
Convex Latent Representation Learning with Generalized Invariance

by

Vignesh Ganapathiraman
B.E., Anna University, India, 2007

M.Sc.,Chennai Mathematical Institute, India, 2012

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2020

Chicago, Illinois

Defense Committee:
Prof. Xinhua Zhang, Chair and Advisor
Prof. Brian Ziebart
Prof. Bing Liu
Prof. Lev Reyzin, Mathematics and Computer Science, UIC
Prof. Dale Schuurmans (University of Alberta)

Copyright by

Vignesh Ganapathiraman

2020

To Varshu and Adhwaith.

iii

ACKNOWLEDGMENT

I have been very fortunate to have Prof. Xinhua Zhang as my mentor and advisor. It has

been a privilege to witness and learn from his commitment to research at the highest standard

and excellent work ethic. Prof. Zhang gave me just the right platform for exploring the world

of optimization and machine learning. I’m grateful for his constant support and guidance,

especially during trying times, throughout my Ph.D. study.

I thank my thesis committee members, Prof. Bing Liu, Prof. Brian Ziebart, Prof. Lev

Reyzin and Prof. Dale Schuurmans for their valuable feedback and insights on my work. I

would like to thank Prof. Elena Zheleva for her support and guidance. I thank my lab mates

and all my friends for their collaborations and illuminating discussions.

I would like to thank my mother and sister for their love and encouragement. Finally, I

would like to thank my wife Amrutha for believing in me and providing her unconditional

support in all my career pursuits.

VG

iv

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Organization of this thesis . 4

2 INDUCTIVE TWO-LAYER MODELING WITH PARAMET-
RIC BREGMAN TRANSFER . 7
2.1 Introduction . 7
2.1.1 Problem setting. 8
2.1.2 Matching Loss for Transfer Functions 9
2.1.3 Convex Two-layer Modeling . 11
2.2 Convex relaxation . 13
2.2.1 Generality of the convexification scheme. 15
2.3 Optimization . 15
2.4 Polar operator and constant multiplicative approximation guar-

antee . 18
2.4.1 Optimality of GCG and overall efficiency 21
2.5 Accelerating local optimization by converting min-max into

min-min . 22
2.6 Experiment . 25
2.6.1 Inductive learning. 25
2.6.2 Transductive learning. 25
2.6.3 Comparison on smaller datasets. 26
2.6.4 Comparison on larger datasets. 27
2.6.5 Intermediate representation. 27
2.7 Discussion and Conclusion . 28

3 INCORPORATING LATENT STRUCTURE INFORMATION 31
3.1 Introduction . 31
3.2 Transliteration via graph matching 31
3.3 Problem setup and related works 32
3.3.1 Challenges in inference. 33
3.3.2 Preliminaries . 34
3.3.2.1 Graph matching. 35
3.3.2.2 Graphical models. 35
3.3.2.3 Output layer . 36
3.4 Training principles . 37
3.5 A General Framework of Convexification 39
3.5.1 Inducing low rank solutions . 43

v

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

3.6 Application in Machine Learning Problems 45
3.6.1 Graph matching . 45
3.6.2 Homogeneous temporal models 47
3.7 Experiments . 49
3.7.1 Transliteration . 49
3.7.2 Inpainting for occluded image 51
3.8 Conclusion and discussion . 52

4 CONVEX REPRESENTATION LEARNING FOR GENERAL-
IZED INVARIANCE IN SEMI-INNER-PRODUCT SPACES . . 55
4.1 Introduction . 55
4.2 Preliminaries . 58
4.2.1 Existing works on invariance modeling by RKHS 59
4.2.2 Semi-inner-product spaces . 59
4.3 Regularized Risk Minimization 65
4.4 Convex Representation Learning by Euclidean Embedding . . 68
4.4.1 Analysis of Euclidean Embeddings 72
4.4.2 Analysis under Inexact Euclidean Embedding 74
4.5 Application 1: Mixup . 75
4.6 Application 2: Embedding Inference for Structured Multilabel

Prediction . 77
4.7 Experiments . 79
4.7.1 Sanity check for s.i.p. based methods 79
4.7.2 Mixup . 80
4.7.2.0.1 Datasets. 80
4.7.3 Structured multilabel prediction 81
4.8 Conclusions and Future Work 82

5 REPRESENTATION LEARNING FOR MINIMIZING CATAS-
TROPHIC FORGETTING IN DEEP NEURAL NETWORKS . 85
5.1 Introduction . 85
5.2 Preliminaries . 88
5.2.1 Short introduction to the existing solution 88
5.2.2 Unsupervised Domain Adaptation 90
5.3 Kernel warping for unsupervised domain adaptation 92
5.3.1 Alignment . 95
5.4 Preventing catastrophic interference via kernel warping 97
5.4.1 Training details . 97
5.5 Experiments . 98
5.5.1 Experiment setup . 99
5.5.2 Baselines . 101
5.5.3 Results and Discussion . 101

vi

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

5.6 Conclusion . 102

6 CONCLUSION AND FUTURE WORKS 106
6.1 Conclusion . 106
6.2 Future works . 106

CITED LITERATURE . 109

VITA . 120

APPENDIX . 122

APPENDIX . 140

APPENDIX . 151

vii

LIST OF TABLES

TABLE PAGE
I Mean test error for 100 training and 100 test examples 28
II Mean test error for 200 training and 200 test examples 28
III Mean test error for 1000 training and 1000 test examples 29
IV Mean test error for 2000 training and 2000 test examples 29
V Training times (in minutes) for CVX-IN on 100, 200, 1000, and

2000 training examples . 29
VI Total inpainting error as a function of the size of occluded patch

(p = 8). 53
VII Total inpainting error as a function of the length of sequences (k = 4). 53
VIII Test accuracy of minimizing empirical risk on binary classification

tasks. 80
IX Test accuracy on mixup classification task based on 10 random runs. 83
X Test accuracy on multilabel prediction with logic relationship . . . 83
XI Performance of WARP against baselines on shuffle and disjoint con-

tinual learning tasks. The baseline numbers were taken from the
results reported in [1]. Some results were not reported for NO-CL and
EWC and they are marked with a ’-’. 104

XII Results on the MARGDIFF task. Here, our kernel warping based
solution WARP significantly outperforms the baselines. 105

viii

LIST OF FIGURES

FIGURE PAGE
1 Four examples of transfer function f and the corresponding potential

function F . 10
2 BOX and XOR datasets (subplots a and b) and their intermediate

representations (hdataset in subplots c and d). The representations were
reduced to 2-D by using the standard PCA. 30

3 MRR of Local versus CVX over 50, 75, and 100 negative examples. 53
4 The commutative diagram for our embeddings. 70
5 Training pipeline of [1]. (Image credit Hu et al. [1]). 89
6 Training pipeline with kernel warping to minimize catastrophic for-

getting. Here x̂i represents the warped embeddings. 99
7 Test accuracies of Task 0 and Task 1 after training every 100 batches

on the MARGDIFF task. 103
8 Left. A convex function. Right. A non-convex function with a

region of local strong convexity (region shaded with stripes, best viewed
in color) . 107

9 An illustration of Frank-Wolfe. 139
10 Scatter plot of test accuracy for mixup: n = 1000, p = 4n 178
11 Plots of three different pairs of test examples, showing how loss values

change as a function of λ . 178
12 Test accuracy of ML-SVM vs Embed (top row) and HR-SVM vs Embed

(bottom row) 10 runs on the Reuters dataset 179
13 Test accuracy of ML-SVM vs Embed (top row) and HR-SVM vs Embed

(bottom row) 10 runs on the WIPO dataset 180
14 Test accuracy of ML-SVM vs Embed (top row) and HR-SVM vs Embed

(bottom row) 10 runs on the ENRON dataset 181
15 The number of violations for each exclusion constraint on the test

set by (from top) ML-SVM, HR-SVM, and Embed on the Enron dataset
with 200/200 train/test examples. 182

ix

SUMMARY

Finding representations of data that are useful for the underlying prediction task has been an

important and active pursuit in machine learning. Modern-day deep learning algorithms have

been hugely successful in making accurate data-driven predictions by automatically learning

highly discriminative representations of data via multiple nonlinear transformations. In addition

to learning discriminative representations, it is also useful to encode problem / task specific

information (priors) directly in the representations. For instance, in image classification, it is

useful to enforce the constraint that a machine learning model’s prediction should not change

when the image is perturbed spatially a.k.a translation invariance. It is well known in the

computer vision community that convolutional neural networks implicitly enforce translational

invariance via its parametric pooling layers. Likewise there are priors, such as group priors,

that are commonly employed in vision and and successfully incorporated via parametric machine

learning models.

However there are a variety of data / problem structures that do not admit a natural pa-

rameterization. Fortunately, besides parametric approaches another way to realize non-trivial

structured priors in a model is via carefully designed losses and regularizers. However regular-

ization approaches result in a hard non-convex optimization problem. Non-convex optimization

problems often pose serious challenges in training and seldom results in guaranteed optimal so-

lutions (global optima). This further creates a theoretical gap in understanding when these

models are guaranteed to work. In stark contrast, convex optimization problems are globally

x

SUMMARY (Continued)

optimal by definition. Approximations to computationally hard convex problems are also well

studied and are often endowed with convergence and approximation guarantees.

In this thesis, we address the above challenges in representation learning by: (1) exploring

priors that encode non-trivial problem / data specific structures (2) designing efficient convex

models and training algorithms to automatically learn these structures in a data-dependent

fashion (3) providing learning and approximation guarantees wherever possible. Our first ap-

proach towards convex representation learning is to explicitly model structured priors in the

latent layer of a two-layer neural network. The resulting non-convex optimization problem is

then relaxed to obtain a convex model that is able to obtain all the structural regularities of

the original non-convex problem. Second, we develop a new convex representation learning

framework, based on semi-inner-product spaces, to model the so-called generalized invariances

in an efficient and scalable manner.

xi

CHAPTER 1

INTRODUCTION

Artificial intelligence (AI) and machine learning (ML) are in the forefront of many techno-

logical advancements in the recent years. Recently Deep Learning (DL) systems have reached

superior performance in many data-driven learning tasks such as object detection [2], natural

language processing [3], speech recognition [4]. Much of the success of recent ML algorithms can

be attributed to the availability of large volumes of labeled training data, sophisticated comput-

ing systems such as Graphics Processing Units (GPU) and Tensor Processing Units (TPU) and

other advanced data processing software systems. Modern-day machine learning algorithms

such as deep nets are designed to automatically learn patterns in the input, by learning repre-

sentations of data that are “predictive” for the given task - giving them the ability to accurately

predict outcomes from previously “unseen” data.

In addition to capturing discriminative representations, it is now well known that machine

learning problems naturally exhibit additional structures that can be effectively leveraged as

information priors. For instance, spam filters are supposed to be stable under feature dele-

tions, additions, and replacements, while detectors in image processing and computer vision

are expected to deliver invariant response under transformations such as translation, rotation,

scaling, etc. Manifold priors assume flat curvature or gradient of discriminant function in the

vicinity of data samples, or in the direction of nearest-neighbor instances on a graph [5].

1

2

Incorporating problem-specific information in modeling has numerous benefits. A machine

learning model that is endowed with accurate specifications of these structures sometimes enjoy

improved predictive performance, better resilience to noises in data and problem specifications.

How do we learn these structured priors?

Researchers in the machine learning community have studied a variety of methods for making

use of prior information. Carefully designed parametric functions have been used sometimes

to model priors such as invariance. For instance convolutional neural networks have pooling

layers that implicitly enforce translational invariance. But these approaches are restricted to

priors that can be expressed in a parametric and decomposable manner. A lot of useful priors

in machine learning don’t enjoy such properties. Alternatively, in order to model these priors,

a large body of existing methods first specify a given space of prediction functions and the

representation of data (e.g., through the selection of kernels), and then use the priors to bias

the search for the optimal predictor through loss functions and regularizers. These approaches

assume the existence of a representation of data. However, modern wisdom discovers that it is

effective to actually learn these representations from data (a technique employed by state-of-

the-art deep models). More often, structured priors are latent in the data and can be expressed

quite well using latent variable models. Latent variable models are quite flexible in practice

and can model a wide variety of priors. Unfortunately latent variable models are usually hard

to train as they mostly result in non-convex optimization problems.

3

Challenges in training deep latent variable models.

Despite their advantages in modeling and success in applications, latent models remain hard

to train. The key challenge originates from the coupling of model parameter learning and latent

variable inference, which in general leads to a non-convex optimization problem. Although

empirical performance has been the major focus of deep learning, recently substantial progress

has been made towards the analysis of global training and the structure of the optimization

problem. For example, [6] and [7] showed that the lowest critical values of the random loss

function are close to the global minimum, and [8] showed, under certain assumptions, that

every local minimum is a global minimum for an expected loss function of a deep nonlinear

neural network. Similar global trainability results have been derived for gradient descent on

two-node ReLU networks [9], quadratic activations [10], and one-hidden-layer non-overlapping

convolution nets [11]. The global minima in over-parameterized settings were characterized on

deep and wide nets and convolutional nets [12, 13]. However most analyses are still limited,

especially with assumptions on the model and data distribution that are hard to verify in

practice.

Similar global trainability results have been derived for gradient descent on two-node ReLU

networks [9], quadratic activations [10], and one-hidden-layer non-overlapping convolution nets

[11]. The global minima in over-parametrized settings were characterized on deep and wide

nets and convolutional nets [12, 13]. However most analyses are still limited, especially with

assumptions on the model and data distribution that are hard to verify in practice.

4

Along a different line of methodology, reformulations of latent models have been stud-

ied which admit tractable global solutions. Examples include boosting [14], spectral meth-

ods [15, 16], kernel methods [17, 18], polynomial networks and sum-product networks [19, 20],

and semidefinite relaxations [21]. Unfortunately, they either impose restrictions on the model

space (e.g. polynomial network, recursive inverse kernels), or require tractability of underlying

oracles, or rely on realizability assumptions. In a nutshell, global training of latent variable

models is a hard problem. Approximation solutions are still too restrictive and limit the appli-

cability of the model.

This thesis addresses these issues by proposing new models for learning representations

of data that encode the structured priors accurately and in a manner that is amenable for

optimization and training. In the first half of this thesis, we explore new latent variable models

for learning predictive structured priors and address the hardness in their training and inference

because of their non-convexity. In the remainder of the thesis, we present new representation

learning techniques for modeling generalized invariance priors.

1.1 Organization of this thesis

The main contributions of this thesis are divided into the following 4 chapters.

• Inductive two-layer modeling with parametric bregman Transfer

• Incorporating latent structure information

• Convex representation learning for generalized invariance in semi-inner-product spaces

• Representation learning for mitigating catastrophic forgetting in deep neural networks

5

Inductive two-layer modeling with parametric Bregman transfer

We first begin by addressing the global trainability issues of a general two-layer neural

network with a parametric activation function in its latent layer [22]. The objective function

of this simple neural network is non-convex. Convex relaxations of this setup has been studied

earlier via semi-definite relaxations. However, the resulting convex model is nonparametric and

results in a transductive learning setting making the inference inefficient. In this work, we

develop a novel convex model of the original non-convex objective without losing its inductive

benefits. Additionally, we also design an efficient optimization method to solve the relaxed

objective, with a constant approximation bound.

Incorporating latent structure information in two-layer neural networks

In this chapter we explore ways to incorporate structured priors in the latent layers of two-

layered neural network [23]. Prior works in this setting make use of a conditional random field

based auto-encoder that automatically infers latent structure information. However, besides

being non-convex, this method requires a demanding inference. In this work we first propose

a conditional model that captures the problem structure in its latent layers. We then develop

a convex relaxation of the proposed two-layer model. The relaxed model further admits a

much more efficient inference compared to earlier methods. The flexibility of the model is

demonstrated using experiments on transliteration and image inpainting tasks.

6

Convex representation learning for generalized invariance in semi-inner-product

spaces

We next focus on modeling more general representations that are useful for practical pre-

dictions [24]. Invariance (defined in a general sense) has been one of the most effective priors

for representation learning. Direct factorization of parametric models is feasible only for a

small range of invariances, while regularization approaches, despite improved generality, lead to

non-convex optimization. In this work, we develop a convex representation learning algorithm

for a variety of generalized invariances that can be modeled as semi-norms. Novel Euclidean

embeddings are introduced for kernel representers in a semi-inner-product space, and approx-

imation bounds are established. This allows invariant representations to be learned efficiently

and effectively as confirmed in our experiments, along with accurate predictions.

Representation learning for mitigating catastrophic forgetting in deep neural networks

Finally, we challenge our novel general representation learning framework developed in

Chapter 4 to learn in the continual learning framework. Specifically, we design new regu-

larizers in the semi-inner-produce space to overcome the so-called catastrophic forgetting for

neural networks. Experimental results confirm that the learned representations enable the

downstream classifier to overcome catastrophic forgetting when used in addition to existing

continual learning algorithms.

CHAPTER 2

INDUCTIVE TWO-LAYER MODELING WITH PARAMETRIC

BREGMAN TRANSFER

(Parts of this chapter were previously published as “Inductive two-layer modeling with

parametric bregman transfer” [22] at the International Conference on Machine Learning (ICML

2018))

2.1 Introduction

In the previous section, we discussed why globally trainable models are desirable for analysis

and why it is hard to obtain globally trainable non-convex models. We introduced deep non-

linear models, which are highly popular due to its large model capacity (informally, the ability

of the model to capture complex relationships in data) and incredible ability to generalize to

“unseen examples”. However these models are highly non-convex latent variable models, which

makes their analysis hard. We also briefly saw how convex models are globally trainable, by

definition, and are naturally capable of producing solutions that are easier to analyze in general.

Therefore, one natural way to address the issue of hardness in the analysis of non-convex latent

variable objectives (models) is to somehow convert them into convex models and analyze them

using tools from convex optimization. In this section, we show a method to develop a convex

latent variable model, which is a reformulation of a non-convex two-layer latent variable model

with a non-linear activation function. We also show an efficient optimization procedure to solve

7

8

the resulting convex objective, which comes with a constant approximation guarantee. This

work was published at the International Conference on Machine Learning (ICML 2018) [22].

2.1.1 Problem setting.

In this work, we consider two-layer neural networks of the form X → H → Y , where X is

the input layer, H is the hidden layer and Y is the output layer. Two-layer neural networks are

composed of two nonlinear conditional models. The latent layer is characterized by a nonlinear

transfer function f : Rh → Rh, which converts the linear transformation Wx into φ = f(Wx).

Here x ∈ Rn is the raw input feature, and W ∈ Rh×n is the hidden layer weights. The

resulting φ is further multiplied with the output layer weights U ∈ Rh×m, and the product is

measured against the given label y via a loss function `(U ′φ,y). Here U ′ is the transpose of

U . Typical losses include binary hinge loss `(z, y) = [1 − yz]+ with m = 1. Here y ∈ {−1, 1}

and [z]+ := max{0, z}. For multiclass problems with C classes, y encodes a class c with the

canonical vector ec. Then m = C and the hinge loss `(z,y) = max{1− y + z− (y′z)1}, where

1 is a vector of all one’s. The logistic loss is −z′y + log
∑

c exp(zc).

There are several popularly used transfer functions. The simplest options are elementwise,

i.e. f(z) = (f(z1), . . . , f(zh))′, where all zi are applied separately to the same function f :

R → R. The rectified linear function uses fr(z) = [z]+ (we use regular lowercase letters for

scalar, bold lowercase letters for vector, and capital letters for matrix). Variants include the

leaky rectifier which uses fl(z) = max{z, az} where a > 0 is a small positive number, and the

bounded hard tanh which uses fh(z) = max{−1,min{z, 1}}. Transfers that are not piecewise

9

linear are also available, e.g. the sigmoid fs(z) = (1 + e−z)−1. An illustration of these transfers

is shown in Figure 1.

2.1.2 Matching Loss for Transfer Functions

A major source of non-convexity in neural network is the nonlinear transfer function. Re-

laxations have been proposed that uses a loss function to indirectly induce the nonlinear rela-

tionship φ = f(z). Formally speaking, it constructs a loss L(φ, z) that would (ideally) satisfy

three conditions:

• Unique recovery : arg minφ L(φ, z) = f(z) for all z, with the arg min attained uniquely.

• Joint convexity : L is jointly convex over φ and z. This is required if we choose to build a

jointly convex deep model by directly using L to connect the input and output of adjacent

layers.

• Grounding : minφ L(φ, z) = 0 for all z, so that there is no bias towards any value of z.

Unfortunately, it can be shown that such a loss does not exist, unless f is affine.

Theorem 1. There exists a loss L that satisfies all the three conditions if, and only if, f is

affine.

The proof can be found in Appendix B.

This result motivates us to resort to weaker versions of loss. Interestingly, the matching

loss [25] meets the first and third conditions, and satisfies a weakened version of convexity by

imposing a very mild condition on f . In particular, we assume that the transfer function is

the gradient of a strictly convex function F : f = ∇F . Here F maps from Rh to R. If f

10

-4 -3 -2 -1 1 2 3 4

1

2

3

4
Transfer f
Potential F

(a) Linear rectifier (ReLU)

-4 -3 -2 -1 1 2 3 4

1

2

3

4
Transfer f
Potential F

(b) Leaky rectifier ε= .05

-4 -3 -2 -1 1 2 3 4
-1

1

2

3

4
Transfer f
Potential F

(c) Hard tanh

-4 -3 -2 -1 1 2 3 4

0.5

1

1.5

Transfer f
Potential F

(d) Sigmoid

Figure 1: Four examples of transfer function f and the corresponding potential function F

is elementwise, this just means the constituent f is continuous and strictly increasing. As a

result, the inverse of f also exists, and it is well known that f−1 = ∇F ∗, where F ∗ is the Fenchel

conjugate of F .

Although a rectifier fr(z) is not strictly increasing in the negative half line, it can be approx-

imated arbitrarily closely via max{εz, z} for infinitesimally small ε > 0. Similar alternations

can be applied to hard tanh fh(z) by allowing a tiny slope ε for |z| ≥ 1. The F corresponding

to the abovementioned transfers f are also shown in Figure 1.

In the case that f is not elementwise, this assumption of F implies: 1) f is strictly increasing

in the vector sense: (x − y)′(f(x) − f(y)) > 0, and 2) The Jabobian of f is symmetric (as

the Hessian of F): Jf = (Jf)′, provided f is differentiable. In this paper, we only consider

elementwise transfers. Under this assumption, we adopt the following loss function based on

Bregman divergence:

L(φ, z) = DF ∗(φ, f(z)) = F ∗(φ) + F (z)− φ′z. (2.1)

11

Here DF ∗ is the Bregman divergence induced by F ∗. Obviously L meets the conditions of

recovery and grounding, but is not jointly convex. However, the only non-convex part is the

bilinear term φ′z, while both F ∗ and F are convex. Such a decoupling of non-convex terms

from the transfer functions is the key enabler for our convexification technique.

2.1.3 Convex Two-layer Modeling

Suppose we are given t training pairs {(xj ,yj)}tj=1, stacked in two matricesX = (x1, . . . ,xt) ∈

Rnxt and Y = (y1, . . . ,yt) ∈ Rmxt. The corresponding set of latent layer outputs are stacked

into Φ = (φ1, . . . ,φt) ∈ Rh×t. The regularized risk minimization objective can be written as

min
W,U,b,Φ

t∑
j=1

DF ∗(φj , f(Wxj)) + `(U ′φj + b,yj) +
1

2
‖W‖2 +

1

2
‖U‖2 (2.2)

= min
W,U,b,Φ

t∑
j=1

{F ∗(φj)− φ′jWxj + F (Wxj) + `j(U
′φj + b)}+ 1

2 ‖W‖
2 + 1

2 ‖U‖
2 , (2.3)

where `j(U
′φj + b) := `(U ′φj + b,yj). We introduced regularizations via Frobenius norm

squares. The weight of both regularization terms can be tuned by any model selection method,

e.g. cross validation, and here we put 1 to simplify the presentation. We also assume that dom `j

is the entire space. To keep our notation neat we write functions on matrices, representing the

sum of the function values applied to each column, e.g. F ∗(Φ) =
∑

j F
∗(φj). Now we can

rewrite the objective as

min
Φ,W,U,b

F ∗(Φ)− tr(Φ′WX) + F (WX) + `(U ′Φ + b1′) + 1
2 ‖W‖

2 + 1
2 ‖U‖

2 . (2.4)

12

It is bi-convex in two groups of variables (Φ,b) and (W,U), i.e. fixing one group it is convex in

the other. In order to derive a jointly convex reformulation, we first note that `(U ′Φ + b1′) =

maxR tr(R′(U ′Φ + b1′)) − `∗(R), where `∗ is the Fenchel conjugate of `, and R ∈ Rm×t. For

binary hinge loss, `∗(r) = yr over r ∈ [min{0,−y},max{0,−y}], and ∞ else. For multiclass

hinge loss, `∗(r) = y′r if r + y ∈ ∆m := {x ∈ Rm+ : 1′x = 1}, and ∞ else. For multiclass

logistic loss, `∗(r) =
∑

i(ri + yi) log(ri + yi) if r + y ∈ ∆m, and ∞ else. Similarly, F (WX) =

maxΛ tr(Λ′WX)− F ∗(Λ). So we can rewrite (Equation 2.3) into

min
W,U,b,Φ

max
R,Λ

F ∗(Φ)− tr(Φ′WX) + tr(Λ′WX)− F ∗(Λ) + tr(R′(U ′Φ + b1′))− `∗(R) + ‖W‖2+‖U‖2
2

(2.5)

= min
Φ

max
R,Λ

min
W,U,b

F ∗(Φ)− tr(Φ′WX) + tr(Λ′WX)− F ∗(Λ) + tr(R′(U ′Φ + b1′))− `∗(R) + ‖W‖2+‖U‖2
2

(2.6)

= min
Φ

max
R1=0,Λ

F ∗(Φ)− 1

2

∥∥(Φ− Λ)X ′
∥∥2 − 1

2

∥∥ΦR′
∥∥2 − F ∗(Λ)− `∗(R). (2.7)

The optimal W and U for the last equality is W = (Φ + Λ)X ′ and U = −ΦR′. The first

equality swaps minW,U with maxR,Λ. Such a strong duality is indeed not trivial because the

celebrated Sion’s minimax lemma requires that the domain of (W,U) be compact, which is not

assumed here. So the above “derivation” is not rigorous. However the conclusion is still correct

thanks to the strong convexity of ‖·‖2.

13

Theorem 2. For any W,U,b, denote L(Φ, R) = F ∗(Φ)−tr(Φ′WX)+tr(R′(U ′Φ+b1′))−`∗(R).

Then

min
Φ

max
R
L(Φ, R) = max

R
min

Φ
L(Φ, R).

See the proof in Appendix B.

2.2 Convex relaxation

We now derive a convex relaxation for (Equation 2.7). To be concrete, consider the linear

rectifier with Fr(Z) = 1
2 ‖[Z]+‖2. Its Fenchel dual is F ∗r (Φ) = 1

2 ‖Φ‖
2 for Φ ≥ 0 (elementwise),

and +∞ otherwise. Therefore (Equation 2.7) can be specialized into

min
Φ≥0

max
R1=0,Λ≥0

1

2
‖Φ‖2 − 1

2

∥∥(Φ− Λ)X ′
∥∥2 − 1

2

∥∥ΦR′
∥∥2 − 1

2
‖Λ‖2 − `∗(R). (2.8)

Notice that both Φ and Λ are constrained to the positive orthant, and they are both sized h× t.

Since t� h in general, their ranks are h and their column spaces have full rank. As a result, we

may perform change of variable via Λ = ΦA, where A ∈ Rt×t+ and is not necessarily symmetric.

So we can rewrite (Equation 2.8) as

min
Φ≥0

max
R1=0,A≥0

1

2
‖Φ‖2 − 1

2
tr(Φ′Φ(I −A)X ′X(I −A′))1

2
tr(Φ′ΦR′R)− 1

2
tr(Φ′ΦAA′)− `∗(R).

14

Although this is still not convex, all occurrences of Φ are now in the form of Φ′Φ. This leads to

the natural idea of optimizing over Φ′Φ directly. Denote T := Φ′Φ ∈ Rt×t, and then we finally

arrive at

min
T∈Th

max
R1=0,A≥0

1

2
tr(T)− 1

2
tr(T (I −A)X ′X(I −A′))− 1

2
tr(TR′R)− 1

2
tr(TAA′)− `∗(R),

(2.9)

where Th :=
{

Φ′Φ : Φ ∈ Rh×t+

}
⊆
{
T ∈ Rt×t+ : T � 0

}
. T � 0 means T is positive semi-definite

(PSD). Now given b and T , the maximization over R and A is concave because T � 0. Indeed

A and R are decoupled, making the inner optimization efficient. The objective function is also

convex in b and T , because maximization over linear terms gives a convex function. The only

challenge left is the non-convexity of Th.

The set Th is obviously a cone. In fact, if we relax the fixed value of h, then T∞ is the well-

known completely positive (CP) matrix cone [26]. More interestingly, it is not hard to show

that T∞ is the tightest convex relaxation of Th, i.e. the convex hull of Th for any h. Denoting

T := T∞, our final objective becomes.

min
T∈T

max
R1=0,A≥0

1

2
tr(T)− 1

2
tr(T (I −A)X ′X(I −A′))− 1

2
tr(TR′R)− 1

2
tr(TAA′)− `∗(R).

(2.10)

It turns out that the convex relaxation does not require a pre-specified number of hidden nodes

h, and is able to figure it out automatically through the rank of the optimal T . We will observe

15

in the sequel that the formulation does implicitly favor a low-rank solution through a gauge

regularizer (Lemma 1), although a manual assignment of h can always be incorporated through

truncation after optimization.

2.2.1 Generality of the convexification scheme.

We note in passing that the above technique is general. For example, when using the

hard tanh transfer, we have F ∗h (Φ) = 1
2 ‖Φ‖

2 if the L∞ norm ‖Φ‖∞ := maxij |Φij | ≤ 1, and

∞ otherwise. Then we get the same objective function as in (Equation 2.10), only with Th

changed into {Φ′Φ : ‖Φ‖∞ ≤ 1} and the domain of A changed into {A :
∑

i |Aij | ≤ 1, ∀ j}.

2.3 Optimization

Although the problem (Equation 2.10) is convex, the set T lacks a compact characteriza-

tion in terms of linear/quadratic, PSD, or second-order conic constraints. Optimization over

completely positive matrices is known hard [26], and even projection to T is NP-hard [27].1

Therefore we resort to conditional gradient (Frank-Wolfe) methods that are free of projec-

tion [28,29]. The key benefit of CG lies in the efficiency of optimizing a linear function over T

(a.k.a. the polar operator), robustness in its inaccuracy [30], and the low rank of intermediate

solutions due to its greedy and progressive nature (hence efficient intermediate updates).

In practice, however, CG still suffers from slow convergence, and its linearly-converging

variants are typically subject to a large condition number [31]. This is partly because at each

step only the weights on the existing bases are optimized, while the bases themselves are not.

1Despite “convexity”, a convex function may itself be NP-hard to evaluate, and it can be NP-hard
to project to a convex set, or optimize a linear function over it.

16

To alleviate this problem, [32] proposed the Generalized Conditional Gradient algorithm (GCG)

which simultaneously optimizes the bases. Despite the lack of theoretical proof, it is much faster

in practice. Furthermore, GCG is robust to inexactness in polar operators, and one of our key

contributions below is to show that it can efficiently solve (Equation 2.10) with a multiplicative

approximation bound of 1
4 .

Since GCG operates on gauge regularized objectives, our first step is to take a nontrivial

path of rewriting (Equation 2.10). Recall that given a convex bounded set C containing the

origin, the gauge function induced by C evaluated at T is defined as γC(T) := min{γ ≥ 0 : γX =

T, X ∈ C}. If no such (γ,X) meets the condition, then γC(T) := ∞. Since (Equation 2.10)

does not contain a gauge function induced by a bounded set (T is unbounded), we first recast

it into this framework.

The simplest way to add bound to T is via the trace norm, which is exactly tr(T) since

T � 0:

S := T ∩ {T : tr(T) ≤ 1} (2.11)

= convT1 ∩ {T : tr(T) ≤ 1} (2.12)

= conv
{
xx′ : x ∈ Rt+, ‖x‖ ≤ 1

}
. (2.13)

Our key observation is the following lemma which allows us to rewrite the problem in terms

of gauge regularized objective. In particular, the domain of the gauge implicitly enforces the

constraint on T .

17

Lemma 1. S is convex, bounded, and closed. In addition

γS(T) =

tr(T) T ∈ T

+∞ otherwise

. (2.14)

The proof is relegated to Appendix B.

In fact, it is easy to show that for any convex cone C, the gauge function of its intersection

with a half-space tr(A′T) ≤ 1 is exactly tr(A′T) over C. The significance of Lemma 1 is

that it provides the cornerstone for solving the problem (Equation 2.10) by GCG. Indeed,

(Equation 2.10) can be equivalently rewritten as

minT J(T) := 1
2γS(T) + g(T) where, (2.15)

g(T) := maxR1=0,A≥0−1
2 tr(T (I −A)X ′X(I −A′))− 1

2 tr(TR′R)− 1
2 tr(TAA′)− `∗(R).

This objective finally falls into the framework of GCG sketched in Algorithm 1 [29,32].

GCG proceeds in iterations and at each step it seeks the steepest descent extreme point

T new (a.k.a. basis) of the set S with respect to the objective gradient (steps 3-4). After finding

the optimal conic combination with the existing solution (step 5), it directly optimizes the

underlying factor Φ, initialized by the value that corresponds to the current solution T (step

6). Although this last step is not convex (hence called “local optimization”), it offers significant

practical efficiency because it allows all existing bases to be optimized along with their weights.

We next provide details on the efficient computational strategies for the above operations in

18

Algorithm 1 General GCG algorithm

Randomly sample Φ1 ∈ [0, 1]t, and set T1 = Φ′1Φ1. while k = 1, 2, . . . do
Find ∇g(Tk) with Tk = Φ′kΦk by solving the inner maximization problem in g(Tk) of

(Equation 2.16).

Polar operator: find a new basis T new = arg maxT∈S 〈T,−∇g(Tk)〉.
Compute the optimal combination weight (α, β) := arg minα≥0,β≥0 J(αTk + βT new).

Locally optimize T : Φk+1 =arg minΦ≥0 J(Φ′Φ) with Φ initialized by the value correspond-

ing to Φ′Φ = αTk + βT new (see Section 2.4).

end

Return Tk+1

our problem.

2.4 Polar operator and constant multiplicative approximation guarantee

Given the negative gradient G = −∇g(Tk) ∈ Rt×t, the polar operator of S tries to solve the

following optimization problem by using the characterization of S in (Equation 2.12):

max
T∈S

tr(G′T) ⇐⇒ max
x∈Rt+, ‖x‖≤1

tr(x′Gx). (2.16)

Unfortunately, this problem is NP-hard. If this were solvable for any G, then we could use it to

answer whether minx≥0 x′(−G)x ≥ 0. But the latter is to check the copositivity of −G, which

is known to be co-NP-complete [33]. Usually problems like (Equation 2.16) are approached by

semi-definite relaxations (SDP), and [34] showed that it can be approximately solved with a

multiplicative bound of O(log t).

19

As one of our major contributions, we next show that when G � 0, this bound can be

tightened into constant for (Equation 2.16) with a computational procedure that is much more

efficient than SDP. Furthermore, our particular problem does satisfy G � 0.

Before proceeding, we first recall the definition of a multiplicative α-approximate solution.

Definition 1. Consider an optimization problem maxx∈X f(x) with nonnegative optimal value.

Let α ∈ (0, 1]. Then a solution x∗ ∈ X is called α-approximate if f(x∗) ≥ αmaxx∈X f(x).

Similarly, for minimization problems, the condition becomes f(x∗) ≤ 1
α minx∈X f(x) given

minx∈X f(x) ≥ 0.

Theorem 3. Assume G � 0. Then a 1
4 -approximate solution to (Equation 2.16) can be found

in O(t2) time.

Proof. Since G � 0, it can be decomposed into G = H ′H and the problem (Equation 2.16)

becomes maxx∈Rt+,‖x‖≤1 ‖Hx‖2. Let v be top eigenvector of G that corresponds to the greatest

eigenvalue. Then v maximizes ‖Hx‖ over ‖x‖ ≤ 1. Decompose v = v+−v−, where v+ = [v]+

collects the nonnegative components, and v− collects the negative components. Apparently

we have ‖v+‖ ≤ 1 and ‖v−‖ ≤ 1. Without loss of generality assume ‖Hv+‖2 ≥ ‖Hv−‖2

and consequently let us use v+ as an approximate minimizer, which we demonstrate is 1
4 -

approximate:

max
x∈Rt+,‖x‖≤1

‖Hx‖2≤ ‖Hv‖2 = ‖Hv+ −Hv−‖2 ≤ 2(‖Hv+‖2+‖Hv−‖2) ≤4 ‖Hv+‖2.

20

Obviously v+

‖v+‖ is an even better solution, which can also be used as an initializer for further

local optimization. The computational bottleneck lies in the top eigenvector v of G, which

costs O(t2).

In the case thatG is not positive semi-definite, it turns out very hard to extend this technique

while retaining a constant bound. However the SDP-based technique in [34] still applies, and

the bound remains 1/ log t. In hindsight, our choice of the adding Frobenius norm constraint on

Φ when defining S in (Equation 2.11) is not arbitrary. It constitutes the most straightforward

path that allows the polar operator to be approximated in a tractable fashion. Other choices,

such as structured Frobenius norms, could be possible if we would like to enforce structured

decompositions in the hidden representation. We leave the extension of tractable approximation

for future exploration.

Finally, although our algorithm for the polar operator requires G be positive semi-definite—

which is not satisfied in general—it happens to be met by our particular problem (Equation 2.15).

Notice the gradient of g is simply

−1

2
(I −A)X ′X(I −A′)− 1

2
R′R− 1

2
AA′, (2.17)

where the R and A are the optimal solution to the inner maximization. This is obviously

negative semi-definite, providing the key foundation for the constant approximation bound of

our approach.

21

2.4.1 Optimality of GCG and overall efficiency

We finally translate the bound on the polar operator to that of the original objective

(Equation 2.15). As shown by Theorem 1 of [35], any α-approximate polar operator allows

GCG to converge to an α-approximate solution to the original problem, and the convergence

rate is O(1/ε). Therefore we are guaranteed to find a 1
4 -approximate solution to (Equation 2.15).

The overall algorithm is summarized in Algorithm 2.

Algorithm 2 Solve (Equation 2.10) for T by the GCG algorithm

Randomly sample Φ1 ∈ [0, 1]t, and set T1 = Φ′1Φ1.

while k = 1, 2, . . . do

if k = 1 then
(Uk,bk) = optimal U and b in (Equation 2.19) for Φ1.

Mk = optimal M in (Equation 2.19) for Φ1.

end

Recover the optimal R: Rk=∇`(U ′kΦk+bk1
′).

Recover the optimal A by (Equation 2.21).

Compute the gradient Gk of gµ at Tk = Φ′kΦkvia (Equation 2.17), with Rk and Ak serving

R and A, resp

Compute a new basis xk by approximately solving arg maxx∈Rt+,‖x‖≤1 x′(−Gk)x (Thm 3).

Line search: (α, β) := arg minα≥0,β≥0 J(αTk + βxkx
′
k).

Set Φtmp = (
√
αΦ′k,

√
βxk)

′.

Local search: (Φk+1, Uk+1,bk+1,Mk+1) := Local Opt(Φtmp, Uk,bk,Mk) by Algorithm 3.

end

Return Tk+1

22

Algorithm 3 Local optimization used by GCG

Require (Φtmp, Uk,bk,Mk) from the current step

Initialize : Φ = Φtmp, U = Uk, b = bk, M = Mk.

for t = 1, 2, . . . do // till change is small

(U,b) = arg minU,b{`(U ′Φ + b1′) + 1
2 ‖U‖

2}.
M = arg minM≥0 h(M,Φ).

Φ = arg minΦ≥0 {`(U ′Φ + b1′) + h(M,Φ)}.
end

Return (Φ, U,b,M).

2.5 Accelerating local optimization by converting min-max into min-min

The computational bottleneck of applying GCG to our problem (Equation 2.15) is the step

of local optimization: minΦ J(Φ′Φ) over Φ ∈ Rh×t+ . Owing to the Φ′Φ term, this objective is

not convex. However, it is often observed in practice that the overall optimization can be much

accelerated if we solve it just locally (e.g. by BFGS), with Φ initialized based on the value of

the convex optimization variable T (step 6 of Algorithm 1 or step 11 of Algorithm 2).

Unfortunately, since g defined in (Equation 2.16) employs a nested maximization, we are now

faced with a min-max problem. Different from min-min optimizations like minx miny f(x, y)

which can be solved very efficiently by alternating between optimizing x and y, a min-max

problem minx maxy f(x, y) cannot be solved by alternating: fixing x solve y, and fixing y solve

x. Instead, one needs to treat the objective as a function of x, and for each x solve the inner

maximization in y exactly, before obtaining a gradient in x that is supplied to standard solvers

such as BFGS. This is often much slower than alternating.

23

To enable an efficient solution by alternating, we next develop a novel reformulation of g as

a minimization, such that minimizing g becomes a min-min problem:

g(Φ′Φ) = max
R1=0

{
−1

2

∥∥ΦR′
∥∥2 − `∗(R)

}
+ max

A≥0

{
−1

2

∥∥Φ(I −A)X ′
∥∥2 − 1

2
‖ΦA‖2

}
= max

R
min
b

{
b′R1−`∗(R)−max

U
− tr(U ′ΦR′)− ‖U‖

2

2

}
+ max

A
min
M≥0

{
−‖Φ(I−A)X′‖2

2 − ‖ΦA‖
2

2 + tr(M ′A)
}

(2.18)

= min
U,b

{
`(U ′Φ + b1′) +

1

2
‖U‖2

}
+ min
M≥0

h(M,Φ), (2.19)

where h(M,Φ) := max
A

{
− 1

2

∥∥Φ(I −A)X ′
∥∥2 − 1

2
‖ΦA‖2 + tr(M ′A)

}
. (2.20)

As the key advantage achieved here, the local optimization minΦ≥0 J(Φ′Φ) = minΦ≥0
1
2 ‖Φ‖

2 +

g(Φ′Φ) can now be solved by alternating between (U,b), M , and Φ. The details are shown in

Algorithm 3. The optimization over (U,b) is the standard supervised learning. However, the

optimization over M and Φ is trickier because they require evaluating h which in turn involves

a nested optimization on A. Fortunately h is quadratic in A, which allows us to design an

efficient closed-form scheme by leveraging the celebrated Woodbury formula [36].

Given (M,Φ), the optimal A can be found by setting its gradient to zero: Φ′ΦA(X ′X+I) =

M + Φ′ΦX ′X. Unfortunately, the rank of Φ′ΦA (hence the left-hand side) is at most h < t.

So no A can satisfy the equality if the rank of the right-hand side is greater than h, and hence

h(M,Φ) is finite only if the column space of (M + Φ′ΦX ′X)(X ′X + I)−1 is contained in the

column space of Φ′. Such an implicit constraint between variables precludes the application of

alternating.

24

To address this problem, we introduce a small strongly convex regularizer on A in the

definition of h(M,Φ) in (Equation 2.20), akin to the commonly used smoothing technique:

hµ(M,Φ) := max
A

{
− 1

2

∥∥Φ(I −A)X ′
∥∥2 − 1

2
‖ΦA‖2 + tr(M ′A)− µ

2
tr(A(X ′X + I)A′)

}
,

where µ > 0 is small. The new term µ
2 tr(A(X ′X + I)A′) also needs to be added to the

definition of g in (Equation 2.16), which we will denote as gµ. Then the optimal A can be found

by setting the gradient to 0:

A = (Φ′Φ + µI)−1(M + Φ′ΦX ′X)(X ′X + I)−1. (2.21)

To efficiently compute A, we make use of the Woodbury formula:

µA = (M + Φ′ΦX ′X)(X ′X + I)−1 − Φ′(µI + ΦΦ′)−1Φ(M + Φ′ΦX ′X)(X ′X+I)−1.

Here (µI+ΦΦ′)−1 ∈ Rh×h can be computed efficiently as h is not large (it is exactly the iteration

index k in GCG Algorithm 2). Then the second term (after the minus) can be computed in

O(ht2) time as we can pre-compute (X ′X + I)−1. So the only challenge in computing A is

the term M(X ′X + I)−1, which costs O(t3) time. However, if n � t, then we may again save

computations by applying the Woodbury formula: M(X ′X + I)−1 = M −MX ′(I +XX ′)−1X,

which costs O(nt2) time. (I +XX ′)−1X can be pre-computed.

25

2.6 Experiment

We evaluated the proposed inductive training of convexified two-layer model (CVX-IN) by

comparing the generalization accuracy with 4 other baselines: FFNN: a two-layer feedforward

neural network; Ker-CVX: the kernel-based convex model proposed by [37]; LOCAL: a model

obtained by alternative minimization of the two-layer objective (Equation 2.4); and CVX-TR:

our model learned transductively (see below). SVM was not included since it was already shown

inferior to Ker-CVX by [37].

2.6.1 Inductive learning.

A key advantage of our method is the purely inductive setting, which obviates any retraining

during test time, as opposed to a transductive setting. After completing the GCG optimization,

CVX-IN directly obtains the optimal U and b thanks to the local minimization in Algorithm 3.

The optimal W can be recovered by solving (Equation 2.4) with fixed (Φ, U,b), and it is a simple

convex problem. With this initialization, we finely tuned all parameters by backpropagation.

2.6.2 Transductive learning.

As Ker-CVX is transductive, we also considered the following transductive variant of CVX-

IN. The objective (Equation 2.15) was first trained withX being the combination of (Xtrain, Xtest),

and accordingly the intermediate representation Φ (along with the corresponding T) also con-

sisted of the combination of (Φtrain,Φtest). Since only Ytrain was available for training, the loss

function `(U ′Φ + b1′) was applied only to the training data. As a result, Φtest was learned

largely from the matching loss in the latent layer given by (Equation 2.20). After recovering

the optimal U and b by local minimization (same as in CVX-IN), test data were labeled by

26

Ŷtest = U ′Φtest + b1′. Although CVX-TR bypasses the recovery of W , optimization has to be

redone from scratch when new test data arrives.

2.6.3 Comparison on smaller datasets.

To enable comparison with Ker-CVX which is highly expensive in computation, we first

used smaller datasets including a synthetic XOR dataset and three “real world” datasets for

binary classification: Letter [38], CIFAR-SM, a binary classification dataset from [39] based on

CIFAR-100 [40], and G241N [41].

All methods were applied to two different sizes of training and test data (Xtrain and Xtest):

100/100 and 200/200, and the resulting test error, averaged over 10 trials, were presented in

Table Table I and Table II respectively. CVX-IN outperforms FFNN on G241N, Letter, and

CIFAR-SM, and they both delivered perfect classification on XOR. This corroborates the ad-

vantage of convex models, suggesting that predictive structures are preserved by the relaxation.

CVX-IN also marginally outperforms or is comparable to CVX-TR on all the datasets, con-

firming that inductive learning saves computation at test time without sacrificing the accuracy.

Consistently poor performance is observed on the LOCAL method (used in a transductive fash-

ion), and it does not work even for XOR. This implies that it does suffer seriously from local

optimality. Ker-CVX (transductive only) performs competitively on 200 examples especially

on the Letter dataset, but its error on 100 examples is significantly higher than CVX-IN and

CVX-TR. It ran into computational issues on G241N, hence marked by N/A.

27

On the CIFAR-SM dataset all methods produced a slightly higher error with 200 training

examples than 100 examples, probably due to the small size of training set and high variance.

However the comparative results between algorithms remain similar to other datasets.

2.6.4 Comparison on larger datasets.

Thanks to the fast local optimization enabled by the new min-min alternating (§2.5), our

model enjoys significant speedup compared with [37, 39]. To demonstrate this, we applied

CVX-IN to Letter, XOR, and CIFAR-10 [40] with 1000/1000 and 2000/2000 train/test ex-

amples, and to G241N with 1000/500 examples (the entire dataset only has 1500 examples).

Details on data pre-processing are available in Appendix B.2.

As Table Table III and Table IV show, CVX-IN again achieves significantly lower test error

on these larger datasets over FFNN, CVX-TR, and LOCAL. The training time of CVX-IN is

summarized in Table Table V, and it took 2.5 hours on CIFAR-10 with 2000 examples and 256

features. Although still expensive, it is substantially faster than Ker-CVX which is completely

incapable of scaling here (hence omitted). In contrast, the run time of FFNN and LOCAL

is much lower (not shown). Overall CVX-IN scales quadratically in #examples (t), which is

consistent with our analysis in §2.5.

2.6.5 Intermediate representation.

One of the key merits of our two-layer model is that the relaxation retains the necessary

structure in the input data to make accurate predictions. To test this feature, we tried to

visualize the latent representation learned by our CVX-IN. Figure Figure 2 demonstrates the

original features in the input data Xtrain and the learned intermediate representation Φtrain,

28

Letter G241N XOR CIFAR-SM

CVX-IN 4.8±0.8 24.2±1.6 0 21.2±1.2

CVX-TR 4.9±1.3 23.1±0.7 0 22.4±0.8

FFNN 7.9±0.8 31.9±0.9 0 31.0±1.1

LOCAL 8.0±1.2 34.0±0.9 27.0±1.5 25.0±0.8

Ker-CVX 5.7±2.9 N/A 0 27.7±5.5

TABLE I: Mean test error for 100 training and 100 test examples

Letter G241N XOR CIFAR-SM

CVX-IN 5.1±1.3 21.6±0.9 0 22.6±1.5

CVX-TR 5.3±0.8 22.0±0.8 0 23.4±1.5

FFNN 5.5±0.8 29.9±0.4 0 32.9±1.0

LOCAL 10.5±0.8 33.0±0.6 25.0±1.2 29.5±0.5

Ker-CVX 4.5±0.9 N/A 0 23.3±3.5

TABLE II: Mean test error for 200 training and 200 test examples

for two datasets Box and XOR which both employ a rich latent structure. Clearly, the convex

relaxation was able to separate the two classes and preserve sufficient structures that allows it

to outperform single-layer models.

2.7 Discussion and Conclusion

In this section, we showed how to obtain a convex relaxation of a simple two-layered neural

network objective with activation functions such as ReLU, based on matching loss. We also de-

veloped an efficient optimization procedure based on Generalized Conditional Gradient (GCG)

algorithm with a constant approximation guarantee.

There are however two main drawbacks of this current approach, which are potential di-

rections for future research. First, the relaxation procedure that is described in this work is

hard to extend to networks beyond 2 layers. Even adding an additional layer might require a

29

Letter G241N XOR CIFAR-10

CVX-IN 2.7±0.8 13.0±0.8 0 27.6±1.4

CVX-TR 2.7±0.9 15.1±0.9 0 27.9±2.3

FFNN 3.5±0.7 24.5±1.0 0 30.4±0.9

LOCAL 5.8±0.7 21.4±1.1 26.7±0.5 32.3±0.7

TABLE III: Mean test error for 1000 training and 1000 test examples

Letter XOR CIFAR-10

CVX-IN 1.0±0.5 0 26.8±1.6

CVX-TR 1.2±0.7 0 27.0±1.9

FFNN 1.7±0.3 0 30.0±1.8

LOCAL 2.3±0.4 27.2±0.3 33.0±1.5

TABLE IV: Mean test error for 2000 training and 2000 test examples

100 200 1000 2000

Letter 0.45 1.1 17.1 90.6

G241N 0.68 1.5 27.3 N/A

XOR 0.45 1.0 42.0 144.2

CIFAR-10 0.63 1.5 50.6 153.6

TABLE V: Training times (in minutes) for CVX-IN on 100, 200, 1000, and 2000 training
examples

careful change in the relaxation and optimization strategies. Hence, a more general approach

to modeling and optimization is in order. Second, there are no non-trivial recovery procedures

known for SDP and CP relaxations. Our results are currently purely empirical and it would

be interesting to establish more rigorous theoretical guarantees in approximation. As another

possible research exercise, it would also be interesting to extend our results to other non-linear

activation functions that satisfy our framework.

30

(a) BOX (b) XOR

(c) hBOX (d) hXOR

Figure 2: BOX and XOR datasets (subplots a and b) and their intermediate representations
(hdataset in subplots c and d). The representations were reduced to 2-D by using the standard
PCA.

CHAPTER 3

INCORPORATING LATENT STRUCTURE INFORMATION

(Parts of this chapter were previously published as “Convex two-layer modeling with latent

structure” [23] at the Neural Information Processing Systems (NIPS 2016))

3.1 Introduction

In this section, we consider the problem of modeling (structured) relationships in data that

are not directly apparent (latent). Several real-life machine learning tasks (two of which we

introduce in this section) can benefit from modeling of latent relationships between entities of

interest. To this end, we explore the problem of finding a convex formulation of a two-layer

model, where we want to explicitly learn a structured latent hidden representation, in an unsu-

pervised manner, that subsequently helps in learning highly discriminative model parameters

that facilitate accurate predictions. We will make this clear with the help of the following

application of such modeling - the problem of transliteration between two languages.

3.2 Transliteration via graph matching

Transliteration is the problem of accurately matching word pairs (w1, w2) written in two

different languages, that are phonetically identical to each other. Identifying this mapping is

not easy, as most writing systems do not perfectly align phonetically and orthographically;

rather, this mapping can be context-dependent and ambiguous [42].

31

32

Suppose we are given a word from the English language e with m letters, and another

word from Hebrew h with n letters. The task is to predict whether e and h are phonetically

similar to each other. If we represent e and h, by a joint feature vector x, then this is a

binary classification problem with z ∈ {−1, 1}. Here, we would like to capture some additional

structural information y regarding w1 and w2 that would help us with this classification task .

One such structure could be the letter-wise matching between e and h [42,43]. We would also

like to note that, there are no class labels provided for the latent y, hence this is an unsupervised

latent structured learning problem.

3.3 Problem setup and related works

In this section, we set up the problem formally. We are interested in two-layer conditional

models of the form X→ Y → Z, where X is the input layer, Y is the latent hidden layer and Z

is the output layer. So far, most deep models for structured output are designed for supervised

learning where structured labels are available. Recently an extension has been made to the

unsupervised learning. [44] proposed a conditional random field auto-encoder (CRF-AE), where

given the observed data x, the latent structure y is first generated based on p(y|x) and then

applied to reconstruct the observations using p(x|y). The motivation is to find the predictive

and latent structure in the data. Along similar lines other discriminative unsupervised learning

methods are also available.

Extending auto-encoders X→Y →X to general two-layer setting X→Y →Z is not hard.

The transliteration problem introduced in the previous section was addressed by [42,43], where

Z is the binary output and Y is the unobserved latent structure, representing the letter-wise

33

matching between words in the context of transliteration. In essence, their model optimizes

p(z|arg maxy p(y|x)), uncovering the latent y via its mode under the first layer model. This

is commonly known as bi-level optimization, since the optimal value(arg max) of the inner

optimization is used in learning the optimal z.

3.3.1 Challenges in inference.

All the methods described above, will need some form of tractability in inference in es-

timating latent structure, in computation. CRF-AE leverages marginal inference on p(y|x)

for Expectation Maximization(EM). Contrastive divergence, instead samples from p(y|x) [45].

However, for some structures such as graph matching, neither of them is tractable [46,47]. For

single-layer models, this challenge has been resolved by the so-called max-margin estimation,

which only relies on the MAP of p(y|x), which is a point estimate. This oracle is much less

demanding than sampling or normalization, as finding a point estimate can be much easier than

summarizing over all possible values of y. For example MAP for graph matching can b solved

by max-flow.

Extending the max-margin inference directly to the two-layered(our) setting, is non-trivial

and is immediately faced with the following problem. The max-margin inference in our setting

would require us to solve maxy p(y|x)p(z|y). In general, p(z|y)) depends on y in a highly

non-linear form, making this augmented inference intractable. This seems to leave the afore-

mentioned bi-level optimization the only option that retains the sole dependency on MAP.

34

3.3.2 Preliminaries

We consider a two-layer latent conditional model X → Y → Z, where X is the input,

Z is the output, and Y is a latent layer composed of h random variables: {Yi}hi=1. Instead

of assuming no interdependency between Yi as in [37], our major goal here is to model the

structure in the latent layer Y . Specifically, we assume a conditional model for the first layer

based on an exponential family

p(y|x) = q0(y) exp(−y′Ux− Ω(Ux)), where q0(y) = Jy ∈ YK . (3.1)

Here U is the first layer weight matrix, and Ω is the log-partition function. q0(y) is the base

measure, with JxK = 1 if x is true, and 0 otherwise. The correlation among Yi is instilled

by the support set Y, which plays a central role here. For example, when Y consists of all

h-dimensional canonical vectors, p(y|x) recovers the logistic multiclass model. In general, to

achieve a tradeoff between computational efficiency and representational flexibility, we make

the following assumptions on Y:

Postulate 1 (PO-tractable). We assume Y is bounded, and admits an efficient polar operator.

That is, for any vector d ∈ Rh, miny∈Y d′y is efficiently solvable.

Note the support set Y (hence the base measure q0) is fixed and does not contain any more

parameter. PO-tractability is available in a variety of applications, and we give two examples

here.

35

3.3.2.1 Graph matching.

In a bipartite graph with two sets of vertices {ai}ni=1 and {bj}nj=1, each edge between ai and

bj has a weight Tij . The task is to find a one-to-one mapping (can be extended) between {ai}

and {bj}, such that the sum of weights on the edges is maximized. Denote the matching by

Y ∈ {0, 1}n×n where Yij = 1 iff the edge (ai, bj) is selected. So the optimal matching is the mode

of p(Y) ∝ JY ∈ YK exp(tr(Y ′T)) where the support is Y = {Y ∈ {0, 1}n×n : Y 1 = Y ′1 = 1}.

3.3.2.2 Graphical models.

For simplicity, consider a linear chain model V1 − V2 − · · · − Vp. Here each Vi can take one

of C possible values, which we encode using the C-dimensional canonical basis vi. Suppose

there is a node potential mi ∈ RC for each Vi, and each edge (Vi, Vi+1) has an edge potential

Mi ∈ RC×C . Then we could directly define a distribution on {Vi}. Unfortunately, it will

involve quadratic terms such as v′iMivi+1, and so a different parameterization is in order. Let

Yi ∈ {0, 1}C×C encode the values of (Vi, Vi+1) via row and column indices of Yi respectively.

Then the distribution on {Vi} can be equivalently represented by a distribution on {Yi}:

p({Yi}) ∝ J{Yi} ∈ YK exp

(∑p

i=1
m′iYi1 +

∑p−1

i=1
tr(M ′iYi)

)
, (3.2)

where Y =
{
{Yi} : Yi ∈ {0, 1}C×C

}
∩ H, with H :=

{
{Yi} : 1′Yi1 = 1, Y ′i 1 = Yi+11

}
.

(3.3)

The constraints in H encode the obvious consistency constraints between overlapping edges.

This model ultimately falls into our framework in (Equation 3.1).

36

In both examples, the constraints in Y are totally unimodular (TUM), and therefore the

polar operator can be computed by solving a linear programming (LP), with the {0, 1} con-

straints relaxed to [0, 1]. In §3.6.1 and 3.6.2 we will generalize y′Ux to y′d(Ux), where d is

an affine function of Ux that allows for homogeneity in temporal models. For clarity, we first

develop a general framework using y′Ux.

3.3.2.3 Output layer

As for the output layer, we assume a conditional model from an exponential family

p(z|y) = exp(z′R′y −G(R′y))q1(z) = exp(−DG∗(z||∇G(R′y)) +G∗(z))q1(z), (3.4)

where G is a smooth and strictly convex function, and DG∗ is the Bregman divergence induced

by the Fenchel dual G∗. Such a parameterization is justified by the equivalence between regular

Bregman divergence and regular exponential family [48]. Thanks to the convexity of G, it is

trivial to extend p(z|y) to y ∈ convY (the convex hull of Y), and G(R′y) will still be convex

over convY (fixing R).

Finally we highlight the assumptions we make and do not make. First we only assume

PO-tractability of Y, hence tractability in MAP inference of p(y|x). We do not assume it

is tractable to compute the normalizer Ω or its gradient (marginal distributions). We also

do not assume that unbiased samples of y can be drawn efficiently from p(y|x). In general,

PO-tractability is a weaker assumption. For example, in graph matching MAP inference is

tractable while marginalization is NP-hard [49] and sampling requires MCMC [50]. Finally, we

37

do not assume tractability of any sort for p(y|x)p(z|y) (in y), and so it may be hard to solve

miny∈Y{d′y +G(R′y)− z′R′y}, as G is generally not affine.

3.4 Training principles

At training time, we are provided with a set of feature-label pairs (x, z)∼p̃, where p̃ is the

empirical distribution. In the special case of auto-encoder, z is tied with x. The “bootstrapping”

style estimation [51] optimizes the joint likelihood with the latent y imputed in an optimistic

fashion

min
U,R

E
(x,z)∼p̃

[
min
y∈Y
− log p(y|x)p(z|y)

]
=

min
U,R

E
(x,z)∼p̃

[
min
y∈Y

y′Ux + ω(Ux)− z′R′y +G(R′y)

]
.

This results in a hard EM estimation, and a soft version can be achieved by adding entropic

regularizers on y. Regularization can be imposed on U and R which we will make explicit

later (e.g. bounding the L2 norm). Since the log-partition function ω in p(y|x) is hard to

compute, the max-margin approach is introduced which replaces ω(Ux) by an upper bound

maxŷ∈Y −ŷ′Ux, leading to a surrogate loss

min
U,R

E
(x,z)∼p̃

[
min
y∈Y

{
−z′R′y +G(R′y) + y′Ux−min

ŷ∈Y
ŷ′Ux

}]
. (3.5)

However, the key disadvantage of this method is the augmented inference on y, because we

have only assumed the tractability of miny∈Y d′y for all d, not miny∈Y{y′d+G(R′y)−z′R′y}.

38

In addition, this principle intrinsically determines the latent y as a function of both the input

and the output, while at test time the output itself is unknown and is the subject of prediction.

The common practice therefore requires a joint optimization over y and z at test time, which

is costly in computation.

The goal of this paper is to design a convex formulation in which the latent y is completely

determined by the input x, and both the prediction and estimation rely only on the polar

operator: arg miny∈Y y′Ux. As a consequence of this goal, it is natural to postulate that the y

found this way renders an accurate prediction of z, or a faithful recovery of x in auto-encoders.

This idea, which has been employed by [52, 53], leads to the following bi-level optimization

problem

max
U,R

E
(x,z)∼p̃

[
log p

(
z
∣∣∣arg max

y∈Y
p(y|x)

)]
↔ max

U,R
E

(x,z)∼p̃

[
log p

(
z
∣∣∣arg min

y∈Y
y′Ux

)]
(3.6)

↔ min
U,R

E
(x,z)∼p̃

[
−z′R′y∗x +G(R′y∗x)

]
, (3.7)

where y∗x = arg min
y∈Y

y′Ux.

Directly solving this optimization problem is challenging, because the optimal y∗x is almost

surely invariant to small perturbations of U (e.g. when Y is discrete). So a zero valued gradient

is witnessed almost everywhere. Therefore a more carefully designed optimization algorithm is

in demand.

39

3.5 A General Framework of Convexification

We propose addressing this bi-level optimization by convex relaxation, and it is built upon

the first-order optimality conditions of the inner-level optimization. First notice that the set Y

participates in the problem (Equation 3.7) only via the polar operator at Ux: arg miny∈Y y′Ux.

If Y is discrete, this problem is equivalent to optimizing over S := convY, because a linear

function on a convex set is always optimized on its extreme points. Clearly, S is convex,

bounded, closed, and is PO-tractable. It is important to note that the origin is not necessarily

contained in S. To remove the potential non-uniqueness of the minimizer in (Equation 3.7), we

next add a small proximal term to the polar operator problem (σ is a small positive number):

min
w∈S

w′Ux +
σ

2
‖w‖2 . (3.8)

This leads to a small change in the problem and makes sure that the minimizer is unique.1

Adding strongly convex terms to the primal and dual objectives is a commonly used technique

for accelerated optimization [54], and has been used in graphical model inference [55]. We

intentionally changed the symbol y into w, because here the optimal w is not necessarily in Y.

1If p(y|x)∝p0(y) exp(−y′Ux − σ
2 ‖y‖

2
) (for any σ > 0), then there is no need to add this σ

2 ‖w‖
2

term. In this case, all our subsequent developments apply directly. Therefore our approach applies to a
broader setting where L2 projection to S is tractable, but here we focus on PO-tractability just for the
clarity of presentation.

40

By the convexity of the problem (Equation 3.8) and noting that the gradient of the objective

is Ux + σw, w is optimal if and only if

w∈S, and (Ux + σw)′(θ̂ −w) ≥ 0, ∀θ̂∈S. (3.9)

These optimality conditions can be plugged into the bi-level optimization problem (Equation 3.7).

Introducing “Lagrange multipliers” (γ, θ̂) to enforce the latter condition via a mini-max formu-

lation, we obtain

min
‖U‖≤1

min
‖R‖≤1

E
(x,z)∼p̃

[
min
w

max
γ≥0,θ̂∈S

max
v
−z′R′w + v′R′w −G∗(v) (3.10)

+ ιS(w) + γ(Ux + σw)′(w − θ̂)
]
, (3.11)

where ιS is the {0,∞}-valued indicator function of the set S. Here we dualized G via G(R′w) =

maxv v′R′w − G∗(v), and made explicit the Frobenius norm constraints (‖·‖) on U and R.1

Applying change of variable θ = γθ̂, the constraints γ ≥ 0 and θ̂∈S (a convex set) become

(θ, γ)∈N := cone{(θ̂, 1) : θ̂∈S},

1To simplify the presentation, we bound the radius by 1 while in practice it is a hyperparameter to
be tuned.

41

where cone stands for the conic hull (convex). Similarly we can dualize ιS(w) = maxπ π′w −

σS(π), where σS(π) := maxw∈S π
′w is the support function on S. Now swap minw with all the

subsequent max (strong duality), we arrive at a form where w can be minimized out analytically

min
‖U‖≤1

min
‖R‖≤1

E
(x,z)∼p̃

[
max
π

max
(θ,γ)∈N

max
v

min
w
−z′R′w + v′R′w −G∗(v) (3.12)

+ π′w − σS(π) + (Ux + σw)′(γw − θ)
]

(3.13)

= min
‖U‖≤1

min
‖R‖≤1

E
(x,z)∼p̃

[
max
π

max
(θ,γ)∈N

max
v
−G∗(v)− σS(π)− θ′Ux (3.14)

− 1
4σγ ‖R(v − z) + γUx + π − σθ‖2

]
. (3.15)

Given (U,R), the optimal (v,π,θ, γ) can be efficiently solved through a concave maxi-

mization. However the overall objective is not convex in (U,R) because the quadratic term

in (Equation 3.15) is subtracted. Fortunately it turns out not hard to tackle this issue by

using semi-definite programming (SDP) relaxation which linearizes the quadratic terms. In

particular, let I be the identity matrix, and define

42

M := M(U,R) :=

I

U ′

R′

(
I, U,R

)
=

I U R

U ′ U ′U U ′R

R′ R′U R′R

 =:

M1 Mu Mr

M ′u Mu,u M ′r,u

M ′r Mr,u Mr,r

 . (3.16)

Then θ′Ux can be replaced by θ′Mux and the quadratic term in (Equation 3.15) can be

expanded as

f(M,π,θ, γ,v; x, z) := tr(Mr,r(v − z)(v − z)′) + γ2 tr(Mu,uxx′) + 2γ tr(Mr,ux(v − z)′)

+ 2(π − σθ)′(Mr(v − z) + γMux) + ‖π − σθ‖2 . (3.17)

Since given (π,θ, γ,v) the objective function becomes linear in M , so after maximizing out

these variables the overall objective is convex in M . Although this change of variable turns the

objective into convex, it indeed shifts the intractability into the feasible region of M :

M0 := {M�0 : M1 = I, tr(Mu,u) ≤ 1, tr(Mr,r) ≤ 1}︸ ︷︷ ︸
=:M1

∩ {M : rank(M) = h} . (3.18)

Here M�0 means M is real symmetric and positive semi-definite. Due to the rank con-

straint, M0 is not convex. So a natural relaxation—the only relaxation we introduce besides

43

the proximal term in (Equation 3.8)—is to drop this rank constraint and optimize with the

resulting convex set M1. This leads to the final convex formulation:

min
M∈M1

E
(x,z)∼p̃

[
max
π

max
(θ,γ)∈N

max
v
−G∗(v) − σS(π)− θ′Mux −

1
4σγ f(M,π,θ, γ,v; x, z)

]
.

(3.19)

To summarize, we have achieved a convex model for two-layer conditional models in which

the latent structured representation is determined by a polar operator. Instead of bypassing

this bi-level optimization via the normal loss based approach [37, 56], we addressed it directly

by leveraging the optimality conditions of the inner optimization. A convex relaxation is then

achieved via SDP.

3.5.1 Inducing low rank solutions

Although it is generally hard to provide a theoretical guarantee for nonlinear SDP relax-

ations, it is interesting to note that the constraint set M1 effectively encourages low-rank

solutions (hence tighter relaxations). As a key technical result, we next show that all extreme

points of M1 are rank h (the number of hidden nodes) for all h ≥ 2. Recall that in sparse

coding, the atomic norm framework [57] induces low-complexity solutions by setting up the

optimization over the convex hull of atoms, or penalize via its gauge function. Therefore the

characterization of the extreme points of M1 might open up the possibility of analyzing our

relaxation by leveraging the results in sparse coding.

44

Lemma 2. Let Ai be symmetric matrices. Consider the set of

R := {X : X � 0, tr(AiX) S bi, i = 1, . . . ,m}, (3.20)

where m is the number of linear (in)equality constraints. S means it can be any one of ≤,

=, or ≥. Then the rank r of all extreme points of R is upper bounded by

r ≤
⌊

1
2(
√

8m+ 1− 1)
⌋
. (3.21)

This result extends [58] by accommodating inequalities in (Equation 3.20), and its proof is

given in Appendix B.3. Now we show that the feasible regionM1 as defined by (Equation 3.18)

has all extreme points with rank h.

Theorem 4. If h ≥ 2, then all extreme points of M1 have rank h, and M1 is the convex hull

of M0.

Proof. Let M be an extreme point ofM1. Noting that M � 0 already encodes the symmetry of

M , the linear constraints forM1 in (Equation 3.18) can be written as 1
2h(h+ 1) linear equality

constraints and two linear inequality constraints. In total m = 1
2h(h + 1) + 2. Plug it into

(Equation 3.21) in the above lemma

rank(M) ≤
⌊

1
2(
√

8m+ 1− 1)
⌋

=
⌊

1
2(
√

4h(h+ 1) + 17− 1)
⌋

= h+ Jh = 1K. (3.22)

45

Finally, the identity matrix in the top-left corner of M forces rank(M) ≥ h. So rank(M) = h

for all h ≥ 2. It then follows that M1 = convM0.

3.6 Application in Machine Learning Problems

The framework developed above is generic. For example, when Y represents classification

for h classes by canonical vectors, S = convY is the h dimensional probability simplex (sum

up to 1). Clearly σS(π) = maxi πi, and N = {(x, t)∈ Rh+1
+ : 1′x = t}. In many applications,

Y can be characterized as {y∈{0, 1}h : Ay ≤ c}, where A is TUM and all entries of c are in

{−1, 1, 0}.1 In this case, the convex hull S has all extreme points being integral, and S employs

an explicit form:

Y = {y∈{0, 1}h : Ay ≤ c} → S = convY = {w∈[0, 1]h : Aw ≤ c}, (3.23)

replacing all binary constraints {0, 1} by intervals [0, 1]. Clearly TUM is a sufficient condition

for PO-tractability, because miny∈Y d′y is equivalent to minw∈S d′w, an LP. Examples include

the above graph matching and linear chain model. We will refer to Aw ≤ c as the non-box

constraint.

3.6.1 Graph matching

As the first concrete example, we consider convex relaxation for latent graph matching. One

task in natural language is transliteration [42,59]. Suppose we are given an English word e with

1For simplicity, we write equality constraints (handled separately in practice) using two inequality
constraints.

46

m letters, and a corresponding Hebrew word h with n letters. The goal is to predict whether

e and h are phonetically similar, a binary classification problem with z∈{−1, 1}. However it

obviously helps to find, as an intermediate step, the letter-wise matching between e and h.

The underlying assumption is that each letter corresponds to at most one letter in the word of

the other language. So if we augment both e and h with a sink symbol * at the end (hence

making their length m̂ := m+ 1 and n̂ := n+ 1 respectively), we would like to find a matching

y∈{0, 1}m̂n̂ that minimizes the following cost

min
Y ∈Y

∑m̂

i=1

∑n̂

j=1
Yiju

′φij ,

where Y = {0, 1}m̂×n̂∩{Y : Yi,:1 = 1, ∀i ≤ m, 1′Y:,j = 1, ∀j ≤ n}︸ ︷︷ ︸
=:G

.
(3.24)

Here Yi,: is the i-th row of Y . φij∈Rp is a feature vector associated with the pair of i-th letter

in e and j-th letter in h, including the dummy *. Our notation omits its dependency on e

and h. u is a discriminative weight vector that will be learned from data. After finding the

optimal Y ∗, [42] uses the maximal objective value of (Equation 3.24) to make the final binary

prediction: − sign(
∑

ijY
∗
iju
′φij).

To pose the problem in our framework, we first notice that the non-box constraints G in

(Equation 3.24) are TUM. Therefore, S is simply [0, 1]m̂×n̂∩G. Given the decoded w, the output

labeling principle above essentially duplicates u as the output layer weight. A key advantage of

our method is to allow the weights of the two layers to be decoupled. By using a weight vector

r∈Rp, we define the output score as r′φw, where φ is a p-by-m̂n̂ matrix whose (i, j)-th column

47

is φij . So φ depends on e and h. Overall, our model follows by instantiating (Equation 3.12)

as:

min
‖U‖≤1

min
‖R‖≤1

E
(e,h,z)∼p̃

[
max
π

max
(θ,γ)∈N

max
v∈R

min
w
−zr′φw + vr′φw −G∗(v) + π′w

−σS(π) +
∑

ij
(u′φij + σwij)(γwij − θij)

]
.

(3.25)

Once more we can minimize out w, which gives rise to a quadratic,

(v − z)φ′r + γφ′u + π − σθ2
.

It is again amenable to SDP relaxation, where (Mu,u,Mr,u,Mr,r) correspond to (uu′, ru′, rr′)

resp.

3.6.2 Homogeneous temporal models

A variety of structured output problems are formulated with graphical models. We high-

light the gist of our technique by using a concrete example: unsupervised structured learning for

inpainting. Suppose we are given images of handwritten words, each segmented into p letters,

and the latent representation is the corresponding letters. Since letters are correlated in their

appearance in words, the recognition problem has long been addressed using linear chain con-

ditional random fields. However imagine no ground truth letter label is available, and instead

of predicting labels, we are given images in which a random small patch is occluded. So our

goal will be inpainting the patches.

48

To cast the problem in our two-layer latent structure model, let each letter image in the

word be denoted as a vector xi∈Rn, and the reconstructed image be zi∈Rm (m = n here).

Let Yi∈{0, 1}h×h (h = 26) encode the labels of the letter pair at position i and i + 1 (as

rows and columns of Yi respectively). Let Uv∈Rh×n be the letter-wise discriminative weights,

and Ue∈Rh×h be the pairwise weights. Then by (Equation 3.2), the MAP inference can be

reformulated as (ref. definition of H in (Equation 3.3))

min
{Yi}∈Y

∑p

i=1
1′Y ′i Uvxi +

∑p−1

i=1
tr(U ′eYi) where Y =

{
{Yi} : Yi∈{0, 1}C×C

}
∩H. (3.26)

Since the non-box constraints inH are TUM, the problem can be cast in our framework with S =

convY =
{
{Yi} : Yi∈[0, 1]C×C

}
∩H. Finally to reconstruct the image for each letter, we assume

that each letter j has a basis vector rj∈Rm. So given Wi, the output of reconstruction is R′Wi1,

where R = (r1, . . . , rh)′. To summarize, our model can be instantiated from (Equation 3.12) as

min
‖U‖≤1

min
‖R‖≤1

E
(x,z)∼p̃

[
max
π

max
(θ,γ)∈N

max
v

min
W

∑p

i=1
(vi − zi)

′R′Wi1−G∗(vi) (3.27)

+ tr(π′W)− σS(π) +
∑p

i=1
tr((Uvxi1

′ + Ji6=pKUe + σWi)
′(γWi − θi))

]
.

49

Here zi is the inpainted images in the training set. If no training image is occluded, then just

set zi to xi. The constraints on U and R can be refined, e.g. bounding ‖Uv‖, ‖Ue‖, and ‖rj‖

separately. As before, we can derive a quadratic term,

R(vi − zi)1
′ + γUvxi1

′ + γUe + πi − σθi2,

by minimizing out Wi, which again leads to SDP relaxations. Even further, we may allow each

letter to employ a set of principal components, whose combination yields the reconstruction

(Appendix B.4).

Besides modeling flexibility, our method also accommodates problem-specific simplification.

For example, the dimension of w is often much higher than the number of non-box constraints.

Appendix B.5 shows that for linear chain, the dimension of w can be reduced from C2 to C via

partial Lagrangian.

3.7 Experiments

To empirically evaluate our convex method (henceforth referred to as CVX), we compared

it with the state-of-the-art methods on two prediction problems with latent structure.

3.7.1 Transliteration

The first experiment is based on the English-Hebrew corpus [60]. It consists of 250 positive

transliteration pairs for training, and 300 pairs for testing. On average there are 6 characters

per word in each of the languages. All these pairs are considered “positive examples”, and

for negative examples we followed [42] and randomly sampled t− ∈ {50, 75, 100} pairs from

50

2502 − 250 mismatched pairings (which are 20%, 30%, and 40% of 250, resp). We did not use

many negative examples because, as per [42], our test performance measure will depend mainly

on the highest few discriminative values, which are learned largely from the positive examples.

Given a pair of words (e,h), the feature representation φij for the i-th letter in e and j-

th letter in h is defined as the unigram feature: an n-dimensional vector with all 0’s except a

single one in the (ei, hj)-th coordinate. In this dataset, there are n = 655 possible letter pairs (*

included). Since our primary objective is to determine whether the convex relaxation of a two-

layer model with latent structure can outperform locally trained models, we adopted this simple

but effective feature representation (rather than delving into heuristic feature engineering).

Our test evaluation measurement is the Mean Reciprocal Rank (MRR), which is the average

of the reciprocal of the rank of the correct answer. In particular, for each English word e, we

calculated the discriminative score of respective methods when e is paired with each Hebrew

word in the test set, and then found the rank of the correct word (1 for the highest). The

reciprocal of the rank is averaged over all test pairs, giving the MRR. So a higher value is

preferred, and 50% means on average the true Hebrew word is the runner-up. For our method,

the discriminative score is simply f := r′Φw (using the symbols in (Equation 3.25)), and that

for [42] is f := maxY ∈Y u′Φvec(Y) (vectorization of Y).

We compared our method (with σ = 0.1) against the state-of-the-art approach in [42]. It

is a special case of our model with the second-layer weight r tied with the first-layer weight

u. They trained it using a local optimization method, and we will refer to it as Local. Both

methods employ an output loss function max{0, yf}2 with y ∈ {+1,−1}, and both contain only

51

one parameter—the bound on ‖u‖ (and ‖r‖). We simply tuned it to optimize the performance

of Local. The test MRR is shown in Figure 3, where the number of negative examples was

varied in 50, 75, and 100. Local was trained with random initialization, and we repeated the

random selection of the negative examples for 10 times, yielding 10 dots in each scatter plot. It

is clear that CVX in general delivers significantly higher MRR than Local, with the dots lying

above or close to the diagonal. Since this dataset is not big,

the randomness of the negative set leads to notable variations in the performance (for both

methods).

3.7.2 Inpainting for occluded image

Our second experiment used structured latent model to inpaint images. We generated 200

sequences of images for training, each with p ∈ {4, 6, 8} digits. In order to introduce structure,

each sequence can be either odd (i.e. all digits are either 1 or 3) or even (all digits are 2 or 4).

So C = 4. Given the digit label, the corresponding image (x ∈ [0, 1]196) was sampled from the

MNIST dataset, downsampled to 14-by-14. 200 test sequences were also generated.

In the test data, we randomly set a k×k patch of each image to 0 as occluded (k ∈ {2, 3, 4}),

and the task is to inpaint it. This setting is entirely unsupervised, with no digit label available

for training. It falls in the framework of X → Y → Z, where X is the occluded input, Y is the

latent digit sequence, and Z is the recovered image. In our convex method, we tied Uv with

R and so we still have a 3-by-3 block matrix M , corresponding to I, Uv and Ue. We set σ to

10−1 and G(·) = 1
2 ‖·‖

2 (Gaussian). Y was predicted using the polar operator, based on which

Z was predicted with the Gaussian mean.

52

For comparison, we used CRF-AE, which was proposed very recently by [44]. Although it

ties X and Z, extension to our setting is trivial by computing the expected value of Z given

X. Here P (Z|Y) is assumed a Gaussian whose mean is learned by maximizing P (Z = x|X =

x), and we initialized all model parameters by unit Gaussian. For the ease of comparison,

we introduced regularization by constraining model parameters to L2 norm balls rather than

penalizing the squared L2 norm. For both methods, the radius bound was simply chosen as the

maximum L2 norm of the images, which produced consistently good results. We did not use

higher k because the images are sized 14-by-14.

The error of inpainting given by the two methods is shown in Table Table VI where we

varied the size of the occluded patch with p fixed to 6, and in Table Table VII where the length

of the sequence p was varied while k was fixed to 4. Each number is the sum of squared error

in the occluded patch, averaged over 5 random generations of training and test data (hence

producing the mean and standard deviation). Here we can see that CVX gives lower error

than CRF-AE. With no surprise, the error grows almost quadratically in k. When the length

of sequence grows, the error of both CVX and CRF-AE fluctuates nonmonotonically. This is

probably because with more images in each node, the total error is summed over more images,

but the error per image decays thanks to the structure.

3.8 Conclusion and discussion

In this section, we presented another example of a two-layer neural network setting, where

we wanted to explicitly incoporate latent structure information, while maintaining a jointly

convex training objective. To this end, we started with a bi-level optimization problem based

53

50 60 70 80
MRR of Local

50

60

70

80

M
R

R
 o

f C
V

X

(a) 50 negative examples

50 60 70 80
MRR of Local

50

60

70

80

M
R

R
 o

f C
V

X
(b) 75 negative examples

70 80 90
MRR of Local

70

80

90

M
R

R
 o

f C
V

X

(c) 100 negative examples

Figure 3: MRR of Local versus CVX over 50, 75, and 100 negative examples.

Size of occluded patch (k × k)
k = 2 k = 3 k = 4

CRF-AE 0.29± 0.01 0.80± 0.01 1.31± 0.02

CVX 0.27± 0.01 0.79± 0.01 1.28± 0.02

TABLE VI: Total inpainting error as a function
of the size of occluded patch (p = 8).

Length of sequence
p = 4 p = 6 p = 8

CRF-AE 1.33± 0.04 1.30± 0.02 1.31± 0.03

CVX 1.29± 0.04 1.27± 0.02 1.28± 0.03

TABLE VII: Total inpainting error as a func-
tion of the length of sequences (k = 4).

on the framework of total unimodularity (TUM), and we proposed a novel convex model using

the first order optimality conditions of the inner level optimization, which resulted in a semi-

definite program (SDP). The effectiveness of our model was demonstrated by the superior

empirical performance over local training, along with low-rank characterization of the extreme

points of the feasible region. A simple but interesting extension of this framework would be

54

to analyze the model when the latent layer employs submodularity, with its base polytope

mirroring the support set S.

CHAPTER 4

CONVEX REPRESENTATION LEARNING FOR GENERALIZED

INVARIANCE IN SEMI-INNER-PRODUCT SPACES

(Parts of this chapter were previously published as “Convex Representation Learning for

Generalized Invariance in Semi-Inner-Product Space” [24] at the International Conference on

Machine Learning (ICML 2020))

4.1 Introduction

Effective modeling of structural priors has been the workhorse of a variety of machine

learning algorithms. Such priors are available in a rich supply, including invariance [61, 62],

equivariance [63, 64], disentanglement [65, 66], homophily/heterophily [67], fairness [68], corre-

lations in multiple views and modalities [69,70], etc.

In this paper we focus on “generalized invariance”, where certain relationship holds irre-

spective of certain changes in data. This extends traditional settings that are limited to, e.g.,

transformation and permutation. For instance, in multilabel classification there are semantic

or logical relationships between classes which hold for any input. Common examples include

mutual exclusion and implication [71, 72]. In mixup [73], a convex interpolation of a pair of

examples is postulated to yield the same interpolation of output labels.

While conventional wisdom learns models whose prediction accords with these structures,

recent developments show that it can be more effective to learn structure-encoding represen-

55

56

tations. Towards this goal, the most straightforward approach is to directly parameterize the

model. For example, deep sets model permutation invariance via an additive decomposition [74],

convolutional networks use sparse connection and parameter sharing to model translational in-

variance, and a similar approach has been developed for equivariance [75]. Although they

simplify the model and can enforce invariance over the entire space, their applicability is very

restricted, because most useful structures do not admit a readily decomposable parameteri-

zation. As a result, most invariance/equivariance models are restricted to permutations and

group based diffeomorphism.

In order to achieve significantly improved generality and flexibility, the regularization ap-

proach can be leveraged, which penalizes the violation of pre-specified structures. For ex-

ample, [76] penalizes the norm of the Jacobian matrix to enforce contractivity, conceivably a

generalized type of invariance. [77] proposed using a max-margin loss over all transforma-

tions [78]. However, for most structures, regularization leads to a nonconvex problem. Despite

the recent progress in optimization for deep learning, the process still requires a lot of trial and

error. Therefore a convex learning procedure will be desirable, because besides the convenience

in optimization, it also offers the profound advantage of decoupling parameter optimization

from problem specification: poor learning performance can only be ascribed to a poor model

architecture, not to poor local minima.

Indeed convex invariant representation learning has been studied, but in limited settings.

Tangent distance kernels [79] and Haar integration kernels are engineered to be invariant to a

group of transformations [80–82], but it relies on sampling for tractable computation and the

57

sample complexity is O(d/ε2) where d is the dimension of the underlying space. [83] treated

all perturbations within an ellipsoid neighborhood as invariances, and it led to an expensive

second order cone program (SOCP). Other distributionally robust formulations also lead to

SOCP/SDPs [84]. The most related work is [85], which warped a reproducing kernel Hilbert

space (RKHS) by linear functionals that encode the invariances. However, in order to keep the

warped space an RKHS, their applicability is restricted to quadratic losses on linear functionals.

In practice, however, there are many invariances that cannot be modeled by quadratic

penalties. For example, the logical relationships between classes impose an ordering in the

discriminative output [71], and this can hardly be captured by quadratic forms. Similarly, when

a large or infinite number of invariances are available, measuring the maximum violation makes

more sense than their sum, and it is indeed the principle underlying adversarial learning [86].

Again this is not amenable to quadratic forms.

Our goal, therefore, is to develop a convex representation learning approach that efficiently

incorporates generalized invariances as semi-norm functionals. Our first contribution is to show

that compared with linear functionals, semi-norm functionals encompass a much broader range

of invariance (Sections 4.5 and 4.6).

Our key tool is the semi-inner-product space [87], into which an RKHS can be warped by

augmenting the RKHS norm with semi-norm functionals. A specific example of s.i.p. space is

the reproducing kernel Banach space [88], which has been used for `p regularization in, e.g.,

kernel SVMs, and suffers from high computational cost [89–94]. A s.i.p. space extends RKHS

by relaxing the underlying inner product into a semi-inner-product, while retaining the most

58

important construct: kernel function. To the best of our knowledge, s.i.p. space has yet been

applied to representation learning.

Secondly, we developed efficient computation algorithms for solving the regularized risk

minimization (RRM) with the new s.i.p. norm (Section 4.3). Although [88] established the

representer theorem from a pure mathematical perspective, no practical algorithm was provided

and ours is the first to fill this gap.

However, even with this progress, RRMs still do not provide invariant representations of

data instances; it simply learns a discriminant function by leveraging the representer theorem

(which does hold in the applications we consider). So our third contribution, as presented in

Section 4.4, is to learn and extract representations by embedding s.i.p. kernel representers

in Euclidean spaces. This is accomplished in a convex and efficient fashion, constituting a

secondary advantage over RRMs which is not convex in the dual coefficients. Different from

Nyström or Fourier linearization of kernels in RKHS, the kernel representers in a s.i.p. space

carry interestingly different meanings and expressions in primal and dual spaces. Finally, our

experiments demonstrate that the new s.i.p.-based algorithm learns more predictive represen-

tations than strong baselines.

4.2 Preliminaries

Suppose we have an RKHS H = (F , 〈·, ·〉H , k) with F ⊆ RX , inner product 〈·, ·〉H and

kernel k : X × X → R. Our goal is to renorm H hence warp the distance metric by adding a

functional R that induces desired structures.

59

4.2.1 Existing works on invariance modeling by RKHS

[95] and [96] proposed modeling invariances by bounded linear functionals in RKHS. Given

a function f , the graph Laplacian is
∑

ij wij(f(xi) − f(xj))
2, and obviously f(xi) − f(xj) is

bounded and linear. Transformation invariance can be characterized by ∂
∂α |α=0f(I(α)), where

I(α) stands for the image after applying an α amount of rotation, translation, etc. It is again

bounded and linear. By Riesz representation theorem, a bounded linear functional can be

written as 〈zi, f〉H for some zi ∈ H.

Based on this view, [85] took a step towards representation learning. By adding R(f)2 :=∑
i 〈zi, f〉

2
H to the RKHS norm square, the space is warped to favor f that respects invariance,

i.e., small magnitude of 〈zi, f〉. They showed that it leads to a new RKHS with a kernel

k◦(x1, x2) = k(x1, x2)− z(x1)>(I +Kz)
−1z(x2), (4.1)

where z(x) =(z1(x), . . . , zm(x))> and Kz= (〈zi, zj〉)i,j .

Although the kernel representer of k◦ offers a new invariance aware representation, the

requirement that the resulting space remains an RKHS forces the penalties in R to be quadratic

on 〈zi, f〉, significantly limiting its applicability to a broader range of invariances such as total

variation
∫
x |f
′(x)|dx. Our goal is to relax this restriction by enabling semi-norm regularizers

with new tools in functional analysis, and illustrate its applications in Sections 4.5 and 4.6.

4.2.2 Semi-inner-product spaces

We first specify the range of regularizer R considered here.

60

Postulate 2. We assume that R : F → R is a semi-norm. Equivalently, R : F → R is convex

and R(αf) = |α|R(f) for all f ∈ F and α ∈ R (absolute homogeneity). Furthermore, we

assume R is closed (i.e., lower semicontinuous) w.r.t. the topology in H.

Since R is closed convex and its domain is the entire Hilbert space H, R must be continuous.

By exempting R from being induced by an inner product, we enjoy substantially improved

flexibility in modeling various regularities.

For most learning tasks addressed below, it will be convenient to directly construct R from

the specific regularity. However, in some context it will also be convenient to constructively

explicate R in terms of support functions.

Proposition 1. R(f) satisfies Assumption 2 if, and only if, R(f) = supg∈S 〈f, g〉H, where

S ⊆ H is bounded in the RKHS norm and is symmetric (g ∈ S ⇔ −g ∈ S).

The proof is in Appendix C.1. Using R, we arrive at a new norm defined by

‖f‖B :=

√
‖f‖2H +R(f)2, (4.2)

thanks to Assumption 2. It is immediately clear from Proposition 1 that ‖f‖H ≤ ‖f‖B ≤

C ‖f‖H, for some constant C > 0 that bounds the norm of S. In other words, the two norms

‖·‖H and ‖·‖B are equivalent, hence in particular the norm ‖·‖B is complete. We thus arrive

at a Banach space B = (F , ‖ · ‖B). Note that both H and B have the same underlying vector

space F—the difference is in the norm or distance metric.

To proceed, we need to endow more structures on B.

61

Definition 2 (Strict convexity). A normed vector space (F , ‖ · ‖) is strictly convex if for all

0 6= f, g ∈ F ,

‖f + g‖ = ‖f‖+ ‖g‖ (4.3)

implies g = αf for some α ≥ 0. Equivalently, if the unit ball B := {f ∈ F : ‖f‖ ≤ 1} is strictly

convex.

Using the parallelogram law it is clear that the Hilbert norm ‖ · ‖H is strictly convex.

Moreover, since summation preserves strict convexity, it follows that the new norm ‖ · ‖B is

strictly convex as well.

Definition 3 (Gâteaux differentiability). A normed vector space (F , ‖ · ‖) is Gâteaux differen-

tiable if for all 0 6= f, g ∈ F , there exists the directional derivative

lim
t∈R,t→0

1
t (‖f + tg‖ − ‖f‖). (4.4)

We remark that both strict convexity and Gâteaux differentiability are algebraic but not

topological properties of the norm. In other words, two equivalent (in terms of topology) norms

may not be strictly convex or Gâteaux differentiable at the same time. For instance, the `2-

norm on Rd is both strictly convex and Gâteaux differentiable, while the equivalent `1-norm is

not.

62

Recall that B∗ is the dual space of B, consisting of all continuous linear functionals on B and

equipped with the dual norm ‖F‖B∗ = sup‖f‖B≤1 F (f). The dual space of a normed (reflexive)

space is Banach (reflexive).

Definition 4. A Banach space B is reflexive if the canonical map : B → B∗∗, f 7→ 〈·; f〉 :=

〈f ; ·〉 is onto, where 〈f ;F 〉 is the (bilinear) duality pairing between dual spaces. Here · is any

element in B∗.

Note that reflexivity is a topological property. In particular, equivalent norms are all reflex-

ive if any one of them is. As any Hilbert space H is reflexive, so is the equivalent norm ‖ · ‖B

in (Equation 4.2).

Theorem 5 ([97]). A Banach space B is strictly convex (Gâteaux differentiable) if its dual

space B∗ is Gâteaux differentiable (strictly convex). The converse is also true if B is reflexive.

Combining Proposition 1 and Theorem 5, we see thatR, hence ‖·‖B, is Gâteaux differentiable

if (the closed convex hull of) the set S in Proposition 1 is strictly convex.

We are now ready to define a semi-inner-product (s.i.p.) on a normed space (F , ‖ · ‖). We

call a bivariate mapping [·, ·] : F × F → R a s.i.p. if for all f, g, h ∈ F and λ ∈ R,

• additivity: [f + g, h] = [f, h] + [g, h]

• homogeneity: [λf, g] = [f, λg] = λ[f, g],

• norm-inducing: [f, f] = ‖f‖2,

• Cauchy-Schwarz: [f, g] ≤ ‖f‖ · ‖g‖.

63

We note that an s.i.p. is additive in its second argument iff it is an inner product (by simply

verifying the parellelogram law). [87] proved that s.i.p. does exist on every normed space.

Indeed, let the subdifferential J = ∂ 1
2‖ · ‖

2
B : B ⇒ B∗ be the (multi-valued) duality mapping.

Then, any selection j : B → B∗, f 7→ j(f) ∈ J(f) with the convention that j(0) = 0 leads to a

s.i.p.:

[f, g] := 〈f ; j(g)〉 . (4.5)

Indeed, from definition, for any f 6= 0, j(f) = ‖f‖F , where ‖F‖∗ = 1 and 〈f ;F 〉 = ‖f‖.

A celebrated result due to [98] revealed the uniqueness of s.i.p. if the norm ‖ · ‖ is Gâteaux

differentiable, and later [99] proved that the (unique) mapping j is onto iff B is reflexive.

Moreover, j is 1-1 if B is strictly convex (like in (Equation 4.2)), as was shown originally in [98].

Let us summarize the above results.

Definition 5. A Banach space B is called a s.i.p. space iff it is reflexive, strictly convex, and

Gâteaux differentiable. Clearly, the dual B∗ of a s.i.p. space is s.i.p. too.

Theorem 6 (Riesz representation). Let B be a s.i.p. space. Then, for any continuous linear

functional f∗ ∈ B∗, there exists a unique f ∈ B such that

f∗ = [·, f] = j(f), and ‖f‖ = ‖f∗‖B∗ . (4.6)

64

From now on, we identify the duality mapping j with the star operator f∗ := j(f). Thus,

we have a unique way to represent all continuous functionals on a s.i.p. space. Conveniently,

the unique s.i.p. on the dual space follows from (Equation 4.5): for all f∗, g∗ ∈ B∗,

[f∗, g∗] := [g, f] = 〈g; f∗〉 , (4.7)

from which one easily verifies all properties of an s.i.p. Some literature writes [f∗, g∗]B∗ , [g, f]B,

〈g; f∗〉B∗ , and 〈f ; g∗〉B to make it explicit where the operations take place. We simplify these

notations by omitting subscripts when the context is clear, but still write ‖f‖B and ‖f∗‖B∗ .

Finally, fix x ∈ X and consider the evaluation (linear) functional evx : B → R, f 7→ f(x).

When evx is continuous (which indeed holds for our norm (Equation 4.2)), Theorem 6 implies

the existence of a unique Gx ∈ B such that

f(x) = evx(f) = [f,Gx] = [G∗x, f
∗]. (4.8)

Varying x ∈ X we obtain a unique s.i.p. kernel G : X × X → R such that Gx := G(·, x) ∈ B.

Thus, using s.i.p. we obtain the reproducing property:

f(x) = [f,G(·, x)], G(x, y) = [G(·, y), G(·, x)]. (4.9)

Different from a reproducing kernel in RKHS, G is not necessarily symmetric or positive semi-

definite.

65

4.3 Regularized Risk Minimization

In this section we aim to provide a computational device for the following regularized risk

minimization problem:

min
f∈H

`(f) + ‖f‖2H +R(f)2. (4.10)

where `(f) is the empirical risk depending on discriminant function values {f(xj)}nj=1 for train-

ing examples {xj}. Clearly, this objective is equivalent to

min
f∈B

`(f) + ‖f‖2B . (4.11)

Remark 1. Unlike the usual treatment in reproducing kernel Banach spaces (RKBS) [88], we

only require B to be reflexive, strictly convex and Gâteaux differentiable, instead of the much

more demanding uniform convexity and smoothness. This more general condition not only

suffices for our subsequent results but also simplifies the presentation. A similar definition like

ours was termed pre-RKBS in [100].

[88] established the representer theorem for RKBS: the optimal f for (Equation 4.11) has

its dual form

f∗ =
∑

j
cjG

∗
xj , (4.12)

66

where {cj} are real coefficients. To optimize {cj}, we need to substitute (Equation 4.12) into

(Equation 4.11), which in turn requires evaluating i) ‖f‖2B, which equals ‖f∗‖2B∗ ; ii) f(x), which,

can be computed through inverting the star operator as follows:

‖f∗‖B∗ = max
‖h‖B≤1

〈h; f∗〉 = max
‖h‖B≤1

∑
j
cj

〈
h;G∗xj

〉
= max

h:‖h‖2H+R(h)2≤1

∑
j
cjh(xj),

where the last equality is due to (Equation 4.8) and (Equation 4.5). The last maximization

step operates in the RKHS H, and thanks to the strict convexity of ‖ · ‖B, it admits the unique

solution

h = f/‖f‖B = f/‖f∗‖B∗ , (4.13)

because 〈f ; f∗〉 = ‖f‖B‖f∗‖B∗ , and B is a s.i.p. space.

We summarize this computational inverse below:

Theorem 7. If f∗ =
∑

j cjG
∗
xj , then f = ‖f‖B f◦, where

f◦ := arg max
h:‖h‖2H+R(h)2≤1

∑
j

cjh(xj), (4.14)

‖f‖B =
∑

j
cjf
◦(xj) =

〈
f◦,
∑

j
cjk(xj , ·)

〉
H
. (4.15)

In addition, the argmax in (Equation 4.14) is attained uniquely.

67

In practice, we first compute f◦ by solving (Equation 4.14), and then f can be evaluated

at different x without redoing any optimization. As a special case, setting f∗= G∗x allows us

to evaluate the kernel Gx = G◦x(x)G◦x.

Specialization to RKHS.

When R(f)2 =
∑

i 〈zi, f〉
2
H, ‖·‖B is induced by an inner product, making B an RKHS.

Now we can easily recover (Equation 4.1) by applying Theorem 7, because the optimization in

(Equation 4.14) with f∗ = G∗x is

max
h∈H

h(x), s.t. ‖h‖2H +
∑

k
〈zk, h〉2H ≤ 1, (4.16)

and its unique solution can be easily found in closed form:

G◦x =
k(·, x)− (z1, . . . , zm)(I +Kz)

−1z(x)

(k(x, x)− z(x)>(I +Kz)−1z(x))1/2
. (4.17)

Plugging into Gx = G◦x(x)G◦x, we recover (Equation 4.1).

Overall, the optimization of (Equation 4.11) may no longer be convex in {cj}, because f(x)

is generally not linear in {cj} even though f∗ is (since the star operator is not linear). In

practice, we can initialize {cj} by training without R(f) (i.e., setting R(f) to 0). Despite the

nonconvexity, we have achieved a new solution technique for a broad class of inverse problems,

where the regularizer is a semi-norm.

68

4.4 Convex Representation Learning by Euclidean Embedding

Interestingly, our framework—which so far only learns a predictive model—can be directly

extended to learn structured representations in a convex fashion. In representation learning,

one identifies an “object” for each example x, which, in our case, can be a function in F or a

vector in Euclidean space. Such a representation is supposed to have incorporated the prior

invariances in R, and can be directly used for other (new) tasks such as supervised learning

without further regularizing by R. This is different from the regularized risk minimization in

Section 4.3, which, although still enjoys the representer theorem in the applications we consider,

only seeks a discriminant function f without providing a new representation for each example.

Our approach to convex representation learning is based on Euclidean embeddings (a.k.a.

finite approximation or linearization) of the kernel representers in a s.i.p. space, which is

analogous to the use of RKHS in extracting useful features. However, different from RKHS,

Gx and G∗x play different roles in a s.i.p. space, hence require different embeddings in Rd. For

any f ∈ B and g∗ ∈ B∗, we will seek their Euclidean embeddings ι(f) and ι∗(g∗), respectively.

Note ι∗ is just a notation, not to be interpreted as “the adjoint of ι.”

We start by identifying the properties that a reasonable Euclidean embedding should satisfy

intuitively. Motivated by the bilinearity of 〈·; ·〉B, it is natural to require

〈f ; g∗〉B ≈ 〈ι(f), ι∗(g∗)〉 , ∀f ∈ B, g∗ ∈ B∗, (4.18)

69

where 〈·, ·〉 stands for Euclidean inner product. As 〈·; ·〉B is bilinear, ι and ι∗ should be linear

on B and B∗ respectively. Also note ι∗((f + g)∗) 6= ι∗(f∗) + ι∗(g∗) in general.

Similar to the linearization of RKHS kernels, we can apply invertible transformations to

ι and ι∗. For example, doubling ι while halving ι∗ makes no difference. We will just choose

one representation out of them. It is also noteworthy that in general, ‖ι(f)‖ (Euclidean norm)

approximates ‖f‖H instead of ‖f‖B. (Equation 4.18) is the only property that our Euclidean

embedding needs to satisfy.

We start by embedding the unit ball B := {f ∈ F : ‖f‖B ≤ 1}. Characterizing R by support

functions as in Proposition 1, a natural Euclidean approximation of ‖·‖B is

‖v‖2B̃ := ‖v‖2 + maxg∈S 〈v, g̃〉2 , ∀ v ∈ Rd, (4.19)

where g̃ is the Euclidean embedding of g in the original RKHS, designed to satisfy that 〈f̃ , g̃〉 ≈

〈f, g〉H for all f, g ∈ H (or a subset of interest). Commonly used embeddings include Fourier

[101], hash [102], Nyström [103], etc. For example, given landmarks {zi}ni=1 sampled from X ,

the Nyström approximation for a function f ∈ H is

f̃ = K−1/2
z (f(z1), . . . , f(zn))>, where Kz := [k(zi, zj)]i,j ∈ Rn×n. (4.20)

Naturally, the dual norm of ‖·‖B̃ is

‖u‖B̃∗ := maxv:‖v‖B̃≤1 〈u, v〉 , ∀ u ∈ Rd. (4.21)

70

B B̃

B∗ B̃∗

ι

j j̃

ι∗

j−1 j̃−1

Figure 4: The commutative diagram for our embeddings.

Clearly the unit ball of ‖·‖B̃ and ‖·‖B̃∗ are also symmetric, and we denote them as B̃ and B̃∗,

respectively.

As shown in Figure Figure 4, we have the following commutative diagram. Let j : B → B∗

be the star operator and j−1 its inverse, and similarly for j̃ : B̃ → B̃∗ and its inverse j̃−1. Then,

it is natural to require

ι = j̃−1 ◦ ι∗ ◦ j, (4.22)

where j̃−1 can be computed for any u := ι∗(f∗) via a Euclidean counterpart of Theorem 7:

j̃−1(u) := ‖u‖B̃∗ · arg maxv∈B̃ 〈v, u〉 . (4.23)

The argmax is unique because ‖·‖B̃ is strictly convex.

71

At last, how can we get ι∗(f∗) in the first place? We start from the simpler case where

f∗ has a kernel expansion as in (Equation 4.12).1 Here, by the linearity of ι∗, it will suffice to

compute ι∗(G∗x). By Theorem 7,

Gx = G◦x(x)G◦x, where G◦x := arg maxh∈B h(x)

is uniquely attained. Denoting ky := k(·, y), it follows

〈
Gx;G∗y

〉
B

by (Equation 4.8)
= G(x, y) = 〈Gx, ky〉H= 〈G◦x(x)G◦x, ky〉H .

So by comparing with (Equation 4.18), it is natural to introduce

ι∗(G∗y) := k̃y, (4.24)

ι(Gx) := G◦x(x)G̃◦x ≈
〈
G̃◦x, k̃x

〉
G̃◦x, (4.25)

where G̃◦x := arg maxv∈B̃

〈
v, k̃x

〉
. (4.26)

1We stress that although the kernel expansion (Equation 4.12) is leveraged to motivate the design
of ι∗, the underlying foundation is that the span of {G∗x : x ∈ X} is dense in B∗ (Theorem 8). The
representer theorem [88], which showed that the solution to (Equation 4.11) must be in the form of
(Equation 4.12), is not relevant to our construction.

72

The last optimization is convex and can be solved very efficiently because, thanks to the positive

homogeneity of R, it is equivalent to

min
v

{
‖v‖2 + maxg∈S 〈v, g̃〉2

}
s.t. v>k̃x = 1. (4.27)

Detailed derivation and proof are relegated to Appendix C.3. To solve (Equation 4.27), LBFGS

with projection to a hyperplane (which has a trivial closed-form solution) turned out to be

very efficient in our experiment. Overall, the construction of ι(f) and ι∗(f∗) for f∗ from

(Equation 4.12) proceeds as follows:

1. Define ι∗(G∗x) = k̃x;

2. Define ι∗(f∗) =
∑

i αik̃xi for f∗ =
∑

i αiG
∗
xi ;

3. Define ι(f) based on ι∗(f∗) by using (Equation 4.22).

In the next subsection, we will show that these definitions are sound, and both ι and ι∗ are

linear. However, the procedure may still be inconvenient in computation, because f needs to

be first dualized to f∗, which in turn needs to be expanded into the form of (Equation 4.12).

Fortunately, our representation learning only needs to compute the embedding of Gx, bypassing

all these computational challenges.

4.4.1 Analysis of Euclidean Embeddings

The previous derivations are based on the necessary conditions for (Equation 4.18) to hold.

We now show that ι and ι∗ are well-defined, and are linear. To start with, denote the base

73

Euclidean embedding on H by T : H → Rd, where T (f) = f̃ . Then by assumption, T is linear

and k̃x = T (k(·, x)).

Theorem 8. ι∗(f∗) is well defined for all f∗ ∈ B∗, and ι∗ : B∗ → Rd is linear. That is,

a) If f∗ =
∑

i αiG
∗
xi =

∑
j βjG

∗
zj are two different expansions of f∗, then

∑
i αik̃xi =∑

j βj k̃zj .

b) The linear span of {G∗x : x ∈ X} is dense in B∗. So extending the above to the whole B∗

is straightforward thanks to the linearity of T .

We next analyze the linearity of ι. To start with, we make two assumptions on the Euclidean

embedding of H.

Postulate 3 (surjectivity). For all v ∈ Rd, there exists a gv ∈ H such that g̃v = v.

Assumption 3 does not cost any generality, because it is satisfied whenever the d coordinates

of the embedding are linearly independent. Otherwise, this can still be enforced easily by

projecting to an orthonormal basis of {g̃ : g∈ H}.

Postulate 4 (lossless).
〈
f̃ , g̃
〉

= 〈f, g〉H for all f, g ∈ H. This is possible when, e.g., H is

finite dimensional.

Theorem 9. ι :B→Rd is linear under Assumptions 3 & 4.

Although Theorems 8 and 9 appear intuitive, the proof for the latter is rather nontrivial

and is deferred to Appendix C.1. Some lemmas there under Assumptions 3 and 4 may be of

interest too, hence highlighted here.

74

1. 〈ι(f), ι∗(g∗)〉 = 〈f ; g∗〉, ∀ f ∈ B, g∗ ∈ B∗.

2. ‖g‖B = ‖g∗‖B∗ = ‖ι∗(g∗)‖B̃∗ = ‖ι(g)‖B̃, ∀ g ∈ B.

3. B̃ = ι(B) := {ι(f) : ‖f‖B ≤ 1}.

4. B̃∗ = ι∗(B∗) := {ι∗(g∗) : ‖g∗‖B∗ ≤ 1}.

5. maxv∈B̃ 〈v, ι
∗(g∗)〉 = maxf∈B 〈f ; g∗〉 , ∀g∗ ∈ B∗.

4.4.2 Analysis under Inexact Euclidean Embedding

When Assumption 4 is unavailable, Theorem 8 still holds, but the linearity of ι has to be

relaxed to an approximate sense. To analyze it, we first rigorously quantify the inexactness of

the Euclidean embedding T . Consider a subspace based embedding, such as Nyström approx-

imation. Here T satisfies that there exists a countable set of orthonormal bases {ei}∞i=1 of H,

such that

1. Tek = 0 for all k > d,

2. 〈Tf, Tg〉 = 〈f, g〉H, ∀f, g ∈ V :=span{e1, . . . , ed}.

Clearly the Nyström approximation in (Equation 4.20) satisfies these conditions, where d = n,

and {e1, . . . , ed} is any orthornormal basis of {kz1 , . . . , kzd} (assuming d is no more than the

dimensionality of H).

Definition 6. f ∈ H is called ε-approximable by T if

∥∥∥∥∥f −
d∑
i=1

〈f, ei〉H ei

∥∥∥∥∥
H

≤ ε. (4.28)

75

In other words, the component of f in V ⊥ is at most ε.

Theorem 10. Let f, g ∈ F and α ∈ R. Then ι(αf1) = αι(f1). If f , g, and all elements in S

are ε-approximable by T , then

|〈ι(f), ι∗(g∗)〉 − 〈f ; g∗〉| = O(
√
ε) (4.29)

‖ι(f + g)− ι(f)− ι(g)‖ = O(
√
ε). (4.30)

The proof is in Appendix C.2.

To summarize, the primal embedding ι(Gx) as defined in (Equation 4.25) provides a new

feature representation that incorporates structures in the data. Based on it, a simple linear

model can be trained to achieve the desired regularities in prediction. We now demonstrate its

flexibility and effectiveness on two example applications.

4.5 Application 1: Mixup

Mixup is a data augmentation technique [73], where a pair of training examples xi and xj are

randomly selected, and their convex interpolation is postulated to yield the same interpolation

of output labels. In particular, when yi ∈ {0, 1}m is the one-hot vector encoding the class that

xi belongs to, the loss for the pair is

Eλ[`(f(λxi + (1− λ)xj︸ ︷︷ ︸
=: x̃λ

), λyi + (1− λ)yj︸ ︷︷ ︸
=: ỹλ

)]. (4.31)

76

Existing literature relies on stochastic optimization, with a probability pre-specified on λ. This

is somewhat artificial. Changing expectation to maximization appears more appealing, but no

longer amenable to stochastic optimization.

To address this issue and to learn representations that incorporate mixup prior while also

accommodating classification with multiclass or even structured output, we resort to a joint

kernel k((x, y), (x′, y′)), whose simplest form is decomposed as kx(x, x′)ky(y, y′). Here kx and

ky are separate kernels on input and output respectively. Now a function f(x, y) learned from

the corresponding RKHS quantifies the “compatibility” between x and y, and the prediction

can be made by arg maxy f(x, y). In this setting, the R(f) for mixup regularization can leverage

the `p norm of gij(λ) := ∂
∂λf(x̃λ, ỹλ) over λ ∈ [0, 1], effectively accounting for an infinite number

of invariances.

Theorem 11. Rij(f) := ‖gij(λ)‖p satisfies Assumption 2 for all p ∈ (1,∞). The proof is in

Appendix C.1.

Clearly taking expectation or maximization over all pairs of n training examples still satisfies

Assumption 2. In our experiment, we will use the `∞ norm, which despite not being covered by

Theorem 11, is directly amenable to the embedding algorithm. More specifically, for each pair

(x, y) we need to embed k((·, ·), (x, y)) as a d×m matrix. This is different from the conventional

setting where each example x employs one feature representation shared for all classes; here

77

the representation changes for different classes y. To this end, we need to first embed each

invariance gij(λ) by

Zijλ := ∂
∂λ

(
k̃x̂λ ỹ

>
λ

)
=
(
∂
∂λ k̃x̂λ

)
ỹ>λ + k̃x̂λ(yi − yj)>.

Letting 〈A,B〉 = tr(A>B) and ‖V ‖2F=〈V, V 〉, the Euclidean embedding ι(Gx,y) can be derived

by solving (Equation 4.27):

min
V ∈Rd×m

{
α ‖V ‖2F +

1

n2

∑
ij

max
λ∈[0,1]

〈
V,Zijλ

〉2
}

(4.32)

s.t.
〈
V, k̃xy

>
〉

= 1. (4.33)

Although the maximization over λ in (Equation 4.32) is not concave, it is one dimensional and

grid search can solve it globally with O(1/ε) complexity. In practice, a local solver like L-BFGS

almost always found its global optimum in 10 iterations.

4.6 Application 2: Embedding Inference for Structured Multilabel Prediction

In output space, there is often prior knowledge about pairwise or multi-way relationships

between labels/classes. For example, if an image represents a cat, then it must represent

an animal, but not a dog (assuming there is at most one object in an image). Such logic

relationships of implication and exclusion can be highly useful priors for learning [71,72]. One

way to leverage it is to perform inference at test time so that the predicted multilabel conforms

to these logic. However, this can be computation intensive at test time, and it will be ideal if the

78

predictor has already accounted for these logic, and at test time, one just needs to make binary

decisions (relevant/irrelevant) for each individual category separately. We aim to achieve this

by learning a representation that embeds this structured prior.

To this end, it is natural to employ the joint kernel framework. We model the implication

relationship of y1 → y2 by enforcing f(x, y2) ≥ f(x, y1), which translates to a penalty on the

amount by which f(x, y1) is above f(x, y2)

[f(x, y1)− f(x, y2)]+, where [z]+ = max{0, z}. (4.34)

To model the mutual exclusion relationship of y1 ! y2, intuitively we can encourage that

f(x, y1) + f(x, y2) ≤ 0, i.e., a higher likelihood of being a cat demotes the likelihood of being a

dog. It also allows both y1 and y2 to be irrelevant, i.e., both f(x, y1) and f(x, y2) are negative.

This amounts to another sublinear penalty on f :

[f(x, y1) + f(x, y2)]+. (4.35)

To summarize, letting p̃ be the empirical distribution, we can define R(f) by

R(f)2 := E
x∼p̃

[
max
y1→y2

[f(x, y1)− f(x, y2)]2+ + max
y1!y2

[f(x, y1) + f(x, y2)]2+

]
. (4.36)

It is noteworthy that although R(f) is positively homogeneous and convex (hence sublinear),

it is no longer absolutely homogeneous and therefore not satisfying Assumption 2. However,

79

the embedding algorithm is still applicable without change. It will be interesting to study the

presence of kernel function G in spaces “normed” by sublinear functions. We leave it for future

work.

4.7 Experiments

Here we highlight the major results and experiment setup. Details on data preprocessing,

experiment setting, optimization, and additional results are given in Appendix C.5.

4.7.1 Sanity check for s.i.p. based methods

Our first experiment tries to test the effectiveness of optimizing the regularized risk (Equation 4.11)

with respect to the dual coefficients {cj} in (Equation 4.12). We compared 4 algorithms: SVM

with Gaussian kernel; Warping which incorporates transformation invariance by kernel warp-

ing as described in [85]; Dual which trains the dual coefficients {cj} by LBFGS to minimize

empirical risk as in (Equation 4.11); Embed which finds the Euclidean embeddings by convex

optimization as in (Equation 4.27), followed by a linear classifier. The detailed derivation of

the gradient in {cj} for Dual is relegated to Appendix C.4.

Four transformation invariances were considered, including rotation, scaling, and shifts to

the left and upwards. Warping summed up the square of ∂
∂α |α=0f(I(α)) over the four trans-

formations, while Dual and Embed took their max as the R(f)2. To ease the computation

of derivative, we resorted to finite difference for all methods, with two pixels for shifting, 10

degrees for rotation, and 0.1 unit for scaling. No data augmentation was applied.

All algorithms were evaluated on two binary classification tasks: 4 v.s. 9 and 2 v.s. 3, both

sampling 1000 training and 1000 test examples from the MNIST dataset. Since the square

80

TABLE VIII: Test accuracy of minimizing empirical risk on binary classification tasks.

SVM Warping Dual Embed

4 v.s. 9 97.1 98.0 97.6 97.8

2 v.s. 3 98.4 99.1 98.7 98.9

loss on the invariances used by Warping makes good sense, the purpose of this experiment is

not to show that the s.i.p. based methods are better in this setting. Instead we aim to perform

a sanity check on a) good solutions can be found for the nonconvex optimization over the dual

variables in Dual, b) the Euclidean embedding of s.i.p. representers performs competitively. As

Table Table VIII shows, both of the checks turned out affirmative, with both Dual and Embed

delivering similar accuracy as Warping. In addition, Embed achieved higher accuracy than dual

optimization, suggesting that the learned representations have well captured the invariances

and possess better predictive power.

4.7.2 Mixup

We next investigated the performance of Embed on mixup.

4.7.2.0.1 Datasets.

We experimented with three image datasets: MNIST, USPS, and Fashion MNIST, each

containing 10 classes. From each dataset, we drew n example for training and n examples for

testing, with n varied in 500 and 1000. Based on the training data, p number of pairs were

drawn from it.

81

Both Vanilla and Embed used Gaussian RKHS, along with Nyström approximation whose

landmark points consisted of the entire training set. The vanilla mixup optimizes the objective

(Equation 4.31) averaged over all sampled pairs. Following [73], The λ was generated from a

Beta distribution, whose parameter was tuned to optimize the performance. Again, Embed was

trained with a linear classifier.

Algorithms.

We first ran mixup with stochastic optimization where pairs were drawn on the fly. Then

we switched to batch training of mixup (denoted as Vanilla), with the number of sampled pair

increased from p = n, 2n, up to 5n. It turned out when p = 4n, the performance already

matches the best test accuracy of the online stochastic version, which generally witnesses much

more pairs. Therefore we also varied p in {n, 2n, 4n} when training Embed. each setting was

evaluated 10 times with randomly sampled training and test data. The mean and standard

deviation are reported in Table Table IX.

Results.

As Table Table IX shows, Embed achieves higher accuracy than Vanilla on almost all datasets

and combinations of n and p. The margin tends to be higher when the training set size (n and

p) is smaller. Besides, Vanilla achieves the highest accuracy at p = 4n.

4.7.3 Structured multilabel prediction

Finally, we validate the performance of Embed on structured multilabel prediction as de-

scribed in Section 4.6, showing that it is able to capture the structured relationships between

the class labels (implication and exclusion) in a hierarchical multilabel prediction task.

82

Datasets.

We conducted experiments on three multilabel datasets where additional information is

available about the hierarchy in its class labels [104]: Enron [105], WIPO [106], Reuters

[107]. Implication constraints were trivially derived from the hierarchy, and we took sib-

lings (of the same parent) as exclusion constraints. For each dataset, we experimented with

100/100, 200/200, 500/500 randomly drawn train/test examples.

Algorithms.

We compared Embed with two baseline algorithms for multilabel classification: a multilabel

SVM with RBF kernel (ML-SVM), and an SVM that incorporates the hierarchical label con-

straints (HR-SVM) [108]. No inference is conducted at test time, such as removing violations

of implications or exclusions known a priori.

Results.

Table X reports the accuracy on the three train/test splits for each of the datasets. Clearly,

Embed outperforms both the baselines in most of the cases.

4.8 Conclusions and Future Work

In this paper, we introduced a new framework of representation learning where an RKHS is

turned into a semi-inner-product space via a semi-norm regularizer, broadening the applicability

of kernel warping to generalized invariances, i.e., relationships that hold irrespective of certain

changes in data. For example, the mixup regularizer enforces smooth variation irrespective of

the interpolation parameter λ, and the structured multilabel regularizer enforces logic relation-

ships between labels regardless of input features. Neither of them can be modeled convexly

83

TABLE IX: Test accuracy on mixup classification task based on 10 random runs.

Dataset n = 500 n = 1000

p n 2n 4n n 2n 4n

MNIST Vanilla 90.16±1.40 90.93±1.01 91.40±1.04 91.00±1.17 92.01±1.21 92.48±1.03

Embed 91.36±1.41 91.90±1.08 92.11±1.01 92.51±1.01 92.79±0.98 93.03±1.00

USPS Vanilla 90.54±1.28 91.76±1.14 92.40±1.25 93.87±1.19 94.72±1.12 95.32±1.13

Embed 92.46±1.24 93.02±1.12 93.21±1.14 94.74±0.97 95.11±0.94 95.67±0.96

Fashion MNIST Vanilla 79.37±3.11 81.15±2.08 81.72±1.96 82.53±1.49 83.13±1.36 83.69±1.31

Embed 81.56±2.27 82.16±1.56 82.52±1.49 83.28±1.48 84.07±1.32 84.34±1.31

TABLE X: Test accuracy on multilabel prediction with logic relationship

Dataset
Embed ML-SVM HR-SVM

100 200 500 100 200 500 100 200 500

Enron 96.2±0.3 95.7±0.2 94.7±0.2 92.7±0.4 91.8±0.4 91.0±0.3 93.1±0.3 92.5±0.3 92.0±0.2

Reuters 95.7±1.4 97.2±1.2 98.0±0.4 94.2±1.4 95.1±1.3 95.2±1.2 95.1±1.2 97.3±1.3 97.7±1.3

WIPO 98.6±0.1 98.4±0.1 98.4±0.1 98.1±0.3 98.2±0.2 98.3±0.1 98.3±0.1 98.5±0.1 98.7±0.2

by conventional methods in transformation invariance, and the framework can also be directly

applied to non-parametric transformations [109]. An efficient Euclidean embedding algorithm

was designed and its theoretical properties are analyzed. Favorable experimental results were

demonstrated for the above two applications.

This new framework has considerable potential of being applied to other invariances and

learning scenarios. For example, it can be directly used in maximum mean discrepancy and the

Hilbert–Schmidt independence criterion, providing efficient algorithms that complement the

mathematical analysis in [110]. It can also be applied to convex deep neural networks [22, 23],

which convexify multi-layer neural networks through kernel matrices of the hidden layer outputs.

84

Other examples of generalized invariance include convex learning of: a) node representations

in large networks that are robust to topological perturbations [111]. The exponential number

of perturbation necessitates max instead of sum; b) equivariance based on the largest deviation

under swapped transformations over the input domain [75]; and c) co-embedding multiway

relations that preserve co-occurrence and affinity between groups [112].

CHAPTER 5

REPRESENTATION LEARNING FOR MINIMIZING CATASTROPHIC

FORGETTING IN DEEP NEURAL NETWORKS

5.1 Introduction

In order for real world artificial intelligence systems to get closer to human level intelligence,

it is imperative for machine learning models to learn continuously, as and when the data becomes

available. For instance, a multi-object detection system can be enriched by training on new

objects incrementally. In this case, the model has to learn new images and new class labels

in order to learn new objects. In some cases, a machine learning model might have to learn

what it already knows, but just better. For example, an image classifier which was previously

trained on images taken from the front view of a camera, can benefit from training with images

captured from the top view or other angles later on. Here, the label set (of the training data)

remains the same, but the model acquires richer details about already seen objects. All of the

above mentioned examples are use cases of continual learning, where a model is provided with

a sequence of tasks (data) and is expected to acquire new information on top of the existing

knowledge, by learning from the sequence. Formally, we are given a finite sequence of tasks

T = {Ti}ni=1, where each Ti = {xij , yij} is a labelled dataset, and xij is the jth example of

the ith task. In the continual learning setting, a machine learning model is expected to learn

85

86

incrementally on tasks from T and after learning on all the tasks, the model is expected to

perform well on the all the tasks in T .

Recently, the machine learning scientific community has been working on problems such as

(1) life long machine learning [113], where the knowledge accumulated by learning in the past is

used to solve new problems in the future, (2) transfer learning, where the gained knowledge is

re-purposed on a related, but different task, (3) multi-task learning, where a model is expected

to learn multiple different tasks (often a subset of a huge main task) in expectation that the

model will perform better on the main task after learning several sub tasks. All these above

mentioned popular and important machine learning problems are continual learning problems.

Indeed, in a continual learning setup, training each Ti is a standard supervised learning

task and can be handled by modern neural network models quite effectively. Unfortunately,

successively training a modern neural network model on T leads to a well known problem,

where the model exhibits degradation of performance on the old tasks gradually, as it gets

trained on the newer tasks. This phenomenon is called catastrophic forgetting [114]. Trivially,

the ML model can be retrained with the old and the new tasks jointly to mitigate catastrophic

forgetting. But with increase in size or the number of tasks (model update with new data),

such joint training approaches can become extremely inefficient.

Algorithmic solutions to deal with catastrophic forgetting for continual learning have been

recently proposed. One of the simplest approaches proposed, was to add a regularizer to the

parameters of the model to reduce catastrophic forgetting [115]. [116, 117] retains a part or

the whole of the existing network untouched and expands the network while adding new tasks.

87

They share parameters between tasks aiming to retain the outputs of the old tasks. A few other

works such as EWC (Elastic Weight Consolidation) [114], while not strictly enforcing network

retention, try to minimally change the network parameters, as new tasks are learned. In order

to perform well on new tasks, they adapt the model parameters for the new tasks while trying

to perform well on the old tasks. Authors of GEM [118] replay examples from earlier tasks when

training on new tasks. Works such as generative replay (GR) [119] and [1], while not storing

the past examples directly, learn a generative model of already seen examples so that they can

generate them for replay. Incremental moment matching (IMM) [120] explicitly matches the

network parameters of the old and new tasks to constrain the learned parameters to be closer

between tasks.

In a nutshell, most of the above mentioned solutions attempt to match tasks or predictions

on tasks, in one way or the other, in order to mitigate catastrophic forgetting and have shown to

be effective in doing so. However, all these methods assume the existence of strong correlations

between tasks, which may or may not exist. In the absence of such correlations, continual

learning algorithms could suffer significant loss of performance and forgetting due to the so-

called negative transfer phenomenon. On the other hand, accounting for such regularities

could in fact result in the opposite (and a more beneficial) effect called positive transfer, where

learning on a new task improves performance on an older task. The question then naturally is,

how to minimize catastrophic forgetting and aid positive transfer?

To that end, in this work we develop new regularizers in the framework of semi-inner-

product (s.i.p) space [85] that promotes learning representations that distill salient information

88

from previously learned tasks while also simultaneously improving classification accuracies on

newer tasks. The learned representations when used as input features to an existing continual

learning algorithm are shown to improve its performance significantly, especially when individ-

ual learning tasks are distributed differently.

5.2 Preliminaries

5.2.1 Short introduction to the existing solution

Our solution to address catastrophic forgetting for continual learning extends the work of [1].

The authors of [1] propose a new model architecture along with a specialized training procedure

that is aimed to address forgetting in every stage of the training process. Their model consists

of the following main components.

• Data Generator DG

• Dynamic Parameter Generator (DPG) f(.)

• Solver / Classifier S

S is a neural network parameterized by θ. The parameters θ are further divided into 2 sets; (1)

θ0 - that learns features that are common to all the datasets, (2) pi - parameters specific to a

given dataset. pi are generated dynamically by the DPG network for each task.

f(.) is another neural network that takes as input a feature embedding zij (generated by DG)

and predicts a parameter set pi. pi is then used by S (in addition to θ0) to make predictions.

DG is typically an auto-encoder (Wasserstein Auto Encoder (WAE) in this case) that has

the following uses.

89

Figure 5: Training pipeline of [1]. (Image credit Hu et al. [1]).

1. Encode the raw input xi to a lower dimensional subspace zi - to be consumed by DPG.

2. Replay examples from an already “seen” dataset, which is used to ensure that the infor-

mation learned in the previous training iteration is intact.

The overall architecture is given in Figure 5. [1] addresses the catastrophic forgetting problem

by training the various neural network modules in their pipeline to explicitly remember infor-

mation from previously trained datasets using specially designed loss functions. Additionally,

the dynamic component of the solver S, which is generated for every incoming task ensures

that accurate predictions are made on new datasets.

Loss functions employed by [1].

The authors of [1] use several loss functions in order to efficiently optimize the various

components (S, f , and DPG) mentioned in the previous section to minimize forgetting. This

90

is of course in addition to the standard classification loss (for discriminative training of S) and

reconstruction loss (for training the auto encoder).

We are particularly interested in the mechanism for mitigating catastrophic forgetting in

S. Here [1] uses an extension of the so-called distillation loss, which constrains the outputs of

two successive sets of learned parameters to be close to each other. Specifically, if θi and θi−1

are the learned parameters of S in successive iterations i, i− 1, then the proposed loss function

minimizes the following objective.

min
µ,θ0
Lce(S(xi, θi), yi) (5.1)

s.t.

M∑
m=1

||R(x′m, θi)−R(x′m, θi−1)|| < εr

where R(.) denotes the output of a layer of the solver S and Lce is the standard cross-entropy

loss. Simply put, the loss function constraints the predictions of S to be closer to each other.

In addition to Equation 5.1, [1] has other losses to address forgetting in the autoencoder.

5.2.2 Unsupervised Domain Adaptation

In this section, we will describe a different but related problem in machine learning called

domain adaptation. We are specifically interested in a special case of domain adaptation called

unsupervised domain adaptation (UDA) where data comes from two domains: source and

target [70]. In both domains, the input takes value in X , and the label space is Y. The

source data has distribution Ps while the target data has distribution Pt. In the covariate

shift setting, Pt(X) differs from Ps(X) while the concept P (Y |X) does not change, i.e., the

91

conditional distribution of label given the input is invariant across domains. Our goal is then

to learn accurate predictors for the target domain using labeled examples in the source domain

along with unlabeled examples in the target domain.

Domain alignment techniques attempt to match the feature distribution across domains.

Ideally, it would seek a measurable feature mapping g̃ such that the class conditional distri-

butions are aligned: g̃#Ps(·|y) ≈ g̃#Pt(·|y) for all y ∈ Y, where g̃#P is the push-forward

of a distribution P under g̃. However, since no label is available in the target domain, most

approaches resort to aligning g̃#Ps(x) and g̃#Pt(x), which unfortunately does not guarantee

the alignment of g̃#Ps(·|y) and g̃#Pt(·|y).

To address this issue, [70] proposed co-regularization for unsupervised domain adaptation

(Co-DA). In particular, it learns two feature extractors g̃1 and g̃2, followed by predictors h̃1

and h̃2 respectively. In addition to aligning g̃1#Ps and g̃1#Pt (likewise for g̃2#Ps and g̃2#Pt),

it further promotes that (h̃1 ◦ g̃1)(x) and (h̃2 ◦ g̃2)(x) yield similar predictions on unlabeled

target examples x from Pt. This is not only feasible in computation as no target example label

is required, it also improves generalization by trimming the hypothesis space of g̃i using an

additional prior: some g̃1 and g̃2 pairs may not admit any h̃2 for a given h̃1 such that h̃1 ◦ g̃1

agrees with h̃2 ◦ g̃2 on target domain examples.

Despite the improved empirical performance of Co-DA, it follows a regularization approach

which suffers from two limitations. Firstly, the weights in the model must cater for both

risk minimization and regularization simultaneously, a contention that generally exacerbates

sample complexity and complicates optimization—the output of hidden nodes (the object under

92

regularization) is not itself the optimization variable. In contrast, it will be much more efficient

if the structures are directly encoded in the representation. For example, deep sets incorporate

invariance and equivariance by factorization in parameterization [74], which is far more efficient

than penalizing the violation of invariance. Furthermore, the desired regularities in latent

representation are only enforced on training data, and whether they are exhibited on test data

relies solely on generalization. It would be ideal if such structures can be explicitly enforced

and upheld in test data.

Towards these goals, we will first develop a new representation learning framework in semi-

inner-product spaces (s.i.p) which captures all the essential structures in Co-DA [70] for learning

under the UDA setting. We will then intuitively motivate how UDA is closely related to our

original continual learning setting. Finally, we will develop a training procedure, based on [1]

that improves the model’s performance on several artificial continual learning tasks.

5.3 Kernel warping for unsupervised domain adaptation

In [121], coregularization was proposed in a kernel warping framework that aims to make

use of unlabeled data. Here two RKHSs H1 and H2 are defined over different “views” of the

data with kernels k1 and k2, and discriminant functions l and r are sought from H1 and H2

93

respectively, such that they agree on unlabeled data U := {xi}, i.e., l(x) ≈ r(x) for all x ∈ U .1

This leads to a new norm on the sum spaceH1⊕H2 := {l+r : l ∈ H1, r ∈ H2}: for f ∈ H1⊕H2,

‖f‖2 = min
l∈H1,r∈H2:l+r=f

R(l, r)2, where R(l, r)2 := ‖l‖2H1
+ ‖r‖2H2

+
∑

x∈U
(l(x)−r(x))2.

Intuitively, it renorms the functions in H1 ⊕ H2, favoring those that can be decomposed into

H1 and H2 with small discrepancy on unlabeled data {xi}. In this warped RKHS, the kernel

representer for a data instance z can be computed by [24]

arg max
f∈H1⊕H2:‖f‖≤1

f(z) = l + r, where (l, r) = arg max
l∈H1,r∈H2:R(l,r)≤1

l(z) + r(z). (5.2)

[121] then proved that warping the norm on H1 ⊕ H2 as above can reduce the Rademacher

complexity. Our goal is to develop new regularizers R that can model a variety of desirable

structures. The above R was a Hilbert norm (i.e., corresponds to an inner product) andH1⊕H2

an RKHS. This is a severe restriction, and we will extend R to semi-norms.

Since mini-batch based training has been commonly used in machine learning, we can extend

kernel warping to a mini-batch {zi}mi=1 by using (H1 ⊕ H2)m, and define a mini-batch based

1It is tempting to use f1 for H1 and f2 for H2. However, as can be seen in the sequel, this will
complicate the notation. So to keep the notation intuitive, we use l for “left” view (H1) and r for
“right” view (H2).

94

norm as Rb({li, ri}) := maxiR(li, ri). Then the kernel representation for {zi}mi=1 is {li, ri}mi=1,

where

{li, ri}mi=1 = arg max
Rb({li,ri})≤1

∑
i
li(zi) + ri(zi). (5.3)

It is easy to see that the optimal (li, ri) is the same as applying (Equation 5.2) to each zi

separately. However, formulating the kernel warping in a mini-batch setting will allow us to

model more refined structures that can only be captured in the context of mini-batches, e.g.,

correlations.

It is also noteworthy that Rb is no longer a Hilbert norm. So the definition in (Equation 5.3)

in fact uses the semi-inner-product space from [24]. Besides, some examples in a mini-batch

are from the source domain, and some are from the target domain. Let us call them as S and

T respectively, so that S ∪ T = [m], S ⊆ S (original source dataset), T ⊆ T (original target

dataset). We will use the shorthand of Ej∼P̃S [lj] := 1
|S|
∑

j∈S lj . It is then natural to enforce

coregularization on T (since it is unlabeled):

V1 := meani∈[m]

{
Ej∼P̃T [(li(xj)− ri(xj))2]

}
or maxi∈[m]

{
Ej∼P̃T [(li(xj)− ri(xj))2]

}
.

=
1

m|T |

m∑
i=1

∑
j∈T

(k̃>xj ,1 l̃i − k̃
>
xj ,2r̃i)

2 (5.4)

V1 is convex and 2-homogeneous. When computing the Euclidean embedding l̃i, we simply

replace li(xj) by k̃>xj l̃i.

95

5.3.1 Alignment

The original ∆H∆-distance for domain adaptation [122], when applied to the left view, is

d∆H∆ := maxh,h′∈H
∣∣Prx∼Ps [h(x) 6= h′(x)]− Prx∼Pt [h(x) 6= h′(x)]

∣∣ (5.5)

= maxh,h′∈H

∣∣∣∣Ex∼Ps [δ(h(x) 6= h′(x))]− E
x∼Pt

[δ(h(x) 6= h′(x))]

∣∣∣∣ , (5.6)

where δ is the indicator function valued in {0, 1}. Here H can represent the unit ball of H1,

and we only assume that H is symmetric. Obviously the ∆H∆-distance can also be computed

for the “right” view. Since the indicator function is not continuous, we can approximate it by

square loss:

d∆H∆ ≈ maxh,h′∈H
∣∣Ex∼Ps [(h(x)− h′(x))2]− Ex∼Pt [(h(x)− h′(x))2]

∣∣ , (5.7)

= maxh∈2H

∣∣Ex∼Ps [h(x)2]− Ex∼Pt [h(x)2]
∣∣ (since only h− h′ matters) (5.8)

= maxh∈2H

∣∣∣〈µ, h2
〉
H1

∣∣∣ (if h2 ∈ H1), where µ = Ex∼Ps [k1(x, ·)]− Ex∼Pt [k1(x, ·)].

(5.9)

Since h2 is often hard to characterize (or not even in H1), the most prevalent approach is to

penalize by the RKHS norm of µ. This immediately leads to a counterpart in our model based

on mini-batch

V ez
2,l =

∥∥Ei∼P̃S [li]− Ei∼P̃T [li]
∥∥2

H1
. (5.10)

96

However, it turns out we can obtain a finer control of d∆H∆ than ‖µ‖H1
. Note h(x) in

(Equation 5.8) stands for the discriminant value of x. In our framework, we first compute

Gx and then multiply with a weight v ∈ H1 with unit RKHS norm. So h(xi) is replaced by

〈v, li〉, and (Equation 5.8) naturally motivates us to define

V2,l = max‖v‖H1
≤1

∣∣∣Ei∼P̃S [〈v, li〉2H1
]− Ei∼P̃T [〈v, li〉2H1

]
∣∣∣ . (5.11)

Clearly V2,l is 2-homogeneous, but not convex in {li}. Its Euclidean embedding version is equal

to the largest magnitude eigenvalue of Ei∼P̃S [l̃i l̃
>
i]− Ei∼P̃T [l̃i l̃

>
i].

In practice, we find that V2,l is indeed quite likely to be convex as long as the Nyström

dimension is greater than m. We randomly generated two sets of {l̃i, r̃i}, took their mean, and

checked if its V3,l value is lower than the mean of the V2,l values at these two sets. This holds

true almost all the time.

Putting it all together

Eventually, our regularizer on M := {li, ri}mi=1 is

R(M) = max
i∈[m]

(
‖li‖2H1

+ ‖ri‖2H2

)
+ V1(M) + V2,l({li}) + V2,r({ri}). (5.12)

Here we omitted the weights for V1 and V2,·, and V2,· are not convex. As long as their weights

are not large, the strongly convex terms in V1 and RKHS norm square will keep the overall R

convex. R must be 2-homogeneous.

97

5.4 Preventing catastrophic interference via kernel warping

Earlier works on continual learning [1, 120] have shown that aligning successive datasets in

some form has helped mitigate catastrophic forgetting. This has been achieved by several means

such as, parameter matching [120], parameter sharing [1] and network prediction matching [1].

While alignment helps in minimizing forgetting, some prior work also use techniques to improve

supervised learning performance in the overall continual learning task. For instance, [1] uses a

mechanism to dynamically adapt the model parameters to new datasets.

In hindsight, we observe that the above mentioned properties are exactly the modeling

objectives of the regularizers we developed earlier for the UDA problem. The feature alignment

regularizer V2 (Equation 5.11) encourages the pairs of input features to be probabilistically

aligned, in effect reinforcing salient features that are common to both of the datasets. On

the other hand, the regularizer V1 (Equation 5.4) has been shown to improve classification

accuracies on new (unlabelled) examples by making predictions of any classifier consistent

across multiple views [70] of the data.

The key idea behind our proposed solution is to incorporate these regularizers to obtain

representations that facilitate continual learning in the framework of kernel warping. In our

experiments, we use the learned representations as inputs to the solver S and DPG of the

PGMA architecture [1].

5.4.1 Training details

When we observe samples from a new dataset Ti = {xij , yij} for supervised learning, we

first apply kernel warping with Ti as the source dataset and (memorized) samples from the

98

previous dataset Ti−1 as the target dataset as in (Equation 5.12). Recall that the regularizers

in the kernel warping only require labelled examples from the source examples. Therefore we

only need the input samples from the target dataset and not the labels. The warped source

samples are then used for training S and DPG using the distillation loss (Equation 5.1) and the

standard classification loss. Likewise, when we observe Ti+1 we warp it with Ti (as the target).

However by doing so, we overwrite the previously learned representations for Ti. This makes

the representations of Ti and Ti−1 obsolete and can lead to performance drop at inference time.

To work around this problem, after warping Ti+1 with Ti, we recursively warp all the previous

Tj with its immediate predecessor in the continual learning setup, Tj−1. T1 is warped only with

T2 after T2 is observed.

In our setup, we also remove the autoencoder from [1]’s architecture. The autoencoder was

primarily meant for replaying examples from earlier training. We use a memory bank of a

subset of previously trained samples (again only input samples and not labels) for learning new

representations for the current and future tasks. The complete training algorithm is presented

in Algorithm 4 and an illustration of the training pipeline is given in Figure 6.

5.5 Experiments

In order to test the effectiveness of the proposed algorithm, we ran two sets of experiments

and compared it with state-of-the-art baselines.

99

Figure 6: Training pipeline with kernel warping to minimize catastrophic forgetting. Here x̂i
represents the warped embeddings.

5.5.1 Experiment setup

(a) Shuffle and disjoint continual learning.

First, we followed [1] and created two continual learning setups - shuffle and disjoint on standard

image classification datasets MNIST [123] and CIFAR10 [40].

• In the disjoint setup, a task is first divided into disjoint subsets based on its label set.

Each subset is then treated as a new dataset for continual learning. For instance consider

the MNIST digit dataset which has 10 classes {1 . . . 10}. In one of the setups, the dataset

is divided into two disjoint groups with examples corresponding to classes {1 . . . 5} as the

first dataset and examples with labels {6 . . . 10} as the second.

100

Algorithm 4 Training of our proposed solution with kernel warping.

Input: T = {Ti}Ni=1,where Ti = {xij , yij}
Initial: Randomly initialize f(.), S;
// Learning the first task.
for all n = 0 . . . until convergence do

5: Sample a mini-batch from T̂1

// Training f and S
Compute pn
Construct Sn using pn and θ0

Minimize Lce (Equation 5.1) and update
S and f

10: end for

// Learning subsequent tasks
for all i = 2; i ≤ N ; i+ + do

for all j = i; j ≥ 1; j −− do
Apply Kernel Warping with Xs = Tj
and Xt = Tj−1 to obtain new represen-
tations T̂j and T̂j−1

15: Update the representations // Tj ←
T̂j ; Tj−1 ← T̂j−1

end for
for all n = 0, . . . , until convergence do

Sample a mini-batch from Ti
Compute pn

20: Construct Sn using pn and θ0

Minimize Lce and update f and S
end for

end for

• In the shuffle setup, new datasets are created by randomly shuffling the pixels in the input

images of the original dataset. The label set is kept intact for all the datasets.

(b) Continual learning under different marginal input distributions.

Second, we created a continual learning (we call this task MARGDIFF) setup where the label

space remains the same for all the datasets in the continual learning setup. However, the

marginal distributions of the input images between any two pairs of datasets are significantly

different. This setup simulates a commonly faced problem while accruing training data for

supervised training of machine learning models, where the task, say image classification, is

fixed and new images of already “seen” objects are being constantly collected to improve the

model performance. In this case, joint (re)training of the newly collected data along with the

101

existing dataset is often expensive and difficult to maintain. Therefore treating the model

update as a continual learning task is often useful in practise.

In order to simulate the experiment mentioned above, we considered three digit datasets:

MNIST, USPS, Fashion-MNIST. We created a two-task continual learning problem, by pairing

up the above mentioned tasks. The results of this experiment is given in Table XII

5.5.2 Baselines

The setup for the first experiment (shuffle and disjoint datasets) is exactly the same as [1] and

we perform experiments on all the image datasets reported by [1]. So for this task, we compare

ourselves with [1] and all their baselines, namely EWC [114], IMM [120], and NO-CL. [124]. For

the second task (MARGDIFF), we use NO-CL ADA and WARP-QUAD as the baselines. WARP-QUAD

here refers to our representation learning algorithm but only containing quadratic penalties

(especially V ez
2,l instead of V2,l). This baseline is meant to showcase the power of non-quadratic

penalties that the s.i.p based representations that our framework can capture.

5.5.3 Results and Discussion

Table XI compares WARP with the baselines mentioned in the previous section on shuffle and

disjoint experiments on the MNIST dataset. WARP performs competitively on all the tasks with

a slight improvement over ADA on disjoint tasks.

As mentioned earlier, the MARGDIFF task tests the algorithms for forgetting when the in-

dividual tasks in the continual learning setup are distributed differently. Table XII records

the average test accuracies on a two-task experiment on MARGDIFF comparing against ADA and

NO-CL, showing significant performance gains by WARP over its baselines. To understand the re-

102

sult on this experiment, we further plotted the test accuracies for every 100 training iterations,

similar to [1]. Here we found that in some cases with the warped representations, the solver S is

able to get improved performance on Task 0. This can be attributed to the “positive transfer”

effect on S on training with a new dataset, enabled by our algorithm. The effect can be visibly

seen in subplots (d) and (e) of Figure 7. Also, just to highlight the hardness of transfer caused

by forgetting, we plotted the result of NO-CL (No continual learning solution).

5.6 Conclusion

In this work, we developed a new representation learning algorithm for overcoming catas-

trophic forgetting for continual learning in neural networks. Experimental results show a marked

increase in classification performance on continual learning tasks when trained with the learned

representations as input. In future, we would like to explore new constraints that can address

catastrophic forgetting in neural networks that can be modeled in our representation learning

framework.

103

(a) Fashion-MNIST, MNIST (b) MNIST, Fashion-MNIST

(c) MNIST,USPS (d) USPS,MNIST

(e) USPS,Fashion-MNIST (f) Fashion-MNIST,USPS

Figure 7: Test accuracies of Task 0 and Task 1 after training every 100 batches on the MARGDIFF
task.

104

Method
shuffled

MNIST (3 tasks)
disjoint

MNIST (2 tasks)
disjoint

CIFAR10 (2 tasks)
shuffled

MNIST (5 tasks)
disjoint

MNSIT (5 tasks)

WARP 97.88 96.7 69.47 96.23 82.1

ADA 98.14 96.53 69.51 96.77 81.7

NO-CL 91.46 48.64 41.99 - -

EWC 96.7 48.96 37.75 - -

IMM 97.92 96.53 69.51 96.09 67.25

GR 97.57 89.96 65.11 94.54 75.47

TABLE XI: Performance of WARP against baselines on shuffle and disjoint continual learning
tasks. The baseline numbers were taken from the results reported in [1]. Some results were not
reported for NO-CL and EWC and they are marked with a ’-’.

105

Dataset Method Avg. Accuracy

MNIST - USPS

WARP 97.1

ADA 94.3

NO-CL 80.1

WARP-QUAD 95.9

USPS - MNIST

WARP 95.2

ADA 89.3

NO-CL 68.9

WARP-QUAD 93.1

MNIST - Fashion

WARP 93.8

ADA 91.9

NO-CL 54.8

WARP-QUAD 93.2

Fashion - MNIST

WARP 92.4

ADA 89.3

NO-CL 60.0

WARP-QUAD 91.8

Fashion - USPS

WARP 87.3

ADA 84.9

NO-CL 87.11

USPS - Fashion

WARP 89.6

ADA 85.3

NO-CL 65.0

WARP-QUAD 86.7

TABLE XII: Results on the MARGDIFF task. Here, our kernel warping based solution WARP

significantly outperforms the baselines.

CHAPTER 6

CONCLUSION AND FUTURE WORKS

6.1 Conclusion

In this thesis we studied the problem of modeling structured priors for machine learning

using convex representation learning. In the framework of convex neural networks, we first

showed how to incorporate useful structures in the latent hidden layers of a two-layer neural

network and then solve the resulting optimization problem in a convex fashion using convex

relaxations. We then developed a novel representation learning framework in kernel banach

spaces that enabled us to express more general structures that are useful in popular machine

learning applications. We proposed different regularizers that can effectively capture priors

in prediction problems such as mixup and multi-label classification. We then applied this

framework to address the catastrophic forgetting problem in neural networks in the continual

learning setting and demonstrated the usefulness of our representation learning framework.

6.2 Future works

Delaying convexity.

In [22], we also observed that the favorable properties of convex neural models are often

offset by difficulties in scaling. State of the art non-convex deep learning models, on the other

hand, are highly touted for their scalability. An interesting middle ground is to find models

that are convex near the optimal solution, a line of work explored by [16, 125, 126] and others.

106

107

However, incorporating non-trivial constraints on such models for practical applications is still

hard. For instance, consider the problem of solving a least squares objective for low-rank matrix

recovery. minU ‖yi − aiUUTai‖, for fixed measurements ai and U ∈ Rn×r is low rank [126], a

non-convex optimization problem. Convex reformulations of this problems have been studied,

but known have high computational complexity. However, under gaussian assumptions on

the random vectors ai, [126] showed that one can find an initialization on a region of local

strong convexity for training using SGD, which will guarantee linear convergence. In Figure 8,

the plot on the left is a convex function and on the right is a function that is convex in a

restricted neighborhood. Extensions of this work to (two-layer) neural network models under

the recoverability setting was studied by [125]. However similar to [126], their technique requires

additional distributional assumptions for the analysis to go through. Based on our analysis so

far, we believe our convex reformulations can be incorporated into these frameworks [16, 125],

with little assumptions, providing improved analysis.

Figure 8: Left. A convex function. Right. A non-convex function with a region of local strong
convexity (region shaded with stripes, best viewed in color)

.

108

Principled fine-grained domain transfer.

Unsupervised domain adaptation is an important machine learning problem, related to the

continual learning setup discussed in Chapter 5. An ubiquitous question in domain adapta-

tion literature is what information is transferable across domains? Forcefully aligning feature

distributions among disparate domains might lead to a phenomenon called negative transfer,

which can seriously deteriorate the quality of learning . Harnessing and transferring fine-grained

structures across domains can minimize negative transfer [127]. As an example, one immediate

way to achieve fine-grained control in transfer could be by masking parts of input from both

S and T that are detrimental to transfer, using simple sufficient statistics. However it is not

immediately clear what level of granularity in transfer is necessary to achieve optimal transfer.

One direction I wish to pursue involves studying different structured representations that are

amenable for fine-grained principled domain transfer.

Guaranteed representations for deep domain transfer.

With a flurry of recent algorithms on obtaining transferable representations of data using

deep domain adaptation techniques, there is now interest in analyzing these algorithms theoret-

ically. As an immediate future work, I plan to develop new techniques for analyzing the training

of deep domain adaptation models. With our recent work on modeling invariance [24] using

kernel warping, we believe domain invariance can be efficiently modeled and analysed using the

recently released theoretical framework called the Neural Tangent Kernels (NTK) [128].

CITED LITERATURE

1. Hu, W., Lin, Z., Liu, B., Tao, C., Tao, Z., Ma, J., Zhao, D., and Yan, R.: Over-
coming catastrophic forgetting for continual learning via model adaptation. In
International Conference on Learning Representations, 2018.

2. He, K., Zhang, X., Ren, S., and Sun, J.: Deep residual learning for image recognition.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016.

3. Sutskever, I., Vinyals, O., and Le, Q. V.: Sequence to sequence learning with neural
networks. 2014.

4. Graves, A., Mohamed, A.-r., and Hinton, G.: Speech recognition with deep recurrent
neural networks. In 2013 IEEE international conference on acoustics, speech and
signal processing, pages 6645–6649. IEEE, 2013.

5. Ma, Y., Ganapathiraman, V., and Zhang, X.: Learning invariant representations with
kernel warping. In The 22nd International Conference on Artificial Intelligence
and Statistics, pages 1003–1012, 2019.

6. Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B., and LeCun, Y.: The loss sur-
faces of multilayer networks. In International Conference on Artificial Intelligence
and Statistics (AISTATS), 2014.

7. Dauphin, Y., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., and Bengio, Y.: Iden-
tifying and attacking the saddle point problem in high-dimensional non-convex
optimization. 2014.

8. Kawaguchi, K.: Deep learning without poor local minima. 2016.

9. Tian, Y.: An analytical formula of population gradient for two-layered ReLU network
and its applications in convergence and critical point analysis. In International
Conference on Machine Learning (ICML), 2017.

109

110

10. Soltanolkotabi, M., Javanmard, A., and Lee, J. D.: Theoretical insights into the optimiza-
tion landscape of over-parameterized shallow neural networks. In International
Conference on Machine Learning (ICML), 2017.

11. Brutzkus, A. and Globerson, A.: Globally optimal gradient descent for a ConvNet with
gaussian inputs. In International Conference on Machine Learning (ICML), 2017.

12. Nguyen, Q. and Hein, M.: The loss surface of deep and wide neural networks. In
International Conference on Machine Learning (ICML), 2017.

13. Nguyen, Q. and Hein, M.: The loss surface and expressivity of deep convolutional neural
networks. arXiv:1710.10928, 2017.

14. Bengio, Y., Roux, N. L., Vincent, P., Delalleau, O., and Marcotte, P.: Convex neural
networks. 2005.

15. Anandkumar, A., Ge, R., Hsu, D., Kakade, S. M., and Telgarsky, M.: Tensor decomposi-
tions for learning latent variable models. Journal of Machine Learning Research,
15:2773–2832, 2014.

16. Zhong, K., Song, Z., Jain, P., Bartlett, P., and Dhillon, I.: Recovery guarantees for one-
hidden-layer neural networks. In International Conference on Machine Learning
(ICML), 2017.

17. Zhang, Y., Lee, J. D., and Jordan, M. I.: `1-regularized neural networks are improperly
learnable in polynomial time. In International Conference on Machine Learning
(ICML), 2016.

18. Zhang, Y., Liang, P., and Wainwright, M.: Convexified convolutional neural networks. In
International Conference on Machine Learning (ICML), 2017.

19. Livni, R., Shalev-Shwartz, S., and Shamir, O.: An algorithm for training polynomial
networks. arXiv:1304.7045v2, 2014.

20. Gens, R. and Domingos, P.: Discriminative learning of sum-product networks. 2012.

21. Fogel, F., Jenatton, R., Bach, F., and d’Aspremont, A.: Convex relaxations for permuta-
tion problems. SIAM Journal on Matrix Analysis and Applications, 36(4):1465–
1488, 2015.

111

22. Ganapathiraman, V., Shi, Z., Zhang, X., and Yu, Y.: Inductive two-layer modeling with
parametric bregman transfer. In International Conference on Machine Learning
(ICML), 2018.

23. Ganapathiraman, V., Zhang, X., Yu, Y., and Wen, J.: Convex two-layer modeling with
latent structure. 2016.

24. Ma, Y., Ganapathiraman, V., Yu, Y., and Zhang, X.: Convex Representation Learning for
Generalized Invariance in Semi-Inner-Product Space. arXiv:2004.12209 [cs, stat],
July 2020. arXiv: 2004.12209.

25. Auer, P., Herbster, M., and Warmuth, M. K.: Exponentially many local minima for single
neurons. Technical Report UCSC-CRL-96-1, Univ. of Calif.Computer Research
Lab, Santa Cruz, CA, 1996. In preparation.

26. Berman, A. and Shaked-Monderer, N.: Completely Positive Matrices. World Scientific,
2003.

27. Dickinson, P. J. C. and Gijben, L.: On the computational complexity of membership prob-
lems for the completely positive cone and its dual. Computational Optimization
and Applications, 57(2):403–415, Mar 2014.

28. Jaggi, M.: Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In
International Conference on Machine Learning (ICML), 2013.

29. Harchaoui, Z., Juditsky, A., and Nemirovski, A.: Conditional gradient algorithms
for norm-regularized smooth convex optimization. Mathematical Programming,
152:75–112, 2015.

30. Freund, R. M. and Grigas, P.: New analysis and results for the conditional gradient
method. preprint, 2013.

31. Lacoste-Julien, S. and Jaggi, M.: On the global linear convergence of Frank-Wolfe opti-
mization variants. 2015.

32. Zhang, X., Yu, Y., and Schuurmans, D.: Accelerated training for matrix-norm regular-
ization: A boosting approach. 2012.

33. Murty, K. G. and Kabadi, S. N.: Some NP-complete problems in quadratic and nonlinear
programming. Mathematical Programming, 39(2):117–129, 1987.

112

34. Nemirovski, A., Roos, C., and Terlaky, T.: On maximization of quadratic form over
intersection of ellipsoids with common center. Math. Program. Ser. A, 86:463–
473, 1999.

35. Cheng, H., Yu, Y., Zhang, X., Xing, E., and Schuurmans, D.: Scalable and sound low-
rank tensor learning. In International Conference on Artificial Intelligence and
Statistics (AISTATS), 2016.

36. Woodbury, M. A.: Inverting modified matrices. Technical Report Memorandum Rept.
42, Statistical Research Group, Princeton University, Princeton, NJ, 1950.

37. Aslan, O., Zhang, X., and Schuurmans, D.: Convex deep learning via normalized kernels.
2014.

38. Lichman, M.: UCI machine learning repository, 2013.

39. Aslan, O., Cheng, H., Zhang, X., and Schuurmans, D.: Convex two-layer modeling. 2013.

40. Krizhevsky, A. and Hinton, G.: Learning multiple layers of features from tiny images.
2009.

41. Chapelle, O.: http://olivier.chapelle.cc/ssl-book/benchmarks.html.

42. Chang, M.-W., Goldwasser, D., Roth, D., and Srikumar, V.: Discriminative learning over
constrained latent representations. In Conference of the North American Chapter
of the Association for Computational Linguistics (NAACL), 2010.

43. Chang, M.-W., Srikumar, V., Goldwasser, D., and Roth, D.: Structured out-
put learning with indirect supervision. In International Conference on Machine
Learning (ICML), 2010.

44. Ammar, W., Dyer, C., and Smith, N. A.: Conditional random field autoencoders for
unsupervised structured prediction. 2014.

45. Hinton, G. E.: Training products of experts by minimizing contrastive divergence. Neural
Computation, 14(8):1771–1800, 2002.

46. Gane, A., Hazan, T., and Jaakkola, T.: Learning with maximum a-posteriori perturbation
models. In Artificial Intelligence and Statistics, pages 247–256, 2014.

113

47. Hazan, T. and Jaakkola, T.: On the partition function and random maximum a-posteriori
perturbations. arXiv preprint arXiv:1206.6410, 2012.

48. Banerjee, A., Merugu, S., Dhillon, I. S., and Ghosh, J.: Clustering with Bregman diver-
gences. Journal of Machine Learning Research, 6:1705–1749, 2005.

49. Hazan, T. and Jaakkola, T.: On the partition function and random maximum a-posteriori
perturbations. In International Conference on Machine Learning (ICML), 2012.

50. Gotovos, A., Hassani, H., and Krause, A.: Sampling from probabilistic submodular mod-
els. 2015.

51. Haffari, G. and Sarkar, A.: Analysis of semi-supervised learning with Yarowsky algorithm.
In Conference on Uncertainty in Artificial Intelligence (UAI), 2007.

52. Daumé III, H.: Unsupervised search-based structured prediction. In International
Conference on Machine Learning (ICML), pages 209–216, 2009.

53. Xu, L., White, M., and Schuurmans, D.: Optimal reverse prediction: a unified perspec-
tive on supervised, unsupervised and semi-supervised learning. In International
Conference on Machine Learning (ICML), 2009.

54. Nesterov, Y.: Smooth minimization of non-smooth functions. Mathematical
Programming, 103(1):127–152, 2005.

55. Meshi, O., Mahdavi, M., and Schwing, A. G.: Smooth and strong: Map inference with
linear convergence. 2015.

56. Druck, G., Pal, C., Zhu, X., and McCallum, A.: Semi-supervised classification with hy-
brid generative/discriminative methods. In the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2007.

57. Chandrasekaran, V., Recht, B., Parrilo, P. A., and S.Willsky, A.: The convex geometry of
linear inverse problems. Foundations of Computational Mathematics, 12(6):805–
849, 2012.

58. Pataki, G.: On the rank of extreme matrices in semidefinite programs and the multiplicity
of optimal eigenvalues. Mathematics of Operations Research, 23(2):339–358, 1998.

114

59. Goldwasser, D. and Roth, D.: Transliteration as constrained optimization. In Conference
on Empirical Methods in Natural Language Processing (EMNLP), 2008.

60. https://cogcomp.cs.illinois.edu/page/resource_view/2.

61. Simard, P., LeCun, Y., Denker, J. S., and Victorri, B.: Transformation invariance in pat-
tern recognition-tangent distance and tangent propagation. In Neural Networks:
Tricks of the Trade, pages 239–274, 1996.

62. Ferraro, M. and Caelli, T. M.: Lie transformation groups, integral transforms, and invari-
ant pattern recognition. Spatial Vision, 8:33–44, 1994.

63. Cohen, T. S. and Welling, M.: Group Equivariant Convolutional Networks. In
International Conference on Machine Learning (ICML), 2016.

64. Graham, D. and Ravanbakhsh, S.: Equivariant entity-relationship networks.
arXiv:1903.09033, 2019.

65. Bengio, Y., Courville, A., and Vincent, P.: Representation learning: A review and new
perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence,
35(8):1798–1828, 2013.

66. Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S.,
and Lerchner, A.: β-vae: Learning basic visual concepts with a constrained
variational framework. In International Conference on Learning Representations
(ICLR), 2017.

67. Eliassi-Rad, T. and Faloutsos, C.: Discovering roles and anomalies in graphs:theory
and applications. Tutorial at SIAM International Conference on Data Mining
(ICDM), 2012.

68. Creager, E., Madras, D., Jacobsen, J.-H., Weis, M., Swersky, K., Pitassi, T., and Zemel,
R.: Flexibly fair representation learning by disentanglement. In International
Conference on Machine Learning (ICML), 2019.

69. Wang, W., Arora, R., Livescu, K., and Bilmes, J.: On deep multi-view representation
learning. In International Conference on Machine Learning (ICML), 2015.

70. Kumar, A., Sattigeri, P., Wadhawan, K., Karlinsky, L., Feris, R., Freeman, W. T., and
Wornell, G.: Co-regularized alignment for unsupervised domain adaptation. 2018.

https://cogcomp.cs.illinois.edu/page/resource_view/2

115

71. Ravanbakhsh, F. M. S., Ding, N., and Schuurmans, D.: Embedding inference for
structured multilabel prediction. 2015.

72. Deng, J., Ding, N., Jia, Y., Frome, A., Murphy, K., Bengio, S., Li, Y., Neven, H.,
and Adam, H.: Large-scale object classification using label relation graphs. In
European Conference on Computer Vision (ECCV), 2012.

73. Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D.: mixup: Beyond empirical risk
minimization. In International Conference on Learning Representations (ICLR),
2018.

74. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R., and Smola, A.:
Deep sets. 2017.

75. Ravanbakhsh, S., Schneider, J., and Poczos, B.: Equivariance Through Parameter-
Sharing. In International Conference on Machine Learning (ICML), 2017.

76. Rifai, S., Vincent, P., Muller, X., Glorot, X., and Bengio, Y.: Contractive auto-encoders:
Explicit invariance during feature extraction. In International Conference on
Machine Learning (ICML), 2011.

77. Smola, A.: Sets and symmetries. NeurIPS Workshop on Sets & Partitions, 2019.

78. Teo, C. H., Globerson, A., Roweis, S., and Smola, A.: Convex learning with invariances.
2007.

79. Haasdonk, B. and Keysers, D.: Tangent distance kernels for support vector machines.
In Pattern Recognition, 2002. Proceedings. 16th International Conference on, vol-
ume 2, pages 864–868. IEEE, 2002.

80. Raj, A., Kumar, A., Mroueh, Y., Thomas Fletcher, P., and Schoelkopf, B.: Local group
invariant representations via orbit embeddings. In International Conference on
Artificial Intelligence and Statistics (AISTATS), 2017.

81. Mroueh, Y., Voinea, S., and Poggio, T.: Learning with group invariant features: A kernel
perspective. 2015.

82. Haasdonk, B. and Burkhardt, H.: Invariant kernel functions for pattern analysis and
machine learning. Machine Learning, 68(1):35–61, 2007.

116

83. Bhattacharyya, C., Pannagadatta, K. S., and Smola, A. J.: A second order cone program-
ming formulation for classifying missing data. pages 153–160, 2005.

84. Rahimian, H. and Mehrotra, S.: Distributionally robust optimization: A review.
arXiv:1908.05659, 2019.

85. Ma, Y., Ganapathiraman, V., and Zhang, X.: Learning invariant representations with ker-
nel warping. In International Conference on Artificial Intelligence and Statistics
(AISTATS), 2019.

86. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A.: Towards deep learning
models resistant to adversarial attacks. In International Conference on Learning
Representations (ICLR), 2018.

87. Lumer, G.: Semi-inner-product spaces. Transactions of the American Mathematical
Society, 100:29–43, 1961.

88. Zhang, H., Xu, Y., and Zhang, J.: Reproducing kernel Banach spaces for machine learning.
Journal of Machine Learning Research (JMLR), 10:2741–2775, 2009.

89. Salzo, S., Rosasco, L., and Suykens, J.: Solving `p-norm regularization with ten-
sor kernels. In International Conference on Artificial Intelligence and Statistics
(AISTATS), eds. A. Storkey and F. Perez-Cruz, volume 84, 2018.

90. Der, R. and Lee, D.: Large-margin classification in Banach spaces. In International
Conference on Artificial Intelligence and Statistics (AISTATS), 2007.

91. Bennett, K. P. and Bredensteiner, E. J.: Duality and geometry in SVM classifiers. In
International Conference on Machine Learning (ICML), ed. P. Langley, pages 57–
64, San Francisco, California, 2000. Morgan Kaufmann Publishers.

92. Hein, M., Bousquet, O., and Schölkopf, B.: Maximal margin classification for metric
spaces. J. Comput. System Sci., 71:333–359, 2005.

93. von Luxburg, U. and Bousquet, O.: Distance-based classification with lipschitz functions.
Journal of Machine Learning Research, 5:669–695, 2004.

94. Zhou, D., Xiao, B., Zhou, H., and Dai, R.: Global geometry of svm classifiers. Technical
Report 30-5-02, Institute of Automation, Chinese Academy of Sciences, 2002.

117

95. Smola, A. J. and Schölkopf, B.: On a kernel-based method for pattern recognition, re-
gression, approximation and operator inversion. Algorithmica, 22:211–231, 1998.

96. Zhang, X., Lee, W. S., and Teh, Y. W.: Learning with invariance via linear functionals
on reproducing kernel hilbert space. 2013.

97. Borwein, J. M. and Vanderwerff, J. D.: Convex Functions: Constructions,
Characterizations and Counterexamples. Cambridge University Press, 2010.

98. Giles, J. R.: Classes of semi-inner-product spaces. Transactions of the American
Mathematical Society, 129(3):436–446, 1967.

99. Faulkner, G. D.: Representation of linear functionals in a Banach space. Rocky Mountain
Journal of Mathematics, 7(4):789–792, 1977.

100. Combettes, P. L., Salzo, S., and Villa, S.: Regularized learning scheme in feature Banach
spaces. Analysis and Applications, 16(1):1–54, 2018.

101. Rahimi, A. and Recht, B.: Random features for large-scale kernel machines. Cambridge,
MA, MIT Press, 2008.

102. Shi, Q., Petterson, J., Dror, G., Langford, J., Smola, A., and Vishwanathan, S.: Hash ker-
nels for structured data. Journal of Machine Learning Research (JMLR), 10:2615–
2637, 2009.

103. Williams, C. K. I. and Seeger, M.: Using the Nyström method to speed up kernel machines.
2000.

104. link: Multilabel dataset. https://sites.google.com/site/hrsvmproject/

datasets-hier.

105. Klimt, B. and Yang, Y.: The enron corpus: A new dataset for email classification research.
In European Conference on Machine Learning (ECML), pages 217–226. Springer,
2004.

106. Rousu, J., Saunders, C., Szedmak, S., and Shawe-Taylor, J.: Kernel-based learning of hi-
erarchical multilabel classification models. Journal of Machine Learning Research
(JMLR), 7(Jul):1601–1626, 2006.

https://sites.google.com/site/hrsvmproject/datasets-hier
https://sites.google.com/site/hrsvmproject/datasets-hier

118

107. Lewis, D. D., Yang, Y., Rose, T. G., and Li, F.: Rcv1: A new benchmark collection
for text categorization research. Journal of Machine Learning Research (JMLR),
5(Apr):361–397, 2004.

108. Vateekul, P., Kubat, M., and Sarinnapakorn, K.: Top-down optimized svms for hierarchi-
cal multi-label classification: A case study in gene function prediction. Intelligent
Data Analysis, 2012.

109. Pal, D. K., Kannan, A. A., Arakalgud, G., and Savvides, M.: Max-margin invariant
features from transformed unlabeled data. 2017.

110. Fukumizu, K., Lanckriet, G. R., and Sriperumbudur, B. K.: Learning in Hilbert vs.
Banach spaces: A measure embedding viewpoint. 2011.

111. Zügner, D., Akbarnejad, A., and Günnemann, S.: Adversarial attacks on neural networks
for graph data. In ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD), pages 2847–2856. ACM, 2018.

112. Mirzazadeh, F., White, M., György, A., and Schuurmans, D.: Scalable metric learning for
co-embedding. In European Conference on Machine Learning (ECML), 2015.

113. Chen, Z. and Liu, B.: Lifelong machine learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 12(3):1–207, 2018.

114. Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A.,
Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al.: Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy
of sciences, 114(13):3521–3526, 2017.

115. Nguyen, C. V., Achille, A., Lam, M., Hassner, T., Mahadevan, V., and Soatto, S.: To-
ward understanding catastrophic forgetting in continual learning. arXiv preprint
arXiv:1908.01091, 2019.

116. Yoon, J., Yang, E., Lee, J., and Hwang, S. J.: Lifelong learning with dynamically expand-
able networks. arXiv preprint arXiv:1708.01547, 2017.

117. Li, Z. and Hoiem, D.: Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

119

118. Lopez-Paz, D. and Ranzato, M.: Gradient episodic memory for continual learning. In
Advances in neural information processing systems, pages 6467–6476, 2017.

119. Shin, H., Lee, J. K., Kim, J., and Kim, J.: Continual learning with deep generative replay.
In Advances in Neural Information Processing Systems, pages 2990–2999, 2017.

120. Lee, S.-W., Kim, J.-H., Jun, J., Ha, J.-W., and Zhang, B.-T.: Overcoming catastrophic
forgetting by incremental moment matching. In Advances in neural information
processing systems, pages 4652–4662, 2017.

121. Rosenberg, D. S. and Bartlett, P. L.: The Rademacher complexity of co-regularized
kernel classes. In International Conference on Artificial Intelligence and Statistics
(AISTATS), 2007.

122. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., and Wortman Vaughan,
J.: A theory of learning from different domains. Machine Learning Journal, 72(1-
2):151–175, 2010.

123. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

124. Shin, H., Lee, J. K., Kim, J., and Kim, J.: Continual learning with deep generative replay.
In Advances in Neural Information Processing Systems, pages 2990–2999, 2017.

125. Zhong, K., Song, Z., and Dhillon, I. S.: Learning non-overlapping convolutional neural
networks with multiple kernels. arXiv preprint arXiv:1711.03440, 2017.

126. White, C. D., Sanghavi, S., and Ward, R.: The local convexity of solving systems of
quadratic equations. arXiv preprint arXiv:1506.07868, 2015.

127. Wen, J., Liu, R., Zheng, N., Zheng, Q., Gong, Z., and Yuan, J.: Exploiting local fea-
ture patterns for unsupervised domain adaptation. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 5401–5408, 2019.

128. Jacot, A., Gabriel, F., and Hongler, C.: Neural tangent kernel: Convergence and general-
ization in neural networks. In Advances in neural information processing systems,
pages 8571–8580, 2018.

129. Mohri, M., Rostamizadeh, A., and Talwalkar, A.: Foundations of Machine Learning. MIT
press, 2018.

120

130. Boyd, S. and Vandenberghe, L.: Convex optimization. Cambridge university press, 2004.

131. Luo, Z.-q., Ma, W.-k., So, A., Ye, Y., and Zhang, S.: Semidefinite Relaxation of
Quadratic Optimization Problems. IEEE Signal Processing Magazine, 27(3):20–
34, May 2010.

132. Aslan, O.: Convex Latent Modeling. https://era.library.ualberta.ca/items/1066d3e3-
e32d-4cb9-a867-c666e5efaa9a, June 2017.

133. Steinberg, D.: Computation of matrix norms with applications to Robust Optimization.
Doctoral dissertation, Faculty of Industrial Engineering and Management, Tech-
nion, 2005.

134. UCI: University of California Irvine: Machine Learning Repository, 1990.

135. Hörmander, L.: Sur la fonction d’appui des ensembles convexes dans un espace loealement
convexe. Arkiv För Matematik, 3(12):181–186, 1954.

VITA

EDUCATION

University of Illinois at Chicago Aug 2015 - Present
Ph.D. in Computer Science Chicago, Illinois, United States

Chennai Mathematical Institute Aug 2010 - May 2012
M.Sc. Computer Science Chennai, India

Anna University Aug 2003 - May 2007
B. Engg., Computer Science & Engineering Chennai, India

WORK EXPERIENCE

Amazon Rekognition May 2017 - August 2017
Applied Scientist Intern Seattle, United States

HERE May 2016 - August 2016
NLP Research Intern Chicago, United States

Perspica Networks Pvt Limited Jun 2014 - June 2015
Senior Data Scientist Chennai, India

GE Global Research Center Aug 2012 - Jun 2014
Scientist - Data Mining Bengaluru, India

Mu Sigma Business Solutions May 2011 - Jul 2011
Graduate Summer Intern Bengaluru, India

PUBLICATIONS

1. Vignesh Ganapathiraman, Xinhua Zhang, Yaoliang Yu, and JunfengWen. Convex two-layer modeling with latent structure.
In D. D. Lee, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances In Neural Information Processing Systems 29,
pages 1280–1288. Curran Associates, Inc., 2016

2. Yingyi Ma, Vignesh Ganapathiraman, and Xinhua Zhang. Learning invariant representations with kernel warping. vol-
ume 89 of Proceedings of Machine Learning Research, pages 1003–1012. PMLR, 16–18 Apr 2019

3. Vignesh Ganapathiraman, Zhan Shi, Xinhua Zhang, and Yaoliang Yu. Inductive two-layer modeling with parametric Breg-
man transfer. volume 80 of Proceedings of Machine Learning Research, pages 1636–1645, Stockholmsmässan, Stockholm
Sweden, 10–15 Jul 2018. PMLR

4. Yingyi Ma, Vignesh Ganapathiraman, Yaoliang Yu, and Xinhua Zhang. Convex representation learning for generalized
invariance in semi-inner-product space, 2020

122

APPENDIX

BACKGROUND MATERIAL

A.1 Convex optimization

In this section, we introduce some of the core concepts of Convex Optimization and results

that are used in the subsequent material. We borrow heavily from popular textbooks on machine

learning and convex optimization such as [129] and [130] in presenting some of the definitions

in this section

A.1.1 Basic definitions

Definition 7. Convex Set. A set X ∈ Rn is said to be convex if for any two points x1, x2 ∈ X,

all points in the line segment l joining x1 and x2 are also in X.

{αx1 + (1− α)x2 : 0 ≤ α ≤ 1} ⊆ X

A.1.1.0.1 Operations that preserve convexity.

In developing algorithms for convex optimization, it is important to test if a given set X

is convex. To this end, we present some of the commonly used theorems(without proofs) for

proving convexity of sets.

Theorem 12. Given two convex sets X1 and X2, their sum S = X1 + X2 = {x1 + x2 : x1 ∈

X1, x2 ∈ X2} is convex.

123

APPENDIX (Continued)

Theorem 13. Intersection of a set of convex sets S = ∩{Xi}, i ∈ N is a convex set.

Theorem 14. The projection of a convex set onto some of its coordinates is convex. If X ∈

Rm × Rn, then

Xproj = {x1 ∈ Rm : (x1, x2) ∈ X,x2 ∈ Rn}

is convex.

Definition 8. Convex hull. The convex hull of a set X, denoted by conv X is the set of all

convex combinations of the elements of X. It is defined as,

conv X =

{
k∑
i=1

θixi : xi ∈ X, k ≥ 1, ∀i ∈ [k],
k∑
i

θi = 1

}
.

Intuitively, conv X is the smallest convex set that contains X. Please note that while conv X

is convex, X is not required to be convex.

Definition 9. Convex function. Let X be a convex set and let f : X → R. f is said to be

convex if for all x, y ∈ X and θ ∈ [0, 1],

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).

Geometrically, this means that the line between (x, f(x)) and (y, f(y)), upper bounds the

graph of f(x). f is said to be strictly convex, if the above inequality is strict.

124

APPENDIX (Continued)

A.1.1.0.2 Other characterizations of convex functions.

Convex functions can be characterized by the nature of their first order and second order

derivatives. They are popularly referred to as the First order conditions and Second order

conditions.

Theorem 15. First order conditions. Let f be a differentiable function and dom f is convex.

f is convex if and only if for all x, y ∈ dom f ,

f(y) ≥ f(x) +∇f(x)t(y − x).

The term on the right hand side of the inequality, is the first-order Taylor expansion of

f . Intuitively, the above definition states that, the first-order Taylor expansion always lower

bounds the function globally.

Theorem 16. Second order conditions. If f is a twice-differentiable function(that is the Hes-

sian of f exists everywhere) and dom f is convex, then f is convex if and only if the Hessian

is positive semi-definite. That is for all x ∈ dom f

∇2f(x) < 0.

Examples of convex functions

1. Linear functions. Linear functions are both convex and concave, by definition.

2. Quadratic functions. The function f : x→ x2 over a convex set X is convex.

125

APPENDIX (Continued)

3. Norms. Norms ‖.‖ defined over a convex set X are convex. For α ∈ [0, 1], x1, x2 ∈ X,

we can write

‖αx1 + (1− α)x2‖ ≤ ‖αx1‖+ ‖(1− α)x2‖ = α‖x1‖+ (1− α)‖x2‖.

where the first inequality is due to triangle law and the equality is due to homogeneity of

norms.

A.1.2 Optimization problems

In this section, we will formally introduce the idea of a Convex optimization problem, by

first introducing an optimization problem and its constrained variants. The most general form

of optimization problem is the unconstrained optimization problem, where we would like to

minimize(or maximize) a function f over dom f . This is formally written as,

min
x∈dom f

f(x)

x is called the optimization variable. Note that there are no restrictions on the range of values

that x can take. The optimum value x? is the x ∈ dom f , where f attains its minimum value.

Typically problems in real life have additional restrictions or constraints. We now define the

a constrained version of the above problem, which incorporates these additional constraints.

126

APPENDIX (Continued)

Definition 10. Constrained optimization problem. Let X ∈ Rn and let f, gi, hi : X → R ∀i ∈

[n]. A constrained optimization problem is written as

min
x∈X

f(x)) (A.1)

subject to gi(x) ≤ 0 (A.2)

hi(x) = 0 (A.3)

This is the most general form of a constrained optimization problem, where we do not make

any assumptions on the convexity of X or the functions f, g, h. This form is also called the

primal form, related to the dual form which will be defined below.

The optimal solution to equation (Equation A.1) is denoted as x? and is also known as

the primal optimal. Constrained optimization problem are often solved or analyzed by another

form, called the dual form. This is based on the so-called Lagrangian of the primal problem,

which is defined as follows.

Definition 11. The Lagrangian of a constrained optimization problem is a function defined

over X × R+. It has the following form

L(x, γ, ν) = f(x) +
n∑
i=1

γigi(x) +
n∑
i=1

νihi(x)

127

APPENDIX (Continued)

The variables γi and νi are called the Langrange dual variables. Now, we are ready to define

the Lagrange dual function.

F(γ, ν) = min
x∈X
L(x, γ, ν) = min

x∈X
(f(x) +

n∑
i=1

γigi(x) +

n∑
i=1

νihi(x))

where, γi ≥ 0, νi ≥ 0.

We have rewritten the objective (Equation A.1) in terms of the dual variables γ, ν. Note

that F is concave in both the parameters; in fact a linear function in the dual variables. This for-

mulation gives rise to the so-called dual-formulation of the original primal form (Equation A.1)

of general unconstrained optimization problems

Definition 12. Dual optimization problem. The following problem is called the dual problem

corresponding to the primal constrained optimization problem

max
γ,ν
F(γ, ν)

subject to γ ≥ 0,

ν ≥ 0.

The optimal solution to the dual problem is often denoted as d?.

A.2 Convex Conjugate

Convex conjugate or Fenchel Conjugate is an important tool in convex optimization and

analysis. It builds up towards the concept of duality in convex analysis. It is the counterpart of

128

APPENDIX (Continued)

Fourier transform in the Harmonic Analysis literature []. In this section we present some of the

key definitions and properties of Fenchel Conjugate, which we use extensively in the relaxation

steps in convexifying non-convex objectives.

Definition 13. Fenchel Conjugate. Fenchel conjugate of a function f : Rn → R

f∗(y)− sup
x∈X

yTx− f(x). (A.4)

The Fenchel Conjugate, f∗ is a max over a set of affine functions (which is convex, by

definition), hence is always convex, irrespective of the convexity of f .

Lemma 3. Let f, g : Rn → R be two functions such that

f(y) ≤ g(y);∀y ∈ Rn

Then,

f∗(y) ≥ g∗(y); ∀y ∈ Rn

Proof. Let φf (y) = 〈y,x〉 − f(x). Now, since f(x) ≤ g(x); ∀x ∈ Rn, we have,

φf (x) ≥ φg(x) =⇒ sup
x∈X

φf (x) ≥ sup
x∈X

φg(x).

129

APPENDIX (Continued)

Examples

1. Affine function. Let f(y) = 〈y,a〉 − b for y,a ∈ Rn. Then, f∗(y) can be computed as

f∗(y) = sup
x∈X
〈y,x〉 − f(x)

= sup
x∈X
{〈y,x〉 − {〈y,a〉 − b}

= sup
x∈X
{〈(x− a),y〉 − b}

= sup
x∈X
{〈(x− a),y〉} − b

This gives us,

f∗(y) =

0 if x = a

∞ otherwise

Lemma 4. Fenchel-Young inequality. Let f : Rn → R, then it follows from the definition of

Fenchel conjugate that

〈y,x〉 ≤ f(x) + f∗(y); for x,y ∈ Rn (A.5)

Proof. From the definition of Fenchel Conjugate, we have

f∗(y) = sup
x∈Rn
〈y,x〉 − f(x)

≥ 〈y,x〉 − f(x)

=⇒ 〈y,x〉 ≤ f(x) + f∗(y)

130

APPENDIX (Continued)

Now, we will look at another lemma that establishes the relationship between the Fenchel

Double Conjugate of a function f and f itself.

Lemma 5. Let f : Rn → R, then

f∗∗(x) ≤ f(x).

Proof. To prove this, let us first try to define f∗∗(x) in terms of f∗(x). Just by the definition

of Fenchel Conjugate, we know that ,

f∗∗(x) = sup
y∈Rn
〈y,x〉 − f∗(y); y ∈ Rn.

Now, we will prove this result using the Fenchel-Young inequality defined in equation

(Equation A.5). For any x,y ∈ Rn, we have

〈x,y〉 ≤ f(x) + f∗(y)

〈x,y〉 − f∗(y) ≤ f(x)

sup{〈x,y〉 − f∗(y)}︸ ︷︷ ︸
f∗∗(x)

≤ f(x).

131

APPENDIX (Continued)

A.3 Semi-definite programming and relaxation

In this section, we will look at an important topic in optimization theory, especially convex

optimization theory, Semi-definite programming (SDP) and Semi-definite relaxation (SDR).

The reason SDPs and SDRs are so important is that, researchers have found ways to effi-

ciently approximate really hard optimization problems via SDR. For instance, the well known

Quadratic Constrained Quadratic Program (QCQP) is a hard optimization problem which has

been studied extensively and commonly solved using an SDP by the SDR relaxation procedure.

SDPs are often easy to formulate, implement and solved in polynomial time. A general QCQP

is formulated as follows.

min
x∈Rn

xTCx (A.6)

subject to xTFix ≥ gi ∀i ∈ [m] (A.7)

xTHix = li ∀i ∈ [q], (A.8)

where C,F,H are general symmetric matrices and possibly indefinite and i ∈ [m] means i =

1 . . .m. Indefinite matrices are matrices that are neither positive semi-definite nor negative

semi-definite. Equation (Equation A.6) is the general QCQP form, which is highly non-convex,

since the constraint set (equations (Equation A.7), (Equation A.8)) is non-convex.

132

APPENDIX (Continued)

Another popular problem in the signal processing community, whose special case is the

famous max-cut problem in computer science, is the BQP problem, which is defined as

min
x∈Rn

xTCx

subject to x2
i = 1.

This can also proved to be NP-hard and can be shown to be approximated very well using

semi-definite relaxations. We will next introduce the semi-definite programming formulation

and then introduce semi-definite relaxations via a simple example as in [131].

Definition 14. Semi-definite program. A semi-definite program is an optimization problem that

minimizes a linear function of the optimization variable x, subject to certain linear inequality

constraints.

min
x∈Rn

cTx

subject to F (x) ≥ 0,

where F (x) = F0 +
n∑
i=0

xiFi.

133

APPENDIX (Continued)

The other popularly used form of SDPs, also known as the pure form is given below.

min
X∈Sn

tr(CX)

subject to tr(AiX) = bi; i ∈ [n]

X � 0.

where Sn is the set of all real symmetric matrices of size n× n and Ai ∈ Sn and bi ∈ R.

Semi-definite relaxations (SDRs).

We will first describe the key steps in relaxing a hard optimization problem into an SDP.

Let us consider the following (simplified) version of the QCQP problem introduced earlier.

min
x∈Rn

xTCx (A.9)

subject to xTAix ≥ bi, (A.10)

where Ai ∈ Sn, the set of all real-symmetric matrices and bi ∈ R.

1. First step towards solving the above hard problem using SDP is to observe that

xTCx = tr(xTCx) = tr(CxxT).

Similarly we can write,

xTAix = tr(AixxT).

134

APPENDIX (Continued)

2. Now, we denote by the matrix X = xxT . Substituting this, objective (Equation A.9)

becomes,

min
X∈Sn

tr(CX)

subject to tr(AiX) ≥ bi

X = xxT .

3. Now, it can be observed that the constraint X = xxT can be rewritten as X � 0 and

rank(X) = 1. Noting this, the objective becomes,

min
X∈Sn

tr(CX) (A.11)

subject to tr(AiX) ≥ bi (A.12)

X � 0; rank(X) = 1. (A.13)

4. Now, equation (Equation A.11) is convex in X; in fact linear in X and all the constraints,

except the rank constraint are also linear in X. However, this rewrite doesn’t decrease

the complexity of the original problem. Indeed, equation (Equation A.11) is as hard as

equation (Equation A.9). However, as mentioned earlier, the only “hard” constraint is the

135

APPENDIX (Continued)

rank constraint. Thus, it is common to drop the rank constraint to obtain the following

relaxed objective, which is an SDP.

min
X∈Rn

tr(CX)

subject to tr(AiX) ≥ bi

X � 0.

The above procedure, is a general recipe for performing semi-definite relaxations of hard-

to-solve combinatorial optimization problems. A similar relaxation procedure can be

derived for the max-cut problem. For details the reader is referred to [132].

A.4 Projected Gradient Descent (PGD) and Conditional Gradient algorithm (Frank Wolfe).

In the previous few subsections, we looked at constrained optimization problems, in general,

and SDP - a special constrained optimization problem. In this section, we will look at two

commonly used algorithms to solve constrained optimization problems.

Projected Gradient Descent (PGD) algorithm.

Let us consider the following general version of a constrained optimization problem

min
x∈Rn

f(x) (A.14)

subject to x ∈ C (A.15)

where C represents some constraint set, which are typically expressed by some function of x.

136

APPENDIX (Continued)

One of the common ways to solve this optimization problem is the projected gradient descent,

where in each iteration t+ 1 the algorithm performs two operations.

First, it proposes a new point xt+1 in the direction opposite to the negative of the gradient

of f .

xt+1 ← xt − η∇f(xt)

where η is the step size - a hyper parameter to be tuned.

The above update rule is the vanilla gradient descent step. The gradient of a function gives

the direction of steepest ascent. Therefore, to minimize the function, we pursue the direction

opposite to the gradient. This is done conservatively by multiplying the negative gradient with

a step size parameter η ∈ [0, 1].

Note that the above proposed point, need not be in the feasible set C - since the update rule

doesn’t enforce this. So, in order to make sure that the proposed point is in the feasible region,

we perform a “projection” step, which typically another optimization problem(depending on

how the constraint set is), written as

Pc(x) = min
z∈C
‖x− z‖

The projected point Pc(x) is the optimal “feasible” point for the next iteration of the algorithm.

Conditional Gradient Algorithm (Frank-Wolfe algorithm).

Let us consider the same optimization problem (Equation A.14). Additionally, let us assume

that f has L-Lipschitz gradient, which is a measure of the smoothness of f . The key step in

137

APPENDIX (Continued)

the Projected Gradient Descent algorithm introduced earlier is the projection operation Pc(x),

which keeps the domain of the optimization within the feasible region. There are however two

drawbacks of this method.

1. If the proposed optimal point x (before projection), lies outside the feasible region, then

the projection operation Pc(x) always projects the point on the boundary of the feasible

region. This rules out points on the int C.

2. The projection operation is often computationally expensive and sometimes hard to com-

pute. Typically the constraint set of an optimization problem is the intersection of mul-

tiple regions defined by functions of x.

To this end, researchers have developed many “projection-free” approaches. The Frank-

Wolfe or Conditional Gradient algorithm is one of the important projection-free approaches

to solve constrained optimization problems. An illustration of Frank-Wolfe is given in figure

Figure 9.

The Conditional Gradient algorithm is surprisingly simple and has two major steps in

building iterative solutions towards the optimal x for the constrained problem (Equation A.14).

1. At each step, find a point st ∈ Rn that maximizes the negative gradient or (equivalently)

minimizes the gradient.

st ∈ arg max
s∈Rn
〈−∇f(xt), s〉,

where xt is the current estimate of the optimal solution.

138

APPENDIX (Continued)

2. Now, obtain the new estimate of the solution xst+ 1 which is a convex combination of

the current iterate xt and st.

xt+1 = ηtx
t + (1− ηt)st.

Choosing the step size η. There are multiple variants of Frank-Wolfe, depending on how we

choose ηt. One possibility is to view the problem of choosing ηt as another linear minimization

problem. It’s often referred to as the line search step in Frank-Wolfe.

ηt = arg min
η∈[0,1]

f(ηtx
t + (1− ηt)st).

Other heuristic choices of eta also exists.

ηt =
2

t+ 1

139

APPENDIX (Continued)

Figure 9: An illustration of Frank-Wolfe.
1

140

APPENDIX

ADDITIONAL PROOFS FOR CHAPTER 2

Proof for Theorem 1

Restatement of Theorem 1: There exists a loss L that satisfies all the three conditions if,

and only if, f is affine.

Proof. The “if” part is trivial as we just need to set L(φ, z) = ||φ − f(z)||2. To see the “only

if” part, consider the sublevel set of L at 0: S = {(φ, z) : L(φ, z) ≤ 0}. By grounding and

unique recovery, S = {(f(z), z) : z}. And by the joint convexity of L, S is convex. So for any

z1, z2, (1
2(f(z1) + f(z2)), 1

2(z1 + z2)) is in S. But (f(1
2(z1 + z2)), 1

2(z1 + z2)) is the only element

in S with the second component being 1
2(z1 + z2). So 1

2(f(z1) + f(z2)) = f(1
2(z1 + z2)). So f is

affine.

Proof for Theorem 2

Restatement of Theorem 2: For any W,U,b, denote L(Φ, R) = F ∗(Φ) − tr(Φ′WX) +

tr(R′(U ′Φ + b1′))− `∗(R). Then

(LHS) min
Φ

max
R
L(Φ, R) = max

R
min

Φ
L(Φ, R) (RHS).

141

APPENDIX (Continued)

Proof. Trivially LHS ≥ RHS (weak duality). Define h(Z) := minΦ F
∗(Φ)−tr(Φ′WX)+`(U ′Φ+

b1′ +Z). Since F ∗ is strongly convex, h(Z) > −∞ for all Z. Since `(U ′Φ + b1′ +Z) is jointly

convex in Φ and Z, h(Z) is convex in Z (after minimizing out Φ). Suppose R ∈ ∂h(0), then

h(0) ≤ h(Z)− tr(R′Z) ≤ F ∗(Φ)− tr(Φ′WX) + `(U ′Φ + b1′ + Z)− tr(R′Z) (B.1)

= {F ∗(Φ)− tr(Φ′WX) + tr(Φ′UR)} (B.2)

+ {`(U ′Φ + b1′ + Z)− tr(R′(Z + U ′Φ + b1′))}+ tr(R′b1′). (B.3)

Take infimum over Z for the second group of terms, and then take infimum over Φ for the first

group of terms. We finally arrive at

h(0) ≤ −F (WX − UR)− `∗(R) + tr(R′b1′) ≤ max
R
−F (WX − UR)− `∗(R) + tr(R′b1′).

That is LHS ≤ RHS. So in summary LHS = RHS.

Proof for Lemma 1

Restatement of Lemma 1: S is convex, bounded, and closed. In addition,

γS(T) =

tr(T) T ∈ T

+∞ otherwise

. (B.4)

Proof. Since T is a convex cone, the right-hand side is a sublinear function. To show two

sublinear functions f and g are equal, it suffices to show that their “unit balls” are equal, i.e.

142

APPENDIX (Continued)

{x : f(x) ≤ 1} = {x : g(x) ≤ 1}. The unit ball of the left-hand side, by definition, is S. The

unit ball of the right-hand side is: {T : T ∈ T , tr(T) ≤ 1}. But this is exactly the definition of

S in (Equation 2.11).

B.1 Extensions to hard tanh and non-elementwise transfers

B.1.1 Elementwise transfer.

When using the hard tanh transfer, we have F ∗h (Φ) = 1
2 ‖Φ‖

2 if the L∞ norm ‖Φ‖∞ :=

maxij |Φij | ≤ 1, and ∞ otherwise. As a result, we get the same objective function as in

(Equation 2.10), only with Th changed into {Φ′Φ : ‖Φ‖∞ ≤ 1} and the domain of A changed

into {A :
∑

i |Aij | ≤ 1, ∀ j}. Given the negative gradient G � 0 of the objective, the polar

operator boils down to solving

max
Φ∈Rh×t:‖Φ‖∞≤1

tr(G′Φ′Φ) = h max
φ∈[0,1]t

φ′Gφ = h max
φ∈[0,1]t

‖Aφ‖2 , where A′A = G.

(B.5)

This problem is NP-hard, but an approximate solution with constant multiplicative guarantee

can be found in O(t2) time [133]. Note for computation we do not even need an expression of

the convex hull of Th.

143

APPENDIX (Continued)

B.1.2 Non-elementwise transfer.

The Bregman divergence can be further leveraged to convexify transfer functions that are

not applied elementwise. For example, consider the soft-max function that is commonly used

in machine learning and deep learning:

f(x) =

(
h∑
k=1

exk

)−1

(ex1 , . . . , exh)′.

Clearly the range of f is Sh = {z ∈ Rh : z > 0,1′z = 1}. The potential function F (x) is

simply

F (x) = log

h∑
k=1

exk , (B.6)

and its Fenchel dual is

F ∗(φ) =

h∑
k=1

φk log φk if φ ∈ Sh

∞ otherwise

. (B.7)

Therefore the objective in (Equation 2.7) can be instantiated into

min
φj∈Sh

max
R1=0,λj∈Sh

t∑
j=1

F ∗(φj)−
1

2

∥∥(Φ− Λ)X ′
∥∥2 − 1

2

∥∥ΦR′
∥∥2 − F ∗(Λ)− `∗(R). (B.8)

where Φ = (φ1, . . . ,φt) ∈ Rh×t and Λ = (λ1, . . . ,λt) ∈ Rh×t. Here Sh is the closure of Sh:

{z ∈ Rh+ : 1′z = 1}, i.e. the h dimensional probability simplex.

144

APPENDIX (Continued)

When h = 2, F ∗(φ) is the negative entropy function, and it can be approximated by

a
2 [(φ1 − 0.5)2 + (φ2 − 0.5)2] + c, where a and c are chosen such that c = F ∗(1

21) = log 1
2 and

a
2 (0.52 + 0.52) + c = F ∗((0, 1)′) = 0. For general h, we can similarly approximate F ∗(φ) by

a
2

∥∥φ− 1
h1
∥∥2

+ c, with c = F ∗(1
h1) = log 1

h and a
2 [(1 − 1

h)2 + h−1
h2

] + c = F ∗((1, 0, . . . , 0)′) = 0.

Since 1′φ = 1, this approximation is in turn equal to a ‖φ‖2 + d where d = c − a/(2h). As a

result, (Equation B.8) can be approximated by (setting a = 1 to ignore scaling)

min
φj∈Sh

max
R1=0,λj∈Sh

1

2
‖Φ‖2 − 1

2

∥∥(Φ− Λ)X ′
∥∥2 − 1

2

∥∥ΦR′
∥∥2 − 1

2
‖Λ‖2 − `∗(R). (B.9)

Once more we can apply change of variable by Λ = ΦA. Since Φ ≥ 0, Λ ≥ 0, Φ′1 = 1, and

Λ′1 = 1, we easily derive the domain of A as A′1 = 1 and A ≥ 0. So using T = Φ′Φ, we finally

arrive at the convexified objective:

min
T∈Th

max
R1=0,A≥0,A′1=1

1

2
tr(T)− 1

2
tr(T (I −A)X ′X(I −A′))− 1

2
tr(TR′R)− 1

2
tr(TAA′)− `∗(R),

(B.10)

where Th is the convex hull of {Φ′Φ : Φ ∈ Rh×t+ ,Φ′1 = 1}. So given the negative gradient G � 0

of the objective, the polar operator aims to compute

max
Φ∈Rh×t+ :Φ′1=1

tr(G′Φ′Φ) = max
φ1,...,φh∈Rt+

h∑
k=1

‖Aφk‖2 s.t.
h∑
k=1

φk = 1, where A′A = G.

(B.11)

145

APPENDIX (Continued)

This problem is NP-hard [133], but an approximate solution with provable guarantee is still

possible. For example, in the case that h = 2, we have φ2 = 1−φ1, and the problem becomes

max
φ1∈[0,1]t

‖Aφ1‖2 + ‖A(1− φ1)‖2 = max
φ1∈[0,1]t

∥∥A (φ1 − 1
21
)∥∥2

+ constant (B.12)

= max
φ∈[−1

2 ,
1
2]t
‖Aφ‖2 + constant. (B.13)

This again admits an approximate solution with constant multiplicative guarantee that can be

computed in O(t2) time [133].

Note the Th in this case, as well as that in the hard tanh case above, is closely related to

the completely positive matrix cone, because Φ ∈ Rh×t+ .

B.2 Dataset description

The experiments made use of 4 “real” world datasets - G241N (241×1500) from [41], Letter

(vowel letters A-E vs non vowel letters B-F) (16× 20000) from [134], CIFAR-SM (bicycle and

motorcycle vs lawn- mower and tank) (256 × 1526) from [39] and [40] and CIFAR-10 (ship vs

truck) (256× 12000) from [40], where red channel features are preprocessed by averaging pixels

in both the CIFAR datasets.

B.3 Proof of Lemma 2

Let X be an extreme point of R and rank(X) = r. We prove by contradiction, and suppose

(Equation 3.21) does not hold. Then 1
2r(r + 1) > m. Write the eigen-decomposition of X as

X = QΛQ′, where Q′Q = I and Λ ∈ Rr×r is positive definite and diagonal. By (Equation 3.20),

tr(AiX) = tr(AiQΛQ′) = tr(ΛQ′AiQ) S bi.

146

APPENDIX (Continued)

Let Sr be the set of symmetric r-by-r matrices. It is a subspace with dimension 1
2r(r + 1).

Sincem < 1
2r(r+1) andQ′AiQ ∈ Sr, there must exist a nonzero ∆ ∈ Sr such that tr(∆Q′AiQ) =

0 for all i. In addition, as Λ is positive definite, there exists ε > 0 such that Λ ± ε∆ are both

positive semi-definite. Now consider two matrices X+ = Q(Λ + ε∆)Q′ and X− = Q(Λ− ε∆)Q′.

Clearly X+, X,X− are distinct because Q∆Q′ = 0 if, and only if, ∆ = 0. Furthermore X+ and

X− are both in R because i) X+ � 0 and X− � 0, and ii) tr(AiX+) = tr(AiX−) = tr(AiX).

Now the fact that X = (X+ + X−)/2 contradicts with the assumption that X is an extreme

point of R.

B.4 Chain model with sets of output bases

Finally to reconstruct the image for each letter, we assume that they are the convex combi-

nation of p bases (or principal components) that are specific to each letter. Suppose for letter

j, the bases are the columns of Rj ∈ Rm×p. Denote the combination weights for the i-th letter

in a word as Qi ∈ Rp×h+ , where the j-th column corresponds to the case where the letter is j.

We postulate that Qi is related to Wi in the sense that its j-th column is nonzero only if Wi

represents letter j: Q′i1 = Wi1. As a result, the expected reconstruction is
∑h

j=1RjQi(:, j)

147

APPENDIX (Continued)

where Qi(:, j) is the j-th column of Qi. Enforcing this constraint with a Lagrange multiplier

αi, we finally obtain our objective

min
‖U‖≤λ1

min
‖R‖≤λ2

E
(x,z)∼p̃

[
max

αi≥0,Π
max

(Θ,γ)∈C
max
v

min
W

min
Qi∈[0,1]p×h

(B.14)

∑
i

(vi − zi)
′
∑
j

RjQi(:, j)−G∗(vi) +
σ′

2
‖Qi‖2

+ tr(Π′W)− σS(Π) (B.15)

+
∑
i

tr((Uvxi1
′ + Ue + σWi)

′(γWi −Θi)) +
∑
i

α′i(Q
′
i1−Wi1)

]
. (B.16)

Here we added an extra small L2 penalty on Qi and its weight σ′ is a small positive number.

Then we proceed by

min
‖U‖≤λ1

min
‖R‖≤λ2

E
(x,z)∼p̃

[
max

Π
max

(Θ,γ)∈C
max
v
−σS(Π)−

∑
i

(
G∗(vi) + tr(Θ′i(Uvxi1

′ + Ue)
)

(B.17)

− 1

4σγ

∑
i

∥∥γUvxi1′ + γUe + Πi − σΘi −αi1
′∥∥2

(B.18)

+
∑
i

min
Qi∈[0,1]p×h

σ′2 ‖Qi‖2 + (vi − zi)
′
∑
j

RjQi(:, j) + α′iQ
′
i1

]
. (B.19)

The last term is minimizing a quadratic form of Qi over [0, 1] constraints. This is exactly

the same as we discussed in Section B.5. So following the same derivations there we get an

SDP relaxation again.

148

APPENDIX (Continued)

An even more careful look reveals that the terms related to U are only in (Equation B.17)

and (Equation B.18), while the terms related to R are only in (Equation B.19). The absence

of cross terms allows us to carry out SDP for U and R separately by considering matrices

I

U ′

(
I, U

)
=

I U

U ′ U ′U

 and

I

R′

(
I,R

)
=

I R

R′ R′R

 . (B.20)

Note the technique of decoupling the hidden variables can also be applied to the more general

framework in (Equation 3.12). The trade-off is delicate between the size of SDP size and the

complexity of solving inner maximization given M . We conjecture that the SDP relaxation

over U and R separately may lead to tighter approximation and higher sample efficiency. We

leave the investigation for future work.

B.5 Simplification via Partial Lagrangian Formulation

In many applications, the dimensionality of w is much higher than the number of non-box

constraints. For example, in the homogeneous linear chain model, there are O(C2) variables

(hence that number of [0, 1] box constraints), while the number of non-box constraints is O(C).

So a partial Lagrangian approach turns out more effective by retaining the box constraints

in the optimization of w in (Equation 3.12), while the non-box constraints are enforced by

149

APPENDIX (Continued)

Lagrange multipliers. This leads to the following objective that replaces the expression inside

the expectation operator of (Equation 3.12):

max
β≥0

max
(θ,γ)∈N

max
v

min
w∈[0,1]h

−z′R′w + v′R′w −G∗(v) + β′(Aw − c) + (Ux + σw)′(γw − θ)

= max
β≥0

max
(θ,γ)∈N

max
v
−G∗(v)− β′c− θ′Ux− 2γσg

(
R(v − z) + γUx +A′β − σθ

−2γσ

)
, (B.21)

where g(s) =
1

2
‖s‖2 − 1

2

∥∥∥[∣∣s− 1
21
∣∣− 1

21
]
+

∥∥∥2
. (B.22)

Here [x]+ = max{0, x}, and is taken elementwise along with absolute value. The expression of

g is derived from the fact that minw∈[0,1]
1
2w

2 − sw = 1
2(d2 − 2sd), where d is the median of

{s, 0, 1}.

Compared with (Equation 3.12) and (Equation 3.14), the β used here has much lower di-

mension than π. In addition, g(s) is convex and therefore given (U,R), the optimal (β,θ, γ,v)

can be solved efficiently. More interestingly, thanks to the expression of g(s) in (Equation B.22),

which is a quadratic minus a convex function in s, our SDP relaxation can be easily extended

to this partial Lagrangian framework. In fact, just replace ‖s‖2 by using an affine function of

M , and then we obtain a convex objective in (U,R).

Although the derivation of (Equation B.21) is based on the generic form in (Equation 3.12),

it is straightforward to apply the same technique to specialized formulations in §3.6.1 and 3.6.2.

150

APPENDIX (Continued)

B.6 Projection to M1

The projection to M1 means solving for a given M̂ :

min
M

1
2 ||M − M̂ ||

2, s.t. M � 0, M1 = I, tr(Mu,u) ≤ 1, tr(Mr,r) ≤ 1. (B.23)

To solve it efficiently, we resort to a partial Lagrangian approach with the last three constraints

enforced by Lagrange multipliers Λ ∈ Rh×h, α ≥ 0, and β ≥ 0, keeping the M � 0 in closed

form:

max
α≥0,β≥0,Λ∈Rh×h

min
M�0

1
2 ||M − M̂ ||

2 − tr(Λ′(M1 − I)) + α(tr(Mu,u)− 1) + β(tr(Mr,r)− 1).

Given (Λ, α, β), the optimal M has a closed form solution via eigenvalue thresholding.

151

APPENDIX

ADDITIONAL EXPERIMENTS AND PROOFS FOR CHAPTER 4

C.1 Proofs

Proposition 1. R(f) satisfies Assumption 2 if, and only if, R(f) = supg∈S 〈f, g〉H, where

S ⊆ H is bounded in the RKHS norm and is symmetric (g ∈ S ⇔ −g ∈ S).

Recall

Assumption 1. We assume that R : F → R is a semi-norm. Equivalently, R : F → R is

convex and R(αf) = |α|R(f) for all f ∈ F and α ∈ R (absolute homogeneity). Furthermore,

we assume R is closed (i.e., lower semicontinuous) w.r.t. the topology in H.

Proposition 1 (in a much more general form), to our best knowledge, is due to [135]. We

give a “modern” proof below for the sake of completeness.

Proof for Proposition 1.

The “if” part: convexity and absolute homogeneity are trivial. To show the lower semiconti-

nuity, we just need to show the epigraph is closed. Let (fn, tn) be a convergent sequence in

the epigraph of R, and the limit is (f, t). Then 〈fn, g〉H ≤ tn for all n and g ∈ S. Tending

n to infinty, we get 〈f, g〉H ≤ t. Take supremum over g on the left-hand side, and we obtain

R(f) ≤ t, i.e., (f, t) is in the epigraph of R.

152

APPENDIX (Continued)

The “only if” part: A sublinear function R vanishing at the origin is a support function if,

and only if, it is closed. Indeed, if R is closed, then its conjugate function

λR∗(f∗) = λ

(
sup
f
〈f, f∗〉H −R(f)

)
= sup

f
〈λf, f∗〉H −R(λf) = R∗(f∗), (C.1)

is scaling invariant for any positive λ, i.e., R∗ is an indicator function. Conjugating again we

have R = (R∗)∗ is a support function. So, R is the support function of

S = dom(R∗) = {g : 〈f, g〉H ≤ R(f) for all f ∈ H},

which is obviously closed. S is also symmetric, because the symmetry of R implies the same

for its conjugate function R∗, hence its domain S.

To see S is bounded, assume to the contrary we have λngn ∈ S with ‖gn‖H = 1 and λn →∞.

Since R is finite-valued and closed, it is continuous, see [97]. Thus, for any δ > 0 there exists

some ε > 0 such that ‖f‖H ≤ ε =⇒ R(f) ≤ δ. Choose f = εgn in the definition of S above we

have:

ελn = 〈εgn, λngn〉H ≤ R(εgn) ≤ δ, (C.2)

which is impossible as λn →∞.

153

APPENDIX (Continued)

Proof of Theorem 8.

a): since
∑

i αiG
∗
xi =

∑
j βjG

∗
zj , it holds that

〈
h;
∑
i

αiG
∗
xi

〉
=

〈
h;
∑
j

βjG
∗
zj

〉
, ∀ h ∈ F (C.3)

which implies that

∑
i

αih(xi) =
∑
j

βih(zj), ∀h ∈ F . (C.4)

Therefore

∑
i

αik(xi, ·) =
∑
j

βjk(zj , ·). (C.5)

Then apply the linear map T on both sides, and we immediately get
∑

i αik̃xi =
∑

j βj k̃zj .

b): suppose otherwise that the completion of span{G∗x : x ∈ X} is not B∗. Then by the

Hahn-Banach theorem, there exists a nonzero function f ∈ B such that 〈f ;G∗x〉 = 0 for all

x ∈ X . By (Equation 4.8), this means f(x) = 0 for all x. Since B is a Banach space of

functions on X , f = 0 in B. Contradiction.

The linearity of ι∗ follows directly from a) and b).

154

APPENDIX (Continued)

To prove Theorem 9, we first introduce five lemmas. To start with, we set up the concept

of polar operator that will be used extensively in the proof:

POB̃(u) := arg max
v∈B̃
〈v, u〉 , ∀u ∈ Rd. (C.6)

Here the optimization is convex, and the argmax is uniquely attained because B̃ is strictly

convex. So ‖·‖B̃∗ is differentiable at all u, and the gradient is

∇‖u‖B̃∗ = POB̃(u). (C.7)

Lemma 6. Under Assumptions 3 and 4,

‖g‖B = ‖g∗‖B∗ = ‖ι∗(g∗)‖B̃∗ = ‖ι(g)‖B̃ , ∀ g ∈ B. (C.8)

Proof. The first equality is trivial, and the third equality is by the definition of ι(g) in (Equation 4.22).

To prove the second equality, let us start by considering g∗ =
∑

i αiG
∗
xi . Then

‖ι∗(g∗)‖B̃∗ = max
v∈B̃
〈v, ι∗(g∗)〉 = max

v∈B̃

∑
i

αi

〈
v, k̃xi

〉
(C.9)

‖g∗‖B∗ = max
f∈B
〈f ; g∗〉 = max

f∈B

∑
i

αif(xi) = max
f∈B

∑
i

αi 〈f, k(xi, ·)〉H = max
f∈B

∑
i

αi

〈
f̃ , k̃xi

〉
,

(C.10)

where the last equality is by Assumption 4. So it suffices to show that B̃ = {f̃ : f ∈ B}.

155

APPENDIX (Continued)

“⊇” is trivial because for all f ∈ B, by Assumption 4,

∥∥∥f̃∥∥∥2
+ max

z∈S

〈
z̃, f̃
〉2

= ‖f‖2H + max
z∈S
〈z, f〉2H ≤ 1. (C.11)

“⊆”: for any v ∈ B̃, Assumption 3 asserts that there exists hv ∈ H such that h̃v = v. Then by

Assumption 4,

‖hv‖2H + max
z∈S
〈z, hv〉2H = ‖v‖2 + max

z∈S
〈z̃, v〉2 ≤ 1. (C.12)

Since both ‖·‖B∗ and ‖·‖B̃∗ are continuous, applying the denseness result in part b) of Theorem

8 completes the proof of the second equality in (Equation C.8).

Lemma 7. Under Assumptions 3 and 4,

〈ι(f), ι∗(g∗)〉 = 〈f ; g∗〉 , ∀ f ∈ B, g∗ ∈ B∗. (C.13)

Proof.

〈f ; g∗〉 by (Equation 4.7)
= [g∗, f∗]B∗ (C.14)

= lim
t→0

1

2t

(
‖f∗ + tg∗‖2B∗ − ‖f

∗‖2B∗
)

(by [98]) (C.15)

= lim
t→0

1

2t

[
‖ι∗(f∗) + tι∗(g∗)‖2B̃∗ − ‖ι

∗(f∗)‖2B̃∗
]
, (C.16)

156

APPENDIX (Continued)

where the last equality is by Lemma 6 and Theorem 8. Now it follows from the polar operator

as discussed above that

〈f ; g∗〉 =
〈
‖ι∗(f∗)‖B̃∗ · POB̃(ι∗(f∗)), ι∗(g∗)

〉
= 〈ι(f), ι∗(g∗)〉 .

Lemma 8. Under Assumptions 3 and 4,

B̃ = ι(B) := {ι(f) : ‖f‖B ≤ 1}. (C.17)

Proof. “LHS ⊇ RHS”: by Lemma 6, it is obvious that ‖f‖B ≤ 1 implies ‖ι(f)‖B̃ ≤ 1.

“LHS ⊆ RHS”: we are to show that for all v ∈ B̃, there must exist a fv ∈ B such that

v = ι(f). If v = 0, then trivially set fv = 0. In general, due to the polar operator definition

(Equation C.6), there must exist u ∈ Rd such that

v/ ‖v‖B̃ = POB̃(u). (C.18)

We next reverse engineer a q∗ ∈ B∗ so that ι∗(g∗) = u. By Assumption 3, there exists hu ∈ H

such that h̃u = u. Suppose hu =
∑

i αikxi . Then define q∗ =
∑

i αiG
∗
xi , and we recover u by

ι∗(q∗) =
∑
i

αik̃i = h̃u = u. (C.19)

157

APPENDIX (Continued)

Apply Lemma 6 and we obtain

‖q‖B = ‖ι∗(q∗)‖B̃∗ = ‖u‖B̃∗ . (C.20)

Now construct

fv =
‖v‖B̃
‖q‖B

q. (C.21)

We now verify that v = ι(fv). By linearity of ι∗,

ι∗(f∗v) =
‖v‖B̃
‖q‖B

ι∗(q∗) =
‖v‖B̃
‖q‖B

u. (C.22)

So POB̃(ι∗(f∗v)) = v/ ‖v‖B̃ and plugging into (Equation 4.22),

ι(fv) = ‖ι∗(f∗v)‖B̃∗ POB̃(ι∗(f∗v)) =
‖v‖B̃
‖q‖B

‖u‖B̃∗
1

‖v‖B̃
v (C.23)

= v. (by (Equation C.20))

Lemma 9. Under Assumptions 3 and 4,

B̃∗ = ι∗(B∗) := {ι∗(g∗) : ‖g∗‖B∗ ≤ 1}. (C.24)

158

APPENDIX (Continued)

Proof. “LHS ⊇ RHS”: By definition of dual norm, any g∗ ∈ B∗ must satisfy

〈f ; g∗〉 ≤ 1, ∀ f ∈ B. (C.25)

Again, by the definition of dual norm, we obtain

‖ι∗(g∗)‖B̃∗ = sup
v∈B̃
〈v, ι∗(g∗)〉 (C.26)

= sup
f∈B
〈ι(f), ι∗(g∗)〉 (Lemma 8) (C.27)

= sup
f∈B
〈f ; g∗〉 (by Lemma 7) (C.28)

≤ 1. (C.29)

“LHS ⊆ RHS”: Any u ∈ Rd with ‖u‖B̃∗ = 1 must satisfy

max
v∈B̃
〈u, v〉 = 1. (C.30)

Denote v = arg maxv∈B̃ 〈u, v〉 which must be uniquely attained. So ‖v‖B̃ = 1. Then Lemma 8

implies that there exists a f ∈ B such that ι(f) = v. By duality,

max
u∈B̃∗

〈v, u〉 = 1, (C.31)

159

APPENDIX (Continued)

and u is the unique maximizer. Now note

〈v, ι∗(f∗)〉 = 〈ι(f), ι∗(f∗)〉 = 〈f ; f∗〉 = 1, (C.32)

where the last equality is derived from Lemma 6 with

‖f‖B = ‖ι(f)‖B̃ = ‖v‖B̃ = 1. (C.33)

Note from Lemma 6 that ‖ι∗(f∗)‖B̃∗ = ‖f‖B = 1. So ι∗(f∗) is a maximizer in (Equation C.31),

and as a result, u = ι∗(f∗).

If ‖u‖B̃∗ < 1, then just construct f as above for u/ ‖u‖B̃∗ , and then multiply it by ‖u‖B̃∗ .

The result will meet our need thanks to the linearity of ι∗ from Theorem 8.

Lemma 10. Under Assumptions 3 and 4,

max
v∈B̃
〈v, ι∗(g∗)〉 = max

f∈B
〈f ; g∗〉 , ∀g∗ ∈ B∗. (C.34)

Moreover, by Theorem 7, the argmax of the RHS is uniquely attained at f = g/ ‖g‖B, and the

argmax of the LHS is uniquely attained at v = ι(g)/ ‖ι(g)‖B̃.

160

APPENDIX (Continued)

Proof. LHS ≥ RHS: Let fopt be an optimal solution to the RHS. Then by Lemma 8, ι(fopt) ∈ B̃,

and so

RHS =
〈
fopt; g∗

〉
(C.35)

=
〈
ι(fopt), ι∗(g∗)

〉
(by Lemma 7) (C.36)

≤ max
v∈B̃
〈v, ι∗(g∗)〉 (C.37)

= LHS. (C.38)

LHS ≤ RHS: let vopt be an optimal solution to the LHS. Then by Lemma 8, there is fvopt ∈ B

such that ι(fvopt) = vopt. So

LHS =
〈
vopt, ι∗(g∗)

〉
(C.39)

= 〈ι(fvopt), ι∗(g∗)〉 (C.40)

= 〈fvopt ; g∗〉 (by Lemma 7) (C.41)

≤ max
f∈B
〈f ; g∗〉 (since fvopt ∈ B) (C.42)

= RHS.

Proof of Theorem 9. Let f ∈ B and α ∈ R. Then (αf)∗ = αf∗, and by (Equation 4.22) and

Theorem 8,

ι(αf) = ‖ι∗(αf∗)‖B̃∗ · POB̃(ι∗(αf∗)) = |α| ‖ι∗(f∗)‖B̃∗ · POB̃(αι∗(f∗)). (C.43)

161

APPENDIX (Continued)

By the symmetry of B̃,

ι(αf) = |α| ‖ι∗(f∗)‖B̃∗ · sign(α) POB̃(ι∗(f∗)) = α ι(f). (C.44)

Finally we show ι(f1 + f2) = ι(f1) + ι(f2) for all f1, f2 ∈ B. Observe

〈ι(f1) + ι(f2), ι∗((f1 + f2)∗)〉 (C.45)

= 〈ι(f1), ι∗((f1 + f2)∗)〉+ 〈ι(f2), ι∗((f1 + f2)∗)〉 (C.46)

= 〈f1; (f1 + f2)∗〉+ 〈f2; (f1 + f2)∗〉 (C.47)

= 〈f1 + f2; (f1 + f2)∗〉 . (C.48)

Therefore

〈v, ι∗((f1 + f2)∗)〉 =

〈
f1 + f2

‖f1 + f2‖B
; (f1 + f2)∗

〉
, (C.49)

where v =
ι(f1) + ι(f2)

‖f1 + f2‖B
. (C.50)

We now show ‖v‖B̃ = 1, which is equivalent to

‖ι(f1) + ι(f2)‖B̃ = ‖f1 + f2‖B . (C.51)

162

APPENDIX (Continued)

Indeed, this can be easily seen from

LHS = sup
u∈B̃∗

〈ι(f1) + ι(f2), u〉 (C.52)

= sup
g∗∈B∗

〈ι(f1) + ι(f2), ι∗(g∗)〉 (Lemma 9) (C.53)

= sup
g∗∈B∗

〈f1 + f2; g∗〉 (by Lemma 7) (C.54)

= RHS. (C.55)

By Lemma 10,

max
v∈B̃
〈v, ι∗((f1 + f2)∗)〉 = max

f∈B
〈f ; (f1 + f2)∗〉 . (C.56)

Since the right-hand side is optimized at f = (f1+f2)/ ‖f1 + f2‖B, we can see from (Equation C.49)

and ‖v‖B̃ = 1 that v = POB̃(ι∗((f1 + f2)∗)). Finally by definition (Equation 4.22), we conclude

ι(f1 + f2) = ‖ι∗((f1 + f2)∗)‖B̃∗ · POB̃(ι∗((f1 + f2)∗)) (C.57)

= ‖f1 + f2‖B v (by Lemma 6) (C.58)

= ι(f1) + ι(f2).

Proof of Theorem 11. We assume that the kernel k is smooth and the function

zij(λ) = ∂
∂λk((x̃λ, ỹλ), (·, ·)).

163

APPENDIX (Continued)

is in Lp so that Rij is well-defined and finite-valued.

Clearly, using the representer theorem we can rewrite

Rij(f) = ‖ 〈f, zij(λ)〉H ‖p. (C.59)

Thus, Rij is the composition of the linear map f 7→ g(λ; f) := 〈f, zij(λ)〉H and the Lp norm

g 7→ ‖g(λ)‖p. It follows from the chain rule that Rij is convex, absolutely homogeneous, and

Gâteaux differentiable (recall that the Lp norm is Gâteaux differentiable for p ∈ (1,∞)).

C.2 Analysis under Inexact Euclidean Embedding

We first rigorously quantify the inexactness in the Euclidean embedding T : H → Rd,

where Tf = f̃ . To this end, let us consider a subspace based embedding, such as Nyström

approximation. Here let T satisfy that there exists a countable set of orthonormal bases {ei}∞i=1

of H, such that

1. Tek = 0 for all k > d,

2. 〈Tf, Tg〉 = 〈f, g〉H, ∀f, g ∈ V :=span{e1, . . . , ed}.

Clearly the Nyström approximation in (Equation 4.20) satisfies these conditions, where

d = n, and {e1, . . . , ed} is any orthornormal basis of {kz1 , . . . , kzd} (assuming d is no more than

the dimensionality of H).

164

APPENDIX (Continued)

As an immediate consequence, {Te1, . . . , T ed} forms an orthonormal basis of Rd: 〈Tei, T ej〉 =

〈ei, ej〉H = δij for all i, j ∈ [d]. Besides, T is contractive because for all f ∈ F ,

‖Tf‖2 =

∥∥∥∥∥
d∑
i=1

〈f, ei〉H Tei

∥∥∥∥∥
2

=

d∑
i=1

〈f, ei〉2H ≤ ‖f‖
2
H . (C.60)

By Definition 6, obviously kzi is 0-approximable under the Nyström approximation. If both

f and g are ε-approximable, then f + g must be (2ε)-approximable.

Lemma 11. Let f ∈ H be ε-approximable by T , then for all u ∈ H,

|〈u, f〉H − 〈Tu, Tf〉| ≤ ε ‖u‖H . (C.61)

Proof. Let f =
∑∞

i=1 αiei and u =
∑∞

i=1 βiei. Then

|〈u, f〉H − 〈Tu, Tf〉| (C.62)

=

∣∣∣∣∣∣
∞∑
i=1

αiβi −

〈
d∑
i=1

αiTei,
d∑
j=1

βjTej

〉∣∣∣∣∣∣ (C.63)

=

∣∣∣∣∣
∞∑

i=d+1

αiβi

∣∣∣∣∣ (C.64)

≤

(∞∑
i=d+1

α2
i

)1/2
 ∞∑
j=d+1

β2
j

1/2

(C.65)

≤ ε ‖u‖H .

165

APPENDIX (Continued)

Proof of Theorem 10. We first prove (Equation 4.29). Note for any u ∈ F ,

〈u; g∗〉 = [u, g] = lim
t→0

1

2

[
‖tu+ g‖2B − ‖g‖

2
B

]
=
〈
u, g +∇R2(g)

〉
H . (C.66)

The differentiability ofR2 is guaranteed by the Gâteaux differentiability. Letting g∗ =
∑

i αiG
∗
vi ,

it follows that

〈u; g∗〉 =
∑
i

αiu(vi) =

〈
u,
∑
i

αikvi

〉
H

. (C.67)

So
∑

i αikvi = g +∇R2(g), and by the definition of ι∗

ι∗(g∗) =
∑
i

αiTkvi = Tag (C.68)

where ag :=
∑
i

αikvi = g +∇R2(g). (C.69)

Similarly,

ι∗(f∗) = Taf , where af := f +∇R2(f). (C.70)

By assumption arg maxh∈S 〈h, g〉H is ε-approximable, and hence ag is O(ε)-approximable. Sim-

ilarly, af is also O(ε)-approximable.

166

APPENDIX (Continued)

Now let us consider

v◦ := arg max
v∈Rd:‖v‖2+suph∈S〈v,Th〉

2≤1
〈v, Taf 〉 (C.71)

u◦ := arg max
u∈F :‖u‖2H+suph∈S〈u,h〉

2
H≤1
〈u, af 〉H . (C.72)

By definition, ι(f) = v◦. Also note that u◦ = f because 〈u, af 〉H = 〈u; f∗〉 for all u ∈ F . We

will then show that

‖ι(f)− Tf‖ = ‖v◦ − Tu◦‖ = O(
√
ε), (C.73)

which allows us to derive that

〈f ; g∗〉 = 〈f, ag〉H (C.74)

= 〈Tf, Tag〉+O(ε) (by Lemma 11) (C.75)

= 〈Tu◦, Tag〉+O(ε) (C.76)

= 〈v◦, Tag〉+O(
√
ε) (by (Equation C.73)) (C.77)

= 〈ι(f), ι∗(g∗)〉+O(
√
ε). (by (Equation C.68)) (C.78)

Finally, we prove (Equation C.73). Denote

w◦ := arg max
w∈F :‖w‖2H+suph∈S〈Tw,Th〉

2≤1
〈w, af 〉H . (C.79)

167

APPENDIX (Continued)

We will prove that ‖v◦ − Tw◦‖ = O(ε2) and ‖u◦ − w◦‖H = O(
√
ε). They will imply (Equation C.73)

because by the contractivity of T , ‖T (u◦ − w◦)‖ ≤ ‖u◦ − w◦‖H.

Step 1: ‖v◦ − Tw◦‖ = O(ε2). Let w = w1 +w2 where w1 ∈ V and w2 ∈ V ⊥. So Tw = Tw1

and ‖Tw‖ = ‖w1‖H. Similarly decompose af as a1 + a2, where a1 = Taf ∈ V and a2 ∈ V ⊥.

Now the optimization over w becomes

max
w1∈V,w2∈V ⊥

〈w1, a1〉H + 〈w2, a2〉H (C.80)

s.t. ‖w1‖2H + ‖w2‖2H + sup
h∈S
〈Tw1, Th〉2 ≤ 1. (C.81)

Let ‖w2‖2 = 1−α where α ∈ [0, 1]. Then the optimal value of 〈w2, a2〉H is
√

1− α ‖a2‖H. Since

〈w1, a1〉H = 〈Tw1, Ta1〉, the optimization over w1 can be written as

min
w1∈V

〈Tw1, Ta1〉 (C.82)

s.t. ‖Tw1‖2 + sup
h∈S
〈Tw1, Th〉2 ≤ α. (C.83)

Change variable by v = Tw1. Then compare with the optimization of v in (Equation C.71), and

we can see that v◦ = Tw◦1/
√
α. Overall the optimal objective value of (Equation C.80) under

‖w2‖2 = 1−α is
√

1− α ‖a2‖H+
√
αp where p is the optimal objective value of (Equation C.71).

So the optimal α is p2

p2+‖a2‖2H
, and hence

‖v◦ − Tw◦‖ = ‖v◦ − Tw◦1‖ =
∥∥v◦ −√αv◦∥∥ = (1−

√
α) ‖v◦‖ ≤ 1−

√
α. (C.84)

168

APPENDIX (Continued)

Since af is O(ε)-approximable, so ‖a2‖H = O(ε) and

1−
√
α =

1− α
1 +
√
α

= O(‖a2‖2H) = O(ε2). (C.85)

Step 2: ‖u◦ − w◦‖H = O(
√
ε). Motivated by Theorem 17, we consider two equivalent

problems:

û◦ = arg max
u∈F :〈u,af〉H=1

{
‖u‖2H + sup

h∈S
〈u, h〉2H

}
(C.86)

ŵ◦ = arg max
w∈F :〈w,af〉H=1

{
‖w‖2H + sup

h∈S
〈Tw, Th〉2

}
. (C.87)

Again we can decompose u into U := span{af} and its orthogonal space U⊥. Since 〈u, af 〉H = 1,

the component of u in U must be āf := af/ ‖af‖2H. So

û◦ = āf + arg max
u⊥∈U⊥

{∥∥∥u⊥∥∥∥2

H
+ sup
h∈S

〈
u⊥ + āf , h

〉2

H

}
. (C.88)

Similarly,

w◦ = āf + arg max
w⊥∈U⊥

{∥∥∥w⊥∥∥∥2

H
+ sup
h∈S

〈
T (w⊥ + āf), Th

〉2

H

}
. (C.89)

169

APPENDIX (Continued)

We now compare the objective in the above two argmax forms. Since any h ∈ S is ε-

approximable, so for any x ∈ F :

|〈x, h〉H − 〈Tx, Th〉H| = O(ε). (C.90)

Therefore tying u⊥ = w⊥ = x, the objectives in the argmax of (Equation C.88) and (Equation C.89)

differ by at most O(ε). Therefore their optimal objective values are different by at most O(ε).

Since both objectives are (locally) strongly convex in U⊥, the RKHS distance between the

optimal u⊥ and the optimal w⊥ must be O(
√
ε). As a result ‖û◦ − ŵ◦‖H = O(

√
ε).

Finally to see ‖u◦ − w◦‖H = O(ε), just note that by Theorem 17, u◦ and w◦ simply renor-

malize û◦ and ŵ◦ to the unit sphere of ‖·‖B, respectively. So again ‖u◦ − w◦‖H = O(
√
ε).

In the end, we prove (Equation 4.30). The proof of ι(αf) = αι(f) is exactly the same as

that for Theorem 8. To prove (Equation 4.30), note that f + g is (2ε)-approximable. Therefore

applying (Equation C.73) on f , g, f + g, we get

‖ι(f)− Tf‖ = O(
√
ε), (C.91)

‖ι(fg)− Tg‖ = O(
√
ε), (C.92)

‖ι(f + g)− T (f + g)‖ = O(
√
ε). (C.93)

Combining these three relations, we conclude (Equation 4.30).

170

APPENDIX (Continued)

C.3 Solving the Polar Operator

Theorem 17. Suppose J is continuous and J(αx) = α2J(x) ≥ 0 for all x and α ≥ 0. Then x

is an optimal solution to

P : max
x

a>x, s.t. J(x) ≤ 1, (C.94)

if, and only if, J(x) = 1, c := a>x > 0, and x̂ := x/c is an optimal solution to

Q : min
x
J(x), s.t. a>x = 1. (C.95)

Proof. We first show the ”only if” part. Since J(0) = 0 and J is continuous, the optimal

objective value of P must be positive. Therefore c > 0. Also note the optimal x for P must

satisfy J(x) = 1 because otherwise one can scale up x to increase the objective value of P . To

show x̂ optimizes Q, suppose otherwise there exists y such that

a>y = 1, J(y) < J(x̂). (C.96)

Then letting

z = J(y)−1/2y, (C.97)

171

APPENDIX (Continued)

we can verify that

J(z) = 1, (C.98)

a>z = J(y)−1/2a>y = J(y)−1/2 > J(x̂)−1/2 = cJ(x)−1/2 = c = a>x. (C.99)

So z is a feasible solution for P , and is strictly better than x. Contradiction.

We next show the “if” part: for any x, if J(x) = 1, c := a>x > 0, and x̂ := x/c is an optimal

solution to Q, then x must optimize P . Suppose otherwise there exists y, such that J(y) ≤ 1

and a>y > a>x > 0. Then consider z := y/a>y. It is obviously feasible for Q, and

J(z) = (a>y)−2J(y) < (a>x)−2J(y) ≤ (a>x)−2J(x) = J(x̂). (C.100)

This contradicts with the optimality of x̂ for Q.

C.3.0.0.1 Projection to hyperplane

To solve problem (Equation 4.27), we use LBFGS with each step projected to the feasible

domain, a hyperplane. This requires solving, for given c and a,

min
x

1

2
‖x− c‖2 , s.t. a>x = 1. (C.101)

172

APPENDIX (Continued)

Write out its Lagrangian and apply strong duality thanks to convexity:

min
x

max
λ

1

2
‖x− c‖2 − λ(a>x− 1) (C.102)

= max
λ

min
x

1

2
‖x− c‖2 − λ(a>x− 1) (C.103)

= max
λ

1

2
λ2 ‖a‖2 − λ2 ‖a‖2 − λa>c+ λ, (C.104)

where x = c+ λa. The last step has optimal

λ = (1− a>c)/ ‖a‖2 . (C.105)

C.4 Gradient in Dual Coefficients

We first consider the case where S is a finite set, and denote as zi the RKHS Nyström

approximation of its i-th element. When f∗ has the form of (Equation 4.12), we can compute

ι(f) by using the Euclidean counterpart of Theorem 7 as follows:

arg max
u

u>
∑

j
cjkj (C.106)

s.t. ‖u‖2 + (z>i u)2 ≤ 1, ∀ i, (C.107)

where kj the the Nyström approximation of k(xj , ·).

173

APPENDIX (Continued)

Writing out the Lagrangian with dual variables λi:

u>
∑
j

cjkj +
∑
i

λi

(
‖u‖2 + (z>i u)2 − 1

)
, (C.108)

we take derivative with respect to u:

X>c+ 21>λu+ 2ZΛZ>u = 0. (C.109)

where X = (k1, k2, . . .), Z = (z1, z2, . . .), λ = (λ1, λ2, . . .), Λ = diag(λ1, λ2, . . .) (diagonal

matrix), and 1 is a vector of all ones. This will hold for c+ ∆c, λ+ ∆λ and u+ ∆u:

X>(c+ ∆c) + 21>(λ+ ∆λ)(u+ ∆u) + 2Z(Λ + ∆Λ)Z>(u+ ∆u) = 0. (C.110)

Subtract it by (Equation C.109), we obtain

X>∆c + 2(1>∆λ)u+ 2(1>λ)∆u + 2Z∆ΛZ
>u+ 2ZΛZ>∆u = 0. (C.111)

The complementary slackness writes

λi(‖u‖2 + (z>i u)2 − 1) = 0. (C.112)

174

APPENDIX (Continued)

This holds for λ+ ∆λ and u+ ∆u:

(λi + ∆λi)(‖u+ ∆u‖2 + (z>i u+ z>i ∆u)2 − 1) = 0. (C.113)

Subtract it by (Equation C.112), we obtain

∆λi(‖u‖
2 + (z>i u)2 − 1) + 2λi(u+ (z>i u)zi)

>∆u = 0. (C.114)

Putting together (Equation C.111) and (Equation C.114), we obtain

S

∆u

∆λ

 =

−X>∆c

0

 , (C.115)

where S is

2(1>λ)I + 2ZΛZ> 2u1> + 2Z diag(Z>u)

2Λ(1u> + diag(Z>u)Z>) diag(‖u‖2 + (z>i u)2 − 1)

 . (C.116)

Therefore

du

dc
=

(
I 0

)
S−1

−X>

0

 . (C.117)

175

APPENDIX (Continued)

Finally we investigate the case when S is not finite. In such a case, the elements z in S

that attain ‖u‖2 + (z>u)2 = 1 for the optimal u are still finite in general. For all other z, the

complementary slackness implies the corresponding λ element is 0. As a result, the correspond-

ing diagonal entry in the bottom-right block of S is nozero, while the corresponding row in

the bottom-left block of S is straight 0. So the corresponding entry in ∆λ in (Equation C.115)

plays no role, and can be pruned. In other words, all z ∈ S such that ‖u‖2 + (z>u)2 < 1 can

be treated as nonexistent.

The empirical loss depends on f(xj), which can be computed by ι(f)>kj . Since ι(f) =

(u>
∑

j cjkj)u, (Equation C.117) allows us to backpropagate the gradient in ι(f) into the gra-

dient in {cj}.

C.5 Experiments

C.5.1 Mixup

We next investigated the performance of Embed on mixup.

Datasets.

We experimented with three image datasets: MNIST, USPS, and Fashion MNIST, each

containing 10 classes. From each dataset, we drew n example for training and n examples for

testing, with n varied in 500 and 1000. Based on the training data, p number of pairs were

drawn from it.

Both Vanilla and Embed used Gaussian RKHS, along with Nyström approximation whose

landmark points consisted of the entire training set. The vanilla mixup optimizes the objective

(Equation 4.31) averaged over all sampled pairs. Following [73], The λ was generated from a

176

APPENDIX (Continued)

Beta distribution, whose parameter was tuned to optimize the performance. Again, Embed was

trained with a linear classifier.

Algorithms.

We first ran mixup with stochastic optimization where pairs were drawn on the fly. Then

we switched to batch training of mixup (denoted as Vanilla), with the number of sampled pair

increased from p = n, 2n, up to 5n. It turned out when p = 4n, the performance already

matches the best test accuracy of the online stochastic version, which generally witnesses much

more pairs. Therefore we also varied p in {n, 2n, 4n} when training Embed. each setting was

evaluated 10 times with randomly sampled training and test data. The mean and standard

deviation are reported in Table Table IX.

Results.

As Table Table IX shows, Embed achieves higher accuracy than Vanilla on almost all datasets

and combinations of n and p. The margin tends to be higher when the training set size (n and

p) is smaller. Besides, Vanilla achieves the highest accuracy at p = 4n.

C.5.2 Additional experiments for structured multilabel prediction

Here, we provide more detailed results for our method applied to structured multilabel

prediction, as described in Section 4.6.

Accuracy on multiple runs.

We repeated the experiment, detailed in Section 4.7.3 and tabulated in Table Table X ten

times for all the three algorithms. Figures Figure 12,Figure 13,Figure 14 show the accuracy

plot of our method (Embed) compared with baselines (ML-SVM and HR-SVM) on Enron [105],

177

APPENDIX (Continued)

WIPO [106], Reuters [107] datasets with 100/100, 200/200, 500/500 randomly drawn train/test

examples over 10 runs.

Comparing constraint violations.

In this experiment, we demonstrate the effectiveness of the model’s ability to embed struc-

tures explicitly. Recall that for the structured multilabel prediction task, we wanted to incorpo-

rate two types of constraints (i) implication, (ii) exclusion. To test if our model (Embed) indeed

learns representations that respect these constraints, we counted the number of test examples

that violated the implication and exclusion constraints from the predictions. We repeated the

test for ML-SVM and HR-SVM.

We observed that HR-SVM and Embed successfully modeled implications on all the datasets.

This is not surprising as HR-SVM takes the class hierarchy into account. The exclusion con-

straint, on the other hand, is a “derived” constraint and is not directly modeled by HR-SVM.

Therefore, on datasets where Embed performed significantly better than HR-SVM, we might

expect fewer exclusion violations by Embed compared to HR-SVM. To verify this intuition,

we considered the Enron dataset with 200/200 train/test split where Embed performed better

than HR-SVM. The constraint violations are shown as a line plot in Figure Figure 15, with the

constraint index on the x-axis and number of examples violating the constraint on the y-axis.

Recall again that predictions in Embed for multilabel prediction are made using a linear

classifier. Therefore the superior performance of Embed in this case, can be attributed to

accurate representations learned by the model.

178

APPENDIX (Continued)

Figure 10: Scatter plot of test accuracy for mixup: n = 1000, p = 4n

Figure 11: Plots of three different pairs of test examples, showing how loss values change as a
function of λ

179

APPENDIX (Continued)

(a) 100/100 train/test split (b) 200/200 train/test split (c) 500/500 train/test split

(d) 100/100 train/test split (e) 200/200 train/test split (f) 500/500 train/test split

Figure 12: Test accuracy of ML-SVM vs Embed (top row) and HR-SVM vs Embed (bottom row)
10 runs on the Reuters dataset

180

APPENDIX (Continued)

(a) 100/100 train/test split (b) 200/200 train/test split (c) 500/500 train/test split

(d) 100/100 train/test split (e) 200/200 train/test split (f) 500/500 train/test split

Figure 13: Test accuracy of ML-SVM vs Embed (top row) and HR-SVM vs Embed (bottom row)
10 runs on the WIPO dataset

181

APPENDIX (Continued)

(a) 100/100 train/test split (b) 200/200 train/test split (c) 500/500 train/test split

(d) 100/100 train/test split (e) 200/200 train/test split (f) 500/500 train/test split

Figure 14: Test accuracy of ML-SVM vs Embed (top row) and HR-SVM vs Embed (bottom row)
10 runs on the ENRON dataset

182

APPENDIX (Continued)

Figure 15: The number of violations for each exclusion constraint on the test set by (from top)
ML-SVM, HR-SVM, and Embed on the Enron dataset with 200/200 train/test examples.

	to1 Introduction
	 Organization of this thesis

	to2 Inductive two-layer modeling with parametric bregman transfer
	 Introduction
	 Problem setting.
	 Matching Loss for Transfer Functions
	 Convex Two-layer Modeling

	 Convex relaxation
	 Generality of the convexification scheme.

	 Optimization
	 Polar operator and constant multiplicative approximation guarantee
	 Optimality of GCG and overall efficiency

	 Accelerating local optimization by converting min-max into min-min
	 Experiment
	 Inductive learning.
	 Transductive learning.
	 Comparison on smaller datasets.
	 Comparison on larger datasets.
	 Intermediate representation.

	 Discussion and Conclusion

	to3 Incorporating latent structure information
	 Introduction
	 Transliteration via graph matching
	 Problem setup and related works
	 Challenges in inference.
	 Preliminaries
	 Graph matching.
	 Graphical models.
	 Output layer

	 Training principles
	 A General Framework of Convexification
	 Inducing low rank solutions

	 Application in Machine Learning Problems
	 Graph matching
	 Homogeneous temporal models

	 Experiments
	 Transliteration
	 Inpainting for occluded image

	 Conclusion and discussion

	to4 Convex Representation Learning For Generalized Invariance in Semi-Inner-Product spaces
	 Introduction
	 Preliminaries
	 Existing works on invariance modeling by RKHS
	 Semi-inner-product spaces

	 Regularized Risk Minimization
	 Convex Representation Learning by Euclidean Embedding
	 Analysis of Euclidean Embeddings
	 Analysis under Inexact Euclidean Embedding

	 Application 1: Mixup
	 Application 2: Embedding Inference for Structured Multilabel Prediction
	 Experiments
	 Sanity check for s.i.p. based methods
	 Mixup
	 Datasets.

	 Structured multilabel prediction

	 Conclusions and Future Work

	to5 Representation Learning for Minimizing Catastrophic Forgetting in Deep Neural Networks
	 Introduction
	 Preliminaries
	 Short introduction to the existing solution
	 Unsupervised Domain Adaptation

	 Kernel warping for unsupervised domain adaptation
	 Alignment

	 Preventing catastrophic interference via kernel warping
	 Training details

	 Experiments
	 Experiment setup
	 Baselines
	 Results and Discussion

	 Conclusion

	to6 Conclusion and future works
	 Conclusion
	 Future works

	to CITED LITERATURE
	to VITA
	to APPENDIX
	to APPENDIX
	to APPENDIX

