517159700000,7.47193049900000,7.53039762700000,7

.53938297000000,7.56725002600000,7.69025089900000,7.69152607200000,7.71287096300000,7.750344242

00000,7.75367264300000,7.77584301200000,7.79153922500000,7.95460182300000,8.08820982600000,8.12

221

321194700000,8.16294550500000,8.17980829000000,8.22581214900000,8.28602697400000,8.359964847000

00,8.83484000200000,8.97670825700000,9.01953073100000,9.28740271600000,9.31889203400000,9.36069

640100000,9.78309279100000,9.84645613600000,9.90466529300000,10.7049498500000,11.1551261200000,

11.1794618600000,11.6316594900000,11.6512765000000,11.7589091000000,12.8036298000000,13.3565604

100000,13.5621489600000,13.5717860400000,13.5876977500000,13.5936881200000,13.6621178300000,13.

6721115000000,13.6890081600000,13.7662102800000,13.7957012500000,13.8297001600000,13.8500102000

000,13.9590584700000,13.9813365000000,14.0112248200000,14.1206767900000,14.1431514600000,14.154

5726100000,14.1657619800000,14.2076155900000,14.2245268100000,14.2375059300000,14.2459426500000

,14.2530731500000,14.3113058600000,14.3732419700000,14.4046238200000,14.4116001900000,14.479793

6800000,14.5701441400000,14.6680969800000,14.8450068600000,14.9306283400000,14.9551318300000,14

.9737008900000,14.9887976400000,15]];

end

222

7.8 Appendix H: Pial growth model for human cortex

The human pial growth is significantly more complicated than that of the mouse. This is due

to deep gyrations in the human brain, leading to ridges and valleys that are not present in the

relatively smooth, concave surface of the mouse brain. When the growth algorithm generates a

sample on a concave surface, such as the mouse cortex, connecting linearly to any segment and

projecting the bifurcation point to the surface is an adequate model. Unfortunately, the gyrations

in the human cortex causes these connections to “cut” through the pial surface in the human as

shown in Figure 7.57.

Figure 7.57. Example of attaching two points on a human pial surface.

This connection (between points po and pn will cut through at least one gyration of the pial

surface. Other connections may avoid such cuts while some may have many ridges to cut

through.

223

This chapter investigates methods for modifying the previously proposed pial growth

methodology in light of the human cortex. The recommended method is to implement a 2-stage

growth; stage 1 will growth large vessel “trunks” deep in the gyrations while stage 2 will growth

the smaller pial vessels onto the adjacent ridges. The valleys should be identified using a curvature

estimation method such as those investigated in this chapter. The growth will require a moving-

island sample generator as described later.

7.8.1 Growth from expansion

The simplest way to grow along a surface that has a lot of peaks and valleys is to limit the

growth to only the near neighborhood of the current vessels. This ensures the new segment will

not be far away from the segment and the probability of cutting through a gyration decreases

significantly (e.g. the terminal will always have a segment close by to connect to). This method

relies on a structure called a point matrix that holds the connected mesh triangles attached to a

point in the mesh. This data structure can be generated once and interrogated throughout the growth

process (as opposed to interrogating the entire mesh structure for connectivity at each new growth

of a segment). The general overview of the algorithm starts with a single face and expands until

the number of iterations has been reached. Within each iteration, the user may select any number

of expansion steps (=how many levels to expand). Each expansion step includes 3 parts: (i) for

each selected face, track all connected faces, (ii) remove all previous selections (including current

selection) from list, and (iii) assign remaining faces as new selection. The result of this method

can be seen below for a circle mesh structure.

224

7.8.1.1 Case Studies:

The first case study involves a single-step expansion where each iteration of expansion only

identifies 1st connections to the initial face selection (as opposed to branching to 2nd or 3rd order

connections that are up to 2 or 3 elements away). The results indicate the growth algorithm is

capable of expanding until every element of the surface has been selected at least one time.

225

 Starting faces Newly found faces Total faces

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

226

Stage 6

Stage 7

Stage 8

Stage 9

Stage 10

227

Stage 11

The second case study implements a double-step expansion which allows each iteration to

select elements up to 2 orders away from the current selection. This can be useful if the

algorithm is expanding through a mesh with small triangles, where the vascular density is much

lower than the triangle density. The results again indicate excellent ability to identify mesh

elements in an ordered fashion.

228

 Starting faces Newly found faces Total faces

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

229

Stage 6

7.8.2 Using ridge detection (paraboloid fitting method)

Now each stage of growth can identify a list of mesh elements for sample generation by

expansion. The next problem is to identify favorable candidate elements and unfavorable elements.

This can be calculated as a function of surface curvature or, more importantly, high curvature in

at least one direction and low curvature in one direction. This pattern would indicate a ridge or a

valley in the 3D structure.

The curvature of a triangulated (discrete) surface is not straightforward, because a single

triangle only has enough information (3 points) to represent a plane (flat sheet) in 3D space. In

order to assess the local curvature of the surface structure, neighboring triangles and their

position/orientation must be accounted for. The most direct method to compare the curvature of a

single triangle is to use linear regression to fit a quadratic surface (elliptical paraboloid) to the

near-neighborhood of points (points of current triangle and neighboring triangles). Once the

coefficients of the quadratic paraboloid have been identified, through linear least-square fitting,

the curvature of the surface is easily identified by the eigenvectors and eigenvalues of the Hessian

(partial derivative matrix) of the paraboloid. The eigenvectors represent the maximum and

minimum directions of curvature while the eigenvalues reflect the magnitude of each eigenvector.

230

The methodology for finding the curvature for all faces in a mesh uses the following logic:

1. Choose a single mesh element to use as the base of the coordinate system

2. Calculate base vectors of the element

3. Calculate offset that transposes all coordinates to a local coordinate system whose origin

lies at the mesh element center

4. Transpose all near-neighborhood points (all points connected to neighboring faces) to the

new coordinate system

5. Fit a paraboloid to these points

6. Calculate eigenvalues of system

7. Report maximum and minimum eigenvalue

Theory. As an example, the coefficients of a paraboloid following the model in Equation (7.45)

have been chosen and reported in Equation (7.46).

𝑥 = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 (7.45)

𝑥 = 1𝑥2 + 2𝑥 + 3𝑦2 + 4𝑥 + 5𝑦 + 6 (7.46)

The method chooses points in a near vicinity in order to represent the paraboloid. The method

will then evaluate the derivative matrix (also known as the Hessian matrix, Equation (7.47)). The

maximum and minimum curvature of the paraboloid is defined by the eigenvalues of the matrix D.

Moreover, the eigenvectors of this matrix are the directions of the maximum and minimum

curvature.

231

𝐷 =

[

𝜕2

𝜕𝑥2
𝑧

𝜕

𝜕𝑥

𝜕

𝜕𝑦
𝑧

𝜕

𝜕𝑦

𝜕

𝜕𝑥
𝑧

𝜕2

𝜕𝑦2
𝑧
]

 (7.47)

Relationship to system energy. One way to represent a system of equations is with the energy

of the system. The energy of a system is the integral of the gradient as shown in Section 7.25.3.

The energy of a system is given by:

𝐸 =
1

2
𝑥𝑇𝐴𝑥 + 𝑥𝑇𝑏

Where

𝐴 = [
c1,1 c1,2
c2,1 c2,2

] , 𝑥 = (
𝑥1
𝑥2
) , 𝑏 = (

𝑏1
𝑏2
)

(7.48)

When plugging in and expanding, this results in:

𝐸 =
1

2
(𝑥1 𝑥2) [

c1,1 c1,2
c2,1 c2,2

] (
𝑥1
𝑥2
) + (𝑥1 𝑥2) (

𝑏1
𝑏2
)

𝐸 =
1

2
(𝑥1c1,1 + 𝑥2c2,1 𝑥1c1,2 + 𝑥2c2,2) (

𝑥1
𝑥2
) + 𝑥1𝑏1 + 𝑥2𝑏2

𝐸 =
1

2
(c1,1𝑥1

2 + c2,1𝑥1𝑥2 + c1,2𝑥1
2 + c2,2𝑥1𝑥2) + 𝑥1𝑏1 + 𝑥2𝑏2

(7.49)

Which can take a form similar to Equation (7.45) by making substitutions in naming

convention:

232

𝐸 =
c1,1
2
𝑥1
2 +

c2,1
2
𝑥1𝑥2 +

c1,2
2
𝑥1
2 +

c2,2
2
𝑥1𝑥2 + 𝑥1𝑏1 + 𝑥2𝑏2

𝐸 =
c1,1
2
𝑥1
2 + (

c2,1
2
+
c2,2
2
) 𝑥1𝑥2 +

c1,2
2
𝑥1
2 + 𝑏1𝑥1 + 𝑏2𝑥2

𝐸 = 𝑧,
c1,1
2
= 𝑎, (

c2,1
2
+
c2,2
2
) = 𝑏,

c1,2
2
= 𝑐,

𝑏1 = 𝑑, 𝑏2 = 𝑒

(7.50)

And the final coefficient (f) is not seen in the energy surface, because the energy surface is

assumed to touch the z=0 plane at one point. This value appears in Equation (7.45) because a

generic elliptic paraboloid can have any value at its minimum.

Implementation. Equation (7.47) applied to Equation (7.45) simplifies to a matrix of constants:

𝐷 = [
2𝑎 𝑏
𝑏 2𝑐

] (7.51)

This derivative matrix can undergo eigenvalue decomposition to acquire the eigenvectors and

eigenvalues:

|𝐷 − 𝜆𝐼| = 0

|
2𝑎 − 𝜆 𝑏
𝑏 2𝑐 − 𝜆

| = 0

(2𝑎 − 𝜆)(2𝑐 − 𝜆) − 2𝑏 = 0

𝜆2 − 2𝜆(𝑎 + 𝑐) + 4𝑎𝑐 − 2𝑏 = 0

𝑐1𝜆
2 − 𝑐2𝜆 + 𝑐3 = 0

(7.52)

233

where

 𝑐1 = 1, 𝑐2 = −2𝑎 − 2𝑐, 𝑐3 = 4𝑎𝑐 − 2𝑏

Which has the roots (eigenvalues):

𝜆 =
−𝑐2 ±√𝑐2

2 − 4𝑐1𝑐3
2𝑐1

𝜆 =
2(𝑎 + 𝑐) ± √(2𝑎 + 2𝑐)2 − 4(1)(4𝑎𝑐 − 2𝑏)

2

𝜆 =
1

2
[2(𝑎 + 𝑐) ± √(4𝑎2 + 8𝑎𝑐 + 4𝑐2) − 16𝑎𝑐 + 8𝑏]

𝜆 =
1

2
[2(𝑎 + 𝑐) ± √4𝑎2 − 8𝑎𝑐 + 4𝑐2 + 8𝑏]

(7.53)

Which can be computed directly, giving the magnitude of the two eigenvalues (maximum and

minimum curvature). The case study has been visually verified using Matlab and exhaustive

enumeration of the sample space as in Figure 7.58. Note, the method used points sampled around

the origin (x = [-1..1), y = [-1..1)) and off-origin (x=[-10..-9), y=[20..21)) producing the same

eigenvectors and eigenvalues (data not shown). The sample points for the off-center sampling are

shown below:

234

A)

B)

C)

Figure 7.58. Prediction of max and minimum curvature for an analytic surface defined by a

series of points using a pre-known function.

A) The energy surface of a function defined by Equation (7.46). B) a selection of points from

the analytic surface used for the linear fit. Note, the linear fit reproduces the exact same

coefficients as originally defined in Equation (7.46). C) Eigenvectors scaled by respective

eigenvalues give the base functions of curvature for the system in Equation (7.46).

235

A)

B)

Figure 7.59. Prediction of maximum and minimum curvature for an analytic surface defined by

a series of points using a pre-known function using off-center sampling.

A) a selection of points from the analytic surface used for the linear fit do not surround the

origin. Note, the linear fit reproduces the exact same coefficients as originally defined in

Equation (7.46). B) Eigenvectors scaled by respective eigenvalues give the base functions of

curvature for the system in Equation (7.46).

Sampling a triangular surface mesh for investigating these values is also reasonable. A case

study sampled points along the analytic paraboloid equation and used these points to form a series

of triangles. These triangles reasonably approximates the curvature of the same function as seen

in Figure 7.60.

236

Figure 7.60. The analytic curve given by Equation (7.46) is recreated from the point coordinates

of a triangular surface mesh.

Coordinate transformation and z-calculation. The global fitting of a paraboloid to a surface

using Cartesian coordinates (x, y, z) can recreate the shape of the surface, but does not capture the

local curvature accurately. The definition of the paraboloid and the surface derivatives in

Section 7.8.2 finds the surface curvature with respect to (w.r.t.) the Z=0 plane. In the case of local

curvature, the coordinate system must define the Z-dimension as the perpendicular distance from

the current mesh element (=in the direction of the normal of the triangle). If the Z-coordinate

(Z-axis) is replaced with the normal vector of the element, the values of curvature will report the

desired deviation. This can be accomplished by first computing the unit vector in the normal

direction (𝑒𝑛⃑⃑⃑⃑) as shown for a triangle:

�⃑� =< 𝑝2⃑⃑⃑⃑ − 𝑝1⃑⃑ ⃑ > , 𝑣 =< 𝑝3⃑⃑⃑⃑ − 𝑝1⃑⃑ ⃑ >

�⃑� = �⃑� × 𝑣
(7.54)

237

𝑒𝑛⃑⃑⃑⃑ =
�⃑�

|�⃑� |
=
�⃑� × 𝑣

|�⃑� × 𝑣 |

Where 𝑝1, 𝑝2, 𝑝3 are the point coordinates for point 1, point 2, and point 3 in the triangle,

respectively. Here, × denotes the cross product of two vectors. Two other base vectors and an

offset are also necessary to define the coordinate system. The center of the triangle will be used as

the new origin, so the transformation offset (𝑐) will be:

𝑐 =
𝑝1⃑⃑ ⃑ + 𝑝2⃑⃑⃑⃑ + 𝑝3⃑⃑⃑⃑

3
 (7.55)

The other two base vectors should be perpendicular to the normal vector (new Z-axis). To

accomplish this, it is known that the vectors �⃑� and 𝑣 , which lie in the triangle (in the plane), by

definition are perpendicular to the normal vector. So the first base vector is chosen to be the unit

vector in the �⃑� direction:

𝑒1⃑⃑ ⃑ =
�⃑�

|�⃑� |
 (7.56)

And the second base vector should be perpendicular to both the normal (𝑒𝑛⃑⃑⃑⃑) and the first base

vector (𝑒1⃑⃑ ⃑):

𝑒2⃑⃑ ⃑ =
𝑒𝑛⃑⃑⃑⃑ × 𝑒1⃑⃑ ⃑

|𝑒𝑛⃑⃑⃑⃑ × 𝑒1⃑⃑ ⃑|
 (7.57)

This can be visualized first on the analytic surface defined in Equation (7.46) as in Figure 7.61.

238

Figure 7.61. The new coordinate systems for each triangle in the mesh as it sits on the plane.

For scaling purposes, the z-coordinate shown here is the square root of the Z-coordinate defined

by Equation (7.46). The blue lines on each triangle correlate to 𝑒𝑛⃑⃑⃑⃑ , the red line is 𝑒1⃑⃑ ⃑, and the

green line is 𝑒2⃑⃑ ⃑. The blue lines represent 𝑒𝑛⃑⃑⃑⃑ , the green lines represent 𝑒2⃑⃑ ⃑, and the red lines

represent 𝑒1⃑⃑ ⃑.

Once the base vectors of the new coordinate system are identified, the coordinate

transformation can take place. The transposition of any coordinate from Cartesian (x, y, z) to the

new coordinates (𝑒𝑛⃑⃑⃑⃑ , 𝑒1⃑⃑ ⃑, 𝑒2⃑⃑ ⃑) requires a decision on the new origin location, here taken as the

triangle center. The transposition of any coordinate from Cartesian coordinates to the new origin

needs the linear transformation vector (𝑡):

𝑡 = −𝑐 (7.58)

239

The implementation of the transformation requires the Cartesian coordinate (vector 𝑎𝑃⃑⃑⃑⃑ ⃑) to be

projected onto the new base vectors using a dot (or inner) product and translation vector to the new

origin. This results in the same coordinate in the new coordinate system (𝑝′⃑⃑ ⃑):

[

𝑒1⃑⃑ ⃑
𝑇

𝑒2⃑⃑ ⃑
𝑇

𝑒𝑛⃑⃑⃑⃑
𝑇

] 𝑎𝑃⃑⃑⃑⃑ ⃑𝑇 + 𝑡𝑇 = 𝑝′⃑⃑ ⃑
𝑇
 (7.59)

The coordinate transformation can be shown for one triangle (the blue triangle):

Figure 7.62. Translating the (Left) original structure in Cartesian coordinates to (Right) the

coordinate system defined by the blue triangle.

The new Z-coordinate is the distance from the triangle center in the direction of the normal

vector. This new set of coordinates can be used for the curvature paraboloid fitting problem. The

blue circle indicates the center of the triangle, which is now the origin of the new coordinate

system.

240

7.8.2.1 Case studies

Small section of human pial surface. A portion of a human cortex was cut out of a pial surface

reconstruction and evaluated using the curvature estimation described here. The surface was

colored by different variations of the curvature. The entire hemisphere was also evaluated and the

surface colored by maximum curvature and sum of curvature. These methods assist in

identification of the gyrations. The sum of curvature identifies the peaks of the gyrations as well.

241

Max curvature (color range [-0.22..0.90]) Max of norm value curvature (color range [0.005..0.90])

Min curvature (color range [-0.1..0.1]) Min of absolute value curvature (color range [0..0.1])

Sum of curvature (color range [-1..1]) Sum of curvature norm (color range [0.005..0.6])

Curvature ratio (max/min) (color range [-1..1]) Norm of curvature ratio (max/min) (color range [-1..1])

Figure 7.63. Visualization of many types of curvature calculations across a small section of the

human cortical surface.

The best identification of the peaks and valleys of the surface are obtained from sum of

curvature, min and max of curvature.

242

A)

B)

Figure 7.64. Curvature calculations on the hemisphere reveal excellent identification of ridges

and valleys.

A) maximum curvature shows gyrations (valleys) and B) sum of curvature and ridges, sum of

curvature). Color scale for both cases is [-1..1].

7.8.2.2 Growth along the valleys

Growing throughout the valleys requires a logic for backbone additions. Key items to consider

during this phase includes:

243

 Vessels should be distanced outwards from the pial surface, so as not to collide with the

triangular mesh

 Growth should create a tree but not a binary tree (extensions should be allowed)

 Growth should “creep” along the valleys and not cut through gyrations

 Growths should not change direction by more than 60 degrees at a single point

To follow these guidelines, the growth can begin with the current backbone (either an entire

pial reconstruction backbone, or simply the MCA M1 segment). Note, if the entire pial surface

reconstruction is used as a backbone, a set of starting mesh faces needs to be identified and a list

of faces belonging to mesh elements already occupied by vessels must be provided manually to

avoid growing new pial vessels where the backbone already exists. If only the M1 segment is used,

then the growth can simply find the nearest face as the initial face selection.

Next, the ridge detection algorithm will create a mask for the surface elements (a value of 1

indicates an element from the bottom of the valley, a 0 indicates an insignificant face, and a value

of 2 indicates a ridge). A list of faces with a value of 1 can be identified by simply interrogating

the mask.

The growth can then expand from the initial face list by expanding multiple levels (as described

in Section 7.8.1) to identify faces for new additions. From these new additions, a face selection

can be chosen and a new face center (or random point in face) can be identified.

To keep the vessels above the surface, the normal of the triangle should be scaled by a random

number between the radius (~50 microns) to a maximum (guessing 100 microns) from the triangle.

To add bifurcations at locations where a single gyration breaks into more than 1 gyration, a

“floating island” method can be implemented. This algorithm can begin with a single element in

244

the selection list and expand within the current list selection, removing indices as they are

identified. If the method cannot expand any further and at least one element remains on the list,

there is more than 1 island of samples. This is where the algorithm can create 2 expansions and

attach a bifurcation instead of a simple extension.

245

7.9 Appendix I: Reconstructing network geometry

7.9.1 Overview

Reconstructing vascular networks can be performed in many ways. Manual reconstruction is

discussed in reference to 3D structural geometry of larger, dense structures in Section 7.10.

Unfortunately, due to the denseness of the angiograms (image stacks) acquired, it is time-

prohibitive to reconstruct the vasculature manually. Semi- or fully-automated anatomical

reconstruction has been intensely investigated with many algorithms proposed [41,42,45,68,69].

Here, execution of 4 of these algorithms for extracting vessel centerlines from medical images will

be discussed.

In order to enhance the signal-to-noise ratio of the source image stack, a vesselness filter was

applied. More information on this filter can be found in another paper [68]. This algorithm is a

standalone application that loads a text file with a parameter list and then loads a group of DICOM

images. The result of the filtering procedure is a new set of DICOM images that have the

background repressed and the vessels enhanced. This algorithm (and a sample dataset) can be

found on the lab website [175]. This method uses the eigenvalues of the Hessian matrix to measure

local intensity curvature. Each curvature magnitude corresponds to a unique eigenvector which is

aligned to the maximum/minimum curvature. A large eigenvalue indicates a steep drop-off of

intensity in one direction while a small eigenvalue indicates that Eigen-direction has low intensity

curvature (flat). This will imply a longitudinal structure while the edges drop off in intensity rather

quickly.

Once the images have been filtered, they can be processed by 4 methods for detecting the

vascular skeleton (centerlines), (i) open source Matlab program and (ii) open source VMTK

246

software built on the visualization toolkit (VTK) libraries, and (iii) an open source Matlab program

for centerline axis thinning, (iv) imageJ centerline extraction. A nice comparison of centerline

extraction tools has been published elsewhere [176].

The theory [177] and implementation [178] of the open-source algorithm in Matlab is

explained in detail elsewhere. This algorithm takes a 3D binary matrix as an input and uses integer

math to identify the centerline and diameter information by marching through adjacent voxels and

recording distances. One major drawback to this method is that it implies voxel dimensions of

1x1x1mm (voxel size in x, y, and z dimensions are the same). If one of the dimensions is

significantly off, then this dimension should have to march twice as many cubes to account for the

same physical distance, something that is not accounted for in this algorithm.

The VMTK algorithm uses a marching sphere and seed points to identify the centerline and

diameter information of an image. This method pushes a sphere (with variable radius) through the

isosurface (STL triangulated surface structure) and tracks the center of the sphere and radius. In

order to ensure the radius is correct, it performs a method of expanding a minimal sphere until it

reasonably approximates the surface structure. The triangulated surface can be generated in many

ways such as marching tetrahedrons.

The Matlab program entitled centerline axis thinning uses a binary 3D matrix as input to

process the centerline and diameter information. The centerline is identified by simply using

Boolean operations to constrict the vessels until only a single voxel remains. These single voxels

are then connected to create a centerline structure. The diameter is then approximated by an

integer-stepping logic to identify the edge of the vessel.

The open-source image reviewing software entitled Fiji ImageJ also comes equipped with a

centerline extraction tool. This extraction tool is optimal for identifying centerlines (but not

247

diameter) of single-image vascular stacks such as images of mouse retina. This tool works in 2D

and in 3D alike. This tool can be run from ImageJAnalyzeSkeletonSkeleton 2D/3D.

Although the Matlab tools are easy to use, only requiring DICOM loading and a threshold

value, they are not accurate in all cases. For instance, noisy or dense data (such as the images from

the Sled group [70,179]) leads to excessive artificial arcs between close segments. This leads to a

web of segments that does not accurately represent the structure contained within the image. In

most cases of sparse networks with reasonable background suppression, the VMTK method is

more robust. For the best results, reconstructions should be performed with all methods and

compared to the original image stack using in-house tools described elsewhere [180]. To assist

with execution, a walkthrough on how to use VMTK to reconstruct images is offered in the next

section.

7.9.2 Reconstructing with VMTK

The steps for reconstructing image vasculature with VMTK include; (i) run

VesselFilterRelease.exe, (ii) install and open VMTK, and (iii) run VTP case converter.

7.9.2.1 Step 1. run vesselness filter

Run VesselFilterRelease.exe downloaded and installed from the website or found internally at

S:/00_numberedItem/22_Pipeline/VesselFilter/VesselFilterFixed/for_testing/). A window

will pop up, select the filterOptions file in the same folder as VesselFilterRelease.exe. Next,

another window will pop up. This will prompt the user to select the stack of MRA/MRV DICOM

images for filtering. The process will then run for 10-15 minutes (time based on a standard desktop

248

for an MRA stack). It will take considerably longer for larger datasets (because of the nonlinear

relationship between voxel dimension and the total voxel number).

When the process is finished, two images will pop up. One is the maximum intensity projection

(MIP) of original data, and the other is the MIP of the filtered data (for verification purposes). If

the filter did not work correctly, adjust the filtration parameters in the filterOptions file.

A new directory (folder) will be made in the root folder (the same folder as

VesselFilterFixed.exe) named FilteredImages. The new images will be written to this directory in

DICOM format, although they will not have any file extension. This helps delineate the processed

files from the originals.

7.9.2.2 Step 2. Run VMTK

The next step can proceed after installation of VMTK. Instructions for this can be found online.

A directory must be created to put the new images in after processing. The following code can be

appended by replacing the red portion with the new directory name. Extra attention must be paid

to using forward slashes for directory names as backslashes (default in Windows) will not process

in the compiler. An additional code is offered to obtain an STL file also from this pipeline. This

code (lower box) must be inserted into the main code (upper box) between the 2nd and 3rd block of

code. The directory in blue is where the filtered images from Step 1 are located.

vmtkimagereader -f dicom -d "C:/Users/LPPD-IS/Desktop/David

Folder/VesselFilter/VesselFilterRelease/for_testing/FilteredImages/" --pipe vmtklevelsetsegmentation -ofile

"C:/Users/LPPD-IS/Desktop/6 Subjects/Filtered6Subjects/KTVMTK/LS2.vti"

vmtkimageviewer -ifile "C:/Users/LPPD-IS/Desktop/6 Subjects/Filtered6Subjects/CHVMTK/LS2.vti" --pipe

vmtkmarchingcubes -l -0.0 -connectivity 1 -ofile "C:/Users/LPPD-IS/Desktop/6

Subjects/Filtered6Subjects/KTVMTK/MC2.vtp"

249

vmtksurfacecapper -ifile "C:/Users/LPPD-IS/Desktop/6 Subjects/Filtered6Subjects/CHVMTK/MC2.vtp" --pipe

vmtksurfaceclipper --pipe vmtknetworkextraction -ofile "C:/Users/LPPD-IS/Desktop/6

Subjects/Filtered6Subjects/KTVMTK/CL2.vtp"

vmtkcenterlineviewer -ifile "C:/Users/LPPD-IS/Desktop/6 Subjects/Filtered6Subjects/KTVMTK/CL2.vtp"

vmtksurfacereader -ifile "C:/Users/LPPD-IS/Desktop/6 Subjects/Filtered6Subjects/KTVMTK/MC2.vtp" --pipe

vmtksurfacewriter -ofile "C:/Users/LPPD-IS/Desktop/6 Subjects/Filtered6Subjects/KTVMTK/MC2.stl”

The following image will pop up if the code compiled correctly. Note, if instead of this image,

a red 2D plane is presented, the internal information in the DICOM header is incorrect and must

be cleaned. An internal program can be used in Matlab located in S:\00_numberedItem

\20_Software\Data Converters\DicomToDicom_infoRewrite.m to rewrite voxel dimensions.

Figure 7.65. Screenshot of the VMTK software after successful compiling of the code and

execution of the first lines.

250

Next, press 1 for Fast Marching Cubes. The next step involves setting an upper and lower

threshold. This can be obtained during the current step by scrolling through images, clicking on

them, and recording values of background noise and desirable voxels. The lower threshold should

be appropriately high to eliminate subtle background noise that may not be visible in the viewer.

A choice of ~200 is suggested for standard MRA images that have been filtered through Step 1.

The next step is to type in the lower threshold value and press enter. The process is repeated for

the upper threshold. Note, a value of n may be used for the upper threshold in lieu of a value if

there is not an upper bound to the intensity of desirable voxel intensities.

The next step, in cerebrovascular imaging data, is to find (towards one of the ends of the stack)

three white spots that pertain to the basilar (BA) and carotid arteries (LCA and RCA). The user

must hold the control (CTRL) button while simultaneously clicking on these white spots to place

three red spheres. These spheres will be the seed points used to initialize the segmentation

procedure.

251

Figure 7.66. Screenshot of the VMTK software after successful identification of the BA, LCA,

and RCA and placement of red spheres on these locations.

The next steps are straightforward:

1. Press q twice

2. If the new figure is correct, press y and then press enter

3. If all branches have been captured, press n. Otherwise, click yes and add additional seed

points and repeat the segmentation.

4. Press enter twice

5. Press y and then enter

6. Press y and then enter

7. Press n and then enter

At this point, the current screen will close and a new one will pop up. The user must then press

q again. Note, if vessels have been cut off, the selection of -connectivity 1 in the provided code

(upper box above) must be omitted as it only shows largest connected segments.

252

 Next, the user must type one or more of the numbers on the screen with a space between them

(like 0 1 2) before pressing enter. Note, the selection of numbers does not seem to produce different

structures, so any selection will work. In the event no numbers are visualized on the screen, the

user must modify the provided code to replace vmtksurfacecapperwith vmtksurfaceviewer and

rerun the code.

The user must then press I to interact with the new structure in the provided interface. The next

step requires placement of a box over the end of the carotid artery and pressing space to cut the

end of this vessel. It is important that the box cut perpendicular to the vessel for best results. The

user then presses q again.

7.9.2.3 Step 3. run VTP-to-case/nwk converter

At this point, three files have been created. A proprietary C++ code has been developed by the

LPPD to convert the new files into the internal mesh file format used in the lab. To run this C++

code, the user must locate the source code in the directory VMTK2NWK located on internal servers

at S:\00_numberedItems\22_Pipeline_CY\. This directory must be copied to the local hard drive.

The three files generated previously (CL2.vtp, centerline info, LS2.vti, dicom info, and MV2.vtp,

marching cubes info) need to be copied into VMTK2NWK/executable/ directory. The user can then

run load the centerlines.sln file from the VMTK2NWK/bin directory into Visual Studio and run it.

For ease, the user may also run only the executable to produce a new case and network file.

To run with Visual Studio, the user must place the three files into /bin instead of /executable.

At this point, if on the right hand side in the “solution explorer” the line “centerline” is not bolded,

so the user must double-click it to set it as the startup project. The project can then be compiled

and run in debug mode.

253

A command window will pop up and prompt the user for the marching cubes file. The user

will respond by typing MC2.vtp and hit enter. After the prompt for the centerline, the user should

type CL2.vtp and hit enter.

Once the system has completed its operation a new window will pop up for review. If the

information is correct, the user can close the window. The new case and network files will be

found in the directory VMTK2NWK/bin/data/.

The user must then open the case file and include a line that reads <meshfile> above the line

reading meshfile=. The user must also delete the Data/nwk/ text in the meshfile name.

254

7.10 Appendix J: Mesh reconstruction

Anatomical reconstructions can be performed with the help of automated software, such as

Freesurfer [181], or manually using manual segmentation tools such as ITK-Snap [182]. These

structures accurately capture the topology of the surface gyrations and interior voids, such as the

ventricles. This lends to a detailed 3-dimensional geometry of the pial surface and white matter

which can be exported as a stereo lithography (STL) file. This file is then amenable to meshing

through tools such as ICEM (Geneva, CH) which can make a 3D volumetric mesh from a surface

mesh using a method similar to Voronoi tessellation which simply fills the space within the 3D

region with points and connects the points to the neighbors until all volumes between points is

accounted for.

The images for reconstruction can be acquired from either an MRI imaging machine or similar

machine capable of obtaining the grey/white matter interface with high signal-to-noise-ratio

(SNR). This 3D imaging stack must be in DICOM format for proper reconstruction with previously

mentioned tools. Once the DICOM images have been reconstructed, the anatomical regions in the

brain can be meshed and labeled using ICEM. An example of this can be seen in Figure 7.67.

255

Figure 7.67. Anatomical reconstruction showing a mouse brain in two viewpoints.

Reconstruction was performed with ITK-Snap and meshing/labeling was performed by ICEM.

This method of growth is great for obtaining realistic geometry, however it suffers from a large

number of volume elements (>10 million). Moreover, the quality of mesh at sharp interfaces, such

as the CSF-white matter interface, needs significantly more volume elements. The best way to

solve problems of this scale is to use the commercial software ANSYS (Canonsburg, PA) as was

used in a tumor diffusion problem [183].

256

7.11 Appendix K: Network analysis

7.11.1 Modeling with networks

Network analysis is a powerful tool for reducing 3-dimensional vascular systems to a lower

dimensional structure (radially symmetric tubes) that can represent the 3D geometry. These one

dimensional networks are represented by nodes and arcs with accompanying diameters. This

method simplifies the partial derivatives in multiple dimensions in ODEs and PDEs to a single

dimension. This facilitates the simulation of large geometric structures such as every vessel in an

entire mouse hemisphere. Network analysis often implies simplifying assumptions. One such

assumption is that the arcs can be represented by a series of adjacent cylinders as opposed to a

structure with a non-circular cross sectional. This section will summarize how to use network

analysis to solve blood flow equations for cerebral vascular trees.

Stationary blood flow can be predicted using the Hagen Poiseuille (HP) equations (derived in

Section 7.11.4). These equations can be expressed in a compact matrix form using incidence

matrices that relate resistance, flows, arc connectivity, and pressure drop. By using these matrices,

the problem of solving flow equations is simply converting the graph structure into suitable

connectivity matrices (C1 and C2) that are directly amenable to conservation balances. This

approach is similar to the cut matrices used by Tellegen’s theorem [131] which formalizes the

relationship between adjacency matrices, cut matrices, and conservation balances.

The proposed network formulation is also applicable to DC electric circuits by merely

replacing the HP resistance with suitable electrical resistances. It also applies to heat conduction

and diffusion problems as long as the domain can be represented by a network of nodes and arcs

257

and each arc can be endowed with a characteristic resistance. This formulation can thus be

considered a universal representation of any diffusion problem.

7.11.2 Problem Formulation and solving

Using network analysis to solve physical problems requires minimal steps to set up and execute

the simulation. The steps include (i) identifying the geometry, (ii) describe the states and flux

equations, (iii) apply flux to arcs, (iv) apply conservation to flux expressions, (v) identify boundary

conditions and finally (vi) solve linear algebraic system of equations.

Identify geometry. In order to simulate a physical domain, the geometry of the domain must be

clearly defined. This can be performed from with idealized geometries, image reconstruction as

discussed in Section 7.9, or with synthetic geometries as discussed in Section 2-3. In order to store

the network to a file, sparse matrix format is recommended such as those reviewed in an internal

report [184].

Identify the physics of the system. The governing states (heat, energy, moles, etc.) and the

relevant flux equations must be identified using physical knowledge and empirical relationships

that define the system. Using the laws of transport phenomena, the flux of extensive properties can

be computed using first principles such as diffusion and convection. An example of a diffusion

problem with isotropic diffusivity constant D is given in Equation (7.60), although this value can

vary between arcs, as exists in blood flow computations. Here, 𝜙 is a scalar field representing

extensive property values at each node. 𝑓 is the vector field of flows across the corresponding arcs.

𝐶1𝜙 = 𝐷𝑓 (7.60)

258

Apply constitutive equation to each arc. Now that the equations and states have been identified,

the domain consisting of points and arcs can be used for equation formulation. Each flux/flow

equation must be applied to each arc in the system. The connectivity matrices stored while

identifying the geometry should give the node-arc relationship. The connectivity matrix C1 is

generated in this step and should be encoded as a sparse matrix to save memory overhead. It is

common practice use the arc index as the row index in the C1 matrix.

Apply conservation to each node. Extensive properties (heat, moles, mass, etc.) must be

conserved in a system. To conserve these properties, a new connectivity matrix (C2) needs to be

defined following Equation (7.61). This matrix is formulated by identifying all arcs connected to

a given node, and expressing the flows of these nodes all sum to a value of 0. Note, this matrix

will need to be appended at terminal nodes with boundary condition equations. It is common

practice that the row index of the C2 matrix is the same as the node index in the graph. It is worth

noting that the C2 matrix is equivalent to –C1
T except for the boundary terminal equations.

𝐶2𝑓 = 0 (7.61)

Solve the linear algebraic system. In steady-state simulations, Equations (7.60)-(7.61) should

constitute a linear (or in some cases nonlinear) algebraic, non-singular, set of equations which can

be solved with iterative or direct methods. Briefly, direct methods such as Gaussian elimination

(MA48 is recommended for efficiency and robustness [185]) and iterative linear algebraic solvers

(recommended to use GMRES with a preconditioner such as Block Jacobi, both available through

open-source PETSc [186]) are openly available. These solvers are further discussed in another

report [187]. In the case of a dynamic system, the discretized ODEs can be solved using knowledge

259

from the eigenvalue report [188]. PDEs can be solved using knowledge from the collocation report

[189] and the analytic solution to the wave equation report [190]. In the event of a PDE with only

time and spatial discretization, the time can be numerically integrated as discussed in Section 7.31.

Example. A simplified network can be constructed as in Figure 7.68. This network will be used

to simulate blood flow. HP flow will be applied to each arc to relate our state variable (pressure)

to volumetric flow rate as a function of the arc resistance (∝𝑖) as described by Equation (7.62).

Mass conservation will be applied at each node as described in equation (7.63). These equations

can be written in matrix form as in Equations (7.64)-(7.66) in both component and compact form.

The problems can also be formulated in a more general sense as originally proposed by

Tellegen [131].

∆𝑃 = ∝ 𝐹 (7.62)

𝐹𝑖𝑛 − 𝐹𝑜𝑢𝑡 = 0
(7.63)

Figure 7.68: A simplified network of nodes (P) and arcs (F).

260

𝐶1 =

[

1 −1 0 0 0 0
0 1 −1 0 0 0
0
0
0
0

0
0
1
0

1 −1 0 0
0 1 −1 0
0
0

0
0

−1 0
1 −1]

𝐶2 = [

1 −1 0 0 −1 0
0 1 −1 0 0 0
0
0

0
0

1 −1 0 0
0 1 1 −1

]

∝=

[

∝1 0 0 0 0 0
0 ∝2 0 0 0 0

0
0
0
0

0
0
0
0

∝3 0 0 0
0 ∝4 0 0

0
0

0
0

∝5 0
0 ∝6]

(7.64)

𝐶1𝑝 =∝ 𝑓
(7.65)

𝐶2𝑓 = 0
(7.66)

7.11.3 Tellegen theorem

One alternative method for solving network problems is by using Tellegen’s theorem,

published in 1952 by Bernard Tellegen, which uses Kirchhoff’s laws of electrical circuit

theory [131]. The basic assumptions in such a network are the conservation of extensive properties,

such as flows (via Kirchhoff’s current law), and the state potential at the nodes of the network

(Kirchhoff’s voltage law). The general form for a given electrical circuit is given by equation

(7.67) and it states that the energy stored in a circuit must be equal to the power

consumed/dissipated (𝑃 = 𝑉 ∙ 𝐼) and any source power from the terminals (𝑃𝑒,𝑖). More on this

derivation can be found in a previously published thesis [191].

261

∑
𝑑𝑄𝑒,𝑖
𝑑𝑡

𝑉𝑒,𝑖

𝑛𝐶

𝑖=1⏟
𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑡𝑜𝑟𝑒𝑑 (𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒)

= − ∑𝐼𝑖𝑗∆𝑉𝑒,𝑖𝑗

𝑛𝑓

𝑖=1⏟
𝑃𝑜𝑤𝑒𝑟 𝐿𝑜𝑠𝑠/𝐷𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛

+ ∑𝑃𝑒

𝑛𝑓

𝑖=1⏟
𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 (𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑠)

(7.67)

7.11.4 Linear flow (Hagen Poiseuille)

The Hagen Poiseuille (HP) model for 1-dimensional simulation of blood flow has been used

for over a century and is considered commonplace when calculating flow through a tube. While

blood flow through a vessel is more complicated than single-phasic liquid flowing through a tube,

this model has the advantages of giving a linear relationship between pressure and flow. This is in

opposition to biphasic blood flow (red blood cells suspended in plasma) which relates pressure

and flow nonlinearly. The HP model has been verified both experimentally and mathematically.

Derivation. The Navier-Stokes (NS) equations involve the balancing of 3 states in order to

maintain continuity, conserve energy, and conserve mass. This set of equations been accepted as

the gold-standard for predicting fluid flow in a 3D system. The HP equations can be derived from

the NS equations beginning with the momentum continuity portion of the Navier Stokes equations

(in radial coordinates), assuming incompressible fluid and no-slip boundary condition at the wall:

𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 + 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 = 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 = 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒 + 𝑠ℎ𝑒𝑎𝑟 𝑙𝑜𝑠𝑠

𝜌
𝑑𝑣

𝑑𝑡
+ 𝜌𝑣∇𝑣 = −Δ𝑝 + ∇ ∙ 𝜏

(7.68)

Where v is velocity, 𝜌 is density, p is pressure, t is time and 𝜏 is the stress tensor In cylindrical

coordinates:

262

 𝜏 = −𝜇
𝑑𝑣

𝑑𝑟
|
𝑟=𝑅

(7.69)

Where R is the radius of the vessel, 𝜇 is viscosity and r is radius. At low Reynold’s number

(viscous forces >> convective forces), as is assumed in the case of blood vessels in the brain,

inertia can be neglected. At steady-state, the 𝑑/𝑑𝑡 terms become 0. Implementing these steps and

simplifying, equation (7.68) becomes (in radial coordinates):

−Δ𝑝 = 𝜇∇ ∙ ∇𝑣

 = μ
1

r

𝑑

𝑑𝑟
(𝑟
𝑑𝑣

𝑑𝑟
)

Where:

𝑣 =
𝑄

𝐴
=

𝑄

𝜋𝑟2

(7.70)

Where Q is the volumetric flow rate. Considering diffusion in cylindrical coordinates:

∇ ∙ ∇𝑣 =
1

r

𝑑

𝑑𝑟
(𝑟
𝑑𝑣

𝑑𝑟
) +

1

𝑟2
𝑑2𝑣

𝑑𝜃
+
𝑑2𝑣

𝑑𝑧2
 (7.71)

Where z is the longitudinal direction. If symmetry is assumed around 𝜃 (i.e. dQ/d𝜃=0), and at

the wall, z directional velocity has a magnitude of 0 (due to the imposed no-slip boundary

condition) then this simplifies to:

263

∇ ∙ ∇𝑣 =
1

r

𝑑

𝑑𝑟
(𝑟
𝑑𝑣

𝑑𝑟
)

(7.72)

Equation (7.70) is rewritten as:

−Δ𝑝 = 𝜇
1

𝑟

𝑑

𝑑𝑟
(𝑟
𝑑𝑣

𝑑𝑟
)

∫ −𝑟Δ𝑝 𝑑𝑟
𝑟

= 𝜇𝑟
𝑑𝑣

𝑑𝑟

−
1

2
𝑟2Δ𝑝 =

𝜇

𝜋𝑟

𝑑𝑣

𝑑𝑟

−
1

2
𝑟2Δ𝑝 =

𝜇

𝜋𝑟

𝑑𝑣

𝑑𝑟

∫ −
1

2
𝑟3Δ𝑝 𝑑𝑟

𝑟

= 𝜇
𝑑𝑣

𝑑𝑟

−
1

8
𝑟4Δ𝑝 = 𝜇

𝑑𝑣

𝑑𝑟

−
1

8
𝑟4Δ𝑝 =

𝜇

𝜋𝑟2
𝑑𝑄

−Δ𝑝 =
8𝜇

2𝜋𝑟4
𝑑𝑄

(7.73)

Which, when applied to a network, the loss term (right hand side) needs to be integrated over

the length of the vessel which gives the HP equation:

264

−Δ𝑝 = ∫
8𝜇

2𝜋𝑟4
𝑑𝑄

𝑙

 𝑑𝑙

−Δ𝑝 =
8𝜇𝑙

2𝜋𝑟4
𝑑𝑄

(7.74)

Where l is the length of the vessel. Note, the viscosity term is an empirical value that can either

be a static value, or a diameter-dependent value as described later in the context of biphasic blood

flow (see Section 7.12.1).

7.11.4.1 Accounting for turbulent flow in HP

Modeling non-laminar flow or non-cylindrical flow is summarized by Equation (7.75) with

corresponding coefficients in

265

Table 7.14 as originally printed in Bird [192]. Rt is the tube resistance, Rd is the disturbance

resistance, and E𝑙 is loss due to friction in an energy balance. R is the hydraulic resistance in the

vessel, L is the vessel length, f is the friction along the vessel, v is the velocity of the fluid in the

vessel, and ev is the frictional factor as described by

266

Table 7.14.

𝐸𝑙 = Rt + 𝑅𝑑

𝐸𝑙 = W−∑
1

2
𝑣2
𝐿

𝑅
𝑓 − ∑

1

2
𝑣2𝑒𝑣

(7.75)

267

Table 7.14: Summary of frictional losses due to turbulent flow in a tube

Disturbance Friction factor (𝑒𝑣)
Changes in cross sectional area

Rounded entrance to pipe 0.05

Sudden contraction 0.45(1-β)

Sudden expansion
(
1

𝛽
− 1)

2

Orifice (sharp-edged) 2.71(1 − 𝛽)(1 − 𝛽2)
Fittings and valves

90 ̊ elbows (rounded) 0.4-0.9

90 ̊ elbows (square) 1.3-1.9

45 ̊ elbows 0.3-0.4

Globe valve (open) 6-10

Gate valve (open) 0.2

7.11.4.2 Problem simplification

The previously formulated state-flux (pressure-flow) problem in Section 7.11.1 gives a

representation in both unknown pressures and unknown flows. With the help of substitution, this

problem can be reduced by roughly half by eliminating the flows and solving for only pressures.

This is only one kind of simplification to reduce problem size and make such large networks more

tangible for solving.

7.11.5 Examples of Network Analysis

Case study 1, simplified cerebral circulation model. Figure 7.69 depicts a simplified

vasculature model. For each point, a mass balance (Equation (7.66)) must be performed. The

Hagen-Poiseuille law (Equation (7.65)) is applied to relate the flow through a tube with the

resistance and the pressure drop across it. The values for α are listed in Table 7.15.

268

Figure 7.69: Simplified Cerebral Angioarchitecture (flow is from left to right)

Table 7.15. Segment resistance for simulating the network in Figure 7.69

Face index

Resistance

[mmHg min/mL] Face index

resistance

[mmHg min/mL]

1 22423 9 2299668

2 12457 10 2299667

3 143729 11 2299668

4 28391 12 2299667

5 17744330 13 69

6 2299666 14 69

7 2299665 15 96

8 17744339 16 173

The equation inventory for each face and node in the network are listed in Table 7.16.

Table 7.16. Inventory of equations used for simulating the network in Figure 7.69

Nodes Mass conservation

P2 F1-F2=0

P3 F2-F3-F4=0

P4 F3-F5-F6=0

P5 F5-F12=0

P6 F4-F7-F8=0

P7 F6+F7-F10-F11=0

P8 F8-F9=0

P9 F11+F12-F13=0

P10 F9+F10-F14=0

P11 F13+F14-F15=0

P12 F15+F16=0

Nodes

Boundary value (mmHg)

P1 100

Hagen-Poiseuille Equations

𝐹1𝛼1 = 𝑃1 − 𝑃2

𝐹2𝛼2 = 𝑃2 − 𝑃3

𝐹3𝛼3 = 𝑃3 − 𝑃4

𝐹4𝛼4 = 𝑃3 − 𝑃6

𝐹5𝛼5 = 𝑃4 − 𝑃5

𝐹6𝛼6 = 𝑃4 − 𝑃7

𝐹7𝛼7 = 𝑃6 − 𝑃7

𝐹8𝛼8 = 𝑃6 − 𝑃8

𝐹9𝛼9 = 𝑃8 − 𝑃10

𝐹10𝛼10 = 𝑃7 − 𝑃10

𝐹11𝛼11 = 𝑃7 − 𝑃9
𝐹12𝛼12 = 𝑃5 − 𝑃9
𝐹13𝛼13 = 𝑃9 − 𝑃11

269

P13 5

𝐹14𝛼14 = 𝑃10 − 𝑃11

𝐹15𝛼15 = 𝑃11 − 𝑃12

𝐹16𝛼16 = 𝑃12 − 𝑃13

Case study 2, Circle of Willis model. In the first portion of the assignment we are to use mass

(flow) and momentum (HP) conservation equations to compute the flow in an enclosed Circle of

Willis (CoW) network (Figure 7.70).

270

A) B)

C)

Figure 7.70: Representations of the human Circle of Willis (CoW).

A) Cartoon image of labeled CoW diagram. B) Maximum intensity projection of CoW

anatomy in a human. C) Schematic figure of CoW in node and arc format. All the arcs are

numbered in red, and all the points (nodes) are labeled in black. The blue arrows represent

the direction of the flow assigned for all the network equations.

 For each point, a node balance (Equation (7.62)) must be performed, accounting for all the

flows going in and out. Then, for every face, the HP equations (Equation (7.63)) is applied to relate

the flow and pressure drop.

a b

271

Another way of solving this system of equations from is to solve the simplified system

described in Section 7.11.4.2. From Equation (7.63) the flow may be rewritten as in Equation

(7.76). This simplifies to equation (7.77) and Equation (7.62) can be written as equation (7.78),

where only the unknown pressure must be calculated and the system is smaller (more easily

solved).

𝐶1𝑝 = 𝑅𝑓 ⇒ 𝑅−1𝐶1𝑝 = 𝑓
(7.76)

𝐶2𝑅
−1𝐶1⏟ 𝑝
𝐶4

 = 0
(7.77)

[
𝐶4
𝐶3
] [𝑝] = [

0
�̅�
]

(7.78)

Writing Network Problem in Matrix Format. First, for smaller systems, all equations may be

written by hand, in order to validate computations. These equations are listed in Table 7.17. The

first step in writing the equations is defining a direction for each arc in the network. Once a

direction is chosen, the HP equation (Equation (7.63)) can be applied to all faces in the system to

create Equations (7.79)-(7.104).

Table 7.17: Hagen Poiseuille law applied on each face in the CoW

𝑃1 − 𝑃2 = 𝛼1𝐹1 (7.79) 𝑃8 − 𝑃9 = 𝛼7𝐹7 (7.80)

𝑃2 − 𝑃3 = 𝛼2𝐹2 (7.81) 𝑃7 − 𝑃8 = 𝛼6𝐹6 (7.82)

𝑃3 − 𝑃4 = 𝛼3𝐹3 (7.83) 𝑃13 − 𝑃14 = 𝛼12𝐹12 (7.84)

𝑃3 − 𝑃5 = 𝛼4𝐹4 (7.85) 𝑃14 − 𝑃15 = 𝛼13𝐹13 (7.86)

𝑃5 − 𝑃6 = 𝛼5𝐹5 (7.87) 𝑃15 − 𝑃17 = 𝛼15𝐹15 (7.88)

𝑃5 − 𝑃11 = 𝛼11𝐹11 (7.89) 𝑃15 − 𝑃2 = 𝛼17𝐹17 (7.90)

𝑃11 − 𝑃12 = 𝛼10𝐹10 (7.91) 𝑃14 − 𝑃16 = 𝛼14𝐹14 (7.92)

𝑃9 − 𝑃11 = 𝛼9𝐹9 (7.93) 𝑃16 − 𝑃18 = 𝛼16𝐹16 (7.94)

𝑃9 − 𝑃10 = 𝛼8𝐹8 (7.95) 𝑃16 − 𝑃8 = 𝛼18𝐹18 (7.96)

272

Because there are nine interior points, nine flow balances may be obtained (odd numbered

equations from Equations (7.97)-(7.114)) using conservation of mass (Equation (7.62)). The

boundary conditions are the even numbered equations from Equations (7.97)-(7.114).

Table 7.18. Flow Balances and Dirichlet Boundary for each point in the CoW
𝐹1 + 𝐹17 − 𝐹2 = 0 (7.97) 𝑃1 = 𝑃1̅ = 100 (7.98)

𝐹2 − 𝐹3 − 𝐹4 = 0 (7.99) 𝑃13 = 𝑃13̅̅ ̅̅ = 100 (7.100)

𝐹4 − 𝐹5 − 𝐹11 = 0 (7.101) 𝑃7 = 𝑃7̅̅ ̅ = 100 (7.102)

𝐹11 + 𝐹9 − 𝐹10 = 0 (7.103) 𝑃4 = 𝑃4̅ = 50 (7.104)

𝐹7 − 𝐹8 − 𝐹9 = 0 (7.105) 𝑃6 = 𝑃6̅̅ ̅ = 50 (7.106)

𝐹6 + 𝐹18 − 𝐹7 = 0 (7.107) 𝑃12 = 𝑃12̅̅ ̅̅ = 50 (7.108)

𝐹12 − 𝐹13 − 𝐹14 = 0 (7.109) 𝑃10 = 𝑃10̅̅ ̅̅ = 50 (7.110)

𝐹13 − 𝐹17 − 𝐹15 = 0 (7.111) 𝑃17 = 𝑃17̅̅ ̅̅ = 50 (7.112)

𝐹14 − 𝐹16 − 𝐹18 = 0 (7.113) 𝑃18 = 𝑃18̅̅ ̅̅ = 50 (7.114)

Between equations (7.79)-(7.96) and equations (7.97)-(7.114), there are 36 linear algebraic

equations to be solved. In this report, the system will be written in matrix form (part b) and

implemented in MATLAB using the resistances in Table 7.19 for all faces and the boundary

pressures in Table 7.18. Three separate conditions are used for all the momentum balances (Hagen-

Poiseuille), the flow balances, and boundary respectively.

Table 7.19: Resistance vector used in flow computations for the CoW (mmHg min/mL)

Arc Alpha Arc Alpha Arc Alpha
1 0.3 7 0.09 13 0.09

2 0.09 8 0.3 14 0.06

3 0.3 9 0.12 15 0.3

4 0.12 10 0.3 16 0.3

5 0.3 11 0.06 17 0.09

6 0.3 12 0.3 18 0.09

273

The equations from Table 7.17 may be written in the general form as shown in equation

(7.115), where the matrix 𝐶1 comprises all the coefficients of the pressures (𝑝), and the square

matrix 𝑅 has the resistance values for each branch.

𝐶1𝑝 = 𝑅𝑓
(7.115)

The matrix 𝐶2 in Equation (7.116) describes the set of equations for the flow (𝑓) balances at

each internal node:

𝐶2𝑓 = 0
(7.116)

Lastly, in equation (7.117), the boundary conditions are set in a third matrix, 𝐶3, that is

equivalent to the given inlet and outlet pressures (�̅�) from Table 7.18.

𝐶3𝑝 = �̅�
(7.117)

All the knowns may then be concatenated into a single large matrix, A, all the unknown

variables are organized into an x vector and the product of these is set equal to the known b vector

as shown in Equation (7.118).

[

𝐶1 −𝑅
0 𝐶2
𝐶3 0

]
⏟

𝐴

 [
𝑝
𝑓]⏟
𝑥

= [
0
0
�̅�
]

⏟
𝑏

(7.118)

274

The residuals were evaluated through insertion. Manual spot checks were performed on several

nodes and faces as an additional validation.

Table 7.20: Results of solving linear flow equations for simplified Circle of Willis model

Arc
Flow

(mL/min)

Residual

Flow
Node

Pressure

(mmHg)

Residual

Pressure

1 97.905 3.93E-15 1 100.000 -7.11E-15

2 77.479 5.37E-15 2 70.628 0.00E+00

3 45.518 4.06E-15 3 63.655 -8.88E-16

4 31.962 6.96E-15 4 50.000 8.88E-16

5 32.733 -3.47E-16 5 59.820 0.00E+00

6 96.312 -3.52E-16 6 50.000 3.55E-15

7 80.011 4.53E-15 7 100.000 -7.11E-15

8 46.351 -5.88E-15 8 71.106 0.00E+00

9 33.659 -2.98E-15 9 63.905 -3.55E-15

10 32.888 -3.45E-16 10 50.000 0

11 0.772 5.50E-17 11 59.866 -1.42E-14

12 91.370 1.01E-15 12 50.000 -1.42E-14

13 42.208 8.17E-15 13 100.000 -1.42E-14

14 49.162 9.62E-16 14 72.589 -1.42E-14

15 62.634 -7.83E-15 15 68.790 -1.42E-14

16 65.464 -3.54E-15 16 69.639 -1.42E-14

17 20.426 1.22E-14 17 50.000 0.00E+00

18 16.302 -2.89E-15 18 50.000 -7.11E-15

Case study 3, Circle of Willis model with extreme resistances. An occlusion can be simulated

by setting the resistance (α) to infinity in a segment (𝛼11 = ∞). This can be achieved practically by

setting the alpha value to a very high number (10e15, for example). Likewise, in other instances,

short segments can have very small resistances which cause numerical problems when solving the

linear algebraic system. To test this phenomenon, the resistance, 𝛼11, can be set to a value of 0. In

this case study, three methods will be used to attempt evaluation of these conditions; (i) original

(no modification to any vessel resistances), (ii) Model A (Equation. (7.62)-(7.63)) and (iii) Model

275

B (Equation (7.78)). The results of solving the simplified Circle of Willis network with an

occlusion are listed in and Table 9.21.

Table 7.21: Simulation results for an occlusion using different problem formulations

Node

Pressure

Original

Pressure

Model A

Pressure

Model B Arc

Flow

Original

Flow

MODEL A

Flow

MODEL B

276

Table 7.22: Simulation results for a very short vessel (resistance = 0) using different problem

formulations

Node

Pressure

Original

Pressure Fully

Coupled

Pressure

Simplified Arc

Flow

Original

Flow Fully

Coupled

Flow

Simplified

The problem formulation that solves for pressures alone is not capable of evaluating an arc

with 0 resistance thus the fully coupled problem must be used for this scenario. Both approaches

to solving the system work with a very large resistance vessel.

277

7.12 Appendix L: Alternative models of computing hematocrit and biphasic viscosity

Blood flow in the body is governed primarily by the pressure difference between the blood

leaving the heart (arterial blood pressure) and the pressure of blood returning to the heart (venous

blood pressure). The blood is, however, not just a homogenous fluid but rather a mixture of blood

plasma (bulk fluid) and red blood cells (RBCs, the particulate). This suspension gives rise to non-

linear behavior in viscosity, leading to an uneven distribution of blood flow and pressure

throughout a microcirculatory network. Moreover, the distribution of blood cells in a blood vessel

network is uneven as well, with nonlinear relationships between vessel diameter ratios at

bifurcations and the RBC distribution. This report investigates many mathematical models of the

viscosity dependence on RBC volume fraction (hematocrit) and the models for determining the

RBC split at a vascular junction (plasma skimming).

The findings of this report indicate the Pries In-Vitro model for viscosity and the KPSM model

for plasma skimming are the most stable and should be used for solving large microvascular

network simulations.

7.12.1 Viscosity:

Fahraeus-Lindqvist Effect. In the microcirculation, diameters < 300 μm, the biphasic

suspension of blood does not simply adhere to a simple parabolic shape that would be observed in

laminar fluid flow, but instead a significant decrease in the apparent viscosity (effective viscosity)

caused by the margination of a plasma layer near the vessel wall which lubricates the RBC-filled

core. This layer develops as the RBCs migrate to the faster-flowing center of the vessel. As a vessel

diameter decreases and the RBCs continue to aggregate in the smaller, central cross sectional area,

278

the speed of each RBC must increase to obey mass conservation leading to a shift in the velocity

profile of the biphasic fluid from a flat “plug flow” to a parabola.

A vessel junction is the meeting between two or more vessels. In the event a vessel continues

to only one daughter branch, it is known as a continuation (part of the same vessel). A junction

with two daughter vessels is known as a bifurcation, a trifurcation for three daughter branches, or

a multifurcation for more than three daughters. For simplicity, this report will mostly discuss the

case of a bifurcation unless otherwise noted. When blood flow in small vessels approaches a

bifurcation, the flow of the RBCs is naturally biased towards the branch with the higher flow due

to convection. This bias is enhanced, however, by an effect known as “plasma skimming” where

the RBCs also favor a daughter with a larger cross sectional area.

Cell-free marginal layer overview. While the viscosity of the whole blood in large vessels

(diameter > 300 um) is generally defined as an isotropic constant with a value of ~3.0cP [193,194],

at high shear rates biphasic fluid has been empirically observed to be less viscous (less friction).

Specifically, the viscosity is a function of the particulate density as diameter decreases in the range

of 7-300 𝜇𝑚. This observation is known as the Fahreus-Lindqvist effect and is generally attributed

to the axial accumulation of the RBCs with decreasing diameters, which leads to the formation of

a cell free layer (CFL) that can lubricate the movement of the red blood cell core and reduce the

effective viscosity. Additionally, the Fahreus effect (Figure 7.71) enhances this effect, describing

the reduced hematocrit concentrations in smaller vessels.

279

Figure 7.71: Fahreus and Fahreus-Lindvqvist effect illustration.

The tube hematocrit(𝐻𝑇), defined across the smaller vessel is smaller than the feed (𝐻𝑓), or

discharge (𝐻𝑑) due to the axial accumulation of the red blood cels (less red blood cells can fit

in the reduced cross sectional area – Fahreus effect); This agglomeration of RBCs in the center

of the is then referred to as the core hematocrit (𝐻𝑐) and the crossection outside the concentrated

middle is named the cell free layer (CFL). This separation of the two phases (core and annulus)

leads to the distinction between the core viscosity (𝜇𝑐) and the cell free layer viscosity (𝜇𝑜--

usually approximated as plasma viscosity). The lower viscosity at the edge of the wall provides

a lubrication effect for the central RBCs, reducing the apparent viscosity of the biphasic fluid

(Fahreus-Lindqvist effect).

Previous work has empirically derived a value for blood viscosity as a function of diameter

and RBC density. The parameter frequently used to represent the RBC density is the volume

fraction of RBCs to vessel volume, termed hematocrit (Hct), as calculated in Equation (7.119). At

large diameters, the viscosity tends to increase (more friction) as a function of higher hematocrit

levels. A comparison of viscosity to diameter and hematocrit is given below. As observed in Figure

7.72, Fahraeus, Gaehtgens and Bayliss [195] were able to measure the flow and pressure drop

using an in vitro experiment to describe a diameter- and hematocrit- dependent apparent viscosity.

𝐻𝑐𝑡 =
𝑉𝑅𝐵𝐶

𝑉𝑅𝐵𝐶 + 𝑉𝑝𝑙
=
𝑉𝑅𝐵𝐶
𝑉𝑡𝑜𝑡

 (7.119)

280

Figure 7.72: Experimental data for changes in apparent viscosity with diameter.

The diameter (x-axis) is a logarithmic scale. This summary of phenomenological data [195]

describes the Fahraeus –Lindqvist effect, which predicts a lower viscosity at smaller diameters

due to the annular RBC free layer that lubricates the concentrated core.

One reason a decrease in diameter leads to a decrease in viscosity in the range of 10-100 μm

is due to the agglomeration of RBCs along the longitudinal axis of the blood vessel, which creates

a cell free layer (CFL) containing only plasma in small vessels. The existence of a CFL lowers the

effective diameter, and thus the volume, available for RBCs to travel. In this range, a tube

hematocrit can be calculated that expresses the RBC volume fraction of the core volume (as

opposed to total vessel volume). This value is always higher than discharge hematocrit (the total

vessel hematocrit; RBC volume that leaves the tube over a given time frame), or feed hematocrit

(RBC volume that enters the vessel over a given time frame). When the cross sectional area

occupied by the RBCs is diminished, mass conservation causes the core phase (plasma and RBCs

that are in the center of the vessel) to speed up beyond the plasma in the CFL. Several models

predict this change in the velocity profile of the two phases as described in a later section of this

report. A summary of these models is offered in Table 7.23.

281

Table 7.23: Overview Viscosity models
Viscosity Models Year Abbreviation CFL dependent Highest Power coefficients

Pries – in vitro [160] 1989 Pvt No 𝐷12
Pries – in vitro modified [196,197] 2013 Pvm No 𝐷12

Pries – in vivo [198,199] 2005 Pvv no 𝐷12
Kiani and Hudetz [200] 1991 KH Yes 𝐷4

Charm and Kurland [201] 1974 CK Yes e(−0.35𝐷)

7.12.1.1 Pries In Vitro and In Vitro Modified models

The first viscosity model examined is termed the Pries In-Vitro model. This model was

suggested by Pries in 1989 [202] derived from experiments in glass tube capillary surrogates. It

computes a relative viscosity 𝜇𝑟𝑒𝑙 (apparent viscosity/suspension viscosity) as a function of vessel

diameter and hematocrit. This model predicts viscosity for diameters <1mm.

In a later experiment, Lipowsky et al. [203] measured a larger apparent viscosity than predicted

by Pries. To compensate for this, Pries altered his 1989 model and offered an alternative parametric

description of blood viscosity termed the “in-Vitro Modified” formula [204,205]. This model

predicts the diameter decrease results in a decrease of apparent viscosity until 40µm, below which

diameter the trend reverses (lower diameter increases viscosity). The discrepancy between Pries’s

first and second model has been attributed to the presence of a 1µm layer of macromolecules

(glycocalyx or endothelial surface layer), which was claimed absent in the in-vitro experiments.

Equations (7.120)-(7.125) describe the apparent viscosity in the Pries In Vitro model

(Equations (7.120)-(7.122)) and Modified In-Vitro model (Equations (7.120)-(7.125)). The C

variable describes the dependence of viscosity on hematocrit. Note, C remains linear as diameter

increases from 0 to 8µ, beyond which it becomes highly nonlinear. The units and description of

relevant parameters are listed in Table 7.24. General trends are investigated in Figure 7.73.

282

𝜇𝑣𝑖𝑡𝑟𝑜 = [1 + (𝜇45 − 1)
(1 − 𝐻𝑑)

𝐶 − 1

(1 − 0.45)𝐶 − 1
] 𝜇𝑝𝑙𝑎𝑠𝑚𝑎 (7.120)

𝜇0.45 = 220 𝑒
−1.3 𝐷 + 3.2 − 2.44𝑒−0.06𝐷

0.645
 (7.121)

𝐶 = (0.8 + 𝑒−0.075 𝐷) (−1 +
1

1 + 10−11𝐷12
) +

1

1 + 10−11𝐷12
 (7.122)

𝜇𝑣𝑖𝑡𝑟𝑜𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 = [1 + (𝜇0.45
∗ − 1)

(1 − 𝐻𝑑)
𝐶 − 1

(1 − 0.45)𝐶 − 1
(

𝐷

𝐷 − 1.1
)
2

] (
𝐷

𝐷 − 1.1
)
2

𝜇𝑝𝑙𝑎𝑠𝑚𝑎 (7.123)

𝜇0.45
∗ = 6 𝑒−0.085 𝐷 + 3.2 − 2.44𝑒−0.06𝐷

0.645
 (7.124)

𝐶 = (0.8 + 𝑒−0.075 𝐷) (−1 +
1

1 + 10−11𝐷12
) +

1

1 + 10−11𝐷12
 (7.125)

Table 7.24: Table of variables for Pries’s in vitro viscosity models

Symbol Definition Units Value

𝜇
𝑣𝑖𝑡𝑟𝑜𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑

 Apparent viscosity Modified cP F(dia,Hd)

𝜇
𝑣𝑖𝑡𝑟𝑜

 Apparent viscosity Original cP F(dia,Hd)

D Vessel diameter 𝜇𝑚 Known scalar

𝐻𝑑 Discharge hematocrit Vol% Unknown scalar

𝜇
45

 Viscosity at Hd =0.45 cP F(dia,Hd)

𝜇
𝑝𝑙𝑎𝑠𝑚𝑎

 Plasma viscosity cP 1.0

283

(A)

(C)

(B)

(D)

Figure 7.73:Apparent viscosity of for the (A,B) Pries In-Vitro model and (C,D) Pries In-

Vitro Modified model.

(A, B) Apparent viscosity trends as vessel diameter varies. (C, D) Apparent viscosity as a

function of varying Hematocrit. Both models exhibit a decrease in viscosity as the diameter

decrease below 300 𝜇𝑚. The In-Vitro Modified model gives a higher viscosity at low

diameters.

7.12.1.2 Pries In Vivo model

A third model by Pries and Secomb [206,207], that was empirically derived using optical

microscopy of capillaries in the rat mesentery was used to advance the previous models by

accounting for the endothelial surface layer (ESL). An ESL thickness of 0.8-1µm was reported for

diameters of 10-40µm and declines considerably for diameters below 10µm. Note, there was no

experimental validation of this ESL layer effect. This new model was termed the “In-Vivo”

viscosity model.

10
1

10
2

10
3

Diameter (microns)

0

2

4

6
A

p
p

a
re

n
t

V
is

c
o

s
it
y
(c

P
) H = 0.1

H = 0.3

H = 0.45

H = 0.6

10
1

10
2

10
3

Diameter (microns)

0

2

4

6

8

A
p
p

a
re

n
t

V
is

c
o

s
it
y
(c

P
)

H = 0.1

H = 0.3

H = 0.45

H = 0.6

0 0.1 0.2 0.3 0.4 0.5

Hematocrit

10
0

10
2

10
4

A
p

p
a
re

n
t

v
is

c
o

s
it
y
(c

P
)

d = 1

d = 3

d = 8

d = 10

d = 30

d = 100

0 0.1 0.2 0.3 0.4 0.5

Hematocrit

10
0

10
2

10
4

10
6

A
p
p

a
re

n
t

v
is

c
o
s
it
y
(c

P
)

d = 1

d = 3

d = 8

d = 10

d = 30

d = 100

284

The viscosity formula expressed in (7.126)-(7.132) reflects the original nomenclature and no

simplification. 𝑊𝑎𝑠 is a monotonically increasing function that contains a vertical asymptote at the

maximum thickness of 𝑊𝑚𝑎𝑥. 𝑊𝑝𝑒𝑎𝑘 grows linearly to a peak at 𝐷𝑐𝑟𝑖𝑡 (critical diameter). Dcrit

decays exponentially to 0 as the diameter of a vessel increases. 𝐷𝑒𝑓𝑓 is the effective diameter

without the ESL and Wph is the assumed thickness of the layer.

285

Table 7.25: summarizes the variables from (7.126)-(7.132). Figure 7.74 expresses the viscosity

over a range of hematocrit and diameter.

𝑊𝑎𝑠 = {

𝐷 − 𝐷𝑜𝑓𝑓

𝐷 + 𝐷50 − 2𝐷𝑜𝑓𝑓
 𝑊𝑚𝑎𝑥 𝐷 > 𝐷𝑜𝑓𝑓

 0 𝐷 ≤ 𝐷𝑜𝑓𝑓

 (7.126)

𝑊𝑝𝑒𝑎𝑘 =

{

0 𝐷 ≤ 𝐷𝑜𝑓𝑓

𝐸𝑎𝑚𝑝
𝐷 − 𝐷𝑜𝑓𝑓

𝐷𝑐𝑟𝑖𝑡 − 𝐷𝑜𝑓𝑓
 𝐷𝑐𝑟𝑖𝑡 > 𝐷 ≥ 𝐷𝑜𝑓𝑓

𝐸𝑎𝑚𝑝𝑒
−𝐸𝑤𝑖𝑑𝑡ℎ(𝐷−𝐷𝑐𝑟𝑖𝑡) 𝐷 ≥ 𝐷𝑐𝑟𝑖𝑡

 (7.127)

𝑊𝑝ℎ = 𝑊𝑎𝑠 + 𝑊𝑝𝑒𝑎𝑘𝐸𝑝𝑒𝑎𝑘 (7.128)

𝐷𝑝ℎ = 𝐷 − 2𝑊𝑝ℎ (7.129)

𝐷𝑒𝑓𝑓 = 𝐷 − 2𝑊𝑒𝑓𝑓 (7.130)

𝑊𝑒𝑓𝑓 = 𝑊𝑎𝑠 + 𝑊𝑝𝑒𝑎𝑘[1 + 𝐻𝐷𝐸𝐻𝐷] (7.131)

𝜇
𝑣𝑖𝑣𝑜

= 𝜇
𝑣𝑖𝑡𝑟𝑜

(
𝐷

𝐷𝑒𝑓𝑓
)

4

 (7.132)

286

Table 7.25: Variables for Pries’s in vivo viscosity model

Symbol Definition Value Units

𝐷𝑜𝑓𝑓 Threshold diameter below which ESL is 0 2.4 𝜇𝑚

𝐷𝑐𝑟𝑖𝑡 Critical diameter 10.5 𝜇𝑚

𝐷50 Estimated free parameter 100 𝜇𝑚

𝑊𝑚𝑎𝑥
Maximal thickness ESL 2.6 𝜇𝑚

𝐸𝑎𝑚𝑝 Estimated free parameter 1.1 --

𝐸𝑤𝑖𝑑𝑡ℎ Estimated free parameter 0.03 --

𝐸𝑝𝑒𝑎𝑘 Estimated free parameter 0.6 --

𝐸𝐻𝐷 Estimated free parameter 1.18 --

D Vessel diameter Known Scalar 𝜇𝑚

Hd Discharge hematocrit Known Scalar --

𝜇
𝑣𝑖𝑡𝑟𝑜

 In Vitro Viscosity Computed Scalar (from Equation

(7.120) - (7.125))

𝑊𝑒𝑓𝑓
Definition -- --

𝑊𝑎𝑠
Definition -- --

𝑊𝑝𝑒𝑎𝑘
Definition -- --

𝐷𝑝ℎ Definition -- --

Figure 7.74: Apparent viscosity for Pries’s in vivo model.

Here, we see apparent viscosity as a function of hematocrit (left) and of diameter (right): The

apparent viscosity exhibits a local maxima (peak) around 10 microns, a global maxima at lower

diameters and global minima at larger diameters.

7.12.1.3 Charm and Kurland, marginal zone layer

Charm and Kurland presented an empirically derived model relating the apparent viscosity to

the cell free layer thickness (𝛿), the core hematocrit (𝐻𝑐) and the core viscosity (𝜇𝑐) of the

blood [201]. Charm and Kurland’s viscosity model was proposed as a method for fitting

10
1

10
2

10
3

Diameter (microns)

0

2

4

6

8

A
p

p
a
re

n
t

V
is

c
o
s
it
y
(c

P
)

H = 0.1

H = 0.3

H = 0.45

H = 0.6

0.01 0.1 1 0.01 0.1 1

Hematocrit

10
0

10
2

10
4

10
6

A
p

p
a
re

n
t

v
is

c
o

s
it
y

d = 1

d = 3

d = 8

d = 10

d = 30

d = 50

287

experimental data with a model. To fit the model, the cell free layer thickness and the core/tube

hematocrit are required to compute the apparent viscosity of the blood. This limits the comparison

with other viscosity models, as experimental data is not always available for all of the necessary

variables.

One way to solve this dilemma and calculate viscosity using the Charm and Kurland method

is to employ previously reported models for tube hematocrit and CFL thickness, Equation (7.133),

to fill in the missing experimental data [201]. Equation (7.134) describes the relationship between

the cell free layer thickness (𝜆), the core hematocrit (𝐻𝑐) and tube hematocrit (𝐻𝑡) as derived from

the marginal zone layer theory [208,209]. Here, 𝛼𝑐 is an experimentally derived as a function of

the 𝐻𝑐. Using Equation (7.133) - (7.136), the core hematocrit can be calculated through a system

of nonlinear equations and the apparent viscosity can be determined through Equation (7.137).

Figure 7.75 reflects the trends of this model under different hematocrit values.

𝐻𝑡
𝐻𝑑

= Hd + (1 − 𝐻𝑑)(1 + 1.7 𝑒
−0.35𝐷 − 0.6𝑒−0.01𝐷) (7.133)

𝜆2 = 𝐻𝑡/𝐻𝑐 (7.134)

𝐻𝑐
𝐻𝑑

= 1 +
(1 − 𝜆2)2

𝜆2[2(1 − 𝜆2) + 𝜆2(1 − 𝛼𝑐𝐻𝑐)]
 (7.135)

𝛼𝑐 = 0.07 𝑒
2.49 𝐻𝑐+(1107 𝑇⁄)𝑒−1.69𝐻𝑐 (7.136)

𝜇𝑎𝑝𝑝 =
𝜇𝑝

1 − 𝜆4(𝛼𝑐𝐻𝑐)
 (7.137)

288

Table 7.26: Variables for Charm and Kurland’s viscosity model

Symbol Definition Units Value

𝜇
𝑝
 Plasma viscosity cP 1.0-1.3

𝐻𝑡 Tube Hematocrit Vol % Computed Scalar (from Equation

(7.133))

𝐻𝑐 Core hematocrit 𝑉𝑜𝑙 % Computed Scalar (from Equation

(7.134))

𝑇 Temperature K 298 - 310

𝐻𝑑 Discharge Hematocrit 𝑉𝑜𝑙 % Known Scalar

D Vessel diameter 𝜇𝑚 Known Scalar

𝜆 Variable accounting for cell free layer -- Computed Scalar (from Equation

(7.135))

𝛼𝑐 Experimentally derived parameter -- Computed Scalar (from Equation (7.136))

𝜇
𝑝
 Apparent Viscosity cP Computed Scalar (from Equation (7.137))

Figure 7.75: Relevant dimensions in a single tube.

Across a single tube, D is the diameter and R is the radius of the vessel. The cell free layer (CFL)

occupies the outer cross section of the capillary and the effective radius (R*) is the radius without

the thickness of the CFL. The tube hematocrit may then be defined across the effective radius

as the core hematocrit (Hct) and is approximated as 0 for the section between R* and R. In

Equation (7.134)-(7.135), 𝝀 is the fraction between R*/R.

7.12.1.4 Kiani and Hudetz model

Kiani and Hudetz developed a viscosity model by modifying and combining the marginal zone

theory of Haynes [201] for large vessels with the axial-train model of Whitmore [210] for smaller

vessels [211]. Starting from the Navier-Stokes equation, Haynes derived a model for vessels larger

than 50μm, which accounts for flow both in the core and the cell free layer. In this axial-train

model, RBCs move in single file at diameters approaching the radius of an RBC.

289

Hudetz empirically derived a hematocrit dependence for the cell free layer thickness (𝛿) and

𝜇𝑐 (data from Reinke et al [212]). He reports a constant plasma viscosity of 1.7cP at room

temperature.

𝜇𝑎𝑝𝑝 =

[

1

1 − (1 −
𝜇𝑝
𝜇𝑐
) (1 −

2𝛿
𝑑
)
4 ∙

1

1 − (
𝐷𝑝
𝑑
)
4

]

𝜇𝑝𝑙𝑎𝑠𝑚𝑎 (7.138)

𝜇𝑐 = 𝑒
0.48+2.35 𝐻𝑑 (7.139)

𝛿 = 2.03 − 2 𝐻𝑑 (7.140)

𝐷𝑚 = 2.7 (7.141)

Table 7.27: Variables for Kiani and Hudetz’s viscosity model

Symbol Definition Units Value

𝜇
𝑝
 Plasma viscosity cP 1.7

𝜇
𝑐
 Core apparent viscosity for large tubes (d>300 𝜇𝑚) 𝑐𝑃 Equation (7.139)

𝛿 Cell free layer thickness 𝜇𝑚 Equation (7.140)

d Vessel diameter 𝜇𝑚 Known Scalar

𝐷𝑚 Maximal deformation of an RBC 𝜇𝑚 2.7

𝐷𝑝 Parent diameter 𝜇𝑚 Known Scalar

290

Figure 7.76: Apparent viscosity as predicted by Kiani and Hudetz viscosity model.

Left) Diameter-dependence of viscosity at different levels of discharge hematocrit. Right)

Hematocrit-dependence of viscosity at varying diameters. The model is less sensitive to

hematocrit, but it does not resolve any diameters below 2.7 𝜇𝑚.

7.12.1.5 Viscosity trends

A sparse representation of the diameter spectra at chosen hematocrit levels is presented in

Figure 7.77. As hematocrit approaches 1, the models become more unstable and creates a field that

is difficult to converge in a fixed-point iterative solver. The Pries In-Vitro viscosity model is the

most stable of all Pries models. The Charm and Kurland model is not recommended due to its

restrictive behavior (it was only derived for <0.6 hematocrit and diameters greater than 25μm).

The Pries In-Vivo and In-Vitro Modified models account for the existence of a glycocalyx,

hence their predictions of viscosity are much higher at smaller diameters, whereas Kiani and

Hudetz and the In-Vitro models give similar results.

10
1

10
2

10
3

Diameter (microns)

0

2

4

6
A

p
p
a

re
n

t
V

is
c
o

s
it
y
(c

P
)

H = 0.1

H = 0.3

H = 0.45

H = 0.6

0 0.1 0.2 0.3 0.4 0.5

Hematocrit

10
0

10
1

10
2

A
p
p

a
re

n
t

v
is

c
o
s
it
y d = 3

d = 8

d = 10

d = 30

d = 100

291

Figure 7.77. Parametric investigation of viscosity over a range of diameter and hematocrit.

As the hematocrit level approaches 1, the models all become begin to show discontinuities. Pries

in Vitro is the most stable of all Pries models.

7.12.2 Plasma skimming

This section describes the non-ideal splitting of RBCs at a bifurcation into daughter branches

known as plasma skimming. An overview of available models for plasma skimming (known as

hematocrit split models) is also provided. While all models are described with individual sets of

parameters, all models will be re-derived to yield the red blood cell flux ratio (𝜆) as a function of

the flow split (𝛾) for direct comparison and straightforward implementation.

As observed by Bayliss [213] RBCs tends to aggregate to the main axis of a vessel, leaving a

plasma-rich peripheral section (known as the Cell Free Layer or CFL). Krogh [214] and later

Fourman and Mofatt [215] explained that branching of a tube leads to one daughter branch

preferentially siphoning from the CFL rather than the RBC-rich vessel center. This leads to the

smaller branch receiving a lower density of RBCs compared to the parent vessel (Figure 7.78).

292

The models below attempt to predict the percent of total RBC flux (𝜆 = 𝑓𝑡𝑜𝑡𝑎𝑙𝐻𝑑) that each

daughter branch will receive.

Figure 7.78. Plasma Skimming in small vessels. In vessels with small diameter, the red blood cells

aggregate at the center of the capillary, creating a cell free layer.

At high shear rates (high flow rate), the fraction of the red blood cells that one branch will receive

will be affected by the diameter of the branch and by its flow rate.

Available hematocrit split models. In order to establish a common system of reference in spite

of the numerous variables in each split rule, Figure 7.79 summarizes the main structures found in

a given bifurcation. F1 refers to the parent branch face, while F2 and F3 are the daughter faces.

Figure 7.79: Graphic representation of a basic bifurcation.

All the points (P) and faces (F) of the structure are annotated. The black labels on each face

represent the diameters in microns. In this case the first face is the parent branch, and face 2 and

3 are the daughters.

293

The proper identification of the parent and daughter branches is necessary for implementation

of a model on a discretized network because all split rules compute the RBC fraction (𝝀) as a

function of inlet and outlet parameters (flow, diameter, etc). For implementation of all models on

discretized 1-dimensional networks, fixed point iteration was used to compute the vessel

hematocrit as seen in Section 4.6.

7.12.2.1 Pries and Secomb model

The most widely accepted model for plasma skimming on a single bifurcation was empirically

derived by Pries and Secomb in 2005 [207] to describe blood flow measured from rat mesentery.

This model is not amenable to networks containing multifurcations (a split from a parent branch

to 3 or more daughter branches) due to the variable definition within the formula that is defined

by the diameters of only 2 daughter vessels (A in Equation (7.142) - (7.143) and in Table 9.28).

The models developed by Pries in his 1989 publication [202] are derived from 2 distinct

bifurcations. In one, the parent diameter was 20μm, the two daughter branches were 16.5 and

17.5μm, and the inlet hematocrit was 0.49. The coefficients of the model were tuned to this case

study. The second bifurcation had a parent vessel of 7.5 𝜇𝑚, outlet branches measuring 6 and 8 𝜇𝑚

and an inlet hematocrit of 0.43 and the second set of coefficients were tuned to this second case

study.

The Pries model has been described by base equations (Equations (7.142) - (7.143)) with

variable parameters (Table 9.28). 𝑥0 is a threshold value (bounds the 𝛾 between [𝑥0] and [1 − 𝑥0]),

𝑖 is the index of the daughter branch in question and 𝑗 is the index of the other daughter branch in

294

a given bifurcation. 𝛾 is the flow split of a given daughter branch and di and dj correspond to

diameters of face 𝑖 and face 𝑗 respectively.

𝑙𝑜𝑔𝑖𝑡(𝜆𝑖) = 𝐴 + 𝐵 𝑙𝑜𝑔𝑖𝑡 (
𝛾𝑖 − 𝑥0
1 − 2𝑥0

)
(7.142)

𝜆𝑖 = {

1

1 + 𝑒𝐴−𝐵 𝑙𝑛(𝐺∝))
, 𝑥0 < 𝛾𝑖 < 1 − 𝑥0

0 , 𝛾𝑖 ≤ 𝑥0
 1 , 𝛾𝑖 ≥ 1 − 𝑥0

(7.143)

Table 7.28: Coefficients used for Pries’s plasma skimming model

Method
Coefficient Symbol

A B 𝑋0 G

Pries (1989):

di ≅ dj
0.069 1.13 0.032

𝛾𝑖 − 𝑥0
1 − 𝛾𝑖 − 𝑥0

Pries (1989):

di < dj -0.35 1.29 0.052
𝛾𝑖 − 𝑥0

1 − 𝛾𝑖 − 𝑥0

Pries

(2005) −13.29 [
(𝐷𝑖

2 𝐷𝑗
2⁄ − 1)

(𝐷𝑖
2 𝐷𝑗

2⁄ + 1)
]
(1 − 𝐻𝑝)

𝐷𝑝
 1 + 6.98

(1 − 𝐻𝑝)

𝐷𝑝
 0.964

(1 − 𝐻𝑝)

𝐷𝑝

𝛾𝑖 − 𝑥0
1 − 𝛾𝑖 − 𝑥0

Lorthois

(2010) −15.47 [(
𝐷𝑖
2 − 𝐷𝑗

2

𝐷𝑖
2 + 𝐷𝑗

2)]
(1 − 𝐻𝑝)

𝐷𝑝
 1 + 8.13

(1 − 𝐻𝑝)

𝐷𝑝
 1.12

(1 − 𝐻𝑝)

𝐷𝑝

𝛾𝑖 − 𝑥0
𝟏 − 𝜸𝒊

Chebbi

(2015) −
6.96

𝐷𝑝
 ln (

𝐷𝑖
𝐷𝛽
) 1 + 6.96

(1 − 𝐻𝑝)

𝐷𝑝

0.4

𝐷𝑝

𝛾𝑖 − 𝑥0
1 − 𝛾𝑖 − 𝑥0

7.12.2.2 Linninger – KPSM (2015) and Beta Model (2017):

Linninger and Gould derived a model termed the Kinematic Plasma Skimming Model (KPSM)

from volatile biphasic gas mixing theory. This model, Equation (7.144)-(7.145), predicts a

hematocrit distribution using an intermediate nodal hematocrit as in Equation (7.144) from flow

ratio (Equation (7.144)) and area ratio (Equation (7.146)). Here, 𝐴 is the area of the branch, m is a

volatility parameter, and 𝑖 denotes the branch in question, j denotes the inlet node of the branch,

and 𝑝 denotes the parent branch.

295

ℎ∗ =
𝑞𝑝ℎ

∑𝑞𝑖𝜃𝑖

(7.144)

ℎ𝑖 = ℎ𝑝 − ∆ℎ = 𝜃𝑖 ℎ𝑗
∗

(7.145)

𝜃𝑖 = (
𝑎𝑖
𝑎𝑝
)

1
𝑚

 (7.146)

Due to the nonlinearity of the set of equations in Equation (7.142)-(7.143) and Equation

(7.144)-(7.146), a fixed-point iteration method is employed for solving 2 systems of linear

equations. This process id expressed in more detail in previous work [27,115]. Here, �̅� denotes the

resistance calculated from previous iteration and k denotes the terminal node of a ith face.

∇𝑞(𝑝) = 𝐶2 ∙ 𝑅
−1 ∙ 𝐶1𝑝 = 0; 𝑤ℎ𝑒𝑟𝑒 𝐻 𝑎𝑛𝑑 𝑑 𝑎𝑟𝑒 𝑘𝑛𝑜𝑤𝑛 (7.147)

𝑞 ∙ ∇ℎ𝑗
∗ = 0

max (
1

�̅�
𝐶1 ∙ 𝑝, 0) ∙ ℎ𝑗

∗ +max (
−1

�̅�
𝐶1 ∙ 𝑝, 0) ∙ ℎ𝑘

∗ = 0

𝑤ℎ𝑒𝑟𝑒 𝑝 𝑖𝑠 𝑘𝑛𝑜𝑤𝑛

(7.148)

Linninger et al. published their kinematic plasma skimming model in 2015, which computes

the adjusted discharge hematocrit (𝐻∗); the nodal concentration of hematocrit that becomes the

source of the convective flux across the daughter face (7.148). This model has an adjustable

parameter (m) that increases or decreases the severity of plasma skimming.

296

This same model can be reduced in size by removing the nodal parameter value and performing

mass balance of RBCs on the faces directly. Here 𝜆 represents the fractional RBC flux for the

bifurcation, and it is calculated for each face of a network (as opposed to H* in the 2015 method).

The area fraction (𝜃𝑖) is defined by (7.146) and the fractional red blood cell flux (𝜆𝑖) is now given

by (7.149). The face hematocrit (𝐻𝑖) is then given by (7.150).

𝜆𝑖 =
𝜃𝑖𝑄𝑖
∑𝜃𝑖𝑄𝑖

(7.149)

 𝐻𝑖 𝑄𝑖 = 𝜆𝑖 (𝐻𝑝𝑄𝑝) (7.150)

7.12.2.3 Dellimore

Dellimore, Dunlop and Canham [216] modified Klitzman and Johnson’s empirical fitting

equation [217]. and determined parameter ‘B’ through a least-square linear regression fit to all 48

sets of experiments. The model combines the fractional hematocrit and fractional flow through a

power rule that has no diameter dependence.

This method requires a nonlinear solver (due to hematocrit coupling with viscosity) which can

be converged with a fixed-point iterative method as previously described in Equations (7.147)-

(7.148).

Dellimore describes the red blood cell fraction of a daughter branch (𝜆𝛼) as the function of the

flow split per daughter branch (𝛾𝛼) and the experimentally derived constant, B. The flow split is

computed using only the fractional flow rate and the face hematocrit computation follows.

297

𝜆𝛼 =
𝛾𝛼
𝐵

𝛾𝛼
𝐵 + (1 − 𝛾𝛼)

𝐵

(7.151)

𝐵 = 1.2

(7.152)
𝐻𝛼 =

𝜆𝛼𝐻𝑝
𝛾𝛼

7.12.2.4 Fenton

Fenton et al [218,219] proposed a model to calculate the fractional red cell flux in the daughter

branch (𝜆𝑖) as a function of flow split (𝛾𝑖), and an experimentally-derived parameter 𝑎 as in

Equation (7.153)-(7.154). 𝑎 is dependent on the parent diameter (𝐷𝑚) and RBC diameter (𝑑𝑐)

which was not given, but was found to vary in literature between 5-8μm. Combining the

experimental data from the 1985 papers with the in vitro measurements of Tvetenstrand [220] in

a large scale model of a T bifurcation and the in vivo data from the rabbit ear from Schmid-

Schonbein [221] gives an empirical equation relating fractional red blood cell flux with the

fractional flow rate (Equation (7.153)). The relationship was used in a small computer network

model of the hamster cremaster muscle [222] consisting of 76 vessel segments connected at 50

nodes [218].

This model can be solved using fixed-point iteration as described previously. Fenton et al.

propose to calculate the fractional red cell flux in the daughter branch (𝜆𝑖) as a function of flow

split (𝛾𝑖) and an experimentally-derived parameter 𝑎 (7.153). 𝑎 is dependent on the parent diameter

(𝐷𝑚) and RBC diameter (𝑑𝑐) (7.154). The value of 𝑑𝑐 seems to range between 5-8μm [223], and

here 𝑑𝑐 = 5μm is chosen.

298

𝜆𝑖 = (𝑎 +
1−𝑎

2𝛾𝑖
) 𝛾𝑖 (7.153)

𝑎 =
1

1.4 − √𝑑𝑐/𝐷𝑚
, 𝑤ℎ𝑒𝑟𝑒 𝑎 ≥ 1

(7.154)

7.12.2.5 Plouraboue

Plouraboue proposed a model that does not focus on phase separation effects as local

mechanisms. Instead, a global method computes the distribution of hematocrit from a pre-

determined flow field.

Mass conservation is applied at each node to determine a hematocrit potential (�̂�) using a

Neumann inlet boundary condition. This ‘elliptical’ implementation constructs a diffusion-like

equation for mass balance at each node but using an anisotropic diffusion coefficient across each

arc. This anisotropic diffusion coefficient is directly proportional to the bulk flow across the arc

by a factor of 1 (it is the same value).

RBC flux conservation is enforced through Equation (7.155) applied to each node in the

network. The discharge hematocrit (ℎ𝑑) for each vessel becomes the potential difference between

nodes (∆ℎ̂).

∇ 𝑞𝑅𝐵𝐶 = ∑(∆ℎ̂ 𝑞) = ∑∆ℎ̂
𝜋𝑑4

128 𝜇𝑖𝑙
∆𝑝 = 0

𝑛

𝑖=1

𝑛

𝑖=1

(7.155)

299

Table 7.29: Variables used in Plouraboué’s plasma skimming model

Symbol Definition

�̂� Hematocrit potential at face

𝜇𝑎 Apparent viscosity at face

𝐿 Length of face

𝐷 Diameter of face

 𝑄𝑅𝐵𝐶 Fractional red blood cell flux of

face

𝑄 Longitudinal flow rate of face

∆𝑃 Pressure drop at node

7.12.2.6 Balogh and Bagchi (3D immersive boundary method)

With the advancement of massive computing and big data, rigorous 3-dimensional simulations

have become capable of simulating small microcirculatory networks and with many deformable

spheres within. Balogh and Bagchi were able to perform this feat in 2017 where the model was

validated against 3D deformations while sucking an RBC into a micropipette, 3D deformations

when pushing an RBC through a small, rigid, square channel, cell separation and lab-on-chip

microfluidic devices. The model was initially claimed to exhibit plasma skimming effects that

were consistent with other studies, but in a later paper this was further investigated to find the

trends only sometimes match those from empirical models [224]. The 3D simulations were

extended later that year and the following year to investigate trends of plasma skimming [225,226].

The mathematics are described in more detail in Section 7.12.8 but in here brief, the method

uses the immersed boundary method (described elsewhere in detail) for simulating RBCs, white

blood cells (WBCs) and platelets. The RBCs are very elastic, WBCs are less elastic, platelets are

inelastic, and vessel walls are non-deformable. One of the key advantages of the IBM is that it

allows a simulation of fluid-structure interaction (FSI) without body-fitted meshing (which can be

computationally prohibitive in a dynamic simulation). For clarity, the FSI is not between the blood

D1		
H1		
Q1	

D2,	β2,γ2	
	H2,	Q2	

D3,	β3,γ3	
	H3,	Q3	

300

and the wall, as is common in 3D vascular fluidic simulations, because the wall is rigid (immobile

and inelastic). The FSI in this model exists between the plasma and the RBC surface, where the

RBC is allowed to deform under stress.

The mesh is defined by a dual-mesh technique, a Eulerian mesh (defined as the lattice grid

written in Cartesian coordinates) used for the vasculature/plasma mesh and a Lagrangian mesh

(the local mesh of each RBC surface) used for each RBC. The independent solving of these two

meshes exploits the properties of each domain, significantly reducing computational effort and

omitting the need for a body-fitted mesh in every time step. The bulk flow is calculated in the

Eulerian grid (Cartesian coordinates) before the deformation and advection of the RBCs is

computed on the Lagrangian grids.

The Lagrangian grid points (nodes on the RBC cell surface) are advected (convected) through

the Eulerian grid and deformed. The RBC is coupled to the bulk fluid through a forcing function

added to the Stokes equations of flow. This forcing function reduces the velocity by the integral

of the force across the RBC surface. This means that the velocity will slow down linearly as it

deforms the cell surface, which may correspond to a conservation of energy, but is not explicitly

derived or discussed in the work. The sink term in the momentum balance uses a Dirac delta

function to affect the plasma nodes up to a fixed distance away from the RBC.

The time integrator uses the Adams Bashford method for the conservation equation and a

Crank-Nicholson scheme for the convection-diffusion equation. The solving step uses a modified

form of the original equations:

𝜌
𝑢𝑖
∗ − 𝑢𝑖

𝑛

Δ𝑡
= 𝐺𝑖 +

3

2
𝛼𝑖
𝑛 −

1

2
𝛼𝑖
𝑛−1 +

1

2
(𝛽𝑖

∗ + 𝛽𝑖
𝑛) (7.156)

301

𝑑2𝜙

𝑑𝑥𝑖𝑑𝑥𝑖
=
𝜌

Δ𝑡

𝑑𝑢𝑖
∗

𝑑𝑥𝑖
 (7.157)

𝜌𝑢𝑖
𝑛+1 = 𝜌𝑢𝑖

∗ − Δ𝑡
𝑑𝜙

𝑑𝑥𝑖
 (7.158)

Where

𝛼𝑖 = 𝐹𝑖 +
𝑑

𝑑𝑥𝑖
(𝜇
𝑑𝑢𝑗
𝑑𝑥𝑖

)

𝛽𝑖 =
𝑑

𝑑𝑥𝑗
(𝜇
𝑑𝑢𝑖
𝑑𝑥𝑖

)

(7.159)

This implementation seems to be similar to the SIMPLE algorithm where an intermediate

(guess) velocity field (ui
*) is solved for, then the continuity is solved for, then the velocity field is

evaluated for correctness, all in each iteration which is cycled until convergence. The 𝜙 term in

the equations is set to pressure, although the modelers claim this parameter can transposed into a

different space using a preconditioner as discussed in Section 7.20.6.

The deformation of the RBC is calculated using conservation of momentum. Note, the

Lagrangian and the Eulerian systems are related by a simple linear coordinate transformation (by

an offset vector and rotational matrix), although the authors offered a more detailed explanation

of how this cooperation works.

The validations are performed on analytic solutions such as a solid, immovable sphere with a

flow field around it. Of the many validations, included are the comparisons to experimental

deformability of a single RBC through a rigid channel, with a good fit to the data. Another included

302

showing cell-selective sorting from a microfluidic device. Lab on a chip trends were also given,

but these were similar results to the cell separation microfluidic device.

In a later publication, the trends of plasma skimming are in question, as the model appears to

give results conducive with the experimental data (Pries, Lorthois, etc.), however the group claims

that their model only agrees with previously established models half of the time.

7.12.2.7 Plasma skimming implementation

Solving algorithm. The algorithm used to solve large (>100,000 unknowns), highly nonlinear

sets of algebraic equations requires a robust solving algorithm. In other words, the algorithm

cannot break in the event a network has a trifurcation, an arc is oriented backwards, or the network

has a large branching order. This limitation may omit the use of some of the plasma skimming

models reviewed in previous sections, but the solvability of a network with any plasma skimming

model must not be limited by the nonlinear convergence technique. The algorithm for splitting and

solving the nonlinear set of equations using the KPSM model is offered in previous work [27] and

in Section 4.6.

7.12.2.8 Modified m-coefficient model

Across all the experimental observations, a clear range for hematocrit values has been

established. The upper limit of measurements, which may not be the maximum physiological

hematocrit but rather is a reasonable suggestion. This value of h ≤ 0.7 [203,204,227,228]. Also

importantly, no segments should be entirely void of RBCs (h ≥ 0). Whereas the KPSM model has

only a single adjustable parameter, m, and does not suffer from hematocrit-free vessels, it has the

303

ability to generate very high hematocrit values. One important assessment is that the splitting

model should not act as aggressively (should split more evenly) when the vessel is highly packed

with RBCs such that there is no cell-free layer for plasma skimming to act on. The chosen model

to represent this hematocrit-dependent plasma skimming effect is given in Equation (7.160) and is

visualized across the range of hematocrit in Figure 7.80.

ℎ𝑚𝑎𝑥 = max(ℎ𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟𝑠)

𝑚 = 𝑚 + 100 ∙ 1020(ℎ𝑚𝑎𝑥−0.9)
(7.160)

Figure 7.80: Visualization of the m value as a function of hematocrit.

Left) The value of m increases exponentially with the value of hematocrit, with no significant

increase until a value of ~0.75.

Code for generating Figure 7.80.

function testMValue

close all, h = 0:0.01:1; mBar = 8;

m = mBar + 100*10.^(20*(h-0.9)); figure, plot(h,m);

ylabel('m value'); xlabel('hct'); box off,

set(gca,'xTick',0:0.1:1), grid on

m = 1./m; figure, plot(h,m);

ylabel('1/m value'); xlabel('hct'); box off

set(gca,'xTick',0:0.1:1), grid on

end

304

7.12.3 Application to networks

The networks used for comparison of splitting rules are summarized in the table below. Starting

from a limited number of branches (a bifurcation and an artery), plasma skimming can be observed.

The structures then become increasingly complex with added bifurcations and eventually a venous

closure but without multifurcations (to accommodate Pries’s delicate equation). Unions are two or

more inlet branches feeding into a point. Multifurcations are more than 2 branches leaving the

parent branch. Note, most empirical formulae are based on single, or local bifurcations, so this is

the most popular model for testing basic predictions of a model. Some simple statistical

comparisons of the split models is offered in Figure 7.81. Network trends reveal hematocrit

increasing as the network branches, where the RBCs are concentrated into the larger main vessel

as the plasma is siphoned off to the smaller side branches (Figure 7.82). Some network statistics

are offered in Table 7.30 where statistics affecting network solvability are labeled with green (low

occurrence rate) and red (high occurrence rate).

305

Figure 7.81. The predicted effects of changing diameter and hematocrit as a function of different

split rules applied to a single bifurcation.

Left) The dispersion of hematocrit in daughter branch 2 (H2) is somewhat altered by increasing

the feed hematocrit (H1). Middle) H2 is more strongly influenced by diameter variations when

closer to the other daughter branch (10µm) than when approaching the feed diameter (50µm).

Right) The comparison of all split rules (except Plouraboue) on overall flow rate as a function

of diameter ratio. A slight difference can be observed amongst all methods as a function of

diameter, however all split rules give similar trends.

Table 7.30: Statistical analysis of networks used for biphasic blood flow simulations
Dataset nPoints nFaces nInlets nOutlets MaxDia MinDia nBifurc nUnion nMultifur

Bifurcation 4 3 1 2 30 15.00 1 0 0

Trifurcation 5 4 1 3 15 9.00 0 0 1

Loop 6 6 1 1 15 10.00 1 1 0

Arteries 42 41 1 21 50 13.60 20 0 0

ArteriesV2 432 431 1 216 50 4.60 215 0 0

ArteriesV3 612 611 1 306 50 3.99 305 0 0

ArtVenFused 1486 1966 1 1 50 3.16 962 482 0

Mesentary 3037 3122 1 31 50 3.16 202 84 0

AU 129282 134229 7 3 50.0 0.33 8542 14518 654

AV 153112 159668 2 3 58.2 1.00 11631 22807 725

CO 28015 39547 6 10 60.0 0.38 19080 11774 1868

DB 127168 138707 1 9 70.0 0.53 20120 19895 1440

306

Figure 7.82. The network effect of hematocrit distribution.

A) a small arterial tree, B) a large arterial tree, C) a very large arterial tree, and D) a mesenteric

network all reveal a consistent trend of hematocrit concentrating into the larger vessels. The

network effect gives a nontrivial distribution of hematocrit and a general increase in hematocrit

levels as branching order increases.

7.12.4 Comparison of plasma skimming models to empirical data

There are multiple criteria which the biphasic blood flow models can be compared to the

empirical data. Experimental data on RBC distribution at bifurcations focuses on the RBC flux

fraction, or the hematocrit in the daughter branch, as a function of the flow split. In Figure 7.83

this relationship was plotted for two bifurcations, in order to compare the trends for all split rules.

307

The RBC flux prediction by all empirical models (Pries, Fenton, and Dellimore) seem to

indicate a higher RBC flux across all flow splits than Linninger and Gould’s model. All empirical

formulae yield an increase in the hematocrit ratio with the corresponding fractional flow. However,

Linninger and Gould’s model seems to yield an ideal hematocrit split (like a dye) in the case of a

bifurcation with the same diameters. In the first case study, it appears as though the smaller branch

increased its hematocrit alongside its corresponding flow.

The main difference between the models is that the empirical formulae predict a much smaller

hematocrit delivered at low flows in the smaller diameter, when compared to the Linninger and

Gould model.

Figure 7.83: Comparing the variation in hematocrit split (top) and RBC flux fraction (bottom)

with the flow split.

Left) Comaprison of bifurcations with different diameters. Right) The bifurcation contains

daughter branches of the same diameters. All errors reported are RMSE errors which were

calculated following methods described in Section 7.13.1.

308

7.12.5 Closer look: variation of viscosity with diameter

 The variation of diameter shows a clear trend in all viscosity values to approach infinity as

diameter approaches 0. The viscosity has a “lubrication” effect at a specific diameter range where

the viscosity is at a local minimum value. The profile at 0.4 hematocrit for a variety of diameters

is offered in Figure 7.77. The variation with diameter at high hematocrit (Figure 7.85) reveals an

increase in the rate of local minima (saddle points) along the diameter spectra as hematocrit

approaches 1.

Figure 7.84. General trends of viscosity over diameter for a hematocrit of 0.4.

As diameter approaches 0, the viscosity in all models approaches infinity.

10
0

10
1

10
2

10
3

Diameters(microns)

0

2

4

6

8

V
is

c
o

s
it
y
(c

P
)

All viscosities - H = 0.4

InVitro

InVitroMod

InVivo

KianiHudetz

CharmKurland

309

Figure 7.85. Viscosity comparison between Pries in vitro modified and Pries in vivo models.

Left column) low-mid hematocrit. Right column) high hematocrit. High hematocrit yields a

much higher viscosity across all diameters. At high values of hematocrit, the models exhibit

several local maxima.

7.12.6 Closer look: variation of viscosity with hematocrit level

The viscosity formulae are heavily dependent on the hematocrit level. As shown in Figure 7.86

and Figure 7.87, as the hematocrit increases above 0.45, the equations for viscosity present more

erratic behavior. This is another driving force behind the dynamic “m” value that has an asymptotic

value of ~0.9 hematocrit as explained in Section 7.12.2.8. Limiting the hematocrit helps ensure the

results lie in a physiologically meaningful range and also stabilizes the solution vector during

convergence.

Kiani and Hudetz predictions are seen to stop at the 2.75μm threshold. Pries’s in vivo and

original in vitro models also seem to yield a rather low viscosity for diameters between 1-2μm.

10
0

10
1

10
2

10
3

Diameter(microns)

0

1

2

3

4

5

6

A
p

p
a
re

n
t

V
is

c
o
s
it
y
(c

P
)

Pries H = 0.2

Kiani H = 0.2

Pries H = 0.4

Kiani H = 0.4

Pries H = 0.6

Kiani H = 0.6

10
0

10
1

10
2

10
3

Diameter(microns)

0

2

4

6

8

10

12

A
p

p
a
re

n
t

V
is

c
o
s
it
y
(c

P
) Pries H = 0.7

Kiani H = 0.7

Pries H = 0.9

Kiani H = 0.9

10
0

10
1

10
2

10
3

Diameter(microns)

0

2

4

6

8

A
p

p
a

re
n

t
V

is
co

si
ty

(c
P

)

InVitroMod H = 0.2

InVivo H = 0.2

InVitroMod H = 0.4

InVivo H = 0.4

InVitroMod H = 0.6

InVivo H = 0.6

10
0

10
1

10
2

10
3

Diameter(microns)

0

10

20

30

A
p

p
a
re

n
t

V
is

c
o
s
it
y
(c

P
)

InVitroMod H = 0.7

InVivo H = 0.7

InVitroMod H = 0.9

InVivo H = 0.9

310

H = 0.45

H = 0.97

H = 0.99

H = 1

Figure 7.86. Predicted viscosity by all models at high hematocrit values.

The in vivo and modified in vitro formulae predict a rise in viscosity at around 15μm due to

the glcocalyx. The in vitro formula also yields a maxima around 8μm. Kiani and Hudetz

seems to be fairly constant across all hematocrit levels.

10
0

10
1

10
2

10
3

Diameter (Microns)

10
0

10
2

A
p

p
a

re
n

t
V

is
c
o

s
it
y
 (

c
P

)

InVitro

InVitroMod

InVivo

KianiHudetz

10
0

10
1

10
2

10
3

Diameter (Microns)

10
0

10
1

10
2

10
3

A
p
p

a
re

n
t

V
is

c
o

s
it
y
 (

c
P

)

InVitro

InVitroMod

InVivo

KianiHudetz

10
0

10
1

10
2

10
3

Diameter (Microns)

10
0

10
1

10
2

10
3

A
p

p
a
re

n
t

V
is

c
o
s
it
y
 (

c
P

) InVitro

InVitroMod

InVivo

KianiHudetz

10
0

10
1

10
2

10
3

Diameter (Microns)

10
1

10
2

10
3

A
p

p
a
re

n
t

V
is

c
o
s
it
y
 (

c
P

)

InVitro

InVitroMod

InVivo

KianiHudetz

311

H = 0.35

H = 0.45

H = 0.70

H = 0.85

Figure 7.87. Predicted viscosity by all models for diameters <20μm.

Note the trends are nonlinear and, in some cases, almost discontinuous. The Kiani and Hudetz

model is the most stable, but only applies for a narrow physiological range of diameter. The

Pries In-Vitro model is the next most stable choice for viscosity.

7.12.7 Closer look: Variation in plasma skimming trends with diameter:

The geometry of a bifurcation plays an important role in determining the ratio of RBC splitting

into the daughter branches. In Figure 7.88, the resulting flows and hematocrit values are computed

using all split rules and one viscosity for a bifurcation whose daughter branch diameter is varied.

The predicted overall flows are very similar in all split rules for all diameters. The differences

become more apparent in the fractional hematocrit graphs. Fenton’s model predicts an ideal split

for both branches, even though the diameter changes. Pries’s model yields a hematocrit of 0 at

10
0

10
1

Diameter(microns)

10
1

10
2

A
pp

ar
e

nt
 V

is
co

si
ty

(c
P

)
InVitro

InVitroMod

InVivo

KianiHudetz

10
0

10
1

Diameter(microns)

10
1

10
2

A
p
p

a
re

n
t

V
is

c
o

si
ty

(c
P

)

InVitro

InVitroMod

InVivo

KianiHudetz

10
0

10
1

Diameter(microns)

10
1

10
2

A
pp

ar
en

t V
is

co
si

ty
(c

P
) InVitro

InVitroMod

InVivo

KianiHudetz

10
0

10
1

Diameter(microns)

10
1

10
2

A
p

p
a
re

n
t

V
is

co
si

ty
(c

P
)

InVitro

InVitroMod

InVivo

KianiHudetz

312

diameters below 8μm, and Linninger’s model predicts a higher hematocrit in the larger daughter

branch.

Figure 7.88. Branch hematocrit and flow variation as a function of the diameter for one

bifurcation.

Top) the flows were similar for the first and second daughter branch. The bottom figures show

the hematocrit ratio as a function of the daughter branch diameters. The viscosity used was Pries

In-Vitro

7.12.8 Closer look: Balogh and Bagchi (3D immersive boundary method)

The mathematics of the Balogh and Bagchi method can be described in brief as the application

of the immersed boundary method (described elsewhere in detail) for simulating RBCs, white

blood cells (WBCs) and platelets. One of the key advantages of the IBM is that it allows a

simulation of fluid-structure interaction (FSI) without body-fitted meshing (which can be

extremely complicated on a dynamic simulation).

0 10 20 30 40 50 60

Diameter(microns)

0

2

4

6

8

Q
2

10
8

Pries2005

Pries2010

Pries2015

Linninger

Dellimore

Fenton

P	=	83.5	P	=	83.5	

D1	=	50μm	
H1	=	0.45	

D2	=	1-60μm	 D3	=	30μm	

P	=	100	

0 10 20 30 40 50 60

Diameter(microns)

2

4

6

8

10

Q
1

10
8

Pries2005

Pries2010

Pries2015

Linninger

Dellimore

Fenton

P	=	83.5	P	=	83.5	

D1	=	50μm	
H1	=	0.45	

D2	=	1-60μm	 D3	=	30μm	

P	=	100	

0 10 20 30 40 50 60

Diameter(microns)

0

0.2

0.4

0.6

0.8

1

1.2

H
2
/H

1

Pries2005

Pries2010

Pries2015

Linninger

Dellimore

Fenton

0 10 20 30 40 50 60

Diameter(microns)

0.2

0.4

0.6

0.8

1

1.2
H

3
/H

1 Pries2005

Pries2010

Pries2015

Linninger

Dellimore

Fenton

313

In essence, the bulk flow is calculated in the Eulerian grid (Cartesian coordinates) before the

deformation and advection of the RBCs is computed on their own Lagrangian grids. The

Lagrangian grid is analogous to an inertial reference frame in physics, i.e. it is computed as if the

RBC grid is stationary and all motion/activity/forces are moving around the object). The RBC is

allowed to deform due an elasticity law yet its swelling (increase or decrease in surface area) is

limited by a very large expansion coefficient. An FEA solver is used to assess the shear and tensive

stresses on the surface in order to assess deformation of RBC in each time step. The mathematics

are as follows for wall strain energy:

𝑊𝑠 =
𝐺𝑠
4
[𝐼1
2 + 2𝐼1 − 2𝐼2 + 𝐶𝐼2

2] (7.161)

Where Gs is the elastic modulus, C is a controlling parameter that, when set to a large value,

limits the dilation of the membrane. I1 and I2 are the strain invariants of the Green strain tensor

(explained next) and are calculated following:

𝐼1 = 𝜖1
2 + 𝜖2

2 − 2 (7.162)

𝐼2 = 𝜖1
2𝜖2
2 − 1 (7.163)

And the Green strain tension is defined as:

𝐸 = 𝐹𝑇 ∙ 𝐹 − 𝐼
(7.164)

Where

314

𝐹 =
𝑑𝑥

𝑑𝑋

Where x is the current configuration and X is the original (baseline) configuration of the

membrane. The stress can be evaluated as:

𝜏1 =
1

𝜖2

𝑑𝑊𝑠
𝑑𝜖1

 (7.165)

𝜏2 =
1

𝜖1

𝑑𝑊𝑠
𝑑𝜖2

 (7.166)

Which is solved with a finite element method. These equations can be interpreted as the strain

being linearly proportional to the amount of deformation from baseline, where the two portions

are shear strain and dilation strain. These values of strain give rise to quantifiable forces in each

element as:

𝑓𝑒 =∑∫
𝑑𝑁

𝑑𝑋
∙ 𝑃𝑑𝑆

𝑆𝑛𝑛

 (7.167)

Where N is a vector of shape functions, S is the surface area of n triangles surrounding the

node, and P is stress tensor (Piola-Kirchhoff) defined as:

𝑃 = 𝜖1𝜖2𝜏 ∙ 𝐹
−𝑇 (7.168)

315

And cell resistance to bending:

𝑊𝑏 =
𝐸𝑏
2
∫ (2𝜅 − 𝑐0)

2𝑑𝑆
𝑆

 (7.169)

Where Eb is bending modulus, assumed 2-7e-19 J, 𝜅 is the mean curvature, c0 is the

spontaneous curvature, and S is the surface area of the cell membrane. Cell bending force is

calculated with:

𝑓𝑏 = 𝐸𝑏[(2𝜅 + 𝑐0)(2𝜅
2 − 2𝜅𝑔 − 𝑐0𝜅) + 2Δ𝐿𝐵𝜅]𝑛 (7.170)

Where 𝜅𝑔 is the Gaussian curvature (no idea what that is), Δ𝐿𝐵 is the Laplace-Beltrami operator

(similar to Laplace operator but for discrete grids) and n is the normal vector.

The Gaussian curvature is approximated using Gauss theorem on a small surface patch. The

final amount of bending, deformation and dilation are calculated as a linear summation of each

sub-force. The bulk flow is calculated using a modified Stokes equation with a sink term (F), which

can be interpreted as a momentum loss due to deformation, given that the sink term is the integral

of the membrane forces over the deformation:

∇ ∙ u = 0 (7.171)

ρ
du

dt
= −∇𝑝 + ∇ ∙ 𝜇[∇𝑢 + ∇𝑢𝑇] + 𝐹 (7.172)

316

𝐹 = ∫ 𝑓𝑚𝛿(𝑥 − 𝑥
′)𝑑𝑥′

𝑆

 (7.173)

And with a cosine-derived 3-dimensional Dirac delta function (see reference within for more

details on cosine function):

𝛿(𝑥 − 𝑥′) =
1

64Δ3
∏1+ cos (

𝜋

2Δ
[𝑥𝑖 − 𝑥𝑖

′])

3

𝑖=1

 (7.174)

Where Δ is the edgelength of the Lagrangian mesh. One way to interpret the use of a cosine

function could be chosen purely for the shape, being a value of 1 at the node and 0 at a value of

2Δ away.

The RBC nodes (Lagrangian nodes) are advected using the interpolated flow field from the

Stokes equations above (u). Because the two mediums (cytoplasm within the RBC and plasma

outside the RBC) have different viscosities, this will affect the deformation and flow of the RBCs.

The dynamic viscosity field is computed as follows:

𝜇(𝑥, 𝑡) = 𝜇𝑝 + (𝜇𝑐 + 𝜇𝑝)𝐼(𝑥, 𝑡)

(7.175)

∇2𝐼 = ∇ ∙ 𝐺 (7.176)

Where 𝜇𝑐 is the viscosity of cytoplasm, 𝜇𝑝 is the plasma viscosity, and I is the indicator

function (1 inside RBC, 0 otherwise). G is the eulerian variable from cell surface normals (n):

317

𝐺(𝑥, 𝑡) = ∫ 𝛿(𝑥 − 𝑥′)𝑛𝑑𝑆
𝑆

 (7.177)

The solving of the field for I is proposed in all cases. As G is straightforward to compute, then

I can be computed, then viscosity. The finite volume method was decidedly a limiting factor in the

time step, so a cell-center base is considered preferential. This was considered by an averaging

scheme between the mixed Eulerian-Lagrangian grids to evaluate the derivatives:

∇ ∙ [𝜇(∇𝑢 + ∇𝑢𝑇)]𝑥 = 𝜇∇
2𝑢 + 2

𝑑𝜇

𝑑𝑥

𝑑𝑢

𝑑𝑥
+
𝑑𝜇

𝑑𝑦
(
𝑑𝑢

𝑑𝑦
+
𝑑𝑣

𝑑𝑥
) +

𝑑𝜇

𝑑𝑧
(
𝑑𝑢

𝑑𝑧
+
𝑑𝑤

𝑑𝑥
)

(7.178)

Where it appears that u, v, and w correspond to Eulerian grid velocities in x, y and z direction.

What is claimed to be an averaging of the gradient can be interpreted as a numerical evaluation of

the derivative. For more information regarding the averaging technique see Equation 16 from

original manuscript (considered lengthy and obvious, so omitted from this review).

The time integrator uses the Adams Bashford method for the conservation equation and a

Crank-Nicholson scheme for the convection-diffusion equation. The solving step uses a modified

form of the equations:

𝜌
𝑢𝑖
∗ − 𝑢𝑖

𝑛

Δ𝑡
= 𝐺𝑖 +

3

2
𝛼𝑖
𝑛 −

1

2
𝛼𝑖
𝑛−1 +

1

2
(𝛽𝑖

∗ + 𝛽𝑖
𝑛) (7.179)

𝑑2𝜙

𝑑𝑥𝑖𝑑𝑥𝑖
=
𝜌

Δ𝑡

𝑑𝑢𝑖
∗

𝑑𝑥𝑖
 (7.180)

318

𝜌𝑢𝑖
𝑛+1 = 𝜌𝑢𝑖

∗ − Δ𝑡
𝑑𝜙

𝑑𝑥𝑖
 (7.181)

Where

𝛼𝑖 = 𝐹𝑖 +
𝑑

𝑑𝑥𝑖
(𝜇
𝑑𝑢𝑗
𝑑𝑥𝑖

) 𝛽𝑖 =
𝑑

𝑑𝑥𝑗
(𝜇
𝑑𝑢𝑖
𝑑𝑥𝑖

)
(7.182)

This implementation appears similar to the SIMPLE algorithm where an intermediate (guess)

velocity field (ui
*) is computed, then the continuity is computed, then the velocity field is evaluated

for correctness, all in each iteration which is cycled until convergence.

The 𝜙 term in the equations is related to the pressure, but is not pressure. The choice of the

function Gi that accounts for the pressure gradient changes how closely related 𝜙 and pressure are.

This can be interpreted as a function similar to a preconditioner, where the coordinate system is

transposed so that the system is easier to solve. The authors use G=dp/dx, so there is no

conditioning and no need to update (de-condition) the parameters post-solving.

The implementation of the ghost nodes (nodes on the rigid bodies of vascular wall) and

boundary conditions are claimed to break the tri-diagonal matrix pattern, so an explicit method is

used to account for the velocity at the ghost node. Because the ghost node is inside a rigid body

and the no-slip (u=0) BC is implemented at the boundary interface, the value of u inside the ghost

node is nonzero. To calculated this, the velocity is:

𝑢𝑔𝑛 = 2𝑢𝑏𝑖 −∑𝛽𝑖𝑢𝑖

8

𝑖=1

 (7.183)

319

Where 𝛽𝑖is not defined, 𝑔𝑛 stands for ghost node, and 𝑏𝑖 is boundary interface. This is the

linear interpolation of the 8 nodes at the corners of a hexahedron, which are weighted by the beta

factor. Moreover, the ghost node is updated with a similar method to the fully explicit Euler solver:

𝑢𝑔𝑛
∗ = 𝑢𝑔𝑛

𝑛 + Δ𝑡
𝑑𝜙

𝑑𝑥𝑖
 (7.184)

The deformation of the RBC is calculated using conservation of momentum. It is interesting

to note that a detailed, complex explanation was offered to simply account for how the Lagrangian

and the Eulerian systems are related by a linear coordinate transformation (by an offset vector and

rotational matrix).

The validations are performed on analytic solutions. The first one is a solid, immovable sphere

with a flow field around it. It is noticed that the largest error (range 0.001-0.0001) is immediately

adjacent to the sphere, something that was acknowledged by the authors and considered an

expected side effect of the IBM. This is important, because this can greatly affect the results when

deformed near a bifurcation. An important discretization claim in their method is that 20-40

discretizations per sphere appears to result in a reasonable residual. Another important conclusion

is that the resolution of the Eulerian mesh and Lagrangian mesh need to be on the same order

(same dx, dy and dz) for best results. Importantly, in the bifurcation example offered in case study

4, it was noticed that the RBCs have much more deformation that the videos of RBCs available

online. Given that this is directly proportional to the viscosity, and thus the flow and bifurcating

pattern, this may cause significant error in the results. Importantly, the “clear” capturing of the

320

sigmoidal curve by their experiment is challenged by the discontinuity at around 0.7 flow split

ratio.

Of the many validations, one included the validation against experimental deformability of a

single RBC through a rigid channel, with a good fit to the data. Another included showing cell-

selective sorting from a microfluidic device. Lab on a chip trends were also given, but these were

similar results to the cell separation microfluidic device.

321

7.13 Appendix M: Methods for interrogating model predictions

Many models have been developed for explaining data (data fitting, data simulating) and

exploring physical domains (exploratory simulations). In the former, it is common practice to

identify the best model to explain the results of an experiment. In the ladder, data review is

imperative to understanding the output of the simulation. This section investigates different

methods for evaluating the quality of data fitting methods in section 7.13.1 and best practices for

reviewing simulation results in Section 7.13.2.

7.13.1 Measuring goodness of fit

This section will give an overview of methods for calculating the “goodness of fit” between a

model and experimental data. Models for linear and nonlinear fitting will be reviewed and an

explanation of how excel implementation calculates a good ness of fit. Note, the findings indicate

that the coefficient of determination is only useful in a linear model, and when comparing models

of different orders to fit the same data, the extra coefficients must be given a penalty to avoid

excessive (and meaningless) coefficient usage.

7.13.1.1 The coefficient of determination (R2) for linear fit:

A best-fit curve can be described by the error between the fit and the data normalized to the

data variance as a percentage of fit (i.e. 1 = 100% fit and 0 = 0% fit). This model, by incorporation

of the variance, reflects the data inconsistency and does not penalize the goodness of fit for a large

variance. The variance is a measure of the variability of the data with itself. For example, if the

322

average data values are ~1 and the variability is 5, the variability is large compared the data value,

whereas if the average data values are ~1000, a variance of ±5 would not be a large impact.

(7.185)

Generally Accepted Nomenclature Preferred Nomenclature

𝑅2 = 1 −
𝑒𝑟𝑟

𝑣𝑎𝑟

𝑅2 = 1 −
𝑟2

𝑣𝑎𝑟

(7.18

6)

𝑒𝑟𝑟 =∑ (𝑓(𝑥𝑖) − 𝑓(𝑥𝑖))
2𝑛𝐷𝑎𝑡𝑎

𝑖=1
 𝑟2 = (𝐴𝑥 − 𝑏)𝑇(𝐴𝑥 − 𝑏) = 𝑟𝑇𝑟

(7.18

7)

𝑣𝑎𝑟 =∑ (𝑓(𝑥𝑖) − 𝑓(𝑥)̅̅ ̅̅ ̅̅)
2𝑛𝐷𝑎𝑡𝑎

𝑖=1

𝑣𝑎𝑟 =∑ (𝑏𝑖 −
∑ 𝑏𝑗
𝑛𝐷𝑎𝑡𝑎
𝑗=1

𝑛𝐷𝑎𝑡𝑎
)

2
𝑛𝐷𝑎𝑡𝑎

𝑖=1

(7.18

8)

Where:

𝑓(𝑥𝑖) = 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑥𝑖

𝑓(𝑥𝑖) = 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑑𝑎𝑡𝑎 𝑎𝑡 𝑥𝑖 (𝑎𝑡 𝑖 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡)

𝑓(𝑥)̅̅ ̅̅ ̅̅ = 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑑𝑎𝑡𝑎

The steps to solve for the coefficient of determination (involving solving for the model

coefficients, plugging the independent variable back into the model and calculating the difference)

can be computed in one step (analytic derivation not shown) by squaring the r value calculated as

follows:

323

(7.189)

7.13.1.2 Adjusted coefficient of determination (for use with higher order fits):

There is another accepted form of the R2 value, known as the “adjusted” R2 value, which takes

into account the number of terms in the polynomial. This is calculated as follows:

𝑅𝑎𝑑𝑗
2 = 1 −

𝑛 − 1

𝑛 − 𝑝
∙
𝑒𝑟𝑟

𝑣𝑎𝑟

(7.190)

Where n is the number of observations and p is the number of parameters in the linear

regression fit.

There is a body of literature, however, that suggests that for nonlinear fitting, higher order

models, and models that span a large domain in the independent variable space cannot be

accurately described by the coefficient of determination, because the variation in the dependent

variable is not a reflection of the variance of the data amongst itself. i.e. the data naturally has a

large range in the dependent variable space which leads to a high R2 value for good and bad fits

alike (due to a high variance amongst the data). An example of this is a measurement among a

year-long biological experiment, where the extremely long time scale naturally results in a large

difference between the values at the beginning of the experiment and the end of the experiment,

324

which is not a measure of the volatility of the data itself. For these cases, the following variation

is capable of reflecting this information:

𝑎𝑟 =∑ (𝑟(𝑥𝑖) − 𝑟(𝑥)̅̅ ̅̅ ̅̅)
2𝑛𝐷𝑎𝑡𝑎

𝑖=1

 = ∑ (𝑟(𝑥𝑖) −
∑ 𝑟𝑗
𝑛𝐷𝑎𝑡𝑎
𝑗=1

𝑛𝐷𝑎𝑡𝑎
)

2
𝑛𝐷𝑎𝑡𝑎

𝑖=1

(7.191)

7.13.1.3 Nonlinear goodness of fit Akaike Information Criterion (AIC):

A history of models to determine goodness of fit between data fitting methods is beyond the

scope of this chapter, however for more information, the reader is referred to a history described

concisely by Spiess and Neumeyer [229]. Here, the Akaike Information Criterion (AIC) is

considered the generally accepted method to measure goodness of fit in higher order models as

described by:

𝐴𝐼𝐶 = 2𝑝 − 2ln (𝐿) (7.192)

ln(𝐿) =
1

2
{−𝑛 [ln (

2𝜋

𝑛
) + 1 + ln (∑𝑟𝑖

2

𝑛

𝑖=1

)]}
(7.193)

Here, p is the number of parameters and ln(L) is the maximum log-likelihood of the estimated

model. This AIC variable acts as a “goodness of fit” value that has a penalty for having a high

residual (r2) and a high number of parameters (p). The model has a “forgiveness” term that lowers

the residual penalty by the number of data points in the set (first logarithmic term in the likelihood

325

function). In this way, a large sample size with a large error is not a problem. Having a lower AIC

value is desirable (better fit), and the more negative the value the better the model fits the data.

7.13.1.4 Linear Regression Examples:

Simple Line. A linear first order model in written in matrix form in Equation (7.194). This can

also be represented as a linear system as shown in Equation (7.195) where k and d are unknown

parameters representing the slope and y-intercept of the model respectively. The source data is

also provided. The results are shown graphically in Figure 7.89,and summarized in Equation

(7.196).

𝑦(𝑥) = 𝑘 ∙ 𝑥 + 𝑑 (7.194)

[

𝑥1 1
𝑥2 1
𝑥3 1
𝑥4 1

] [
𝑘
𝑑
] = [

𝑦1
𝑦2
𝑦3
𝑦4

]
(7.195)

Table 7.31. Data for linear first order fitting problem

x 1 2 3 4

y 2.1 2.9 6.1 8.3

𝑘 = 2.18
𝑑 = −0.6

(7.196)

326

Figure 7.89: Linear first order fitting between data points (blue circles) and line of best fit

(orange line) using linear regression.

A Matlab code is offered:

A = [1 1;2 1;3 1;4 1];

b = [2.1; 2.9; 6.1; 8.3];

x = inv(A'*A)*A'*b

figure

scatter(A(:,1),b);hold on

plot(x(1).*A(:,1)+x(2));xlabel('xCoord'); ylabel(['y = ',num2str(x(1)),'x +

',num2str(x(2))]);

Polynomial curve. In order to find the best fitting quadratic model for the following 8

measurements (Table 7.32) can be accomplished with Equation (7.197) in component form and

Equation (7.198) in linear algebraic form. The rectangular matrix A may be solved for using the

pseudo-inverse method, 𝑥 = (𝐴𝑇𝐴)−1(𝐴𝑇𝑏). By multiplying both sides of Equation (7.198) by 𝐴𝑇

the new matrix of constant coefficients becomes a square matrix (𝐴𝑇𝐴), which may be inverted,

given that it is not still singular.

𝑦(𝑥) = 𝑎𝑎1 + 𝑎𝑎2 ∙ 𝑥 + 𝑎𝑎3 ∙ 𝑥
2 (7.197)

327

[

1 0 0
1 1 1
1 2 4
1 3 9
1 4 16
1 5 25
1 6 36
1 7 49]

⏟
𝐴

[

𝑎𝑎1
𝑎𝑎2
𝑎𝑎3

]
⏟
𝑥

=

[

0
4.1
8.8
15.7
25.7
36.8
48.1
63]

⏟
𝑏

(7.198)

Table 7.32. Data for linear second order fitting problem

x 0 1 2 3 4 5 6 7

y 0 4.1 8.8 15.7 25.5 36.8 48.1 63

𝑥 = [
0.0417
2.7631
0.8893

]
(7.199)

Figure 7.90: Second order linear fitting model (blue line) and source data (orange points).

A Matlab code is offered:

close all; clear all;

%Calculating the pseudoinverse

A = [1 0 0; 1 1 1; 1 2 4; 1 3 9; 1 4 16; 1 5 25; 1 6 36; 1 7 49];

b = [0; 4.1; 8.8; 15.7; 25.7; 36.8; 48.1; 63];

x = inv(A'*A)*A'*b

%Plotting the pseudoinverse

r = linspace(0,8,100);

plot(r,polyval([0.8893 2.7631 0.0417],r)); hold on; scatter(A(:,2),b);

xlabel('xCoord'); ylabel('y = 0.0417+2.7631x+0.8893x^2'); grid on;

328

Linear fit of a Plane in a 3D Space. In order to find the best fitting linear plane in three

dimensions using measurements from Table 7.33 using the model in Equation (7.200). The

solution is given in Equation (7.201). This solution was found using linear regression.

𝑧(𝑥, 𝑦) = 𝛼 + 𝛽𝑥 + 𝛾𝑦 (7.200)

Table 7.33. Data for linear fitting problem in 3D

x -1 2 5 8 10

y 0 3 6 10 12

z 1 4 7 11 15

𝑥 = [
0.5000
−0.2000
1.3000

]
(7.201)

Figure 7.91: Linear fit of a plane through 5 points in 3D.

A Matlab code is offered:

329

%%

close all; clear all;

A = [1 -2 0; 1 2 3; 1 5 6; 1 8 10; 1 10 12];

b = [1;4;7;11;15];

x = inv(A'*A)*A'*b;

xCoord = A(:,2)'; yCoord = A(:,3)'; a = A(:,1)'; zCoord = [1;4;7;11;15];

A = [a;xCoord;yCoord]; C = A'

b = inv(C'*C)*C'*zCoord; c = b';

J = [xCoord;yCoord;zCoord']; K = J';

figure

plot3(K(1,1),K(1,2),K(1,3),'o',K(2,1),K(2,2),K(2,3),'o',K(3,1),K(3,2),K(3,3),'o',K(3,1),K(3,2),K(3,3),'o',K(4,1),K(4,2),K(4,3),'o',K(5,1),K(5,2),

K(5,3),'o'); hold on;

[xCoord,yCoord] = meshgrid(-5:20); hold on; z1 = c(1)+c(2)*xCoord+c(3)*yCoord;

mesh(xCoord,yCoord,z1); grid on;

7.13.1.5 Validation by direct minimization of residual error surface

Step 1: Goal –minimize residual error surface

𝜙 = (𝐴𝑥 − 𝑏)𝑇(𝐴𝑥 − 𝑏)

{

𝜕𝜙

𝜕𝑎𝑎1
= 0

𝜕𝜙

𝜕𝑎𝑎2
= 0

𝜕𝜙

𝜕𝑎𝑎3
= 0

(7.202)

Step 2: MATLAB code:

syms aa1 aa2 aa3

A=[1 0 0;1 1 1;1 2 4;1 3 9;1 4 16;1 5 25;1 6 36;1 7 49];

b=[0;4.1;8.8;15.7;25.7;36.8;48.1;63];

x=[aa1;aa2;aa3];

r=A*x-b;

r1=transpose(r);

phi=r1*r;

e1=diff(phi,aa1);

e2=diff(phi,aa2);

e3=diff(phi,aa3);

display(e1);

display(e2);

display(e3);

% We get e1=16*aa1+56*aa2+280*aa3-2022/5

% e2 =56*aa1+280*aa2+1568*aa3-10852/5

% e3 =280*aa1+1568*aa2+9352*aa3-63304/5

[aa1,aa2,aa3]=solve(e1,e2,e3)

% Solve aa1,aa2 and aa3 from “e1=0,e2=0 and e3=0”%

% We get

% aa1 = 1/24=0.0417 aa2 =2321/840=2.7631 aa3 =249/280=0.8893

% Therefore the model is

% Y=0.0417+2.7631x+0.8893x2%

330

7.13.2 Investigating simulation results

7.13.2.1 3D immersive visualizations

Once the 3D state fields and flow vectors have been calculated, the data needs to be analyzed

for general trends. The initial investigation begins with 3D visualizations of the fields in an

immersive visualization environment designed by our lab [180,230]. This can be seen in Figure

7.92. As can be noted, this is only a qualitative investigation and a quantitative investigation must

follow. Many of the common methods of analysis are defined and implemented next.

331

Pressure Hematocrit

Figure 7.92. Blood pressure and hematocrit visualized in an immersive 3D environment for

qualitative analysis of global trends.

Note, these results indicate a stronger hematocrit (more red) in the lower layers of the cortex

than at the surface. These results are expanded more in an accompanying paper [27].

7.13.2.2 Calculating Perfusion

Perfusion to the brain is frequently reported in units of ml/100g/min which translates to how

much blood is flowing through a given tissue over a given time. The mass of brain tissue is

measured in weight because the soft tissue of brain is more easily weighed with a scale than

submerged and volumetric displacement evaluated, given that the tissue has pockets in the

332

gyrations and thus is less dense than the surrounding water. This perfusion is basically dividing

the flow of a network by the volume of the bounding box of the network and scaling by a literature-

derived conversion factor between brain volume and brain mass. A common selection for this

conversion factor was originally referenced by Gould in 2015 as 6,000μm3/μm3/s compares to

1ml/100g/min translating to the well-established relationship between 1g of tissue per 1cm3 (or

1ml) and 60s in 1 minute. The conversion from μm3/μm3 to ml/ml is dimensionless.

7.13.2.3 Path analysis

Path analysis is an efficient method for tracking the states traversed during the flow history

through the cerebral microcirculation [39,63,90]. Such investigations can help identify trends in

the network that would otherwise go unnoticed, as the individual segments may not reveal these

trends. Moreover, a robust algorithm for path analysis must be developed to handle special cases

as discussed next.

Path analysis algorithm. A path analysis algorithm must be able to traverse a tree not only

using topological information, but should account for errors in topological annotations (improper

face direction). For example, when storing a complete Circle of Willis as a network, each vessel

is prescribed two points (a start point and an end point) and an orientation. If the modeler stores

the wrong orientation, the flow will have a negative value (as in Figure 7.93). In this way, a

structure can only be interrogated after a simulation completes.

333

Figure 7.93. Anatomical network of a complete Circle of Willis (lengths not to scale) without

diameter information.

Note, for arc labeled “F11”, either P5 or P11 has to be the starting point, a decision that is chosen

by the modeler. If the modeler chooses wrong, the flow of that arc is simply the negative of the

flow value.

The algorithm starts at a network inlet (points that have only one attached arc and the flow

vector pointing into the network) and follows the flow downstream until it reaches an outlet

terminal. The general steps are covered in Figure 7.94. Note, the sub-step that finds the outflowing

segments of a given point cycles through attached segments with evaluation of flow vector and arc

orientation to define which arcs flow out of the node.

The algorithm must traverse the vascular structure and store a dense matrix of segment indices.

Each row of the matrix corresponds to a single path and each column index corresponds to the face

placement in the path. This matrix can later be used to reference the solution vectors and

interrogate path analysis of flow vectors. Likewise, the point indices can be stored along the same

334

path and the state vectors can be interrogated in the same manner. This method of storing indices

rather than values avoids the need to recurse the network multiple times. This procedure is

implemented in a button inside “pathAnalysis.x64_Project.exe” under the title “FullPathAnalysis”.

Figure 7.94. A workflow diagram for the path analysis.

Special case, multiple inlets and loops. Networks reconstructed from the mouse cortex include

severed pial vessels feeding and draining the capillary bed. This leaves many inlets and outlets that

impact the path analysis by increasing the number of paths. The highly interconnected trees of the

microcirculatory bed reconstructions [41] also include many loops in the arterial and venous sides

of the capillary bed. These loops compound the investigation of the path analysis, as all

downstream paths from one side of the loop will be repeated for the choice of the other side of the

loop. Moreover, the connections between the multiple inlets and each other inlet leads to further

duplication. An example of an arterial loop is seen in Figure 7.96.

335

Figure 7.95. Example of loop in arterial tree.

The path analysis will repeat all orange paths for each choice of the green arrows in the loop,

expressing the compounding problem when loops occur in the arterial tree.

In these cases, it is important to implement a skipping algorithm that allows the recursion to

evenly sample paths dispersed throughout the network. This can be accomplished by tracking

bifurcation depth. After an end terminal is found, a series of bifurcations identified by a multiple

of the bifurcation depth (~0.1-0.2) are skipped before restarting the recursion process. This is

enforced by triggering a Boolean variable when a terminal is found while tracking the bifurcation

depth. After exiting the recursion due to finding a network terminal, the upstream bifurcations are

skipped until the number of skips is the same or larger than the desired amount

(0.1*bifurcationDepth for instance). This procedure is implemented with a button inside

pathAnalysis.x64_Project.exe under the title Path Analysis skipping. The programmatic

implementation of these procedures can be found in ghPathAnalysisSource.V2.pas.

336

7.13.3 Logarithmic and power scaling

In order to obtain consistently good visualizations, sometimes a linear coloration is not

sufficient. In the case of blood flow in the microcirculation, for instance, the flow on an individual

face can range as much as 4-6 orders of magnitude between the largest vessels (ml/min) to the

smallest vessels (nL/min). To successfully account for this, a logarithmic scale (with a base of 10)

is frequently implemented as the most logical way to focus the visualization across the entire

spectrum instead of focusing on only the largest values. In the case of nonlinear trends, this works

very nicely.

Linear log Power law

Figure 7.96. The comparison of linear, log, and power law between the values of -1 and 1 shows

a power law can overcome the asymptote in the log plot at y < 1.

This method has an inherent drawback, however, as it approaches infinity when the value

approaches 0, specifically it begins to diverge below a value of 1. This is exemplified by the

337

diagram below. To overcome this dilemma, a new coloration has been implemented with a power

scaling which, instead of taking the logarithmic value of all elements of the vector, takes the power

of all elements of the vector to a very small power (1/100 for instance). This new method is positive

definite for all cases (non-divergent) as shown below.

linear log Power

Figure 7.97. The coloration of the previously proposed log plots shows the power law has a

distinct advantage over the log scaling.

The skewedness of the values in the log spectrum as the values approach 0 (less than 1) is

removed in the power scaling.

7.13.3.1 Surface flow divergence visualization

The blood flow in the pial vessels of the brain transfer flow laterally to other pial vessels and

dive deep into the brain via penetrating arterioles. This section summarizes an approach to

identifying the ratio of lateral to penetrating flow along the pial surface of the brain. In future work,

this investigation could be used to identify changes in collateral blood supply at the level of major

arteries. The implementation of this visualization is in pathAnalysis.x64_Project.exe under a

button entitled calculateSurfaceDivergence.

338

The approach consists of 3 steps: (i) assign surface face index to all points in network,

(ii) compute divergence of flow in pial vessels that cross that face, and (iii) assign a ratio of

outletFlowOfFace to LossOnFace to that face. These three steps are explained in more detail in

Figure 7.99 - Figure 7.101. The result gives a value for lateral and diving flow for each surface

mesh triangle. These two values can be compared through a ratio, through magnitude, through

magnitude difference, and through magnitude product. Figure 7.98 and Figure 7.102 investigate

many ways to visualize such vectors.

Flow on network Flow vectors

Figure 7.98. Visualization of surface flow vectors.

Left) traditional visualization with the network overlaid on the mesh surface for reference.

Right) new visualization with vectors indicating direction and magnitude of general flow on the

mesh surface.

339

Figure 7.99. Step 1 of the surface divergence calculating algorithm.

Figure 7.100. Step 2 of the surface divergence calculating algorithm.

Figure 7.101. Step 3 of the surface divergence calculating algorithm.

340

 Linear coloration Log coloration Log coloration (filled)
V

er
ti

ca
l

fl
o
w

N
o
rm

al
iz

ed
 L

at
er

al

fl
o
w

L
at

er
al

 v
s

p
en

et
ra

ti
n
g

ra
ti

o

N
ew

 l
at

er
al

 v
s

p
en

et
ra

ti
n
g
 r

at
io

(f
o

u
t/
f i

n
)

Figure 7.102. Coloration comparison between linear and log scaling for pial surface divergence.

As can be seen, the linear coloration is heavy with blue values and only the highest indices of

volumes (right edge) are red whereas the log scale has majority red values and only the first

indices (lower left corner) are blue. Note the flow is the same in every terminal in the network,

so any changes in vertical flow are representations of the number of terminals per surface

triangle (more evident in the filled than the non-filled display).

341

7.13.3.2 Volume flow divergence visualization

The volume divergence is the same as the surface divergence, where the flow into the voxel

and out of the voxel are used to see how much mass transfer occurs into the tissue in that volume.

This can also be a good method for visualizing the network solving stability, as it is a visualization

of the error at each junction in a network simulation encased in an artificial mesh.

Tissue: Flow divergence (0 - 4.3e-5 µL/s)

Vasc: Flow (-1e6 – 1e6 µL/s)

Log coloration

Tissue: oxygen mass transfer (0-340 mMol/s)

Vasc: oxygen (0.29-1000 mMol)

Log coloration

Figure 7.103. Visualization of the volume divergence implemented over a network and a

10x10x10 cartesian mesh.

Left) mass conservation of flow in the network (there is no mass transfer) is only visualized

using numerical error as the mass transfer is uniformly small throughout the mesh. This is a nice

way to visualize the vascular network solvability. Right) The mass transfer from vasculature to

tissue exhibits a higher flux at the inlet than the outlet.

7.13.3.3 Displaying lognormal network trends

When plotting data to show trends (for example, plotting flow vs length) is a common practice

in the experimental field. In such cases the frequent assumption is that the collection of data

342

represents a sparse sampling of the total data set. Due to the lack of data, it is important for the

user to assess what type of model best fits the data (Gaussian, uniform, etc.). The most common

type of assumed distribution is a Gaussian distribution, which assumes the range of values, and

thus the probability density function, has a peak centered at a mean value and the trailing arms are

described by the standard deviation. When a much larger group of data is available, as is common

in computational practices where an entire domain is modeled simultaneously, the distribution

does not need to be assumed as it may be fully determined. In the case of a large number of values

and a known distribution, the case of reporting a simple mean and standard deviation may not be

the most informative method for expressing the knowledge within data.

 Calculating a mean and standard deviation/variance from a dataset is a commonly used

method for interpreting a large quantity of data in an easy to read, intuitive and compact

visualization as investigated in a case study below (Section 7.13.3.5).

In a dataset where the probability density function skews heavily in one direction (a long tail

such as seen in a lognormal distribution) or on a bounded problem (flow cannot be negative, for

instance), the mean and standard deviation can be heavily skewed by infrequent and significant

outliers (such a pial vessels when analyzing the microcirculatory network). For these types of data,

the standard deviation subtracted from the mean can give negative numbers, which is

physiologically meaningless. In these cases, it is more practical to use a boxplot for the following

reasons; (i) a boxplot focuses on the bulk of the data as opposed to the entire dataset, (ii) a boxplot

gives more statistically calculated values about the data (instead of only the mean and standard

deviation), and (iii) a boxplot does not ever give values outside the simulation range (such as

negative flow or hematocrit >1).

343

A boxplot reports the median (with a single horizontal line), the interquartile range (IQR, 25%-

75% of the array) and the values inside of 3 scaled median absolute deviations (MAD) as described

in Section 7.13.3.6. This kind of an analysis removes skewing due to infrequent, outlier data points.

In exchange, this type of analysis focuses on the region in which the large majority (>80%) of data

occurs. An example of the distribution of flow in a microcirculatory dataset is given in

Section 7.13.3.4.

7.13.3.4 Case Study 1: Flow in a Microcirculatory KF dataset

In the case of microcirculatory networks, pial vessels and large arterioles and large venules

carry flow many orders of magnitude larger than the capillary vessels. Because the capillary bed

accounts for >80% of vessels in the microcirculation, one approach is to account for the infrequent

pial and penetrating vessels is to calculate the median, interquartile range and median absolute

deviation values, which show the details of distribution in the region where the capillaries exist.

An example of flow in a microvascular network is offered:

344

Figure 7.104: Probability density function of flow in Layer 1 after pial vessels have been

removed.

Almost all of the data lies at the left of the curve, however the trailing tail of the distribution is

very long and can skew the mean and standard deviation computations.

Figure 7.105: Probability density function of flow in Layer 1 after pial vessels have been

removed with a logarithmic x-axis.

Almost all of the data lies under 100pL/s, however there are still values greater than 10,000pL/s

in the network, which can skew the mean and standard deviation computations.

The mean and standard deviation of this dataset are have also been annotated on the same

figure in Figure 7.106. Labeling the median, IQR, and 3∙MAD values (values from a boxplot

diagram) are a better representation of the data contained within the PDF in Figure 7.107.

345

Figure 7.106: Annotated PDF of flow in Layer 1 of the microcirculatory bed.

The values for mean (orange circle) and standard deviation (green lines) have been identified.

The mean value lies above the majority of data and the standard deviation is very large.

Figure 7.107: Annotated PDF of flow in Layer 1 of the microcirculatory bed.

The values for median (red circle), 25-75 percentile (blue circles), and 3∙MAD (black vertical

lines) have been identified. These statistics represent a boxplot of data. Note, these statistics

display more properties of the region of the PDF where the majority of the data lie.

346

In conclusion, in cases where the probability density function (PDF) has infrequent data points

that significantly impact the standard deviation and the mean, a boxplot is the preferred

visualization paradigm. This is because it expresses more detailed information about the highest

density region of the PDF. In other words, if a PDF is highly concentrated in one region (>80% in

that region) and the mean lies outside that region because of significantly deviating outlying

values, a boxplot is preferred over a mean/variance plot.

7.13.3.5 Case study 2: calculation of mean and standard deviation

The mean value of a data vector is simply the average of the entire dataset:

𝑚𝑒𝑎𝑛 = 𝜇 =
1

𝑁
∑𝑑𝑎𝑡𝑎𝑖

𝑁

𝑖=1

(7.203)

 And the calculation of the standard deviation is:

𝑠𝑡𝑑 = 𝑆 = 𝜎 = √
1

𝑁 − 1
∑|𝑑𝑎𝑡𝑎𝑖 − 𝜇|

2

𝑁

𝑖=1

 (7.204)

Where the standard deviation can be thought of as the average divergence from the mean value.

This can be used to describe a PDF sample distribution in many kinds of distributions such as a

Gaussian, Binomial, Poisson, etc. A graphical interpretation of these values with a Gaussian

distribution is offered:

347

Figure 7.108: The graphical interpretation of standard deviation on a PDF with a normal

distribution.

The normal distribution has a mean of 2 and standard deviation of 0.5.

7.13.3.6 Case study3: calculation of median, interquartile range and median absolute deviations

A boxplot reports the median (with a single horizontal line, usually colored red), the

interquartile range (IQR, 25%-75% of the array, usually denoted by a blue box) and the values

inside of 3 scaled median absolute deviations (MAD) as described in the case study below

(frequently identified by black lines). These can be interpreted with the following diagram:

348

Figure 7.109:. Identification of the median, 25% and 75% location on a Gaussian distribution.

These numbers are used for the calculations below. Note, there are not outliers in this case study.

Where the calculation of the median, IQR and MAD are given in an example below. Step 1,

sort the array of values from low to high:

Figure 7.110: An example of an array before and after sorting.

Step 2, identify the median, 25th percentile and 75th percentile. The median is the number in

the middle of the array, the 25th percentile is indexed halfway between the middle and the 1st index

349

of the array and the 75th percentile is indexed halfway between the median and the highest index

of the array:

Figure 7.111: A sorted array with annotations for the median and interquartile range (25% -

75%).

Step 3, calculate the norm deviation of each element from the median

Figure 7.112: An example of a sorted array before and after subtracting the median value from

the every element of the vector.

The resulting vector is the MAD array.

Step 4, sort the median array from low to high and find the median of this array. This new

value is your MAD value.

350

Figure 7.113: An example of finding the MAD value of a MAD array (see Figure 7.112 for more

details).

The process sorts the MAD array and finds the median of this new array. The value representing

this median is the MAD value.

Step 5, identify outliers as all values with a MAD value in the MAD value array larger than

3∙(MAD value) (in our case, 3∙0.112453=0.3374):

Figure 7.114: An example of a MAD array compared to the outlier value, 3∙(MAD value).

Any values with magnitude larger than the outlier value are deemed outliers and are indicated

with stars on a boxplot diagram.

In this example, there are no outliers as no MAD array values are larger than 0.3374, so there

would be no outliers.

351

7.14 Appendix N: Discretization schemes

7.14.1 Translating between analytic and discretized form in 1D

The analytic representation of the diffusion-reaction problem in steady state is presented in

Equation (7.205) is in analytic form. On finite grids (or meshes), the equations must be discretized

and applied to the elements of the grid.

−
𝜕

𝜕𝑥
(−𝐷

𝜕𝑐

𝜕𝑥
) = −𝑅0 (7.205)

To understand how to apply the transport equation from analytics to a discretized system, a

decision must be made to either enforce a finite element method (FEM) or finite volume method

(FVM). The FEM applies Equation (7.205) directly for each element, making it easier to

implement, but the FEM suffers from discontinuities at non-identical interfaces (interfaces

between two tissues for instance) at low mesh density. This occurs because the balance equations

approaching the interface from one side to not match the balance equations as they approach from

the other side. Physically, this can be interpreted from the balance equation. Enforcing Equation

(7.205) enforces the acceleration of the state across any given volume is 0 or equal to the reaction

rate (in the steady-state case). This criteria does not enforce equivalent flux between adjacent

elements (i.e. it does not use the same flux vector and balance these vectors). To overcome these

discontinuities, a large number of grid points is required (high density mesh).

 The FVM works on the integral form of the base equation. Instead of solving for the

acceleration at each node, the divergence is calculated as the sum of fluxes through the volume.

This enforces the flux out of one element is arrives at the neighboring element which guarantees

352

mass is conserved and reduces the occurrence of discontinuities at lower mesh densities. Because

concentration must be conserved in these predictions, FVM is the better choice for discretization

methods. To implement an FVM method, Equation (7.205) must be integrated as follows:

0 = ∫ −
𝜕

𝜕𝑥
(−𝐷

𝜕𝑐

𝜕𝑥
) 𝑑𝑥

𝑅

𝐿

−∫ 𝑅0 𝑑𝑥
𝑅

𝐿

 (7.206)

Where R is right and L is left branch. When evaluated numerically:

0 = ∫ −
𝜕

𝜕𝑥
(𝐷
𝑐𝑖 − 𝑐𝑖+1

𝑥
) 𝑑𝑥

𝑅

𝐿

−∫ 𝑅0 𝑑𝑥
𝑅

𝐿

 (7.207)

Note that the second part of the fundamental theorem of calculus (also known as the

Newton-Leibniz axiom) gives:

If

𝑓(𝑥)′ = 𝐹(𝑥)

Then:

∫ 𝐹(𝑥) 𝑑𝑥
𝑅

𝐿

= 𝑓(𝑅) − 𝑓(𝐿)

Giving:

∫ 𝑓′(𝑥) 𝑑𝑥
𝑅

𝐿

= 𝑓(𝑅) − 𝑓(𝐿)

(7.208)

353

Which is gives the integral form of the balance equation as:

𝐷
𝑐𝑖−1 − 2𝑐𝑖 + 𝑐𝑖+1

𝑑𝑥
= 𝑅0 𝑑𝑥 (7.209)

7.14.1.1 Graphical example

An example mesh has been created in 1D and is shown in Figure 7.115. Applying Equation

(7.208) to Equation (7.207) gives Equation (7.210).

Figure 7.115. Graphical representation of the discretized 1D domain on which the

diffusion-reaction problem will be formulated. Note, Δ𝑥 is uniform.

0 = −(𝐷
𝑐𝑖 − 𝑐𝑖+1

𝑥
|
𝑅
− 𝐷

𝑐𝑖 − 𝑐𝑖+1
𝑥

|
𝐿
) − 𝑅0𝑥|𝑅 − 𝑅0𝑥|𝐿

0 = 𝐷
𝑐𝑖 − 𝑐𝑖+1
Δ𝑥

|
𝐿
− 𝐷

𝑐𝑖 − 𝑐𝑖+1
Δ𝑥

|
𝑅
− 𝑅0Δ𝑥

(7.210)

Where Δ𝑥 = x is the length of distance between adjacent nodes. Evaluated at node 4 gives:

354

𝐷
𝑐𝑖 − 𝑐𝑖+1

𝑥
|
𝐿
= 𝐷

𝑐3 − 𝑐4
Δ𝑥

 𝐷
𝑐𝑖 − 𝑐𝑖+1
Δ𝑥

|
𝑅
= 𝐷

𝑐4 − 𝑐5
𝑥

0 = 𝐷
𝑐3 − 𝑐4
Δ𝑥

− 𝐷
𝑐4 − 𝑐5
Δ𝑥

− 𝑅0Δ𝑥

0 = 𝐷
𝑐3 − 2𝑐4 + 𝑐5

Δ𝑥
− 𝑅0Δ𝑥

(7.211)

Note, Equation (7.211) is equivalent to:

0 = 𝐷
𝑐3 − 2𝑐4 + 𝑐5

Δ𝑥
− 𝑅0 (7.212)

For a 1st order reaction can be written as:

0 = 𝐷
𝑐3 − 2𝑐4 + 𝑐5

Δ𝑥
− 𝑘1c4Δ𝑥

0 =
𝐷

Δ𝑥
𝑐3 − (

2𝐷

Δ𝑥
+ 𝑘1Δ𝑥)𝑐4 +

𝐷

Δ𝑥
𝑐5

(7.213)

Note, the diffusivity here has units of m2/s and the reaction is of units 1/s, which results in an

overall flux rates of mol/m2/s. This can be interpreted as an area-averaged flux. What this means,

is that the fluxes assume that the other 2 dimensions are homogenous, well-mixed and uniform

throughout the domain of xmin to xmax. In order to account for the 3 dimensions of the material

property D, and rate of reaction k1, it is important to multiply the flux equations by a user-defined

355

choice of cross sectional area. Because the example uses a uniform diameter, this value has been

divided out of the entire equation.

7.14.2 Two dimensions

A more transparent problem formulation to is the 2D formulation. Because 2 dimensions is not

physiologically relevant nor is it a significant problem reduction, it is not frequently used. As such,

the derivation will be brief. In the case of 2D, the integration over the volume will take place in 2

dimensions instead of 1, making Equation (7.206) expand to:

0 = ∫ ∫ −
𝜕

𝜕𝑥
(−𝐷

𝜕𝑐

𝜕𝑥
) −

𝜕

𝜕𝑦
(𝐷
𝜕𝑐

𝜕𝑦
) 𝑑𝑥

𝑅

𝐿

 𝑑𝑦
𝑇

𝐵

−∫ ∫ 𝑅0 𝑑𝑥
𝑅

𝐿

𝑑𝑦
𝑇

𝐵

 (7.214)

Where B is bottom and T is top. Evaluating the integral gives:

∫ ∫ 𝑅0 𝑑𝑥
𝑅

𝐿

𝑑𝑦
𝑇

𝐵

= ∫ ∫ −
𝜕

𝜕𝑥
(−𝐷

𝜕𝑐

𝜕𝑥
) −

𝜕

𝜕𝑦
(𝐷
𝜕𝑐

𝜕𝑦
) 𝑑𝑥

𝑅

𝐿

𝑑𝑦
𝑇

𝐵

∫ 𝑅0Δ𝑥 𝑑𝑦
𝑇

𝐵

= ∫ 𝐷
𝑐𝑖 − 𝑐𝑖+1
Δ𝑥

|
𝐿
− 𝐷

𝑐𝑖 − 𝑐𝑖+1
Δ𝑥

|
𝑅
−
𝜕

𝜕𝑦
(𝐷
𝜕𝑐

𝜕𝑦
)Δ𝑥 𝑑𝑦

𝑇

𝐵

𝑅0Δ𝑥Δ𝑦 = (𝐷
𝑐𝑖 − 𝑐𝑖+1
Δ𝑥

|
𝐿
− 𝐷

𝑐𝑖 − 𝑐𝑖+1
Δ𝑥

|
𝑅
) Δ𝑦 + (𝐷

𝑐𝑖 − 𝑐𝑖+1
Δ𝑦

|
𝐵

− 𝐷
𝑐𝑖 − 𝑐𝑖+1
Δy

|
𝑇

)Δ𝑥

(7.215)

7.14.2.1 Graphical example of numerical discretization

An example mesh has been created in 2D and visualized in Figure 7.116.

356

Figure 7.116. 2-dimensional grid system on which the transport equations will be discretized.

Evaluation at node 10 gives:

𝑅0Δ𝑥Δ𝑦 = 𝐷Δ𝑦
𝑐9 − 2𝑐10 + 𝑐11

Δ𝑥
+ 𝐷Δ𝑥

𝑐16 − 2𝑐10 + 𝑐4
Δy

 (7.216)

Where the grid is still evenly spaced and the values of flux are in moles/m/s. Note, the third

dimension is considered homogenous and uniform throughout the domain, so it has been divided

out of the equation.

7.14.3 Three dimensions

Likewise in 3D, Equation (7.206) can be expanded to:

∫ ∫ ∫ 𝑅0 𝑑𝑥
𝑅

𝐿

𝑑𝑦
𝑇

𝐵

𝑑𝑧
𝐷

𝑆

= ∫ ∫ ∫ −
𝜕

𝜕𝑥
(−𝐷

𝜕𝑐

𝜕𝑥
) −

𝜕

𝜕𝑦
(𝐷
𝜕𝑐

𝜕𝑦
) −

𝜕

𝜕𝑧
(𝐷
𝜕𝑐

𝜕𝑧
) 𝑑𝑥

𝑅

𝐿

 𝑑𝑦
𝑇

𝐵

𝑑𝑧
𝐷

𝑆

 (7.217)

357

Where S is shallow and D is deep into the page. Evaluating the integral gives:

∫ ∫ ∫ 𝑅0 𝑑𝑥
𝑅

𝐿

𝑑𝑦
𝑇

𝐵

𝑑𝑧
𝐷

𝑆

= ∫ ∫ ∫ −
𝜕

𝜕𝑥
(−𝐷

𝜕𝑐

𝜕𝑥
) −

𝜕

𝜕𝑦
(𝐷
𝜕𝑐

𝜕𝑦
) −

𝜕

𝜕𝑧
(𝐷
𝜕𝑐

𝜕𝑧
) 𝑑𝑥

𝑅

𝐿

 𝑑𝑦
𝑇

𝐵

𝑑𝑧
𝐷

𝑆

= ∫∫ 𝐷
𝑐𝑖 − 𝑐𝑖+1
Δ𝑥

|
𝐿
− 𝐷

𝑐𝑖 − 𝑐𝑖+1
Δ𝑥

|
𝑅
−
𝜕

𝜕𝑦
(𝐷
𝜕𝑐

𝜕𝑦
)Δ𝑥 −

𝜕

𝜕𝑧
(𝐷
𝜕𝑐

𝜕𝑧
)Δ𝑥 𝑑𝑦

𝑅

𝐿

𝑑𝑧

𝑇

𝐵

= ∫(𝐷
𝑐𝑖 − 𝑐𝑖+1
Δ𝑥

|
𝐿
− 𝐷

𝑐𝑖 − 𝑐𝑖+1
Δ𝑥

|
𝑅
) Δ𝑦 + (𝐷

𝑐𝑖 − 𝑐𝑖+1
Δ𝑦

|
𝐵

− 𝐷
𝑐𝑖 − 𝑐𝑖+1
Δ𝑦

|
𝑇

)Δ𝑥

𝑇

𝐵

−
𝜕

𝜕𝑧
(𝐷
𝜕𝑐

𝜕𝑧
) Δ𝑥Δ𝑦 𝑑𝑧

𝑅0Δ𝑥Δ𝑦Δ𝑧 = (𝐷
𝑐𝑖 − 𝑐𝑖+1
Δ𝑥

|
𝐿
−𝐷

𝑐𝑖 − 𝑐𝑖+1
Δ𝑥

|
𝑅
)Δ𝑦Δ𝑧

+ (𝐷
𝑐𝑖 − 𝑐𝑖+1
Δ𝑦

|
𝐵

−𝐷
𝑐𝑖 − 𝑐𝑖+1
Δ𝑦

|
𝑇

)Δ𝑥Δ𝑧

+ (𝐷
𝑐𝑖 − 𝑐𝑖+1
Δ𝑥

|
𝑆
−𝐷

𝑐𝑖 − 𝑐𝑖+1
Δ𝑥

|
𝐷
)Δ𝑥Δ𝑦

(7.218)

This final form is the diffusivity in each dimension multiplied by the cross sectional area

perpendicular to the diffusive dimension. Moreover, the reaction is multiplied by the mesh element

volume. Note, this formulation assumes isotropic, uniform diffusivity.

7.14.3.1 Graphical example

An example mesh has been created in 3D and visualized in Figure 7.117.

358

Figure 7.117. 2-dimensional grid system on which the transport equations will be discretized.

Evaluated at node 39 (assuming nodes are centers of hexahedral volumes) gives:

𝑅0Δ𝑥Δ𝑦Δ𝑧 =
Δ𝑦Δ𝑧

Δ𝑥
(𝑐23 − 2𝑐39 + 𝑐55)

+
Δ𝑥Δ𝑧

Δ𝑦
(𝑐35 − 2𝑐39 + 𝑐38)

+
Δ𝑥Δ𝑦

Δ𝑧
(𝑐40 − 2𝑐39 + 𝑐38)

(7.219)

Where the connected nodes to node 39 are 23 (L), 55 (R), 38 (D), 40 (S), 43 (T), and 35 (B).

Where the grid is still evenly spaced and the values of flux are in moles/s.

359

nVolumes 10 25 50 100 200 300 500 1000 2000 5000 10000

Solving time (s) 3.7e-3 6.6e-3 12.3e-3 45.1e-3 191e-3 491e-3 1.52 7.43 40.0 381 2452

7.14.4 Finite mesh discretization

The discretization of a mesh should not impact the solution vector. Discretization refers to the

method for delineating the bounding volumes of a mesh. Two methods for discretizing a mesh are

considered here: (i) the half-volume technique and (ii) the half distance spacing technique. Both

methods are visualized in Figure 7.118.

Figure 7.118. Schematic of domain on which the current 1D implementation is being solved.

The former method is convenient for deriving the volume centers, as they are simply the ratio

of the domain length to the number of volumes in the domain. This method suffers from

inconsistent boundary assignment, where the mandatory replacement of a boundary equation at

the edge volumes changes the domain volume. An example of this is the case of a diffusion

problem with a reaction. When the mesh is discretized at two different mesh densities, the size of

the boundary volumes changes, thus changing the domain volume available for reactions. This is

an inherent mesh instability of the method.

360

The second method creates a boundary volume at the exterior of the domain, ensuring the

interior volume extent remains unchanged at any discretization density. These boundary volumes

only have a ½ distance from the neighboring volume, which can make implementation less

readable. The boundary volumes, however, have no effect on the reaction domain, so this method

does not have inherent mesh instabilities.

In all cases it is recommended to use model (ii), the half distance spacing method. This method

offers stable convergence and ensures full domain extent for simulations.

361

7.15 Appendix O: Boundary conditions

In all simulations, an important modeling decision outside of the geometry (3D structure),

relevant transport phenomena (diffusion, rxn, etc.), and properties being conserved is the BCs

(BCs). These conditions are chosen by the modeler to enforce what is believed to happen at the

modeling boundary. Unlike batch reactors, however, traditional BCs (such as Dirichlet

temperature) cannot be assumed at an interface in biological systems. This adds modeling

assumptions to the solution space that have a significant impact on the solution; meaning the

solution significantly changes based on the BC choice, even if all choices are equally reasonable.

One way to circumvent this problem is to remove the BCs as far from the solution space as

possible, which can be accomplished by modeling an entire organ as opposed to only a portion.

Regardless, at the edge of the organ a BC must still be set, however the BC should have a smaller

impact (less boundary effects) and the choice should be more obvious.

In a paper by Lorthois, a very laborious derivation and proof was required in an attempt to

claim the BCs had no effect on the outcome of her simulation. Work by our own group includes

simulations of large spatial extents [21,22,231–233] and we have employed vascular generation

[21,234] in an effort to distance the simulation results from the effects at the artificial boundaries,

both for vasculature and tissue. This section will review some of the different BC choices available

and some insight into when to apply them to a biological simulation.

It is important to note that the enforcement of a BC involves replacing a conservation equation

with said BC. This can have significant impacts on the solution space, for instance, if the BC is set

on a volume inside the solution space that encompasses a reaction. In this case, as the mesh is

refined, the volume of space devoid of reactions will shrink, thus fundamentally changing the

362

outcome of the simulation. This is one of the reason that most BCs exist at flat faces on the edge

of a 3D simulation mesh (see Section 7.14.4 on discretization schema).

7.15.1 Dirichlet and Neumann

Two of the simplest BCs are Dirichlet (fixed value) and Neumann (fixed flow). A Dirichlet

BC is implemented by setting the value for an unknown parameter in the solution space to a

specific value. This can be applied to an interior or exterior volume, but as described above, an

exterior volume is preferred when possible. A Dirichlet BC is written in Equation (7.220).

A fixed flow/flux (known as Neumann) is simply setting the value of the flow to a known value

as in Equation (7.221). This can also be applied to an interior or exterior volume, but preferably to

an exterior volume in the case of reactions as described above.

𝑃𝑖 = 𝑐𝑜𝑛𝑠𝑡 (7.220)

𝑓𝑖 = 𝑐𝑜𝑛𝑠𝑡 (7.221)

7.15.2 Proportional flow

A proportional flow BC is an effective way of enforcing one flow between two volumes in a

mesh is directly proportional to the flow between another pair of volumes as in Equation (7.222).

An application of this type of BC is where a vascular tree modeler believes the velocity, cross

sectional area, or vessel surface area of a terminal segment is indicative of its fractional flow of

the mother branch when no other data is available. This application is investigated in more detail

in Section 7.15.6 where measured data from mother branches of vascular trees are used to identify

363

BCs and flows throughout the network. Unfortunately, investigation revealed these BCs create a

singular matrix in some cases in the forward simulation as mass conservation and Hagen Poiseuille

flow already account for the fractional division of flow at all branches in the network. When

assuming the flow out of a terminal segment is proportional to the cross sectional area of that

terminal, the fractional flow from the mother branch is proportional to the fractional area of that

segment from all terminal segments. This can be expressed mathematically in equation (7.223).

𝑓𝑖 =
1

𝛽
𝑓𝑗 (7.222)

𝑓𝑖 = 𝑓𝑡𝑜𝑡
𝐴𝑖

∑ 𝐴𝑗
𝑁
𝑗=1

(7.223)

Note, if all BCs are enforced using fractional flow the system becomes fully determined and

singular because the fractional flow BC implies the sum of all outlet flows is the inlet flow, which

is redundant of the conservation equations.

7.15.3 Periodic

Another BC type covered in this document is a periodic BC. This type of BC is the equivalent

of putting a duplicate of the mesh object next to the object, and connecting the two adjacent sides

as neighbors. This is implemented by using an artificial face between opposing terminal directions

(south connects to north, east to west, and top to bottom) through a characteristic face. This

characteristic face is defined as the “average” face (cross sectional area and length). This face is

then used for conservation equations as if it were a normal interior volume.

364

7.15.4 Constant Gain

To obtain a time-dependent result without having to make assumptions assume at the inlets,

constant gain BCs could be used, however they are outside the scope of this work. Constant gain

BCs are effective in dynamic BCs, where the attenuation (or gain) of pressure between the inlets

and the outlets for the nominal (steady-state values) can be used as constant throughout the

frequencies.

7.15.5 Implementation

This section will investigate the implementation of BCs necessary for linear flow, biphasic

blood flow, and oxygen simulations in the brain.

Convection. The hematocrit (the volume fraction of RBCs in blood) has the physical

interpretation as a convected medium, meaning that it is moving primarily by the force of the bulk

flow (plasma). This bulk flow follows a diffusion mechanism (pressure-driven flow) which

requires two BCs (explained next).

Note, convection only requires a single explicit BC. This is because in differential form of the

conservation equation, convection is a single order differential equation. In short, the integration

would require only one BC to specify all integration constants. In order to solve for nPoints

unknown states, there must be nPoints number of equations (otherwise you will have an

overdetermined or underdetermined system and have no solution). This means a choice must be

made at the outlet in order to solve the balance envelope around that point. The most logical choice

is a fully developed flow profile at the outlet (meaning the flow into the outlet node is the same as

exiting the outlet node, or ∇⃑⃑ ∙ 𝑓 = 0. The inlet node must be chosen manually with a Dirichlet BC.

365

Diffusion. For pressure-driven flow, two BCs are necessary (2nd order differential equation in

conservation form). The BCs can be any combination of pressure and flow, as long as every

independent set of vessels (vessel group that is not connected to another vessel group) has at least

one pressure BC applied to it. This means that if there are two vascular structures being simulated

simultaneously (like two trees that do not join in the middle), they will each require at least one

pressure BC to ensure the solving matrix is non-singular. This can be physically interpreted as the

absolute pressure level which satisfies the necessary pressure drop throughout the network.

Without this pressure BC calibration, there are an infinite number of absolute pressures of the inlet

and outlet that cause the same pressure drop (i.e., a 15 mmHg inlet and 10 mmHg pressure drop

can also give the same flow as a 25 mmHg inlet and 20 mmHg outlet pressure drop, although the

exact pressure differs).

Choosing a flux BC is advantageous when such information is readily available, such as

measurements of blood flow in the microcirculatory surface vessels. The values of flow vary

wildly among the literature, specifically depending on environmental factors such as the level of

sedation of the animal [235–237]. A more reliably measured value is the systolic and diastolic

blood pressure in the arteries of animals and the venous pressure. Because these values are more

widely accepted, they are used in the current work as Dirichlet BCs.

7.15.5.1 Choosing bulk flow BCs

Regardless of biphasic or single-phasic blood flow, BCs must be chosen for the blood flow

simulation. In the case of biphasic blood flow across the microcirculation, the BC for pressure at

the inlet was derived from mean arterial pressure during systole in the mouse, ~120 mmHg [238].

The diastolic pressure in mouse was found to be ~100 mmHg by the same source, so the range of

366

inlet can be reasonably chosen between 100 and 120 mmHg. 120 mmHg was chosen for our large,

dense, tortuous microcirculatory networks.

7.15.5.2 Choosing hematocrit BCs

Hematocrit is treated like a solute in the 2015 implementation of the KPSM [21], adheres to a

single-order differential equation (convection) and requires only 1 BC, as discussed above. The

convected medium needs to only know the inlet concentration (or hematocrit level). A reasonable

inlet hematocrit level is taken as the systemic value (ranging in the literature between 0.35 and

0.45). With previous models of hematocrit splitting, the tendency in big-network simulations was

to use the lowest reasonable value for systemic hematocrit to avoid the hematocrit values leaving

the physiological region (Hct > 1) [21,22,39,40]. Some groups even required manipulation of the

solution vector to keep inside physiological range [40,44]. In experience, the value of systemic

hematocrit does not greatly affect the overall flow rate (even though the viscosity is hematocrit-

dependent) which is not an actual BC but rather another conservation equation. In the present

work, the Dirichlet value of 0.35 is chosen [21,22]. The outlet terminals use a reflective BC (flow

into the node is the same as exiting the node through the terminal).

7.15.5.3 Choosing oxygen BCs

In an oxygen simulation, any number of boundary conditions can be considered reasonable for

the tissue. Through investigation, however, it was deemed that the two conditions that give the

most reasonable profiles are Dirichlet or periodic BCs (see Section 7.28.5) although a fixed flux

could be substituted in lieu of this. The next most reasonable is the insulated BC. At the vascular

367

inlet, a Dirichlet value of systemic arterial oxygen tension is imposed as it gives the most

reasonable choice for a steady-state simulation.

7.15.6 BCs from empirical measurements and optimization

Subject-specific anatomical reconstructions of vascular structures from medical images

[68,231] allow virtual experimentation (simulations) of structural changes in the human

cerebrovasculature at an unprecedented level. Unfortunately, due to limited imaging resolution,

these structures are incomplete and lack the microvasculature closure that would normally connect

the pial arterial trees to the large venous structures. Due to this missing structure, the pial vessels

are endowed with a large number of open-ended segments, known as terminals. Fortunately, some

patients who undergo neurovascular imaging also undergo blood flow measurement at the same

time. The reconstructions accompanying data imaged using a patented NOVA system [239] can

benefit from the empirical information to assist in boundary condition assignment. An approach

to use this information to delineate boundary conditions would be to find the minimum least-square

error between a blood flow simulation that adheres to conservation balances to the measurements

of a few large vessels. Such an approach will be introduced in this section.

Note, all dimensions of matrices and vectors will be reported using the notation that 𝑁𝑝 =

 number of points, 𝑁𝑖𝑝 = number of internal points, 𝑁𝑒𝑝 = number of terminal points, and 𝑁𝑓 =

number of faces.

The forward simulation statement. Linear flow can be predicted using the first principle models

(Hagen Poiseuille and mass conservation) as seen in equations (7.224)-(7.226).

368

 𝐴𝑓 = 𝑍1𝑃
(7.224)

𝑍2𝑓 = 0
(7.225)

𝑍3𝑝 = �̅�
(7.226)

The minimization problem statement. A least-square optimization problem can be constructed

to minimize the difference between measured flows and simulated flows while forcing the

simulated flows to adhere to the linear flow simulation. This is expressed in Equation (7.227).

𝑧(𝑝, 𝑓) = min
𝑓,𝑝
‖𝑓 − 𝑓‖

𝑠. 𝑡.

𝐴𝑓 = 𝑍1𝑃

𝑍2𝑓 = 0

𝑍3𝑝 = �̅�

(7.227)

Where 𝑧 ∈ ℜ𝑁𝑓 𝑥 𝑁𝑓, 𝑓 ∈ ℜ𝑁𝑓 𝑥 1, 𝑍2 ∈ ℜ
𝑁𝑓 𝑥 𝑁𝑓 , 𝑍1 ∈ ℜ

𝑁𝑓 𝑥 𝑁𝑝, 𝐴 ∈ ℜ𝑁𝑓 𝑥 𝑁𝑓, 𝑍3 ∈ ℜ
𝑁𝑒𝑝 𝑥 𝑁𝑝.

7.15.6.1 Mathematical formulation of the optimization equation

To find the optimal point of this convex and positive-definite system, the solution lies at a point

where the derivative has a value of 0 (gradient in all dimensions is 0). Because this least-square

problem is of 2nd order, it has only one position where this occurs, so any solution found is by

definition the global solution. So the first step is to take the partial derivative of L with respect to

all variables (𝑝, λ, and 𝜇) and find where these differentials are all 0. Validations of matrix

derivatives can be seen in Section 7.24.

369

Lagrangian. The Lagrangian method is used to solve the constrained optimization problem

described in equation (7.227). To solve the constrained optimization problem, the Lagranagian

function is defined in equation (7.228). The Lagrangian incorporates the artificial variables,

λ and 𝜇, to account for the set of node mass balances, ℎ(𝑝, 𝑓), and the set of (incomplete) BCs,

𝑔(𝑝). The value of these variables are the “shadow price” and are indicative of the importance of

the constraint on the solution vector. In other words, if the value of one of these variables is high,

it means that relaxing that specific constraint will greatly affect the solution vector. This can also

be explained as a way to encode the sensitivity of the objective function to the constraint level.

The optimality condition for the Lagrangian in Equation (7.229) leads to a linear set of equations

that allow the convenient determination of the unknown vectors 𝑝, 𝑓, λ, 𝜇 as will be explored in the

next sections.

𝐿(𝑝, 𝑓, λ, 𝜇) = 𝑧(𝑝, 𝑓) + λ𝑇ℎ(𝑝, 𝑓) + 𝜇𝑇𝑔(𝑝) (7.228)

∇⃗⃑⃑𝐿(𝑝, 𝑓, λ, 𝜇) = 0
(7.229)

Objective function. The objective function, Equation (7.230), sums the difference between

given flows (e.g. NOVA measured results, 𝑓) and the predicted flows, 𝑓 . It is convenient to define

the square weight matrix, 𝑊 ∈ ℜ𝑁𝑓 𝑥 𝑁𝑓, of binary entries to account for available measurements

as in equation (7.231). 𝑊 is a diagonal matrix which holds a value of 1 in the event a corresponding

vessel index has been measured and a value of 0 otherwise. Without the weighting matrix, the

optimization would assume that there is a measurement value of 0 flow for all faces where there

is no measurement. This weighting matrix can also be modified beyond the values of 1 and 0 to

370

encode the confidence in each measurement, allowing certain measurements to have more weight

than others in the optimization but this is not explored here.

𝑧(𝑃, 𝑓) = [𝑊(𝑓 − 𝑓)]
𝑇
[𝑊(𝑓 − 𝑓)]

(7.230)

𝑊 = {1 𝑤ℎ𝑒𝑟𝑒 𝑓 𝑖𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(7.231)

To reduce problem size, flows can be eliminated from the unknown vector, 𝑓, and replaced

with equations of pressure with the help of Equation (7.227) in the form 𝑓 = 𝐴−1𝑍1𝑝 . The new

objective function is quadratic in unknown pressures. The solution can then be obtained through

the optimality condition as in Equation (7.229).

By substituting Equation (7.227) into Equation (7.230), the constraint equations become

equation (7.232). The vector �̅� is the vector corresponding to the BCs. 𝑝 ∈ ℜ𝑁𝑝 𝑥 1, 𝑓 ∈ ℜ𝑁𝑓 𝑥 1,

𝑍3 ∈ ℜ
𝑁𝑒𝑝 𝑥 𝑁𝑝

𝑧(𝑝, 𝑓) = min
𝑓,𝑝
‖𝑓 − 𝑓‖

𝑠. 𝑡.

𝑍2𝐴
−1𝑍1𝑝 = 0

𝑍3𝑝 = �̅�

(7.232)

The objective function can now be formulated and reduced as in Equation (7.233). 𝑆 ∈

ℜ𝑁𝑝 𝑥 𝑁𝑝, 𝑡 ∈ ℜ𝑁𝑝 𝑥 1, 𝑍4 = 𝑍2𝐴
−1𝑍1.

371

𝑧(𝑝) = [(𝑊𝑓 −𝑊𝑍4𝑝)]
𝑇
[(𝑊𝑓 −𝑊𝑍4𝑝)]

(7.233)

 = [(𝑓𝑇𝑊𝑇 −𝑊𝑇(𝑍4𝑝)
𝑇)][(𝑊𝑓 −𝑊𝑍4𝑝)]

 = 𝑝𝑇𝑍4
𝑇𝑊𝑇𝑊𝑍4𝑝 − 𝑝

𝑇𝑍4
𝑇𝑊𝑇𝑊𝑓 − 𝑓𝑇𝑊𝑇𝑊𝑍4𝑝 + 𝑓

𝑇𝑊𝑇𝑊𝑓

 = 𝑝𝑇(𝑊𝑍4)
𝑇𝑊𝑍4𝑝 − 2(𝑊𝑓)

𝑇
𝑊𝑍4𝑝 + (𝑊𝑓)

𝑇
𝑊𝑓

𝑧(𝑝) = 𝑝𝑇𝑆𝑝 − 2 𝑡𝑇𝑝 + 𝑐

Obtaining the derivative of the Lagrangian. The Lagrangian function can now be written with

respect to only 3 variables; pressure (𝑝) and the shadow prices (λ, 𝜇) as in Equation (7.234). As

discussed above, the optimal solution of this problem exists where all partial derivatives are a value

of 0. These partial derivatives are expressed below.

𝐿(𝑝, 𝑓, λ, 𝜇) = 𝑧(𝑝, 𝑓) + λ𝑇ℎ(𝑝, 𝑓) + 𝜇𝑇𝑔(𝑝) (7.234)

Partial derivatives of objective function (𝑧(𝑝)). The gradient w.r.t. pressure (∇⃑⃑ 𝑧(𝑝)) can be

obtained after introducing a symmetric, square matrix, 𝑆 = (𝑊𝑍4)
𝑇(𝑊𝑍4) and vector

𝑡 = (𝑊𝑓)
𝑇
𝑊𝑍4 for simplification resulting in Equation (7.235).

∇⃑⃑ pz = 2Sp − 2t
(7.235)

∇⃑⃑ λz = 0

372

∇⃑⃑ μz = 0

Partial derivatives of node mass balances. The set of node mass balances is a set of linear

equations with dependent variable pressure [h(p)] as in Equation (7.236). The desired partial

derivatives then become Equation (7.237). The introduction of Z5 = Z2A
−1Z1 is added here for

simplification. λ ∈ ℜNip x 1, Z5 ∈ ℜ
Nip x Np

h(p) = Z2A
−1Z1p = Z5 p (7.236)

∇⃑⃑ p[λ
Th(p)] = Z5

T
λ

(7.237) ∇⃑⃑ λ[λ
Th(p)] = Z5p

∇⃑⃑ μ[λ
Th(p)] = 0

Partial derivatives of BCs. In practice, the complete BC list is not specified in the estimation

problem, instead only a partial list is used. For example, all inlet and outlet pressures cannot be

given or else the constraints would be fully determined and there would be no degrees of freedom

for optimization. Instead, conditions for the many open branches of the network must be provided

(specifically nTerminals – nMeasurements is the minimum number of BCs necessary).

In the simplest form, a single inlet BC set with a Dirichlet pressure, the boundary condition

matrix Z3 would be a row vector with a 1 at the index of the inlet node and p̅ would be a vector of

length 1 and a value that corresponds to the Dirichlet pressure. More information can be found in

Section 7.11.1. Z3 ∈ ℜ
Nep x Np

373

An example of a single Dirichlet BC with 4 nodes with the first node pressure is set to

10 mmHg can be seen in Equation (7.238). An example of a partial Neumann (flow) BC of the

same system with flow 1 (between node 1 and 2) set to 10 ml/min can be seen in Equation (7.239).

In this case, α1 is the resistivity of arc 1 between node 1 and node 2. μ ∈ ℜNep x 1

g(p) = Z3p − p̅

(7.238)
g(p) = [1 0 0 0]p − 10

g(p) = Z3p − p̅

(7.239)
g(p) = [−1 α1⁄ 1 α1⁄ 0 0]p − 10

The required partial derivatives then become equation (7.240).

∇⃑⃑ p[μ
Tg(p)]Z3

Tμ

(7.240)
∇⃑⃑ λ[μ

Tg(p)] = 0

∇⃑⃑ μ[μ
Tg(p)] = Z3p − p̅

Suggested BCs. In an effort to maximize information obtained from measurements during the

optimization solving, the assignment of n-6 terminal pressures in order to fulfill the

equation/unknown requirement balance (assuming 6 measurements of the network). This is where

the partial flow BC described in Section 7.15.2 is implemented.

Final solution. By assembling the partial derivatives in Equations (7.235), (7.237), and (7.240),

the result is a linear set of algebraic equations (Equations (7.241)-(7.242)).

374

∇⃑⃑ 𝑝𝐿 = −2𝑡 + 2𝑆𝑝 + 𝑍4
𝑇𝜆 + 𝑍5

𝑇𝜇 = 0

(7.241) ∇⃑⃑ 𝜆𝐿 = 𝑍5𝑝 = 0

∇⃑⃑ 𝜇𝐿 = 𝑍3𝑝 − �̅� = 0

[
2𝑡
0
�̅�
] = [

2𝑆 𝑍5
𝑇 𝑍3

𝑇

𝑍5 0 0
𝑍3 0 0

] [

𝑝
λ
𝜇
] (7.242)

7.15.6.2 Using the Fourier Transform to produce time-dependent BCs

Blood flow is naturally a dynamic system, oscillating with the heartbeat. In order to capture

the transient nature, a time-dependency is necessary to reconstruct the entire signal. Measurements

from a NOVA report [239] can be extracted from multiple vessels in the human brain. These match

patient-specific anatomical reconstructions as previously demonstrated [68,231]. With these flows,

the optimization can be performed at each time point. It can be shown that these problems are

separable and adjacent time points do not influence each other, allowing the possibility for

discontinuities in the tine-dependent simulation.

To avoid these discontinuities, the discrete Fourier series can be computed of the original

measurements and the optimization can be performed in the Fourier domain at each frequency.

These problems can also be separated and solved individually for each frequency as described in

Section 7.15.13. Once computed, the Fourier coefficients can be reconstructed back into the time

domain as continuous, analytic functions.

The discrete Fourier series. The discrete Fourier transform is a coordinate transformation

between the time domain and the frequency domain in effort to decompose an oscillatory signal

375

into the constitutive waveforms that, when added together, create the final measured waveform.

This can be accomplished with simple algebraic or linear algebraic techniques is a method readily

available for filtering the entire signal for noise and for up-sampling the original data. An in-depth

investigation of different indexing schemes, transform implementations, comparison of

deconstructing and reconstructing in real and complex arithmetic, and case studies are offered in

Section 7.15.7. The mathematics of the discrete Fourier series (DFT) and the inverse discrete

Fourier series (IDFT) are offered in Equations (7.243)-(7.244). These equations are written in the

indexing scheme of Quarteroni [240] due to straightforward expressions of DFT and IDFT, even

though it is only capable of deconstructing data with an even number of samples. For a comparison

to Matlab and Trefethen [241] indexing can be seen in Section 7.17.4 and in an internal lab report

[242].

fk̃ =
1

N
∑ f(xj)WN

(k−
N
2) j

N−1

j=0

 (7.243)

f(xj) = ∑ fk̃

N−1

k=0

WN
−(k−

N
2) j

Where:

h =
2π

N
, xj = jh, WN = e

−𝑖
2π
N

(7.244)

Problem formulation in the Fourier space. If this advanced technique for signal processing

could be used in conjunction with the current optimization problem, it would allow the measured

blood flow signals to produce a continuous function of blood flow throughout the entire network.

376

In order to execute this, the same optimization problem described above can also be formulated in

terms of a discrete Fourier series.

Equation (7.245) expresses an example of the generalized discrete Fourier series of a signal

(Equations (7.243)-(7.244)) in terms of a relevant parameter to this problem. This example

replaces the measured signal, f(xj) with measured flows (𝑓(𝑡𝑗)), and the Fourier coefficient for

that flow, fk̃, with a new variable 𝑓�̂�
̃ .

𝑓�̂�
̃ =

1

N
∑ 𝑓(𝑡𝑗) 𝑉(tj)

N−1

j=0

 (7.245)

f(𝑡𝑗) = ∑ 𝑓�̂�
̃

N−1

k=0

V(k)

Where:

V = ei
2π
N (k−

N
2)𝑡

(7.246)

Using this example, the original data (one value for every time point) is converted to a set of

measurements in each frequency. Likewise, all other variables can be reformulated reformulating

in the Fourier domain where 𝑓(𝑡), 𝑓(𝑡), �̅�(𝑡), and 𝑝(𝑡) become 𝑓�̂�
̃ , 𝑓�̃� , �̂�𝑘̅̅ ̅̃̅ , and 𝑝�̃�). In other

words, instead of solving the optimization point across many time points, it will optimize across

many frequencies. This is then plugged back into the original optimization problem, where the

sum of error is minimized as expressed in Equation (7.247).

377

𝑧(𝑝, 𝑓, 𝑘) = 𝑚𝑖𝑛
𝑓,𝑝

‖∑ 𝑓�̂�
̃

𝑁−1

𝑘=0

𝑉𝑘 −∑ 𝑓�̃�

𝑁−1

𝑘=0

𝑉𝑘‖

s.t.

𝐴∑ 𝑓�̃�

𝑁−1

𝑘=0

𝑉𝑘 − 𝑍1∑ 𝑝�̃�

𝑁−1

𝑘=0

𝑉𝑘 = 0

𝑍2∑𝑓�̃�

𝑁−1

𝑘=0

𝑉𝑘 = 0

𝑍3∑ 𝑝�̃�

𝑁−1

𝑘=0

𝑉𝑘 −∑ �̂�𝑘̅̅ ̅̃̅

𝑁−1

𝑘=0

𝑉𝑘 = 0

Where: vk = e
i
2π

N
(k−

N

2
)𝑡

𝑓(𝑡) = 𝑓𝑙𝑜𝑤 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑓(𝑡) = 𝑓𝑙𝑜𝑤 𝑝(𝑡) = 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑝(𝑡)

= 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐵𝐶

And in the Fourier space (for kth frequency):

𝑓�̂�
̃ = 𝑓𝑙𝑜𝑤 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑓�̃� = 𝑓𝑙𝑜𝑤 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡

�̂�𝑘̅̅ ̅̃ = 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐵𝐶 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑝�̃� = 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡

𝑓𝑜𝑟 𝑘 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑜𝑢𝑟𝑒𝑖𝑟 𝑠𝑝𝑎𝑐𝑒

(7.247)

This formulation constitutes a separable problem where each frequency can be solved with an

independent optimization problem as verified in Section 7.15.13. The problem can be further

378

simplified by removing the unknown flows from the problem space in lieu of pressure relationships

as in Equation (7.248). Here, the finite Fourier series (FFS) is calculated using a finite (N) number

of samples (referred to as the jth sample). This formulation matches the original formulation,

Equation (7.232), with the difference being the unknown vector of flows is replaced with a vector

of Fourier coefficients (ak) for each frequency and likewise the unknown vector of pressures is

replaced with an unknown vector of coefficients (bk).

𝑧(𝑝) = 𝑚𝑖𝑛
𝑓,𝑝

‖∑ 𝑓�̂�
̃𝑉𝑘

𝑁−1

𝑘=0

− 𝐴−1𝑍1∑ 𝑝�̃�𝑉𝑘

𝑁−1

𝑘=0

‖

s.t.

 𝐴−1𝑍1∑ 𝑝�̃�𝑉𝑘

𝑁−1

𝑘=0

= 0

𝑍3∑ 𝑝�̃�𝑉𝑘

𝑁−1

𝑘=0

−∑ �̂�𝑘̅̅ ̅̃̅ 𝑉𝑘

𝑁−1

𝑘=0

= 0

(7.248)

The formulation for each frequency independently follows in equation (7.249).

𝑧(𝑝, 𝑘) = min
𝑓,𝑝

‖𝑓�̂�
̃ − 𝐴−1𝑍1 𝑝�̃�‖

s.t.

 𝐴−1𝑍1 𝑝�̃� = 0

𝑍3 𝑝�̃� − �̂�𝑘̅̅ ̅̃̅ = 0

(7.249)

379

Deriving for the optimal solution where all partial derivatives are a value of 0 is expressed in

Equation (7.250).

[
2𝑡
0
�̅�
] = [

2𝑆 𝑍4
𝑇 𝑍3

𝑇

𝑍4 0 0
𝑍3 0 0

] [
�̂�𝑘
λ
𝜇
]

Where: 𝑍4 = 𝑍2𝐴
−1𝑍1 𝑡𝑘 = [𝑊1𝑓�̂�

̃]
𝑇
𝑊1𝐴

−1𝑍1

𝑊1 = {
0 𝑓�̂�

̃ = 0

1 𝑓�̂�
̃ ≠ 0

; 𝑆 = [𝑊1𝐴
−1𝑍1]

𝑇[𝑊1𝐴
−1𝑍1]

(7.250)

This results in a set of Fourier coefficients, one for each pressure correlating to the kth

coefficient in the series. These coefficients represent the least error from the measured values and

the simulated values and can now be used in the inverse Fourier transform (see Section 7.17 for

more information on the discrete Fourier series) to interpolate the pressure waveform for all points

for any time point.

Sampling the original data. In order to reconstruct time-lapse measurements of the human

arterial tree, NOVA measurements were provided for the 9 largest segments in the arterial tree

(RICA, LICA, BA, RMCA, LMCA, LPCA, RPCA, RACA, LACA) for some subjects. The NOVA

report generates a graph of the time-lapsed blood flow values. In order to approximate these

pictures, a hand-sampling method was employed (web plot digitizer). This results in non-evenly

distributed sampling of the data due to the inability of the user to precisely select evenly distributed

samples.

380

Two methods for sampling the data evenly were investigated, as even sampling is required for

the discrete Fourier transform. The first method uses linear interpolation between adjacent data

points. The second method relies on the knowledge of the oscillatory and continuous nature of the

original signal and uses Matlab’s Fourier fitting algorithm to resample the data after fitting a group

of sines and cosines to the data using linear regression. It is recommended to evenly sample the

data using Matlab’s Fourier fit interpolation with 4 coefficients or to use linear interpolation, the

use of both has rendered similar results (data not shown), and the Fourier fit was preferred for

comparison with previous work [29]. Only one cycle of the heartbeat is used, which is identified

as the time between two adjacent maximum peaks. The partial flow BCs will be used as described

in Section 7.15.2. As an assumption, the inlets will be described by a known function of time,

namely equation (7.251). This function can be sampled at time points commensurate with the

measured data. Case studies are given in the next section.

𝑃1 = 100 + 20 sin(𝜋𝑡) ; 𝑓6 = 50 + 10 sin(𝜋𝑡) (7.251)

7.15.7 Case studies

This section delineates a few select case studies to exemplify the robustness of the algorithm.

A single tube. A Simple tube with 4 segments has been used for hand calculations and

validations. This case study uses a single assigned pressure BC.

381

Expected Results:

Pout = 95 mmHg

Optimization Output:

Pout = 95.000 mmHg

Figure 7.119. Case study 1.

Left) Visualization of input BC and two measurements that do not hold to mass balance. Middle)

The expected results match the optimized results, where the minimum error is achieved as the

linear averaging between the two measurements. Right) The optimization space surrounding the

terminal boundary condition shows a clear minimum which was correctly identified by the

optimization algorithm, validating the algorithm.

In the second example, two flow measurements are used that do not agree. The optimized

solution uses the value exactly halfway between the measurements.

0 50 100

Output Pressure

0

2

4

6

8
106

Simulated Pressure

Optimization Pressure

382

Expected Results:

Pout = 95.031 mmHg

flow = 122 ml/min

Optimization Output:

Pout = 95.031 mmHg

flow = 122 ml/min

Figure 7.120. Case study 2.

Left) Visualization of input BC and two measurements that do not hold to mass balance. Middle)

The expected results match the optimized results, where the minimum error is achieved as the

linear averaging between the two measurements. Right) The optimization space surrounding the

terminal boundary condition shows a clear minimum which was correctly identified by the

optimization algorithm, validating the algorithm.

Simple tree. This example uses 3 BCs (1 inlet pressure and 2 outlet flow BCs given as

proportional to the cross sectional area ratio) and has simulated noise in the measured flows (one

flow is ~10 ml/min higher than the forward simulation with the same BCs). It is important to omit

at least one BC so that the optimization algorithm has at least one degree of freedom.

0 50 100

Output Pressure

0

5

10

15
106

Simulated Pressure

Optimization Pressure

383

Figure 7.121. Visualization of case study 3.

Left) The network, BCs, and measurements used for this case study. Right) Error between

measurement and simulated flow while varying the undefined BC. Note, the optimization

pressure lies at the minimum of the solution space.

The predictions indicate the inlet flow will increase by 4.8810 mmHg above the measurement

and decreased in the other measured branch (4.8810 mmHg below the measurement). This

symmetric altering of the two branches to arrive at the optimial location halfway between the two

measurements gives insight on how measurements are treated during optimization. Specifically,

measurements are treated with equal weight and the optimal solution is midway between the

values.

Due to the nature of optimization, all BCs can be enforced with partial flow regardless of

matrix singularity yet this is not indicative of stable solvability but rather a property of

optimization, which can optimize overdetermined systems by finding the minimum and optimize

underdetermined systems by finding a line of solutions and returning the point on the vector with

the shortest length. This method is inadvisable as the system is more stable when boundary

conditions are removed as discussed above.

384

7.15.7.1 Intermediate network

For this case study, measured flows have been generated to be commensurate with simulated

flows. For this case study, fractional outlet flows will be determined as a function of the major

branch (numbered 1-6 in Figure 7.122). For validation purposes, the fractional flow will be

determined from the actual fractional flow in the forward simulation, not from fractional area.

Figure 7.122. The network used for the present case study.

The main branches (numbered 1-6) are used as root branches for each sub-tree in the network

and are used in the partial-flow BC assignment. The terminals of the network are identified.

385

Table 7.34: Optimized values for terminal pressures and overall mass conservation
inlet Pressures (mmHg) outletPressures (mmHg) DeviationFromMeasurements =

 (1,1) 100.0000

 (2,1) 100.0000

 (3,1) 100.0000

 (1,1) 79.9979

 (2,1) 80.0001

 (3,1) 80.0011

 (4,1) 80.0013

 (5,1) 80.0002

 (6,1) 79.9989

 (7,1) 79.9998

 (8,1) 79.9989

 (9,1) 80.0015

 (10,1) 79.9985

 (11,1) 80.0004

 (12,1) 80.0015

 (13,1) 80.0007

 (14,1) 79.9991

 (15,1) 80.0000

 (16,1) 80.0012

 (17,1) 88.2905

 (18,1) 88.2911

inletFlows-outletFlows = 4.4338e-12

1.0e-03 *

 -0.1331

 0.1371

 0.1292

 0.0000

 0.1027

 0.2977

 -0.2134

 -0.0000

 -0.2002

 -0.0363

 0.2365

 -0.2525

 All values for input (measured flows, Dirichlet pressures and Neumann flows) were accurate

to the order of 10-3. The error of the optimization method (error of 10-4) is considered acceptable

in this case.

7.15.7.2 Steady-state simple brain with circle of Willis

A simplified cerebrovascular network was constructed by hand and is depicted in Figure 7.123.

This network utilizes 3 inlet BCs and nine real-world NOVA steady-state measurements to

investigate the resulting output BC that best matches the data to the simulation. The Nova

measurements are as follows: RMCA = 166, RICA = 168, BA = 181, RPCA = 70, LPCA= 89,

LICA=312, LMCA=172, LACA=62, and RACA = 61.

386

Figure 7.123. Simplified cerebrovascular network used for optimizing real-world data to

simulation constraints.

Expected results are that the simulation will not match the nova results perfectly, but will trade

off between the values (some results will be larger than measurements and others will be smaller).

The predicted flows will be some complex averaging of the measured values that also adhere to

mass balance.

Figure 7.124. Optimization gives best BC to match measured flows.

Left) parametric study of outlet BC exemplifying that the optimized solution identified the

pressure with the least overall error. Right) Difference between measured and predicted flows

shows that some values were larger and others were smaller than the measurements, as expected.

7.15.7.3 Steady-state patient

This section will describe the methodology of the optimizing Nova results on a human

cerebrovascular reconstruction. The following assumptions will be made; (i) the nova results will

be sampled in time for one cardiac cycle, (ii) the time-averaged flow values will be used as the

387

measurements for the steady state simulation, and (iii) the sampled data from NOVA flows for the

RICA, LICA, and BA will be normalized to having a nominal value of 100 mmHg and amplitude

of +/- 20 mmHg to be used as known pressure waveforms for inlet BCs. An investigation of the

high frequency noise due to the Gibbs phenomenon of the Fourier series approximation will be

investigated in Section 7.15.10. The steady-state optimization results can be reviewed in Figure

7.125. The results show a reasonable tradeoff between measured flows to fit the data to a

simulation enforcing transport properties and mass conservation.

Figure 7.125. A steady state simulation using the nominal values from NOVA.

Left) The human cerebrovascular network. Right) The optimization trades off from the

measurements (blue circles) and the simulation results (orange line) to find a good level of fit.

Note, these offsets (between the blue circles and the orange lines) will be used to calibrate the

dynamic measurements prior to optimizing in the Fourier domain.

7.15.8 Dynamic inversion case studies

7.15.8.1 Simple tube

The first case study considers a single tube with centerline and labeling drawn below. The

given pressure BC waveforms can also be seen below. The measured flow is obtained directly

388

from a forward simulation with both BCs yet in the optimization step, the outlet BC is removed.

These time points are commensurate with an analytical function (cos(2pi/4 t) and 2cos(2pi/4 t)).

The result is a perfect recreation of the original outflow signal.

t P1 P4

0 2 1

1 0 0

2 -2 -1

3 0 0

Expected Results:

Pressure will match original data points at time t=0,1,2,3

Reconstructed function will match the functions

Flow will be uniform for all time points cos(2*pi/t) and 2*cos(2*pi/t) for

output and input, respectively

Optimization will give the same P4 coefficients as the dft of the measured P4

Figure 7.126. The dynamic inlet and outlet pressures and flow measurements.

DFT/IDFT from simulation, DFT/IDFT from optimization (after deleting one BC) and the

analytic solution from which the BCs were derived. The system is a simple tube with Dirichlet

BCs. Here the inlet and outlet are in phase. Top) The 4-node structure being used. Middle)

The BCs at inlet and outlet point at 4 time points and expected results. Bottom) The

optimization was capable of reconstructing the correct Fourier coefficients to make a signal

that matches the BCs and measurements at the 4 time points.

The next case study uses a measured flow to match boundary condition pressures that do not

fit any analytic function. These time points are commensurate with an analytical function

389

(cos(2pi/4 t) and sin(2pi/4 t)). The forward simulation was performed to calculate the measured

flows for face 1. The result is a perfect recreation of the outflow signal.

t P1 P4

0 1 0

1 4 1

2 5 3

3 2 2

Expected Results:

 Pressure will match original data points at time t=0,1,2,3

 Reconstructed function will match the functions

 Optimization will give the same P4 coefficients as the dft of the measured P4

Figure 7.127. The dynamic inlet and outlet pressures and flow measurements.

DFT/IDFT from simulation, DFT/IDFT from optimization (after deleting one BC) and the analytic

solution from which the BCs were derived. The system is a simple tube with Dirichlet BCs and the

sampling points were chosen at random. Top) The 4-node structure being used. Middle) The BCs at

inlet and outlet point at 4 time points and expected results. Bottom) The optimization was capable of

reconstructing the correct Fourier coefficients to make a signal that matches the BCs and

measurements at the 4 time points.

390

Simple tree case 1. This case study follows the design of Section 7.15.8.1 but with a larger

network. All pressure wave forms and expected results are given in each case. Case 1: 4 Pressures

given with analytic solution known:

𝑃1 = 2 cos (
2𝜋𝑡

4
) 𝑃4 = cos (

2𝜋𝑡

4
) 𝑃5 = 1.1 cos (

2𝜋𝑡

4
) 𝑃6 = 1.2 cos (

2𝜋𝑡

4
) (7.252)

t P1 P4 P5 P6

0 2 1 1 1

1 0 0 0 0

2 -2 -1 -1 -1

3 0 0 0 0

Expected Results:

Pressure will match original data points at

time t=0,1,2,3

Reconstructed function will match the

functions

Optimization will give the same P6

coefficients as the dft of the measured P6

Figure 7.128. The dynamic inlet and outlet pressures and flow from measurements.

DFT/IDFT from simulation, DFT/IDFT from optimization (after deleting one BC) and the

analytic solution from which the BCs were derived. The blue circle is the measured values, the

red line is the reconstruction (DFT and IDFT) performed on the forward simulation prior to

optimization. The gold stars are the reconstructions performed post-optimization in the fourier

domain. The system is a simple network with Dirichlet BCs.

391

Simple tree case 2. 1 Pressure and 3 flows given with analytic solution known:

𝑃1 = 2 cos (
2𝜋𝑡

4
) 𝑃4 = cos (

2𝜋𝑡

4
) 𝑃5 = sin (

2𝜋𝑡

4
) 𝑃6 = 2 sin (

2𝜋𝑡

4
) (7.253)

t P1 F3 f4 F5
0 2 6.1 1.9 15.5

1 0 0.4 -1.1 -15.6

2 -2 -6.1 -1.9 -15.5

3 0 -0.4 1.1 15.6

Expected Results:

Pressure will match original

data points at time t=0,1,2,3

Pressure reconstruction should

match Dirichlet simulation

(Case 2)

Figure 7.129. The dynamic inlet and outlet pressures and flow from measurements.

DFT/IDFT from simulation, DFT/IDFT from optimization (after deleting one BC) and the

analytic solution from which the BCs were derived. The blue circles are the measured values,

the red line is the reconstruction (DFT and IDFT) performed on the forward simulation prior to

optimization. The gold stars are the reconstructions performed post-optimization in the fourier

domain. The system is a simple network with Neumann BCs.

392

Simple tree case 3. 1 Dirichlet (inlet) and 1 interior flow (inlet) and 2 fractional BCs (outlets):

𝑃1 = 2 cos (
2𝜋𝑡

4
) 𝑃4 = cos (

2𝜋𝑡

4
) 𝑃5 = sin (

2𝜋𝑡

4
) 𝑃6 = 2 sin (

2𝜋𝑡

4
) (7.254)

t P1 F1 f4 F5
0 2 2.0 1.9 15.5

1 0 6.1 -1.1 -15.6

2 -2 1.9 -1.9 -15.5

3 0 15.5 1.1 15.6

Expected Results:

Pressure will match original

data points at time t=0,1,2,3

Pressure reconstruction should

match Dirichlet simulation

(Case 2)

Figure 7.130. The dynamic inlet and outlet pressures and flow from measurements.

DFT/IDFT from simulation, DFT/IDFT from optimization (after deleting one BC) and the

analytic solution from which the BCs were derived. The blue circles are the measured values,

the red line is the reconstruction (DFT and IDFT) performed on the forward simulation prior to

optimization. The gold stars are the reconstructions performed post-optimization in the fourier

domain. The system is a simple network with 1 Dirichlet, 1 Neumann (Inlet) and 2 fractional

(outlets) BCs.

393

7.15.8.2 Time-Dependent Patient

This is a case study uses all measurements and registers all measurements and BCs so that they

are in phase prior to optimization. The goal is to optimize a human subject for time-dependent BCs

that give the best possible fit to the measured data. The measurements from NOVA suffer from

asynchronous pulsations (because they were each measured independently) which is exacerbated

much beyond the natural pressure wave lag seen in the cerebral blood stream. Unfortunately, a

rigid simulation with no deformations cannot account for such discrepancies.

The NOVA report includes both a nominal value and a time-lapse plot of blood flow for each

measured vessel. Neither of these data adhere to conservation laws. This discrepancy is generated

from a combination of experimental error (previously described) and the connection of these larger

arteries to smaller vessels which are simply absent from the reconstructed vascular structure. To

account for this, the measurements must be calibrated for mass conservation prior to optimizing

the dynamic system. This step does not guarantee optimal alignment with the measured data, it

only aids in comparison of the data after optimization. In order to account for experimental error

in the time-dependent measurements, the nominal values calculated in the previous step can be

used to rectify the experimental error in the time-dependent NOVA measurements. This error

rectification can be executed as in equation (7.255).

𝑓𝑖
�̂�(𝑡) = 𝑓�̂�(𝑡) − Δ𝑓𝑖

𝑠�̂�
(7.255)

394

Where 𝑓𝑖
�̂�(𝑡) is the new measurement at time t, 𝑓�̂�(𝑡) is the crude measurement at time t, and

Δ𝑓𝑖
𝑠�̂� is the difference between the steady-state measurement and the optimized steady-state flow.

For reference, the results for the steady-state optimization are reported in Table 7.35.

Table 7.35: Measured Values (𝑓) from NOVA report

 Outlets Inlets Sum

Vessel RMCA RPCA LPCA LACA LMCA BA RICA LICA Inlet Outlet

Nova (ml/min) 166.00 70.00 89.00 62.00 172.00 181.00 168.00 312.00 661.00 559.00

Optimized 167.00 77.39 96.73 87.82 197.82 173.74 167.00 286.02 626.75 626.75

The optimization can now be performed using a Fourier series as mentioned above. To validate

the results, each time step was simulate using the boundary pressures obtained in using the Fourier

optimization method. The alignment of the rectified NOVA flows, the optimized flows and the

simulated flows using the results of the optimization can be seen in Figure 7.131. The

corresponding difference between the Fourier optimization and the simulation was 6.7056∙10-8 ±

1.031∙10-8 and 8.602∙10-11 ± 3.137 ∙10-11 for the flow and pressure respectively.

395

Figure 7.131. The alignment of the NOVA results and predicted flow patterns using Fourier

Series optimization.

The NOVA repot was sampled manually, then resampled using linear interpolation between

measured values (to use uniform spacing). The NOVA report was adjusted to adhere to mass

balances using the steady-state optimized results to dictate the deviation.

396

7.15.8.3 Optimization from measurements that are out of phase

For completeness, it is necessary to acknowledge how optimization accounts for out-of-phase

input data. For the first step, the addition of a sine wave to one flow will give the phase shift

necessary for the investigation. The predicted outcome is a phase-shifted flow, where the degree

of phase shift is an optimized average similar to that achieved between the amplitude.

Figure 7.132. The resulting flow of two segments when the inlet and outlet BCs are not in phase

with one another and the measurements have known error.

10 ml/min of error will be added to the measurements of flow 4 and 2 ml/min will be added to

flows in segment 2. The optimization trades off in the Fourier domain in multiple frequencies

to accommodate the phase shift in the measurements.

These are averaged in each frequency and the resulting wave form is an average in time for the

two waveforms. To elucidate how these averages are assembled, some sample frequencies will be

further investigated and the coefficients will be interrogated for trends (Figure 7.133). The final

397

reconstructed waveform can be seen below. The optimization averages in phase the same way it

averages in amplitude. Independent visualizations of the averaging in both the real domain and the

imaginary domain were evaluated to show that the averaging works in both domains independently

(data not shown).

Figure 7.133. Optimization on a simple bifurcation with known error in amplitude and phase of

measurements. T

his results in a complete averaging of each waveform in each frequency. The averaging occurs

across both amplitude and phase.

398

7.15.9 Findings

When the system is fully determined, the optimization will not fail but rather gives the same

result as the forward simulation. For best results, it is important to identify sources of error that

may skew the results, such as a lack of mass conservation in the nominal flow values prior to

optimization.

From this formulation, it is evident that optimizing in the Fourier domain is the same effort as

solving in the time domain for a series of steady-state cases. The Fourier optimization does have

the benefit of reconstructing the solution as a continuous function in time.

In the event flow measurements are available, the proposed optimization method is optimal for

identifying BCs that give the closest matching simulation. Hand calculations have been performed

as can be seen in Section 7.15.12 that show the symbolic solution to a system that has 1

measurement.

7.15.10 Fourier filtering and Gibbs phenomena

It is important to identify the level of high frequency noise generated during the Fourier series

conversion of the source data. To investigate this, Figure 7.134 shows a reconstruction of the BA

using a range of frequencies. It is difficult to see where the noise appears at this resolution, but it

is apparent that the waveform is smoothly reconstructed with 21-25 terms before noise begins.

399

Figure 7.134. The reconstructed BA flows using a multitude of frequencies.

It is difficult to see where the noise appears at this resolution, but we can see that the waveform

is reconstructed well with 21-25 terms before the noise begins.

400

7.15.11 Considering phase shifts

When using perfectly aligned signals (pressure BCs and flow measurements), the signal can

be easily reconstructed using the optimization paradigm. This can be seen demonstrated in Figure

7.135.

Figure 7.135. The resulting pressure and flow curves in time after being optimized with no error.

401

The result of using out of phase information, however, is less obvious. The next step is to see

what happens when a phase shift is introduced between in inlet and the outlet pressure wave forms.

The first case study uses pressure BCs that are not in-phase in an effort to recreate a perfectly

out-of-phase outlet boundary condition. These time points are commensurate with an analytical

function (cos(2pi/4 t) and sin(2pi/4 t)). The forward simulation was performed to calculate the

measured flows for face 1. The result is a perfect recreation of the outflow signal.

t P1 P4

0 2 0

1 0 1

2 -2 0

3 0 -1

Expected Results:

Pressure will match original data points at time t=0,1,2,3

Reconstructed function will match the functions

Flow will be uniform for all time points cos(2*pi/4*t) and sin (2*pi/4*t) for output and

input, respectively

Optimization will give the same P4 coefficients as the dft of the measured P4

Figure 7.136. The dynamic inlet and outlet pressures and flow measurements.

DFT/IDFT from simulation, DFT/IDFT from optimization (after deleting one BC) and the analytic

solution from which the BCs were derived. The system is a simple tube with Dirchlet BCs. Here the

inlet and outlet are out of phase with each other.

402

The same approach can be applied to the network using a flow wave form following

Equation (7.256). The result is some sort of averaging in phase that minimizes the error between

the simulation and the measured values. The measured flows are commensurate with the forward

simulation.

𝑓6 = 50 + 10 sin(𝜋𝑡) + 5cos (𝜋𝑡) (7.256)

Another example of simulated phase error introduced into the boundaries can be seen in Figure

7.138. Again, the solution is an averaging in the phase spectra as well as the magnitude spectra.

403

Figure 7.137. The resulting pressure and flow when the inlet and outlet BCs are not in phase

with one another and the measurements are commensurate with the forward simulation.

he optimization algorithm is capable of reconstructing the missing BC perfectly.

404

Figure 7.138. The resulting pressure and flow when the inlet and outlet BCs are not in phase

with one another and the measurements have known error.

In this case, 10 ml/min was added to flow4 and 10 ml/min was subtracted from from all flow

measurements in flow2. The optimization algorithm is capable of reconstructing the missing BC

perfectly. The tradeoff occurs in the coefficient corresponding only to the nominal value.

405

7.15.12 Hand calculated symbolic validation:

406

407

The solution using 𝑝1̅̅̅ = 95 mmHg and 𝑓1̅ = 122.756 ml/min. Alpha is computed offline and

given here for ease of simulation for comparison. Matlab code input is offered:

p1Bar = 95; %mmHg

alpha = [1.3577062793e-05, 1.3577062793e-05, 1.3577062793e-05]*1000;

f1Bar = 122.756054979338;

P1Bar = 95;

408

Manual Algorithmic/Matrix implementation

bVector:

18082858.8408132

-18082858.8408132

0

0

0

0

95

bVector:

 18082859149.3685

 -18082859149.3685

 0

 0

 0

 0

 95

results

95

93.3333333333246

91.6666666666492

89.9999999999737

0

0

0

Results:

 95

 93.3333333617636

 91.6666667235272

 90.0000000852908

 0

 0

 0

flow

122.756054979337

122.756054979337

122.756054979337

flow

122.756054979338

122.756054979338

122.756054979337

AMatrix =

1.08E+10 -1.1E+10 0 0 73653.63 0 1

-1.1E+10 1.08E+10 0 0 -147307 73653.63 0

0 0 0 0 73653.63 -147307 0

0 0 0 0 0 73653.63 0

73653.63 -147307 73653.63 0 0 0 0

0 73653.63 -147307 73653.63 0 0 0

1 0 0 0 0 0 0

409

Algorithmic/Matrix implementation

AMatrix:

1.08E+10 -1.1E+10 0 0 -73653.6 0 1

-1.1E+10 1.08E+10 0 0 147307.3 -73653.6 0

0 0 0 0 -73653.6 147307.3 0

0 0 0 0 0 -73653.6 0

-73653.6 147307.3 -73653.6 0 0 0 0

0 -73653.6 147307.3 -73653.6 0 0 0

1 0 0 0 0 0 0

Matrix formulation:

AMatrix =

2/(alpha(1)^2) -2/(alpha(1)^2) 0 0 1/alpha(1) 0 1

-2/(alpha(1)^2) 2/(alpha(1)^2) 0 0
-1/alpha(1)-
1/alpha(2) 1/alpha(2) 0

0 0 0 0 1/alpha(2)
-1/alpha(2)-
1/alpha(3) 0

0 0 0 0 0 1/alpha(3) 0

1/alpha(1)
-1/alpha(1)-
1/alpha(2) 1/alpha(2) 0 0 0 0

0 1/alpha(2)
-1/alpha(2)-
1/alpha(3) 1/alpha(3) 0 0 0

1 0 0 0 0 0 0

rhs = [2*f1Bar/alpha(1);

 -2*f1Bar/alpha(1);

0;

0;

0;

0;

P1Bar];

SolutionVector = AMatrix\rhs;

 flow = [1/alpha(1) -1/alpha(1) 0 0

 0 1/alpha(2) -1/alpha(2) 0

 0 0 1/alpha(3) -1/alpha(3)]*SolutionVector(1:4);

410

7.15.12.1 Manual Implementation

p1Bar = 95; %mmHg

alpha = [1.3577062793e-05, 1.3577062793e-05, 1.3577062793e-05]*1000;

f1Bar = 122.756054979338;

P1Bar = 95;

AMatrix = [2/(alpha(1)^2) -2/(alpha(1)^2) 0 0 1/alpha(1) 0 1

 -2/(alpha(1)^2) 2/(alpha(1)^2) 0 0 -1/alpha(1)- 1/alpha(2) 1/alpha(2) 0

 0 0 0 0 1/alpha(2) -1/alpha(2)-1/alpha(3) 0

 0 0 0 0 0 1/alpha(3) 0

 1/alpha(1) -1/alpha(1)-1/alpha(2) 1/alpha(2) 0 0 0 0

 0 1/alpha(2) -1/alpha(2)-1/alpha(3) 1/alpha(3) 0 0 0

 1 0 0 0 0 0 0

];

rhs = [2*f1Bar/alpha(1); -2*f1Bar/alpha(1); 0; 0; 0; 0; P1Bar];

SolutionVector = AMatrix\rhs;

flow = [1/alpha(1) -1/alpha(1) 0 0

 0 1/alpha(2) -1/alpha(2) 0

 0 0 1/alpha(3) -1/alpha(3)]*SolutionVector(1:4);

7.15.13 Case study for frequency independence in the Fourier domain representation

of the optimization problem

A case study has been generated to explore the frequency independence (problem separation

within each frequency) for the Fourier problem formulation.

411

t P1 P4

0 2 1

1 0 0

2 -2 -1

3 0 0

𝐴 =

[

−𝛼1

−𝛼2
−𝛼3

−𝛼4]

 ; 𝑍1 = [
1 −1 0 0
0 1 −1 0
0 0 1 −1

] ; 𝑧2 = [
1 −1 0
0 1 −1

]

𝑧(𝑝, 𝑘)min
𝑓,𝑝

‖(𝑓1⏞ 𝑉1 + 𝑓2⏞ 𝑉2 + 𝑓3⏞ 𝑉3 + 𝑓4⏞ 𝑉4) − 𝐴
−1𝑍1(�̂�1𝑉1 + �̂�2𝑉2 + �̂�3𝑉3 + �̂�4𝑉4)‖

s.t.

 𝐴−1𝑍1(�̂�1𝑉1 + �̂�2𝑉2 + �̂�3𝑉3 + �̂�4𝑉4) = 0

𝑍3(�̂�1𝑉1 + �̂�2𝑉2 + �̂�3𝑉3 + �̂�4𝑉4) − (𝑝1⏞ 𝑉1 + 𝑝2⏞ 𝑉2 + 𝑝3⏞ 𝑉3 + 𝑝4⏞ 𝑉4) = 0

Where each 𝑓𝑘⏞ �̂�𝑘 and 𝑝𝑘⏞ represents a vector of unknowns for kth frequency

With the problem now formulated using the sum of unknown coefficients multiplied by known

weight functions (𝑉𝑘), we can rewrite the summation in matrix form.

𝑧(𝑝, 𝑘)min
𝑓,𝑝 ‖

‖

[

𝑉1

𝑉2
𝑉2

𝑉4]

[

 𝑓1
⏞

𝑓2⏞

𝑓3⏞

𝑓4⏞]

− 𝐴−1𝑍1

[

𝑉1

𝑉2
𝑉2

𝑉4]

 [

�̂�1
�̂�2
�̂�3
�̂�4

]
‖

‖

412

s.t.

 𝐴−1𝑍1

[

𝑉1

𝑉2
𝑉2

𝑉4]

 [

�̂�1
�̂�2
�̂�3
�̂�4

] = 0

𝑍3

[

𝑉1

𝑉2
𝑉2

𝑉4]

 [

�̂�1
�̂�2
�̂�3
�̂�4

] −

[

𝑉1

𝑉2
𝑉2

𝑉4]

[

𝑝1⏞

𝑝2⏞

𝑝3⏞

𝑝4⏞]

= 0

Here, each coefficient corresponds to an isolated vector V. i.e. each vector of unknowns does

not affect other unknown in any of the equations, making this a separatable problem.

413

7.16 Appendix P: Validation of matrix identities

I. ∇⃑⃑ (𝐴𝑥) = 𝐴

II. ∇⃑⃑ (𝑥𝑇𝐴𝑥) = (𝐴𝑇 + 𝐴)𝑥

III. ∇⃑⃑ (𝑎𝑇𝑥) = 𝑎

IV. ∇⃑⃑ (𝑥𝑇𝑆𝑥) = 2𝑆𝑥 when S is symmetric (ST=S)

i. A linear algebraic set of equations can be defined in Equation (7.379). This linear algebraic

set of equations written in component form in Equation (7.258). The derivative is given in

Equation (7.259). The result of the derivative returns the original A matrix as in

Equation (7.259). This holds the relationship in I.

𝐴𝑥 = [
1 3 5
2 4 0
0 1 3

] [

𝑥1
𝑥2
𝑥3
]

(7.257)

𝐴𝑥 = [
𝑥1 + 3𝑥2 + 5𝑥3
2𝑥1 + 4𝑥2
𝑥2 + 3𝑥3

]
(7.258)

∇⃑⃑ [
𝑥1 + 3𝑥2 + 5𝑥3
2𝑥1 + 4𝑥2
𝑥2 + 3𝑥3

] =

[

𝑑𝑓1
𝑑𝑥1

𝑑𝑓1
𝑑𝑥2

𝑑𝑓1
𝑑𝑥3

𝑑𝑓2
𝑑𝑥1

𝑑𝑓2
𝑑𝑥2

𝑑𝑓2
𝑑𝑥3

𝑑𝑓3
𝑑𝑥1

𝑑𝑓3
𝑑𝑥2

𝑑𝑓3
𝑑𝑥3]

= [
1 3 5
2 4 0
0 1 3

] = 𝐴

Verified

(7.259)

414

ii. The nonlinear set of equations in Equation (7.260) can be written in component form as in

Equation (7.261). The derivative is given in Equation (7.262). This is equivalent to the

evaluation of (AT + A)x as seen in equation (7.263). This verifies the relationship in II.

𝑥𝑇𝐴𝑥 = [𝑥1 𝑥2 𝑥3] [
1 3 5
2 4 0
0 1 3

] [

𝑥1
𝑥2
𝑥3
]

(7.260)

[𝑥1 𝑥2 𝑥3] [
𝑥1 + 3𝑥2 + 5𝑥3
2𝑥1 + 4𝑥2
𝑥2 + 3𝑥3

]

𝑥1
2 + 3𝑥1𝑥2 + 5𝑥1𝑥3 + 2𝑥1𝑥2 + 4𝑥2

2 + 𝑥2𝑥3 + 3𝑥3
2

(7.261)

∇⃑⃑ ∙ (𝑥1
2 + 3𝑥1𝑥2 + 5𝑥1𝑥3 + 2𝑥1𝑥2 + 4𝑥2

2 + 𝑥2𝑥3 + 3𝑥3
2) =

[2𝑥1 + 3𝑥2 + 5𝑥3 + 2𝑥2 3𝑥1 + 2𝑥1 + 8𝑥2 + 𝑥3 5𝑥1 + 𝑥2 + 6𝑥3]

= [
𝟐 𝟓 𝟓
𝟓 𝟖 𝟏
𝟓 𝟏 𝟔

] [

𝑥1
𝑥2
𝑥3
]

(7.262)

(𝐴𝑇 + 𝐴)𝑥 = ([
1 3 5
2 4 0
0 1 3

] + [
1 2 0
3 4 1
5 0 3

]) [

𝑥1
𝑥2
𝑥3
] = [

𝟐 𝟓 𝟓
𝟓 𝟖 𝟏
𝟓 𝟏 𝟔

] [

𝑥1
𝑥2
𝑥3
]

(7.263)

iii. Two vectors (coefficient vector a and unknown vector x) are given in Equation (7.264).

The differential of the component form (Equation (7.265)) is equivalent to the coefficient

vector as given in Equation (7.265). This verifies the relationship in III.

𝑎𝑇𝑥 = [2 1 4] [

𝑥1
𝑥2
𝑥3
] = 2𝑥1 + 𝑥2 + 4𝑥3

(7.264)

415

∇⃑⃑ (2𝑥1 + 𝑥2 + 4𝑥3) = [

𝑑𝑓/𝑑𝑥1
𝑑𝑓/𝑑𝑥2
𝑑𝑓/𝑑𝑥3

]

∇⃑⃑ (2𝑥1 + 𝑥2 + 4𝑥3) = [
2
1
4
]

(7.265)

iv. A set of linear nonlinear equations defined by a symmetric coefficient matrix is given in

Equation (7.266). This is a special case of II where the derivative is given as (AT+A)x. In

the event of a symmetric matrix, this simplifies to 2Sx because AT=A. This verifies the

relationship in IV.

∇⃑⃑ (𝑥𝑇𝐴𝑥) = (𝐴𝑇 + 𝐴)𝑥

𝐴𝑇 = 𝐴
(7.266)

(𝐴𝑇 + 𝐴)𝑥 = (𝐴 + 𝐴)𝑥 = 2𝐴𝑥
(7.267)

416

7.17 Appendix Q: Discrete Fourier series

Biological signals are frequently periodic as they follow a periodic gate. Therefore, it is

reasonable to model these signals using oscillatory functions such as sine a cosine. These functions

belong to the family of transcendental functions (exponential function, sine, cosine). It can be

shown that transcendental functions are convergent. This relationship is commonly known as the

Euler identity as in Equations (7.268)-(7.270).

e−𝑖x = cos(𝑥) − 𝑖𝑠𝑖𝑛(𝑥) (7.268)

e−𝑖x =∑
(−𝑖𝑥)

𝑗

𝑗!

∞

j=0

=
(−𝑖𝑥)

0

0!
+
(−𝑖𝑥)

1

1!
+
(−𝑖𝑥)

2

2!
+
(−𝑖𝑥)

3

3!
…

e−𝑖kx =
1

0!
+
−𝑖𝑥

1!
+
−(𝑥)2

2!
+
𝑖(𝑥)3

3!
+
(𝑥)4

4!
…

(7.269)

cos(𝑘𝑥) = −(
1

0!
+
−(𝑥)2

2!
+
(𝑥)4

4!
…) ; 𝑖 ∙ sin(𝑘𝑥) = 𝑖 ∙ (

−𝑥

1!
+
(𝑥)3

3!
…) (7.270)

Moreover, sine and cosine can be defined by the sum of exponential functions as in

Equation (7.271).

𝑠𝑖𝑛(𝑥) =
𝑒𝑖𝑥 − 𝑒−𝑖𝑥

2𝑖
 𝑐𝑜𝑠(𝑥) =

𝑒𝑖𝑥 + 𝑒−𝑖𝑥

2
 (7.271)

Note that exponential function was developed as a convergent infinite series that is a solution

to differential equations, particularly 1st order homogenous differential equations (ODEs).

417

If considering a system with complex eigenvalues (upon eigenvalue decomposition of the

differential system), the solution will give exponentials with complex exponents, which are merely

sines and cosines. This is consistent with the understanding that all differential systems with

complex eigenvalues are oscillatory in nature (even without oscillatory forcing functions). The

derivation of the generalized Fourier series and finite Fourier series is given elsewhere [242].

7.17.1 Discrete Fourier Transform (DFT) - complex arithmetic

7.17.1.1 Truncation of Order N

To compute the Fourier series for discrete signals with N data points, the infinite Fourier series

is truncated to a maximum of N values as in Equation (7.272). This is because N data points are

used to exactly match N degrees of freedom in the Fourier coefficients, making the system fully

determined. It is programmatically convenient to shift the indices from the range k= -N/2 ..+N/2

to the range κ=0..N-1 with the shift factor κ=k+N/2 as explained elsewhere [243]. This is further

investigated in Section 7.17.4.

fN
∗(x) = ∑ fk̃

N
2−1

k=−
N
2

𝑒−i kx = ∑ fk̃

N−1

κ=0

e−i (κ−
N
2) x

fk̃ =
1

2π
∫ f(x)e−i (κ−

N
2) xdx

2π

0

, κ = 0…N − 1, φκ = e
−i (κ−

N
2) x

𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑: 𝑘 = −𝑁/2 κ = 0

𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑: 𝑘 = 𝑁/2 − 1 κ = N − 1

(7.272)

418

For discrete functions, f(x), the Fourier coefficients can be evaluated numerically as in

Equation (7.273) which can be interpreted as using Riemann sums. More notes on how this

Riemann sum is an adequate approximation can be found in the handwritten notes in [242]. More

details about the Fourier interpolate can also be found in [242]. In brief, given N data points, the

original data is evaluated at the frequency of the principle root, WN, as described by Equation

(7.273). Every coefficient in the Fourier domain corresponds to this root raised to an integer power

between –N/2 and N/2-1 (corresponding to multiples of the base frequency).

WN = e
−𝑖
2π
N (7.273)

7.17.1.2 DFT in Matrix, Component and Index Format

The DFT computes the vector of complex Fourier coefficients, fk̃, as the product of vector of

functional values, f(xj) with the Fourier Transformation Matrix, T as in Equation (7.274)The

Fourier reconstruction can be performed using Equation (7.275).

fk̃ =
1

N
T f(xj), Tkj = WN

(k−
N
2) j, ∀k = 0…N − 1, j = 0…N − 1 (7.274)

f(xj) = ∑ fk̃

N−1

k=0

e𝑖(k−
N
2) xj h =

2π

N
, xj = jh (7.275)

Note that the computation of fk̃ from f only involves an evaluation step but no matrix inversion.

In short, this is because the periodic exponential terms in the problem definition, which are

complex conjugate to one another, along with the symmetry of the matrix lends itself easily to

419

inversion and thus the inverted matrix can be generated explicitly as the complex conjugate

transpose of the originally formulated matrix C. More on this can be found elsewhere [242]. This

has the added benefit of not requiring the solving of an entire matrix in order to find a single

coefficient, and the lengthy process of inverting a matrix is avoided which is advantageous for

very large systems. Formulations in index form and in component form are given in

Equations (7.276)-(7.277).

Index form

fk̃ =
1

N
∑ f(xj)WN

(k−
N
2) j

N−1

j=0

, h =
2π

N
, xj = jh, WN = e

−𝑖
2π
N

f̃ =
1

N
Tkj ∙ f, Tkj = WN

(k−
N
2) j, ∀k = 0…N − 1, j = 0…N − 1

(7.276)

Component Form

[

f0̃
f1̃
⋮
f̃k−1
f̃k]

=
1

N

[

 WN

(0−
N
2)0 WN

(0−
N
2)1 … WN

(0−
N
2)
(N−2)

WN
(0−

N
2)
(N−1)

WN
(1−

N
2)0 ⋱ WN

(1−
N
2)
(N−1)

⋮ ⋱ ⋮

WN
(k−1−

N
2)0 ⋱ WN

(k−1−
N
2)
(N−1)

WN
(k−

N
2)0 WN

(k−
N
2)1 … WN

(k−
N
2)
(N−2)

WN
(k−

N
2)
(N−1)

]

[

f(x0)

f(x1)
⋮

f(xN−2)

f(xN−1)]

 (7.277)

7.17.2 Inverse DFT (IDFT) in Matrix, Component and Index Form

The inverse discrete Fourier transform converts the complex Fourier coefficients, fk̃, back to

an analytic signal, f(xj) in the time domain. Because of the special functions (complex exponents)

420

and format of the transformation matrix T, its inverse C can be obtained without the need for matrix

inversion. The rows in the C matrix are conjugate complex to the columns in the T matrix (not

shown here). Accordingly, C is the conjugate complex of the transpose of T as in

Equations (7.278)-(7.279).

C = T−1 = TT̅̅̅̅ (7.278)

Cjk = WN
−(k−

N
2) j, Tkj = WN

(k−
N
2) j (7.279)

Three different forms of the inverse DFT are given in Equations (7.280)-(7.282)

IDFT in matrix form

f(xj) = C fk̃ (7.280)

IDFT in index form

f(xj) = ∑ fk̃

N−1

k=0

WN
−(k−

N
2) j

f = Cjk ∙ f̃ ; Cjk = WN
−(k−

N
2) j; ∀k = 0…N − 1, j = 0…N − 1

(7.281)

IDFT in component form

[

f(x0)
⋮

f(xj)
] =

[

 WN

−(0−
N
2)0 … WN

−(k−
N
2)0

⋮ ⋱ ⋮

WN
−(0−

N
2)
(N−1)

… WN
−(k−

N
2)
(N−1)

]

[
f0̃
⋮

f̃N−1

] (7.282)

421

7.17.2.1 Reconstruction

Once the Fourier coefficients have been computed, it is useful to create the so-called

“interpolate” of the function, also referred to as a reconstruction of the original function. This can

be evaluated numerically as in Equation (7.281). This interpolation formula gives the nodal

values, f(xj), for the arguments xj. In other words, the interpolation returns the same functional

values at the original grid points (see proof in Appendix B in [242]).

To interpolate between grid points, special care is needed for the case with even number of

samples, N, as Quarteroni requests [243]. Details on why this is necessary can be found in

Trefethen papers [244,245] and more on this in Section 7.17.4. In a nutshell, the coefficient for fÑ

(for the highest frequency) is the conjugate complex for f0̃ (the second coefficient associated with

the highest frequency) but this coefficient is omitted in Equation (7.281).

To correct this omission, Equation (7.283) is used instead and both f0̃ and fÑ are multiplied

with 0.5. This is expressed in Equation (7.283). Note that for the reconstruction, any values of j

between 0 and N can be used, or in terms of x; values between 0 and 2π.

f(xj) = ∑ fk̃

N−1

k=0

e𝑖(k−
N
2) xj xj = jh h =

2π

N

f(�̂�) = ∑fk̂
̂

N

k=0

e𝑖(k−
N
2) �̂� �̂� = 𝑗 ℎ = 𝑗

2π

𝑁
; �̂� 𝜖 [0. . 𝑁]

with fk̂
̂ =

c

N
∑ f(xj)WN

(k−
N

2
) j

N
j=0 c = {

1

2
 𝑗 = 0,𝑁

1 𝑗 ≠ 0,𝑁

(7.283)

422

There are also three options to create a valid function for interpolate. These are mentioned

briefly for completeness, implementations are given in Section 7.17.7. (i) Take only the real part

of the interpolated IDFT signal (because only the dangling coefficient generates any imaginary

numbers). (ii) Only calculate the IDFT signal for k=0 to k=N-2 and calculate the final term as

cos([N-1]2 π t/N) – thus ignoring the imaginary part of the exponential. (iii) Manually augment

the coefficients with a complex conjugate to this dangling coefficient and multiply both the

dangling coefficient and its new complex conjugate by a factor of ½. This new coefficient will

also have an IDFT shape function to match.

7.17.2.2 Illustration of the Principal Roots

To evaluate the Fourier coefficients using Equation (7.273), the principle roots and powers of

these roots need to be evaluated. It is helpful to illustrate these operations graphically. The

principle roots are defined in Equation (7.273) where N is the number of data points. The

visualization of principal roots N=1-4 is offered in Figure 7.139.

𝑁 = 1: 𝑊1 = 𝑒
−𝑖2𝜋 𝑁 = 2: 𝑊2 = 𝑒

−𝑖𝜋 𝑁 = 3: 𝑊3 = 𝑒
−𝑖
2𝜋
3 𝑁 = 4: 𝑊4 = 𝑒

−𝑖
𝜋
2

Figure 7.139. Visualization of the first 4 principle roots in the discrete Fourier series.

We can see that each root is a vector inside the unit circle rotated by −
2𝜋

𝑁
 radians.

Powers of the Principal Roots. This section shows that powers of the principal roots, WN, are

vectors in the unit circle. Moreover, the entries needed in the matrix T of the DFT are just powers

423

of these roots, (WN
(k−2))

𝑗
, which will be shown to be mere rotations of the principal root.

Accordingly, these vectors, which are the complex entries of the T and C matrices, are relatively

easy to compute as shown next. We use, W4, as illustrated above as in Figure 7.139, far right.

 j = 0 j = 1 j = 2 j = 3

k=0

W4
(0−2)0

= 1

W4
(0−2)1

= −1

W4
(0−2)2

= 1

W4
(0−2)3

= −1

k=1

W4
(1−2)0 = 1

W4
(1−2)1 = 𝑖

W4
(1−2)2 = −1

W4
(1−2)3 = −𝑖

k=2

W4
(2−2)0 = 1

W4
(2−2)1 = 1

W4
(2−2)2 = 1

W4
(2−2)3 = 1

k=3

W4
(3−2)0 = 1

W4
(3−2)1 = −𝑖

W4
(3−2)2 = −1

W4
(3−2)3 = 𝑖

Figure 7.140. Visualization of the powers of the fourth principle root needed in DFT for

data sets with N=4 points.

Note that each image depicts a vector equivalent to an entry in the T matrix.

Fourier transformation matrices, T and C, are constant coefficient matrices that can be

computed ahead of time. Table 7.36 summarizes T and C for small datasets (N= 2-6) using the

424

Quarteroni indexing scheme[243]. Note, this scheme only works for even numbers of sample

points.

Table 7.36. DFT Fourier transformation matrix T and IDFT transformation matrix C for 2, 4, and

6 data points.

 fk̃ =
1

N
T f(xj) f(xj) = C fk̃

 T C

N=2
[
1 −1
1 1

] [
1 1
−1 1

]

N=4
[

1 −1
1 𝑖

1 −1
−1 −𝑖

1 1
1 −𝑖

1 1
−1 𝑖

] [

1 1
−1 −𝑖

1 1
1 𝑖

1 −1
−1 𝑖

1 −1
1 −𝑖

]

N=6

𝑇 =

[

1 −1 1

1 −
1

2
+ 0.866𝑖 −

1

2
− 0.866𝑖

1
1

2
+ 0.866𝑖 −

1

2
+ 0.866𝑖

−1 1 −1

1 −
1

2
+ 0.866𝑖 −

1

2
− 0.866𝑖

−1 −
1

2
− 0.866𝑖

1

2
− 0.866𝑖

1 1 1

1
1

2
− 0.866𝑖 −

1

2
− 0.866𝑖

1 −
1

2
− 0.866𝑖 −

1

2
+ 0.866𝑖

1 1 1

−1 −
1

2
+ 0.866𝑖

1

2
+ 0.866𝑖

1 −
1

2
− 0.866𝑖 −

1

2
+ 0.866𝑖]

𝐶 =

[

1 1 1

−1 −
1

2
− 0.866𝑖

1

2
− 0.866𝑖

1 −
1

2
+ 0.866𝑖 −

1

2
− 0.866𝑖

1 1 1

1
1

2
+ 0.866𝑖 −

1

2
+ 0.866𝑖

−1 −
1

2
+ 0.866𝑖 −

1

2
− 0.866𝑖

−1 1 1

1 −
1

2
− 0.866𝑖 −

1

2
+ 0.866𝑖

−1 −
1

2
+ 0.866𝑖

1

2
+ 0.866𝑖

1 1 1

−1 −
1

2
− 0.866𝑖 −

1

2
+ 0.866𝑖

1
1

2
− 0.866𝑖 −

1

2
− 0.866𝑖]

Graphical construction of the Fourier coefficients. The computation of the discrete Fourier

series can be graphically interpreted as the rotation of the principle root (each row in the DFT

matrix). These roots are all then scaled by the values of the original function, f(xj). The sum of the

scaled vectors give the Fourier coefficients as shown in Figure 7.141.

425

Figure 7.141. Graphical representation of the principle root being rotated (raised to different

powers) and scaled by f(xj).

Each row represents a different frequency. Left) The vector orientation of all vectors used for

computing the coefficient. Right) the scaled form of all base vectors (scaled by the functional

values) and the summation of all vectors.

7.17.3 Applications

A case study with 2 data points (N=2). Periodical function f(x) = [1, 2] is given in Figure 7.142.

The DFT is computed shown in Equations (7.284) and (7.285). The Discrete Fourier Transform

(DFT) can be computed easily:

fk̃ =
1

N
∑ f(xj)WN

(k−
N
2) j

N−1

j=0

 =
1

2
∑f(xj)W2

(k−
2
2) j

1

j=0

 (7.284)

426

[
f0̂
f1̂
] =

1

2
[
e
−𝑖
2π
2
(0−

2
2
)0

e
−𝑖
2π
2
(0−

2
2
)1

e
−𝑖
2π
2
(1−

2
2
)0

e
−𝑖
2π
2
(1−

2
2
)1
] [
f(x0)

f(x1)
]

=
1

2
[1 e

−𝑖π

1 1
] [
1
2
] =

1

2
[1 −1
1 1

] [
1
2
] =

1

2
[
−1
3
]

(7.285)

Inverse Discrete Fourier Transform (IDFT): The IDFT can be computed as shown in

equation (7.286).

f = Cjk ∙ f̃ ; Cjk = [
e
−(−𝑖

2π
2
)(0−

2
2
)0

e
−(−𝑖

2π
2
)(1−

2
2
)0

e
−(−𝑖

2π
2
)(0−

2
2
)1

e
−(−𝑖

2π
2
)(1−

2
2
)1
] = 𝑇𝑇 = 𝑇−1

[
f(x0)

f(x1)
] = [

e
−(−𝑖

2π
2
)(0−

2
2
)0

e
−(−𝑖

2π
2
)(1−

2
2
)0

e
−(−𝑖

2π
2
)(0−

2
2
)1

e
−(−𝑖

2π
2
)(1−

2
2
)1
] [
f0̂
f1̂
]

= [
1 1

e𝑖π 1
]
1
2
[−1
3
] =

1
2
[1 −1
1 1

] [−1
3
] = f

(7.286)

Reconstruction: The reconstruction process calculates the shape functions between the

sampling intervals using Equation (7.287). The result can be seen in Figure 7.142.

f(𝑥) =∑fk̂
̂

2

k=0

e𝑖(k−
N
2) x = [𝑒𝑖(−1) x 𝑒𝑖0 𝑒𝑖(1) x] [

f0̂
̂

f1̂
̂

f2̂
̂

] (7.287)

427

 with f�̂�
̂ = [

1

2
 f0̂ f1̂

1

2
 f0̂
̅] = [−

1

4

3

2
−
1

4
] and �̂� =

2π

𝑁
= 𝜋 𝑥

𝑓(�̂�) =
3

2
−
1

2
cos(𝑥) =

3

2
−
1

2
cos(𝜋 �̂�) �̂� 𝜖 [0. .2]

The highest frequency Fourier coefficients (k=0, 2) had to be scaled as indicate in

Equation (7.287).

Figure 7.142. (Blue) Original signal and (orange) reconstruction using discrete Fourier series

and inverse discrete Fourier series.

7.17.3.1 Reconstruction and noise removal for a heartbeat signal

During the sampling of a periodic signal in experimentation, noise is often generated by

environmental factors. Such a noise-endowed waveform is shown in Figure 7.143. The initial

signal contains 84 data points. The full Fourier approximation using 84 coefficients represents the

noisy signal exactly.

To eliminate noise, a filter can be developed in the Fourier domain to reduce the magnitude of

the coefficients corresponding to the noise. The first step is to compute the Fourier coefficients.

Note that the DFT requires as many coefficients as the original data, no data reduction, curve fitting

or smoothing. Based on physiological values (such as knowledge that the heartbeat is 60-120 beats

428

per minute, BPM), a filter can be made that suppresses the non-heartbeat portion of the signal(<60

and >120 BPM) by setting the coefficients (f̃𝑘) associated with those frequencies to 0.

After dropping the high frequency coefficients, the filtered signal can be up-sampled and

plotted as in Figure 7.143 by the orange curve. Table 7.37 shows the Fourier coefficients and their

magnitude. A period of 1 second, not N seconds, was used. To account for this, a shift of the x

variable from 0..2π to 0..1 (or more generally speaking, 0..T where T is the sampling period) was

implemented. The implementation is shown in Section 7.17.7. The modified DFT and IDFT to

account for the new period is offered in Equation (7.288).

fk̃ =
1

N
∑ f(xj)e

−𝑖
2π
𝑇 (k−

N
2) j

N−1

j=0

f(𝑥) =
1

N
∑ fk̃e

−𝑖
2π
𝑇 (k−

N
2) x

N−1

k=0

(7.288)

Table 7.37. Fourier polynomial and its coefficients to reconstruct signal without noise using

Quateroni indexing (N=84).

φi f0̂ f1̂ f2̂ f3̂ f4̂ f5̂ f6̂

ω 3(2π/84)x 2(2π/84)x 1(2π/84)x 0 -1(2π/84)x -2(2π/84)x -3(2π/84)x

Ci -.0319+.018𝑖 -.0089+.0482𝑖 -.027+.1043𝑖 .7199 .027-.1043𝑖 -.0089-.0482𝑖 -.0319-.018𝑖

429

Figure 7.143. A) Noisy periodic signal. B) Blue curve is constructed by using all coefficients in

IDFT with a low-pass filter applied.

Orange curve is constructed by keeping the low frequency coefficients (blue in C) and filtering

the high frequencies (grey in C). C) Reconstructed signal (blue) and a reconstruction after

applying a high-pass filter (orange) by setting the coefficients of the lower frequencies to 0.

Amplitude of the Fourier coefficients in the Frequency spectrum for the low-pass (D) and high-

pass (E) filters. Phase spectrum of the signal after applying a low-pass (F) and high-pass (G)

filter. The filtering allows us to remove the noise in the signal as shown by the green curve.

430

The reconstructed heartbeat signal then becomes:

Imag

𝑓(𝑥) = (−.0319 + .018𝑖)𝑒𝑖
3𝜋
42
𝑥 + (−.0089 + .0482𝑖)𝑒𝑖

2𝜋
42
𝑥 + (−.027 + .1043𝑖)𝑒𝑖

𝜋
42
𝑥 + (.7199)1

+ (−.027 − .1043𝑖)𝑒−𝑖
𝜋
42
𝑥 + (−.0089 − .0482𝑖)𝑒−𝑖

2𝜋
42
𝑥 + (−.0319 − .018𝑖)𝑒−𝑖

3𝜋
42
𝑥

Real

. 027 cos (−
𝜋

42
𝑥) − .1043 sin (−

𝜋

42
𝑥) − .0089 cos (−

2𝜋

42
𝑥) − .0482 sin (−

2𝜋

42
𝑥)

− .0319 cos (−
3𝜋

42
𝑥) − .018 sin (−

3𝜋

42
𝑥)

Which simplifies to:

𝑓(𝑥) = −.0638 cos (
3𝜋

42
𝑥) + .036 sin (

3𝜋

42
𝑥) − .0178 cos (

2𝜋

42
𝑥) + .0964 sin (

2𝜋

42
𝑥)

− .054 cos (
𝜋

42
𝑥) + .2086 sin (

𝜋

42
𝑥) + .7199

Functional values written in Matlab script:

Time = 0:0.002:0.166;

FunctionalValues =

[0.561953033988024,0.710124125433452,0.763805541362655,0.813625600359705,0.907392562011622,0.991953033988024,1.0552273702

7121,1.09836601333906,1.12001793074319,1.14060790124466,1.14295598384053,1.13402088059569,1.09097958266059,1.022012031038

17,0.982436809799233,0.973501706554395,0.965091677055870,0.957433859946726,0.948926485315457,0.938714095934926,0.92817722

2778584,0.916687547262360,0.903628550212212,0.879020880595694,0.831032680005723,0.811879287675339,0.792902886495398,0.783

329140182714,0.773755393870030,0.764181647557345,0.754607901244661,0.747784892395103,0.741404361421652,0.735023830448201

,0.728643299474749,0.717764243427552,0.704997281775634,0.677840939592744,0.651073977940826,0.673988432218112,0.6966236337

91367,0.684282434184681,0.671941234577994,0.659600034971308,0.647258835364622,0.634917635757935,0.643345364371505,0.70721

5570861180,0.771085777350856,0.804914685905428,0.674637399769735,0.553680910094218,0.545703771451151,0.537726632808083,0.

529749494165015,0.521772355521947,0.513795216878879,0.505818078235811,0.497840939592744,0.489863800949676,0.523014980890

678,0.539457458766785,0.544572503014572,0.549687547262360,0.554802591510148,0.559917635757935,0.634979582660590,0.6736565

73811033,0.607882237527847,0.542107901244661,0.476333564961475,0.448650379120767,0.498214980890679,0.547779582660589,0.59

7344184430501,0.646908786200412,0.684653413254775,0.645975789993081,0.607298166731387,0.568620543469693,0.52994292020799

8,0.491265296946304,0.452587673684610,0.413910050422916];

7.17.4 Special topic: different indexing scheme of the DFT with implementation

When using different indexing schemes, the mathematical form of the discrete Fourier Series

differs. Specifically, the index of 0 as in Quarteroni is given in Equation (7.289), while MATLAB

index begins at an index of 1 as in Equation (7.290). Moreover, the Matlab model for powering

431

the principle root differs from that of Quarteroni, causing a reordering of the coefficients. The

Fourier coefficients are only comparable after an indexing shift and reordering. Simply stated, a

reordering is necessary for the coefficient of k=1 in the Matlab implementation to match the

coefficient for k=1 in the Quarteroni indexing scheme.

This is also relevant for matching Fourier coefficients with their respective shape functions, as

is used when up-sampling the data. The following section discusses the details of the Quarteroni

and MATLAB indexing and their implications on such reconstructions. Trefethen [244,245] has

yet another indexing scheme that is similar to Matlab but shifted by an index of 1 as seen in

Figure 13.1.

Figure 7.144. Comparison of indexing schemes between 3 different DFT indexing paradigms.

(Top) Traditional indexing runs from −N/2 to N/2 − 1 whereas Quarteroni [243] indexes in a

programmatically convenient way (0..N-1). Matlab/Trefethen use yet a third method for

indexing over the range 1..N. (Bottom) The three methods calculate the same complex vectors

as even though the indexing is very different.

Another comparison of the indexing schemes are offered below with code given in

Section 7.17.9. This comparison exemplifies the rearrangement of the same coefficients using the

two different methods.

432

Figure 7.145. Comparison of indexing schemes between two different DFT indexing

paradigms.

(Top) Quarteroni [243] indexes in a programmatically convenient way (0..N-1) while

(Bottom) Trefethen indexing runs from −N/2 to N/2 − 1.

433

7.17.4.1 Quarteroni implementation

fk̃ =
1

N
∑ f(xj)WN

(k−
N
2
) j

N−1

j=0

; f(xj) = ∑ fk̃

N−1

k=0

W
N

−(k−
N
2
) j
;

h =
2π

N
, xj = jh, WN = e

−𝑖
2π
N

(7.289)

Quarteroni provided implementations of the DFT and IDFT given below (extracted from

[246]):

Program 88 (Quarteroni) – dft

function fx = dft(N,f)

h = 2*pi/N; x = [0:h:2*pi*(1-1/N)]; fx = eval(f); wn = exp(-i*h);

for k = 0:N-1

s = 0;

for j = 0:N-1

s = s+fx(j+1)*wn^((k-N/2)*j);

end

fx(k+1) = s/N;

end

Program 89 (Quarteroni) – idft

function fv = idft(N,fc)

h = 2*pi/N; wn = exp(-i*h);

for k = 0:N-1

s = 0;

for j = 0:N-1

s = s+fc(j+1)*wn^((j-N/2)*-k);

end

fv(k+1) = s;

end

7.17.4.2 Matlab/Trefethen implementation

Matlab indexing looks the same as Quarteroni on the face, yet it differs in a key, namely that

the power of the weight function begins at 0 and approaches N-1. Whereas the coefficient k and j

434

in the Quarteroni scheme follows this pattern, the power of the principle root actually goes

from -N/2 to N/2; an important distinction visited later.

Matlab:

X(k) =∑x(j)WN
(j−1)(k−1)

N

j=1

, x(j) =
1

N
∑X(k)WN

−(j−1)(k−1)

N

k=1

,

WN = e(−2π𝑖)/N

(7.290)

Trefethen:

X(k) = ∑ x(j)WN
𝑗 𝑘

N−1

j=0

, x(j) =
1

N
∑X(k)WN

−𝑗 𝑘

N

k=1

, WN = e(−2π𝑖)/N (7.291)

7.17.4.3 Conventional implementation

The conventional implementation gives the same result as the Quarteroni method, yet the N/2

shift occurs in the coefficient itself, as opposed to being imposed in the power as it is in Quarteroni.

X(k) = ∑ x(j)WN
𝑗 𝑘

N
2−1

j=−
N
2

, x(j) =
1

N
∑X(k)WN

−𝑗 𝑘

N

k=1

, WN = 𝑒−i kx (7.292)

MATLAB added an N/2 shift and scaled the coefficients by N. In order to account for this

scaling, Matlab employs a 1/N scaling when performing the ifft as shown below. This results in a

435

scaling and shifting difference compared to dft and idft. The corresponding shape functions are

therefore also shifted by N/2 in the frequency domain. For even N, this results in a shift N/2 in the

coefficients and functions. However, for odd N, this results in completely different shape functions

and coefficients.

Table 7.38. Comparison of indexing schemes. Quarteroni (k-N/2), Trefethen (k), and Matlab (k-

1), N=4

 fk̂ k W* fk̂ k W* fk̂ k W* fk̂ k W*

Quarteroni 2.5 2 0 0.25+0.25𝑖 3 1 1 0 -2 0.25-0.25𝑖 1 -1

Trefethen 10 0 0 1+𝑖 1 1 4 2 2 1- 𝑖 3 3

MATLAB 10 1 0 1+𝑖 2 1 4 3 2 1- 𝑖 4 3

Frequency cos 0 + 𝑖 sin 0 cos π 2⁄ + 𝑖 sin π 2⁄ cos π + 𝑖 sin π cos
3π

2
+ 𝑖 sin

3π

2

W* - power of the root (WP)

In order to interpolate using the Trefethen/Matlab indexing scheme, the coefficients and base

functions need to be un-scrambled as visualize in Figure 7.146. Figure 7.146 displays the

difference between interpolating using the IDFT formula directly using the weight functions

calculated with the Trefethen method compared to the Quarteroni method. It can be clearly seen

that the Matlab indexing does not hold the pairing of the complex conjugates between principle

roots.

436

Figure 7.146. Graphical representation of interpolation vectors calculated with indexing

schemes of Trefethen (Left) and Quarteroni (Right).

The Trefethen method does not properly reconstruct the formula, as the shape functions are no

longer complex conjugate while interpolating. To fix this, the proper shape functions must be

assigned to the proper coefficients as explained next.

For the Trefethen method using an odd number of coefficients, the shape function associated

with each coefficient must be calculated independent of the IDFT formula. Given the knowledge

that the values have a complex conjugate associated with them, the computation of the pair of

437

complex conjugates can be accomplished using a specified weight function (W) and the Trefethen

shape functions (f̂):

f(t) = WN
0 +∑[f̂kWN

−k t + f̂N−kWN
k t]

N−1
2

k=1

Where: WN = e
−i
2π

N and x = 0. . N

(7.293)

In order to account for the “dangling” coefficient when using an even number of coefficients,

the final term can be calculated independently. This gives a new formulation of the series in one

of two equivalent ways:

f(t) = WN
0 +∑[f̂kWN

−k t + f̂N−kWN
k t]

N
2−1

k=1

+ [f̂N
2
WN
−
N
2t + f̂N

2
WN

N
2t]

= WN
0 +∑[f̂kWN

−k t + f̂N−kWN
k t]

N
2

k=1

Or

(7.294)

f(t) = WN
0 +∑[f̂kWN

−k t + f̂N−kWN
k t]

N
2−1

k=1

+ [f̂N
2
cos (

2π

N

N

2
 t)]

= WN
0 +∑[f̂kWN

−k t + f̂N−kWN
k t]

N
2−1

k=1

+ [f̂N
2
cos (π t)]

(7.295)

438

Where: WN = e
−i
2π

N and x = 0. . N

Principle root matrices for common small datasets (N= 2-6) using the Trefethen numbering

scheme (this scheme can accommodate odd numbers of data points) is offered. Note, the T and C

matrices are symmetric.

439

Table 7.39. DFT Fourier transformation matrix T and IDFT transformation matrix C for 2, 4, and

6 data points using Trefethen indexing.

 fk̃ =
1

N
T f(xj) f(xj) = C fk̃

 T C

N=2 [
1 1
1 −1

] [
1 1
1 −1

]

N=3

[

1 1 1

1 −
1

2
− 0.866𝑖 −

1

2
+ 0.866𝑖

1 −
1

2
+ 0.866𝑖 −

1

2
− 0.866𝑖]

[

1 1 1

1 −
1

2
+ 0.866𝑖 −

1

2
− 0.866𝑖

1 −
1

2
− 0.866𝑖 −

1

2
+ 0.866𝑖]

N=4 [

1 1
1 −𝑖

1 1
−1 𝑖

1 −1
1 𝑖

1 −1
−1 −𝑖

] [

1 1
1 𝑖

1 1
−1 −𝑖

1 −1
1 −𝑖

1 −1
−1 𝑖

]

N=5

𝑇 =

[

1 1
1 0.309 − 0.9511𝑖

1 1 1
−0.809 − 0.5878𝑖 −0.809 + 0.5878𝑖 0.309 + 0.9511𝑖

1 −0.809 − 0.5878𝑖
1 −0.809 + 0.5878𝑖
1 0.309 + 0.9511𝑖

0.309 + 0.9511𝑖 0.309 − 0.9511 −0.809 + 0.5878𝑖
0.309 − 0.9511𝑖 0.309 + 0.9511𝑖 −0.809 − 0.5878𝑖
−0.809 + 0.5878𝑖 −0.809 − 0.5878𝑖 0.309 − 0.9511𝑖]

𝐶 =

[

1 1
1 0.309 + 0.9511𝑖

1 1 1
−0.809 + 0.5878𝑖 −0.809 − 0.5878𝑖 0.309 − 0.9511𝑖

1 −0.809 + 0.5878𝑖
1 −0.809 − 0.5878𝑖
1 0.309 − 0.9511𝑖

0.309 − 0.9511𝑖 0.309 + 0.9511 −0.809 − 0.5878𝑖
0.309 + 0.9511𝑖 0.309 − 0.9511𝑖 −0.809 + 0.5878𝑖
−0.809 − 0.5878𝑖 −0.809 + 0.5878𝑖 0.309 + 0.9511𝑖]

N=6

𝑇 =

[

1 1 1

1
1

2
− 0.866𝑖 −

1

2
− 0.866𝑖

1 −
1

2
− 0.866𝑖 −

1

2
+ 0.866𝑖

1 1 1

−1 −
1

2
+ 0.866𝑖

1

2
+ 0.866𝑖

1 −
1

2
− 0.866𝑖 −

1

2
+ 0.866𝑖

1 −1 1

1 −
1

2
+ 0.866𝑖 −

1

2
− 0.866𝑖

1
1

2
+ 0.866𝑖 −

1

2
+ 0.866𝑖

−1 1 −1

1 −
1

2
+ 0.866𝑖 −

1

2
− 0.866𝑖

−1 −
1

2
− 0.866𝑖

1

2
− 0.866𝑖]

𝐶 =

[

1 1 1

1
1

2
+ 0.866𝑖 −

1

2
+ 0.866𝑖

1 −
1

2
+ 0.866𝑖 −

1

2
− 0.866𝑖

1 1 1

−1 −
1

2
− 0.866𝑖

1

2
− 0.866𝑖

1 −
1

2
+ 0.866𝑖 −

1

2
− 0.866𝑖

1 −1 1

1 −
1

2
− 0.866𝑖 −

1

2
+ 0.866𝑖

1
1

2
− 0.866𝑖 −

1

2
− 0.866𝑖

−1 1 −1

1 −
1

2
− 0.866𝑖 −

1

2
+ 0.866𝑖

−1 −
1

2
+ 0.866𝑖

1

2
+ 0.866𝑖]

7.17.5 Discrete Fourier Transform (DFT) – real arithmetic

Given the definition in Equation (7.272), the Fourier series can be re-written using sines and

cosines as in Equation (7.296). The +k values of the series can be combined with the –k values of

the series as seen in Equation (7.297). This new form of the equation can be simplified using the

440

definitions in Equation (7.298) to simplify Equation (7.296) to Equation (7.299). Note, here an

odd number of data points is assumed (N is odd).

fk̃ =
1

𝑁
∑ f(xj)

n

j=−𝑛

e
𝑖k
2π
N
𝑗

=
1

𝑁
∑ f(xj)

𝑛

j=−n

[cos (k
2π

N
𝑗) + 𝑖sin (k

2π

N
𝑗)]

(7.296)

fk̃ =
1

𝑁
∑ f(xj)

𝑛

j=−n

e
𝑖 k
2π

N
𝑗

=
1

𝑁
∑f(xj)

n

j=0

[e−𝑖 k
2π
N
𝑗 + e𝑖 k

2π
N
𝑗]

(7.297)

cos (k
2π

N
𝑗) = cos (−k

2π

N
𝑗) sin (k

2π

N
𝑗) = −sin (−k

2π

N
𝑗) (7.298)

fk̃ =
1

𝑁
∑ f(xj)

N−1

2

j=0

[cos (k
2π

N
𝑗) + 𝑖sin (k

2π

N
𝑗) + cos (−k

2π

N
𝑗) − {−𝑖sin (−k

2π

N
𝑗)}]

fk̃ =
1

𝑁
∑ f(

2π

N
𝑗)

N−1

2

j=0

2 [cos (k
2π

N
𝑗) + 𝑖sin (k

2π

N
𝑗)]

(7.299)

The coefficient 2 can be brought to the outside of the summation and it can be broken into the

real part and the imaginary part to individually derive the coefficients as in Equation (7.300). Note,

sin(0) is 0 so b0 is always 0 and cos(0) is always 1, so a0 is always be the average value of the data.

The linear average can be computed independently and b0 can be entirely omitted, so the

summation can begin at 1 instead of 0 as reflected in Equation (7.300). This is a common

expression of the Fourier series in the real space that exists in some signal analysis books.

441

fk̃ = 𝑎𝑘 + 𝑖𝑏𝑘

fk̃ = 𝑎0 +∑[𝑎𝑘cos (k
2π

N
𝑗) + 𝑏𝑘sin (k

2π

N
𝑗)]

𝑛

j=1

fk̃ = 𝑎0 +
2

𝑁
∑ f(xj)

𝑛

j=1

[cos (k
2π

N
𝑗)] +

2

𝑁
∑ f(xj)

n

j=1

[𝑖sin (k
2π

N
𝑗)]

𝑎𝑘 = 𝑎0 +
2

𝑁
∑ f(xj)

n

k=1

cos (k
2π

N
𝑗) 𝑏𝑘 =

2

𝑁
∑ f(xj)

n

k=1

sin (k
2π

N
𝑗)

 𝑛 =

{

𝑁−1
2

𝑁 𝑖𝑠 𝑜𝑑𝑑

𝑁
2
−1 𝑁 𝑖𝑠 𝑒𝑣𝑒𝑛

(7.300)

The IDFT can now be written as in Equation (7.301)It is important to notice that for an even

number of data points, the last coefficient in the series does not have a complex conjugate. In order

to account for this, Equation (7.302) is available. Equation (7.302) is equivalent to Equation

(7.303) and accounts for the final unmatched coefficient.

N is odd:

𝑓(𝑥) = ∑ fk̃ [𝑎𝑘 cos (k
2𝜋𝑥

𝑁
) + 𝑏𝑘 sin (k

2𝜋𝑥

𝑁
)]

N−1
2

k=0

(7.301)

442

N is even:

𝑓(𝑥) = ∑ fk̃ [𝑎𝑘 cos (k
2𝜋𝑥

𝑁
) + 𝑏𝑘 sin (k

2𝜋𝑥

𝑁
)]

N
2
−1

k=0

+
1

2
𝑎N
2
cos (

N

2

2𝜋𝑥

𝑁
)

𝑓(𝑥) = ∑ fk̃ [𝑎𝑘 cos (k
2𝜋𝑥

𝑁
) + 𝑏𝑘 sin (k

2𝜋𝑥

𝑁
)]

N
2
−1

k=0

+
1

2
𝑎N
2
cos(𝜋𝑥)

(7.302)

𝑓(𝑥) = ∑ fk̃ [𝑎𝑘 cos (k
2𝜋𝑥

𝑁
) + 𝑏𝑘 sin (k

2𝜋𝑥

𝑁
)]

N
2
−1

k=0

+
1

2
𝑎N
2
cos (

N

2

2𝜋𝑥

𝑁
)

𝑓(𝑥) = ∑ fk̃ [𝑎𝑘 cos (k
2𝜋𝑥

𝑁
) + 𝑏𝑘 sin (k

2𝜋𝑥

𝑁
)]

N
2
−1

k=0

+
1

2
𝑎N
2
cos(𝜋𝑥)

(7.303)

 Matrix representation of the real space Fourier series is expressed below (note, for

convenience the coefficient of 2/N in the DFT, Equation (7.300), and the ½ coefficient in the last

term in Equations (7.302) and (7.303) are already factored into the T matrix).

443

Table 7.40. Coefficient C and T matrices for the DFT and IDFT using real algebra

 fk̃ = T f(xj) f(xj) = C fk̃

T

C

N=2
[
1 1
1 −1

] [
1 1
1 −1

]

N=4
[

1 1
1 0

1 1
−1 0

1 −1
0 1

1 −1
0 −1

] [

1 0
1 0

−1 1
−1 0

1 −1
1 0

1 0
−1 −1

]

N=6

𝑇 =

[

1 1 1
1 1 −1
1 −1 −1

1 1 1

−2 −1
1

2

1 −1 −
1

2
1 −1 1
0 1.7321 1.7321
0 1.7321 −1.7321

−1 1 −1
0 −1.7321 −1.7321
0 1.7321 −1.7321]

𝐶 =

[

1 1 1
1 1 −1
1 −1 −1

1 0 0
−1 1.7321 1.7321
1 1.7321 −1.7321

1 −2 2
1 −1 −1
1 1 −1

−1 0 0
1 −1.7321 1.7321
−1 −1.7321 −1.7321]

7.17.6 Matlab implementation of DFT and iDFT

This section has a code written in Matlab “object-orientation” with useful tools for deriving

the DFT and iDFT procedures.

444

% a program that calculates the DFT and IDFT variables given an input of data

% Written by G Hartung 4/25/2019

% ******* To reconstruct function for any timpoint, use iDFTVect^(newTimePoint)*fK******

% need to add methods utilizing matlab fft

classdef ooDFT_lean

 methods (Static)

 function [T] = getQDFTMatrix(time) %quateroni DFT

 N = length(time); T = zeros(N,N);

 for iRow = 0:N-1

 for iCol = 0:N-1

 T(iRow+1,iCol+1) = exp(-1i*2*pi/N*(iRow-N/2)*iCol); %N should be replaced by T for NDFT in the future

 end

 end

 end

 function [fk] = QDFT(time,f) %quateroni DFT to get coefficients

 N = length(time); delT = time(2)-time(1); T = zeros(N,N);

 for iRow = 0:obj.N-1

 for iCol = 0:obj.N-1

 T(iRow+1,iCol+1) = exp(-1i*2*pi/N*(iRow-N/2)*iCol); %N should be replaced by T for NDFT in the future

 end

 end

 fk = 1/N*T*f;

 end

 function [fk] = MatlabFFT(f) %quateroni DFT to get coefficients

 fk = fft(f);

 end

 function [fk] = unscrambleMatlabFFT(f) %quateroni DFT to get coefficients

 fk = fft(f);

 nHalf = floor(length(fk)/2);

 fk = [fk(nHalf+1:length(fk)), fk(1:nHalf)];

 end

% % this code is hard to read and structured improperly, however

% Matlab does not evaluate exponents properly, so it must be written this

% way to work

 function [f] = evalAt(newTimeVect,time,fk,delT) %used for interpolation

 N = length(fk); iDFTVect = zeros(1,N); %might offer alpha here in the future

 for iCol = 0:N-1

 iDFTVect(iCol+1) = exp(1i*2*pi/N*(iCol-N/2));

 end

 nTimepoints = length(newTimeVect); f = zeros(nTimepoints,size(fk,2));

 for iTime = 1:nTimepoints

 f(iTime,:) = iDFTVect.^(newTimeVect(iTime)/delT)*fk;

 end

 end

 function [f] = computeIDFT(N,fHat)

 iDFTMx = computeIDFTMx(N);

 nTimepoints = length(newTimeVect);

 f = iDFTMx*fHat;

 end

 function [fHatMx] = computeDFTMatrix(N) %j stands for time vector

 for iRow = 0:N-1

 for iCol = 0:N-1

 fHatMx(iRow+1,iCol+1) = exp(-1i*2*pi/N*(iRow-N/2)*iCol); %N should be replaced by T for NDFT in the future

 end

 end

 end

 function [iDFTMx] = computeIDFTMx(N)

 dftMx = computeDFTMatrix(N); iDFTMx = dftMx';

 end

 end

end

445

7.17.7 Matlab implementation of case study in section 31.3.1 with different methods for

solving for even coefficients

% % a method written by GHartung 6.6.2018 for computing DFT and iDFT using new method

function newFourierMethod

close all, figure(1), clf, hold on,

do2DataPoints

do4DataPoints

end

function W = getPrincipleRoot(N)

W = exp(-i*2*pi/N);

subplot(5,1,N-1) %for plotting

end

function fHatAugmented = getFHatAugmented(fHat,N)

nHalf = N/2;

% fHatAugmented = [fHat(1:nHalf); 0.5*fHat(nHalf+1); 0.5*conj(fHat(nHalf+1)); fHat(nHalf+1:N)];

fHatAugmented = [fHat(1:nHalf); 0.5*fHat(nHalf+1); 0.5*fHat(nHalf+1); fHat(nHalf+2:N)]; %fHat(nHalf+1) has no imaginary part

end

function iDFTInterpVector = getIDFTVector(W,N,t,isEven)

if isEven %when N is even - could calculate this from N

% this adds a term and inserts the complex conjugate in it

 iDFTInterpVector = zeros(1,N+1); iDFTInterpVector(1) = W^(-0*t);

 for j = 1:(N/2)

 iDFTInterpVector(j+1) = W^(-j*t); iDFTInterpVector(N-j+2) = W^(j*t);

 end

else %when N is odd - could calculate this from N

 iDFTInterpVector = zeros(1,N); iDFTInterpVector(1) = W^(-0*t);

 for j = 1:(N/2)

 iDFTInterpVector(j+1) = W^(-j*t); iDFTInterpVector(N-j+1) = W^(j*t);

 end

end

end

function do2DataPoints

t = [0;1]; f = [1;2]; N=2;

W = getPrincipleRoot(N);

%DFT

DFTMx = [W^0 W^0;

 W^0 W^1];

fHat = DFTMx*f, matlabFHat = fft(f);

residual = norm(fHat-matlabFHat)

stem(abs([fHat,matlabFHat])), legend('manual DFT','matlab fft')

%simple reconstruction

iDFTMx=DFTMx';%matlab uses complex conjugate transpose

% iDFTMx = [W^0 W^0;

% W^0 W^-1];

ftReconst = 1/N*iDFTMx*fHat; reconstructionResidual = norm(ftReconst-f)

%interpolating

tInterp = min(t):0.01:3*max(t); fHatAugmented = [fHat(1:1); 0.5*fHat(2); 0.5*conj(fHat(2))];

for i = 1:length(tInterp)

% %blindly using formula-- does not work for even numbers

% iDFTInterpVector = [W^(-0*tInterp(i)) W^(-1*tInterp(i))];

% ftInterp(i) = 1/N*iDFTInterpVector*fHat;

446

% %using knowledge of extra complex root that is complex conjugate

% iDFTInterpVector = [W^(-0*tInterp(i)) W^(-1*tInterp(i)) W^(1*tInterp(i))];

% ftInterp(i) = 1/N*iDFTInterpVector*fHatAugmented;

 %using knowledge that last term MUST be cosine only

 iDFTInterpVector = [W^(-0*tInterp(i)) W^(-1*tInterp(i))];

%%%% next 2 lines are equivalent

% iDFTInterpVector(2) = real(iDFTInterpVector(2)); %manually set coefficient to 0, causing entire imaginary term to be 0

 iDFTInterpVector(2) = cos(2*pi/N*1*tInterp(i)); %manually multiplying coefficient with cosine

%%%%

 ftInterp(i) = 1/N*iDFTInterpVector*fHat;

end

 figure(2), subplot(5,1,N-1), scatter(t,f); hold on,

% figure, plot(t,f), hold on

plot(tInterp,real(ftInterp)), plot(tInterp,real(ftInterp)+imag(ftInterp)),

legend('original data','real part of reconstruction','real+imag part of reconstruction');

figure(1);

end

function do4DataPoints

t = [0;1;2;3]; f = [1; 3; 2; 4]; N=4;

% f = [1;2;1.5;0.5];

W = getPrincipleRoot(N);

DFTMx = [W^0 W^0 W^0 W^0;

 W^0 W^1 W^2 W^3;

 W^0 W^2 W^4 W^6;

 W^0 W^3 W^6 W^9];

fHat = DFTMx*f, matlabFHat = fft(f);

residual = norm(fHat-matlabFHat)

stem(abs([fHat,matlabFHat]))

%simple reconstruction

iDFTMx=DFTMx'; %matlab uses complex conjugate transpose

% iDFTMx = [W^0 W^0 W^0 W^0;

% W^0 W^-1 W^-2 W^-3;

% W^0 W^-2 W^-4 W^-6;

% W^0 W^-3 W^-6 W^-9];

ftReconst = 1/N*iDFTMx*fHat; reconstructionResidual = norm(ftReconst-f)

%interpolating

tInterp = min(t):0.01:max(t);

fHatAugmented = getFHatAugmented(fHat,N);

% fHatAugmented = [fHat(1:2); 0.5*fHat(3); 0.5*conj(fHat(3)); fHat(4)];

for i = 1:length(tInterp)

% %blindly using formula -- does not work for even numbers

% iDFTInterpVector = [W^(-0*tInterp(i)) W^(-1*tInterp(i))];

% ftInterp(i) = 1/N*iDFTInterpVector*fHat;

% %using knowledge of extra complex root that is complex conjugate

 iDFTInterpVector = getIDFTVector(W,N,tInterp(i),true);

 ftInterp(i) = 1/N*iDFTInterpVector*fHatAugmented;

end

figure(2), subplot(5,1,N-1), scatter(t,f); hold on,

plot(tInterp,real(ftInterp)), plot(tInterp,real(ftInterp)+imag(ftInterp)),

figure(1);

end

447

7.17.8 Matlab implementation of case study in section 31.3.2

% GH 3/19/2018 -- to test 6 frequencies

function fourierTest

close all

[tData,fData] = sampleAndPlotData;

newT = 0:0.001:1;

% % do DFT

dft = ooDFT.CreateAndCompute(tData,fData);

dft2 = dft.filterDownTo(dft,7);

fNew2 = dft2.computeIDFTTest(newT,dft2);

fData = [fData fData fData fData fData fData];

tMax = max(tData); tData=[tData tData+tMax tData+tMax*2 tData+tMax*3 tData+tMax*4 tData+tMax*5];

plot(tData,fData,'linewidth',2); hold on

plot(newT,fNew2,'linewidth',2);

legend('original data','filtered reconstruction')

end

function [tSamples,fSamples] = sampleAndPlotData

fSamples =

[0.561953033988024,0.710124125433452,0.763805541362655,0.813625600359705,0.907392562011622,0.991953033988024,1.0552273702

7121,1.09836601333906,1.12001793074319,1.14060790124466,1.14295598384053,1.13402088059569,1.09097958266059,1.022012031038

17,0.982436809799233,0.973501706554395,0.965091677055870,0.957433859946726,0.948926485315457,0.938714095934926,0.92817722

2778584,0.916687547262360,0.903628550212212,0.879020880595694,0.831032680005723,0.811879287675339,0.792902886495398,0.783

329140182714,0.773755393870030,0.764181647557345,0.754607901244661,0.747784892395103,0.741404361421652,0.735023830448201

,0.728643299474749,0.717764243427552,0.704997281775634,0.677840939592744,0.651073977940826,0.673988432218112,0.6966236337

91367,0.684282434184681,0.671941234577994,0.659600034971308,0.647258835364622,0.634917635757935,0.643345364371505,0.70721

5570861180,0.771085777350856,0.804914685905428,0.674637399769735,0.553680910094218,0.545703771451151,0.537726632808083,0.

529749494165015,0.521772355521947,0.513795216878879,0.505818078235811,0.497840939592744,0.489863800949676,0.523014980890

678,0.539457458766785,0.544572503014572,0.549687547262360,0.554802591510148,0.559917635757935,0.634979582660590,0.6736565

73811033,0.607882237527847,0.542107901244661,0.476333564961475,0.448650379120767,0.498214980890679,0.547779582660589,0.59

7344184430501,0.646908786200412,0.684653413254775,0.645975789993081,0.607298166731387,0.568620543469693,0.52994292020799

8,0.491265296946304,0.452587673684610,0.413910050422916];

tSamples =

[0,0.00200000000000000,0.00400000000000000,0.00600000000000000,0.00800000000000000,0.0100000000000000,0.0120000000000000,

0.0140000000000000,0.0160000000000000,0.0180000000000000,0.0200000000000000,0.0220000000000000,0.0240000000000000,0.0260

000000000000,0.0280000000000000,0.0300000000000000,0.0320000000000000,0.0340000000000000,0.0360000000000000,0.0380000000

000000,0.0400000000000000,0.0420000000000000,0.0440000000000000,0.0460000000000000,0.0480000000000000,0.0500000000000000

,0.0520000000000000,0.0540000000000000,0.0560000000000000,0.0580000000000000,0.0600000000000000,0.0620000000000000,0.0640

000000000000,0.0660000000000000,0.0680000000000000,0.0700000000000000,0.0720000000000000,0.0740000000000000,0.0760000000

000000,0.0780000000000000,0.0800000000000000,0.0820000000000000,0.0840000000000000,0.0860000000000000,0.0880000000000000

,0.0900000000000000,0.0920000000000000,0.0940000000000000,0.0960000000000000,0.0980000000000000,0.100000000000000,0.10200

0000000000,0.104000000000000,0.106000000000000,0.108000000000000,0.110000000000000,0.112000000000000,0.114000000000000,0.

116000000000000,0.118000000000000,0.120000000000000,0.122000000000000,0.124000000000000,0.126000000000000,0.128000000000

000,0.130000000000000,0.132000000000000,0.134000000000000,0.136000000000000,0.138000000000000,0.140000000000000,0.1420000

00000000,0.144000000000000,0.146000000000000,0.148000000000000,0.150000000000000,0.152000000000000,0.154000000000000,0.15

6000000000000,0.158000000000000,0.160000000000000,0.162000000000000,0.164000000000000,0.166000000000000];

end

448

7.17.9 Matlab implementation of Figure 7.145

% GH 3/19/2018 -- Fourier filtering case study from report

function fourierFiltering

close all

[tData,fData] = sampleAndPlotData;

% runFilterin5gAndPlotting(tData,fData);

plotMatlabVsQuarteroni(tData,fData);

end

function plotMatlabVsQuarteroni(tData,fData)

pos = [500 500 200 200];

clr = [1 0 0; 0 1 0; 0 0 1; 0 1 1; 1 0 1; 0 0 0;

 0 0.4470 0.7410; 0.85 0.325 0.098; 0.929 0.694 0.125; 0.494 0.184 0.556];

dft = ooDFT.CreateAndCompute(tData,fData);

for iCol = 0:dft.N-1

 w(iCol+1) = -2*pi/dft.N*(iCol-dft.N/2); %N should be replaced by T for NDFT in the future

end

w = w./pi;

k = [0:(dft.N-1)] - dft.N/2;

makePlotWithTwoXAxes(dft.fk,w,k,clr); title('Quarteroni'),

for iCol = 0:dft.N-1

 w(iCol+1) = -2*pi/dft.N*(iCol); %N should be replaced by T for NDFT in the future

end

w = w./pi; fk = fft(fData); k = 0:dft.N-1;

makePlotWithTwoXAxes(fk,w,k,clr); title('Trefethen'),

end

function makePlotWithTwoXAxes(fk,w,k,clr)

pos = [500 500 400 250]; fk = (abs(real(fk)+imag(fk)));

figure,

% axis for k

b=axes('Position',[.1 0.1 .8 1e-12]);

set(b,'Units','normalized'); set(b,'Color','none');

% axis for frequency

a=axes('Position',[.1 .2 .8 1e-12]); set(a,'Units','normalized'); set(a,'Color','none');

% axis for shifted k

c=axes('Position',[.1 .3 .8 .6]); set(c,'Units','normalized');

for i = 1:length(fk)

 switch w(i)

 case 1, colorPlot = clr(1,:);

 case 3/4, colorPlot = clr(2,:);

 case 2/4, colorPlot = clr(3,:);

 case 1/4, colorPlot = clr(4,:);

 case 0 , colorPlot = clr(5,:);

 case -1/4, colorPlot = clr(6,:);

 case -1/2, colorPlot = clr(7,:);

 case -3/4, colorPlot = clr(8,:);

 case -4/4, colorPlot = clr(1,:);

 case -5/4, colorPlot = clr(2,:);

 case -6/4, colorPlot = clr(3,:);

 case -7/4, colorPlot = clr(4,:);

 end

 stem(i,fk(i),'color',colorPlot), hold on

end

for i = 1:length(fk), xlbl{i} = [num2str(w(i)) '\pi']; end

kOrig = 0:length(fk)-1;

set(c,'xlim',[1,length(fk)],'xTickLabels',xlbl); % xlabel('\omega');

set(b,'xlim',[1,length(fk)],'xTickLabels',num2str(kOrig')); %xlabel('k');

set(a,'xlim',[1,length(fk)],'xTickLabels',num2str(k')); %xlabel('k');

449

text(length(fk)+0.4,-0.04*max(fk) ,'\omega','FontSize',12)

text(length(fk)+0.4,-0.2*max(fk) ,'k''','FontSize',10)

text(length(fk)+0.4,-0.4*max(fk) ,'k','FontSize',10)

ylabel('amplitude'), set(gcf,'position',pos), hold on

legend(xlbl{:})

end

function runFilteringAndPlotting(tData,fData)

newT = 0:0.01:3; pos = [500 500 200 200];

% % do DFT

dft = ooDFT.CreateAndCompute(tData,fData);

 figure, stem(abs(real(dft.fk))+abs(imag(dft.fk))), xlabel('k'); ylabel('amplitude'), set(gcf,'position',pos)

% legend('Quateroni')

% % low pass filter

% fNew = dft.computeIDFTTest(newT,dft);

dft2 = dft.filterDownTo(dft,7);

fNew2 = dft2.computeIDFTTest(newT,dft2);

% plot(newT,fNew,'linewidth',2); hold on

filteredFk = dft2.fk;

fkHalf =floor(size((dft.fk),1)/2); newSample= fkHalf-ceil(7/2)+2:fkHalf+floor(7/2)+1;

 figure, stem(abs(real(dft.fk))+abs(imag(dft.fk)),'color',[0.8 0.8 0.8]),hold on, stem(newSample,abs(real(dft2.fk))+abs(imag(dft2.fk)),'b')

 xlabel('k'); ylabel('amplitude'), legend('dropped coefficients','kept coefficients')

figure,plot([tData],[fData],'linewidth',2); xlabel('time (s)'), ylabel('signal'), set(gcf,'position',pos),

 figure, stem(angle(dft.fk),'color',[0.8 0.8 0.8]), hold on, stem(newSample,angle(dft2.fk),'b')

 xlabel('k'); ylabel('phase angle'), legend('dropped coefficients','kept coefficients')

figure,plot([tData],[fData],'linewidth',2); xlabel('time (s)'), ylabel('signal'), set(gcf,'position',pos),

fData = [fData fData fData];

% dft.fk

tMax = max(tData)+tData(2)-tData(1); %need to increment the data forward

tData=[tData tData+tMax tData+tMax*2];

figure,plot(tData,real(fData),'linewidth',2); hold on, xlabel('time (s)'), ylabel('signal')

plot(newT,fNew2,'linewidth',2); set(gcf,'position',pos), xlim([0 3])

% % % high pass filter

dft2 = dft.highPassFilter(dft,7);

fNew2 = dft2.computeIDFTTest(newT,dft2);

% plot(newT,fNew,'linewidth',2); hold on

filteredFk = dft2.fk;

fkHalf =floor(size((dft.fk),1)/2); removedIdx= fkHalf-ceil(7/2)+2:fkHalf+floor(7/2)+1;

newSample = 1:length(dft.fk); newSample(removedIdx) = [];

 figure, stem(abs(real(dft.fk))+abs(imag(dft.fk)),'color',[0.8 0.8 0.8]),hold on,

 stem(newSample,abs(real(dft2.fk))+abs(imag(dft2.fk)),'b')

 xlabel('k'); ylabel('amplitude'), legend('dropped coefficients','kept coefficients')

figure,plot([tData],[fData],'linewidth',2); xlabel('time (s)'), ylabel('signal'), set(gcf,'position',pos),

 figure, stem(angle(dft.fk),'color',[0.8 0.8 0.8]), hold on, stem(newSample,angle(dft2.fk),'b')

 xlabel('k'); ylabel('phase angle'), legend('dropped coefficients','kept coefficients')

figure,plot([tData],[fData],'linewidth',2); xlabel('time (s)'), ylabel('signal'), set(gcf,'position',pos),

fData = [fData fData fData];

% dft.fk

tMax = max(tData)+tData(2)-tData(1); %need to increment the data forward

tData=[tData tData+tMax tData+tMax*2];

figure,plot(tData,real(fData),'linewidth',2); hold on, xlabel('time (s)'), ylabel('signal')

plot(newT,fNew2,'linewidth',2); set(gcf,'position',pos), xlim([0 3])

end

function [tSamples,fSamples] = sampleAndPlotData

fSamples = [1 4 6 8 7 5 4 3];

tSamples = 0:0.1:0.7;

end

450

7.17.10 Implementation notes

The rows of the IDFT can be interpreted as a repeat of a single vector raised to different powers.

Due to this, a single row vector of the IDFT matrix, can be created as in Equation (7.304) and each

element of the vector can be raised to the power of “t” before summing the elements. For this

evaluation technique, t represents the new time point. Another note, is that all evaluations of the

exponential function and powers must be implemented in Matlab at once, because raising an

exponential function to a power (to generate the principle root, W) and then raising to another

power is evaluated improperly in Matlab. The creators of Matlab have acknowledged this error

and advised to use sine and cosine logic (real implementation) for best results.

𝑓(𝑡) = 𝑉𝑡 𝑤ℎ𝑒𝑟𝑒 𝑉 = ∑ fk̃

N−1

k=0

W
N

−(k−
N
2) (7.304)

This section lists a code for calculating the matrix T for DFT (fBarMx), the matrix T-1 for the

IDFT (fBarPrimeMx) and the time-independent matrix used for IDFT reconstructions

(fBarWithoutTime). The Fourier coefficients (fBar) can be seen after the loop. Calculating the

IDFT. “x” is the independent variable (could be time), chosenLine is the line of the IDFT time-

dependent matrix calculated above. timeVect is the time vector of the new time sampling.

451

% a program that calculates the DFT and IDFT variables given an input of data

% Written by G Hartung 3/22/2017

% ******* To reconstruct function for any timpoint, use iDFTVect^(newTimePoint)*fK******

classdef ooDFT

 properties

 fk,iDFTVect,f,time,N, delT

 end

 methods (Static)

 function obj = CreateAndCompute(time,f)

 obj = ooDFT; obj.f = f; obj.time = time;

 if(size(f,1)==length(time))

 f=f;

 elseif(size(f,2)==length(time))

 f=f';

 else

 disp('time vector and data vector are not the same length; operation terminated')

 return

 end

 obj.delT = time(2)-time(1);

 obj.N = length(time);

 DFTMx = computeDFTMatrix(obj);

 obj.fk = 1/obj.N*DFTMx*f;

 obj.iDFTVect = computeIDFTVector(obj);

 end

 function [f] = computeIDFT(newTimeVect,obj)

 iDFTVect= obj.iDFTVect; fk = obj.fk; delT=obj.delT;

 nTimepoints = length(newTimeVect);

 if size(fk,1)~=length(iDFTVect)

 fk = conj(fk)'; %flip orientation of Mx

 end

 f = zeros(nTimepoints,size(fk,2));

 for iTime = 1:nTimepoints

 f(iTime,:) = iDFTVect.^(newTimeVect(iTime)/delT)*fk;

 end

 end

 end

 methods

 function [fHatMx] = computeDFTMatrix(obj) %j stands for time vector

 for iRow = 0:obj.N-1

 for iCol = 0:obj.N-1

 fHatMx(iRow+1,iCol+1) = exp(-1i*2*pi/obj.N*(iRow-obj.N/2)*iCol); %N should be replaced by T for NDFT in the future

 end

 end

 end

 function [iDFTfHatVect] = computeIDFTVector(obj) %all rows the same in IDFT Matrix

 iDFTfHatVect = zeros(1,obj.N); %might offer alpha here in the future

 for iCol = 0:obj.N-1

 iDFTfHatVect(iCol+1) = exp(1i*2*pi/obj.N*(iCol-obj.N/2));

 end

 end

 end

end

7.17.11 Non-Uniform Sampling Rates

Most of the time when data is acquired from a signal, it is uniformly sampled using some type

of recording machine. There are times, however, when sampling must be done by hand and is

prone to non-uniform sampling rates due to human error. This could include experimental

452

protocols where a person is sampling a cell culture at different times, measuring data from a chart,

etc. In these cases, the DFT does not apply. In order to solve this problem 2 options are available.

The first is to interpolate between the data and sample evenly. This is a fairly simple solution to

implement by hand or in a Matlab procedure. The second option is to use the non-uniform discrete

Fourier transform (NDFT), which is outside the scope of this work.

453

7.17.12 Code for generating and sampling wavelengths of different frequencies

% GH 3/15/2018 -- a function to generate uneven frequencies

% To save space, using a previously validated ooDFT class

function fourierTest

close all

[tData,fData] = sampleAndPlotData;

% do DFT

dft = ooDFT.CreateAndCompute(tData,fData);

% new time vector

newT = linspace(0,max(tData),100);

% do IDFT

reconstructedF = dft.computeIDFT(newT,dft);

figure, scatter(tData,fData); hold on; plot(newT,reconstructedF); title('IDFT full signal')

% drop some fK

dft10 = dft.filterDownTo(dft,10);

reconstructedF10 = dft10.computeIDFT(newT,dft10);

figure, scatter(tData,fData); hold on; plot(newT,reconstructedF10); title('10 coefficients')

dft5 = dft.filterDownTo(dft,5);

reconstructedF5 = dft5.computeIDFT(newT,dft5);

figure, scatter(tData,fData); hold on; plot(newT,reconstructedF5); title('5 coefficients')

% do linear averaging

dataLength = floor(length(tData)/3); %ignore the last 2 entries

dft1 = ooDFT.CreateAndCompute(tData(1:dataLength),fData(1:dataLength));

dft2 = ooDFT.CreateAndCompute(tData(dataLength+1:2*dataLength),fData(dataLength+1:2*dataLength));

dft3 = ooDFT.CreateAndCompute(tData(2*dataLength+1:3*dataLength),fData(2*dataLength+1:3*dataLength));

dftAverage = dft1;

for i = 1:dataLength

 dftAverage.fk(i) = (dft1.fk(i)+dft2.fk(i)+dft3.fk(i))/3;

end

reconstructedAverage = dftAverage.computeIDFT(newT,dftAverage);

figure, scatter(tData,fData); hold on; plot(newT,reconstructedAverage); title('averaging')

end

function [tSamples,fSamples] = sampleAndPlotData

omega = [10 20 30];

omegaBar = 10;

a = [2 3 4]; b = [5 6 7]; c = 50;

period = 2*pi./(omega+omegaBar);

timeOffset = [0, period(1), period(1)+period(2)];

tPlot = []; fPlot = []; tSamples = []; fSamples = [];

for i = 1:length(omega)

 %full sampling for plotting

 t = linspace(0,period(i),25);

 f = evaluateFunction(a,b,c,omegaBar+omega(i),t);

 tPlot = [tPlot t+timeOffset(i)]; fPlot = [fPlot f];

end

t = linspace(0,sum(period),20);

for i = 1:length(t)

 %downsampling for data

 if t(i) < period(1), f = evaluateFunction(a,b,c,omegaBar+omega(1),t(i));

 elseif t(i) < period(2), f = evaluateFunction(a,b,c,omegaBar+omega(2),t(i));

 else f = evaluateFunction(a,b,c,omegaBar+omega(3),t(i)); end;

 fSamples = [fSamples f];

end

tSamples = [t];

plot(tPlot,fPlot); xlabel('time'); ylabel('pressure');

hold on, scatter(tSamples,fSamples)

end

function F = evaluateFunction(a,b,c,omega,t)

f1 = a(1)*sin(omega*t) + b(1)*cos(omega*t);

454

f2 = a(2)*sin(omega*t) + b(2)*cos(omega*t);

f3 = a(3)*sin(omega*t) + b(3)*cos(omega*t);

F = f1+f2+f3+c;

End

% a program that calculates the DFT and IDFT variables given an input of data

% Written by G Hartung 3/22/2017

% ******* To reconstruct function for any timpoint, use iDFTVect^(newTimePoint)*fK******

classdef ooDFT

 properties

 fk,iDFTVect,f,time,N, delT

 end

 methods (Static)

 function obj = CreateAndCompute(time,f)

 obj = ooDFT; obj.f = f; obj.time = time;

 if(size(f,1)==length(time))

 f=f;

 elseif(size(f,2)==length(time))

 f=f';

 else

 disp('time vector and data vector are not the same length; operation terminated')

 return

 end

 obj.delT = time(2)-time(1);

 obj.N = length(time);

 DFTMx = computeDFTMatrix(obj);

 obj.fk = 1/obj.N*DFTMx*f;

 obj.iDFTVect = computeIDFTVector(obj);

 end

 function [f] = computeIDFT(newTimeVect,obj)

 iDFTVect= obj.iDFTVect; fk = obj.fk; delT=obj.delT;

 nTimepoints = length(newTimeVect);

 if size(fk,1)~=length(iDFTVect)

 fk = conj(fk)'; %flip orientation of Mx

 end

 f = zeros(nTimepoints,size(fk,2));

 for iTime = 1:nTimepoints

 f(iTime,:) = iDFTVect.^(newTimeVect(iTime)/delT)*fk;

 end

 end

 function obj = filterDownTo(obj,NewFkLength)

 fkHalf =floor(size((obj.fk),1)/2);

 newSample= fkHalf-ceil(NewFkLength/2)+1:fkHalf+floor(NewFkLength/2);

 obj.fk = obj.fk(newSample,:);

 obj.iDFTVect = obj.iDFTVect(newSample);

 end

 function f = getSingleFrequency(obj,fkNumber,newTimeVect)

 if(length(fkNumber > 1))

 fkSelected = obj.fk(fkNumber(1),fkNumber(2));

 iDFTVect = obj.iDFTVect(fkNumber(1));

 else

 fkSelected = obj.fk(fkNumber); iDFTVect = obj.iDFTVect(fkNumber);

 end

 nTimepoints = length(newTimeVect); f = zeros(length(newTimeVect),1);

 for iTime = 1:nTimepoints

 f(iTime) = iDFTVect^(newTimeVect(iTime)/obj.delT)*fkSelected;

 end

 end

 end

 methods

 function [fHatMx] = computeDFTMatrix(obj) %j stands for time vector

 for iRow = 0:obj.N-1

 for iCol = 0:obj.N-1

 fHatMx(iRow+1,iCol+1) = exp(-1i*2*pi/obj.N*(iRow-obj.N/2)*iCol); %N should be replaced by T for NDFT in the future

 end

455

 end

 end

 function [iDFTfHatVect] = computeIDFTVector(obj) %all rows the same in IDFT Matrix

 iDFTfHatVect = zeros(1,obj.N); %might offer alpha here in the future

 for iCol = 0:obj.N-1

 iDFTfHatVect(iCol+1) = exp(1i*2*pi/obj.N*(iCol-obj.N/2));

 end

 end

 end

end

456

7.17.13 evaluation of the DFT matrices using real algebra

457

7.18 Appendix R: Copyright permissions for previously published material

Computers in biology and medicine Personal Use policy

(https://www.elsevier.com/about/policies/copyright)

Authors can use their articles, in full or in part, for a wide range of scholarly, non-commercial

purposes as outlined below:

Use by an author in the author’s classroom teaching (including distribution of copies, paper or

electronic)

Distribution of copies (including through e-mail) to known research colleagues for their

personal use (but not for Commercial Use)

Inclusion in a thesis or dissertation (provided that this is not to be published commercially)

Use in a subsequent compilation of the author’s works

Extending the Article to book-length form

Preparation of other derivative works (but not for Commercial Use)

Otherwise using or re-using portions or excerpts in other works

These rights apply for all Elsevier authors who publish their article as either a subscription

article or an open access article. In all cases we require that all Elsevier authors always include a

full acknowledgement and, if appropriate, a link to the final published version hosted on Science

Direct.

Plos computational biology License agreement (https://www.plos.org/license)

PLOS applies the Creative Commons Attribution (CC BY) license to works we publish.

Under this license, authors retain ownership of the copyright for their content, but they

https://www.elsevier.com/about/policies/copyright
https://www.plos.org/license
https://creativecommons.org/licenses/by/4.0/

458

allow anyone to download, reuse, reprint, modify, distribute and/or copy the content as

long as the original authors and source are cited.

Appropriate attribution can be provided by simply citing the original article (e.g.,

Huntingtin Interacting Proteins Are Genetic Modifiers of Neurodegeneration. Kaltenbach

LS et al. PLOS Genetics. 2007. 3(5) doi:10.1371/journal.pgen.0030082).

Neuro-Oncology Author Rights policy

(https://theoncologist.alphamedpress.org/site/misc/InfoForContributors.xhtml)

As an author, you are granted rights for a large number of author uses, including use by your

employer (institution or company). These rights are granted and permitted without the need to

obtain specific permission from the copyright holder, AlphaMed Press, provided a full credit line

is prominently placed [i.e., author name(s), journal name, copyright year, volume number,

inclusive pages, and copyright holder]. These author rights are granted and apply only to articles

for which you are named as the author or co-author. The author rights include:

the right to make copies of the article for your own personal use, including for your own

classroom teaching use;

the right to make copies and distribute copies (including via e-mail) of the article to research

colleagues, for the personal use by such colleagues (but not commercially or systematically, e.g.,

via an e-mail list or listserv);

the right to present the article at a meeting or conference and to distribute copies of such paper

or article to the delegates attending the meeting;

for the author's employer, if the article is a "work for hire," made within the scope of the

author's employment, the right to use all or part of the information in (any version of) the article

for other intracompany use (e.g., training);

https://theoncologist.alphamedpress.org/site/misc/InfoForContributors.xhtml

459

patent and trademark rights and rights to any process or procedure described in the article;

the right to include the article in full or in part in a thesis or dissertation (provided that this is

not to be published commercially);

the right to use the article or any part thereof in a printed compilation of works of the author,

such as collected writings or lecture notes (subsequent to publication of the article in the journal);

the right to prepare other derivative works, to extend the article into book-length form, or to

otherwise reuse portions or excerpts in other works, with full acknowledgment of its original

publication in the journal; and

the right to self-archive the work by posting the work as the final peer-reviewed author's

manuscript (but not published layout) on his/her own website and his/her institution's website and

repository no earlier than six months after print publication in The Oncologist provided that a link is

made to the AlphaMed Press version.

460

7.19 Appendix S: Validating oxygen model generation

Mixed-mesh oxygen simulations require the combination of diffusion, reaction and convection

models across multiple mesh types (in this case hexahedral meshes and 2-point networks). This

document details the validation of the equation generation platform in the OX libraries

implemented in Delphi 10.2 Tokyo.

The results of this report indicate that linear flow, tissue diffusion, vascular convection, vessel-

tissue mass transfer, vascular reactions and tissue reactions are all properly implemented and can

be used interchangeably.

Figure 7.147. A graphical representation of two mixed mesh systems (with reaction, diffusion,

mass transfer, and convection).

The distributions exemplify the nontrivial distribution achieved with the findings in this section.

461

7.19.1 Introduction

The recent rewrite to the equation generation libraries and matrix storage formats provided

improved readability and efficient model generation. These libraries were endowed with sample

codes for linear vascular flow and a model for a coupled system of water transfer due to diffusion

in network (Poiseuille flow), diffusion in tissue (Darcy’s law) and a point-centered mass transfer

between the network and the mesh (see Section 7.28.7.3 for more information on the point-

centered mass transfer methodology). These base libraries, as well as the sample applications,

needed to be validated and vetted. Moreover, some mathematical models still required

development for new boundary conditions (Neumann for instance) and for new matrices (such as

reactions or time integration).

In order to move forward with simulating oxygen, many simulations were implemented and

validated to show the independent mechanisms of mass transport are upheld with general functions

such as makeDiffusionMatrix or makeMassTransferMatrix. The software made for this

demonstration is entitled ghDualDarcyAppValidation.exe. The case studies are hardcoded using

dropdown menus and different buttons as seen in the figure below.

462

Figure 7.148. The interface used to run all case studies.

This executable will be available upon request with hardcoded case study files.

7.19.2 Linear flow

The first step in implementing the oxygen model is to validate linear blood flow. This was

accomplished by comparing the OX libraries to the OO libraries using a direct sparse linear

algebraic solver (MA48). The OO libraries have been previously validated (data not shown).

OO libraries (V88) OXLibraries (V88)
File:ooGrantLinearVasculatureSource.V4.pas

Object type: ooLinVascApplication

Executable: Project_ooPMEVasculatureSimpleGrant

File:oxGrantLinearVasculatureSource.V4.pas

Object type: oxLinVascApplication

Executable:ghDualDarcyAppValidation

The mathematics follow linear flow (Hagen Poiseuille, HP, equation):

0 = ∇⃑⃑ ∙ (
𝜋𝑑4

128 𝜇 𝑙
∆p) , 𝑝 = 𝑝 (7.305)

463

Where p is pressure, ∆p is change in pressure, and 𝛼 is the HP tube resistance. The residuals

are reasonably small, the overall mass balances close, the spot checks are reasonable, and the flow

vector matches that obtained from the OO libraries (previously validated). This model is validated.

Name #

Flow

(ml/min)

Average

pressure

(mmHg)

Flow

values

(ml/min)

Pressure

range

(mmHg)

Max

norm of

residual

(mmHg)

Max spot

check

error

(ml/min)

Overall

balance

error

(ml/min)

Test

310
ooLibraries

M_

LF_

1

153.71 –

1671.87
5-80 1.48E-9 3.0E-10 1.9E-11

Test

310
oXLibraries

M_

LF_

2

153.71 –

1671.87
5-80 4.9E-10 3.0E-10 1.9E-11

ArtVen

Fused
ooLibraries

M_

LF_

3

2116.5 –

1020167
5-80 9.8E-8 3.4E-7 1.4E-7

ArtVen

Fused
oXLibraries

M_

LF_

4

2116.5 –

1020167
5-80 1.3e-7 3.4E-7 1.4E-7

7.19.3 Linear flow + convection

The next step is to correctly model convection using the blood flow as the bulk medium through

which the dilute substance will be advected. The results were compared between OX to the OO

libraries.

464

OO libraries (V86) OXLibraries (V88)

File:ooDyeConvectionSource.pas

Object type: ooDyeConvection

Executable: Project_ooPMEVasculature

File:oxGrantLinearVasculatureSource.V4.pas

Object type: oxLinVascApplication

Executable:ghDualDarcyAppValidation

Vascular flow is modeled using HP flow but with conservation balance using only pressure

formulation (see Section 7.11.4 for more information on modeling flow this way):

0 = ∇⃑⃑ ∙ (
𝜋𝑑4

128𝜇𝑙
∆p) , 𝑝 = 𝑝 (7.306)

Where p is pressure, ∆p is change in pressure, and 𝛼 is the HP tube resistance. In vasculature,

convection:

0 = −∇⃑⃑ ∙ (𝑓𝑐𝐴), 𝑓 =
𝜋𝑑4

128𝜇𝑙
∆p (7.307)

Boundary conditions, Dirichlet at inlet:

𝑐𝐴 = 𝑐𝐴 (7.308)

Findings: The residuals are reasonable, mass balances close, and the solution vector matches

that from the OO libraries, validating the solution.

465

Name #

Convection

flow

(mol/min)

Convec-

tion flow

(mol/

min)

Flow

values

(ml/min)

Pressure

range

(mmHg)

Concen

tration

range

(mol)

Max

norm of

residual

(mol)

Max spot

check

error

(mol/min)

Overall

balance

error

(mol/min)

Test

310
ooLibraries

M_

LF_

5
NA NA

153.71 –

1671.87
5-80

1000 -

1000
NA NA NA

Test

310
oXLibraries

M_

LF_

6

1.54E5 –

1.67E6

153.71 –

1671.87
5-80

1000 -

1000
1.5E-9 3.0E-10 1.9E-11

ArtVen

Fused
ooLibraries

M_

LF_

7
NA NA

2116.5 –

1020167
5-80

1000 -

1000
NA NA NA

ArtVen

Fused
oXLibraries

M_

LF_

8

2.12E6 –

1.02E9

2116.5 –

1.02E6
5-80

1000 -

1000
1.3e-7 3.4E-7 1.4E-7

7.19.4 Linear flow + convection + rxn

The next level of complexity involves adding a reaction term (0th and 1st order) to remove the

dilute substance as it is convected through the network. A value of R0 =-0.01*nwk.NPoints and 1st

order k1 = 0.01 were chosen for reaction rates for the 0th order and 1st order reactions respectively.

These values were hand-chosen to give reasonable profiles in the chosen networks.

Findings: The residuals are reasonable and all the reacting species are accounted for, thus

closing the mass balance. This solution is considered validated. Vascular flow:

0 = ∇⃑⃑ ∙ (
𝜋𝑑4

128𝜇𝑙
∆p) , 𝑝 = 𝑝 (7.309)

466

Where p is pressure, ∆p is change in pressure, and 𝛼 is the HP tube resistance. Reaction-

convection system in vasculature follows:

0 = −∇⃑⃑ ∙ (𝑓𝑐𝐴) − 𝑅0𝑉𝑣, 𝑓 =
𝜋𝑑4

128𝜇𝑙
∆p

Or

0 = −∇⃑⃑ ∙ (𝑓𝑐𝐴) − 𝑘1𝑐𝐴𝑉𝑣, 𝑓 =
𝜋𝑑4

128𝜇𝑙
∆p

(7.310)

Where 𝑉𝑣 is the vascular element volume, and 𝑐𝐴 is the concentration of species A. Note, f is

the volumetric flow rate of blood, equivalent to the velocity multiplied by the cross sectional area.

Boundary conditions (Dirichlet at inlet):

𝑐𝐴 = 𝑐𝐴 (7.311)

467

Name #

Conv flow
(mol/
min)

Flow
values

(ml/
min)

Pressur
e range
(mmHg)

Concen
tration
range
(mol)

Max
norm of
residual

(mol)

Total
reaction

(mol/
min)

Max norm of
flow

balance –
reaction

(mol/min)

Test

310

0th order
oXLibraries

M_

LF_

9

1.48E5 –

1.67E6

153.71-

1671.87
5-80

455.1-

1000
1.5E-9 -9.11E5 1.75E-10

ArtVen

Fused

0th order
oXLibraries

M_

LF_

10

3.60E5 –

1.02E9

2116.5 –

1.02E6
5-80

140.5 -

1000
1.29E-7 -6.63E8 1.08E-7

Test

310

1st order
oXLibraries

M_

LF_

11

96.9 –

1.67E6

153.71-

1671.87
5-80

0.058 -

1000
1.5E-9 -1.67E6 1.46E-11

ArtVen

Fused

1st order
oXLibraries

M_

LF_

12

1.24E6 –

1.02E9

2116.5 –

1.02E6
5-80

571.9 -

1000
1.3E-7 -3.5E8 1.47e-7

7.19.5 Linear flow + convection + tissue diffusion (no reaction)

The next stage to add is the tissue diffusion (uncoupled) to the current flow-convection system

to show that the concentration can diffuse through the tissue with appropriate mass balance and

the vasculature is unaffected by this addition. The boundary conditions for the diffusive mesh was

Dirichlet with one boundary edge set to a high value (value=100) and all others boundaries set to

a low value (value=0). The chosen mesh was ghCartesianMesh with nVolX x nVolY x nVolZ to

be 10x10x10. More information on Cartesian meshing can be found in Section 7.21. To keep the

model simple, the vascular reaction has been removed from the system. D is 10 μm2/s. The number

of volumes per dimension is 10 (total of 1000 volume elements).

Note, to avoid overcomplicating the implementation, a dense mesh (all core data structures)

were generated and used as if reading a mesh from file. Also note the vasculature occupies the

468

same physical space as the mesh, however there is no mass flux of blood or the diffuse substance

between the meshes.

The residuals of the system confirm that this system solves appropriately and the mass balances

close. The concentration range is also reasonable. This indicates this model is validated. Vascular

flow is modeled by HP flow:

0 = ∇⃑⃑ ∙ (
𝜋𝑑4

128𝜇𝑙
∆p) , 𝑝 = 𝑝 (7.312)

Where p is pressure, ∆p is change in pressure, and 𝛼 is the HP tube resistance. In tissue

concentration:

0 = ∇⃑⃑ ∙ (D∇𝑐𝐴) (7.313)

Where 𝐷 is the diffusivity (scalar), and 𝑐𝐴 is the concentration of species A. In vasculature:

0 = −∇⃑⃑ ∙ (𝑓𝑐𝐴), 𝑓 =
𝜋𝑑4

128𝜇𝑙
∆p (7.314)

Where 𝑓 is the bulk fluid flow in vasculature. Boundary conditions:

𝑐𝐴 = 𝑐𝐴 (7.315)

469

Name #

Convection

flow (mol/min)

Flow

values

(ml/min)

Pressure

range

(mmHg)

Concent

ration

range

(mol)

Max

norm of

residual

(mol)

Max spot

check error

(mol/min)

Overall

balance

error

(mol/min)

Test

310

nwk
oXLibraries

M_

LF_

13

153.71-

1671.87 5-80
1000-

1000
1.5E-9 3.0E-10 1.9E-11

Test

310

Mesh
oXLibraries

M_

LF_

14

5.0E-15 –

3.9E5
N/A 0-100 1.5E-9 4.2E-10 1.6E-8

ArtVen

Fused

nwk
oXLibraries

M_

LF_

15

2116.5 –

1.02E6
5-80

1000-

1000
9.4E-8 1.2E-7 0

ArtVen

Fused

Mesh
oXLibraries

M_

LF_

16

1.1E-15 –

3.8E5
N/A 0-100 9.4E-8 5.8E-10 2.6E-8

7.19.6 Linear flow + convection + tissue diffusion + vascular reaction

Now the reaction in the vasculature will be re-added to the simulation from the previous step.

The chosen mesh and mesh boundary conditions match the previous section as well. The reaction

rates follow Section 7.19.4. Note, there is still no mass transfer between the two meshes. D is

10 μm2/s. The number of volumes per dimension is 10 (total of 1000 volume elements).

These results are in agreement with section 3.3, showing that the uncoupled system solves

consistently. The residuals indicate that the system is solved and the mass balances are closing,

meaning the reaction acts as it should. Vascular flow:

0 = ∇⃑⃑ ∙ (
𝜋𝑑4

128𝜇𝑙
∆p) , 𝑝 = 𝑝 (7.316)

470

Where p is pressure, ∆p is change in pressure, and 𝛼 is the HP tube resistance. Concentration

in tissue:

0 = ∇⃑⃑ ∙ (D∇𝑐𝐴) (7.317)

Where 𝐷 is the diffusivity (scalar), and 𝑐𝐴 is the concentration of species A. The BCs for the

tissue include one exterior wall is high concentration and the other 5 are low concentration. The

concentration in vasculature follows:

0 = −∇⃑⃑ ∙ (𝑓𝑐𝐴) − 𝑅0𝑉𝑣, 𝑓 =
𝜋𝑑4

128𝜇𝑙
∆p

Or

0 = −∇⃑⃑ ∙ (𝑓𝑐𝐴) − 𝑘1𝑐𝐴𝑉𝑣, 𝑓 =
𝜋𝑑4

128𝜇𝑙
∆p

(7.318)

Where 𝑓 is the bulk fluid flow in vasculature. Boundary conditions:

𝑐𝐴 = 𝑐𝐴 (7.319)

471

Name #

Convective

flow

(mol/min)

Convective

flow (mol/

min)

Flow

values

(ml/

min)

Concen-

tration

range

(mol)

Max

norm of

residual

(mol)

Total

reaction

(mol/

min)

Max norm

of flow

balance –

rxn

(mol/min)

Test

310

0th order
oXLibraries

M_

LF_

17

1.48E5 –

1.67E6

153.71-

1671.87
455.1-

1000

1.5E-9

-9.1E5 1.98E-10

Test

310

Mesh

0th order
oXLibraries

M_

LF_

18

1.1E-15 –

3.8E5
N/A 0-100 N/A N/A

Test

310

1st order
oXLibraries

M_

LF_

19

96.9 –

1.67E6

153.71-

1671.87

0.058 -

1000

1.5E-9

-1.67E6 1.16E-10

Test

310

Mesh

1st order
oXLibraries

M_

LF_

20

1.1E-15 –

3.8E5
N/A 0-100 N/A N/A

ArtVen

Fused

0th order
oXLibraries

M_

LF_

21

3.60E5 –

1.02E9

2116.5

–

1.02E6

140.5 -

1000

9.4E-8

-6.6E8 1.08E-7

ArtVen

Fused

Mesh

0th order
oXLibraries

M_

LF_

22

1.1E-15 –

3.8E5
N/A 0-100 N/A N/A

ArtVen

Fused

1st order
oXLibraries

M_

LF_

23

1.24E6 –

1.02E9

2116.5

–

1.02E6

571.9 -

1000

9.8E-8

-3.5E8 1.47e-7

ArtVen

Fused

Mesh

1st order
oXLibraries

M_

LF_

24

1.1E-15 –

3.8E5
N/A 0-100 N/A N/A

7.19.7 Linear flow + convection + tissue diffusion + vascular rxn(0th) + tissue rxn(0th)

This section introduces a reaction into the tissue. The mesh follows the previous 2 sections and

the network follows the previous section. The tissue reactions follow Section 7.19.4. In mesh, a

472

0th order reaction was implemented with a value of R0=0.01/mesh.iNVolumes. D is 10 μm2/s. The

number of volumes per dimension is 10 (total of 1000 volume elements). The residuals indicate

that the mass balances are closing and that the reaction acts as it should. Vascular flow:

0 = ∇⃑⃑ ∙ (
𝜋𝑑4

128𝜇𝑙
∆p) , 𝑝 = 𝑝 (7.320)

Where p is pressure, ∆p is change in pressure, and 𝛼 is the HP tube resistance. Concentration

in tissue:

0 = ∇⃑⃑ ∙ (D∇𝑐𝐴) − 𝑟0
𝑡𝑉𝑡 (7.321)

Where 𝑅0
𝑡 is the tissue reaction rate, 𝑉𝑡 is the volume of the tissue element, D is the tissue

diffusivity constant (scalar), and 𝑐𝐴 is the concentration of species A. Concentration in

vasculature:

0 = −∇⃑⃑ ∙ (𝑓𝑐𝐴) − 𝑅0
𝑣𝑉𝑣 , 𝑓 =

𝜋𝑑4

128𝜇𝑙
∆p (7.322)

Where 𝑅0
𝑣 is the vasculature reaction rate and 𝑉𝑣 is the volume of the vascular element.

Boundary conditions:

𝑐𝐴 = 𝑐𝐴 (7.323)

473

Name #

Convection

flow

(mol/min)

Solute

flux

(mol/

min)

Flow

values

(ml/

min)

Concen-

tration

range

(mol)

Max

norm of

residual

(mol)

Total

reaction

(mol/

min)

Max

norm of

flow

balance –

rxn

(mol/min)

Test

310

0th order
oXLibraries

M_

LF_

25

1.48E5 –

1.67E6

153.71-

1671.87
455.1-

1000

1.5E-9

-9.1E5 1.98E-10

Test

310

Mesh

0th order
oXLibraries

M_

LF_

26

7.61E5 –

1.67E6
N/A 0-100 -1.7E5 6.5E-10

ArtVen

Fused

0th order
oXLibraries

M_

LF_

27

3.60E5 –

1.02E9

2116.5 –

1.02E6

140.5 -

1000

9.4E-8

-6.6E8 1.08E-7

ArtVen

Fused

Mesh

0th order
oXLibraries

M_

LF_

28

0.25 –

3.79E5
N/A

-1.0E-3-

100
-2.08E5 5.95E-10

7.19.8 Flow + convection + tissue diffusion + tissue rxn(0th) + MT (Dirichlet BC)

Now a mass transfer element will be added to the system. To simplify the system, the vascular

reaction will be removed. The mesh size, boundary conditions, and reactions will follow the

previous section. The vasculature will also follow the previous section. The mass transfer (MT)

coefficient (U) is 0.01. The MT model is elaborated in Section 7.28.7.3. In short, the MT flux is

created between each vascular node and the corresponding nearest mesh element. The number of

volumes per dimension is 10 (total of 1000 volume elements).

The effect on the network is similar to having a vascular reaction. Given that there is no

vascular reaction, this can only be attributed to the nonzero mass transfer flux. The overall mass

474

transfer balances when considering the mass transfer to the tissue from the vasculature (loss from

the vasculature inlet to the outlet). Vascular flow:

0 = ∇⃑⃑ ∙ (
𝜋𝑑4

128𝜇𝑙
∆p) , 𝑝 = 𝑝 (7.324)

Where p is pressure, ∆p is change in pressure, and 𝛼 is the HP tube resistance. Concentration

in tissue follows:

0 = ∇⃑⃑ ∙ (D∇𝑐𝐴)𝐴𝑡 +
𝑈𝐴𝑣
𝑡
∆𝑐𝐴 − 𝑅0𝑉𝑡 (7.325)

Where 𝑅0
𝑡 is the tissue reaction rate, 𝑉𝑡 is the volume of the tissue element, D is the tissue

diffusivity constant (scalar), 𝑈 is the mass transfer coefficient, 𝑡 is the vascular wall thickness

(taken to be 1 here), 𝐴𝑣 is the vascular element surface area, and 𝑐𝐴 is the concentration of species

A. D is set to 10 μm2/s. Concentration in vasculature:

0 = −∇⃑⃑ ∙ (𝑓𝑐𝐴) −
𝑈𝐴𝑣
𝑡
∆𝑐𝐴

Where

𝑓 =
𝜋𝑑4

128𝜇𝑙
∆p

(7.326)

And

∆𝑐𝐴 = 𝑐𝑣 − 𝑐𝑡
(7.327)

475

Boundary conditions (Dirichlet):

𝑐𝐴 = 𝑐𝐴 (7.328)

Name #

Convection

flow

(mol/min)

Solute

flux

(mol/

min)

Flow

values

(ml/

min)

Concen-

tration

range

(mol)

Max

norm of

residual

(mol)

Total

MT-

reaction

(mol/

min)

MT vasc -

MT mesh

(mol/min)

Test

310oXLib

raries

M_

LF_

29

5.90E4 –

1.67E6

153.71-

1671.87
189.8-

1000

1.5E-9

1.42E6

1.98E-10
Test

310

Mesh

0th order
oXLibraries

M_

LF_

30

8.16 –

1.67E6
N/A 0-100 -1.25E5

ArtVen

Fused
oXLibraries

M_

LF_

31

1.70E6 –

1.02E9

2116.5 –

1.02E6

804.48 -

1000

1.29E-7

-1.01E8

9.9E-8
ArtVen

Fused

Mesh

0th order
oXLibraries

M_

LF_

32

34.66 –

6.34E5
N/A 0-218.96 -1.01E8

7.19.9 Tissue diffusion + Neumann BC

This case study validates the Neumann BC with a diffusion code. Here, at least 1 BC value

must be Dirichlet, otherwise the matrix is singular and it fails to solve. In this example, I leave the

first 5 BC volumes to Dirichlet 100. D is 10 μm2/s. The number of volumes per dimension is 10

(total of 1000 volume elements).

476

Findings: This is not an exciting case study, but the residuals reveal the equations were solved

and the solution to the system is that all values are the same as the Dirichlet value, so this case

study is validated. Concentration in tissue (Diffusion):

0 = ∇⃑⃑ ∙ (D∇𝑐𝐴) (7.329)

Where 𝐷 is the diffusivity (scalar) and 𝑐𝐴 is the concentration of species A. Insulated boundary

conditions were implemented other than the first 5 elements of the mesh (to avoid singularity):

∇𝑐𝐴 = 0, 𝑐𝐴
1−5 = 100 (7.330)

Name #

Concen-

tration

(mol)

Flux values

(ml/

min)

Concen-

tration

range

(mol)

Max

norm of

residual

(mol)

TestMesh
oXLibraries

M_LF_33

8.5E-10 –

2.8E-14
100-100 3.8E-9

7.19.10 Tissue diffusion + Neumann BC + rxn(0th)

This case study validates the Neumann BC with a diffusion code. The tissue model is otherwise

matching the previous section. There is no vasculature in this case study. The reaction is a 0th order

with a value of 𝑅0 =0.01. D is 10 μm2/s. The number of volumes per dimension is 10 (total of

1000 volume elements).

This case study has been solved (as can be seen by the small residual error) and mass is

conserved. This case study is validated. Concentration in tissue:

477

0 = ∇⃑⃑ ∙ (D∇𝑐𝐴) − 𝑅0𝑉𝑡 (7.331)

Where 𝐷 is the diffusivity (scalar), 𝑉𝑡 is the volume of the tissue element, and 𝑐𝐴 is the

concentration of species A. Insulated boundary conditions were implemented other than the first

5 elements of the mesh (to avoid singularity):

∇𝑐𝐴 = 0, 𝑐𝐴
1−5 = 100 (7.332)

Name #

Concen-

tration

(mol)

Flux values

(ml/

min)

Concen-

tration

range

(mol)

Max

norm of

residual

(mol)

Total

reaction

Max norm of

conservation

TestMesh
oXLibraries

M_LF_34

1.14E-13 –

5.63E4

72.94-

100
1.5E-9 1.81E5 5.3E-10

7.19.11 Flow + convection + tissue diffusion + tissue rxn(0th) + MT (Neumann BC)

Now the Neumann BC is applied to the case study from Section 7.19.8. The reaction rate in

the tissue is k = 0.05/mesh.INVolumes and the diffusivity, D, is 10 μm2/s. The mass transfer

coefficient (U) is set to 0.1 μm2/s. The number of volumes per dimension is 10 (total of 1000

volume elements).

The equations were solved and the solution vector is meaningful. A lot of mass transfer occurs

in the regions near high concentration in the vasculature and the species reacts away as it moves

away from the vasculature in the tissue. This case study is validated. Vascular flow (HP):

478

0 = ∇⃑⃑ ∙ (
𝜋𝑑4

128𝜇𝑙
∆p) , 𝑝 = 𝑝 (7.333)

Where p is pressure, ∆p is change in pressure, 𝑑 is the vessel diameter, 𝜇 is the viscosity and

𝑙 is the vessel length. Concentration in tissue:

0 = ∇⃑⃑ ∙ (D∇𝑐𝐴) +
𝑈𝐴𝑣
𝑡
∆𝑐𝐴 − 𝑅0𝑉𝑡 (7.334)

Where 𝑅0 is the tissue 0th order reaction rate constant, 𝑉𝑡 is the volume of the tissue element,

D is the tissue diffusivity constant (scalar), 𝑈 is the mass transfer coefficient, 𝑡 is the vascular wall

thickness (taken to be 1 here), 𝐴𝑣 is the vascular element surface area, and 𝑐𝐴 is the concentration

of species A. Concentration in vasculature:

0 = − ∇⃑⃑ ∙ (𝑓𝑐𝐴) −
𝑈𝐴𝑣
𝑡
∆𝑐𝐴, 𝑓 =

𝜋𝑑4

128𝜇𝑙
∆p (7.335)

Where

∆𝑐𝐴 = 𝑐𝑣 − 𝑐𝑡 (7.336)

Boundary conditions:

479

In tissue:

−∇𝑐𝐴 = 0

In vasculature:

𝑐𝐴 = 𝑐𝐴

(7.337)

Name #

Convection

flow

(mol/min)

Solute

flux

(mol/

min)

Concent-

ration

range

(mol)

Max

norm of

residual

(mol)

Total

MT-

reaction

(mol/

min)

MT vasc -

MT mesh

(mol/min)

Test

310oXLib

raries
M_LF_35

1.5E8–

1.7E9

993.5-

1000

1.2E-6 1.1E7 9.7E-8
Test

310

Mesh

0th order
oXLibraries

M_LF_36

2.3E-13 –

4.7E5

576.2-

913.2

ArtVen

Fused
oXLibraries

M_LF_37

2.11E9 –

1.02E12

999.9 -

1000

1.1E-4 1.3E7 2.2E-4
ArtVen

Fused

Mesh

0th order
oXLibraries

M_LF_38

0 – 2.16E5
976.6 –

995.0

7.19.12 Flow + convection + tissue diffusion + tissue rxn(1st) + MT (Neumann BC)

This case follows the previous section with the exception it replaces the 0th order reaction

model with a 1st order model with a rate of k1=0.05/mesh.INVolumes. The diffusivity is

D=10 μm2/s, and the mass transfer coefficient (U) is set to 0.1 μm2/s. The number of volumes per

dimension is 10 (total of 1000 volume elements).

480

The equations were solved and the solution vector is meaningful. A lot of mass transfer occurs

in the regions near high concentration in the vasculature and the species reacts away as it moves

away from the vasculature in the tissue. This case study is validated. Vascular flow:

0 = ∇⃑⃑ ∙ (
𝜋𝑑4

128𝜇𝑙
∆p) , 𝑝 = 𝑝 (7.338)

Where p is pressure, ∆p is change in pressure, 𝑑 is the vessel diameter, 𝜇 is the viscosity and

𝑙 is the vessel length. Concentration in tissue:

0 = ∇⃑⃑ ∙ (D∇𝑐𝐴) +
𝑈𝐴𝑣
𝑡
∆𝑐𝐴 − 𝑘1𝑐𝐴𝑉𝑡 (7.339)

Where 𝑅0
𝑡 is the tissue reaction rate, 𝑉𝑡 is the volume of the tissue element, D is the tissue

diffusivity constant (scalar), 𝑈 is the mass transfer coefficient, 𝑡 is the vascular wall thickness

(taken to be 1 here), 𝐴𝑣 is the vascular element surface area, and 𝑐𝐴 is the concentration of

species A. Concentration in vasculature:

0 = − ∇⃑⃑ ∙ (𝑓𝑐𝐴) −
𝑈𝐴𝑣
𝑡
∆𝑐𝐴, 𝑓 =

𝜋𝑑4

128𝜇𝑙
∆p (7.340)

Where

∆𝑐𝐴 = 𝑐𝑣𝑎𝑠𝑐 − 𝑐𝑡𝑖𝑠𝑠 (7.341)

481

Boundary conditions:

−∇𝑐𝐴 = 0, 𝑐𝐴 = 𝑐𝐴 (7.342)

Name #

Convection

flow

(mol/min)

Solute

flux

(mol/

min)

Concen-

tration

range

(mol)

Max

norm of

residual

(mol)

Total MT

(mol/

min)

MT vasc -

MT mesh

(mol/min)

Test

310oXLib

raries
M_LF_39

1.5E8 –

1.7E9

974.1-

1000

1.2E-6 4.3E7 1.5E-7
Test

310

Mesh

0th order
oXLibraries

M_LF_40

1.0E-19 –

1.4E6

3.0E-5-

492.1

ArtVen

Fused
oXLibraries

M_LF_41

2.1E9 –

1.02E12

998.8 -

1000

1.1E-4 1.0E9 1.9E-4
ArtVen

Fused

Mesh

0th order
oXLibraries

M_LF_42

1.5e-12 –

8.3E5
6.3-364.0

7.19.13 Conclusion

The newest implementation of the OX libraries is accurate and reasonable to solve all sub-

problems necessary for the mixed-mesh simulation of oxygen or Dual Darcy.

482

7.20 Appendix T: PETSc implementation and validation

7.20.1 Summary

This document summarizes case studies used for validating the 64-bit implementation of the

Portable Extensible Toolkit for Scientific computing (PETSc) [168,169,247] in Delphi. Successful

implementation will be considered validated using three criteria; (i) the evaluation of the equation

residuals must be tolerable (less than acceptable tolerance), (ii) overall mass balance and mass

balance spot checks must be within tolerance, and (iii) the values of the solution vector must be

within tolerance between the PETSc solving methods and other solvers like MA48 (a direct

method for solving linear algebraic systems).

GMRES has a tendency to bounce around when it approaches its lowest residual value, causing

it to iterate until it hits the iteration limit if the maximum acceptable residual (tolerance) is larger

than the minimum achievable by the solver.

BCGS does not bounce around and will consider itself converged when reaching a saddle point,

but frequently diverges when no preconditioners are used. BCGS results in a larger residual infinity

norm when converged. BCGS is only designed for symmetric matrices, so it may work for

diffusion problems, but fails the non-symmetric cases (after preconditioning). BCGS is also much

faster at solving simple diffusion problems than GMRES.

For linear vasculature problems, the best success was found with BCGS using PETSc

preconditioners to converge to an initial solution. This solution can then be “polished” by using

GMRES either with or without PETSc preconditioners. This 2-step method was able solve the

largest linear vascular problems with the same residual as the direct solver. This method was able

to solve systems larger than the direct solvers.

483

For the Dual Darcy problem, a reasonable tolerance was difficult to achieve without

preconditioners, and that GMRES with PETSc preconditioners gave the best results. In simple

Cartesian diffusion problems, BCGS is the faster option. In the case of other problems, GMRES

with the PETSc block Jacobi preconditioner is the best option.

Conclusions:

 Matrices have a working precision. This is ~14 orders of magnitude difference between the

magnitude range of the coefficients in the A matrix and the magnitude of the residual (i.e. if

you have 12 orders of magnitude difference between the largest and smallest coefficients in

the A matrix, the best residual achievable by double precision numbers is 1e-2). This value is

a rough estimate.

 The more accurate (and preferred) method of read/write is by binary file I/O

 The preferred PETSc solver is GMRES

 PETSc solution vectors can be “polished” (to obtain lower residuals) with Gauss Seidel

 A reasonable tolerance must be chosen before the GMRES solver begins, otherwise the solver

will hover until it runs out of iterations (currently hardcoded to 500,000). It is satisfactory to

run the problem first without knowing the residual and watch the residual history to identify

the range of minimum residual.

 For preconditioning the matrix,

o <10,000 unknowns can be solved with no preconditioning,

o 10,000 – 100,000 can be solved with manual preconditioning (implementation described

in the report),

484

o 100,000 – 500,000 can be solved with a single PETSc preconditioner (block Jacobi is the

preferred choice)

o > 500,000, use a dual-iterative-solver approach

 For initialization vector

o PETSc preconditioning significantly reduces the benefit from initialization, however there

are cases where solving without an initialization vector may be impossible

o BCGS shows no gain from good initialization vector

o GMRES shows significant reduction in computational time and improvement in solution

residual vector when using initialization

7.20.2 Introduction

The current PETSc solver libraries follow the examples for KSP linear algebraic solvers

presented by Argonne National Laboratories on their website. Specific configuration properties to

the current implementation involves using a C++ wrapper, a C++ compiler, and 64-bit integers.

The C++ wrapper calls C++ file I/O stream functions so that the binary file transfer is not limited

to a maximum size of 2GB (as is true with C binary file I/O stream functions).

These examples require the compiling of a PETSc application into a standalone executable in

Windows using a Linux shell (such as Cygwin) that is compatible with the message passing

interface (MPI) in Windows Visual Studios. In order to send information to and from the libraries,

a file writing/waiting/reading procedure is used. The preferred method for transferring the data is

by binary files (mx.aar, mx.aav, mx.aac, mx.bb, mx.xxGuess, and mx.cnt).

485

Future advancements could include the PETSc libraries as a dynamically linked library

(currently deemed impossible due to limitations with shell implementation) or COM object

(currently under investigation, but the passing of the GUID/UUID between languages, compilers,

and operating systems creates difficulty interpreting the values at the global reference state).

All linear vasculature simulations were conducted using ghSolverValidation.exe and all

diffusion problems were solved using petscInitializationApp.exe. Dual mesh mass-transfer case

studies were executed using ghDualDarcyAppValidation.exe.

7.20.3 Working precision of a matrix

When solving a linear algebraic set of equations numerically, the precision of the matrix

solution is highly dependent on factors within the matrix, one of which being the coefficient

magnitude range. In fact, this can be identified before attempting to solve the matrix by identifying

the matrix coefficient ratio. An example of this problem is evident when using ANSYS; in the

event that this ratio is larger than 1e8, ANSYS gives a warning message, acknowledging this is a

difficult matrix to solve.

Iterative solvers rely even more heavily on the precision of the coefficients in the A matrix.

This means that the range of values in the A matrix affects the maximum tolerance of the update

vector, and thus the residual vector. A case study is proposed below consisting of a 2x2 A matrix

and coefficients represented by minifloats (a reduced bitrate floating precision number frequently

used in graphics where the evaluations are fast and the results only cosmetic). The minifloats will

have 8 bits of data, giving a range of 0-28, an order of magnitude range from 0 to 102 translating

to 2 digits of precision accuracy.

486

2

1000
𝑥1 +

1

1000
𝑥2 =

2

1000

𝑥1 + 𝑥2 = 1

(7.343)

These two equations have a unique solution of 𝑥 = [1, 0]𝑇. The same problem written in

decimal form shows the precision:

[
0.002 0.001
1.00 1.00

] 𝑥 = [
0.002
1.00

] (7.344)

When adding floating point numbers of different ranged precision, the computer will generate

random numbers where the precision stops. This generates new error and changes the problem:

[
0.002 0.001
1.009 1.004

] 𝑥 = [
0.002
1.002

] (7.345)

Which gives a unique solution of 𝑥 = [1.007,−0.014]𝑇. In 2-dimensions, singularity is

difficult to achieve due to numerical roundoff error (the error would not cause 2 nonparallel lines

to become parallel). In higher dimensions (like 500,000 equations), such numerical “gibberish”

accumulated across many equations will result in matrix singularity past a certain precision. In

other words, the same values that should solve the original system (Equation (7.343)) will not also

solve the new set of equations (Equation (7.345)).

 When considering that iterative methods add, subtract, and multiply numbers of different

orders of magnitude, the solution vector (and update vector) are impacted by the range of

487

coefficients in the matrix. Furthermore, the solution vector has only double precision (~16 digits

of precision depending on language and implementation), meaning that if the solution vector

satisfies the equation with the largest coefficients and simultaneously satisfies the smallest

coefficient equations, the same update vector satisfies all orders of magnitude present in the matrix.

When a working precision is ~16 digits but, as is true with blood flow simulation in

microcirculation, the values of coefficients have range ~1010 to ~10-2 (a 1012 range) and the update

can only satisfy equations to within 1016 range then the minimum achievable residual by an

iterative method is only 10-4. This can be called the working precision of a matrix as 10-4, or that

the matrix is singular to the precision of 10-4.

This value assumes perfect precision on coefficients, which is not the case in equation

generation. In the equation generation many floating point operations (flops) are applied to each

coefficient prior to entering the matrix; introducing new roundoff error. In large cases (as with

simulations of microcirculation), the combination of coefficient magnitude and flop error, the

matrix is singular to ~10-2 and thus a solution with a lower residual is physically impossible to

achieve without switching to quadruple precision. In such cases, all results should be evaluated on

overall mass balances and scaled local mass balances, not on the residual alone.

7.20.4 Using BCGS and GMRES

7.20.4.1 Solver Validation

The solver libraries of GMRES and BCGS will be validated using 15 case studies of linear

flow with results summarized in the table below. Residual tolerance is set to 1e-6 in all cases.

These cases have no preconditioner. The problem is defined in the equation below.

488

Application Name: ghSolverValidation.exe

Button name: compare solvers

Naming convention is $problemType_Petsc_$section.$caseStudyIndex

Directory: nwk.Grant/testingPetscSolver/linearVasculature/

Example: A linear vascular problem, chapter 3, problem 1 would be LV_Petsc_3.1

0 = ∇⃑⃑ ∙ (−
1

𝛼
∆p) , 𝑓 = −

1

𝛼
∆p (7.346)

489

A) BCGS, B) GMRES, C) ma48

Name

Structure

with

Coloration in

Flow

(ml/min)

 Flow

values

(ml/min)

Max

norm of

residual

(mmHg)

Number

of iter-

ations

Max spot

check

error

(ml/min)

Overall

balance

error

(ml/min)

Max norm

between

solution

vectors

(mmHg)

LV_Petsc_3.1

GrantsTestTr

ee:

6 unknowns

A 10-117 6.6e-11 2 6.5e-11 7.6e-11 8.7e-13

B 10-117 5.5e-11 2 5.4e-11 5.2e-11 2.1e-13

C 10-117 [4.4e-13] NA [1.0e-12] [1.3e-12] [NA]

LV_Petsc_3.2

Test310

13 unknowns

A
153-

1,672
5.5e-7 28 5.7e-7 2.7e-7 5.0e-9

B
153-

1,672
2.9e-8 11 2.9e-8 2.1e-8 8.7e-11

C
153-

1,672
[1.5e-9] NA [3.0e-10] [1.9e-11] NA

LV_Petsc_3.3

CoW

extended:

42 unknowns

A 0.2-32.6 5.3e-8 33 6.0e-8 1.1e-8 2.2e-8

B 0.2-32.6 3.7e-11 21 1.0e-10 1.0e-10 2.1e-12

C 0.2-32.6 [4.8e-12] NA [6.7e-12] [1.4e-11] NA

LV_Petsc_3.4

Arteries V2:

432

unknowns

A
2.8e4 –

6.0e6
Diverged Diverged Diverged Diverged Diverged

B
2.8e4 –

6.0e6
6.6e-7 1196 9.6e-7 1.7e-6 1.0e-10

C
2.8e4 –

6.0e6
[2.6e-7] NA [3.3e-7] [6.6e-7] NA

LV_Petsc_3.5

Arteries V3:

612

unknowns

A
2.8e4 –

6.0e6
Diverged Diverged Diverged Diverged Diverged

B
2.8e4 –

6.0e6
5.8e-6 2180 6.0e-6 2.7e-5 1.6e-10

C
2.8e4 –

6.0e6
[2.6e-7] NA [4.1e-7] [2.1e-7] NA

LV_Petsc_3.6

Sparse

Microcirc

(mm scale)**

1486

unknowns

A
2.1e-6 –

1e-3
1.9e-10 21547

4.2e-10

2.2e-10

8.3e-5

B
2.1e-6 –

1e-3
4.6e-6 510 4.3e-6 2.5e-3 41.7

C
2.1e-6 –

1e-3
[1.9e-16] NA [6.5e-17] [1.3e-16] NA

LV_Petsc_3.7

Sparse

Microcirc

 (um scale)

1486

unknowns

A
153.7 –

1.0e+6
Diverged Diverged Diverged Diverged Diverged

B
153.7 –

1.0e+6
3.9e-6 53632 3.9e-6 9.8e-4 2.0e-8

C
153.7 –

1.0e+6
[9.4e-6] NA [2.0e-7] [1.4e-7] NA

490

LV_Petsc_3.8

Medium

Microcirc

10,066

unknowns

A
232.3-

7.8e5
Diverged Diverged Diverged Diverged Diverged

B
232.3-

7.8e5
1.0e-6 234735 1.0e-6 7.4e-3 3.0e-7

C
232.3-

7.8e5
 [1.3e-7] NA [4.8e-7] [4.8e-7] NA

** - set tolerance to 1e-15 due to scaling

BCGS only worked for really simple case studies, diverges in all larger models. GMRES works

in all case studies in this section, but is unable to solve systems larger than 11,000 unknowns.

MA48 succeeded in all case studies of this section.

7.20.4.2 Validating Binary reading/writing

In order to save time and hard drive space, the file passing has also been implemented using

binary reading and writing procedures in Delphi and c. This allows efficient and accurate file

transfer between the two programs. The results are summarized below. Tolerance is set to 1e-6 in

all cases. No preconditioner was used.

Results: The binary reading solves nearly equivalently to the ASCII version. The binary

version is faster, and shows to be more accurate.

0 = ∇⃑⃑ ∙ (
1

𝛼
∆p) 𝑓 =

1

𝛼
∆p (7.347)

491

A) BCGS ASCII; B) GMRES ASCII; C) BCGS Binary; D) GMRES Binary; E) Gauss Seidel; F)ma48

Name

Structure

with

Coloration in

Flow

(ml/min)

Flow

(ml/

min)

Max

norm of

residual

(mmHg)

Numbe

r of

iteratio

ns

Max spot

check

error

(ml/min)

Overall

balance

error

(ml/min)

Max norm

between

solution

vectors

(mmHg)

Time to

solve

(s)

LV_Petsc_4.1

GrantsTestTr

ee:

6 unknowns

A 10-117 6.63 e-11 2 6.58 e-11 -7.60 e-11 8.67 e-13 0

B 10-117 5.52 e-11 2 5.46 e-11 -5.23 e-11 2.13 e-13 0

C 10-117 1.03 e-11 2 1.03 e-11 -1.85 e-11 6.82 e-13 0

D 10-117 3.88 e-12 2 3.30 e-12 -6.51 e-12 2.27 e-13 0

E 10-117 1.66 e-6 8 1.66 e-6 1.66 e-6 6.54 e-9 5.8e-6

F 10-117 0 NA 1.0e-12 1.3e-12 NA 1.2e-4

LV_Petsc_4.2

Test310

13 unknowns

A
154-

1,672
5.48 e-7 28 5.70 e-7 2.68 e-7 4.95 e-9 0.004

B
154-

1,672
2.88 e-8 11 2.89 e-8 -2.09 e-8 8.71 e-11 0.002

C
154-

1,672
1.13 e-8 30 1.50 e-8 4.22 e-8 7.04 e-10 0.003

D
154-

1,672
6.46 e-9 11 6.73 e-9 9.02 e-9 1.87 e-11 0.003

E
154-

1,672
0.52 141 0.52 1.32 9.11e-6 5.6e-5

F
154-

1,672
1.5e-9 NA 3.0e-10 1.9e-11 NA 6.7e-5

LV_Petsc_4.3

CoW

extended:

42 unknowns

A
0.2-

32.6
5.28 e-8 33 6.01 e-8 -1.08 e-8 2.24 e-8 0.005

B
0.2-

32.6
3.73 e-11 21 1.04 e-10 1.02 e-10 2.10 e-12 0.005

C
0.2-

32.6
8.43 e-7 32 9.47 e-7 -4.86 e-7 4.09 e-7 0.004

D
0.2-

32.6
3.02 e-11 21 3.76 e-11 2.25 e-11 2.66 e-12 0.003

E
0.2-

32.6
3.55e-5 84 3.55e-5 1.4e-4 3.66e-6 6.8e-5

F
0.2-

32.6
4.8e-12 NA 6.7e-12 1.4e-11 NA 7.9e-5

LV_Petsc_4.4

Arteries V2:

432

unknowns

A Div Diverged
Diverge

d
Diverged Diverged Diverged Div

B
2.8e4 –

6.0e6
6.72 e-6 1255 8.68 e-6 1.82 e-5 9.78 e-11 0.095

C Div Diverged
Diverge

d
Diverged Diverged Diverged Div

D
2.8e4 –

6.0e6
9.65 e-7 1196 9.65 e-7 -1.72 e-6 1.01 e-10 0.09

E
2.8e4 –

6.0e6
13.99 2281 14.0 -186.2 1.7e-4 0.03

F
2.8e4 –

6.0e6
2.6e-7 NA 3.3e-7 6.6e-7 NA 2.5e-4

492

Name

Structure

with

Coloration in

Flow

(ml/min)

Flow

(ml/

min)

Max

norm of

residual

(mmHg)

Numbe

r of

iteratio

ns

Max spot

check

error

(ml/min)

Overall

balance

error

(ml/min)

Max norm

between

solution

vectors

(mmHg)

Time to

solve

(s)

LV_Petsc_4.5

Arteries V3:

612

unknowns

A Div Diverged
Diverge

d
Diverged Diverged Diverged Div

B
1.7e4 –

5.3e6
5.82 e-6 2180 6.01 e-6 -2.70 e-5 1.63 e-10 0.233

C Div Diverged
Diverge

d
Diverged Diverged Diverged Div

D
1.7e4 –

5.3e6
 9.94 e-7 2181 9.94 e-7 -9.88 e-6 1.63 e-10 0.198

E
1.7e4 –

5.3e6
12.7 2958 12.7 -205.3 2.2e-4 0.037

F
1.7e4 –

5.3e6
2.8e-7 NA 4.1e-7 2.0e-7 NA 2.8e-4

LV_Petsc_4.7

Sparse

Microcirc

 (um scale)

1486

unknowns

A Div Diverged Div Diverged Diverged Diverged Div

B
2116 –

1.0e+6
3.86 e-6 53632 3.91 e-6 -9.75 e-4 2.037 e-8 8.71

C Div Diverged Div Diverged Diverged Diverged Div

D
2116 –

1.0e+6
1.12 e-6 58069 1.04 e-6 -9.87 e-4 2.06 e-8 9.9

E
2116 –

1.0e+6
20.0 90723 20.0 -35.9 1.1e-2 3.5

F
2116 –

1.0e+6
1.3e-7 NA 3.4e-7 1.4e-7 NA 0.002

LV_Petsc_

4.8
Sparse KF1

10,066
unknowns

A
232.3
- 7.8e5

Diverged Div Diverged Diverged Diverged Div

B
232.3
- 7.8e5

9.99 e-7
23473

5
5.32 e-6 -7.42 e-3 3.01 e-7 237.9

C Div Diverged Div Diverged Diverged Diverged Div

D Div Diverged Div Diverged Diverged Diverged Div

E
232.3
- 7.8e5

0.60 11383 0.60 -21.9 9.9e-4 2.87

F
232.3
- 7.8e5

2.4e-8 NA 4.8e-7 4.8e-7 NA 0.023

** - set tolerance to 1e-12 due to mm scaling

493

nUnknowns BCGS GMRES Gauss-Seidel

6 2 2 8

13 30 11 141

42 32 21 84

432 NA 1196 2281

612 NA 2181 2958

1486 NA NA 90723

Figure 7.149. The comparison of different iterative solving algorithms with simple diagonal

preconditioner.

Delphi binary writing to file is limited in bits to BigEndian which is truncated at 64-bits (the

exact precision of a double precision floating number). This is in contrast to Delphi writing to

string in ASCII format which writes more digits to file than the double precision number holds.

The differences in the results between ASCII and binary solving was attributed to random numbers

being written to the ASCII file past the precision of the actual number. The final case study was

able to converge with the ASCII file but not binary, but the number of iterations was very high. In

this case, it appears the randomness in the numerical application assists the solver, however this

should not be considered a good method. This error production is further expressed in the next

section.

494

7.20.4.3 Validating Using Initialization Vector

This section validates the solving routines by passing initialization vector; a good guess should

lower the iterations and the solution should return 0 iterations. The preconditioner was Block

Jacobi. With four different initial guesses were used: the exact solution (from a previous solution

with ma48), an initialization with all 1’s, an initialization with all 100’s and a modification of the

solution vector by randomly generated noise between 0 and +/- 10% of the maximum of the

solution vector. The file transfer is binary. The solution vector immediately converged the

methods. The other initialization techniques did not greatly improve performance.

Findings: Irrespective of the initial guess, the final solutions were almost identical as expected.

The initialization vectors did not greatly outperform the b vector in this case. The binary file

transfer does not introduce error. Equation (7.348) was used with a Cartesian mesh. The program

used for this section is the PetscInitializationApp.exe.

0 = ∇⃑⃑ ∙ (D∇c) c̅ = c (7.348)

495

Visualization

Values of

flow

across faces

(ml/min) Solver

Time to

solve

 (s)

Num

ber

of

itera-

tions

Max spot

check

error

(ml/min)

Overall

balance

error

(ml/min)

D_Petsc_4.1

20x20x20

Without

initialization

0-685.4 BCGS 0.041 27 8.8e-11 -3.1e-9

D_Petsc_4.2

20x20x20

With

initialization

from

solution

0-685.4 BCGS 0.005 0 8.7e-11 -3.1e-9

D_Petsc_4.3

20x20x20

With

initialization

all 1

0-685.4 BCGS 0.037 27 1.3 e-11

-1.8e-9

D_Petsc_4.4

20x20x20

With

initialization

all 100

0-685.4 BCGS 0.035 26 3.9e-11 8.6e-9

D_Petsc_4.5

20x20x20

With

initialization

+/- 10%

0-685.4 BCGS 0.036 26 3.9e-11 8.6e-9

D_Petsc_4.6

20x20x20

Without

initialization

0-685.4 GMRES 0.057 45 9.5e-11 5.0e-8

D_Petsc_4.7

20x20x20

With

initialization

from

solution

0-685.4 GMRES 0.005 0 9.5e-11 5.0e-8

D_Petsc_4.8

20x20x20

With

initialization

all 1

0-685.4 GMRES 0.057 46 9.3e-11 4.0e-8

D_Petsc_4.9

20x20x20

With

initialization

all 100

0-685.4 GMRES 0.059 47 9.2e-11 7.5e-8

496

D_Petsc_4.1

0

20x20x20

With

initialization

+/- 10%

0-685.4 GMRES 0.058 47 9.2e-11 7.5e-8

D_Petsc_4.1

1

20x20x20

Without

initialization

0-685.4
Gauss-

Seidel
0.17 549 1.5e-5 -0.03

D_Petsc_4.1

2

20x20x20

With

initialization

from

solution

0-685.4
Gauss-

Seidel
0.0003 1 1.5e-5 -0.03

D_Petsc_4.1

3

20x20x20

With

initialization

all 1

0-685.4
Gauss-

Seidel
0.18 546 1.5e-5 -0.03

D_Petsc_4.1

4

20x20x20

With

initialization

all 100

0-685.4
Gauss-

Seidel
0.19 621 1.85e-5 0.03

D_Petsc_4.1

5

20x20x20

With

initialization

+/- 10%

0-685.4
Gauss-

Seidel
0.19 621 1.5e-5 0.03

497

7.20.4.4 Solving Networks using ma48 Solution to Initialize and Converge Diverging Solvers

If the initialization vectors are operating properly and the solver is stable, then an initialization

with the ma48 solution should arrive at the same solution. This should also work for cases where

the solution was previously unachievable (diverged or DNC due to saddle-like point). The results

are summarized below.

Findings: The initialization using the solution vector causes significant enhancement to the

iterative solvers. The ASCII file transfer introduces numerical error which was not observed during

binary file I/O.

Network Directory: nwk.Grant/testingPetscSolver/linearFlow

0 = ∇⃑⃑ ∙ (
1

𝛼
∆p) 𝑓 =

1

𝛼
∆p (7.349)

498

A) BCGS ASCII; B) GMRES ASCII; C) BCGS Binary; D) GMRES Binary; E) Gauss Seidel

Name

Structure

with

coloration in

flow

(ml/min)

Flow

(ml/min)

Max norm

of residual

(mmHg)

Numb

er of

iter-

ations

Max spot

check error

(ml/min)

Overall

balance

error

(ml/min)

Max norm

between

solution

vectors

(mmHg)

LV_Petsc_4.9

GrantsTestTr

ee:

6 unknowns

A 10-117 3.6e-13 0 4.0e-13 8.4e-12 2.8e-14

B 10-117 3.6e-13 0 4.0e-13 8.4e-12 2.8e-14

C 10-117 0 0 1.0e-12 1.3e-12 0

D 10-117 0 0 1.0e-12 1.3e-12 0

E 10-117 0 1 4.8e-12 4.8e-12 0

LV_Petsc_4.10

Test310

13 unknowns

A 154-1,672 6.2e-10 0 8.11e-10 3.7e-10 2.8e-14

B 154-1,672 6.2e-10 0 8.11e-10 3.7e-10 2.8e-14

C 154-1,672 1.9e-9 0 7.3e-10 1.9e-10 8.9e-16

D 154-1,672 1.9e-9 0 7.3e-10 1.9e-10 8.9e-16

E 154-1,672 5.8e-10 1 3.0e-10 -2.0e-10 0

LV_Petsc_4.11

CoW

extended:

42 unknowns

A 0.2-32.6 1.3e-11 0 1.3e-11 9.6e-12 5.7e-14

B 0.2-32.6 1.3e-11 0 1.3e-11 9.6e-12 5.7e-14

C 0.2-32.6 4.8e-12 0 6.7e-12 1.4e-11 0

D 0.2-32.6 4.8e-12 0 6.7e-12 1.4e-11 0

E 0.2-32.6 2.6e-12 1 6.5e-12 6.8e-12 0

LV_Petsc_

4.12
Arteries V2:

432

unknowns

A
2.8e4 –

6.0e6
6.3e-6 15 9.4e-6 1.3e-5 9.2e-12

B
2.8e4 –

6.0e6
6.5e-6 13 8.7e-6 8.7e-6 6.9e-12

C
2.8e4 –

6.0e6
2.6e-7 0 3.3e-7 6.6e-7 0

D
2.8e4 –

6.0e6
2.6e-7 0 3.3e-7 6.6e-7 0

E
2.8e4 –

6.0e6
3.8e-7 1 3.6e-7 7.9e-7 0

LV_Petsc_

4.13
Arteries V3:

612
unknowns

A
2.8e4 –

6.0e6
5.1e-6 681 5.3e-6 1.6e-5 1.3e-11

B
2.8e4 –

6.0e6
4.6e-6 10 4.8e-6 8.5e-8 3.1e-12

C
2.8e4 –

6.0e6
2.8e-7 0 4.1e-7 2.0e-7 0

D
2.8e4 –

6.0e6
2.8e-7 0 4.1e-7 2.0e-7 0

E
2.8e4 –

6.0e6
3.4e-7 1 6.8e-7 2.0e-7 0

499

LV_Petsc_

4.14
Sparse

Microcirc**

(mm scale)

1486

unknowns

A
2.1e-6 –

1e-3
1.1e-15 0 1.1e-15 1.0e-16 5.0e-14

B
2.1e-6 –

1e-3
1.5e-15 1 1.1e-15 1.0e-16 5.0e-14

C
2.1e-6 –

1e-3
1.9e-16 0 6.5e-17 1.3e-16 0

D
2.1e-6 –

1e-3
1.9e-16 0 6.5e-17 1.3e-16 0

E
2.1e-6 –

1e-3
1.4e-16 1 1.8e-16 1.3e-16 0

LV_Petsc_

4.15
Sparse

Microcirc

 (um scale)

1486

unknowns

A
2116 –

1.0e+6
2.8e-6 25 2.7e-6 4.0e-7 2.0e-9

B
2116 –

1.0e+6
2.9e-6 18 3.4e-6 1.6e-7 6.5e-11

C
2116 –

1.0e+6
1.3e-7 0 3.4e-7 1.4e-7 0

D
2116 –

1.0e+6
1.3e-7 0 3.4e-7 1.4e-7 0

E
2116 –

1.0e+6
1.3e-7 1 1.3e-7 1.2e-7 0

LV_Petsc_4.16

Sparse KF1

10,066

unknowns

A

232.3-

7.8e5

2.1e-7 1 4.6e-6 4.7e-6 4.7e-13

B

232.3-

7.8e5

4.1e-7 1 5.2e-6 5.3e-6 4.8e-13

C

232.3-

7.8e5

2.2e-8 0 4.8e-7 4.8e-7 0

D

232.3-

7.8e5

2.2e-8 0 4.8e-7 4.8e-7 0

E

232.3-

7.8e5

2.2e-8 1 4.8e-7 4.8e-7 0

The binary solvers always solved when initialized with the ma48 initialization. The ASCII

reading/writing implementation is not as reliable, as the roundoff error caused the ASCII solvers

to require a few iterations to re-solve the previously solved solution (to a different solution). The

500

binary solvers appear to truncate all numbers at the working precision of 64-bits of information

(double floating precision, 8 Bytes per value).

Given that the numbers are not modified but only copied to file and copied back, the continued

solving by the ASCII file transfer can be attributed to the file writing format having higher/lower

precision than 64-bits. This then causes the system to converge t a different (albeit similar) solution

vector. The binary I/O is the preferred method because it converges to the same solution as the

ma48 direct method. This method also saves hard drive space and time. The current

implementation also writes the multiple files (discussed in Section 7.20.2) in parallel.

7.20.5 Simple diagonal matrix conditioning

While working with very large structures (>250,000 unknowns), iterative solvers are sensitive

to the matrix condition number as explained elsewhere [248]. Preconditioning a system is a method

for improving the condition number of a matrix prior to solving it; making a poorly conditioned

matrix more solvable. In the event that the matrix had a reasonable condition number prior to

applying the preconditioner, the preconditioner will still improve the condition number and lower

the number of iterations to converge the high-frequency noise in the solver.

In experience, solving linear vasculature flow systems with no preconditioners is prone to

failure at >10,000 unknowns. Using a simple diagonal preconditioner like the one described below

can extend the solvability to solve up to 100,000 unknowns. To solve larger systems than this, the

PETSc preconditioners can assist with both speed and stability of convergence. PETSc

preconditioners allow solving the largest stable systems passed. The solver can be improved for

networks with >500,000 unknowns and poor condition number by using a method discussed in

501

Section 7.20.8. Systems with >1,000,000 unknowns and reasonable condition number have been

solved with PETSc GMRES and Block Jacobi preconditioner.

Findings: Matrix preconditioning enhances solvability of a system. Manual preconditioning

increases the maximum size of linear vascular flow equations that can be adequately solved using

GMRES from 10,000 (without preconditioning) to >100,000 (with manual preconditioning).

7.20.5.1 Matrix Conditioning

One way to condition a matrix reviewed here will use the ratio between the values of the

unknown vector (in the case of pressure, range is 120-5) and the values of the matrix coefficients

(in our case values 1e4-1e15). When these values vary by more than an order of magnitude, it

makes a set of equations difficult to solve, so to investigate the effect conditioning has on the

matrix, the coefficients will be manually scaled to the order of magnitude of the solution vector

(in this case 101-102). This can be accomplished using Equation (7.350). An example of this

scaling applied to a linear algebraic set of equations is shown in Equation (7.351) with

corresponding solution vector. This conditioning is applied to every equation that has the diagonal

coefficient magnitude significantly larger than the solution vector.

𝛼∗ =
𝛼

max (𝛼)
100 (7.350)

Original equations:

[
1 0 0

−100 200 −100
0 0 1

] [
1.00001
1.99999
2.90000

] − [
1
0
3
] = [

1𝑒 − 5
9.997
−0.1

]
(7.351)

502

Conditioned equations:

[
1 0 0

−0.00015 0.0003 −0.00015
0 0 1

] [

𝑝1
𝑝2
𝑝3
] = [

1
0
3
] ; [

𝑝1
𝑝2
𝑝3
] = [

1
2
3
]

An example of the residual error for a given guess of p is evaluated in the original and

conditioned problem as shown in equation (7.352).

Original equations:

[
1 0 0

−100 200 −100
0 0 1

] [
1.00001
1.99999
2.90000

] − [
1
0
3
] = [

1𝑒 − 5
9.997
−0.1

]

Conditioned equations:

[
1 0 0

−0.00015 0.0003 −0.00015
0 0 1

] [
1.00001
1.99999
2.90000

] − [
1
0
3
] = [

1𝑒 − 5
1.5𝑒 − 5
−0.1

]

(7.352)

The conditioned equations have a much lower residual. Due to this, the residual tolerance will

need to be adjusted for the solution vector, but the equation set will be closer to orthogonal (less

oblique) with conditioning than without. This will improve update step direction and improve the

solving time of the matrix.

Case studies. The residual was set to 1e-12 for LV_Petsc_6.4 - LV_Petsc_6.7 and 1e-6 for the

remainder. All residuals are computed on the unconditioned matrix for direct comparison.

Network Directory: nwk.Grant/testingPetscSolver/linearFlow

503

0 = ∇⃑⃑ ∙ (
1

𝛼
∆p) 𝑓 =

1

𝛼
∆p (7.353)

A) BCGS Binary; B) GMRES Binary; C) Gauss-Seidel

Name

Structure

with

coloration in

flow (ml/min)

Inflow

(ml/min)

Max norm

of residual

(mmHg)

Numb

er of

iter-

ations

Max spot

check error

(ml/min)

Overall

balance

error

(ml/min)

Max norm

between

solution

vectors

 (mmHg)

LV_Petsc_5.1

GrantsTestTr

ee:

6 unknowns

A 116.887 2.6e-12 2 2.1e-12 2.4e-12 4.3e-14

B 116.887 3.0e-12 2 2.5e-12 2.3e-12 1.4e-14

C 116.887 1.6e-6 8 1.7e-6 1.7e-6 6.5e-9

LV_Petsc_5.2

Test310

13 unknowns

A 1671.867 7.1e-3 9 7.1e-3 2.3e-2 1.5e-7

B 1671.867 4.8e-8 11 4.8e-8 5.2e-8 4.3e-13

C 1671.867 0.52 141 0.52 -1.32 9.1e-6

LV_Petsc_5.3

CoW

extended:

42 unknowns

A 32.6373 3.7e-7 19 5.6e-7 1.6e-7 5.5e-8

B 32.6373 1.1e-11 21 1.5e-11 1.9e-11 1.1e-13

C 32.6373 3.5e-5 84 3.5e-5 1.4e-4 3.7e-6

LV_Petsc_6.4

Arteries V2:

432

unknowns**

A 5.97e6 2.3e-6 188 2.3e-6 5.9e-7 1.6e-12

B 5.97e6 5.7e-7 527 7.3e-7 -1.3e-5 1.4e-11

C 5.97e6 1.43e-5 4616 1.41e-5 1.8e-4 1.7e-10

LV_Petsc_5.5

Arteries V3:

612

unknowns **

A 5.25e6 3.4e-6 217 3.2e-6 5.8e-7 3.6e-13

B 5.25e6 5.2e-7 504 3.8e-7 7.41e-6 9.6e-12

C 5.25e6 1.3e-5 6042 1.3e-5 2.1e-4 2.2e-10

LV_Petsc_5.6

Sparse

Microcirc

 (um scale)

1486

unknowns **

A 1.020e6 2.3e-6 2556 2.4e-6 3.0e-7 3.0e-10

B 1.020e6 0.5 15747 0.5 -1.42 4.2e-3

C 1.020e6 2.0E-5
24148

9
2.0e-5 3.6e-5 1.1e-8

LV_Petsc_5.7

Sparse KF1

10,066
unknowns **

A 7.762e5 3.8e-7 734 1.4e-7 1.3e-6 2.1e-12

B 7.762e5 3.5e-8 1602 9.2e-8 1.1e-6 5.0e-11

C 7.762e5 5.9e-7 25109 6.0e-7 2.2e-5 9.8e-10

**residual manually changed to 1e-12 instead of 1e-6

504

nUnknowns BCGS GMRES Gauss-Seidel

6 2 2 8

13 9 11 141

42 19 21 84

432 188 527 4616

612 217 504 6042

1486 2566 15474 241489

Figure 7.150. The comparison of different iterative solving algorithms with simple diagonal

preconditioner.

These case studies conclude that the conditioning is effective, however the tolerance must also

be scaled accordingly. No automated method for scaling the residual tolerance with

preconditioning has yet been identified. The numerical resolution of a double precision floating

point is ~1e-12, so when 1e-15 is chosen as the residual tolerance, the residual never drops to the

tolerance (the matrix was singular in that level of precision).

To test the robustness of the preconditioners, larger case studies than previously solved will be

examined. The results are reported below. The tolerance was set to 1e-6. The manual

preconditioning does enhance the result solvability.

505

A) BCGS ASCII; B) GMRES ASCII; C) BCGS Binary; D) GMRES Binary; E) MA48;

F) Gauss-Seidel

Name

Structure with

coloration in

flow

(ml/min)

Inflow

(fL/s)

Max norm

of residual

(mmHg)

Number of

iterations

Max spot

check

error

(fL/s)

Overall

balance

error

(fL/s)

Max norm

between

solution

vectors

 (mmHg)

LV_Petsc_6.13

KF1:

129,282

unknowns

A 7180 0.023 2789 0.023 -1.7 0.0029

B 7180 0.065 26300 0.065 -2.6 0.010

C 7180 0.015 3101 0.015 -0.6 0.0025

D 7180 0.011 16213 0.011 -2.48 0.0097
E 7180 2.5e-7 NA 1.7e-7 2.1e-7 NA
F 7180 0.162 479996 0.162 -18.0 0.071

7.20.6 PETSc block Jacobi preconditioner

PETSc comes standard with preconditioners that can help systems solve faster and more

robustly. These solvers allow us to converge systems that are too large to converge without

preconditioners (larger systems than in Section 7.20.5). A review of the Block Jacobi

preconditioner is offered elsewhere [249]. In short, the Jacobi preconditioner conditions the matrix

using a positive-definite nonsingular matrix L to assist in solving the linear algebraic system:

𝐴𝑥 = 𝑏 (7.354)

𝑀−1𝐴𝑥 = 𝑀−1𝑏 (7.355)

𝑀−1 = 𝐿𝐿𝑇 (7.356)

𝐿𝑇𝐴𝑥 = 𝐿𝑇𝑏 (7.357)

�̂��̂� = �̂� (7.358)

�̂� = 𝐿𝑇𝐴𝐿, �̂� = 𝐿−1𝑥, �̂� = 𝐿𝑇𝑏 (7.359)

Where the L matrix is defined as the decomposition into:

506

𝐴 = 𝐿 + 𝐷 + 𝐿𝑇 (7.360)

𝑀 = 𝐷 (7.361)

Or more generally:

𝐴 = 𝐿 + 𝐷 + 𝑈 (7.362)

𝑀 = 𝐷 (7.363)

Where the matrix D is a diagonal matrix, L is the lower triangular factor and U is the upper

triangular factor. The preconditioner is computed and applied in every iteration to the update

vector. The block variant breaks the matrix by mutually disjoint sub-blocks of the matrix or based

on the physical domain. The discussion of blocking algorithms can be found elsewhere [250].

To investigate the effects of this preconditioner, a few case studies have been conducted below.

All solutions used tolerance of 1e-12 for LV_Petsc_3.41 – 3.46 and LV_Petsc_3.46, 3e-10 for

LC_Petsc_3.51, and 1e-6 for the remainder. Here A is BCGS ASCII, B is GMRES ASCII, C is

BCGS Binary, and D is GMRES Binary.

Findings: PETSc preconditioning using Block Jacobi allows solving >1,000,000 unknowns in

linear vasculature. Note, GMRES (binary) using Block Jacobi has solved other linear vasculature

flow problems for over 3 million unknowns and BCGS has solved diffusion problems >200 million

unknowns (data not shown). Note, all results are subject to natural orthogonality of equation set.

507

0 = ∇⃑⃑ ∙ (
1

𝛼
∆p) 𝑓 =

1

𝛼
∆p (7.364)

BCGS ASCII; B) GMRES ASCII; C) BCGS Binary; D) GMRES Binary;

Name

Structure

with

coloration in

flow

(ml/min)

Inflow

(mL/s)

Max

norm of

residual

(mmHg)

Numb

er of

iter-

ations

Max spot

check

error

(ml/min)

Overall

balance

error

(ml/min)

Max

norm

between

solution

vectors

(mmHg)

Time

to

solve

(s)

LV_Petsc_6.1

GrantsTestTr

ee:

6 unknowns

A 116.887 5.3e-11 1 5.3e-11 5.3e-11 2.1e-13 0.001

B 116.887 4.9e-11 1 4.9e-11 4.9e-11 2.1e-13 0.001

C 116.887 0 1 1.0e-12 1.3e-12 0 0.001

D 116.887 1.3e-13 1 1.3e-13 1.2e-12 1.4e-14 0.001

LV_Petsc_6.2

Test310

13 unknowns

A 1671.86

7
2.0e-8 9 2.0e-8 1.7e-8 5.0e-13 0.053

B 1671.86

7
1.5e-8 6 1.4e-8 1.8e-8 5.4e-13 0.093

C 1671.86

7
2.7e-9 9 2.6e-9 1.1e-9 4.3e-14 0.001

D 1671.86

7
4.6e-10 37 5.8e-10 6.9e-10 4.3e-14 0.002

LV_Petsc_6.3

CoW

extended:

42 unknowns

A 32.6373 5.9e-11 9 7.6e-11 7.7e-11 1.4e-12 0.007

B 32.6373 5.0e-11 13 7.2e-11 8.0e-11 1.3e-12 0.004

C 32.6373 4.8e-12 13 8.2e-12 7.9e-12 9.9e-14 0.002

D 32.6373 4.5e-12 43 8.5e-12 8.7e-12 7.1e-14 0.002

LV_Petsc_

6.4
Arteries V2:

432

unknowns

A 5.97e6 7.4e-7 38 7.4e-7 2.4e-6 6.0e-11 0.008

B 5.97e6 3.3e-7 89 8.6e-7 2.5e-6 2.5e-11 0.011

C 5.97e6 2.5e-7 89 9.1e-7 1.6e-6 2.3e-11 0.011

D 5.97e6 2.5e-7 89 9.1e-7 1.6e-6 2.3e-11 0.010

LV_Petsc_

6.5
Arteries V3:

612
unknowns

A 5.25e6 5.7e-6 72 6.1e-6 3.3e-5 1.8e-11 0.009

B 5.25e6 5.0e-6 117 5.2e-6 3.4e-5 1.8e-11 0.017

C 5.25e6 1.2e-6 71 1.1e-6 2.7e-7 6.5e-13 0.009

D
5.25e6 5.7e-7 117 6.8e-7 1.3e-7 1.7e-12 0.013

LV_Petsc_

6.6
Sparse

Microcirc

(mm scale)

1486

unknowns

A 1.020e-

3
9.3e-13 83 9.6e-13 4.9e-12 1.2e-6 0.021

B 1.020e-

3
9.0e-13 202 9.0e-13 1.7e-11 1.3e-6 0.058

C 1.020e-

3
9.0e-13 202 9.0e-13 1.7e-11 1.2e-6 0.048

D 1.020e-

3
9.0e-13 202 9.0e-13 1.7e-11 1.3e-6 0.059

508

LV_Petsc_

6.7

Sparse

Microcirc

 (um scale)

1486

unknowns

A 1.020e6 3.3e-6 100 3.2e-6 2.8e-6 4.0e-10 0.028

B 1.020e6 3.3e-6 263 3.3e-6 5.9e-6 1.3e-9 0.061

C 1.020e6 9.6e-7 103 1.0e-6 3.3e-7 1.1e-10 0.02
D

1.020e6 8.3e-7 264 8.3e-7 2.1e-6 1.1e-9
0.05

4

LV_Petsc_

6.8

Medium

Microcirc

10,066
unknowns

A 7.762e5 5.4e-7 155 6.4e-7 4.9e-6 3.2e-10 0.188

B 7.762e5 9.7e-7 392 9.7e-7 1.9e-5 1.1e-9 0.491

C 7.762e5 1.0e-6 391 1.0e-6 2.0e-5 1.0e-9 0.552

D
7.762e5 1.0e-6 391 9.9e-7 2.0e-5 1.0e-9 0.489

LV_Petsc_

6.25

KF1:

129,282
unknown

A 4.9e-4-7181 2.3e-6 1841** 8.0e-6 3.1e-5 1.0e-9 39.5

B 4.9e-4-7181 1.5e-6 3091* 6.2e-6 2.4e-5 2.7e-8 60.8

C 4.9e-4-7181 2.7e-6 1563** 2.6e-6 2.0e-8 2.2e-10 23.73

D 4.9e-4-7181 7.7e-7 3402* 9.6e-7 2.5e-5 7.7e-8 48.02

E 4.9e-4-7181 0.16 479996 0.16 18.01 NA 1518.5

F 4.9e-4-7181 2.5e-7 NA 1.7e-7 2.1e-7 NA 1.19

LV_Petsc_

6.26*

KF2:

159,668
unknown

A -7589.7-7589.7 2.01e-6 2067 6.8e-6 2.2e-5 NA 38.7

B -7589.7-7589.7 2.6e-6 24391 5.1e-6 6.0e-6 NA 516.4

C -7589.7-7589.7 3.1e-6 1915 3.0e-6 3.2e-7 NA 45.79

D -7589.7-7589.7 9.5e-7 18001 8.4e-7 2.9e-5 NA 389.4

E -7589.7-7589.7 NA NA NA NA NA NA

F -7589.7-7589.7 1.92e-7 NA 2.2e-8 2.15e-8 NA 1.67

LV_Petsc_

6.27

KF3

39,547
unknown

A -24325-25862.5 1.5e-6 557 1.5e-5 5.4e-5 5.9e-10 2.5

B -24325-25862.5 1.2e-5 1375 1.2e-5 5.7e-5 1.3e-7 6.6

C -24325-25862.5 3.2e-7 586 3.1e-6 1.4e-6 4.2e-11 2.4

D -24325-25862.5 9.7e-7 1381 9.7e-7 3.5e-6 1.2e-7 6.0

E -24325-25862.5 0.019 177084 0.01 0.61 NA 160.5

F -24325-25862.5 3.5e-7 NA 5.1e-7 6.7e-7 NA 8.9

LV_Petsc_

6.26

KF4:

127,169

unknown

A 1.2e-3 - 52992 2.4e-5 790** 2.4e-5 2.4e-4 5.7e-9 13.6

B 1.2e-3 - 52992 1.2e-5 4048* 1.3e-5 2.3e-4 5.2e-9 63.8

C 1.2e-3 – 52992 2.7e-4 848** 4.2e-4 2.2e-4 1.4e-8 13.67

D 1.2e-3 - 52992 1.36e-6 4404* 1.2e-6 1.9e-5 5.1e-10 63.94

E 1.2e-3 - 52992 41.8 353151 41.8 1218 NA 1322.5

F 1.2e-3 - 52992 1.18e-6 NA 8.9e-7 5.7e-6 NA 9.3

LV_Petsc_

6.27

LMCA

Arteries

(um Scale

1e-6

tolerance)

84,216

unknown

A 1.8e-4 – 7.9 5.2e-7 127* 9.4e-7 1.6e-6 4.2e-4 7.74

B 1.8e-4 – 7.9 9.9e-7 293* 9.9e-7 1.2e-5 1.0e-4 21.1

C 1.8e-4 – 7.9 5.8e-7 120* 9.5e-7 2.9e-7 1.9e-4 1.24

D 1.8e-4 – 7.9 9.9e-7 293* 9.9e-7 1.2e-5 1.0e-4 3.37

E 1.8e-4 – 7.9 0.0032 707250 0.003 0.007 0.09 1257

F 1.8e-4 – 7.9
6.6e-

11
NA 1.1e-10

1.8e-

10
NA 0.05

Solver: GMRES Binary:

509

Name

Flow

range

(fL/s)

Max norm

of

residual

(mmHg)

Number

of iter-

ations

Max

spot

check

error

(fL/s)

Overall

balance

error

(fL/s)

Time to

solve (s)

LV_Petsc_6.31

Full LMCA:1,323,888 unknowns

-2.8e8 –

2.8e8
0.2 2171 0.018 0.68 506

LV_Petsc_6.32

Average Density Full LMCA:

606,765 unknowns

-3.1e8 -

3.1e8
0.17 719 0.17 0.43 76.1

LV_Petsc_6.32

Highest Density hemisphere:

1,437,121 unknowns

-1.3e9 -

1.3e9
0.19 986 0.026 3.8 248.83

Number of unknowns BCGS GMRES

6 1 1

13 9 37

42 16 43

432 42 99

612 71 117

1486 103 264

10066 161 391

84216 120 293

127169 848 4404

129282 1563 3402

252162 782 3406

Figure 7.151. The comparison of different iterative solving algorithms with PETsc Block Jacobi

preconditioner.

7.20.7 Time to solve networks

It is also important to assess the CPU time to solve linear algebraic systems. This evaluation is

more than merely the number of iterations, as each iteration can vary in time to evaluate. This

section investigates the runtime of the solver I many conditions. The findings indicate MA48 is

510

the shortest (known to hold true up to ~200,000 elements, where this method breaks down). The

second fastest method is BCGS, the third is GMRES and the slowest is Gauss-Seidel (not shown).

Number of

unknowns

BCGS GMRES MA48

6 0.001 0.001 1.27E-04

13 0.001 0.002 5.62E-05

42 0.002 0.002 6.16E-05

432 0.005 0.01 2.24E-04

612 0.009 0.013 3.51E-04

1486 0.02 0.054 0.0022

10666 0.168 0.444 0.024

84216 1.24 3.37 0.047

129282 23.73 48.02 1.05

127169 13.67 63.94 9.76

Figure 7.152. Comparison of the runtimes for different size systems with different solvers.

Note, BCGS and GMRES use binary file transfer and use Block Jacobi preconditioning.

7.20.8 Using a two-step solving method for lowering residuals

For more difficult problems, the convergence required PETSc preconditioners and the infinity

norm of the residual vector was larger than the direct method (ma48). In order to lower the residual,

the solution vector can be obtained from a 2-step solving technique. In this method, an initialization

vector is obtained using BCGS with PETSc preconditioning. This vector is used to initialize

GMRES without any conditioning to solve a final solution. This avoids errors generated by the

511

blocking algorithm in the Block Jacobi preconditioner and still allows the GMRES to converge (it

would diverge without an initialization or preconditioner). Tolerance is set to 0.2. The equations

of conservation are given below.

Findings: The 2-step method allowed expansion of the equation set to over 1,000,000

unknowns adequately. GMRES that was initialized with BCGS + Block Jacobi preconditioner was

able to accurately and efficiently solve the system. GMRES with an initialization using

GMRES+Block Jacobi preconditioning did not benefit from the second polishing step.

0 = ∇⃑⃑ ∙ (
1

𝛼
∆p) , 𝑓 =

1

𝛼
∆p (7.365)

Linear Vasculature: A) BCGS with PC; B) GMRES, initialized without PC; C) ma48;

 Structure with

coloration in

flow

(ml/min)

Flow

range

(fL/s)

Time

to

solve

(s)

Max

norm of

residual

(mmHg)

Number

of iter-

ations

Max spot

check error

(fL/s)

Overall

balance

error

(fL/s)

LV_Petsc_6.33

Sparse

LMCA

252,162

unknowns

A
0.19-

5.0e9
30 0.83 782 1.01 0.44

B
0.19-

5.0e9
0.11 0.10 4 0.21 0.66

C
0.19-

5.0e9
NA 0.24 NA 0.35 0.23

LV_Petsc_6

.34
Medium

LMCA:

500,166

unknowns

A
0.02-

4.8e9
77.5 1.96 911 2.9 0.25

B
0.02-

4.8e9
2.43 0.26 35 0.21 0.47

C
0.02-

4.8e9
56.0 0.2 NA 0.3 0.22

LV_Petsc_6

.35
Full LMCA:

1,158,040

unknowns

A
0 –

1.0e10
323 4.1 972 4.2 0.97

B 0-1.0e10 0.76 0.40 5 0.86 0.33

C NA NA NA NA NA NA

512

With this combination, the solvers have achieved a sub-analytic solution for residuals, yet the

overall balance seems to be slightly worsened.

7.20.9 Solving Meshes

7.20.9.1 Diffusion Problem with Coarse-Grid Interpolation

This section details initialization vectors and the increased performance due to interpolation in

the diffusion problem. The solver used is listed, with binary reading/writing and the preconditioner

was a Block Jacobi. Tolerance is set to 1e-6 in all cases. The equations of conservation are given

below.

Findings: The GMRES solver benefits from the interpolation while the BCGS does not. Both

methods solve adequately for simple diffusion problems.

Executable filename: petscInitializationApp.exe

Button name: test Initialization Time Benefit Medium Mesh

0 = ∇⃑⃑ ∙ (D∇c) (7.366)

513

A) BCGS , B) GMRES and C) Gauss Seidel.

Grid Visualization

Values of

Pressure

At the

Volume

(mmHg)

Time to

solve

 (s)

Itera-

tions

to

solve

Max

Norm of

residual

(mol)

Max spot

check

error

(mol/min)

Overall

balance

error

(mol/

min)

D_Petsc_9

.1

10x10x10

A
0-100

0-100
0.004 15 5.3e-11 5.4e-11 4.7e-10

B
0-100

0-100
0.007 23 4.1e-11 4.1e-11 8.7e-10

C 0-100 0.005 151 2.9e-5 2.9e-5 0.008

D_Petsc_9

.2

50x50x50

initialized

A
0-100

0-100
0.903 51 7.7e-11 7.7e-11 2.2e-7

B
0-100

0-100
1.7 101 5.8e-11 5.8e-11 8.6e-8

C
0-100

0-100
5.0 1229 6.3e-6 6.3e-6 0.197

D_Petsc_9

.3

100x100x

100

initialized

A
0-100

0-100
11.09 82 6.7e-11 6.7e-11 5.7e-6

B
0-100

0-100
22.8 174 9.1e-11 9.1e-11 2.1e-6

C
0-100

0-100
48.3 1437 3.1e-6 3.1e-6 0.28

D_Petsc_9

.4

100x100x

100

A
0-100

0-100
15.7 119 8.1e-11 8.1e-11 1.5e-7

B
0-100

0-100
37.24 287 8.0e-11 8.0e-11 4.2e-6

C
0-100

0-100
344.9 10520 3.1e-6 3.1e-6 0.81

7.20.10 Large meshes

Large meshes are memory-prohibitive for direct solvers and time-prohibitive for commercial

solvers (Matlab, for instance). To test the robustness of the PETSc solvers at these large meshes

(>10 million unknowns), many case studies of a simple diffusion simulation were implemented

using the Cartesian mesh implementation discussed in Section 7.21. The findings indicate the

solver is not limited by size and the combination of BCGS + Block Jacobi can converge blocks up

to 217 million elements (largest size the computer can handle in memory).

514

Name

Number of

elements

Discretizations

per side

Time to

solve (hrs)

Memory

requirement (GB)

Number of

iterations
D_Petsc_10.1

450 92,340,000 450 8.0 65.7 2469

D_Petsc_10.2

500 126,500,000 500 13.6 90.1 2949

D_Petsc_10.3

600 218,160,000 600 33.3 >160.0 4003

7.20.11 Solving Dual-mesh problems

7.20.11.1 Mass Transfer Problem with Coarse-Grid Interpolation

This section details initialization vectors and the increased performance due to interpolation in

the diffusion problem. The solver used was GMRES and the preconditioner was a composite. On

these small systems, it appears that the read/write time is longer than the solving time, so the

difference in solving time is negligible. Tolerance is set to 1e-6 and the method for file transfer is

binary. PETSc preconditioner was used (Block Jacobi). The executable used for this case study

was petscInitializationApp.exe. Further case studies exemplified how a coarse-grid interpolation

can solve previously unsolvable dual-mesh problems. See Section 7.21.8 for more information on

the interpolation method.

Findings: BCGS diverged in all cases. GMRES converged in all cases and initialization with

interpolation lowered the overall solving time. In the event of even larger cases, such as a 3x3x1

Kleinfeld dataset converging on a 50x50x50 mesh, the solution diverges with all solvers unless an

iterative refining process is implemented. The equations of conservation are given below.

In vasculature: (linear flow):

515

0 = ∇⃑⃑ ∙ (−
1

𝛼
∆p) , 𝑓 = −

1

𝛼
∆p (7.367)

In tissue: (concentration)

0 = − ∇⃑⃑ ∙ (D∇𝑐𝐴) − 𝑈𝐴𝑣𝑎𝑠𝑐∆𝑐𝐴 − 𝑘1𝑐𝐴𝑉𝑡𝑖𝑠𝑠 (7.368)

In vasculature: (concentration)

0 = ∇⃑⃑ ∙ (𝑓𝑐𝐴) + 𝑈𝐴𝑣𝑎𝑠𝑐∆𝑐𝐴 (7.369)

Visualizatio

n

Time to

solve

 (s)

Iteration

s to

solve

Max

residual

error

(mol)

Total

mass

transfer

(mol/s)

Overall

balance

error

(ml/s)

MT_Petsc_5.1

10x10x10

0.06 100 9.9e-8 3.7e8 8.3e-7

MT_Petsc_5.2

20x20x20

initialized

0.345 182 2.0e-7 1.2e7 3.7e-7

MT_Petsc_5.3

50x50x50

initialized

11.4 483 2.9e-7 1.0e7 1.2e-5

MT_Petsc_5.4

100x100x100

initialized

NA 238.8 1056 1.2e-7 1.3e6 1.1e-5

MT_Petsc_5.5

100x100x100
NA 255.5 1145 3.3e-7 1.3e6 3.6e-5

516

Without preconditioners all systems diverged. With first solving using a preconditioner then

solving using the coarse solution as an initialization vector, the results indicate solvability in both

cases and a minor benefit from the interpolation. Many larger cases (KF1 and 300x300x300 mesh

for instance) require multiple coarse-grained interpolations before the full matrix can be solved

(data not shown). Tolerance was set to 1e-7.

7.20.11.2 Splines

No multiscale operations (coarse grid interpolation) were performed on splined networks

because the structural conversion of 2-pt face matrices to splines already reduces flow and pressure

calculation to the smallest possible size. In other words, splined networks already have minimum

size and no further multiscaling techniques are needed.

7.20.11.3 Using connection vs boundary conditions

A simple case study was conducted to investigate whether using boundary conditions (and thus

reducing the number of unknowns) improved the solution. This can be accomplished by solving

an arterial tree and venous tree (disconnected, with many terminals) and solving the connected

network (two boundary conditions but more equations) and comparing the results. The findings

indicate the introduction of boundary conditions in lieu of equations does not greatly affect the

solvability of the matrix. Results reflect BCGS with PETSc preconditioning. The mathematics are

the same as in Section 7.20.6.

517

Visualizati

on

Flow

Values

[min flow]

(fL/s)

Max Norm

of residual

PETSc

[MA48]

(mmHg)

Max spot

check

error

PETSc

(fL/s)

Overall

balance

error

PETSc

(fL/s)

Max

difference

between

solution

vectors

(mmHg)

Sparse

Microcirc

15085

unknown

s

-1.9e+8

– 4.7e+8

[5.3e-2]

4.2e-1

[2.3e-2]
4.2e-1 5.1e-1 4.7e-8

Sparse

Microcirc

(connected)

22086

unknown

s

-3.2e+8

– 3.2+8

[1.5]

8.1e-2

[4.2e-3]
8.2e-2 6.4e-2 5.6e-8

7.20.11.4 Investigation of units on solver

To investigate the effects of coefficient scaling in the matrix (to prevent bad conditioning

simply from data storage methods), two versions of the same network were solved using micron

(10-6 meters) units and millimeter (10-3 meters) units. Results indicate units do not make a

significant difference in the solving, yet the residual must be set accordingly to accommodate this

shift in units. Results reflect BCGS with PETSc preconditioning.

518

Visual-

ization

Flow

Values

[min flow]

(fL/s)

Max Norm

of residual

PETSc

[MA48]

(mmHg)

Max spot

check

error

PETSc

(fL/s)

Overall

balance

error

PETSc

(fL/s)

Max difference

between solution

vectors

(mmHg)

Highly

Sparse

Microcirc

(mm)

7146

unknowns

M

18

-3.2e-1 –

3.2e-1

[1.8e-7]

2.4e-10

[1.4e-11]
2.3e-10 2.3e-10 3.7e-8

Highly

Sparse

Microcirc

(um)

7146

unknowns

M

19

-3.2e+8

– 3.2e+8

[1.8e+2]

4.1e-1

[1.4e-2]
4.1e-1 4.2e-1 3.6e-8

Highly

Sparse

Microcirc

(um+ splined)

4048

Unknowns*

**

M

20

-6.0e+7

– 6.0e+7

[2.4]

4.7e-2

[3.0e-3]
4.7e-2 6.9e-2 4.8e-8

*** uses Mahsa’s viscosity for splines, not the viscosity from the 2-pt meshes

7.20.12 Testing Different Solvers

This report highlights the use of BCGS and GMRES in PETSc. Other work was investigated

in solving the linear vascular network with >1,000,000 unknowns using many other solvers and

preconditioners independently and as pairs. The results that did not improve the solution or solving

time were not reflected in this report.

519

7.21 Appendix U: Cartesian Mesh

This document summarizes how to implement and benefit from a Cartesian mesh in place of

the frequently used unstructured (tetrahedral) mesh. Benefits from using a Cartesian mesh

compared to an unstructured mesh include:

 Direct calculation of closest volume to a 3D point coordinate, as opposed to searching

 Fixed equation bandwidth of 7 elements per equation in the balance matrix

 Direct calculation of transport equations without necessitating memory-intensive mesh data

structures

 Excellent skewedness factor for all mesh elements (uniformly set to 1 or 0 for all faces)

7.21.1 Creating a Cartesian mesh

A Cartesian mesh consists of connectivity information and point coordinates that describes the

mesh cells. When making a Cartesian mesh, these data structures can be calculated by simply

offering a number of divisions in each dimension (nVolX, nVolY, and nVolZ for x, y, and z

dimensions respectively) and the bounds of the whole mesh (upper and lower limit in each

dimension). Note, these divisions describe the interior volumes of the mesh. Additional boundary

edges must be generated after the mesh is set.

Point coordinates. The point coordinates can be calculated directly with the knowledge that

they divide each dimension between the minimum and maximum coordinate by nVol+1 divisions.

To calculate all points, it is recommended to have a triple nested for loop and calculate each

element of the point coordinates following the example:

520

𝑝𝑡𝑥(𝑖) = 𝑥𝑚𝑖𝑛 + 𝑖
(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)

𝑛𝑉𝑜𝑙𝑋
, 𝑖 = 0. . 𝑛𝑉𝑜𝑙𝑋 + 1 (7.370)

Points for cells. The points for each cell are directly accessible, as they follow the same pattern

in each cell. This means that each cell (denoted by the i, j, and k index in each dimension) has a

directly accessible set of points:

𝑝𝑡𝐴(𝑖, 𝑗, 𝑘) =

[

𝑝𝑡1
𝑝𝑡2
𝑝𝑡3
𝑝𝑡4
𝑝𝑡5
𝑝𝑡6]

=

[

𝑝𝑡(𝑖 − 1, 𝑗 − 1, 𝑘)

𝑝𝑡(𝑖 − 1, 𝑗 − 1, 𝑘) + 1

𝑝𝑡(𝑖 − 1, 𝑗, 𝑘)

𝑝𝑡(𝑖 − 1, 𝑗, 𝑘) + 1

𝑝𝑡(𝑖, 𝑗, 𝑘)

𝑝𝑡(𝑖, 𝑗, 𝑘) + 1

𝑝𝑡(𝑖, 𝑗 − 1, 𝑘)

𝑝𝑡(𝑖, 𝑗 − 1, 𝑘)]

(7.371)

Where i, j, and k are the volume indices in each dimension, 𝑝𝑡𝑖 is the point index for the ith

point in the cell, and the pt() operator converts the i, j, and k point indices in each dimension into

a global point index following the example in Equation (7.370).

Faces. The connectivity between each cell is denoted as a face which can be calculated by

knowing the points. One important note is that all cells should only compute the first 3 faces (of 6

in the hexahedron), to avoid duplication of faces. The unmatched faces on the last row of cells will

be calculated as a last step. The face information calculation simply requests the point indices for

each cell, selects a face index in the cell (between face 1 and face 6) and retrieves the 4 points from

ptA that correspond to the face in question.

521

Cell connectivity. The cell connectivity associated with a given face can also be directly

calculated, as the current cell adjoins itself with a cell with 2 of 3 indices matching. In other words,

the adjoining cell has the same i, j, and k index, but one value is shifted by 1 (i±1, j±1, or k±1).

7.21.2 Creating a Cartesian mesh in memory

Because the simulation meshes can be extremely large (hundreds of millions of mesh cells),

simply holding the data structures in memory can overwhelm modern workstations. A Cartesian

mesh is capable of generating all relevant equations for finite volume simulations without ever

instantiating mesh data structures. This is done by storing the relevant information (domain

bounds, discretization elements, number of total volumes, etc.) which amount to <1MB of

information and refraining from generating other data structures. Note, this data overhead (<1MB)

is not affected by the size of the mesh (nVolumes). As the equations were calculated above to fill

the data structures, they can be calculated on-the-fly to generate equations. This facilitates rapid

equation generation.

7.21.3 Making flux balances without mesh data structures

This function uses the local variable to assign a matrix with isotropic, homogenous diffusivity

throughout the Cartesian mesh, but could be expanded to anisotropy in the future if need be.

The interior volumes are simply the value of the local cell and the divergence in all 3

dimensions (𝑖 ±1, 𝑗 ±1, and 𝑘 ±1). Using the getIJKfromGlobalCellIdx procedure, the evaluation

of the divergence for any cell is straightforward. This is further enhanced by the constant distance

522

between cells in a single direction, i.e. 𝑥(𝑖 − 1) − 𝑥(𝑖) is constant for all 𝑖. An example for finite

volume discretization in the x direction is given:

𝑑2𝑐𝑖
𝑑𝑥2

=
𝐷𝑖−1 + 𝐷𝑖+1 − 2𝐷𝑖

𝑑𝑥
 (7.21.372)

Because the exterior volumes lie on the boundary faces of interior cells, they are only ½ as far

from the cell center as a full volume-volume interface (see Section 7.14 on discretization schemes).

Due to this, when calculating the flux to a boundary cell, the distance is halved.

7.21.4 Connecting a 2-point network with a mesh

One important benefit of a Cartesian mesh, is the direct access to correlate any point coordinate

with a surrounding mesh cell. This can be done by executing the following equation:

𝐿𝑥 = 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

𝑖 = 𝑓𝑙𝑜𝑜𝑟 ([𝑝𝑡𝑥 − 𝑥𝑚𝑖𝑛] ∗
𝑛𝑉𝑜𝑙𝑥
𝐿𝑥

)

(7.21.373)

This example for the x-dimension can be repeated likewise for y and z dimensions to retrieve

the 𝑖, 𝑗, and 𝑘 coordinates of the cell surrounding the point in question. Using this methodology, a

vascular network structure can be connected to a Cartesian mesh without searching each volume

in the mesh.

523

7.21.5 Splitting the network to match length scale of mesh (vascular re-segmentation)

In order to ensure that the network and the mesh are on the same scale, it may be necessary to

cut the vasculature into smaller segments. This is an even more important task in relationship to

the oxygen simulation, where reactions strongly affect the distribution throughout the network.

The algorithm was designed with the basis of a Cartesian mesh implemented at runtime (not from

file) and does not work for a mesh read from file. The algorithm flow chart is given below.

Examples of network centerlines before and after segmentation are also offered in Figure 7.154.

Figure 7.153. Design of the recursive algorithm that splits the network into smaller segments

until the criteria of being on the same scale as the mesh is confirmed.

This is only one of two methods to accomplish this goal, the other being to choose the lengths

of the segments such that they are close to the order of volume as the tissue elements.

524

Before segmentation After segmentation

Figure 7.154. The re-segmentation algorithm clearly increases the vascular segment density

without altering the segment structure.

This allows matching of the mesh resolution to the network resolution automatically.

525

7.21.6 Benefits from using mesh without data structures

The use of a Cartesian mesh without the cumbersome mesh-related data structures saves a

significant amount of time (to generate the matrices) and memory as described by Figure 7.155.

Figure 7.155. Comparison of computational effort to solve a simple diffusion problem with all

mesh data structures (dense mesh) and with only minimal data structures (without mesh).

The memory requirement is drastically lower and computational time significantly lower for the

mesh using a hashing algorithm instead of storing the data structures.

526

7.21.7 Validation of mesh from memory compared to dense mesh

The validation of dense and lean mesh solving is pre-programmed as a function in the project

ghSSSinglePhasicOxygenValidation.dproj using the button entitled validate diffusion without

mesh. Another installment is given in DualDarcyIterative.dproj in a button entitled

testMeshFromMemoryDiffusion. This button will verify that the flows, residuals, mass transfer,

and solution vectors are equivalent in the two types of meshes.

7.21.8 Interpolating a coarse-mesh guess for initializing solvers for fine-grid results

A Cartesian mesh is capable of directly computing the index of a volume surrounding a point

coordinate (without the need for searching the mesh and comparing distances). This allows an

efficient implementation of investigating the coordination of a coarse mesh with a refined

counterpart. Due to this enhancement, a method for interpolating a coarse-grained simulation result

to obtain a reasonable initial guess for a fine-grained mesh has been developed.

The goal is to create a better initial guess for help converging within the iterative linear

algebraic solvers. Note, exterior cell values are simply copied from the coarser mesh, however the

interior mesh elements undergo an interpolation.

For an eight-node trilinear hexahedron element, the linear interpolation shape function, in local

co-ordinate system (𝜉, 𝜂, 𝜁), can be obtained from:

527

[

𝑁1
𝑁2
𝑁3
𝑁4
𝑁5
𝑁6
𝑁7
𝑁8]

=
1

8

[

(1 − 𝜉)(1 − 𝜂)(1 − 𝜁)
(1 + 𝜉)(1 − 𝜂)(1 − 𝜁)
(1 + 𝜉)(1 + 𝜂)(1 − 𝜁)
(1 − 𝜉)(1 + 𝜂)(1 − 𝜁)
(1 − 𝜉)(1 − 𝜂)(1 + 𝜁)
(1 + 𝜉)(1 − 𝜂)(1 + 𝜁)
(1 + 𝜉)(1 + 𝜂)(1 + 𝜁)
(1 − 𝜉)(1 + 𝜂)(1 + 𝜁)]

(7.374)

Where 𝜉, 𝜂, 𝜁 ∈ [−1,1]. The comparison of point indices and the local coordinate system is

pictured below:

Figure 7.156. Global and local co-ordinate system for the hexahedron element.

Given that the functional values at the neighboring cell centers, 𝜑𝑖, are known, 𝜑(𝜉0, 𝜂0, 𝜁0)

for a set of coordinates (𝜉0, 𝜂0, 𝜁0) lying inside the hexahedron nodes can be interpolated using:

𝜑(𝜉0, 𝜂0, 𝜁0) =∑𝑁𝑖𝜑𝑖

8

𝑖=1

(7.375)

528

For a set of global co-ordinates, the values can be converted to local coordinates using:

𝜉0 =
2𝑦0 − 𝑦1 − 𝑦7
𝑦7 − 𝑦1

, 𝜂0 =
2𝑧0 − 𝑧1 − 𝑧7
𝑧7 − 𝑧1

, 𝜁0 =
2𝑥0 − 𝑥1 − 𝑥7
𝑥7 − 𝑥1

(7.376)

These new values are an interpolated form of the coarse vector which can be used to initialize

an iterative linear algebraic solver for more stable and efficient convergence.

529

7.22 Appendix V: Illustration of diffusion

Diffusion from Fick’s law is defined as the divergence of the flux:

𝑓 = −𝐷
𝜕𝜙

𝜕𝑥
 (7.377)

𝜕𝜙

𝜕𝑡
= −

𝜕

𝜕𝑥
(−𝐷

𝜕𝜙

𝜕𝑥
) (7.378)

The flux is proportional to the negative gradient of the state scaled by a material property, D.

The divergence is the acceleration of the state. At steady state, the acceleration (or curvature, also

known as accumulation) is 0. In a dynamic simulation, this value is nonzero.

Take a simple example of a dynamic diffusion (without reaction or convection) with a non-

steady profile initialization as in Figure 7.157. The final and initial profiles do not match, indicating

some accumulation must take place at the nodes. At node 3, the flux vector (flow from high to low

state) is positive, yet the gradient (𝑑𝑦/𝑑𝑥) is negative. This is the physical explanation behind the

negative sign in the flux calculation (Equation (7.377)). The divergence leads to accumulation.

From the flux vector it can be seen that node 3 will lose moles and node 4 will gain mass. The flux

at node 3 is now positive, yet the node will lose mass, expressing that divergence is the negative

of the gradient of the flux.

530

Figure 7.157. Evaluation of transport flux and divergence on unsteady concentration profile in

1-dimension.

The flux vector at node 3 (evaluated in the direction of node 4) is positive, yet the gradient is

negative. The accumulation at node 3 in response to this flux is negative, although the flux is

positive.

531

7.23 Appendix W: Starling law and revised Starling law

7.23.1 Summary

The water exchange across a semi-permeable membrane is driven by pressure and osmotic

differences as modeled by Starling’s law [251]. In clinical practice, the osmotic gradients across

the membrane are influenced by the coupling between transmembrane water flux and osmolite

permeability.

It has been speculated that the osmolite mass transfer (a diffusive-like process) is coupled with

the convective transfer of osmolite across the membrane due to bulk water transfer (a convective

process). The bulk fluid and solute exchange across a membrane are two coupled diffusive-

convective processes that can be evaluated analytically (using simplifying assumptions) to create

a highly nonlinear function of solute flux known as the revised Starling’s law [252]. This method

is used to explain why fluid flux across a membrane (such as the blood brain barrier) cannot be

reversed using hyperosmolarity treatment.

This section lays the mathematical foundation of the simple Starling Law [251] and the highly

nonlinear coupling of the Revised Starling Law [252]. The section demonstrates that even large

osmolarity gradients cannot reverse the sign of the water flux across the membrane driven by

pressure differences when using the revised Starling law model. A detailed case study on the

inability of osmolarity to reverse the flow is also offered. The results are summarized in a key

figure (Figure 7.166).

This section concludes that regions of filtration and reabsorption in the brain are mainly

determined by the direction of the hydrostatic pressure differences and that osmolarity gradients

that may occur can only weaken or enhance the magnitude of the flux but cannot reverse the sign.

532

Accordingly, the relationship between tissue pressure and vascular pressure is the key for filtration

and resorption. These preliminary conclusions, however, have not been affirmed by experimental

data and require future studies. The future direction of this project is to expand the current

implementation of the revised Starling law in a 3 dimensional tissue embedded within a 3

dimensional vascular network.

7.23.2 Introduction

The Starling principle claims water transport between the capillary bed and the interstitial fluid

(ISF) is driven by hydrostatic pressure (pressure generated by physical force) and osmotic pressure

(pressure generated by a concentration gradient). Figure 7.158 expresses these effects in a blood

vessel.

Figure 7.158. Opposing pressures that exist in a system with a semi-permeable membrane and

a pressure gradient.

(Red) The hydrostatic pressure opposes (green) the osmotic pressure and (black) the net pressure

is the result of summing these two forces together. Note, the pressure gradient gets smaller when

approaching the venous side, because the osmotic pressure remains unchanged and the

hydrostatic pressure gradient reduces.

533

7.23.3 Methods

Starling Law. The classic Starling law expresses the flux of water (𝐽𝑤) as a linear combination

of the hydrostatic pressure gradient (ΔP) and osmotic pressure gradient (ΔΠ) across a semi-

permeable membrane. The flux is defined by material properties such as membrane porosity, LP,

and molecular reflectivity, σ, as in Equation (7.379). Equation (7.379) frequently uses the summed

osmotic pressure gradient of large macromolecules (ignoring micro-molecules and avoiding

balancing the osmotic pressure of each type of molecule independently). Note, the osmotic

pressure is calculated using the ideal gas law (PV=nRT). This model maintains the independence

between the water flux and the solute flux (i.e. the solute flux is independent of any water flux

through the membrane).

𝐽𝑤
A
= LP(∆𝑃 − 𝜎[𝛱𝑐 − 𝛱i]) (7.379)

Revised Starling Law. Another interpretation is that osmotic gradient is influenced the water

flux. This constitutes a convective flow of solute by the bulk flow of water across the membrane.

This theory couples the mass transfer of solute with the bulk water flow through two highly

nonlinear equations (expressed through an exponential function of the Peclet number). This highly

nonlinear equation is claimed to explain why fluid flux across the BBB cannot be freely

manipulated by imposing steep osmolarity gradients (i.e. why water reversal is not possible by

534

osmotic therapy). This model allows only unidirectional flow of water based on the convective

direction of flow. If the convective flow of water changes direction, the equation must be modified.

The RSL uses the concentration of the fluid inside the membrane pore in lieu of the ISF

concentration as depicted in Figure 7.159. This concentration is approximated using the ratio of

the solute flux to volumetric water flux (Equation (7.380)). This assumption for the concentration

in the pore (𝛱∗) is substituted into Equation (7.379) to account for the osmotic driving force (𝛱𝑐 −

𝛱∗). The RSL is given in Equation (7.382). Derivations of these equations are offered in

Sections 7.23.7-7.23.8. Suggested human parameters for this calculation can be seen in in Table

7.41. The corresponding values in rat kidney can be seen in Table 7.42.

𝑐i =
𝐽s
𝐽w

(7.380)

𝐽𝑠
𝐴
= −D∇𝑐𝑠|𝑥=0 + 𝑢𝑐𝑠|𝑥=0 =

𝐽w(1 − σ)

𝐴

−𝑐i + 𝑐c𝑒
𝑃𝑒

(𝑒𝑃𝑒 − 1)

(7.381)

𝐽w
A
= 𝐿𝑃(∆𝑃 − σ

2 [𝛱c {
(1 − 𝑒−𝑃𝑒)

(1 − 𝜎. 𝑒−𝑃𝑒)
}])

(7.382)

𝑃𝑒 =
𝐽w(1 − σ)/𝐴

𝐷/𝐿
=
𝐽w(1 − σ)𝐿

𝐴𝐷

535

Figure 7.159. Cartoon of the a section of the BBB and the relevant states.

Note the osmotic pressure is calculated through the difference in concentration from the

capillary to the pore, not from the capillary to the ISF.

Table 7.41: Suggested parameters in human for the calculations of the RSL

Parameter Value(s)

𝑃c (artery) 35-45+ mmHg

𝑃i (vein) 15-12- mmHg

𝛱c 25-28 mmHg

𝛱i (steady state) 10 mmHg

𝛱i (initial) 3 mmHg

σ 0-1 (σalbumin = 0.99)

536

Table 7.42: Parameters for calculation based on rat kidney. Here, 𝛱p stands for 𝛱c.

7.23.4 Results

Figure 7.160 and Table 7.43 demonstrate Equation (7.379) and Equation (7.382), showing how

the revised Starling law does not reverse water flux by varying osmotic pressure.

Table 7.43: Parameters used for my recreation of the curves from the manuscript.

Parameter Value

𝑃𝑐 10-45 mmHg (dependent variable)

𝑃i 12 mmHg

𝛱c 20 mmHg

𝛱i 1.3 mmHg

AD/L 0.2

σ 0.75

Lp 1

537

Figure 7.160. Recreated curve from [252].

The black line is the revised Starling Law (equation (7.382)) and the blue line is the original

Starling Law (equation 1). We can see here that the osmotic gradient is never capable of

reversing the flow of water as long as the convective flow is uni-directional.

Osmotic pressure for the pore section was calculated using Equation (7.383). This expresses

the dynamic concentration as a function of water flux through the pore (hidden within the Peclet

number). Values for the capillary pressure were tested and the resulting water flux (and subsequent

osmotic pressure from the pore) were calculated. This can be seen graphically in Figure 7.162. The

result of simulating the two systems of Figure 7.161 gives Figure 7.162. The code to create Figure

7.161 can be seen in Section 7.23.6.

𝑐i =
(1 − σ)𝑐c
(1 − σ𝑒−𝑃𝑒)

(7.383)

538

Figure 7.161. Pictographic representation of the two systems being evaluated.

Top) Revised Starling law where the osmotic pressure gradient is a function of the flux through

the pore. Bottom) Classic Starling law where the osmotic pressure gradient is based on

concentration in ISF.

539

Figure 7.162. Visualziation of trends in different models in relationship to water flux and

interstitial pressure.

The intersection of the ISF osmotic pressure of the (Blue) revised starling law with the (Red)

original starling law for normal capillary pressure and (Black) reduced capillary pressure.

The Peclet number. The effect of convection on concentration profile can be investigated using

the 1 dimensional schematic in Figure 7.163. The equations for flux can be seen in Equation

(7.384), steady-state mass conservation is enforced through Equation (7.385), and the Peclet

number is calculated through equation (7.386). Proposed property values are given in Table 7.44.

The results are summarized in Figure 7.164.

540

Figure 7.163. The schematic representation of the simulated system.

A one-dimensional four node system with concentration as a state and flow as a convective

source term along with diffusion. Each end has a Dirichlet boundary condition, left is flow set

at 2 ml/min and right is concentration set at 2 mmol.

Figure 7.164. The effect of Peclet number on the concentration profile.

Note that as the Peclet number rises, the distribution changes drastically.

𝐽 = D𝑐′ + u𝑐
(7.384)

𝑑𝑐

𝑑𝑡
= 0 = ∇⃑⃑ 𝐽

(7.385)

Pe =
u

D/L

(7.386)

541

Table 7.44: Parameters used for my recreation of the curves from the manuscript.

Parameter Value Units

D (diffusivity) 0.1, 1, 10 mm2/s

u (flow BC) 1 ml/min

L (segment length) 1 mm

7.23.4.1 Considerations of the basolateral concentrations:

When water flux tends to zero, the concertation becomes singular and when the concentration

is negative, a second solution to the problem exists. Because a negative concentration is

nonphysical, this situation can be remedied by the following adjustment.

𝑐i =
𝐽s

𝐽w + 𝐽s

(7.387)

The concentration must be positive definite, so another constraint can be imposed:

𝑐i = 𝑎𝑏𝑠 (
𝐽s
𝐽𝑤
) or 𝑐i = √(

𝐽s
𝐽w
)
2

(7.388)

As described above, the solution space for the revised starling law has two solutions (Figure

7.165) Once the concentration is forced to be positive-definite following Equation (7.388), the

non-physiological second solution disappears.

542

Revised Starling Law Appended Revised Starling Law

Figure 7.165. The effect of enforcing positive definite concentration for ci.

The revised starling law has a non-physiological solution when ci < 0 which is eradicated in the

appended form. The discontinuities in the residual exist around the singular point where Jv = 0.

7.23.4.2 Parametric study of water and solute fluxes for different hydrostatic and osmotic pressure

gradients

To compare the effects of convection on the water transport and solute transport of the BBB

membrane, 5 scenarios were compared in which the flow of water and the flow of solute are

computed. These scenarios (Table 7.45) have been computed using Equation (7.379) and

Equation (7.382) as seen in Figure 7.166. The solver chosen was Matlab’s fsolve function which

employs a form of the Newton method.

Table 7.45: Values used for the computation of Scenario 1-5 in Figure 7.166

Case Cc ci Pc Pi ci

1 0 0 40 12 0

2 2 13 40 12 0.4

3 13 13 40 12 2.6

4 25 13 40 12 5

5 13 60 40 12 2.6

543

Table 7.46: Resulting values computed using equation (7.379) and (7.382) using values in Table

7.45.

Case c1 Potential c2 Potential c2* Potential Potential1 Potential2 Potential2* ΔPotential ΔPotential * Jv Js

1 0.0 0.0. 00 40.0 12.0. 12.0 28.0 28.0 28.0 0.0
2 01.6 10.4 0.32 41.6 22.4 12.3 19.2 29.3 26.7 10.7
3 10.4 10.4 2.08 50.4 22.4 14.0 28.0 36.3 19.7 51.2
4 20.0 10.4 04.0 60.0 22.4 16.0 37.6 44.0 12.0 60.0
5 10.4 48.0 2.08 50.4 600 14.0 -09.6 36.3 16.7 51.2

The solute and water flux were comparable between the two models for the majority of cases

which differ only in magnitude. At extreme concentration differences, however, the water transport

differs in both magnitude and direction between the two models (Figure 7.166). The solute

transport differed in many scenarios between the two models.

544

Figure 7.166. Classic and revised Starling’s Law across a membrane with hydrostatic (P1-P2)

and osmotic (C1-C2) pressure driving forces.

Here, compartment 1 refers to the capillary side of the membrane and compartment 2

corresponds to ISF. The classical hypothesis admits bidirectional water exchange. The revised

Starling’s law accounts for solute and water exchange coupling. It shows a progressive non-

linear reduction of transmembrane flux, but does not allow for flow reversal. Top row shows

conceptually hydrostatic, osmotic and total effective pressure potentials for five different

scenarios (panels entitled Scenario 1-5). Middle row shows magnitude and direction of

transmembrane water (blue) and solute fluxes (yellow). Scenario 5 shows countercurrent water

reabsorption for the classical Starling’s hypothesis, in which high osmotic gradients reverse the

effect pressure potential; this revere effect does not occur with the revises Starling’s law. Bottom

row redraws solute (Js) and water flux (Jw, denoted here with Jv) direction with respect to the

membrane for both classical and revised Starling’s law (fluxes marked with *).

7.23.5 Discussion:

This report has been a review of the literature surrounding the classical and revised Starling

law. The revised Starling law dictates that the orientation of molar flux across the blood brain

barrier (BBB) is driven entirely by the hydrostatic pressure gradient based on a convection model

for solute transport. This contrasts the classic Starling law, where the molar flux is driven by a

linear combination of hydrostatic pressure and concentration gradients.

545

A simultaneous solution of the coupled nonlinear systems of equations representing flow and

solute transport across the BBB was theoretically introduced and a Matlab code for implementation

was provided. Conclusive figures representing numerous scenarios have also been published by

our group [253].

This report does not address a 3-dimensional network exhibiting BBB transport but such a

model was previously published using the classic Starling Law [253]. A discussion of the suitable

finite volume discretization methods for the proposed nonlinear equations is outside the scope of

this manuscript. Methods such as those described by Patankar [254] using a power law or an

implementation of the exponential function using the Peclet number should be further investigated.

Future work will reveal whether the revised Starling law can exhibit both filtration and

reabsorption in a 3-dimensional model.

546

7.23.6 Sample Matlab codes

Box 7.23.1: The code used to produce Figure 7.160

function AQP4_Paper
syms JV, close all
warning('off','all')
Pi = 12; PhiP = 20;Phii = 1.3; A = 2; r = 0.75; Pd = 2e-1; Lp=1; D=Pd; L=1;
ci=Phii/0.4; cp=PhiP/0.4;%ci=pii/RT
for Pc = 10:45
S= solve(Pc-Pi==JV/A/Lp+r^2*PhiP*...
 (1-exp(-JV*(1-r)/(Pd*A)))/(1-r*exp(-JV*(1-r)/(Pd*A))),JV);
jw = S;
New_Method(Pc-9) =jw;

pe = jw*(1-r)*L/D/A;
js = jw*(1-r)*(ci-cp*exp(pe))/(1-exp(pe));
cStar(Pc-9) = js/jw;
cStarLin(Pc-9) = js/(js+jw);
jsA(Pc-9) = js;
end

for Pc = 10:45
S= vpasolve(JV/A==Lp*((Pc-Pi)-r*(PhiP-Phii)),JV);
Old_Method(Pc-9) = S;
end
figure(2)
hold on
xlabel('Pc, capillary pressure')
ylabel('Jv, water flux')
 plot(10:45,New_Method,'k','LineWidth',2)
 plot(10:45,Old_Method,'b','LineWidth',2)
plot(1:55,zeros(1,55),'k');
scatter(10:45,New_Method,'k','LineWidth',2)
scatter(10:45,Old_Method,'b','LineWidth',2)
legend('revised SL','classic SL')
end

547

Box 7.23.2: The code used to generate Figure 7.162.

function AQP4_Paper

clf

syms JV

warning('off','all')

% Pi = 3; Pi2 = 6;

Pc = 10; PcBig = 12; PhiP = 20; Phii = 3; A = 1; r = 0.6; Pd = 2e-1; Lp=1;

for Pi = -1:10

 loop = Pi+2;

 Pe = JV*(1-r)/(Pd*A);

% PhiP = Phii*(1-r*exp(-Pe))/(1-r);

 Phii=PhiP*(1-r)/(1-r*exp(-Pe));

S= solve(Pc-Pi==JV/A/Lp+r*(PhiP-Phii),JV);

Jv(loop) =S;

% S2= solve(PcBig-Pi==JV/A/Lp+r*(PhiP-Phii),JV);

% JvBig(loop) =S2;

Pe = S*(1-r)/(Pd*A);

 Phii=PhiP*(1-r)/(1-r*exp(-Pe));

PHII(loop) = Phii;

PC(loop) = Pc;

end

for Phii = 6:15

 Pi = 4;

 loop = Phii-5;

S3= vpasolve(JV/A==Lp*((Pc-Pi)-r*(PhiP-Phii)),JV);

JvOld(loop) = S3;

S4= vpasolve(JV/A==Lp*((PcBig-Pi)-r*(PhiP-Phii)),JV);

JvOldBig(loop) = S4;

end

hold on

 plot(Jv,PHII,'b','LineWidth',2)

 plot(Jv,ones(1,length(PHII))*PhiP,'m','LineWidth',2)

% plot(Jv,'o')

 plot(JvOld,6:15,'k','LineWidth',2)

 plot(JvOldBig,6:15,'r','LineWidth',2)

 legend('PhiI','PhiP','Starling Law','Starling Law Big Pc')

 xlabel('Jv')

 ylabel('PhiI')

548

Box 7.23.4: code for Figure 7.166

function AQP4_Paper

syms JV

close all

warning('off','all')

syms JvSym

Area = 1; Pd = 2e-1; D = 1; r = 0.85; Lp = 1; L = 1; c2 = 13; %c right

c1Location = [1 12 24 59]; P1 = 40; P2 = 12; c1Hold = 2:80; %used for a range

%% set up A matrix for 1D with given grid size

JvHold = zeros(1,length(c1Hold));

for Loop1 = 1:length(c1Hold)

 c1 = c1Hold(Loop1);

 %% calculate revised ci

 Pe = JvSym*(1-r)/(Pd*Area);

 ci=c1*(1-r)/(1-r*exp(-Pe));

 S= solve((P1-P2)==JvSym/Area/Lp+r*(c1-ci),JvSym);

 JvHold(Loop1) = S;

 u = S*(1-r)/Area;

 Js(Loop1) = u*c1-u*(c1-c2)/(1-exp(u/Pd*L));

 Pe = S*(1-r)/(Pd*Area);

 ciHold(Loop1) = c1*(1-r)/(1-r*exp(-Pe));

 S4= vpasolve(JvSym/Area==Lp*((P1-P2)-r*(c1-c2)),JvSym);

 JvOld(Loop1) = double(S4);

 JsOld(Loop1) = D*(c1-c2);

end

save('AQP4_Fig_1_data','c1Hold','JvHold','JvOld','c1Location')

figure

plottingFunc

figure

floatingBars

end

function plottingFunc

load AQP4_Fig_1_data

c2 = 13;

%% plotting

clf

 plot(c1Hold-c2,JvHold,'k','LineWidth',3)

 hold on

 plot(c1Hold-c2,JvOld,'g','LineWidth',3) %needs evaluation

 for iState = 1:4

 state = [JvHold(c1Location(iState)), JvOld(c1Location(iState))];

 loc = [c1Hold(c1Location(iState))-c2, c1Hold(c1Location(iState))-c2];

 plot(loc,state,'.','MarkerSize',25)

 end

 xlabel('Concentration Difference')

 ylabel('Water Flux (Jv)')

 legend('Revised Starling Law','Classic Starling Law','Scenario 2','Scenario 3','Scenario

4','Scenario 5')

 legend boxoff

 plot(min(c1Hold-c2):max(c1Hold-c2),zeros(1,length(c1Hold+1)),'k') %plot x axis

 plot(zeros(1,length(-30:40)),-30:50,'k') %plot y axis

 ylim([-30,50])

 xlim([min(c1Hold-c2),max(c1Hold-c2)])

end

function floatingBars

P2 = [12;12;12;12;12];

P1 = [40;40;40;40;40];

c1Potential = [0;1.60000000000000;10.4000000000000;20;48];

c2Potential1 = [0;0.320000000000000;2.08000000000000;4;2.08000000000000];

c2Potential = [0;10.4000000000000;10.4000000000000;10.4000000000000;10.4000000000000];

c1 = [0;2;13;25;60];

for iScenario = 1:length(c1)

549

 figure(2)

 hold on

 plotRectangle(P1(iScenario),P2(iScenario),c1Potential(iScenario),...

 c2Potential(iScenario),c2Potential1(iScenario),iScenario)

end

plot(0:20,zeros(1,21),'k')

% calculate where the xlabels go

xTickLocation = [1.4:3.4,5.4:7.4,9.4:11.4,13.4:15.4,17.4:20.4];

set(gca,'xTick',xTickLocation,'xTickLabel','') %load Labels from data

set(gca,'XAxisLocation','top','TickDir','both')

legend('Osmotic Potential','Pressure Potential','Total

Potential','Location','southwest','Orientation','horizontal')

legend boxoff

end

function plotRectangle(P1,P2,c1,c2Classic,c2Revised,iScenario)

drawArrow = @(x,y,varargin) quiver(x(1),y(1),x(2)-x(1),y(2)-y(1),0, varargin{:});

%% define colors

blue = [102,255,255]/255; %Pressure potential

purple = [51,255,51]/255; %Total potential

orange = [255,127,80]/255; %concentration potential

grey = [0.5 0.5 0.5]; %arrows

plot(nan,nan,'color',orange,'LineWidth',10)

plot(nan,nan,'color',blue,'LineWidth',10)

plot(nan,nan,'color',purple,'LineWidth',10)

%% calculate differences at states

totalPotential1= (P1-c1);

totalPotential2 = P2-c2Classic;

totalPotential2Revised = P2-c2Revised;

%% calculate where to plot

plot1 = (iScenario-1)*4+1; %for node 1

plot2 = (iScenario-1)*4+2; %node 2 classic

plot3 = (iScenario-1)*4+3; %node 2 revised

%% Node 1

rectangle('Position',[plot1,-c1,0.4,c1],'FaceColor',orange); %c1

rectangle('Position',[plot1,0,0.4,P1],'FaceColor',blue); %P1

if(totalPotential1) > 0

 rectangle('Position',[plot1+0.4,0,0.4,totalPotential1],'FaceColor',purple)

%deltaPotential1

else

 rectangle('Position',[plot1+0.4,totalPotential1,0.4,-

totalPotential1],'FaceColor',purple) %deltaPotential1

end

drawArrow([plot1+0.6,plot1+0.6],[P1,P1-c1],'color',grey,'LineWidth',2,'MaxHeadSize',0.05);

%% node 2 Classic

rectangle('Position',[plot2,-c2Classic,0.4,c2Classic],'FaceColor',orange) %c2

rectangle('Position',[plot2,0,0.4,P2],'FaceColor',blue) %P2

if(totalPotential2) > 0

 rectangle('Position',[plot2+0.4,0,0.4,totalPotential2],'FaceColor',purple)

%deltaPotential2

else

 rectangle('Position',[plot2+0.4,totalPotential2,0.4,-

totalPotential2],'FaceColor',purple) %deltaPotential1

end

drawArrow([plot2+0.6,plot2+0.6],[P2,P2-

c2Classic],'color',grey,'LineWidth',2,'MaxHeadSize',0.05);

%%node 2 Revised

rectangle('Position',[plot3,-c2Revised,0.4,c2Revised],'FaceColor',orange) %c1

rectangle('Position',[plot3,0,0.4,P2],'FaceColor',blue) %P1

if(totalPotential2Revised) > 0

 rectangle('Position',[plot3+0.4,0,0.4,totalPotential2Revised],'FaceColor',purple)

%deltaPotential1

else

 rectangle('Position',[plot3+0.4,totalPotential2Revised,0.4,-

totalPotential2Revised],'FaceColor',purple) %deltaPotential1

end

drawArrow([plot3+0.6,plot3+0.6],[P2,P2-

c2Revised],'color',grey,'LineWidth',2,'MaxHeadSize',0.05);

end

550

Box 1.4: Code to solve revised SL with Newton method

% % GH 9/18/2018 -- this is a procedure that estimates the nonlinear

% revised starling law and solves using Newton

function SLrevised

% close all

tolerance = 1e-6; rememberHistory=true;

jv = [-60:0.01:-1 1:0.01:60];

plotOverJv(jv)

% % solving 1 equation system

jv = -100:0.01:-1;

plotOverJv(jv)

x0 = -5;

[xSoln,fSoln,xHist] = newton(@myFunc,[],x0,tolerance,rememberHistory);

figure(1), scatter(xSoln,fSoln)

plotHistory(xHist,@myProblem2)

jv = 30:0.01:32;

plotOverJv(jv)

x0 = 31;

[xSoln,fSoln,xHist] = newton(@myFunc,[],x0,tolerance,rememberHistory);

figure(1), scatter(xSoln,fSoln)

legend('residual(Jv)','r=0','solution 1','solution 2')

% % plotHistory(xHist,@myProblem2)

% solving 2 equation system

figure

jv = -100:0.1:100; pe = -100:1:100;

x0 = [1;5];

[xSoln,fSoln,xHist] = newton(@myFunc2,[],x0,tolerance,rememberHistory);

plotOverPeJv(pe,jv)

hold on, scatter3(xSoln(1),xSoln(2),fSoln'*fSoln)

plotHistory(xHist,@myFunc2,[-100,100],[-100,100])

% figure(2), scatter3(xSoln(2),fSoln'*fSoln,fSoln'*fSoln,'d')

legend('residual(Jv)','r=0','solution 1D','solution 2D')

end

function plotOverJv(Jv)

figure

residual = myFunc(Jv).*myFunc(Jv);

plot(Jv,residual); xlabel('Jv'); ylabel('residual error');

hold on, plot(Jv,zeros(1,length(Jv)),'k')

legend('revised Starling law','y=0')

end

function plotOverPeJv(Pe,Jv)

for i = 1:length(Pe)

 for j = 1:length(Jv)

 residual(i,j) = myFunc2([Pe(i);Jv(j)])'*myFunc2([Pe(i);Jv(j)]);

 end

end

surf(Pe,Jv,residual','edgecolor','none');

xlabel('Pe'); ylabel('Jv'); zlabel('residual error');

% hold on, plot(Jv,zeros(1,length(Jv)),'k')

% legend('revised Starling law','y=0')

end

% a function to solve Jv in terms of Jv

function residual = myFunc(jv)

pArt = 60; pISF = 15; piArt = 28; piISF = 3; Lp = 1.3; sigma=0.75; Pd = 0.2;

A=0.5;

deltaP = pArt-pISF; deltaPI = piArt-piISF;

551

pe = sqrt((jv.*(1-sigma)/(Pd*A)).^2);

% pe = (jv.*(1-sigma)/(Pd*A));

residual = jv - (Lp*(deltaP-sigma*piArt*(1-exp(-pe)./(1-sigma*exp(-pe)))));

end

% this procedure uses 2 equations to solve for Jv and peclet number

function residual = myFunc2(PeJv)

pArt = 60; pISF = 15; piArt = 28; piISF = 3;

Lp = 1.3; sigma=0.75; Pd = 0.2; A=0.5;

deltaP = pArt-pISF; deltaPI = piArt-piISF;

residual = [0;0]; %set dimensions

% residual(1) = PeJv(1)-PeJv(2).*(1-sigma)/(Pd*A);

residual(1) = PeJv(1)-sqrt((PeJv(2).*(1-sigma)/(Pd*A))^2);

residual(2) = PeJv(2) - (Lp*(deltaP-sigma*piArt*(1-exp(-PeJv(1))./(1-sigma*exp(-

PeJv(1))))));

end

% % add and validate 2 versions of this with overload

% fun is a pointer to the function and dfun is a pointer to the jacobian

% % next version -- write iterates and error for each step, possibly with switch, xHistory

and then plot when dones

% function [F,x] = newton(fun,dfun,x0,tol)

function [xSolution,FresidualAtSolution,xHistory] = newton(fun,dfun,x0,tol,rememberHistory)

%rememberHistory is boolean

x = x0; err = fun(x)'*fun(x); maxIter = 100; iter=1; xHistory(:,iter)=x0;

if isempty(dfun), useNumericalDiff = true;

else useNumericalDiff = false; end

while err > tol

 F = fun(x);

 if useNumericalDiff, J = getNumericalDerivative(fun,x);

 else J = dfun(x); end

 if abs(det(J)) < 1e-15, disp('singular Jacobian'); break; end %should

take a gradient step here

 delX = - J\F;

% alfa = getStepsizeForDecreasingResiduals(delX,x,fun); %stepsize control

 alfa = getStepsizeArmijo(delX,x,fun,dfun);

 xNew = x + alfa*delX;

 if rememberHistory, xHistory(:,iter) = x; end % remember history %

 err = sqrt(fun(xNew)'*fun(xNew)); iter = iter+1;

 if iter > maxIter,disp('max iteration exceeded'); break; end

 if norm(x-xNew) < 1e-6, disp(['no more update, saddle point found at '

num2str(xNew')]); break; end

 x = xNew;

end

if rememberHistory, xHistory(:,iter) = x; end % remember history %

xSolution = x; FresidualAtSolution = fun(x);

end

function alfa = getStepsizeArmijo(delX,xOld,fun,dfun)

% % armijo linesearch using quadratic function fitting

alfa = 1; updating = true; delta = 0.1;

phiOld = fun(xOld)'*fun(xOld);

 phiNew = fun(xOld + alfa*delX)'*fun(xOld + alfa*delX);

while updating

 alfaNew = phiOld*alfa^2/((2*alfa - 1)*phiOld + phiNew);

 phiNew = fun(xOld + alfa*delX)'*fun(xOld + alfa*delX);

 if alfaNew > 1, alfa = 1; break; %breaking criteria when it wants to go larger

 elseif phiNew-phiOld <= -2*delta*alfaNew*phiOld, break;

 else alfa = alfaNew; end

end

end

function alfa = getStepsizeForDecreasingResiduals(delX,xOld,fun)

% % primitive linesearch by halving the stepsize, may fail because no

% iteration stop criterion in the while loop

alfa = 1; errOld = fun(xOld)'*fun(xOld);

errNew = fun(xOld+delX)'*fun(xOld+delX);

while errNew > errOld

 alfa = 0.5* alfa;

552

 xNew = xOld + alfa*delX;

 errNew = fun(xNew)'*fun(xNew);

end

if errNew > errOld, display('solution diverged'); alfa = -1; end;

end

% make n-dimensional

function J = getNumericalDerivative(fun,x)

N = length(x); J = zeros(N,N);

dX = 1e-6*ones(N,1);

for i = 1:N

 xNew = x; xNew(i) = xNew(i) + dX(i);

 dF = fun(xNew)-fun(x);

 J(:,i) = dF./dX;

end

end

function plotHistory(xHist,fun,xRange,yRange)

figure, plotNonLinearSurface(fun,xRange,yRange)

for i = 1:size(xHist,2)-1

 plot([xHist(1,i) xHist(1,i+1)],[xHist(2,i) xHist(2,i+1)],'k','linewidth',2)

 error(i) = fun(xHist(:,i))'*fun(xHist(:,i));

end

error(i+1) = fun(xHist(:,i+1))'*fun(xHist(:,i+1)); figure,

plot(error), xlabel('iteration number'); ylabel('residual error')

end

function plotNonLinearSurface(fun,xRange,yRange)

xPlot = xRange(1):0.1:xRange(2);

x2Plot = yRange(1):0.1:yRange(2);

for i = 1:length(xPlot)

 for j = 1:length(x2Plot)

 err = fun([xPlot(i);x2Plot(j)]);

 errorSurface(i,j) = err'*err;

 end

end

contour(xPlot,x2Plot,sqrt(errorSurface'),100,'b'), hold on

end

7.23.7 Derivation of the Patlack Equation from conservation

In this derivation, we show how to obtain a steady-state concentration profile for the

convection-diffusion problem in Equation (7.389). Computing the concentration profile, c(x),

allows determining the transmembrane water and solute flux (jw and js).

553

Table 7.47. This section details a derivation of the revised Starling Law.

Table 7.48: Variables used for Section 7.23.3

Variable name Physical Meaning Units

Jv Volumetric flux of water ml/min

Js Molar flux of solute mol/s

LP filtration coefficient mm/s/mmHg

A Area mm2

Π Osmotic pressure (in Plasma and ISF) mmHg

P Hydrostatic pressure (in Capillary and ISF) mmHg

σ reflection coefficient --

D diffusion coefficient mm2/s

Pd diffusional permeability mm2/s

R Ideal gas constant J/mol/K

T absolute temperature K

u flow velocity mm/s

L(or x) width of membrane mm

Pe Peclet number --

The species conservation is given in equation (7.389) with convective (qc) and diffusive (qd)

flux:

𝑉
𝑑𝑐

𝑑𝑡
− ∇⃑⃑ ∙ 𝑞𝑐 = ∇⃑⃑ ∙ 𝑞𝑑

𝑉
𝑑𝑐

𝑑𝑡
+ 𝑉𝑢𝑐′ = 𝑉𝐷𝑐′′

(7.389)

Which is at steady-state simplifies to:

𝑢𝑐′ = 𝐷𝑐′′
(7.390)

554

It is customary to account for the deflection of the molecules in a semipermeable membrane

accounting for the reduction in convection flux because some of the solute cannot pass through

the membrane (reduced convection). This reduction is modelled according to the deflection

coefficient, 𝜎, as in Equation (7.391). This velocity, u, can be seen as a reduced effective

convective driving force.

𝑢 =
𝐽𝑤(1 − 𝜎)

𝐴
 (7.391)

With deflected convection, the molecular transmembrane fluxes can be rewritten:

 𝐽𝑤(1 − 𝜎)

𝐴
𝑐′ = 𝐷𝑐′′

(7.392)

Assuming the solution to this 2nd order ODE follows Equation (7.393), the boundary conditions

can be used to uniquely defined the function. It can be shown that this equation is the analytic

solution to a linear 2nd order ODE with one root of 0 (Section 7.23.9).

𝑐 = 𝛼𝑒

𝐽𝑤(1−𝜎)
𝐴𝐷 𝑥 + 𝛽

(7.393)

Taking the 1st and 2nd derivatives of the solution gives:

555

𝑐′ =

𝛼𝐽𝑤(1 − 𝜎)

𝐴𝐷
𝑒
𝐽𝑤(1−𝜎)
𝐴𝐷

𝑥

(7.394)

𝑐′′ =

𝛼[𝐽𝑤(1 − 𝜎)]
2

𝐴2𝐷2
𝑒
𝐽𝑤(1−𝜎)

𝐷
𝑥

(7.395)

Back substitution into the conservation equation gives:

0 = 𝑢

𝛼𝐽𝑤(1 − 𝜎)

𝐴𝐷
𝑒
𝐽𝑤(1−𝜎)
𝐴𝐷 𝑥 − 𝐷

𝛼𝐽𝑤(1 − 𝜎)
2

𝐴2𝐷2
𝑒
𝐽𝑤(1−𝜎)
𝐴𝐷 𝑥

(7.396)

This can be used to validate the solution:

0 = 𝑢
𝛼[𝐽𝑤(1 − 𝜎)]

2

𝐴2𝐷
𝑒
𝐽𝑤(1−𝜎)
𝐴𝐷 𝑥 − 𝐷

𝛼𝐽𝑤(1 − 𝜎)
2

𝐴2𝐷2
𝑒
𝐽𝑤(1−𝜎)
𝐴𝐷 𝑥

(7.397)

0 = (
𝛼[𝐽𝑤(1 − 𝜎)]

2

𝐴2𝐷
𝑒
𝐽𝑤(1−𝜎)
𝐴𝐷 𝑥) − (

𝛼[𝐽𝑤(1 − 𝜎)]
2

𝐴2𝐷
𝑒
𝐽𝑤(1−𝜎)
𝐴𝐷 𝑥)

(7.398)

0 = (
𝛼[𝐽𝑤(1 − 𝜎)]

2

𝐴2𝐷
𝑒
𝐽𝑤(1−𝜎)
𝐴𝐷 𝑥) (1 − 1)

(7.399)

0 = (
𝛼[𝐽𝑤(1 − 𝜎)]

2

𝐴2𝐷
𝑒
𝐽𝑤(1−𝜎)
𝐴𝐷 𝑥) (0)

(7.400)

Boundary conditions can be used to calculate the constant coefficients of the specific solution:

556

𝑐(0) = 𝑐1; 𝑐(𝐿) = 𝑐2
(7.401)

𝛼𝑒
𝐽𝑤(1−𝜎)

𝐷
∙0 + 𝛽 = 𝑐1

(7.402)

𝛼𝑒
𝐽𝑤(1−𝜎)

𝐷 ∙𝐿 + 𝛽 = 𝑐2
(7.403)

𝑃𝑒 =
𝑢

𝐷/𝐿
=
𝐽𝑤(1 − 𝜎)

𝐴𝐷
𝐿

(7.404)

𝛼(1 − 𝑒𝑃𝑒) = 𝑐1 − 𝑐2
(7.405)

𝛼 =
𝑐1 − 𝑐2
(1 − 𝑒𝑃𝑒)

(7.406)

𝛽 = 𝑐1 − 𝛼
(7.407)

𝛽 =
𝑐1(1 − 𝑒

𝑃𝑒) − (𝑐1 − 𝑐2)

1 − 𝑒𝑃𝑒

(7.408)

𝛽 =
−𝑐1𝑒

𝑃𝑒 + 𝑐2
1 − 𝑒𝑃𝑒

(7.409)

𝑐(𝑥) =
𝑐1 − 𝑐2
1 − 𝑒𝑃𝑒

𝑒
𝐽𝑤(1−𝜎)
𝐴𝐷 𝑥 +

𝑐2−𝑐1𝑒
𝑃𝑒

1 − 𝑒𝑃𝑒

(7.410)

Substituting the boundary conditions back in verifies the solution:

𝑐(0) =
𝑐1 − 𝑐2
1 − 𝑒𝑃𝑒

+
𝑐2−𝑐1𝑒

𝑃𝑒

1 − 𝑒𝑃𝑒
= 𝑐1

(7.411)

𝑐(𝐿) =
𝑐1𝑒

𝑃𝑒 − 𝑐2𝑒
𝑃𝑒

1 − 𝑒𝑃𝑒
+
𝑐2−𝑐1𝑒

𝑃𝑒

1 − 𝑒𝑃𝑒
= 𝑐2

(7.412)

557

Solving for the solute flux, 𝑗𝑠 arrives at the Patlack equation, (7.418):

𝐽𝑠
𝐴
=
𝐽𝑤(1 − 𝜎)𝑐(𝑥 = 0)

𝐴
− 𝐷𝑐′(𝑥 = 0)

(7.413)

𝐽𝑠
𝐴
=
𝐽𝑤(1 − 𝜎)

𝐴
𝑐1 −

𝐽𝑤(1 − 𝜎)

𝐴

𝑐1 − 𝑐2
1 − 𝑒𝑃𝑒

𝑒
𝐽𝑤(1−𝜎)

𝐷
∙0

(7.414)

𝐽𝑠
𝐴
=
𝐽𝑤(1 − 𝜎)

𝐴
[𝑐1 −

𝑐1 − 𝑐2
1 − 𝑒𝑃𝑒

]
(7.415)

𝐽𝑠
𝐴
=
𝐽𝑤(1 − 𝜎)

𝐴
[
𝑐1 − 𝑐1𝑒

𝑃𝑒

1 − 𝑒𝑃𝑒
−
𝑐1 − 𝑐2
1 − 𝑒𝑃𝑒

]
(7.416)

𝐽𝑠 = 𝐽𝑤(1 − 𝜎) [
𝑐2 − 𝑐1𝑒

𝑃𝑒

1 − 𝑒𝑃𝑒
]

(7.417)

𝐽𝑠 = 𝐽𝑤(1 − 𝜎)
−𝑐𝐿 + 𝑐0𝑒

𝑃𝑒

𝑒𝑃𝑒 − 1

(7.418)

7.23.8 Deriving revised Starling law from Patlack equation

This section calculates the revised Starling law from the Patlack equation. Assuming the

concentration inside the pore is a ratio of solute flux to water flux gives:

𝑐𝐿 =
𝐽𝑠
𝐽𝑤

(7.419)

Both sides in the Patlack equation can be divided by the water flux and gives:

558

𝑐𝐿 =
𝐽𝑠
𝐽𝑤
= (1 − 𝜎)

−𝑐𝐿 + 𝑐0𝑒
𝑃𝑒

𝑒𝑃𝑒 − 1

(7.420)

Isolating CL:

𝑐𝐿 = −
𝑐𝐿(1 − 𝜎)

𝑒𝑃𝑒 − 1
+
(1 − 𝜎)𝑐0𝑒

𝑃𝑒

𝑒𝑃𝑒 − 1
 (7.421)

𝑐𝐿(𝑒
𝑃𝑒 − 1) + 𝑐𝐿(1 − 𝜎) = (1 − 𝜎)𝑐0𝑒

𝑃𝑒
(7.422)

𝑐𝐿(𝑒
𝑃𝑒 − 𝜎)

𝑒𝑃𝑒
= (1 − 𝜎)𝑐0 (7.423)

𝑐𝐿 (−
(𝜎)

𝑒𝑃𝑒
+ 1) = (1 − 𝜎)𝑐0

(7.424)

𝑐𝐿(1 − 𝜎𝑒
−𝑃𝑒) = (1 − 𝜎)𝑐0

(7.425)

𝑐𝐿 =
(1 − 𝜎)𝑐0
1 − 𝜎𝑒−𝑃𝑒

(7.426)

ci can be converted to 𝛱𝑖:

𝑐𝐿
𝑐0
=
𝛱𝐿
𝛱0
=

(1 − 𝜎)

1 − 𝜎𝑒−𝑃𝑒

𝛱𝐿 =
𝛱0(1 − 𝜎)

1 − 𝜎𝑒−𝑃𝑒

(7.427)

This pressure can be substituted into the classical Starling law:

559

𝐽𝑤
𝐴
= 𝐿𝑃 {∆𝑃 − 𝜎 [Π0 −

Π0(1 − 𝜎)

1 − 𝜎𝑒−𝑃𝑒
]}

(7.428)

Which can be simplified:

𝐽𝑤
𝐴
= 𝐿𝑃 {∆𝑃 − 𝜎Π0 [1 −

(1 − 𝜎)

1 − 𝜎𝑒−𝑃𝑒
]}

(7.429)

𝐽𝑤
𝐴
= 𝐿𝑃 {∆𝑃 − 𝜎Π0

1 − 𝜎𝑒−𝑃𝑒 − (1 − 𝜎)

1 − 𝜎𝑒−𝑃𝑒
}

(7.430)

𝐽𝑤
𝐴
= 𝐿𝑃 {∆𝑃 − 𝜎Π0

1 − 1 − 𝜎(1 − 𝑒−𝑃𝑒)

1 − 𝜎𝑒−𝑃𝑒
}

(7.431)

𝐽𝑤
𝐴
= 𝐿𝑃 {∆𝑃 − 𝜎

2Π0
1 − 𝑒−𝑃𝑒

1 − 𝜎𝑒−𝑃𝑒
}

(7.432)

This arrives at the revised Starling law equation as seen in Equation (7.382).

7.23.9 Analytic solution to linear ODE of 2nd order

A homogenous ordinary differential equation (ODE) can be constructed with a steady-state

diffusion problem or a dynamic reaction problem such as the one in Equation (7.433). The analytic

solution of this differential equation is an algebraic function whose derivative is merely itself

multiplied by an exponent. Only a few equations order will uphold this condition, the majority of

which are an infinite series whose derivative is also an infinite series (no loss of power when taking

the derivative). A common infinite power series is the exponential function (e) such as in

Equation (7.434):

560

𝑑𝜙

𝑑𝑡
= 𝛼𝜙

(7.433)

𝜙(𝑡) = 𝑐0𝑒
𝛼𝑡

(7.434)

Where

𝑒𝛼𝑡 =∑
(𝛼𝑡)𝑖

𝑖!

∞

𝑖=0

(7.435)

This infinite series holds the condition that the derivative is a constant (𝛼) multiplied by the

original function:

𝑑𝑒𝛼𝑡

𝑑𝑡
= 𝛼𝑒𝛼𝑡 (7.436)

The particular solution can be evaluated (𝛼 can be computed) using the boundary conditions.

In the case of cylindrical diffusion, or diffusion with convection and reaction term, the equation

becomes more complicated:

𝐷
𝑑2𝜙

𝑑𝑥2
− 𝑓

𝑑𝜙

𝑑𝑥
− 𝑘1𝑐 = 0 (7.437)

If a power series (exponential function used here for simplicity) is chosen, the evaluation can

be rewritten as:

561

𝐷
𝑑2

𝑑𝑥2
𝑒𝛼𝑥 − 𝑓

𝑑

𝑑𝑥
𝑒𝛼𝑥 − 𝑘1𝑒

𝛼𝑥 = 0 (7.438)

𝐷𝛼2𝑒𝛼𝑥 − 𝑓𝛼𝑒𝛼𝑥 − 𝑘1𝑒
𝛼𝑥 = 0

𝑒𝛼𝑥(𝐷𝛼2 − 𝑓𝛼 − 𝑘1) = 0
(7.439)

Because it is known that 𝑒𝛼𝑥 is a function of the independent variable x, and thus is cannot be

is not a constant value of 0 (in fact, its value is never 0), it can be concluded that the coefficients

must be 0. This simplifies the system which now has 2 roots:

𝐷𝛼2 − 𝑓𝛼 − 𝑘1 = 0
(7.440)

𝑟 = −𝑓 ±
√𝑓2 − 4𝐷
2

2𝐷
 (7.441)

The roots are the exponential coefficients:

𝜙(𝑥) = 𝑎𝑒𝑟1 + 𝑏𝑒𝑟2
(7.442)

Where r1 and r2 are the first and second roots of equation (7.441), respectively. When

considering a single diffusion-convection problem as in the Revised Starling Law, the equation

has one root of value 0:

𝐷
𝑑2

𝑑𝑥2
𝑒𝛼𝑥 − 𝑓

𝑑

𝑑𝑥
𝑒𝛼𝑥 = 0 (7.443)

562

𝐷𝛼2𝑒𝛼𝑥 − 𝑓𝛼𝑒𝛼𝑥 = 0

𝑒𝛼𝑥(𝐷𝛼2 − 𝑓𝛼) = 0

𝛼 (𝐷𝛼 − 𝑓) = 0

 𝛼 = 0, 𝑓/𝐷

(7.444)

Which renders the solution to be of the form (before plugging in the boundary conditions to

find the particular solution):

𝜙(𝑥) = 𝛼𝑒𝑓/𝐷𝑥 − 𝛽𝑒0𝑥

𝝓(𝒙) = 𝜶𝒆𝒇/𝑫𝒙 − 𝜷
(7.445)

This equation is consistent with the derivation offered in Section 7.23.7.

7.23.10 Example problem

Introduction. The brain is supplied with nutrients and cleaned of waste material continuously

using the blood as the delivery/garbage trucks that carry the nutrients into the brain and carry the

waste material away to the kidneys and spleen. One of the most essential nutrients the brain utilizes

is water, which is metabolized by cells to produce energy and is in constant demand. The

replenishing of water between the blood and the brain tissue occurs through a membrane known

as the blood-brain-barrier (BBB) that is composed of a vessel membrane, pericyte end-feet, and

other supporting cells. The study of how materials move across the BBB is a highly active field of

research including the study of flux through the semi-permeable membrane of the BBB. Water

563

transport across this membrane has been modeled as a function of hydrostatic pressure gradients

(Δp) and osmotic pressure gradients (Δc). Figure 7.167 expresses these pressures on a schematic

vessel in the brain.

A

B

Figure 7.167. (A) A cartoon representation of the pressure gradients that occur across the BBB

through a single pore.

The hydrostatic pressure (Δp) is opposed to the osmotic pressure (Δc). Here, the combination of

these two pressures results in a total pressure that drives the water transport into or out of the

interstitial space. (B) The concentration profile within a membrane with Dirichlet boundary

conditions on each side, c1 and c2, is offered for a solute transport due to diffusion and

convection. The blue curve has convection from left to right, the red curve has convection from

right to left. Note, pure diffusion would give a straight line (not shown).

Part 1, Solving the diffusion-convection equation for concentration. The solute can move via

passive (diffusive) and active (convective) means in the brain. The equation that describes how

this motion happens dynamically in one-dimension is expressed in Equation (7.446). This partial

differential equation can be solved at steady-state (Section 7.23.10.1) to yield the analytic function

for solute flux (Equation (7.447)-(7.448)). Here, A is the cross sectional area of the pore, Lp is the

trans-membrane permeability, 𝜎 is the reflection coefficient of the membrane, R is the ideal gas

564

constant, v is the velocity of the water flow, 𝐴⊥ is the cross-sectional area of the pore, T is

temperature in Kelvin, and c is the concentration of a solute. 𝐽𝑠 and 𝐽𝑤 are volumetric solute flux

and volumetric water flux, respectively.

𝑉
𝑑𝑐

𝑑𝑡
=
𝑑

𝑑𝑥
𝐽𝑠 =

𝑑

𝑑𝑥
(𝐽𝑠

𝑐 + 𝐽𝑠
𝑑)

𝑉
𝑑𝑐

𝑑𝑡
= ∇ ∙ (𝑣𝑐 − 𝐷∇𝑐)𝑉

𝑉
𝑑𝑐

𝑑𝑡
=
𝑑

𝑑𝑥
(𝑣𝑐 − 𝐷

𝑑𝑐

𝑑𝑥
)𝑉

(7.446)

𝑐(𝑥) =
𝑐1 − 𝑐2
1 − 𝑒𝑃𝑒

∙ 𝑒
𝑗𝑤(1−𝜎)
𝐷𝐴⊥

𝑥
+
𝑐2−𝑐1𝑒

𝑃𝑒

1 − 𝑒𝑃𝑒

(7.447)

𝑃𝑒 =
𝑢𝐿

𝐴⊥𝐷
=
𝐽𝑤(1 − 𝜎)

𝐴⊥𝐷
𝐿

(7.448)

1. Show by differentiation and insertion that that Equation (7.447)-(7.448) is satisfies the steady

version of Equation (7.446).

2. Plot the concentration profile, c(x) in µmol/µm3, as a function of length, x in µm, between x=0

and x=L. Use values listed in Table 7.48 for all other parameters. Also solve with

Jw = -0.1 µm3 ∙ s-1 and plot the result.

3. Compute the solute flux as given in Equation 3 at x=0, x=0.5∙L, and x=L and show that the

flux is constant at all locations, as expected from a steady-state solution. (Note that you will

need this flux later in the Starling’s Law portion of this homework).

565

Note that in Equation (7.446)-(7.448), 𝑣𝑐 is not the same as the full flux through the channel,

𝐽𝑤𝑐

𝐴⊥
, because the full flux is hindered by the semi-permeable membrane. To account for this

hindrance of the full flux, 𝑣𝑐 is reduced by a factor of (1 − 𝜎) as reflected in equation (7.449)

where 𝜎 is a reflection coefficient.

𝐽𝑠(𝑥 = 0)

𝐴⊥
= (1 − 𝜎)𝑣𝑐|𝑥=0 −

𝑑𝑐

𝑑𝑥
|
𝑥=0

=
𝐽𝑤
𝐴⊥
(1 − 𝜎) [

𝑐2 − 𝑐1𝑒
𝑃𝑒

1 − 𝑒𝑃𝑒
]

(7.449)

𝑃𝑒 = 𝛾𝐽𝑤

𝛾 = 3.33 ∙ 10−5 µm ∙ s-1

Table 7.49: Parameters used in this case study, empirically derived

Parameter Value Units Meaning

p1 60 mmHg Arterial pressure

p2 4 mmHg ISF pressure

c1 20 µmol∙µm-3 Arterial solute concentration

c2 2 µmol∙µm-3 ISF solute concentration

D 1.8e-2 μm2 ∙ s-1 Solute diffusivity*

σ 0.5 -- Membrane reflection coefficient

L 298 K Temperature

LP 1.67∙10-3 µm ∙ mmHg-1 ∙ s-1 Membrane permeability

T 3 µm Endothelial layer thickness

𝐴⊥ 5 µm2 Endothelial layer surface area

𝐽𝑤 0.1 µm3 ∙ s-1 Guess for water flux

*note the diffusivity and mass transfer coefficient in brain tissue of solvents (like oxygen) is on the order of 1e3

Part 2. Starling’s law. Starling’s law concerns the transport of water across a membrane due to

the hydrostatic and osmotic pressure difference. In effect, water transmembrane flux and the solute

transmembrane flux are coupled. When the water flux carries with it solute across the membrane,

the problem includes diffusion with convection. Through substitution, the solute flux can be

eliminated, as reflected in the attached derivation, and the water flux can be written as a function

566

of water flux, i.e. 𝑗𝑤(𝑗𝑤). Accordingly, this produces two coupled nonlinear equations that

determine the net water flux across the membrane (Equation (7.450)-(7.451)).

𝐽𝑤
𝐴
= 𝐿𝑃 {∆𝑃 − 𝜎

2Π0
1 − 𝑒−𝑃𝑒

1 − 𝜎𝑒−𝑃𝑒
}

(7.450)

𝑃𝑒 =
𝐽𝑤(1 − 𝜎)

𝐴𝐷
𝐿

(7.451)

Plotting the residual error surface by exhaustive enumeration. The water flux through the BBB

constitutes two nonlinear equations (𝑔1 and 𝑔2) for two unknowns (jw and Pe) as seen in

Equation (7.452)-(7.453). Equation (7.452)-(7.453) is the same as Equation (7.450)-(7.451)

written in residual form where 𝑔1 represents Equation (7.450) written in residual form and 𝑔2

represents Equation (7.451) written in residual form. Use p1, p2, c1, c2 and physical properties from

Table 7.48.

𝑔1(𝑗𝑤, 𝑃𝑒) = 0
(7.452)

𝑔2(𝑗𝑤, 𝑃𝑒) = 0
(7.453)

4. Substitute Equation (7.453) into Equation (7.452) to create a single nonlinear equation.

Identify the solution for 𝑗𝑤 by exhaustive enumeration of the residual line for 𝑗𝑤 ranging

from -100 to 100 ml/min. Find the solution using the provided code for the Newton method

in Matlab (see Section 7.23.10.3 for the method and code). Prove that the Newton solution is

567

the solution to the original equation. Plot the residual line (g1’(jw)) and the solution to

identify if your solution is the only solution in this space.

5. Find the solution for 𝑃𝑒 and jw by exhaustively enumerating the residual in the space of the

unknown 𝑃𝑒 and jw and plotting the residual error contour and residual error surface. Use the

values listed in Table 7.48. Evaluate 𝑃𝑒 over the range -100 to 100.

6. Solve equation (7.452)-(7.453) simultaneously with Matlab’s fsolve function and verify that

you get the same solution found by exhaustive enumeration. Solve the two equations using

the supplied Newton code and validate the solution compared to Matlab’s fsolve procedure

and with plotting. Verify that your solution from equation (7.452) and (7.453) matches the

solution from Part 2. Mark this solution on your plot. Make sure to supply fsolve with

suitable initial guesses. Observe and report what happens when unreasonable initial guesses

are used.

7. Also solve equation (7.452)-(7.453) for different values of the concentration at the abluminal

side of the membrane as follows. C2 = 10 to 45 µmol∙µm-3 with increments of 1 µmol∙µm-3.

7.23.10.1 Solution of diffusion/convection through a membrane

The species conservation is given in equation (7.389) with convective (qc) and diffusive (qd)

flux:

𝑉
𝑑𝑐

𝑑𝑡
− ∇⃑⃑ ∙ 𝑞𝑐 = ∇⃑⃑ ∙ 𝑞𝑑

𝑉
𝑑𝑐

𝑑𝑡
+ 𝑉𝑢𝑐′ = 𝑉𝐷𝑐′′

(7.454)

568

Which is at steady-state simplifies to:

𝑢𝑐′ = 𝐷𝑐′′
(7.455)

It is customary to account for the deflection of the molecules in a semipermeable membrane

(the hindered diffusion due to the extra resistance from the membrane). This additional resistance

hinders both convection and diffusion following a term known as the “deflection coefficient”, 𝜎,

as reflected by to equation (7.391). This velocity, u, can be seen as a reduced effective convective

driving force.

𝑢 =
𝐽𝑤(1 − 𝜎)

𝐴
 (7.456)

With deflected convection, the transmembrane fluxes can be modeled by:

𝐽𝑤(1 − 𝜎)

𝐴
𝑐′ = 𝐷𝑐′′

(7.457)

Assuming the solution to this 2nd order ODE is a linear combination of 2 exponential functions

and solving for the powers of the exponential function gives one root of 0 (see Section 7.23.9), the

solution takes the form of:

569

𝑐 = 𝛼𝑒
𝐽𝑤(1−𝜎)
𝐴𝐷 𝑥 + 𝛽

(7.458)

Taking the 1st and 2nd derivatives of the solution gives:

𝑐′ =
𝛼𝐽𝑤(1 − 𝜎)

𝐴𝐷
𝑒
𝐽𝑤(1−𝜎)
𝐴𝐷 𝑥

(7.459)

𝑐′′ =
𝛼[𝐽𝑤(1 − 𝜎)]

2

𝐴2𝐷2
𝑒
𝐽𝑤(1−𝜎)

𝐷 𝑥

(7.460)

Insertion into the conservation equation gives:

0 = 𝑢
𝛼𝐽𝑤(1 − 𝜎)

𝐴𝐷
𝑒
𝐽𝑤(1−𝜎)
𝐴𝐷 𝑥 − 𝐷

𝛼𝐽𝑤(1 − 𝜎)
2

𝐴2𝐷2
𝑒
𝐽𝑤(1−𝜎)
𝐴𝐷 𝑥

(7.461)

This can be used to validate the solution:

0 = 𝑢
𝛼[𝐽𝑤(1 − 𝜎)]

2

𝐴2𝐷
𝑒
𝐽𝑤(1−𝜎)
𝐴𝐷 𝑥 − 𝐷

𝛼𝐽𝑤(1 − 𝜎)
2

𝐴2𝐷2
𝑒
𝐽𝑤(1−𝜎)
𝐴𝐷 𝑥

(7.462)

0 =
𝛼[𝐽𝑤(1 − 𝜎)]

2

𝐴2𝐷
𝑒
𝐽𝑤(1−𝜎)
𝐴𝐷 𝑥 −

𝛼[𝐽𝑤(1 − 𝜎)]
2

𝐴2𝐷
𝑒
𝐽𝑤(1−𝜎)
𝐴𝐷 𝑥

(7.463)

Using boundary conditions to calculate the constants:

570

𝑐(0) = 𝑐1; 𝑐(𝐿) = 𝑐2
(7.464)

𝛼𝑒
𝐽𝑤(1−𝜎)

𝐷
∙0 + 𝛽 = 𝑐1

(7.465)

𝛼𝑒
𝐽𝑤(1−𝜎)

𝐷 ∙𝐿 + 𝛽 = 𝑐2
(7.466)

𝑃𝑒 =
𝑢

𝐷/𝐿
=
𝐽𝑤(1 − 𝜎)

𝐴𝐷
𝐿

(7.467)

𝛼(1 − 𝑒𝑃𝑒) = 𝑐1 − 𝑐2
(7.468)

𝛼 =
𝑐1 − 𝑐2
(1 − 𝑒𝑃𝑒)

(7.469)

𝛽 = 𝑐1 − 𝛼
(7.470)

𝛽 =
𝑐1(1 − 𝑒

𝑃𝑒) − (𝑐1 − 𝑐2)

1 − 𝑒𝑃𝑒

(7.471)

𝛽 =
−𝑐1𝑒

𝑃𝑒 + 𝑐2
1 − 𝑒𝑃𝑒

(7.472)

𝑐(𝑥) =
𝑐1 − 𝑐2
1 − 𝑒𝑃𝑒

𝑒
𝐽𝑤(1−𝜎)
𝐴𝐷 𝑥 +

𝑐2−𝑐1𝑒
𝑃𝑒

1 − 𝑒𝑃𝑒

(7.473)

Validating of the boundary conditions gives the correct values:

𝑐(0) =
𝑐1 − 𝑐2
1 − 𝑒𝑃𝑒

+
𝑐2−𝑐1𝑒

𝑃𝑒

1 − 𝑒𝑃𝑒
= 𝑐1

(7.474)

𝑐(𝐿) =
𝑐1𝑒

𝑃𝑒 − 𝑐2𝑒
𝑃𝑒

1 − 𝑒𝑃𝑒
+
𝑐2−𝑐1𝑒

𝑃𝑒

1 − 𝑒𝑃𝑒
= 𝑐2

(7.475)

571

Solving for the solute flux, 𝑗𝑠, arrives at the Patlack equation, (7.418):

𝐽𝑠
𝐴
=
𝐽𝑤(1 − 𝜎)𝑐(𝑥 = 0)

𝐴
− 𝐷𝑐′(𝑥 = 0)

(7.476)

𝐽𝑠
𝐴
=
𝐽𝑤(1 − 𝜎)

𝐴
𝑐1 −

𝐽𝑤(1 − 𝜎)

𝐴

𝑐1 − 𝑐2
1 − 𝑒𝑃𝑒

𝑒
𝐽𝑤(1−𝜎)

𝐷
∙0

(7.477)

𝐽𝑠
𝐴
=
𝐽𝑤(1 − 𝜎)

𝐴
[𝑐1 −

𝑐1 − 𝑐2
1 − 𝑒𝑃𝑒

]
(7.478)

𝐽𝑠
𝐴
=
𝐽𝑤(1 − 𝜎)

𝐴
[
𝑐1 − 𝑐1𝑒

𝑃𝑒

1 − 𝑒𝑃𝑒
−
𝑐1 − 𝑐2
1 − 𝑒𝑃𝑒

]
(7.479)

𝐽𝑠 = 𝐽𝑤(1 − 𝜎) [
𝑐2 − 𝑐1𝑒

𝑃𝑒

1 − 𝑒𝑃𝑒
]

(7.480)

𝐽𝑠 = 𝐽𝑤(1 − 𝜎)
−𝑐𝐿 + 𝑐0𝑒

𝑃𝑒

1 − 𝑒𝑃𝑒

(7.481)

572

7.23.10.2 Solutions Prepared by Grant Hartung, 9/2018

A. Solving the diffusion-convection equation for concentration

Equation (7.482) describes how solute moves dynamically via diffusive (active) and

convective (passive) means. Equation (7.484) shows the analytic function for the solute flux, c.

See Section 7.23.10.1 to see that equation (7.484) satisfies equation (7.482).

𝑉
𝑑𝑐

𝑑𝑡
=
d

dx

𝐽𝑠
𝐴
 =

d

dx
 (
𝐽𝑠
𝑐 + 𝐽𝑠

𝑑

𝐴
)

(7.482)

𝑉
𝑑𝑐

𝑑𝑡
+ 𝑉𝑢𝑐′ = 𝑉𝐷𝑐′′ (7.483)

𝑐(𝑥) =
𝑐1 − 𝑐2
1 − 𝑒𝑃𝑒

𝑒
𝐽𝑤(1−𝜎)
𝐴𝐷 𝑥 +

𝑐2−𝑐1𝑒
𝑃𝑒

1 − 𝑒𝑃𝑒

(7.484)

𝑃𝑒 =
𝑢

𝐷/𝐿
=
𝐽𝑤(1 − 𝜎)

𝐴𝐷
𝐿

(7.485)

The full flux, 𝑗𝑤𝑐/𝐴⊥ , is hindered by the semi-permeable membrane. To account for this

hindrance of the full flux, 𝑣𝑐 is reduced by a factor of (1−𝜎) as reflected in equation (7.486) where

𝜎 is a reflection coefficient. The hand derivation shows that concentration profile satisfies the

steady diffusion equation.

573

(7.486)

B. Solving the diffusion-convection equation for concentration

Figure 7.168 shows the concentration profile, c(x) in μmol/μm3, as a function of length, x

in μm.

574

Figure 7.168. Concentration profile, c(x) in µmol/µm3, as a function of length, x in µm,

between x=0 and x=L.

C. Starling’s Law

Starling’s Law, equation (6), describes the transport of water across a membrane due to the

hydrostatic and osmotic pressure difference. Water transmembrane flux and the solute

transmembrane flux are coupled. Therefore, the two coupled nonlinear equations determine

the net water and solute flux across the membrane.

𝐽𝑤 = 𝐿𝑃 {∆𝑃 − 𝜎
2Π0

1 − 𝑒−𝑃𝑒

1 − 𝜎𝑒−𝑃𝑒
}

(7.487)

𝑃𝑒 =
𝐽𝑤(1 − 𝜎)

𝐷
𝐿

(7.488)

Figure 7.169 shows the solution for 𝑃𝑒 and 𝑗𝑤 obtained by exhaustive enumeration. Table

7.50 lists the solution obtained from MATLAB Newton implementation.

575

Figure 7.169. Residual error line plot (1D) and surface (2D) computed with exhaustive

enumeration.

The solution with Newton has been plotted on both figures.

Table 7.50. Solution for 𝑗𝑤 and 𝑃𝑒 using Newton method

Unknowns Solution Residual
Pe 0.0194 0

𝑗
𝑤

 1.8305 1.4e-14

576

P
e

>
>

 J
w

P
e

<
=

 J
w

Figure 7.170. Plot of resulting flow when changing parametrically varying the arterial pressure

(from Pc=1-100mmHg).

Note, the water flux, JW, always remains positive never reversing direction.

577

7.23.10.3 Code Listing

% % GH 9/18/2018 -- this is a procedure that estimates the nonlinear

% revised starling law and solves using Newton

function SLrevised

close all

% % area is based on length = 10 um, diameter is 10 um

global pArt pISF piArt piISF Lp sigma Pd A thickness D

dia = 10; LArt = 100; thickness = 3; % microns

D = 1e-3; %D for oxygen is 1.8e3 um^2/s

Lp = 0.19/13; % Lp = 1.67e-3;

% Lp = 1.67e-3; % Lp = 1.67e-3;

A=pi*(dia/2)^2*LArt;

pArt = 120; pISF = 4; piArt = 20; piISF = 2; sigma=0.5; Pd = D/thickness;

tolerance = 1e-6; rememberHistory=true;

 plotConcentrationProfile; xlabel('x'); ylabel('concentration'), legend('jw = 10','jw = -

10')

 jv = [1:0.01:3];

plotOverJv(jv)

% % solving 1 equation system

x0 = -5;

[xSoln,fSoln,xHist] = newton(@myFunc,[],x0,tolerance,rememberHistory);

xSoln

figure(2), scatter(xSoln,fSoln)

x0 = 31;

[xSoln,fSoln,xHist] = newton(@myFunc,[],x0,tolerance,rememberHistory);

xSoln

figure(2), scatter(xSoln,fSoln)

legend('residual(Jv)','r=0','solution 1','solution 2')

% solving 2 equation system

figure

pe = [-5:0.1:-0.9 0.01:0.1:5];

x0 = [1;1];

[xSoln,fSoln,xHist] = newton(@myFunc2,[],x0,tolerance,rememberHistory);

xSoln, fSoln

plotOverPeJv(pe,jv)

hold on, scatter3(xSoln(1),xSoln(2),fSoln'*fSoln,'y')

legend('residual(Jv)','solution','solution 1D','solution 2D')

figure, hold on, figure, hold on, x0 = [1;1];

for pArt = -20:100

 [xSoln,fSoln,xHist] = newton(@myFunc2,[],x0,tolerance,rememberHistory);

 if fSoln'*fSoln < 1e-6

 figure(4), scatter(pArt,xSoln(2));

 figure(5), scatter(pArt,xSoln(1));

 end

end

 figure(4), plot(0:100,zeros(101,1),'k'); xlabel('arterial pressure'); ylabel('jw')

 figure(5), plot(0:100,zeros(101,1),'k'); xlabel('arterial pressure'); ylabel('Pe')

end

function plotOverJv(Jv)

figure

residual = myFunc(Jv).*myFunc(Jv);

plot(Jv,residual); xlabel('Jv'); ylabel('residual error');

hold on, plot(Jv,zeros(1,length(Jv)),'k')

legend('revised Starling law','y=0')

end

function plotOverPeJv(Pe,Jv)

for i = 1:length(Pe)

 for j = 1:length(Jv)

 residual(i,j) = myFunc2([Pe(i);Jv(j)])'*myFunc2([Pe(i);Jv(j)]);

578

 end

end

surf(Pe,Jv,residual','edgecolor','none');

xlabel('Pe'); ylabel('Jv'); zlabel('residual error');

end

% a function to solve Jv in terms of Jv

function residual = myFunc(jv)

global pArt pISF piArt piISF Lp sigma thickness

deltaP = pArt-pISF; deltaPI = piArt-piISF;

pe = getPeclet(jv,thickness);

residual = jv - (Lp*(deltaP-sigma*piArt*(1-exp(-pe)./(1-sigma*exp(-pe)))));

end

% this procedure uses 2 equations to solve for Jv and peclet number

function residual = myFunc2(PeJv)

global pArt pISF piArt piISF Lp sigma thickness

deltaP = pArt-pISF; deltaPI = piArt-piISF;

residual = [0;0]; %set dimensions

residual(1) = PeJv(1)-getPeclet(PeJv(2),thickness);

residual(2) = PeJv(2) - (Lp*(deltaP-sigma*piArt*(1-exp(-PeJv(1))./(1-sigma*exp(-

PeJv(1))))));

end

function plotConcentrationProfile

global pArt pISF piArt piISF Lp sigma Pd A thickness D

 jw=10; x = 0:0.1:thickness;

 L = thickness;

 pe = getPecletOriginal(jw,L);

 c1 = (piArt-piISF)/(1-exp(pe))*exp(getPecletOriginal(jw,x))+(piISF-piArt*exp(pe))/(1-

exp(pe));

 jw=-jw;

 pe = getPecletOriginal(jw,L);

 c2 = (piArt-piISF)/(1-exp(pe))*exp(getPecletOriginal(jw,x))+(piISF-piArt*exp(pe))/(1-

exp(pe));

 figure, plot(x,c1,x,c2)

end

% a modified function that never goes negative, ensures positive concentration

function pe = getPeclet(jw,x)

global sigma A D

 pe = sqrt((jw.*(1-sigma)*x/D/A).^2);

end

function pe = getPecletOriginal(jw,x)

global sigma A D

 pe = jw.*(1-sigma)*x/D/A;

end

% fun is a pointer to the function and dfun is a pointer to the jacobian

% % next version -- write iterates and error for each step, possibly with switch, xHistory

and then plot when dones

function [xSolution,FresidualAtSolution,xHistory] = newton(fun,dfun,x0,tol,rememberHistory)

%rememberHistory is boolean

x = x0; err = fun(x)'*fun(x); maxIter = 100; iter=1; xHistory(:,iter)=x0;

if isempty(dfun), useNumericalDiff = true;

else useNumericalDiff = false; end

while err > tol

 F = fun(x);

 if useNumericalDiff, J = getNumericalDerivative(fun,x);

 else J = dfun(x); end

 if abs(det(J)) < 1e-15, disp('singular Jacobian'); break; end %should

take a gradient step here

 delX = - J\F;

 alfa = getStepsizeArmijo(delX,x,fun,dfun);

 xNew = x + alfa*delX;

 if rememberHistory, xHistory(:,iter) = x; end % remember history %

 err = sqrt(fun(xNew)'*fun(xNew)); iter = iter+1;

 if iter > maxIter,disp('max iteration exceeded'); break; end

579

 if norm(x-xNew) < 1e-6, disp(['no more update, saddle point found at ' num2str(xNew')]);

break; end

 x = xNew;

end

if rememberHistory, xHistory(:,iter) = x; end % remember history %

xSolution = x; FresidualAtSolution = fun(x);

end

function alfa = getStepsizeArmijo(delX,xOld,fun,dfun)

% % armijo linesearch using quadratic function fitting

alfa = 1; updating = true; delta = 0.1;

phiOld = fun(xOld)'*fun(xOld);

 phiNew = fun(xOld + alfa*delX)'*fun(xOld + alfa*delX);

while updating

 alfaNew = phiOld*alfa^2/((2*alfa - 1)*phiOld + phiNew);

 phiNew = fun(xOld + alfa*delX)'*fun(xOld + alfa*delX);

 if alfaNew > 1, alfa = 1; break; %breaking criteria when it wants to go larger

 elseif phiNew-phiOld <= -2*delta*alfaNew*phiOld, break;

 else alfa = alfaNew; end

end

end

function alfa = getStepsizeForDecreasingResiduals(delX,xOld,fun)

% % primitive linesearch by halving the stepsize, may fail because no

% iteration stop criterion in the while loop

alfa = 1; errOld = fun(xOld)'*fun(xOld);

errNew = fun(xOld+delX)'*fun(xOld+delX);

while errNew > errOld

 alfa = 0.5* alfa;

 xNew = xOld + alfa*delX;

 errNew = fun(xNew)'*fun(xNew);

end

if errNew > errOld, display('solution diverged'); alfa = -1; end;

end

% make n-dimensional

function J = getNumericalDerivative(fun,x)

N = length(x); J = zeros(N,N);

dX = 1e-6*ones(N,1);

for i = 1:N

 xNew = x; xNew(i) = xNew(i) + dX(i);

 dF = fun(xNew)-fun(x);

 J(:,i) = dF./dX;

end

end

function plotHistory(xHist,fun,xRange,yRange)

figure, plotNonLinearSurface(fun,xRange,yRange)

for i = 1:size(xHist,2)-1

 plot([xHist(1,i) xHist(1,i+1)],[xHist(2,i) xHist(2,i+1)],'k','linewidth',2)

 error(i) = fun(xHist(:,i))'*fun(xHist(:,i));

end

error(i+1) = fun(xHist(:,i+1))'*fun(xHist(:,i+1)); figure,

plot(error), xlabel('iteration number'); ylabel('residual error')

end

function plotNonLinearSurface(fun,xRange,yRange)

xPlot = xRange(1):0.1:xRange(2);

x2Plot = yRange(1):0.1:yRange(2);

for i = 1:length(xPlot)

 for j = 1:length(x2Plot)

 err = fun([xPlot(i);x2Plot(j)]);

 errorSurface(i,j) = err'*err;

 end

end

contour(xPlot,x2Plot,sqrt(errorSurface'),100,'b'), hold on

end

580

7.24 Appendix X: Newton method for solving nonlinear equations

The Newton-Raphson method (Newton method) is an iterative method for solving nonlinear

sets of equations (root finding). A comprehensive comparison of the newton method for solving

nonlinear equations and nonlinear optimization problems is given in a prior report [255]. This

section describes the Newton method for solving nonlinear equations and specifically outlines

implementation details and techniques for types of line searches for optimal stepsize control

(Armijo line search). An overview, example implementation, and code for solving a 2-dimensional

and 3-dimensional nonlinear set of equations is given. The mathematics presented are capable of

solving higher order nonlinear equations assuming the user can define the functions. The

functional partial derivative matrix (Jacobian matrix) can be given analytically or derived from a

proposed numerical derivative.

7.24.1 Theory

The following text discussing the theory behind the Newton method is originally derived in

previous work [255]. The method begins with an initial guess for the solution vector. This vector,

if it is not the solution, can be improved using the Newton step in which each variable in the

solution vector has a direction (positive or negative) and magnitude to approach a solution to the

system of equations. The difference between the original solution vector and the update vector

(after executing a Newton update step) is known as the update vector. This update vector, as with

all vectors, has a direction (known as the Newton direction) and a magnitude. The update vector,

𝑓(𝑥k+1), can be derived from a multidimensional Taylor’s expansion of the functions, 𝑓(𝑥), at

point, 𝑥k where 𝑓 and 𝑥 are vectors:

581

𝑓(𝑥k+1) = 𝑓(𝑥k) + ∇𝑓(𝑥k)∆𝑥k

 = 𝑓(𝑥k) + 𝐽(𝑥k)∆𝑥k
(7.489)

The Newton step can be found by replacing the residual, 𝑓(𝑥), with its first order Taylor’s

expansion, 𝑓, in multidimensions and letting each equation be equal to zero. Equation (7.490) is

expressed in vector form, where 𝑓 and 𝑥 are vectors and 0 is the null vector.

𝑓(𝑥k+1) = 𝑓(𝑥k) + 𝐽(𝑥k)∆𝑥k

= 0

(7.490)

The Newton direction, ∆𝑥𝑘, of the nonlinear equation set is given in Equation (7.491) where

𝐽(𝑥) at a given point, 𝑥 = 𝑥𝑘, is the Jacobian matrix:

∆𝑥k = −𝐽(𝑥k)
−1
𝑓(𝑥k) (7.491)

Another method for deriving the Newton method can be obtained from minimizing the residual

error surface, 𝛷(𝑥), given in Equation (7.492). Accordingly, the Newton step is equal to the

direction of the Newton minimizer of the residual error surface.

𝛷(𝑥k) =
1

2
𝑓(𝑥k)

T
𝑓(𝑥k)

(7.492)

582

�̃�(𝑥k) =
1

2
𝑓(𝑥k)

T
𝑓(𝑥k)

(7.493)

7.24.2 Implementation

An implementation is offered here for Equations (7.490)-(7.493). The source code is added in

Section 7.24.5. Figure 7.171 shows a pseudocode and workflow diagram of an implementation of

the Newton method.

1 xo = x0;

2 FOR I = 1 DO 100 DO

3 J = computeJacobian(xo);

4 fx = evaluateFunction(xo);

5 dx = -J^-1 * fx;

6 alfa = getAlfa(fx,dx,xo);

7 xn = xo + alfa*dx;

8 error = evaluateFunction(xn)’;

9 evaluateFunction(xn)

10 xo = xn; //update variables

11 IF error < tolerance, break; ENDIF

12 ENDFOR

Figure 7.171. Information flow diagram and pseudo-code for the Newton method using stesize

control.

A full matlab implementation is provided in section 7.24.5. Note, a max iteration must be set to

avoid infinite looping inside a saddle point.

583

7.24.2.1 Stepsize control

In order to avoid divergence and to increase convergence speed, stepsize control must be

employed when using the Newton method. This can be practically implemented by identifying and

enforcing a stepsize (α) in Equation (7.494).

𝑥new = 𝑥old + α∆𝑥
(7.494)

The simplest identification of a stepsize is to use a fixed scalar, such as 0.5. A slightly improved

method would successively cut the stepsize value in half until the residual of the update is lower

than the residual of the previous guess.

Armijo Linesearch. A more sophisticated algorithm to determine the optimal stepsize is the

Armijo linesearch. This method simultaneously fits a surrogate 2nd order function to the nonlinear

residual error function and finds its minimum. This quadratic line parameterized in α as visualized

in Figure 7.172.

584

Figure 7.172. The visualization of error of the nonlinear function in the newton direction.

The visualization of the surrogate Armijo chord in the newton direction and the optimal alpha

as defined by the quadratic approximation are also pictured.

The method of fitting a quadratic curve and finding its minimum gives an analytic equation to

computer the optimum stepsize (𝛼∗). The stepsize is consecutively updated (𝛼𝑘 for the kth guess of

𝛼) until it meets the condition in Equation (7.496). This condition enforces the update is an

improvement beyond a linear update as described by Biegler [256] who suggests setting the

minimum update, 𝛿, to 0.1. Here, 𝑥o refers to the old vector of x.

𝛼∗ =
𝛼𝑘
2 𝛷(𝑥𝑜)

(2𝛼𝑘 − 1)𝛷(𝑥
𝑜) + 𝛷(𝑥𝑜 + 𝛼𝑘𝛥𝑥)

(7.495)

𝛷(𝑥𝑜 + 𝛼𝑘𝛥𝑥) − 𝛷(𝑥
𝑜) ≤ −2𝛿𝛼∗𝛷(𝑥𝑜) (7.496)

585

7.24.3 Case Study 1 - Two Nonlinear Equations:

For the two nonlinear equations in Equation (7.497) are solved with the Newton method and

stepsize control. This example is solved in Section 7.24.5. The convergence history is also shown

using the residual error surface (Φ) and the linearized surface (Φ̃).

𝑓(𝑥1, 𝑥2) = {
𝑓1(𝑥1, 𝑥2) = 𝑥1

2
− 2𝑥1 − 𝑥2 + 0.5

𝑓2(𝑥1, 𝑥2) = 𝑥1
2
+ 4𝑥2

2 − 4

(7.497)

Figure 7.173. Residual error surface for Equation (7.497).

Contour plot of the error function in 𝑥1 (x-axis) and 𝑥2 (y-axis). Initial guess of [0.5 0.5]T is

marked in orange. The result xSoln will be the solution vector, fSoln will be the evaluation of

myProblem(xSoln), and xHist will give the history of the value of x at each Newton step.

The convergence history (Figure 7.174 - Figure 7.177) shows the Newton method solving the

linearized system iteratively. In some cases, the solution to the linearized system is not an

improvement from the initial guess vector in the nonlinear error surface. This is the circumstance

when the Armijo linesearch slows the update.

586

(a) (b)

Figure 7.174. First Newton step with Armijo linesearch employed.

In this step, the stepsize needs to be reduced in order to give a reasonable update. (a) Full step

reflects a convergence to the solution of the linearized system. (b) The update is reduced to the

optimum stepsize using Armijo linesearch. There is no need to update alpha more than once.

(a) (b)

Figure 7.175. The second Newton step with Armijo linesearch employed.

In this step, the stepsize needs to be reduced in order to give a reasonable update. (a) Full step

reflects a convergence to the solution of the linearized system. (b) The update is reduced to the

optimum stepsize using Armijo linesearch. There is no need to update alpha more than once.

587

(a) (b)

Figure 7.176. Third Newton step with Armijo linesearch employed.

In this step, the stepsize needs to be reduced in order to give a reasonable update. (a) Full step

reflects a convergence to the solution of the linearized system. (b) The optimal stepsize using

Armijo linesearch was found to be 1. There is no need to update alpha more than once.

(a) (b)

Figure 7.177. Solution to the nonlinear equations is found after a few more small updates (not

visible in the figure).

(a) Full step reflects a convergence to the solution of the linearized system. (b) The optimal

stepsize using Armijo linesearch was found to be 1. There is no need to update alpha more than

once. The final convergence may take more steps depending on the convergence criteria

(residual tolerance).

588

7.24.4 Case Study 2, 2 nonlinear equations

The Newton method can be used to solve the following set of equations:

𝑓(𝑥1, 𝑥2) = {
𝑓1(𝑥1, 𝑥2) = 𝑥1

2
− 2𝑥1 − 𝑥2 + 0.5

𝑓2(𝑥1, 𝑥2) = 𝑥1
2
+ 4𝑥2

2 − 4

(7.498)

The convergence history (Figure 7.178 - Figure 7.181) shows the Newton method solving the

linearized system iteratively.

(a) (b)

Figure 7.178. First Newton step with Armijo linesearch employed. In this step, the stepsize needs

to be reduced in order to give a reasonable update.

(a) Full step reflects a convergence to the solution of the linearized system. (b) The update is

reduced to the optimum stepsize using Armijo linesearch. There is no need to update alpha more

than once.

589

(a) (b)

Figure 7.179. Second Newton step with Armijo linesearch employed. In this step, the stepsize

needs to be reduced in order to give a reasonable update.

(a) Full step reflects a convergence to the solution of the linearized system. (b) The update is

reduced to the optimum stepsize using Armijo linesearch. There is no need to update alpha more

than once.

(a) (b)

Figure 7.180. Third Newton step with Armijo linesearch employed. In this step, the stepsize

needs to be reduced in order to give a reasonable update.

(a) Full step reflects a convergence to the solution of the linearized system. (b) The update is

reduced to the optimum stepsize using Armijo linesearch. There is no need to update alpha more

than once.

590

(a) (b)

Figure 7.181. Solution to the nonlinear equations is found after a few more small updates (not

visible in the figure).

(a) Full step reflects a convergence to the solution of the linearized system. (b) The optimal

stepsize using Armijo linesearch was found to be 1.. There is no need to update alpha more than

once. This final convergence may take more steps depending on the convergence criteria.

7.24.5 Matlab N-dimensional Newton code

This section provides a Matlab code that can solve an N-dimensional nonlinear algebraic

system of equations using stepsize control. The code gives the option to using numerical derivative

(instead of a hardcoded derivative matrix (Jacobian)) by simply passing a null pointer in the place

of the Jacobian matrix. The code includes two 2-dimensional nonlinear example problems and one

3-dimensional nonlinear problem with convergent initial conditions for each case.

591

% A function created by Grant Hartung 2/1/2018 to solve nonlinear equations

function LPPDNewton

close all,

rememberHistory = true; tolerance = 1e-6;

% x0 = [0;3]; %converges to solution 2 for problem 1

% x0 = [0.5;0.5]; %converges to solution 1 for problem 1

% x0 = [0.5;0.75]; %converges to solution 1 for problem 1

% x0 = [1;-1]; %stops at saddle point for problem 1

% x0 = [1;1]; %converges to solution 1 for problem 1

% [xSoln,fSoln,xHist] = newton(@myProblem,@myProblemDerivative,x0,tolerance,rememberHistory)

% [xSoln,fSoln,xHist] = newton(@myProblem,[],x0,tolerance,rememberHistory)

% [xSoln,fSoln,xHist] = newton(@myProblem2,@myProblemDerivative2,x0,1e-6,true)

x0 = [1.5;1.5;1.5]; %converges to solution 1 for problem 3, [2;2;2]

[xSoln,fSoln,xHist] = newton(@myProblem3,@myProblemDerivative3,x0,tolerance,rememberHistory)

[xSoln,fSoln,xHist] = newton(@myProblem3,[],x0,tolerance,rememberHistory)

% plotHistory(xHist,@myProblem2)

end

% % add and validate 2 versions of this with overload

% fun is a pointer to the function and dfun is a pointer to the jacobian

% % next version -- write iterates and error for each step, possibly with switch, xHistory and then plot when dones

% function [F,x] = newton(fun,dfun,x0,tol)

function [xSolution,FresidualAtSolution,xHistory] = newton(fun,dfun,x0,tol,rememberHistory) %rememberHistory is boolean

x = x0; err = fun(x)'*fun(x); maxIter = 100; iter=1; xHistory(:,iter)=x0;

if isempty(dfun), useNumericalDiff = true;

else useNumericalDiff = false; end;

while err > tol

 F = fun(x);

 if useNumericalDiff, J = getNumericalDerivative(fun,x);

 else J = dfun(x); end;

 if abs(det(J)) < 1e-15, disp('singular Jacobian'); break; end %should take a gradient step here

 delX = - J\F;

% alfa = getStepsizeForDecreasingResiduals(delX,x,fun); %stepsize control

 alfa = getStepsizeArmijo(delX,x,fun,dfun);

 xNew = x + alfa*delX;

 if rememberHistory, xHistory(:,iter) = x; end % remember history %

 err = sqrt(fun(xNew)'*fun(xNew)); iter = iter+1;

 if iter > maxIter,disp('max iteration exceeded'); break; end

 if norm(x-xNew) < 1e-6, disp(['no more update, saddle point found at ' num2str(xNew')]); break; end

 x = xNew;

end

xSolution = x; FresidualAtSolution = fun(x);

end

function alfa = getStepsizeArmijo(delX,xOld,fun,dfun)

% % armijo linesearch using quadratic function fitting

alfa = 1; updating = true; delta = 0.1;

phiOld = fun(xOld)'*fun(xOld);

 phiNew = fun(xOld + alfa*delX)'*fun(xOld + alfa*delX);

while updating

 alfaNew = phiOld*alfa^2/((2*alfa - 1)*phiOld + phiNew);

 phiNew = fun(xOld + alfa*delX)'*fun(xOld + alfa*delX);

 if alfaNew > 1, alfa = 1; break; %breaking criteria when it wants to go larger

 elseif phiNew-phiOld <= -2*delta*alfaNew*phiOld, break;

 else alfa = alfaNew; end

end

end

function alfa = getStepsizeForDecreasingResiduals(delX,xOld,fun)

% % primitive linesearch by halving the stepsize, may fail because no

% iteration stop criterion in the while loop

alfa = 1; errOld = fun(xOld)'*fun(xOld);

592

errNew = fun(xOld+delX)'*fun(xOld+delX);

while errNew > errOld

 alfa = 0.5* alfa;

 xNew = xOld + alfa*delX;

 errNew = fun(xNew)'*fun(xNew);

end

if errNew > errOld, display('solution diverged'); alfa = -1; end;

end

% make n-dimensional

function J = getNumericalDerivative(fun,x)

N = length(x); J = zeros(N,N);

dX = 1e-6*ones(N,1);

for i = 1:N

 xNew = x; xNew(i) = xNew(i) + dX(i);

 dF = fun(xNew)-fun(x);

 J(:,i) = dF./dX;

end

end

%% problem definitions

function FF = myProblem(x)

% two solutions are at: S1=[1.90068;0.31122] and S2 = [-0.2222; 0.9938]

FF = zeros(2,1);

FF(1) = x(1)^2 - 2*x(1) - x(2) + 0.5;

FF(2) = x(1)^2 + 4*x(2)^2 - 4;

end

function JJ = myProblemDerivative(x)

JJ(1,1) = 2*x(1)-2; JJ(1,2) = -1;

JJ(2,1) = 2*x(1); JJ(2,2) = 8*x(2);

end

function F = myProblem2(x)

f(1) = x(1) + x(2) - 3;

f(2) = x(1)^2 + x(2)^2 - 9;

F = [f(1);f(2)];

end

function dx = myProblemDerivative2(x)

df1 = [1 1];

df2 = [2*x(1) 2*x(2)];

dx = [df1;df2];

end

function F = myProblem3(x)

f(1) = x(1) + x(2) + x(3)^2 - 8;

f(2) = x(1)^2 + x(2)^2 - x(3) - 6;

f(3) = x(1)^3 + x(2)^4 - x(3)^2 - 20;

F = [f(1);f(2);f(3)];

end

function dx = myProblemDerivative3(x)

df1 = [1 1 2*x(3)];

df2 = [2*x(1) 2*x(2) -1];

df3 = [3*x(1)^2 4*x(2)^3 -2*x(3)];

dx = [df1;df2;df3];

end

function plotHistory(xHist,fun)

figure, plotNonLinearSurface(fun)

for i = 1:size(xHist,2)-1

 plot([xHist(1,i) xHist(1,i+1)],[xHist(2,i) xHist(2,i+1)],'k','linewidth',2)

 error(i) = fun(xHist(:,i))'*fun(xHist(:,i));

end

error(i+1) = fun(xHist(:,i+1))'*fun(xHist(:,i+1)); figure,

plot(error), xlabel('iteration number'); ylabel('residual error')

end

593

7.24.6 Derivation of Armijo linesearch optimal stepsize

In order to fit a second order residual error curve to the nonlinear error curve, a parametric

curve in N-dimensional space will be defined by the error, r, parameterized in stepsize 𝛼 as in

Equation (7.499).

𝑟 = 𝑐1𝛼
2 + 𝑐2𝛼 + 𝑐3

(7.499)

This function has 3 unknowns for which 3 pieces of information are required. The first two

pieces are the residual at 𝛼=0 and 𝛼=1. The third piece of information is that the gradient at xold is

the same. These pieces of information are expressed in Equation (7.501).

Φ = 𝐹𝑇𝐹
(7.500)

𝑟(0) = 𝐹(𝑥old)
𝑇
𝐹(𝑥old)

𝑟(1) = 𝐹(𝑥new)𝑇𝐹(𝑥new)

𝑑r(0)

𝑑𝛼
=
𝑑Φ(𝑥old)

𝑑𝛼

(7.501)

At this point, Φ is parameterized in all independent variables (x), not in the parametric

independent variable, 𝛼. In order to transpose these derivatives from the multivariable x space into

the parametric 𝛼 space, the chain rule is used as in Equation (7.502). Here, 𝑑x/𝑑𝛼 is constant for

𝛼 ∈ 0,1 so this ratio can be evaluated numerically by choosing a value for 𝛼 (say 0.1) and

calculating the change in x corresponding to that value of 𝛼.

594

The dot product of the transpose of the gradient in the x-dimension and the gradient of the

x-dimension with the alpha dimension is analogous to the summation of the transposed gradient

vectors pertaining x1 and x2. The resulting change with respect to 𝛼 accounts for the cumulative

changes in all dimensions of x simultaneously.

𝑑Φ(𝑥old)

𝑑𝛼
=
𝑑Φ(𝑥old)

𝑑𝑥

𝑇

∙
𝑑x

𝑑𝛼

Where

𝑑Φ(𝑥old)

𝑑𝑥
= 𝐽(𝑥old)

𝑇
𝐹(𝑥old)

𝑑x

𝑑𝛼
= [

𝑑𝑥1
𝑑𝛼
⁄

𝑑𝑥2
𝑑𝛼
⁄

]

(7.502)

𝑑x/𝑑𝛼 can be evaluated using Equation (7.503) when choosing any value for 𝛼.

𝑑𝑥1
𝑑𝛼

=
𝛼∆𝑥1
𝛼

𝑑𝑥2
𝑑𝛼

=
𝛼∆𝑥2
𝛼

(7.503)

Once evaluated, the final solution for the gradient 𝑑Φ(𝑥old)/(𝑑𝛼) can be simplified as in

Equation (7.504).

595

𝑑Φ(𝑥old)

𝑑𝛼
= [𝐽(𝑥old)

𝑇
𝐹(𝑥old)]

𝑇

∙
𝛼∆𝑥

𝛼

𝑑Φ(𝑥old)

𝑑𝛼
= 𝐹(𝑥old)

𝑇
 𝐽(𝑥old) ∙ −𝐽𝑇(𝑥old)

−1
 𝐹(𝑥old)

𝑑Φ(𝑥old)

𝑑𝛼
= − 𝐹(𝑥old)

𝑇
𝐹(𝑥old)

𝑑Φ(𝑥old)

𝑑𝛼
= −2Φ(𝑥old)

(7.504)

This operation (from Equation (7.503)) can also be viewed as the projection of the gradient

into the Newton direction. This projection will occur when performing the inner product (dot

product) between the gradient and the Newton direction as seen in Equation (7.504). To perform

the inner product of these 2 vectors, the first vector can be transposed.

𝑑Φ(𝑥old)

𝑑𝛼
=
𝑑Φ(𝑥old)

𝑑𝑥
∙ ∆𝑥

𝑑Φ(𝑥old)

𝑑𝛼
= [𝐽(𝑥old)

𝑇
𝐹(𝑥old)]

𝑇

𝐽(𝑥old)
−1
𝐹(𝑥old)

𝑑Φ(𝑥old)

𝑑𝛼
= 𝐹(𝑥old)

𝑇
 𝐽(𝑥old) ∙ −𝐽𝑇(𝑥old)

−1
 𝐹(𝑥old)

𝑑Φ(𝑥old)

𝑑𝛼
= − 𝐹(𝑥old)

𝑇
𝐹(𝑥old)

𝑑Φ(𝑥old)

𝑑𝛼
= −2𝛷(𝑥𝑜𝑙𝑑)

(7.505)

The final step to evaluate the coefficients can be seen for our example in equation (7.506).

596

[
0 0 1
1 1 1
0 1 0

] [

𝑐1
𝑐2
𝑐3
] = [

𝐹(𝑥𝑜𝑙𝑑)𝑇𝐹(𝑥𝑜𝑙𝑑)

 𝐹(𝑥𝑛𝑒𝑤)𝑇𝐹(𝑥𝑛𝑒𝑤)

−2Φ(𝑥𝑜𝑙𝑑)

]
(7.506)

This is a perfectly defined system and has 1 unique solution (because the A matrix is regular).

A parametric curve in 𝛼 is now defined that constitutes a pseudo-residual function. The minimum

of this new curve exists where the derivative is 0 which is described by Equation (7.507).

𝑑𝑟

𝑑𝛼
= 0 = 𝑐1𝛼 + 𝑐2

𝛼𝑜𝑝𝑡 = −
𝑐2
𝑐1⁄

(7.507)

597

7.25 Appendix Y: Properties of linear algebraic set of equations

A brief overview of the matrix properties is given in this section, including an in-depth look at

the gradient, residual and the energy of a matrix. Regardless of how the equations are formed, they

can be considered a series of n-dimensional lines/planes/hyperplanes in n-dimensional space. The

solution of the system of equations is the intersection of all lines simultaneously, which only occurs

once in a fully defined system. An underdefined system will have an infinite number of solutions

(an intersection along an entire line). An overdefined system has infinite solutions or no solution.

For the remainder of this section, the discussion will revolve around a system of 2 equations in 2

dimensions, allowing plotting functions to visualize concepts, but this does not preclude the topics

to be readily expanded to n-dimensional space using the same concepts.

Terminology. The terminology of this section assumes the linear algebraic system takes the

form of:

𝐴𝑥 = 𝑏

Where

𝐴 = [
c1,1 c1,2
c2,1 c2,2

] , 𝑥 = (
𝑥1
𝑥2
) , 𝑏 = (

𝑏1
𝑏2
)

(7.508)

7.25.1 Residual

The residual form of a linear system of equations follows:

𝐴𝑥 − 𝑏 = 𝑟 (7.509)

Where r is the residual of the equation. This vector has a magnitude, which is a measure of

how far the value of x is from the solution to the system of equations (the intersection of the 2

598

lines). As a vector, the value of the 1st element is the value of error (the distance) the coordinate of

x is from the 1st line, and the second element of r evaluates the distance from the second line.

The transposition of a guess vector from Cartesian coordinate system (x-y coordinates) into

the oblique coordinate system made up from the 2 vectors that are the A matrix and b vector (v-w

coordinates) assists in visualizing the error. The origin of the oblique coordinate system is the

solution to the system of equations. Note, the new coordinates of the guess vector after being

transposed into the oblique coordinate system make up a new vector from the new origin to the

new point. The length of this vector (or square of the length of this vector) is a fair measure of the

“wrong-ness” of the guess vector. This vector is known as the residual vector and is a measure of

coordinates (error) in the oblique coordinate system from each axis (each axis is a single equation).

In other words, the operation of evaluating the residual error is actually performing a

coordinate transformation of a point in Cartesian coordinates into the oblique coordinate system

and evaluating the projection of the error onto each base vector. This is visualized in Figure 7.182.

599

Figure 7.182. Visualization of the residual error on a 2x2 system of equations.

The residual is a measure of error that expresses the wrong-ness of the guess from each base

vector of the new (oblique) coordinate system. Note, the calculation of the residual vector is

effectively a coordinate transformation of the x vector.

7.25.2 Gradient

The gradient of the linear algebraic system is defined by:

𝑔 = (𝐴𝑥 − 𝑏) (7.510)

Which is the same as the residual vector. A better method for imagining the gradient is to think

of the residual form of the equations being a coordinate transformation between the X-Y Cartesian

600

coordinate system and the oblique base vectors (defined by the 2 lines). The b-vector is the

translation of the coordinate system to the origin and the A matrix is the rotational/scaling matrix

for any coordinate.

Under this paradigm, the goal of solving the linear algebraic system is to find the origin of the

oblique coordinate system in Cartesian coordinates. In this oblique coordinate system, the residual

is a local point coordinate. The vector starting at the origin in the oblique coordinate system

(solution of the equations) and the current value of x gives the direction from the solution to the

point, the negative of which would be an arrow pointing from the current point to the solution. The

reason that evaluating this does not simply solve the system of the equations, is that the new vector

(xi’, yi’) is still in the oblique coordinate system. Transforming this vector into the original

coordinate system is equivalent to solving the linear algebraic system.

601

Figure 7.183. Graphic representation of the coordinate transformation expressing the gradient

of the function in terms of the matrix A and vectors b and x guess.

Top Left) The solution to the system of equations and the Cartesian coordinate system (x, y) and

the oblique coordinate system (x’, y’). Top Right) The solution vector in the oblique coordinate

system is a transformation of the guess vector from Cartesian space to the oblique space using

the A matrix and b vector. Bottom Left) The guess vector in Cartesian coordinates.

7.25.3 Energy

Now that the gradient has been identified, it is imperative to integrate this function to identify

the equation for the surface representing this coordinate system. If the gradient is the derivative of

602

the system of equations, then the energy represents the integral of the gradient, representing the

system itself. This can be shown:

𝐸 = ∫𝑔 𝑑𝑥 = ∫(𝐴𝑥 − 𝑏) 𝑑𝑥

𝐸 =
1

2
𝐴𝑥2 − 𝑏𝑥 + 𝑐

(7.511)

Which can be written in proper matrix notation (the integral of a matrix pre-multiplies the

coefficients by a transpose of the x-vector) and with the assumption of a 0-Z offset:

𝐸 =
1

2
𝑥𝑇𝐴𝑥 − 𝑥𝑇𝑏 (7.512)

603

7.26 Appendix Z: Idealized brain geometry

The simplest method for investigating brain distribution of species is to use an idealized

geometry. This may not be the most spatially accurate simulation, but it is easily amenable to

parametric studies. For instance, the production of D-2-hydroxyglutarate (D2HC) by isocitrate

dehydrogenase 1 (IDH1) or IDH2 tumor cells causes epileptic-like seizures if large enough

portions of the brain exhibit a concentration greater than 3 millimolar [257]. The extrapolation of

data from cell cultures and CSF measurements allows a modeler to investigate how the

concentration profile may change while varying the unknown parameters of production rate and

diffusivity. The resulting profiles can be examined for physiological values, such as maximum

tumoral concentration, to validate which coefficients are most likely to be accurate. Such a

primitive simulation is only a rough estimate of effected region (region with a concentration above

a threshold) but the prediction of transport parameters can also be used to inform a simulation of

a 3D reconstruction as in [183].

A numerical model of the reaction-diffusion, Equation (7.513) was created using an idealized

radially symmetric model. The radius (𝑟) of the spherical system covers the concentric

compartments as in Figure 7.184. This steady-states species balance equates the diffusive flux with

the production rate of the D2HG protein. Here the concentration in each volume of D2HG protein

is 𝐶𝐴, and the diffusion coefficient is 𝐷𝑖. The protein production rate in of the compartment is given

by a zeroth order reaction rate, 𝑉𝑖 𝑆𝐴,𝑖 where 𝑉𝑖 is the volume of the element. The production rate

(𝑆𝐴,𝑖) is equal to 𝑆𝐴 in the tumor domain (Ω𝑡). In the other two compartments, brain tissue (Ω𝑏),

and CSF (Ω𝑐𝑠𝑓), there is no protein production and hence the reaction rate is 0.

604

This tumor produces D2HG which spreads by diffusion radially through the brain tissue into

the CSF compartment. D2HG is cleared from the CSF by passive transport together with the

reabsorbed CSF (unhindered clearance) with the flux of protein into the CSF (𝑓𝐶𝑆𝐹) defined as a

function of CSF bulk flow (𝑞𝐶𝑆𝐹) and the concentration of the solute in the CSF (𝐶𝐴,𝐶𝑆𝐹) given in

Equation (7.515). Symmetry is assumed at the center of the tumor mass.

∇⃗⃑⃑ 𝐷𝑖 ∇⃑⃑⃑⃗ 𝐶𝐴,𝑖 + 𝑉𝑖 𝑆𝐴,𝑖 = 0 (7.513)

{
𝑆𝐴,𝑖 = 𝑆𝐴 𝑥 𝜖 Ω𝑡

𝑆𝐴,𝑖 = 0 𝑥 𝜖 Ω𝑏 , Ω𝐶𝑆𝐹
 (7.514)

𝑓𝐶𝑆𝐹 = 𝑞𝐶𝑆𝐹 𝐶𝐴,𝐶𝑆𝐹 (7.515)

Figure 7.184. Schematic representation of the idealized system.

Red delineates the tumor domain, grey is the brain matter and blue is the csf compartment.

The production rate of the tumor mass was predicted using mass conservation between

production and clearance as reflected by Equation (7.516). The parameters used can be seen in

Table 7.51 alongside the predicted range of production rate of the tumor mass.

605

𝑆𝐴 𝑉𝑡𝑢𝑚𝑜𝑟 − 𝑞𝐶𝑆𝐹𝑐𝐶𝑆𝐹 = 0 (7.516)

Table 7.51: The given values used to predict the generation rate of the protein

Parameter Value

𝑟𝑡𝑢𝑚𝑜𝑟 1.5299 cm

𝑐𝐶𝑆𝐹 0.0075 - 0.1 x10-6 mol/cm3

𝑞𝐶𝑆𝐹 500 cm3/day (5.79e-3 cm3/s)

Predicted 𝑆𝐴 2.894 – 12.867 x10-12 mol/cm3/s

The steady-state concentration was formulated in spherical coordinates and solved using

Matlab. The spherical model was implemented with both a finite element method and a finite

volume method. Both methods were tested for mesh independence and had a difference of <10e-6.

Using Equations (7.513) - (7.516), the idealized radially symmetric model shown in Figure

7.184, and the parameters listed in Table 7.51, we simulated a range of D2HG release rates (SA)

and D2HG diffusivity constants within the tumor, brain, and CSF (Figure 7.185Figure). These

simulations generated a range of D2HG concentrations in a 2 cm radius around an IDH1mut tumor,

with a consistently rapid drop in D2HG away from the tumor center. At all the simulated diffusion

constants, D2HG release rates between 2.9-12.9x10-12 moles/sec generated curves that fit the

previously reported steady-state concentrations of D2HG within IDH1mut gliomas,1 as well as the

range of D2HG previously detected in the CSF of IDH1mut glioma patients.6 This range of D2HG

release rates also fully encompassed the rates that were independently extrapolated from in vitro

data, 3.2-5.8x10-12 moles/sec (data in [183]), strengthening the validity of these mathematical

models. The implementation of both finite volume method as well as finite element methods were

compared. The results indicated the finite volume method was able to converge with significantly

lower resolution.

606

Figure 7.185. Biometric study of differing D2HG release rates and diffusivities.

Differential concentration profiles as a function of tissue diffusivity (D) and protein production

rate (SA) in the tumor. The diffusivities are color-coded as can be reviewed in panel A, where

multiple concentration profiles are plotted against each other with differing D2HG diffusivities

and production rates. Panels B-G show each D2HG SA separately, as follows: B) SA = 2.89∙x

10-12 moles/ml/sec; C) SA = 4.89 x 10-12; D) SA = 6.88∙x 10-12; E) SA = 8.88 x 10-12; F) SA = 10.87

607

x 10-12; G) SA =12.87∙x 10-12. The red line is the toxic limit in the tissue, as indicated by the

minimum D2HG concentration required to increase neuronal network bursts.13 Dt = diffusion

constant through tumor; Db = diffusion constant through brain; DCSF = diffusion constant through

CSF.*

This information was later incorporated into a 3D reconstruction simulation, with parameters

chosen from the parametric study which matched the intratumoral concentration. The simulation

using a 3D reconstruction predicted 7.3% of the brain affected by toxic levels of the protein

(Figure 4 in [183]).

608

7.27 Appendix AA: Validation of spherical geometry for diffusion reaction system

A numerical model of the reaction-diffusion system is represented by Equation (7.517). The

discretized form was implemented on an idealized, radially symmetric model as pictured in Figure

7.186. Radial D2HG concentration profiles, 𝐶𝐶𝑆𝐹(𝑟), were simulated as a function of radius r in

spherical coordinates with the tumor at its center, 𝑟 = 0. The three compartments include tumor,

brain, and CSF space using a 3D spherical coordinate system are shown in Figure 7.227. This

tumor produces D2HG which spreads by diffusion radially through tissue into the CSF

compartment. D2HG is cleared from the CSF by passive transport together with the reabsorbed

CSF (unhindered clearance) as given in Equation (7.518). Symmetry is assumed at the center of

the tumor mass.

∇⃑⃗⃑ 𝐷 ∇⃑⃑⃑⃗ 𝐶𝐴 + 𝑉𝑡𝑢𝑚𝑜𝑟 𝑆𝐴 = 0 (7.517)

{
𝑆𝐴 = 𝑆𝐴 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑢𝑚𝑜𝑟
𝑆𝐴 = 0 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑖𝑠𝑠𝑢𝑒 𝑎𝑛𝑑 𝐶𝑆𝐹

𝐷𝑟𝑢𝑔 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 = 𝑞𝐶𝑆𝐹 𝐶𝐴,𝐶𝑆𝐹 (7.518)

Figure 7.186. Schematic representation of the idealized system.

Left) 2D picture of the 3D domain where red delineates the tumor domain, grey is the brain

matter and blue is the CSF compartment. Right) a 3D visualization of the domain is also offered.

609

The production rate of the tumor mass was predicted using mass conservation between

production and clearance as reflected by Equation (7.519). Relevant parameters of the model are

given in Table 7.52 as well as the predicted range of production rate of the tumor mass.

𝑆𝐴 𝑉𝑡𝑢𝑚𝑜𝑟 − 𝑞𝐶𝑆𝐹𝑐𝐶𝑆𝐹 = 0 (7.519)

Table 7.52.The given values used to predict the generation rate of the protein

Parameter Value

𝑟𝑡𝑢𝑚𝑜𝑟 1.5299 cm

𝑐𝐶𝑆𝐹 0.0075 - 0.1 x10-6 mol/cm3

𝑞𝐶𝑆𝐹 500 cm3/day (5.79e-3 cm3/s)

Predicted 𝑆𝐴 2.894 – 12.867 x10-12 mol/cm3/s

The steady-state concentration predicted using a spherical coordinate system in a proprietary

Matlab program. The spherical model was implemented with both a finite element method and a

finite volume method. Both methods were investigated for mesh independence and considered

achieving this when the update residual was <10e-6.

7.27.1 1D symmetric simulation with a range of production rates and diffusivity rates

7.27.1.1 Consistency test of the production rate

The overall mass balance in Equation (7.520) relates tumor volume (𝑉𝑡𝑢𝑚𝑜𝑟), production rate

(𝑆𝐴) and CSF concentration (𝑐𝐶𝑆𝐹).

𝑆𝐴 𝑉𝑡𝑢𝑚𝑜𝑟 − 𝑞𝐶𝑆𝐹𝑐𝐶𝑆𝐹 = 0 (7.520)

610

A discrepancy was immediately found between the literature values. Namely, the overall mass

balance does not hold given these values as summarized in Equation (7.521).

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑚𝑜𝑣𝑎𝑙

𝑆𝐴 𝑉𝑡𝑢𝑚𝑜𝑟 = 𝑞𝐶𝑆𝐹𝑐𝐶𝑆𝐹

1.0412x10-8 ≠ 5.787x10-10

(7.521)

With given Values:

𝑉𝑡𝑢𝑚𝑜𝑟 = 4π (1.5299)3 cm3, 𝑐𝐶𝑆𝐹 = 0.1e-6 mol/cm3,

𝑞𝐶𝑆𝐹 = 500 cm3/day = 5.79e-3 cm3/s

Without knowledge of what parameter is more or less accurate, a selection of permutations

spanning the relevant ranges were simulated. Each set permutation was identified by fixing one

of the values in the desired range and calculating the corresponding values that adhere to mass

balance as in Equation (7.522). The range of production values (SA) and diffusivity constants are

summarized in Table 9.53 and Figure 7.187. The production rates tested can be seen in Table

7.54.

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑚𝑜𝑣𝑎𝑙

𝑆𝐴 =
𝑞𝐶𝑆𝐹𝑐𝐶𝑆𝐹
𝑉𝑡𝑢𝑚𝑜𝑟

2.894 x 10-12 <= SA <= 38.574 x 10-12

(7.522)

611

Table 7.53. Corresponding diffusivities to the plotted variables

 Dtumor Dbrain Dcsf

 5x10-7 5x10-7 3.02x10-5
 6x10-7 6x10-7 2.43x10-5
 7x10-7 7x10-7 1.842x10-5
 8x10-7 8x10-7 1.253x10-5
 9x10-7 9x10-7 6.64x10-6
 1x10-6 1x10-6 7.5x10-7

Figure 7.187. Biometric study of differing material diffusivities and tumor production rates.

The black line corresponds to the maximum recorded concentration within the tumor and the

red line is the toxic limit in the tissue. The diffusivities are color-coded as can be reviewed in

Table 9.53.

Table 7.54. Differential production rates (RA) used in biometric study. (mol/cm3/s)

2.89x10-12 4.89x10-12 6.88x10-12 8.88x10-12 10.87x10-12 12.867x10-12

0

5

10

15

0

20

25

30

C
o
n
c
e
n
tr

a
tio

n
 [
m

o
l/m

3
,
m

ill
im

o
la

r]

1 2 12.867e-123 10.87e-12

Radius [cm]
4 8.88e-12

Production Rate
6.88e-125 4.89e-126 2.89e-12

Toxic Limit

Maximum Tumor Concentration

612

7.27.2 Validation

Spot checks. Mass conservation for many volume (spherical shell) was investigated to ensure

the inflow and outflow matched as in Equation (7.523). For a detailed examination of these spot

checks for the first simulation results, refer to Section 7.27.5.

𝑞𝑖𝑛 + 𝑆𝐴𝑉 − 𝑞𝑜𝑢𝑡 = 0 (7.523)

Overall Conservation. The overall conservation was also interrogated by calculating the total

tumor production and CSF clearance rates and ensuring they satisfy Equation (7.519). Note, this

is an indicator of matrix solvability as the boundary conditions were chosen to enforce

Equation (7.519).

Analytical Solution. The numerical integration scheme was validated against the analytical

solution given in Equation (7.524). The finite volume method (FVM) method passed this test with

N=50 nodes in the tissue domain, 1 node for the tumor mass and 1 node for the CSF space as

shown in Figure 7.188.

𝑐(𝑟) =
�̅� 𝑟𝑚𝑎𝑥

2

𝐷
(
1

𝑟
−

1

𝑟𝑚𝑖𝑛
) + 𝑘𝑝𝑟𝑜𝑑 (7.524)

�̅� =
𝑓̅

𝑆𝐴⊥

𝑘𝑝𝑟𝑜𝑑 = 𝑘
4

3
𝜋𝑟𝑡

3

613

Where 𝑟𝑚𝑎𝑥
2 is the radius of the CSF boundary edge, 𝑘𝑝𝑟𝑜𝑑 is the total tumor production (rate

of production multiplied by the tumor volume), 𝑟𝑚𝑖𝑛 is the radius of the first volume element, D is

the diffusivity of the species, 𝑓 ̅ is the turnover of CSF flow (the convective source in the CSF

compartment), 𝑆𝐴⊥ is the surface area at the CSF-tissue interface, and �̅� is the species flux into

the CSF at the boundary.

Figure 7.188. The comparison of the finite volume method against the analytic solution shows

excellent agreement.

This result demonstrates robustness of implementation for the reaction-diffusion system. Note,

the values for diffusivity and production rate in this case study are not the same as for the actual

simulation.

614

Figure 7.189. Comparison between the FEM and FVM on the spherical geometry system.

Note, for comparison the FVM and FEA methods are expressed after reaching mesh

independence, although they may not share the same number of values.

7.27.2.1 Finite Volume Method compared to Finite Element Analysis

The numerical integration of the finite volume method has been proposed previously. A finite

element analysis method was also implemented for comparison. The comparison of the two

methods can be seen in Figure 7.190.

 Method Dtumor Dbrain Dcsf

 FVM 0.5∙10-6 0.5∙10-6 3.020∙10-5

 FVM 0.6∙10-6 0.6∙10-6 2.430∙10-5

 FVM 0.7∙10-6 0.7∙10-6 1.842∙10-5

 FVM 0.8∙10-6 0.8∙10-6 1.253∙10-5

 FVM 0.9∙10-6 0.9∙10-6 6.640∙10-6

 FVM 1.0∙10-6 1.0∙10-6 7.500∙10-7

FEM 0.5∙10-6 0.5∙10-6 3.020∙10-5

FEM 0.6∙10-6 0.6∙10-6 2.430∙10-5

FEM 0.7∙10-6 0.7∙10-6 1.842∙10-5

FEM 0.8∙10-6 0.8∙10-6 1.253∙10-5

FEM 0.9∙10-6 0.9∙10-6 6.640∙10-6

FEM 1.0∙10-6 1.0∙10-6 7.500∙10-7

615

0 1 2 3 4 5 6

Radius [cm]

0

1

2

3

4

5

C
o
n
c
e
n
tr

a
tio

n
 [
m

o
l/m

3
,
m

ill
im

o
la

r]

KProduction = 2.8936e-12

Minimum Toxic Limit

Maximum Concentration

FVM

FVM

FVM

FVM

FVM

FVM

FEA

FEA

FEA

FEA

FEA

FEA

0 1 2 3 4 5 6

Radius [cm]

0

1

2

3

4

5

6

7

8

C
o
n
c
e
n
tr

a
tio

n
 [
m

o
l/m

3
,
m

ill
im

o
la

r]

KProduction = 4.8883e-12

Minimum Toxic Limit

Maximum Concentration

FVM

FVM

FVM

FVM

FVM

FVM

FEA

FEA

FEA

FEA

FEA

FEA

0 1 2 3 4 5 6

Radius [cm]

0

2

4

6

8

10

12

C
o
n
c
e
n
tr

a
tio

n
 [
m

o
l/m

3
,
m

ill
im

o
la

r]

KProduction = 6.883e-12

Minimum Toxic Limit

Maximum Concentration

FVM

FVM

FVM

FVM

FVM

FVM

FEA

FEA

FEA

FEA

FEA

FEA

616

Figure 7.190. The comparison of the finite volume method with the finite element method.

From this image it can be seen that the two methods are in good agreement with each other

offering another form of validation.

0 1 2 3 4 5 6

Radius [cm]

0

5

10

15

C
o
n
c
e
n
tr

a
tio

n
 [
m

o
l/m

3
,
m

ill
im

o
la

r]

KProduction = 8.8776e-12

Minimum Toxic Limit

Maximum Concentration

FVM

FVM

FVM

FVM

FVM

FVM

FEA

FEA

FEA

FEA

FEA

FEA

0 1 2 3 4 5 6

Radius [cm]

0

2

4

6

8

10

12

14

16

18

C
o
n
c
e
n
tr

a
tio

n
 [
m

o
l/m

3
,
m

ill
im

o
la

r]

KProduction = 1.0872e-11

Minimum Toxic Limit

Maximum Concentration

FVM

FVM

FVM

FVM

FVM

FVM

FEA

FEA

FEA

FEA

FEA

FEA

0 1 2 3 4 5 6

Radius [cm]

0

5

10

15

20

C
o
n
c
e
n
tr

a
tio

n
 [
m

o
l/m

3
,
m

ill
im

o
la

r]

KProduction = 1.2867e-11

Minimum Toxic Limit

Maximum Concentration

FVM

FVM

FVM

FVM

FVM

FVM

FEA

FEA

FEA

FEA

FEA

FEA

617

Figure 7.191. The comparison of the finite volume method with the finite element method where

each has a sufficient mesh density to provide mesh independence.

From this image it can be seen that the two methods are in good agreement with each other

offering another form of validation.

7.27.3 Mesh Independence

The mesh error can be seen in Table 7.55 with the respective computation time for simulating

all 6 profiles for FEM and FEA methods with the corresponding mesh densities. All computations

were performed in Matlab. Concentration and error profiles along the radial direction are shown

in Figure 7.192.

618

Table 7.55. Comparative error and computation time between different discretization methods

Number of Volume

Elements

(larger mesh – smaller

mesh)

Infinity norm of

the difference

between values

(FEA)

Infinity norm of

the difference

between values

(FVM)

Computation time

(in seconds)

21 8.667∙ 10−6 1.7965∙ 10−6 9.06∙ 10−4
51 2.9809∙ 10−6 2.8108∙ 10−7 8.33∙ 10−4

101 1.6023∙ 10−6 7.7789∙ 10−8 2.25∙ 10−3
201 8.3016∙ 10−7 2.3118∙ 10−8 2.54∙ 10−2
401 5.0578∙ 10−7 8.7651∙ 10−9 5.59∙ 100
1001 1.7074∙ 10−7 2.0955∙ 10−9 4.82∙ 101

Figure 7.192. Comparative error as a function of mesh density.

Left) FEA and Right) FVM methods show similar profiles. Top) concentration as a function of

radius at differing mesh densities show a faster convergence (lower mesh size) in the FVM

method compared to the FEA method. Bottom) the FEA method shows an order of magnitude

higher error than the FVM method at low discretization numbers. Note, the FEA method is more

sensitive to discontinuities than the FVM method.

7.27.4 Material properties

The relevant material properties for the simulation of D2HG in the spherical brain are offered

in Table 9.56. The unit conversions for these values is offered in Table 7.59.

619

Table 7.56. Simulation parameters necessary for quantifying the concentration profile.

Parameter Value Symbol Units

Diffusion constant (Tumor)

0.5∙10-6 (simulation 2.1 & 2.3)

1∙10-6 (simulation 2.2 & 2.4)

Dt cm2/s

Diffusion constant (Brain) 0.5∙10-6 (simulation 2.1 & 2.3)

1∙10-6 (simulation 2.2 & 2.4)

Db cm2/s

Diffusion constant (CSF) 30.2∙10-6 (simulation 2.1 & 2.3)

50∙10-6 (simulation 2.2 & 2.4)

DCSF cm2/s

Production Rate 𝑆𝐴 =38.6∙10-12 (Inferred from in 2.1)
(Simulation 2.1 & 2.2)

SA = 694∙10-12 (Simulation 2.3 & 2.4)

𝑆𝐴 mol/cm3/s

Tumor Outer Radius 1.5299 𝑅𝑡 cm

Brain Outer Radius 6.7700 𝑅𝑏 cm

CSF Outer Radius 7.0200 𝑅𝐶𝑆𝐹 cm

D2HG concentration in the

tumor

11.6-15.6 (Simulation 2.1)

10-30 (given)
𝐶𝐴,𝑡 mol/m3

D2HG concentration in the

tissue (predicted)

1.302-10.6 (Simulation 2.1)

(Grey area in figures)
𝐶𝐴,𝑏 mol/m3

D2HG concentration in the

CSF

1.299 (Simulation 2.1)

0.1 (given)
𝐶𝐴,𝐶𝑆𝐹 mol/m3

Neuronal toxicity level of

D2HG

3 (given) 𝐶𝐴,𝑡𝑜𝑥𝑖𝑐 mol/m3

CSF Turnover Rate 0.5 L/day (Given) 𝑞𝐶𝑆𝐹 L/day or

ml/min

620

Table 7.57. Data conversion from original units to standardized units and simulated units. Red

indicates a second value for minimum value.
Parameter Sym Given Value and

Units
Converted Values and

units
Actually Simulated

and units

Diffusion
constant
(Tumor)

Dt 1.0∙10-6
5.0∙10-7

cm2/s 1.0∙10-6
5.0∙10-7

cm2/s 1.0∙10-6
5.0∙10-7

cm2/s

Diffusion
constant
(Brain)

Db 1.0 x 10-6
5.0∙10-7

cm2/s 1.0 x 10-6
5.0∙10-7

cm2/s 1.0 x 10-6
5.0∙10-7

cm2/s

Diffusion
constant

(CSF)

DCSF 7.5∙10-6
3.02∙10-5

cm2/s 7.5∙10-6
3.02∙10-5

cm2/s 7.5∙10-6
3.02∙10-5

cm2/s

Production
Rate (see
separate

calculation)

𝑆𝐴 6.94∙10-4 mol/m3/
s

6.94∙10-10

(Calcualted)
2.89∙10-12-

38.57
∙10-12

mol/cm3/s 6.94∙10-10

(Calcualted)
2.89∙10-12-

38.57
∙10-12

mol/cm3/s

Tumor Outer
Radius

𝑅𝑡 1.5299 cm 1.5299 cm 1.5299 cm

Brain Outer
Radius

𝑅𝑏 6.77 cm 6.77 cm 6.77 cm

CSF Outer
Radius

𝑅𝐶𝑆𝐹 7.02 cm 7.02 cm 7.02 cm

D2HG
concentratio

n in the
tumor

𝐶𝐴,𝑡 10-30 mol/m3 10∙10-6 -
30∙10-6

mol/cm3 10∙10-6 -
30∙10-6

mol/cm3

D2HG
concentratio

n in the
tissue

(guess we
will predict

it)

𝐶𝐴,𝑏 mol/m3 mol/m3 mol/m3

D2HG
concentratio
n in the CSF

𝐶𝐴,𝐶𝑆𝐹 0.0075-
0.1

mol/m3 7.5∙10-9 -
100∙10-9

mol/cm3 7.5∙10-9 -
100∙10-9

mol/cm3

Neuronal
toxicity level

of D2HG

𝐶𝐴,𝑡𝑜𝑥𝑖𝑐 3 mol/m3 3∙10-6 mol/cm3 3∙10-6 mol/cm3

CSF
Turnover

Rate

𝑞𝐶𝑆𝐹 0.5 L/day 5.787∙10-3 cm3/s 5.787∙10-3 cm3/s

621

7.27.5 The validation of flux balance

The spot checks follow from nodal conservation laws and total conservation of the system are

investigated below. The system used for interrogation has 10 nodes for the tumor, 10 nodes for the

brain and 1 node for the CSF. Spot checks were performed at nodes 3, 6, 10, 15, and node 18.

5 ∙ 10−7
6.8271 ∙ 10−5 − 6.753 ∙ 10−5

1.53
(1.9118) −

5 ∙ 10−7
6.753 =∙ 10−5 − 6.623 ∙ 10−5

1.53
(3.6766) + 3.84 ∙ 10−11(0.285)

= −1.777 ∙ 10−26

At node 3

5 ∙ 10−7
6.435 ∙ 10−5 − 6.188 ∙ 10−5

1.53
(8.98) −

5 ∙ 10−7
6.188 ∙ 10−5 − 5.883 ∙ 10−5

1.53
(15.5) + 3.84 ∙ 10−11(1.365)

= 5.69 ∙ 10−25

At node 6

5 ∙ 10−7
5.092 ∙ 10−5 − 4.607 ∙ 10−5

1.53
(26.62) −

5 ∙ 10−7
4.607 ∙ 10−5 − 3.136 ∙ 10−5

0.542
(41.21) + 3.84 ∙ 10−11(4.06)

= −5.43 ∙ 10−25

At node 10

5 ∙ 10−7
1.23 ∙ 10−5 − 9.127 ∙ 10−6

0.542
(190.817) − At node 15

622

5 ∙ 10−7
9.127 ∙ 10−6 − 6.656 ∙ 10−6

0.542
(245.471) = −1.76 ∙ 10−24

5 ∙ 10−7
4.681 ∙ 10−6 − 3.067 ∙ 10−6

0.542
(375.483) −

5 ∙ 10−7
3.067 ∙ 10−6 − 1.722 ∙ 10−6

0.542
(450.84) = −1.76 ∙ 10−24

At node 18

14.995 ∗ 3.84 ∙ 10−11 − 5.79 ∙ 10−39.998 ∙ 10−8 = −1.034 ∙ 10−25 Total

conservation

623

7.28 Appendix AB: Oxygen in the brain

This section summarizes and compares many ways to calculate oxygen tension in the brain. In

all cases, there is a model for the vascular network (frequently represented by a network of points

and arcs with associated diameters) and a tissue mesh. The models are formulated analytically,

expressed numerically (in integral form), and implemented in 1, 2 and 3 dimensions. Multiple

models of mass transfer were compared and parametric studies were analyzed. Moreover, novel

visualization techniques were developed (specifically, raytracing, plane cutouts, small cutouts, and

DICOM visualization tools). Applications to models of the aging brain to interpret the changes in

oxygen tension due to known vascular disruption mechanisms are proposed. An additional

formulation of a functional hyperemia model (dynamic interaction between vasculature and

surrounding tissue during neuronal activation) was proposed and implemented.

7.28.1 Introduction

Computing oxygen in the human body is not trivial, as oxygen relies heavily on the multiple

binding sites of hemoglobin to assist in carrying the oxygen (O) to the extremities of the body and

ensure that O is not depleted near the source (the heart and lungs). The four binding sites of

hemoglobin (Hb) work cooperatively to increase the binding affinity inversely to the quantity of

bound O. E.g, as O unbinds from Hb, it is harder for O to unbind. This can be also interpreted in

chemical reaction rates as a dynamic change in the reaction rate constants as a function of bound

substrate. These reaction rate constants are, however, very hard to measure and much speculation

still exists regarding their nature.

624

One common assumption is to consider 4 reversible reactions of Hb to O which produce

intermediate forms of Hb as a byproduct. This new Hb molecule has a unique set of reaction rates

with O. Another common simplification is to use the Hill equation for saturation, as defined in a

later section, which accounts for the nonlinear binding kinetics.

This document outlines how to compute the supply and distribution of oxygen in a discretized

vascular network interacting with the surrounding tissue. One of these methods (the point-centered

coupling mass transfer model) has been previously published by Gould [21,22,62]. This section

will also cover some background regarding the hill equation and alternative computational

methods.

A short physiological description of how the oxygen moves through the body is offered:

oxygen exchanges with hydrogen in the lungs (oxygen is in the lung and hydrogen is on the

hemoglobin to start). Once the hydrogen has entered the lung, it reforms into CO2 and H2O

immediately. Oxygen replaces the hydrogen on hemoglobin, which carries it throughout the body

with high binding affinity so as to not deplete the supply immediately. The nonlinear binding

kinetics allow hemoglobin to carry oxygen far distances into the body, instead of expending it all

in the first few cm of the blood stream.

Once attached to the red blood cells (RBCs), the oxygen can dissociate from the hemoglobin

as a function of free oxygen (in the cytoplasm) and the binding affinity (which itself is a function

of bound O). The oxygen, once freed from the hemoglobin, diffuses through the cytoplasm towards

the cell wall, which hinders diffusion and transitions across the layer using mass transfer. Once

outside the cell, O diffuses through the blood plasma towards the vascular wall where it can again

cross through mass transfer. The oxygen can then diffuse through the extravascular space and react

away through metabolism with glucose to produce carbon dioxide and water. This water and

625

carbon dioxide mixes with free molecules in a reversible reaction sequence known as the

bicarbonate reaction sequence until it reaches the hemoglobin (following the reverse path as O).

At this point, free hydrogen will competitively bind to the hemoglobin and assist in lowering the

binding affinity for oxygen. Metabolism also occur in the cytoplasm and in the blood brain barrier

(BBB), however this is not modeled in any of the current implementation. For an in-depth review

of current models of oxygen in the cerebral microcirculation, refer to Section 7.37.

7.28.2 Problem formulation

Oxygen is carried through the blood stream into the brain by red blood cells (RBCs). This can

be modeled by either (i) a single-phasic bulk flow with convection or (ii) with hemoglobin-bound

oxygen, requiring a biphasic blood flow model. The simple model benefits from a linear

implementation with stable convergence up to very large mesh sizes while the ladder benefits from

an established nonlinear relationship between the red blood cells and bifurcation geometry.

The single-phasic blood flow model employs mass conservation and the Hagen Poiseuille

relationship between pressure and flow. The oxygen (O) will be convected by the bulk blood flow.

Each vessel in the blood stream will be allowed to discharge oxygen into the surrounding tissue

through mass transfer (more details on mass transfer models are covered in Section 7.28.7.3). O

then diffuses through the tissue and reacts (metabolizes) throughout the domain uniformly.

In the second model, the oxygen first must discharge from the hemoglobin, diffuse through the

red blood cell, transfer across the lipid bilayer wall, diffuse through the plasma, and transfer across

the endothelial cell layer of the blood vessel all before it enters the brain tissue (extravascular

space, specifically the interstitial fluid). In an initial approximation, the diffusion through the

cellular cytoplasm, across the lipid bilayer of the cell, and diffusion through the plasma are

626

assumed instantaneous. In the tissue, oxygen diffuses through the space and is reacted away as in

the previous model. An overview of this process and the relevant processes in functional

hyperemia is summarized in Figure 7.193.

Figure 7.193. Overview of relevant transport phenomena related to the lifespan of oxygen in the

brain.

7.28.3 Boundary conditions and material properties

The exterior tissue domain enforces a no flux boundary condition for oxygen. The inlet oxygen

content for the vasculature is a fixed value of arterial partial pressure (Poa). The blood flow model

627

uses arterial inlet and venous outlet fixed pressures (Pa and Pv, respectively). In the case of biphasic

blood flow, inlet hematocrit to the network was fixed at 0.35 (systemic hematocrit).

In the case of functional hyperemia (Section 7.30), the initial state of NO is considered baseline

(0 mol/μm3) and all computations of NO are considered a deviation from the baseline. The values

of the boundary conditions and material properties (diffusivity, consumption rate, etc.) used in this

study are listed in Table 7.58.

The hemoglobin inlet is calculated from the number of RBCs (h*vol/volrbc) multiplied by the

number of hemoglobin per RBC (need this number) multiplied by 4. This value is used to compute

the total number of hemoglobin. Note, the oxygen BC should be calculated following:

𝑛𝑂 = 4𝑛𝐻𝑏
/𝑅𝐵𝐶

𝑆
ℎ𝑉𝑣𝑒𝑠𝑠𝑒𝑙
𝑉𝑅𝐵𝐶

 (7.525)

Where 𝑛𝐻𝑏
/𝑅𝐵𝐶

 is number of hemoglobin per RBC, S is oxygen saturation (calculated from Hill

or taken from literature), h is the hematocrit inlet value, 𝑉𝑣𝑒𝑠𝑠𝑒𝑙 is the volume of the inlet vessel,

and 𝑉𝑅𝐵𝐶 is the volume of a single RBC. The calculation of saturation would involve assuming an

inlet partial pressure value of 68.5 mmHg which is converted to a concentration using

Equation (7.636). The derivation of the concentration conversion from partial pressure is given in

Section 7.34.2. The saturation is then evaluated from the Hill equation to identify how much is

bound and unbound in the inlet segment. The Hill equation is discussed in more detail in Section

7.36.

628

Table 7.58. Parameter and boundary condition choices for this model

Description Symbol Value Units Ref

Blood pressure inlet Pa 120 mmHg [21,22,258]
Blood pressure outlet Pv 5 mmHg [21,22,258]

Oxygen partial pressure at

network inlet

Poa 65.4 mmHg [21,259]

Diffusivity of NO DNO 3.3e3 μm2/s [260]
Diffusivity of O2 Do2 1.8e3 μm2/s [261]

NO production rate KNO
++ 2.1e-17 mol/s [262]

 21 attomol/s

NO consumption rate

(reaction to nitrate and

nitrite) same for blood and

tissue

KNO
- 0.01 s-1 [263]

CMRO2 Ko2
- 41.7e-13 nmol/(um3s) [264]

 41.7e-4 attomol/(um3s)

CMRO2 increase during

firing
K02

-- 30 %
[265]

Mass transfer across the

endothelial layer (blood-

brain-barrier) for O2

UO2 2.4 • 10-5 cm2/s [263]

 2.4e3 μm2/s

Solubility of O2 in plasma HO2,p 3e-5 mlO2/ml/torr [266]
 1.27e-12 nmol/um3/mmHg [264]
 1.27e-3 attomole/um3/mmHg

Ratio of O2 solubility in

brain vs plasma
 0.8

[261,266]

Solubility of O2 in brain HO2,t 2.6e-5 mlO2/ml/mmHg [261]
 1.1007e-12 Nmol/um3/mmHg [261,266]

NO boundary condition

domain edge
∇𝑓 = 0

O2 boundary condition

domain edge
∇𝑓 = 0

7.28.4 Numerical Implementation

All systems require a sparse linear algebraic solving library. The libraries of PETSc linear

algebraic solvers is employed using the generalized minimal residual method, GMRES, and a

block Jacobi preconditioner. For more information on how the nonlinear biphasic blood flow

problem can be separated and iteratively converged using linear systems, refer to Section 4.6.

629

7.28.4.1 Solving a 3D block using successive 2D sweeps for initialization routine

One method of solving large blocks of 3D Cartesian meshes is to iteratively solve 2D boundary

value problems, where the boundaries on the upper and lower limits of the plane need to be refined.

This method substantially reduces solving time (2D planes vs 3D cubes). The results, however,

show that the excessive number of iterations required to converge the system in in excess of the

original 3D problem.

Table 7.59. Time lapse for solving a 3D problem with successive 2D sweeps

nVol 10 25 50 100
Time sweep bidirectional (s) 0.17 35.8 740.1

Time 30 sweeps+converge (s) 0.21 7.2 140.0 394.0

Time 20 sweeps+converge (s) 0.15 6.4 134.3 3717

Time 10 sweeps+converge (s) 0.10 5.16 139.5

Time dyn sweeps+converge (s) 0.13 7.8 190.15 3687

MA48 ST 0.03 38.7
Matlab simultaneous:

To make equations 0.0036 0.053 0.412 3.34
To solve 0.0072 0.27 10.3 633.7

Total Matlab ST 0.0108 0.323 10.7 637
PETSc GMRES 0.48 1.6 10.5 109.73

GMRES (sweeping to initialize) (50 sweeps)

3385

7.28.5 1D problem

In order to ensure the numerical solution to the full 3D coupled problem of oxygen is reliable,

it is important to investigate lower order simulations using different material properties, boundary

conditions, and models for mass transfer or reactions. These simplified models give

straightforward insight into the effect each modeling choice has on the resulting profile.

630

7.28.5.1 1D diffusion only

The first place to start with any numerical simulation is to begin with only one aspect of the

simulation and ensure it is validated and meaningful before proceeding to add more complications.

In this case, a simple diffusion case study is the best place to start.

Figure 7.194. Schematic of domain on which the current 1D implementation is being solved.

Conclusions:

 The 1D diffusion only problem with Dirichlet boundary conditions and a fixed flux

source term has shown early convergence when the grid cells align perfectly with the

source flux (one cell center is exactly at the source point).

 When aligning the mesh with the source term, the lowest residual is the smallest

number of elements solving the problem (7 elements), which gave the same peak

concentration as calculated analytically.

 When the grid is arbitrarily chosen (10,1000,500, etc.), the convergence takes longer,

because the profile changes every time the peak location moves (due to misalignment

in the grid spacing).

631

The best way to validate a numerical simulation is to begin with an analytic solution. The

analytic concentration at source point in a 1D diffusion problem can be obtained.

𝑞𝑙𝑒𝑓𝑡(700𝜇𝑚) + 𝑞𝑟𝑖𝑔ℎ𝑡(700𝜇𝑚) = 𝑞𝑠𝑜𝑢𝑟𝑐𝑒

𝐷ΔyΔz (
𝑐(700𝜇𝑚) − 𝑐(0𝜇𝑚)

700
+
𝑐(700𝜇𝑚) − 𝑐(1000𝜇𝑚)

300
) = 𝑞𝑠𝑜𝑢𝑟𝑐𝑒

(7.526)

And given that c(0) and c(1000) is known, this reduces to:

𝑐(700𝜇𝑚)

700
−
𝑐(0𝜇𝑚)

700
+
𝑐(700𝜇𝑚)

300
−
𝑐(1000𝜇𝑚)

300
=
𝑞𝑠𝑜𝑢𝑟𝑐𝑒
𝐷ΔyΔz

𝑐(700)

700
+
𝑐(700)

300
=
𝑞𝑠𝑜𝑢𝑟𝑐𝑒
𝐷ΔyΔz

+
𝑐(1000)

300
+
𝑐(0)

700

(7.527)

And if c(1000)=c(0), then this further reduces:

𝑐(700𝜇𝑚) ∙ 300 + 𝑐(700𝜇𝑚) ∙ 700

700 ∙ 300
=
𝑞𝑠𝑜𝑢𝑟𝑐𝑒
𝐷ΔyΔz

+
𝑐(0𝜇𝑚) ∙ (700𝜇𝑚) + 𝑐(0𝜇𝑚) ∙ 300

300 ∙ 700

(7.528)

𝑐(700𝜇𝑚) ∙ 1000

700 ∙ 300
=
𝑞𝑠𝑜𝑢𝑟𝑐𝑒
𝐷ΔyΔz

+
𝑐(0𝜇𝑚) ∙ 1000

300 ∙ 700

(7.529)

𝑐(700𝜇𝑚) ∙ 1000 =
𝑞𝑠𝑜𝑢𝑟𝑐𝑒
𝐷ΔyΔz

700 ∙ 300 + 𝑐(0𝜇𝑚) ∙ 1000
(7.530)

632

𝑐(700𝜇𝑚) =
𝑞𝑠𝑜𝑢𝑟𝑐𝑒
𝐷ΔyΔz

700 ∙ 300

1000
+ 𝑐(0𝜇𝑚)

(7.531)

If we consider the concentration of 30 mmHg, this correlates to 2.16e-9 μmol and a source

feed (qsource) = 1e-9 μmol/s, D = 1.8e3 μm2/s, and ΔyΔz = 100, c(700) becomes:

𝑐(700𝜇𝑚) =
1𝑒 − 9

(1.8e3)100

700 ∙ 300

1000
+ 2.16𝑒−9

𝑐(700𝜇𝑚) = 2.1612𝑒−9 𝜇𝑚𝑜𝑙/𝜇𝑚3

𝑐(700𝜇𝑚) = 30.0163 𝑚𝑚𝐻𝑔

(7.532)

Note, all computations must be computed in line, the truncation used in this example will lead

to significant roundoff error.

Discretization schema. There are multiple ways to discretize a domain in even 1-dimension.

Two methods to consider are the half-distance spacing and the half-volume technique. The review

below will show that the most logical choice is the half-distance spacing as reviewed in Figure

7.195. Conclusions:

 The analytical solution can be obtained for a pure diffusion system with flow source using

minimal points necessary to define all domain features (source, boundary, etc.)

 When the source point does not shift the location of the source, all meshes give the correct

solution (complete mesh independence)

633

The half-distance spacing is convenient for equation generation, as all interior equations have

the same volume and thus, the same coefficients. The only alterations to the base equation in the

half-distance spacing is in volumes sharing an edge with the boundary, where a half-distance is

used to calculate the flux between the interior volume and the exterior half-volume. The half-

distance spacing has the drawback that the exterior volume has no volume and thus cannot exhibit

any reactions, although these equations are replaced with boundary conditions (Dirichlet,

Neumann, etc.) that frequently do not require assignment of reactions.

The half-volume technique is computationally convenient, as the volume centers are easily

computed as an even distribution between the 0 and L with nVolumes of divisions. This method

has the drawback of making equation generation difficult, however, as it requires assignment of a

boundary condition over a volume that cannot simultaneously account for the reaction in that

volume. This also suffers from the drawback that changing the domain resolution will inherently

change the resulting distribution, as the reaction volume will change (the half-volumes that are

void of reactions will get larger or smaller).

 Source term is ensured to fall on the same location. The best way to calculate a reliable

solution is to ensure that all relevant characteristics of the system are captured accurately. For

instance, if there is a source term at a specific location, the best integration of that information into

the simulation is to ensure there is always a cell centered at this location, regardless of mesh

density. In this way, the mesh always accounts for the proper source location (instead of the source

location changing as a function of grid spacing). Such a series of simulations was used to validate

the simulation in reference to the analytic solution provided above.

634

Figure 7.195. Graphical representation of two discretization techniques in 1-dimension.

The two methods differ in how the volume center is located and how the boundary volumes are

accounted for. The best choice is the half distance spacing technique.

Figure 7.196. Comparison of different mesh sizes with the analytic solution of the peak

concentration (computed above).

Left) The distribution across 3 datasets, all of which have a peak near the analytic solution

(plotted as data1). Right) the residual as computed between peak pressure analytically calculated

to the pressure computed on the distribution. The first dataset (n=7) has an error of 0, so the log

scale omits this datapoint.

nVol

qLeft

(attomole/s)

qRight

(attomole/s)

q0

(attomole/s)

C(700)

(mmHg)

Residual

(attomole/s)

7 300 700 1000 30.0163 1.819e-10

17 300 700 1000 30.0163 1.819e-10

27 300 700 1000 30.0163 2.274e-9

635

Source term is not ensured to fall on the same location. One source of numerical error occurs

when the grid spacing is not chosen with special consideration of the system. If an arbitrary nodal

position is chosen, the solution can vary simply because the features of the simulation do not

perfectly align with the cell centers in the mesh, leading to mesh-dependence. The best way to

counter this problem is to choose the nodal positions of the simulation to guarantee that all features

occur at the center of their respective volumes at all discretization densities.

Conclusion:

 The analytical solution can be obtained for a pure diffusion system with flow source

 When the source point does not shift the location of the source, any mesh gives the correct

solution (complete mesh independence)

Figure 7.197. Comparison of different mesh sizes with the analytic solution of the peak

concentration (computed above).

Left) The distribution changes as a function of grid spacing, primarily because the source

location changes causing the gradients and fluxes to change.

636

nVol qLeft

(attomole/s)

qRight

(attomole/s)

Q0

(attomole/s)

C(700)

(mmHg)

Residual

(attomole/s)

5 166.7 833.3 1000 30.0108 8.0e-10

10 312.5 687.5 1000 30.0167 1.5e-10

20 305.6 594.4 1000 30.0165 7.1e-9

50 302.1 697.9 1000 30.0164 2.2e-8

100 301.0 699.0 1000 30.0164 4.4e-8

150 300.7 699.3 1000 30.0164 3.9e-8

nVol qLeft

(μmole/s)

qRight

(μmole/s)

Q0

(μmole/s)

C(700)

(mmHg)

Residual

(μmole/s)

5 0.1667e-9 0.8333e-9 1e-9 30.0108 1.3e-21

10 0.3125e-9 0.6875e-9 1e-9 30.0167 2.1e-22

20 0.3056e-9 0.5944e-9 1e-9 30.0165 1.2e-20

50 0.3021e-9 0.6979e-9 1e-9 30.0164 1.3e-20

100 0.3010e-9 0.6990e-9 1e-9 30.0164 1.1e-20

150 0.3007e-9 0.6993e-9 1e-9 30.0164 4.1e-20

Source term not fall on cell centers) with edge detection. This case study follows the previous

one, yet the domain is separated by the use of edge-detection. This occurs when the discretization

is so dense that there are interior vascular nodes within the system. When this occurs in 1-

dimension, the Dirichlet value assigned at the vascular-tissue interface works as a discontinuous

diffusion problem in 1D between two Dirichlet points as opposed to the original interior-boundary

problem.

Conclusion:

 If the domain in 1D is split with mass transfer occurring only over the vessel surface (and

the volumes inside the vascular domain are no longer connected), this changes the

domain shape entirely and this becomes 2 independent diffusion problems.

 This new problem is much easier to solve, but is only an artifact of the 1D domain and

does not occur in higher dimensions

637

Figure 7.198. Comparison of different mesh sizes.

Left) The distribution changes as a function of grid spacing, primarily because the source

location changes causing the gradients and fluxes to change. Right) The residual immediately

converges to final result once the edge detection splits the domain. The error at this time is

caused by the artificial boundary condition at the vascular center.

nVol qLeft

(μmole/s)

qRight

(μmole/s)

Q0

(μmole/s)

C(700)

(mmHg)

Residual

(μmole/s)

100 0.30e-9 0.699e-9 1e-9 30.0164 1.1e-20

150 0.30e-9 0.699e-9 1e-9 30.0164 4.1e-20

200 5e-10 0.5e-9 1e-9 - 1.5e-20

400 5e-10 0.5e-9 1e-9 - 1.9e-19

1000 5e-10 0.5e-9 1e-9 - 5.0e-19

** note, the results for the value at 700 microns is omitted, because it is a linear averaging

between left and right values – which does not correlate to the source

7.28.5.2 1D problem with reaction and mass transfer

One-dimensional simulations, by definition, have a smaller workspace than the 2D and 3D

counterparts. An investigation of boundary condition choices and choices in mass transfer models

was conducted in 1D. This simplifies equation generation, manipulation, and drastically reduces

domain size (nElements). In all cases, the half distance spacing technique is used for discretizing

the domain following discussion in 7.14. The following parameters were used for the predictions:

638

Figure 7.199. Overview of domain on which the current 1D implementation is being solved.

Parameter Symbol Value Units

Diameter dia 10 μm

Tissue Diffusivity D 1.8 x 103 μm2/s

Length of tissue ray L 1 mm

Cross section Δ𝑦 = Δ𝑧 10 𝜇𝑚

Specific zeroth order reaction rate (CMRO2) r0 0.01

0.01 x 10-3

μmol/mL/s

μmol/μL/s

First order reaction rate k1 4.62 x 10-6 1/s

Average tissue concentration 𝑐̅ 30

2.163

2.163

mmHg

mol/L

μmol/μL

Mass Transfer Flux QMT 1 x 10-9 μmol/s

Figure 7.200. Schematic layout of the 1D simplified problem.

Varying boundary conditions. In any simulation, the varying of the boundary conditions should

not greatly impact the concentration profile. An investigation of varying boundary conditions was

performed and the results indicate boundary condition choices that led to non-physiological results.

Conclusions:

639

 only the periodic, no flux, and Dirichlet (using physiological values) BCs give

meaningful results

 the no flux BC is only sensible in the event the domain is large enough to be considered

isolated

The one-dimensional oxygen simulation was implemented with all the mass transfer (flow

boundary condition) discharging into a single volume of the mesh. The boundary conditions were

varied and the results compared. The boundary condition choices (applied at both ends of the 1D

mesh) included: (i) Dirichlet value of 0, (ii) Dirichlet value of 30mmHg, (iii) no flux (symmetry),

(iv) periodic. The reaction rate was also varied between a 0th order rate and a 1st order model. The

0th order reaction rate was only implemented on BC choices (i) and (ii). The results of these

simulations are given in Figure 7.202.

The most reasonable boundary conditions are periodic and the most stable mass transfer model

is the edge dispersion method. Note, when each volume of the mesh is larger than the diameter of

the vessel, model 3 for mass transfer is simplified to model 1.

640

Conceptual:

Figure 7.201. Profile shape comparison of different boundary conditions and reaction models

for a 1D diffusion/reaction problem.

The vertical axis (partial pressure of oxygen, mmHg) is not standardized between the figures.

The profiles show similar trends with the exception of the 1st order reaction model and Dirichlet

BCs (bottom left).

641

Comparative:

Figure 7.202. Comparison between different reaction rates and boundary conditions in the 1D

oxygen simulation.

These results indicate the only reasonable choices are 1st order reaction with no flux, periodic,

or Dirichlet (value of 30mmHg) are reasonable.

Varying mass transfer model. The models for mass transfer are described in Figure 7.203. The

comparison of mesh density on partial pressure profile for differing boundary conditions is given

in Figure 7.204. These results are represented in more detail in Figure 7.205.

642

Figure 7.203. Three methods (models) for mass transfer between vasculature and tissue.

Top) model 1 is the classic point source interface, Middle) model 2 is a distributed source (non-

physiological, but added for completeness), and Bottom) model 3 is transfer only across the

vessel edges. In model 3, the mesh elements that lie within the vascular segment will be endowed

with boundary condition-like equations that force their concentration to be the same as that of

the vasculature. Note, model 3 does separate the domain into 2 disconnected portions, a

phenomenon that is not shared in higher dimensions.

643

Figure 7.204. Comparison of different mass transfer models on mesh indepedence convergence

between different boundary conditions.

Top) the convergence of all three methods using a Dirichlet value of 30mmHg and a 1st order

reaction model. Middle) the convergence of all methods using insulated boundary condition on

each of the domain ends and a 1st order reaction model. Bottom) the convergence of all methods

using a periodic boundary condition and a 1st order reaction model. The convergence is slowest

with the point source, and fastest with the edge distribution techique (model 3).

644

M
et

h
o
d
 1

M
et

h
o
d
 2

M
et

h
o
d
 3

Figure 7.205. Comparison between different methods of mass transfer in a 1D model.

The predictions use a Dirichlet boundary condition on the tissue edges (30mmHg) for Top)

dotted lines indicate mass transfer method 1, Middle) dashed lines represent method 2, and

Bottom) solid lines indicate the solution for method 3 for different volume densities. Note,

method 3 converges must faster because this method effectively breaks the domain into 2

disconnected regions, making the problem structurally different and much easier to solve.

645

M
et

h
o
d
 1

M
et

h
o
d
 2

M
et

h
o
d
 3

Figure 7.206. Comparison of mesh independence for insulated tissue boundaries (flux=0) and

1st order reaction).

Top) dotted lines indicate mass transfer method 1, Middle) dashed lines represent method 2, and

Bottom) solid lines indicate the solution for method 3 for different volume densities. Method 3

converges must faster because this method effectively breaks the domain into 2 disconnected

regions, making the problem structurally different and much easier to solve.

646

M
et

h
o
d
 1

M
et

h
o
d
 2

M
et

h
o
d
 3

Figure 7.207. Comparison of mesh independence for periodic tissue boundary conditions and 1st

order reaction.

Top) dotted lines indicate mass transfer method 1, Middle) dashed lines represent method 2, and

Bottom) solid lines indicate the solution for method 3 for different volume densities. Method 3

converges must faster because this method effectively breaks the domain into 2 disconnected

regions, making the problem structurally different and much easier to solve.

647

7.28.6 2D problem

Because the findings in 1D were inconclusive (due to the structural breaking of the problem

into 2 distinct domains), it is important to investigate the problem with relevant mass transfer

models (Method 1 and 3) in 2-dimensions. This formulation is still simpler and easier to investigate

than the 3-dimensional counterpart yet does not suffer from domain splitting.

7.28.6.1 Diffusion in cylindrical coordinates

Conclusions:

 For a constant potential difference, 𝜙𝐴 − 𝜙𝐵, a thicker vessel alarge experiences smaller

resistance, and accordingly, larger fluxes

 Thinner vessels have smaller flow because a larger volume of the domain has to be

overcome, but also because the resistance increases since the flow emerges from a more

constricted circle with radius amedium

 The gradient of the concentration profile becomes infinitely steep as a approaches 0. The

flux also approaches 0. It may be plausible that the flux goes to 0 for an infinitely small

point source because the space around an infinite point source is so “thin” it would have

infinitely large resistance. In other words, an infinitely small point source discharges

nothing for a given potential difference because the resistance becomes infinite. Note that

numerical adaptations that use the cross sectional area between adjacent cells may

overcome this, assuming there is no evaluation of flux at the source point, however this is

an artifact of numerical error (source has 0 extent yet volume has nonzero extent) and is

648

not indicative of the real system. This is relevant for problems such as the Green’s

function.

 The discretized form of the equations is able to resolve a radius of 0, because the cross

sectional area between the adjacent cells uses the radius halfway between the cells

(numerical approximation). This is a mesh artifact and does not accurately represent the

source as infinitely thin, but rather as the width of the first element. In other words, this

does not reflect an infinitely thin source.

7.28.6.2 Problem formulation

The first approach for a 2D mass transfer model will use a single tube for feeding the domain.

Using a cylindrical coordinate system, the balance is symmetric in the azimuth (𝜃) dimension

(assuming the domain is also symmetric in 𝜃). If the problem assumes no change in the axial (z)

direction (domain and source are infinitely long), the problem is symmetric in the z dimension as

well, reducing to a 1-dimensional problem (cylindrical diffusion):

𝐷
𝜕

𝜕𝑟
(𝑟
𝜕𝑐

𝜕𝑟
) = 0

(7.533)

Which can be integrated to yield the general form of the analytic solution (assuming diffusivity

D=1):

∫𝜕 (𝑟
𝜕𝑐

𝜕𝑟
) = ∫0𝜕𝑟

(7.534)

649

𝑟
𝜕𝑐

𝜕𝑟
= 𝐶1

∫1𝜕𝑐 = ∫
𝐶1
𝑟
𝜕𝑟

𝑐𝑐𝑦𝑙 = −𝐶1 ln(𝑟) + 𝐶2

Which has been verified by insertion:

𝜕

𝜕𝑟
𝑐 =

𝐶1
𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑐

𝜕𝑟
) =

𝜕

𝜕𝑟
(𝑟
𝐶1
𝑟
)

𝜕

𝜕𝑟
(𝐶1) = 0 → 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑

(7.535)

For the sake of completeness (due to the spherical implementation in other analytic problems

such as the Green’s method [31,164]), the same process can be performed in spherical coordinate

system (where again D=1):

𝐷
𝜕

𝜕𝑟
(𝑟2

𝜕𝑐

𝜕𝑟
) = 0

∫𝜕 (𝑟2
𝜕𝑐

𝜕𝑟
) = ∫0𝜕𝑟

𝑟2
𝜕𝑐

𝜕𝑟
= 𝐶1

(7.536)

650

∫1𝜕𝑐 = ∫𝐶1𝑟
−2 𝜕𝑟

𝑐 = 𝐶1𝑟
−1 + 𝐶2

𝑐𝑠𝑝𝑒𝑟𝑒 =
𝐶1
𝑟
+ 𝐶2

This is also validation by insertion:

𝜕

𝜕𝑟
𝑐 = −

𝐶1
𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝑐

𝜕𝑟
) =

𝜕

𝜕𝑟
(−
𝐶1
𝑟2
𝑟2)

𝜕

𝜕𝑟
(𝐶1) = 0 → 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑

(7.537)

The cylindrical implementation can also be solved with given boundary conditions (2 Dirichlet

concentrations) for the particular solution and evaluated:

𝑐𝑐𝑦𝑙(𝑟) = −𝐶1 ln(𝑟) + 𝐶2

𝑓𝑜𝑟 𝐵𝐶𝑠: 𝑐(𝑎) = 𝑐1 𝑎𝑛𝑑 𝑐(𝑏) = 𝑐2
(7.538)

𝑐1 = −𝐶1 ln(𝑎) + 𝐶2
(7.539)

𝑐2 = −𝐶1 ln(𝑏) + 𝐶2
(7.540)

Where Equation (7.540) can be simplified and inserted in to Equation (7.539):

651

𝑐2 + 𝐶1 ln(𝑏) = 𝐶2
(7.541)

𝑐1 = −𝐶1 ln(𝑎) + 𝑐2 + 𝐶1 ln(𝑏)

𝑐1 = 𝐶1(ln(𝑏) − ln(𝑎)) + 𝑐2

𝑐1 = 𝐶1 ln(𝑏/𝑎) + 𝑐2

𝑐1 − 𝑐2
ln(𝑏/𝑎)

= 𝐶1

(7.542)

Now 𝐶1 can be substituted back into Equation (7.541) to give 𝐶2:

𝑐2 +
𝑐1 − 𝑐2
ln(𝑏/𝑎)

ln(𝑏) = 𝐶2
(7.543)

Which can now be plugged back into the original formulation to give:

𝑐𝑐𝑦𝑙(𝑟) = −
𝑐1 − 𝑐2
ln(𝑏/𝑎)

ln(𝑟) + 𝑐2 +
𝑐1 − 𝑐2
ln(𝑏/𝑎)

ln(𝑏)
(7.544)

Which can be simplified to:

𝑐𝑐𝑦𝑙(𝑟) = −
𝑐1 ln (

𝑏
𝑟
) + 𝑐2ln (𝑟/𝑎)

ln (𝑏/𝑎)
 (7.545)

652

Which, when endowed with the properties of Table 7.60, gives a reasonable profile as seen in

Figure 7.208.

Table 7.60. Values used to graphically evaluate the analytic solution to diffusion equation in

cylindrical coordinates.

Name Symbol Value

Endothelial concentration c1 35

Distal concentration c2 30

Endothelial radius a 5

Domain radius b 500

Figure 7.208. Validation of the implementation of the radial diffusion problem by verifying

boundary conditions

Now that the equation has been validated, the evaluation at radius r=0 (the singular point) can

be interrogated to investigate the robustness of the analytic method. It can be shown below that

the variation of the location a (or likewise, the variation in concentration at a) results in a

singularity at r=0. In the event the boundary condition is enforced for a=0, the solution is the value

at c2 along the entire domain. In other words, the analytic equation exposes a singularity around

r=0. In the case that a=0, the value of c becomes constant, which is not the correct model either.

This can be expressed analytically if 𝑏 = 𝑏, and 𝑎=0 evaluated at 𝑟=0:

653

𝑐𝑐𝑦𝑙(𝑟) = −
𝑐1 ln (

𝑏
𝑟
) + 𝑐2ln (𝑟/𝑎)

ln (𝑏/𝑎)

𝑐𝑐𝑦𝑙(𝑟) = −
𝑐1 ln (

𝑏
𝑟
) + 𝑐2ln (𝑟/0)

ln (𝑏/0)

𝑐𝑐𝑦𝑙(𝑟) = −
𝑐1 ln (

𝑏
𝑟
)

ln (𝑖𝑛𝑓)
− 𝑐2

ln (𝑖𝑛𝑓)

ln (𝑖𝑛𝑓)

𝑤ℎ𝑒𝑟𝑒
𝑐1 ln (

𝑏
𝑟
)

ln (𝑖𝑛𝑓)
=
𝑐1 ln (

𝑏
𝑟
)

−𝑖𝑛𝑓
= 0

(7.546)

And due to l’Hopital’s rule:

𝑐2
ln (𝑖𝑛𝑓)

ln (𝑖𝑛𝑓)
= 𝑐2

(7.547)

7.28.6.3 Implementation

Varying the model w.r.t. radius allows interrogation of how the profile changes with different

models of the source This is relevant for comparing the many models for mass transfer

implemented on 1D-3D coupling paradigms, where three models are frequently used: (i) infinitely

thin diameter [31–33,164,165], (ii) finite but very small[21,22,62], and (iii) true vessel

diameter[23,24,85,264,267]. This variation only considers the modeling diameter, not the

distribution diameter, so it does not offer insight into model (ii) which uses a combination of real

654

diameter (for computations) and a modified diameter (for distribution). The conclusions are stated

at the top of Section 7.28.6.

Analytic implementation. The varying of vessel radius reflects boundary conditions

enforcement and that the constant flux BC results in varying gradients at the vessel edge. Note, the

concentration gradient gets more steep as the vessel radius decreases. This can be expressed

analytically by evaluating the derivative of Equation (7.545):

𝑑𝑐

𝑑𝑟
= −

𝑐1 − 𝑐2

ln (
𝑏
𝑎
)
∙
1

𝑟

(7.548)

Giving a flux of:

𝑞 = −𝐷
𝑑𝑐

𝑑𝑟
𝑆𝐴

 = −𝐷
𝑐1 − 𝑐2

ln (
𝑏
𝑎
)
∙
1

𝑟
(2𝜋𝑟)

 = −𝐷
𝑐1 − 𝑐2

ln (
𝑏
𝑎
)
(2𝜋)

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

(7.549)

In order to satisfy this constant flux, the concentration difference is inversely proportional to

source radius, 𝑎. If the diameter changes and the concentration is maintained at the vessel edge,

the flux will decrease as a function of diameter. This is a result of the increased resistance to reach

655

the opposing boundary and the lower surface area (higher resistance) between vessel interior and

vessel exterior. These results can be seen in Figure 7.209 and Table 7.61.

Figure 7.209. Varying the radius of the cylinder source (a) and its effect on the flux through the

system.

The legend indicates the value of the vessel radius, 𝑎. Note, a radius of 0 results in nonphysical

profile.

Table 7.61.Resulting flows at the initial and terminal segments when varying the vessel radius (a)

𝒂 Q1 QN Residual

1 5.06 5.06 0

11 8.23 8.23 0

21 9.91 9.91 0

31 11.30 11.30 0

41 12.56 12.56 0

51 13.76 13.76 0

61 14.93 14.93 0

71 16.09 16.09 0

81 17.26 17.26 0

91 18.44 18.44 0

101 19.64 19.64 0

Numerical implementation. The numerical implementation of the radial diffusion problem also

shows promising results in agreement with the analytic solution. The edge detection for equation

656

generation for a 2D Cartesian mesh is given in Section 7.32.1. The conclusions are reviewed at the

top of this section.

Figure 7.210. Varying the radius of the cylinder source (a) and its effect on the flux through the

system using discretized implementation.

Note, the evaluation of radius r=0 is indicative of a diffusion problem that uses midpoint

evaluation of flux computations.

Table 7.62. Resulting flows at the initial and terminal segments when varying the vessel radius (a)

a Q1 QN Residual

0 5.35 5.35 0.269e-12

10 8.28 8.28 5.92e-12

20 9.93 9.93 0.482e-12

30 11.31 11.31 0.620e-12

40 12.57 12.57 0.161e-12

50 13.76 13.76 0.247e-12

60 14.93 14.93 9.80e-12

70 16.09 16.09 0.194e-12

80 17.25 17.25 0.657e-12

90 18.42 18.42 8.31e-12

100 19.62 19.62 0.717e-12

Mesh independence for FVM. In order to validate the numerical method and discretization

scheme, it is important to find mesh convergence with a 1D discrete grid to the analytic cylindrical

diffusion problem. This can be accomplished by using a radial (cylindrical) model for the cross

657

sectional area between a 1D diffusion-reaction problem. This can be solved with linear spacing

(Cartesian) or with logarithmic spacing (for comparison). The findings indicate that the steep

gradient next to the source cause significant numerical error and a large number of volumes are

necessary to converge the solution. In the case of linear spacing, the residual, defined by

concentration at 100µm and the flux between a and 10µm, indicates the residual is still larger than

1e-3 after 1000 volumes. The logarithmic spacing reaches a value below 1e-3 between 500 and

1000 volumes. The logarithmic spacing, however, rectifies this problem at a low discretization (50

volumes is already converged). In the future, this knowledge can be implemented on a linearly

discretized mesh using a shape profile [165].

658

Linear spacing Logarithmic spacing

Figure 7.211. Comparison of different discretization schemes.

Top) concentration profile, Middle) difference from analytic solution at 100μm from the vessel

wall, and Bottom) residual error as a function of discretization density (nVol). The linear spacing

does not converge until ~300 volumes while the logarithmic spacing converges at a much lower

density. Unfortunately, this type of geometric mesh modification destroys the Cartesian mesh

logic (especially when applied to a dense network consisting of many vessels), so it will not be

used in this work. Note, the discrepancies between the values in the middle row is due to the

discrete calculation with differing Δx.

659

Numerical validation for 2D Cartesian mesh. The radial model is a good method for validating

numerical implementation, but in real applications, the domain is represented by a mesh instead of

an analytic domain. To model the mesh in 2D, a Cartesian grid (a mesh made entirely of rectangles)

was generated. In order to investigate the robustness of this method, a test was devised that

assigned boundary conditions that result in a domain similar to those in the analytic formulation

above. Conclusions:

 The narrower the vessel, the steeper the gradient

 The steeper the gradient, the more volumes are needed to solve discretely

 The problem converges to a final profile rather quick (~50 elements per dimension)

 The implementation of the boundary condition on the exterior volume is insufficient to

represent the geometry at 𝑎=0

A parametric study of mesh convergence is offered in Figure 7.212. Also depicted is a

parametric study with variable values for vessel radius (a) with constant volumes. As the radius

becomes thinner, the profile deviates more from the analytic solution.

660

Figure 7.212. Comparison of analytic to discrete simulations of concentration profiles with

varying the source vessel radius (𝑎).

Top) different levels of discretization show a convergence quickly (<50 volumes, yellow line).

Bottom) numerical implementation aligns well across many source radii. Note, the slight

differences are attributed to poor discretization at the boundary edge (see Section 7.14 half-

volume technique for more information).

The concentration profile of the entire domain can be visualized using Matlab’s surface mesh

function, where the z-coordinates of every mesh element can be assigned by the concentration.

This is shown for varying volumes in Figure 7.213 and for many radii in Figure 7.214.

661

nVol = 10 nVol = 50 nVol = 100

nVol = 500 nVol = 1000

Figure 7.213. 3D profiles of the concentration simulated with numerical implementation while

varying the mesh density.

The final profile is reasonably achieved by a 50x50 mesh (Vol=50).

662

Radius=1 Radius=5 Radius=10

Radius=100 Radius=200

Figure 7.214. 3D profiles of the concentration simulated with numerical implementation while

varying the vessel radius, a.

The residual error is also compared for the different discretization schemes. Error =

abs{analytical solution (c[800microns]) – numerical value (c[800microns])}

nVol 10 50 100 500 1000 5000
Error at 800 microns (mmHg) 3.37e-2 1.85e-2 9.21e-3 3.42e-3 2.69e-3 1.97e-3

7.28.7 3D problem

Simulating the 3D version of the proposed mass transfer problem can be solved with many

methods. The obvious first choice would be a full, body-fitted 3D mesh of the vasculature and the

tissue combined. Unfortunately, due to the size of the vasculature (large number of vessels), the

663

simulation of the vasculature alone is computationally prohibitive as discussed in Section 1. To

overcome this barrier, many models have been developed to couple a 1D vascular model to a 3D

tissue domain. These include (i) an infinitely-thin source term [31–33,164,165], (ii) a body fitted

mesh between the vasculature and tissue [23,24,85,264], and (iii) 1D-3D point-centered mesh

coupling [21,22,62].

The first method is useful for deriving the analytic solution, giving immediate mesh

independence. Unfortunately, this method suffers from a non-physiological mass transfer model

(as discussed in Section 7.28.6) and the nonlinear fixed point iterative solving methodology is time

prohibitive for vascular structures larger than ~100 segments.

A body-fitted mesh is another method to adapt a 1D network to a 3D mesh, as it does not suffer

from the limited mass transfer model. This method is unfortunately also computationally

prohibitive for large structures. This is an effect of the unstructured mesh density which must be

dense surrounding small vessels, leading to meshes too large to simulate at the scale of large

microcirculatory sections of the mouse brain (~1mm3).

The third model is a point connectivity between a hexahedral mesh and an encompassed

vasculature. The vasculature points discharge, through mass transfer, oxygen into a single mesh

element. This method maintains numerical stability for large microcirculatory structures by

avoiding dense meshing as in body-fitted meshes. Unfortunately, however, the mesh convergence

can become unstable when the network has a large range of vessel diameters (~1µm to ~100µm).

In such cases, as the mesh continues to refine and resolve microgradients between small vessels,

the discharging source volumes become smaller than the large vessels. In these circumstances, a

massive mass transfer flux from a pial vessel will discharge into a mesh volume of significantly

664

smaller size, leading to a large local gradient surrounding that volume. For more information on

meshing in relationship to large gradients, refer to Section 7.28.6.3.

To incorporate the benefits of the body fitted meshes (vessel size and orientation) and the

scalability of the point-connection, three new techniques have been developed relying on the

Cartesian mesh logic; (i) the entire simulation will be solved in 3D using a Darcy-like flow

problem, (ii) a 1D flow simulation will be projected into a 3D Cartesian domain and the

convection-mass transfer-diffusion-reaction sequence will be solved entirely in a 3D mesh, and

(iii) a method for connecting large vessels with a distributed vessel edge detection and smaller

vessels with the point connection. After testing, only option (iii) is considered reasonable for

further pursuit. Note, all simulations require a method for edge detection between a 1D vascular

network and a 3D Cartesian mesh. The algorithm and implementation for this can be reviewed in

Section 7.32.3.

7.28.7.1 3D blood flow (Darcy flow) and 3D convection-diffusion-rxn

The flow vector of a blood flow simulation can be simulated entirely in a mesh using a Darcy-

like flow (hindered diffusion through a porous medium). First, a mesh is labeled with a mask

delineating elements corresponding to the endothelial layer, blood plasma, and extravascular

space. These labels will allow the program to generate equations of flux between adjacent

elements. For a description of how the labeling algorithm is executed, refer to Section 7.32.3. The

first step of the simulation is to define the bulk blood flow vector. To do this, the vascular-vascular

flux is defined by a Darcy driven flow:

665

𝑓𝑑𝑎𝑟𝑐𝑦 = −𝐾𝐴
𝑑𝑝

𝑑𝑥
 (7.550)

Where K is related to viscosity, µ, from the HP equations, but is not necessarily the same value.

In fact, later simulations will prove that when using this model, the value of K must change for

each simulation and each mesh discretization size. The flux between endothelial elements and

vascular elements is modeled as a mass transfer. A is the cross sectional area between two adjacent

volume elements and 𝑑𝑥 is the distance between adjacent element centers. The remainder of the

elements are endowed with a Dirichlet boundary condition (p = 0) and the faces between

endothelial layers and vessel layers have no flux. The flux balances for the first simulation exist

only in the vasculature nodes:

0 = ∇ ∙ 𝑓𝑑𝑎𝑟𝑐𝑦

0 = −𝐾𝐴
𝑑2𝑝

𝑑𝑥2

(7.551)

For the second stage of simulation, the interface between adjacent vasculature elements is

endowed with a convection flux model:

𝑓𝑐𝑜𝑛𝑣 = 𝑞𝐴𝑐, 𝑞 = −𝐾
𝑑𝑝

𝑑𝑥
 (7.552)

666

Here, 𝑐 represents the concentration of oxygen in a given element. The faces separating

endothelial elements from vasculature elements undergo a mass transfer flux. The same model is

also used at the endothelial - tissue interface and between adjacent endothelial elements:

𝑓𝑀𝑇 = −𝑈𝐴
𝑑𝑝

𝑑𝑥
 (7.553)

Where U is the mass transfer coefficient of the endothelial layer. The tissue-tissue interface

will employ a diffusivity flux:

𝑓𝑑𝑖𝑓𝑓 = ∇⃑⃑ ∙ (𝐷
𝑑𝑐

𝑑𝑥
𝐴) (7.554)

Where 𝐷 is the tissue permeability (diffusivity). The flux balances for the tissue domain

include a reaction model:

𝑓𝑟𝑥𝑛 = −𝑘1𝑐 𝑉 (7.555)

Where 𝑘1 is the 1st order reaction rate (metabolic rate of oxygen in brain tissue) and V is the

volume of the mesh element. The balance for each tissue element then becomes:

0 = 𝑓𝑑𝑖𝑓𝑓 + 𝑓𝑟𝑥𝑛 + 𝑓𝑀𝑇 (7.556)

667

Note, the addition of some fluxes (like 𝑓𝑀𝑇) is entirely dependent on the description of the

faces of the given element, and these fluxes may be absent in many cases. The vascular mass

balances incorporates the convection model and diffusion model:

0 = 𝑓𝑐𝑜𝑛𝑣 + 𝑓𝑀𝑇 (7.557)

And the endothelial elements will undergo a singular mass transfer (hindered diffusion) flux:

0 = 𝑓𝑀𝑇 (7.558)

It is also important to acknowledge that the discretization scheme is important; the mesh needs

to be fine enough to resolve at least one interior voxel in all segments (for continuity). In the event

the mesh is too coarse to resolve a vessel, there is a break in the network structure and no flow is

possible, leading to a singular matrix. Some completed case studies are pictured below:

668

20x20x20 voxel matrix

(diagonal tube)

50x50x50 voxel matrix

(diagonal tube)

100x100x100 voxel matrix

(simple network)

Figure 7.215. Vascular flow and pressure simulated in a full 3D voxel matrix using Daryc’s law.

The results show a reasonable gradient between the inlet and outlet of the systems.

Convection. The next step is to validate convection through the network using the resulting

pressures and flows from the previous step. This can be accomplished by evaluating the flows

across every face using the following equation:

𝑓 = −𝐾
𝑑𝑝

𝑑𝑥
𝐴 (7.559)

And the resulting convection through the voxels with nonzero bulk flow (f) is given by:

𝑓𝑐𝑜𝑛𝑣 = 𝑓𝑐𝑠𝑜𝑢𝑟𝑐𝑒 (7.560)

Unfortunately, in coarser discretization patterns, some hexahedrons are labeled as vessel

elements, but only share a single neighboring vessel element. When solving the Darcy diffusion

in these two elements, the trivial result is that the pressure in both elements is identical (no flow

669

between the elements). Elements that have no flow are visualized in blue in Figure 7.216. In this

special case, a simple assignment equation in lieu of a convection equation should be written to

avoid matrix singularity:

0 = −𝑐𝑖 + 𝑐𝑗 (7.561)

Where 𝑐𝑖 is the blue element and 𝑝𝑗 is the neighboring vessel element.

Figure 7.216. Examples of vessel interior cells that only share a single neighboring interior cell.

Left) a simple vessel and Right) a simplified 1/10 KF dataset. The blue cells share the same

pressure as their single neighbor and thus do not entertain a bulk convective flow.

In extreme cases where there are more than one cell isolated in a cluster, a second equation is

formed that follows Equation (7.561) and is added to the original equation. This is continued until

all adjacent vascular cells are accounted for. The result of the simulation is visualized in Figure

7.217. Note, the distribution is uniform everywhere due to a system devoid of reactions. Note, the

670

outlet BC (not necessary in convection) is still assigned due to programmatic efficiency. This outlet

concentration constitutes the blue elements in Figure 7.217 Left.

Figure 7.217. Examples of convection in networks that use a diffusive-like equation to account

for orphaned cells.

Left) a simple vessel and Right) a simplified 1/10 KF dataset. Note, the blue cells correspond to

the lower Dirichlet outlet BC (symmetry is not programmed yet).

Mass transfer without reaction. The next simulation is imperative for validating the mass

transfer interface. The equations for this case study follow the previous sections, except with a

nonzero value for the mass transfer coefficient (U). Moreover, the tissue undergoes diffusion as

follows:

0 = 𝐷
𝑑2𝑐

𝑑𝑥2
𝐴 (7.562)

The tissue also has Dirichlet boundary conditions of value 0. The results have validated the

simulations:

671

Exponential color scaling Exponential color scaling Linear color scaling

Figure 7.218. Sample case study of convection with a very low Darcy constant, K, (=very low

flow).

The boundary conditions for convection were two Dirichlet BCs, hence the outlet of the vessel

turns into a source for the tissue. Note, the red on the mesh wall is considered numerical error

in the solution vector.

Mass transfer with reaction. The final case study involves using a tissue reaction and insulated

boundary conditions on the tissue exterior. In these cases, the tissue uses the following equation:

0 = 𝐷
𝑑2𝑐

𝑑𝑥2
− 𝑘1𝑉𝑐 (7.563)

Where V is the volume of the cell element and k1 is the 1st order reaction rate. The results are

given in Figure 7.219.

672

Linear color scaling 3D slicing linear scaling

Linear scaling 3D slicing linear scaling

Figure 7.219. Case study for convection - mass transfer - diffusion – reaction system performed

using only a 3D mesh.

The results indicate a reasonable distribution of concentration throughout the tissue. Note, the

values used for constants were not validated.

In conclusion, the 3D simulation shows reasonable trends, however the validation against a 1D

network flow shows discrepancy in the values. This discrepancy cannot be rectified by a simple

adjustment to the Darcy coefficient, but instead requires a different flow model.

To properly discretize the network for this simulation, the networks should have a diameter no

smaller than 4 microns, the wall thickness should be set to 1 micron, and the resolution of the

dataset should be ~1 micron mesh cell edge length.

673

7.28.7.2 1D blood flow projected to 3D mesh

The previous section described a full 3D Darcy simulation of blood flow and convection-mass

transfer-reaction-diffusion system. Unfortunately, this simulation found an inherent discrepancy

in the blood flow model. To rectify this, a model has been created to solve a 1D blood flow model

(HP) and project the flow vector onto the 3D mesh. This new model would then solve the

convection-mass transfer-reaction-diffusion system with only a 3D mesh. Unfortunately, the

staircasing effect of the voxelation (pixilation in 3D) causes some cells to lose mass unnecessarily

as seen in Figure 7.220.

Figure 7.220. Schematic diagram of a network cylinder (with embedded flow vector) registered

to a voxel matrix in 2 dimensions.

As can be seen from this simple case study, some voxels will not be able to maintain mass

balance.

674

Suggested remedies to this problem have not been identified and thus this approach has not

been investigated further.

7.28.7.3 1D blood flow, 1D convection, 3D diffusion-rxn, mass transfer

The blood flow will be modeled with Poiseuille flow throughout the vascular structures as

given in [21,234] as in Equation (7.564). Biphasic blood flow can also be implemented as

explained elsewhere [21,22,234] but is outside the scope of this study. Oxygen enters the domain

through the vasculature where it moves via convection through the network and leaves through a

mass transfer into the surrounding tissue as in Equation (7.565). The oxygen that enters the tissue

domain is permitted to diffuse while being metabolized following Equation (7.566). The boundary

conditions follow previously published values [22].

∆p = 𝛼𝑓; 0 = ∇⃑⃑ ∙ 𝑓 (7.564)

 𝑈𝐴
𝑐𝑣 − 𝑐𝑡
𝜕𝑥

=
𝜕𝑐𝑣
𝑑𝑥

𝑓 (7.565)

𝐷
𝜕2𝑐𝑡
𝜕𝑥2

+ 𝑈𝐴
𝜕𝑐𝑣 − 𝑐𝑡
𝜕𝑥

= −𝑘𝑚𝑒𝑡𝑐𝑡𝑉 (7.566)

Here, f is the bulk flow field derived from linear, 𝑈 is the transmembrane permeability of the

endothelial layer, 𝐴 is the endothelial layer thickness, 𝑐𝑣 is the concentration of oxygen in the

vasculature, and 𝑐𝑡 is the concentration in the tissue. In the event of biphasic blood flow and simple

convective model of oxygen, the oxygen will be attached to the RBC phase of blood. More

675

complex models will implement the Hill equation as reviewed in Section 7.36 and published

elsewhere [21,22].

The tissue oxygen concentration will be modeled as a diffusion-reaction domain with a mass

transfer from the vasculature:

𝑑𝑐𝑂
𝑑𝑡

𝑉𝑡𝑖𝑠𝑠 = ∇⃑⃑ ∙ (D∇𝑐𝑂)𝑉𝑡𝑖𝑠𝑠 − 𝑈𝐴𝑣𝑎𝑠𝑐∆𝑐𝑂 − 𝑘1𝑐𝑂𝑉𝑡𝑖𝑠𝑠 (7.567)

Point-centered connection. In this model, the mass transfer will be calculated using the area at

each network point:

𝐴𝑣𝑎𝑠𝑐 = ∑
1

2
2𝜋𝑟𝑖

𝑛𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑓𝑎𝑐𝑒𝑠

𝑖=1

 (7.568)

The network point will be connected to a mesh face through a single mass transfer connection,

meaning that each network point will discharge a flux through a mass transfer flux into a single

mesh element. This method has a drawback when the largest vessel becomes larger than a single

mesh element, as the mass transfer flux overpowers the mesh element and the gradient significantly

increases.

Edge detection. In order to overcome this limitation, the edge detection used in Section 7.28.7.1

(full 3D mesh simulations) will be used for large vessels (vessels spanning more than 1 mesh

element) while smaller vessels will discharge using the point-centered mass transfer model. This

new model will gain the advantages of full 3D resolution for larger vessels and simplified point-

676

centered connection for smaller vessels. The edge detection is identified following a simple test

comparing the perpendicular distance between each voxel center and the vessel centerline. A fuzzy

logic is used to resolve the endothelial layer, where the hard constraints of labeling based on vessel

diameter can be relaxed in the case of the endothelial wall (up to ½ the wall thickness). To create

a smooth connection between adjacent segments (modeled as cylinders in 3 dimensions), a sphere

with identical radius is added to the end of each vessel. More details on mesh cell labeling in 3D

can be found in Section 5.5. This method accounts for 4 scenarios:

677

Figure 7.221. Graphic depiction of four scenarios when classifying mask on mesh to determine

equations.

All mesh elements are classified as vessel interior elements (red squares), vascular boundary

elements (green squares) and exterior cells (white squares). These classifications later translate

to equations of mass transfer (for boundary elements), assignment equations (interior elements)

and diffusion-reaction equations (for exterior elements).

In order to keep track of multiple vessels that may attach to a single mesh element, a matrix is

formed that holds lists of which mesh elements correspond to each vessel. This is later interrogated

to develop a matrix that tracks how many mesh elements belong to the surface of each vessel and

another matrix for network node connection to each mesh element. When forming the equations

for the mesh elements identified as blood vessel elements, a simple Dirichlet equation is used to

assign the vascular element value to the mesh element value:

678

𝑐𝑡𝑖𝑠𝑠
𝑗

= 𝑐𝑣𝑎𝑠𝑐
𝑖 (7.569)

Note, this mesh element does not enjoy any reaction, diffusion, or mass transfer flux.

Assignment of the exterior cells follows the mesh diffusion-reaction system outlined in

Section 7.28.7.1. The mass transfer elements are assigned by interrogating the vascular segment

connectivity as follows:

1. FOR i = 1 TO mesh.nVolumes DO

2. pointsForMeshCell = getPointsForMeshCell(i); //retrieves row of matrix

3. FOR j = 1 TO pointsForMeshCell

4. v1 = i; aPtIdx = pointsForCell[i];

5. meshCellsForPoint = getMeshCellsForPoint(aPtIdx); //retrieves row of matrix

6. fullSurfaceArea = nwk.getSurfaceAreForPoint(aPtIdx)

7. SA = fullSurfaceArea/meshCellsForPoint.Length;

8. coefficient = uu/dx*SA;

9. aMatrix.addFlux(v1, v1, v2, coefficient)

10. aMatrix.addFlux(v2, v1, v2, -coefficient)

11. ENDFOR

12. ENDFOR

Case Study, simple KF. Validation of the edge detection algorithm to produce meaningful

simulation results at different levels of mesh density is offered. Note, all simulations converged to

reasonable tolerances for mass balance overall and mass balance at each node.

679

Figure 7.222. The slice (Left) and transparency (Middle) view of the oxygen distribution around

the simplified synthetic network shows reasonable and consistent trends between the dense mesh

(Middle) and coase mesh (Right).

This is significant, because at the dense mesh resolution, each vascular network segment is

comprised of many mesh elements, identified with edge detection, however in the coarse mesh

the vessel elements discharge the entire mass transfer into a single mesh element.

680

7.29 Appendix AC: Models of aging brain

The aged brain suffers from a variety of vascular changes. A few have been implemented in

the main manuscript but a more in-depth list is offered here binned into two categories;

(i) widely agreed upon statistics and (ii) more rarely seen morphological changes. These include

widely agreed upon:

 Decrease vessel density (nSgm/mm3) of ~20%

 Decreased hematocrit by ~30%

 Increase in microocclusion occurrence (from negligible in young) to ~30%

 Increased tortuosity (in white matter penetrating arterioles, do not affect GM)

 Decrease VEGF production (specifically less production from HIF-1)

 Thickening of endothelial basement membrane (decreases wall flexibility)

A proposed:

 RBC velocity increases up to 50%

 Vessel lumen diameter decreases by up to 30% (higher percentage in pials than in

microcirculation)

These values are summarized in a table:

681

Table 7.63. Comparison of vascular topological changes observed in the aged brain

Model Number Units Citation

Vessel Number 5-35 % Bullitt 2010 (pial vessels human)

 20 % Faber 2011 (pial vessels mouse)

 20 % Murugesan 2012 (capillaries mouse)

 20 % Desjardins 2014 (microcirc rat)

 22 % Wilkinson 1981 (rat cortex)

 27.4 % Casey 1984 (capillaries rat)

RBC Speed 0.5 mm/s Desjardins 2014 (microcirc rat)

 48 % Desjardins 2014 (microcirc rat)

Hematocrit 32 % Desjardins 2014 (microcirc rat)

Tortuosity increase 60 % Faber 2011 (pial vessels mouse)

Vessel lumen diameter 30 % Faber 2011 (pial vessels mouse)

 7 % Desjardins 2014 (rat microcirculation)

Angiogenic gene expression NA Murugesan 2012 (capillaries mouse)

Micro-occlusions ~30 % Wang 2012 (citations within, healthy aging)

 55 % Wang 2012 (citations within, AD)

7.29.1 Physiological background to aging brain

An explanation could be decreased ability of aged brain to respond to hypercapnic challenges

(due to stiffened vascular wall, exacerbated in hypertension) coupled with the decreased

hematocrit lead to an increase in temporary hypoxia. This then leads to a breaking of the pericyte

from local capillaries, which normally increases vascularization and allows growth of new

branches. In the aged brain, however, where VEGF is not as readily available (or is not generated

in response to hypoxia by the hypoxia-inducible-factor1, HIF-1 gene) in the extracellular space,

so the loss of the pericyte does not trigger vascular growth but rather vascular death.

An alternative argument could be made that the decrease in pericytic density in old age could

lead to a decreased ability to upkeep the vasculature, and this leads to a decrease in vasculature.

Interestingly, Guan et al (2012) claimed that the astrocytes are the primary producers of VEGF,

and their density (cells/mm3) remains constant throughout life [268].

682

The loose tie of NO to vascular remodeling is not substantiated, as the source study only found

that after a ligation the rebuilding of the network was stronger in the wild type mice than the NO

knockout mice. This could simply be due to the nature of NO in dilation and vascular upkeep, not

a remark on the interaction of NO with the aging process. This is not the same as the firing NO,

this would be a breakdown on endothelial NOS pathway, which signals for more things than just

dilation.

The loss of NO induces drastic changes in O2 perfusion which can be a post plaque-

development symptom. This could initiate a cascade leading to diameter thinning and wall

stiffening, which could lead to more micro-occlusions. These occlusions lead to preliminary

hypoxic micro-pockets. These pockets lead to neuronal death, decreasing local NO activity due to

neurons, also the de-structuring of cell wall can occur from this source. This then leads to

dysfunctional NO production, and angiogenesis is hindered greatly.

In the adult brain, when a brain region suffers hypoxia (for a variety of reasons), the pericytes,

which normally cover the endothelial layer, cannot interact with the endothelial receptor which

maintains their relationship (Tie-2 receptor). When this receptor is now occupied by another

hypoxia-induced protein, the pericyte moves away from the endothelial cell. At the same time,

VEGF (vascular endothelial growth factor) is produced in HIF-1-producing cells and becomes

available to the newly opened endothelial cell which then grows a new vessel. In aging, this process

is considered less available and thus the alternate route (cell death) occurs more frequently and the

tissue remains underperfused. This supports the previous statement, that the neuronal loss happens

after an initial hypoxic condition which can be caused by microocclusions or other effects.

One paper cited many of the degenerative mechanisms in the cerebrovasculature arise from the

cellular anatomical perspective [269]. One of the clear trends explained by this manuscript is the

683

age-related tortuosity inherent in the white matter and how these affect mostly the deep penetrating

arterioles that reach through the grey matter and dive directly to the white matter for direct supply.

There was a section dedicated to a discovery made by the same group involving white-matter veins

becoming occluded by collagen and unable to pass flow. This then led to degradation of the vessels

and eventually a decrease in vascular density.

It was noted that in AD patients, the level of A-beta in the CSF is lower, which was attributed

to degradation of the perivascular clearance pathway. This was a stretch, as the reason the

perivascular space is impeded was due to the thickening of the vascular walls and a decrease in

mixing in the extravascular space. Moreover, it was noted that in AD, the A-beta proteins form

plaques on the vascular walls which causes degradation of the endothelial layer.

The basement membrane of vascular walls is the most robust and the last to deteriorate after

endothelial apoptosis (due to any number of reasons that causes the death of endothelial cells). It

was noted that “string vessels” exist, and they are the remnants of old vessels which are in decline

and only the basement membrane remains. Interestingly, these vessels look incredibly shriveled

and can exist at any point along a vessel, creating a “pinched” spot in the vessel like those observed

in medical images but are currently consider imaging defects. The generation of string vessels can

be initiated by ischemia and takes 3-5 days before the degradation of the endothelial layer begins,

and takes 8 days to become a “string vessel” which takes more than 40 days to fully clear. This

condition (string vessels) occurs in normal brain but is upregulated in AD.

Normally, hypoxia triggers the transcription of hypoxia-inducible-factor1 (HIF-1) that creates

VEGF (vascular endothelial growth factor). In normal, healthy brain capillaries, pericyte end-

processes cover the endothelial cell layer and express angiopoietin-1 which activates endothelial

Tie-2 receptors which cause a cascade that maintains the endothelial cell structure. In hypoxia,

684

angiopoietin-2 is created which occupies this receptor and prevents the expression of angiopoietin-

1, causing pericytes to move away from the endothelial layer. At this point, there is a large source

of VEGF in the vicinity of the endothelial layer ignites the growth tip (similar to a growth cone in

an axon) which sprouts a new vessel, bringing blood into the hypoxic region, reperfusing it, and

increasing local oxygen levels.

In the cases of aging brain or AD, plaque buildup or other factors lead to a lower availability

of VEGF, leading to no growth. In fact, when the VEGF is not available and the endothelial cell

is exposed, it leads to cell death. In fact, healthy aging noted a considerable reduction in the

response availability of HIF-1 to hypoxia [ref 81-83]. It was noted that in middle-aged rats, chronic

hypoxia led to a considerable increase in vascularization but that it does not occur in aged rats.

There was a clear correlation between old age and loss of capillary density which was

exacerbated by AD. In these cases, the greater loss was attributed to A-beta attached to the

endothelial wall and reducing availability of VEGF to the endothelial cell.

The majority of tortuosity increases exist in the deep penetrating arterioles that feed the white

matter. A capillary tortuosity increase was also measured throughout the white matter. Tortuosity

has also been correlated to severity of hypertension and has been speculated to be a feedback

mechanism in response to increased flow.

The diameter shifts are best described by a thickening of the vessel wall, making diameter of

the exterior of the vessel larger, but the interior diameter could be larger or smaller. Multiple

groups have differing opinions on this number.

The increase in RBC speed can be attributed to either a higher volumetric flow rate at a

diameter equal, smaller, or slightly larger than base diameter. It could also be attributed to the same

685

flow rate at a smaller diameter. If the overall CBF doesn’t change much and the vessel density is

lowered, the result will be an increased volumetric flow rate through the remaining capillaries.

Importantly, capillary density increases between young and middle-aged subjects, but the

heavily aged subjects adhered to a degradation from mid-life and at some point become

significantly lower than young animals. This is important, because the age of the “aged” group in

studies will heavily affect the results under this paradigm.

7.29.2 Implementation

A few models of how to implement the changes in morphology of the aged brain are proposed:

1) Decrease systemic hematocrit: change in inlet hematocrit BC directly

a. 90% saturation in RBCs (backup plan)

b. Calculate saturation on vessel assuming a partial pressure (actual plan)

Option A is desired for initial calculations, as it is more easy to implement. Option B is more

widely used in literature, but specifics on how this is executed are not divulged.

2) Loss of vessel density can follow two methodologies:

a. A new growth can be performed with less vessels (option A)

b. An existing network can have these vessels removed randomly (option B)

Option A implies a balanced tree with less vessels, where option B implies a sudden change in

vasculature where the vessels are lost. Note, option B gives effectively the same result as a micro-

occlusions, while option A is unique.

3) Micro-occlusions can be applied by changing the values of resistance to a very high number

for a select number of vessels between model generation and matrix formulation steps

686

a. This must only be applied to vessels at a bifurcation (not block the same vessel 3

different times), model A (current model, already implemented)

b. Only vessels leaving a bifurcation in the capillary group can be blocked by

erythrocytes, this requires grouping and bifurcation finding. This means that

bifurcations on the larger arteries or veins cannot be blocked. Fundamentally

different than capillary reduction, which can remove venous-side branches as well

Model A is the only model that makes sense. Both models require group identification, which

is not implemented on the first round of growths.

4) Diameter changes will be implemented either in the case file or as a computational step

after loading the network but prior to the model generation step

Also, implementation of debatable topological changes, probably save for rebuttal:

5) The increase in tortuosity (occurs solely in the white matter): manually shift the α

parameter between the steps of model generation and matrix formation to match the linear

correlation between length and tortuosity (namely, 10% increase in length translates to a

10% increase in α)

For best results (stable mesh convergence), the point-centered mass transfer coupling with edge

detection (see Section 7.28.7.3 for more details). Also important for convergence at highly dense

mesh structures (>200x200x200 mesh volumes for a KF dataset) it is recommended to use iterative

mesh refinement (see interpolation section of the Cartesian mesh documentation).

687

7.30 Appendix AD: Proposal of a functional hyperemia model

Functional hyperemia is the active dilation of blood flow in response to local neurological

stimulation. This section details models on how such a model could be implemented in the

framework of 1D-3D mesh coupling.

7.30.1 Summary

The functional hyperemia problem can be solved as a series of linear algebraic problems. The

simulation can be broken up into a dynamic simulation of NO distribution in the tissue (solved

with a series of linear algebraic equations in which the right hand side is updated) followed by an

evaluation of the network diameter change due to the NO concentration. This is followed by a

single-phasic steady-state simulation of flow and oxygen.

The results show that a simplified (single-phase instead of Hill equation for oxygen binding

kinetics), distributed, first-principle mechanistic model of the oxygen can reasonably approximate

the oxygen in the brain.

Nitric Oxide. When investigating functional hyperemia, there needs to be a causal link between

neuronal stimulation and vasomotion. The chosen model for vasodilatory signaling is nitric oxide

(NO) as sourced from neuronal nitric oxide synthase (nNOS) produced by L-arganine. NO is

produced in a firing column [270] and follows a 0th order generation model and a 1st order clearance

model as in Equation (7.570) and (7.571).

𝑑𝑐𝑁𝑂
𝑑𝑡

𝑉𝑡𝑖𝑠𝑠 = �⃑� ∙ [𝐷�⃑� 𝑐𝑁𝑂(𝑡)]𝑉𝑡𝑖𝑠𝑠 + 𝑘𝑁𝑂
+ (𝑡)𝑉𝑡𝑖𝑠𝑠 − 𝑘𝑁𝑂

− 𝑐𝑁𝑂(𝑡)𝑉𝑡𝑖𝑠𝑠 (7.570)

688

Where

𝑘𝑁𝑂
+ (𝑡𝑏𝑒𝑔𝑖𝑛

𝑓𝑖𝑟𝑖𝑛𝑔
< 𝑡 < 𝑡𝑒𝑛𝑑

𝑓𝑖𝑟𝑖𝑛𝑔
) = {𝑘(𝑡) 𝑖𝑓 𝑖𝑛𝑠𝑖𝑑𝑒 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟

0 𝑒𝑙𝑠𝑒

(7.571)

The effect of NO on vasculature follows a model inspired by the Secomb expansion model

where dilatory forces are met with resistance from elastic forces. Our model uses a 20% maximum

dilation over baseline and follows a 1st order reaction model:

𝑑𝐷𝑖𝑎

𝑑𝑡
= 𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛𝐹𝑜𝑟𝑐𝑒𝑠 − 𝑡𝑒𝑛𝑠𝑖𝑣𝑒𝐹𝑜𝑟𝑐𝑒𝑠

𝑑 𝑑

𝑑𝑡
= 0.2 (

𝑐𝑁𝑂(𝑡) − 𝑐𝑟𝑒𝑓
𝑐𝑁𝑂
𝑚𝑎𝑥

) −
𝑑 − 𝑑0
𝑑0

(7.572)

Where d is the diameter of the vessel and cref is the baseline NO concentration and 𝑐𝑁𝑂
𝑚𝑎𝑥 is the

maximum NO concentration in the region. The dilation effect from the NO signal is independently

investigated:

689

Figure 7.223. First order impulse response model as in Equation (7.572).

Note, the response is not instantaneous, but takes time to overcome the elasticity of the

membrane.

690

Figure 7.224. Schematic representation of the two models for functional hyperemia.

Method 1. The first method uses a simplified vascular oxygen transport model, where the

nonlinear binding kinetics are neglected. The workflow for this is as follows:

Figure 7.225. Workflow diagram for functional hyperemia for simplified vascular oxygen

binding.

Method 2. The second method uses the hill equation to approximate the binding kinetics of

vascular oxygen saturation. The workflow for this is as follows:

691

Figure 7.226. Workflow diagram for functional hyperemia for simplified vascular oxygen

binding.

7.30.2 Strategy

In this chapter, the reactions in the tissue will generate a species (nitric oxide, NO, representing

the neurotransmitter released during repeated neuronal firing) that will diffuse through the tissue.

This species will be reacted away through the tissue at a constant rate (representing microglial and

astrocytic cleaning of the extracellular matrix). This will interact with the blood vessels, causing

an increase in local diameter (vasodilation). This dilation will also be transmitted upstream and

downstream at a fixed rate.

The implementation will include four solving steps that follow the equations listed below. The

diameter increase is based on the maximum diameter expansion of 20%, consistent with previous

experimental findings [236].

The generation is a 0th order reaction and the reaction away of NO is a 1st order reaction.

692

1) Tissue NO concentration (dynamic)

𝑑𝑐𝑁𝑂
𝑑𝑡

𝑉𝑡𝑖𝑠𝑠 = ∇⃑⃑ ∙ [D∇⃑⃑ 𝑐𝑁𝑂(𝑡)]𝑉𝑡𝑖𝑠𝑠 + 𝑘𝑁𝑂
+ (𝑡)𝑉𝑡𝑖𝑠𝑠 − 𝑘𝑁𝑂

− 𝑐𝑁𝑂(𝑡)𝑉𝑡𝑖𝑠𝑠

Where

𝑘𝑁𝑂
+ (𝑡) = {𝑘(𝑡) 𝑖𝑓 𝑖𝑛𝑠𝑖𝑑𝑒 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟

0 𝑒𝑙𝑠𝑒
, 𝑘𝑁𝑂

− = 𝑘−

And

𝑘(𝑡) =) = {𝑘 10 < 𝑡 < 20
0 𝑒𝑙𝑠𝑒

(7.573)

2) Vasculature diameter response (evaluate, assuming SS):

𝑑 = 𝑑0 + 0.2 (
𝑐𝑁𝑂(𝑡) − 𝑐𝑟𝑒𝑓
𝑐𝑁𝑂

𝑚𝑎𝑥
) 𝑑0 (7.574)

3) vasculature Linear Flow (SS):

0 = ∇⃑⃑ ∙ (
1

𝛼
∆p) , 𝑓 =

1

𝛼
∆p, 𝑝 = 𝑝 (7.575)

4) In tissue concentration (SS):

0 = ∇⃑⃑ ∙ (D∇𝑐𝐴)𝑉𝑡𝑖𝑠𝑠 + 𝑈𝐴𝑣𝑎𝑠𝑐∆𝑐𝐴 − 𝑘1𝑐𝐴𝑉𝑡𝑖𝑠𝑠 𝑓𝑐𝐴 = 0 (7.576)

 In vasculature (SS):

0 = ∇⃑⃑ ∙ (𝑓𝑐𝐴) − 𝑈𝐴𝑣𝑎𝑠𝑐∆𝑐𝐴 𝑐𝑂2 = 𝑐𝑂2 (7.577)

693

7.30.3 Implementation

The building of dynamic equations and solving them iteratively has already been implemented

for an implicit Euler method. The mathematics of the implicit Euler can be reduced to a single set

of linear algebraic equations with an updating right hand side vector, as shown below.

Implicit Euler (�̇� = 𝐴𝑐):

𝑐𝑁 − 𝑐𝑜

∆𝑡
= 𝐴𝑐𝑁

(7.578)

𝑐𝑁 − 𝑐𝑜 = ∆𝑡𝐴𝑐𝑁

(𝐼 − ∆𝑡𝐴)𝑐𝑁 = 𝑐𝑜

 𝐴 𝑥 = 𝑏

Note, all algebraic and algebraic-differential systems of equations will be solved using an

Implicit Euler scheme. This was compared to a second order Adams Bashford method, 4th, and 5th

order Runge Kutta methods all of which required significantly more timesteps for timestep

independence (see Section 7.31). The libraries of PETSc linear algebraic solvers is employed using

the generalized minimal residual method, GMRES, and a block Jacobi preconditioner as described

in Section 7.20.6.

7.30.4 Dynamically solving a steady problem

7.30.4.1 Validation

The first validation of the dynamic Implicit Euler solver is to ensure a system already at steady-

state can be integrated in time (without stimulus) and remain stationary. This will ensure the

694

integration method does not, itself, modify the result. Note, the steady state simulation is described

in Section 7.28.7. This can be accomplished by setting the reaction kinetics to 0, the initialization

of NO is set to 0.1 everywhere with flux boundary conditions and the oxygen model is solved at

steady-state in each time point. The results are summarized below. The solver is a GMRES with

PETSc block Jacobi preconditioning and a tolerance set to 1e-7.

In vasculature Linear Flow:

0 = ∇⃑⃑ ∙ (
1

𝛼
∆p) , 𝑓 =

1

𝛼
∆p, 𝑝 = 𝑝 (7.579)

In tissue concentration:

0 = ∇⃑⃑ ∙ (D∇𝑐𝐴)𝑉𝑡𝑖𝑠𝑠 + 𝑈𝐴𝑣𝑎𝑠𝑐∆𝑐𝐴𝑉𝑡𝑖𝑠𝑠 − 𝑘1𝑐𝐴𝑉𝑡𝑖𝑠𝑠 (7.580)

In vasculature:

0 = ∇⃑⃑ ∙ (𝑓𝑐𝐴)𝑉𝑣𝑎𝑠𝑐 − 𝑈𝐴𝑣𝑎𝑠𝑐∆𝑐𝐴𝑉𝑣𝑎𝑠𝑐 (7.581)

Boundary conditions:

𝑓𝑐𝐴 = 0, 𝑐𝐴 = 𝑐𝐴 (7.582)

695

Name #

Convection

flow

(mol/min)

Solute flux

(mol/

min)

Concentratio

n range

(mol)

Max norm of

residual

(mol)

ArtVenFused
oXLibraries

M_LF_41

1.01E6 – 1.02E9 430.4 - 1000

2.6E-6

ArtVenFused

Mesh

0th order
oXLibraries

M_LF_42

4.5e-13 – 7.9E5 143.2 – 701.4

7.30.5 Dynamic solving of constant NO generation, vasculature unchanged

The next step is to evaluate the dynamic solving of a generation/diffusion problem over time.

To evaluate the solver, mesh independence and time independence will be achieved. The solver

chosen in GMRES binary with 3e-6 tolerance.

𝑑𝑐𝑁𝑂
𝑑𝑡

𝑉𝑡𝑖𝑠𝑠 = ∇⃑⃑ ∙ [D∇⃑⃑ 𝑐𝑁𝑂(𝑡)]𝑉𝑡𝑖𝑠𝑠 + 𝑘𝑁𝑂
+ (𝑡)𝑉𝑡𝑖𝑠𝑠 − 𝑘𝑁𝑂

− 𝑐𝑁𝑂(𝑡)𝑉𝑡𝑖𝑠𝑠

Where

𝑘𝑁𝑂
+ (𝑡) = {𝑘(𝑡) 𝑖𝑓 𝑖𝑛𝑠𝑖𝑑𝑒 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟

0 𝑒𝑙𝑠𝑒
, 𝑘𝑁𝑂

− = 𝑘−

(7.583)

In vasculature Linear Flow:

0 = ∇⃑⃑ ∙ (
1

𝛼
∆p) , 𝑓 =

1

𝛼
∆p, 𝑝 = 𝑝 (7.584)

In tissue O2 concentration:

0 = ∇⃑⃑ ∙ (D∇𝑐𝐴)𝑉𝑡𝑖𝑠𝑠 + 𝑈𝐴𝑣𝑎𝑠𝑐∆𝑐𝐴 − 𝑘1𝑐𝐴𝑉𝑡𝑖𝑠𝑠 (7.585)

In vasculature O2:

0 = ∇⃑⃑ ∙ (𝑓𝑐𝐴) − 𝑈𝐴𝑣𝑎𝑠𝑐∆𝑐𝐴 (7.586)

696

Boundary conditions:

𝑓𝑐𝐴 = 0, 𝑐𝐴 = 𝑐𝐴 (7.587)

𝑘𝑁𝑂
− = 1

𝑚𝑜𝑙

𝑠
 𝑘𝑁𝑂

+ = 5
𝑚𝑜𝑙

𝑠
 𝐷𝑁𝑂 = 0.001

𝑚

𝑠
 𝐷𝑂2 = 0.001

𝑀

𝑠
,

𝑘1 = 5

 #

Visualizati

on

network

O2

Visualizati

on

mesh O2

Visualizati

on

mesh NO

Concentrati

on Range

O2 NWK

(mol)

Concentrati

on range O2

mesh

(mol/mL)

Concentrati

on range

NO mesh

(mol/mL)

Max

residu

al

t=0
M_LF_

41

993.8 - 1000 7-999.4

0.1-0.1

(initial

condition)

9.0E-8

t=0.

1

M_LF_

42

993.8 - 1000 7-999.4 0.05 – 2.04 9.0E-8

t=0.

2

993.8 - 1000 7-999.4 0.025 – 2.82 9.0E-8

7.30.6 Dynamic solving of 0.04s impulse, 1 second simulation, NO generation, vasculature

unchanged

The simulation engine will now be validated against an impulse response (from t= 0 – 0.4

seconds). In this case, the simulation correctly shows a rise in concentration followed by a fall in

concentration emanating from the cylindrical source. Number of volume elements in each

dimension is 15.

697

𝑑𝑐𝑁𝑂
𝑑𝑡

𝑉𝑡𝑖𝑠𝑠 = ∇⃑⃑ ∙ [D∇⃑⃑ 𝑐𝑁𝑂(𝑡)]𝑉𝑡𝑖𝑠𝑠 + 𝑘𝑁𝑂
+ (𝑡)𝑉𝑡𝑖𝑠𝑠 − 𝑘𝑁𝑂

− 𝑐𝑁𝑂(𝑡)𝑉𝑡𝑖𝑠𝑠

Where

𝑘𝑁𝑂
+ (𝑡) = {𝑘(𝑡) 𝑖𝑓 𝑖𝑛𝑠𝑖𝑑𝑒 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟

0 𝑒𝑙𝑠𝑒
, 𝑘𝑁𝑂

− = 𝑘−

(7.588)

In vasculature Linear Flow:

0 = ∇⃑⃑ ∙ (
1

𝛼
∆p) , 𝑓 =

1

𝛼
∆p, 𝑝 = 𝑝 (7.589)

In tissue O2 concentration:

0 = ∇⃑⃑ ∙ (D∇𝑐𝐴)𝑉𝑡𝑖𝑠𝑠 + 𝑈𝐴𝑣𝑎𝑠𝑐∆𝑐𝐴 − 𝑘1𝑐𝐴𝑉𝑡𝑖𝑠𝑠 (7.590)

In vasculature O2:

0 = ∇⃑⃑ ∙ (𝑓𝑐𝐴) − 𝑈𝐴𝑣𝑎𝑠𝑐∆𝑐𝐴 (7.591)

Boundary conditions:

𝑓𝑐𝐴 = 0, 𝑐𝐴 = 𝑐𝐴 (7.592)

𝑘𝑁𝑂
− = 0.1

𝑚𝑜𝑙

𝑠
 𝑘𝑁𝑂

+ = 10
𝑚𝑜𝑙

𝑠
 𝐷𝑁𝑂 = 0.1

𝑚

𝑠
 𝐷𝑂2 = 0.001

𝑀

𝑠
, 𝑘1 = 5

698

T

Visualizatio

n network

O2

Visualizat

ion

mesh O2

Visualizati

on

mesh NO

Concentration

Range O2 NWK

(mol)

Concentration

range O2 mesh

(mol/mL)

Concentration

range NO mesh

(mol/mL)

0

993.8 - 1000 7-999.4
0-0

(initial condition)

0.1

993.8 - 1000 7-999.4 0.05 – 0.42

0.2

993.8 - 1000 7-999.4 0.13 – 0.55

0.3

993.8 - 1000 7-999.4 0.21– 0.64

0.4

993.8 - 1000 7-999.4 0.28 – 0.72

0.5

993.8 - 1000 7-999.4 0.3 – 0.36

0.6

993.8 - 1000 7-999.4 0.29 – 0.30

0.7

993.8 - 1000 7-999.4 0.26 – 0.27

699

7.30.7 Dynamic solving of impulse NO generation, vasculature expansion

The vascular response to NO concentration must be meaningful. To model the vasodilatory

signal, a previous publication reported a maximum of 20% dilation in vessels in response to

neuronal firing [271]. The model chosen to represent this is a linear model of dilation in response

to NO concentration as in Equation (7.594).

This simulation should exhibit a steady rise in concentration of NO over the course of the

impulse and a fall after the impulse ends. The vasculature should exhibit a time-lag vasodilation

that follows a linear response to the NO generation. The oxygen model should reflect a baseline

oxygen and an increase in oxygen after the vasodilation, to be returned to baseline after the

vasodilation withers. CNO
max is chosen from largest value of NO at time point 0.04 seconds. These

aspects of the simulation are reflected in the results, indicating the mechanisms are working

properly.

𝑑𝑐𝑁𝑂
𝑑𝑡

𝑉𝑡𝑖𝑠𝑠 = ∇⃑⃑ ∙ [D∇⃑⃑ 𝑐𝑁𝑂(𝑡)]𝑉𝑡𝑖𝑠𝑠 + 𝑘𝑁𝑂
+ (𝑡)𝑉𝑡𝑖𝑠𝑠 − 𝑘𝑁𝑂

− 𝑐𝑁𝑂(𝑡)𝑉𝑡𝑖𝑠𝑠

Where

𝑘𝑁𝑂
+ (𝑡) = {𝑘(𝑡) 𝑖𝑓 𝑖𝑛𝑠𝑖𝑑𝑒 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟

0 𝑒𝑙𝑠𝑒
, 𝑘𝑁𝑂

− = 𝑘−

(7.593)

700

Vasculature diameter response (evaluate, assuming SS):

𝑑 = 𝑑0 + 0.2 (
𝑐𝑁𝑂(𝑡) − 𝑐𝑟𝑒𝑓

𝑐𝑁𝑂
𝑚𝑎𝑥

) 𝑑0 (7.594)

In vasculature Linear Flow:

0 = ∇⃑⃑ ∙ (
1

𝛼
∆p) , 𝑓 =

1

𝛼
∆p, 𝑝 = 𝑝 (7.595)

In tissue O2 concentration:

0 = ∇⃑⃑ ∙ (D∇𝑐𝐴)𝑉𝑡𝑖𝑠𝑠 + 𝑈𝐴𝑣𝑎𝑠𝑐∆𝑐𝐴 − 𝑘1𝑐𝐴𝑉𝑡𝑖𝑠𝑠 (7.596)

In vasculature O2:

0 = ∇⃑⃑ ∙ (𝑓𝑐𝐴) − 𝑈𝐴𝑣𝑎𝑠𝑐∆𝑐𝐴 (7.597)

Boundary conditions:

𝑓𝑐𝐴 = 0, 𝑐𝐴 = 𝑐𝐴 (7.598)

𝑘𝑁𝑂
− = 0.5

𝑚𝑜𝑙

𝑠
 𝑘𝑁𝑂

+ = 10
𝑚𝑜𝑙

𝑠
 𝐷𝑁𝑂 = 0.1

𝑚

𝑠
 𝐷𝑂2 = 0.001

𝑀

𝑠
, 𝑘1 = 5

𝑐𝑟𝑒𝑓 = 0; 𝑐𝑁𝑂
𝑚𝑎𝑥 = 0.4266

701

Time

(ms)

Network

Diameter shift

(%)

Network flow

(ml/min) network O2 mesh O2 mesh NO

0

0 - 0

2.1e3 – 1.02e6

650 - 1000

595 - 984

0-0

0.1

0.01 – 1.6

1.9e3 – 1.16e6

669 - 1000

609 - 985

0.02 – 0.35

0.2

0.02 – 1.9

2e3 – 1.2e6

680 - 1000

617 - 985

0.04 – 0.4

0.3

0.02 – 0.2

2e3 – 1.25e6

686 - 1000

621 - 985

0.05 – 0.42

0.4

0.03 – 0.2

2.1e3 – 1.27e6

689 - 1000

523 - 985

0.05 – 0.43

0.5

0.02 – 0.04

2.3e3 – 1.13e6

673 - 1000

611 - 985

0.04 – 0.08

0.6

0.01 – 0.01

2.2e3 – 1.07e6

662 - 1000

603 – 984.6

0.02 – 0.03

0.7

0.01 – 0.01

2.2e3 – 1.05e6

656 – 1000

599 – 984.5

0.01 – 0.01

702

7.30.8 Dynamic solving of impulse NO generation, vasculature signaling

The signaling mechanism that causes upstream vessels to dilate can be modeled as a constant-

rate signaling mechanism as observed experimentally [271]. The values chosen from literature for

upstream dilation are 12.65 µm/s and downstream signaling is 12.83 µm/s.

This simulation should exhibit a steady rise in concentration of NO over the course of the

impulse and a fall after the impulse ends. The vasculature should exhibit a time-lag vasodilation

that follows a linear response to the NO generation. The oxygen model should reflect a baseline

oxygen and an increase in oxygen after the vasodilation, to be returned to baseline after the

vasodilation withers. CNO
max is chosen from largest value of NO at time point 0.04 seconds. This

model has been proposed but not yet implemented.

𝑑𝑐𝑁𝑂
𝑑𝑡

𝑉𝑡𝑖𝑠𝑠 = ∇⃑⃑ ∙ [D∇⃑⃑ 𝑐𝑁𝑂(𝑡)]𝑉𝑡𝑖𝑠𝑠 + 𝑘𝑁𝑂
+ (𝑡)𝑉𝑡𝑖𝑠𝑠 − 𝑘𝑁𝑂

− 𝑐𝑁𝑂(𝑡)𝑉𝑡𝑖𝑠𝑠

Where

𝑘𝑁𝑂
+ (𝑡) = {𝑘(𝑡) 𝑖𝑓 𝑖𝑛𝑠𝑖𝑑𝑒 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟

0 𝑒𝑙𝑠𝑒
, 𝑘𝑁𝑂

− = 𝑘−

(7.599)

Vasculature diameter response (evaluate, assuming SS):

Direct effect of NO:

𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 = 𝜙 = 0.2 (
𝑐𝑁𝑂(𝑡) − 𝑐𝑟𝑒𝑓
𝑐𝑁𝑂

𝑚𝑎𝑥
)

𝑑 = 𝑑0 + 𝜙𝑑0

(7.600)

703

Signaling:

𝜙𝑢𝑝(𝑥, 𝑡) = 𝜙

In vasculature Linear Flow:

0 = ∇⃑⃑ ∙ (
1

𝛼
∆p) , 𝑓 =

1

𝛼
∆p, 𝑝 = 𝑝 (7.601)

In tissue O2 concentration:

0 = ∇⃑⃑ ∙ (D∇𝑐𝐴)𝑉𝑡𝑖𝑠𝑠 + 𝑈𝐴𝑣𝑎𝑠𝑐∆𝑐𝐴 − 𝑘1𝑐𝐴𝑉𝑡𝑖𝑠𝑠 (7.602)

In vasculature O2:

0 = ∇⃑⃑ ∙ (𝑓𝑐𝐴) − 𝑈𝐴𝑣𝑎𝑠𝑐∆𝑐𝐴 (7.603)

Boundary conditions:

𝑓𝑐𝐴 = 0, 𝑐𝐴 = 𝑐𝐴 (7.604)

𝑘𝑁𝑂
− = 0.5

𝑚𝑜𝑙

𝑠
 𝑘𝑁𝑂

+ = 10
𝑚𝑜𝑙

𝑠
 𝐷𝑁𝑂 = 0.1

𝑚

𝑠
 𝐷𝑂2 = 0.001

𝑀

𝑠
, 𝑘1 = 5

𝑐𝑟𝑒𝑓 = 0; 𝑐𝑁𝑂
𝑚𝑎𝑥 = 0.4266

7.30.9 Dynamic biphasic blood flow

This simulation follows Section 7.30.5 except with replacing the linear blood flow model with

a biphasic blood flow model. This mechanism ties the oxygen convection to the RBC phase of the

blood flow. All results have been validated for reasonable flow balance error and residual errors

(table not shown).

𝑑𝑐𝑁𝑂
𝑑𝑡

𝑉𝑡𝑖𝑠𝑠 = ∇⃑⃑ ∙ [D∇⃑⃑ 𝑐𝑁𝑂(𝑡)]𝑉𝑡𝑖𝑠𝑠 + 𝑘𝑁𝑂
+ (𝑡)𝑉𝑡𝑖𝑠𝑠 − 𝑘𝑁𝑂

− 𝑐𝑁𝑂(𝑡)𝑉𝑡𝑖𝑠𝑠 (7.605)

704

Where

𝑘𝑁𝑂
+ (𝑡) = {𝑘(𝑡) 𝑖𝑓 𝑖𝑛𝑠𝑖𝑑𝑒 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟

0 𝑒𝑙𝑠𝑒
, 𝑘𝑁𝑂

− = 𝑘−

Vasculature diameter response (evaluate, assuming SS):

Direct effect of NO:

𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 = 𝜙 = 0.2 (
𝑐𝑁𝑂(𝑡) − 𝑐𝑟𝑒𝑓
𝑐𝑁𝑂

𝑚𝑎𝑥
)

𝑑 = 𝑑0 + 𝜙𝑑0

Signaling:

𝜙𝑢𝑝(𝑥, 𝑡) = 𝜙

(7.606)

In vasculature Biphasic Blood Flow:

𝐺(𝑄, 𝑝. ℎ) = 0 {

𝑅(ℎ, 𝑑)𝑄 − 𝐶1𝑝 = 0
𝐶2𝑄 = 0

𝐶3(𝑄, 𝑑)ℎ = 0
 (7.607)

In tissue O2 concentration:

0 = ∇⃑⃑ ∙ (D∇𝑐𝐴)𝑉𝑡𝑖𝑠𝑠 + 𝑈𝐴𝑣𝑎𝑠𝑐∆𝑐𝐴 − 𝑘1𝑐𝐴𝑉𝑡𝑖𝑠𝑠 (7.608)

In vasculature O2:

0 = ∇⃑⃑ ∙ (𝑓𝑐𝐴) − 𝑈𝐴𝑣𝑎𝑠𝑐∆𝑐𝐴 (7.609)

Boundary conditions:

𝑓𝑐𝐴 = 0, 𝑐𝐴 = 𝑐𝐴 (7.610)

𝑘𝑁𝑂
− = 0.5

𝑚𝑜𝑙

𝑠
 𝑘𝑁𝑂

+ = 10
𝑚𝑜𝑙

𝑠
 𝐷𝑁𝑂 = 0.1

𝑚

𝑠
 𝐷𝑂2 = 0.001

𝑀

𝑠
, 𝑘1 = 5

𝑐𝑟𝑒𝑓 = 0; 𝑐𝑁𝑂
𝑚𝑎𝑥 = 0.4266

705

t

Network

Diameter

shift (%)

RBC flow

(ml/min) network O2

Change in

Network

O2 mesh O2

Change in

Mesh O2 mesh NO

Coloration:

0

N/A

N/A

0.1

0.2

0.3

0.4

0.5

0.6

0.7

706

7.31 Appendix AE: Time integration solvers

7.31.1 Introduction

Some problems in transport phenomena are formulated as large systems of coupled partial

differential equations (PDEs). To solve the spatial discretization, finite difference (FEA) or finite

volume (FVM) methods have been used. In some cases, such as in functional hyperemia in the

biomedical industry, these dynamic systems of equations must be integrated in time. In this

example, relevant fields for integration include nitric oxide (NO) in the tissue, vessel dilation (as

a function of local NO concentration), blood flow, and coupled convection-mass-transfer-

diffusion-reaction system of oxygen. Using a simple implicit Euler time integration leads to a very

small timestep (<10-5 s) and can take excessively long to simulate for physiologically meaningful

durations (101 s). With this gap in solving time, the solvers will take >500 days to solve the entire

simulation.

To improve solving time, an explicit Euler method can be employed such that there is no need

to solve the linear algebraic set of equations in each time step. Unfortunately, a first order explicit

Euler does not hold to mass conservation without an extremely small timestep (10-8). A second

order Adams-Bashford, 4th and 5th order Runge-Kutta methods are possibilities to improve solving

time. Below find a case studies showing that the Adams-Bashford (AB) method can be up to a

single order of magnitude better than the first order implicit Euler (IE).

These more advanced methods use a linear averaging (convolution between the current

timestep evaluation (yn) and the previous timestep and, in some cases, the update guess (yn+1) as

in the case of RK4 and RK5. When applying these solvers to the full oxygen simulation at the

707

scale of a microcirculatory block in the mouse brain, the implicit Euler maintains the most robust

and efficient solver.

7.31.2 Methods

Integration methods investigated include implicit Euler (IE, Equation (7.611)), 2nd order

explicit Adams-Bashford (AB, Equation (7.612)), explicit 4th order Runge-Kutta (RK4, Equation

(7.613)), and explicit 5th order Runge-Kutta (RK5, Equation (7.614)). The RK4 and RK5 methods

are delineated nicely in a publication by Christodoulou [272] with a sample code for

implementation in Matlab. Supporting Matlab codes for this example can be found in Section

7.31.4. In these equations, h is the timestep size, y is the solution vector, A is the coefficient matrix,

and I is the identity matrix. In Equation (7.618), the implicit Euler equation has been simplified to

a linear set of equations that can be solved in every timestep by merely updating the right hand

side vector.

𝑦𝑛+1 = 𝑦𝑛 + ℎ(𝐴 ∙ 𝑦𝑛+1)

(𝐼 − ℎ𝐴)𝑦𝑛+1 = 𝑦𝑛
(7.611)

𝑦𝑛+1 = 𝑦𝑛 +
3

2
ℎ(𝐴 ∙ 𝑦𝑛) −

1

2
ℎ(𝐴 ∙ 𝑦𝑛−1)

(7.612)

𝑦𝑛+1 = 𝑦𝑛 +
𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4

6

𝑘1 = ℎ𝐴 ∙ 𝑦
𝑛 𝑘2 = ℎ𝐴 ∙ (𝑦

𝑛 +
𝑘1
2
)

𝑘3 = ℎ𝐴 ∙ (𝑦
𝑛 +

𝑘2
2
) 𝑘4 = ℎ𝐴 ∙ (𝑦

𝑛 + 𝑘3)

(7.613)

708

𝑦𝑛+1 = 𝑦𝑛 +
7𝑘1 + 32𝑘3 + 12𝑘4 + 32𝑘5 + 7𝑘6

90

𝑘1 = ℎ𝐴 ∙ 𝑦
𝑛 𝑘2 = ℎ𝐴 ∙ (𝑦

𝑛 +
𝑘1
2
)

𝑘3 = ℎ𝐴 ∙ (𝑦
𝑛 +

3𝑘1 + 𝑘2
16

) 𝑘4 = ℎ𝐴 ∙ (𝑦
𝑛 +

𝑘3
2
)

𝑘5 = ℎ𝐴 ∙ (𝑦
𝑛 +

3𝑘2 + 6𝑘3 + 9𝑘4
16

)

𝑘6 = ℎ𝐴 ∙ (𝑦
𝑛 +

𝑘1 + 4𝑘2 + 6𝑘3 − 12𝑘4 + 8𝑘5
7

)

(7.614)

Note that the AB method requires 2 initial steps in order to integrate. To solve for the first time

step, the system is initialized by integrating twice with the IE method. In more elaborate

simulations where the dynamic changes are in response to a stimulus, (specifically inhomogeneous

steady-state systems, or steady-state systems that are perturbed) integrator should be initialized

using the steady-state solution to the system.

7.31.3 Case study 1: cyclic reaction system

The chemical reaction system pictured in Figure 7.227 can be written in component form as in

Equations (7.615)-(7.617). This can also be written in Matrix form using Equation (7.618) and

(7.619).

𝑑𝐴

𝑑𝑡
= −(𝑘𝐴𝐵 + 𝑘𝑐𝑎)𝐶𝐴 + 𝑘𝑏𝑎𝐶𝐵 + 𝑘𝐶𝐴𝐶𝐶

(7.615)

𝑑𝐵

𝑑𝑡
= 𝑘𝐴𝐵𝐶𝐴 − (𝑘𝑏𝑎 + 𝑘𝐵𝐶)𝐶𝐵 + 𝑘𝑐𝑏𝐶𝐶

(7.616)

709

𝑑𝐶

𝑑𝑡
= 𝑘𝑎𝑐𝐶𝐴 + 𝑘𝐵𝐶𝐶𝐵 − (𝑘𝐶𝐴 + 𝑘𝑐𝑏)𝐶𝐶

(7.617)

Figure 7.227. The chemical reaction system of A,B and C species used for this case study.

(

𝑑𝐴

𝑑𝑡
𝑑𝐵

𝑑𝑡
𝑑𝐶

𝑑𝑡)

= [

−(𝑘𝐴𝐵 + 𝑘𝑐𝑎) 𝑘𝑏𝑎 𝑘𝐶𝐴
𝑘𝐴𝐵 −(𝑘𝑏𝑎 + 𝑘𝐵𝐶) 𝑘𝑐𝑏
𝑘𝑎𝑐 𝑘𝐵𝐶 −(𝑘𝐶𝐴 + 𝑘𝑐𝑏)

] (

𝐶𝐴
𝐶𝐵
𝐶𝐶

)
(7.618)

�̇� = 𝐴𝑌
(7.619)

The time integration did not substantially differ between the four methods investigated

(attributed to how short the solving time was for all cases). The accuracy, however, was enhanced

between the AB, RK4, and RK5 in order as seen in Figure 7.228. Figure 7.228 reflects the time

integration of species A from initial concentration fraction of 0.5.

710

Figure 7.228. Comparison between Top Left) Implicit Euler (IE), Top Right) Adams Bashford

(AB), Bottom Left) Runge-Kutta 4, and Bottom Right) Runge-Kutta 5 integrators at different

timestep sizes.

The methods from best-to-worst are: RK5, RK4, AB,and finally IE. Note, RK5 was the only

integrator that produced reasonable results at a timestep of h=2.

The different integration schemes were also compared using the maximum residual error

measured at 1s intervals starting at time t=0s. Among the concentrations at these time points, the

error is measured as the maximum difference between the partial concentration of the analytic

solution (derived from eigenvalue decomposition) and the numerical result. The comparison has

been tabulated in Table 7.64. The performance of each solver is offered in Table 7.65 measured as

time to solve the system.

711

Table 7.64. Comparative error between numerical integrators.

 h=1 h=0.1 h=0.01 h=0.001

IE 48605e-6 5930e-6 612e-6 61.357e-6

AB 45948e-6 917.9e-6 9.83e-6 9.9e-8

RK4 824.0e-6 4.558e-8 4.300e-12 1.554e-15

RK5 85.96e-6 4.81e-10 4.52e-15 1.11e-15

Table 7.65. Comparative performance between numerical integrators.

 h=1 h=0.1 h=0.01 h=0.001

IE 0.00136s 0.00114s 0.00531s 0.03209s

AB 0.00144s 0.00025s 0.00255s 0.01151s

RK4 0.00431s 0.00064s 0.00551s 0.02984s

RK5 0.00014s 0.00080s 0.00389s 0.03877s

With simple ODE systems, AB can be a more accurate integrator. Moreover, on large systems

with many unknowns, an explicit solver is significantly faster than an implicit solver. These solvers

were all implemented in a Delphi program and investigated for dynamic oxygen simulations yet

the timestep requirements did not reflect the case study from this report. In the full implementation,

a finer timestep was required for AB, RK4 and RK5. Due to this, IE remained the most efficient

and robust solver.

712

7.31.4 Matlab implementation of different solvers on the case study

function testIntegrators
warning('off')
close all
A = getA();
Yinitial = getY0();
global colormp idx
nColorChoices = 4;
colormp1=linspace(1,0.5,nColorChoices); colormp2=linspace(0.5,1,nColorChoices); colormp3=linspace(0.5,1,nColorChoices);
colormp = [1,1,0;
 colormp1' zeros(nColorChoices,2);
 zeros(nColorChoices,1) colormp2' zeros(nColorChoices,1);
 zeros(nColorChoices,2) colormp3'
 zeros(nColorChoices,1) colormp2' colormp3';...
 colormp3' zeros(nColorChoices,1) colormp2']; idx = 1;

%added 9/12/2018
figure(7), subplot(2,2,1), hold on,
solveUsingEigenvalues(A,Yinitial(:,6)); solveUsingImplicitEulerMethod(A,Yinitial(:,6));
title('Implicit Euler'); ylabel('residual error'); xlabel('time'); subplot(2,2,2), hold on,
solveUsingEigenvalues(A,Yinitial(:,6)); solveUsingAdamsBashforth(A,Yinitial(:,6));
title('Adams Bashford'); ylabel('residual error'); xlabel('time'); subplot(2,2,3), hold on,
solveUsingEigenvalues(A,Yinitial(:,6)); solveUsing4THOrderRK(A,Yinitial(:,6));
title('Runge-Kutta 4'); ylabel('residual error'); xlabel('time'); subplot(2,2,4), hold on,
solveUsingEigenvalues(A,Yinitial(:,6)); solveUsing5THOrderRK(A,Yinitial(:,6));
title('Runge-Kutta 5'); ylabel('residual error'); xlabel('time');

end

% this is a new method by GH 9/12/2018 to use a multi-step adam's mashforth method to solve the ode
function Y = solveUsingAdamsBashforth(A,Y0)
disp('AB start:')
global colormp idx eigSolnAtS
stepsize = [1,.1,0.01,.001]; leg = {'eigenvalues'};
for iStepsize = 1:length(stepsize)
 t = 0:stepsize(iStepsize):10;
 n = length(t);
 h = stepsize(iStepsize);
 Y(:,1) = Y0;
 Y(:,2) = (eye(3)-h*A)\Y(:,1); %implicit euler for t2
 tic,
 for loop=3:n
 Y(:,loop) = Y(:,loop-1) + 3/2*h*(A*Y(:,loop-1))-1/2*h*(A*Y(:,loop-2));
 end
 toc
 Y = Y./sum(Y(:,1)); %normalize the data
 error = eigSolnAtS - Y(:,1:1/stepsize(iStepsize):length(t)); disp(['max resid:' num2str(max(max((error))))]);
 figure(7), plot(t,Y(1,:),'color',colormp(idx,:)); idx = idx+1;
 leg{iStepsize+1} = num2str(stepsize(iStepsize));
end
legend(leg)
end

% GH 9/14/2018 -- adding a 4th order runga kutta for evaluation
function Y = solveUsing4THOrderRK(A,Y0)
global colormp idx eigSolnAtS
disp('RK4 start:')
stepsize = [1,.1,0.01,.001]; leg = {'eigenvalues'};
for iStepsize = 1:length(stepsize)
% t = 0.1:stepsize(iStepsize):100;
 t = 0:stepsize(iStepsize):10;
 n = length(t);
 h = stepsize(iStepsize);
 Y(:,1) = Y0;
 tic,

713

 for loop=2:n
 k1 = h*A*Y(:,loop-1);
 k2 = h*A*(Y(:,loop-1)+0.5*k1);
 k3 = h*A*(Y(:,loop-1)+0.5*k2);
 k4 = h*A*(Y(:,loop-1)+k3);
 Y(:,loop) = Y(:,loop-1) + (k1+2*k2+2*k3+k4)/6;
 end
 toc
 Y = Y./sum(Y(:,1)); %normalize the data
 error = eigSolnAtS - Y(:,1:1/stepsize(iStepsize):length(t)); disp(['max resid:' num2str(max(max((error))))]);
 figure(7), plot(t,Y(1,:),'color',colormp(idx,:)); idx = idx+1;
 leg{iStepsize+1} = num2str(stepsize(iStepsize));
end
legend(leg)
end

% 5th order RK as described in:
% AN ALGORITHM USING RUNGE-KUTTA METHODS OF ORDERS 4 AND 5 FOR SYSTEMS OF ODEs by NIKOLAOS S.
CHRISTODOULOU
% http://www.teihal.gr/gen/profesors/christodoulou/Publications/An%20algorithm%20using.pdf
function Y = solveUsing5THOrderRK(A,Y0)
global colormp idx eigSolnAtS
disp('RK5 start:')
stepsize = [2,1,.1,0.01,.001]; idx = 1; leg = {'eigenvalues'};
for iStepsize = 1:length(stepsize)
% t = 0.1:stepsize(iStepsize):100;
 t = 0:stepsize(iStepsize):10;
 n = length(t);
 h = stepsize(iStepsize);
 Y(:,1) = Y0;
 tic,
 for loop=2:n
 k1 = h*A*Y(:,loop-1);
 k2 = h*A*(Y(:,loop-1)+0.5*k1);
 k3 = h*A*(Y(:,loop-1)+(3*k1+k2)/16);
 k4 = h*A*(Y(:,loop-1)+k3/2);
 k5 = h*A*(Y(:,loop-1)+(-3*k2+6*k3+9*k4)/16);
 k6 = h*A*(Y(:,loop-1)+(k1+4*k2+6*k3-12*k4+8*k5)/7);
 Y(:,loop) = Y(:,loop-1) + (7*k1+32*k3+12*k4+32*k5+7*k6)./90;
 end
 toc
 Y = Y./sum(Y(:,1)); %normalize the data
 error = eigSolnAtS - Y(:,1:1/stepsize(iStepsize):length(t)); disp(['max resid:' num2str(max(max((error))))]);
 plot(t,Y(1,:),'color',colormp(idx,:)); idx = idx+1;
 leg{iStepsize+1} = num2str(stepsize(iStepsize));
end
legend(leg)
end

function [Y] = solveUsingEigenvalues(A,Y0)
global colormp idx eigSolnAtS
disp('ieg start:')
 tic,
[X,lambda] = eig(A);
C = X\Y0;
t = 0:0.1:10;
n = length(t);
for loop = 1:n
 Y(:,loop) = X*diag(exp(diag(lambda)*t(loop)))*C;
end
toc
figure(7), plot(t,Y(1,:),'color',colormp(idx,:),'linewidth',5); idx = idx+1;
eigSolnAtS = Y(:,1:(1/0.1):length(t));
end

function solveUsingImplicitEulerMethod(A,Y0)
global colormp idx eigSolnAtS
% stepsize = [20,5,.1,0.01,.001];

714

disp('IE start:')
stepsize = [1,.1,0.01,.001]; leg = {'eigenvalues'};
for iStepsize = 1:length(stepsize)
 t = 0:stepsize(iStepsize):10;
 n = length(t);
 clear('Y')
 Y(:,1) = Y0;
 tic,
 for loop=2:n
 Y(:,loop) = (eye(3)-stepsize(iStepsize)*A)\Y(:,loop-1);
 end
 toc
 Y = Y./sum(Y(:,1)); %normalize the data
 error = eigSolnAtS - Y(:,1:1/stepsize(iStepsize):length(t)); disp(['max resid:' num2str(max(max((error))))]);
 figure(7), plot(t,Y(1,:),'color',colormp(idx,:)); idx = idx+1;
 leg{iStepsize+1} = num2str(stepsize(iStepsize));
end
legend(leg)
end

function Y0 = getY0()
Y0=[1 0 0 .8 .3 .5 .3 .5 .2959;
 0 1 0 .2 0 .1 .2 .5 .5801;
 0 0 1 0 .7 .4 .5 0 .124];
end
function ydot = mm(t,y) %function of differential equations to be solved
global A
ydot = zeros(3,1); %set dimensions of ydot matrix, each row is a species
 ydot(1) = A(1,:)*y;
 ydot(2)= A(2,:)*y;
 ydot(3)= A(3,:)*y;
end
function A = getA
k = [0.4 0.2 0.1 0.45 0.4 0.16]; % kAB kba kBC kcb kCA kac
A = [-(k(1)+k(6)) k(2) k(5);...
 k(1) -(k(2)+k(3)) k(4);...
 k(6) k(3) -(k(5)+k(4))];
end
function [Y] = Eigen(A,Y0)
[X,lambda] = eig(A);
C = X\Y0;
t = 0:0.1:10;
n = length(t);
for loop = 1:n
 Y(:,loop) = X*diag(exp(diag(lambda)*t(loop)))*C;
end
end

715

function testIntegrators
warning('off')
close all
A = getA();
Yinitial = getY0();
global colormp idx
nColorChoices = 4;
colormp1=linspace(1,0.5,nColorChoices); colormp2=linspace(0.5,1,nColorChoices); colormp3=linspace(0.5,1,nColorChoices);
colormp = [1,1,0;
 colormp1' zeros(nColorChoices,2);
 zeros(nColorChoices,1) colormp2' zeros(nColorChoices,1);
 zeros(nColorChoices,2) colormp3'
 zeros(nColorChoices,1) colormp2' colormp3';...
 colormp3' zeros(nColorChoices,1) colormp2']; idx = 1;

%added 9/12/2018
figure(7), subplot(2,2,1), hold on,
solveUsingEigenvalues(A,Yinitial(:,6)); solveUsingImplicitEulerMethod(A,Yinitial(:,6));
title('Implicit Euler'); ylabel('residual error'); xlabel('time'); subplot(2,2,2), hold on,
solveUsingEigenvalues(A,Yinitial(:,6)); solveUsingAdamsBashforth(A,Yinitial(:,6));
title('Adams Bashford'); ylabel('residual error'); xlabel('time'); subplot(2,2,3), hold on,
solveUsingEigenvalues(A,Yinitial(:,6)); solveUsing4THOrderRK(A,Yinitial(:,6));
title('Runge-Kutta 4'); ylabel('residual error'); xlabel('time'); subplot(2,2,4), hold on,
solveUsingEigenvalues(A,Yinitial(:,6)); solveUsing5THOrderRK(A,Yinitial(:,6));
title('Runge-Kutta 5'); ylabel('residual error'); xlabel('time');

end

% this is a new method by GH 9/12/2018 to use a multi-step adam's mashforth method to solve the ode
function Y = solveUsingAdamsBashforth(A,Y0)
disp('AB start:')
global colormp idx eigSolnAtS
stepsize = [1,.1,0.01,.001]; leg = {'eigenvalues'};
for iStepsize = 1:length(stepsize)
 t = 0:stepsize(iStepsize):10;
 n = length(t);
 h = stepsize(iStepsize);
 Y(:,1) = Y0;
 Y(:,2) = (eye(3)-h*A)\Y(:,1); %implicit euler for t2
 tic,
 for loop=3:n
 Y(:,loop) = Y(:,loop-1) + 3/2*h*(A*Y(:,loop-1))-1/2*h*(A*Y(:,loop-2));
 end
 toc
 Y = Y./sum(Y(:,1)); %normalize the data
 error = eigSolnAtS - Y(:,1:1/stepsize(iStepsize):length(t)); disp(['max resid:' num2str(max(max((error))))]);
 figure(7), plot(t,Y(1,:),'color',colormp(idx,:)); idx = idx+1;
 leg{iStepsize+1} = num2str(stepsize(iStepsize));
end
legend(leg)
end

% GH 9/14/2018 -- adding a 4th order runga kutta for evaluation
function Y = solveUsing4THOrderRK(A,Y0)
global colormp idx eigSolnAtS
disp('RK4 start:')
stepsize = [1,.1,0.01,.001]; leg = {'eigenvalues'};
for iStepsize = 1:length(stepsize)
% t = 0.1:stepsize(iStepsize):100;
 t = 0:stepsize(iStepsize):10;
 n = length(t);
 h = stepsize(iStepsize);
 Y(:,1) = Y0;
 tic,
 for loop=2:n
 k1 = h*A*Y(:,loop-1);
 k2 = h*A*(Y(:,loop-1)+0.5*k1);
 k3 = h*A*(Y(:,loop-1)+0.5*k2);

716

 k4 = h*A*(Y(:,loop-1)+k3);
 Y(:,loop) = Y(:,loop-1) + (k1+2*k2+2*k3+k4)/6;
 end
 toc
 Y = Y./sum(Y(:,1)); %normalize the data
 error = eigSolnAtS - Y(:,1:1/stepsize(iStepsize):length(t)); disp(['max resid:' num2str(max(max((error))))]);
 figure(7), plot(t,Y(1,:),'color',colormp(idx,:)); idx = idx+1;
 leg{iStepsize+1} = num2str(stepsize(iStepsize));
end
legend(leg)
end

% 5th order RK as described in:
% AN ALGORITHM USING RUNGE-KUTTA METHODS OF ORDERS 4 AND 5 FOR SYSTEMS OF ODEs by NIKOLAOS S.
CHRISTODOULOU
% http://www.teihal.gr/gen/profesors/christodoulou/Publications/An%20algorithm%20using.pdf
function Y = solveUsing5THOrderRK(A,Y0)
global colormp idx eigSolnAtS
disp('RK5 start:')
stepsize = [2,1,.1,0.01,.001]; idx = 1; leg = {'eigenvalues'};
for iStepsize = 1:length(stepsize)
% t = 0.1:stepsize(iStepsize):100;
 t = 0:stepsize(iStepsize):10;
 n = length(t);
 h = stepsize(iStepsize);
 Y(:,1) = Y0;
 tic,
 for loop=2:n
 k1 = h*A*Y(:,loop-1);
 k2 = h*A*(Y(:,loop-1)+0.5*k1);
 k3 = h*A*(Y(:,loop-1)+(3*k1+k2)/16);
 k4 = h*A*(Y(:,loop-1)+k3/2);
 k5 = h*A*(Y(:,loop-1)+(-3*k2+6*k3+9*k4)/16);
 k6 = h*A*(Y(:,loop-1)+(k1+4*k2+6*k3-12*k4+8*k5)/7);
 Y(:,loop) = Y(:,loop-1) + (7*k1+32*k3+12*k4+32*k5+7*k6)./90;
 end
 toc
 Y = Y./sum(Y(:,1)); %normalize the data
 error = eigSolnAtS - Y(:,1:1/stepsize(iStepsize):length(t)); disp(['max resid:' num2str(max(max((error))))]);
 plot(t,Y(1,:),'color',colormp(idx,:)); idx = idx+1;
 leg{iStepsize+1} = num2str(stepsize(iStepsize));
end
legend(leg)
end

function [Y] = solveUsingEigenvalues(A,Y0)
global colormp idx eigSolnAtS
disp('ieg start:')
 tic,
[X,lambda] = eig(A);
C = X\Y0;
t = 0:0.1:10;
n = length(t);
for loop = 1:n
 Y(:,loop) = X*diag(exp(diag(lambda)*t(loop)))*C;
end
toc
figure(7), plot(t,Y(1,:),'color',colormp(idx,:),'linewidth',5); idx = idx+1;
eigSolnAtS = Y(:,1:(1/0.1):length(t));
end

function solveUsingImplicitEulerMethod(A,Y0)
global colormp idx eigSolnAtS
% stepsize = [20,5,.1,0.01,.001];
disp('IE start:')
stepsize = [1,.1,0.01,.001]; leg = {'eigenvalues'};
for iStepsize = 1:length(stepsize)
 t = 0:stepsize(iStepsize):10;

717

 n = length(t);
 clear('Y')
 Y(:,1) = Y0;
 tic,
 for loop=2:n
 Y(:,loop) = (eye(3)-stepsize(iStepsize)*A)\Y(:,loop-1);
 end
 toc
 Y = Y./sum(Y(:,1)); %normalize the data
 error = eigSolnAtS - Y(:,1:1/stepsize(iStepsize):length(t)); disp(['max resid:' num2str(max(max((error))))]);
 figure(7), plot(t,Y(1,:),'color',colormp(idx,:)); idx = idx+1;
 leg{iStepsize+1} = num2str(stepsize(iStepsize));
end
legend(leg)
end

function Y0 = getY0()
Y0=[1 0 0 .8 .3 .5 .3 .5 .2959;
 0 1 0 .2 0 .1 .2 .5 .5801;
 0 0 1 0 .7 .4 .5 0 .124];
end
function ydot = mm(t,y) %function of differential equations to be solved
global A
ydot = zeros(3,1); %set dimensions of ydot matrix, each row is a species
 ydot(1) = A(1,:)*y;
 ydot(2)= A(2,:)*y;
 ydot(3)= A(3,:)*y;
end
function A = getA
k = [0.4 0.2 0.1 0.45 0.4 0.16]; % kAB kba kBC kcb kCA kac
A = [-(k(1)+k(6)) k(2) k(5);...
 k(1) -(k(2)+k(3)) k(4);...
 k(6) k(3) -(k(5)+k(4))];
end
function [Y] = Eigen(A,Y0)
[X,lambda] = eig(A);
C = X\Y0;
t = 0:0.1:10;
n = length(t);
for loop = 1:n
 Y(:,loop) = X*diag(exp(diag(lambda)*t(loop)))*C;
end
end

718

7.32 Appendix AF: Edge detection in a Cartesian mesh

7.32.1 Vessel edge detection in 2D Cartesian mesh

In order to investigate the effects of different mass transfer choices and the convergence of

mesh independence, the mass transfer models from Figure 7.203 were expressed in a 2D-domain.

This was achieved through a novel edge detection algorithm. The general workflow begins with

defining the coordinates (I and j indices in Cartesian mesh) of the bounding box encompassing the

circle. These values are calculated using the radius and the center of the circle and with the

getSurroundingCell function. Then the distance between each cell (quadrilateral) center and the

vessel center is calculated. If the cell center is close to the circle edge (line 7 below), then it is

labeled as an edge volume. If it is not an edge but is inside the radius, it is labeled with as an

interior node. The remainder of nodes are, by default, are labeled an exterior node. The result of

implementing this algorithm for two different circles with differing radii and centers is given in

Figure 7.229.

719

Table 7.66. Pseudocode for vascular labeling of 2D Cartesian mesh

1. FUNCTION labelCells2D(cellCenter,radius)

2. getSurroundingCell(cellCenter[X] - radius[X], cellCenter[Y] - radius[Y], minI, minJ);

3. getSurroundingCell(cellCenter[X] + radius[X], cellCenter[Y] + radius[Y], maxI, maxJ);

4. FOR i = minI TO maxI DO

5. FOR j = minJ TO maxJ DO

6. dist = norm(getCellCenter(i,j) – cellCenter);

7. IF abs(radius – dist) < edgeThickness THEN labelMatrix[i,j] = edge;

8. ELSEIF dist < radius THEN labelMatrix[i,j] = interior;

9. ELSE labelMatrix[i,j] = exterior;

10. ENDFOR

11. ENDFOR

12. Return labelMatrix;

13. ENDFUNCTION

Table 7.67. Pseudocode for getting cell index surrounding a point in 2D Cartesian mesh

1. FUNCTION getSurroundingCell (ptCoord, i, j)

2. i = floor(ptCoord[X]/dx*nVolX)+1); j = floor(aPtCoord/dy*nVolY)+1;

3. ENDFUNCTION

Note, the variable edgeThickness must be set by the user and represents the thickness of the

vascular wall (endothelial layer). While the endothelial layer thickness may vary from vessel to

vessel, it can be modeled by a 1-cell thick layer using norm(dx, dy) as the thickness. Dx and dy

correspond to the x- and y- edge lengths of a mesh cell and the norm is the geometric norm of the

vector <dx, dy>.

720

Figure 7.229. Example of edge detection algorithm visualized with Matlab.

Using the Cartesian meshing logic, (light blue) the domain of the circle can be identified. This

region shortens the search area and can be interrogated as to whether each element center is

outside the vascular segment (distance > radius, light blue), inside the cell (distance < radius,

green) or if it is on the vessel edge (distance – radius < endothelial thickness, yellow). The results

here are shown for two circles with different centers and different radii on a 10 x10 mesh.

The equations of conservation are defined differently for each group (each color in Figure

7.229) as follows:

For blue (light and dark):

𝑟𝑥𝑛 = 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

𝑅0 = 𝐷
𝜕2𝑐

𝜕𝑥2

(7.620)

For yellow:

𝑟𝑥𝑛 = 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 +𝑀𝑇

𝑅0 = 𝐷
𝜕2𝑐

𝜕𝑥2
−
𝑈𝐴

𝜕𝑥
(𝑐𝑡 − 𝑐𝑣)

(7.621)

For green: (7.622)

721

𝑐𝑖 = 𝑐𝑉𝑎𝑠𝑐

Figure 7.230. Examples of edge detection at varying mesh densities from 10x10 (top left) to

500x500 (bottom right).

Using an edge thickness of |<dx, dy>| gives a one-voxel thick edge in all cases.

7.32.2 Validating implementation with diffusion

One method of validating the edge detection is to compare the numerical solution with an

analytic solution. Luckily, an analytic solution for the diffusion in a cylindrical domain is readily

available. The mathematics for the analytic form follow Section 7.28.6.1 and the numerical

follows:

For blue (light and dark): (7.623)

722

𝑅0 = 𝐷
𝜕2𝑐

𝜕𝑥2

Conclusion. The analytic solution is accurately represented by the discretization method.

Implementation. To implement this step of the mesh integration and edge detection, and to

simplify the programming, two mesh labels will be generated, one for the cylinder source and one

for the exterior of the cylindrical domain. These will then be interrogated for equation generation.

Source circle (vasculature) Domain circle

Yellow: Dirichlet = 35 mmHg

Green: Dirichlet = 35 mmHg

Blue: Diffusion

Blue/Yellow interface: diffusion

Yellow/green interface: no flow

Yellow: Dirichlet = 30 mmHg + diffusion

Blue: Dirichlet = 30 mmHg

green: unaffected

yellow/blue interface: no flux

yellow/green interface: diffusion

Figure 7.231. Visualization of the discrete labeling on two meshes.

Left) The source cylinder is modeled as a small circle in the center of the domain. Right) The

domain edge is also modeled as a circle. Note, the off-center coloration is an artifact of Matlab

surface plotting.

The two meshes will be merged and interrogated as one larger matrix as follows:

723

sc
h
em

at
ic

Yellow: Dirichlet = 35 mmHg

Dark green (center): Dirichlet = 35 mmHg

Blue/Yellow interface: diffusion

Yellow/green interface: no flux

Yellow/light blue interface: diffusion

Light blue/light green interface: diffusion

light green: Dirichlet = 35

dark blue: Dirichlet = 35

Dark blue/light blue interface: no flux

Figure 7.232. Visualization of the amalgamated meshes into a single labeled matrix.

The equations are explained for each coloration as well.

Distribution Comparison to analytics

Figure 7.233. Concentration profile of the circular domain simulation.

Left) The distribution is symmetric around the center axis. Right) The numerical solution matches

well to the analytic solution. The very slight discrepancy is attributed to discretization error (see

Section 7.28.5 half-volume technique).

7.32.3 Identifying vessel edge in 3D

In order to accurately account for mass transfer in 3D with a fine grid (grid spacing is smaller

than the largest vessel diameter), the edge detection algorithm from the previous section was

expanded. The calculation that solves for perpendicular distance in 2D is offered in Section 5.5

and 0. In short, every vessel can be defined by the minimum coordinates and maximum coordinates

724

of the two points that make up the terminals of the segment (p1 and p2) and the diameter. If a new

point is determined to be between the first and second point, axially, then the perpendicular

distance between the point and the segment characterizes whether or not the point is within the

cylinder (distance < radius). Due to the gaps between adjacent segments modeled as perfect

cylinders, the ends of the cylinder should be endowed with a sphere. A pseudocode has been

offered in Section 5.5.

7.32.3.1 Case Studies

In order to visualize the mesh labeling, a novel rendering paradigm was generated that

emphasizes the sparseness of the data (most of the mesh elements do not contain a vascular

segment). Another type of data that shares this property is DICOM medical images. As such, the

results of the labeling algorithm has been written to DICOM format for easy rendering in existing

visualization software.

Edge detection. The result visualized below shows excellent rendering of the vascular

structure. Unfortunately, when a mesh is generated obtaining all centerline points, it cuts off some

of the radii and thus the mesh will be expanded for further case studies.

725

network 100x100x100 (Walk In Brain)

1000x1000x1000 (radiant) 1000x1000x1000 (radiant 3D)

1000x1000x1000 (Walk In Brain Isosurface) 1000x1000x1000 (Walk In Brain)

Figure 7.234. pictoral representation of the vessel labeling algorithm in 3 dimensions.

The results, stored in DICOM image format and visualized in many platforms, shows excellent

agreement with the original network structure (top left).

Edge detection with vessel index tracking. In order to properly align (register) the vascular

segments with the mesh, it is imperative to keep track of which segment correlates to which mesh

voxel. This is implemented by filling a face index vector during the isPtInCylinder procedure,

where each voxel has a value corresponding to which network segment it correlates with (default

726

value of 0 for voxels with no vascular segment). Later, this will be expanded to a marix and many

vascular segments can be added to a single mesh element and likewise for many mesh elements

for a single vessel.

Edge detection (slice) Edge detection (3D coloration, red=edge)

Vessel correlation (coloration corresponds to

different vessels) *

Vessel correlation (coloration, note very

low values are cut off) *

Figure 7.235. Visualization of network edge detection using DICOM viewer tools.

 Top Row) and the vessel index correlation (Bottom Row). Note, repeating coloration is due to

limited color selection in DICOM review tools.

727

7.32.3.2 Simulation case studies

Further investigation of the effect of registering the voxels to a network can be seen by

simulating a voxel matrix with the tagged voxels (voxels corresponding to a vessel segment) set

to a nonzero Dirichlet boundary condition and the boundary of the tissue set to a Dirichlet value

of 0. This case study will exemplify the accuracy of labeling the mesh and ensuring that the vessels

do not hinder the simulation.

Simple tube (no MT resistance) Small nwk (no MT resistance, no reactions)

Figure 7.236. Visualization of simulation for two networks using vessel edge detection

visualized with DICOM image reviewing tools.

Red indicates high concentration and blue indicates low concentration. White indicates the mean

of the concentration range.

728

Small nwk (no MT resistance, no

reactions)

Small nwk (no MT resistance, with reactions)

Figure 7.237. Visualization of oxygen simulation in many DICOM review tools.

This proof-of-concept exemplifies the robustness of this visualization paradigm.

729

7.33 Appendix AG: Parametric studies (parameter sensitivity) on 1D-3D coupling

ID indicates the name for each case study. E1.1_85_Oxy_UU_0.1 refers to the E1.1 data

set (E1.1), 85 Volume (85), oxygen simulation (Oxy). UU stands for mass transfer coefficient

(symbol UU), and the following number is the value of UU for the simulation. Note, scaled max

balance error is the infinity norm of the mass balance at point error divided by maximum flow in

network.

730

7.33.1 Mass Transfer

ID

Pressure

(mmHg)

Time to

solve (s)

Scaled max

network

balance

error

Scaled max

tissue

balance error

Mass

transfer into

tissue

Mass

transfer

residual

error

Overall

extravas-

ation

E1.1_85_O

xy_UU_0

.01

83.939 2.3830e-11 -1.3982e-11 6.7346e8 -9.4162e-3 -6.7346e8

E1.1_85_O

xy_UU_0.1

530.60 4.0720e-12 -1.5768e-11 7.4244e8 -1.1707e-2 -7.4244e8

E1.1_85_O

xy_UU_1

244.17 6.0985e-13 -1.6645e-11 7.4078e8 -1.2330e-2 -7.4078e8

E1.1_85_O

xy_UU_10

158.95 2.3559e-12 -1.5941e-11 7.4106e8 -1.1812e-2 -7.4106e8

E1.1_85_O

xy_UU_10

0

130.15 3.7388e-12 -1.5873e-11 7.4111e8 -1.1764e-2 -7.4111e8

E1.1_85_O

xy_UU_24

00

126.30 3.5687e-12 -1.5872e-11 7.4111e8 -1.1763e-2 -7.4111e8

E1.1_85_O

xy_UU_50

00

123.66 2.2339e-12 -1.5859e-11 7.4111e8 -1.1753e-2 -7.4111e8

E1.1_85_O

xy_UU_1e

4

118.83 2.4861e-12 -1.5885e-11 7.4111e8 -1.177e-2 -7.4111e8

E1.1_85_O

xy_UU_1e

5

89.33 2.5013e-12 -1.5857e-11 7.4111e8 -1.1752e-2 -7.4111e8

E1.1_85_O

xy_UU_1e

6

110.64 3.0518e-12 -1.8681e-11 7.4111e8 -1.3845e-2 -7.4111e8

731

Figure 7.238. Raytraces for different rays through the 3D block with varying mass transfer

coefficient corresponding to the above table.

The bottom example ray showcases ray 17 showing that the after a mass transfer coefficient of

100, all values converge to the same line. In our study, we choose 2,400 μm2/s (light blue). Y

label is misnamed, it should be named “concentration, attoMole/μm3”.

732

7.33.2 Reaction (kk)

ID

Pressure

(mmHg)

Time to

solve (s)

Scaled max

network

balance

error

Scaled max

tissue

balance

error

Mass

transfer

into

tissue

Mass

transfer

residual

error

Overall

extravas-

ation

E1.1_85_

Oxy_kk_1

e-6

6591.29 2.6917e-12 4.4502e-9 3.4637e8 1.5414 -3.4637e8

E1.1_85_

Oxy_ kk

_1e-5

5549.15 2.6917e-12 4.4502e-9 3.4637e8 1.5414 -3.4637e8

E1.1_85_

Oxy_ kk

_1e-4

2263.6 7.8475e-13 4.4099e-9 6.6643e8 2.9389 -6.6643e8

E1.1_85_

Oxy_ kk

_1e-3

286.85 2.4577e-12 4.0255e-9 7.3439e8 2.9563 -7.3439e8

E1.1_85_

Oxy_ kk

_41.7e-4

122.84 3.6672e-12 2.9862e-9 7.4110e8 2.2130 -7.4110e8

E1.1_85_

Oxy_ kk

_0.01

93.699 4.3301e-12 1.8501e-9 7.4272e8 1.3741 -7.4272e8

E1.1_85_

Oxy_ kk

_0.1

26.843 1.5611e-12 3.4044e-11 7.4496e8 0.02536 -7.4496e8

E1.1_85_

Oxy_ kk

_1

10.347 1.7412e-12 4.7943e-16 7.4595e8 3.5763 -7.4959e8

E1.1_85_

Oxy_ kk

_10

3.872 3.2083e-13 -1.5974e-16 7.4628e8 -1.1921e-7 -7.4628e8

733

Figure 7.239. Raytraces for different rays through the 3D block with varying the metabolic rate

(CMRO2) corresponding to the above table.

The bottom example ray showcases ray 17 showing that the a value of 41.7e-4, all values

converge to the same line. In our study, we choose 41.7e-4 attomole/μm3/s (dark green).

734

7.33.3 Diffusivity (DD)

ID

Pressure

(mmHg)

Time to

solve (s)

Scaled

network

balance

error

Scaled tissue

balance

error

Mass

transfer

into

tissue

Mass

transfer

residual

error

Overall

extravas-

ation

E1.1_85_O

xy_DD_0.1

100.73 3.6765E-12 -1.4240E-8 6.5281E8 -9.2958 -6.5281E8

E1.1_85_O

xy_ DD _1

71.294 3.8434E-12 -2.9301E-12 6.7235E8 -1.9701E-3 -6.7235E8

E1.1_85_O

xy_ DD

_10

38.019 3.2959E-12 3.6755E-13 6.7818E8 2.4927E-4 -6.7818E8

E1.1_85_O

xy_ DD

_100

34.632 2.9514E-12 1.4438E-9 7.1757E8 1.0361 -7.1757E8

E1.1_85_O

xy_ DD

_600

68.833 3.9133E-12 4.6153E-9 7.3651E8 3.3992 -7.3651E8

E1.1_85_O

xy_ DD

_900

86.447 3.3327E-12 4.2085E-9 7.3862E8 3.1085 -7.3862E8

E1.1_85_O

xy_ DD

_1800

92.276 3.6672E-12 2.9862E-9 7.4111E8 2.2131 -7.4111E8

E1.1_85_O

xy_ DD

_5000

185.53 2.0575E-13 1.3796E-9 7.4302E8 1.0251 -7.4302E8

E1.1_85_O

xy_ DD

_1e4

395.40 1.9139E-13 7.4318E-10 7.4362E8 0.55264 -7.4362E8

E1.1_85_O

xy_ DD

_1e5

2350.2 1.9395E-14 7.9624E-11 7.4418E8 0.059255 -7.4418E8

735

Figure 7.240. Raytraces for different rays through the 3D block with varying diffusivity

corresponding to the above table.

The bottom example ray showcases ray 17. In this parametric study, the diffusivity has a great

impact on the simulation results throughout the definition space. With slower diffusivity, the

concentration peaks are more prominent and with faster diffusivity, the concentration profile

flattens out. In our study, we choose 1,800 μm2/s (dark blue).

736

7.33.4 Volumes

ID

Pressure

(mmHg)

Time

to

solve

(s)

Scaled

network

balance

error

Scaled tissue

balance

error

Mass

transfer

into tissue

Mass

transfer

residual

error

Overall

extravas-

ation

E1.1_85_Ox

y_nVol_25

4.39 3.3085E-13 -1.9628E-14 7.4096E8 -1.4543E-5 -7.4096E8

E1.1_85_Ox

y_ nVol_45

12.249 3.9019E-12 -5.1493E-12 7.4135E8 -3.8174E-3 -7.4135E8

E1.1_85_Ox

y_ nVol_65

64.409 1.3125E-12 1.6088E-16 7.4098E8 1.1921E-7 -7.4098E8

E1.1_85_Ox

y_ nVol_85

104.81

5
3.6672E-12 2.9862E-9 7.4111E8 2.2131 -7.4111E8

E1.1_85_Ox

y_

nVol_105

328.89

4
3.7634E-12 -1.3028E-8 7.4107E8 -9.6544 -7.4107E8

E1.1_85_Ox

y_

nVol_125

771.20 3.7275E-12 9.4114E-9 7.4114E8 6.9751 -7.4114E8

E1.1_85_Ox

y_

nVol_145

1366.4 2.0466E-12 7.7026E-9 7.4113E8 5.7087 -7.4113E8

E1.1_85_Ox

y_

nVol_165

2402.1 3.0782E-12 -1.4406E-12 7.4117E8 -1.0678E-3 -7.4117E8

E1.1_85_Ox

y_

nVol_185

3589.5 4.0216E-12 -8.6794E-12 7.4115E8 -6.4328E-3 -7.4115E8

737

7.34 Appendix AH: Physical chemistry behind oxygen composition in brain:

This section delineates the unit conversion between partial pressure and concentration of a

soluble gas at STP. It is important to note that most people calculate this conversion using the

Henry constant as follows:

 𝑐𝑖
𝑝𝑖
=

𝑐𝑖
𝑝𝑡𝑜𝑡𝑥𝑖

= 𝐻
(7.624)

But in reality, the Henry constant is derived as the critical point where the fugacity of the

liquid-phase material and the gas-phase material are equal. This means that if the ratio of molar

fraction to absolute concentration of the gas-phase solute (𝑝𝑡𝑜𝑡𝑥𝑖/𝑐𝑖) increases beyond the Henry

constant, precipitation occurs. This can occur in the case where the overall pressure decreases, or

molar fraction increases. The currently accepted use of this equation for unit conversion between

partial pressure and concentration is using the assumption that the gas is at the critical saturation

limit at all times, an assumption that is never acknowledged. The actual concentration of oxygen

is ~10% of the critical limit in blood using the calculation derived in this section.

7.34.1 Background

The fugacity is a method of correcting the potential energy of the system (which is usually

calculated with temperature-dependent Gibbs free energy) to account for potential energy from

pressure. Fugacity in low pressures can be approximated using:

738

𝑓𝑖
𝐺 = 𝑃𝑦𝑖 = 𝑝𝑖 (7.625)

The fugacity of the gas phase when liquid molar fraction of bulk (𝑥𝑗) approaches 1 can be

approximated as a linear relationship using a constant (k) constant:

lim
𝑥𝑗→1

𝑓𝑖
𝐿 → 𝑓𝑖

𝐿 = 𝑘𝑥𝑖
(7.626)

When in equilibrium, the fugacities of the gas and liquid phase must be the same:

𝑓𝑖
𝐺 = 𝑓𝑖

𝐿
(7.627)

𝑝𝑖 = 𝑦𝑖
𝑔
𝑃𝑡𝑜𝑡 = 𝑘𝑥𝑖 = 𝐻𝑐𝑖 (7.628)

yi
𝑔

𝑐𝑖
=
𝐻

Ptot

(7.629)

If the fugacity of the gas is larger than the fugacity of the liquid phase, the gas phase

precipitates and bubbles off.

7.34.2 Unit conversion between concentration and partial pressure

Consider the simplest problem, only water and oxygen at STP as below. The volume is 1L.

With given molecular properties:

739

Table 7.68. Molecular properties of oxygen and water

Property O2 H2O Symbol units

Molecular weight: 32 18.015 w g/mol

Density at STP
1.429 (G)

1141 (L)
997 (L) ρ

g/L

mg/ml

And the partial pressure defined as:

 𝑝𝑖
𝑃𝑡𝑜𝑡

= 𝑥𝑖
(7.630)

Consider the total moles within the volume is given by:

 𝑛𝑡𝑜𝑡 = 𝑛𝐻2𝑂 + 𝑛𝑂2 (7.631)

 𝑛𝑂2 = 𝑥𝑜2𝑛𝑡𝑜𝑡

𝑛𝑂2 = 𝑥𝑜2(𝑛𝐻2𝑂 + 𝑛𝑂2)

𝑛𝑂2(1 − 𝑥𝑜2) = 𝑥𝑜2𝑛𝐻2𝑂

𝑛𝑂2 =
𝑥𝑜2

1 − 𝑥𝑜2
𝑛𝐻2𝑂

𝑛𝐻2𝑂 =
1 − 𝑥𝑜2
𝑥𝑜2

𝑛𝑂2

(7.632)

The mass (in mg) is defined by density as:

740

 𝑚𝑡𝑜𝑡 = 𝑚𝐻2𝑂 +𝑚𝑂2

𝑚𝑡𝑜𝑡 = 𝑛𝐻2𝑂𝑤𝐻2𝑂 + 𝑛𝑂2𝑤𝑂2

𝑚𝑡𝑜𝑡 =
1 − 𝑥𝑜2
𝑥𝑜2

𝑛𝑂2𝑤𝐻2𝑂 + 𝑛𝑂2𝑀𝑂2

𝑚𝑡𝑜𝑡 = 𝑛𝑂2 (
1 − 𝑥𝑜2
𝑥𝑜2

𝑤𝐻2𝑂 + 𝑤𝑂2)

(7.633)

Given the volume of the box, the partial volumes can be found:

 𝑉𝑡𝑜𝑡 = 𝑉𝑂2 + 𝑉𝐻2𝑂

𝑉𝑡𝑜𝑡 =
𝑤𝑂2
𝜌𝑂2

𝑛𝑂2 +
𝑤𝐻2𝑂

𝜌𝐻2𝑂
𝑛𝐻2𝑂

(7.634)

Using substitution, the number of oxygen molecules can be obtained as follows:

𝑉𝑡𝑜𝑡 =

𝑤𝑂2
𝜌𝑂2

𝑛𝑂2 +
𝑤𝐻2𝑂

𝜌𝐻2𝑂

1 − 𝑥𝑜2
𝑥𝑜2

𝑛𝑂2

𝑉𝑡𝑜𝑡 = 𝑛𝑂2 (
𝑤𝑂2
𝜌𝑂2

+
𝑤𝐻2𝑂

𝜌𝐻2𝑂

1 − 𝑥𝑜2
𝑥𝑜2

)

𝑛𝑂2
𝑉𝑡𝑜𝑡

= 𝑐𝑂2 =
1

𝑤𝑂2
𝜌𝑂2

+
𝑤𝐻2𝑂
𝜌𝐻2𝑂

1 − 𝑥𝑜2
𝑥𝑜2

(7.635)

741

𝒄𝑶𝟐 =
𝝆𝑶𝟐𝝆𝑯𝟐𝑶𝒙𝒐𝟐

𝒘𝑶𝟐𝝆𝑯𝟐𝑶𝒙𝒐𝟐 + 𝝆𝑶𝟐𝒘𝑯𝟐𝑶(𝟏 − 𝒙𝒐𝟐)

Where a partial pressure boundary condition from literature and the assumption of a total

pressure of STP (760 mmHg or 1 atm) can lead to the computation of the inlet concentration:

 𝑥𝑜2 =
𝑝𝑂2
𝑃𝑡𝑜𝑡

𝒄𝑶𝟐 =
𝝆𝑶𝟐𝝆𝑯𝟐𝑶

𝒑𝑶𝟐
𝑷𝒕𝒐𝒕

𝒘𝑶𝟐𝝆𝑯𝟐𝑶
𝒑𝑶𝟐
𝑷𝒕𝒐𝒕

+ 𝝆𝑶𝟐𝒘𝑯𝟐𝑶 (𝟏 −
𝒑𝑶𝟐
𝑷𝒕𝒐𝒕

)

(7.636)

To get from cO2 back to partial pressure:

 Method 1:

𝑐𝑂2𝑤𝑂2𝜌𝐻2𝑂𝑥𝑜2 + 𝑐𝑂2𝜌𝑂2𝑤𝐻2𝑂(1 − 𝑥𝑜2)

𝜌𝑂2𝜌𝐻2𝑂𝑥𝑜2
= 1

𝑥𝑜2
𝑐𝑂2𝑤𝑂2𝜌𝐻2𝑂

𝜌𝑂2𝜌𝐻2𝑂
+
𝑐𝑂2𝜌𝑂2𝑤𝐻2𝑂

𝜌𝑂2𝜌𝐻2𝑂
− 𝑥𝑜2

𝑐𝑂2𝜌𝑂2𝑤𝐻2𝑂

𝜌𝑂2𝜌𝐻2𝑂
= 𝑥𝑜2

𝑥𝑜2 (
𝑐𝑂2𝑤𝑂2
𝜌𝑂2

−
𝑐𝑂2𝑤𝐻2𝑂

𝜌𝐻2𝑂
) +

𝑐𝑂2𝑤𝐻2𝑂

𝜌𝐻2𝑂
= 𝑥𝑜2

𝑤𝐻2𝑂

𝜌𝐻2𝑂
= 𝑥𝑜2 (1 −

𝑐𝑂2𝑤𝑂2
𝜌𝑂2

+
𝑐𝑂2𝑤𝐻2𝑂

𝜌𝐻2𝑂
)

(7.637)

742

𝒙𝒐𝟐 =
𝒄𝑶𝟐𝒘𝑯𝟐𝑶

𝝆𝑯𝟐𝑶
(𝟏 −

𝒄𝑶𝟐𝒘𝑶𝟐
𝝆𝑶𝟐

+
𝒄𝑶𝟐𝒘𝑯𝟐𝑶

𝝆𝑯𝟐𝑶
)

−𝟏

Method 2:

𝑉𝑡𝑜𝑡 =
𝑤𝑂2
𝜌𝑂2

𝑛𝑂2 +
𝑤𝐻2𝑂

𝜌𝐻2𝑂

1 − 𝑥𝑜2
𝑥𝑜2

𝑛𝑂2

𝑥𝑜2 (𝑉𝑡𝑜𝑡 −
𝑤𝑂2
𝜌𝑂2

𝑛𝑂2) =
𝑤𝐻2𝑂

𝜌𝐻2𝑂
𝑛𝑂2 − 𝑥𝑜2

𝑤𝐻2𝑂

𝜌𝐻2𝑂
𝑛𝑂2

𝑥𝑜2 (𝑉𝑡𝑜𝑡 −
𝑤𝑂2
𝜌𝑂2

𝑛𝑂2 +
𝑤𝐻2𝑂

𝜌𝐻2𝑂
𝑛𝑂2) =

𝑤𝐻2𝑂

𝜌𝐻2𝑂
𝑛𝑂2

𝒙𝒐𝟐 =
𝒘𝑯𝟐𝑶

𝝆𝑯𝟐𝑶
𝒄𝑶𝟐 (𝟏 −

𝒘𝑶𝟐
𝝆𝑶𝟐

𝒄𝑶𝟐 +
𝒘𝑯𝟐𝑶

𝝆𝑯𝟐𝑶
𝒄𝑶𝟐)

−𝟏

Figure 7.241. Parametric study of molar fraction of oxygen and the calculation of (left) moles

of oxygen and (right) partial pressure of oxygen.

The molar concentration is slightly nonlinear yet the partial pressure is linear with respect to the

molar fraction of oxygen.

743

function testPartialPressure

close all

V = 1;

densityH2O=997; densityO2=1411;

weightH2O =18.015; weightO2 =32;

pO2 = 0:0.1:80;

xO2=pO2./760;

cO2 = densityO2*densityH2O*xO2./(weightO2*densityH2O*xO2+densityO2*weightH2O*(1-xO2));

figure, plot(xO2,cO2), xlabel('x_O_2'); ylabel('c_O_2');

figure, plot(xO2,pO2), xlabel('x_O_2'); ylabel('p_O_2');

end

7.34.3 Conversion of CMRO2 from medical units to moles/s

Unfortunately, the values commonly reported for the cerebral metabolic rate of oxygen

(CMRO2) are given in conventional units, but are inconvenient for mass transport simulation

equations. This gives rise to a straightforward unit conversion from given values (8.2∙

10−6cm3O2/cm3/s) to units (mol/s):

8.2∙ 10−6cm3O2 1141 mg mmol

cm3 ∙s cm3O2 32 mg

Mathematical implementation:

�̇�(𝑚𝑜𝑙/𝑠) = �̇�(𝑐𝑚3𝑂2/𝑐𝑚
3/𝑠) 𝜌/𝑤

(7.638)

Which results in a 0th order reaction rate of �̇�=0.29238∙ 10−3mmol/cm3/s. Which, when

converted to our units (attomole/μm3/s) is:

0.29238∙ 10−3 mmol 1 cm3 1015 attomole

cm3 ∙s 1012 μm3 1 mmol

744

Resulting in 0.29238 attomole/μm3/s. When using this reaction rate, the integral of reaction

over the entire volume can be calculated:

𝑙𝑜𝑠𝑠 = �̇� ∙ 𝑉𝑡𝑖𝑠𝑠

𝑙𝑜𝑠𝑠 = (0.29238 attomole/μm3/𝑠)(1.14 ∙ 109𝜇𝑚3)

𝑙𝑜𝑠𝑠 = 0.33331 ∙ 109𝑎𝑡𝑡𝑜𝑚𝑜𝑙𝑒/s

𝑙𝑜𝑠𝑠 = 0.33331 𝑛𝑎𝑛𝑜𝑚𝑜𝑙𝑒/s

(7.639)

Where Vtiss for the E1.1 dataset is 1.14∙ 109 μm3, giving a loss of 0.33331∙ 109 attomoles/s at

steady-state, or 0.33331 nanomoles/s. If considering a 1st order reaction and an average

concentration of 30 mmHg (an assumption), the reaction rate (k1) can be approximated by:

𝑙𝑜𝑠𝑠 = 𝑘1𝑐̅𝑉𝑡𝑖𝑠𝑠

Where 𝑐̅ = 2.1628 ∙ 103𝑎𝑡𝑡𝑜𝑚𝑜𝑙𝑒/𝜇𝑚3
(7.640)

If the loss is assumed the same, then the reaction rate can be calculated using:

𝑘1 =
𝑙𝑜𝑠𝑠

𝑐̅𝑉𝑡𝑖𝑠𝑠

𝑘1 =
0.33331 ∙ 109 attomoles/s

(2.1628 ∙
103𝑎𝑡𝑡𝑜𝑚𝑜𝑙𝑒

𝜇𝑚3) (1.14 ∙ 109 μm3)

𝑘1 = 1.3518 ∙ 10
3 𝑠−1

(7.641)

745

7.35 Appendix AI: Calculating free oxygen concentration hemoglobin binding kinetics

Oxygen with Hemoglobin. A more complete, but costly computation of oxygen in the

vasculature accounts for hemoglobin binding kinetics. The hemoglobin binding kinetics requires

a complicated 4-state binding model with state-dependent reaction rates. Moreover, the model

requires a biphasic model of blood to account for the red blood cell phase independent of whole

blood. Hemoglobin will follow the RBC phase and oxygen will follow the plasma phase in the

event of biphasic blood flow. Oxygen-bound hemoglobin (Hbbound) will be modeled by convection

through the RBC phase of blood and a reaction to discharge the oxygen into the free plasma. The

free oxygen (O) will have a generation term (generated from detachment from hemoglobin) and

will be convected through the plasma and transferred through the wall using mass transfer as seen

in Equation (7.642).

𝑑𝑐𝐻𝑏
𝑏

𝑑𝑡
𝑉𝑣𝑎𝑠𝑐 = �⃑� ∙ (𝑓𝑐𝐻𝑏

𝑏) − 𝑟ℎ𝑖𝑙𝑙

𝑑𝑐𝑂
𝑑𝑡

𝑉𝑣𝑎𝑠𝑐 = 𝑟ℎ𝑖𝑙𝑙 − �⃑� ∙ (𝑓𝑐𝑂) + 𝑈𝐴𝑣𝑎𝑠𝑐∆𝑐𝑂𝑉𝑣𝑎𝑠𝑐

(7.642)

Where

𝑟ℎ𝑖𝑙𝑙 = keff(co − 𝑐𝑜
𝑒𝑞
)𝑉𝑣𝑎𝑠𝑐

(7.643)

The Hill equation (Equation (7.653)) can be used to derive the ratio of bound and total

hemoglobin (Equation (7.370)), rendering:

746

𝑟ℎ𝑖𝑙𝑙 = keff(co − (𝐾𝑒𝑞
𝜃

1 − 𝜃
)

1
𝑛
)𝑉𝑣𝑎𝑠𝑐

Where

𝜃 =
(𝑐𝑂)

𝑛

𝐾𝑒𝑞 + (𝑐𝑂)
𝑛
=

1

1 +
𝐾𝑒𝑞
(𝑐𝑂)

𝑛

(7.644)

This is a nonlinear set of equations, which can either be converged using a fixed point iteration

scheme such as the one used in the calculation of biphasic blood flow (Section 7.12). More

information on the Hill equation can be found in Section 7.36.

Hydrogen (pH). Hydrogen ions can be included as the metabolic product of oxygen

destruction. It will be modeled as a competitive binder to hemoglobin with oxygen (decreases the

binding affinity for oxygen). The flux through the tissue uses diffusion, but through vasculature it

can be modeled by mass transfer and convection:

𝑑𝑐𝐻+

𝑑𝑡
𝑉𝑡𝑖𝑠𝑠 = ∇⃑⃑ ∙ (𝑓𝑐𝐻+) + 𝑈𝐴𝑣𝑎𝑠𝑐∆𝑐𝐻+ (7.645)

𝐾𝑒𝑞(𝐻
+) = 𝑘𝑒𝑞̅̅ ̅̅ + 𝛼𝑐𝐻+ (7.646)

Note, Equation (7.646) offers a hydrogen-dependent equilibrium rate. The production of

hydrogen involves the bicarbonate reaction sequence as a result of increased aerobic metabolism

in the tissue and enters the vasculature through mass transfer. To keep consistent with previous

implementation, the equilibrium concentration will use the following definition:

747

𝑘𝑒𝑞 = (𝑃50)
𝑛

(7.647)

Which can be substituted back into the Hill equation to become:

𝜃 =
1

1 + (
𝑃50
𝑃𝑂
)
𝑛

(7.648)

The derivation of the equilibrium concentration is given below:

𝜃 =
𝑐𝐻𝑏𝑂

𝑐𝐻𝑏𝑂 + 𝑐𝐻𝑏
=

𝑐𝐻𝑏𝑂

𝑐𝐻𝑏𝑂 + 𝑐𝑂
𝑅𝐵𝐶

(1 − 𝜃) =
𝑐𝐻𝑏

𝑐𝐻𝑏𝑂 + 𝑐𝐻𝑏
=

𝑐𝑂
𝑅𝐵𝐶

𝑐𝐻𝑏𝑂 + 𝑐𝑂
𝑅𝐵𝐶

(7.649)

Combining keq and Equation (7.649) gives:

𝑘𝑒𝑞
𝜃

1 − 𝜃
=
𝑐𝑂
𝑛𝑐𝐻𝑏
𝑐𝐻𝑏𝑂

𝑐𝐻𝑏𝑂/𝑐𝐻𝑏𝑂 + 𝑐𝐻𝑏
𝑐𝐻𝑏/𝑐𝐻𝑏𝑂 + 𝑐𝐻𝑏

𝑘𝑒𝑞
𝜃

1 − 𝜃
=
𝑐𝑂
𝑛𝑐𝐻𝑏
𝑐𝐻𝑏𝑂

𝑐𝐻𝑏𝑂
𝑐𝐻𝑏

= 𝑐𝑂
𝑛

(𝑘𝑒𝑞
𝜃

1 − 𝜃
)

1
𝑛
= 𝑐𝑂

(7.650)

748

This relates the concentration of oxygen to a series of values that can be looked up in a table

(if 𝜃 is approximated using the old value as in [21,22]) or converged with fixed-point iteration.

749

7.36 Appendix AJ: The Hill Equation

The hill equation is an approximation to calculate the saturation of O to Hb. It was developed

for understanding reoxygenation in the lungs in [273]. The derivation begins with a reversible

reaction where the four hemoglobin (Hb) binding states are assumed to bind as in:

𝑛𝑂 + 𝐻𝑏
𝑘1
↔
𝑘2

𝐻𝑏𝑂
(7.651)

𝑘𝑒𝑞 =
𝑘2
𝑘1
=
(𝑐𝑂)

𝑛𝑐𝐻𝑏
𝑐𝐻𝑏𝑂

(7.652)

A new definition is now introduced as the saturation of O to Hb:

𝜃 =
𝑐𝐻𝑏𝑂

𝑐𝐻𝑏 + 𝑐𝐻𝑏𝑂

(7.653)

With substitution, Eq. (7.653) becomes:

𝑐𝐻𝑏𝑂 =
(𝑐𝑂)

𝑛𝑐𝐻𝑏
𝑘𝑒𝑞

𝜃 =

(𝑐𝑂)
𝑛𝑐𝐻𝑏
𝑘𝑒𝑞

𝑐𝐻𝑏 +
(𝑐𝑂)

𝑛𝑐𝐻𝑏
𝑘𝑒𝑞

=

(𝑐𝑂)
𝑛𝑐𝐻𝑏
𝑘𝑒𝑞

𝑐𝐻𝑏𝑘𝑒𝑞
𝑘𝑒𝑞

+
(𝑐𝑂)

𝑛𝑐𝐻𝑏
𝑘𝑒𝑞

=

(𝑐𝑂)
𝑛𝑐𝐻𝑏
𝑘𝑒𝑞

𝑐𝐻𝑏(𝑘𝑒𝑞 + (𝑐𝑂)
𝑛)

𝑘𝑒𝑞

(7.654)

750

=
(𝑐𝑂)

𝑛𝑐𝐻𝑏
𝑘𝑒𝑞

𝑘𝑒𝑞

𝑐𝐻𝑏(𝑘𝑒𝑞 + (𝑐𝑂)
𝑛)

𝜃 =
𝑐𝐻𝑏𝑂

𝑐𝐻𝑏 + 𝑐𝐻𝑏𝑂
=

(𝑐𝑂)
𝑛

𝑘𝑒𝑞 + (𝑐𝑂)
𝑛
=

1

1 +
𝑘𝑒𝑞
(𝑐𝑂)

𝑛

The majority of the computational blood oxygen level community don’t use concentrations,

but rather gas partial pressure (pO2). This replaces the equilibrium concentration ratio with a partial

pressure at 50% Hb saturation, known as P50. When making this change to the equation, the value

is also raised to the power of n:

𝜃 =
1

1 + (
𝑃50
𝑝𝑂
)
𝑛

(7.655)

7.36.1 Effects of catalyzed oxygen unbinding on Hill equation

In order to consider the effects of hydrogen competitive binding, the catalysis of the reaction

must be evaluated. Considering a reversible reaction:

𝐴 + 𝐵
k1

k2⃡⃑ ⃑⃗
 C (7.656)

With an equilibrium constant (𝐾eq):

751

𝐾eq =
𝑐𝐴
𝑠𝑠𝑐𝐵

𝑠𝑠

𝑐𝐶
𝑠𝑠 =

k1
𝑘2

 (7.657)

In the case of ligand binding with multiple binding states, such as:

𝑛𝑂 + 𝐻𝑏
k1

k2⃡⃑ ⃑⃗
 OHb

(7.658)

The constant equation accounts for the multiple binding states:

𝐾eq =
k1
𝑘2
=
𝑐𝐻𝑏(𝑐𝑂)

𝑛

𝑐𝑂𝐻𝑏
 (7.659)

If we define the ratio of occupied to total receptor:

𝜃 =
𝑟𝑜𝑐𝑐
𝑟𝑡𝑜𝑡

=
𝑐𝑂𝐻𝑏

𝑐𝐻𝑏 + 𝑐𝑂𝐻𝑏
=

𝑐𝐻𝑏(𝑐𝑂)
𝑛

𝐾𝑒𝑞

𝑐𝐻𝑏 +
𝑐𝐻𝑏(𝑐𝑂)

𝑛

𝐾𝑒𝑞

=

𝑐𝐻𝑏(𝑐𝑂)
𝑛

𝐾𝑒𝑞
𝑐𝐻𝑏𝐾𝑒𝑞 + 𝑐𝐻𝑏(𝑐𝑂)

𝑛

𝐾𝑒𝑞

=
𝑐𝐻𝑏(𝑐𝑂)

𝑛

𝐾𝑒𝑞

𝐾𝑒𝑞
𝑐𝐻𝑏𝐾𝑒𝑞 + 𝑐𝐻𝑏(𝑐𝑂)

𝑛

(7.660)

𝜽 =
(𝒄𝑶)

𝒏

𝑲𝒆𝒒 + (𝒄𝑶)
𝒏

 → 𝐇𝐢𝐥𝐥 𝐄𝐪𝐧 (7.661)

752

Where O is moles of free oxygen, n is number of binding sites on hemoglobin, Hb is moles of

hemoglobin, and OHb is moles of bound oxygen to hemoglobin. If the forward reaction is

catalyzed, the reaction rate is increased: (𝛽 = 𝛼/𝑘2)

𝑛𝑂 + 𝐻𝑏
k1 + 𝛼

k2⃡⃑ ⃑⃗
 OHb (7.662)

k1 + 𝛼

𝑘2
= 𝐾eq + 𝛽

=
𝒄𝑯𝒃(𝒄𝑶)

𝒏

𝒄𝑶𝑯𝒃

(7.663)

The ratio of occupied to total receptor is then defined as:

𝜃 =
𝑟𝑏𝑜𝑢𝑛𝑑
𝑟𝑡𝑜𝑡

=
𝑐𝑂𝐻𝑏

𝑐𝐻𝑏 + 𝑐𝑂𝐻𝑏
=

𝑐𝐻𝑏(𝑐𝑂)
𝑛

𝐾𝑒𝑞 + 𝛽

𝑐𝐻𝑏 +
𝑐𝑂(𝑐𝐻𝑏)

𝑛

𝐾𝑒𝑞 + 𝛽

=

𝑐𝐻𝑏(𝑐𝑂)
𝑛

𝐾𝑒𝑞 + 𝛽

𝑐𝐻𝑏(𝐾𝑒𝑞 + 𝛽) + 𝑐𝐻𝑏(𝑐𝑂)
𝑛

𝐾𝑒𝑞 + 𝛽

=
𝑐𝐻𝑏(𝑐𝑂)

𝑛

(𝐾𝑒𝑞 + 𝛽)

(𝐾𝑒𝑞 + 𝛽)

𝑐𝐻𝑏(𝐾𝑒𝑞 + 𝛽) + 𝑐𝐻𝑏(𝑐𝑂)
𝑛

(7.664)

𝜃 =
(𝑐𝑂)

𝑛

(𝐾𝑒𝑞 + 𝛽) + (𝑐𝑂)
𝑛

 (7.665)

Given that k2 and 𝛼 are both unknown, the previous equation can be rewritten in terms of a

single unknown constant:

753

𝜃 ==
(𝑐𝑂)

𝑛

𝐾𝑒𝑞𝜸(𝑯
+) + (𝑐𝑂)

𝑛

𝑜𝑟

𝜃 =
(𝑐𝑂)

𝑛

𝐾𝑒𝑞 + 𝜸(𝑯
+) + (𝑐𝑂)

𝑛

(7.666)

Where 𝛾(𝐻+) can be any function. The following is recommended: (𝛼 will be chosen to keep

oxygen within measurements):

𝛾(𝐻+) = 𝛼𝑐𝐻+ (7.667)

The result of adjusting this value effectively shifts the P50 value. An example of binding curve

(Hill equation value) with a commonly reported P50 value (29.3) and an amended value (35) are

compared in Figure 7.242.

Figure 7.242. Effect of shifting the equilibrium concentration on the results of the Hill equation.

A decrease in the equilibrium concentration gives the predicted effect; namely that the

concentration of bound oxygen will be lower for the same amount of free oxygen.

754

7.37 Appendix AK: Models of the neurovascular unit

7.37.1 Idealized networks

The most well-known model of the neurovascular unit is the Krogh cylinder which has

numerous implementations. It is commonly used for calculating transport parameters such as

CMRO2 and diffusivity when experimental data is available. An in-depth investigation of the

Krogh model was conducted and compared to the discrete models developed by our group

previously [62]. This model implies a single vessel inside a finite cylindrical medium with azimuth

and axial symmetry (only varying in radial direction). Moreover, this model assumes a 0th order

reaction sequence, which is not an accurate method and can lead to underestimating the

consumption in the tissue. It also imposes a no-flux boundary condition on the outer edge of the

domain. Due to these limitations, this model is not ideal for calculating the oxygen distribution

throughout a network.

A group led by Dr. Ress made a simple model to investigate the time course of stimulation-

evoked change in oxygen perfusion pressure in cat [274–276]. The electrical surrogate model used

a closed voltage loop with a resistor-inductor model to account for large arterial inertia and parallel

capacitor-resistor model for the capillary and venous downstream effects. In the model of two

resistors, the second resistor models the increased resistance when the arteries are not dilated.

The goal of this model was to replicate dynamic experimental observations of previous studies

on cat brains during functional hyperemia. The model normalized all oxygen values to inlet

vascular oxygen tension (all oxygen concentration was between 0 and 1, and units for motion were

dimensionless). The first resistor is upstream arterial resistance; the second resistor signifies the

change in upstream resistance due to dilation. R2 is the venous resistance, C is the compliance of

755

the venous system. Q is the concentration of oxygen, and U is the velocity of blood flow. The

inductor accounts for the inertia of the blood as it flows into the capillary bed. RA is the loss through

mass transfer and brain metabolism (its value is very large compared to the other resistors). More

details are offered regarding RA, but they are beyond the scope of this review. The parameters for

the model were either derived from literature (length, CMRO2, frequency, time constant) or from

maximum likelihood estimate for nonlinear parameter estimation using published data.

The model was later endowed with the nonlinear oxygen binding kinetics of the Hill equation

and the blood model was advanced to a biphasic medium, yet algebraic maneuvering allowed the

reduction of the blood flow back to a single phase for the purposes of deriving the intravascular

oxygen content [275,276]. The new model also included a loss term for the endothelial wall which

was assumed to metabolize a portion of the oxygen delivered to the tissue.

This model is governed by equations of continuity. The flux balance includes a convection in

the vasculature, mass transfer across the endothelial layer, and a metabolic loss term in the tissue.

Here, cv is the concentration of oxygen in the vasculature, 𝑐𝑡 is the oxygen concentration in tissue,

𝑈 is bulk blood flow, Γ is CMRO2 (metabolism of oxygen), A is the mass transfer coefficient, 𝑡 is

time, and 𝑧 is the axial direction of the blood vessel.

∂cv(𝑧, 𝑡)

∂𝑡
+ 𝑈(𝑡)

∂cv(𝑧, 𝑡)

∂𝑧
= −𝐴(𝑐𝑣(𝑧, 𝑡) − 𝑐𝑡(𝑧, 𝑡)) (7.668)

∂ct(𝑧, 𝑡)

∂𝑡
= 𝛼𝐴(𝑐𝑣(𝑧, 𝑡) − 𝑐𝑡(𝑧, 𝑡)) − 𝛽Γ(𝑡) (7.669)

𝛼 =
𝑟1
2

𝑟2
2 − 𝑟1

2 , 𝛽 =
𝛼

𝐶𝐵𝑉

(7.670)

756

At steady state (with constant flow, U), the system simplifies to:

cv = 1 −
𝛽Γ

𝛼𝑈
𝑧

(7.671)

ct = 1 −
𝛽Γ

𝛼𝐴
𝑧 −

𝛽Γ

𝛼𝑈
𝑧

(7.672)

The linear system lends itself to simple linear impulse response functions (corresponding to

underdamped, top, critically damped, middle, and overdamped, bottom):

𝑈𝑡 = 𝑈𝑡,0 {

𝑒−𝑡/𝜏 sin(2𝜋𝑓 𝑡)

𝑡𝑒−𝑡/𝜏
𝑒−𝑡/𝜏 sinh(2𝜋𝑓 𝑡)

(7.673)

In the case of biphasic blood flow, the governing equations (prior to simplification) are

formulated where v is the velocity, z is longitudinal direction of the vessel, vr is volume ratio (as

volume per length), hct is hematocrit, pl is plasma, f is a hemoglobin binding function (assumed

to be the Hill), t is tissue, A is mass transfer coefficient, Γ is CMRO2 (metabolism of oxygen), bvf

is blood volume fraction.

𝑑𝑐𝑂2
ℎ𝑐𝑡

𝑑𝑡
= −

𝑈(𝑧, 𝑡)

𝑣𝑟𝑂2
𝐻𝑐𝑡 − 𝑣(𝑡)

𝑑𝑐𝑂2
ℎ𝑐𝑡

𝑑𝑧

(7.674)

𝑑𝑐𝑂2
𝑝𝑙

𝑑𝑡
=
𝑓(𝑧, 𝑡)

𝑣𝑟𝑂2
𝐻𝑐𝑡 − 𝐴(𝑐𝑂2

𝑝𝑙
− 𝑐𝑂2

𝑒𝑣𝑠) − 𝑣(𝑡)
𝑑𝑐𝑂2

𝑝𝑙

𝑑𝑧

(7.675)

757

𝑑𝑐𝑂2
𝑡

𝑑𝑡
= 𝐴

𝑣𝑟𝑜2
𝑝𝑙

𝑣𝑟𝑂2
𝑡 (𝑐𝑂2

𝑝𝑙
− 𝑐𝑂2

𝑒𝑣𝑠) −
𝑣𝑟𝑜2

ℎ𝑐𝑡 + 𝑣𝑟𝑜2
𝑝𝑙

𝑏𝑣𝑓𝑡𝑣𝑟𝑂2
𝑡 Γ(𝑡)

(7.676)

This model has limitations of drastic spatial simplifications and the assumption that the

responses are simply impulse response adaption to steady-state deviations. In the brain, however,

the states are not fixed (no steady-state value). Overall, due to these limitations, this model predicts

only the assumptions by the modeler cannot be used to explore novel theories.

Another approach from the Boas group [277] built a method that uses dynamic measurement

data and fits parameters of a model to these measurements. This feedback-feedforward simulation

is built on a 3-compartment geometry with a Windkessel model for each compartment.

Where the heart is a constant DC power supply. The system can then be described by a series

of partial differential equations:

𝑑𝑉

𝑑𝑡
= ∇𝑄

(7.677)

Δ𝑃 = (𝑅𝑛 + 𝑅𝑛+1)𝑄
(7.678)

𝑑𝑉

𝑑𝑡
= 𝐹𝑛 − 𝐹𝑛+1 =

ΔP

(𝑅𝑛 + 𝑅𝑛−1)
−

ΔP

(𝑅𝑛 + 𝑅𝑛+1)

(7.679)

𝑑𝑉

𝑑𝑡
=

𝑃𝑛−1 − Pn
(𝑅𝑛−1 + 𝑅𝑛)

−
Pn − 𝑃𝑛−1
(𝑅𝑛 + 𝑅𝑛+1)

(7.680)

𝐴𝑛 =
𝑉𝑛(𝑡 = 0)

𝑄𝑛−1,𝑛(𝑡 = 0)(𝑅𝑛−1(𝑡 = 0) + 𝑅𝑛(𝑡 = 0))
(
1
𝛽𝑛
)

(7.681)

758

Where Q is volumetric flow rate, V is volume, P is pressure, and R is resistance. The sum of

all values of R must be the resistance of the entire cerebral compartment. An is the diffusivity and

Cn is the capacitance of the compartment. The capacitance (passive dilation) can be defined by:

𝐶𝑛 = 𝐴𝑛[𝑃𝑛]
(1/𝛽𝑛)−1

(7.682)

Which applies only to the capillaries and veins. 𝛽𝑛 is the vascular reserve of the compartment,

here taken the same for capillaries and veins. This results in:

𝑄𝑛−1,𝑛 =
𝑃𝑛−1 − 𝑉𝑛(𝑡)

𝛽/𝐴𝛽

𝑅𝑛−1(𝑡) + 𝑅𝑛(𝑡)

𝑄𝑛,𝑛+1 =
𝑉𝑛(𝑡)

𝛼+𝛽

𝐴𝛽𝑉𝑛(0)
𝛼(𝑅𝑛(0) + 𝑅𝑛+1(0))

𝛼 = 2

The arterial dilation is an active dilation mechanism defined by:

𝑉𝑎(𝑡)

𝑉𝑎(0)
= (

𝐷𝑎(𝑡)

𝐷𝑎(0)
)

2

(7.683)

The time integration first updates the diameter, then computes the updated parameters starting

in arteries, then capillaries, then veins. The update is given as a change in the resistance vector,

759

not explicitly changing the diameter or volume parameters. A further investigation into the oxygen

transport was offered. The mass transfer for each compartment follows:

𝑑𝑐𝑀𝑇
𝑑𝑡

= −𝐾(𝑐𝑣𝑎𝑠𝑐(𝑡) − 𝑐𝑡𝑖𝑠𝑠(𝑡))

𝑑𝑐𝑡𝑜𝑡
𝑑𝑡

= 𝑄𝑖𝑛𝑐𝑖𝑛 − 𝑄𝑜𝑢𝑡𝑐𝑜𝑢𝑡 − 𝐾 (
𝑐𝑖𝑛 − 𝑐𝑜𝑢𝑡

2
− 𝑐𝑚𝑡)

(7.684)

Where
𝑐𝑖𝑛−𝑐𝑜𝑢𝑡

2
 represents the compartment concentration as a linear average between adjacent

compartments. The physiological correctness of this definition is not clear, however, because the

majority of driving force in the intravascular compartment is convection, which would make the

concentration just cin. This coupled with Equation (7.685) is used to calculate the CMRO2 rate and

the K value:

𝑑𝑐𝑡𝑜𝑡
𝑑𝑡

=∑𝐾(
𝑐𝑖𝑛 − 𝑐𝑜𝑢𝑡

2
− 𝑐𝑚𝑡) − 𝐶𝑀𝑅𝑂2

𝑛

(7.685)

Which expresses mass conservation in the tissue domain, where the CMRO2 affects the entire

region which is fed by mass transfer from arteries, capillaries and veins. The values of plasma and

tissue saturation then follows by inverting:

𝑑𝑛𝑂𝑡𝑜𝑡
𝑑𝑡

= 𝛼 𝑝𝑂2 + 𝐻𝑐𝐻𝑏𝑆𝑂2 (7.686)

760

Where H is the Hufner number (oxygen bound per gram of Hb), S is saturation of oxygen

(claimed to use the Kelman’s equation, described next), and 𝛼 is the oxygen solubility in plasma

(Henry’s Law)).

The Kelman equation was derived in 1979 to expand the Hill equation for more verbose use

of point-measurements and inversion. The functions for resistance modification and CMRO2

changes are implied by gamma distributions. A resistance model is fitted to the data dynamically

during simulation and the CMRO2 signal is given explicitly and numerically integrated.

Overall, the goal was to use a model to determine more experimental parameters than usually

measured. Unfortunately, the model was simplified to a degree where the predicted (estimated)

values are not very trustworthy and could be incorrect by more than an order of magnitude based

on the simplicity. An example is vascular simplicity, which can cause results to vary wildly when

diameter and resistance are key parameters used for estimation, where a single vessel is not

applicable towards a complex microcirculatory environment.

The experimental results given in the paper show a time-course for increased flow, increased

oxyHb and deoxyHb. One of the key findings was that a multi-compartment model is better than

a single-compartment model, however whether this was simply due to more degrees of freedom

or due to an intrinsically better model was not discussed.

Another geometrically simplified model generated by the Buxton group is the balloon model.

This model focuses on accounting for dynamic changes in deoxygenated hemoglobin [278,279].

Due to the focus of this model, the dynamic equations are not generated from first-principles of

transport phenomena, but are rather ad-hoc equations. Because the model does not rely on

physiologically consistent geometry or transport equations, it will not be discussed in detail.

761

An additional model, designed for studying the effect of capillary transit time on oxygen

tension, uses a gamma function for the distribution of transit time for oxygen through capillary

vessels [280]. The assumed geometry is a perfectly symmetric series of parallel vascular elements

with a single feeding vessel and a single draining vein. The governing equations were based on

physical simplified mass balances, however the transport equations are not presented in differential

form. The finding indicates an increase in capillary heterogeneity is a function of transit time,

however the simplified physics of the system and simplified geometry calls this finding into

question. In other words, it is not clear that this finding is a result of the model or rather the

assumptions from the modeler. This model will also not be discussed in detail.

A later publication by the Boas group used an idealized network to investigate a more

distributed response to functional hyperemia [267]. The group builds the Hagen Poiseuille (HP)

equations using indexing, intended to bring this type of analysis to a wider audience. The blood

follows HP physics of linear flow with Dirichlet BCs. The network was constructed from some

crude physiological statistics to make a symmetric hierarchical graph, where length and diameters

were assigned as literature constants for each hierarchy. The penetrating vessels have a single value

for diameter, the precapillary arterioles are given diameters from a fractal pattern, where each

branch decreases the diameter by 20%. The capillaries are set to a fixed diameter and length.

The goal of this model is to dilate some arterial vessels, allow a crude FSI-inspired vessel

dilation downstream, and allow the inertia to dilate the capillaries and post-capillary venules in the

network. This can be considered the arterial dilation model for functional hyperemia:

762

𝑝𝑖 = 𝑝𝐼𝐶 + (
𝑉𝑖(𝑡)

𝐴0,𝑖
)

𝛽

𝐴0,𝑖 =
𝑉𝑖(𝑡 = 0)

(𝑝𝑖(𝑡 = 0) − 𝑝𝐼𝐶)
1/𝛽

(7.687)

Where 𝛽 is a constant (here chosen to be 2, but in a later paper chosen to be 1), V is the volume

of the ith vessel, and pIC is the intracranial pressure. The oxygen in the vasculature was calculated

using inlet blood saturation at inlet minus the outlet blood saturation. The interior vessels are later

calculated using a linear averaging between in the inlet and outlet saturation. The oxygen is

convected through the vasculature and undergoes mass transfer into the tissue where it is

consumed. Interestingly, the partial pressure is converted to concentration using the Bunsen

solubility coefficient. Note, the tissue oxygen tension is considered constant and set to 15 mmHg.

The CMRO2 follows an increase that the dilation takes. Both are modeled by a dynamic input

function, namely:

𝑅𝑖(𝑡) = 𝑅𝑖,0

(

1 − Δ𝑅𝑖

𝐻(𝑡 − 𝜏)2𝑒
−(
(𝑡−𝜏)

𝜎𝑤
2)

2

𝜎𝑤
2𝑒−1

)

(7.688)

𝐶𝑀𝑅𝑂2(𝑡) = 𝐶𝑀𝑅𝑂2,0

(

1 + Δ𝐶𝑀𝑅𝑂2

𝐻(𝑡 − 𝜏)2𝑒
−(
(𝑡−𝜏)

𝜎𝑤
2)

2

𝜎𝑤
2𝑒−1

)

(7.689)

763

Where R is the ith vessel resistance, H is the Heaviside function (=0 when t<0 and =1

otherwise), 𝜎𝑤is the width of the dilation duration (in seconds, here set to 1 s) and Δ𝑅𝑖 is the

magnitude of the dilation, here set to 0.05. The result is an increase in flow in the local blood flow

and oxygen in the dilated vessels, downstream vessels and, interestingly, a decrease in blood flow

and oxygen for nearby vessels.

7.37.2 Realistic vasculature

Green function. Another approach that uses reconstructed vasculature from a frog toe webbing

and cremaster muscle by Secomb uses a Green function [31,164,281]. This method uses an

analytically-derived function for the oxygen concentration throughout the tissue as a function of

the network architecture, using the network as a series of discrete infinitely-small point sources.

In summary, the Green function solves oxygen within a finite domain, enforcing no flux boundary

conditions along the surface (walls) of the domain, and distributing the oxygen source along the

surface of each vessel (as opposed to point sources, although in reality point sources were actually

implemented to solve the equations).

The Green function draws on many assumptions. These include:

 Metabolic rate is modeled as a 0th order reaction and is homogenous

 Flow of oxygen must be from vasculature to tissue (no resorption possible)

 Diffusivity is isotropic and constant

 Vasculature is perfectly cylindrical segments

 (only original publication) each vessel has uniform radius, flow, oxygen pressure and full

hemoglobin saturation (Hill equation)

764

 Oxygen in plasma is negligible (all dissociation from Hb goes directly through BBB)

 Oxygen concentration can be converted to partial pressure through Henry’s law (full saturation

of oxygen in plasma)

 The concentration profile generated from every point source acts independent of other point

sources (we know this to not be true, 2 point sources will influence local distribution not

necessarily linearly)

 There is no mass transfer, it is assumed that the concentration in the plasma is the source

concentration

 Many point sources can accurately capture the physics of an analytic line

The main governing equations in the extravascular space follow 0th order reaction and

diffusion:

𝑀 = 𝐷∇2𝑐 (7.690)

Where D is diffusivity, assumed isotropic, c is concentration of oxygen, and M is metabolic

demand (loss due to reaction). M is a constant in this case, due to the above mentioned

simplification on the reaction rate. The extravascular space boundary insists on a no-flux boundary

condition:

𝑑𝑐

𝑑𝑙
= 0 (7.691)

765

Where l is the length between the source and the boundary. Converting between partial

pressure and concentration uses Henry’s law (another improper assumption that assumes full

saturation, see Section 7.34.2 for more information):

𝑐 = 𝛼𝑃𝑂2 (7.692)

Oxygen saturation in blood is modeled using the Hill equation:

𝑐𝑂2
𝑣𝑎𝑠𝑐 = 𝑐𝑠𝑓 (

𝑝𝑂2
𝑣𝑎𝑠𝑐

𝑝50
) Where 𝑓(𝑥) =

𝑥𝑛

1+𝑥𝑛
 (7.693)

Because of radial symmetry, the concentration at the boundary between tissue and vasculature

can be evaluated with a surface integral:

𝑐(𝑧) =
1

2𝜋
∫ 𝑐 𝑑𝜃
2𝜋

0

 (7.694)

The Green function is decomposed into 3 sub-equations that will together satisfy the following

conditions:

1. A point source generates a Gaussian distribution with the peak at the source point

2. The divergence within each node is equal to the metabolic loss divided by the volume (M/V,

where M is assumed 1)

3. The edge of the boundary (each face of the cube) has 0 net flux across it

4. Every point on the extravascular boundary has 0 net flux across it

766

In order to satisfy these constraints, 3 green’s functions were created (G1-G3):

G1. Inspired by a Gaussian distribution in 3 dimensions, giving the proper shape profile to the

concentration (criteria 1).

G2. Chosen to ensure the net flux across each boundary face (faces of domain cube) constitute a

net flux of 0 (integral flux is 0 on every edge, criteria 3) and that the divergence of the flux at

each point is equal to the loss (Equation (7.691) and criteria 4).

G3. An infinite double-series that satisfies the divergence-free equation (criteria 2) and that the

flux at every point on the boundary edge is 0 (criteria 4). This is not enforced by G2 which

only enforces the net flux across each boundary edge is 0.

The next set of equations will build such a Green function. For simplicity, the equations have

been written in general form:

𝐺 = 𝐺1 + 𝐺2 + 𝐺3 (7.695)

𝐺1 =
1

4 ∗ 𝜋|𝑥 − 𝑥∗|

(7.696)

𝐺2 = 𝐶1𝑥1 + 𝐶2𝑥2 + 𝐶3𝑥3 + 𝐷1𝑥1
2 + 𝐷2𝑥2

2 + 𝐷3𝑥3
2 (7.697)

𝐶1 = −
1

𝑙2𝑙3
𝐹(𝑙2, 𝑙3, 𝑥2

∗, 𝑥3
∗, 𝑥1

∗)

 𝐶2 = −
1

𝑙1𝑙3
𝐹(𝑙1, 𝑙3, 𝑥1

∗, 𝑥3
∗, 𝑥2

∗)

(7.698)

767

𝐶3 = −
1

𝑙1𝑙2
𝐹(𝑙1, 𝑙2, 𝑥1

∗, 𝑥2
∗, 𝑥3

∗)

𝐷1 =
1

2𝑙1𝑙2𝑙3
(𝐹(𝑙2, 𝑙3, 𝑥2

∗, 𝑥3
∗, 𝑥1

∗) + 𝐹(𝑙2, 𝑙3, 𝑥2
∗, 𝑥3

∗, 𝑙1 − 𝑥1
∗))

𝐷2 =
1

2𝑙1𝑙2𝑙3
(𝐹(𝑙1, 𝑙3, 𝑥1

∗, 𝑥3
∗, 𝑥2

∗) + 𝐹(𝑙1, 𝑙3, 𝑥1
∗, 𝑥3

∗, 𝑙2 − 𝑥2
∗))

𝐷3 =
1

2𝑙1𝑙2𝑙3
(𝐹(𝑙1, 𝑙2, 𝑥1

∗, 𝑥2
∗, 𝑥3

∗) + 𝐹(𝑙1, 𝑙2, 𝑥1
∗, 𝑥2

∗, 𝑙3 − 𝑥3
∗))

𝐺3 =∑∑[𝐴𝑚,𝑛 cosh (𝑘𝑚,𝑛(𝑥1 − 𝑙1))

∞

0

∞

0

+ 𝐵𝑚,𝑛 cosh(𝑘𝑚,𝑛𝑥1)] cos (
𝑚𝜋𝑥2
𝑙2

) cos (
𝑛𝜋𝑥3
𝑙3

)

+ [𝐴𝑚,𝑛
′ cosh (𝑘𝑚,𝑛

′ (𝑥2 − 𝑙2))

+ 𝐵𝑚,𝑛
′ cosh(𝑘𝑚,𝑛

′ 𝑥2)] cos (
𝑚𝜋𝑥3
𝑙3

) cos (
𝑛𝜋𝑥1
𝑙1
)

+ [𝐴𝑚,𝑛
′′ cosh (𝑘𝑚,𝑛

′′ (𝑥3 − 𝑙3))

+ 𝐵𝑚,𝑛
′′ cosh(𝑘𝑚,𝑛

′′ 𝑥3)] cos (
𝑚𝜋𝑥1
𝑙1

) cos (
𝑛𝜋𝑥2
𝑙2

)

(7.699)

𝑘𝑚,𝑛 = 𝜋 (
𝑚2

𝑙2
2 +

𝑛2

𝑙3
2)

1
2

(7.700)

𝑘𝑚,𝑛
′ = 𝜋 (

𝑚2

𝑙3
2 +

𝑛2

𝑙1
2)

1
2

(7.701)

768

𝑘𝑚,𝑛
′′ = 𝜋 (

𝑚2

𝑙1
2 +

𝑛2

𝑙2
2)

1/2

(7.702)

𝐴𝑚,𝑛 =
4

𝑙2𝑙3𝑘𝑚,𝑛 sinh(𝑘𝑚,𝑛𝑙1)
∫ ∫

𝜕

𝜕𝑥1
(𝐺1

𝑙3

0

𝑙2

0

+ 𝐺2)|
𝑥1=0

cos (
𝑚𝜋𝑥2
𝑙2

) cos (
𝑛𝜋𝑥3
𝑙3

) 𝑑𝑥2𝑑𝑥3
(7.703)

𝐴𝑚,𝑛
′ =

4

𝑙1𝑙3𝑘𝑚,𝑛
′ sinh(𝑘𝑚,𝑛

′ 𝑙2)
∫ ∫

𝜕

𝜕𝑥2
(𝐺1

𝑙3

0

𝑙1

0

+ 𝐺2)|
𝑥2=0

cos (
𝑚𝜋𝑥3
𝑙3

) cos (
𝑛𝜋𝑥1
𝑙1
) 𝑑𝑥1𝑑𝑥3

(7.704)

𝐴𝑚,𝑛
′′ =

4

𝑙2𝑙1𝑘𝑚,𝑛
′′ sinh(𝑘𝑚,𝑛

′′ 𝑙3)
∫ ∫

𝜕

𝜕𝑥3
(𝐺1

𝑙2

0

𝑙1

0

+ 𝐺2)|
𝑥3=0

cos (
𝑚𝜋𝑥1
𝑙1

) cos (
𝑛𝜋𝑥2
𝑙2

) 𝑑𝑥1𝑑𝑥2
(7.705)

𝐵𝑚,𝑛 =
4

𝑙2𝑙3𝑘𝑚,𝑛 sinh(𝑘𝑚,𝑛𝑙1)
∫ ∫

𝜕

𝜕𝑥1
(𝐺1

𝑙3

0

𝑙2

0

+ 𝐺2)|
𝑥1=𝑙1

cos (
𝑚𝜋𝑥2
𝑙2

) cos (
𝑛𝜋𝑥3
𝑙3

) 𝑑𝑥2𝑑𝑥3
(7.706)

𝐵𝑚,𝑛
′ =

4

𝑙1𝑙3𝑘𝑚,𝑛
′ sinh(𝑘𝑚,𝑛

′ 𝑙2)
∫ ∫

𝜕

𝜕𝑥2
(𝐺1

𝑙3

0

𝑙1

0

+ 𝐺2)|
𝑥2=𝑙2

cos (
𝑚𝜋𝑥3
𝑙3

) cos (
𝑛𝜋𝑥1
𝑙1
) 𝑑𝑥1𝑑𝑥3

(7.707)

𝐵𝑚,𝑛
′′ =

4

𝑙2𝑙1𝑘𝑚,𝑛
′′ sinh(𝑘𝑚,𝑛

′′ 𝑙3)
∫ ∫

𝜕

𝜕𝑥3
(𝐺1

𝑙2

0

𝑙1

0

+ 𝐺2)|
𝑥3=𝑙3

cos (
𝑚𝜋𝑥1
𝑙1

) cos (
𝑛𝜋𝑥2
𝑙2

) 𝑑𝑥1𝑑𝑥2
(7.708)

769

In order to evaluate G3, the differentiation of G1 and G2 is required. The linear combination of

the G1 and G2 inside or outside the function is irrelevant, so for ease of understanding, the functions

will be broken up. First, given that G2 results in a scalar and it would not make sense for one G

function to be a vector and the other to be a scalar. The vertical bars in G1 will be assumed to stand

for the norm of (x-x*). Before taking the derivative, this will be written in the Euclidean form,

using chain rule:

𝑔1 =
1

4 ∗ 𝜋|𝑥 − 𝑥∗|

=
1

4𝜋
[(𝑥 − 𝑥∗)2 + (𝑦 − 𝑦∗)2 + (𝑧 − 𝑧∗)2]−1/2

(7.709)

𝜕𝑔1
𝜕𝑥

=
1

4𝜋

−1

2
 2(𝑥 − 𝑥∗)[(𝑥 − 𝑥∗)2 + (𝑦 − 𝑦∗)2 + (𝑧 − 𝑧∗)2]−

3
2

𝜕𝑔1
𝜕𝑥

= −
(𝑥 − 𝑥∗)

4𝜋[(𝑥 − 𝑥∗)2 + (𝑦 − 𝑦∗)2 + (𝑧 − 𝑧∗)2]
3
2

=
(𝑥∗ − 𝑥)

4𝜋[(𝑥 − 𝑥∗)2 + (𝑦 − 𝑦∗)2 + (𝑧 − 𝑧∗)2]
3
2

𝜕𝑔1
𝜕𝑦

= −
(𝑦 − 𝑦∗)

4𝜋[(𝑥 − 𝑥∗)2 + (𝑦 − 𝑦∗)2 + (𝑧 − 𝑧∗)2]
3
2

=
(𝑦∗ − 𝑦)

4𝜋[(𝑥 − 𝑥∗)2 + (𝑦 − 𝑦∗)2 + (𝑧 − 𝑧∗)2]
3
2

𝜕𝑔1
𝜕𝑧

= −
(𝑧∗ − 𝑧)

4𝜋[(𝑥 − 𝑥∗)2 + (𝑦 − 𝑦∗)2 + (𝑧 − 𝑧∗)2]
3
2

=
(𝑧 − 𝑧∗)

4𝜋[(𝑥 − 𝑥∗)2 + (𝑦 − 𝑦∗)2 + (𝑧 − 𝑧∗)2]
3
2

(7.710)

Evaluating at key locations (0 and L) an example is created in variable x:

770

𝜕𝐺1
𝜕𝑥
|
𝑥=0

=
𝑥∗

4𝜋[(−𝑥∗)2 + (𝑦 − 𝑦∗)2 + (𝑧 − 𝑧∗)2]
3
2

𝜕𝐺1
𝜕𝑥
|
𝑥=𝑙1

=
𝑥∗ − 𝑙1

4𝜋[(𝑙1 − 𝑥
∗)2 + (𝑦 − 𝑦∗)2 + (𝑧 − 𝑧∗)2]

3
2

(7.711)

These equations can now be integrated over y and z dimensions as (evaluated using Matlab

symbolic expressions):

∫
𝜕

𝜕𝑥1
(𝐺1)|

𝑥1=0

cos (
𝑚𝜋𝑥2
𝑙2

) cos (
𝑛𝜋𝑥3
𝑙3

)
𝑙2

0

𝑑𝑦 (7.712)

Where a, b, and c are the coordinates of x*

∫ ∫
𝜕

𝜕𝑥1
(𝐺1)|

𝑥1=0

cos (
𝑚𝜋𝑥2
𝑙2

) cos (
𝑛𝜋𝑥3
𝑙3
)

𝑙3

0

𝑙2

0

𝑑𝑦 𝑑𝑧 =

=
𝑥∗

4𝜋
∫ ∫ [(−𝑥∗)2 + (𝑦 − 𝑦∗)2

𝑙3

0

𝑙2

0

+ (𝑧 − 𝑧∗)2]−
3
2 cos (

𝑚𝜋𝑥2
𝑙2

) cos (
𝑛𝜋𝑥3
𝑙3

) 𝑑𝑦 𝑑𝑧

(7.713)

These integrals are evaluated numerically as no analytic solution is available. Evaluation of

this integral is admittedly the most time-consuming part of solving the problem. And G2 is simply

(for example variable x1):

𝐺2 = 𝐶1𝑥1 + 𝐶2𝑥2 + 𝐶3𝑥3 + 𝐷1𝑥1
2 + 𝐷2𝑥2

2 + 𝐷3𝑥3
2 (7.714)

𝜕𝐺2
𝜕𝑥1

= 𝐶1 + 2𝐷1𝑥1 (7.715)

Evaluated at important points are:

771

𝜕

𝜕𝑥1
(𝐺2)|

𝑥1=0

= 𝐶1

𝜕

𝜕𝑥1
(𝐺2)|

𝑥1=𝑙1

= 𝐶1 + 2𝐷1𝑙1

(7.716)

Which are now integrated (using Matlab), given that C1 and D1 are not dependent on x2 or x3:

∫
𝜕

𝜕𝑥1
(𝐺2)|

𝑥1=0

𝑙3

0

cos (
𝑚𝜋𝑥2
𝑙2

) cos (
𝑛𝜋𝑥3
𝑙3
) 𝑑𝑦 =

𝑏 cos (
 𝜋𝑛𝑧
𝑙3
) sin (

𝜋𝑚𝑦
𝑙2
) (𝐶1)

𝑚𝜋

∫ ∫
𝜕

𝜕𝑥1
(𝐺2)|

𝑥1=0

𝑙3

0

cos (
𝑚𝜋𝑥2
𝑙2

) cos (
𝑛𝜋𝑥3
𝑙3

)
𝑙2

0

𝑑𝑦 𝑑𝑧

=
𝑏𝑐 sin (

𝜋𝑚𝑦
𝑙2
) sin (

𝜋𝑛𝑧
𝑙3
) (𝐶1)

𝑚𝑛𝜋2

(7.717)

∫
𝜕

𝜕𝑥1
(𝐺2)|

𝑥1=𝑙1

𝑙3

0

cos (
𝑚𝜋𝑥2
𝑙2

) cos (
𝑛𝜋𝑥3
𝑙3

) 𝑑𝑦

=
𝑏 cos (

 𝜋𝑛𝑧
𝑙3
) sin (

𝜋𝑚𝑦
𝑙2
) (𝐶1 + 2𝐷1𝑥)

𝑚𝜋

∫ ∫
𝜕

𝜕𝑥1
(𝐺2)|

𝑥1=𝑙1

𝑙3

0

cos (
𝑚𝜋𝑥2
𝑙2

) cos (
𝑛𝜋𝑥3
𝑙3

)
𝑙2

0

𝑑𝑦 𝑑𝑧

=
𝑏𝑐 sin (

𝜋𝑚𝑦
𝑙2
) sin (

𝜋𝑛𝑧
𝑙3
) (𝐶1 + 2𝐷𝑥)

𝑚𝑛𝜋2

(7.718)

Case study. An example is offered with sources between at [0,0.95,0.95]T to [0.95,0.95,0.95]T

and domain from the origin to [3,3,3]T (Note, the solution cannot be sampled at the source point,

it will break the algorithm because the values approach infinity). Note, the concentration becomes

772

Figure 7.243. Implementation of Green’s function with a short segment (Yellow region) that

terminates midway through the domain.

773

negative at the farthest extremities, this is the origin of the G0 term in the Green’s function

reconstruction; it offsets the concentration so that it no longer becomes negative. Secomb never

discloses how he arrives at a value for G0, so it is assumed to be arbitrarily chosen to result in a

reasonable lowest concentration value.

1D-3D Coupling. Some further work from Quarteroni [32,33] proposed a method similar to

the Green function but with numerical implementation of boundary conditions, greatly simplifying

the equations. This method uses the centerline of each vessel whose flux is computed using a finite

cylinder but acts as an infinitely thin line source term. Unfortunately, this decoupling of the

problem resulted in a singularity along the proposed line sources (point sources in Green function

suffer from the same drawback). This method was proposed to couple 1D networks and 3D meshes

in the context of water transport in the brain.

{
−∇ ∙ (𝑘∇𝑢) + 𝑞 − 𝑓𝛿Λ = 0 𝑖𝑛 Ω

−
𝑑

𝑑𝑠
(�̂�
𝑑�̂�

𝑑𝑠
) + 𝑓 𝑖𝑛 Λ

Where �̂� = 𝑝𝑣𝑎𝑠𝑐, �̂� = 𝛼𝐻𝑃, 𝑘 = 𝐷𝑑𝑎𝑟𝑐𝑦 and 𝑢 = 𝑝𝑡𝑖𝑠𝑠

𝑓 = 𝛽(�̂� − �̅�)

(7.719)

�̅� is the arithmetic mean of 𝑢(𝑟) at 𝑟 = 𝑅, and 𝑅 is the radius of the vessel. Here, Ω is the

tissue space and Λ is the infinitely-thin line source that represents the vasculature. 𝑓𝛿Λ is the Dirac

delta function scaled by the value of mass density 𝑓, termed the volume of blood flowing into the

tissue per unit time and unit length (mL/min/mm), which is integrated over the length of the vessel

774

to give a flow rate. Initial boundary conditions are insulated at the tissue boundary, Dirichlet value

of 0 at vessel outlet, and fixed flux inlet.

A decoupled problem is also proposed in which the vasculature values are known. Substantial

work was made to prove that a solution does exist using this type of splitting, which will not be

reviewed here. The largest drawback to this method is that the singularity discovered with this de-

coupling method is a side effect of an incorrect vascular representation; namely that vessels in real

life have a finite non-zero thickness which cannot be ignored. The singularity is generated only

from the modeling choice to neglect the vessel thickness and impose line sources.

While this method is convenient for having a semi-analytic solution that is mesh independent,

it is computationally expensive and cannot be performed for large structures such as the capillary

bed. Moreover, the iterative nature of the coupling between the tissue and the vasculature, although

proven stable [33], is too time- and computationally- intensive for practical use.

Analytic applications to dynamic networks. The Payne group designed another approach using

realistic structures with analytic functions. This model used realistic capillary networks and

Laplace transforms to predict the time-dependent response to changes in blood flow impulses

[282]. In this paper, the network topology was synthesized matching statistics reported by Cassot

et al. [42]. The synthesis was derived using a previous manuscript [54]. The tissue is assumed to

have diffusion, but have negligible concentration (the tissue is assumed to deplete the oxygen very

rapidly such that accumulation is nearly 0). The oxygen in the vasculature is considered constant

(an assumption that allows the analytic solution to be obtained). The dynamic conservation

equation follows:

775

∂𝑐𝑣
∂𝑡

= −𝑄
∂𝑐𝑣
∂𝑥

− 𝑈𝐴(𝑐𝑣 − 𝑐𝑡)
(7.720)

Where 𝑐𝑣 is the vascular concentration, 𝑐𝑡 is the tissue concentration, 𝑈 is the transmembrane

mass transfer coefficient, 𝑄 is the bulk volumetric blood flow rate, 𝑡 is time, 𝑥 is the axial direction,

and 𝐴 is the surface area of the each segment in the 1D network .Given that 𝑐𝑡𝑖𝑠𝑠 is negligible

(value of 0), this reduces to:

∂𝑐𝑣
∂𝑡

= −𝑄
∂𝑐𝑣
∂𝑥

− 𝑈𝐴𝑐𝑣
(7.721)

The manuscript took the Laplace transform of this PDE assuming at time t=0, the concentration

everywhere is 0. This can be interpreted as computing the deviation from a steady-state value. The

Laplace transform follows:

𝑐(𝑥, 𝑠) = 𝑐(0, 𝑠)𝑒
−
(𝑠+𝑈𝐴)𝑥

𝑄 (7.722)

The inlet oxygen is considered a unit step function (value=0 at time < 0 and value = 1 for

time > 0). The magnitude is A such that c(0,s)=A/s. This gives the inverse Laplace of the outlet

as:

𝑐(𝐿, 𝑠) = 𝐴𝑢 (𝑡 −
𝐿

𝑄
) 𝑒

−
𝑈𝐴𝐿
𝑄

(7.723)

776

Where 𝑢 (𝑡 −
𝐿

𝑄
) is the unit step function . This can be interpreted as the outlet concentration

is the inlet function with a time offset of L/Q and a magnitude offset of 𝑒
−
𝑈𝐴𝐿

𝑄 . The same Laplace

and inverse Laplace transforms were performed on the mass balances at each node to define

analytic function of time progression for the entire system. The overall loss was considered the

oxygen extraction fraction (OEF). The findings primarily pointed out that the mean transit time of

the network is constant irrespective of the two network sizes, however there was a decrease in OEF

with an increase in average deviation of transit time (more heterogeneous transit time leads to less

OEF). This stands loosely in agreement with Ostergaard [280] although earlier simulations by the

same group later stood in direct opposition of the Ostergaard group [283].

While this simulation is attractive as an analytic solution, it relies on imperative assumptions

regarding tissue and vascular concentration of oxygen that disallow investigation of network

effects and organ wide trends that would exist in the real brain.

Another group generated a body-fitted 3D triangulated mesh of the tissue space [25]. The first

manuscript from this group aimed at reconstructing microvasculature in a network and performing

a transient oxygen simulation on that network and surrounding tissue. The tissue was simplified to

a single 0th order reaction term in the blood transport equations:

𝜕𝑐𝑡
𝜕𝑡

= 𝑣∇𝑐𝑓 − 𝑣∇cb + ∇ ∙ DO2∇C𝑓 − 𝑂𝐶

Where v is blood velocity, cf and cb are free and bound oxygen concentration, OC is oxygen

consumption, D is diffusivity and ct is total concentration.

777

𝑐𝑏 = 4𝑐ℎ𝑏𝐻𝑐𝑡 ∙ 𝛼(𝑐𝑓) (7.724)

Where chb is the hemoglobin concentration per RBC, Hct is the hematocrit in a given segment,

and 𝛼 is the hemoglobin saturation as a function of free oxygen. The deconstruction is a dual-mesh

technique similar to our own:

Vasculature:

𝜕𝑐𝑏
𝜕𝑡

= 𝑣∇cb
𝜕𝑐𝑓
𝜕𝑡

= 𝑣∇cf

Wall:

𝜕𝑐𝑓
𝜕𝑡
∙ 𝑉 = 𝐽𝐴 𝐽 =

𝐾(𝑐𝑓,𝑣 − 𝑐𝑓,𝑡)

𝛼𝑤

(7.725)

Where V is the volume of the network node, 𝛼 is the Bunsen solubility coefficient

(1.27 e-15 μmol/µm3/mmHg), w is the wall thickness. 𝑐𝑓,𝑣 is the free oxygen in the vasculature,

subscript t refers to the tissue domain:

𝑑𝑐𝑓,𝑡
𝑑𝑡

= ∇ ∙ (𝐷𝑂2∇𝑐𝑓,𝑡) − 𝑂𝐶
(7.726)

It was also noted that the convection, due to the nonlinear nature, is solved independent of the

coupled wall and tissue mesh. This is also advantageous as there is no direct way to couple a 1D

to a 3D mesh, however the wall and tissue meshes are both triangulated 3D meshes, making this

coupling more direct.

778

The tissue BCs are chosen to be reflective (no flux). The vasculature uses Neumann inflow

BCs and sink efflux terms. The vasculature was segmented semi-manually through a custom

process developed for this manuscript. The terminals of the vasculature are manually identified for

boundary condition assignment. A Dirichlet BC is used on arteriole inlets and venous outlets,

however terminals that do not connect to draining veins are set to a no flux (velocity=0). The blood

flow is then solved in this network to be used for the convection in previously described oxygen

simulation.

The results are converted from concentration to partial pressure using the Bunsen equation

with above reported Bunsen solubility coefficient. The Bunsen solubility coefficient was chosen

instead of the Henry equation due to the increased complexity of the biological tissue over a simple

mixture implied by the Henry equation.

The group then ran a parametric study evaluating the effect of inlet velocity, hematocrit and

oxygen consumption rate on the oxygen profile along a single vessel. They noted a higher velocity

and hematocrit increases the oxygen concentration in and around the vessel towards the venous

outlet. A decrease in oxygen consumption rate also increased the oxygen concentration. The model

investigated different analytic solutions for the independent discrete time integration of

convection, mass transfer, and diffusion. The group acknowledged a mesh dependence in the

result. The results were also compared to experimental results from [284].

This model does have some limitations. For instance, these equations imply immediate

saturation of oxygen between each vessel. This has previously been deemed physiologically

inaccurate by the LPPD group [84]. The form of the Hill equation used for the oxygen saturation

is an invertible version that was proposed by [285]. Note, the vessel wall is comprised of an

779

infinitely thin triangulated surface mesh which does not account for the endothelial layer thickness

and resistivity.

Moreover, the structure is incomplete and suffers from poor boundary condition choice (no

flux on dangling vascular terminals) implies that these segments are fully collapsed, which is not

true in vivo. To align the diffusion only simulation to the analytic solution, it was necessary to cut

the diffusivity in half and double the time span, something that can be interpreted as poor time-

space discretization. The reported maximum velocity was 10 mm/s with a minimum ~1 mm/s in

the capillaries. The differences between calculated and experimental results were attributed to the

incomplete vascular network which in turn was attributed to limited spatial resolution.

It is also revealed that the 2 vasculature conservation equations are solved, then the saturation

equation, then the tissue mesh. Whether the equations are iteratively refined until converged or

just simply forward integrated was not disclosed. It was important to note the equations for

vasculature were solved prior to enforcing the equilibrium saturation equation. The tissue

diffusion-rxn system is then updated with the Galerkin’s method of using basis vectors for each

tetrahedron and solving the surface integral using these base vectors and the facet normals. The

writing of these equations makes them seem de-coupled, however each system is coupled to each

other system, so the ambiguity it difficult to decipher exactly how the time integration is

performed.

The group did, however, go on to investigate the spatially-relevant models for oxygen

distribution, dynamic oxygen extraction during functional hyperemia, and even produced a

simulated BOLD signal using proton spin analysis [23,24,85].

780

7.37.3 Further information: building of the Greens functional parts in full

𝑔 = 𝑔1 + 𝑔2 + 𝑔3 (7.727)

𝒈𝟏 =
𝟏

𝟒 ∗ 𝝅|𝒙 − 𝒙∗|

(7.728)

𝒈𝟐 = 𝑪𝟏𝒙𝟏 + 𝑪𝟐𝒙𝟐 + 𝑪𝟑𝒙𝟑 +𝑫𝟏𝒙𝟏
𝟐 +𝑫𝟐𝒙𝟐

𝟐 +𝑫𝟑𝒙𝟑
𝟐 (7.729)

𝐶1 = −
1

4𝜋𝑙2𝑙3
[tan−1 {

(𝑙2 − 𝑥2
∗)(𝑙3 − 𝑥3

∗)

𝑥1[𝑥1
2 + (𝑙2 − 𝑥3

∗)2 + (𝑙3 − 𝑥3
∗)2]1/2

}

+ tan−1 {
(𝑙2 − 𝑥2)𝑥3

𝑥1[𝑥1
2 + (𝑙2 − 𝑥2)

2 + 𝑥3
∗2]

1/2
}

+ tan−1 {
𝑥2(𝑙3 − 𝑥3)

𝑥1[𝑥1
2 + 𝑥2

2 + (𝑙3 − 𝑥3
∗)2]1/2

}

+ tan−1 {
𝑥2𝑥3

𝑥1[𝑥1
2 + 𝑥2

2 + 𝑥3
∗2]

1/2
}]

(7.730)

𝐶2 = −
1

4𝜋𝑙1𝑙3
[tan−1 {

(𝑙1 − 𝑥1)(𝑙3 − 𝑥3
∗)

𝑥2[(𝑙1 − 𝑥1)
2 + 𝑥2

2 + (𝑙3 − 𝑥3
∗)2]1/2

}

+ tan−1 {
(𝑙1 − 𝑥1)𝑥3

∗

𝑥2[(𝑙1 − 𝑥1)
2 + 𝑥2

2 + 𝑥3
∗2]

1/2
}

+ tan−1 {
𝑥1(𝑙3 − 𝑥3)

𝑥2[𝑥1
2 + 𝑥2

2 + (𝑙3 − 𝑥3
∗)2]1/2

}

+ tan−1 {
𝑥2𝑥3

𝑥2[𝑥1
2 + 𝑥2

2 + 𝑥3
∗2]

1/2
}]

(7.731)

781

𝐶3 = −
1

4𝜋𝑙1𝑙2
[tan−1 {

(𝑙1 − 𝑥1)(𝑙2 − 𝑥2)

𝑥3[(𝑙1 − 𝑥1)
2 + (𝑙2 − 𝑥2)

2 + 𝑥3
∗2]

1/2
}

+ tan−1 {
(𝑙1 − 𝑥1)𝑥2

𝑥3[(𝑙1 − 𝑥1)
2 + 𝑥2

2 + 𝑥3
∗2]

1/2
}

+ tan−1 {
𝑥1(𝑙2 − 𝑥2)

𝑥3[𝑥1
2 + (𝑙2 − 𝑥2)

2 + 𝑥3
∗2]

1/2
}

+ tan−1 {
𝑥2𝑥3

𝑥3[𝑥1
2 + 𝑥2

2 + 𝑥3
∗2]

1/2
}]

(7.732)

𝐷1 =
1

8𝜋𝑙1𝑙2𝑙3
[tan−1 {

(𝑙2 − 𝑥2)(𝑙3 − 𝑥3
∗)

𝑥1[𝑥1
2 + (𝑙2 − 𝑥2)

2 + (𝑙3 − 𝑥3
∗)2]1/2

}

+ tan−1 {
(𝑙2 − 𝑥2)𝑥3

∗

𝑥1[𝑥1
2 + (𝑙2 − 𝑥2)

2 + 𝑥3
∗2]

1/2
}

+ tan−1 {
𝑥2(𝑙3 − 𝑥3)

𝑥1[𝑥1
2 + 𝑥2

2 + (𝑙3 − 𝑥3
∗)2]1/2

}

+ tan−1 {
𝑥2𝑥3

∗

𝑥1[𝑥1
2 + 𝑥2

2 + 𝑥3
∗2]

1/2
}

+ tan−1 {
(𝑙2 − 𝑥2)(𝑙3 − 𝑥3

∗)

(𝑙1 − 𝑥1)[(𝑙1 − 𝑥1)
2 + (𝑙2 − 𝑥2)

2 + (𝑙3 − 𝑥3
∗)2]1/2

}

+ tan−1 {
(𝑙2 − 𝑥2)𝑥3

∗

(𝑙1 − 𝑥1)[(𝑙1 − 𝑥1)
2 + (𝑙2 − 𝑥2)

2 + 𝑥3
∗2]

1/2
}

+ tan−1 {
𝑥2(𝑙3 − 𝑥3

∗)

(𝑙1 − 𝑥1)[(𝑙1 − 𝑥1)
2 + 𝑥2

2 + (𝑙3 − 𝑥3
∗)2]1/2

}

+ tan−1 {
𝑥2𝑥3

∗

(𝑙1 − 𝑥1)[(𝑙1 − 𝑥1)
2 + 𝑥2

2 + 𝑥3
∗2]

1/2
}]

(7.733)

782

𝐷2 =
1

8𝜋𝑙1𝑙2𝑙3
[tan−1 {

(𝑙1 − 𝑥1)(𝑙3 − 𝑥3
∗)

𝑥2[(𝑙1 − 𝑥1)
2 + 𝑥2

2 + (𝑙3 − 𝑥3
∗)2]1/2

}

+ tan−1 {
(𝑙1 − 𝑥1)𝑥3

∗

𝑥2[(𝑙1 − 𝑥1)
2 + 𝑥2

2 + 𝑥3
∗2]

1/2
}

+ tan−1 {
𝑥1(𝑙3 − 𝑥3

∗)

𝑥2[𝑥1
2 + 𝑥2

2 + (𝑙3 − 𝑥3
∗)2]1/2

}

+ tan−1 {
𝑥2𝑥3

𝑥2[𝑥1
2 + 𝑥2

2 + 𝑥3
∗2]

1/2
}

+ tan−1 {
(𝑙1 − 𝑥1)(𝑙3 − 𝑥3

∗)

(𝑙2 − 𝑥2)[(𝑙1 − 𝑥1)
2 + (𝑙2 − 𝑥2)

2 + (𝑙3 − 𝑥3
∗)2]1/2

}

+ tan−1 {
(𝑙1 − 𝑥1)𝑥3

∗

(𝑙2 − 𝑥2)[(𝑙1 − 𝑥1)
2 + (𝑙2 − 𝑥2)

2 + 𝑥3
∗2]

1/2
}

+ tan−1 {
𝑥1(𝑙3 − 𝑥3

∗)

(𝑙2 − 𝑥2)[𝑥1
2 + (𝑙2 − 𝑥2)

2 + (𝑙3 − 𝑥3
∗)2]1/2

}

+ tan−1 {
𝑥2𝑥3

∗

(𝑙2 − 𝑥2)[𝑥1
2 + (𝑙2 − 𝑥2)

2 + 𝑥3
∗2]

1/2
}]

(7.734)

783

𝐷3 =
1

8𝜋𝑙1𝑙2𝑙3
[tan−1 {

(𝑙1 − 𝑥1)(𝑙2 − 𝑥2)

𝑥3[(𝑙1 − 𝑥1)
2 + (𝑙2 − 𝑥2)

2 + 𝑥3
∗2]

1/2
}

+ tan−1 {
(𝑙1 − 𝑥1)𝑥2

𝑥3[(𝑙1 − 𝑥1)
2 + 𝑥2

2 + 𝑥3
2]1/2

}

+ tan−1 {
𝑥1(𝑙2 − 𝑥2)

𝑥3[𝑥1
2 + (𝑙2 − 𝑥2)

2 + 𝑥3
∗2]

1/2
}

+ tan−1 {
𝑥2𝑥3

𝑥3[𝑥1
2 + 𝑥2

2 + 𝑥3
∗2]

1/2
}

+ tan−1 {
(𝑙1 − 𝑥1)(𝑙2 − 𝑥2)

(𝑙3 − 𝑥3)[(𝑙1 − 𝑥1)
2 + (𝑙2 − 𝑥2)

2 + (𝑙3 − 𝑥3
∗)2]1/2

}

+ tan−1 {
(𝑙1 − 𝑥1)𝑥2

(𝑙3 − 𝑥3)[(𝑙1 − 𝑥1)
2 + 𝑥2

2 + (𝑙3 − 𝑥3
∗)2]1/2

}

+ tan−1 {
𝑥1(𝑙2 − 𝑥2)

(𝑙3 − 𝑥3)[𝑥1
2 + (𝑙2 − 𝑥2)

2 + (𝑙3 − 𝑥3
∗)2]1/2

}

+ tan−1 {
𝑥2𝑥3

(𝑙3 − 𝑥3)[𝑥1
2 + 𝑥2

2 + (𝑙3 − 𝑥3
∗)2]1/2

}]

Which, when reinserted becomes:

(7.735)

784

785

𝑮𝟑 =∑∑[𝑨𝒎,𝒏 𝐜𝐨𝐬𝐡 (𝒌𝒎,𝒏(𝒙𝟏 − 𝒍𝟏))

∞

𝟎

∞

𝟎

+ 𝑩𝒎,𝒏 𝐜𝐨𝐬𝐡(𝒌𝒎,𝒏𝒙𝟏)] 𝐜𝐨𝐬 (
𝒎𝝅𝒙𝟐
𝒍𝟐

) 𝐜𝐨𝐬 (
𝒏𝝅𝒙𝟑
𝒍𝟑

)

+ [𝑨𝒎,𝒏
′ 𝐜𝐨𝐬𝐡 (𝒌𝒎,𝒏

′ (𝒙𝟐 − 𝒍𝟐))

+ 𝑩𝒎,𝒏
′ 𝐜𝐨𝐬𝐡(𝒌𝒎,𝒏

′ 𝒙𝟐)] 𝐜𝐨𝐬 (
𝒎𝝅𝒙𝟑
𝒍𝟑

) 𝐜𝐨𝐬 (
𝒏𝝅𝒙𝟏
𝒍𝟏

)

+ [𝑨𝒎,𝒏
′′ 𝐜𝐨𝐬𝐡 (𝒌𝒎,𝒏

′′ (𝒙𝟑 − 𝒍𝟑))

+ 𝑩𝒎,𝒏
′′ 𝐜𝐨𝐬𝐡(𝒌𝒎,𝒏

′′ 𝒙𝟑)] 𝐜𝐨𝐬 (
𝒎𝝅𝒙𝟏
𝒍𝟏

) 𝐜𝐨𝐬 (
𝒏𝝅𝒙𝟐
𝒍𝟐

)

(7.736)

𝑘𝑚,𝑛 = 𝜋 (
𝑚2

𝑙2
2 +

𝑛2

𝑙3
2)

1/2

 𝑘𝑚,𝑛 = 𝜋 (
𝑚2

𝑙3
2 +

𝑛2

𝑙1
2)

1/2

 𝑘𝑚,𝑛 = 𝜋 (
𝑚2

𝑙1
2 +

𝑛2

𝑙2
2)

1/2

(7.737)

𝐴𝑚,𝑛 =
4

𝑙2𝑙3𝑘𝑚,𝑛 sinh(𝑘𝑚,𝑛𝑙1)
∫ ∫

𝜕

𝜕𝑥1
(𝐺1

𝑙3

0

𝑙2

0

+ 𝐺2)|
𝑥1=0

cos (
𝑚𝜋𝑥2
𝑙2

) cos (
𝑛𝜋𝑥3
𝑙3

) 𝑑𝑥2𝑑𝑥3

(7.738)

𝐴𝑚,𝑛
′ =

4

𝑙1𝑙3𝑘𝑚,𝑛
′ sinh(𝑘𝑚,𝑛

′ 𝑙2)
∫ ∫

𝜕

𝜕𝑥2
(𝐺1

𝑙3

0

𝑙1

0

+ 𝐺2)|
𝑥2=0

cos (
𝑚𝜋𝑥3
𝑙3

) cos (
𝑛𝜋𝑥1
𝑙1
) 𝑑𝑥1𝑑𝑥3

(7.739)

786

𝐴𝑚,𝑛
′′ =

4

𝑙2𝑙1𝑘𝑚,𝑛
′′ sinh(𝑘𝑚,𝑛

′′ 𝑙3)
∫ ∫

𝜕

𝜕𝑥3
(𝐺1

𝑙2

0

𝑙1

0

+ 𝐺2)|
𝑥3=0

cos (
𝑚𝜋𝑥1
𝑙1

) cos (
𝑛𝜋𝑥2
𝑙2

) 𝑑𝑥1𝑑𝑥2

(7.740)

𝐵𝑚,𝑛 =
4

𝑙2𝑙3𝑘𝑚,𝑛 sinh(𝑘𝑚,𝑛𝑙1)
∫ ∫

𝜕

𝜕𝑥1
(𝐺1

𝑙3

0

𝑙2

0

+ 𝐺2)|
𝑥1=𝑙1

cos (
𝑚𝜋𝑥2
𝑙2

) cos (
𝑛𝜋𝑥3
𝑙3

) 𝑑𝑥2𝑑𝑥3

(7.741)

𝐵𝑚,𝑛
′ =

4

𝑙1𝑙3𝑘𝑚,𝑛
′ sinh(𝑘𝑚,𝑛

′ 𝑙2)
∫ ∫

𝜕

𝜕𝑥2
(𝐺1

𝑙3

0

𝑙1

0

+ 𝐺2)|
𝑥2=𝑙2

cos (
𝑚𝜋𝑥3
𝑙3

) cos (
𝑛𝜋𝑥1
𝑙1
) 𝑑𝑥1𝑑𝑥3

(7.742)

𝐵𝑚,𝑛
′′ =

4

𝑙2𝑙1𝑘𝑚,𝑛
′′ sinh(𝑘𝑚,𝑛

′′ 𝑙3)
∫ ∫

𝜕

𝜕𝑥3
(𝐺1

𝑙2

0

𝑙1

0

+ 𝐺2)|
𝑥3=𝑙3

cos (
𝑚𝜋𝑥1
𝑙1

) cos (
𝑛𝜋𝑥2
𝑙2

) 𝑑𝑥1𝑑𝑥2

(7.743)

787

When combining: (7.744)

When combining altogether: (7.745)

788

When reinserted becomes:

789

790

791

792

When combining all parts, the full Green function becomes:

793

794

795

796

797

7.38 Appendix AL: Models for synthesizing vascular networks

Many models for computer synthesis of microcirculatory models have been proposed. Some

of these models are reviewed here to compare to the model developed in this thesis.

One group began a pioneered a vascular synthesis method that was derived from principles of

angiogenesis [53]. It employed a model of hypoxia-induced VEGF production that spawned a

stochastic decision variable as to whether to increase tortuosity or sprout a bifurcation. In each

iteration, the growth territory size increases to allow for new vessels. This step also consists of a

perfusion mapping simulation, where the synthesis of new vasculature ensures a specified level of

blood perfusion carries oxygen to all tissue regions efficiently (all levels are larger than hypoxic

levels).

Two methods of spatially-defined growth were used, each describes the oxygen consumption

within the domain; a uniform distribution and a Gaussian distribution.

One of the main limitations of this work is that the growth seems anatomical from the

description, however almost all of the growth parameters are based on PDFs that have not derived

from empirical or physiological observation. Moreover, this method is not capable of growing

structures at the scale of the mouse hemisphere, as every round of growth requires an oxygen

simulation, and spatial extent of oxygen simulations are still limited to small regions (~1mm3).

Another group that worked on vascular synthesis for a region of brain matter focused on the

capillary bed [37,54,283,286] without growing the pial or penetrating vessels. This group used

statistics from the previously mentioned Cassot [42] reconstruction in order to derive new capillary

beds with statistically similar properties.

798

The PDF calculated in Cassot was binned into 10 micron intervals and the goal was to evaluate

four different algorithms for network generation for statistical comparison. All methods begin with

random number generation inside a cube and three methods were proposed in how to connect the

points.

The shortest arc method (SAM) connects each node to a close node with a maximum of 3

connections per node (bifurcation). The bifurcation rule is enforced by pruning excess connections

in a post-processing step. This method was claimed to underestimate the lengths over 100 microns

(attributed to lack of tortuosity).

The Gamma distribution method (GAM) samples the length of each arc from a gamma

distribution (chosen because it seems to resemble experimental distributions). This method was

better than the SAM for estimating the length distribution but could not capture the short lengths

very well, and thus did not match the topology correctly. The model for the distribution was given

and the parameters were hand-chosen:

𝑓(𝑥) = 𝑎𝑏𝑥𝑏−1
𝑒−𝑎𝑥

Γ(𝑏)

(7.746)

The spanning tree method (STM) was taken from graph theory with the goal of growing two

trees that will eventually be connected. The algorithm places all the nodes first, then begins with

the shortest segment and attaches segments based on proximity to the nearest node. It was noted

that this method is the first of the methods to allow tortuous segments (continuations). This did

not, however, give a perfect fit to the length distribution. To adapt it further, a method of randomly

799

pruning the network was implemented that removed segments in the undesired length range. This

method improved the distribution.

The modified STM (MSTM) method was effectively the same as the STM method except after

the tree is grown, artificial nodes are added very close to bifurcation points to skew the PDF

towards the short-segment region (more short segments). This managed a good fit for the data

from Cassot. Linear flow without hematocrit was calculated for all 4 network types and it was

concluded that the hemodynamic properties were somewhat similar for all networks. The total

flow was highest in STM yet the ratio of flow to surface area (considered the network

“performance”) was highest in the MSTM method.

Some groups have attempted homogenization techniques to simplify the large size of the

capillary network using a Cartesian mesh and an anisotropic diffusion tensor. This simplification

uses anisotropy to represent the non-uniform vascular flow by altering local resistances (using a

diffusivity tensor instead of a constant value). One such group used architecture based on graph

theory [36]. A lot of emphasis was placed on deriving the radially symmetric (spherical to be exact)

decay of the source (penetrating arterial terminal) on the neighboring mesh cells. The inverse

relationship between distance and magnitude of the source strength on the surrounding tissue was

fit with a linear portion which defined the unique decay profile for each terminal. The nearest 3

cells in all directions were considered affected, but at the end of the day the decay was considered

averaged within each cell, evaluated at the cell center.

The vasculature obeys Hagen Poiseuille flow subject to the Pries in-vitro modified viscosity

formula (see Section 7.12.1 for more information on biphasic blood flow or hematocrit-dependent

viscosity). The capillary continuum is modeled with Darcy’s law, however the permeability

coefficient is a function of effective viscosity and edge length:

800

𝐾𝑒𝑓𝑓 =
�̅�

𝜇𝑒𝑓𝑓
ℎ

(7.747)

The coupling has a potential:

𝑃(𝑟) = 𝑝𝑟𝑒𝑓 −
𝜇𝑟𝑒𝑓𝑞𝑠

4𝜋�̅�
(
1

𝑟
−

1

𝑙𝑟𝑒𝑓
)

(7.748)

Where pref is pressure at arbitrary distance lref from source. Note, r ≤ lref. lref refers to the

reference length and pref to the reference pressure. Metrics were developed to compare the artificial

vascular network to the continuum capillary mesh. The validation showed that the partial source

redistribution method can substantially improve the distribution patterns and they claim that the

point source drop-off calculation is necessary to reduce error in the entire capillary continuum.

The computational efficiency also is assessed and concluded that the continuum method is a

significant reduction of the capillary network when using the more complex mathematical

implementation.

One limitation in this method is that the derivation claims an imperative assumption that lref is

much smaller than the edge length of the mesh (lref << h), something that will cause problems with

mesh refinement. Moreover, all the statistics from this method were validated against a geometry

that is highly planar (thickness << length x width), causing significant skewing of the statistics,

topological properties, and flow patterns of this network.

A second group to use a homogenization technique used coupling between pial and penetrating

vessels through an inhomogeneous tissue block endowed with an anisotropic diffusion tensor

[37,286]. Once the diffusion tensor was calculated (using the eigenvalue decomposition of the

801

overall flow vector within the element), the tissue was endowed with Darcy’s law coupled to the

Hagen- Poiseuille flow in the vessels through a finite source term dispensing into the local mesh

volume with a resistive boundary coupling.

Δp = 𝛼𝑓

∇⃑⃑ ∙ 𝑓 + 𝑆 = 0
(7.749)

Where viscosity is Pries in vivo (see biphasic blood flow report).

∇ ∙ (𝐾∇𝑝) − 𝑆 = 0
(7.750)

Where S is the flow between meshes, also known as a source.

𝑆𝑖 = ∑ GiΔp

𝑛𝑇𝑒𝑟𝑚

𝑖=1

(7.751)

Where Gi is the conductance between the given terminal and the surrounding mesh element.

The lateral flow observed in the group’s results is caused by the proclivity of flow to the path of

least resistance in a continuum, which in this case is the shortest path between the end of the

penetrating arterioles and ascending venules. Physiologically consistent capillaries would extend

numerous discrete paths - an important note that cannot be accurately captured by this method.

802

Each case study was run for a single penetrating arteriole occlusion and an ascending

venule occlusion. The results found that the pressure and velocity were reduced near the occluded

vessel but were relatively unaffected elsewhere.

While this model is seemingly approachable, it does not capture the description of vascular

flow through the tissue appropriately, nor does the model seem to be amenable to a biphasic blood

flow splitting model. Moreover, the mesh cell density is significantly larger than microvascular

network models, endowing these simulations with significantly larger than the original

counterparts. This is seemingly in opposition to the goal of the models.

803

7.39 Appendix AM: Data inventory

All data is saved in nwk.Grant in grantsThesisNode.

7.39.1 Empirical Kleinfeld networks

Networks with boundary conditions directory: grantsInventory\ EKF_SeriesNetworks\

Statistics for each network: grantsInventory\ EKF_SeriesNetworks\statistics\

Biphasic blood flow results: grantsInventory\ EKF_SeriesNetworks\simulationResults\

au.vGrant av.vGrant

db.vGrant co.vGrant

804

7.39.2 Generation 1, biphasic blood flow paper data

Networks with boundary conditions directory: grantsInventory\SKF_Series1\

Statistics for each network: grantsInventory\SKF_Series1\

Biphasic blood flow results: grantsInventory\SKF_Series1\simulationResults\

805

Au1.tortuous (E1.1)

au.1.tortuous.resultsLinninger2015

Pries_In_Vitro

Au2.tortuous (E1.2)

au.2.tortuous.resultsLinninger2015

Pries_In_Vitro

Au3.tortuous (E1.3)

au.3.tortuous.resultsLinninger2015

Pries_In_Vitro

Au4.toruous (E1.4)

au.4.tortuous.resultsLinninger2015

Pries_In_Vitro

Au5.tortuous (E1.5)

au.5.tortuous.resultsLinninger2015

Pries_In_Vitro

Au6.tortuous (E1.6)

au.6.tortuous.resultsLinninger2015

Pries_In_Vitro

Au7.tortuous (E1.7)

au.7.tortuous.resultsLinninger2015

Pries_In_Vitro

Au8.tortuous (E1.8)

au.8.tortuous.resultsLinninger2015

Pries_In_Vitro

Au9.tortuous (E1.9)

au.9.tortuous.resultsLinninger2015

Pries_In_Vitro

Au10.tortuous (E1.10)

au.10.tortuous.resultsLinninger201

5Pries_In_Vitro

Au11.tortuous (E1.11)

au.11.tortuous.resultsLinninger201

5Pries_In_Vitro

Au12.tortuous (E1.12)

au.12.tortuous.resultsLinninger201

5Pries_In_Vitro

Au13.tortuous (E1.13)

au.13.tortuous.resultsLinninger201

5Pries_In_Vitro

Au14.tortuous (E1.14)

au.14.tortuous.resultsLinninger201

5Pries_In_Vitro

Au15.tortuous (E1.15)

au.15.tortuous.resultsLinninger201

5Pries_In_Vitro

806

Av1.tortuous (E2.1)

av.1.tortuous.resultsLinninger2015

Pries_In_Vitro

Av2.tortuous (E2.2)

av.2.tortuous.resultsLinninger2015

Pries_In_Vitro

Av3.tortuous (E2.3)

av.3.tortuous.resultsLinninger2015

Pries_In_Vitro

Av4.tortuous (E2.6)

av.4.tortuous.resultsLinninger2015

Pries_In_Vitro

Av5.tortuous (E2.5)

av.5.tortuous.resultsLinninger2015

Pries_In_Vitro

Av6.tortuous (E2.4)

av.6.tortuous.resultsLinninger2015

Pries_In_Vitro

Av7.tortuous (E2.7)

av.7.tortuous.resultsLinninger2015

Pries_In_Vitro

Av8.tortuous (E2.8)

av.8.tortuous.resultsLinninger2015

Pries_In_Vitro

Av9.tortuous (E2.9)

av.9.tortuous.resultsLinninger2015

Pries_In_Vitro

Av10.tortuous (E2.10)

av.10.tortuous.resultsLinninger201

5Pries_In_Vitro

Av11.tortuous (E2.11)

av.11.tortuous.resultsLinninger201

5Pries_In_Vitro

Av12.tortuous (E2.12)

av.12.tortuous.resultsLinninger201

5Pries_In_Vitro

Av13.tortuous (E2.13)

av.13.tortuous.resultsLinninger201

5Pries_In_Vitro

Av14.tortuous (E2.14)

av.14.tortuous.resultsLinninger201

5Pries_In_Vitro

Av15.tortuous (E2.15)

av.15.tortuous.resultsLinninger201

5Pries_In_Vitro

807

Co1.tortuous (E3.1)

co.1.tortuous.resultsLinninger2015

Pries_In_Vitro.

Co2.tortuous (E3.2)

co.2.tortuous.resultsLinninger2015

Pries_In_Vitro.

Co3.tortuous (E3.3)

co.3.tortuous.resultsLinninger2015

Pries_In_Vitro.

Co4.tortuous (E3.4)

co.4.tortuous.resultsLinninger2015

Pries_In_Vitro.

Co5.tortuous (E3.5)

co.5.tortuous.resultsLinninger2015

Pries_In_Vitro.

Co6.tortuous (E3.6)

co.6.tortuous.resultsLinninger2015

Pries_In_Vitro.

Co7.tortuous (E3.7)

co.7.tortuous.resultsLinninger2015

Pries_In_Vitro.

Co8.tortuous (E3.8)

co.8.tortuous.resultsLinninger2015

Pries_In_Vitro.

Co9.tortuous (E3.9)

co.9.tortuous.resultsLinninger2015

Pries_In_Vitro.

Co10.tortuous (E3.10)

co.10.tortuous.resultsLinninger201

5Pries_In_Vitro.

Co11.tortuous (E3.11)

co.11.tortuous.resultsLinninger201

5Pries_In_Vitro.

Co12.tortuous (E3.12)

co.12.tortuous.resultsLinninger201

5Pries_In_Vitro.

Co13.tortuous (E3.13)

co.13.tortuous.resultsLinninger201

5Pries_In_Vitro.

Co14.tortuous (E3.14)

co.14.tortuous.resultsLinninger201

5Pries_In_Vitro.

Co15.tortuous (E3.15)

co.15.tortuous.resultsLinninger201

5Pries_In_Vitro.

808

Db1.tourtuous (E4.1)

db.1.tortuous.resultsLinninger2015

Pries_In_Vitro

Db2.tourtuous (E4.2)

db.2.tortuous.resultsLinninger2015

Pries_In_Vitro

Db3.tourtuous (E4.3)

db.3.tortuous.resultsLinninger2015

Pries_In_Vitro

Db4.tourtuous (E4.4)

db.4.tortuous.resultsLinninger2015

Pries_In_Vitro

Db5.tourtuous (E4.5)

db.5.tortuous.resultsLinninger2015

Pries_In_Vitro

Db6.tourtuous (E4.6)

db.6.tortuous.resultsLinninger2015

Pries_In_Vitro

Db7.tourtuous (E4.7)

db.7.tortuous.resultsLinninger2015

Pries_In_Vitro

Db8.tourtuous (E4.8)

db.8.tortuous.resultsLinninger2015

Pries_In_Vitro

D9.tourtuous (E4.9)

db.9.tortuous.resultsLinninger2015

Pries_In_Vitro

Db10.tourtuous (E4.10)

db.10.tortuous.resultsLinninger201

5Pries_In_Vitro

Db11.tourtuous (E4.11)

db.11.tortuous.resultsLinninger201

5Pries_In_Vitro

Db12.tourtuous (E4.12)

db.12.tortuous.resultsLinninger201

5Pries_In_Vitro

Db13.tourtuous (E4.13)

db.13.tortuous.resultsLinninger201

5Pries_In_Vitro

Db14.tourtuous (E4.14)

db.14.tortuous.resultsLinninger201

5Pries_In_Vitro

Db15.tourtuous (E4.15)

db.15.tortuous.resultsLinninger201

5Pries_In_Vitro

809

7.39.3 Synthetic Kleinfeld second generation, 100-series, paper 2 (growth paper 1)

Networks with boundary conditions directory: grantsInventory\ SKF_Serise2_100Series\

Statistics for each network: grantsInventory\ SKF_Serise2_100Series\

Biphasic blood flow results: grantsInventory\ SKF_Serise2_100Series \

810

S1.101.tourtuous (E1.101)

S1.102.tourtuous (E1.102)

S1.103.tourtuous (E1.103)

S1.104.tourtuous (E1.104)

S1.105.tourtuous (E1.105)

S1.106.tourtuous (E1.106)

S1.107.tourtuous (E1.107)

S1.108.tourtuous (E1.108)

S1.109.tourtuous (E1.109)

S1.110.tourtuous (E1.110)

S1.111.tourtuous (E1.111)

S1.112.tourtuous (E1.112)

811

S1.113.tourtuous (E1.113)

S1.114.tourtuous (E1.114)

S1.115.tourtuous (E1.115)

S1.116.tourtuous (E1.116)

S1.117.tourtuous (E1.117)

S1.118.tourtuous (E1.118)

S1.119.tourtuous (E1.119)

S1.120.tourtuous (E1.120)

S1.121.tourtuous (E1.121)

812

S2.101.tourtuous (E2.101)

S2.102.tourtuous (E2.102)

S2.103.tourtuous (E2.103)

S2.104.tourtuous (E2.104)

S2.105.tourtuous (E2.105)

S2.106.tourtuous (E2.106)

S2.107.tourtuous (E2.107)

S2.108.tourtuous (E2.108)

S2.109.tourtuous (E2.109)

S2.110.tourtuous (E2.110)

S2.111.tourtuous (E2.111)

S2.112.tourtuous (E2.112)

813

S2.113.tourtuous (E2.113)

S2.114.tourtuous (E2.114)

S2.115.tourtuous (E2.115)

S2.116.tourtuous (E2.116)

S2.117.tourtuous (E2.117)

S2.118.tourtuous (E2.118)

S2.119.tourtuous (E2.119)

S2.120.tourtuous (E2.120)

S2.121.tourtuous (E2.121)

814

S3.101.tourtuous (E3.101)

S3.102.tourtuous (E3.102)

S3.103.tourtuous (E3.103)

S3.104.tourtuous (E3.104)

S3.105.tourtuous (E3.105)

S3.106.tourtuous (E3.106)

S3.107.tourtuous (E3.107)

S3.108.tourtuous (E3.108)

S3.109.tourtuous (E3.109)

S3.110.tourtuous (E3.110)

S3.111.tourtuous (E3.111)

S3.112.tourtuous (E3.112)

815

S3.113.tourtuous (E3.113)

S3.114.tourtuous (E3.114)

S3.115.tourtuous (E3.115)

S3.116.tourtuous (E3.116)

S3.117.tourtuous (E3.117)

S3.118.tourtuous (E3.118)

S3.119.tourtuous (E3.119)

S3.120.tourtuous (E3.120)

816

S4.101.tourtuous (E4.101)

S4.102.tourtuous (E4.102)

S4.103.tourtuous (E4.103)

S4.104.tourtuous (E4.104)

S4.105.tourtuous (E4.105)

S4.106.tourtuous (E4.106)

S4.107.tourtuous (E4.107)

S4.108.tourtuous (E4.108)

S4.109.tourtuous (E4.109)

S4.110.tourtuous (E4.110)

S4.111.tourtuous (E4.111)

S4.112.tourtuous (E4.112)

817

S4.113.tourtuous (E4.113)

S4.114.tourtuous (E4.114)

S4.115.tourtuous (E4.115)

S4.116.tourtuous (E4.116)

S4.117.tourtuous (E4.117)

S4.118.tourtuous (E4.118)

S4.119.tourtuous (E4.119)

S4.120.tourtuous (E4.120)

S4.121.tourtuous (E4.121)

818

7.39.4 Empirical Boas

Networks with boundary conditions directory: grantsInventory\EB_SeriesNetworks\

Statistics for each network: grantsInventory\EB_SeriesNetworks\Gagnon\

Gagnon_1\correctedGraph.cs31 Gagnon_3\correctedGraph.cs31

Gagnon_4\correctedGraph.cs31 Gagnon_5\correctedGraph.cs31

Gagnon_6\correctedGraph.cs31

819

7.39.5 Synthetic Boas second generation, 100-series

Networks with boundary conditions directory: grantsInventory\SB_Series2_100Series\

Statistics for each network: grantsInventory\SB_Series2_100Series\

SB1.201.tortuous (email1)
Accompanied by .art, .vein and regular

network.

SB1.202.tortuous (email1)
Accompanied by .art, .vein and regular

network.

SB1.203.tortuous (email1)
Accompanied by .art, .vein and regular

network.

SB1.204.tortuous (email1)
Accompanied by .art, .vein and regular

network.

820

SB1.201.tortuous (email1)
Accompanied by .art, .vein and

regular network.

SB1.202.tortuous (email1)
Accompanied by .art, .vein and regular

network.

SB1.203.tortuous (email1)
Accompanied by .art, .vein and

regular network.

SB1.204.tortuous (email1)
Accompanied by .art, .vein and regular

network.

7.39.6 Empirical Dunn

Networks with boundary conditions directory: grantsInventory\ED_SeriesNetworks\

Statistics for each network: grantsInventory\ED_SeriesNetworks\

Biphasic blood flow results: grantsInventory\ED_SeriesNetworks\

821

DunnNwk1

7.39.7 Synthetic Dunn second generation, 100-series

Networks with boundary conditions directory: grantsInventory\SD_Series2_100Series\

Statistics for each network: grantsInventory\SD_Series2_100Series\

Biphasic blood flow results: grantsInventory\SD_Series2_100Series\

822

SD1.202.tortuous
Accompanied by .art, .vein and

regular network.

SD1.203.tortuous
Accompanied by .art, .vein and

regular network.

SD1.269.tortuous

7.39.8 Mouse 1 (Sled reconstruction)

MCA biphasic blood flow paper

Network Location: grantsInventory\SledNetworks\MCAArteriesOnly_forBiphasicPaper\

Biphasic blood flow results file name:

MCAV1.resizedx1000.correcedDia.resultsLinninger2015Pries_In_Vitro.cs31

MCA biphasic blood flow paper

Network Location: grantsInventory\SledNetworks\MCAArteriesOnly_forBiphasicPaper\

Biphasic blood flow results file name:

CortexGrowthWithClosureCleaned.AddedTortuosity.resultsLinninger2015Pries_In_Vitro.cs31

Hemisphere

All hemisphere structures are put in a directory with all supporting files, including each stage

of growth (pial, pial and penetrators, and pial/penetrators/capillaries prior to closure).

823

Network Location: grantsInventory\SledNetworks\MCATerritoryV1_forBiphasicPaper\

Biphasic blood flow results file name:

hemisphereArtVenClosureWithClosurev3.AddedTortuosity.resultsLinninger2015Pries_In_Vitro

Linear flow results: hemisphereArtVenClosureWithClosurev3.results.cs31

Mouse Model Name Type Directory

Mouse 1 M1_H1 hemisphere Hemisphere1\

Mouse 1 M1_H2 hemisphere Hemisphere2\

Mouse 1 M1_H3 hemisphere Hemisphere3\

Mouse 1 M1_H4 hemisphere Hemisphere4\

Mouse 1 M1_H5 hemisphere Hemisphere5\

Mouse 1 M1_H6 hemisphere Hemisphere6\

Mouse 1 M1_H7 hemisphere Hemisphere7\

824

M1_H1 M1_H2

M1_H3 M1_H4

M1_H5 M1_H6

M1_H7

825

7.39.9 Mouse 2 hemispheres (reconstructed from Allen Brain Institute images)

All hemisphere structures are put in a directory with all supporting files, including each stage

of growth (pial, pial and penetrators, and pial/penetrators/capillaries prior to closure).

Network Location:

grantsInventory\ AllenBrainInstituteReconstruction\MCATerritoryV1_forBiphasicPaper\

Mouse Model Name Type Directory

Mouse 2 M2_H1 hemisphere Hemisphere1\

Mouse 2 M2_H2 hemisphere Hemisphere2\

Mouse 2 M2_H3 hemisphere Hemisphere3\

Mouse 2 M2_H4 hemisphere Hemisphere4\

Mouse 2 M2_H5 hemisphere Hemisphere5\

826

M1_H1 M1_H2

M1_H3 M1_H4

M1_H5

Quick Reference of pial surface areas:

 Surf Area Mouse 1 Surf Area Mouse 2

MCA 39.468 48.347

ACA 20.73 25.376

PCA 15.873 20.036

total: 76.071 93.759

827

7.39.10 Horowitz heart reconstructions

File locations: grantsInventory\Horowitz\\

M226\M226FINAL M226\M226Original

M262\M262FINAL M285\M285FINAL

828

M286\M286FINAL M315\M315.Final

M316\FINAL

829

7.39.11 Human pial growth

Numerous trials of the human pial growth from backbone were investigated. These are listed

below.

File locations: grantsInventory\HumanGrowthTesting

830

coarseRun\KTHHemisphereV4.cs31.pials9.cs31 Hemisphere_attempt1\\HemisphereV2.cs31.pials35

fineBrainRun\KTHHemisphereV4.cs31.pials1 fineBrainRun\KTHHemisphereV4.cs31.pials2

fineBrainRun\KTHHemisphereV4.cs31.pials3 fineBrainRun\KTHHemisphereV4.cs31.pials4

831

hemisphereV4\KTHHemisphereV4 hemisphereV4\KTHHemisphereV4.cs31.pials1

hemisphereV4\KTHHemisphereV4.cs31.pials13 hemisphereV4\KTHHemisphereV4.cs31.pials36

mcaV5 lowDensity\KTHHemisphereV5.cs31.pials1 mcaV5 lowDensity\KTHHemisphereV5.cs31.pials10

832

mcaV5 lowDensity\KTHHemisphereV5.cs31.pials25 mcaV5 lowDensity\KTHHemisphereV5.cs31.pials50

mcaV5 fullDensity\KTHHemisphereV5.cs31.pials1 mcaV5 fullDensity\KTHHemisphereV5.cs31.pials10

mcaV5 fullDensity\KTHHemisphereV5.cs31.pials25 mcaV5 fullDensity\KTHHemisphereV5.cs31.pials50

833

mcaV5 fullDensity2\KTHHemisphereV5.cs31.pials1 mcaV5 fullDensity2\KTHHemisphereV5.cs31.pials10

mcaV5 fullDensity2\KTHHemisphereV5.cs31.pials25 mcaV5 fullDensity2\KTHHemisphereV5.cs31.pials50

mcaV5 fullDensity3\KTHHemisphereV5.cs31.pials1 mcaV5 fullDensity3\KTHHemisphereV5.cs31.pials25

834

mcaV5 fullDensity3\KTHHemisphereV5.cs31.pials50 mcaV5 fullDensity3\KTHHemisphereV5.pials.Capillaries

moreDenseHemisphere\HemisphereV3.cs31.pials1 moreDenseHemisphere\HemisphereV3.cs31.pials17

aca_V3 hemisphereV3.cs4

835

HemisphereV3.cs31.pials1 HemisphereV3.cs31.pials19

kt.cleaned.cs31 MCA_V5.Connected.cleanedflipped.final

MCA_V5 KTHHemisphereV5

836

 Cited Literature

1. Peers C, Dallas ML, Boycott HE, Scragg JL, Pearson HA, Boyle JP. Hypoxia and Neurodegeneration. Ann N

Y Acad Sci. 2009 Oct 1;1177(1):169–77.

2. Peers C, Pearson HA, Boyle JP. Hypoxia and Alzheimer’s disease. Essays Biochem. 2007 Aug 10;43:153–

64.

3. Bullitt E, Zeng D, Mortamet B, Ghosh A, Aylward SR, Lin W, et al. The effects of healthy aging on

intracerebral blood vessels visualized by magnetic resonance angiography. Neurobiol Aging. 2010;31(2):290–

300.

4. Moeini M, Lu X, Avti PK, Damseh R, Bélanger S, Picard F, et al. Compromised microvascular oxygen

delivery increases brain tissue vulnerability with age. Sci Rep. 2018 May 29;8(1):8219.

5. Silasi G, She J, Boyd JD, Xue S, Murphy TH. A Mouse Model of Small-Vessel Disease that Produces Brain-

Wide-Identified Microocclusions and Regionally Selective Neuronal Injury. J Cereb Blood Flow Metab. 2015

May 1;35(5):734–8.

6. Wang M, Iliff JJ, Liao Y, Chen MJ, Shinseki MS, Venkataraman A, et al. Cognitive Deficits and Delayed

Neuronal Loss in a Mouse Model of Multiple Microinfarcts. J Neurosci. 2012 Dec 12;32(50):17948.

7. Okamoto Y, Yamamoto T, Kalaria RN, Senzaki H, Maki T, Hase Y, et al. Cerebral hypoperfusion accelerates

cerebral amyloid angiopathy and promotes cortical microinfarcts. Acta Neuropathol (Berl). 2012 Mar

1;123(3):381–94.

8. Desjardins M, Berti R, Lefebvre J, Dubeau S, Lesage F. Aging-related differences in cerebral capillary blood

flow in anesthetized rats. Neurobiol Aging. 2014 Aug 1;35(8):1947–55.

9. Gagnon L, Sakadžić S, Lesage F, Musacchia JJ, Lefebvre J, Fang Q, et al. Quantifying the Microvascular

Origin of BOLD-fMRI from First Principles with Two-Photon Microscopy and an Oxygen-Sensitive

Nanoprobe. J Neurosci. 2015 Feb 25;35(8):3663–75.

10. Lorthois S, Cassot F, Lauwers F. Simulation study of brain blood flow regulation by intra-cortical arterioles

in an anatomically accurate large human vascular network. Part II: Flow variations induced by global or

localized modifications of arteriolar diameters. NeuroImage. 2011 Feb 14;54(4):2840–53.

11. Kim JH, Ress D. Arterial impulse model for the BOLD response to brief neural activation. NeuroImage. 2016

Jan 1;124:394–408.

12. Griffeth VEM, Buxton RB. A theoretical framework for estimating cerebral oxygen metabolism changes using

the calibrated-BOLD method: Modeling the effects of blood volume distribution, hematocrit, oxygen

extraction fraction, and tissue signal properties on the BOLD signal. NeuroImage. 2011 Sep 1;58(1):198–212.

13. Boas DA, Jones SR, Devor A, Huppert TJ, Dale AM. A vascular anatomical network model of the spatio-

temporal response to brain activation. NeuroImage. 2008 Apr 15;40(3):1116–29.

14. Zhong J, Kennan RP, Fulbright RK, Gore JC. Quantification of intravascular and extravascular contributions

to BOLD effects induced by alteration in oxygenation or intravascular contrast agents. Magn Reson Med. 1998

Oct 1;40(4):526–36.

837

15. Sweeney PW, Walker-Samuel S, Shipley RJ. Insights into cerebral haemodynamics and oxygenation utilising

in vivo mural cell imaging and mathematical modelling. Sci Rep. 2018 Jan 22;8(1):1373.

16. Lu H, Golay X, Pekar JJ, Zijl PCM van. Functional magnetic resonance imaging based on changes in vascular

space occupancy. Magn Reson Med. 2003 Aug 1;50(2):263–74.

17. Hernández-Torres E, Kassner N, Forkert ND, Wei L, Wiggermann V, Daemen M, et al. Anisotropic cerebral

vascular architecture causes orientation dependency in cerebral blood flow and volume measured with

dynamic susceptibility contrast magnetic resonance imaging. J Cereb Blood Flow Metab. 2017 Mar

1;37(3):1108–19.

18. Boxerman JL, Bandettini PA, Kwong KK, Baker JR, Davis TL, Rosen BR, et al. The intravascular contribution

to fmri signal change: monte carlo modeling and diffusion-weighted studies in vivo. Magn Reson Med. 1995

Jul 1;34(1):4–10.

19. Markuerkiaga I, Barth M, Norris DG. A cortical vascular model for examining the specificity of the laminar

BOLD signal. NeuroImage. 2016 May 15;132:491–8.

20. Levin JM, Frederick B deB, Ross MH, Fox JF, von Rosenberg HL, Kaufman MJ, et al. Influence of baseline

hematocrit and hemodilution on BOLD fMRI activation. Magn Reson Imaging. 2001 Oct 1;19(8):1055–62.

21. Gould IG, Linninger AA. Hematocrit Distribution and Tissue Oxygenation in Large Microcirculatory

Networks. Microcirculation. 2015 Jan 1;22(1):1–18.

22. Gould IG, Tsai P, Kleinfeld D, Linninger A. The capillary bed offers the largest hemodynamic resistance to

the cortical blood supply. J Cereb Blood Flow Metab. 2017 Jan 1;37(1):52–68.

23. Gagnon L, Smith AF, Boas DA, Devor A, Secomb TW, Sakadžić S. Modeling of Cerebral Oxygen Transport

Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation.

Front Comput Neurosci. 2016;10.

24. Gagnon L, Sakadžić S, Lesage F, Mandeville ET, Fang Q, Yaseen MA, et al. Multimodal reconstruction of

microvascular-flow distributions using combined two-photon microscopy and Doppler optical coherence

tomography. Neurophotonics. 2015 Mar;2(1):015008.

25. Fang Q, Sakadžić S, Ruvinskaya L, Devor A, Dale AM, Boas DA. Oxygen Advection and Diffusion in a Three

Dimensional Vascular Anatomical Network. Opt Express. 2008 Oct 27;16(22):17530–41.

26. Blinder P, Tsai PS, Kaufhold JP, Knutsen PM, Suhl H, Kleinfeld D. The cortical angiome: an interconnected

vascular network with noncolumnar patterns of blood flow. Nat Neurosci. 2013 Jul;16(7):889–97.

27. Hartung G, Vesel C, Morley R, Alaraj A, Sled J, Kleinfeld D, et al. Simulations of blood as a suspension

predicts a depth dependent hematocrit in the circulation throughout the cerebral cortex. PLOS Comput Biol.

2018 Nov 19;14(11):e1006549.

28. Ghanavati S, Yu LX, Lerch JP, Sled JG. A perfusion procedure for imaging of the mouse cerebral vasculature

by X-ray micro-CT. J Neurosci Methods. 2014 Jan 15;221(Supplement C):70–7.

29. Ghaffari M, Tangen K, Alaraj A, Du X, Charbel FT, Linninger AA. Large-scale subject-specific cerebral

arterial tree modeling using automated parametric mesh generation for blood flow simulation. Comput Biol

Med. 2017 Dec 1;91:353–65.

838

30. Holter KE, Kehlet B, Devor A, Sejnowski TJ, Dale AM, Omholt SW, et al. Interstitial solute transport in 3D

reconstructed neuropil occurs by diffusion rather than bulk flow. Proc Natl Acad Sci. 2017 Sep

12;114(37):9894–9.

31. Hsu R, Secomb TW. A Green’s function method for analysis of oxygen delivery to tissue by microvascular

networks. Math Biosci. 1989 Sep 1;96(1):61–78.

32. D’Angelo C. Finite element approximation of elliptic problems with Dirac measure terms in weighted spaces:

applications to one-and three-dimensional coupled problems. SIAM J Numer Anal. 2012;50(1):194–215.

33. D’ANGELO C, Quarteroni A. On the coupling of 1d and 3d diffusion-reaction equations: application to tissue

perfusion problems. Math Models Methods Appl Sci. 2008;18(08):1481–1504.

34. Ghaffari M, Hsu C-Y, Linninger AA. Automatic reconstruction and generation of structured hexahedral mesh

for non-planar bifurcations in vascular networks. In: Computer Aided Chemical Engineering. Elsevier; 2015.

p. 635–640.

35. Ghaffari M, Alaraj A, Du X, Zhou XJ, Charbel FT, Linninger AA. Quantification of near-wall hemodynamic

risk factors in large-scale cerebral arterial trees. Int J Numer Methods Biomed Eng. 2018;34(7):e2987.

36. Peyrounette M, Davit Y, Quintard M, Lorthois S. Multiscale modelling of blood flow in cerebral

microcirculation: Details at capillary scale control accuracy at the level of the cortex. PLOS ONE. 2018 Jan

11;13(1):e0189474.

37. El-Bouri WK, Payne SJ. Multi-scale homogenization of blood flow in 3-dimensional human cerebral

microvascular networks. J Theor Biol. 2015 Sep 7;380:40–7.

38. Li B, Esipova TV, Sencan I, Kılıç K, Fu B, Desjardins M, et al. More homogeneous capillary flow and

oxygenation in deeper cortical layers correlate with increased oxygen extraction. Elife. 2019;8.

39. Schmid F, Tsai PS, Kleinfeld D, Jenny P, Weber B. Depth-dependent flow and pressure characteristics in

cortical microvascular networks. PLOS Comput Biol. 2017 Feb 14;13(2):e1005392.

40. Lorthois S, Cassot F, Lauwers F. Simulation study of brain blood flow regulation by intra-cortical arterioles

in an anatomically accurate large human vascular network: Part I: methodology and baseline flow.

NeuroImage. 2011 Jan 15;54(2):1031–42.

41. Blinder P, Tsai PS, Kaufhold JP, Knutsen PM, Suhl H, Kleinfeld D. The cortical angiome: an interconnected

vascular network with noncolumnar patterns of blood flow. Nat Neurosci. 2013 Jul;16(7):889–97.

42. Cassot F, Lauwers F, Fouard C, Prohaska S, Lauwers‐Cances V. A Novel Three-Dimensional Computer-

Assisted Method for a Quantitative Study of Microvascular Networks of the Human Cerebral Cortex.

Microcirculation. 2006;13(1):1–18.

43. Lauwers F, Cassot F, Lauwers-Cances V, Puwanarajah P, Duvernoy H. Morphometry of the human cerebral

cortex microcirculation: General characteristics and space-related profiles. NeuroImage. 2008 Feb

1;39(3):936–48.

44. Lorthois S, Cassot F, Lauwers F. Simulation study of brain blood flow regulation by intra-cortical arterioles

in an anatomically accurate large human vascular network. Part II: Flow variations induced by global or

localized modifications of arteriolar diameters. NeuroImage. 2011 Feb 14;54(4):2840–53.

839

45. Tsai PS, Kaufhold JP, Blinder P, Friedman B, Drew PJ, Karten HJ, et al. Correlations of Neuronal and

Microvascular Densities in Murine Cortex Revealed by Direct Counting and Colocalization of Nuclei and

Vessels. J Neurosci. 2009 Nov 18;29(46):14553–70.

46. Kidoguchi K, Tamaki M, Mizobe T, Koyama J, Kondoh T, Kohmura E, et al. In Vivo X-Ray Angiography in

the Mouse Brain Using Synchrotron Radiation. Stroke. 2006 Jul 1;37(7):1856–61.

47. Dyer EL, Roncal WG, Prasad JA, Fernandes HL, Gürsoy D, Andrade VD, et al. Quantifying Mesoscale

Neuroanatomy Using X-Ray Microtomography. eNeuro. 2017 Sep 1;4(5):ENEURO.0195-17.2017.

48. Bicer T, Gursoy D, Kettimuthu R, Foster IT, Ren B, De Andrede V, et al. Real-Time Data Analysis and

Autonomous Steering of Synchrotron Light Source Experiments. In: 2017 IEEE 13th International Conference

on e-Science (e-Science). Auckland: IEEE; 2017. p. 59–68.

49. Zagzoule M, Marc-Vergnes J-P. A global mathematical model of the cerebral circulation in man. J Biomech.

1986 Jan 1;19(12):1015–22.

50. Cebral JR, Castro MA, Soto O, Löhner R, Alperin N. Blood-flow models of the circle of Willis from magnetic

resonance data. J Eng Math. 2003 Dec;47(3/4):369–86.

51. Blanco PJ, Pivello MR, Urquiza SA, Feijóo RA. On the potentialities of 3D–1D coupled models in

hemodynamics simulations. J Biomech. 2009 May 11;42(7):919–30.

52. Blanco PJ, Watanabe SM, Dari EA, Passos MARF, Feijóo RA. Blood flow distribution in an anatomically

detailed arterial network model: criteria and algorithms. Biomech Model Mechanobiol. 2014 Nov

1;13(6):1303–30.

53. Schneider M, Hirsch S, Weber B, Székely G. Physiologically Based Construction of Optimized 3-D Arterial

Tree Models. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2011. Springer,

Berlin, Heidelberg; 2011. p. 404–11.

54. Su S-W, Catherall M, Payne S. The Influence of Network Structure on the Transport of Blood in the Human

Cerebral Microvasculature. Microcirculation. 2012;19(2):175–87.

55. Bui AV, Manasseh R, Liffman K, Šutalo ID. Development of optimized vascular fractal tree models using

level set distance function. Med Eng Phys. 2010 Sep 1;32(7):790–4.

56. Karch R, Neumann F, Neumann M, Schreiner W. A three-dimensional model for arterial tree representation,

generated by constrained constructive optimization. Comput Biol Med. 1999 Jan;29(1):19–38.

57. Karch R, Neumann F, Neumann M, Schreiner W. Staged Growth of Optimized Arterial Model Trees. Ann

Biomed Eng. 2000 May 1;28(5):495–511.

58. Karch R, Neumann F, Podesser BK, Neumann M, Szawlowski P, Schreiner W. Fractal Properties of Perfusion

Heterogeneity in Optimized Arterial Trees: A Model Study. J Gen Physiol. 2003 Sep 1;122(3):307–22.

59. Schreiner W, Neumann F, Karch R, Neumann M, Roedler SM, End A. Shear Stress Distribution in Arterial

Tree Models, Generated by Constrained Constructive Optimization. J Theor Biol. 1999 May 7;198(1):27–45.

60. Schreiner W, Neumann F, Neumann M, Karch R, End A, Roedler SM. Limited Bifurcation Asymmetry in

Coronary Arterial Tree Models Generated by Constrained Constructive Optimization. J Gen Physiol. 1997

Feb 1;109(2):129–40.

840

61. Schreiner W, Karch R, Neumann M, Neumann F, Roedler SM, Heinze G. Heterogeneous Perfusion is a

Consequence of Uniform Shear Stress in Optimized Arterial Tree Models. J Theor Biol. 2003;3(220):285–

301.

62. Linninger AA, Gould IG, Marinnan T, Hsu C-Y, Chojecki M, Alaraj A. Cerebral Microcirculation and Oxygen

Tension in the Human Secondary Cortex. Ann Biomed Eng. 2013 Nov 1;41(11):2264–84.

63. Hartung G, Vesel C, Morley R, Alaraj A, Sled J, Kleinfeld D, et al. Simulations of blood as a suspension

predicts a depth dependent hematocrit in the circulation throughout the cerebral cortex. PLOS Comput Biol.

(In Print).

64. Tellegen BDH. A general network theorem, with applications. Philips Res Rept. 1952;7:259–69.

65. Wartmann M. Process Network Optimality. Carnegie Mellon University; 2010.

66. Cassot F, Lauwers F, Lorthois S, Puwanarajah P, Cances-Lauwers V, Duvernoy H. Branching patterns for

arterioles and venules of the human cerebral cortex. Brain Res. 2010 Feb 8;1313:62–78.

67. Murray CD. The Physiological Principle of Minimum Work: I. The Vascular System and the Cost of Blood

Volume. Proc Natl Acad Sci. 1926 Mar 1;12(3):207–14.

68. Hsu C-Y, Schneller B, Alaraj A, Flannery M, Zhou XJ, Linninger A. Automatic recognition of subject‐specific

cerebrovascular trees. Magn Reson Med. 2016 Dec 27;1(77):398–410.

69. Hsu C-Y, Ghaffari M, Alaraj A, Flannery M, Zhou XJ, Linninger A. Gap-free segmentation of vascular

networks with automatic image processing pipeline. Comput Biol Med. 2017 Mar 1;82:29–39.

70. Ghanavati S, Yu LX, Lerch JP, Sled JG. A perfusion procedure for imaging of the mouse cerebral vasculature

by X-ray micro-CT. J Neurosci Methods. 2014 Jan 15;221(Supplement C):70–7.

71. Xiong B, Li A, Lou Y, Chen S, Long B, Peng J, et al. Precise Cerebral Vascular Atlas in Stereotaxic

Coordinates of Whole Mouse Brain. Front Neuroanat. 2017 Dec 19;11.

72. Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns: Elements of Reusable Object-Oriented Software.

Pearson Education; 1994. 457 p.

73. Schmid F, Barrett MJP, Jenny P, Weber B. Vascular density and distribution in neocortex. NeuroImage. 2017

Jun 29;

74. Kidoguchi K, Tamaki M, Mizobe T, Koyama J, Kondoh T, Kohmura E, et al. In Vivo X-Ray Angiography in

the Mouse Brain Using Synchrotron Radiation. Stroke. 2006 Jul 1;37(7):1856–61.

75. Ma Y, Hof PR, Grant SC, Blackband SJ, Bennett R, Slatest L, et al. A three-dimensional digital atlas database

of the adult C57BL/6J mouse brain by magnetic resonance microscopy. Neuroscience. 2005 Jan

1;135(4):1203–15.

76. Badea A, Ali-Sharief AA, Johnson GA. Morphometric analysis of the C57BL/6J mouse brain. NeuroImage.

2007 Sep 1;37(3):683–93.

77. Kovačević N, Henderson JT, Chan E, Lifshitz N, Bishop J, Evans AC, et al. A Three-dimensional MRI Atlas

of the Mouse Brain with Estimates of the Average and Variability. Cereb Cortex. 2005 May 1;15(5):639–45.

841

78. Diem AK, Tan M, Bressloff NW, Hawkes C, Morris AWJ, Weller RO, et al. A Simulation Model of

Periarterial Clearance of Amyloid-β from the Brain. Front Aging Neurosci. 2016;8.

79. Natt O, Watanabe T, Boretius S, Radulovic J, Frahm J, Michaelis T. High-resolution 3D MRI of mouse brain

reveals small cerebral structures in vivo. J Neurosci Methods. 2002 Oct 30;120(2):203–9.

80. Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, et al. Transmission and spreading

of tauopathy in transgenic mouse brain. Nat Cell Biol. 2009 Jul;11(7):909–13.

81. Lefort S, Tomm C, Floyd Sarria J-C, Petersen CCH. The Excitatory Neuronal Network of the C2 Barrel

Column in Mouse Primary Somatosensory Cortex. Neuron. 2009 Jan 29;61(2):301–16.

82. DeFelipe J, Alonso-Nanclares L, I. Arellano J. Microstructure of the neocortex: comparative aspects. J

Neurocytol. 2002;31(3–5):299–316.

83. Gould IG, Tsai P, Kleinfeld D, Linninger A. The capillary bed offers the largest hemodynamic resistance to

the cortical blood supply. J Cereb Blood Flow Metab. 2017 Jan 1;37(1):52–68.

84. Gould IG, Linninger AA. Hematocrit Distribution and Tissue Oxygenation in Large Microcirculatory

Networks. Microcirculation. 2015 Jan 1;22(1):1–18.

85. Gagnon L, Sakadžić S, Lesage F, Musacchia JJ, Lefebvre J, Fang Q, et al. Quantifying the Microvascular

Origin of BOLD-fMRI from First Principles with Two-Photon Microscopy and an Oxygen-Sensitive

Nanoprobe. J Neurosci. 2015 Feb 25;35(8):3663–75.

86. Coutey C, Berg M, Ho H, Hunter P. Computational Simulation of Blood Flow and Drug Transportation in a

Large Vasculature. In: Joldes GR, Doyle B, Wittek A, Nielsen PMF, Miller K, editors. Computational

Biomechanics for Medicine. Springer International Publishing; 2016. p. 133–42.

87. Linninger AA, Tangen K, Hsu C-Y, Frim D. Cerebrospinal Fluid Mechanics and Its Coupling to

Cerebrovascular Dynamics. Annu Rev Fluid Mech. 2016;48(1):219–57.

88. Linninger AA, Xu C, Tangen K, Hartung G. Starling forces drive intracranial water exchange during normal

and pathological states. Croat Med J. 2017 Dec;58(6):384–94.

89. Gagnon L, Sakadžić S, Lesage F, Musacchia JJ, Lefebvre J, Fang Q, et al. Quantifying the Microvascular

Origin of BOLD-fMRI from First Principles with Two-Photon Microscopy and an Oxygen-Sensitive

Nanoprobe. J Neurosci. 2015 Feb 25;35(8):3663–75.

90. Gould IG, Tsai P, Kleinfeld D, Linninger A. The capillary bed offers the largest hemodynamic resistance to

the cortical blood supply. J Cereb Blood Flow Metab. 2017 Jan 1;37(1):52–68.

91. Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci. 2004

May;5(5):347–60.

92. Fox PT, Raichle ME. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during

somatosensory stimulation in human subjects. Proc Natl Acad Sci. 1986 Feb 1;83(4):1140–4.

93. Kim JH, Ress D. Arterial impulse model for the BOLD response to brief neural activation. NeuroImage. 2016

Jan 1;124:394–408.

94. Uludağ K, Blinder P. Linking brain vascular physiology to hemodynamic response in ultra-high field MRI.

NeuroImage. 2017 Feb 22;

842

95. Lorthois S, Cassot F, Lauwers F. Simulation study of brain blood flow regulation by intra-cortical arterioles

in an anatomically accurate large human vascular network. Part II: Flow variations induced by global or

localized modifications of arteriolar diameters. NeuroImage. 2011 Feb 14;54(4):2840–53.

96. Drake-Holland AJ, Laird JD, Noble MI, Spaan JA, Vergroesen I. Oxygen and coronary vascular resistance

during autoregulation and metabolic vasodilation in the dog. J Physiol. 1984 Mar 1;348(1):285–99.

97. Hudetz AG. Blood Flow in the Cerebral Capillary Network: A Review Emphasizing Observations with

Intravital Microscopy. Microcirculation. 1997 Jan 1;4(2):233–52.

98. Johnson PC. Autoregulation of blood flow. Circ Res. 1986 Nov 1;59(5):483–95.

99. Strandgaard S. Autoregulation of cerebral blood flow in hypertensive patients. The modifying influence of

prolonged antihypertensive treatment on the tolerance to acute, drug-induced hypotension. Circulation. 1976

Apr 1;53(4):720–7.

100. Lassen NA. Cerebral Blood Flow and Oxygen Consumption in Man. Physiol Rev. 1959 Apr 1;39(2):183–238.

101. Strandgaard S, Paulson OB. Cerebral autoregulation. Stroke. 1984 May 1;15(3):413–6.

102. Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev.

1990;2(2):161–92.

103. Panerai RB. Assessment of cerebral pressure autoregulation in humans - a review of measurement methods.

Physiol Meas. 1998;19(3):305.

104. Olufsen MS, Nadim A, Lipsitz LA. Dynamics of cerebral blood flow regulation explained using a lumped

parameter model. Am J Physiol-Regul Integr Comp Physiol. 2002 Feb;282(2):R611–22.

105. Olufsen M, Tran H, Ottesen J. Modeling Cerebral Blood Flow Control During Posture Change from Sitting to

Standing. Cardiovasc Eng. 2004 Mar;4(1):47–58.

106. Lu K, Clark JW, Ghorbel FH, Robertson CS, Ware DL, Zwischenberger JB, et al. Cerebral autoregulation and

gas exchange studied using a human cardiopulmonary model. In IEEE; 2003. p. 395–7.

107. Sakadžić S, Mandeville ET, Gagnon L, Musacchia JJ, Yaseen MA, Yucel MA, et al. Large arteriolar

component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue. Nat Commun. 2014

Dec 8;5:5734.

108. Schmid F, Tsai PS, Kleinfeld D, Jenny P, Weber B. Depth-dependent flow and pressure characteristics in

cortical microvascular networks. PLOS Comput Biol. 2017 Feb 14;13(2):e1005392.

109. Lorthois S, Cassot F, Lauwers F. Simulation study of brain blood flow regulation by intra-cortical arterioles

in an anatomically accurate large human vascular network: Part I: methodology and baseline flow.

NeuroImage. 2011 Jan 15;54(2):1031–42.

110. Payne SJ, Lucas C. Oxygen delivery from the cerebral microvasculature to tissue is governed by a single time

constant of approximately 6 seconds. Microcirculation. 2018 Feb 1;25(2):n/a-n/a.

111. Gagnon L, Sakadžić S, Lesage F, Mandeville ET, Fang Q, Yaseen MA, et al. Multimodal reconstruction of

microvascular-flow distributions using combined two-photon microscopy and Doppler optical coherence

tomography. Neurophotonics. 2015 Mar;2(1):015008.

843

112. Boas DA, Jones SR, Devor A, Huppert TJ, Dale AM. A vascular anatomical network model of the spatio-

temporal response to brain activation. NeuroImage. 2008 Apr 15;40(3):1116–29.

113. Lorthois S, Cassot F. Fractal analysis of vascular networks: Insights from morphogenesis. J Theor Biol. 2010

Feb 21;262(4):614–33.

114. Obrist D, Weber B, Buck A, Jenny P. Red blood cell distribution in simplified capillary networks. Philos Trans

R Soc Lond Math Phys Eng Sci. 2010 Jun 28;368(1921):2897–918.

115. Gould IG, Linninger AA. Hematocrit Distribution and Tissue Oxygenation in Large Microcirculatory

Networks. Microcirculation. 2015 Jan 1;22(1):1–18.

116. Linninger AA, Gould IG, Marinnan T, Hsu C-Y, Chojecki M, Alaraj A. Cerebral Microcirculation and Oxygen

Tension in the Human Secondary Cortex. Ann Biomed Eng. 2013 Nov 1;41(11):2264–84.

117. Ghanavati S, Yu LX, Lerch JP, Sled JG. A perfusion procedure for imaging of the mouse cerebral vasculature

by X-ray micro-CT. J Neurosci Methods. 2014 Jan 15;221(Supplement C):70–7.

118. Chugh BP, Lerch JP, Yu LX, Pienkowski M, Harrison RV, Henkelman RM, et al. Measurement of cerebral

blood volume in mouse brain regions using micro-computed tomography. NeuroImage. 2009 Oct

1;47(4):1312–8.

119. Marxen M, Thornton MM, Chiarot CB, Klement G, Koprivnikar J, Sled JG, et al. MicroCT scanner

performance and considerations for vascular specimen imaging. Med Phys. 2004 Feb;31(2):305–13.

120. Ghanavati S, Lerch JP, Sled JG. Automatic anatomical labeling of the complete cerebral vasculature in mouse

models. NeuroImage. 2014 Jul 15;95:117–28.

121. Ghaffari M, Hsu C-Y, Linninger AA. Automatic Reconstruction and Generation of Structured Hexahedral

Mesh for Non-planar Bifurcations in Vascular Networks. In: Gernaey KV, Huusom JK, Gani R, editors.

Computer Aided Chemical Engineering. Elsevier; 2015. p. 635–40.

122. Hsu C-Y, Ghaffari M, Alaraj A, Flannery M, Zhou XJ, Linninger A. Gap-free segmentation of vascular

networks with automatic image processing pipeline. Comput Biol Med. 2017 Mar 1;82:29–39.

123. Hsu C-Y, Schneller B, Alaraj A, Flannery M, Zhou XJ, Linninger A. Automatic recognition of subject‐specific

cerebrovascular trees. Magn Reson Med. 2016 Dec 27;1(77):398–410.

124. Tsai PS, Kaufhold JP, Blinder P, Friedman B, Drew PJ, Karten HJ, et al. Correlations of Neuronal and

Microvascular Densities in Murine Cortex Revealed by Direct Counting and Colocalization of Nuclei and

Vessels. J Neurosci. 2009 Nov 18;29(46):14553–70.

125. Shih AY, Driscoll JD, Drew PJ, Nishimura N, Schaffer CB, Kleinfeld D. Two-Photon Microscopy as a Tool

to Study Blood Flow and Neurovascular Coupling in the Rodent Brain. J Cereb Blood Flow Metab. 2012 Jul

1;32(7):1277–309.

126. Kaufhold JP, Tsai PS, Blinder P, Kleinfeld D. Vectorization of optically sectioned brain microvasculature:

Learning aids completion of vascular graphs by connecting gaps and deleting open-ended segments. Med

Image Anal. 2012 Aug;16(6):1241–58.

127. Pries AR, Neuhaus D, Gaehtgens P. Blood viscosity in tube flow: dependence on diameter and hematocrit.

Am J Physiol. 1992 Dec;263(6 Pt 2):H1770-1778.

844

128. Yang J, Yoo SS, Lee T-R. Effect of fractional blood flow on plasma skimming in the microvasculature. Phys

Rev E. 2017 Apr 25;95(4):040401.

129. Yang J, Pak YE, Lee T-R. Predicting bifurcation angle effect on blood flow in the microvasculature. Microvasc

Res. 2016 Nov 1;108:22–8.

130. Lee T-R, Yoo SS, Yang J. Generalized plasma skimming model for cells and drug carriers in the

microvasculature. Biomech Model Mechanobiol. 2017 Apr 1;16(2):497–507.

131. Tellegen BDH. A General Network Theorem With Applications. Phillips Res Rep. 1952;7:259–69.

132. Miller GF, Penke L. The evolution of human intelligence and the coefficient of additive genetic variance in

human brain size. Intelligence. 2007 Mar 1;35(2):97–114.

133. Pardridge WM. Blood–brain barrier delivery. Drug Discov Today. 2007 Jan 1;12(1):54–61.

134. Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood–brain

barrier. Neurobiol Dis. 2010 Jan 1;37(1):13–25.

135. Hartung G, Linninger A. The image-based cerebrovascular growth algorithm. 2019.

136. Hartung G, Alaraj A, Linninger A. Chapter 21 - Walk-In Brain: Virtual Reality Environment for Immersive

Exploration and Simulation of Brain Metabolism and Function. In: Martín M, Eden MR,

Chemmangattuvalappil NG, editors. Computer Aided Chemical Engineering. Elsevier; 2016. p. 649–58.

(Tools For Chemical Product Design; vol. 39).

137. Desai B, Hobbs J, Hartung G, Xu G, Gokaslan ZL, Linninger A, et al. Image-guidance technology and the

surgical resection of spinal column tumors. J Neurooncol. 2017 Feb 1;131(3):425–35.

138. Zweifach BW, Lipowsky HH. Quantitative studies of microcirculatory structure and function. III.

Microvascular hemodynamics of cat mesentery and rabbit omentum. Circ Res. 1977 Sep 1;41(3):380–90.

139. Oshio K, Watanabe H, Song Y, Verkman AS, Manley GT. Reduced cerebrospinal fluid production and

intracranial pressure in mice lacking choroid plexus water channel Aquaporin-1. FASEB J. 2004 Nov

8;19(1):76–8.

140. Morimoto S, Cassell MD, Beltz TG, Johnson AK, Davisson RL, Sigmund CD. Elevated Blood Pressure in

Transgenic Mice With Brain-Specific Expression of Human Angiotensinogen Driven by the Glial Fibrillary

Acidic Protein Promoter. Circ Res. 2001 Aug 17;89(4):365–72.

141. Maeda K, Mies G, Oláh L, Hossmann K-A. Quantitative Measurement of Local Cerebral Blood Flow in the

Anesthetized Mouse Using Intraperitoneal [14C]Iodoantipyrine Injection and Final Arterial Heart Blood

Sampling. J Cereb Blood Flow Metab. 2000 Jan 1;20(1):10–4.

142. Gertz K, Priller J, Kronenberg G, Fink KB, Winter B, Schröck H, et al. Physical Activity Improves Long-

Term Stroke Outcome via Endothelial Nitric Oxide Synthase–Dependent Augmentation of Neovascularization

and Cerebral Blood Flow. Circ Res. 2006 Nov 10;99(10):1132–40.

143. DeFelipe J, Alonso-Nanclares L, I. Arellano J. Microstructure of the neocortex: comparative aspects. J

Neurocytol. 2002;31(3–5):299–316.

144. Lefort S, Tomm C, Floyd Sarria J-C, Petersen CCH. The Excitatory Neuronal Network of the C2 Barrel

Column in Mouse Primary Somatosensory Cortex. Neuron. 2009 Jan 29;61(2):301–16.

845

145. Karch R, Neumann F, Neumann M, Schreiner W. A three-dimensional model for arterial tree representation,

generated by constrained constructive optimization. Comput Biol Med. 1999 Jan;29(1):19–38.

146. Dorr A, Sled JG, Kabani N. Three-dimensional cerebral vasculature of the CBA mouse brain: A magnetic

resonance imaging and micro computed tomography study. NeuroImage. 2007 May;35(4):1409–23.

147. Xiong B, Li A, Lou Y, Chen S, Long B, Peng J, et al. Precise Cerebral Vascular Atlas in Stereotaxic

Coordinates of Whole Mouse Brain. Front Neuroanat. 2017 Dec 19;11.

148. Nishimura N, Schaffer CB, Friedman B, Lyden PD, Kleinfeld D. Penetrating arterioles are a bottleneck in the

perfusion of neocortex. Proc Natl Acad Sci. 2007 Jan 2;104(1):365–70.

149. Diem AK, Tan M, Bressloff NW, Hawkes C, Morris AWJ, Weller RO, et al. A Simulation Model of

Periarterial Clearance of Amyloid-β from the Brain. Front Aging Neurosci. 2016;8.

150. Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, et al. Transmission and spreading

of tauopathy in transgenic mouse brain. Nat Cell Biol. 2009 Jul;11(7):909–13.

151. Natt O, Watanabe T, Boretius S, Radulovic J, Frahm J, Michaelis T. High-resolution 3D MRI of mouse brain

reveals small cerebral structures in vivo. J Neurosci Methods. 2002 Oct 30;120(2):203–9.

152. Krogh A. The Anatomy and Physiology of Capillaries. Yale University Press; 1922. 304 p.

153. Dintenfass L. Blood Viscosity. Springer Science & Business Media; 1985. 502 p.

154. Klitzman B, Duling B. Microvascular hematocrit and red cell in resting and contracting striated muscle. Vol.

237. 1979. H481 p.

155. Lipowsky HH, Usami S, Chien S. In vivo measurements of “apparent viscosity” and microvessel hematocrit

in the mesentery of the cat. Microvasc Res. 1980 May 1;19(3):297–319.

156. Pries AR, Secomb TW, Gessner T, Sperandio MB, Gross JF, Gaehtgens P. Resistance to blood flow in

microvessels in vivo. Circ Res. 1994 Nov 1;75(5):904–15.

157. Liu R, Li Z, Kleinfeld D. Adaptive optics with direct wavefront sensing from microvessels enables two-photon

imaging of deep cortical layers. Print.

158. Pries AR, Secomb TW. Microvascular blood viscosity in vivo and the endothelial surface layer. Am J Physiol

- Heart Circ Physiol. 2005 Dec 1;289(6):H2657–64.

159. Chebbi R. Dynamics of blood flow: modeling of the Fåhræus–Lindqvist effect. J Biol Phys. 2015 Jun

1;41(3):313–26.

160. Pries AR, Ley K, Claassen M, Gaehtgens P. Red cell distribution at microvascular bifurcations. Microvasc

Res. 1989 Jul 1;38(1):81–101.

161. Rasmussen PM, Secomb TW, Pries AR. Modeling the hematocrit distribution in microcirculatory networks:

A quantitative evaluation of a phase separation model. Microcirculation. 2018 Mar 10;n/a-n/a.

162. Tang Z, Lee JH. Effects of Different Hematocrit Levels on Glucose Measurements With Handheld Meters for

Point-of-Care Testing. Arch Pathol Lab Med. 2000;124:6.

846

163. Gagnon L, Smith AF, Boas DA, Devor A, Secomb TW, Sakadžić S. Modeling of Cerebral Oxygen Transport

Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation.

Front Comput Neurosci. 2016;10.

164. Secomb TW, Hsu R, Park EYH, Dewhirst MW. Green’s Function Methods for Analysis of Oxygen Delivery

to Tissue by Microvascular Networks. Ann Biomed Eng. 2004 Nov 1;32(11):1519–29.

165. Gjerde IG, Kumar K, Nordbotten JM, Wohlmuth B. Splitting method for elliptic equations with line sources.

ArXiv Prepr ArXiv181012979. 2018;

166. Mintun MA, Lundstrom BN, Snyder AZ, Vlassenko AG, Shulman GL, Raichle ME. Blood flow and oxygen

delivery to human brain during functional activity: theoretical modeling and experimental data. PNAS.

2001;98(12):6859–64.

167. Truskey G, Yuan F, Katz D. Transport Phenomena in Biological Systems. Pearson Prentice Hall;

168. Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, et al. PETSc Web page [Internet]. 2019.

169. Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, et al. PETSc Users Manual [Internet].

Argonne National Laboratory; 2019. Report No.: ANL-95/11-Revision 3.11.

170. Linninger A, Hartung G, Badr S, Morley R. Mathematical synthesis of the cortical circulation for the whole

mouse brain-part I: theory and image integration. Comput Biol Med. (In Print).

171. Faber JE, Zhang H, Lassance-Soares RM, Prabhakar P, Najafi AH, Burnett MS, et al. Aging causes collateral

rarefaction and increased severity of ischemic injury in multiple tissues. Arterioscler Thromb Vasc Biol.

2011;31(8):1748–1756.

172. Murugesan N, Demarest TG, Madri JA, Pachter JS. Brain regional angiogenic potential at the neurovascular

unit during normal aging. Neurobiol Aging. 2012;33(5):1004–e1.

173. Casey MA, Feldman ML. Aging in the rat medial nucleus of the trapezoid body. III. Alterations in capillaries.

Neurobiol Aging. 1985;6(1):39–46.

174. Wilkinson J, Hopewell J, Reinhold H. A quantitative study of age-related changes in the vascular architecture

of the rat cerebral cortex. Neuropathol Appl Neurobiol. 1981;7(6):451–462.

175. Hsu C-Y, Linninger A. Vesselness Filter [Internet]. Laboratory for Product and Process Design, UIC; 2017.

176. Wang Z, Chi Y, Huang W, Venkatesh SK, Tian Q, Oo T, et al. Comparisons of centerline extraction methods

for liver blood vessels in imageJ and 3D slicer. APSIPA ASC. 2010;276–279.

177. Lee TC, Kashyap RL, Chu CN. Building Skeleton Models via 3-D Medial Surface Axis Thinning Algorithms.

CVGIP Graph Models Image Process. 1994 Nov 1;56(6):462–78.

178. Kollmannsberger P, Kerschnitzki M, Repp F, Wagermaier W, Weinkamer R, Peter Fratzl. The small world of

osteocytes: connectomics of the lacuno-canalicular network in bone. New J Phys. 2017;19(7):073019.

179. Ghanavati S, Lerch JP, Sled JG. Automatic anatomical labeling of the complete cerebral vasculature in mouse

models. NeuroImage. 2014 Jul 15;95:117–28.

180. Hartung G, Alaraj A, Linninger A. Chapter 21 - Walk-In Brain: Virtual Reality Environment for Immersive

Exploration and Simulation of Brain Metabolism and Function. In: Martín M, Eden MR,

847

Chemmangattuvalappil NG, editors. Computer Aided Chemical Engineering. Elsevier; 2016. p. 649–58.

(Tools For Chemical Product Design; vol. 39).

181. Fischl B, et al. FreeSurfer. Boston, MA; 2017.

182. Yushkevich PA, Piven J, Cody Hazlett H, Gimpel Smith R, Ho S, Gee JC, et al. User-Guided 3D Active

Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability.

Neuroimage. 2006;31(3):1116–1128.

183. Linninger A, Hartung GA, Liu BP, Mirkov S, Tangen K, Lukas RV, et al. Modeling the diffusion of D-2-

hydroxyglutarate from IDH1 mutant gliomas in the central nervous system. Neuro-Oncol. 2018 Aug

2;20(9):1197–206.

184. Politis A, Sweetman B, Linninger A. File formats for unstructured computational meshes. LPPD; 2008.

185. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical Recipes 3rd Edition: The Art of Scientific

Computing. Cambridge University Press; 2007. 1195 p.

186. Shrirang A, Brown J, Constantinescu E, Debojyoti G, Smith B, Zhang H. A modern scalable ODE/DAE solver

library. ArXiv Prepr. 2018;

187. Zenos M, Kulkarni K, Linninger A. Iterative methods for solving algebraic systems. LPPD; 2004.

188. Ghaffari M, Linninger A. Eigen-analysis for the solution of linear dynamics systems. LPPD; 2017.

189. Park C-S, Linninger A. Introduction to polynomial approximation – Lagrange polynomials. LPPD; 2017.

190. Sweetman B, Linninger A. Hyperbolic (wave) and parabolic (diffusion) partial differential equations and their

applications to vasculature dynamics. LPPD; 2008.

191. Wartmann M. Process Network Optimality. Carnegie Mellon University; 2010.

192. Bird R, Stewart W, Lightfoot E. Transport Phenomena (Second ed.). John Wiley & Sons; 2001.

193. Vázquez BYS, Cabrales P, Tsai AG, Intaglietta M. Nonlinear cardiovascular regulation consequent to changes

in blood viscosity. Clin Hemorheol Microcirc. 2011 Jan 1;49(1–4):29–36.

194. Heuser G, Opitz R. A Couette viscometer for short time shearing of blood. Biorheology. 1980 Jan 1;17(1–

2):17–24.

195. Gaehtgens P. Flow of blood through narrow capillaries: Rheological mechanisms determining capillary

hematocrit and apparent viscosity. Biorheology. 1980 Jan 1;17(1–2):183–9.

196. Pries AR, Secomb TW, Gaehtgens P. Biophysical aspects of blood flow in the microvasculature. Cardiovasc

Res. 1996 Oct 1;32(4):654–67.

197. Pries AR, Secomb TW, Gessner T, Sperandio MB, Gross JF, Gaehtgens P. Resistance to blood flow in

microvessels in vivo. Circ Res. 1994 Nov 1;75(5):904–15.

198. Secomb TW, Pries AR. Blood viscosity in microvessels: Experiment and theory. Comptes Rendus Phys. 2013

Jun 1;14(6):470–8.

848

199. Pries AR, Secomb TW. Microvascular blood viscosity in vivo and the endothelial surface layer. Am J Physiol

- Heart Circ Physiol. 2005 Dec 1;289(6):H2657–64.

200. Kiani MF, Hudetz AG. A semi-empirical model of apparent blood viscosity as a function of vessel diameter

and discharge hematocrit. Biorheology. 1991 Jan 1;28(1–2):65–73.

201. Charm S, Kurland G. Blood flow and microcirculation. Am Heart J. 1974 Dec 1;88(6):243.

202. Pries AR, Ley K, Claassen M, Gaehtgens P. Red cell distribution at microvascular bifurcations. Microvasc

Res. 1989 Jul 1;38(1):81–101.

203. Lipowsky HH, Usami S, Chien S. In vivo measurements of “apparent viscosity” and microvessel hematocrit

in the mesentery of the cat. Microvasc Res. 1980 May 1;19(3):297–319.

204. Pries AR, Secomb TW, Gessner T, Sperandio MB, Gross JF, Gaehtgens P. Resistance to blood flow in

microvessels in vivo. Circ Res. 1994 Nov 1;75(5):904–15.

205. Pries AR, Secomb TW, Gaehtgens P. Biophysical aspects of blood flow in the microvasculature. Cardiovasc

Res. 1996 Oct 1;32(4):654–67.

206. Secomb TW, Pries AR. Blood viscosity in microvessels: Experiment and theory. Comptes Rendus Phys. 2013

Jun 1;14(6):470–8.

207. Pries AR, Secomb TW. Microvascular blood viscosity in vivo and the endothelial surface layer. Am J Physiol

- Heart Circ Physiol. 2005 Dec 1;289(6):H2657–64.

208. Blood flow and microcirculation: By Stanley E. Charm, Sc.D., and George S. Kurland, M.D., New York,

1974, John Wiley & Sons, Inc., 243 pp. $18.00. Am Heart J. 1974 Dec 1;88(6):815.

209. Haynes RH. Physical basis of the dependence of blood viscosity on tube radius. Am J Physiol-Leg Content.

1960 Jun 1;198(6):1193–200.

210. Whitmore R. A theory of blood flow in small vessels. J Appl Physiol. 1967;22(4):767–71.

211. Kiani MF, Hudetz AG. A semi-empirical model of apparent blood viscosity as a function of vessel diameter

and discharge hematocrit. Biorheology. 1991 Jan 1;28(1–2):65–73.

212. Reinke W, Gaehtgens P, Johnson PC. Blood viscosity in small tubes: effect of shear rate, aggregation, and

sedimentation. Am J Physiol. 1987 Sep;253(3 Pt 2):H540-7.

213. Bayliss LE. The axial drift of the red cells when blood flows in a narrow tube. J Physiol. 1959;149(3):593–

613.

214. Krogh A. The progress of physiology. Am J Physiol-Leg Content. 1929;90(2):243–51.

215. Fourman J, Moffat DB. The effect of intra-arterial cushions on plasma skimming in small arteries. J Physiol.

1961;158(2):374–80.

216. Dellimore JW, Dunlop MJ, Canham PB. Ratio of cells and plasma in blood flowing past branches in small

plastic channels. Am J Physiol - Heart Circ Physiol. 1983 May 1;244(5):H635–43.

217. Klitzman B, Johnson PC. Capillary network geometry and red cell distribution in hamster cremaster muscle.

Am J Physiol-Heart Circ Physiol. 1982 Feb 1;242(2):H211–9.

849

218. Fenton BM, Carr RT, Cokelet GR. Nonuniform red cell distribution in 20 to 100 μm bifurcations. Microvasc

Res. 1985 Jan 1;29(1):103–26.

219. Fenton BM, Wilson DW, Cokelet GR. Analysis of the effects of measured white blood cell entrance times on

hemodynamics in a computer model of a microvascular bed. Pflüg Arch. 1985 Apr 1;403(4):396–401.

220. Chien S, Tvetenstrand CD, Epstein MA, Schmid-Schonbein GW. Model studies on distributions of blood cells

at microvascular bifurcations. Am J Physiol - Heart Circ Physiol. 1985 Apr 1;248(4):H568–76.

221. Schmid-Schönbein GW, Usami S, Skalak R, Chien S. The interaction of leukocytes and erythrocytes in

capillary and postcapillary vessels. Microvasc Res. 1980 Jan 1;19(1):45–70.

222. Sarelius IH, Sinclair JD. Effects of small changes of blood volume on oxygen delivery and tissue oxygenation

| American Journal of Physiology-Heart and Circulatory Physiology. J Physiol-Heart Circ Physiol. 1981;

223. Fournier RL. Basic Transport Phenomena in Biomedical Engineering, Fourth Edition. CRC Press; 2017. 557

p.

224. Balogh P, Bagchi P. A computational approach to modeling cellular-scale blood flow in complex geometry. J

Comput Phys. 2017 Apr 1;334:280–307.

225. Balogh P, Bagchi P. Direct Numerical Simulation of Cellular-Scale Blood Flow in 3D Microvascular

Networks. Biophys J. 2017 Dec 19;113(12):2815–26.

226. Balogh P, Bagchi P. Analysis of red blood cell partitioning at bifurcations in simulated microvascular

networks. Phys Fluids. 2018 May 1;30(5):051902.

227. Klitzman B, Duling B. Microvascular hematocrit and red cell in resting and contracting striated muscle. Vol.

237. 1979. H481 p.

228. Tang Z, Lee JH. Effects of Different Hematocrit Levels on Glucose Measurements With Handheld Meters for

Point-of-Care Testing. Arch Pathol Lab Med. 2000;124:6.

229. Spiess A-N, Neumeyer N. An evaluation of R 2 as an inadequate measure for nonlinear models in

pharmacological and biochemical research: a Monte Carlo approach. BMC Pharmacol. 2010;10(1):6.

230. Desai B, Hobbs J, Hartung G, Xu G, Gokaslan ZL, Linninger A, et al. Image-guidance technology and the

surgical resection of spinal column tumors. J Neurooncol. 2017 Feb 1;131(3):425–35.

231. Hsu C-Y, Ghaffari M, Alaraj A, Flannery M, Zhou XJ, Linninger A. Gap-free segmentation of vascular

networks with automatic image processing pipeline. Comput Biol Med. 2017 Mar 1;82:29–39.

232. Ghaffari M, Hsu C-Y, Linninger AA. Automatic Reconstruction and Generation of Structured Hexahedral

Mesh for Non-planar Bifurcations in Vascular Networks. In: Gernaey KV, Huusom JK, Gani R, editors.

Computer Aided Chemical Engineering. Elsevier; 2015. p. 635–40.

233. Linninger AA, Tangen K, Hsu C-Y, Frim D. Cerebrospinal Fluid Mechanics and Its Coupling to

Cerebrovascular Dynamics. Annu Rev Fluid Mech. 2016;48(1):219–57.

234. Hartung G, Vesel C, Morley R, Alaraj A, Sled J, Kleinfeld D, et al. Simulations of blood as a suspension

predicts a depth dependent hematocrit in the circulation throughout the cerebral cortex. PLOS Comput Biol.

(In Print).

850

235. Thrane AS, Thrane VR, Zeppenfeld D, Lou N, Xu Q, Nagelhus EA, et al. General anesthesia selectively

disrupts astrocyte calcium signaling in the awake mouse cortex. Proc Natl Acad Sci. 2012;109(46):18974–

18979.

236. Drew PJ, Shih AY, Kleinfeld D. Fluctuating and sensory-induced vasodynamics in rodent cortex extend

arteriole capacity. Proc Natl Acad Sci. 2011 May 17;108(20):8473–8.

237. Holtmaat A, Bonhoeffer T, Chow DK, Chuckowree J, De Paola V, Hofer SB, et al. Long-term, high-resolution

imaging in the mouse neocortex through a chronic cranial window. Nat Protoc. 2009;4(8):1128.

238. Mattson DL. Comparison of arterial blood pressure in different strains of mice. Am J Hypertens. 2001 May

1;14(5):405–8.

239. Zhao M, Charbel FT, Alperin N, Loth F, Clark M. Improved phase-contrast flow quantification by three-

dimensional vessel localization. Magn Reson Imaging. 2000;18(6):697–706.

240. Quateroni A, Sacco R, Saleri F. Numerical Mathematics. Secaucus, NJ, USA: Springer-Verlag New York,

Inc; 2006.

241. Wright GB, Javed M, Montanelli H, Trefethen LN. Extension of Chebfun to Periodic Functions. SIAM J Sci

Comput. 2015 Jan;37(5):C554–73.

242. Hsu C-Y, Ghaffari M, Hartung G, Park C-S, Rashidisabet H, Linninger A. Fourier series: mathematical

concepts and applications. UIC LPPD; 2018.

243. Quateroni A, Sacco R, Saleri F. Numerical Mathematics. Secaucus, NJ, USA: Springer-Verlag New York,

Inc; 2006.

244. Wright GB, Javed M, Montanelli H, Trefethen LN. Extension of Chebfun to Periodic Functions. SIAM J Sci

Comput. 2015 Jan;37(5):C554–73.

245. T. A. Driscoll, N. Hale, and L. N. Trefethen, editors, Chebfun Guide, Pafnuty Publications, Oxford, 2014.

246. Quarteroni A, Sacco R, Saleri F. Numerical Mathematics [Internet]. 2nd ed. Berlin Heidelberg: Springer-

Verlag; 2007. (Texts in Applied Mathematics).

247. Balay S, Gropp WD, McInnes LC, Smith BF. Efficient Management of Parallelism in Object Oriented

Numerical Software Libraries. In: Arge E, Bruaset AM, Langtangen HP, editors. Modern Software Tools in

Scientific Computing. Birkhäuser Press; 1997. p. 163–202.

248. Saad Y. Iterative methods for sparse linear systems. Vol. 82. siam; 2003.

249. Anzt H, Dongarra J, Flegar G, Higham NJ, Quintana-Ortí ES. Adaptive precision in block-Jacobi

preconditioning for iterative sparse linear system solvers. Concurr Comput Pract Exp. 2019;31(6):e4460.

250. Axelsson O, Polman B. On approximate factorization methods for block matrices suitable for vector and

parallel processors. Linear Algebra Its Appl. 1986;77:3–26.

251. Starling EH. On the absorption of fluids from the connective tissue spaces. J Physiol. 1896;19(4):312–326.

252. Levick JR, Michel CC. Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res. 2010

Jul 15;87(2):198–210.

851

253. Linninger AA, Xu C, Tangen K, Hartung G. Starling forces drive intracranial water exchange during normal

and pathological states. Croat Med J. 2017 Dec;58(6):384–94.

254. Patankar S. Numerical heat transfer and fluid flow. CRC press; 2018.

255. Zhang L, Moon J, Park CS, Linninger A. Newton, steepest descent and trust region methods. Chicago, USA:

UIC; 2005.

256. Biegler LT. Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes. SIAM;

2010. 411 p.

257. Horbinski C. What do we know about IDH1/2 mutations so far, and how do we use it? Acta Neuropathol

(Berl). 2013 May 1;125(5):621–36.

258. Hartung G, Alaraj A, Linninger A. Chapter 21 - Walk-In Brain: Virtual Reality Environment for Immersive

Exploration and Simulation of Brain Metabolism and Function. In: Martín M, Eden MR,

Chemmangattuvalappil NG, editors. Computer Aided Chemical Engineering. Elsevier; 2016. p. 649–58.

(Tools For Chemical Product Design; vol. 39).

259. Golub AS, Barker MC, Pittman RN. Microvascular oxygen tension in the rat mesentery. Am J Physiol-Heart

Circ Physiol. 2008 Jan;294(1):H21–8.

260. Lancaster JR. A Tutorial on the Diffusibility and Reactivity of Free Nitric Oxide. Nitric Oxide. 1997 Feb

1;1(1):18–30.

261. Mintun MA, Lundstrom BN, Snyder AZ, Vlassenko AG, Shulman GL, Raichle ME. Blood flow and oxygen

delivery to human brain during functional activity: theoretical modeling and experimental data. PNAS.

2001;98(12):6859–64.

262. Wood J, Garthwaite J. Models of the diffusional spread of nitric oxide: Implications for neural nitric oxide

signalling and its pharmacological properties. Neuropharmacology. 1994 Nov 1;33(11):1235–44.

263. Truskey G, Yuan F, Katz D. Transport Phenomena in Biological Systems. Pearson Prentice Hall;

264. Fang Q, Sakadžić S, Ruvinskaya L, Devor A, Dale AM, Boas DA. Oxygen Advection and Diffusion in a Three

Dimensional Vascular Anatomical Network. Opt Express. 2008 Oct 27;16(22):17530–41.

265. Shen Q, Ren H, Duong TQ. BCF, BOLD, CBV, and CMRO2 fMRI Signal Temporal Dynamics at 500-ms

Resolution. J Magn Imaging. 2008;27:599–606.

266. Popel S, Pittman N, Ellsworth L. Rate of oxygen loss from arterioles is an order of magnitude higher than

expected. :4.

267. Boas DA, Jones SR, Devor A, Huppert TJ, Dale AM. A vascular anatomical network model of the spatio-

temporal response to brain activation. NeuroImage. 2008 Apr 15;40(3):1116–29.

268. Zhang R, Kadar T, Sirimanne E, MacGibbon A, Guan J. Age-related memory decline is associated with

vascular and microglial degeneration in aged rats. Behav Brain Res. 2012 Dec 1;235(2):210–7.

269. Brown WR, Thore CR. Review: Cerebral microvascular pathology in ageing and neurodegeneration.

Neuropathol Appl Neurobiol. 2011 Feb 1;37(1):56–74.

852

270. Buxhoeveden DP, Casanova MF. The minicolumn hypothesis in neuroscience. Brain. 2002 May

1;125(5):935–51.

271. Cai C, Fordsmann JC, Jensen SH, Gesslein B, Lønstrup M, Hald BO, et al. Stimulation-induced increases in

cerebral blood flow and local capillary vasoconstriction depend on conducted vascular responses. Proc Natl

Acad Sci. 2018 Jun 19;115(25):E5796–804.

272. Christodoulou NS. An algorithm using Runge-Kutta methods of orders 4 and 5 for systems of ODEs. Int J

Numer Methods Appl. 2009;2(1):47–57.

273. Hill AV. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves.

J Physiol. 1910;40:4–7.

274. Ress D, Thompson JK, Rokers B, Khan R, Huk AC. A model for transient oxygen delivery in cerebral cortex.

Front Neuroenergetics. 2009;1:3.

275. Kim JH, Ress D. Arterial impulse model for the BOLD response to brief neural activation. NeuroImage. 2016

Jan 1;124:394–408.

276. Kim JH, Khan R, Thompson JK, Ress D. Model of the transient neurovascular response based on prompt

arterial dilation. J Cereb Blood Flow Metab. 2013;33(9):1429–1439.

277. Huppert TJ, Allen MS, Benav H, Jones PB, Boas DA. A multicompartment vascular model for inferring

baseline and functional changes in cerebral oxygen metabolism and arterial dilation. J Cereb Blood Flow

Metab. 2007;27(6):1262–1279.

278. Buxton RB, Uludağ K, Dubowitz DJ, Liu TT. Modeling the hemodynamic response to brain activation.

NeuroImage. 2004 Jan 1;23:S220–33.

279. Griffeth VEM, Buxton RB. A theoretical framework for estimating cerebral oxygen metabolism changes using

the calibrated-BOLD method: Modeling the effects of blood volume distribution, hematocrit, oxygen

extraction fraction, and tissue signal properties on the BOLD signal. NeuroImage. 2011 Sep 1;58(1):198–212.

280. Jespersen SN, Østergaard L. The Roles of Cerebral Blood Flow, Capillary Transit Time Heterogeneity, and

Oxygen Tension in Brain Oxygenation and Metabolism. J Cereb Blood Flow Metab. 2012 Feb 1;32(2):264–

77.

281. Secomb T, Hsu R. Analysis of oxygen delivery to tissue by microvascular networks. Oxyg Transp Tissue X.

1988;95–103.

282. Park CS, Payne SJ, others. A model of oxygen dynamics in the cerebral microvasculature and the effects of

morphology on flow and metabolism. 2014;

283. Park Chang Sub, Payne Stephen J. A generalized mathematical framework for estimating the residue function

for arbitrary vascular networks. Interface Focus. 2013 Apr 6;3(2):20120078.

284. Lipowsky HH. Microvascular rheology and hemodynamics. Microcirculation. 2005;12(1):5–15.

285. Lobdell DD. An invertible simple equation for computation of blood O2 dissociation relations. J Appl Physiol.

1981;50(5):971–973.

286. Payne SJ, El-Bouri WK. Modelling dynamic changes in blood flow and volume in the cerebral vasculature.

NeuroImage. 2018 Aug 1;176:124–37.

853

 Vita

Education

University of Illinois at Chicago (UIC) completed 11/2019

Doctor of philosophy in Bioengineering walking 5/2020

GPA: 3.83/4.0

University of Illinois at Chicago (UIC) May 2015

Master of Science in Neural Bioengineering

GPA: 4.0/4.0

University of Illinois at Chicago (UIC) August 2012

Bachelor of Science in Bioengineering with a Neural Engineering concentration

Minor: Mechanical Engineering

Research Interest

 I am deeply interested in computational research including simulations, big data analysis and

unique data visualizations. Specifically, deriving/implementing new simulation approaches that

investigate mechanistic trends and causation for mechanisms of the aging brain. I am also familiar

with biofiltration of nanoparticles and immune system reactions to invasive bodies.

Research Experience

Current Projects:

6/17 – 12/19 Deterministic simulation of oxygen in aging brain - Dr. Andreas Linninger

The aging brain is known to exhibit different mechanisms of vascular degradation which can

be implemented using our vascular growth algorithm. Recent measurements of changes in

brain tissue oxygen tension allow the numerical comparison of changes in vasculature with

tissue hypoxic micro-pocket formation. The contribution of individual age-related vascular

dysfunction can then be investigated.

 Generated a novel simulation platform based on a cartesian mesh masking technique that

surpassed the previous supercomputer record for largest extravascular simulation of brain

tissue using only a personal computer

 The new paradigm allowed stable integration of 1D-3D coupling capable of investigating

oxygen transport across the blood brain barrier at the scale of the whole-brain (~100x larger

than previously possible)

 Larger simulation domain enabled simulation of age-related vascular changes without

significant impact from boundary conditions at domain edges

Past Projects:

6/17 – 5/19 Simulation of neurovascular dynamics of oxygen transport and vasomotion

in functional hyperemia - Dr. Andreas Linninger

Investigation of mechanistic interactions between the extravascular neuronal environment

during repeated activation gives unprecedented investigation of differing mechanisms of

delivery. Classic theories of passive blood flow response and cellular theories of active

dissociation in the presence of elevated pH render differing extravascular oxygen profiles.

854

Simulations of large volumes of tissue (>1 mm3) of the complete neurovascular unit are the

largest of their kind and allow unique perspective of mechanistic interactions between parts.

 Object oriented program design in Pascal, Matlab, and C++ for model generation, multilingual

data analysis, and visualization

 Derived, implemented and compared numerous time integrators for comparison

1/17 – 4/17 Optimization for deriving cerebrovascular simulation results directly from blood

flow measurements - Dr. Andreas Linninger

Formulated and implemented a method that deterministically minimizes the difference

between simulation results and empirical measurements. This included the nominal (steady-

state) condition as well as transient results derived in the time domain and in the Fourier

domain.

 Formulated optimization problem minimizing error between experiments and simulations that

used an entire simulation as constraints and was able to be simplified to a single linear

algebraic set of equations

 Implemented in both object Matlab and Object Pascal for comparison

 Formulated in Fourier domain for advanced filtering

4/15 – 8/17 Biphasic blood flow simulations - Dr. Andreas Linninger

Investigating the effects of nonlinear red blood cell skimming in the cerebral microcirculation

at the scale of the whole brain. A vascular synthesis algorithm was adapted and expanded to

grow and validate synthetic microcirculatory networks up to 1/5 of the mouse brain. This

investigation discovered a correlation between cortical depth and red blood cell

concentration in the vasculature.

 Implemented fixed-point iterative and successive overrelaxation procedures for solving very

large (>1 million) systems of highly nonlinear equations in less than 1 hour on standard

desktop computer

 Debugged and optimized growth algorithm to drastically reduce computational time and allow

algorithm to expand beyond 10% density limit

9/14 – 1/17 Big data visualization - Dr. Andreas Linninger

 Expanded a preliminary application of visualization toolkit (VTK), an open-source C++ library

for enhanced graphics visualizations, to include 3D medical image rendering and 3D

reconstruction and simulation visualization.

 Object oriented programming in C++ utilizing VTK for 3D immersive data visualization

8/11 – 5/15 Molecular pharmacodynamic model development of cellular reactions to carbon

nanotubes in-vivo - Dr. G. Ali Mansoori

11/12-5/15 Challenged the accepted theory of in-vivo carbon nanotube toxicity. Compiled a

decision tree to determine the toxicity of any characterized nanoparticle influenced by the

newly developed nanotube toxicity model.

8/11-11/12 Reviewed the last 40 years of nanoparticle research in vivo to discern governing

factors of toxicity and filtration of nanoparticles out of the body.

9/13 – 9/14 Fast axonal transport simulation - Dr. Gerardo Morfini

 Created a full-scale stochastic simulation of the subcellular axonal transport mechanisms. visual

simulation of axonal transport with which we can test different theories of mechanisms behind

855

fast axonal transport. Programming in Matlab utilizing GUIs, active drawing plots, and

optimized matrix computations allows parametric studies of changes in axonal transport

mechanisms and quantitatively compare with empirical results.

 Developed and optimized matrix computations in Matlab to investigate transient vesicular

transport stochastically

 9/11 Neural Engineering Lab (September 2011) - Dr. John Hetling PhD

 Created a device to control a computer cursor via arm movement sensors. First student team to

ever accomplish this task. Project was heavily reliant on data collection and analysis.

 Used continuous neural recordings, filtered and amplified through analog circuitry and

digitized using an Arduino

 Utilized preexisting mouse motherboard to convert digital Arduino signal into windows-ready

mouse movements

9/10 – 4/11 Senior Design "An Acoustic Signal Acquisition System for a Fetal Heart Rate

Monitoring Device" (April 26, 2011) - Heartsounds Inc.

 Created an apparatus to acquire and filter in real time up to 3 separate fetal heart rate signals

during pregnancy and delivery. Digitized filtered analog signal was processed through a

blind-source separation algorithm to differentiate multiple individual fetal heartbeats.

Adapted new scientific practice (silicon-infused piezoelectric microphones) to acquire such a

signal efficiently (SNR of at least 10 dB) with extreme cost-efficiency. Project was heavily

reliant on data collection. A prototype was fabricated and performed exceeding expectations.

 Created custom gel-infused piezoelectric microphones and artificial heartbeat signal in

phantom model

1/10-8/10 University of Chicago Human Neuroscience Department - Dr. Ana Solodkin

PhD Bioengineer and Information Technologist/Programmer – HIPPA

Certified
 Utilized magnetic fields to induce brain-derived neural stimulation which elicited hand and foot motion.

Upon the elicitation of motion, the lower leg and forearm neural potentials were measured in both

control subjects and subjects suffering from degenerative nerve disorders. The results created a system

to quantitatively determine patient nerve degeneration.

 Compiled and debugged code executed on open science grid computers using unix command

line (RHE Linux)

 Responsible for lab-wide bioengineering-related troubleshooting

7/09-9/09 UIC Pathology Department Medical Branch - Dr. Virgilia Macias PhD

 Research Project Patient Admission Clerk – HIPPA Certified

 Recruited patients into Pathology Department research programs

4/09-9/09 UIC Pathology Department (West Campus) - Dr. Andre Balla PhD

 Research Assistant
This study was designed to examine the effects of flak seed oil on ovarian cancer from chicken subjects.

 Created ovarian tissue microarrays

 Increased productivity 800% with notably higher consistency than previous assistants

improving project results for medical research team

9/08-9/09 UIC Pathology Department (West Campus) - Dr. Virgilia Macias PhD

856

 Research Assistant
Evaluated transferrin receptor expression in relation to prostate cancer.

 Identified and marked on digital microarrys cellular level cancerous prostate tissue requiring

attention to detail

Publications

In preparation

G Hartung, S Badr, M Moeini, F Lesage, and A Linninger. “Multi-scale simulation of cerebral

blood flow and oxygen exchange for the mouse cortex.”

G Hartung, S Badr, and A Linninger. “Mathematical synthesis of the cortical circulation for the

whole mouse brain-part II. microvascular closure and topological matching.”

A Linninger, G Hartung, J Marek, M Hoeller, A Alaraj. “Global blood flow patterns and trends

in the entire mouse hemisphere.”

Published

2019 Park, CS, G Hartung, A Alaraj, X Du, FT Charbel, and AA Linninger. "Quantification

of blood flow patterns in the cerebral arterial circulation of individual (human)

subjects." International journal for numerical methods in biomedical engineering. 2019.

2019 A Linninger, G Hartung, S Badr, and R Morley. "Mathematical synthesis of the cortical

circulation for the whole mouse brain-part I. theory and image integration." Computers in

Biology and Medicine. 2019.

2018 G Hartung, C Vesel, R Morley, A Alaraj, J Sled, D Kleinfeld, A Linninger.

”Simulations of blood as a suspension predicts a depth dependent hematocrit in the

circulation throughout the cerebral cortex.” PLoS Computational Biology, 14(11),

e1006549, 2018.

2018 A Linninger, G Hartung, BP Liu, S Mirkov, K Tangen, RV Lukas, D Unruh, CD James,

JN Sarkaria, C Horbinski. "Modeling the diffusion of D-2hydroxyglutarate from IDH1 mutant

gliomas in the central nervous system." Journal of Neuro-Oncology, 20(9) 1197-1206, 2018.

2017 A Linninger, C Xu, K Tangen, G Hartung. "Starling forces drive intracranial water

exchange during normal and pathological states." Croatian Medical Journal, 58, 384-394,

2017

2017 B Desai, J Hobbs, G Hartung, G Xu, ZL Gokaslan, A Linninger, A Mehta. "Image-

guidance technology and the surgical resection of spinal column tumors." Journal of Neuro-

Oncology, 131(3), 425-436, 2017.

2016 G Hartung, A Alaraj, A Linninger. "Walk-In Brain: virtual reality environment for

immersive exploration and simulation of brain metabolism and function." Tools for Chemical

Product Design, 649-658, 2016.

2013 G Hartung, G. Ali Mansoori, "In Vivo General Trends, Filtration and Toxicity of

Nanoparticles." J Nanomaterials & Molecular Nanotechnology, 2(3) 1-21, 2013 (Invited

Paper)

4/13 G Hartung, "Fullerenes; Possible to Evacuate Post-Administration or Are They Just

Toxic?" Undergraduate Bioengineering Student Journal of the University of Illinois at

Chicago, 4(1):9-14, 2013. (Invited Paper)

857

Posters and Presentations

7/18 Grant Hartung, R Morley, A Linninger. Whole brain simulation to elucidate

mechanisms of functional hyperemia. Poster presented at 8th World Congress of

Biomechanics, Dublin, Ireland.

6/18 A Linninger, Grant Hartung, R Morley. In silico mouse brian synthesis, blood

brain barrier, water transport and homeostasis. Poster presented at 8th World

Congress of Biomechanics, New London, New Hampshire.

4/17 Grant Hartung, G Xu, A Linninger. Immersive medical media – a platform

for dynamic exploration for automatic, subject-specific atlases from standard

medical images. Poster presented at Brain 2017, Berlin, Germany.

5/15 Grant Hartung, S Alford, A Linninger. Quantification of charge dependence

on transport through ion channels. Poster presented at UIC Research Forum 2015,

Chicago, Illinois.

4/13 Grant Hartung, G. Ali Mansoori, In vivo biofiltration: emerging trends of

nanoparticles". Poster presented at Midwest Biomedical Engineering Career

Conference 2013, Chicago, Illinois.

6/13 Grant Hartung, G. Ali Mansoori, In vivo biofiltration: emerging trends of

nanoparticles". Poster presented at Biosensors & Bioelectronics - 2013,

Northbrook, Illinois

Teaching Experiences

07/11 - 08/12 Teaching Assistant and Bioengineering Coordinator for Introduction to

Engineering course at UIC

 General bioengineering liason for incoming freshman and transfer students

 Created and Implemented bioengineering specific curriculum

 Taught detailed guidance and comprehensive assessments of bioengineering field

Professional Affiliations

 BioMedical Engineering Society Student Member (10/08 – 9/10)

 Society of Automotive Engineers Student Member (5/10-present)

 Journal of Neural Engineering (Registered 2/12)

 Bioengineering Organizational Alliance (08/11-5-12)

 UIC Alumni Association - (May 2013-Present)

Skills

Computer: Designing and assembling custom computers, network assembly, and maintenance,

general IT

Proficient in: Object Pascal (Delphi), Matlab, C++, Acrobat, FileZilla FTP, Powerpoint,

Excel, Word, ITK-Snap, dll creation and linking, VTK

Intermediate knowledge in: C#, HTML, Autodesk 3D Studios Max, linux (RHEL and

Ubuntu), LabView, Adobe Dreamweaver, Freesurfer, autocad, solidworks

Wood: lathing, carpentry (both design and fabrication), routing

Plumbing: design and fabrication of intricate in home and irrigation systems of both PVC and

copper

858

Electrical: 12V DC, 120V AC, 240V AC and 3-phase AC design and fabrication of entire rooms

and systems, knowledge with Remote-Control systems for both design and fabrication,

soldering, prototype circuit board design and installation experience

Machinist: Lathing, Milling, Welding (Arc, Mig, Tig, and Oxy-Acetylene for steel and Mig, Arc,

and Oxy-Acetylene for aluminum), precision drilling (drill press, lathe or mill), notching

 Auto mechanic, landscaper, repairman, carpenter, woodworker, and mason

Awards

June 18, 2013 Best Poster Award - OMICS Group 2013 Biosensors & Bioelectronics

Conference

April 13, 2012 Chancellor's Student Service Award

April 18, 2008 Best New Society (BMES)

Non-Relevant Work Experience

8/12-8/13 Franck's Construction

 Intensive handyman work focusing on carpentry. Main focus of work was rehabilitating houses

and rebuilding houses. The work included the use of intricate masonry, carpentry, roofing,

painting, plumbing, electrical and interior design work. The work at times extended to

gardening, landscaping, machining, and even automotive repair work.

SAE Mini Baja Team Chief fabricator and machinist (07/09-06/11)

 Co-captain (06/11– 8/12)

 Led and was head of recruitment for an undergraduate engineering design and build team which

annually created a fully operational, full size, manned off-road vehicle. Competed in multiple

SAE sponsored week long international competitions against over 100 different universities

in design and operation events. The custom prototypes required multiple custom metal frame,

steering, and drivetrain parts for which I was the machinist, fabricator and welder for the

team.

