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Summary 

Freight transportation has significant impacts on transportation-related energy consumption and 

emissions. It also plays a vital economic role by enabling trade, bringing goods to consumers and providing 

jobs. Because of the significance of goods movement, it is important to have quantitative tools that allow 

government agencies and researchers to study the impacts of freight transportation. Such tools should also be 

sensitive to the impacts of policies, infrastructure, supply chain trends, and economic scenarios, so that they 

can be used for scenario analysis as government agencies identify ways to maintain and improve the 

transportation system.  

However, modeling freight transportation has many challenges. The business environment is complex, 

with significant heterogeneity among actors and their behaviors. Differences in industry sector, commodities, 

logistics needs, and scale of operations are just a few important dimensions that characterize an agent in this 

setting. Since freight crosses geographic and political boundaries, models likewise should consider national 

and global trade in their representation of both trade networks and transportation networks. Finally, 

mathematical models of freight transportation in the travel demand forecasting domain have had considerably 

less attention than passenger models. As a result, the ideal modeling system is not yet realized and existing 

frameworks, despite their achievements, have room for improvement. For example, existing frameworks use 

unaffiliated establishments instead of firms and lack behavioral models of fleet and distribution center 

ownership, which are fundamental to goods transport.  

The core of this thesis is an innovative, theoretical foundation for freight transportation forecasting that 

employs the concept of firm strategy to inform agent behavior and unify upstream and downstream model 

components. This work implements several major steps toward meeting this vision. The thesis adopts the 

perspective that modeling the behavior of individual firms and establishments is necessary for adequately 

addressing the underlying heterogeneity and complexity of goods movement. The new modeling structure is 

developed for an agent-based modeling context, which is well suited to modeling the preferences and activities 

of individual agents. Agent partnerships, which are foundational to supply chains, are also represented 

intuitively in an agent-based approach.  
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The freight system architecture is designed to realistically capture key elements of firms and firm 

operations as they relate to transportation. Firm strategy is integral to the modeling system design since, in 

reality, strategy informs firm decision-making and aligns firm decisions to be consistent with its overall goals. 

But in addition to the conceptual architecture development, it is important to address practical questions 

regarding how to mathematically model strategy and its effects, and where to obtain data on firm strategy. 

Currently, there are no known quantitative data sources of firm strategy, and no known methods to estimate 

firm strategies and strategic behavior. The impact of strategy on transportation outcomes, particularly energy 

and emissions, is also not known. This thesis makes several major contributions in these areas.  

Acknowledging the lack of data on firm strategy, the thesis develops two novel algorithms that generate 

strategy data. Each algorithm creates strategy measurements from natural language textual sources. The 

algorithms integrate a mix of older and newer methods, including the text mining bag-of-words method, 

Principal Components Analysis and the recent word2vec method from the Natural Language Processing field. 

My algorithms expand on these methods and create latent attitudinal (strategy) measurement data in a 

completely new way. These algorithms present an alternative to the standard method of using attitudinal 

surveys to collect this kind of data, and therefore have potential applications in passenger modeling as well. 

The mathematical approach to modeling strategy is likewise an innovative contribution. First, I develop a 

theoretical model that illustrates the linkages between (latent) strategy, observed strategic decisions, and 

exogenous variables. Next, I formulate a mathematical system that operationalizes this conceptual model, 

integrating latent variable models into a Seemingly Unrelated Regression with unrestricted covariance. I then 

apply the model in a proof of concept to analyze firm choices in private fleet ownership and distribution center 

operations. My model jointly generates several types of useful outcomes—binary, continuous, and censored—

and provides an elegant framework for modeling multiple discrete-continuous decisions and choice set 

generation parameters. These mathematical aspects play an important role in linking high-level strategy 

decisions to subsequent decisions in downstream areas of the model.  

Lastly, the thesis demonstrates the link between strategy and two key transportation outcomes, energy and 

emissions, thereby addressing sustainability impacts of firm strategy. A multimodal, agent-based tool is 
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developed and applied to in a case study of automobile manufacturers, examining baseline impacts and the 

impact of a strategic shift in production location.  

Extensive proof of concept analyses demonstrate important results in several under-researched areas. 

Strategies of Fortune 500 firms in freight-intensive sectors are analyzed. Their strategic decisions regarding 

fleet and distribution center use are modeled. The decisions are shown to impact subsequent decisions, 

including the geographic structure of national, firm-level distribution centers and regional distribution center 

location choice decisions. The sustainability analysis demonstrates unique results for the automobile 

manufacturing industry.    

While the modeling architecture and tools are developed for the freight context, they are expected to 

provide valuable examples for passenger modeling as well. For instance, activity-based passenger models, like 

freight, can benefit from the proposed modeling structure, which improves behavioral consistency between the 

agent’s higher-level and lower-level decisions. The mathematical formulation that jointly links overarching, 

strategic (latent) preferences to multiple decisions will also be valuable to both passenger and freight domains. 

The novel setup for modeling choice set parameters and multiple discrete-continuous decisions is likewise 

expected to be useful regardless of domain. Finally, the novel methods for attitudinal data development offer 

many advantages over existing methods for collecting such data.  
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1 Introduction 
 
 

Freight transportation, or goods movement, is an essential service that brings goods where they are 

needed. Freight transportation is also central to the economy and creates jobs as discussed in Chicago 

Metropolitan Agency for Planning (CMAP) (2012). However, goods movement generates notable negative 

impacts as well. According to the US Department of Transportation (2017), an estimated $27B in time and fuel 

is wasted annually in the US due to truck congestion while the International Energy Agency (2017) estimates 

that the ocean shipping industry emitted 866 million metric tons of carbon dioxide (CO2) equivalents in 2014, 

which is comparable to CO2 emissions for the entire county of Japan (1,142 MMT) or Germany (730 MMT) 

in 2015 (Union of Concerned Scientists, 2020). These factors motivate the need for policy analysis tools that 

can be applied to understand baseline impacts of goods movement, potential future impacts, and the anticipated 

success of policy interventions. Metropolitan planning organizations (MPOs) rely on travel demand 

forecasting models to estimate these impacts by quantifying commodity flow volumes, origins and 

destinations, and transportation paths adopted in various scenarios. 

However, many factors make it challenging to evaluate freight impacts with transportation forecasting 

models. Transportation is rapidly changing today as new technologies emerge, including electrified vehicles, 

crowd-shipping, parcel lockers, and more. Freight transportation is especially affected by large-scale 

environmental factors such as tariffs and pandemic-induced supply and demand shocks. With the rise in e-

commerce, distribution is inching ever closer to the end consumer. Moreover, the business population varies 

enormously, demonstrating substantial heterogeneity in observable ways: the types of goods produced, 

revenue, geography of operations, supply chain decisions, vehicle fleet and distribution channel decisions, and 

so on. Businesses rely more than ever on access to the latest information to make rapid, data-driven 

adjustments to everything from production to delivery, but this reliance differs depending on the location of 

the business in the supply chain.  

Like individual persons, businesses also exhibit a variety of preferences, or strategies, that are 

unobservable and more challenging to quantify. To facilitate discussion throughout the remainder of this 

thesis, the following terms are defined: 
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• Strategy: a latent (unobservable) objective that (a) is adopted by an individual company, (b) 

lends consistency to company’s decision-making processes, (c) can be represented 

mathematically as a latent variable, and (d) informs outcomes that are observable to and 

measurable by analysts 

• Strategic decision: a manifest (observable) outcome of a decision that an individual company 

makes based on strategy and other factors  

Strategy is critical for firm operations because it lends consistency to decisions ranging from major to 

minor, including basic but critically important decisions regarding which markets to operate in and whether to 

outsource transportation. As a result, strategy has a very real connection to goods movement.  

For all of these reasons mentioned above, the ideal policy analysis tool will be capable of addressing both 

the complex business environment and business heterogeneity in observable and latent attributes. Agent-based 

models meet these requirements and are widely used in passenger transportation analysis. Briefly, the typical 

setup synthesizes a population of agents, assigns attributes to each agent, models agent activities for a 24-hour 

period, then simulates their collective movements throughout the transportation network over the day. The 

freight forecasting community began using these methods in the mid-2000s, with implementations to date in 

numerous regions worldwide. Despite this progress, existing modeling frameworks have several critical gaps 

(Shabani et al., 2018), demonstrating that the freight transportation community currently is far from realizing 

an ideal framework.  

 

1.1 Significance of the Problem 

The goal of travel demand forecasting is to generate credible estimates of transportation impacts. To 

achieve this goal, forecasting models must mathematically represent transportation activity with a sufficient 

level of realism. For example, the population of agent-based passenger transportation models is generally 

represented using both household agents and person agents. This representation acknowledges the fact that 

some decisions, such as time of departure from work, can be highly individualized whereas other decisions can 

have significant influence from other household members. Household location choice and vehicle ownership 
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are two decisions that are typically modeled at the household level with this rationale. Moreover, based on my 

experience, certain decisions are universally regarded as essential to transportation models in the US. One 

example of a fundamental decision is vehicle ownership since, for instance, a person with a car will likely 

drive much more than a person without a car. It is unlikely that any agent-based passenger model that ignored 

households, household fleet decisions, or workplace locations would be considered credible. 

However, by and large, extant approaches in behavioral-based freight modeling do not account for major, 

real-world features of businesses. For example, no existing framework models firms (related establishments), 

fleet ownership, and distribution center ownership. As a result, the validity of any model output that is, in 

reality, informed by these missing features is questionable. Specifically, these omissions likely compromise the 

validity of the following model output. Origin-destination flows are likely inaccurate because, for example, a 

firm may ship deliveries to all of its regional establishments from the same distribution center. Without 

acknowledging this relationship, such deliveries may appear to come from other, unrelated locations. In 

another example, a firm that owns a fleet will generate truck tours that serve its own establishments. In 

contrast, truck tours that are made by carriers are more likely to travel between unrelated establishments. Fleet 

management may be driven by different priorities, with in-house fleets, for instance, prioritizing customer 

service and reliability while carriers may prioritize cost savings. As a result, the operational characteristics 

(average daily miles traveled, fuel efficiency, and so on) may differ significantly between private fleets and 

for-hire carrier fleets. These are just a few examples of potential discrepancies between reality and simulation 

that can introduce major credibility concerns into the validity of freight transportation models and the estimates 

that they generate.  

Moreover, none of the existing agent-based freight frameworks model firm strategy and its impact on 

decision making. This is a critical gap, as the literature demonstrates that strategy is an important determinant 

of firm behavior. In fact, strategy is a major driver of strategic behavior, which is characterized by major 

resource allocation decisions. For the business context, examples of such decisions are whether or not to own a 

private fleet and whether or not to invest in distribution centers. While these are binary (yes/no) decisions, each 

of these has continuous aspects as well. For instance, if distribution centers are a worthwhile investment, how 

much floor space should be operated? Details of fixed investments, such as location choice for a distribution 
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center, also can be considered a strategic decision. Ultimately, firm strategy is a unifying feature that ties 

together major firm decisions. Omitting firm strategy causes agent decisions to be disjointed in simulation, 

whereas in reality they are aligned. As a result, the simulation may introduce firm actions that are incongruous. 

For instance, a firm that prioritizes customer satisfaction may operate large warehouses to ensure that 

customers never experience a shortage, whereas a firm that prioritizes lean supply chain operations may 

operate much smaller warehouses.    

The fundamental issues in current freight models are serious enough to warrant a major revision of the 

modeling paradigm. Such an overhaul requires attention to the following details. First, the entire freight 

modeling system should be reconstructed to account for key details such as firms and strategies. Major 

transportation decisions, such as whether to own or outsource fleet and distribution center operations, should 

be simulated for the firm. Other high-impact phenomena in recent years, such as the rise of the information age 

and e-commerce, should be accounted for. Second, a theoretical framework should be designed and 

implemented to enable firms to behave consistently according to their strategies. Of course, there needs to be 

more than a theory: the mathematical features of a strategy model should be designed and worked out, 

accompanied by solution methods. There is also a question of data, as companies may not openly share 

information about their strategies. Data on company strategy needs to be found, and mathematical constructs 

for deploying them in freight forecasting models need to be developed.  

Ultimately, empirical evidence regarding the real-world impact of strategy should be prepared to “make 

the case” for including it in transportation models. Good empirical examples will demonstrate a clear linkage 

between firm strategy and its impact on transportation decisions or externalities such as energy consumption 

and emissions.  

 

1.2 Statement of Purpose 

The central thesis of this work is that strategy unifies decisions that individual actors make, and that this 

consistency can be achieved in agent-based models through carefully constructed framework design. Strategy 

should be integrated into the model stream in a way that permits, or even enforces, consistency between high-

level, long-term decisions and any number of other long-term, mid-term, or possibly short-term downstream 
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decisions. This is a simple yet compelling idea that, quite remarkably, has not been previously introduced into 

the transportation modeling paradigm.  

The purpose of this study is to develop theoretical constructs, mathematical methods, data sources, and 

proof of concept applications using this thesis as a guiding vision. Specifically, the purpose of Chapter 3 is to 

develop an entirely new conceptual design for an innovative, agent-based freight modeling framework. The 

chapter presents a theoretical framework that models strategy and structures it as a mechanism that enforces 

consistency among decisions that the agent makes elsewhere in the framework. In the process, this chapter also 

aims to improve upon the state of the art in agent-based freight modeling in multiple other ways. It develops 

novel theoretical approaches to include the effect of information on agent decisions, to operationalize the push-

pull boundary, and to model interactions between freight agents and households. It also aims to remedy 

fundamental issues that are common among existing freight models.  

Chapter 4 and Chapter 5 form the core methodological chapters of this thesis. Their objectives are to 

develop methods for creating attitudinal (strategy) measurement data and for jointly modeling strategy and 

strategic decisions, respectively. This thesis treats strategy as a latent attitude that can be measured with 

indicators, thereby expressing qualitative notions with quantitative measurements. The purpose of Chapter 4 is 

to develop methods for creating strategy measurements using natural language textual data sources. The 

desired output is a dataset of measurements than can subsequently be input to an agent-based freight 

forecasting system, or in a stand-alone behavioral model. The purpose of Chapter 5 is to first develop a 

theoretical framework for the joint modeling of latent strategies and manifest strategic decisions, then to 

develop a mathematical approach, including a solution method, that estimates the parameters that are specified 

in the system.  

The objective of Chapter 6 is twofold. First, the chapter presents a methodology for estimating the global 

energy and emissions impacts that are attributable to a change in firm strategy. Second, this chapter applies this 

method in order to conclusively demonstrate the significance of this work, showing the impacts of company 

strategy on transportation energy and emissions in a real-world case study.  
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1.3 Theoretical Basis of Study  

Figure 1 illustrates the structure of this thesis and how each of eight key theoretical areas, marked A 

through H, constitute its foundation. A: Xu et al. (2003) and Caplice (2006) present a theoretical framework 

for freight modeling consisting of three layers. Strategic or economic decisions are in the highest layer, the 

middle layer includes tactical decisions or logistics (distribution-related) decisions, while the lowest layer is 

operational or transport decisions. B: Shortly afterwards, the Aggregate-Disaggregate-Aggregate (ADA) is 

formulated (de Jong & Ben-Akiva, 2007 and Ben-Akiva and de Jong, 2008) and implemented in Sweden and 

Norway. The ADA model is the first disaggregate implementation to convert commodity flows to shipments 

that move through supply chains. Samimi et al. (2013) and Urban et al. (2012) are the earliest efforts to 

implement the ADA in the US and extend it for the US context. However, as the literature review discusses, 

while the ADA framework is a ground-breaking innovation with many strengths, it also has several important 

areas that warrant improvement or replacement.  

C: Leveraging the three-layered concept and the early ADA efforts, Stinson (2016) develops a new 

conceptual construct to improve upon the ADA implementation. Major improvements include using firms 

instead of establishments, operationalizing the push-pull boundary, and including the effect of information. 

The resulting framework forms the basis of Chapter 3. The integration of the features in A through C is shown 

more clearly in this thesis, and a proof of concept including many of the proposed features is demonstrated. 

But critically, this thesis extends the work of Stinson (2016) by including a strategy model and demonstrating 

the features that operationalize it as a unifying link with other agent decisions.  

D: Earlier theories in strategic behavior help establish the basis for this work. Shapiro (1989) and Teece 

(2019) provide the foundational theoretical notions of (a) what firm strategy is and (b) how it relates 

pragmatically to consistency in observable decisions that the firm makes. Their theoretical presentations 

illustrate that firm strategy is a guiding policy or set of policies that add consistency to other firm decisions, 

such as asset investments. In other words, these theories show that latent strategies inform manifest strategic 

decisions, which is a central tenet of this thesis. However, these works are entirely theoretical and do not 

establish a modeling architecture or provide mathematical or data details regarding implementation. Choo and 

Mokhtarian (2018) and Ben-Akiva (2010), on the other hand, show that higher-level, advance planning or 
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strategies inform actions for the individual in the transportation context specifically, but do not show how to 

apply this viewpoint to a set of decisions that an agent makes. These works are foundational to the entire 

thesis, but especially to Chapter 3 and Chapter 5. 

 

Figure 1. Theoretical basis of this study. 

 
E: Mathematical and data development aspects are critical for developing a source of strategy data and 

estimating models of strategy and strategic decisions in Chapter 5. Fang (2008) shows how to develop models 

that are extremely useful for modeling strategic decisions, which often have a yes/no decision accompanied by 
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one or more ordinal or continuous decisions that is conditional on a “yes” decision. The system is implemented 

as a Seemingly Unrelated Regression (SUR), with which correlations between decisions can be modeled 

readily. The latter feature is desirable for modeling strategic decisions, which are often related. The system is 

solved using Gibbs Sampling, originally developed in Albert and Chib (1993). However, the work does not 

include latent variables, which this thesis uses as the mechanism for representing strategy. Daziano (2015) 

shows how to include latent variables in choice models using Gibbs Sampling, but does not demonstrate this 

for SUR models. This thesis leverages these works to develop a new mathematical model and solution method 

that has many advantages for analyzing strategy and strategic decisions. 

F: Building on the underlying theories of Shapiro (1989) and Teece (2019), this thesis assumes that 

strategies are unobservable and can be treated as latent variables. Bollen (1989) summarizes the rich history of 

development in latent variable modeling, which emerged primarily from psychology and economics. Ben-

Akiva et al. (2002) and Walker (2001) summarize the breakthrough application of latent variables in 

transportation behavioral modeling.  

G: Mikolov et al. (2013) develops a novel method called word2vec, which is based on recent 

developments in Natural Language Processing (NLP), to represent words as vectors in some N-dimensional 

space. Each dimension of the space represents a unique concept. The authors show how the results naturally 

embed information that provides a way to measure differences in words. The algorithm generates a single 

vector for each word, which represents it average contextual use. The algorithm, along with Principal 

Component Analysis (PCA) and text mining, are key inputs to the algorithms that Chapter 4 proposes.  

H: Finally, a powerful innovation in my strategy modeling framework is its utilization as a new method 

for developing choice set generation parameters. The two-stage choice process is first described in Manski 

(1977). The theoretical framework is designed with the notion that most individuals (or companies) cannot 

recognize the universal choice set in many instances – for example, when choosing a residential or factory 

location. So, the theory goes, the individual or company creates a “short list” based on parameters (e.g., 

minimum building size or proximity to an airport). Although this theory has existed for over five decades, it 

remains a challenging and active area of research.   
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1.4 Research Questions and Hypotheses 

This thesis investigates the following research questions and poses a hypothesis for each: 

Question: Assuming strategies are important, how can they be integrated in an agent-based 
framework to lend consistency to other agent decisions? 
Hypothesis: A strategy model can be placed in the agent-based modeling architecture 
immediately after population synthesis. Outcomes from this model can then feed into 
downstream components. Chapter 3 and Chapter 5 present the conceptual modeling architectures 
that operationalize this.  

Question: How can strategy be measured?  
Hypothesis: Strategy can be measured using text-based sources of attitudinal data. Attitudinal 
surveys are one approach to measure strategy. As an alternative, Chapter 4 develops two 
innovative, natural language-based approaches for this purpose.  
Question: How can natural language sources be used to quantify firm strategy or strategic 
decisions?  
Hypotheses: Firms use certain words (a) more or less frequently (on a relative basis), or (b) in 
different ways, depending on their strategies or strategic decisions. Chapter 4 and Chapter 5 use 
visualization examination, statistical tests, factor analysis, and mathematical choice models to 
test hypotheses (a) and (b).  
Question: What is the relationship between strategy, a latent or unseen preference of the firm, 
and manifest or observable strategic decisions that firms make?  
Hypothesis: Strategy influences strategic decisions. The theoretical basis discussed above 
determines the directionality. The statistical strength of the relationship is tested in Chapter 5. 
Question: What, if any, issues related to jointness or simultaneity in decision making are 
important for modeling strategy?  
Hypothesis: Firms can jointly determine a strategy set and a set of strategic decisions to adopt. 
Chapter 5 provides a theoretical framework for this hypothesis and performs empirical tests 
using real-world data.  
Question: How can the agent-based architecture of this thesis model choice set parameter 
generation? 
Hypothesis: Choice set parameter generation can be treated as a strategic decision, as Chapter 3 
and Chapter 5 explore.  
Question: Do strategy and strategic decisions impact two critical end outcomes of transportation: 
transportation energy use and emissions (TECE)?  
Hypothesis: Yes, Chapter 6 shows conclusively in a real-world case study that strategy can have 
substantial impacts on TECE. Chapter 6 also develops a method to measure TECE for global, 
multimodal flows. 
Question: How does strategy impact strategic decisions regarding logistics control (private fleet 
ownership and distribution center control)?  
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Hypothesis: Strategy influences logistics control decisions, although not as much as other factors 
such as industry sector.  
Question: How does a firm make decisions regarding fleet ownership and outsourcing, and 
third-party logistics (3PL) versus in-house use for distribution?  
Hypothesis: These can be treated as strategic decisions. The factors that inform these decisions 
are investigated using the modeling system that is tested in the Chapter 5 proof of concept. 
Specifically, I hypothesize that several factors including revenue and industry sector, as well as 
firm strategies, inform these strategic decisions.  
Question: How can national distribution structure, which is a Multiple Discrete-Continuous 
decision, and regional distribution center locations, which uses the two-stage choice construct, be 
modeled for a firm?  
Hypothesis: The firm and these attributes can be modeled using a carefully constructed system 
architecture, as Chapter 3 demonstrates. A real-world application is developed in the Chapter 5 
proof of concept. The formulation treats national distribution structure as a Multiple Discrete-
Continuous decision and regional distribution center location choice as the second stage of the 
two-stage choice construct. 
Question: How can complex but pivotal features of the freight landscape, including the push-
pull boundary, the effect of information, e-commerce, and interactions between consumers and 
freight agents be modeled?  
Hypothesis: These features can be integrated in an agent-based framework using the theoretical 
architecture presented in Chapter 3.  
 

1.5 Significance of the Study 

Chapter 3 introduces two powerful concepts, those of strategy and strategic decisions, into the highly 

practical context of agent-based modeling and presents an innovative conceptual architecture to enable the 

integration of these notions. The objective of this chapter is to design a realistic, agent-based modeling 

framework that can be used to evaluate a variety of goods movement and related activities. Chapter 3 makes 

numerous, novel contributions to the state of research and practice while meeting this objective: 

• Firm strategy adoption is treated explicitly as a decision to be modeled, with consequences for 

downstream activities. This unifies agent decisions throughout the framework and mirrors the 

strategic behavior of real-world business entities.  

• This framework explicitly models the effect of information on production, procurement and 

inventory decisions. As such, this framework demonstrates how the famed push-pull boundary 
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can be modeled in a full-scale, agent-based framework. Additionally, this device permits supply 

chain innovations including e-commerce and Just In Time policies to be modeled.  

• E-commerce demand from households is integrated with parcel delivery supply.  

The model design permits other interactions between businesses and households, accommodating on-

demand delivery and crowdshipping. Although one other framework offers this capability (Sakai et al., 2020), 

this is an emerging area with room for research contributions moving forward. Other unique proposed features 

include modeling carrier services, interactions between trade and carrier agents, and distribution center 

structure. The carrier aspects have received some attention in a limited modeling exercise with no strategy 

behavior (e.g., in Liedtke et al., 2015) while distribution center analysis receives some attention using 

optimization models, but due to computational challenges these are mainly limited to a single industry.  

The main objective of Chapter 4 is to develop methods for measuring individual- or company-specific 

attitudes quantitatively using large-scale, passive data sources. A secondary objective is to address a major data 

gap in the domain of freight transportation modeling in particular. By meeting these objectives, the chapter 

makes the following contributions to research: 

• Two novel methods to measure attitudes using natural language-based text are developed. 

• Both of the methods offer the unique capability of permitting “natural” or unscaled 

measurements of attitudes. 

• A longstanding, text-based source of freight establishment data is recognized and its potential 

contribution to the pool of freight data sources is proposed and explored. 

• A new source of freight attitudinal data, which is readily available and can be collected passively, 

is developed using the methods of this study, thereby addressing a major gap in freight data. 

• An automated attitudinal data development engine (ADDE), which extracts, compiles, and 

prepares attitudinal data is developed. 

• The new methods and data sources are deployed in a proof of concept application to explore a 

potential freight modeling application, using attitudinal data to detect guiding strategies among 

Fortune 500 companies in freight-intensive sectors. 
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The main objective of Chapter 5 is to develop a theoretical framework accompanied by a methodology to 

model agent strategies. In meeting this objective, this study makes the following contributions to the state of 

the art in transportation demand modeling:  

• A theoretical framework for the joint modeling of strategies and strategic decisions is developed.  

• A methodology to jointly estimate both strategies and strategic decisions is developed, 

incorporating both observable and attitudinal input data.  

• The proof of concept demonstrates the first real-world, behavioral modeling application of 

attitudinal measurements that are developed using natural language processing (NLP) methods 

(Chapter 4). 

• A new methodology to generate consideration set parameters is proposed, developed and 

implemented.  

• Consideration set parameter selection are treated as a strategic decision, and their adoption is 

modeled jointly with other strategic decisions. 

• The methodology is demonstrated in an agent-based freight modeling context. 

Chapter 6 is the final core chapter in this thesis. Although it is last in this respect, it provides an important 

illustration of the potential impact of strategy on transportation energy consumption and emissions (TECE), 

which accrues from transporting shipments. The analysis is completed in an agent-based framework, which 

uses a broader geographic resolution than the framework of Chapter 3. The case study in Chapter 6 focuses on 

firms in the auto manufacturing industry, or Original Equipment Manufacturers (OEMs), and on automobiles 

sold in the contiguous US. The case study quantifies the TECE that is associated with a strategic shift in 

production location from a US plant to China. As such, the main contributions of this chapter are: 

• Developing an agent-based model of the OEM industry, replete with a set of global, multimodal 

energy use and emissions rates related to their commodity shipments; and 

• Applying the model to analyze the TECE associated with a change in strategy for one of the 

OEMs. 
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1.6 Definition of Terms 

In addition to the terms strategy and strategic decision, which are defined earlier, the following terms and 

definitions are used throughout this work: 

Establishment:  “a single physical location where one predominant activity occurs” (definitions from US 

Census Bureau (2020a) and Sadeghi et al. (2016) 

Company or firm: a collection of establishments that are part of the same business but operate across two or 

more different sites (e.g., a chain of retail stores); an unaffiliated establishment is technically also a firm 

Transport: the carriage of goods between locations by motorized conveyances including trucks, airplanes, and 

so on.  

Storage: a location or area where goods are held; or, the activity of holding goods 

Distribution: the transmission of a good from its origin to its destination 

General-purpose (GP) Storage: any storage that is used for internal company purposes (e.g., holding 

inventory), including warehouses, yards, tanks, or other 

Transshipment: the transfer of goods from one vehicle to another 

Transshipment hubs: facilities where transshipping occurs, such as intermodal yards, truck terminals, 

crossdocks, railroad classification yards, airport cargo warehouses, and seaport docks.  

Private fleet: a truck fleet that is owned by the company that uses them. In contrast, companies without a 

private fleet must rely on a carrier, or a for-hire trucking firm, to transport their goods. 

DC or distribution center: a DC is a facility through which a good is routed on its way to a customer. This 

thesis also assumes that in real-world data, based on visual inspection of aerial images for roughly 100 

properties: 

• Any property that is labeled with a “Distribution” use is considered to be a DC 

• All "Refrigeration/Cold Storage" (“Light Distribution”, Warehouse”) properties that are 20,000 (100,000, 

150,000) SF or larger are considered to be DCs 
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DC control: a company that owns or leases its own space in one or more DCs has “DC control” 

Freight-intensive: shipping and/or receiving notable volumes of cargo – for example, firms in the 

manufacturing sector are freight-intensive while telecommunications firms are not 

Word vector or word embedding: a real-valued vector in some N-dimensional space that represents the 

location of the word. 
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2 Literature Review 
 

2.1 Historical Trends in Freight Transportation Modeling   

Historically, freight transportation modeling techniques have followed a similar trajectory as passenger 

modeling. The first few decades in freight modeling focused on three-step and four-step frameworks. These 

early models were aggregate, analyzing total tons or trips between zones (e.g., Demetsky, 1974 and Beagan et 

al., 2007), sometimes with mode choice as in (Abdelwahab and Sargious, 1992). They did not account for 

logistics activities, such as transloading, that often occur on the shipment journey. In the 1990s, models that 

address logistics activities began to emerge. Early examples include the SMILE model in Tavasszy et al. 

(1998), the GoodTrip model in Boerkamps and van Binsbergen (1999), and the EUNET model in Jin et al. 

(2005). These models advance a theme of major importance—logistics analysis for shipment paths—but have 

natural limitations due to their aggregate nature. 

Aggregate models have many advantages and are considered for use in this thesis. Aggregate models are 

useful for analyzing many policy or strategic decisions of system authorities (Chow et al., 2010). As Gonzalez-

Feliu (2019) notes, aggregate model development has relatively low resource requirements, but still can be 

used to evaluate high-level features of freight flows, including the flow of commodities or trucks between 

zones. They are most suited for an environment that has simple transportation options and is static, with no 

major changes in the economy, vehicle technologies, highway infrastructure, and so on. Unfortunately, these 

models are poorly suited to capturing heterogeneity among individual actors unless they are enriched to the 

point where they represent behaviorally homogenous groups of agents (Thaller et al., 2016)). Nevertheless, 

even this enhanced aggregate approach weakens when changing agent preferences disturb the homogeneity of 

the grouping system due to, for example, changes in the operating environment. As a result, using a fully 

agent-based approach is a more straightforward and flexible option. 

To mitigate issues related to aggregate modeling, agent-based models of freight transportation began to 

emerge in the 2000s. This review discusses several of them, highlighting their key features and limitations, to 

present the context for understanding the innovations provided by the current work.  
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One direction in agent-based freight research is modeling the activities of individual trucks, as Hunt and 

Stefan (2007) shows, in metropolitan areas such as Calgary, Alberta in Canada. The second direction, which is 

more relevant to this thesis, focuses on modeling the activities of individual businesses. The most widely used 

framework is based on the Aggregate-Disaggregate-Disaggregate (ADA) framework (de Jong and Ben-Akiva, 

2007). In this framework, aggregate commodity flows are input to the model system then disaggregated to 

shipper-receiver pairs using a process that incorporates economic trade partnership information. The 

disaggregate shipments are then aggregated to zone-to-zone flows of goods or trucks for traffic simulation. The 

groundbreaking 2010 Freight Activity Microsimulation Estimator (FAME) (Samimi et al., 2013) is the first to 

adapt the ADA framework to the US context and includes a novel data collection effort. Subsequently, the 

2011 Chicago Metropolitan Agency for Planning (CMAP) Mesoscale model (Cambridge Systematics, Inc., 

2011; Urban et al., 2012) develops a variant with global supply chains, the wholesale sector, and models for 

establishment and transload locations. The code base and features of the CMAP Mesoscale model are 

incorporated and extended in 2012 to include truck touring and a distribution channel model, in an FHWA 

Broad Agency Announcement (BAA) study (Resource Systems Group et al., 2012). The resulting integrated 

model saw widespread adoption around the US (Shabani et al., 2018). Additional efforts, including the 2014 

Maricopa Association of Governments (MAG) SHRP2-C20 model (Maricopa Association of Governments, 

2018), extend the ADA-based framework to integrate truck touring and successfully develop a novel trade 

partnership module.  

While the ADA variants provide a behavioral basis for modeling the flow of shipments through supply 

chain, they have two fundamental issues. One issue is the lack of firms. Although summary documentation 

(e.g., Shabani et al., 2018) specifies the agent as a “firm”, in reality, in all of the ADA variants described here, 

each agent is an unaffiliated establishment. A second issue is that these variants ignore key agent behaviors 

that are fundamental to freight transportation outcomes. Namely, they do not explicitly model logistics assets 

of the firm, namely fleets and distribution centers. I suspect that these gaps cause issues in important model 

functions, including estimation of origin-destination flows, distribution paths of goods, and truck tour 

development. Some evidence of this is found in tests (Wisconsin Department of Transportation, 2017), 

although more empirical studies should be conducted to demonstrate the range and severity of any issues. 
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Various other establishment-centered, agent-based freight models have also been proposed but have seen 

limited development beyond the conceptual design stage. Nevertheless, these have innovative and useful 

conceptual features that inform this work. Among these, the Transportation And Production Agent-based 

Simulator (TAPAS) model (Holmgren et al., 2012) and framework in Roorda et al. (2010) (further specified in 

FREMIS of Cavalcante and Roorda, 2013) focus on decisions and interactions between agents, for example 

through the use of contracts, as a major driver of freight activity, in addition to many other useful and realistic 

features. The latter also discusses sensitivity to emerging trends in policy, business and technology, and it 

includes transportation and logistics activities.  

Currently, an operational, integrated agent-based passenger and freight models is the SimMobility model 

(Adnan et al., 2016 and Sakai et al., 2020). The latter discusses the freight component and its foundations in 

(Alho et al., 2017). This model is similar to the proposed framework in that it includes both behavioral-based 

and dynamic traffic assignment features along with a method for modeling crowd-shipping. However, although 

fleets are simulated based on an observed distribution, it does not model firms, fleets, strategy, global trade 

partnerships, and other features that are addressed in this thesis.  

Two other research streams are worth mentioning as they relate to some key themes in this study. First, 

optimization models are sometimes used in transportation freight models (e.g., Friedrich, 2010). However, 

optimization is difficult to implement with reasonable computation times for multiple sectors and large 

geographic regions, so this work for the time being is limited to individual industry sectors (food retail, in this 

case). Second, another optimization-based study, (Liedtke et al., 2015) models shipper decisions including lot 

size, carrier decisions including fleet size and mix, and shipper-carrier interactions. However, as a proof of 

concept, the study uses two prototypical carrier companies rather than a full population of carrier agents. 

Nevertheless, these studies present insightful implementations and motivate the argument that optimization 

methods or related heuristics are valuable tools for agent-based freight models.  

Reviews of the state of the art and state of the practice in freight modeling are found in de Jong et al. 

(2013), Chow et al. (2010), and Thaller et al. (2016). These summaries establish that while progress has been 

made, more research is required to transform these analysis systems into more realistic models of freight 
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activity. This thesis directly addresses many gaps noted in de Jong et al. (2013), including use of firms, 

modeling spatial decisions such as warehouse structure, and others.  

 

2.2 Strategic Firm Behavior 

The definition of strategy that this thesis adopts is informed by perspectives from the business, 

economics, and transportation domains. The 1980 classic work (Porter, 1980) defines strategy as the "...broad 

formula for how a business is going to compete, what its goals should be, and what policies will be needed to 

carry out those goals" and the "...combination of the ends (goals) for which the firm is striving and 

the means (policies) by which it is seeking to get there… The essence of formulating competitive strategy is 

relating a company to its environment." Mintzberg (1987) and Rumelt (2011) further explain how business 

strategies promote consistency in objectives across company actions. Strategy can also be viewed from a Value 

Chain perspective as guiding company functions in areas where they can (and can’t) gain an advantage by 

differentiate themselves from the competition. For instance, companies may focus on transportation delivery to 

provide improved speed of delivery to customers (Rodrigue, 2020).  

Two key theoretical studies from economics literature inform this thesis. In particular, they motivate the 

connection of strategy to strategic decisions, consisting chiefly of major investments such as asset decisions. 

They also discuss at the conceptual level how strategy, when implemented in a consistent way by a firm, 

serves to align the purpose of various investments so that these actions help achieve the broader firm goals. 

First, Shapiro (1989) discusses business strategy from a philosophical and historical perspective, noting that 

the firm’s “strategic decisions, which involve long-lasting commitments” determine its “tactical decisions, 

which are short-term responses to the current environment”. The study suggests a range of variables that 

qualify as strategic variables, including investment in distribution or other physical facilities. Second, the 

theory of firm capability (Teece, 2019) differentiates between ‘ordinary’ capabilities and dynamic capabilities, 

with the former being enduring investments and the latter being characterized by flexibility in adapting to the 

environment. The work aligns with Kahneman and Tversky (1979) in seeking alternative explanations for 

observed firm behavior, which, the study suggests, appears to be largely inconsistent with fundamental 
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economic maxims such as cost minimization. Similar to transportation models that incorporate attitudes, it also 

seeks to better explain variation between firms using information that can be difficult to quantify.  

Quantitative analysis involving business strategy is a major area within the field of business management 

(see literature examples in Strategic Management Journal, among others). Game theoretic models of strategic 

behavior are the most common approach to modeling firm actions, however, these models are severely 

problematic for scenario analysis in futuristic settings (Shapiro, 1989). Due to these issues, this thesis instead 

uses a combination of econometric and psychometric analysis as the foundation of the strategic behavior 

models developed in Chapter 5. Additionally, some of the business literature presents applications that 

examine firm strategy in a freight transportation context. For example, the impact of Just-In-Time, lean 

production, and other strategies on transportation cost are analyzed (Ehrler et al., 2018). While informative, 

such a model only examines one outcome, cost, and does not evaluate the inter-relationship of cost to other 

outcomes. In contrast, this thesis proposes to model and operationalize strategies to inform a number of 

decisions throughout the agent-based modeling structure.  

 

2.3 Strategy in Transportation Models 

The concept of strategy is addressed in transportation studies1 using mathematical models that are 

designed to generate either insights or practical, applicable results. The following treatments of strategy 

analysis are consistent with the definition that this thesis outlines in Section 0.  

A series of efforts (see Choo and Mokhtarian, 2012 and Choo and Mokhtarian, 2008) examines “strategy 

bundle” adoption by individuals in their travel pursuits. The relevance of the “strategy bundle” approach is its 

emphasis on understanding the core, high-level goals of the individual and how these goals drive the specific, 

actionable mobility decisions that the individual subsequently makes. This perspective is distinctly different 

from hybrid choice models, which are discussed shortly, where strategies or attitudes are modeled jointly with 

 
1 The transportation literature also uses the term “strategy” in the context of system governance or control (Kraus et 
al., 2010), survey responses (Crastes dit Sourd et al., 2018) and the process of making decisions (Hensher, 2014), 
but these uses are not relevant to this work. 
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one of the lower-level, actionable decisions. However, these studies aim to inform policy decisions, and do not 

establish an operational framework that connects strategy bundles to the lower-level decisions.  

Another relevant transportation-based strategy study is the development of a theoretical framework in 

which individuals make plans, or strategies, that drive an observable action (Ben-Akiva, 2010). Like the work 

just discussed, this study focuses on the passenger context, but has relevance for freight also. Building on the 

notion that individual actions are preceded by a planning stage, a conceptual framework for transforming a 

plan into an action is illustrated. The framework is operationalized using a Hidden Markov Model. The plan 

can be a goal, intention, or choice criterion. The framework is designed to produce one choice outcome. This 

thesis extends the notion of planning to action for a single decision to a full set of strategies and strategic 

decisions that are operationalized in an agent-based modeling system.   

In contrast, concepts of strategy surprisingly are a major gap in extant agent-based freight models (e.g., 

Auld and Mohammadian, 2012; Maricopa Association of Governments, 2018; Alho et al., 2017; de Bok and 

Tavasszy, 2018; and Federal Highway Administration, 2020). Given the underling business focus of agent-

based freight models, and the critical impacts of strategy on business actions, it seems intuitive that these 

models should already account for business strategy. Further, since agent-based modeling techniques support a 

rich characterization of agents and decisions, incorporating strategy would not be an insurmountable task. This 

thesis addresses this gap, which is first identified by the author (Chapter 3 and Stinson et al., 2018), and 

expands the initial model implementation documented in (Stinson et al., 2020) and illustrated in (Stinson et al., 

2019). 

 

2.4 Latent Variable Measurement with Attitudinal Data 

Theoretical and computational developments in recent decades have enabled behavioral models, 

including those used in transportation, to include unobservable (or latent) attitudinal factors in addition to 

observable factors (e.g., Ben-Akiva & Boccara, 1995; Ben-Akiva et al., 2002; Kamargianni & 

Polydoropoulou, 2013; Daziano, 2015; and Cambridge Systematics et al., 2007). The main advantage of 

adding such factors is that they provide an additional level of behavioral realism, which ideally will support the 
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development of more robust models and, ultimately, better predictions about the future—but see caveats (Vij 

and Walker, 2016). 

However, despite their intuitive appeal, the development of attitudinal data sources and even the very 

measurement of attitudes is known to be cumbersome and fraught with issues (Ben-Akiva et al., 2002 and Vij 

and Walker, 2016 summarize challenges). The standard process for gathering attitudinal information consists 

of asking a series of questions about the respondent’s preferences. Answers are typically provided using a 

Likert or similar pre-determined scale – e.g., with choices ranging from “Strongly agree” to “Strongly 

disagree”. The main issue with this technique it its intrinsic subjectivity, both in terms of the questions asked 

and the answers provided. There are no clear rules regarding what questions will accurately and precisely elicit 

the desired information from the respondent. Both the content of questions and their wording are highly 

dependent on the experience and judgment of the questionnaire developer. An answer of “Neutral” to one 

person may be equivalent to “Somewhat agree” for another. The highest and lowest categories of the pre-

imposed scale (e.g., one to seven) may not capture the full range of attitudes and preferences, for example, an 

“off-the-charts” passion for environmental sustainability. Using discrete, unit steps between each response 

category raises issues in analysis.  

Finally, surveys are expensive to conduct and often suffer from low response rates, which hinders the 

potential to collect a random sample (Ben-Akiva and Lerman, 1985, describes how random sampling delivers 

the best statistical properties). So many topics are important – household or company attributes, daily 

transportation patterns, information about the available fleet – that transportation-related surveys are, in 

general, already quite long. Adding attitudinal questions exacerbates this issue. Moreover, due to their 

subjective nature, many attitudinal questions are normally asked in order to help ensure that the respondent’s 

true attitudes are extracted, potentially fatiguing respondents and engendering poor-quality responses.  

Attitudinal surveys, while challenging for passenger traveler understanding, are essentially a complete 

gap in freight transportation surveys of companies. One reason for this is that the freight domain is challenged 

by more urgent gaps (Transportation Research Board, 2003). Another reason is that businesses are busy and 

often unwilling to share information. As a result, with some exceptions (Jin and Shams, 2016 and Ben-Akiva 

et al., 2013, to name a few), transportation activity surveys of companies are uncommon, hence many agencies 
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choose to develop freight transportation models without attitudinal features (e.g., Maricopa Association of 

Governments, 2018; de Jong et al., 2013). In spite of this gap, it is reasonable to assume that attitudes are just 

as integral to company decisions as they are to individual decisions.  

The key innovation of Chapter 4 is proposing and developing new methods to use large-scale text data to 

generate attitudinal data that can be used in lieu of traditional attitudinal survey sources. The idea to use text 

data for attitudinal analysis is not entirely new to this thesis. Collins et al. (2013), Ghiassi et al. (2013) and 

others have used Twitter to study attitudes towards transportation and other areas. However, sentiment bias is a 

known issue with Twitter data (Barbosa & Feng, 2010). Furthermore, the user base of Twitter is far from a 

random sample of the population. Text-based analysis of companies and freight is starting to emerge as well. 

One freight-related application uses NLP to learn the type of commodity that is shipped by a company 

(Moscardi, 2019). A longitudinal sample of annual company reports utilizes topic modeling to detect changes 

in company strategy over time (Menon et al., 2018). While insightful, however, these studies do not generate 

the kind of statistically sound, attitudinal data that are required as inputs to factor analysis, hybrid choice 

models, and so on.  

 

2.5 Distributed Representation Learning and Code Bases for PCA and word2vec 

The methods of this study utilize both Principal Component Analysis (PCA) and Natural Language 

Processing (NLP). PCA has a long and well-documented history of development and application, as one 

synopsis shows (Jolliffe and Cadima, 2016). The field of NLP is less mature but has already advanced far by 

leveraging techniques from cognitive science, computational linguistics and computer science. This study 

relies particularly on methods that quantify symbolic data using distributional representations, with each 

feature of the distribution representing a unique concept (Barlow, 1972 and Hinton, 1986). The implication of 

these notions for NLP is that each word can be treated as a mix of N orthogonal concepts that are represented 

in a corresponding N-dimensional vector space (N is chosen by the analyst) (Bengio et al., 2003; Mikolov, 

Chen, et al. 2013; and Pennington et al., 2014). Figure 2 shows how several words may be represented as 

vectors in a two-dimensional construct, with one dimension having a living/non-living interpretation and the 

other a mobile/immobile interpretation.  
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Figure 2. Example two-dimensional conceptual construct. 

Neural networks are intrinsic to computational performance in these algorithms. They also provide an 

elegant alignment of each neuron in the hidden layer with one concept. Features of word vectors in this space 

are learned using information from word contexts.  

The algorithms that are designed in this study build upon two existing code bases. The study uses the 

NLP word2vec code, which is made publicly available by (Google Code Archive, 2013) with Python 

accessible modules (Rehurek, 2020). Python Scikit-learn modules are used for PCA (Pedregosa et al., 2011). 

To the author’s knowledge, this research is the first effort to propose and develop methods that adapt these 

algorithms and combine them in such a way as to generate attitudinal measurement data.   

The next section describes the innovations of this work and how these innovations contribute to the state-

of-the art in attitudinal analysis and freight data development. 

 

2.6 Methods for Modeling Joint Decisions with Latent Variables 

Moving beyond the conceptual motivation to include strategy in transportation models, determining 

suitable mathematical approaches to model strategy and its transportation impacts is a new area of research. 

This thesis adopts earlier thinking around “strategy bundles” (Choo and Mokhtarian, 2012), in which each 

(latent) strategy comprises multiple aspects, and the notion that multiple strategies can inform decisions 

simultaneously (Kamargianni and Polydoropoulou, 2013). Moreover, this work combines these unobservable 

aspects with the idea that multiple strategies inform multiple outcomes simultaneously. Conceptually and 

quantitatively, an emerging stream of research into “mobility bundle” or “lifestyle” choices relates to this 
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study. In one recent example, model several long-term, medium-term, and short-term choices (location, vehicle 

ownership, and activity and travel choices, respectively) simultaneously with attitudes and lifestyle preferences 

(Paleti et al., 2013). Bhat, Astroza et al. (2016) further motivate this work by pointing out that when multiple 

unobserved factors jointly influence multiple outcomes, greater efficiency in coefficient estimates are obtained 

when the modeling system appropriately addresses this jointness. Together, these and other studies inform the 

structure of the methods that are developed in this study and demonstrate examples that bridge the conceptual 

and quantitative aspects.  

This work models unobserved strategies following the foundations of attitudinal analysis as discussed in 

Bollen (1989), Kaplan (2009) and others. The above studies regarding individual attitudes and strategies 

likewise adopt this foundation, which comprises factor analysis and structural equation modeling, as do 

various studies of company strategy and attitudes in the business domain (e.g., Lai et al., 2002). The most 

widely used framework, known as the Hybrid Choice Model (HCM), has both a latent component and one 

observed choice component (Walker, 2001 and Ben-Akiva et al., 2002). Latent variable estimates (scores) are 

predicted by exogenous variables, while choice outcomes are predicted by both exogenous variables and the 

latent variable scores. This study adopts this general structure, although with a number of enhancements and 

refinements to extend it for this context, in particular developing the capability to jointly model a range of 

continuous and truncated variables.  

The rest of this discussion reviews existing methods to model joint decisions, attitudes and their impacts 

on decisions, and choice set parameters. Various mathematical models have been developed and applied to 

problems involving joint decision making. Fang (2008) develops a Seemingly Unrelated Regression (SUR) 

construct to study mixed discrete-continuous (MDC) questions involving the number of vehicles of different 

classes that are owned by a household and the vehicle-miles traveled (VMT) using each class.  

The model in Fang (2008) offers several appealing features. First, it represents VMT using a truncated 

variable (Tobin, 1958; Woodridge, 2010). This elegant construct allows one variable to capture two choice 

dimensions: one discrete and the other continuous. This is especially useful to major, high-level decisions that 

involve a yes/no aspect as well as “how much” aspect. Amore and Murtinu (2019) discusses examples where 

this is relevant to high-level, strategic decisions in the business context. Using an ordinal model with a 
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continuous latent variable corresponding to the number of vehicles, the entire system of outcomes is 

represented as a set of continuous variables, which generally lend themselves to more straightforward and 

faster computations than discrete variables. The approach in Fang (2008) also readily permits unrestricted 

covariance between the error terms of each pair of outcomes, which is another extremely desirable property. 

The mathematical foundations of this approach are well established and equivalent to the SUR model. Finally, 

the approach readily permits additional categories of a variable to be added – for example, two types of 

vehicles (passenger cars and trucks) are examined in Fang (2008). Due to its similarities to the Multiple 

Discrete Continuous Extreme Value model (MDCEV) (Bhat, 2008), an MDCEV application is implemented 

using the same data. Similar results are obtained for each application.  

However, while elegant, the model in Fang (2008) does not address attitudinal dimensions. Furthermore, 

its application is designed using long-term, locational decisions as exogenous inputs, focusing only on 

predicting medium-term, downstream decisions (vehicle ownership and use).  

Numerous recent works have developed powerful methods to jointly model multiple latent attitudes and 

outcomes of different types (nominal, continuous, etc.). The development of the Generalized Heterogeneous 

Data Model (GHDM) in Bhat (2015a) enables a significant step forward in this respect. Bhat, Pinjari et al. 

(2016) and Lavieri et al. (2017) demonstrate the value in applying this framework using a number of decisions 

ranging from long-term to short-term in nature (location choice, vehicle ownership, mode choice, and so on) 

jointly with multiple latent variable constructs.  

However, these demonstrations illustrate a disadvantage with the current GHDM setup, namely related to 

the treatment joint decisions that are associated with one discrete outcome. For example, Fang’s use of the 

SUR permits the modeling of three decisions for each vehicle class: (1) own one or more vehicles of that class 

(yes/no); if “yes”, then (2) how many vehicles to own and (3) how many miles to drive them. To generate a 

similar decision structure using the GHDM, it appears that that a new instance of the GHDM must be 

established for a particular combination of activities. For example, the application in Bhat, Pinjari et al. (2016) 

presupposes that the household has members who commute to work, implying that the estimated model may 

not be valid for households that are making other choices within the application (such as residential location) 

but that have no workers. It is not immediately clear how the GHDM handles discrete or continuous choices 
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for which some individuals may choose to consume nothing. Presumably, a new set of parameters needs to be 

estimated for each such case, with one set representing individuals with non-zero consumption and another set 

representing individuals with zero consumption.  

 

2.7 Methods to Model Choice Set Generation Parameters 

In addition to mitigating this drawback, the approach proposed here offers a key innovation over existing 

works. Namely, this study proposes to treat choice set generation parameters as a set of strategic decisions that 

are made jointly with other types of strategic decisions. As put forth in Manski (1977), decision making often 

involves two stages (at least conceptually, although they may overlap in reality). First, in choice set generation, 

an individual determines a set of choices from which to choose one option. Second, the individual selects an 

option from this set. There is general agreement that non-compensatory processes, such as adhering to some 

maximum threshold for price, play a role in choice set generation for such decisions (e.g., Ben-Akiva and 

Boccara, 1995 and Castro et al., 2011). As such, ignoring the choice set generation process (by imposing a 

single, compensatory choice model), will generally bias the estimates of the true model parameters by 

conflating the estimates with factors that are not really considered in the second, compensatory decision stage. 

For these reasons, choice set generation is widely used in transportation and land use models, particularly 

in preparation for modeling spatial or other decisions for which the universal choice set is vast (e.g., in 

passenger travel demand modeling, housing location choice models such as Kaplan et al., 2012 and Rashidi et 

al., 2012). Key factors in the choice set generation process for location-related choices may include both 

property requirements (e.g., maximum price) and transportation accessibility requirements (e.g., distance to the 

nearest passenger rail station). This study evaluates freight-related accessibility from a similar perspective and 

uses pre-existing software Geographic Information Systems (GIS) packages, in particular the geospatial “sf” 

package in R (Pebesma, 2018), to measure distances. 

Moreover, the method proposed here permits the joint modeling of choice set generation parameters that 

are associated with multiple types of choices – for example, minimum fleet size and maximum warehouse size. 

This extends modeling efforts to date that have developed choice set parameters for one decision only (for 

instance, see Swait and Ben-Akiva, 1986 and Bhat, 2015b). 
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The process of solving such a rich modeling system is a challenge. Estimation using classical, full 

information methods involves computing multidimensional integrals to maximize the log likelihood function, 

which is computationally challenging in applications with multiple latent variables. As a result, researchers 

rely widely on Maximum Simulated Likelihood (MSL) (Train, 2003), in which the integrals are approximated. 

Even so, MSL remains computationally challenging for problem instances with substantial interdependency 

between alternatives and multiple latent variables, which is the type of application that is addressed in this 

thesis.  

This study turns to Hierarchical Bayes techniques to estimate model parameters. The benefits of Bayesian 

approach, and Gibbs sampling in particular, are discussed in previous studies (Fang, 2008; Daziano, 2015; and 

Train, 2003, to name a few) and summarized here. A Bayesian approach with Gibbs sampling and variable 

augmentation avoids the use of multidimensional integrals. This reduces computational burden and eliminates 

the need for approximations, thereby providing exact inference with finite samples. Moreover, Bayesian 

estimators are statistically at least as good asymptotically as classical estimators. With a good, informative 

prior, Bayesian estimators can be superior to classical estimators. Ultimately, Bayesian methods offer a 

powerful foundation for developing detailed statistical models with large amounts of interdependency in 

outcomes and multiple latent variables.  

Using Gibbs sampling with data augmentation (Albert and Chib, 1993; see also Geweke, 2005), this work 

extends earlier, Tobit-based implementations (e.g., Fang, 2008; Cowles, et al. 1996) by incorporating attitudes 

as an additional dimension. McCulloch and Rossi (1994) and Fang (2008) inform the methods used in this 

study for drawing from a truncated distribution conditional on other distributions. Daziano (2015) also uses 

Gibbs sampling in the behavioral modeling context, but with a discrete choice kernel rather than a SUR.  

The Maximum Approximate Composite Marginal Likelihood (MACML) method (Bhat, 2011) may also 

work well for this application. Using MACML or other solution methods to solve the modeling system in this 

application is a potential extension to this work.  
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2.8 Data Fusion and Real-World Analyses of Firm Strategy  

This thesis presents a novel use and fusion of numerous existing sources in Chapter 4 and Chapter 5. 

Fortune 500 magazine (Fortune) regularly compiles and makes available salient statistics on the largest 

companies in the US and internationally. The FleetSeek database has comprehensive coverage of practically all 

commercial truck fleets in the US (FleetSeek, 2017 as analyzed in Mele, 2017, and posted online in 

BigMackTrucks.com, 2017). The CoStar real estate database contains information for commercial properties 

throughout the US (CoStar, 2020). Data on population density, rail-truck intermodal yards, and major water 

ports are obtained from the US Bureau of Transportation Statistics (BTS) (2020), the US Census Bureau 

(2020b), and the FHWA Freight Analysis Framework (FAF) (Oak Ridge National Laboratory (for FHWA 

Freight Management and Operations, 2017). Nearly all of these sources are publicly available—only CoStar is 

propriety. Such a comprehensive analysis of these companies and their logistics behaviors using these various 

data sources has not been undertaken previously.  

The proof of concept results in Chapter 3 and Chapter 6 also integrate a number of real-world data 

sources. The data foundation for the former follows Urban et al. (2012) and Stinson, Enam et al. (2019), and is 

summarized briefly within the chapter. Likewise, sources used in the latter are documented within that chapter.  

The behavior-based results that are generated in each proof of concept are themselves an important 

contribution to the domain of agent-based freight modeling. Although a few stand-alone models of freight fleet 

ownership have been developed (e.g., Rashidi and Roorda, 2018, and Sillaparcharn, 2007), by and large 

vehicle ownership models have been confined to the passenger transportation domain (Anowar et al., 2014). 

Moreover, existing agent-based freight models including those in Sakai et al. (2020) and Outwater et al. (2013) 

do not recognize affiliations between distribution centers and their operators. In general, they also do not 

account for private fleet vs. for-hire transport decisions, which may be an issue for the accuracy of origin-

destination flows and the characteristics of truck tours. While de Bok and Tavasszy (2018) develops an 

insightful simulation of urban goods transport of carrier activity and warehousing, it has limited application for 

private fleet and privately-operated distribution. The framework proposed in Federal Highway Administration 

(2020) acknowledges the importance of fleet and distribution channel decisions and integrates some real-world 

data, but fleet and distribution decisions are not integrated. This study improves upon these works by 
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acknowledging the integrated nature of fleet and distribution decisions, by devising methods to model these 

decisions, and by developing real-world models and parameters that are immediately useable in agent-based 

modeling platforms.   

Estimating the impact of company strategy on its global energy and emissions footprint has no precedent 

in the literature. More generally, related works have quantified the negative impacts of freight transportation 

nationally (e.g., Olmer et al., 2017 quantifies global shipping impacts), but not in the context of strategy 

impacts analysis. 
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3 A Behavioral Framework to Model the Movement of Goods through Supply Chains 
 
Part of this chapter was previously published as Stinson, M., J. Auld, and A. (Kouros) Mohammadian, “A 
large-scale, agent-based simulation of metropolitan freight movements with passenger and freight market 
interactions,” Procedia Computer Science, vol. 170, pp. 771–778, 2020, doi: 10.1016/j.procs.2020.03.157. © 
2020 The Authors. 
 

3.1 Introduction 

This chapter presents a novel, agent-based framework for simulating the movement of goods through the 

transportation system. Like earlier works, the model architecture uses a three-layered conceptual construct of 

decision-making and outcomes (Figure 3). The three-layered construct illustrates the activities and decisions of 

agents, and how various elements interact, in a systematic fashion. The construct also provides a systematic 

and intuitive way to translate this conceptual understanding into a computational framework. There is 

continuity between and among the layers, as decisions from one layer naturally feed into downstream 

decisions. 

 

Figure 3. Model overview. 

SYNTHETIC POPULATION

Decisions Outputs Contributions
Strategies
Collaborations
Assets
Locations

Logistics strategies
Trade strategies
Supply chain and 
distribution networks 
with asset and 
location info.

Strategies as 
driver of 
decisions
Framework for 
carrier services 
model
Trade-carrier 
agent 
interactions

Production and 
procurement
Logistics 
(shipment size, 
path, vehicle 
routing 
problem)

Partner contracts
Orders
Inventories
Shipment rosters
Vehicle tours

Operationalize 
the push-pull 
boundary
Integration of e-
commerce supply 
& demand

Route choice
Rerouting
Parking
Intraday 
demand

Vehicle-miles 
traveled, travel 
times, energy use, 
emissions

Business-
household asset 
interactions
Emerging trends 
esp. on-demand 
delivery, 
crowdshipping

Markets/buyers

Distribution/storage

Production

Suppliers

LAYER
STRATEGIC

TACTICAL

OPERATIONAL



   
 

 

31 

 

The layers are distinguished by the types of decisions and actions that are featured. Generally speaking, 

decisions are categorized based primarily on their temporal qualities, namely duration of impact and 

frequency. For example, in general, long-term decisions are infrequently made and have a relatively long-

lasting impact. Characteristic outcomes of each decision also informs its categorization:  

• Long-term (LT): decisions that drive origin-destination flows of goods 

• Mid-term (MT): decisions that result in delivery rosters and goods storage 

• Short-term (ST): operational decisions that generate traffic 

The model simulates the flow of shipments by modeling the following agent behaviors and decisions: 

• Strategy adoption and strategic decisions; 

• Collaborations, which create the underlying demand for goods movement; 

• Asset choices including both facilities and fleets; 

• Trade volumes, including production, procurement, and inventory levels;  

• (Carriers only) Transport and logistics service offerings; 

• Shipping decisions, including shipment size, frequency, and path choices;  

• Vehicle routing and touring decision; and 

• En-route decisions including routing, parking, and on-demand delivery adjustments.  

Since the model design is based on underlying business behaviors rather than specific market segments, 

the framework can be applied across all types of geographies: urban, national, and international levels. It can 

also be scaled to different temporal resolutions ranging from minutes to years. However, for computational and 

calibration reasons, this work discusses the most recommended application with a detailed metropolitan area 

focus that has national and global trade and distribution ties (discussed in Section 3.2.1), and with traffic 

simulation for a single, 24-hour period. Furthermore, the model supports any number of industry classes and 

transportation modes. Finally, the design of the model facilitates scenario analysis under varying political, 

socioeconomic, technological or other trends. For example, trends in the economy, government regulation, 

population growth, new vehicle technologies, e-commerce, sharing economy, and infrastructure can be 

evaluated for their impacts on goods movement.  
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The remainder of this chapter is organized as follows. First, the objectives and contributions are 

documented. Second, key features of the framework – its “building blocks” – are described. The behavioral 

basis of the model and features that are unique to this framework are explained further. Next, the integration of 

all features into a single modeling system is presented. Agent decisions are discussed in more detail in this 

section. Finally, a proof of concept is presented.  

 
3.2 Key Features 

3.2.1 Geography 

Although the model is built with greatest detail for a specified metropolitan region, the entire modeling 

system is global. Throughout the model, the location of agents is extremely detailed (parcel level) in the central 

metropolitan region. In keeping with Urban et al. (2012), locations of agents in other US and international 

areas are tracked using the FAF zone system (Oak Ridge National Laboratory (for FHWA Freight 

Management and Operations), 2017). 

Simulated trade partnerships can be global, national or regional in nature (Pane A in Figure 4). In the 

partnership stage, transport and logistics paths likewise are modeled for these three scales. The model keeps 

track of path attributes including travel time on each mode when trade agents are choosing paths. In addition, 

as Pane B illustrates, domestic transshipment locations are specified as part of the path choice process. Foreign 

transshipment points are represented by a single location. The network formation models do not decide the 

exact route (e.g., where does the truck turn), but instead factors the great circle distance based on the average 

mode speed to estimate travel time between each pair of consecutive transshipment points (see Stinson et al., 

2017 for more detail).   
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Images are licensed under Creative Commons: CC BY-NC-SA (2020) (A,B) and CC BY-SA (2020) (C). 

Figure 4. Geographic scale - examples. 

 
 

For the short-term traffic simulation (Pane C), origins and destinations are already established. Each 

vehicle agent chooses a route. The geographic resolution is extremely detailed in this stage, using a parcel-

level geography for all regional trips and a detailed highway network. 

3.2.2 Agent typology 

This framework uses two fundamental types of agents: the establishment and the firm (or company; see 

Figure 5). It currently stops short of collections of firms, which BLS denotes as enterprises, but may be 

extended to this in the future.  

 

Figure 5. Illustration: Firms and unaffiliated establishments. 

Photos by Unknown Authors are licensed under CC BY-SA-NC (A,B) and CC-BY-SA (C).
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Firms can be horizontally integrated, vertically integrated, or both. Integration shapes the flows of goods 

and information across agents. A vertically integrated firm generates at least some of its own inputs and thus 

includes establishments in two or more industries. A horizontally integrated firm operates in one industry and 

has two or more establishments in that industry. For example, a horizontally integrated firm may operate a 

regional chain of retail stores. While vertical integration in trade has fallen out of favor in recent decades (Hall 

and Braitwaite, 2001), it is still used (e.g., “Phillips 66” (2020) notes that Phillips 66 owns both refineries and 

gas stations). Therefore, both are modeled in this framework. Vertical integration of logistics agents is evident 

with well-known, integrated service providers (e.g., FedEx) or can be organized by a freight forwarder with 

each party—ocean carrier, port terminal, and inland carrier—controlling its own segment (Meerseman and Van 

de Voorde, 2001). Horizontal integration of logistics agents provides greater economies of scale, e.g., in 

vehicle fleets (Meerseman and Van de Voorde, 2001). 

Agents are characterized at the establishment level based on which activities are conducted at the site, in 

other words, the functional role(s) of the establishment. For this purpose, this framework defines trade as the 

physical exchange of goods between one establishment and another. As such, trade can occur between either 

unrelated establishments or affiliated establishments (for intrafirm movements).  The shipper is the sending 

establishment and the receiver is the recipient. The goods are owned by the shipper until they reach the 

receiver.  

Three categories are used to classify individual establishments: trade agents, logistics agents, and rule-

makers. Classes are based on the following hierarchy.  

Trade agents supply or buy goods (or do both). Any establishment that engages in trade is designated as a 

trade agent. Trade agents have three potential additional roles: goods production, goods consumption, and 

logistics functions. When the trade agent conducts its own transport, it is said to have a private fleet. A trade 

agent that conducts its own distribution is said to have DC control. This framework assumes that the trade 

agent uses its own logistics services exclusively. Likewise, such services are assumed to be available 

exclusively to the affiliated trade agent. Logistics activities, if conducted by the trade entity, can be 

accommodated at the same site as trade activity (for example, a factory with an adjacent parking garage for its 
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private truck fleet) or at an off-site location. The latter is referred to as an ancillary logistics agent, meaning an 

establishment that serves logistics function(s) and is part of a firm. Otherwise, logistics activities are associated 

with a unique establishment.  

For trade agents, it is necessary to elaborate on distinctions between supplier and buyer activities. 

Suppliers provide goods to entities that purchase the goods. There are two main types of suppliers. Producer 

agents make goods through a production process such as harvesting crops or baking. Agriculture, mining, and 

manufacturing industries are prominent in goods production. Agents that produce goods usually also consume 

goods that become part of the product or output (for example, seeds grow into crops).  

Wholesale agents, also called distributors, are the second type of supplier in this framework. Agents in 

the wholesale sector purchase goods from producers or other wholesalers and sell the goods to other agents. 

Wholesale agents do not produce goods, but as Urban et al. (2012) notes, they buy and sell goods, and are 

important enough to constitute nearly 50 percent of the establishment sample in the US Commodity Flow 

Survey (US Census Bureau, 2020a).  

Buyers purchase goods from a supplier. There are two main types of buyers. Consumer agents use or 

absorb goods. For example, a manufacturer that uses steel to make beams is a consumer. End consumers use 

goods but either produce services or have no economic output. For example, automobile shops purchase auto 

parts and use the parts to fix cars, which is classified as a service, while individuals in the population purchase 

food for personal consumption with no economic output. All wholesale agents are classified as buyers as well 

as suppliers. 

The second type of agent is the logistics agent. This agent transports or stores and distributes goods for 

trade agents, but does not trade goods. Two types of logistics agents are defined. A carrier is defined as a 

logistics agent that owns and operates a fleet. It may also own and operate one or more storage facilities. Truck 

carriers may specialize in conveying parcel, less-than-truckload, full truckload, or intermodal container 

shipments. The framework defines third-party logistics (3PL) firms as a logistics agent that owns one or more 

distribution centers.  

The third kind of agent is the rule-maker, which is an authority that makes decisions that govern the 

operating environments of trade and logistics agents. Rule-makers include government agencies, which are 
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unaffiliated with trade or logistics agents. They also include transshipment hub operators (THOs), which may 

be operated by a public authority (e.g., a port authority) or a private party (e.g, Walmart or a 3PL). The THO is 

assumed to be responsible for determining fees, storage allocations, and the like. Storage may occur in staging 

areas where while goods await their next pickup. 

The model uses a fourth kind of agent: a truck driver. At this time, drivers simply appear for a trip and 

disappear when the trip ends. The driver has route choice behavior but makes no other decisions.  

3.2.3 Strategy 

A unique and powerful innovation of this framework is its emphasis on integrating agent strategies as a 

key factor in the agent’s decision-making processes. Strategy models are introduced early in the model 

architecture – immediately following population synthesis – since they provide a mechanism to guide and 

unify agent decision-making from the long-term to the short-term horizons.  

This work focuses on trade and logistics strategies because they have a major impact on origin-

destination patterns and transport decisions, which are both pivotal to simulating freight transportation. Proof 

of concept models of strategy for trade agents in the logistics context are developed in Chapter 5. 

In addition to logistics strategies, trade agents will develop trade strategies. The planned extension to 

trade strategies will focus on identifying factors that shape origin-destination flows. The focus is on evaluating 

strategic decisions regarding which sales markets and procurement markets are targeted by trade agents, with 

markets defined based on geography, trading partnership characteristics, and qualitative dimensions that 

capture the impact of human factors in the decision process. Disposition towards risk is of particular interest, 

as Kahneman and Tversky (1979) explored and documented its effects for individual persons. Risk aversion 

can manifest as, for example, searching out domestic versus international trade partnerships in emerging 

markets.  

Sales (procurement) strategies relate to the volume of products that sellers (buyers) target for trading 

across a mix of markets. These are planned to be high-level in nature – for example, the percentage of 

production that is targeted for international versus domestic sales. Relationship mechanisms, e.g., type of 

contract as discussed below, will be assessed as part of this.  
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Logistics agents, like trade agents, must invest in assets without perfect knowledge of demand. Logistics 

agents plan for anticipated freight demand with two types of strategic decisions. First, they select assets, 

including an operational base, facilities and fleet, that will enable them to serve anticipated demand in a cost-

effective way. As part of this, logistics agents decide whether to offer transport, storage, or both. Second, they 

establish service parameters to accommodate the needs of trade agents. The following service decisions are 

planned to be included in the model:  

• Goods: all types of goods vs. specific commodities  

• Geographic scope: urban, intercity/same-day, national/multi-day 

• Operational base(s) locations  

• Relationship and exclusivity preferences: amount of service dedicated to specific movements 

(e.g., port, a single business, etc.)  

• Carriage offerings: full truckload, less-than-truckload, parcel (specialty offerings including 

refrigeration may be added) 

3.2.4 Assets 

Asset ownership and use decisions are key behaviors that are modeled in this framework. The framework 

includes fixed assets and mobile assets. Fixed assets are production sites (e.g., factories), storage sites, 

transshipment sites, and other immobile facilities. Production sites are initially represented using three broad 

classes (farmland, mining, and manufacturing); the exact classes will be refined as model development 

continues. Mobile assets, including size and mix of truck and van fleets, are modeled. While transport by non-

highway modes is modeled, non-highway conveyances are not currently modeled. In other words, capacity on 

non-highway modes is assumed to be unrestricted.   

Storage is space that is used to hold goods. Three types of storage are modeled. First, storage occurs at 

logistic agent or THO sites while goods await processing. Second, storage as part of distribution is modeled. 

Third, GP storage is modeled. The second and third types are defined in Section 0. Further, to maintain 

consistency with Chapters 4 and 5, DCs are assumed to fulfill certain minimum size requirements.  
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3.2.5 Relationships and supply chains 

In the goods movement context, relationships can be formed between trade agents, trade and logistics 

agents, trade agents and THOs, or logistics agents and THOs. This subsection focuses on cooperative 

relationships, which exhibit different degrees of formality varying from casual to binding: 

• “Spot market” relationships are the least formal and least enduring partnerships. The spot market 

is where short-term partnerships are formed, e.g., a short-term agreement to transport a single 

load from Business A to Business B. The relationship is based on cost and the provider’s ability 

to meet other requirements, such as supply volumes, delivery time windows or storage space 

minima. 

• Contractual relationships guarantee certain elements of the partnership – for example, that a 

certain level of goods will be purchased at regular intervals by a receiving establishment. This 

framework specifies volume guarantees (for trade contracts) and level of service guarantees (for 

logistics contracts) in contractual relationships.  

• Binding relationships involve an enduring legal mechanism that effectively mandates partnership 

functions. Relationships among establishments that belong to the same firm are treated as 

binding and exclusive for all activities for which the firm has a function. For example, if the firm 

owns a private fleet, then that fleet is assumed to handle all of the deliveries for the trade agents 

of that firm. 

Other types of relationships occur in real-world scenarios. These include supply chain management, in 

which various actors in the supply chain share information on customer demand to better control costs up and 

down the chain (Heaver, 2001). Alliances, e.g., between major ocean carriers, enable participants to achieve 

the benefits that are associated with scale of operations effects as Meerseman and Van de Voorde (2001) 

suggests. Finally, competitive relationships also influence agent behavior. These are not currently included in 

the framework but may be in the future. 

Trade relationships are formed between agents that trade goods with one another. In general, relationships 

are many-to-many: a given trade establishment typically has multiple suppliers and multiple buyers. A 

complex web of trading activity results (Figure 6).  
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Figure 6. A web of trading activity 

 
 

A supply chain is a cross-section of all trading and logistics activity that is specific to one product that is 

produced by a specific company. Figure 7 shows an example of a supply chain for a trade agent that 

manufactures retail products. The Council of Supply Chain Management Professionals (CSCMP) (2013) 

defines the term “supply chain” as follows: 

1) Starting with unprocessed raw materials and ending with the final customer using the 
finished goods, the supply chain links many companies together; 2) the material and 
informational interchanges in the logistical process stretching from acquisition of raw materials 
to delivery of finished products to the end user. All vendors, service providers and customers are 
links in the supply chain.  

 
 
 
 

 
Figure 7. A supply chain with trade agents shown 

 

Decisions in the framework are made both by individual agents and by groups of agents. When agents 

interact, the group must prioritize the needs and objectives of its members in a way that benefits the entire 

group. Initially, agent needs and subsequently decision making are prioritized in the following hierarchy:  

Tier 2              Tier 1
Suppliers        Suppliers

Trade
Agent

Wholesaler           Retail Venues
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• the end consumer 

• the principal firm establishment 

• the purchasing establishment 

• the shipping establishment 

• the prime logistics agent (if multiple logistics agents are used) 

• supporting logistics agents 

This scheme is used for prioritizing both trade and logistics decisions. This prioritization scheme may be 

revised based on data from an establishment survey.  

The remainder of this discussion is presented from the supply chain perspective since supply chains are 

the dominant business structure in today’s economy. However, the phenomena described below generally 

apply to vertically and horizontally integrated firms as well. A major difference is that the activities of 

integrated firms do not suffer from the lack of information that is inherent to supply chains. These shared and 

differing aspects of business operations are important features of this modeling framework.  

 

3.2.6 The effects of information 

Visibility in the supply chain describes the available level of transparency of other members of the supply 

chain. More information, especially information on demand, typically translates into greater efficiency of 

goods production and goods movement.  

 

3.2.6.1 Order Quantity and the Bullwhip Effect 

Lack of information regarding the needs and actions of other supply chain members generates uncertainty 

that can be amplified from one member to the next, creating a “bullwhip effect” (Forrester, 1961) (Figure 8). 

This is particularly true when demand at the endpoint is unknown. The results of this compounded uncertainty 

include locally optimal production and a buildup of buffer inventory to unhealthy levels, leading to financially 

harmful effects such as huge discounts on unwanted inventory.  
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Creative common license: Grap-Own Work (2010)  

Figure 8. The bullwhip effect 

 
At the other extreme, a given trade agent may have perfect information on its customer’s demand. In this 

case, the agent can utilize the “just-in-time” (JIT) delivery method, which emerged in recent decades as a cost-

effective method of arranging the flow of goods (Norwich University Online, 2017). In JIT systems, goods are 

produced (1) in the right way (meeting specifications exactly) and (2) in the necessary quantity; then they are 

delivered (3) to the place where they are used (4) at exactly the right time. One objective of JIT is to reduce 

safety inventory to zero levels, thus minimizing waste and achieving cost savings. This method requires high 

quality goods (ideally with no defects), highly accurate knowledge of demand and extremely reliable transport 

and logistics systems. Geographic concentration of suppliers often is associated with JIT since it facilitates 

more efficient transport of goods from multiple suppliers (Estall, 1985). 

When trade establishments face uncertainty in demand, they use an ordering method with built-in buffers 

to account for known and unknown variability in demand.  This method is the classic economic order quantity 

(EOQ) formula, which was developed about 100 years ago (Harris, 1915) and remains widely used today 

(Waters, 2001).  

3.2.6.2 The Push-Pull Boundary 

Ultimately, it is helpful to characterize demand uncertainty by visualizing where it can occur in the supply 

chain. In fact, the flow of goods can be generated in one of two ways: 

Time Time Time Time
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• “Push” system: The demand for goods downstream is forecast by upstream suppliers who then 

produce goods based on the forecast demand. True demand by downstream consumers 

(especially the end customer) is not known with certainty.  

• “Pull” system: The demand for goods downstream directly generates orders upstream.  As such, 

a high level of certainty is embedded in this process.  

Pull systems are preferable since greater certainty in demand translates into lower inventory needs and 

decreased waste in production. However, supply chains typically fall short of this ideal due to disparities in 

visibility, or information, among supply chain members. As a result, the provision of supply typically becomes 

uncoupled from demand at some point upstream. Referred to as the “decision point”, this is where production 

becomes driven by supplier forecasts rather than actual consumer demand (Hoekstra and Romme, 1992). The 

decision point can be located anywhere upstream of sales in the supply chain, thus forming the “push-pull 

boundary” as shown in Figure 9 (Rich, 1995). 

 

 
Figure 9. Potential locations of the push/pull decision point. 

 
Push/pull behavior and the decision point have important analytical implications for freight demand 

models: 

• Clearly, orders for goods sometimes are precisely in line with end consumer demand while in 

other cases orders are generated by forecasting processes that include buffer stocks to address 

uncertainty in demand. 

PRODUCTION DISTRIBUTION
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• Suppliers near to the end consumer are more likely than upstream suppliers to use demand-driven 

(pull) orders.  

• Improved supply chain coordination, especially the sharing of information on customer demand, 

can reduce costs and improve efficiency of upstream suppliers who are enabled with “forward 

visibility” in this process.  

In other words, demand forecasting methodology differs depending on (a) the location of the supplier in 

the supply chain and (2) the level of coordination among members in the supply chain. For example, an 

upstream supplier in an uncoordinated supply chain may rely on time series demand forecasting and use the 

economic order quantity (EOQ) formula to establish the size and frequency of its orders. Suppliers in 

coordinated supply chains or those close to the end consumer will need less buffer inventory and can utilize a 

cost-effective JIT delivery system.  

3.2.6.3 E-commerce 

In many ways, e-commerce is the penultimate example of end consumer visibility since it makes 

information sharing between consumers and producers so easy and fast. Consumers can use an online system 

to express their product specifications to a manufacturer or online retailer (or e-tailer), at which point this 

supplier can fill the customer order. As such, e-commerce reduced overall reliance of supply chains on 

intermediary trade agents (especially wholesalers and brick-and-mortar retailers), thereby shortening the length 

of the supply chain while simultaneously modifying its configuration (Figure 10). 

 

 
Figure 10. Supply chain reconfigurations due to e-commerce. 
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E-commerce also impacts the delivery system. Orders from online retailers are typically delivered using 

postal or parcel services. In-store pickup is sometimes offered by establishments that have both online and a 

brick-and-mortar stores. The e-tailer may stock goods or use “drop shipping”, where the e-tailer transfers 

orders directly to the manufacturer, a wholesaler, or another retailer who then fills the customer order (“Drop 

Shipping,” 2019).  

The proof of concept describes implementation results from an e-commerce analysis.  

 

3.2.7 Integrated framework 

Figure 11 illustrates the components that operationalize the various building blocks and shows their 

integration. An “X” denotes elements that have been implemented so far. The proof of concept in this chapter 

and Chapter 5 are the key references that document the implementation to date.  

 

Figure 11. Overview of model components. 

The first model component addresses the task of generating a synthetic population of agents. This 

population will be used in simulation runs of the model. The synthetic population is intended to be realistic but 

XPOPULATION SYNTHESIS

XSTRATEGY MODEL

NETWORK FORMATION

XSUPPLY CHAIN 

NETWORK

DISTRIBUTION 

NETWORK

STRATEGIES 

(XLogistics, Trade)

XSHIPMENT SIZE
XPATH

XCOLLABORATIONS
XASSETS

XLOCATIONS

XTRADE PREPARATION

XSHIPMENT ROSTERSXSHIPPING PREPARATION

XTRADE VOLUME

INVENTORY

XTRAFFIC SIMULATION

XTOURS

NETWORK 

PERFORMANCE 

/ DELIVERY KPIs

OP
ER

A-
TI

ON
AL

TA
CT

IC
AL

ST
RA

TE
GI

C

THIS AGENT

STRATEGIC 

TRADE AND 
XLOGISTICS 

DECISIONS

+
XCHOICE 

SET PARA-

METERS

INFORMATION & XE-
COMMERCE DEMAND

VEHICLE ROUTING

OTHER 

AGENTS

XDenotes partial to full implementation in proof of concept

DAY-OF

Decisions:



   
 

 

45 

 

it is not an exact replica of the business establishment population. The characteristics of establishment agents 

in the synthetic population of firms includes: 

• Primary industry; 

• Location (region), including accessibility to transportation facilities; 

• Size measures: Revenue, employment; 

• Assets and their characteristics, especially fleet size and mix, types of facilities at site 

(manufacturing, storage, parking), and facility characteristics (floor area); and 

• Firm membership of establishments.  

Next, model agents make strategic decisions regarding trade and/or logistics. The resulting strategies 

inform their remaining long-term, medium-term, and short-term activities. The discussion of strategies and 

strategic decisions is covered extensively in Section 3.2.3 and in Chapter 5. This model focuses on sourcing, 

sales, and transport strategies since these types of strategies have a major impact on origin-destination patterns 

and transport decisions, which are both pivotal to simulating freight transportation. The next several 

subsections describes each component in greater detail. The proof of concept discussion in Section 3.3 

describes the methodology and data sources that are employed in the initial implementation. Otherwise, 

methodology for most stages is to be determined but is expected to rely on statistical models, including 

discrete choice models, and heuristics.  

3.2.8 Network formation models 

This stage first simulates supply chains, distribution networks, and firm assets, then simulates location 

decisions for fixed assets. Supply chain formation and distribution network formation are performed in the 

same stage as asset selection because of partnership needs are driven to some extent by availability of intrafirm 

assets. For example, trade firms that own vehicle fleets will not seek a transport agent partnership. 

Supply chain network formation is initialized by simulating partnerships between trade agents (Figure 

12). Relationship type (e.g., spot market versus contractual) will be modeled as part of this. Next, each logistic 

entity forms a physical collection of facilities and routes, which collectively is referred to as its distribution 

network. Figure 13 outlines the analysis steps that are planned for the distribution network simulation. Carrier 
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agents, whether affiliated with a purely carrier firm or a private trade firm, will choose capacity and levels of 

service (e.g., geography, price). Finally, this stage simulates asset decisions include fixed trade assets 

(examples: factories, retail stores); facilities dedicated to transport and logistics (examples: warehouses; 

intermodal yards); and vehicle fleets.  

 

Figure 12. Examples of supply chain collaboration. 

 
 

 

Figure 13. Development of path options by logistics agents. 
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The traffic simulation requires a detailed location to be identified for each vehicle trip. Detailed locations 

are also needed to assess the characteristics of potential transport and logistics path options, which are 

evaluated in the next component. To support these needs, a Parcel Location Algorithm assigns each 

establishment to a specific parcel of land. This process will be extended to assign each vehicle to a specific 

parcel as its base of operations or home station. 

3.2.9 Mid-term models: trade and shipping preparation 

The trade preparation models simulate the steps that trade agents take as they prepare to trade goods with 

one another. First, each trade agent forecasts demand for its products, then sets its output levels in accordance 

with the forecast. The demand forecast has two components: (a) predicted demand and (b) realized orders. As 

described earlier, access to information and proximity to the customer will be used to determine the extent to 

which each establishment relies solely on forecasts versus known orders. Next, the buyer determines its annual 

volume requirement for each input that it uses. The demand forecast informs the resulting procurement 

decisions. Each trade establishment determines the volumes of inputs to procure in order to support the 

forecasted demand and inventory (safety stock) needs. Finally, demand for goods is realized when buyers, after 

determining their input needs, place orders that will meet their needs. The output of this step is a list of 

inbound orders, outbound orders, production volumes and inventory volumes for each establishment. 

Currently, the supply of e-commerce goods is assumed to use perfect information on demand from households 

(discussed more in the proof of concept and in Stinson, Enam, et al., 2019). 

Figure 14 shows the flow of the trade preparation module and conveys how the push-pull boundary is 

operationalized. At some point, every seller receives an order, or information on realized demand, from the 

buyer. However, depending on information and visibility, sellers receive this information either before or after 

making production and procurement decisions. The information or customer proximity mechanism is labeled 

“Visibility” in the figure. Sellers with higher visibility will have greater weighting of actual demand, while 

those with less visibility will have greater weighting on forecasted demand. Through this mechanism, the so-

called bullwhip or Forrester effect (Forrester, 1961 and Chen and Lee, 2017) will be assessed. This will be 
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operationalized by first evaluating demand among end consumers, then evaluating forecasted demand for each 

upstream layer of the supply chain, using the visibility model at each step.  

 

 

Figure 14. Trade preparation and operationalization of the push-pull boundary. 

 

The shipping preparation models generate shipments and the high-level transport and logistics path of 

each shipment. Annualized volumes from the previous stage are converted into shipments using the EOQ or 

JIT formulation, depending on information effects as described earlier. EOQ is used for all shipments in the 

initial implementation. Each resulting shipment is a customer order that must be delivered. This process 

simultaneously generates shipment size and frequency.  

Figure 15 illustrates the steps that convert customer orders into freight tour itineraries. First, for each 

customer order, the shipper and/or receiver selects a transport and logistics path with attributes that meet 

shipment requirements. This process uses high-level path attributes: mode(s) and number and location of 

transshipment points. Next, shipments are assigned to vehicles and vehicles to tours. The sequence of stops 

along the tour by time of day is planned.  
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Figure 15. Shipping preparation models. 

 

3.2.10 Short term: multimodal traffic simulation 

The actual exchange of goods, or shipping, occurs in the Short-Term layer. This layer involves the 

simulation of one full day of activities and trips in the selected region. This study leverages the existing 

dynamic traffic assignment (DTA) model that is contained in the open-source POLARIS software (Auld et al., 

2016; also see Auld and Mohammadian, 2012). This freight framework is being implemented for the Chicago 

metropolitan region, which already contains a full-scale implementation of activities and trips for passenger 

agents in the region. As a result, this implementation permits a comprehensive, simultaneous assessment of 

both passenger and freight traffic. 

To supplement the proof of concept implementation, the next steps are to develop a mechanism by which 

agents adjust their plans based on performance of the transportation system. Furthermore, Figure 16 shows the 

planned design features that will permit the analysis of freight movements that are driven by emerging trends. 

In particular, the design features include the ability to model express or on-demand deliveries as well as 

expanding the pool of commercial vehicle operators and assets to support crowd-sourced shipping, or 

crowdshipping (Punel & Stathopoulos, 2018). These extensions will leverage the dynamic nature of the 

existing DTA and the fact that both freight and passenger populations are modeled simultaneously.  
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Figure 16. Planned extensions for on-demand delivery and crowd-shipping. 

 
3.3 Proof of Concept 

This section contains the entire content of the paper that is mentioned at the beginning of the chapter. 

3.3.1 Abstract 

This study summarizes the first stage in the implementation of an agent-based freight modeling system 

that has a global representation of agents and detailed modeling of a large-scale transportation network. The 

model is used to evaluate the transportation and energy impacts of goods movement across urban and national 

scales. The framework is implemented within POLARIS, a C++-based Planning and Operations Language for 

Agent-based Regional Integrated Simulation, which consists of an activity-based modeling (ABM) and 

dynamic traffic assignment (DTA) system that has robust features for passenger travel. This platform provides 

a tool to model interactions among consumers, producers, and the transportation system. The main objective of 

this initial implementation is to implement a freight model within POLARIS following an agent-based 

paradigm with behavioral and simulation methods. This paper presents the initial framework and illustrates the 
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application of the model. Building upon earlier works, a parcel location assignment algorithm for business 

establishments in the population is documented, along with a method for estimating establishment production 

and consumption volumes. In addition to population generation, other features of the model include push-pull 

supply chains, multimodal path choice, choice of transportation logistics node, and dynamic traffic assignment. 

A module with e-commerce supply and demand was also developed to analyze the effects of e-commerce 

delivery on last-mile energy use and congestion. 

3.3.2 Introduction and background 

Transportation demand models are powerful tools for evaluating current and future demands on 

transportation system. They feature prominently in energy and emissions analysis due to transportation’s 

effects in these areas. Including freight modes in transportation models is critical for accurate assessment of the 

transportation impacts. 

 
Nomenclature 

ABM agent-based model  
DTA  dynamic traffic assignment 
VMT vehicle-miles travelled 

 
 

For instance, freight trucks comprise about 10 percent of VMT in the US and consume about 30 percent 

of transportation energy (US Department of Transportation, 2017). If freight is left out of transportation 

demand models, then a large part of VMT, energy and emissions cannot be sufficiently accounted for. 

However, modeling freight transportation has many challenges, which are mainly due to the large variety 

of agents that are involved with freight production, consumption, or carriage, as well as the wide array of 

options that are available to these businesses in forging business partnerships, choosing modes of transport, 

and other decisions. Further, they operate in a global environment, which complicates the decision-making 

process and expands the number and nature of agents that are relevant to local agents.  

Aggregate models, which are designed mainly for estimating total flows or trips (Beagan et al., 2007 and 

Abdelwahab and Sargious, 1992) at the zonal level, often focus on major decision factors such as distance 

while ignoring more nuanced factors. For instance, early models generally did not consider logistics activities, 
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such as transloading, that often occur on the shipment journey. Subsequently, models such as Tavasszy et al. 

(1998), Boerkamps and van Binsbergen (1999) and Jin et al. (2005) began to include logistics in shipment 

paths but still had some limitations due to the use of aggregate techniques.   

To address these complexities in the freight environment, a detailed freight demand forecasting 

framework that utilizes integrated ABM with DTA was proposed by the authors in Stinson, Auld et al. (2019). 

In the full framework, variety among businesses is handled by using individual agents. Interactions are handled 

by modeling behavioral and economic preferences of agents. Agent response to potential partnerships and their 

environments can be handled by modeling their behavioral preferences – in this model, strategic choices are 

explicitly made, which have major impact on transportation externalities (M. Stinson et al., 2019). Responses 

to traffic conditions are evaluated using DTA. Design features to address major gaps in extant agent-based 

freight models, which focus on both trucks as agents (Hunt and Stefan, 2007) and on businesses as agents 

(examples include de Jong and Ben-Akiva, 2007; Samimi et al., 2013; Urban et al., 2012; Hong et al., 2017; 

Stinson et al., 2017; and Alho et al., 2017) were planned in detail. These earlier efforts are limited in the way 

they handle agent interactions, especially shipper-carrier relationships and firm partnerships. Further, the full 

proposed model introduces several important key features, including modeling of strategic decisions, the 

operationalizing of the push-pull boundary, and key emerging trends. Other frameworks are relevant but have 

not been fully implemented: Holmgren et al. (2012) and Roorda et al. (2010) elaborate on agent decisions and 

interactions, such as contractual relationships, and to some extent covers sensitivities to emerging trends in 

policy, business and technology.  

Due to the number of features to be modeled, it is not possible to develop all features immediately. 

Therefore, an incremental development approach is used wherein major elements from each stage of the model 

are implemented, in some cases with placeholder model formulations and parameters, in order to 

operationalize the model. This document, then, describes the initial implementation of the model. The initial 

implementation is centered on the Chicago metropolitan region in the Midwestern US. Thus, the model 

contains the most detail for this region while also including agents and transportation network features that are 

external to the region.  
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The rest of the paper focuses on this initial implementation. First, an overview of the model architecture 

is presented and its key conceptual and operational features are summarized. Second, each component of the 

initial model is presented in more detail. Test results are shown for various components in order to demonstrate 

the application. Finally, a summary and listing of next steps is presented.  

3.3.3 Approach: model overview 

Three tiers serve as a schematic guide for the full framework (Figure 17, left) (Fischer et al., 2005) in 

order to frame an understanding of agents, decisions, and the operational structure of the model for 

implementation in a computational framework. In the strategic layer, model agents make long-term (3 mo.-1 

yr.) decisions regarding business-to-business collaborations, trade more generally, and transportation and 

logistics capacity. They form strategies that guide their long-term as well as short-term activities. Our model 

focuses on sourcing, sales, and transport strategies since these types of strategies have a major impact on 

origin-destination patterns and transport decisions, which are both pivotal to simulating freight transportation. 

In the medium-term (1 day-3 mo.) tactical layer, agents engage with their collaborators to arrange specific 

trade activities—in particular, the virtual exchange of shipments and planning of associated transportation and 

distribution activities. Practical plans such as driver schedules emerge here. The operational layer simulates the 

resulting physical flows of vehicular traffic. It also models short term (<1 day) decisions of agents such as 

route changes, parking decisions and fulfillment of express (1-2 hour or same-day) delivery demand. An e-

commerce delivery module, which is coupled with a household-level e-commerce module from the POLARIS 

passenger component, currently feeds into the DTA also. The right pane of the figure demonstrates the 

structure of the initial implementation and illustrates which features are used in the initial version.  
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Figure 17. (left) Conceptual features; (right) Initial implementation. 

 
The level of geographic detail and network resolution in each layer differs as shown in Table 1 below. 

Locations of establishments outside of the region are currently at a coarse geographic resolution between US 

counties and regions of the world. Thus, the framework incorporates the ability to model a wide span of 

geographies. The initial e-commerce module includes last-mile delivery trips, i.e., trips from depots to homes 

and businesses. 

Table 1. Geographic level of detail for each layer of the model. 
Layer Establishment location in 

Chicago Region 
Network 

Strategic County Sketch representation of major links and nodes 
Tactical Parcel Sketch representation of major links and nodes 
Operational Parcel All links and nodes 

 

3.3.4 Implementation and results 

This section presents the implementation of the model and initial results at each stage. 

3.3.4.1 Population synthesis 

Currently, model agents include business establishments that engage in trading goods. They may produce 

goods, consume goods, or both. The agent population is generated by enumerating the number of 
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establishments in each US county based on industry category and size (number of employees). The input data 

for this is the US Census Bureau County Business Patterns (CBP) (2020c) data. Fig. 2 shows how the input 

data are transformed into a set of model agents.  

 

 

Figure 18. Input: marginal population totals; output: synthetic population. 
 

Next, each agent is assigned to a specific location for simulation purposes. This is needed because 

counties are quite large (on the order of one hundred square miles). Let i denote an index for the set of 

industries I, z denote an index for the set of zones Z, pz denote an index for the set of parcels in zone Z, and e 

denote an index for the set of establishments E. The parcel location algorithm pseduo-code is as follows: 

 

For every i in I:  

For every z in Z: 

  Compute Siz = Sum(Employmenti,z) 

  Determine ranking Rz (order from highest to lowest) based on Siz 

For every e in E: 

  Form set of candidate zones, Zc as follows: 

 For firms with 5,000+ employees, Zc = zones with highest Rz 

 … 

 For firms with 5 employees, Zc = all zones 

Use Monte Carlo draws to assign each e in E to a z in Z  
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Finally, after assigning each establishment to a zone, its exact parcel location within the zone is simulated 

using a Monte Carlo draw from the set of all parcels with a commercial land use in that zone. Figure 19 shows 

the synthetic agents in the Chicago region at their simulated locations.  

Trade volumes, or production and consumption volumes, are then assessed for each establishment. To do 

so, first a set of rates is computed for each industry. The input data for the rates are the CBP data and the US 

Department of Transportation Federal Highway Administration Freight Analysis Framework (FAF) data, 

which has the dollar value of freight flows that are produced and consumed in various areas of the country. 

The FAF data are in terms of commodity flows, therefore assumptions were used to create a crosswalk 

between commodity type and industry type that produces or consumes each type of commodity. First, total 

employment by industry is summarized using the CBP data. Next, total production and attraction values are 

divided by employment in each industry to estimate the value produced and consumed by each employee in 

each industry for a given commodity type. Finally, using these rates, production and consumption volumes are 

simulated for each model agent based on industry type and number of employees.  

 

 

Figure 19. Synthetic population with parcel locations in the Chicago metropolitan region. 
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3.3.4.2 Supply chain formation and flow evaluation along supply chain 

Ultimately, a relatively elaborate scheme of collaborations among business is planned for 

implementation. For now, a supplier selection model is used wherein each buyer selects a supplier to supply an 

input commodity. First, a candidate set of suppliers is formed by randomly drawing ten potential suppliers 

based on the suppliers’ production industry and simulated production volume. Second, the well-known 

Multinomial Logit model described in Ben-Akiva and Lerman (1985) is used to select a supplier based on its 

characteristics as well as a stochastic element. The utility formula is a placeholder as data for specifying a 

model and estimating its parameters are currently being collected. The utility of supplier s for the initial model 

is 𝑈! = 𝛽"𝑋! + 𝜖!  where b is a vector of parameters to be estimated, X is a vector of supplier attributes that 

includes its size, location (foreign vs. in-region vs. other US-not in region), and distance to the buyer; and 𝜖! is 

an error term. Figure 20 illustrates this process.  

 

 

Figure 20. Supplier selection (supply chain formation). 

 
At this time, the amount of flow is assumed to be the consumption volume that is needed by the buyer. In 

the future, the methodology will be revised to account for the production capacity of the seller.   

In the remaining downstream areas of the model, the buyer-supplier pair are treated as a single decision 

maker, as from this point they are effectively working together to furnish the needs of the buyer.  
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3.3.4.3 Mode and transshipment (path) choices; and DTA 

In this step, mode and transhipment path options are chosen for each shipment. The model is multimodal 

and includes the following modal options: rail carload, rail-truck intermodal, full truckload (FTL), less-than-

truckload (LTL), parcel, and air. Transshipment locations are included as part of the multimodal path option. 

These options include: 

• Choice of airport (O’Hare, Rockford, Midway, etc.) 

• Choice of trucking terminal / crossdock location (for LTL / FTL shipments) 

• Choice of rail terminal (e.g., BNSF Global-I) 

The methodology used for path selection is as follows (Caplice, 2016 and Chen, 2014). For supplier-

buyer pair and each candidate path, the optimal shipment size and frequency is determined based on 

commodity characteristics, which is consistent with inventory theory. The first characteristic is discount rate, 

which covers the cost of physically storing goods (e.g., warehousing leasing rates) as well as perishability 

factors. The second characteristic is the value of the good, which is normalized as the value density in dollars 

per pound. Goods are distinguished as Bulk, Intermediate, and Finished goods, with discount rate and value 

density varying by these distinctions. The optimal shipment size Q*p for path p is calculated as:  

𝑸𝒑∗ = (
𝟐𝑫𝑪𝒐𝒓𝒅𝒆𝒓
𝑪𝒉𝒐𝒍𝒅𝒊𝒏𝒈

(1) 

 
where D is annual demand and Corder and Cholding are the order and holding costs, respectively. Order cost is 

computed as the value density divided by the square of path transportation cost per unity weight while holding 

cost is the value density multiplied by the discount rate.  

Total relevant path cost, TRCp, using path p is then computed as the sum of total transportation cost, total 

order cost, total holding cost, and total pipeline inventory cost over the annual demand time horizon, which is 

one year. Transport cost is the unit cost multiplied by distance and D. Order cost is the unit order cost 

multiplied by D and divided by 𝑄#∗ . Holding cost is the unit holding cost multiplied by 𝑄#∗ 	and divided by two. 

Pipeline inventory cost is unit holding cost multiplied by D and the transit time.  
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Finally, path selection is performed as follows. First, the inverse square root of TRCp is computed for 

each path p. Second, the sum of these inverses is computed, and the proportion of the sum is computed for 

each p. Third, Monte Carlo draws are used to select a path based on these proportions. Although this process is 

somewhat ad hoc and serves as a placeholder for a more carefully specified, data driven model and parameters, 

it is effective in guiding agents toward selecting modes and transhipment locations that are relatively low cost 

yet account for tradeoffs in inventory and transport costs.  

To illustrate the output, mode shares for agriculture, hunting, fishing and forestry products, which are 

bulk goods, as estimated by this process are shown in the left pane of Figure 21 below. The right pane of the 

figure is a bandwidth plot of heavy duty truck (HDT) traffic volumes into, out of and near the Chicago O’Hare 

International Airport, which illustrates results of the transshipment location selection aspect of the path 

decision.  

For the DTA, each shipment is assigned to one vehicle trip. Fleet selection for each establishment as well 

as routing algorithms are in progress and will provide a significant enhancement to the current process. For 

now, Monte Carlo draws are used to simulate the use of truck type and powertrain features. For purposes of 

brevity, this process is not described in detail here.  

 

 

Figure 21. (left) Mode shares of bulk goods; (right) Truck volumes near O’Hare Airport. 

 

3.3.4.4 E-commerce module 

The e-commerce module is fully documented in Stinson, Enam et al. (2019). Briefly, its workings can be 

summarized as follows. Demand for e-commerce deliveries is generated for each household in the 
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metropolitan region. The demand estimates are provided to an external procedure that uses Python scripting 

and Geographic Information Systems (GIS) to generate delivery routes for the demand based on observed 

depot locations and the traveling salesman algorithm. The resulting parcel delivery truck tours are fed into 

POLARIS. This process is targeted to be fully integrated within POLARIS in the future. Example output from 

this process is shown below in Figure 22, which illustrates the individual and combined VMT by medium-duty 

delivery trucks (MDT) and light-duty shopping vehicles (LDV) in the baseline (one delivery per household per 

week), short-term A scenarios (three deliveries per week) and long-term B/C scenarios (five deliveries per 

week) with other varying conditions such as high levels of autonomous vehicle penetration in the C scenarios. 

Full details on the scenario results are available in Stinson, Enam et al. (2019). 

 

 

Figure 22. Estimated VMT associated with last-mile retail activity. 

3.3.5 Summary and next steps 

This paper presented the initial development of a freight ABM with DTA. The model structure includes 

population synthesis as well as agent decision making in the strategic, tactical and operational spheres, and 

ultimately truck movements that are assigned along with passenger vehicles in a transportation network. 

Demonstration results for population synthesis, the parcel location algorithm, mode choice, and transshipment 

location choice have been provided along with an e-commerce application with VMT impacts. Future steps 

include developing the remainder of the framework according to the proposed outline presented in Stinson, 

Auld et al. (2019). 
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4 Methods to Measure Attitudes using Natural Language 
 
Parts of this chapter were previously published as Stinson, M. and A. Mohammadian. (2020) “Modeling Firm 
Transportation Strategy using Big Text Data,” proceedings of the IEEE Forum on Integrated and Sustainable 
Transportation System (FISTS), Delft, The Netherlands, Nov. 3-5, 2020. © 2020 IEEE. 
 
 
4.1 Introduction 

The last two decades have witnessed the emergence and widespread adoption of attitudinal factors in 

behavioral models, which form the foundation of passenger travel behavior modeling. Attitudinal factors, also 

called latent factors due to their unobservable nature, add value to models that are otherwise quantitative. A 

mode choice model with only quantitative factors, for example, may measure an individual’s sensitivity to 

travel time while ignoring the individual’s preference for modes that are environmentally sustainable. Ideally, 

behavioral models should consider both quantitative and attitudinal factors, since both types of factors can 

impact decision making.  The development of improved methods in recent years has enabled the inclusion of 

attitudinal factors in behavioral models to become a more common practice.  

Parallel to this trend, a veritable explosion in analytic methods for textual data has occurred in the 

computer science domain, notably in Natural Language Processing (NLP). NLP, which covers a host of 

methods that rapidly analyze textual data, holds particular promise for attitudinal analysis applications. 

However, NLP research and its demonstrations to date focus primarily on real-time applications such as online 

chatbots and Q&A/search query functions. In other words, applications of NLP mostly involve replacing 

human functions in situations that previously involved real-time dialogue between two humans.  

This study explores the intersection of these two areas and develops attitudinal measurement methods that 

combine and leverage the beneficial properties of each area. The main idea put forth by this work is that 

natural language is, in a sense, similar to a survey response; and if we query it in a clever way, we might be 

able to find the answers that we need to inform model development. In this setup, I treat the NLP-based system 

as my surveyor, and in doing so, I develop a new way to passively collect attitudinal data that previously could 

only be collected through elaborate and costly survey efforts.  

I propose and build upon two main ideas in this study. First, I propose and test the idea that people or 

companies will use certain words more or less frequently than others, depending on agent attitudes, strategies, 
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underlying behavioral drivers, etc. Second, setting aside the relative frequency of using various words, I also 

propose and test the intuitive supposition that individual persons or companies will use certain words 

differently – for example, in different contexts (with different surrounding words) – depending on what matters 

to that individual or firm. In this work, I explore these notions, developing quantitative methods to examine 

both relative frequency of word use and contextual differences in word use. The methods that I develop are 

based in principle on the foundational work in attitudinal measurement from the psychological, economic, and 

transportation domains, but in practice shift the measurement methods to algorithms that leverage the most 

recent computational linguistics paradigms. 

In the process, this study addresses a very real data gap in the domain where I conduct most of my 

research: freight transportation models. Behavioral models that simulate decision-making processes of 

businesses are limited by a near-complete lack of data in this area. This gap provided the initial motivation for 

this research. However, this work is relevant to a number of other areas, with potential applications in 

marketing, psychology, passenger transportation and others. These and other fields can benefit from methods 

to harvest attitudinal data from large-scale, passive sources.  

The remainder of this chapter is structured as follows. The approach and data are discussed first, 

respectively, followed by a presentation and discussion of the results. The chapter concludes with a summary 

of findings and suggested extensions.  

 

4.2 Approach 

This study develops two methods to generate attitudinal measurements using natural language: Bag-of-

words (BOW) with simple scaling (SS-BOW) and word2vec with PCA (w2vPCA). in developing these 

methods, the main challenges are determining (1) what to measure, (2) how to measure it, and (3) what are the 

implications (if any) for attitudinal analysis. The second and third topics are explored in the next few 

subsections. In regards to the first question, SS-BOW is based on measuring the relative frequency of certain 

words among individual companies. In contrast, w2vPCA measures differences in word usage among 

individual companies.    
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The reasoning behind these two approaches is as follows. Companies have different goals, and they have 

different strategies to support their goals. As a result, company reports have varying content. Because of this, 

one company will use certain words more or less frequently than other companies. Furthermore, a company 

will use certain words in different contexts than other companies. Ultimately, the frequency and/or in-context 

usage of certain words in particular are expected to depend on company strategies. 

4.2.1 Attitudinal measurement methodology: SS-BOW 

This section is an excerpt of the approach from the IEEE paper that is listed in the Acknowledgements 

section. The paper referred to the algorithm as BOW. This thesis labels it SS-BOW. 

The following nomenclature is used. D denotes the set of documents and is indexed by d. Wd is the set of 

words in document d and is indexed by wd. K, indexed with k, is the set of keywords that is targeted for 

analysis by the DDE. Kd is the set of keywords present in document d and is indexed by kd. Kd can contain 

duplicates items. The total count of keyword k in document d is denoted |kd|. 

The Simple-Scaled Bag-of-Words (SS-BOW) process can be described as text mining, using a “bag of 

words” approach, with results subsequently scaled. With this approach, the frequency of words is the variable 

of interest. Since documents have different sizes and we want to avoid spurious effects that are related to 

document size, the frequency of each keyword is normalized so that the sum of scaled keyword frequencies is 

100 for each document. The normalized value is denoted as |kd|N and thus ranges from zero to 100. 

The SS-BOW approach uses the following pseudo-code: 

For each document d ϵ D: 

 Initialize |kd|=0 and |kd|N=0 for each k ϵ K. 

 For each word wd ϵ Wd: 

  For each keyword k ϵ K: 

   If wd == k, |kd| = |kd| + 1 

 For each k ϵ K, compute |kd|N as |kd| divided by the sum of |kd| across k.  



   
 

 

64 

 

The resulting set of |kd|N are used to model firm strategies in a behavioral modeling construct. For each 

document d, the quantities |kd|N sum to 100 due to the normalization. These normalized values are input to the 

strategies model.  

The results of the SS-BOW measurements are analogous to those obtained using ratings scales in 

questionnaires that ask respondents to “Rate this item on a scale from X1 to X2”. However, a chief difference 

is that while ratings questions typically constrain a respondent to a certain range (e.g., between 1 and 10), the 

original text data that are used here does not impose such a constraint. This is because these text data are based 

on the natural occurrence of key words as they arise in the company’s own discussions of its operations. For 

example, a scale of one to seven constrains the maximum difference between attitudinal measurements to a 

factor of seven. The methodology at hand has no such constraint.  

4.2.2 Attitudinal measurement methodology: w2vPCA 

The w2vPCA method combines two separate methods, the word2vec algorithm and Principal 

Components Analysis (PCA). This section describes each of these methods and how they are uniquely adapted 

and combined to generate attitudinal measurement data.  

4.2.2.1 The word2vec algorithm 

The word2vec algorithm emerged in 2013 as a novel means to conduct quantitative text analysis 

(Mikolov, Chen, et al., 2013). The algorithm essentially relies on the notion that similar words are used in 

similar contexts; therefore, similarity and other word relationships can be quantitatively generated by 

analyzing the contexts of each word. The following description of the word2vec algorithm, and its historical 

context, follows Lee (2018) and Socher (2017). 

Prior to the 2010s, the meaning of a word was typically represented using a “one-hot” vector (Figure 23) 

in quantitative analysis. The dimensionality of such a vector is based on the number of unique words that are 

being analyzed. For a given word, the vector contains the value “1” for the dimension that corresponds to the 

word, and “0” everywhere else. Unfortunately, since a typical vocabulary may exceed 10,000 words, such 

vectors are extremely high-dimensional and computationally cumbersome. Further, as Figure 23 shows, 

similarity between two words is not captured since all word vectors are orthogonal.  
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Figure 23. Traditional one-hot vectors. 

 
Despite these issues, the use of a vector inherently is valuable for word representations because it can 

leverage powerful mathematical applications involving linear algebra. Word2vec also represents words as 

vectors, but uses a much denser representation using N dimensions, with each dimension representing a 

concept instead of a unique word.  

Word2vec achieves this compactness by using context words to generate the N values for a given word. It 

generates similar vectors for words that have similar meanings since such words are commonly used with 

similar context words. Thus, the algorithm obviates the dimensionality and word similarity issues that are 

associated with one-hot vectors. Levy et al. (2015) note that a formal proof is desirable, but developing one is 

beyond the scope of this thesis.  

The analyst provides the following inputs to word2vec: (a) the input corpus, (b) the window width of size 

m to identify context, which is the subset of words located in the same sentence and within m words from the 

key word (this analysis uses the entire sentence), (c) dimensionality N of the output vector space. This analysis 

uses the Continuous Bag of Words (CBOW) solution approach with hierarchical softmax sampling in training, 

which are now described (alternatively skip-gram modeling with negative sampling can be specified). The 

problem is set up in a two-layer neural network (Figure 24). More explanation follows the figure, with the 

discussion informed by Mikolov, Sutskever, et al. (2013) and Rong (2014).  
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Figure 24. Two-layer neural network for word2vec algorithm 

 
Based on a set known context words, the word2vec model predicts the unknown target word. Denote the 

vocabulary as V and the vocabulary size (number of unique words) as |V|. Let 𝑖, 𝑗 ∈ |𝑉| denote indices for 

feature positions in the input and output feature vectors, respectively, let 𝑐 ∈ 𝐶 denote the index of an element 

of the input context word set, and let 𝑛 ∈ 𝑁 denote the index of an arbitrary element in the hidden layer. The 

following vectors and matrices are defined:  

 

x%: 	“one	hot”	vector	(|V|x1)  

X = 𝐶𝐵𝑂𝑊	input	vector	(|V|x1), 	formed	using	{x%}	(described	below)  

𝑥& , 𝑦& = words	from	V  

y = output	feature	vector	(|V|x1)	of	the	target	word	(with	elements	y')  

h = vector	representing	the	hidden	layer	(Nx1)  

W( = weight	matrix	that	transforms	X	into	h	(|V|xN)  

W) = weight	matrix	that	transforms	h	into	y	(Nx|V|)  

 

The algorithm iterates through the set of target word positions. Therefore, only one input vector and one 

output vector are used at a time. When only one context word exists, then X=xc. When multiple context words 

are input, CBOW computes X as: 
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𝑋 =
1
𝐶
(𝑥, + 𝑥- +⋯+ 𝑥.) (2) 

 
Next, the hidden layer vector is computed: 

ℎ = (W/)0𝑋 (3) 
 

Using the jth row of (W))′, each element of y is computed as: 

y1 = prob=y12>x,2, … , x32B =
exp=u1B

∑ exp(u4)
|6|
47,

(4) 

 
where the term u' is referred to as the score and is computed as: 

u1 = (W8)′1, .∙ h (5) 
 

The above expression with exponentiation is called the softmax function, or a log-linear classification 

model. It produces the posterior distribution of words, which is a multinomial distribution.  

The loss function is computed as: 

E = −lny1 = −u1 + lnPexp(u4)
|6|

47,

(6) 

 
The typical solution method at this point is Stochastic Gradient Descent (SGD) with modifications to 

expedite processing. The objective is to minimize the loss function, or equivalently, to maximize the 

probability that the predicted word is the actual observed word (max yj
* = max ln(yj

*) = max(-E)), where the 

asterisk refers to the actual observed word. In practice, the average loss summed across all target words is 

typically used (Lee, 2018).  More details on SGD are available in Rong (2014) and are widely available online.    

4.2.2.2 Principal components analysis (PCA) 

This section provides a brief overview of Principal Component Analysis (PCA) for the one-dimensional 

and two-dimensional cases (Shlens, 2005). PCA is used to compress a multi-dimensional dataset into a smaller 

number of variables or dimensions while limiting the loss of information contained in the subset of variables. 
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This is accomplished by analyzing the covariance among variables and measuring which combinations of 

variables capture the largest amount of variance in the dataset. The resulting new components are independent 

of one another.  

Covariance measures how much two random variables, X and Y, vary together. The sample covariance is 

computed as:  

𝑐𝑜𝑣(𝑋, 𝑌) =
1

𝑛 − 1P(𝑥9 − �̅�)(𝑦9 − 𝑦X)
:

97,

 

 
using realizations 𝑥* , 𝑦* and sample means �̅�, 𝑦\ of the random variables. In PCA, the first step is to calculate the 

covariance matrix 𝐴 using the observed data. The eigenvectors and eigenvalues, 𝜈	and	𝜆, of this matrix are then 

computed based on the formula  

𝐴𝑣	 = 	𝜆𝑣	 (7) 
 
The covariance matrix, its eigenvalues and its eigenvectors, and the sample means of each variable are inputs 

to PCA.  

 Using these inputs, PCA is performed as follows: 

1. Mean transformation: The mean of each variable is subtracted from each value of the variable, for 

example: 𝑋0 = 𝑋9 − 𝑋X; 

2. The covariance matrix is calculated using each mean-transformed variable; 

3. Eigenvectors and eigenvalues are calculated for the covariance matrix from (2). These eigenvectors 

are called the “principal components” (PCs); 

4. Eigenvectors are sorted in descending order according to their eigenvectors. The eigenvector, or 

component, with the highest eigenvalue is the 1st principal component.  

The resulting component with the highest eigenvalue is the principal component (PC). The one with the 

second-highest eigenvalue is the 2nd principal component; and so on.  
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4.2.2.3 Combining word2vec and PCA to analyze attitudes 

As noted earlier, the main challenge in using word vectors is identifying a way to learn the different usage 

of certain words by different companies. Then question, then, is how to go from word vectors to attitudinal 

measurement?  

This next step forms the core methodological contribution of this work. Essentially, the word2vec 

algorithm constrains each word to have the same vector. This results in an aggregated use of the word across 

sentences, paragraphs, companies, and so on. The key innovation of this work involves the relaxation of this 

constraint, which enables the average usage of each keyword to now be specific to individual companies.  

Figure 25 shows the first stage in operationalizing this idea. First, the input data are modified, tagging 

each keyword with a company ID. Second, word2vec is performed on this modified input data. This operation 

results in different average keyword use measurements, or word embeddings, for each company. 

 

 
Figure 25. Key word2vec modification: feature tagging. 

 
Finally, the question of how to measure differences remains. For this step, I apply Principal Component 

Analysis (PCA) for each of the tagged keywords and its associated set of company-specific measurements 

(Figure 26). This process generates measurements based on the company-specific values. Since the word2vec 

analysis permits any number of dimensions (up to the size of the vocabulary), the resulting word embeddings 

can be projected from the analysis dimension to any lower dimension. My method uses the first principal 

component. The appeal of using the first principal component of PCA is that the direction of greatest variance, 
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or difference, among companies is captured. Moreover, the values are not bounded – thus, they provide a 

natural, unscaled measurement of differences in word usage among companies.  

 

 

Figure 26. Measurement process in w2vPCA. 

 

4.2.3 The Attitudinal Data Development Engine (ADDE) 

An Attitudinal Data Development Engine (ADDE) is developed to expedite the processing of large 

volumes of text, which is both intensive (due to document size) and repetitive. For this particular application, 

ADDE automatically reads in and processes an annual company report from the United States Securities and 

Exchange Commission (SEC) EDGAR database (2020)  for each company in the study. Python word 

processing packages are used to support the engine (Richardson, 2020 and NLTK Project, 2020). ADDE can 

be redirected to read in other sources of text data. ADDE computes and outputs both the SS-BOW and 

w2vPCA measurements. For the current study, the output of ADDE constitutes the firm strategy data, i.e., the 

attitudinal measurement for each keyword that is specified by the user.  

ADDE iterates through a list of input documents and conducts the following set of processes to input and 

convert each document into sentences and words, or tokens, for analysis: 

1. Read in the report using the “get” command from the “requests” HTTP parsing library 
2. Convert the result to text, then to a Python BeautifulSoup (BS) object, then extract the text from the 

BS object using the BS “get_text” command 
3. Split the text, which is a long string, into substrings (each substring is one sentence) using 

NLTK ”sent_tokenize”  
4. Clean the text: 

a. Convert all text to lowercase 
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b. Eliminate punctuation 
c. Eliminate stopwords (the, and, they, etc.) 

5. Split each sentence into tokens, or individual words, using NLTK “word_tokenize” 
6. optional: using word stems, rather than full words, can be implemented here 
7. optional: convert the output token set into an NLTK text object using the “Text” command to obtain 

document statistics or perform other operations 
 
 

In terms of performance, using serial processing, ADDE takes about four hours to create a dictionary of 

sentences and word tokens for all ~260 companies. A 2015 Macbook Air with 8 GB 1600 MHz DDR3 RAM 

and 2.2 GHz Dual-Core Intel Core i7 processors was used. Parellelization would improve the processing time 

with little additional effort.  

4.2.4 Methodology for proof of concept 

A proof of concept demonstrates the usefulness and performance of the novel attitudinal measurements. 

The objective of these applications is to detect underlying firm strategies. Raw data sources and the attitudinal 

measurements are described in the next sections. The proof of concept uses two related methodologies that 

have evolved primarily in psychology and economics. The methods aim to identify underlying, hidden (or 

latent) behavioral factors that drive observable (or manifest) actions and decisions. Briefly, this study utilizes 

first exploratory factor analysis (EFA) then confirmatory factor analysis (CFA, pictured in Figure 27) to detect 

underlying company strategies using the measurement results that are obtained from the SS-BOW and 

w2vPCA applications (references on factor analysis include Rosseel, 2012 and Everitt and Dunn, 1991).  

The rest of this description is an excerpt from the IEEE paper that is listed in the Acknowledgements 

section.   

EFA and CFA are often used to examine the underlying and unseen, or latent, relationship among 

variables that are measured. Examples of measured, or observed variables, include: 

• Answers to attitudinal questions—e.g., Likert or opinion-based questions 

• Other observed data such as size or revenue 

• Latent variables, in contrast, are not observed and must be hypothesized by the analyst.   

The methods focus on analyzing the covariance between variables. Higher covariance implies greater 

similarity. In EFA, the analyst inputs all of the measurement data and interprets the output, which informs 
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her/his hypotheses about latent variables. In CFA, the analyst specifies which measurements belong to which 

latent factor, then examines the relationship based also on statistical output. Figure 27 shows example 

relationships theorized a priori by the analyst. The CFA results in a set of latent factors which can be also used 

in Structural Equation Models or Hybrid Choice Models with additional variables.  

It is important to note that the arrows in the diagram do not connote causality. This is because the 

mathematical foundations are built on covariance. Therefore, while the arrows are helpful for thinking about 

the construct, the results are correctly interpreted as correlations rather than causal relationships.  

 

Note: Error terms not shown. 

Figure 27. Theoretical structure of variable relationships (CFA): latent variables represent 
unobservable company strategies, or emphasis areas. 

 
 
4.3 Data 

The methods are applied to study studies the attitudes and strategies of companies belonging to the year 

2017 Fortune 500 list (Fortune). Subsequently, the attitudinal measurements are input to the proof of concept 

application. Data regarding private fleet ownership and fleet characteristics are obtained from 

BigMackTrucks.Com (2017), which is a posting of data that FleetOwner magazine in Mele (2017) developed 
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using the FleetSeek (2017) database. The CoStar (2020) real estate database is the source of distribution center 

data for the study. Company-specific, textual, attitudinal data are obtained from 10-K reports that were filed in 

2017 with the Securities and Exchange Commission (SEC) and archived in the SEC’s EDGAR system (United 

States Securities and Exchange Commision (SEC), 2020). A set of attitudinal keywords is specified by the 

user. This section discusses these data source and their analysis. In addition to these sources, geospatial data 

are obtained from other sources and processed within the data engine for use in later applications (not 

discussed here). The data inputs and their processing steps are illustrated in Figure 28, demonstrating the 

Attitudinal Development Data Engine (ADDE) that is developed in Stinson and Mohammadian (2020). 

 

 
Figure 28. Data development. 

 

4.3.1 Company attributes and logistics controls 

Fortune 500 companies in sectors that are not freight-intensive (such as telecommunications) are 

eliminated, leaving a total of 260 companies as the starting figure. An additional 19 companies are excluded 

from the dataset due to their lack of data (some companies are privately owned and therefore do not file a 10-K 

report) or sparseness of word usage (using fewer than half of the selected keywords, which causes numerical 
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issues). The latter may introduce bias and should be investigated further, although this is not believed to be an 

issue here since fewer than 10 companies are eliminated for this reason.   

The private fleet data contains information on ownership of tractors, trailers, and total trucks. This study 

focuses on the binary distinction: whether or not a company owns a private fleet. The other outcomes data are 

used in Chapter 5.  

 Distribution center information is obtained by extracting and processing CoStar commercial real estate 

data on individual properties throughout the US. Information on property use and size (square feet, or SF) is 

used to identify distribution centers as documented in Section 0.  

4.3.2 10-K reports and attitudinal keywords 

In general, every publicly owned, US-based company files a 10-K report annually with the US Securities 

and Exchange Commission (SEC). US laws regarding securities require this and other information disclosures 

by public companies. The annual report gives “a comprehensive overview of the company's business and 

financial condition and includes audited financial statements” (United States Securities and Exchange 

Commission, 2009). The required statements can be quite lengthy and, as such, focusing on certain areas of the 

document may be advantageous in terms of data cleanliness. For instance, Item 1 of the 10-K report is an 

overview of the company, including its products and services. However, companies regularly supplement other 

items with company information (e.g., the number of distribution centers and manufacturing sites that are 

owned in different regions). So, this study uses the entire 10-K report.  

The 10-K reports can be extracted in several formats including *.pdf and *.html. Starting in 2018, SEC 

began using Inline XBRL as its standard for companies to upload data. For this study, the *.html reports were 

downloaded from the EDGAR system and processed using ADDE.   

Keywords for this analysis are pre-selected by the user for this study as follows. First, a text mining 

process with journals and industry reports pertaining to shipping and freight transportation was explored. 

However, this was fairly time-consuming to set up, and was considered lower priority than other tasks in the 

study. So, a second approach is adopted in which judgment is used to manually select about 30 keywords total 

for testing. The chosen keywords reflect a range of attitudes and behaviors that are related to shipping and 



   
 

 

75 

 

freight transportation. Some keywords are purely attitudinal in nature, while others describe some sort of 

logistics activity or geographic scale more literally.  

The sets of keywords that are tested in this study are categorized as: 

• Attitudes: value, quality, reliability, affordability, innovative, diversify, technology, service, 

convenience, security, efficiency, cost 

• Mixed attitudinal and logistics-related: cost, customer, delivery, distribution, efficiency, 

environmental, fleet, global, growth, logistics, national, provide, quality, reliability, safety, 

security, service, ship, standard, storage, transportation, value 

Several 10-K reports are briefly skimmed to find examples of these keywords in order to determine 

anecdotally whether the words are used differently by companies. A few example keyword uses in the 10-K 

documents are as follows: 

AutoNation (2017) (no fleet, no DCs for vehicles):  
“…product quality, affordability and innovation,…” 
“… enhance the value of our retail brands…” 
“…distribution capabilities of the vehicle manufacturers,…” 
“… new vehicles, used vehicles, … automotive repair and maintenance services…” 
“…dependent upon the efficient operation of our information systems…” 
 
Aramark (2017) (has both private fleet & DCs) 
“…consistency of product, distribution capability, particularly for large multi-location clients…” 
“…approximately 374 service locations and distribution centers across North America…” 
“…We operate a fleet of service vehicles…” 

 
These examples suggest that, for at least some keyword occurrences, the selected keywords are used 

differently by companies depending on their logistics controls. However, some keywords are often used in 

other contexts that provide no insights into the logistics controls questions of this study. For example, the word 

“value” is used regularly in the 10-K accounting summaries as part of the term “fair market value”. However, 

as virtually all of the companies use this phrase regularly, this study assume that the effect essentially is 

averaged across firms, and that other instances of the word “value” are the instances that matter for the 

attitudinal measurement process (which focuses on differences in keyword use between companies). This 

assumption will be revisited in future studies.  
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In future research, this process can be improved as follows. First, keywords can be selected based on 

meta-analysis of industry journals and other literature. Second, the data can be further processed (e.g., using 

word sense analysis) to reduce the impact of keywords when their use is unrelated to the aims of the study.  

Figure 29 shows the distribution of document sizes in terms of both the total number of words per 

document and the vocabulary size, or the number of unique words. Most of the 10-K reports are under 50,000 

words in length and use between 2,500 and 7,500 unique words. The total number of keywords observed in 

documents generally is under 1,000, with an average of about 500 attitudinal keywords per document. This 

figure uses the attitudinal keyword set.    

 

 

 

The lower pane is based on the attitudinal keyword set. 

Figure 29. Document statistics. 
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4.4 Results: Attitudinal measurements 

This section illustrates and discusses the attitudinal measurements for selected keywords. 

4.4.1 SS-BOW measurements 

Attitudinal measurements for selected keywords using the SS-BOW algorithm range from zero to 100, 

which is expected due to the normalization process. The distribution of results for two keyword sets are 

illustrated, with each figure showing nine sub-plots. Figure 30 shows that cost, value and service are very 

commonly used terms in general, however with considerable variation among firms. For example, the keyword 

cost has a normalized value ranging from zero to about 60. Other keywords, such as efficiency and reliability, 

tend to be used much less frequently. Although sparsity can be problematic in quantitative analysis, rare 

observations can still be important determinants, so they are kept in the analysis for now.  

 

Note: Nine keywords were selected for each plot. 

Figure 30. Histograms: SS-BOW measurement results. 

 

The right pane of Figure 30 provides a similar illustration, but is based on applying SS-BOW to the 

mixed keyword set with 22 keywords. Words related to shipping decisions tend to be used less often than the 

most common attitudinal keywords but more often than the irregular attitudinal keywords. For example, the 

distribution measurement ranges from zero to about 20, which is less than the range of cost (zero to 40) but 
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greater than the range of quality (zero to about six). Because this set of words is a superset of the words from 

Figure 30, the new ranges are compressed – e.g., the maximum cost measurement has decreased from 60 to 40. 

Figure 31 shows the attitudinal keywords listed in increasing order of their SS-BOW measurements. Cost, 

value, service, security and technology are the most common attitude words (based on the set that was pre-

selected for this study). Cost and value are the most common, suggesting that companies are very cost-

conscious and hoping to provide value to their customers. As suggested by Figure 30, several words 

(affordability, diversify, innovative, …) are less common. However, as discussed earlier, these may be 

important for distinguishing different attitudes or strategic focus areas of companies.  

 

Figure 31. Mean SS-BOW measurements of attitudinal keywords. 

 

For purposes of practical applications, determining whether the SS-BOW method uncovers differences 

between companies with different strategies is critical. This topic is explored in three ways. First, as the right 

pane of Figure 31 shows, the mean measurements for companies with different strategies can be visually 

inspected. Second, these means can be evaluated with statistical testing to infer whether these means are really 

different. This testing is conducted in Section 4.4.3. Third, differences in the shape of the SS-BOW 

measurement distributions can be examined.  
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In regards to the last point, Figure 32 illustrates some interesting differences in the SS-BOW 

measurement distributions with respect to private fleet ownership and DC control. First, companies with fleets 

mention technology less and service more. This is consistent with the intuition that trucking, as a relatively 

longstanding industry, has less potential for technological advancement compared to newer areas such as high-

precision manufacturing. This also resonates with the author’s experience that companies with private fleets 

differentiate themselves in part by controlling the quality of service throughout all aspects of delivery. Owning 

a private fleet allows these companies to control the delivery quality, for example, by ensuring that trucks are 

always available for high-priority, express deliveries.  

 

Figure 32. Comparing SS-BOW measurements for select keywords; differences by type of 
logistics control. 
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Cost has a similar distribution between companies with and without private fleets, suggesting that 

controlling costs is imperative to businesses regardless of the industry due the impact of costs on profitability. 

It is also possible that the similarity in distribution reflects outcomes that are at odds with each other. 

Specifically, private fleet ownership allows business to maintain consistent delivery costs; however, while 

delivery costs are relatively consistent, they are also relatively inflexible, making it harder to take advantage of 

lower costs that may arise in the for-hire market.  

On the other hand, companies with DCs mention cost more and service less. This suggests that 

controlling distribution operations may allow companies greater control over costs, with somewhat less 

attention to controlling customer service. Additionally, companies with DCs generally mention the word 

global more regularly than companies without DCs, suggesting that control of distribution typically is 

advantageous to companies with global operations. The plot reveals one company without DCs that uses this 

word quite often (with an SS-BOW measurement of 15). However, further investigation reveals that this 

company is global and has many subsidiaries, therefore it is likely that distribution is actually handled by one 

of its subsidiaries rather than a third party.  

4.4.2 W2v-PCA measurements 

This section demonstrates the remarkable empirical result that companies appear to use words differently, 

depending on the types of logistics controls that they exercise. This finding is presented and discussed from 

many viewpoints. 

The first comparison analyzes the average keyword embedding for groups of companies that have the 

same logistics control status. To achieve this, Figure 33 and Figure 34 are generated using the same process 

that is outlined in Figure 25, but with one modification: the keyword tagging is not company-specific. Instead, 

keywords are appended with “_F” for all companies that have a private fleet (to generate Figure 33) and with 

“_DC” for all companies that control their distribution centers (Figure 34). Keywords for other companies are 

not labeled. The measurements are generated using a 100-dimensional word2vec analysis followed by a two-

dimensional PCA analysis. These figures demonstrate that:  
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• The embeddings for each keyword pair (e.g., “security” and “security_F”) are located in similar 

areas of each graph; 

• For each keyword, there is a small difference in embedding location depending on the fleet (or 

DC control) status; and 

• In some cases, the shift appears to be quite small, while in other cases it is larger. 

 

 
“_F” denotes the average 2D word measurement across companies that have a private fleet; words not  

annotated are associated with companies that lack a private fleet. 

Figure 33. w2vPCA(2-dimensional) results: fleet vs. no fleet. 



   
 

 

82 

 

“_DC” denotes the average 2D word measurement across companies that have DC control; words not 
annotated are associated with companies that do not. 

Figure 34. w2vPCA(2-dimensional) results: DC control vs. no DC control. 

 

The remaining figures and tables in this section are developed using company-specific word embeddings. 

These remaining graphics illustrate the results in various ways to highlight different aspects of their 

interpretation and practical implications.  

Figure 35 illustrates the keyword measurement for all keywords in the attitudinal set. Symbology is based 

on a combination of the two logistics factors, with “T0” (“T1”) denoting companies without (with) a private 

fleet and “D0” (“D1”) denoting companies without (with) DC control. A “jitter” function is used to shift each 

point slightly away from its true location in a random direction, which improves the visual distinction between 

points.  
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Figure 35. "Jitter" plot of w2vPCA keyword measurements. 

 
This figure illustrates several things. First, it illustrates the main output of w2vPCA: company-specific, 

quantitative measurements for each keyword. This demonstrates that the key objective of this study has been 

met: w2vPCA creates quantitative measurements of attitudes.   

Second, the figure shows the spread in attitudinal measurements for each keyword. For instance, the 

measurement for “cost” ranges from about -3 to 4, while the measurement for “innovative” ranges from about -

1 to 1. This implies that companies use the word “innovative” in a more limited range of contexts (compared to 

the word “cost”). Remarkably, the spread or differences in usage come from natural language that is written by 

the companies. This contrasts with the current, widespread practice of using a pre-imposed scale (e.g., 1 to 7) 

to rate survey responses.  

Third, Figure 35 gives some insights into how word measurements differ by company strategy regarding 

the degree of logistics control. For instance, a handful of companies (with DC control but no private fleet, as 

indicated by gray triangles) on average use the word “value” quite differently from other companies, with 

measurements of about -4 to -5. This is similar to the point that is illustrated in Figure 33 and Figure 34, but 

Figure 35 shows differences in measurements across individual companies rather than groups of companies.  
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Fourth, the right-hand side of the plot displays a list of numbers. These numbers represent the amount of 

variance in that is captured by (in this case) the first principal component. For example, the measurement for 

“value” represents 30 percent of the total variance across embeddings of the word “value” among the 

companies. Although the implications of this result need further explanation, this study preliminarily suggests 

that this is a metric for the amount of “noise” in our w2vPCA measurements. It seems that ideally, the 

w2vPCA algorithm would capture 100 percent of the differences in word usage between companies, which 

would generate a PC metric of 1.0. Improving the process to pre-treat, or refine, the word and context selection 

process may improve this fit. This is suggested as a future direction.  

Figure 36 displays smoothed histograms for select keywords, with differences illustrated for companies 

with different types of logistics control. For example, the top left image shows the observed frequency 

distributions of the word measurement for “cost” among companies with and without a private fleet. This 

illustrates provides visual indication that companies are using various keywords differently depending on their 

private fleet or DC control status.   

 
The top (bottom) panes use the 12 (22) keyword sets. 

Figure 36. Comparing w2vPCA measurements for select keywords; differences by type of 
logistics control. 
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4.4.3 Statistical analysis and comparison of results by method 

The discussion so far has focused on results and their interpretation. A t-test is now conducted for each 

keyword to test whether companies with different logistics strategies truly use the keyword in different ways. 

A two-tailed test is used since the difference in means, if such a difference exists, can be either greater than or 

less than zero.  

The hypothesis test follows the format shown in Equation 8. The null hypothesis is that the mean 

measurement of keyword k is the same for Group 1 and Group 2. The alternative hypothesis is that the mean 

measurements are not equal. In this case, the group identification is based on logistics control status. In other 

words, each test measures whether there is a statistically significant difference between measurements 

depending on whether or not the company has control of the logistics element in question (for example, do 

companies with a private fleet on average have a different measurement of keyword k than companies without 

a private fleet?).  

 

𝐻+:	𝜇,,. − 𝜇,,/ = 0 

𝐻012:	𝜇,,. − 𝜇,,/ ≠ 0 

Equation 8. Hypotheses for two-tailed t-test of means. 
 
 

The t-test results support direct comparisons of, for example, group means such as those that are 

illustrated in Figure 33 and Figure 34. More generally, the test results also provide insight into which 

keywords are best able to distinguish underlying company strategies regarding logistics control. 

Tests are conducted for mean keyword measurement differences for each keyword set and each method.  

Table 2 summarizes the p-value that results from each of the tests. A total of 136 tests are conducted, with four 

tests (based on two methods (SS-BOW; w2vPCA) with two types of logistics control (DC Control; Private 

Fleet)) conducted for each of the 34 keywords (having 12 (22) keywords from the attitudinal (mixed) keyword 

set). Note that while some words, such as “quality”, are present in both keyword sets, the process of measuring 
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them alongside different sets of keywords means that the resulting measurements will differ in general. 

Therefore, a separate t-test must be used. 

 

Each result in the table provides a conclusion to a hypothesis test. For example, within the attitudinal 

keyword set, the table shows a p-value, 0.018 for the word “value”. This is based on a mean w2vPCA 

measurement of -0.113 (0.639) for companies with (without) DC control, generating a t-statistic of 2.449 and 

its associated p-value (0.018) with about 48 degrees of freedom. This is highly statistically significant, 

exceeding the 95 percent level, providing sufficient evidence to conclude that the word “value” on average 

really is used differently by companies depending on whether they have DC control or not.  

 

These results are used to guide inference into which of the selected keywords may perform well as 

attitudinal measures in predictive models. Specifically, any result with one or more stars is expected to perform 

well in representing or detecting differences in underlying one or both logistics control strategies. Several 

words are expected to perform less than optimally in this respect: 

• Attitudinal: convenience, diversify, efficiency (although the statistical significance for efficiency 

is close to meeting the 70 percent threshold in three of the four cases) 

• Mixed: efficiency (although its statistical significance again nears the 70 percent threshold in 

both w2vPCA cases) 

 

The results can be summarized to compare SS-BOW to w2vPCA for the two keyword sets. A count of 

keywords that are have statistically significant differences in means is presented in Table 3 for each of the 

keywords sets and measurement methods. Using the Attitudes-only keywords set, the maximum possible score 

is 24 (12 words x 2 types of logistics control). The maximum possible score for the Mixed set is 44. So, in 

addition to showing the count of statistically significant differences, the table also shows (in parentheses) the 

count divided by the maximum possible value. 
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Table 2. Statistical testing of the differences in means. 

Keyword Set Keyword 

p-value 

SS-BOW w2vPCA 

DC Control Private Fleet DC Control Private Fleet 

Attitudinal 

affordability 0.091** 0.068** 0.31 0.44 

convenience 0.484 0.767 0.762 0.827 

cost 0.548 0.412 0.054** 0.636 

diversify 0.18* 0.828 0.63 0.59 

efficiency 0.995 0.308 0.336 0.353 

innovative 0.599 0.006*** 0.723 0.019*** 

quality 0.045*** 0.084** 0.972 0.734 

reliability 0.014*** 0.289* 0.025*** 0.618 

security 0.347 0.258* 0.153* 0.667 

service 0.089** 0.169* 0.035*** 0.079** 

technology 0.734 0.003*** 0.972 0.075** 

value 0.359 0.735 0.018*** 0.026*** 

Mixed 

cost 0.377 0.894 0.043*** 0.691 

customer 0.142** 0.724 0.674 0.007*** 

delivery 0.395 0.088** 0.102** 0.008*** 

distribution 0.264* 0.013*** 0*** 0.414 

efficiency 0.934 0.487 0.306 0.404 

environmental 0.103** 0.804 0.018*** 0.41 

fleet 0.256* 0.481 0.165* 0.516 

global 0.117** 0.079** 0.751 0.617 

growth 0.013*** 0.969 0.15** 0.198* 

logistics 0.318 0.833 0.098** 0.595 

national 0.563 0.033*** 0.366 0*** 

provide 0.011*** 0.39 0.004*** 0.006*** 

quality 0.02*** 0.008*** 0.716 0.979 

reliability 0.057** 0.353 0.164* 0.802 

safety 0.591 0.579 0.031*** 0.051** 

security 0.151* 0.016*** 0.181* 0.98 

service 0.233* 0.508 0.036*** 0.095** 

ship 0.459 0.287* 0.222* 0.596 

standard 0.804 0.273* 0.053** 0.215* 

storage 0.001*** 0.581 0.002*** 0.218* 

transportation 0.021*** 0.077** 0.01*** 0.075** 

value 0.079** 0.606 0.029*** 0.025*** 
Stars (***, **, *) denote significance at the 95, 85 and 70 percent levels. 
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Table 3. Summary of statistically significant differences in means. 

Keyword Set SS-BOW w2vPCA 

Attitudes only (% of max) 12 (50%) 8 (33%) 

Mixed attitudes & transportation keywords (% of max) 23 (52%) 28 (64%) 

 

 

The SS-BOW method produces more statistically significant differences in means (12 keywords vs. eight) 

when the Attitudinal keyword set is used to distinguish differences between fleet owners and non-fleet owners, 

and companies with and without DC control. W2vPCA produces more statistically significant differences in 

means when the Mixed keyword set is used. These results, while informative for this case study, do not 

provide enough evidence to conclude that one method is superior in terms of performance. This is 

recommended as an area to explore in future studies. 

The next section illustrates proof of concept applications of the various measurements and keyword sets. 

In doing so, the section provides further insights into the performance of various keywords and methods and 

their adequacy for serving as attitudinal measures.  

 
 
4.5 Proof of Concept 

A proof of concept application demonstrates that the resulting attitudinal measurements can be used in 

traditional applications that focus on latent variables. Exploratory and confirmatory factor analyses are 

conducted for both methods with different sets of keywords.  

Four sets of keywords are tested initially (Table 4). To help inform the discussion, each keyword set is 

named based on (a) whether it contains attitudinal only keywords or a mix of attitudinal and logistics-related 

keywords and (b) the number of words in the set. For example, the keyword set named “Attitudinal (7)” 

contains seven attitudinal keywords. 
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Table 4. Keyword sets for EFA.  

 
 
 

4.5.1 Exploratory Factor Analysis (EFA) results 

Each of the four keyword sets is input to an EFA, with EFA performed for one, two and three latent 

factors. The resulting statistical estimates are shown in Table 5. A lower Chi-Squared statistic (and a 

corresponding higher p-value) provide evidence that the number of factors that is used in the EFA is sufficient 

for adequately capturing the covariance among keywords (see Rosseel, 2012). In keeping with convention, a 

more parsimonious specification is also preferred to one with more variables. Based on a minimum p-value of 

0.05 to identify statistical support for the number of factors tested, the w2vPCA results out-perform the SS-

BOW results in all but the Mixed (19) EFA (where neither performs well). For instance, based on this 

criterion, only one factor is needed using the Attitudinal (7) set and w2vPCA measurements. In this case, two 

factors is much better statistically, therefore using two is more advisable.    

Table 6 shows the factor loadings with an absolute value greater than 0.2 based on the Attitudes (7) 

keyword set. The table reveals that the SS-BOW measurements for efficiency, reliability and technology 

suggest the existence of one unique factor, while the existence of a second, unique factor is demonstrated by 

the loadings of innovative, quality, security and service on the factor. Greater magnitude indicates greater 

strength in the relationship between the word and the factor. The table also shows the factor loadings for the 

w2vPCA measurements. Statistics for these results are in Table 5. 
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Table 5. EFA results for three or fewer factors. 

Keyword 
Set 

EFA Parameters SS-BOW w2vPCA 

Factors DOF Chi-Sq. Statistic p-value Chi-Sq. Statistic p-value 

Attitudinal 
(11) 

1 44 2219.4 n/a (0.0...) 123.2 2.00E-09 

2 34 2101.5 n/a (0.0...) 50.5 0.03 

3 25 1904.8 n/a (0.0...) 18.7 0.81 

Attitudinal 
(7) 

1 14 29.1 0.01 23.8 0.05 

2 8 8.5 0.38 6.9 0.55 

3 3 2.0 0.57 0.2 0.98 

Mixed (19) 
1 152 951.6 7.00E-116 1007.3 3.94E-126 

2 134 827.5 2.22E-100 715.2 3.75E-80 

3 117 709.3 1.53E-85 396.7 4.22E-32 

Mixed (9) 
1 27 161.9 3.39E-21 96.7 8.89E-10 

2 19 94.9 4.41E-12 46.5 0.0004 

3 12 55.6 1.41E-07 28.8 0.0043 
 

Table 6. Factor loadings for words in Attitudes (7) set. 

Keyword 
SS-BOW w2vPCA 

Factor1 Factor2 Factor1 Factor2 
efficiency 0.39   0.40   
innovative   0.21   0.38 
quality   0.35 0.22   
reliability 0.66   0.51   
security   0.51 0.38 0.46 
service   -0.23 0.70 -0.23 
technology 0.33   0.54   

 

4.5.2 Confirmatory Factor Analysis (CFA) results 

Two factors are identified for the remainder of this proof of concept analysis. The findings in Table 6 

indicate that “innovative” and “security” will provide a good foundation for the former, with “efficiency”, 

“reliability” and “technology” as the foundation for the latter. Based on additional experimentation with 

groupings in combination with judgment, “quality” is also assigned to the former while “service” is assigned to 

the latter. The factors are named Product Focus and Delivery Focus, respectively, in order to convey that they 

are believed to represent the companies’ underlying strategies and whether they attempt to differentiate 
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themselves from the competition by either product development and innovation or by providing excellent 

shipping and delivery to the customer.  

CFA results for these factors and keyword assignments are shown in Table 7. The SS-BOW and w2vPCA 

based models have a Comparative Fit Index (CFI) of 0.849 and 0.917, respectively, which are close to the 

desired minimum threshold of 0.9 (Rosseel, 2012). All w2vPCA keyword variables are statistically significant 

to the 90 percent or higher level, with six of the seven variables being significant to the 99 percent level. The 

SS-BOW keywords are generally not as statistically significant, with most of them being significant at 

approximately the 85 percent level or better.   

 

Table 7. CFA results. 

Latent 
Factor Keyword 

SS-BOW w2vPCA 

Estimate Std.Err z-value P(>|z|) Estimate Std.Err z-value P(>|z|) 

Product 
Focus 

innovative 0.20 0.14 1.39 0.16 0.15 0.09 1.63 0.10 

quality 0.74 0.47 1.56 0.12 0.23 0.09 2.50 0.01 

security 0.21 0.15 1.41 0.16 0.61 0.17 3.65 0.0 

Delivery 
Focus 

efficiency 0.22 0.13 1.77 0.08 0.44 0.08 5.74 0.0 

reliability 1.06 0.53 2.02 0.04 0.54 0.08 7.06 0.0 

technology 0.24 0.13 1.79 0.07 0.55 0.08 7.12 0.0 

service -0.06 0.07 -0.91 0.36 0.59 0.08 7.65 0.0 

 
 

Overall, the w2vPCA performs better than the SS-BOW model in the CFA from a statistical perspective. 

Testing of other specifications shows that this is due to using “service” in the Delivery Focus construct, where 

it is numerically supported based the w2vPCA EFA but not the SS-BOW EFA (Table 6). A better specification 

for SS-BOW involves shifting “service” to the Product Focus factor, resulting in a CFI of 0.926 for SS-BOW, 

but this worsens some aspects of the w2vPCA specification.  

 

4.6 Conclusions 

This study develops two innovative new methods to develop attitudinal measurement data. Each method 

is applied to large-scale text data that is passively collected, that is, the data exists and is readily available 
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without the need to conduct surveys. The data for this particular study exist due to federal filing requirements 

for large US companies. 

The bag-of-words with simple scaling (SS-BOW) method is based on relative frequency counts of a pre-

selected set of keywords. The word2vec-Principal Components Analysis (w2vPCA) is based on differences in 

usage of words. The methods are designed to study differences in attitudes across individual agents, such as 

persons or companies.  

This study applies the methods to a population of large, publicly owned US companies. Supplemental 

information on their logistics controls, particularly whether they own private fleets or operate their own 

distribution centers, inform the analyses. Attitudinal measurements across the companies are compared from a 

variety of perspectives, using various keyword sets and methods, focusing especially on whether the methods 

detect different uses of keywords as manifested in their strategic decisions around fleet and distribution 

controls.  

The findings provide both empirical and statistical evidence that each method successfully identifies 

differences in the unobservable attitudes, or strategies, that companies adopt. The measurement results are 

tested in two different ways: a host of t-tests for differences in means as well as a proof of concept factor 

analysis application.  
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5 Behavioral Models of Strategic Decision-Making 
 

 

5.1 Introduction 

Generally speaking, multiple strategies and strategic decisions can be operative simultaneously to a 

company. In other words, companies are typically guided by multiple strategies and jointly make multiple 

strategic decisions. Acknowledging these factors, this chapter proposes and develops a methodology to 

incorporate strategies into the agent-based transportation paradigm, allowing multiple strategies to inform a set 

of decisions that are assessed jointly.  

An additional, unique feature of the proposed methodology is its explicit treatment of choice set 

generation parameters as another type of strategic decision that is made by companies. For example, 

companies may simultaneously decide whether or not to own a warehouse, and if so, what is the minimum size 

that makes sense for its sales volumes. To complicate matters, warehouse ownership may only make sense if 

the company owns at least two trucks for delivery staging. A model that jointly includes both strategic 

decisions as well as these thresholds offers significant logical appeal and advances the state of the art in agent-

based modeling for both passenger and freight transportation. These aspects are developed as part of the 

methodology for this study.  

To be sure, previous studies have addressed some of these aspects as discussed in Chapter 2. However, 

these earlier works mostly focused on modeling only the decisions themselves. While these earlier efforts 

collected provided a trove of valuable insights and extremely powerful modeling methods, the current study 

introduces several novelties that adopt a different perspective and focus.  

The proposed refinement to agent-based transportation models are expected to have far-reaching 

implications. First, various agent behaviors throughout the model stream currently can be disjointed or 

inconsistent. By unifying major decisions and choice set generation parameter estimation, this framework adds 

consistency to decisions and actions that are undertaken by the individual agent. Second, strategies (and their 

passenger counterpart, attitudes) are a key input to the strategic decisions, which include both actionable 

decisions (e.g., whether to own a fleet) and choice set parameters (e.g., minimum warehouse size). As such, the 
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consistency of agent preferences and decisions throughout the model stream is further strengthened. 

Ultimately, by constructing better models, improvements in forecasting origin-destination flows, vehicle 

ownership, and other high-impact outcomes will be possible.  

Finally, a proof of concept develops a set of strategic decisions for Fortune 500 companies in freight-

intensive sectors, providing a demonstration of the methodology as well as a valuable input to a real-world 

model. The proof of concept applies the methods for the purpose of simulating fleets and distribution centers 

for the set of companies. This itself is a major contribution to freight transportation modeling, which currently 

has a gap in modeling these critical features of the freight landscape.   

 

5.2 Approach 

The methodology of this study comprises the following elements. The first aspect is the development of a 

mathematical framework for modeling strategies and strategic decisions. The second aspect is the solution 

approach for this mathematical framework. The final component is the proof of concept approach that is 

deployed to demonstrate the methodology.  

5.2.1 Theoretical construct 

Figure 37 outlines the theoretical framework of the strategic decisions model. In keeping with convention, 

elements within ovals are latent or unobservable while rectangles denote manifest or observable elements. The 

construct includes: 

• Attitudinal measurements, also known as indicators, which are treated as observable 

measurements of the latent variables; 

• Latent variables or strategies; 

• Exogenous input data, which are used to predict both the strategy scores and the strategic 

decisions (the latent variables are also input to the strategic decision model); and 

• Strategic decisions, including truncated variables, continuous amount variables, and choice set 

thresholds.  
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Figure 37. Theoretical modeling construct for strategies and strategic decisions. 

 

5.2.2 Methodology to model agent selection of strategy bundles 

This subsection describes the methodology that is developed to model the agent’s selection of a strategy 

“bundle.” Let N be the number of observations, L (index l) denote the set of strategies, H (h) attitudinal 

measurements, D (d) strategic decisions using truncated variables, and C (c) strategic decisions regarding 

purely continuous decisions. Observable, explanatory variables are denoted below as the vectors w and x. 

Vectors of parameters to be estimated are denoted by 𝛾, 𝛿,	and 𝛽. Error terms are denoted as 𝜂, 𝜀,	and 𝜖.  

Let 𝑧3∗ be a latent continuous variable that represents strategy l. The structural equations for the latent 

variables or strategies are: 

	𝑧;∗ = 𝛾;0𝑤 + 𝜂; , ∀𝑙𝜖𝐿 (9) 
 

The model has the following measurement equations. First, it uses continuous attitudinal measurements 

that are considered the manifest outcome 𝑦4 of unseen strategy h, with 𝜀4~𝑖𝑖𝑑	𝑁(0,1) throughout the 

simulation: 

	𝑦< = 𝛿<0 𝑧;∗ + 𝜀< , ∀𝑙𝜖𝐿, ℎ𝜖𝐻 (10) 
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The parameter subscripts of 𝛿 and y imply that each measurement is associated with only one strategy 

(therefore the potential subscript l is omitted). An intercept is not used currently.   

Second, truncated continuous variables are used to represent three types of strategic decisions. Each can 

represent a decision that has two dimensions, one binary and the other continuous. This is an ideal setup for a 

binary decision that, if activated, is associated with a continuous amount (such as an input or output volume). 

Similarly, this is also an appropriate device to model a choice set parameter that may or not be relevant to a 

given individual – for example, minimum property size choice applies only for individuals that are choosing a 

property. Lastly, truncation limits can represent a simple binary or ordinal decision(s) for circumstances where 

an associated continuous amount is not available or not necessary. Each observed truncated variable, 𝑦5, is 

associated with a latent continuous index, 𝑦5∗  and threshold 𝜓5 as follows: 

𝑦=∗ = 𝛾=0 𝑥 + 𝛿=0 𝑧∗ + 𝜀= 	, ∀𝑑𝜖𝐷, 𝑦= = j𝑦=
∗ , 	𝑦=∗ > 𝜓=

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	
(11) 

 
Alternative forms of this are easily integrated into this framework as follows. For any strategic decision is 

purely continuous, 𝑦5 in the above formulation is rewritten as 𝑦5 = 𝑦5∗ .	Additionally, the discreteness aspect of 

the outcome can be extended readily from a binary indicator (yes/no) to multiple ordered categories (e.g., 

	𝑦5∗ < 𝜓., 𝜓. < 	𝑦5∗ < 𝜓/, 𝜓/ < 𝑦5∗) using standard ordinal response methods.  

Consider the vector 𝑦∗ = (𝑦.∗, 𝑦/∗, . . , 𝑦6∗ )".	For individual i, create the Dx1 vector 𝑦7∗ to represent the 

strategic decisions model as a Seemingly Unrelated Regression (SUR), stacking the 𝑦5∗ , 𝑥, 𝑧∗, 𝛾5 , 𝛿5 and 

𝜀5 	terms into vectors accordingly: 

𝑦9∗ = 𝑥9𝛾 + 𝑧9∗𝛿 + 𝜀9 (12) 
 

Let H + D = G. The reduced form of each 𝑦*∗ is obtained by plugging in 𝑧*∗ = 𝛾3"𝑤* + 𝜂*. Placing all 

observed explanatory variables into one vector, 𝑥8 = s𝑥𝑤t, and placing all 𝛾 and 𝛿 parameters into a single 

vector 𝛽8, the entire measurement equation system is:  

𝑦9> = 𝑥9>𝛽> + 𝜖9> , (13) 

 
where 𝜖*8	~	𝑖𝑖𝑑	MVN(0, Σ9), 	0	and	y79	are	Gx1	vectors and Σ9	is	a	GxG covariance matrix of the form: 
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Σ? = rΣ@ 0
0 Σs .

(14) 

 
In this equation, Σ:~𝑀𝑉𝑁(0, 𝐼) with an Hx1-dimensioned mean 0 vector and a variance-covariance 

matrix equivalent to the HxH identity matrix. The terms in Σ: are orthogonal to the terms in Σ, which is an 

unrestricted variance-covariance matrix for the strategic decision outcomes.  

In this study, Σ is estimable and is the mechanism that permits the interrelationship of strategic decisions 

for individual or company i. This study assumes that Σ is multivariate normal and independent and identical 

across all i.  

Let 𝑦6 = (𝑦., 𝑦/, … , 𝑦6)" and 𝑦: = (𝑦., 𝑦/, … , 𝑦:)" be vectors of strategic decisions and attitudinal 

measurements (indicators), respectively, that are jointly observed for individual i. In the absence of indicator 

variables, the joint probability of 𝑦6 is (subscripts for the individual are omitted):  

P(𝑦A|𝑧∗, 𝑥, 𝑤, 𝛿= , 𝛾= , Σ) (15) 
 
This probability expression is the basis of inferring the values of the model parameters. The notation P is used 

to imply that the outcomes contain both discrete and continuous aspects. However, as latent variables are used 

in the conditioning statement, the solution method must account for the fact that they are not observed. The 

most common approach utilized to mitigate this issue is to “integrate out” the latent variable, thus rewriting the 

probability expression as: 

v P(𝑦A|𝑧∗, 𝑥, 𝛿= , 𝛾= , Σ)
B∗

𝑔(𝑧∗|𝑤, 𝛾;)𝑑𝑧∗ (16) 

 
Note that it is not necessary to include 𝑦∗ in this expression, since this quantity follows immediately from the 

conditioning variables.  

It is also desirable to use information from the indicator measurements to express the joint probability 

of observing strategic decisions and indicators: 

 
P(𝑦A , 𝑦@|𝑥, 𝑤, 𝛾= , 𝛾; , 𝛿= , 𝛿< , Σ) = 

v P(𝑦A|𝑧∗, 𝑥, 𝛿= , 𝛾=)
B∗

𝑓(𝑦@|𝑧∗, 𝛿<)𝑔(𝑧∗|𝑤, 𝛾;)𝑑𝑧∗ (17) 
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At this point, the log-likelihood can be formed. The integral has one dimension for each latent variable. 

An application with multiple latent variables is often solved using MSL or MACML, but this work uses 

Bayesian estimation instead due to its advantages (Chapter 2). The solution method is presented in the next 

section.   

5.2.3 Hierarchical Bayes: Gibbs sampling estimation method 

5.2.3.1 Background and prior assumptions 

Gibbs sampling is a specific case of the more general Markov Chain, Monte Carlo (MCMC) simulation 

methods. The Markov Chain aspect is due to using a one-step iteration process, with draws in each iteration 

having dependence on values in the previous iteration. The Monte Carlo aspect stems from the sampling 

nature, i.e., drawing values from a distribution in simulation.  

Unlike classical inference, which treats an unknown parameter as single value, Bayesian inference treats 

the unknown parameter as a distribution from which any number of values may be realized. Bayesian statistics 

form the foundation of Bayesian inference, which has the following components. A prior distribution, which 

represents a belief regarding the distribution of the unknown parameter, is imposed. Observed sample data are 

used to update the belief. The output, which is referred to as the posterior distribution of the parameter 

conditional on the sample data, is used to infer certain qualities of the parameter (e.g., its mean).  

This study uses the following prior distributions. Using assumptions or advance estimates, the prior 

distributions for 𝛾3 and 𝛿4 are assumed to be 𝛾3~𝑁z𝛾+, 𝑉;!
+{ and 𝛿4~𝑁z𝛿4+, 𝑉<"

+ {. The assumed prior 

distribution for Σ is 𝛴~𝐼𝑊(𝜈, 𝑄+) where IW is the Inverse Wishart distribution, ν is the degrees of freedom 

and Q is the scale matrix. This simulation uses ν = N + D and Q+ = I, the DxD identity matrix. Let β= 

comprise all γ5 and δ= parameters. The assumed prior distribution for β= is normal: 𝛽5~𝑀𝑉𝑁(𝛽5+, 𝑉+). To 

ensure that the prior for β= is uninformative, this simulation uses 𝛽5+ = (1,1, … ,1)" and a diagonal matrix with 

very large values (𝑉+ = 100 ∙ 𝐼), where the size of I is determined by the number of values in β=.   

 



   
 

 

99 

 

5.2.3.2 Implementation 

 A Gibbs sampling simulation program runs through a number of iterations, drawing new parameter 

values in each iteration based on values of the other parameter values and observed (sample) observed 

outcomes. Solving the model with latent variables requires the formation of an augmented posterior 

distribution: P(𝑧∗, 𝑦∗, 𝛾3 , 𝛿4 , 𝛾5 , 𝛿5 , Σ|𝑦6 , 𝑦:). That is, the posterior distribution is augmented with the 

simulated latent variables, treating their distributions as additional distributions to be estimated.  

In each iteration k, draws for each individual are made from the following set of full conditional 

distributions h. Subscripts for the individual are omitted for clarity of presentation. writing 𝑦5 , 𝑦4 as 𝑦 and 

𝛿5 , 𝛾5 as	𝛽5:  

𝑦=∗
(D)~ℎz𝑦=∗ {𝑧∗

(DF,), 𝛾;
(DF,), 𝛽=

(DF,), 𝛿<
(DF,), Σ, 𝑦|	 (18) 

𝑧∗(D)~ℎz𝑧∗{𝑦=∗
(DF,), 𝛾;

(DF,), 𝛽=
(DF,), 𝛿<

(DF,), Σ, 𝑦| (19) 

𝛾;
(D)~ℎz𝛾;{𝑦=∗

(DF,), 𝑧∗(DF,), 𝛽=
(DF,), 𝛿<

(DF,), Σ, 𝑦| (20) 

𝛿<
(D)~ℎz𝛿<{𝑦=∗

(DF,), 𝑧∗(DF,), 𝛾;
(DF,), 𝛽=

(DF,), Σ, 𝑦| (21) 

𝛽=
(D)~ℎz𝛽={𝑦=∗

(DF,), 𝑧∗(DF,), 𝛾;
(DF,), 𝛿<

(DF,), Σ, 𝑦| (22) 

Σ(D)~ℎzΣ{𝑦=∗
(DF,), 𝑧∗(DF,), 𝛾;

(DF,), 𝛽=
(DF,), 𝛿<

(DF,), 𝑦| (23) 

 
The sequence of draws converges to the joint posterior distribution of (𝑦∗, 𝑧∗, 𝛾3 , 𝛿4 , 𝛽5 , Σ|𝑦). 

Since 𝑧∗ is not observed, information from its indicator measurements (𝑦4) must be incorporated to make 

inference regarding 𝑧∗ and 𝛾3. This information is contained in the distribution ℎ(𝑧∗|	𝑦4) as illustrated in the 

following note.  

Using linear algebra principles, matrix partitioning can generate useful statistics for conditional 

distributions. For 𝑍 = (𝑍., 𝑍/)"~𝑁(𝜇, Σ)	let	𝜇 = s
𝜇.
𝜇/t and	Σ = �

Σ.. Σ./
Σ./" Σ//

�. Then 𝑍.|𝑍/~𝑁z𝜇.|/, Σ.|/{ with 

𝜇.|/ = 𝜇. + Σ./Σ//?.(𝑍/ − 𝜇/), Σ.|/ = Σ.. − Σ./Σ//?.Σ./" . 

Assuming the following distribution, with I as the identity matrix of size HxH: 
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~𝑧
∗

𝑦<
�~𝑀𝑉𝑁 ~�

𝛾;0𝑤
𝛿<𝛾;0𝑤

� , �
1 𝛿<0

𝛿< 𝛿<𝛿<0 + Ι
�� , (24) 

 
a draw from the conditional probability ℎ(𝑧∗|𝛾; , 𝛿< , 𝑦<)~𝑁=𝜇B∗|G" , 𝜎B∗|G"

- B is made for each observation. 

Matrix partitioning permits a mean and variance, conditional on the information in the measurement data, to be 

drawn: 

𝜇B∗|G" = 𝜇B∗|G" + 𝛿<
0 [𝛿<𝛿<0 + Ι]F,[𝑦< − 𝛿<𝛾;0𝑤] (25) 

𝜎B∗|G"
- = 	Ι − δH0 [𝛿<𝛿<0 + Ι]F,𝛿< (26) 

 
Since the data augmentation method generates values for the latent variables, they are treated as observable in 

their conditional distributions (Equations 17 and 18). As such, the conditional distributions for 𝛾3 and 𝛿4 fit 

into a standard Bayesian regression construction:  

 

ℎ(𝛾;|𝑦=∗ , 𝑧∗, 𝛽= , 𝛿< , Σ, 𝑦)~𝑁=𝛾�; , 𝑉�I#B (27) 

ℎ(𝛿<|𝑦=∗ , 𝑧∗, 𝛾; , 𝛽= , Σ, 𝑦)~𝑁=𝛿�< , 𝑉�J"B (28) 

 
It follows that draws are made using the closed form equations: 

𝑉�I# = =𝑉I#
K +𝑤0𝑤BF,, 𝛾;� = 𝑉�I# z𝑉I#

KF, +𝑤0𝑧∗| (29) 

𝑉�J" = =𝑉J"
K + 𝑧∗0𝑧∗BF,, 𝛿�< = 𝑉�J" z𝑉J"

K F, + 𝑧∗0𝑦<| 
 

𝛽 and Σ are updated using the closed forms of their full conditionals: 𝛽|𝑦∗, Σ	~	𝑁(�̅�, 𝑉\) and 

Σ|y∗, 𝛽	~	𝐼𝑊z𝜈 + 𝑁, Σ+ + (𝑌∗ − 𝑋"𝛽)"(𝑌∗ − 𝑋"𝛽){. The matrix X is in block diagonal form for each 

individual. A draw from these distributions is performed at each iteration. 

𝑉X = ~𝑉KF, +P 𝑋0ΣF,𝑋
L

�
F,
		and		�̅� = 𝑉X(𝑉KF,𝛽K +P 𝑋0ΣF,𝑌∗)

L
(30) 

 
Draws from the full conditionals for y∗ are more complex since they involve truncated distributions. 

Again, following previous researchers (Chapter 2), matrix partitioning is employed as a computational device 
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to isolate one part of a joint distribution. For example, let us consider the objective of drawing a value of 𝑦.*∗  

conditional on 𝑦/*∗ , 𝛽 and Σ, knowing that the observed value 𝑦.* = 0. Then  

𝑦,9∗ |𝑦-9∗ , 𝛽, Σ	~	𝑁=𝜇,|¬,, 𝜎,|¬,BℐG$%∗ NK	 (31) 

 
The last term is an indicator that equals one if the condition in the subscript is met and zero otherwise. In 

this case, the value is only drawn from the range (-Infinity, 0). The mean and variance are computed using the 

matrix portioning method described earlier, with the conditioning taken on all 𝑦@A*∗ , which are shaped into 

appropriately sized vectors and matrices to fit the problem.  

The simulation draws 𝑦7∗ from a truncated multivariate normal distribution, using truncation thresholds 

that are based on the observed data. For example, for companies that own a private fleet, a draw from the joint 

distribution of medium-duty and heavy-duty truck fleet sizes is performed.    

5.2.4 Proof of concept: Approach 

The methodology for modeling agent strategies is deployed in a proof-of-concept demonstration. In this 

demonstration, the parameters of the modeling system are first estimated using Gibbs sampling with 10,000 

iterations. As many as 30,000 iterations were tested, but the additional iterations had negligible impact on the 

results. Finally, the models are applied to simulate fleets and DCs for the population of firms in this study. 

 

5.2.4.1 Model structure and specifications 

This subsection presents the specifications of each model. Throughout the discussion, individual or 

company level subscripts are omitted for sake of clarity. Figure 38 shows the architecture of the entire model 

and the input, output and latent variables.  
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Figure 38. Proof of concept model: Schematic 

 

Two latent strategies are hypothesized and tested:  

• Customer service (CS) focus: Emphasizes reliability and efficiency in delivering products to the 

customer, focusing especially on last-mile delivery; and 

• Logistical sophistication (LS) focus: Emphasizes large-scale distribution and transportation 

systems, which function together in logistical operations. 

Scores for each strategy are predicted using market value (M) and percentage profit (P), which is 

computed as profit divided by revenue. These variables are used under the premise that larger companies may 

be more globally oriented and therefore oriented more towards logistical sophistication, while companies in 

less profitable industries may focus on excelling in customer service. These variables also perform better in the 

model, with higher statistical significance than alternatives that are tested (which include asset value and 

revenue). The latent strategy equations are thus specified as: 

	𝑧.O∗ = 𝛼.O + 𝛾.O,>𝑀 + 𝛾.O,Q𝑃 + 𝜂.O			 (32) 
𝑧RO∗ = 𝛼RO + 𝛾RO,>𝑀 + 𝛾RO,Q𝑃 + 𝜂RO (33) 

 
A total of 11 equations are used to measure strategy scores. The first six use the following keywords to 

measure CS: customer, delivery, efficiency, fleet, reliability and service. The remaining five equations use 
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other keywords to measure LS: distribution, logistics, national, safety and transportation. Each equation has the 

form:  𝑦4 = 𝛿4𝑧3∗ + 𝜀4 (see Section 5.2.2). For example, one equation that relates strategy to an attitudinal 

measurement is:  

	𝑦STUVWXYZ = 𝛿STUVWXYZ𝑧.O∗ + 𝜀STUVWXYZ (34) 
 

The model predicts the following strategic decisions for each company: Number of heavy duty trucks 

owned (HDT), number of medium duty trucks owned (MDT), total DC square footage (SF), mean DC SF, 

standard deviation (SD) in SF, density (SF per person), average distance in miles to the closest major 

intermodal truck-rail facility (miles to rail), and average distance in miles to the closest major water port (miles 

to water). The same specification is tested to measure the latent outcome 𝑦5∗  for each strategic decision d:  

𝑦=∗ = 𝛼= + 𝛾9:=,,=ℐ9:=, + 𝛾9:=-,=ℐ9:=- + 𝛾[𝑅 + 𝛿.O,=𝑧.O∗ + 𝛿RO,=𝑧RO∗ + 𝜀= , (35) 
 

where R is annual revenue and ℐ*B5	D is a dummy variable that equals one if the company belongs to 

industry sector x. In the proof of concept, ind1 includes (a) the food and beverage sector and (b) the petroleum 

and gases industries. Ind2 includes the retail and wholesale sectors. The base or reference industry category 

includes manufacturing and processing sectors.  

5.2.4.2 Variable transformations 

For the estimation of the models, the number of heavy-duty trucks H owned by the company is 

transformed as log s1 + :
.,+++

t. Adding one to the term in parentheses is necessary to avoid taking the 

logarithm of zero. The number of medium-duty trucks is transformed in the same way. Total DC square 

footage T is transformed as log s1 + 2
.,+++,+++

t. The transformation of mean and standard deviation in square 

footage is similar but uses a factor of 100,000 instead of one million. The density quantity, 𝑑𝑒𝑛𝑠 =

2
∑ FGF#{#:&#'(}

, is transformed as log �1 + 10 ∙ s 2
5HB!

t�, where 𝑃𝑂𝑃I is the total population of zone z and 𝑇J is the 

company’s total square footage in zone z.  

The intermodal truck-rail terminal accessibility variable has a more complex transformation, which 

accounts for the continuous nature of the underlying latent variable for this strategic decision. Let MIw,c 
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represent the distance in miles between distribution center 𝑤 ∈ 𝑊 belonging to a given company 𝑐 ∈ 𝐶 and the 

closest intermodal truck-rail (IMX) terminal. Denote the mean shortest distance for company c as 𝑀𝐼K\\\\\.  Figure 

39 illustrates the underlying reasoning, which proceeds as follows. In Regime 1, companies that choose to not 

operate DCs have 𝑦8L*MMMMM
∗ < 0, since the accessibility of DCs to transportation is not part of their thinking. 

Regime 3 consists of similar companies, which have DCs but do not weigh accessibility to IMX very 

seriously. Regime 2 comprises companies for whom accessibility to IMX appears to be a very important when 

choosing DC locations. Ideally, Regime 1 should neighbor Regime 3; currently, these two regimes are 

disjointed.  

 

 

Figure 39. Intuitive reasoning behind the transformation of accessibility variables. 

 
The following process is adopted to remedy this issue. First, compute the transformation 𝑀𝐼K\\\\\N =

log(1 +𝑀𝐼K\\\\\) and let 𝑀𝐼\\\\80ON = max	(𝑀𝐼K\\\\\N , 𝑐 ∈ 𝐶). Then, for company c: 

 

𝑀𝐼K\\\\\ = �𝑀𝐼
\\\\80ON −𝑀𝐼\\\\KN , 𝑇K > 0
0,																							𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

  

This transformation effectively creates the mirror image of positions 𝑦8L*MMMMM
∗  values in Regimes 2 and 3. 

Subsequently, Regime 3 is adjacent to 𝑦8L*MMMMM
∗ = 0 and Regime 2 is positioned to the right. The transformation is 
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exactly the same for the variable that represents proximity to the nearest water port, with the exception that its 

log transformation is log s1 + 8L*MMMMM

.+
t. 

Revenue R is transformed as 0.1*log(R) and Market Value M as 0.05*log(M). Percentage profit P is 

transformed as log(2+P), which ensures that the quantity is always positive.  

5.2.4.3 Simulation of fleets and nationwide distribution centers 

A simulation is performed, applying the model to each company from the original dataset and simulating 

its strategic decisions regarding private fleets and DCs. The simulation predicts private fleet ownership and the 

number of HDT and MDT owned, as well as DC control and the attributes of its DC system (total square 

footage, mean square footage, etc.). 

• Next, an algorithm is developed to assign the simulated DCs to a FAF zone within the US. This 

algorithm is not described in detail here, but more information is available from the author upon 

request. The main features include: 

• Selecting a FAF zone f at random; 

• Comparing the company’s strategic density (+/- a buffer) to the hypothetical density for that 

company if it were to place either one or two DCs in f; 

• Placing a DC in that zone if the hypothetical density falls within the buffered strategic density 

range.  

This algorithm is later referred to as the Nationwide Zone Assignment Algorithm in Section 5.4.  

5.2.5 Interpretation and characterization of model outcomes 

As discussed earlier, 𝑦5∗  as a truncated variable provides information to simultaneously predict both 

binary and continuous strategic decisions. For example, if its predicted value is less than the threshold (zero in 

this case), then the decision is “No”. Otherwise, the decision is “Yes” and the modeled outcome becomes the 

predicted amount (of total DC square footage, for instance).  

Figure 40 characterizes the outputs of the model in this particular application. Estimates of fleet 

ownership can be used directly in the agent-based framework to represent the fleet size and mix for each 
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company in the model population that chooses to own a fleet. As noted in Fang (2008), this outcome is 

characterized as a multiple discrete-continuous (MDC) outcome since the total consumption volume is 

determined for each category (vehicle type, in this case).  

 

Figure 40. Characterizing the model outputs. 

 

The estimated quantities of DC attributes inform a number of dimensions regarding the distribution 

structure of each company. The estimated total square footage is considered jointly with the company’s 

average density per zone in order to estimate the amount of distribution space that the company assigns to each 

zone. This outcome is likewise characterized as an MDC outcome. A discretized version of this outcome is 

obtained by dividing the simulated total square footage by the mean square footage. The result of this 

calculation is another useful quantity: the total number of DCs that are operated by a company.  

Finally, the mean and standard deviation in square footage, as well as the accessibility outcomes, are used 

as parameters that inform the generation of a consideration choice set. This is performed, for example, by 

winnowing down the list of all regional DC properties to a set that only includes properties with (a) square 

footage within one standard deviation of the mean, and (b) are within +/-10% of the average distance to major 
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intermodal yards and water ports. Subsequently, the consideration choice set will be used as an input to a 

second-stage model that is developed specifically for the application of interest. 

 

5.3 Data 

This chapter uses the same company and attitudinal data sources as discussed in Chapter 4, which also 

contains a full description of the attitudinal data development process. The data in the current chapter contains 

more specificity on fleet and distribution center characteristics. The rest of this section describes and 

summarizes the various data inputs.  

5.3.1 Company attributes and strategic decisions on logistics controls 

The 2017 Fortune 500 dataset contains the following attributes, which are used in this study: number of 

employees, revenue, profit, and market value. Other characteristics, including the value of assets and the share 

equity, are also tested but not used since the other financial measures (revenue, profit, market value) provide a 

better fit in statistical models that are developed later using the data. The analysis includes 260 companies 

from this list that belong to freight-intensive sectors.  

This study evaluates two areas of strategic, logistics-related decisions. Private fleet ownership, including 

fleet characteristics, is one area of interest. The other area includes strategic decisions related to distribution 

centers. The rest of this section discusses data sources and input variables for these decisions.  

The Top 500 listing compiled by FleetOwner magazine is used to identify which companies in the 

Fortune 500 list have a private fleet, and to identify the characteristics of these fleets. The following data items 

are available for the top 500 private fleets in the US:  

• Company name 

• Location of headquarters 

• Total Vehicles  

• Total Trucks 

• Total Tractors  

• Total Trailers  
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• Industry: Retail/Wholesale, Petroleum/Gases, Food Products, Manufacturing/Processing 

This analysis assumes that tractors are heavy-duty trucks (HDT), and that the difference between Total 

Trucks and Total Tractors consists of medium-duty (MDT) trucks.  

The CoStar real estate dataset is comprehensive, with coverage of over four million commercial 

properties, and contains information that is regularly updated and verified. The database identifies both the 

owner and, for properties that are leased, the tenant(s). This information is used to identify all distribution 

centers that are owned and/or leased by the companies in this study. In addition to the occupant’s identity, the 

database provides information of the amount of space in the property (in square feet, or SF) that is occupied by 

the company. Finally, the use of the property (e.g., for manufacturing, retail, distribution, etc.) is available.  

Although the database has comprehensive coverage of distribution centers and includes information on 

how the property is used, identifying distribution centers is not always straightforward. For example, 

examining the data reveals that sometimes a warehouse appears to be mislabeled as a distribution center in the 

original database. Therefore, a filtering process is used to distinguish properties that qualify as distribution 

centers for the current analysis. A manual inspection of roughly 100 properties, which included visual 

inspection of properties using satellite imagery, informed the criteria that are used in the filtering process.  

The following process is used to identify distribution centers in the real estate database. First, records that 

have a property use of "Distribution", "Warehouse", "Light Distribution" and "Refrigeration/Cold Storage" are 

selected. All properties that are labeled as “Distribution” in the raw data are labeled as distribution centers for 

this study. Second, the size of the occupied space is used. When the occupied space meets or exceeds a certain 

threshold, the property is labeled as a distribution center; otherwise, the property is labeled as a warehouse. 

The thresholds are listed in Chapter 1.6.  

Geospatial characteristics of the distribution centers—namely, accessibility to major transportation 

terminals and density normalized by population—are developed using data from the BTS, Census and FAF as 

mentioned earlier. Geospatial analysis generates the following fields for each company: 

• Density (SF per population unit): total SF of distribution center space that is occupied by a 

company in a given FAF zone divided by the population of the zone 

• Average distance (miles) to the nearest major rail-truck intermodal facility 
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• Average distance (miles) to the nearest major water port. 

The last two items are computed as follows. The distance to the closest transportation facility is first 

computed for each distribution center. The set of distances is then averaged for each company.  

Figure 41 shows the locations of distribution centers, intermodal rail-truck facilities, and major water 

ports that are used in this study. FAF zones are shown as well. Distribution centers are heavily concentrated in 

areas with high population, while farmland and desert/arid regions have fewer distribution centers. Water ports 

are naturally concentrated on the shores of oceans, rivers, and the Great Lakes. Intermodal truck-rail yards are 

relatively dispersed throughout the country. 

 

 

Figure 41. Distribution centers and major intermodal transportation facilities with FAF 
zone boundaries. 

 

Table 8 summarizes the basic firm attributes, private fleet data and distribution center attributes across 

firms in the dataset. Two outliers are excluded to avoid skewing the results: one company with over 60,000 

trucks (the next-highest number of trucks is about 15,000) and one company with fewer than 100 employees 

(the next-lowest is about 2,000). Companies with limited keyword usage, which is identified as using fewer 

than 50 percent of the keywords, are eliminated from the analysis. Seven privately-owned companies have no 
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10-K report and are likewise removed. Of the original 260 companies, a total of 247 companies remain for 

analysis.  

 

Table 8. Summary statistics: firm attributes. 

Variable Number of firms* Mean Min Max Std. Dev. 
Basic firm attributes           

Fortune 500 rank (2017) 247 239 1 496 141 
Revenue** 247 26,199 5,197 485,873 44,473 
Profit 247 1,421 -5,763 16,540 2,790 
Percent profit 247 -56% 6% 81% 13% 
Assets 247 29,892 1,497 365,183 48,317 
Market value 247 37,846 241 423,031 58,905 
Employees (2017) 247 67,345 1,770 2,300,000 161,174 

Industry           
Manufacturing/Processing  147         
Retail/Wholesale  65         
Petroleum/Gases  22         
Food Products  13         

Private fleet attributes           
Total number of trucks 61 3,377 512 15,449 3,617 
Heavy duty trucks (HDT) 53 1,175 1 8,271 1,997 
Medium duty trucks (MDT) 61 2,354 4 13,497 3,012 

Distribution center attributes           
Total square feet (SF) 209 6,879,151 9,367 159,668,069 16,318,431 
Number of DCs 209 14 1 219 23 
Mean SF 209 456,578 9,367 1,847,485 319,703 
Std.Dev.(SF) 184 371,991 9,030 2,084,059 343,494 
Mean SF per person*** 209 0.26 0.001 2 0 
Avg. miles to rail-truck intermodal 209 9 0.27 81 8 
Avg. miles to major water port 209 111 3 611 81 

*Statistics shown are based on firms which have non-zero values for the variable. 
**All financial figures in millions of 2017 USD 
***Density in terms of mean square feet per person in the FAF zones in which the firm has 1 or more DCs 

 

As the table indicates, considerable variation exists among the companies in terms of their size, financial 

characteristics, and logistics controls. Revenue, for instance, ranges from five billion annually to 500 billion. 

Number of employees ranges from about 2,000 to 2.3 million. About 25 percent of the companies are the retail 

or wholesale trade sectors, 15 percent in food or petroleum and gases industries, and the remainder are in 
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manufacturing or processing industries. Food and the petroleum/gases sectors are combined for analysis since 

their individual sample sizes are somewhat low. About 25 percent of firms own a private fleet while 87 percent 

own and/or lease DCs. Fleet size ranges from about 500 to 15,000 and the total square feet that is owned or 

leased ranges from about 10,000 to 160 million. The mean and standard deviation in square footage of DCs for 

a company both range from about 9,000 to 2 million. 

The geospatial analysis likewise reveals considerable variety among companies. On average, based on 

population in FAF zones where the company has DCs, the company has 0.26 square feet of DC space per 

person. This figure ranges as high as 2.21. On average, DCs are located nine miles from major rail-truck 

intermodal yards, but for some companies choose to locate much closer to such facilities on average. Similarly, 

some companies choose to locate their DCs extremely close to a major water port (10 miles or less), although 

overall proximity to a major water port appears to be less important with an average distance of over 100 

miles.  

5.3.2 Attitudinal measurement data 

Attitudinal measurements are developed for each company using publicly available, large-scale text data 

in the form of 10-K reports that were filed in year 2017 by publicly owned companies with US headquarters 

with the United States Securities and Exchange Commission (2020). These measurements are developed using 

the natural language-based, attitudinal measurement data generation process described in Chapter 4. Briefly, 

this methodology transforms text data to quantitative measurements of keyword usage that is unique to each 

company. 

Figure 42 illustrates the attitudinal measurements of keywords that are used in this analysis. The 22 

keywords represent a mix of attitudes and logistics functions. Four unique symbols are used in the plot, with 

one for each possible combination of two binary variables: owns/does not own a fleet (T1 and T0, 

respectively) and controls/does not control DC operations (DC1 and DC0, respectively. While the 

measurement values belong to ℝ. space (i.e., the measurements are real, one-dimensional numbers), the points 

in the plot are randomly shifted in a second dimension so that the reader may distinguish more clearly between 
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points. For each keyword, the right side of the plot lists the measurement variance that is captured by the first 

principal component. 

 

 

Figure 42. "Jitter" plot of w2vPCA keyword measurements. 

 

There are two main points to make with respect to the interpretation of the numerical values. First, and 

most importantly, the w2vPCA attitudinal measurement algorithm identifies differences in word usage and 

results in measurements of those difference. However, the output measurements are not necessarily equivalent 

to “more” or “less” of some amount. In other words, the meaning of the directionality (e.g., positive, negative) 

in measurements comes from subsequent analysis, as will be shown in the discussion for Table 11 and Table 

12 (Section 5.4.1).  
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In general, the spread of attitudinal measurements differs for various keywords. For example, the range of 

measurements for “national” is approximately -1 to 1, while the range for “cost” is about -3 to 4. As discussed 

in Chapter 4, the different ranges represent the implicit spread of differences in word uses by companies based 

on a sample of their natural language. The methodology for generating these measurements, in other words, 

does not constrain the measurement scale using pre-imposed values (such as 1=disagree, 2=neutral, 3=agree) 

as is common in current practice. 

For the proof of concept, the keyword measurements in this figure are used to measure the two 

hypothesized, underlying firm strategies. For each company, the model estimates a quantitative value for each 

of these strategies and their impacts on strategic decisions.  

 

 

5.4 Proof of Concept 

This section presents the proof of concept results, including the estimated model parameters. 

 

5.4.1 Estimation results 

The Gibbs Sampler estimation generates a different point estimate in each iteration. All model 

parameters, including the covariance terms, are point estimates based on the distribution of values that are 

generated throughout the simulation. The mean is used as the parameter estimate. As an example, Figure 43 

shows the distribution of parameter estimates for two variables in the Total SF model: the retail/wholesale 

industry dummy variable and the LS strategy variable. The distribution is based on the 1,001-10,000th 

iterations of the process, disregarding the first 1,000 as “burn-in” estimates. The information in these 

distributions generates the standard error in addition to the point estimates of each parameter.  



   
 

 

114 

 

 
Figure 43. Distribution of parameter estimates – examples. 

 

Table 9 presents the estimation results for the strategy model. The positive intercepts indicate both CS 

and LS scores for a firm with no market value and zero profit will be positive. An increase in market value will 

make each score decrease, with CS decreasing faster as market value grows. Similarly, both scores decrease as 

profit increases. Conversely, both scores increase as unprofitability (negative profit) grows. The standard 

errors on market value and percent profit are relatively wide, which implies a fair amount of noise or 

variability in the underlying data. However, the estimates are similar across various estimations of the model 

system, therefore they are considered to be reliable for purposes of this model. Future versions of the model 

will try to include more explanatory variables, which may have lower standard errors.  

 

Table 9. Estimation results: strategy model. 

  Customer service (CS) focus Logistical sophistication (LS) focus 
Variable (w) Est. (s.e.) t-stat Est. (s.e.) t-stat 
Intercept 0.49   (0.54) 0.90 0.40   (0.57) 0.69 
Market Value -0.20   (0.74) -0.28 -0.07   (0.79) -0.09 
% Profit -0.55   (0.72) -0.77 -0.51   (0.75) -0.68 

 
Dependent variable: z* 
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Table 10 shows the parameter estimates for the strategy measurement model. These results are truly 

remarkable. Indeed, the estimates for the "customer” word measurement and “service” word measurement 

stand out as the most prominent indicators of the CS strategy. Not only are their parameters relatively high, but 

both words have a relatively large spread (Figure 42)—as such, the parameter estimate multiplied by the 

measurement can be quite high, creating a relatively large impact in detecting CS. Other keywords that are 

used to measure this strategy are “delivery”, “efficiency”, “fleet” and “reliability”. Their parameter estimates 

are lower than the other two, but they certainly are intuitively consistent with the notion of providing excellent 

customer service.   

 

Table 10. Estimation results: strategy measurement model. 

Measurement 
variable h: 

z*: Customer service (CS) 
focus Measurement 

variable h: 

z*: Logistical sophistication 
(LS) focus 

Est. (s.d.) t-stat Est. (s.d.) t-stat 
customer 0.77   (0.08) 9.50 distribution 0.74   (0.09) 8.29 
delivery 0.18   (0.07) 2.64 logistics 0.19   (0.07) 2.74 
efficiency 0.09   (0.07) 1.31 national 0.05   (0.07) 0.75 
fleet 0.04   (0.07) 0.65 safety 0.16   (0.07) 2.17 
reliability 0.07   (0.07) 1.02 transportation 0.35   (0.07) 4.66 
service 1.06   (0.09) 11.99         

 
Dependent variable: 𝑦& 

 

The findings for the LS strategy are similarly remarkable, with the highest parameters for “distribution”, 

“transportation”, and “logistics”. These findings are highly consistent with the notion of a strong focus on 

logistics services as part of a company’s strategy. “National” and “safety” also provide measures of the LS 

strategy, although are less impactful.  

The discussion now focuses on the estimation results for the eight strategic decisions models. The two 

models related to private fleet are discussed first in Table 11. The reader is reminded that this model predicts 

the latent variable, y=∗ , which is manifest in binary (yes/no) and quantity decisions. As y=∗  increases, the 

company is likely to both (a) have a private fleet and (b) have a larger private fleet. In other words, increases or 

decreases in y=∗  impact both the binary yes/no and fleet size decisions in a similar way.  
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Table 11. Estimation results: strategic decisions model (private fleet). 

Strategic decision d: HDT MDT 
Variable (x, z*) Est. (s.e.) t-stat Est. (s.e.) t-stat 
Intercept -3.04   (0.85) -3.55 -3.04   (1.47) -2.07 
Food/Petro./Gases 1.66   (0.24) 6.95 2.53   (0.42) 6.06 
Retail/Wholesale 0.29   (0.2) 1.46 1.01   (0.35) 2.91 
Revenue 1.97   (0.82) 2.40 1.04   (1.47) 0.71 
Customer service (CS) focus 0.05   (0.08) 0.63 0.12   (0.15) 0.78 
Logistical sophistication (LS) focus -0.11   (0.08) -1.33 -0.12   (0.14) -0.86 

 
Dependent variable: 𝑦'∗  

 

The baseline for this model is a manufacturer with zero revenue and zero CS and LS scores. All 

coefficients can be interpreted with respect to this baseline. The negative intercept indicates that the baseline 

company will have y=∗ < 0, and therefore will not own a private fleet. This is consistent with the data, in which 

75 percent of companies do not own a private fleet. As revenue increases, the disposition towards fleet 

ownership and larger fleet size grows. This could be associated with geographic factors, as the highest revenue 

firms generally have widespread geographic coverage that could be well suited for handling a deep bench of 

drivers, trucks and trailers.  

Membership in the food and beverage or petroleum/gases sectors is associated with much higher 

disposition to fleet ownership and larger fleets. Interestingly, a greater preference for MDT over HDT emerges 

(judging by the difference in parameter estimates). This suggests that large portion of the fleet for these 

companies is involved with urban delivery, which uses MDT, rather than long haul, which uses HDT. Similar 

effects occur but with less impact for companies in retail or wholesale sectors.  

Based on the model output, underlying strategies do appear to influence strategic fleet-related decisions, 

but with less pronounced impacts than the above factors. Higher CS or lower LS scores are both associated 

with slightly higher disposition toward fleet ownership and larger fleets. The estimates have wide standard 

errors, which again indicates considerable variety in company behavior. Overall, the model results indicate that 

with respect to private fleet ownership and size, industry and company size are the most important factors, but 

that some companies do appear to own private fleets in part to differentiate themselves per their CS and LS 

strategies.  
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Table 12 shows the estimation results for the remaining six strategic decisions models, which are all 

related to DC control. The interpretation of y=∗  and the baseline company are the same here as they are in the 

private fleet decisions models. In comparison to manufacturing firms, companies in food and beverage or 

petroleum/gases sectors are less likely to operate their own DCs, and when they do operate their own DCs, the 

total square footage and mean size are likely lower. In contrast, retail and wholesale firms are more likely to 

control their DCs, and they tend to control more total area than manufacturers. Firms with more revenue 

predominantly control their DCs, have more total area, and have larger DCs than lower-revenue firms. In 

regards to standard deviation in the size of individual Ds, manufacturers have about the same variability as 

retail/wholesale companies, and both have more variability than DCs belonging to companies in the 

food/beverage and petroleum/gases sectors. Higher values for CS and LS strategies are associated with lower 

disposition towards DC control, with lower total DC area, smaller DCs and less variability in DC size.  

Table 12. Estimation results: strategic decisions model (DC control). 

Strategic decision d: Tot. SF Mean SF SD, SF 
Variable (x, z*) Est. (s.e.) t-stat Est. (s.e.) t-stat Est. (s.e.) t-stat 
Intercept -4.03   (0.97) -4.14 -0.54   (0.72) -0.75 -1.51   (0.83) -1.82 
Food/Petro./Gases -0.15   (0.28) -0.55 -0.64   (0.21) -3.07 -0.43   (0.24) -1.80 
Retail/Wholesale 0.49   (0.21) 2.32 0.07   (0.16) 0.46 -0.03   (0.18) -0.18 
Revenue 5.08   (1.01) 5.04 1.85   (0.75) 2.48 2.46   (0.86) 2.86 
Customer service (CS) focus -0.12   (0.11) -1.14 -0.17   (0.08) -2.10 -0.17   (0.09) -1.84 

Logistical sophistication (LS) focus -0.38   (0.12) -3.14 -0.26   (0.09) -2.96 -0.27   (0.10) -2.63 

Strategic decision d: Density Mi. to Rail (Reverse) Mi. to Port (Reverse) 
Variable (x, z*) Est. (s.e.) t-stat Est. (s.e.) t-stat Est. (s.e.) t-stat 
Intercept -1.61   (0.68) -2.36 0.07   (0.92) 0.08 -0.25   (0.83) -0.30 
Food/Petro./Gases -0.54   (0.20) -2.75 -0.44   (0.26) -1.68 -0.71   (0.24) -2.99 
Retail/Wholesale 0.03   (0.15) 0.22 -0.09   (0.2) -0.47 -0.30   (0.18) -1.67 
Revenue 2.51   (0.71) 3.56 1.87   (0.96) 1.95 1.88   (0.86) 2.18 
Customer service (CS) focus -0.15   (0.08) -1.92 -0.08   (0.1) -0.78 -0.10   (0.09) -1.13 
Logistical sophistication (LS) focus -0.24   (0.08) -2.78 -0.30   (0.11) -2.70 -0.25   (0.10) -2.55 

 
Dependent variable: 𝑦'∗  

 

The strategic model for density decisions suggests that companies in manufacturing, retail and wholesale 

sectors tend to have more DC space concentrated in more populated areas in comparison to food/beverage and 
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petroleum/gases companies. This result is intuitive for petroleum and gases companies, but somewhat less 

intuitive for food and beverage companies. (Variations of the model with separate dummy indicators for 

petroleum/gases and food/beverage show that the result of this model is driven by the former, and that food 

and beverage companies actually tend to have DCs in more populated areas.) The transportation accessibility 

models suggest that relative to companies in other industries, manufacturers are most likely to locate their DCs 

near either intermodal truck-rail or water port facilities. This may be related to the global nature of supply 

chains among manufacturers in particular, relative to, for example, food and beverage companies, which are 

more likely to produce and sell products on the same continent.  

Higher-revenue companies tend to have more DC space per unit population than lower-revenue 

companies. One possible explanation for this is that companies with higher revenue may generally be close to 

the final supply chain stage, consumer sales, and may therefore concentrate their distribution space near 

consumers. Companies with higher revenue are also located closer to rail and water ports than companies with 

lower revenue, suggesting that high-revenue companies in general have global supply chains that benefit from 

good access to rail and water, which provide good value for transporting goods over long distances. Finally, 

lower values of CS and LS translate into increased preference for dense DC operations and close proximity to 

rail and port facilities.  

The results from Table 11 and Table 12 also give insight into how to identify strategy based on the CS 

and LS scores. As mentioned earlier, since the CS and LS scores are based attitudinal measurements for which 

the meaning of directionality is not known a priori, additional analyses (such as structural equation modeling 

or a model like the current one) must be used to decipher the meaning of positive and negative directions for 

each: 

• The private fleet results suggest that a positive CS score means that a company has adopted a CS 

focus.  

• The DC control results suggest that a negative LS score means that a company has adopted a LS 

focus.  
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Table 13 shows the estimated variance-covariance matrix for the strategic decisions model. Because of 

the variable transformations (Chapter 5.2.4.2), the variance of each falls in between 0.71 and 2.41. In general, 

the DC control decisions are highly correlated with each other but less so with private fleet decisions.  

Table 13. Estimated variance-covariance matrix (𝚺�): strategic decisions model. 

  HDT MDT Total SF Mean SF SD SF Density Mi. to Rail (R.) Mi. to Port (R.) 

HDT 0.71               

MDT 0.87 2.41             

Total SF 0.44 0.45 1.80           

Mean SF 0.24 0.17 1.13 1.02         

SD SF 0.31 0.31 1.34 1.01 1.33       

Density 0.22 0.16 1.03 0.84 0.89 0.89     

Mi. to Rail (R.) 0.31 0.35 1.05 0.86 0.89 0.73 1.65   

Mi. to Port (R.) 0.25 0.22 0.98 0.85 0.88 0.69 1.08 1.33 
(R.) denotes ‘Reverse’ 

5.4.2 Application results 

The model results from Table 9 are applied to generate estimated values for the CS and LS strategy 

variables (Figure 44). The main purpose of this figure is to illustrate how strategy is quantified. The resulting 

values subsequently are input to the strategic decision models.  For each strategy, the values mostly range from 

about -2 to 2, with slightly more skew in the LS model.  

 

 
Figure 44. Frequency distribution of company strategy scores. 
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Figure 45 provides additional insight into the relationship between strategy and strategic decisions using 

pair plots with a best fit line. The plot on the left, the lower left pane in particular, shows the small but positive 

relationship between the CS strategy score and the latent decision variable for HDT ownership. The lower left 

pane of the plot on the right shows the greater relationship between LS and the Total SF decision.  

 

 

Figure 45. Pair plots: strategies and latent strategic decisions. 

 
 

The last several plots demonstrate the practical significance of this model by simulating the national DC 

system, in addition to predicting fleet ownership. The strategic model outcomes, along with the Nationwide 

Zone Assignment Algorithm, are used in this demonstration. The models are applied to the input dataset. In 

follow-up work, the models should be applied to a set-aside sample for validation, but this exercise uses the 

entire sample for both model development and application so that a large enough sample is available for both.  

Table 14 summarizes the characteristics of the total private fleet and DC populations that are simulated 

for the Fortune 500, freight-intensive companies in this modeling system. In the simulation, these companies 

collectively have a total of about 75,000 HDT, 192,000 MDT, and 1.4 billion SF of DC space. The mean DC 

size among these companies is predicted to be about 470,000 SF. These results are compared to their observed 

counterparts in the section discussing validation (Chapter 5.4.3) below.  
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Table 14. Simulated and observed values of total fleet and DC population. 

Outcome Observed Simulated Difference % Difference 
HDT 63,099 74,812 11,713 19% 
MDT 143,829 192,239 48,410 34% 
Sum, Total SF 1,437,657,569 1,407,933,827 -29,723,742 -2% 
Mean SF 385,991 470,724 84,733 22% 

 

 

Figure 46 shows the geographic distribution of DCs across zones throughout the US. Comparing this map 

to Figure 41 shows that the model, and subsequently the algorithm used to assign DCs to locations, performs 

reasonably well by concentrating DCs in major metropolitan regions. The densest concentrations of DCs in 

both figures are along the east coast. However, the model and zone assignment algorithm predict too many 

DCs in rural areas (e.g., in the Upper Midwest). This can be improved by introducing new input variables to 

the model, such as sales data or new geospatial data, or by improving the algorithm.  

 
Locations within zones are randomized. 

Figure 46. Simulation of nationwide DC locations. 

 

Figure 47 provides an example of simulated DCs that are generated for companies in four different 

industries. The grocer and big box retailer have more DCs and they are located almost entirely in metropolitan 
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areas. The pharmaceutical manufacturer and the heavy manufacturer have fewer DCs, and their DCs are 

located in more rural areas. In general, the algorithm gives reasonably good geographic distribution throughout 

the US. While improving the geographic aspects of the algorithm is expected to be a major undertaking, the 

initial algorithm for now appears to deliver reasonable results that are useable in the agent-based model 

context.  

 
Locations within zones are randomized. 

Figure 47. Simulated nationwide DC systems: companies in four sectors. 

 

Finally, Figure 48 illustrates how the model results are used to inform choice set generation. Example 

output for one company in the simulation is generated in Step 1. In Step 2, the strategic decisions for the 

company inform a series of choice set parameters: range of acceptable DC sizes, range of acceptable miles to 

rail facilities, and so on. In Step 3, the choice set is generated by identifying properties in the region that meet 

the criteria from Step 2. Following choice set generation, the candidate choice set is fed into a choice model by 

which a company selects a single property.  
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Figure 48. Forming a consideration set for choice of specific DC location in the Chicago 

region (illustration). 

 

5.4.3 Validation 

This section establishes the validity of the model. Models results are summarized and compared to the 

observed data. The models are proven to produce reasonable and useful results.  

Figure 49 summarizes the binary (yes/no) strategic decision outcomes for the observed and predicted 

number of companies in each of four categories: has neither fleet nor DC control, has fleet only, has DC 

control only, and has both. The number of companies in each category is printed on the figure. The results 

show that the model predicts the overall number in each category well, although with slight overprediction in 

the DC only category and fleet only categories and slight underprediction in the other categories.  

 
Figure 49. Validation: logistics controls. 
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Table 14 summarizes the observed and predicted outcomes for the main continuous strategic decision 

variables across all companies, including total numbers of HDT and MDT trucks, total DC area, and mean DC 

area. The model overpredicts both the HDT and MDT populations. The overprediction is slightly greater for 

MDT (34 vs. 19 percent) and should be examined further in future work to better calibrate the model before 

application. The total square footage, which is summed across all companies, matches the observed value (1.4 

billion square feet) almost exactly. The mean DC size is overpredicted by 22 percent, which is not considered 

severe but warrants further calibration prior to application in a real-world setting. The total area divided by the 

mean implies that the resulting number of DCs is approximately 3,000, which is similar to the input total. 

Figure 50 shows smoothed, normalized frequency distributions for the observed and simulated values of 

MDT and HDT. The HDT distribution matches very well. The MDT distribution does not fit as well as the 

HDT, but still fits the overall pattern reasonably well. 

 

 

Figure 50. Observed vs. Predicted outcome densities with smoothing (private fleet). 
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Figure 51 shows similar validation curves for the DC control strategic decisions. The total square footage 

has excellent fit, meaning that the model produces a very realistic distribution of total DC square footage 

across companies. Distributions for the mean SF, SD SF and density are also matched well. Distributions for 

the two accessibility outcomes were not matched quite as well by the model, but the overall shape is visible. 

This may suggest some underlying variations that are not being captured, such as location selection that is 

based less on proximity to intermodal transportation and more on industrial land use availability, which often 

happens to be close to intermodal facilities (due to historical land use development).  

 

 

Figure 51. Observed vs. Predicted outcome densities with smoothing (DC control). 
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Figure 52 and Figure 53 show the performance of the model at the 10,000th iteration, focusing on the 

distribution of the strategic decision variables. Figure 52 portrays only the latent variables while Figure 53 

portrays the latent variables for 𝑦5∗ < 0 and the observed values for 𝑦5∗ > 0. Ideally, the curves will be 

identical between the two plots, meaning that the latent predictions match the observed distributions. Overall, 

the curves match very well.   

 

 

 
Figure 52. Distribution of joint latent outcomes during estimation. 
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Figure 53. Distribution of latent (𝒚𝒅 = 𝟎) and observed (𝒚𝒅 > 𝟎) joint outcomes during 
estimation. 

 

 

5.5 Conclusions  

The contributions of this chapter are numerous and span multiple areas. First, the study develops a 

behavioral modeling framework to model strategies and strategic decisions of individual agents in a 

population. The study proposes a critical modification to the agent-based modeling paradigm, outlining and 

demonstrating how the strategies framework unifies downstream model decisions with more fundamental, 

major decisions and underlying attitudes of agents upstream. The study proposes and discusses how the 

modification applies to both passenger and freight agent-based modeling systems.  

The methodology enables the joint simulation of three major types of strategic decisions. First, binary 

(yes/no) decisions, such as whether to own vehicles or not, can be modeled. Second, continuous quantities 

(such as vehicle miles traveled) can be modeled. Finally, this work proposes to model choice set generation 



   
 

 

128 

 

parameters as a high-level, strategic decision jointly with these other types of strategic decisions, contributing a 

very unique and powerful approach to this challenging research area.  

In order to operationalize the conceptual framework, the chapter develops a mathematical methodology to 

jointly model latent strategies and manifest strategic decisions. The methods utilize latent variable constructs 

for both strategies and strategic decisions, bundling the strategic decisions into a Seemingly Unrelated 

Regression (SUR). The entire system is solved using Bayesian estimation, in particular the Markov Chain 

Monte Carlo (MCMC) Gibbs sampling method, which utilizes data augmentation and neatly obviates the need 

for either multidimensional integration or approximations thereof.  

Finally, the entire modeling system is applied to a real-world problem in agent-based freight modeling 

application to study the joint fleet ownership and distribution center decisions of large, freight-intensive 

companies in the US. For each firm, the number of heavy-duty and medium-duty trucks is modeled along with 

the number and characteristics, including geography, of its distribution centers. The interrelationship of 

strategic decisions is modeled explicitly in this application. Two strategic constructs, one emphasizing 

Customer Service (CS) and the other Logistical Sophistication (LS), are hypothesized and successfully 

modeled. The study finds that these two strategies have measurable impacts on fleet and distribution center 

decisions, although other factors (e.g., industry) have a greater impact overall. This application also 

successfully demonstrates the first real-world, behavioral modeling application of attitudinal measurements 

that are estimated using a novel natural language processing-based procedure that I develop earlier.   
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6 Linking Business Strategy to Transportation Energy Consumption and Emissions 
(TECE) Estimates: Effects of Automobile Assembly Location Strategy 

 

 

6.1 Introduction 

The premise of this thesis is that strategic behavior is important to capture in freight models, and that 

agent-based analysis presents a rich platform for modeling agent strategies and decisions. This chapter 

develops an agent-based sustainability analysis framework. The framework is applied in a proof of concept 

that clearly demonstrates the effects of company strategy, and changes thereof, on TECE. The supply chain 

decision involving automobile assembly location is studied for the Original Equipment Manufacturer (OEM) 

sector of the automotive industry. This study focuses on passenger autos sold in the US, which has one of the 

world’s largest auto markets. The sustainability impacts of two strategies, near-sourcing assembly versus 

overseas assembly, of the Ford Focus passenger car are analyzed. Consequences are expected to be notable, 

since global shipping is known to be energy-intensive – e.g., the emissions generated by ocean shipping as 

reported in International Energy Agency (2017) reports that is about as much as what is generated by a 

industrialized country (Union of Concerned Scientists, 2017).  

The remainder of this chapter is organized as follows. An agent-based framework for modeling freight 

TECE is presented first. The next section describes the study design, including data, methods and assumptions. 

Findings of the baseline analysis are presented, then the method is illustrated using a case study. Finally, key 

points of the study are summarized followed by a discussion of limitations and potential extensions. 

 

6.2 Agent-based Modeling Framework for Freight TECE 

An agent-based model is designed specifically for this case study, not unlike many models that 

government agencies use (Cambridge Systematics, Inc., 2011; Maricopa Association of Governments, 2018; 

Samimi, 2013). An agent-based modeling framework for freight TECE comprises the following steps: 

Step 1. Define geographic regions for analysis 

Step 2. Develop agent population 
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Step 3. Define agent strategies 

Step 4. Form agent partnerships 

Step 5. Evaluate mode and logistics choice 

Step 6. Determine the flow of goods and vehicles 

Step 7. Estimate TECE for inter-regional flows by mode  

Step 1 is necessary for implementation of transportation demand models. Traffic analysis zones or parcels 

constitute the geographic unit of analysis in many models. States, regions, countries or continents are often 

used for national and international models.  

Step 2 involves developing the population of decision-making agents. Agent attributes can size, industry, 

location and other factors. 

Step 3 is integral to demonstrating the link between strategy and TECE outcomes. As an alternative to the 

comprehensive, agent-based freight framework is developed in Chapter 3, the flowchart below (Figure 54) 

illustrates a generic model stream that can be implemented quickly. The figure gives a sense of how the effects 

of strategy cascade downstream to TECE assessment.  

 

 
Figure 54. Linking agent strategies to outcomes. 

 

Agent 
Population 
Generation

Agent Partnership 
Formation 

(Supplier Selection)

Mode and 
Logistics 
Choice

Vehicle Tour 
Creation and 
Assignment 

(Flow of Goods 
and Vehicles)

Agent Characteristics 
(Size, Industry, Location)

ADDITIONAL 
CHARACTERISTIC*: 

Agent Strategy Set

Analysis of 
Congestion, 

Transportation 
Energy Use and 

Emissions

Current Agent-based Freight Model Paradigm

*Focus of this work: 
Linking agent strategies to outcomes: goods 
movement, vehicle flows, and TECE

Define 
Geography 
for Analysis



   
 

 

131 

 

Steps 4-6 are widely implemented in the agent-based freight demand modeling literature. Resulting flows 

of goods are outputs of the model.  

This work also makes significant contributions to Step 7, the evaluation of energy and emissions impacts 

of freight transportation. A set of TECE rates by mode is assembled and a method to calculate TECE impacts 

is developed.  A real-world application illustrates how TECE is estimated based on inputs from the previous 

steps. 

As shown in the figure, this study contributes to this modeling framework by developing a method to link 

agent strategies to important model results such as traffic flows and TECE. Constrained by data availability, 

Steps 4-6 involve necessary assumptions to simplify the problem compared to the others such as Agent 

Population and Analysis of Congestion. 

 

6.3 Study Design and Data 

Using the automobile manufacturing sector as an example, this section describes step-by-step how the 

agent-based model is set up and applied, as well as assumptions made in the analysis and data. The analysis 

timeframe is the year 2017.  

 
Step 1. Define analysis regions 

The US was divided into seven regions for analysis (Figure 55). The rest of the world was divided into 

seven additional regions: Canada (Ontario), Mexico, South America, Europe, Africa, East Asia, Other Asia 

and Australia. Two US regions are large states (California and Texas). Others were determined based on 

population concentration and locations of existing automobile assembly plants, which are summarized next.  
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Figure 55. US analysis regions. 

 
 
OEM data: US sales and assembly locations by region 

Data on US sales and the number of assembly plants by OEM in each region were obtained from online 

sources. The findings are shown in Table 15. Several OEMs have plants in Australia, Africa and Other Asia, 

but these are not shown in the table due to space limitations and their negligible contributions to US auto sales. 

Abbreviations are: Cen US (Central US), SE US (Southeast US), EU (Europe), MX (Mexico) and E. Asia 

(East Asia).  
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Table 15. Assembly plants and sales by OEM and region 

Company 
 

Number of Assembly Plants Assembly Plant 
Sources US Sales* % US 

Sales Cen. 
US 

E. 
Asia 

EU Great 
Lakes 

MX On-
tario 

SE 
US 

Total 

Aston Martin     1         1 (Aston Martin, 2018; 
Tsui, 2018) 

1,869  0.01% 

BMW 
 

5 6 
   

1 16 (Mitchell, 2017; BMW 
Group, 2018) 

354,110  2.1% 

Daimler AG   4 10   2   5 27 (Daimler AG, 2018) 375,311  2.2% 

FCA 
   

5 3 2 
 

11 (Fiat Chrysler 
Automobiles, 2018; List 

of Chrysler factories, 
2018) 

2,073,073  12.0% 

Ferrari     1         1 (Ferrari, 2018) 2,518  0.01% 

Ford 1 6 6 10 3 1 
 

37 (Ford Motor Company, 
2018, 

BlueOvalNews.Com and 
AtomicFrog.Com, 1998) 

2,575,200  14.9% 

GM 2 12 7 8 2 2 1 40 (GM Corporate 
Newsroom, 2018; 

GMAuthority.co, 2018; 
List of General Motors 

factories, 2018) 

3,002,241  17.4% 

Honda 
 

11 2 3 2 1 1 27 (Honda Government 
Relations Office, 2018; 
List of Honda Assembly 

Plants, 2018) 

1,641,429  9.5% 

Hyundai   6 1       1 12 (Hyundai Motor America, 
2018) 

685,555  4.0% 

Kia 
 

7 1 
 

1 
 

1 11 (List of Kia Design and 
Manufacturing Facilities, 

2018) 

589,668  3.4% 

Mazda   7     1     11 (Mazda, 2018) 289,470  1.7% 

Mitsubishi 
 

6 
     

7 (Mitsubishi Motors 
Corporation Public 

Relations Department, 
2018) 

103,686  0.6% 

Nissan   16 4   3   2 32 (NissanNews.com, 2018; 
Nissan Corporate 

Communications, 2018) 

1,593,464  9.2% 

Subaru 
 

4 
 

1 
   

5 (Subaru, 2018; Turner, 
2015) 

647,956  3.8% 

Tata   1 3         17 (Tata Motors, 2017) 114,333  0.7% 

Tesla 
       

1 (Tesla Factory, 2018) 55,120  0.3% 

Toyota   13 7 2 1 2 1 37 (Toyota-Global 
Newsroom, 2018; List of 
Toyota manufacturing 

facilities, 2018) 

2,434,515  14.1% 

Volkswagen 
 

4 28 
 

1 
 

1 45 (List of Volkswagen 
Group factories, 2018) 

625,068  3.6% 

Volvo   3 2         5 (List of Volvo Car 
production plants, 2018) 

81,507  0.5% 

Total 
       

343   17,246,093  100% 
*US Car Sales Data (2018) and Wall Street Journal Market Data Center (2018) 
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Population data 

Population totals were computed for each region using (US Census Bureau, 2018) with year 2017 data. 

These data were used to apportion total US sales volumes. Population totals for the various regions are 

(percentages are with respect to the contiguous US total): 

• Northeast: 75 million (23%); 

• Southeast: 66 million (20%); 

• Great Lakes: 54 million (17%); 

• Western US: 45 million (14%); 

• California: 40 million (12%); 

• Texas: 28 million (9%); and 

• Central US: 16 million (5%). 

 
 
Step 2. Develop agent population 

In order to estimate freight activity at the agent level, it is first necessary to establish the population of 

agents that are making decisions. For this study, the population of agents is the set of OEMs that sell vehicles 

in the US. Since this set is small with fewer than two dozen agents, it was possible to use observed agents and 

their characteristics for the study rather than a synthetic population as is routinely done with travel demand 

models. A web search was used to collect data (Table 1), which then were used to develop the population of 

agents and their characteristics.  The output of this stage is the set of OEMs by number and geographic 

location of assembly plants, size as measured by US sales, and industry. All agents in this work are in the same 

industry class.  

Assembly location strategies, which affects import/export volumes, are another important OEM 

characteristic. This is discussed next.  
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Step 3. Define agent strategies 

Several OEM strategies were considered for analysis in this study: assembly location decision, mode of 

transport used, and port used for imports. Assembly plant location was selected as the strategy to focus on in 

developing the methodology. While this decision is based partly on quantitative optimization, it also is driven 

by strategies weighing the anticipated direction of market demand and other factors (Coia and Ludwig, 2016).  

This strategy has major ramifications for the flow of goods and subsequently TECE. This strategy is 

initially treated as a fixed input but is varied later to demonstrate the impact of a change in strategy on TECE. 

Mode and port strategies can be examined in subsequent work.  

The rest of this subsection discusses the data and assumptions supporting this aspect of the study. Only 

automobiles being sold in the US are included in this study.  

Detailed data regarding the number of assembly plants used by each OEM in each region was gathered. 

However, complete information on plant-specific production volumes for US-sold vehicles, which are partly 

based on strategy, was difficult to obtain. To address this constraint, for this study assumptions were made 

regarding the volumes produced by location for sales in the US. Three assumptions were made. First, for 

vehicles assembled in the US, it is assumed that the percentage assembled by origin region is proportional to 

the number of plants in origin region. Second, OEMs with assembly plants both in the US and elsewhere were 

assumed to conduct the assembly mostly in the US. Third, only Canada, Mexico, East Asia and Europe were 

assumed to be assembly locations for imported vehicles. Reports on the auto industry support these 

assumptions (for example, Isidore, 2016). The percentages of US-sold vehicles produced by each OEM by 

region are assumed to be as followed (percentages in parentheses):   

• Aston Martin: Europe (100); 

• BMW: Southeast (100); 

• Daimler AG: Southeast (100); 

• FCA: GreatLakes (60), Mexico (10), Ontario (30); 

• Ferrari: Europe (100); 

• Ford: GreatLakes (60), CentralUS (5), Mexico (20), Ontario (25); 
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• GM: GreatLakes (50), Southeast (30), CentralUS (10), Mexico (7.5), Ontario (2.5); 

• Honda: GreatLakes (50), Mexico (10), Southeast (10), E_Asia (10), Ontario (20); 

• Hyundai: Southeast (40), E_Asia (60); 

• Kia: Southeast (20), E_Asia (40), Mexico (40); 

• Mazda: E_Asia (80), Mexico (20); 

• Mitsubishi: E_Asia (100); 

• Nissan: Southeast (80), Mexico (10), E_Asia (10); 

• Subaru: GreatLakes (60), E_Asia (40); 

• Tata: Europe (80), S_Am (20); 

• Tesla: California (100); 

• Toyota: Southeast (40), GreatLakes (40), Mexico (10), Ontario (10); 

• Volkswagen: Southeast (40), Mexico (10), Europe (50); and 

• Volvo: Europe (60), E_Asia (40).  

 
Step 4. Define agent partnerships 

This aspect of the analysis can be done at the agent level using auto dealerships or wholesalers, who 

receive shipments of assembled vehicles, but for this study was treated with less detail to focus on other 

developments. Total US sales by each OEM is apportioned to the various regions based on regional 

population. This is a reasonable assumption considering vehicle shipping costs paid by consumers: while 

actual shipping charges may vary by region, the consumer pays the same destination charge regardless 

following Palermo (2013). Average vehicle weight is assumed to be two tons (Lowrey, 2011).  

 

Step 5. Evaluate mode and logistics choice 

Like the previous step, this step can be treated with high resolution but here is modeled using a higher-

level analysis to keep the focus on other aspects of the study.  Modal information is based on Freight Analysis 

Framework (FAF) ton-mile estimates of rail, truck and multiple mode use by domestic and import SCTG 36 
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flows using distance bands (Freight Analysis Framework Data Tabulation Tool, 2018). Over-the-ground 

distances are based on regional centroids. According to the FAF estimates, 99% of SCTG 36 US flows by ton-

mile are delivered by three modes: truck, rail and multiple modes (e.g., truck-trail intermodal). This data 

source was used to develop distance-based mode assumptions for this study as follows. Shipments are assumed 

to always use truck for journeys of 500 miles or less. Longer-distance flows are assumed to use a mix of truck 

and rail. Shipments traveling between 500 and 1,500 miles are assumed to use 80% truck and 20% rail, those 

between 1,500 and 2,000 miles are assumed to use 60% truck and 40% rail, and those traveling longer 

distances 55% rail and 45% truck. This approach also is consistent with other studies (for example, Sharma & 

Associates, Inc., 2018) demonstrating that rail starts to become cost-effective relative to truck for ground-based 

transport distances of 400 miles or more.  

Rail is only available for North American-based assembly. All other foreign assembly locations are 

assumed to require ocean shipping for transport of vehicles to the US. Upon reaching the US, these foreign-

assembled vehicles are assumed to use either all-truck or rail-with-truck per the assumptions described above.  

Port-of-entry assumptions for imports used in this study are based on reports from various automotive 

industry sources (including Coia, 2015). Scanning these sources shows that a thorough accounting of ports 

used by each OEM can be developed. However, based on the resource constraints of this study, it was decided 

to focus the most detailed data collection on OEM-specific automobile assembly location and to use 

assumptions for port-of-entry.   

Two major automobile import ports were selected for use in this study to represent the port-of-entry of 

imported vehicles. The primary objective was to represent whether import flows enter on an East Coast port or 

a West Coast port. Imported vehicles destined to the Northeast or Southeast are assumed to always enter 

through the Port of Baltimore, which is located in the Northeast. Vehicles destined to California or the Western 

US region are assumed to always enter through the Port of Los Angeles. Vehicles destined to other areas of the 

US are assumed to use whichever port (Baltimore or Los Angeles) generates lower distance. Vehicles from 

South America destined to the California or Western US, for example, are assumed to enter through the Port of 

Los Angeles while those going elsewhere in the US are assumed to enter through the Port of Baltimore. Of 

course, numerous other ports are used for vehicle imports (for example, the Port of Jacksonville or JAXPORT 
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(Jacksonville Port Authority, 2018). A more detailed representation of ports would have some impact on the 

results, but the assumptions used here are for demonstrating the methodology.  

Distance between each Origin-Destination pair was obtained from two sources: Mapping-Tools.Com 

(2018) for over-ground routes and SeaDistances.org (2018) for sea routes.  

 
Step 6. Determine the flow of goods and vehicles 

The inputs from preceding steps were used to compute interzonal and intrazonal volumes by mode and 

logistics path for each OEM. Volumes were measured in number of vehicles, tons and ton-miles by mode for 

each OEM.  

 
Step 7. Estimate TECE for inter-regional flows by mode 

A detailed data assembly process was undertaken to establish the necessary emission and energy use rates 

for freight modes.  

Ship energy use and emissions data were obtained from an international study in Olmer et al. (2017).  

Rail TECE rates were obtained from two sources.  Locomotives information from the US Environmental 

Protection Agency (2019) was the source of rail-related emissions in this study. A large RRD, line-haul only, 

and year 2017 were assumed when retrieving the information. A fuel efficiency of 471 ton-miles per gallon is 

used based figures from CSX Corporation (2016), which illustrated its calculation of fuel consumption per 

revenue ton-mile in a regulatory reporting process.  

Truck TECE rates were gathered from various sources. First, truck loaded weight is assumed to be about 

72,000 pounds or 36 tons. After accounting for the weight of the semi-tractor and a typical trailer, which is 

about 15 tons total according to Truckers Report Forum (2006), this suggests that about 10 sedans or around 

seven light-duty trucks would be transported on each carrier, which is in line with a typical commercial carrier 

(‘Car carrier trailer’, 2018).  

CO2 and NOX emissions rates for a 36-ton truck were obtained from federal testing of two heavy-duty 

trucks in Boriboonsomsin et al. (2017). Fuel efficiency was assumed to be 50 loaded US-ton miles per gallon 

of fuel based on the upper end of a 40-50 ton-mi/gal range cited in Souten (2004). PM rates for heavy trucks 
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were obtained from ICF Consulting (2017) using MOBILE6.2, using 52 mph as the average urban highway 

speed. 

The truck SO2 rate was obtained from a MOVES2014 (US Environmental Protection Agency, 2014) run 

with 1,000 heavy-duty intercity trucks traveling a one-mile section of an unrestricted highway in Cook County, 

IL in Oct. 2017 during the 10-11 AM period. The MOVES rate is 0.614293 g/mi of SO2 emitted, or 

0.000614293 g/mi per truck. Assuming about 36 tons per truck leads to the rate in the table.  

The full set of TECE rates used in analysis for each mode are shown in Table 16. 

 

Table 16. TECE rates used in analysis. 

  
 
 
 
6.4 Results 

Using the TECE rates shown here and the flows computed in Step 6, TECE was evaluated. The TECE 

analysis focuses primarily on ton-miles traveled (or simply ton-miles), which can be considered the freight 

equivalent of vehicle-miles traveled since it is a weighted sum of miles traveled. TECE for ton-miles on each 

leg of the journeys was computed by multiplying TECE rates by the ton-miles. Values were summed across 

legs to obtain Total TECE. 

6.4.1 Predicted annul vehicle production and sales 

This section presents the results and discusses the main findings. Figure 56 shows the predicted annual 

number of new vehicles produced in each region according to the model. Roughly 17,000,000 new passenger 

vehicles in total were sold in the US in 2017 (Table 15).  Based on the data and assumptions, most of the 

vehicles come from the US with around 1.5-2 million vehicles each from Ontario (Canada), East Asia, and 

Measurement Ocean Rail Truck
Fuel efficiency (loaded US ton-miles per gallon 
of fuel)

1,179 471 50

Energy consumption: gallons of fuel per US ton-
mile

0.00085 0.00212 0.02

CO2 emissions (g/ton-mi) 8.5 21.7 61.1
NOX emissions (g/ton-mi) 0.2085 0.2484 0.2328
SO2 emissions (g/ton-mi) 0.004      0.00017 
SOX emissions (g/ton-mi) 0.1218
PM10 emissions (g/ton-mi) 0.0172 0.0062 0.0047
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Mexico, and a smaller number coming from Europe. For example, Volvo sells about 81,000 vehicles in the US 

each year (Table 15) with approximately 60% coming from Europe and the rest from East Asia. Multiplying 

81,000 by 60% yields 48,600 Volvo vehicles originating from Europe to be sold in the US. This calculation 

was performed for all OEMs.  

Similarly, the modeled number of vehicles sold in the US by OEM is pictured (Figure 57). In this work, 

the modeled number of vehicles by OEM was constrained to match the observed US sales volumes by OEM. 

Ferrari and Aston Martin sales are too low to observe on the chart, but their sales information is noted above 

(Table 15).  

The modeled number of vehicles sold in the US by destination region is pictured (Figure 58). In this 

work, the total vehicles sold is constrained to match observed US sales data. 

 

 

 
Figure 56. Modeled vehicle origins by country/region. 
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Figure 57. Modeled vehicles sold in the US by OEM. 

 

 
 

Figure 58. Modeled vehicles sold in the US by destination region. 
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Modeled volumes by foreign origin were compared with the 2012 FAF data (Oak Ridge National 

Laboratory, 2017), which is based on the most recent US commodity flow survey. However, the FAF data is 

quite aggregate. For example, in the FAF data, SCTG 36 (which is the finest level of commodity detail; see 

USDOT and US Department of Commerce, 2017) covers shipments of: 

• Passenger vehicles; 

• Large commercial vehicles such as tractors and semi-trailers; and 

• Automobile parts. 

To develop a meaningful comparison with the modeled passenger vehicle, the tonnage of passenger 

vehicles within SCTG 36 of FAF needed to be better identified. This was accomplished as follows. First, the 

2012 Commodity Flow Survey (CFS) Microdata (US Census, 2015) sample was used to estimate the total 

tonnage of shipments sent by companies belonging to North American Industry Classification System 

(NAICS) category 336, which includes automobile manufacturers. Only shipments over 2,500 pounds (about 

the size of a compact car) that were valued at over $8,000 were included. Based on this, about 40% of SCTG 

36 shipments are composed of new vehicles. This figure includes not only passenger vehicle shipments but 

also shipments of motor homes, semi-trailers, etc. For now, it is expected that the FAF-based estimate should 

be higher than the modeled estimate in order to account for this. Further, US automobile sales were in 2017 

were about 20% higher than in 2012 (Statistica, 2018), which means the model estimates should be higher than 

the FAF estimates accordingly.  

While this comparison is not perfect, it underscores the value of agent-based approaches for modeling 

transportation flows. When aggregate data such as regional commodity flows are used instead, development 

and application of crude factors is the only way to utilize the data for more detailed analysis.  

Despite these issues, the adjusted FAF data provide a reasonable benchmark estimate for comparison with 

the modeled values. The resulting flows by origin region corresponding to Modeled and FAF, respectively, 

are:  

• Ontario: 1,509,173 and 1,766,797; 

• Mexico: 1,511,467 and 1,658,213;  
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• East Asia: 1,467,111 and 1,671,894; 

• Europe: 457,292 and 536,979;  

• Total: 4,945,044 and 5,633,883. 

Despite the caveats noted above, this comparison shows that the modeled and FAF-based estimates are 

indeed in the same general range.  

6.4.2 Predicted distribution of modes for automobile shipments 

Figure 59 shows the ton-miles of shipments that are estimated to use each mode. Ocean-based FAF ton-

miles are not shown since the FAF data account for only the US-based portion of travel, meaning that the FAF 

data do not include the vast majority of ocean-based ton-miles accrued by European and East Asian imports.  

Despite the shortcoming in comparison ocean-based travel, comparisons can be made for rail and truck 

travel. The comparisons indicate that proportion of truck and rail ton-mile estimates based on the model are 

similar in the model outputs and FAF, with a ratio of about two ton-miles shipped truck for every ton-mile on 

rail in each. Overall, modeled truck ton-miles are about 22% higher than FAF, which is expected due to growth 

in US sales between 2012 and 2017. Modeled rail ton-miles exceed the expected 20% (see earlier discussion 

regarding 2012 vs. 2017 sales), suggesting that a next step for the model approach would be to improve the 

modal estimation process.  

 Another point worth noting is that only 10% of shipments are estimated to use ocean modes. 

However, as shown above (Figure 59), this 10% translates into significant percentage of total ton-miles due to 

the long distances traveled across oceans. This highlights the importance of assembly plant location for its 

effects on the flow of goods. 

6.4.3 Predicted TECE by mode 

TECE results from this analysis are shown below in Table 17. Most of the fuel consumption is incurred 

by truck, which exceeds rail fuel consumption by about a 17:1 ratio. This is much greater than the 2:1 ratio in 

ton-miles, highlighting the relative fuel efficiency of rail. Similarly, ocean and rail fuel consumption are 

similar despite the greater ton-miles shipped by ocean, which is due to the relative fuel efficiency of ocean 

modes compared to rail.  by which the energy use is about evenly split. Truck shipping generates the greatest 



   
 

 

144 

 

CO2 emissions in this analysis, which is largely attributable to the reliance on truck for a majority of over-the-

ground ton-miles. Ocean shipping produces a minority of the total CO2 emissions. Ocean and truck shipping 

produce most of the NOX. However, for PM10 and sulfur-related emissions, ocean shipping is the largest 

producer. Recent legislation should significantly reduce these emissions (DieselNet with M. Pedersen, 2018).  

 

 

 
 

Figure 59. Millions of ton-miles by mode accrued by automobile shipments. 

 
 
 
 

Table 17. TECE results. 
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               27                31              527                         585 

CO2 emissions       270,701       320,625    1,610,561               2,201,887 
NOX emissions           6,624           3,672           6,135                    16,430 
SO2 emissions                 -               59.0               0.4                        59.4 
SOX emissions           3,869                 -                   -                        3,869 
PM10 emissions              547                91              124                         762 
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6.5 Case Study: Change in Agent Strategy 

A case study is presented to demonstrate the potential TECE impacts of a strategic move in assembly 

location. As the US market has been consuming more sports-utility vehicles and trucks and fewer small cars, 

in 2017, Ford made the strategic decision to shift production of the Ford Focus from Michigan to China in 

order to free up capacity at its Great Lakes plants for larger vehicles (Durbin, 2017) (Figure 60). For this 

analysis, it is assumed that US Ford Focus sales in 2019 will be the same as in 2017 (about 158,000 cars).  

 
Figure 60. Ford Focus assembly to move from Michigan to China. 
 

This analysis considers only Ford Focus vehicles that are sold in the US to demonstrate the effectiveness 

of the methodology in this study. A broader accounting would also include the effects on TECE associated 

with shipments of Ford Focus sales in other countries and shifts in SUV and pickup truck production.  

The TECE results of this analysis are shown below in  

Table 18. This uses the same assumptions stated above—e.g., that destinations in the Northeast and 

Southeast US use the Port of Baltimore while other US destinations use the Port of Los Angeles. Total ton-

miles by mode would increase as follows:   

• Ocean: an increase from zero to 2.9 billion; and 

• Rail: about 40% (from 107 million to 148 million). 

Ton-miles by truck is predicted to undergo little change, with approximately 239 million ton-miles in 

each scenario. Compared to baseline TECE associated with transporting the Ford Focus from Michigan, 

Ford Focus Production Moves from US to China
US Consumer Preference for SUVs Cited as

Reason for Shift

NEWS
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energy consumption would increase by 51%; CO2 emissions would more than double; and large increases 

would occur in NOX, PM10 and Sulfur-related emissions.  

Table 18. TECE analysis of Ford Focus case study. 

 
 

 

These results demonstrate that strategic decisions regarding supply chain strategies—in this case, near-

sourcing vs. foreign or low-cost country sourcing—have important implications for TECE. A single strategy 

and one OEM was examined here. Next steps could include finding the new TECE associated with shipping 

sports utility vehicles and trucks from the Great Lakes plants, but this is beyond the scope of the current work.   

 

6.6 Conclusions 

This chapter demonstrates the importance of assessing impacts of business strategy on goods movement 

and related outcomes. The study bridges a gap in the existing literature. This work has major implications for 

agent-based freight modeling since strategies are the guiding force behind many business decisions that shape 

the flow of goods and vehicles. An agent-based, sketch planning approach is developed in addition. The 

approach is applied to evaluate the energy and emissions impacts of a strategic shift in auto assembly location.  

Measurement Scenario Ocean Rail Truck Total Change % Change

Baseline -            0.23          4.77          5.00               

New 2.45          0.32          4.78          7.54               

Baseline -            2,333        14,586      16,919           
New 24,609      3,222        14,591      42,423           
Baseline -            27             56             82                  
New 602           37             56             695                
Baseline -            0.4            0.0            0.4                 
New -            0.6            0.0            0.6                 
Baseline -            -            -            -                
New 352           -            -            352                
Baseline -            0.7            1.1            1.8                 
New 49.7          0.9            1.1            51.7               

SO2 emissions

SOX emissions

PM10 emissions 49.94 2791%

N/A351.73

0.16 38%

612                

151%25,503           

2.54 51%

Emissions (1,000,000s of grams)

744%

CO2 emissions

Energy 
consumption: 
gallons of fuel 
(1,000,000s)

NOX  emissions



 

 

7 Conclusions 
 
 
7.1 Summary 

This thesis provides an innovative new paradigm for agent-based modeling of freight transportation. The 

work is motivated by numerous, fundamental gaps in extant, agent-based freight transportation behavioral 

models. Existing working systems use the establishment as the agent and do not consider collections of 

establishments, also known as firms. By and large, existing frameworks also do not model critical 

transportation decisions such as private fleet ownership, fleet size and fleet composition; and distribution 

center decisions such as location. However, decades of passenger modeling experience have shown that agent 

collections (e.g., the household) are important to model along with a more fundamental agent (the person), and 

that household location decisions and fleet ownership are critical inputs to everyday transportation decisions 

such as mode choice and tour patterns. By analogy, just as both home and workplace locations inform the 

passenger tour, factory and distribution center (for example) locations inform the freight tour. Based on this 

experience, and on insights from the business domain, remedying these gaps while simultaneously developing 

innovative features is a major thrust of this research. 

A theoretical, agent-based modeling architecture is developed to fulfill this vision (Figure 61). Each layer 

plays a different functional role in agent behavior. The highest, strategic level covers decisions that have an 

enduring impact such as investment in fixed assets. The tactical layer covers decisions that can be altered more 

easily, such as shipment decisions. The operational layer covers everyday decisions including scheduling of 

vehicle tours and adjustment of routes in real-time. The design of the architecture supports the 

operationalization the famous push-pull boundary that is witnessed in supply chains. This boundary is related 

to information sharing among agents, or visibility of the end consumer, and it has important effects on 

production, consumption, inventory, and shipment size decisions. Since information availability continues to 

grow and change, it is more important than ever to model this phenomenon. An “Effect of Information” is 

integrated into the architecture for this reason. Interactions between freight and passenger travel, such as with 

retail goods movement and crowd-shipping, are also considered. Parts of the theoretical framework are 
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operationalized in a proof of concept where several of the framework features, including distribution path 

choice and interactions of freight and passenger retail activity, are also implemented. 

The architecture is centered around firm strategy, which is an unseen policy that the agent adopts to guide 

its decisions and activities. Strategy plays a key role in unifying upstream and downstream decision-making by 

the agent. The architecture operationalizes firm strategy by deploying a novel mathematical system that jointly 

considers firm strategy and strategic decisions for a number of dimensions. The framework uses a Seemingly 

Unrelated Regression (SUR) system, which is well established in the econometrics literature, and extents the 

SUR model by introducing latent variables, which are firm strategies. A Gibbs Sampling solution method is 

implemented to estimate the model parameters of this system. The outcomes, strategic decisions, are used 

either “as is” or are fed into downstream model decisions such as facility location decisions.   

 

 

Figure 61. Summary figure: strategy in the agent-based modeling context. 
 

A proof of concept demonstrates the value of this approach by modeling two strategies, Logistical 

Sophistication and Customer Service focus, jointly with eight strategic decisions that involve various facets of 

private fleet ownership and distribution center (DC) control. The strategies are shown to impact the strategic 

decisions along with exogenous firm characteristics including industry sector, providing convincing evidence 
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with respect to the jointness of these decisions. To demonstrate the connection between strategy and 

downstream decisions, the DC-related strategic decisions, which in this case operationalize firm strategies as 

they relate to fixed asset investments, are applied to analyze a multiple discrete-continuous decision (total DC 

area in each FAF zone throughout the US). A new algorithm is developed and applied to use the strategic 

decision outcomes for purposes of estimating both the national distribution center structure of a firm. A mock-

up showing how to further use the outcomes as choice set generation parameters, for distribution center 

location choice in this case, is also illustrated. The proof of concept itself provides valuable model results in an 

under-researched area by providing a way to estimate firm-level private fleet and distribution center structure 

simultaneously. It provides statistical evidence that strategy does, in fact, impact strategic logistics control 

decisions, and it gives important insights more generally into how companies make decisions regarding 

internalization versus outsourcing of logistics controls.   

Two innovative methods are developed to generate measurements of strategy using natural text. This 

development is motivated by the complete gap of quantitative strategy data for firms. The Simple Scaled Bag-

of-Words (SS-BOW) algorithm creates measurements of firm strategy based on relative usage of select words, 

while the word2vec-Principal Components Analysis (w2vPCA) algorithm creates measurements based on 

quantifying relative differences in word use among firms. The concept is proven by applying each method to a 

sample of large-scale text data, which are generated by the Attitudinal Data Development Engine (ADDE) that 

is designed and implemented expressly for this purpose. A battery of evidence, including visualization, 

statistical testing of means, and factor analysis, is compiled to prove the value and reasonableness of the new 

methods. The measurements are also input to the SUR model that is described above, which produces intuitive 

results regarding underlying strategy.  

Finally, a global sustainability analysis demonstrates that modeling agent strategies is extremely relevant 

to predicting the impacts of business activity on transportation flows, energy use and emissions. The main 

purpose of the sustainability analysis is to demonstrate how strategy can have major, far-reaching impacts for 

transportation-related outcomes. In the process, a method to evaluate the transportation energy consumption 

and emissions (TECE) specific to global, multimodal transportation—and additionally to the automotive 

manufacturing industry in particular—based on various supply chain configurations and strategies is proposed 
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and demonstrated. A host of data is collected to conduct the analysis. A case study shows that near-sourcing in 

the automotive assembly context—that is, assembling automobiles near their sales locations—as a firm 

strategy supports sustainability. In contrast, sourcing from foreign assembly locations can have significant, 

detrimental impacts on energy use and emissions.  

 

7.2 Extensions 

The first priority is implementing the remaining aspects of the new architecture. Chapter 3 discusses the 

implementation to date. The next steps are to model the firm structure among establishments and update their 

trade collaborations at the firm level; to implement the strategic logistics decisions model results directly into 

the computational system (POLARIS); and, for firms with no private fleet or distribution control, to model 

their relationships with carriers and 3PLs. The carriers model, with decisions resulting in transport and 

logistics service offerings, needs to be developed. E-commerce is already implemented but can be updated 

with recent data. The Information Effect and push-pull boundary need to be coded. The mathematical details 

for the above elements need to be worked out. Truck touring models are currently external to the main 

computational program, so these need to be integrated directly.   

Future efforts can extend and improve the strategy data algorithms in several ways. Meta-analysis 

methods can be developed to improve on the process of keyword selection. Procedures to compare SS-BOW 

and w2vPCA methods can be further developed, then applied to determine which method is superior. 

Researchers can apply the methods in different contexts to strengthen empirical evidence of their validity. A 

rigorous comparison of the methods and their results to established methods in survey-based attitudinal 

measurements should be undertaken. Mathematical proofs for these methods should be developed. Processes 

to improve the preparation of input data should be developed. 

The strategy model can be extended in several directions. The methodology can be extended to include 

ordinal decisions in addition to binary and continuous decisions. Additional research can shed light into what 

decisions are best characterized as strategic. This will have implications for the modeling structure, as strategic 

decisions are proposed to be modeled early in the model stream and other decisions downstream. Differences 

in this application for passenger and freight contexts can be explored. The application shown here can be 
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extended to utilize a larger sample size and more independent variables, with related improvements being the 

use of separate samples for estimation and validation. The various models that are estimated can be improved 

with additional calibration and validation.  

The sustainability estimation assesses the impacts of shipping in the final stages of the automotive supply 

chain. A more complete accounting of energy consumption and emissions would involve applying the methods 

to the supply chains of other industries and across all stages of the supply chain. More immediate potential 

improvements relate to using a finer level of geographic and network detail and improving the mode and port 

choice processes.   

Finally, adaptations to passenger models are logical extension of this work. The concepts of strategy and 

strategic decisions as unifying elements for passenger modeling decisions can be explored. The strategy model 

can be deployed for passenger-specific applications. The attitudinal data development algorithms can be 

applied to develop attitudinal data for individual persons.  Unbiased sources of strategy data that are analogous 

to annual, mandatory company reports will need to be located.   
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