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SUMMARY

In brain connectivity research one of the primary objectives is to identify differential con-

nectivities that may be potentially associated with the underlying pathophysiology of neurolog-

ical and psychiatric disorders, and further enhance our knowledge to study the complex brain

structure, function and the relationship with human behavior. For exploratory neuroimaging

studies to compare disease group and healthy control group, the main purpose is to detect

any signal and thus thousands of hypotheses are tested simultaneously, which is known as the

large-scale simultaneous hypothesis testing problem. Most of the hypotheses tested are null,

that is, nothing but noise, while a very small number of them may contain true signals. Over

the last three decades, the false discovery rate (FDR) and local FDR (Lfdr) methods have been

developed to address this problem (Benjamini and Hochberg, 1995; Efron et al., 2001; Efron,

2007). Typical neuroimaging studies usually have small sample size due to the high economic

cost, leading to low statistical power and high probability of falsely significant findings (Szucs

and Ioannidis, 2019). The existing methodologies do not provide a satisfied control of FDR es-

pecially for small sample size studies, neither capabilities that allow integration of multimodal

neuroimaging data into statistical modeling.

The information provided by multimodal imaging techniques can be complementary to each

other and thus integrated multimodal analysis enables us to borrow strength from different

modalities. A covariate-modulated Lfdr method has been used in genome-wide association

studies to incorporate functional genome annotations as covariates in the model and proved

to be efficient by increasing power (Zablocki et al., 2014; Torkamani et al., 2011). We extend

this method to multimodal neuroimaging data, aimed to improve FDR control and sensitivity

xiv



SUMMARY (Continued)

to detect differential functional connectivity (FC) links between disease group and healthy

control group in a cross-sectional, comparative, multimodal neuroimaging study with small

sample size. We implement a Bayesian multimodal Lfdr approach, which utilizes a Bayesian

mixture model to leverage complementary structural connectivity (SC) statistics and enhance

the modeling of the density of FC statistics. The approach is general and can be useful in

a broad spectrum of applications. The utility of Bayesian multimodal approach is illustrated

with extensive simulation study and a neuroimaging study in late-life depression (LLD) in

which both FC (measured using resting-state functional magnetic resonance imaging) and SC

(measured using diffusion tensor imaging) data were measured on each of the 23 participants

(13 healthy subjects and 10 LLD patients). We demonstrate in simulation study, that Bayesian

multimodal Lfdr method performs numerically better in terms of FDR control by comparison

with the traditional Lfdr method that solely considers FC especially when sample size is small.

Results from the LLD neuroimaging data analysis using Bayesian multimodal Lfdr method

are (i) that the right dorsolateral prefrontal cortex (dlPFC), a major node in central executive

network (CEN), is identified as a primary hub region that has significantly increased FC to the

other seven regions in LLD patients as compared to healthy controls; (ii) that disrupted FC pat-

tern associated with LLD are found within and across the major large-scale neurocognitive and

internally-guided resting-state brain networks including CEN, default mode network (DMN)

and salience network (SN). The results suggest that degeneration of specific hubs within the

CEN, DMN, SN and fusiform face area for facial cognition may contribute to a deterioration

of memory and cognitive functions in LLD.

In addition, we have employed a Bayesian multiple comparison method via a non-parametric

Bayesian Dirichlet process mixture (DPM) model directly on FC data in the LLD neuroimag-

xv



SUMMARY (Continued)

ing study, as a comparison with the results from Bayesian multimodal Lfdr method. Bayesian

DPM model imposes no model assumptions and can also mimic hypothesis testing framework

while preserving FDR due to the model-based clustering properties. The results consistently

suggest the dlPFC within the CEN as a primary hub with enhanced FCs to regions in the CEN

and DMN for LLD. Besides, increased FCs in affective network and sensorimotor network are

identified to be associated with LLD.
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CHAPTER 1

INTRODUCTION

Human brain is not only the command center of human body, but it is also the most com-

plex dynamic network and biologic system that integrates structural and functional information

(Sporns et al., 2005). Human brain consists of 86 billion neurons (i.e., nerve cells) on average

(Azevedo et al., 2009). As the basic structure in the central nervous system, the neurons are

specialized to process and transmit intracellular signals (communication within the cell) and

intercellular signals (communication between cells). Their communication with each other is

by the movement of chemicals or electrical signals across synapses, that are the connections

between neurons through which the information flows from one neuron to another. Each neuron

has approximately 10,000 synapses, that is, connections with 10,000 other neurons. Hence, the

neurons forms a a network (known as neural network) to process all information in and out

of the central nervous system. For centuries, many research scientists have put great efforts

to study human brain in order to have a detailed understanding on how neurons and neural

networks work by reading in information, transforming those information into processes, and

producing guidance and control on the way we think, feel and behave. Brain is analogous to

a super computer, or more precisely, a symphony orchestra in which the neural networks work

synchronously in a specifically complex and coordinated way like musicians to produce rhythms

as a whole and a tiny out-of-tune disruption can lead to dysfunction and further disorder.

The advances in modern magnetic resonance imaging (MRI) techniques and statistical

methodologies for neuroimaging data analysis have enabled the brain research to progress

tremendously during the last two decades. However, to address the exquisitely complicated

1
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relationship between brain structure, function and human intelligence and behavior remains a

compelling scientific challenge. In the last ten years, the scientific society worldwide has realized

that this sophisticated puzzle cannot be resolved with knowledge and efforts from one academic

area and started forming interdisciplinary collaborations among expertise from neuroscience,

medicine, psychiatry, psychology, mathematics, statistics, computer sciences, engineering, etc..

In 2009, the National Institute of Health launched the Human Connectome Project with an

ambitious goal to build a comprehensive map of neural connections in the brain (known as

connectome) that will enhance our knowledge on the structural and functional connectivities in

healthy human brain and shed light on the pathophysiological activities in the study of brain,

behavior, and clinical disorders (Van Essen et al., 2013). Furthermore, in 2013, the European

Union started the Human Brain Project, a large ten-year scientific research project, to build a

research infrastructure in neuroscience, statistical computing and medicine (Salles et al., 2019).

One of the key aspects of brain research is to study brain connectivity patterns and networks

that are specifically involved in the underlying pathology of neurological and psychiatric disor-

ders (Rowe, 2010). Brain connectivity refers to the interactions between two different regions

within the cortical and subcortical networks in the brain. Changes in the brain connectivities

can relate to dysfunction of certain cognitive processes leading to neurological disorders. There

are three main categories of brain connectivities, which are structural, functional and effective

connectivity. By definition, structural connectivity (SC) is the structural (or anatomical) link

such as fiber pathways between two discrete brain regions, which typically corresponds to the

white matter tracts connecting cortical areas/nuclei. Functional connectivity (FC) is defined

as “the temporal correlation (or statistical dependency) between spatially remote neurophys-

iological events” (Friston et al., 1993; Friston, 1994). That is, FC is a “statistical concept”
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that reflects “the synchronized and correlated patterns of neural activity between two regions

that are structurally connected or unconnected” (Friston, 1994). The third category, effective

connectivity (EC) refers to “the causal influence of one neural element over another either di-

rectly or indirectly” (Friston et al., 1993), that is, a signal or activation in one region directly

or indirectly causes change, signal, activation or suppression in another region. Similar to FC,

EC can also be found between two structurally unconnected brain regions. Though not clear,

the relationships among the three modes of brain connectivity might be described as both seg-

regated and integrated (Tononi et al., 1994). In this thesis, we focus on integration of SC and

FC data to help improve false discovery rate (FDR) control to identify disrupted FCs associate

with the disorder.

The MRI has been regarded as a milestone breakthrough in medical diagnostics and re-

search. In 2003, Professors Paul Lauterbur and Peter Mansfield were awarded the Nobel Prize

in Physiology or Medicine for their discoveries of MRI in 1970’s. The MRI technique provides

objective and precise measurements of brain activities and it continuously gains popularity, as

a result neuroimaging studies have been widely used to investigate brain connectivity within

network and between networks in both clinical and cognitive neuroscience research areas since

then. Brain connectivity studies are of particular interest to elucidate connectivity patterns

associated with pathophysiology of neurodegenerative, psychiatric and neurological disorders

such as attention-deficit hyperactivity disorder, autism, dementia, depression, schizophrenia,

bipolar, post-traumatic stress disorder, traumatic brain injury, stroke, Alzheimer’s disease and

epilepsy.

The in vivo neuroimaging techniques include structural imaging modalities (for example,

diffuse tensor imaging) and functional imaging modalities (for example, functional magnetic
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resonance imaging). Structural connectivity can be measured using diffusion weighted imaging

(DWI) and the T1-based connectivity. Using DWI, the connectivity matrices can be built

based on SC inferred from white matter connections between two brain regions. Physical

properties of the fibers like fractional anisotropy and mean diffusivity as well as number of

crossing fibers (i.e., percentage of all fibers passing from or ending in two brain regions) can

be used. The connectivity matrices based on T1 are built using correlation coefficient of sizes

of the two brain regions. Diffusion tensor imaging (DTI) is an anatomical MRI technique that

is used to provide detailed information on the microstructure of brain’s white matter tracts

such as the tracts’ position, orientation and anisotropy based on measurement of the diffusion

of water molecules along different direction within the brain tissues using a diffusion tensor

that elucidates behavior of anisotropic diffusion, in which model diffusion is assumed to follow

multivariate normal distribution (Basser et al., 1994).

Approximately 73% of the human brain is composed of water (Mitchell et al., 1945). Diffu-

sion magnetic resonance imaging captures diffusion of water molecules in tissues, here diffusion

refers to the random motion driven by thermal energy, or Brownie motion. In an unrestricted

environment, the water molecules move randomly and diffusion is same in every direction, which

is referred to as isotropy. On the other hand, in a constrained environment, the water molecules

move along one axis, which is referred to as anisotropy. In the presence of isotropy, diffusion can

be characterized by a single diffusion coefficient D. While in the presence of anisotropy, diffu-

sion cannot be described by a single number, but a three-dimensional diffusion tensor assuming

the shape of an ellipsoid as illustrated in Figure 1.
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Source: Jellison et al. (2004)

Figure 1. A three-dimensional diffusion tensor assuming the shape of an ellipsoid

(a) Along a fiber tract. (b) In the three-dimensional diffusivity model as an ellipsoid with the degree of diffusivity

along the three axes characterized by three eigenvalues (λ1, λ2, λ3) and orientation characterized by corresponding

eigenvectors (ε1, ε2, ε3).

The mathematical model to describe the ellipsoid shape for diffuse tensor consists of a 3×3

symmetrical matrix with 6 degrees of freedom (i.e., 6 elements are independent), indicating that

constructing a diffusion requires at least 6 directions,

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 , (1.1)

where the three diagonal elements of the tensor matrix denoted by Dxx, Dyy, and Dzz represent

the “diffusion coefficients measured in the laboratory frame of reference along each of the

principal directions” X, Y and Z, respectively, while the rest six off-diagonal elements denoted by

Dxy, Dyz, Dxz, Dyx, Dzy and Dzx indicate “correlations between random motions corresponding

to each pair of principal directions” (Elster). The tensor matrix D can be diagonalized into
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a diagonal matrix Λ containing three positive eigenvalues (λ1, λ2, λ3) (in decreasing order,

i.e., λ1 > λ2 > λ3) and a matrix E composed of three corresponding linearly independent

eigenvectors (ε1, ε2, ε3),

D = E−1ΛE, where

E =

[
ε1 ε2 ε3

]
and Λ =


λ1 0 0

0 λ2 0

0 0 λ3

 , (1.2)

As D is symmetric and D is diagonalized as in Equation (1.2), the eigenvector matrix E is

orthogonal, E−1 = ET . The three eigenvalues assess the degree of diffusivity along the three

axes with orientations defined by the corresponding eigenvectors. The primary eigenvector

corresponding to the maximum of the three eigenvalues determines the direction of maximum

diffusivity, based on which the orientation of fiber tracts can be traced. These calculated

eigenvalues and eigenvectors can be used to create images reflecting various diffusion properties

of a tissue.

Mean diffusivity (MD) and fractional anisotropy (FA) are the two main indexes based

on the eigenvalues to represent the magnitude of diffusion (Conturo et al., 1996; Pierpaoli

and Basser, 1996; Mukherjee et al., 2008). The MD is the average of the three eigenvalues,

MD = (λ1 + λ2 + λ3)/3 = trace/3. The FA is a scaled measure of the degree of anisotropic

diffusion within a voxel (a voxel represents a very small cube of brain tissue composed of

approximately a few million neurons), defined in terms of its eigenvalues by,
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FA =

√
3

2

√
(λ1 −MD)2 + (λ2 −MD)2 + (λ1 −MD)2

λ2
1 + λ2

2 + λ2
3

, (1.3)

where the scaling factor
√

3
2 is used to make the value of FA to have a range between 0 and 1.

In case of isotropic diffusion, where λ1 = λ2 = λ3, “the diffusion ellipsoid is a sphere” and FA

= 0. With higher degree of diffusion anisotropy, “the eigenvalues becomes more unequal, the

ellipsoid becomes more elongated in one direction” and FA goes to 1 (Elster). Note that FA

contains no information about the orientation, so it is invariant to rotation. The FA value is

calculated for each voxel, based on which an FA map can be generated.

Functional magnetic resonance imaging (fMRI) measures intrinsic brain activity based on

synchronous blood-oxygen-level dependent (BOLD) correlation. It detects changes in cerebral

hemodynamic flow associated with neural activity in the cortex of the human brain, which is

known as neurovascular coupling, both in the resting-state and task-state. Ogawa et al. (1990)

first demonstrated that BOLD signal can measure the inhomogeneities in magnetic field due

to changes in the level of oxygen in the blood, and thus suggested the use of MRI as a non-

invasive yet in vivo (i.e., within living organism) study of brain function. Hemoglobin is an

iron-containing protein in the blood that transports oxygen to the tissues. It is made up of

“4 polypeptide chains (α1, α2, β1 and β2)” (Encyclopaedia Britannica, 2020). Each chain is

attached to a hemo group, at the center of which is an iron atom (Fe). Each iron ion (Fe2+)

can attach an oxygen molecule. Thus hemoglobin has two forms: Oxyhemoglobin is the form of

hemoglobin with the bound of oxygen, while deoxyhemoglobin is the form of hemoglobin without

the bound of oxygen. The two forms of hemoglobin exhibit different magnetic properties.
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Oxyhemoglobin has no unpaired electrons and is weakly diamagnetic (Pauling and Coryell,

1936), it is therefore repelled by magnetic fields. In contrast, deoxyhemoglobin has 4 unpaired

electrons at each iron center, and thus exhibits strong paramagnetism and creates local magnetic

field distortions (also called susceptibility gradients) in and around the blood vessels. In terms of

magnetic susceptibility, which is a quantitative measure of the extent to which a material may be

magnetized in an applied magnetic field, paramagnetic deoxyhemoglobin has positive magnetic

susceptibility and increases a magnetic field. As the ratio of deoxyhemoglobin to oxyhemoglobin

decreases caused a reduction in the magnetic susceptibility, the transverse relaxation time (i.e.,

the decay of the MRI signal induced by the processing transverse nuclear magnetization, in

gradient-echo, referred to as T2*) becomes longer, and hence magnetic resonance (MR) signal

intensity increases. The mechanism of BOLD fMRI is depicted in Figure 2.

When a brain region receives a stimulus corresponding to a particular task, it becomes

more active and the blood flows at a higher rate that requires more local supply of oxygen

and glucose, which leads to an increase of local oxygen and glucose consumption in the brain

tissue that is followed by an increase in cerebral blood flow (CBF). The percentage increases

in CBF and glucose consumption are comparable and much higher than oxygen consumption

(Fox and Raichle, 1986; Fox et al., 1988), resulting in an oversupply of oxygen that forms the

basis of BOLD fMRI. Attwell and Iadecola (2002) suggested that the CBF increase associated

with the neural activity may not be a result of the increased energy metabolism demands,

but controlled by neural signaling mechanisms that require further investigation. Therefore,

weakly diamagnetic oxyhemoglobin releases oxygen and becomes strongly paramagnetic de-

oxyhemoglobin, leading to an increase of the concentration of deoxyhemoglobin. Due to the
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paramagnetic property of deoxyhemoglobin, the increase in deoxyhemoglobin concentration can

reduce the BOLD signal and the change of BOLD signal can be detected by fMRI.

Figure 2. Mechanism of BOLD fMRI

As shown in Figure 3, the time course of a typical BOLD signal in response to neural

activity can be characterized by three phases: initial dip, peak and post-stimulus under-shoot.

Immediately following neural activity, as a result of increase in local oxygen consumption the

concentration of oxyhemoglobin deceases, which causes an initial small and negative dip of

BOLD signal. In about 2-3 seconds, the signal drops to its lowest point. To compensate for

the increased demand for oxygen, the vascular system increases CBF with increased amount
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of oxyhemoglobin relative to the deoxyhemoglobin. Because the deoxyhemoglobin attenuates

the MR signal an increase in the relation between oxyhemoglobin and deoxyhemoglobin leads

to an increase of the BOLD signal. In about 4-6 seconds, the signal reaches to a peak. This

positive BOLD signal phase is the main focus of fMRI, and the underlying reason why more

oxygen is delivered to these vessels than is needed is still unclear. If there is no more stimulus,

the signal gradually declines to a point that is lower than the baseline and then slowly returns

to the baseline level, which is known as post-stimulus under-shoot phase.

Source: Radiopaedia

Figure 3. Time course of BOLD signal change in response to neural activity

Biswal et al. (1995) first observed high coherent synchronous correlation between the BOLD

signals (i.e., FC) from the regions of the somatomotor system in the left and right hemispheres of



11

the brain in healthy volunteers during resting conditions and demonstrated that BOLD signals

reflect neural activities for both resting-state and task-state. Since then the resting-state fMRI

(rs-fMRI) has been applied extensively in cognitive neuroscience research to study patients

with neurological, mental or psychiatric disorders as well as healthy subjects as control, in

order to evaluate behavior-related physiological changes in human brain that occur in a resting

state (Uddin and Menon1, 2010), for the rs-fMRI procedure is relatively less demanding in

terms of mental tasks and its scan length is short (less than 10 minutes). Studies show that

using rs-fMRI can help identify defects in FC in various forms of neurological disorders such as

Alzheimer’s disease (Binnewijzend et al., 2014; Dai et al., 2015), psychiatric disorders including

schizophrenia (Liang et al., 2006; Li et al., 2019), depression (Zhou et al., 2010; Andreescu et al.,

2011; Alexopoulos et al., 2012), dementia, attention deficit hyperactivity disorder (Castellanos

et al., 2008; Uddin et al., 2009) and autism spectrum disorder (Cherkassky et al., 2006; Uddin

et al., 2013; Woodward et al., 2017).

A schematic diagram of construction of FC map in the human brain is illustrated in Figure

4. During the rs-fMRI experiments, the participants are placed in the scanner and instructed

to stay quiet with their eyes closed and mind relaxed without thinking of anything particular.

The fMRI scan generates a three-dimensional image, that is built up in voxels. The BOLD

time-course series from each voxel are measured by MRI scanner as shown in Figure 4a. Next,

select seed regions of interest (Figure 4b). Then compute the correlation between the BOLD

time-series signal from the two selected seed voxel i and voxel j (Figure 4c) as a quantification of

FC with the calculated correlations among all selected seed regions of interest, we can construct

a FC map and high correlation indicates a high FC level (Figure 4d).
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Source: van den Heuvel and Hulshoff Pol (2010)

Figure 4. Construction of FC map in the human brain based on rs-fMRI
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The commonly used statistical methods for calculation of FC based on rs-fMRI can be

grouped into model-driven methods and data-driven methods (Li et al., 2009). The model-

driven approaches such as cross-correlation analysis (Cao and Worsley, 1999; Hyde and Jes-

manowicz, 2012) and coherence analysis (Sun et al., 2004) and statistical parametric mapping

employing general linear model (Friston et al., 1994a) are based on selected seed regions of

interest. The data-driven decomposition methods include multivariate analyses methods such

as principle component analysis (Friston et al., 1993), independent component analysis (Franco

et al., 2008) and clustering analysis (Goutte et al., 1999).

In general, cross-correlation analysis is the most commonly used model-based method to

measure FC (defined as the statistical dependency between the BOLD time series) due to its

simplicity. The FC can be estimated by computing the Pearson correlation coefficients between

the two BOLD time courses corresponding to each pair of ROIs collected on the same participant

at lag of k, denoted by vectors X(t) and Y (t+ k), respectively.

rXY (k) = Cor{X(t),Y (t+ k)} =
Cov(X(t),Y (t+ k))√

Var(X(t))Var(Y (t+ k))
, (1.4)

The zero-lag correlation has been used in many studies (Ogawa et al., 1990; Bandettini et al.,

1993; Friston et al., 1994b; Biswal et al., 1995).

Notwithstanding the major technical advantages of MRI, a few challenges remain. First,

high-throughput neuroimaging technologies generate incredibly large amounts of data, so called

“big data”, which can be very difficult in terms of data analysis and result interpretation. The

neuroimaging studies comparing two groups (e.g., disease group and healthy control group)

are considered exploratory and the primary objective is to detect any differential connectivities
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associated with the disease. As such, thousands of hypotheses are tested simultaneously that

is known as the large-scale simultaneous hypothesis testing problem (Efron, 2004). Most of

the hypotheses tested simultaneously are null containing nothing but noise, while only a small

number of them are true signals. This sparsity issue makes detecting these true signals very

challenging (Cai and Sun, 2017). The conventional statistical method used for multiple testing

to control family-wise error rate (e.g., Bonferroni correction) tends to be overly conservative

in large-scale hypothesis testing, leading to a high chance to miss out a lot of important dif-

ferences that may be meaningful to the researchers. The false discovery rate (FDR) method

has been used to address this multiple testing issue in neuroimaging (Benjamini and Hochberg,

1995; Genovese et al., 2002), where FDR is defined as the expected proportion of false positives

among all rejected hypotheses. Efron et al. (2001) further extended the FDR concept from an

empirical Bayesian perspective and proposed a test statistics based local false discovery rate

(Lfdr), defined as the posterior probability of the null hypothesis is true given the observed test

statistics. Efron’s Lfdr method allows us to fully explore the distribution of test statistics and

hence provides a more precise control of FDR. Zhao (2014) proposed a mixed-effects regression

model (MERM) assuming random subject effect and heteroscedastic errors at both group level

(e.g., disease group and healthy control group) and connectivity link level to discover disruptive

FCs while controlling FDR using rs-fMRI data. Several existing statistical approaches that are

commonly used for FDR control in neuroimaging data analysis have been investigated and com-

pared via simulation studies, and Efron’s Lfdr method based on densities of test statistics was

recommended as the best suited approach for between-group comparisons to detect disrupted

FCs (Song, 2016; Bhaumik et al., 2018b).
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Second, the current economic cost of the imaging techniques is high and consequently, most

of neuroimaging studies have relatively limited number of subjects. Szucs and Ioannidis (2019)

conducted a systematic review and evaluation of sample size across the highly cited published

MRI study papers between 1990 and 2012 and reported a median sample size of 12.5 per group

based on the 107 clinical fMRI studies with more than one group. The high sample variability

associated with the small sample size will lead to lower power, and thus higher probability of

falsely detecting significant findings. The existing statistical methodologies do not provide a

satisfied control of FDR especially for the neuroimaging studies with small sample size (Song,

2016; Bhaumik et al., 2018b).

The third challenge is how to incorporate multimodal neuroimaging data in statistical mod-

eling. Previous neuroimaging studies on FC and SC using quantitative/computational modeling

(Koch et al., 2002; Honey et al., 2009) revealed evidence that regions with high SC also exhibit

high FC, but high FC can also occur in regions with low SC. These results suggest that strong

SC can be a predictor of strong FC, but not for the reverse case (i.e., weak SC cannot be a

predictor of weak FC). The information provided by multimodal imaging techniques can be

complementary to each other and thus using integrated multimodal analysis enables us to bor-

row strength from different modalities. In a review paper of studies combining both structural

and functional connectivity data Rykhlevskaia et al. (2008) discussed different approaches to in-

tegrate FC and SC including analysis of FC informed by SC. Zhao (2014) developed a bivariate

linear mixed-effects model with random subject intercepts and heteroscedastic errors to analyze

FC and SC data jointly. The model incorporates both the between-modality and within-subject

correlations between FC and SC. Xue et al. (2015) introduced a Bayesian multimodal approach

directly on FC time series data incorporating SC data into modeling the prior distribution of



16

FC. Chiang (2016) developed a Bayesian vector autoregressive model that combines multimodal

neuroimaging data by integrating structural imaging data into prior information to improve in-

ference of EC. Zhang et al. (2019) introduced a covariate-adaptive method employing a mixture

of generalized linear model and Gaussian model to optimize p-value threshold for multiple hy-

pothesis testing, and applied it to the fMRI data with Brodmann area (BA, cerebral cortex

regions) label as covariate.

Statistical methods for FDR control such as Efron’s Lfdr that solely considers FC data do

not account for the potential influence of SC into density estimation of FC test statistics. Thus,

my research focuses on development of a statistical method to incorporate the test statistics us-

ing MERM from multimodal neuroimaging data in a Bayesian mixture model for FC detection,

to improve the FDR, especially for multimodal neuroimaging studies with small to moderate

sample sizes.

A covariate-modulated Lfdr method has been used to incorporate functional genome anno-

tations in the model and proved to be efficient by increasing power in genome-wide association

studies, where the sample size was sufficiently large (Zablocki et al., 2014; Torkamani et al.,

2011). My research focus is on FDR control in a cross-sectional (i.e. , comparative multimodal

neuroimaging study with small samples size. In this thesis, we extend the covariate-modulated

Lfdr method to multimodal neuroimaging data and implement a Bayesian multimodal Lfdr

approach to integrate SC and FC statistics utilizing a Bayesian mixture model. This approach

leverages the complementary SC statistic as auxiliary information to enhance the modeling of

the FC statistics distribution for the identification of differential FCs between the two groups.

The remainder of the thesis is structured as follows. Chapter 2 introduces a neuroimaging

study in late-life depression (LLD), which is the motivating example for this research where
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FC and SC data were collected from each participant. Chapter 3 describes a linear MERM

with heteroscedastic errors in technical details, which has been used to analyze the FC and

SC data in neuroimaging study and provide the test statistics for hypotheses testing associated

with each connectivity link. Chapter 4 starts with a brief review on the large-scale simul-

taneous hypothesis testing problem and the existing statistical methods that have been used

to control family-wise error rate and FDR, and then elaborates a Bayesian multimodal local

false discovery rate (Lfdr) method utilizing a Bayesian mixture model that integrates FC and

SC data. This is followed by an extensive simulation study designed to evaluate the perfor-

mance of this method by comparison with Efron’s Lfdr method that solely considers FC for

FDR control in neuroimaging. Chapter 5 describes a semi-parametric Bayesian approach uti-

lizing a non-parametric Dirichlet process mixture (DPM) model, which has been developed by

Ghosal (2019) to study differential FC between patients with autism spectrum disorders and

controls using rs-fMRI data. As a Bayesian multiple comparison approach, this Bayesian DPM

model does not impose any model assumption and also can be used to mimic hypothesis testing

framework, while preserving the false discovery rate. Therefore, this method is applied to the

motivating study as an alternative approach for FC data analysis for a comparison purpose.

Chapter 6 presents results using Bayesian multimodal Lfdr method as well Bayesian DPM model

in the motivating multimodal neuroimaging study in LLD for identifying differential FC links.

Details on the results focusing on the FC patterns found within and between the major brain

networks that may be associated with LLD are discussed. Further, a comprehensive comparison

between Efron’s Lfdr, Bayesian multimodal Lfdr, and Bayesian DPM model is also provided in

this chapter. Chapter 7 concludes the thesis, discusses the limitations of the current framework

and provides suggestions and thoughts for future work.



CHAPTER 2

MOTIVATING EXAMPLE: A MULTIMODAL NEUROIMAGING STUDY

IN LATE-LIFE DEPRESSION

2.1 Background

What has motivated us to form this research topic was a cross-sectional, comparative

neuroimaging study in late-life depression (LLD) to compare LLD group vs. healthy control

group investigated by Dr. Ajilore at University of Illinois at Chicago (UIC). In this study,

multimodal neuroimaging data including FC (measured using rs-fMRI) and SC (measured using

DTI) were collected at a single time point on each participant. The objective of this study is to

investigate intrinsic FC patterns of whole brain networks that are impaired during depression,

to help prioritize FC patterns for further consideration as potential biomarkers in the future

interventional clinical studies.

Particularly, two features of this study are worth to mention. First it has a small sample

size, which is typical issue in neuroimaging studies. Second, the study has FC and SC measures

from each participant, allowing us to explore ways to incorporate both modality measures to

improve efficiency in detecting FCs while controlling FDR.

Patients with LLD are usually over 50 or 60 years old of age and have major depressive

symptoms. The most prominent major depressive symptoms are severe and persistent low mood

and self-esteem, profound of sadness or a sense of despair, and loss of interest in activities

that are usually enjoyable. As the world population of adults aged 60 years and older is

expanding rapidly from 900 million in 2015 to 2 billion by 2050 (World Health Organization,

18
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2018), focus on understanding the age-related disorders is becoming prominent and necessary

to help accommodate this demographic shift. One of the major disorders in elders is depression

associated with socioeconomic, psychiatric and medical factors (Ellison et al., 2012). The LLD

is a leading cause of disability in older adults and substantial health care expenses (Snow and

Abram, 2016). Major depression disorder (MDD) is a common and complex form of mental

disorder in the United States and worldwide. It was reported that approximately 7.1% of U.S.

adults have major depression (National Institute of Mental Health, 2017), and more than 264

million people have depression worldwide (World Health Organization, 2019). In U.S., the

prevalence of major depression in adults 50 years and older is estimated to be 4.7% (National

Institute of Mental Health, 2017). An epidemiological study in five US catchment areas reported

that 1.4% to 3.7% were diagnosed of major depression in 5,723 elderly participants (Weissman

et al., 1991). The Cache county study conducted in 4,559 adults aged 65 to 100 years old

without dementia reported that 4.4% in women and 2.7% in men had major depression in the

mid of 1990’s (Steffens et al., 2000). According to a national epidemiological survey (Hasin

et al., 2005), the estimated prevalence of 12-month and lifetime MDD in adults 65 years and

older were 2.7% and 8.2%, respectively. Neuroimaging studies suggest disrupted SCs and FCs

in LLD patients and new treatment has been targeting on specific brain networks involved

in pathophysiological characterization of brain connectivity associated with LLD (Alexopoulos

et al., 2012; Yuen et al., 2014; Alexopoulos, 2019).

2.2 Materials and Methods

2.2.1 Sample Size

This study was a very typical neuroimaging study in terms of small sample size. A total

of twenty-three elderly participants (13 healthy subjects and 10 LLD patients) participated in
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this study. Their ages ranged from 60 to 82 years, with mean age of 67.8 years and standard

deviation of 7.05 years.

2.2.2 Participant Recruitment

The participant recruitment methods were the same as described in Zhang et al. (2012).

Individuals of age 55 and older were recruited via “community outreach (e.g., local newspaper,

radio, and television advertisements) and relevant outpatient clinics”. Initially participants

went through a screening procedure via telephone. The major exclusion criteria consisted of

“psychotic disorders such as schizophrenia and bipolar disorder, history of any of the following:

anxiety disorder outside of major depression episodes, head trauma and substance abuse, MRI

contraindications (e.g., pacemaker, metal implants)”. The major inclusion criteria for all par-

ticipants were “over 55 years of age, no history of unstable cardiac or neurological diseases, and

medication-naive or anti-depressant free for at least two weeks”. After the telephone screen,

all eligible participants were scheduled for an assessment with Structured Clinical Interview

for Diagnostic and Statistical Manual of Mental Disorders, 4th edition (DSM-IV) (SCID-IV)

(Spitzer et al., 1992) by a trained research assistant, followed by an evaluation on severity of

depression using the 17-item Hamilton Depression Rating Scale (HDRS)) (Hamilton, 1960) by

a board certified psychiatrist. The LLD patients must meet “SCID-IV criteria for MDD and a

score ≥ 15 on the 17-item HDRS”. All study subjects provided written informed consent. The

study was approved by the “UIC Institutional Review Board” and performed in compliance

with the “Declaration of Helsinki”.

2.2.3 Regions of Interest

The FC measured using rs-fMRI and SC measured using DTI were collected from 87 cortical

and subcortical gray matter regions of interest (ROI) in each participant for the whole brain
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analysis. The 87 ROIs included 43 bilateral regions and brain stem (central), shown in Table I.

2.2.4 Image Acquisition

The rs-fMRI and DTI image acquisition methods were the same as described in Zhang et al.

(2012). “The rs-fMRI imaging was performed using a Philips Achieva 3.0T MRI scanner (Philips

Medical Systems, The Netherlands) with an 8-channel sensitivity-encoding (SENSE) head coil”.

During the scan, participants were instructed to “remain still, keep their eyes closed, be relaxed

and not to think anything particular, with soft ear plugs and foam pads provided to ensure

comfort and reduce the head motion”. High resolution three-dimensional T1-weighted image

data were obtained with a “magnetization-prepared rapid acquisition gradient-echo sequence”

with the following parameters: “field of view (FOV) = 240 mm; repetition time (TR) = 8.4 ms;

echo time (TE) = 3.9 ms; flip angle = 8◦; voxel size = 1.1× 1.1× 1.1 mm; 134 contiguous axial

slices”. “A single-shot gradient-echo echo-planar imaging (EPI) sequence” was used to collect

rs-fMRI imaging data with the following parameters: “EPI factor = 47; FOV = 23 × 23 × 15

cm3; TR = 2,000 ms; TE = 30 ms; flip angle = 80◦; in-plane resolution = 3 × 3 mm2; slice

thickness/gap = 5/0 mm; slice number = 30; SENSE reduction factor = 1.8; number of repeat

scan = 200; total scan time = 6:52”.

For DTI data acquisition, “a single-shot spin-echo EPI sequence” was used with the fol-

lowing parameters: “FOV = 240 mm; voxel size = 0.83 × 0.83 × 2.2 mm; TR = 6994 ms; TE

= 71 ms; flip angel = 90◦; SENSE reduction factor = 2.5”. “Sixty-seven contiguous axial slices

aligned to the anterior commissure-posterior commissure line were collected in 32 gradient di-

rections with b-value = 700 s/mm2 and one acquisition without diffusion sensitization (referred

to as b0 image)”.
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TABLE I
THE 87 CORTICAL AND SUBCORTICAL GREY MATTER REGIONS OF INTEREST

ANALYZED IN LLD NEUROIMAGING STUDY

Region No. Region Namea Region No. Region Namea

1 L cerebellum cortex 2 L thalamus proper
3 L caudate 4 L putamen
5 L pallidum 6 brain stem (central)
7 L hippocampus 8 L amygdala
9 L accumbens area 10 L ventral diencephalon
11 R cerebellum cortex 12 R thalamus proper
13 R caudate 14 R putamen
15 R pallidum 16 R hippocampus
17 R amygdala 18 R accumbens area
19 R ventral diencephalon 20 L banks of superior temporal sulcus
21 L caudal anterior cingulate 22 L caudal middle frontal
23 L cuneus 24 L entorhinal
25 L fusiform 26 L inferior parietal
27 L inferior temporal 28 L isthmus cingulate
29 L lateral occipital 30 L lateral orbitofrontal
31 L lingual 32 L medial orbitofrontal
33 L middle temporal 34 L parahippocampal
35 L paracentral 36 L pars opercularis
37 L pars orbitalis 38 L pars triangularis
39 L pericalcarine 40 L postcentral
41 L posterior cingulate 42 L precentral
43 L precuneus 44 L rostral anterior cingulate
45 L rostral middle frontal 46 L superior frontal
47 L superior parietal 48 L superior temporal
49 L supramarginal 50 L frontal pole
51 L temporal pole 52 L transverse temporal
53 L insula 54 R banks of superior temporal sulcus
55 R caudal anterior cingulate 56 R caudal middle frontal
57 R cuneus 58 R entorhinal
59 R fusiform 60 R inferior parietal
61 R inferior temporal 62 R isthmus cingulate
63 R lateral occipital 64 R lateral orbitofrontal
65 R lingual 66 R medial orbitofrontal
67 R middle temporal 68 R parahippocampal
69 R paracentral 70 R pars opercularis
71 R pars orbitalis 72 R pars triangularis
73 R pericalcarine 74 R postcentral
75 R posterior cingulate 76 R precentral
77 R precuneus 78 R rostral anterior cingulate
79 R rostral middle frontal 80 R superior frontal
81 R superior parietal 82 R superior temporal
83 R supramarginal 84 R frontal pole
85 R temporal pole 86 R transverse temporal
87 R insula

a L = left; R = right.
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2.2.5 Data Processing

The data processing methods are the same as described in Zhao (2014). The individual

resting-state FC were measured using the FC toolbox CONN (Whitfield-Gabrieli and Nieto-

Castanon, 2012). The CONN performs seed-based correlation analysis by computing the Pear-

son correlation coefficients between the BOLD time series from a given ROI to all other ROIs

in the brain shown in Equation (1.4). The potential confounding factors including “motion

artifact, white matter, and cerebrospinal fluid and physiological noise source reduction” were

regressed out from the signal prior to data analysis. The SC maps was generated for each

of the twenty-three participants using a pipeline that integrates multiple image analysis tech-

niques (GadElkarim et al., 2012). Briefly, diffusion-weighted imaging (DWI) images were first

eddy current corrected using the automatic image registration tool in DtiStudio software (Jiang

et al., 2006) by registering all DWI images to their corresponding b0 images with a 12-parameter

affine transformation, followed by computation of diffusion tensors and deterministic tractogra-

phy using fiber assignment by a continuous tracking algorithm (Mori et al., 1999). Label maps

were generated using T1-weighted images with FreeSurfer (Fischl, 2012). The SC based on the

87 cortical and subcortical gray matter regions were then measured using “an internal Matlab

program by counting the number of fiber tracts found by the tractography algorithm connecting

each pair of regions”. Note that the SC data contains a number of zero values, suggesting no

SC between the corresponding brain regions.

Since the FC data is measured using the Pearson’s correlation coefficients, we can apply

Fisher’s Z transformation to stabilize the variance and approximate normal distribution for

the transformed data (Bhaumik et al., 2018b,a; Afyouni et al., 2019), r∗XY = arctanh(rXY ) =

1
2 ln

(
1+rXY
1−rXY

)
. And for SC data, cube-root transformation is applied considering that the DTI
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measures are essentially the estimates of fiber counts that can be assumed to follow Poisson

distribution (Zhao, 2014).

The adjacency matrices of FC and SC each has
(

87
2

)
= 87 × (87 − 1)/2 = 3741 unique

connectivity measures (or links), denoted as ci,j , where i, j = 1, 2, · · · , 87 and i < j, shown in

Equation (2.1).



−

c1,2 −

c1,3 c2,3 −
...

...
...

. . .

c1,87 c2,87 · · · · · · −


87×87

(2.1)

In this motivating example, the dataset contains m = 3741 FC and SC measurements from

each of 23 participants from the two groups including 13 subjects in healthy control (HC) group

and 10 patients in LLD group. The primary goal is to detect differential FC links between LLD

group and HC group based on rs-fMRI data. For the ith connectivity link, i = 1, · · · , 3741, the

corresponding null hypothesis is,

H0,i : The ith link has no FC difference between LLD group and HC group,

In total, we have 3741 null hypotheses to be tested, {H0,1, H0,2, · · · , H0,3741}, with corresponding

test statistics {t1, t2, · · · , t3741} and p-values {p1, p2, · · · , p3741}. When the 3741 hypotheses are

tested simultaneously, without adjusting for multiplicity, the probability of falsely rejecting

at least one null hypothesis will be greatly inflated. This large-scale simultaneous hypothesis

problem is discussed in Section 4.1.



CHAPTER 3

MIXED-EFFECTS MODEL FOR NEUROIMAGING DATA

A linear MERM assuming random subject effect and heteroscedastic errors at both group

level (e.g., disease group and HC group) and connectivity link level has been applied to data

analysis of FC measured using rs-fMRI in neuroimaging studies (Hedeker and Gibbons, 2006;

Zhao, 2014; Jie, 2016; Song, 2016; Bhaumik et al., 2018a,b). The simulation studies based on

neuroimaging data in LLD and autism studies have demonstrated that the mixed-effects model

utilizing an expectation-maximization (EM) algorithm performs well in terms of accuracy and

precision in parameter estimation (Zhao, 2014; Bhaumik et al., 2018a,b).

In the mixed-effects model, we assume a random subject effect to account for the within-

subject correlation among the connectivity links taken from the same subject, and a random

error that is specific to both connectivity link and group to address the different heterogeneity

pattern across all connectivity links in each group. The between-group comparisons are based

on the connectivity link-specific group information.

The outcome variable yij is the connectivity measurement for the ith connectivity link in

the jth subject, i = 1, · · · ,m, j = 1, 2, · · · , N , where m and N refer to the total number of

links and the total number of subjects, respectively. The mixed-effects model for yij with fixed

effect parameter β0i and β1i, random subject effect γj and random error εij is then,

yij = β0i × (1−Grpj) + β1i ×Grpj + γj + εij , (3.1)

where

25
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• Grpj is the indicator variable for which group the jth subject is from, HC group if Grpj =

0, or disease group if Grpj = 1.

• β0i and β1i are the fixed effects for the ith connectivity link in HC group and disease

group, respectively. β1i− β0i is the between-group difference for the ith connectivity link.

• γj is the random subject effect for the jth subject, γj ∼ N(0, σ2
γ).

• εij is the random error for the ith connectivity link in the jth subject, εij ∼ N(0, σ2
Grpji

),

that is, εij ∼ N(0, σ2
0i) if the subject is from HC group, εij ∼ N(0, σ2

1i) if the subject is

from disease group.

• γj and εij are independent of each other.

Note that in the LLD neuroimaging study described in Chapter 2 we have m = 3741 and

N = 23.

Using matrix notation, the mixed-effects model in Equation (3.1) for the jth subject can

be rewritten as follows:

yj = Xjβ +Zjγj + εj , (3.2)

where

• yj is a m× 1 vector of the connectivity measurement.

yj =
[
y1j y2j · · · ymj

]T
1×m

, (3.3)

where T denotes vector/matrix transpose.
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• Xj is a m× 2m design matrix for the fixed effects β.

Xj =


1−Grpj · · · 0 Grpj · · · 0

...
. . .

...
...

. . .
...

0 · · · 1−Grpj 0 · · · Grpj


m×2m

=
[
1−Grpj Grpj

]
⊗ Im, (3.4)

where Im is a m-dimensional identity matrix.

• β is a 2m× 1 vector of the fixed effects.

β =
[
β0 β1

]T
1×2m

=
[
β01 · · · β0m β11 · · · β1m

]T
1×2m

, (3.5)

• Zj is a m× 1 design matrix for the random subject effects,

Zj = 1m, (3.6)

where 1m is a m× 1 vector of all ones.

• γj is the random subject effect.

γj ∼ N(0, σ2
γ), (3.7)

• εj is a m× 1 vector of random errors.

εj =
[
ε1j ε2j . . . εmj

]T
1×m

∼ N(0,ΣGrpj ), (3.8)
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where the variance of εj is a m×m diagonal matrix:

ΣGrpj =


σ2
Grpj1

· · · 0
...

. . .
...

0 · · · σ2
Grpjm


m×m

, (3.9)

To obtain the joint distribution of yj and γj , first we get their expectations and variance-

covariance by Equation (3.2),

E(yj) = E
(
Xjβ +Zjγj + εj

)
= Xjβ +ZjE(γj) + E(εj) = Xjβ (3.10)

E(γj) = 0 (3.11)

Var(yj) = Var
(
Xjβ +Zjγj + εj

)
= Var(Zjγj) + Var(εj)

= ZjVar(γj)Z
T
j + Var(εj) = Zjσ

2
γZ

T
j + ΣGrpj (3.12)

Var(γj) = σ2
γ (3.13)

Cov(yj , γj) = Cov
(
Xjβ +Zjγj + εj , γj

)
= Cov(Zjγj , γj)

= ZjVar(γj) = Zjσ
2
γ (3.14)

Cov(γj ,yj) = σ2
γZ

T
j (3.15)

We denote Var(yj), Cov(yj , γj) and Cov(γj ,yj) by Σyj , Σyjγj and Σγjyj , respectively.

Then the joint distribution of yj and γj follows a multivariate normal distribution,

yj
γj

 ∼MVN

Xjβ

0

 ,
Zjσ

2
γZ

T
j + ΣGrpj Zjσ

2
γ

σ2
γZ

T
j σ2

γ

 (3.16)

The quantities we are interested in estimating from this study are the mean connectivity

difference between disease group and HC group for each link (β1i − β0i, i = 1, · · · ,m and the
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associated variances, which are then used to calculate the test statistics for the tests. For

estimation of model parameters, we employ an EM algorithm (Dempster et al., 1977, 1981;

Hedeker and Gibbons, 2006), in which the random subject effect γj will be treated as unobserved

data. For data with missing values or unobserved latent variables, the iterative procedure in the

EM algorithm allows us to compute the maximum likelihood estimates of model parameters.

Briefly, in the E-step, the empirical Bayes (EB) estimates of the random subject effect γj and

the conditional variances of γj given data yj (denoted by Σγj |yj ) are computed based on the

initial values of the rest of parameters. In the M-step, maximize the marginal likelihood with

respect to the fixed effect vector β, random error variance ΣGrpj and the variance of the random

effects σ2
γ and obtain the maximum marginal likelihood (MML) estimates for these parameters

based on the current estimates of the random effects. The algorithm iterates between E-step

and M-step until convergence.

For notational convenience, we denote the parameter vector by θ = (β, σ2
γ , ΣGrpj , γj , Σγj |yj ),

and partition θ into θ1 and θ2, as θ1 = (β, σ2
γ , ΣGrpj ) and θ2 = (γj , Σγj |yj ). The EM algorithm

is outlined in the following steps,

1. Give initial values to parameters θ1, denoted by θ
(0)
1 = (β(0), σ2

γ
(0), Σ

(0)
Grpj

).

2. E-step: Based on θ
(0)
1 , calculate the EB estimates θ

(1)
2 = (γj

(1), Σ
(1)
γj |yj

).

3. M-step: Using θ
(1)
2 , calculate the MML estimates θ

(1)
1 = (β(1), σ2

γ
(1), Σ

(1)
Grpj

).

4. Replace θ
(0)
1 by θ

(1)
1 , carry out the E-step and the M-step again.

5. Repeat the steps 2-4 until the parameter estimates converge.

The detailed methods on EB and MML estimation are described in the following sections 3.1

and 3.2, respectively.
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3.1 Empirical Bayes Estimation

Using empirical Bayes approach, the following distributions are specified:

yj | γj ;β,ΣGrpj ∼ N
(
Xjβ +Zjγj , ΣGrpj

)
, (3.17)

γj ;σ
2
γ ∼ N(0, σ2

γ). (3.18)

By application of Bayes’ theorem, the posterior distribution of the random subject effect γj

given the data yj is

f(γj | yj) =
f(yj | γj ;β,ΣGrpj )f(γj)

f(yj ;σ
2
γ)

, (3.19)

where f(yj) is the marginal distribution of yj .

f(yj) =

∫
f(yj | γj ;β,ΣGrpj )f(γj ;σ

2
γ)dγj . (3.20)

Since f(γj | yj) does not depend on γj , maximizing f(γj | yj) is equivalent to maximizing the

numerator in the Bayes theorem Equation (3.19).

We need to find the posterior mean and posterior variance of γj conditional on observed

data vector yj . Based on the joint multivariate distribution of yj and γj in Equation (3.16),

we can obtain the expectation and variance of γj conditional on yj :

E(γj | yj) = E(γj) + ΣγjyjΣ
−1
yj

[
yj − E(yj)

]
= σ2

γZ
T
j (Zjσ

2
γZ

T
j + ΣGrpj )

−1(yj −Xjβ). (3.21)
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Var(γj | yj) = Σγj |yj = σ2
γ −ΣγjyjΣ

−1
yj

Σyjγj

= σ2
γ − σ2

γZ
T
j (Zjσ

2
γZ

T
j + ΣGrpj )

−1Zjσ
2
γ . (3.22)

Then the conditional distribution of γj | yj is

γj | yj ∼ N
(
σ2
γZ

T
j (Zjσ

2
γZ

T
j + ΣGrpj )

−1(yj −Xjβ),

σ2
γ − σ2

γZ
T
j (Zjσ

2
γZ

T
j + ΣGrpj )

−1Zjσ
2
γ

)
. (3.23)

Hence the EB estimates of γj and Σγj |yj (denoted by γ̃j and Σ̃γj |yj , respectively) are equivalent

to the expectation and variance of γj conditional on yj in Equations (3.21) and (3.22):

γ̃j = E(γj | yj) = σ2
γZ

T
j (Zjσ

2
γZ

T
j + ΣGrpj )

−1(yj −Xjβ). (3.24)

Σ̃γj |yj = Var(γj | yj) = σ2
γ − σ2

γZ
T
j (Zjσ

2
γZ

T
j + ΣGrpj )

−1Zjσ
2
γ . (3.25)

Both Equations (3.24) and (3.25) can be computationally challenging due to the inversion

of m ×m matrix involved. Therefore, it is necessary to apply the following matrix inversion

lemma,

(CA−1B +D)−1 = D−1 −D−1C(BD−1C +A)−1BD−1, (3.26)

(CA−1B +D)−1 = D−1 −D−1
[
(CA−1B)−1 +D−1

]−1
D−1. (3.27)
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By Equations (3.26) and (3.27), we have

C(BD−1C +A)−1B =
[
(CA−1B)−1 +D−1

]−1
. (3.28)

Let A = ΣGrpj , B = Zj , C = ZT
j , and D = σ−2

γ , by Equations (3.26) and (3.27) we have

σ2
γ − σ2

γZ
T
j (Zjσ

2
γZ

T
j + ΣGrpj )

−1Zjσ
2
γ

=(ZT
j Σ−1

Grpj
Zj + σ−2

γ )−1 (3.29)

=σ2
γ − σ2

γ

[
(ZT

j Σ−1
Grpj

Zj)
−1 + σ2

γ

]−1
σ2
γ . (3.30)

By Equation (3.28), we have

ZT
j (Zjσ

2
γZ

T
j + ΣGrpj )

−1Zj =
[
(ZT

j Σ−1
Grpj

Zj)
−1 + σ2

γ

]−1

=⇒ ZT
j (Zjσ

2
γZ

T
j + ΣGrpj )

−1ZT
j Z
−1
j =

[
(ZT

j Σ−1
Grpj

Zj)
−1 + σ2

γ

]−1
Z−1
j

=⇒ ZT
j (Zjσ

2
γZ

T
j + ΣGrpj )

−1 =
[
(ZT

j Σ−1
Grpj

Zj)
−1 + σ2

γ

]−1
Z−1
j . (3.31)

Then

ZT
j (Zjσ

2
γZ

T
j + ΣGrpj )

−1 =
[
(ZT

j Σ−1
Grpj

Zj)
−1 + σ2

γ

]−1
Z−1
j

=
[
(ZT

jkΣ
−1
Grpj

Zj)
−1 + σ2

γ

]−1
(ZT

j Zj)
−1(ZT

jkZj)Z
−1
j

=
[
(ZT

jkΣ
−1
Grpj

Zj)
−1 + σ2

γ

]−1
(ZT

j Zj)
−1ZT

j . (3.32)
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By Equation (3.32), γ̃j in Equation (3.24) can be simplified as:

γ̃j = σ2
γZ

T
j (Zjσ

2
γZ

T
j + ΣGrpj )

−1(yj −Xjβ)

= σ2
γ

[
(ZT

j Σ−1
Grpj

Zj)
−1 + σ2

γ

]−1
(ZT

j Zj)
−1ZT

j (yj −Xjβ)

= R(ZT
j Zj)

−1ZT
j (yj −Xjβ). (3.33)

where R = σ2
γ

[
(ZT

j Σ−1
Grpj

Zj)
−1+σ2

γ

]−1
. And by Equations (3.29) and (3.30), Σ̃γj |yj in Equation

(3.25) can be simplified as:

Σ̃γj |yj = σ2
γ − σ2

γZ
T
j (Zjσ

2
γZ

T
j + ΣGrpj )

−1Zjσ
2
γ

= (ZT
j Σ−1

Grpj
Zj + σ−2

γ )−1

= σ2
γ − σ2

γ

[
(ZT

j Σ−1
Grpj

Zj)
−1 + σ2

γ

]−1
σ2
γ

= σ2
γ −Rσ2

γ

= (1−R)σ2
γ . (3.34)

As compared to Equations (3.24) and (3.25) which involves inversion of m×m matrix, Equations

(3.33) and (3.34) only require inversion of a scalar and are much more efficient computationally.

3.2 Maximum Marginal Likelihood Estimation

In the mixed-effects model, the maximum likelihood estimation for the fixed effects β,

the variance of random errors ΣGrpj , and the variance of random subject effect σ2
γ are based
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on the marginal distribution of yj for the jth subject that is obtained by integrating over the

distribution of the random effects γj (Hedeker and Gibbons, 2006),

f(yj) =

∫
f(yj | γj ;β,ΣGrpj )f(γj ;σ

2
γ)dγj , (3.35)

where

f(yj | γj ;β,ΣGrpj ) = (2π)−
m
2 |ΣGrpj |−

1
2 exp

[
−1

2
(yj −Xjβ −Zjγj)

TΣ−1
Grpj

(yj −Xjβ −Zjγj)

]
,

(3.36)

f(γj ;σ
2
γ) = (2πσ2

γ)−1/2 exp

(
− 1

2σ2
γ

γ2
j

)
, (3.37)

Then the marginal log-likelihood function is the sum of the log-likelihood in Equation (3.35)

over all N subjects,

logL =

N∑
j=1

log
[
f(yj)

]
. (3.38)

The detailed derivations on maximum marginal likelihood estimates of parameters are provided

in Appendix A.

3.3 Hypothesis Testing

For group comparisons of the mean connectivity measures between the HC group and the

diseased group at the link level, a total of m hypotheses are tested simultaneously. For each of
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the m connectivity links, the null hypothesis H0,i is that the ith connectivity link has no FC

difference between the two groups, and the hypothesis testing is:

H0,i : β0i = β1i vs. H1,i : β0i 6= β1i, i = 1, · · · ,m, (3.39)

which is the same as using contrast h =
[
1 −1

]
1×2

:

H0,i : hβi = 0 vs.H0,1 : hβi 6= 0, i = 1, · · · ,m, (3.40)

To obtain the maximum likelihood estimates of the fixed effects for each connectivity link

in Equation (3.1) βi =
[
β0i β1i

]T
, i = 1, · · · ,m, and the associated variances, we can rewrite

Equation (3.1) as:

yij = Xijβi + γj + εij , (3.41)

where

• βi =
[
β0i β1i

]T
is a vector of the fixed effects for the ith connectivity link in HC group

(β0i) and disease group (β1i).

• Xij is a 1× 2 design matrix for the fixed effects,

Xij =
[
1−Grpj Grpj

]
, (3.42)

• γj and εij are defined the same as for Equation (3.1).
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Similarly as in Equation (3.35), the marginal distribution of yij is

f(yij) =

∫
f(yij | γj ;βi, σ2

Grpji)f(γj ;σ
2
γ)dγj , (3.43)

where

f(yij | γj ;βi, σ2
Grpji) =

(
1

2πσ2
Grpji

) 1
2

exp

[
− 1

2σ2
Grpji

(yij −Xijβi − γj)2

]
, (3.44)

and f(γj ;σ
2
γ) is defined in Equation (3.37).

The marginal log-likelihood function is then the sum of the log-likelihood in Equation

(3.43) over all N subjects for the ith connectivity link,

logLi =

N∑
j=1

log
[
f(yij)

]
. (3.45)

The first derivative of the marginal log-likelihood function in Equation (3.45) with respect

to βi is,

∂ logLi
∂βi

=
∂

∂βi

N∑
j=1

log
[
f(yij)

]
=

N∑
j=1

∂ log f(yij)

∂βi

=

N∑
j=1

1

f(yij)

∂f(yij)

∂βi

=
N∑
j=1

1

f(yij)

∂
[∫
f(yij | γj)f(γj)dγj

]
∂βi

=
N∑
j=1

1

f(yij)

∫
∂f(yij | γj)

∂βi
f(γj)dγj
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=

N∑
j=1

1

f(yij)

∫
f(yij | γj)f(γj)

∂ log f(yij | γj)
∂βi

dγj

=
N∑
j=1

∫
f(yij | γj)f(γj)

f(yij)
XT

ijσ
−2
Grpji

(yij −Xijβi − γj)dγj

=
N∑
j=1

∫
f(γj | yij)XT

j σ
−2
Grpji

(yij −Xijβi − γj)dγj

=
N∑
j=1

∫ [
XT

ijσ
−2
Grpji

(yij −Xijβi)f(γj | yij)−XT
ijσ
−2
Grpji

f(γj | yij)γj
]
dγj

=
N∑
j=1

[∫
XT

ijσ
−2
Grpji

(yj −Xijβi)f(γj | yij)dγj −
∫
XT

ijσ
−2
Grpji

f(γj | yij)γjdγj
]

=
N∑
j=1

[
XT

ijσ
−2
Grpji

(yij −Xijβi)

∫
f(γj | yij)dγj −XT

ijσ
−2
Grpji

∫
f(γj | yij)γjdγj

]

=

N∑
j=1

[
XT

ijσ
−2
Grpji

(yij −Xijβi)−XT
ijσ
−2
Grpji

γ̃j

]

=
N∑
j=1

XT
ijσ
−2
Grpji

(yij −Xijβi − γ̃j), (3.46)

as
∫
f(γj | yij)dγj = 1 and

∫
f(γj | yij)γjdγj = γ̃j .

By equating Equation (3.46) to zero we have

∂ logLi
∂βi

=

N∑
j=1

XT
ijσ
−2
Grpji

(yij −Xijβi − γ̃j) = 0

=⇒
N∑
j=1

XT
ijσ
−2
Grpji

Xijβi =
N∑
j=1

XT
ijσ
−2
Grpji

(yij − γ̃j)

=⇒ β̂i =

 N∑
j=1

XT
ijσ
−2
Grpji

Xij

−1  N∑
j=1

XT
ijσ
−2
Grpji

(yij − γ̃j)

 . (3.47)

By Equation (A.11), the variance of β̂i is

Var(β̂i) =
[
Xi

T
(
Ziσ

2
γZ

T
i + Σεi

)−1
X
]−1

, (3.48)
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where

• Xi is a N × 2 design matrix for the fixed effects βi.

Xi =


1−Grp1 Grp1

1−Grp2 Grp2

...
...

1−GrpN GrpN


N×2

= 1N ⊗
[
1−Grpj Grpj

]
, (3.49)

• Z is a N ×N identity design matrix for the random subject effects,

Z =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1


N×N

= IN , (3.50)

• Σεi is the variance of εi is a N ×N diagonal matrix:

Σεi =


σGrp1 · · · 0

...
. . .

...

0 · · · σGrpN


N×N

, (3.51)

Based on Equations (3.47) and (3.48), we have the asymtotic distribution of β̂i as:

β̂i ∼ N
(
βi,
[
Xi

T
(
Ziσ

2
γZ

T
i + Σεi

)−1
X
]−1
)
, (3.52)

Then the asymptotic distribution of hβ̂i is:

hβ̂i ∼ N
(
hβi,h

[
Xi

T
(
Ziσ

2
γZ

T
i + Σεi

)−1
X
]−1

hT
)
, (3.53)
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Under H0,i,

hβ̂i ∼ N
(

0, h
[
Xi

T
(
Ziσ

2
γZ

T
i + Σεi

)−1
X
]−1

hT
)
, (3.54)

The Wald test statistic to test the null hypothesis in Equation (3.40) is:

ci = (hβ̂i)

(
h

[
Xi

T
(
Ziσ̂

2
γZ

T
i + Σ̂εi

)−1
X

]−1

hT

)−1

(hβ̂i)
T , (3.55)

which follows an asymptotic χ2-distribution with 1 degree of freedom under H0,i. H0,i is rejected

if ci ≥ χ2
1−α(1). The square root of ci (denoted by ti) follows an asymptotic standard normal

distribution,

ti =
√
ci = (hβ̂i)

(
h

[
Xi

T
(
Ziσ̂

2
γZ

T
i + Σ̂εi

)−1
X

]−1

hT

)− 1
2

∼ N(0, 1). (3.56)

And thus equivalently we can reject H0,i if ti ≥ z1−α, where z1−α denotes the critical value at

level 1− α from the standard normal distribution. The test statistics ti, i = 1, · · · ,m, are then

used for the further analysis described in the next chapter.



CHAPTER 4

A BAYESIAN APPROACH FOR CONTROLLING THE FALSE

DISCOVERY RATE

4.1 Large-Scale Simultaneous Hypothesis Testing Problem

The objective of a hypothesis testing is to decide which hypothesis, the null hypothesis

(denoted by H0) or the alternative hypothesis (denoted by H1), is true given observed test

statistics t based on a sample taken from a population. In practice, the null hypothesis assumes

no effect, for example, no difference between the means of the two groups. We can treat the

decision on H0 as a binary variable, in which H0 = 0 when H0 is true, or H0 = 1 otherwise.

The probability of the null hypothesis being true given observed test statistics is

P (H0 = 0 | T = t), (4.1)

The probability of the alternative hypothesis being true (or the null hypothesis is false) given

observed t is

P (H0 = 1 | T = t) = 1− P (H0 = 0 | T = t), (4.2)

The larger P (H0 = 0 | T = t) is, the greater the likelihood that the H0 is true, and vice versa.

However, the p-value used in classic hypothesis testing does not provide a statistical mea-

sure of the probability that the null hypothesis is true based on the observed data (Nuzzo, 2014;

Wasserstein and Lazar, 2016). The p-value relies on the tail regions of the distribution under

null hypothesis and measures the probability that the test statistic is equal to or more extreme

40
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(i.e, greater for a right-sided test, or lower for a left-sided test) than the observed value, under

the assumption that H0 is true,

p-value =


P (T ≥ t | H0 = 0) =

∫∞
t f0(t)dt, for a right-sided test,

P (T ≤ t | H0 = 0) =
∫ t
−∞ f0(t)dt, for a left-sided test,

P (T ≥ |t| | H0 = 0) =
∫ −|t|
−∞ f(t)dt+

∫∞
|t| f(t)dt, for a two-sided test.

(4.3)

where f0(t) is the probability density function of test statistics under null hypothesis.

There are two main differences between the concept of p-value, using the one for a right-

sided test in Equation (4.3) as an example, the probability that the null hypothesis is true given

the observed data in Equation (4.1). First, T = t is substituted by T ≥ t (i.e., the tail area under

the null hypothesis) since for continuous variables P (T = t | H0 = 0) = 0, yet it is still possible

that the observed test statistics is exactly equal to t. Second, the two have a reversed order in

terms of the conditional probability, Equation (4.1) is the conditional probability of H0 being

true given t, while Equation (4.3) is the conditional probability of T ≥ t given H0 is true. Based

on the statements on “statistical significance and p-values” made by the American Statistical

Association (Wasserstein and Lazar, 2016), p-value measures the “statistical incompatibility

between the observed data and the null hypothesis”. That is, assuming the null hypothesis is

true a smaller p-value would suggest a greater incompatibility between the data and the null

hypothesis. It is important to note that the p-value cannot be used to calculate the probability

that the null hypothesis is true or not backwards.

For a single hypothesis testing, the probability of falsely rejecting a true null hypothesis H0,

also known as type I error rate denoted by α (0 < α < 1) is controlled by choosing a rejection

region. For multiple testing that involves the simultaneous testing of more than one hypothesis,
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when there are m null hypotheses to be tested simultaneously, the overall null hypothesis is the

intersection of the m null hypotheses,

H0 :
m⋂
i=1

H0,i, (4.4)

That is, the intersection null means that all of the individual null hypotheses are true. The

four possible outcomes from m hypotheses tested are shown in Table II, where only number of

null hypotheses tested (denoted by m) and number of rejected hypotheses (denoted by D) are

known.

TABLE II
CLASSIFICATION OF ALL NULL HYPOTHESES TESTED

Testing status
Total

Accept H0 Reject H0

True status
True H0 TNDa FDb m0

c

False H0 FNDd TDe m1
f

Total m−D Dg mh

a TND = number of true non-discoveries (also called true negatives).
b FD = number of false discoveries (also called false positives, type I errors).
c m0 = number of true null hypotheses.
d FND = number of false non-discoveries (also called false negatives, type II errors).
e TD = number of true discoveries (also called true positives).
f m1 = number of false null hypotheses (also called true alternative hypotheses), m1 = m−m0.
g D = number of discoveries (also called positives).
h m = number of null hypotheses tested.
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The probability of at least one type I error (i.e., falsely rejecting at least one H0,i), is

referred to as family-wise error rate (FWER),

FWER = P (FD ≥ 1) = 1− P (FD = 0), (4.5)

where FD is number of false discoveries / type I errors. Without adjusting for multiplicity,

FWER can be calculated as 1 − (1 − α)m, assuming all the m hypotheses are independent of

each other. It is very close to 1 when m is large. One commonly used method to control FWER

for multiple testing is the Bonferroni correction (Dunn, 1961), in which the significance level

for each individual test is set at α
m . The Bonferroni correction rejects H0,i if pi ≤ α

m , thus

guaranteeing the FWER ≤ α by the Bonferroni inequality as shown below,

P

{
m⋃
i=1

(
pi ≤

α

m

)}
≤ α, (4.6)

Though the Bonferroni method is simple and assumption-free, it tends to be extremely

conservative especially when the number of comparisons m is large. The very small significance

level α
m makes it very difficult to reject any individual null hypothesis, yielding to a very high

probability of false negative error and thus a very low power (Nakagawa, 2004). We should note

that when one hypothesis is rejected at significance level of α
m , the number of remaining tests

is reduced to m − 1. Using the same significance level of α
m for the rest of the tests actually

ignores such fact. To take into account the sequential rejecting with adjusted significance

level, Holm (1979) proposed a sequential Bonferroni correction procedure to control FWER

while maintaining adequate power simultaneously irrespective of the independence of the test

statistics. Holm’s step-down procedure employs stepwise adjustments to the significance level
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based on the rank order of the unadjusted p-values of the multiple tests, which is illustrated as

follows:

1. First order the m unadjusted p-values in ascending order: p(1) ≤ p(2) ≤ · · · ≤ p(m), where

p(1) and p(m) refer to the smallest and the largest p-values, respectively. Accordingly,

H0,(i) is the null hypothesis corresponding to p(i), the ith ordered p-value.

2. Start from the smallest p-value p(1): If p(1) ≤ α
m , reject H0,(1) and then move to p(2); if

not, accept all H0,(1), · · · , H0,(m) and stop.

3. For i = 2, · · · ,m − 1: If p(i) ≤ α
m−i+1 , reject H0,(i) and move to p(i+1); if not, accept

H0,(i), · · · , H0,(m) and stop.

4. For the largest p-value p(m): If p(m) ≤ α, reject H0,(m); if not, accept H0,(m).

Holm’s procedure provides a strong control of FWER and is more powerful than Bonferroni.

However, when m is large, the power is still low. Hochberg (1988) developed a similar but more

powerful procedure to control FWER as compared to Holm’s method. Hochberg’s step-up

procedure starts from the largest p-value p(m) and continue until find the first i that p(i) ≤ α
m−i+1

at which points all smaller p-values are considered significant. That is, for any i = m, · · · , 1, if

p(i) ≤ α
m−i+1 , reject all H(j), j = 1, · · · , i. Meanwhile, Hommel (1988) gave another modified

Bonferroni procedure that is in general more powerful than Hochberg’s procedure (Hommel,

1989). Using Hommel’s method, reject all hypotheses whose p-values are ≤ α
k , where k is the

largest integer for which p(m−k+j) >
j
kα, for all j = 1, · · · , k. If k does not exist, reject all H0,i,

i = 1, · · · ,m. One needs to be careful that Hochberg’s method requires justification, that is,

it only applies when the tests are independent of each other. Holm’s method does not require

such independence assumption and hence Holm’s procedure should be used if there are concerns



45

about potential dependencies among the tests, otherwise using Hochberg or Hommel’s method

instead.

4.2 False Discovery Rate

The FWER control is fit for the purpose when we wish to avoid any false positive. It

can be useful when there are a fairly small number of multiple tests and few of them might

be significant. However, for large-scale simultaneous hypothesis testing such as genomics and

neuroimaging studies with a large number of multiple tests, the majority of the hypotheses

tested are pure noise and only a very small proportion of them contains signals, known as

sparsity issue. In these cases, FWER control methods are so stringent that some important

differences that may be meaningful to the researchers have little chance to be detected. Given

this sparsity issue, we are more concerned if all potentially true alternatives are detected and

thus, we need an approach that allows for a certain number of false positives but controls the

proportion of false positives among all positive results under a certain desired significance level.

In order to identify as many significant findings as possible while still maintaining a low

false positive rate, Benjamini and Hochberg (1995) established the key concept of false discovery

rate (FDR) as a measure of the expected proportion of falsely rejected hypotheses (also called

false discoveries, false positives, or type I errors) among all rejected hypotheses (also called

discoveries or positives) when a large number of null hypotheses are tested simultaneously.

Using the same notation as in Table II, FDR is defined as the expected proportion of false

positives among all rejected hypotheses,

FDR = E

(
FD

FD + TD

)
= E

(
FD

D

)
, (4.7)
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where FD, TD and D refer to number of false discoveries, number of true discoveries and

number of discoveries, respectively. Generally FDR method provides a more powerful approach

than FWER in multiple testing (Benjamini and Hochberg, 1995). We can show that FDR is

less than FWER in general by,

FDR = E

(
FD

D

)
= E

(
FD

D
| FD = 0

)
P (FD = 0) + E

(
FD

D
| FD ≥ 1

)
P (FD ≥ 1)

= 0× P (FD = 0) + E

(
FD

D
| FD ≥ 1

)
P (FD ≥ 1)

< FWER, (4.8)

As a contrast to FDR, the false positive rate (FPR) is the expected proportion of true null

hypotheses that are incorrectly called significant, E
(
FD
m0

)
. Note that FDR and FPR share the

same numerator, the number of false discoveries, FD; what distinguish between the two terms

is the denominator, FDR has the number of discoveries (D) as FDR focuses on all discoveries,

while FPR uses the number of true null hypothesis (m0). Storey and Tibshirani (2003) shows

that the FDR measure balances between sensitivity (defined as true positive rate = TD
m1

) and

specificity (defined as true negative rate = TND
m0

), by expressing the FDR in terms of sensitivity

and specificity as follows,

FDR = E

(
FD

D

)
= E

(
FD

FD + TD

)
= E

(
m0 − TND

(m0 − TND) + TD

)
= E

[
m0 × (1− TND

m0
)

m0 × (1− TND
m0

) +m1 × TD
m1

]

= E

[
m0 × (1− specificity)

m0 × (1− specificity) +m1 × sensitivity

]
. (4.9)
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Equivalently, FDR can be defined as the expected proportion of false discoveries among

all rejected hypotheses given at least one rejection is made times the probability of making at

least one rejection,

FDR = E

(
FD

D
| D > 0

)
P (D > 0), (4.10)

Storey (2002, 2003) defined a positive FDR denoted by pFDR,

pFDR = E

(
FD

D
| D > 0

)
, (4.11)

here ”positive” is used to indicate that the expectation is conditional on occurrence of rejecting

at least one hypothesis. Note that FDR = pFDR×P (D > 0) ≤ pFDR. In most genomics and

neuroimaging studies with large-scale simultaneous hypothesis testing, we can guarantee that

P (D > 1) ≈ 1 so FDR and pFDR are very close. Storey (2002, 2003) proved that pFDR can

be interpreted using a Bayesian mixture model as the posterior probability of a null hypothesis

being true given that it is rejected,

pFDR = P (H0 = 0 | p-value ≤ γ)

=
p0P (p-value ≤ γ | H0 = 0)

P (p-value ≤ γ)

=
p0P (p-value ≤ γ | H0 = 0)

p0P (p-value ≤ γ | H0 = 0) + (1− p0)P (p-value ≤ γ | H0 = 1)
, (4.12)

where p0 is the prior probability that the null hypothesis is true, p0 = P (H0 = 0), and γ is the

fixed threshold at which level the test is called significant (i.e., the hypothesis is rejected).



48

Another FDR definition is marginal FDR denoted by mFDR (Genovese and Wasserman,

2002a; Storey, 2003; Sun and Cai, 2007),

mFDR =
E(FD)

E(D)
, (4.13)

Storey (2003) showed that pFDR and mFDR are equivalent under the assumption that the test

statistics are random variables with a mixture of null and alternative distributions. Genovese

and Wasserman (2002a) proved that under independence assumption, mFDR and FDR have

the same asymptotic properties when number of hypotheses m is large,

mFDR = FDR+O(m−1/2), (4.14)

To control FDR, Benjamini and Hochberg (1995) employed a step-up procedure (referred

to as Benjamini and Hochberg procedure) described as follows,

1. Sort unadjusted p-values in ascending order by p(1) ≤ p(2) ≤ · · · ≤ p(m) and the corre-

sponding null hypotheses are H0,(1), H0,(2), ...,H0,(m),

2. For a given q, 0 < q < 1, let k = arg max
i

{
i : p(i) ≤ i

mq
}

,

3. Then reject all H0,(i), i = 1, · · · , k,

Benjamini and Hochberg (1995) proved that for independent tests, using the above procedure

can guarantee FDR ≤ m0
m q ≤ q, and thus the FDR is controlled at q.

Since Genovese et al. (2002) proposed the Benjamini and Hochberg procedure for control-

ling the FDR in fMRI data analysis, the method has been widely applied in neuroimging data

analysis. Like single hypothesis testing, classical Benjamini and Hochberg FDR theory is based
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on the well-known p-values that rely on the tail areas of null hypothesis. Thus, it is also named

as global FDR. The FDR provides an overall accuracy for a set of significant tests and requires

less assumptions, but it gives weaker results in general and does not provide a direct measure

of the probability of each individual test is a false positive.

Benjamini and Hochberg (2000) proposed an adaptive procedure to incorporate the infor-

mation of unknown proportion of null hypotheses for FDR control (referred to as adaptive Ben-

jamini and Hochberg procedure). The adaptive procedure has similar setting as the Benjamini

and Hochberg procedure described above, in which we determine k = arg max
i

{
i : p(i) ≤ i

p̂0m
q
}

,

where p̂0 is a conservative estimate of p0. As compared to Benjamini and Hochberg procedure,

it has also been shown that the adaptive procedure gained more power.

Storey (2002) introduced a q-value approach as a measure of the minimum FDR that can

be reached if the test is considered significant, as well as an algorithm to estimate the q-value

based on the estimated proportion of p-values under null hypothesis from a range of threshold

at which level the test is called significant from 0 to 1. Conceptually the q-value is similar to

the p-value, and it can be interpreted as the “Bayesian posterior p-value” (Storey, 2003; Storey

and Tibshirani, 2003). For a given test, the p-value of the test tells the minimum FPR that is

incurred if the test is declared significant, while the q-value of the test is the minimum of FDR

estimates among all thresholds at which the test is declared significant.

4.3 Local False Discovery Rate

Efron et al. (2001); Efron (2007) proposed an empirical Bayes local false discovery rate

(Lfdr) method (henceforth described as Efron’s Lfdr method) based on the densities of test

statistics, as an alternative of the tail area global FDR for FDR control in large-scale si-

multaneous hypothesis testing. Efron’s Lfdr method has enabled us to directly compute the



50

probability of the null hypothesis being true given the observed test statistic, which is thought

of as a “local” FDR (Efron, 2004), and hence controls the FDR more precisely as compared to

the p-value based Benjamini and Hochberg procedures (Cai and Sun, 2017) that rely on the tail

areas of null hypothesis. It should be also noted that the local FDR method provides a direct

measure of the probability of the null hypothesis being true given the observed t, which is in

line with the objective of hypothesis testing in Equation (4.1).

In Lfdr theory, the truth of hypothesis H0,i is assumed to be i.i.d. Bernoulli random

variables. Let H0,i = 0 when H0,i is true, and H0,i = 1 otherwise, and ti be the corresponding

test statistic, we have,

H0,i
iid∼ Bernoulli(p1),

ti ∼

{
f0, if H0,i = 0

f1, if H0,i = 1
,

where p0 = P (H0,i = 0) and p1 = P (H0,i = 1) = 1−p0 are the prior probabilities, f0 and f1 are

the probability density functions of test statistic under null hypothesis and under alternative

hypothesis, respectively.

Thus, ti follows a mixture distribution marginally,

f(ti) = p0f0(ti) + p1f1(ti).

Then, in the Bayesian framework, Lfdri(zi) is defined as the posterior probability that

H0,i being true at a given observation ti. By Bayes’ rule we have,

Lfdri(ti) = P (H0,i = 0 | T = ti) =
p0f0(ti)

f(ti)
, (4.15)
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The Lfdr has exactly the same form as the objective of hypothesis testing as shown in Equation

(4.1).

Efron (2004, 2007) provided details in estimation of p0, f0(t) and f(t) that are required to

calculate Lfdr in Equation (4.15). Assuming that the mixture density of f(ti) for all test statis-

tics under null and alternative hypothesis is smooth and has a (p + 1)-parameter exponential

family form as,

f(t) = exp

 p∑
j=0

βjt
j

 , (4.16)

Lindsey’s method utilizing a smooth and flexible parametric model based on Poisson regression

is used to estimate f(ti) (Lindsey, 1974a,b; Efron and Tibshirani, 1996). First, discretize the

likelihood by partitioning the entire sample space B = {ti}mi=1 into K bins of equal width ∆t,

denoted by {B1, · · · ,BK}. Let mk be the number of ti’s in Bk, k = 1, · · · ,K,

mk =

m∑
i=1

I{ti ∈ Bk}, k = 1, · · · ,K,

where I{·} is an indicator function.

(m1, · · · ,mK) has a multinomial distribution with m (the total number of ti’s) and prob-

abilities (π1(β), · · · , πK(β)), where β = (β0, · · · , βp),

(m1, · · · ,mK) ∼MultinomialK
(
m,
(
π1(β), · · · , πK(β)

))
, (4.17)
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Denote the middle point of the interval in Bk by vk, the probability πk can be approximated

using,

πk = P (t ∈ Bk) =

∫
Bk

f(t)dt =

∫ vk+∆t/2

vk−∆t/2
f(t)dt ≈ f(vk)∆t. (4.18)

Then, the expected value of mk is,

E(mk) = mf(vk)∆t. (4.19)

For a sufficiently large K, Poisson regression trick can be applied to model mk’s as independent

random Poisson variables,

mk
ind∼ Poisson(λk), k = 1, · · · ,K, (4.20)

where λk is the expected value of mk. Note that in Equation (4.17) mk’s are dependent as∑K
k=1mk = m, while Equation (4.20) assumes mk’s are independent. By Equation (4.19), we

have

λk = E(mk) = mπk = m∆tf(vk) ∝ f(vk), (4.21)

Thus, log(λk) can be modeled as a (p−1)th degree polynomial function of vk using a generalized

linear model (GLM) with Poisson link function,

log(λk) =

p∑
j=0

βjv
j
k, (4.22)
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The maximum likelihood estimates (β̂1, · · · , β̂p) can be obtained from a standard GLM Poisson

regression. Then calculate β̂0, the normalizing constant, by making the f(t) integrate to 1,

β̂0 = log


∫
B

exp

 p∑
j=1

β̂pt
j


−1

, (4.23)

Efron (2004) has discussed that a 6th-order polynomial model would provide a sufficiently good

of fit.

Regarding estimation of f0(t) and p0, Efron (2007) proposed a “central matching” method

based on “zero assumption” that the central peak of the test statistics distribution is comprised

mostly of the null hypotheses. As in large-scale hypothesis testing problem for genomics and

neuroimaging studies, the majority of the hypotheses are null, which leads to a common and

reasonable assumption that p0 is close to 1. The underlying distribution of the test statistics

under null hypothesis is assumed to be standard normal f0(t) ∼ N(0, 1) known as “theoretical

null”, or f0(t) ∼ N(µ0, σ
2
0) known as“empirical null” (Efron, 2004, 2007). Assuming the em-

pirical null, p0f0 can be estimated by fitting a quadratic curve to approximate the histogram

around zero area through Poisson regression as described above,

log
(
p0f0(t)

)
= β̂0 + β̂1t+ β̂2t

2. (4.24)
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Given f0(t) ∼ N(µ0, σ
2
0),

log(p0f0(t)) = log

{
p0

1√
2πσ2

0

exp

(
− 1

2σ2
0

(t− µ0)2

)}

= log p0 −
1

2
log(2πσ2

0)− 1

2σ2
0

(t− µ0)2

= log p0 −
1

2
log(2πσ2

0)− µ2
0

2σ2
0

+
µ0

σ2
0

t− 1

2σ2
0

t2. (4.25)

By setting Equations (4.24) and (4.25) equal,

β̂0 = log p̂0 −
1

2
log(2πσ̂2

0)− µ̂2
0

2σ̂2
0

,

β̂1 =
µ̂0

σ̂2
0

,

β̂2 = − 1

2σ̂2
0

, (4.26)

Now µ̂0, σ̂2
0 and p̂0 can be calculated as,

σ̂2
0 = − 1

2β̂2

,

µ̂0 = − β̂1

2β̂2

,

p̂0 = exp

{
β̂0 +

1

2
log

(
− π

β̂2

)
− β̂2

1

4β̂2

}
, (4.27)

As long as the “zero assumption” holds when p0 is close to 1, the estimates by “central matching”

method are nearly unbiased.

Efron and Tibshirani (2002) showed the close relationship between the test statistics based

Lfdr and the p-value based Benjamini and Hochberg FDR. Rewrite FDR in Bayesian form by

replacing the probability density functions f0 and f1 in Equation (4.15) with the corresponding
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cumulative distribution functions F0 and F1, respectively, and denote the Bayesian FDR by

Fdri(T ≤ ti), the posterior probability that H0,i is true given T ≤ ti is,

Fdri(T ≤ ti) = P (H0,i = 0 | T ≤ ti) =
p0F0(ti)

F (ti)
, (4.28)

Then the relationship between Fdri and Lfdri is given by (Efron and Tibshirani, 2002):

Fdri(T ≤ ti) =

∫ ti
−∞ Lfdr(t)f(t)dz∫ ti

−∞ f(t)dz
= E

[
Lfdr(t) | T ≤ ti

]
, (4.29)

So Fdri(T ≤ ti) is the conditional expectation of Lfdri(t) given T ≤ ti and can be estimated as

an average of Lfdri(t) over all T ≤ ti. When |t| increases Lfdri(t) decreases, so it is expected

that Fdri(T ≤ ti) is always smaller than Lfdri(t).

Sun and Cai (2007) introduced an oracle procedure based on test statistics for FDR control

by regarding multiple testing as a compound decision problem, intended to minimize false non-

discovery rate (i.e., maximizing power, see Section 4.5 for detailed review) that is subject to a

constraint on FDR ≤ q. In the oracle and adaptive procedure,

1. Sort Lfdr estimates in ascending order by L̂fdr(1) ≤ L̂fdr(2) ≤ · · · ≤ L̂fdr(m) and the

corresponding hypotheses are H(1), H(2), ...,H(m),

2. For a given q, , where q = 0.2− 0.3 is reasonable, let k = maxi

{
i : 1

i

∑i
j=1 L̂fdr(j) ≤ q

}
,

3. Then reject all H(i), i = 1, ..., k.

Cai (2008) has commented on the inefficiency problem with the p-value based FDR control

procedures and suggested that Lfdr be the fundamental quantity that can be used for opti-

mal FDR control in large-scale multiple testing. Jin and Cai (2007) proposed an empirical
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characteristic function approach using normal mixtures and Fourier analysis to estimate null

distribution parameters and p0.

4.4 Considerations for FDR Level q

The desired FDR level q is the maximum proportion of false discoveries among rejected

hypotheses that can be tolerated on average. For a single hypothesis testing, generally we fix

the type I error rate α at 5%, and then try to achieve a power at 80%. For multiple hypothesis

testing, similarly we need to determine the value of q at which level the FDR is controlled.

For example, choosing a q of 0.10 means that on average 10% of the significant tests we find

are actually false positives. Genovese et al. (2002) suggested a range of FDR levels between

0.1 and 0.2 be acceptable for neuroimaging studies. Bhaumik et al. (2018b) further discussed

the considerations to determine the FDR level q in terms of the proportion of null hypothesis

(p0) and adjustment for type I error rate (α) and power (also called average power for multiple

hypothesis testing).

Letm0 andm1 denote the number of truly null hypotheses and truly alternative hypotheses,

respectivey. Based on mFDR defined in Equation (4.14), in which E(FD) and E(D) can be

approximated as, E(FD) ≈ αm0 and E(D) ≈ αm0+power×m1, the expected FDR is calculated

as,

mFDR ≈ E(FD)

E(D)
=

αm0

αm0 + power×m1
=

αp0

αp0 + power× (1− p0)
, (4.30)

To illustrate the relationship between q, p0, α and power, we use two multiple testing examples

shown below.

In the first example, a total of 2000 hypotheses are tested, in which 1000 hypotheses are

true null (i.e., the proportion of true nulls is p0 = 1000
2000 = 0.50). Given the overall type I
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error rate α = 5%, the expected number of rejections among the 1000 truly null hypothesis is

1000 × 5% = 50. With 80% power, the expected number of rejections among the 1000 false

null hypotheses is 1000× 80% = 800. Then by Equation (4.30) the expected FDR level can be

calculated as: q = 50
50+800 ≈ 0.059.

In the second example, out of the 1000 hypotheses, 900 are true null (i.e., p0 = 0.90) and

100 are false null. Similarly, given α = 5% and power of 80%, by Equation (4.30) we can

calculate the expected FDR as: q = 900×5%
900×5%+100×80% = 45

45+80 = 0.36. Note that the power

in neuroimaging and genomics studies is usually much less than 80% as a result of insufficient

sample size (that will be discussed briefly in the next section), thus the expected FDR level is

even greater than the calculated.

As this procedure continues to a very large value of p0 such as p0 = 0.98, the value of q will

be close to 1, which is not acceptable due to the high probability of false positives. Therefore,

Bhaumik et al. (2018b) recommended that in a multiple testing problem the FDR level of q

should be adjusted for the value of p0, the type I error rate and power, such that FDR does

not exceed a desired threshold (e.g., 0.20 or 0.30). Also considering the assumption of the large

proportion of null hypotheses typically found in neuroimaging and genomics studies in which

p0 ≥ 95%, it is not reasonable to have a small value of q (e.g., q = 0.05 or 0.1).

In addition, we explore the impact of average effect size on the expected FDR level. For

multiple testing in neuroimaging, the effect sizes are not fixed as we normally assume for

alternative hypothesis in case of single hypothesis testing, instead they are varying due to

the heteroscedastic errors at both group level and link level. Song (2016) assessed the 95%

confidence interval of the varying effect sizes via simulation study. For example, the 95%

confidence interval of the effect sizes is (0.50, 1.50) for a true mean between-group difference
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in FC of 0.15, assuming the total sample size of 40 and α = 5%, yielding an average power of

80.2%. Figure 5 shows the expected FDR level and average effect size for different total sample

sizes ranging from 40 to 100 assuming p0 = 0.90. It is expected that given a fixed sample size,

smaller average effect size will lead to a higher expected FDR level, suggesting that the more

stricter FDR level control (i.e., smaller q) requires sufficiently large sample size and average

effect size.

Figure 5. The expected FDR as a function of the average effect size for different total sample
size assuming true null proportion p0 = 0.90
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4.5 FDR, Non-Discovery Rate, Power and Sample Size

Though the emphasis of this thesis is on FDR, another key component related to multiple

hypothesis testing is power, which can be quite challenging especially for neuroimaging studies

with small to moderate sample size. In this section we provide a brief overview on the relation-

ship between non-discovery rate (NDR), power and sample size for multiple hypothesis testing

in neuroimaging study.

In terms of a single hypothesis testing, power is known as the probability of rejecting a

null hypothesis when the null hypothesis is false. In the context of multiple testing, power can

have different forms (Dudoit et al., 2003) that are (1) the probability of rejecting at least one

false null hypothesis, P (TD > 1); (2) the probability of rejecting all m1 false null hypotheses

P (TD = m1); and (3) the average probability of rejecting false null hypotheses, i.e., average

power, E(TD)/m1. In this review we only consider the third definition of power, that is, the

expected proportion of correctly rejected hypotheses among all false null hypotheses, in the

same form as for sensitivity,

power =
E(TD)

m1
= sensitivity, m1 > 0, (4.31)

Define NDR as the expected proportion of accepted false null hypotheses among all false null

hypotheses (Craiu and Sun, 2008),

NDR =
E(FND)

m1
= 1− E(TD)

m1
= 1− power, m1 > 0, (4.32)
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Thus NDR can be interpreted as the average type II error rate over all false null hypotheses

tested,

NDR = 1− power =

∑m1
i=1 P (pi > γ | H0,i = 1)

m1
= β̄, (4.33)

where γ is the fixed threshold at which level the individual hypothesis is rejected. We can

rewrite NDR in Equation (4.32) as an expression of the true null proportion p0 and FDR level

q,

NDR =
E(FND)

m1
=
m1 − E(TD)

m1
= 1− (1− q)E(D)

(1− p0)m
, (4.34)

By replacing p0 and E(D) with the estimated p̂0 in Equation (4.27) by “central matching”

method (Efron, 2007) and the observed number of rejected hypotheses D, respectively, we can

obtain an estimate of NDR as,

N̂DR = 1− (1− q)D
(1− p̂0)m

, (4.35)

Recall that mFDR can be expressed as a function of power and p0 in Equation (4.30), and by

replacing power with 1-NDR, we have

mFDR ≈ E(FD)

E(D)
=

αm0

αm0 + power×m1
=

αp0

αp0 + (1−NDR)× (1− p0)
, (4.36)

Song (2016) has investigated the relationship between FDR level q, NDR, true null propor-

tion p0, power and sample size in neuroimaging studies, where the results are summarized in

Figures 6, 7and 8. Those findings align with the results of a previous study on FDR, sensitivity



61

(i.e., power) and sample size for microarray studies (Pawitan et al., 2005). Figure 6 shows the

trade-off relationship between FDR level q and NDR for various p0 ranging from 0.7 to 0.9 via

simulation study with similar data structure as the FC data in the neuroimaging study for LLD

(Song, 2016). As can be seen, as FDR level q increases, the NDR level decreases regardless of

p0 value. However, p0 value controls the steepness of NDR decrease, where lower p0 is, faster

NDR decreases. For example, at q = 0.2, NDR levels are approximately 0.55, 0.67 and 0.80 for

p0 equal to 0.7, 0.8, and 0.9, respectively. This is expected as lower p0 means a larger number

of false null hypotheses, which yields to a higher power and thus lower NDR.

Source: Figure 11 in Song (2016)

Figure 6. Trade-off relationship between FDR and NDR for different null proportion p0 via
simulation study

Red, blue and black curves indicate p0 = 0.7, 0.8 and 0.9, respectively.



62

Source: Figure 12 in Song (2016)

Figure 7. Trade-off relationship between FDR and NDR using fMRI data in LLD
neuroimaging study with estimated null proportion p̂0 = 0.98

The three dashed lines indicate NDR levels of 0.94, 0.79 and 0.41 at FDR level q = 0.1, 0.2 and 0.5, respectively.

Figure 7 depicts the relationship between FDR level q and NDR using fMRI data in the

LLD neuroimaging data described in Chapter 2 with the null proportion estimated as p̂0 = 0.98

based on Efron’s “central matching” method illustrated in Section 4.3 (Song, 2016). There is

almost a linear relationship between NDR and FDR level q within the range of (0.10, 0.75),

where the slope = -1.358. At q = 0.1, NDR is substantially high at 0.94 that corresponds to a

very low power of 0.06, which may not be acceptable. When q increases to 0.2, NDR decreases

to 0.79 while the power increases to 0.21, though still considerably low. NDR level drops to

0.41 resulting in a reasonable power of 0.59 at q = 0.5, which is considered too high to be
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accepted. Therefore, in this study we consider q in an acceptable range between 0.2 and 0.3,

which correspond to NDR level between 0.79 and 0.67 and power between 0.21 and 0.33. This

lower power is expected as a result of the small sample size and high null proportion in this

study.

There are two important notes we can take from this trade-off relationship between FDR

and NDR: (1) low FDR level q leads to high NDR and low power, that is, one can decrease FDR

at the cost of raising NDR (reducing power), or vice versa. This provides a strong argument why

use of low FDR level can be problematic; (2) control for FDR is also a control of NDR/power,

based on which sample size determination for multiple testing can be simplified.

As aforementioned, typical neuroimaging studies usually have small to moderate sample

size and thus it is of particular importance for researchers to understand the consequences

especially with regards to the power. Figure 8 is a plot of sample size vs. power for different

null proportion at FDR level q = 0.2 via simulation study assuming the true mean between-

group difference in FC is 0.20 for false null hypotheses (Song, 2016). We can see that greater

the null proportion, larger the sample size is required to achieve the same power. To achieve

an average power of 0.8, the required sample size is approximately 46, 50 and 65 for p0 equal

to 0.8, 0.9 and 0.98, respectively. Again, we need to be mindful that for a study with small

sample size of 20, the power we can expect is as low as 0.1 that makes detecting differential

connectivity links very difficult. Taking all the above discussions in this section as well as the

previous section into considerations, we therefore use q = 0.2 or 0.3 as desired FDR level for

simulation study and q = 0.2 for data analysis in this thesis.



64

Source: Figure 13 in Song (2016)

Figure 8. Sample size and power for different null proportion p0 at FDR level q = 0.2 via
simulation study assuming the true mean between-group difference in FC = 0.20 for false null
hypotheses

The green solid, red dotted and blue dash-dotted curves indicate p0 = 0.8, 0.9 and 0.98, respectively.
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4.6 Bayesian Multimodal Local False Discovery Rate Method

Efron’s Lfdr method has gained increased popularity in genomics and neuroimaging studies

over the years and been regarded as the benchmark method for FDR control for large-scale

simultaneous hypothesis testing. However, in cases when sample size is small, Efron’s Lfdr

method cannot provide a sufficient control of FDR due to the high sampling variability. Table III

presents the comparison of the performance of the four existing statistical approaches for FDR

control in detecting disrupted FCs via simulation study with similar data structure as the FC

data in the neuroimaging study for LLD (Song, 2016; Bhaumik et al., 2018b). We see that

under small sample size N = 23 (10 LLD and 13 HC, same as the LLD study), all the four

methods failed to control FDR at the pre-specified q level including q = 0.2 and 0.3. With the

sample size increasing to N = 100 (50 in each group), the performance of the four methods all

improved to certain degree, and Efron’s approach is the best by yielding the closet FDR to the

pre-specified q level for neuroimaging comparisons.

Furthermore, Efron’s Lfdr method does not have the capability to account for the potential

influence from other information into density estimations of the test statistics for the measure-

ment of interest. In the multimodal neuroimaging study, the disrupted SC may be a predictor

of the disrupted FC. Borrowing strength from the SC statistics into the modeling for FC statis-

tics would increase the sensitivity of testing and help improve efficiency in both FDR control

and detection of differential FC links. Zablocki et al. (2014) proposed a covariate-modulated

Lfdr method using a parametric Bayesian two-group mixture model to incorporate functional

genome annotations as covariates in genome-wide association studies, which has been proved

to be efficient by increasing power substantially. We extend this method to the multimodal

neuroimaging data aimed to better control FDR and detect differential FC links between the
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TABLE III
COMPARISON OF PERFORMANCES OF DIFFERENT FDR CONTROL PROCEDURESa

Nb qc Adaptive BHd Theoretical Null Empirical Null
(Efron)e

Empirical Null
(Sun & Cai)f

23 0.30 0.848 0.942 0.592 0.603
0.20 0.804 0.916 0.497 0.508
0.10 0.791 0.860 0.385 0.382
0.05 0.752 0.777 0.291 0.286

50 0.30 0.674 0.900 0.373 0.506
0.20 0.560 0.841 0.261 0.361
0.10 0.402 0.700 0.150 0.191
0.05 0.322 0.535 0.088 0.098

100 0.30 0.541 0.830 0.355 0.450
0.20 0.399 0.714 0.235 0.320
0.10 0.221 0.472 0.110 0.181
0.05 0.122 0.265 0.052 0.092

Source: Table VIII in Song (2016)

a Results are based on the simulation study with similar data structure as the FC data in the
LLD neuroimaging study (Song, 2016; Bhaumik et al., 2018b).
b N = Total sample size.
c q = desired FDR level.
d Benjamini and Hochberg method (Benjamini and Hochberg, 1995).
e Efron’s Lfdr method (Efron et al., 2001; Efron, 2007).
f Sun and Cai method (Sun and Cai, 2007).
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two groups in cross-sectional, multimodal neuroimaging studies with small to moderate sample

size. We implement a Bayesian multimodal Lfdr method, which utilizes a Bayesian mixture

model to leverage complementary SC statistics and enhance the modeling of the density of FC

statistics. The approach is general and can be useful in a broad spectrum of applications, such

as genomics, neuroimaging, and microbiome data.

This approach has two distinguishing features. First, for each individual FC link the prior

probability p0 = P (H0,i = 0) (also known as proportion of null hypotheses) is modeled using

a logistic regression model with link-specific SC statistics as covariate, as opposed to assuming

the same p0 estimate for all FC links in Efron’s Lfdr method that considers solely FCs. Second,

the densities of FC test statistics under both null hypothesis and alternative hypothesis are

estimated using parametric models, where the posterior sampling for the model parameters are

obtained using Gibbs sampling. The SC test statistics serve as auxiliary information in the

mixture model aiding identification of differential FCs between the disease group and control

group. Figure 9 presents the evolution of FDR methods in neuroimaging from Benjamini and

Hochberg FDR, Efron’s Lfdr, and to Bayesian multimodal Lfdr in neuroimaging studies.

Several computing algorithms are implemented to deal with intensive computations in

posterior sampling that naturally arise in this approach. The utility of the method is illustrated

with an extensive simulation study and an application to the motivating LLD study, in which

FC and SC data were measured on each participant and the objective is to identify differential

FC links between LLD and HC groups.

4.6.1 Bayesian Mixture Models

In this approach, the densities of FC test statistics under both null hypothesis and al-

ternative hypothesis are estimated using parametric models. Given zero assumption, most of
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Figure 9. The evolution of FDR methods from Benjamini and Hochberg FDR, Efron’s Lfdr,
and to Bayesian multimodal Lfdr in neuroimaging studies

Note: In Bayesian multimodal Lfdr approach, absolute values of test statistics without directions are used for

modeling, considering that test statistics located in the lower and upper tail areas are equally important to

researchers and combining both tail areas will provide more information to estimate alternative density using a

parametric model.
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the hypotheses tested are null, so there may not be sufficient number of test statistics under

alternative hypotheses in either lower or upper tail area that can be used for parametric density

estimation for the two directions. The test statistics located in the lower and upper tail areas

are considered equally important to researchers and thus combining both tail areas will provide

more information to help estimate alternative density using a parametric model. Therefore, we

use the absolute values of test statistics without directions (signs) for modeling, as suggested

by the genome-wide association studies (Zablocki et al., 2014).

From both theoretical and empirical perspectives it is assumed that the underlying distri-

bution of the test statistics under null hypothesis is normal as described in the previous section

(Efron, 2004, 2007). Thus, the absolute values of test statistics under null hypothesis follows

a folded normal distribution (Leone et al., 1961). Figure 10 depicts the probability density

function of a folded normal random variable |x|, where x follows a standard normal distribution

with mean zero and the standard deviation one (same as the theoretical null). We see that the

probability mass values on the left half of the normal distribution are folded over the right half,

as “folded” literally means.

Let t
(F )
i and t

(S)
i , i = 1, · · · ,m, denote the absolute value of test statistics to compare mean

connectivity measures between disease group and control group for the ith connectivity link,

for FC and SC, respectively. The t
(F )
i and t

(S)
i statistics are obtained by fitting the FC and SC

data using a linear MERM with heteroscedastic errors described in Chapter 3, separately. And

t(F ) =
[
t
(F )
1 t

(F )
2 · · · t

(F )
m

]T
and t(S) =

[
t
(S)
1 t

(S)
2 · · · t

(S)
m

]T
are the vector of the absolute

values of test statistics for FC and SC, respectively.

A Bayesian two-group mixture model (Efron et al., 2001; Storey, 2002; Efron, 2008; Zablocki

et al., 2014) is utilized to model the density of FC test statistics, with auxiliary information
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Figure 10. Densities of standard normal and folded normal

from SC test statistics. We formulate the Bayesian two-group mixture model according to

Zablocki et al. (2014). Assume that for the connectivity links under the null hypothesis of no

FC difference between disease group and control group (referred to as null connectivity links),

their t
(F )
i statistics follow a folded normal distribution, denoted by f0, with zero location pa-

rameter (µ0 = 0) and unknown scale parameter σ2
0 > 0. For a two group comparison study,
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the zero mean assumption under the null hypothesis is justified, and σ2
0 assumption provides a

better flexibility to explain variability.

f0

(
t
(F )
i | µ0 = 0, σ2

0

)
=

1√
2πσ2

0

exp

[
−

(t
(F )
i − µ0)2

2σ2
0

]
+

1√
2πσ2

0

exp

[
−

(t
(F )
i + µ0)2

2σ2
0

]

= 2
1√

2πσ2
0

exp

[
−
(
t
(F )
i

)2
2σ2

0

]
,

=

√
2

πσ2
0

exp

[
−
(
t
(F )
i

)2
2σ2

0

]
, t

(F )
i ≥ 0, (4.37)

Note that the SC test statistic t
(S)
i is not involved in Equation (4.37), under the assumption that

SC statistic has no influence on density of FC statistic for the null connectivity links (Zablocki

et al., 2014; Zhang et al., 2019).

Next, we assume that for the connectivity links under the alternative hypothesis of dif-

ferential (or significant) FC difference between disease group and control group (referred to as

alternative connectivity links), their t
(F )
i statistic follows a gamma distribution. The gamma

distribution is considered because it offers flexibility to accommodate different shapes of the

density function using various parameter settings and good fit for right-skewed data in general.

Figure 11 presents the shape of gamma distribution using various specifications of shape and

rate parameters (denoted by α and β, respectively), where Figure 11a shows densities for differ-

ent shape parameter values with fixed rate β = 1, while Figure 11b shows densities for different

rate parameter values with fixed shape α = 10. As seen in Figure 11a, the shape parameter α

controls skewness of the density given skewness = 2√
α

, which is reduced as α increases. When

α = 1, Gamma(1, β) is an exponential distribution; when α → ∞, the gamma distribution

can be approximated by the normal distribution with mean α
β and variance α

β2 . In Figure 11b

where the fixed shape parameter is fairly large α = 10, we can see that the densities are close
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to normal distribution and the rate parameter β have the effect to stretch (when β is small,

e.g., β = 1) or compress (when β is large, e.g., β = 4) the range of the distribution as variance

= α
β2 .

(a) (b)

Figure 11. Density of Gamma(α, β), where α and β are the shape and rate parameters,
respectively

(a) Densities for various shape parameter values from 1 to 10 with fixed rate at β = 1.

(b) Densities for various rate parameter values from 1 to 4 with fixed shape at α = 10.

Denote the gamma distribution for alternative connectivity links by f1, with a fixed location

parameter µ1, unknown shape parameter α(t
(S)
i | α) > 0 and unknown rate parameter β > 0,

f1

(
t
(F )
i | µ1, α(t

(S)
i | α), β

)
=

βα
(
t
(S)
i |α

)
Γ
(
α
(
t
(S)
i | α

))(t
(F )
i − µ1)α

(
t
(F )
i |α

)
−1 exp

[
−β
(
t
(F )
i − µ1

)]
,

t
(F )
i ≥ µ1, (4.38)
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Further we assume that α
(
t
(S)
i | α

)
is a log-linear function of SC statistic t

(S)
i with unknown

parameters α0 and α1, that is,

α(t
(S)
i | α) = exp(α0 + α1t

(S)
i ), (4.39)

where α =
[
α0 α1

]T
is a vector of the unknown parameters.

In order to avoid the nonconvergence issue and gain some efficiency, we assume β does not

depend on t
(S)
i . The location parameter µ1 in Equation (4.38) is purposely fixed at 0.674, the

median of the standard folded normal distribution f0(0, 1) (Zablocki et al., 2014). Based on

the zero assumption (Efron, 2007; Storey, 2002; Storey and Tibshirani, 2003; Zablocki et al.,

2014) that the most of the test statistics around zero are null hypotheses, it is reasonable to

assume t
(F )
i ≤ 0.674 is null a priori so the alternative density is bound away from zero. Also

this restriction on µ1 in f1 is necessary to help avoid any identifiable model issue when strong

assumptions about parameters are not available.

To complete the mixture model, we now define a latent variable wi, i = 1, · · · ,m, to

indicate which component of the mixture model each t
(F )
i follows, null distribution if wi = 0,

or alternative distribution if wi = 1,

t
(F )
i , i = 1, ...,m,∼

{
f0

(
t
(F )
i | σ2

0

)
, if wi = 0,

f1

(
t
(F )
i | α

(
t
(S)
i | α

)
, β
)
, if wi = 1.

(4.40)

The prior probability of wi = 1 depends upon the SC statistic t
(S)
i , denoted by π1

(
t
(S)
i | γ

)
,

and is modeled using a logistic regression with t
(S)
i as covariate,

π1

(
t
(S)
i | γ

)
= P

(
wi = 1 | t(S)

i

)
=

exp
(
γ0 + γ1t

(S)
i

)
1 + exp

(
γ0 + γ1t

(S)
i

) , (4.41)
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where γ =
[
γ0 γ1

]T
is a vector of unknown parameters. The prior probability of wi = 0 given

t
(S)
i , denoted by π0

(
t
(S)
i | γ

)
, is

π0

(
t
(S)
i | γ

)
= P

(
wi = 0 | t(S)

i

)
= 1− π1

(
t
(S)
i | γ

)
=

1

1 + exp
(
γ0 + γ1t

(S)
i

) , (4.42)

Then the density of the mixture model is

f
(
t
(F )
i | t(S)

i ,α,γ, β, σ2
0

)
= π0

(
t
(S)
i | γ

)
f0

(
t
(F )
i | σ2

0

)
+ π1

(
t
(S)
i | γ

)
f1

(
t
(F )
i | α, β, t(S)

i

)
, (4.43)

And the augmented likelihood function is

L
(
α,γ, β, σ2

0 | w, t(F ), t(S)
)

=
m∏
i=1

{[
π0

(
t
(S)
i | γ

)
f0

(
t
(F )
i | σ2

0

)](1−wi) [
π1

(
t
(S)
i | γ

)
f1

(
t
(F )
i |α, β, t

(S)
i

)]wi}
, (4.44)

where w =
[
w1 w2 · · · wm

]T
is a vector of wi’s.

By Bayes’ theorem, BLfdri
(
t
(F )
i , t

(S)
i

)
, defined as the posterior probability that the ith

connectivity link is null (i.e., no differential FC between disease group and control group) given

t
(F )
i and t

(S)
i statistics, and the posterior estimates of the parameters {α̂, γ̂, β̂, σ̂2

0} is

BLfdri
(
t
(F )
i , t

(S)
i

)
= P

(
H0,i = 0 | t(F )

i , t
(S)
i , α̂, γ̂, β̂, σ̂2

0

)
=
π0

(
t
(S)
i | γ̂

)
f0

(
t
(F )
i | σ̂2

0

)
f
(
t
(F )
i | t(S)

i α̂, γ̂, β̂, σ̂2
0

)
=

π0

(
t
(S)
i | γ̂

)
f0

(
t
(F )
i | σ̂2

0

)
π0

(
t
(S)
i | γ̂

)
f0

(
t
(F )
i | σ̂0

2
)

+ π1

(
t
(S)
i | γ̂

)
f1

(
t
(F )
i | α̂, β, t(S)

i

) . (4.45)
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4.6.2 Prior Distributions

For the unknown parameters {α,γ, β, σ2
0} in the mixture model (4.43), we assume generic

weakly informative prior distributions. Details are illustrated as follows.

For α =
[
α0 α1

]T
in Equation (4.39) and γ =

[
γ0 γ1

]T
in Equation (4.41), we assume

that α0 and α1 are a priori independent, γ0 and γ1 are a priori independent, and their values

are concentrated between -1 and 1, so we have α ∼ N2 (0,Σα) and γ ∼ N2 (0,Σγ) given by

P (α) =
1

2π|Σα|1/2
exp

{
−1

2
αTΣ−1

α α

}
, (4.46)

P (γ) =
1

2π|Σγ |1/2
exp

{
−1

2
γTΣ−1

γ γ

}
, (4.47)

where Σα = Σγ =

[
1 0

0 1

]
.

For the rate parameter β in Equation (4.38), we choose a gamma distribution as the

prior for mathematical convenience since it is the conjugate prior for the gamma distribution,

β ∼ Gamma(aβ, bβ), given by

P (β | aβ, bβ) =
β(aβ−1)

bβ
aβΓ(aβ)

exp

(
− β
bβ

)
, β > 0, (4.48)

where aβ > 0 and bβ > 0 are the shape and rate hyperparameters, respectively. The prior mean

= aβbβ and variance = aβbβ
2.

For the scale parameter σ2
0 in Equation (4.37), similarly we choose the conditionally con-

jugate prior distribution σ2
0 ∼ Inverse-Gamma(aσ0 , bσ0) given by

P (σ2
0 | aσ0 , bσ0) =

bσ0
aσ0

Γ(aσ0)
(σ2

0)−(aσ0+1) exp

(
−bσ0

σ2
0

)
, σ2

0 > 0, (4.49)
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where aσ0 > 0 and bσ0 > 0 are the shape and rate hyperparameters, respectively. The prior

mean =
bσ0

aσ0−1 and variance =
bσ0

2

(aσ0−1)2(aσ0−2)
.

Note that in the form of gamma distribution (4.48) and the inverse gamma distribution

(4.49), when both shape and rate hyperparameters have very small values (e.g., 0.001), the

prior distributions will approach the Jeffreys’ prior as:

p(β) ∝ βaβ−1 exp (−βbβ), lim
aβ→0,bβ→0

p(β) =
1

β
, (4.50)

p(σ2
0) ∝ (σ2

0)−(aσ0+1) exp

(
−bσ0

σ2
0

)
, lim
aσ0→0,bσ0→0

p(σ2
0) =

1

σ2
0

. (4.51)

Jeffreys’ prior refers to the non-informative prior distribution for a parameter that is invari-

ant under smooth monotone transformation of the parameter based on the Fisher information

for the parameter (Jeffreys, 1946). For a random variable X distributed as p(x|θ) with param-

eter θ and θ ∈ Θ, the Fisher information that measures information contained in X contains

about the parameter θ is defined as,

I1(θ) = Eθ

[(
d log p(x|θ)

dθ

)2 ∣∣∣θ] = −Eθ

[
d2 log p(x|θ)

dθ2

∣∣∣θ] , (4.52)

For a data with n observations (X1, X2, · · · , Xn) that are independent and identically dis-

tributed random variables, Xi
i.i.d.∼ p(xi|θ), i = 1, · · · , n, we have p(x1, x2, · · · , xn|θ) =∏n

i=1 p(xi|θ) and then

I(θ) =
n∑
i=1

{
−Eθ

[
d2 log p(xi|θ)

dθ2

∣∣∣θ]} = nI1(θ), (4.53)
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Jeffreys’ prior is proportional to
√
I(θ),

p(θ) ∝
√
I(θ) = const.×

√
I(θ), (4.54)

If the integral of
√
I(θ) over the parameter space Θ,

∫
Θ

√
I(θ)dθ, is a finite number, then the

constant can be taken as 1∫
Θ

√
I(θ)dθ

so that

∫
Θ
p(θ)dθ =

∫
Θ

1∫
Θ

√
I(θ)dθ

√
I(θ)dθ =

1∫
Θ

√
I(θ)dθ

∫
Θ

√
I(θ)dθ = 1,

indicating that the prior p(θ) is a proper probability density. If the integral is infinite, then the

constant cannot be specified and the prior p(θ) is an improper probability density.

To see how Jeffreys’ prior is invariant under reparameterization. For φ = g(θ), where g()

is a smooth monotone function, the Fisher information for φ is,

I(φ) =

n∑
i=1

{
Eφ

[(
d log p(xi|φ)

dφ

)2 ∣∣∣φ]}

=

n∑
i=1

{
Eθ

[(
d log p(xi|θ)

dθ

dθ

dφ

)2 ∣∣∣θ]}

=

n∑
i=1

{
Eθ

[(
d log p(xi|θ)

dθ

)2( dθ
dφ

)2 ∣∣∣θ]}

=

n∑
i=1

{
Eθ

[(
d log p(xi|θ)

dθ

)2 ∣∣∣θ]}( dθ
dφ

)2

= I(θ)

(
dθ

dφ

)2

, (4.55)

Thus, √
I(φ) =

√
I(θ)

∣∣∣∣ dθdφ
∣∣∣∣, (4.56)
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Then the prior density on φ is

p(φ) = const.×
√

I(φ) = const.×
√

I(θ)

∣∣∣∣ dθdφ
∣∣∣∣ = p(θ)

∣∣∣∣ dθdφ
∣∣∣∣, (4.57)

Gamma(0.001, 0.001) and Inverse-Gamma(0.001, 0.001) have been commonly used as non-

informative prior in the examples in Bayesian Inference Using Gibbs Sampling (BUGS) (Lunn

et al., 2009). However, there are major concerns being raised and discussed with regards to

the use of these non-informative priors. First, the priors are not distributions because they are

unbounded and the integrals over the entire parameter space are infinite,

∫ ∞
0

f(θ)dθ =

∫ ∞
0

1

θ
dθ = lnθ

∣∣∣∞
0

=∞− (−∞) =∞, (4.58)

Hence, the priors are improper and may also yield an improper posterior density (Gelman, 2006;

Gelman et al., 2013). Both prior distributions have the mean of 1 but extremely large variance,

with high probability density very close to 0 and a very long tail (as shown in dashed red lines

in Figures 12a and 12b). The high prior probability density near 0 has a strong influence on the

posterior density so the posterior tends to behave in a similar way as the prior with majority

mass near 0 and a long and heavy tail. This will lead to an unregularized posterior distribution

that diffuse to extreme large values. In this sense, the priors are not non-informative but

actually quite influential. In addition, Robert and Casella (1999) pointed out that in complex

cases the improper prior often results in convergence issue in Gibbs sampler that draws samples

directly from the conditional distributions.

Given the undesirable properties of the non-informative priors alluded above, it has been

suggested and recommended to use weakly informative prior, which contains little but sufficient
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information to provide some regularization to ensure that the posterior be bounded within a

reasonable range (Gelman, 2006; Gelman et al., 2008, 2013). As such, we set those hyperparame-

ters using the method of moments estimation (Kim et al., 2009), choose Gamma(aβ = 1, bβ = 1)

and Inverse-Gamma (aσ0 = 3, bσ0 = 2) both with mean = 1 and variance = 1 as the weakly

informative prior for β and σ2
0, respectively (as shown in dash-dotted blue lines in Figures 12a

and 12b). These weakly informative priors offer more stable inferences than would be obtained

from non-informative priors through regularization in parameter estimation, as well as enough

vagueness to ensure that posteriors are dominated by the data.

4.6.3 Posterior Sampling

We obtain the posterior sampling distributions for the unknown parameters using Gibbs

Sampler (Geman and Geman, 1984; Casella and George, 1992; Robert and Casella, 1999). Gibbs

sampler is a special Markov Chain Monte Carlo (MCMC) algorithm (Hastings, 1970; Gelfand

and Smith, 1990), which generates samples from the conditional distributions given all other

variables without requiring the marginal distributions. The full conditional distributions of the

parameters {α,γ, β, σ2
0} in the mixture model (4.43) are described below.

By Equations (4.38) and (4.46), the conditional distribution of α given β, w, tx and tz is

f(α | β,w, t(F ), t(S))

= P (α)
∏

{i|wi=1}

f1

(
t
(F )
i | α, β, t(S)

i

)
=

1

2π|Σα|1/2
exp

{
−1

2
αTΣ−1

α α

} ∏
{i|wi=1}

βα
(
t
(S)
i |α

)
Γ
(
α
(
t
(S)
i | α

))(t(F )
i − µ1

)α(t(S)
i |α

)
−1

exp
[
−β
(
t
(F )
i − µ1

)]

∝ exp

{
−1

2
αTΣ−1

α α

} ∏
{i|wi=1}

βα
(
t
(S)
i |α

)
Γ
(
α
(
t
(S)
i | α

))(t(F )
i − µ1

)α(t(S)
i |α

)
, (4.59)
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(a)

(b)

Figure 12. Prior distributions

(a) Gamma for β. (b) Inverse-Gamma for σ2
0 . The dashed red lines are the non-informative priors, and the

dash-dotted blue lines are the weakly informative priors.
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where α
(
t
(S)
i | α

)
= exp

(
α0 + α1t

(S)
i

)
, µ1 = 0.674.

By Equations (4.38), (4.41) and (4.42), the conditional distribution of γ given w and tz is

f
(
γ | w, t(F )

)
= P (γ)

m∏
i=1

{
π0

(
t
(S)
i | γ

)1−wiπ1

(
t
(S)
i | γ

)wi}

=
1

2π|Σγ |1/2
exp

{
−1

2
γTΣ−1

γ γ

} m∏
i=1


[

1

1 + exp(γ0 + γ1t
(S)
i )

]1−wi [
exp(γ0 + γ1t

(S)
i )

1 + exp(γ0 + γ1t
(S)
i )

]wi
∝ exp

{
−1

2
γTΣ−1

γ γ

} m∏
i=1

exp
(
γ0 + γ1t

(S)
i

)wi
1 + exp

(
γ0 + γ1t

(S)
i

) , (4.60)

By Equations (4.38) and (4.48), the conditional distribution of β given α, w, t(F ) and t(S)

is

f
(
β | α,w, t(F ), t(S)

)
= P (β | aβ, bβ)

∏
{i|wi=1}

f1

(
t
(F )
i | α, β, t(S)

i

)
=

β(aβ−1)

bβ
aβΓ(aβ)

exp

(
− β
bβ

) ∏
{i|wi=1}

βα
(
t
(S)
i |α

)
Γ
(
α
(
t
(S)
i | α

))(t(F )
i − µ1

)α(t(S)
i |α

)
−1

exp
[
−β
(
t
(F )
i − µ1

)]

∝ β(aβ−1) exp

(
− β
bβ

) ∏
{i|wi=1}

βα
(
t
(S)
i |α

)
exp

[
−β
(
t
(F )
i − µ1

)]

∝ β(aβ−1) exp

(
− β
bβ

)
β

∑
{i|wi=1}

α
(
t
(S)
i |α

)
exp

−β ∑
{i|wi=1}

(
t
(F )
i − µ1

)
∝ β

aβ+
∑

{i|wi=1}
α
(
t
(S)
i |α

)
−1

exp

−β
bβ +

∑
{i|wi=1}

(
t
(F )
i − µ1

)
∼ Gamma

aβ +
∑

{i|wi=1}

α
(
t
(S)
i | α

)
, bβ +

∑
{i|wi=1}

(
t
(F )
i − µ1

) , (4.61)

where α
(
t
(S)
i | α

)
= exp

(
α0 + α1t

(S)
i

)
, µ1 = 0.674, aβ = 1 and bβ = 1.



82

By Equations (4.37) and (4.49), the conditional distribution of σ2
0 given w and t(F ) is

f
(
σ2

0 | w, t(F )
)

= P (σ2
0 | aσ0 , bσ0)

∏
{i|wi=0}

f0

(
t
(F )
i | µ0 = 0, σ2

0

)
=
bσ0

aσ0

Γ(aσ0)
(σ2

0)−(aσ0+1) exp

(
−bσ0

σ2
0

) ∏
{i|wi=0}

2
1√

2πσ2
0

exp

(
−
(
t
(F )
i

)2
2σ2

0

)

∝ (σ2
0)−(aσ0+1) exp

(
−bσ0

σ2
0

)
(σ2

0)

(
− 1

2

m∑
i=1

I{wi=0}

)
exp

− 1

2σ2
0

∑
{i|wi=0}

(
t
(F )
i

)2
∝ (σ2

0)
−
(
aσ0+ 1

2

m∑
i=1

I{wi=0}+1

)
exp

− 1

σ2
0

bσ0 +
1

2

∑
{i|wi=0}

(
t
(F )
i

)2
∼ Inverse-Gamma

aσ0 +
1

2

m∑
i=1

I{wi=0}, bσ0 +
1

2

∑
{i|wi=0}

(
t
(F )
i

)2 . (4.62)

where I{wi=0} = 1 if wi = 0 and 0 otherwise, aσ0 = 3 and bσ0 = 2.

Based on MCMC method using Gibbs sampler and Metropolis-Hasting algorithm

(Metropolis et al., 1953; Hastings, 1970; Geman and Geman, 1984; Robert and Casella, 1999),

the posterior sampling for β and σ2
0, are directly from the full conditional distributions (4.61)

and (4.62), respectively. For α and γ, the posterior sampling are drawn from the proposal

multivariate t distribution with a small number of degree of freedom ν such as ν = 4, which

provides three finite moments for the approximating density (Gelman et al., 2013). Specifically,

a multiple-try Metropolis algorithm is employed to increase the step size and acceptance rate

(Liu et al., 2000) with details shown below.

For each iteration k, k = 1, ...,K, where K is the total number of MCMC iterations:

1. Draw J candidate samples from the proposal multivariate t function q() based on θ(k−1):

θ∗1,θ
∗
2, · · · ,θ∗J ∼ q(θ | θ(k−1)),
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2. Let π(θ) be the likelihood function, which is multivariate normal distribution in this case.

Given q() is symmetric, we can calculate the importance weights as

w(θ∗j | θ(k−1)) = π(θ∗j ), j = 1, · · · , J,

3. Select one sample θ∗ ∈ {θ∗1,θ∗2, · · · ,θ∗J} by multinomial sampling, here the weights are

the normalized importance weights:

ŵ(θ∗j | θ(k−1)) =
w(θ∗j )∑J
j=1w(θ∗j )

,

4. Draw J − 1 auxiliary samples based on selected θ∗

θ∗∗1 ,θ
∗∗
2 , · · · ,θ∗∗J−1 ∼ q(θ | θ∗),

Set θ∗∗J = θ(k−1).

5. Calculate the importance weights for the auxiliary samples as

w(θ∗∗j | θ∗) = π(θ∗∗j ), j = 1, · · · , J,

6. Let ρ =
∑J
j=1 w(θ∗j |θ(k−1))∑J
j=1 w(θ∗∗j |θ∗)

.

7. Generate a uniform random number u ∼ Unif(0, 1).

8. If u ≤ min(1, ρ), then accept and set θ(k) = θ∗. Otherwise, reject and set θ(k) = θ(k−1).

For the Markov chains, the initial values are set as α(0) =
[
0 0

]T
, β(0) = 0.1, σ2

0
(0) = 1

and π
(0)
0 = 0.94. Denote the threshold that corresponds to π

(0)
0 = 0.94 by λ(0), w

(0)
i = 1 if
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t
(F )
i ≥ λ(0)} and 0 otherwise. Then we can get the estimates of the coefficients based on the

logistic regression model described in Equation (4.41) on w
(0)
i given t

(S)
i , i = 1, · · · ,m, as the

initial values of γ(0) =
[
γ

(0)
0 γ

(0)
1

]T
.

At the kth MCMC iteration, k = 1, ...,K, when {α(k),γ(k), β(k), σ2
0

(k)} are drawn, the

probability of the latent variable w
(k)
i = 1 given t

(F )
i , t

(S)
i and {α(k),γ(k), β(k), σ2

0
(k)} denoted

by p
(k)
i , i = 1, ...m, is updated using

p
(k)
i = P

(
wi = 1 | t(F )

i , t
(S)
i ,α(k),γ(k), β(k), σ2

0
(k)
)

=
π1(t

(S)
i | γ(k))f1

(
t
(F )
i | t(S)

i ,α(k), β(k)
)

π0

(
t
(S)
i | γ(k)

)
f0

(
t
(F )
i | σ2

0
(k))

+ π1(t
(S)
i | γ(k))f1

(
t
(F )
i | t(S)

i ,α(k), β(k)
) , (4.63)

Then w
(k)
i is sampled from the full conditional Bernoulli distribution with probability p

(k)
i ,

w
(k)
i

iid∼ Bernoulli (p
(k)
i ), (4.64)

After obtaining the samples for each parameter from their posterior distributions, we can

take the posterior medians as the posterior estimates of the parameters {α̂, γ̂, β̂, σ̂2
0}. By

Equation (4.45), the posterior probability of the ith connectivity link is null given t
(F )
i and t

(S)
i ,

denoted by ̂BLfdri(t(F )
i , t

(S)
i ), is calculated as

̂BLfdri(t(F )
i , t

(S)
i

)
= P

(
H0,i = 0 | t(F )

i , t
(S)
i , α̂, γ̂, β̂, σ̂2

0

)
=

π0

(
t
(S)
i | γ̂

)
f0

(
t
(F )
i | σ̂2

0

)
π0

(
t
(S)
i | γ̂

)
f0

(
t
(F )
i | σ̂2

0

)
+ π1

(
t
(S)
i | γ̂

)
f1

(
t
(F )
i | α̂, β̂, t(S)

i

) , (4.65)

where f0

(
t
(F )
i | σ̂2

0

)
, f1

(
t
(F )
i | t(S)

i , α̂, β̂
)
, π0

(
t
(S)
i | γ̂

)
and π1

(
t
(S)
i | γ̂

)
are calculated using

Equations (4.37), (4.38), (4.41) and (4.42), respectively.
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Then we apply the oracle procedure introduced by Sun and Cai (2007) for multiple testing:

1. Calculate ̂BLfdri, for i = 1, · · · ,m, using Equation (4.65) and then sort them in ascend-

ing order denoted by ̂BLfdr(1) ≤ ̂BLfdr(2) ≤ · · · ̂BLfdr(m).

2. For a given q (0 < q < 1), find k for which k = arg max
i

{
i : 1

i

∑i
j=1

̂BLfdr(j) ≤ q
}

.

3. Then reject all H(i), i = 1, · · · , k.

Using this procedure the average FDR is controlled at a pre-specified level of q, where q =

0.2− 0.3 is considered reasonable as discussed in previous sections 4.4 and 4.5 (Genovese et al.,

2002; Song, 2016; Bhaumik et al., 2018b).

4.7 Simulation Study

The purpose of the simulation study is to evaluate the performance of Bayesian multimodal

Lfdr method and compare it with Efron’s Lfdr method that considers solely FC data (Efron

et al., 2001; Efron and Tibshirani, 2002) in terms of FDR control to identify differential FCs

between disease group and control group in a cross-sectional, multimodal neuroimaging study

with small to moderate sample size, in which both FC and SC are measured.

4.7.1 Simulation Algorithm

The simulation study is designed to have a similar data structure as the motivating study

as described in Chapter 2. To account for the potential correlation between FC and SC ob-

servations that may exist, we use a bivariate mixed-effects model with heteroscedastic errors

(Zhao, 2014) to simulate FC and SC data jointly and simultaneously based on the parameters

estimated from the mixed-effects model described in Chapter 3 using the LLD neuroimaging

data.
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By mimicking the sample size of the LLD study with 10 in LLD group and 13 in HC group,

in this simulation we consider small to moderate sample sizes and assume equal sample sizes for

the LLD group and HC group: n = 15, 25, 35 and 45 per group, with FC and SC measurement

taken from 87 regions for each participant. The total number of connectivity links measured is

m = 87× 86/2 = 3741.

Let H
(F )
0,i and H

(S)
0,i be the null hypothesis that the ith link has no difference between LLD

group and HC group in FC and SC, respectively. For simplicity, we refer to the connectivity

links under the null hypothesis as null connectivity links, and the connectivity links under the

alternative hypothesis as alternative connectivity links. The 3741 connectivity links can be

classified into four link classes based on H
(F )
0,i and H

(S)
0,i (see Table IV).

TABLE IV
CLASSIFICATION OF CONNECTIVITY LINKS IN SIMULATION STUDY

H
(F )
0,i H

(S)
0,i Link Class Description

False False alternative in both FC and SC
False True alternative in FC, null in SC
True False null in FC, alternative in SC
True True null in both FC and SC

Following the LLD neuroimaging dataset, we assume that

1. The proportion of connectivity links that are alternative in both FC and SC is 1%,

2. The proportion of connectivity links that are alternative in FC and null in SC is 1%,

3. The proportion of connectivity links that are null in FC and alternative in SC is 1%,
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4. The proportion of connectivity links that are null in both FC and SC is 97%.

So the total proportion of alternative links in FC is 2%, consistent with the assumption used

in simulation study based on the same LLD neuroimaging data (Song, 2016; Bhaumik et al.,

2018b). Next we assume, without a loss of generality, that in each simulated dataset the 3741

connectivity links are set in the following order:

1. The first 37 (1%) connectivity links are alternative in both FC and SC,

2. The following 37 (1%) connectivity links are alternative in FC and null in SC,

3. The next 37 (1%) connectivity links are null in FC and alternative in SC,

4. The rest 3630 (97%) connectivity links are null in both FC and SC.

Let δ(F ) and δ(S) denote the true differences between LLD group and HC group for the

alternative connectivity links in FC and SC, respectively. We assume δ(F ) = 0.075 and δ(S) =

0.25 that are considered moderate sizes. Let y
(F )
ij and y

(S)
ij be the FC and SC observation,

respectively, for the ith connectivity link (i = 1, · · · ,m) of the jth subject (j = 1, · · · , N , where

N is the total number of subjects and N = 2n), y
(F )
ij and y

(S)
ij are generated using the bivariate

mixed-effects model with the following settings,

yij =
[
y

(F )
ij y

(S)
ij

]T
, (4.66)

In the bivariate mixed-effects model, yij can be partitioned into fixed effects β0i and β1i,

random subject effects γj and random errors εij ,

yij = β0i × (1−Grpj) + β1i ×Grpj + γj + εij , (4.67)
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where

• Grpj is the indicator variable for which group the subject is from, HC group if Grpj = 0,

or LLD group if Grpj = 1.

• β0i and β1i are the vectors of fixed FC and SC effects for the ith connectivity link in HC

group and LLD group, respectively.

• γj =
[
γ

(F )
j γ

(S)
j

]T
is the vector of random subject effects for FC and SC in the jth

subject.

• εij =
[
ε
(F )
ij ε

(S)
ij

]T
is the vector of random errors for FC and SC of the ith connectivity

link in the jth subject.

• γj and εij are independent of each other.

For fixed Effects β0i and β1i, the vectors of fixed FC and SC effects for the ith connectivity

link in HC group and LLD group are,

β0i =
[
β

(F )
0i β

(S)
0i

]T
,

β1i =
[
β

(F )
1i β

(S)
1i

]T
,

Let
¯̂
β

(F )
0+ and

¯̂
β

(S)
0+ be the average of the fixed effect estimates over all m connectivity links in HC

group for FC and SC from mixed-effects model using the LLD neuroimaging data, respectively,

¯̂
β

(F )
0+ = 1

3741

∑3741
i=1 β̂

(F )
0i = 0.138,

¯̂
β

(S)
0+ = 1

3741

∑3741
i=1 β̂

(S)
0i = 1.099. We assume,
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• For HC group: β
(F )
0i =

¯̂
β

(F )
0+ = 0.138, β

(S)
0i =

¯̂
β

(S)
0+ = 1.099, i = 1, ..., 3741. That is,

β
(F )
0 = (0.138, · · · , 0.138︸ ︷︷ ︸

3741

)T ,

β
(S)
0 = (1.099, · · · , 1.099︸ ︷︷ ︸

3741

)T ,

• For LLD group:

β
(F )
1i =

{ ¯̂
β

(F )
0+ = 0.138 for null links in FC ,

¯̂
β

(F )
0+ + δ(F ) = 0.213 for alternative links in FC,

β
(S)
1i =

{ ¯̂
β

(S)
0+ = 1.099 for null links in SC,

¯̂
β

(S)
0+ + δ(S) = 1.349 for alternative links in SC,

That is,

β
(F )
1 = (0.213, · · · , 0.213︸ ︷︷ ︸

74

, 0.138, · · · , 0.138︸ ︷︷ ︸
3667

)T ,

β
(S)
1 = (1.349, · · · , 1.349︸ ︷︷ ︸

37

, 1.099, · · · , 1.099︸ ︷︷ ︸
37

, 1.349, · · · , 1.349︸ ︷︷ ︸
37

, 1.099, · · · , 1.099︸ ︷︷ ︸
3630

)T ,

For random Subject Effects γi, the vector of random subject effects for FC and SC in the

jth subject is γj =
[
γ

(F )
j γ

(S)
j

]T
. Assume γ

(F )
j and γ

(F )
j are independent of each other,

γj =
[
γ

(F )
j γ

(S)
j

]T
∼ N (0,Σγ) ,

Σγ =

[
σ2
γ

(F ) 0

0 σ2
γ

(S)

]
,
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where σ2(F )
γ = 0.004 and σ2(S)

γ = 0.108, estimated from mixed-effects model using the LLD

neuroimaging data.

For random Errors εij , the vector of random errors for FC and SC of the ith connectivity

link in the jth subject is εij =
[
ε
(F )
ij ε

(S)
ij

]T
and we assume,

• For HC group:

εij ∼ N (0,Σε,0) ,

Σε,0 =

[
σ

2(F )
{ε,0i} ρε,0σ

(F )
{ε,0i}σ

(S)
{ε,0i}

ρε,0σ
(F )
{ε,0i}σ

(S)
{ε,0i} σ

2(S)
{ε,0i}

]
,

σ
2(F )
{ε,0i} ∼ Γ

(
α

(F )
0 = 4.34, β

(F )
0 = 120.67

)
,

σ
2(S)
{ε,0i} ∼ Γ

(
α

(S)
0 = 0.71, β

(S)
0 = 0.64

)
,

where the shape and rate parameters for the variances are estimated by fitting a gamma

distribution to the variance estimates of all 3741 links in HC group for FC and SC sep-

arately, ρε,0 is the correlation between the random FC and SC errors in subjects from

HC group and we set ρε,0 = 0.1, estimated from the correlation between the variance

estimates of all links in HC group for FC and SC, from the mixed-effects model in the

lLD neuroimaging study.

• For LLD group:

εij ∼ N (0,Σε,1) ,

Σε,1 =

[
σ

2(F )
{ε,1i} ρε,1σ

(F )
{ε,1i}σ

(S)
{ε,1i}

ρε,1σ
(F )
{ε,1i}σ

(S)
{ε,1i} σ

2(S)
{ε,1i}

]
,



91

σ
2(F )
{ε,1i} ∼ Γ

(
α

(F )
1 = 3.49, β

(F )
1 = 89.47

)
,

σ
2(S)
{ε,1i} ∼ Γ

(
α

(S)
1 = 0.66, β

(S)
1 = 0.69

)
,

where the shape and rate parameters for the variances are estimated by fitting a gamma

distribution to the variance estimates of all 3741 links in LLD group for FC and SC

separately, from the mixed-effects model using the lLD neuroimaging study.

With respect to the correlation coefficient between the random FC and SC errors in

subjects from LLD group (denoted by ρε,1), we assume that (i) weak correlation (i.e.,

ρε,1 = 0.1) for null connectivity FC links; (ii) Varying scenarios in terms of ρε,1 for

alternative connectivity FC links including weak, mild, moderate and strong correlations

between random FC and SC errors in LLD patients as described in Table V, aimed to

investigate the influence of ρε,1 specifically for alternative FC links on FDR control.

TABLE V
SCENARIOS CONSIDERING VARYING CORRELATION COEFFICIENTS

BETWEEN THE RANDOM FC AND SC ERRORS IN LLD PATIENTS (ρε,1) FROM
WEAK TO STRONG BY LINK CLASS

Scenario
Link Class Descriptiona

both alter FC alter, SC null FC null, SC alter both null

1. Weak correlation 0.1 0.1 0.1 0.1
2. Mild correlation 0.4 0.1 0.1 0.1
3. Moderate correlation 0.4 0.8 0.1 0.1
4. Strong correlation 0.9 0.1 0.1 0.1

a alter = alternative links; null = null links. Refer to Table IV for the link class description.
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To illustrate the data structure in matrix notation, we can rewrite the bivariate linear

MERM in Equation (4.67) for the jth subject using matrix notation as,

yj = Xjβ +Zjγj + εj (4.68)

where

• yj is a 2m × 1 vector with the first m elements for FC measurements and the last m

elements for SC measurements,

yj =
[
y

(F )
1j y

(F )
2j . . . y

(F )
mj y

(S)
z,1j y

(S)
2j . . . y

(S)
mj

]T
1×2m

, (4.69)

• Xj is a 2m× 4m design matrix for the fixed effects βk,

X =


1−Grpj · · · 0 Grpj · · · 0

...
. . .

...
...

. . .
...

0 · · · 1−Grpj 0 · · · Grpj


2m×4m

=
[
1−Grpj Grpj

]
⊗ I2m, (4.70)

where I2m is a 2m-dimensional identity matrix.

• β is a 4m× 1 fixed effect vector,

β =
[
β

(F )
0

T β
(S)
0

T β
(F )
1

T β
(S)
1

T
]T

1×4m

=
[
β

(F )
01 · · · β

(F )
0m β

(S)
01 · · · β

(S)
0m β

(F )
11 · · · β

(F )
1m β

(S)
11 · · · β

(S)
1m

]T
1×4m

, (4.71)
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• Zj is a 2m× 2 design matrix for the random subject effects γj ,

Zj =

1m 0m

0m 1m


2m×2

, (4.72)

where 1m is a m× 1 vector of all ones and 0m is a m× 1 vector of all zeros.

• γj is a 2× 1 vector of the random subject effects for FC and SC measurements,

γj =

γ(F )
j

γ
(S)
j

 , (4.73)

• εj is a 2m× 1 vector with the first m elements for the random errors of FC and the rest

m elements for the random errors of SC,

εj =
[
ε
(F )
1j ε

(F )
2j . . . ε

(F )
mj ε

(S)
1j ε

(S)
2j . . . ε

(S)
mj

]T
1×2m

. (4.74)

For each scenario of correlation coefficients under each sample size of n = 15, 25, 35 and 45

subjects per group, 1,000 datasets are simulated. The FC and SC data in each simulation are

analyzed separately using mixed-effects model to compute the FC and SC test statistics for all

the m connectivity links, based on which the Lfdr using Efron’s Lfdr and BLfdr using Bayesian

multimodal Lfdr for each of the m connectivity links are calculated. The oracle procedure

described above is then applied to control FDR and determine which connectivity links are

differential between the two groups.

For Bayesian multimodal Lfdr method, we run one MCMC chain for 20,000 iterations with

the first 10,000 iterations discarded as burn-in and a thinning interval of 10 (i.e., retaining only

every 10th iteration), to produce a total of 1,000 random posterior draws for each parameter.
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4.7.2 Simulation Results

Table VI, Figures 13 and 14 summarize the simulation results in terms of FDR at pre-

specified level of q = 0.2 and 0.3 by Efron’s Lfdr method and Bayesian multimodal Lfdr method

for different scenarios assuming the true FC and SC differences between LLD group and HC

group for the alternative connectivity links are δ(F ) = 0.075 and δ(S) = 0.25. Bayesian multi-

modal Lfdr method outperforms Efron’s Lfdr method in terms of controling FDR consistently

for all scenarios across different sample sizes, orrelation between the random FC and SC errors

in true alternative connectivity links for both FC and SC measurements in LLD group, and q

values.

Sample size has a major impact on controlling FDR at the desired q level. For small sample

sizes, Bayesian multimodal Lfdr method yields considerably lower FDR than Efron’s Lfdr at the

same q level. For example, with n = 15 subjects per group the FDR at q = 0.2 ranges between

0.429 to 0.549 by Bayesian multimodal Lfdr method, as compared to a range between 0.675 to

0.686 by Efron’s Lfdr method. As discussed in Chapter 1, neuroimaging studies usually have

a small number of subjects, and thus improving FDR control in the presence of small sample

sizes is particularly helpful for researchers. As sample size increases, FDR by both methods are

reduced greatly. With n = 45 subjects per group, FDRs from the two methods are very close

and both converging to the pre-specified level q, suggesting that the asymptotic properties are

similar between the two methods.

It is also noted that FDR by Bayesian multimodal Lfdr decreases when correlation be-

tween the random FC and SC errors in true alternative connectivity links for both FC and SC

measurements in LLD group (denoted by ρε,1) is larger, for small sample sizes. For example,

for n = 15 subjects per group when ρε,1 increases from 0.1 to 0.9, FDR using Bayesian mul-
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timodal Lfdr method is reduced from 0.549 to 0.429 at q = 0.2, and from 0.654 to 0.555 at

q = 0.3. As aforementioned, Koch et al. (2002) and Honey et al. (2009) both demonstrated the

direct inference of strong FC from strong SC, suggesting the high functional-structural corre-

lation (ρε,1 = 0.9) in true alternative connectivity links for both FC and SC that is assumed

in Scenario 4. The effect of the ρε,1 on FDR control seems to be attenuated as the sample size

increases. For example, for n = 45 subjects per group FDR at q = 0.2 using Bayesian multi-

modal Lfdr method is 0.219 and 0.226 for ρε,1 = 0.1 and 0.9, respectively. In contrast, FDRs

based on Efron’s Lfdr method are invariant to different values of ρε,1, which totally makes sense

since Efron’s method uses information from FC data only and hence the functional-structural

correlation should not have any influence on FDR.

In addition, we have observed that larger q value yields a larger FDR as FDR controlled at

q = 0.3 are larger as compared to those controlled at q = 0.2. FDR by both Efron and Bayesian

multimodal Lfdr methods reaches to the pre-specified q values for n = 45 subjects per group.
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TABLE VI
FDR AT PRE-SPECIFIED LEVELS OF 0.2 AND 0.3 BY EFRON’S LFDR METHOD AND

BAYESIAN MULTIMODAL LFDR METHOD USING SIMULATION STUDIESa

Scenariob nc q = 0.2d q = 0.3d

Efron’s Lfdr Bayesian
multimodal Lfdr

Efron’s Lfdr Bayesian
multimodal Lfdr

1. Weak correlation
15 0.675 0.549 0.744 0.654
25 0.461 0.405 0.551 0.494
35 0.308 0.245 0.409 0.345
45 0.249 0.219 0.354 0.310

2. Mild correlation
15 0.676 0.496 0.750 0.575
25 0.451 0.362 0.535 0.463
35 0.298 0.295 0.413 0.378
45 0.248 0.242 0.365 0.336

3. Moderate correlation
15 0.678 0.522 0.758 0.602
25 0.467 0.384 0.537 0.463
35 0.328 0.317 0.436 0.392
45 0.258 0.217 0.361 0.320

4. Strong correlation
15 0.686 0.429 0.741 0.555
25 0.473 0.400 0.563 0.514
35 0.321 0.291 0.419 0.387
45 0.247 0.226 0.352 0.323

a Results are based on 1000 simulated datasets for each scenario, assuming the true FC and SC
differences between LLD group and HC group for the alternative connectivity links δ(F ) = 0.075
and δ(S) = 0.25. Each simulated data is fit with the mixed-effects model to obtain the test
statistics for each of the m = 3741 connectivity links for FC data and SC data, separately.
b Including varying correlation coefficients between the random FC and SC errors in LLD pa-
tients from weak to strong. Refer to Table V for the details of each scenario.
c n = sample size per group.
d q = desired FDR level.
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Figure 13. FDR control at pre-specified level of q = 0.2 by Efron’s Lfdr method and Bayesian
multimodal Lfdr method using simulation study

Refer to Table V for the details of each scenario.
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Figure 14. FDR control at pre-specified level of q = 0.3 by Efron’s Lfdr method and Bayesian
multimodal Lfdr method using simulation study

Refer to Table V for the details of each scenario.



CHAPTER 5

DIRICHLET PROCESS FOR DISCOVERING SIGNIFICANT

FUNCTIONAL CONNECTIVITIES

The previous chapter described Bayesian multimodal Lfdr method for FDR control based

on the test statistics for group comparison between disease group and control group for FC

and SC obtained from the mixed-effects model presented in Chapter 3. In this chapter, the FC

data are directly modeled via a semi-parametric Bayesian approach utilizing a non-parametric

Dirichlet process mixture model. This Bayesian method has several advantages. It does not

impose any model assumption and thus allows flexibility in distributional assumptions in sup-

port of exploring the space of all possible and measurable distributions. It also can reduce

dimension and induce multiplicity adjustment through the inherent clustering property of the

Dirichlet process. Therefore, this method can be used to mimic hypothesis testing framework,

while preserving the false discovery rate.

Gopalan and Berry (1998) introduced Dirichlet process priors for distribution of the pa-

rameters of interest in multiple comparison. Since then, the Bayesian multiple comparison has

been explored with a focus on genomics research. Dahl and Newton (2007) proposed a Dirichlet

process mixture model for multiple testing of correlated hypothesis in microarray genomics data

and showed in simulation that model-based clustering of treatment effects naturally incorpo-

rates information among all tests and thus induces multiplicity adjustment, leading to improved

efficiency in FDR control. Kim et al. (2009) also presented a non-parametric Bayesian model

utilizing a spiked Dirichlet process prior for distribution of random effects for multiple testing

99
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in genomics, and demonstrated in simulation study that the method is effective in reducing

FDR.

Recently, Ghosal (2019) developed a semi-parametric Bayesian approach exploiting a non-

parametric Dirichlet process mixture model for discoveries of differential FCs in neuroimaging

study, and has demonstrated in simulation study, that the model yields higher true positive rate

(power) while controlling false positive rate (type I error) using receiver operating characteristics

curves as compared to the parametric model and neighboring model. We therefore apply this

method to analyze the FC data from the LLD neuroimaging study, as a comparison with the

results based on Bayesian multimodal Lfdr method and mixed-effects model.

5.1 Dirichlet Process

5.1.1 Definition

Dirichlet process (DP) is a stochastic process to draw probability distributions over a

set of distributions and it is often used in Bayesian non-parametric models as a prior over

probability distributions (Ferguson, 1973; Teh et al., 2006; Teh, 2010). The definition of DP

was provided by Ferguson (1973). Given a measurable space (Θ,A) where Θ be a set and A

is a σ-algebra of subsets of Θ, let G0 be a base probability measure on (Θ,A), which is often

assumed to be continuous (or smooth), and α > 0 be the concentration (or scale) parameter,

for all pairwise disjoint partitions {A1, · · · ,Ak} of space Θ where
⋃k
i=1Ai = Θ, if there exists

a random probability distribution G(·) that yields

{G(A1), · · · , G(Ak)} ∼ Dirichlet (αG0(A1), · · · , αG0(Ak)) , α > 0 (5.1)



101

Then G(·) is a DP on (Θ,A),

G(·) ∼ DP
(
α,G0(·)

)
, α > 0 (5.2)

For any measurable set Aj ⊂ A, the marginal distributions of G(Aj) is a Beta distribution

(Kotz et al., 2000):

G(Aj) ∼ Beta
(
αG0(Aj), α(1−G0(Aj))

)
, j = 1, · · · , k (5.3)

Thus, the prior mean and variance of the random probability measure G(Aj) are:

E
(
G(Aj)

)
= G0(Aj), (5.4)

Var
(
G(Aj)

)
=
G0(Aj)(1−G0(Aj))

α+ 1
. (5.5)

We see that the base probability measure G0(Aj) is the prior mean of the DP, and the con-

centration parameter α controls the prior variance of the DP: larger α is, smaller the variance

(i.e., more concentration of the mass around the mean).

5.1.2 Posterior Distribution

Let G(·) ∼ DP
(
α,G0(·)

)
, a sample of size n can be drawn from G(·), θ1, · · · , θn

iid∼ G(·).

As G(·) is a probability distribution over Θ, the values of θi, i = 1, · · · , n are in Θ. Since the
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Dirichlet distribution is a conjugate prior for the multinomial distribution, by Equation (5.1)

the posterior distribution of G(·) given the observed values of θ1, · · · , θn is also a DP on (Θ,A),

{G(A1), · · · , G(Ak)} | θ1, · · · , θn

∼ Dirichlet

(
αG0(A1) +

n∑
i=1

1{θj∈A1}, · · · , αG0(Ak) +

n∑
i=1

1{θj∈Ak}

)
, (5.6)

where
∑n

i=1 1{θi∈Aj} denotes the number of observed values in the set Aj , j = 1, · · · , k. The

sum of
∑n

i=1 1{θi∈Aj} is
∑k

j=1

∑n
i=1 1{θi∈Aj} = n, so the sum of the parameters in Equation (5.6)

is
∑k

j=1

[
αG0(Aj) +

∑n
i=1 1{θj∈Aj}

]
= α+n. Thus we can rewrite αG0(Aj) +

∑n
i=1 1{θi∈Aj} in

Equation (5.6) as:

αG0(Aj) +
n∑
i=1

1{θi∈Aj} = (α+ n)

(
α

α+ n
G0(Aj) +

1

α+ n

n∑
i=1

1{θi∈Aj}

)

= (α+ n)

(
α

α+ n
G0(Aj) +

n

α+ n

1

n

n∑
i=1

1{θi∈Aj}

)

= (α+ n)

[( α

α+ n

)
G0(Aj) +

( n

α+ n

) 1

n

n∑
i=1

δθi

]
, (5.7)

where δθi(Aj) = 1{θi∈Aj} is the point mass (or degenerated distribution) at observed θi ∈ Aj .

Hence the concentration parameter α
′

and the base probability measure G0(Aj)
′

in the

posterior distribution of the DP are updated as:

α
′

= α+ n, (5.8)

G0(Aj)
′

=

(
α

α+ n

)
G0(Aj) +

(
n

α+ n

)
1

n

n∑
i=1

δθi , (5.9)
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In Equation (5.8), as n is the sample size of observed data, in this sense α can be interpreted

as the prior sample size.

Now Equation (5.6) can be expressed in terms of α
′

and G0(Aj)
′
,

{G(A1), · · · , G(Ak)} | θ1, · · · , θn ∼ Dirichlet
(
α
′
G0(A1)

′
, · · · , α′G0(Ak)

′
)
, (5.10)

By Equation (5.3), the posterior mean of G(Aj) is:

E
(
G(Aj) | θ1, · · · , θn

)
= G0(Aj)

′
=

(
α

α+ n

)
G0(Aj) +

(
n

α+ n

)
1

n

n∑
i=1

δθi(Aj), (5.11)

It is noted that the posterior mean is a weighted average of the prior base probability measure

G0(Aj) with a weight proportional to α and the empirical measure 1
n

∑n
i=1 δθi with weight

proportional to the sample size of observed data n. In cases when α → 0 or the sample size

n increases, the posterior mean will be dominated by the empirical measure. In addition, as

n→∞, the posterior mean will converge to the empirical distribution.

5.1.3 Predictive Probability

Let θ̃n+1 be the yet to be observed data, the predictive probability of θ̃n+1 ∈ Aj where Aj

is a measurable set, given observed data points θ1, · · · , θn, can be obtained by marginalizing G

out:

P (θ̃n+1 ∈ Aj | θ1, · · · , θn) =

∫
G
P (θ̃n+1, G(Aj) | θ1, · · · , θn)dG(Aj)

=

∫
G
P (θ̃n+1 | G(Aj), θ1, · · · , θn)P (G(Aj) | θ1, · · · , θn)dG(Aj),

(5.12)
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Assuming conditional independence of θ̃n+1 and θ1, · · · , θn given G(Aj), Equation (5.12) be-

comes:

P (θ̃n+1 ∈ Aj | θ1, · · · , θn) =

∫
G
P (θ̃n+1 | G(Aj), θ1, · · · , θn)P (G(Aj) | θ1, · · · , θn)dG(Aj)

=

∫
G
P (θ̃n+1 | G(Aj))P (G(Aj) | θ1, · · · , θn)dG(Aj)

=

∫
G
G(Aj)P (G(Aj) | θ1, · · · , θn)dG(Aj)

= E
(
G(Aj) | θ1, · · · , θn

)
=

(
α

α+ n

)
G0(Aj) +

(
n

α+ n

)
1

n

n∑
i=1

δθi(Aj)

= G0(Aj)
′
, (5.13)

We see that the predictive probability of θ̃n+1 is also the posterior base probability distribution

G0(Aj)
′
, which is a mixture of prior base measure G0 and the point masses at the previously

observed data points θ1, · · · , θn. The probability of θ̃n+1 taking one of the previously observed

data points θ1, · · · , θn is n
α+n , which approaches to 1 as n→∞ or α→ 0. That means, it is very

likely that the yet to be observed data repeats the previously observed data. This suggests the

discreteness property of samples drawn from a DP, which leads to the use of DP for clustering.

Imagine each measurable set Aj is a cluster, larger a cluster is, higher the probability the next

data point will be sampled from the cluster, so the probability the cluster is getting bigger

is also higher, which is known as rich-gets-richer property of DP. Nevertheless, there is still a

probability of α
α+n to pick a data point from a new cluster, implying that there is always some

chance to start a new distribution.
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Next we describe two common metaphors of DP, Blackwell-MacQueen Urn scheme and

Chinese restaurant process.

5.1.4 Blackwell-MacQueen Urn Scheme

Blackwell and MacQueen (1973) introduced Blackwell-MacQueen urn scheme that satisfies

properties of DP. As a generalized form of Pólya urn scheme, it can be used to justify the

definition of DP as well as to interpret the predictive distribution of DP in Equation (5.13).

Imagine there is a non-transparent urn with α black (non-color) balls. Let Θ be the color set

with non-black colors, Aj ⊂ Θ, j = 1, ..., k, be the unique non-black color groups (for example,

A1 = {red}), and G0 the base probability measure on (Θ,A). The scheme is as follows: If we

draw a black ball from the urn, we put the ball back along with a new non-black ball randomly

drawn from G0; If we draw a non-black ball from the urn, then put the ball back along with

another ball with the same color. Let θi be a latent variable indicating which color the ith ball

is, i = 1, · · · , n. We are interested in the probability of drawing a ball of color Aj in the next

draw.

For the 1st draw, since the urn contains α black balls initially, we always get black balls,

so we draw a new ball with non-black color θ1 ∼ G0 and put it back to the urn along with the

black ball.

For the 2nd draw, the urn contains (α+ 1) balls including α black balls and one ball with

non-black color θ1. With probability α
α+1 , we draw a black ball and draw a new non-black ball

with color θ2 ∼ G0 and put it back into the urn along with the black ball, or with probability

1
α+1 we draw a ball of color θ2 = θ1, pick a new ball with the same color and put both back

into the urn.
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Continuing in this way to the (n+ 1)th draw, the urn has a total of (α+n) balls including

α black balls and n non-black balls. With probability α
α+n , we draw a black ball and a new

ball with color θn+1 ∼ G0 and put both back into the urn, or with probability n
α+n we draw

a ball from the empirical distribution 1
n

∑n
i=1 δθi(Aj), pick a new ball with the same color and

put both back into the urn.

In this manner, we can draw each θi given θ1, · · · , θi−1 until the urn has a total of n balls.

Based on the conditional distribution, we have the joint distribution of θ1, · · · , θn as,

P (θ1, · · · , θn) = P (θ1)P (θ2 | θ1) · · ·P (θn | θ1, θ2, · · · , θn−1)

= P (θ1)

n∏
i=2

P (θi | θ1, · · · , θi−1), (5.14)

Note that the joint distribution in Equation (5.14) is invariant to any finite permutation of

the sequence {θ1, θ2, · · · , θn} and hence the sequence itself is exchangeable. By de Finetti’s

theorem, for an exchangeable sequence there exists a random probability measure G where all

elements in the sequence are independently and identically distributed from,

P (θ1, · · · , θn) =

∫
(G(θ1) · · ·G(θn)) dP (G) =

∫ ( n∏
i=1

G(θi)

)
dP (G), (5.15)

This prior distribution over distributions P (G) is Dirichlet process DP (α,G0).

5.1.5 Chinese Restaurant Process and Clustering Property

As aforementioned in predictive distribution, the discreteness property of DP can be fur-

ther used to partition observations into groups (i.e., clustering). We will use Chinese restaurant

process to illustrate this clustering property of DP. Chinese restaurant process is another pop-

ular representation of DP, and in this metaphor suppose there is a very large Chinese restau-
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rant with infinite round tables and each table has no limit of seats. Let Θ be the table set,

Aj ⊂ Θ, j = 1, ..., k, represent each table. Each customer entering the restaurant and sitting

at a table is an observation, and can choose to sit at any of the occupied tables, or a currently

unoccupied table (say new table). Assume that a total of n customers already sit at a total of m

tables in the restaurant, with number of customers at the jth table denoted by nj , j = 1, · · · ,m,

and
∑k

j=1 nj = n. Let θi be a latent variable indicating which table the ith customer is sitting

at with values taking from {1, · · · ,m}, i = 1, · · · , n.

For the next (n+1)th customer entering the restaurant, the predictive probability that the

customer will sit at the jth table is proportional to the number of customers already sit at that

table (nj),

P (θ̃n+1 = j | θ1, · · · , θn) =
n

α+ n

1

n

n∑
i=1

δθi(Aj) =
n

α+ n

1

n
nj =

nj
α+ n

, (5.16)

More people sits at the table, higher the probability the size of that table will grow. This is also

the underlying reason for the rich-gets-richer characteristic of DP. When summing Equation

(5.16) over all m currently occupied tables, we have

m∑
j=1

P (θ̃n+1 = j | θ1, · · · , θn) =

m∑
j=1

nj
α+ n

=

∑m
j=1 nj

α+ n
=

n

α+ n
, (5.17)

With Equation (5.17), we see that there is non-zero probability that the customer will sit at a

new table labeled as m+ 1,

P (θ̃n+1 = m+ 1 | θ1, · · · , θn) =
α

α+ n
, (5.18)
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Note that conceptually, Chinese restaurant process and Blackwell-MacQueen urn scheme

are quite similar where tables and ball colors are both corresponding to clusters. The only

subtle difference is that in the Blackwell-MacQueen urn scheme, along with a black ball drawn

a new ball will be drawn randomly from the base distribution G0, while the Chinese restaurant

process does not have G0 in place. This can be addressed by adding a dish variable associated

with each table denoted by dj where dj ∼ G0.

Each occupied table j = 1, · · · ,m can be considered as a cluster. As the number of existing

tables m is always equal to less than the number of customers n, we wonder how fast the number

of clusters increase as number of observations goes up. By Equation (5.18), the probability of

adding more new table (cluster) when the ith customer enters the restaurant given there are

i− 1 customers in the restaurant is α
α+i−1 , based on which we can get expected m given n,

E(m | n) =
n∑
i=1

α

α+ i− 1
, (5.19)

Equation (5.19) can be approximated as α log(1 + n
α) (Teh, 2010). We see that the expected

number of clusters grows slowly as a logarithmic function of n, which is consistent with the

rich-gets-richer property. Also, α can be interpreted as the prior number of clusters.

5.1.6 Stick-Breaking Construction of Dirichlet Process

Sethuraman (1994) described stick-breaking method in a simple and straightforward way to

construct a DP. In this metaphor, suppose there is a stick of length 1 unit. Let βk ∼ Beta(1, α)

be the fraction being taken away from the reminder of the stick, and πk the length (or weight)

of the part being taken away, at the kth iteration, k = 1, · · · . At the 1st iteration, take β1 away,

π1 = β1. At the 2nd iteration, take β2 away from the reminder 1−β1, π2 = β2(1−β1). Continue
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to the Kth iteration, take βK away from the reminder
∏K−1
k=1 (1− βk), πK = βK

∏K−1
k=1 (1− βk).

When the number of iterations becomes very large, we have
∑∞

k=1 πk → 1 almost surely. Given

θk
iid∼ G0(·), we can construct samples of G from a DP as:

G =
∞∑
k=1

πkδθk =
∞∑
k=1

βk k−1∏
j=1

(1− βj)

 δθk , (5.20)

where δθk = 1{θk} is the point mass (or degenerated distribution) located at θk.

Source: Ghahramani (2005)

Figure 15. Stick-breaking representation of Dirichlet process

Using stick-breaking method, the procedure to obtain G ∼ DP (α,G0) is as follows:
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• Generate β1, · · · , βK
iid∼ Beta(1, α),

• Calculate the corresponding weights as πk = βk
∏k−1
j=1(1− βj), k = 1, · · · ,K,

• Generate θk
iid∼ G0, k = 1, · · · ,K,

• Define G =
∑K

k=1 πkδθk ∼ DP (α,G0).

Figure 15 shows a graphic depiction of stick-breaking process (Ghahramani, 2005). Note that

as the stick-breaking process continues, the weights will decrease to very small numbers that

can be neglected. This suggests truncation of stick-breaking as an approximation of DP using

a finite number of clusters with details provided in next section.

5.2 Dirichlet Process Mixture Model Specification

5.2.1 Dirichlet Process Mixture Model

One most important and profound application of Dirichlet process is for clustering analysis

using mixture model (Antoniak, 1974; Neal, 1992; Rasmussen, 2000). Let y = {y1, · · · , yn} be

a set of independently observed data points, a general Dirichlet process mixture (DPM) model

is given by

yi | θi,φ ∼ f(yi | θi,φ), i = 1, · · · , n;

θ1, · · · , θn | G
iid∼ G,

G | α,G0 ∼ DP (α,G0(· | κ)),

(φ, κ, α) ∼ P (5.21)

where φ and κ denote the vectors of unknown parameters associated with the distribution of

yi and base probability measure G0, respectively, and θ1, · · · , θn are the latent parameters that
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are conditionally independent given G. Note that as G is a discrete distribution, different θi’s

may have the same values. Then we complete the Bayesian mixture model by assuming that

the model parameter vector φ, hyperparameter vector κ and the concentration parameter α

follow a parametric distribution P.

As aforementioned in stick-Breaking construction of Dirichlet process, truncated stick-

breaking process can be an approximation of DP. Let K be the total number of clusters,

y1, · · · , yn a set of observed data points, s1, · · · , sn the latent variable associated with each yi

indicating which cluster yi is assigned to, a finite mixture model using truncated stick-breaking

is given by

βk ∼ Beta(1, α), for k = 1, · · · ,K − 1,

πk = βk

k−1∏
j=1

(1− βj), for k = 1, · · · ,K − 1,

πK = 1−
K−1∑
k=1

πk,

θk ∼ G0, for k = 1, · · · ,K,

G =
K∑
k=1

πkδθk (5.22)

where G has an approximate DP.

Figures 16a and 16b present the graphic models for a DPM model and a finite DPM model

using stick-breaking truncation, respectively.

5.2.2 Blocked Gibbs Sampler Using Stick-Breaking Truncation

Introduced by Ishwaran and James (2001, 2002), the blocked Gibbs sampling method

using stick-breaking truncation as an approximation to DP provides a straightforward MCMC
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(a) (b)

Figure 16. Graphic illustrations of Dirichlet process mixture (DPM) models

(a) A general DPM model. (b) A finite DPM model using truncated stick-breaking process. Rectangles represent

replications of the model, with number of replicates shown in the bottom right corner.

algorithm to obtain the non-parametric posterior sampling distributions. The blocked Gibbs

sampling approach does not require marginalization over the prior distribution of the random

probability measure G. The finite mixture model with K clusters is given by

yi | θ, si,φ
ind∼ f(yi | θsi ,φ), i = 1, · · · , n;

θ = {θ1, · · · , θK}
iid∼ G0(· | κ);

si | π
iid∼

K∑
k=1

πkδθk ≡Multinomial(K,π), (5.23)

where si is the latent indicator for which mixture component (cluster) yi is assigned to, si ∈

{1, · · · ,K}, and π = {π1, · · · , πK} are generated by the stick-breaking process in Equation

(5.22). Note that θ and π are independent.
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Using the blocked Gibbs sampler, θ, s and π are updated in multivariate blocks. The

full conditional distributions of (θ | s, φ, κ, y) and (s | θ, φ, κ, y) and (π | s, α) are given in

Ishwaran and James (2001) Section 5.2. Let {s∗1, · · · , s∗m} denote the m current unique values

of s, the blocked Gibbs sampler algorithm draws samples in the following order

1. Draw θk
iid∼ G0(· | κ), for k /∈ {s∗1, · · · , s∗m}. Also draw θs∗j from

θs∗j
iid∼ P (θs∗j | s, θ, y) ∝ G0(· | κ)

∏
i:si=s∗j

P (yi | θs∗j , ·), j = 1, · · · ,m,

2. Draw each si independently from

si | ·
ind∼

K∑
k=1

πk,iδθk , i = 1, · · · , n,

where πk,i ∝ πkP (yi | θk), k = 1, · · · ,K.

3. Update π by πk = bk
∏k−1
j=1(1 − bj), k = 1, · · · ,K − 1, and πK = 1 −

∑K−1
k=1 πk, where

bk ∼ Beta(1 + nk, α+
∑K

j=k+1 nj), c = 1, · · · ,K − 1, where nk is the number of si values

that equal to k, that is, the sizes of each cluster in s1, · · · , sn.

5.2.3 Model Specification

The Bayesian Dirichlet process mixture model used to analyze the FC data (using rs-fMRI)

in LLD neuroimaging study is specified as follows.
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Let y
(F )
ij denote the FC measurement for the ith link (i = 1, · · · ,m) of the jth subject

(j = 1, · · · , N), the Bayesian hierarchical model using DPM is

y
(F )
ij ∼ N

(
µij , σ

2
)
,

µij = β1i + β2iGrpj + γj ,

σ2 ∼ Inverse-Gamma(0.01, 0.01),

γj ∼ N(0, 0.004), (5.24)

where Grpj is the indicator variable for which group the jth subject is from, HC group if

Grpj = 0, or LLD group if Grpj = 1, γj is the random subject effect for the jth subject.

The parameter β1i denotes the intercept term for the ith link,

β1i ∼ N(µβ1 , σ
2
β1

),

µβ1 ∼ N(0.138, 0.0308),

σ2
β1
∼ Inverse-Gamma(4.1, 0.1), (5.25)

For subjects in HC group:

µij = β1i + γj , (5.26)
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The parameter β2i denotes the differential FC effect between LLD group and HC group

for the ith link. For subjects in LLD group:

µij = β1i + β2i + γj , (5.27)

Under the null hypothesis of no difference in FC between LLD group and HC group for

the ith link, β2i = 0. And we assume the majority of the links are under null hypothesis (i.e.,

null links). To mimic the hypothesis testing framework, H0,i: β2,i = 0 vs. H1,i: β2,i 6= 0, we

use a spike-and-slab mixture prior (Mitchell and Beauchamp, 1988) to model β2i.

β2i
iid∼ wδ0(·) + (1− w)G(·), (5.28)

where δ0(·) denotes a degenerate point mass at zero (the “spike component”) indicating H0,i is

true (i.e., β2i = 0) and w is the prior probability that H0,i is true. We fix w = 0.9 as a reflection

on “zero assumption” that most of the links are null cases. The “slab component” of the mixture

G(·) represents the distribution of non-zero β2i for a small proportion of links with differential

FC between LLD group and HC group (i.e., alternative links). Spike-and-slab mixture model is

a useful technique in Bayesian variable selection. As the “spike component” has a point mass at

zero, variable selection depends on the posterior probability that the corresponding coefficients

are selected to the “slab component”. This prior helps reduce β2i coefficients to zero for null

links in which β2i = 0 by making the posterior mean values small, and hence allows for a

Bayesian stochastic search on the sparse but large dimensional model space of differential FCs

for alternative links. The motivation of modeling G(·) using a non-parametric DP prior is

considering that one normal model for β2i’s might be inaccurate and unrealistic, specifying a
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DP prior for G(·) will provide flexibility for all possible and measurable distributions of β2i that

are driven by data.

To approximate G(·) we use the truncated stick-breaking process based on finite mixture

model with the following specifications:

bk ∼ Beta(1, α), for k = 1, · · · ,K − 1, (5.29)

πk = bk

k−1∏
j=1

(1− bj), for k = 1, · · · ,K − 1, and πK = 1−
K−1∑
k=1

πk

(
so

K∑
k=1

πk = 1

)
, (5.30)

θk
iid∼ G0 ≡ N(0, σ2

θ), for k = 1, · · · ,K, where σ2
θ ∼ Inverse-Gamma(3.2, 0.1), (5.31)

G(·) =
K∑
k=1

πkδθk ∼ DP (α,G0), (5.32)

where K is the number of clusters. As Gelman et al. (2013) suggested that K ≤ 15 can be

sufficient number of clusters, we specify K in a range from 5 to 15. For this DP prior, we use

the concentration parameter α = 1, which implies that the prior sample size (or prior number

of clusters) is 1.

To determine which cluster from {θ1, · · · , θK} in Equation (5.31) β2i is assigned to, we

define a latent variable si associated with each β2i, si ∈ {1, · · · ,K}. Given π = {π1, · · · , πK}

in Equation (5.30), we can draw si from G(·) by Equation (5.32)

si | π
ind∼ G(·) ≡

K∑
k=1

πkδθk ≡Multinomial(K,π),

β2i = θsi . (5.33)



CHAPTER 6

APPLICATION TO NEUROIMAGING STUDY IN LATE-LIFE

DEPRESSION

In this chapter, we apply Bayesian multimodal Lfdr method as described in Chapter 4

as well as the semi-parametric Bayesian approach utilizing a non-parametric Dirichlet process

mixture model as reviewed in Chapter 5 to the motivating multimodal neuroimaging study in

LLD for identifying differential FC links and altered networks that may be potentially involved

in pathology of LLD.

6.1 Bayesian Multimodal Local False Discovery Rate Method

6.1.1 Results

We performed the mixed-effects model analysis for FC (rs-fMRI) data in the LLD neu-

roimaging study with 10 LLD patients and 13 HC subjects described in Chapter 2. Figure

17 reveals the histogram of p-values from t-tests to compare mean FC measures between LLD

group and HC group obtained from the mixed-effects model for all 3741 links. Out of the total

of 3741 hypothesis tests, 281 (7.5%) tests have two-sided p-value ≤ 0.025. As mentioned in

Section 4.1, determination of significance solely based on p-values will result in a substantial

inflation in family-wise error rate. Under the null hypothesis of no FC difference between LLD

group and HC group, p-values are expected be uniformly distributed in the range between 0

and 1. By contrast, the p-values under the alternative hypotheses will tend to be very close

to 0. In Figure 17, we can see that the p-values in the range between 0.025 and 1 seem to

have a more even (or uniform) distribution, and the p-values close to 0 such as in the range

117
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between 0 and 0.025 have a relatively higher density compared to the rest. This suggests that

there may be a small proportion of alternative connectivity links whose FC measurement differ

significantly between LLD group and HC group, together with some potential false positives.

Figure 18 presents the histogram of the 3741 absolute test statistics for FC. The folded

normal distribution with mean = 0 and standard deviation = 1.01 estimated using the 3584

absolute test statistics with p-value > 0.025 (95.8%) seems to be a reasonable fit for the connec-

tivity links under null hypothesis, while the tail of the histogram for the potential alternative

connectivity links can be fitted using a gamma distribution described in Section 4.6.1. Then

we can obtain a conservative but unbiased estimate of proportion of null cases (Storey and

Tibshirani, 2003), denoted by π̂0, as,

π̂0 =

∑m
i=1 I{p-valuei > 0.025}

m(1− 0.025)
=

3584

3741× 0.975
= 0.983. (6.1)

In order to have a comprehensive understanding of the impact on results from different

perspectives with regards to q-value in controlling FDR, we applied q-value approach (Storey,

2002) using R qvalue package and the results are illustrated in Figure 19. Figure 19a is a plot

of the estimated overall proportion of true null hypotheses (denoted by π̂0) as a function of the

tuning parameter λ, where the natural cubic spline function with degree of freedom 3 fits the

data well and π̂0 = 0.935 suggesting the majority of the hypotheses are null that aligns with

the “zero assumption”. Figure 19b shows the number of significant links identified for each

q-value. We notice that there are fewer significant links when q-value < 0.3, indicating that the

q-value = 0.2 would be a very conservative choice. Figure 19c displays the relationship between

q-values and the corresponding p-values, from which we can see the expected proportion of
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Figure 17. Histogram of the 3741 p-values for between-group comparison for FC (rs-fMRI)
using the mixed-effects model in LLD neuroimaging study

The dashed line is the density of uniform distribution if all connectivity links were under null hypothesis (i.e.,

no differential FC).

false positives for different p-value cutoffs. Figure 19d shows the linear relationship between

expected false positives and positives. Using q-value = 0.2 yields a small number of significant

links (≈ 10), among which approximately 5 (≈ 5
10 = 50%) are expected to be false positives.

Prior to applying Bayesian multimodal Lfdr method to control FDR for large-scale multiple

testing, we first conducted the mixed-effects model analysis on the SC data measured by DTI

and obtained the absolute test statistics comparing mean SC measures between LLD group

and HC group for all 3741 connectivity links, which are then incorporated into the Bayesian
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Figure 18. Histogram of the 3741 absolute test statistics from the mixed-effects model for FC
(rs-fMRI) using the mixed-effects model in LLD neuroimaging study

The dashed blue line is the weighted null density π̂0f̂0

(
t
(F )
i

)
, where π̂0 = 0.983 and f0

(
t
(F )
i

)
is the estimated

density of folded normal distribution with mean = 0 and standard deviation = 1.01. Results are approximated

using the 3584 absolute test statistics with p-value > 0.025 (95.8%) assuming these FC links were under null

hypothesis.
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Figure 19. Results from the FC data analysis in LLD neuroimaging study using q-value
approach (Storey, 2002)

(a) The estimated overall proportion of true null hypothesis (denoted by π̂0) as a function of the tuning parameter

λ, where the red solid line indicates a natural cubic spline function with degree of freedom set to 3.

(b) The number of significant links as a function of q-value cutoff.

(c) The q-values vs. the corresponding p-values.

(d) The expected false positives as a linear function of positives.
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mixture model. Figure 20 shows the scatter plot of the absolute test statistics for the between-

group difference in SC vs. for FC from the mixed-effects model for all 3741 connectivity links.

Using critical value t1−0.025,ν , where ν = 23 − 2 = 21 is the degree of freedom, as the cutoff

to determine significance in a naive way, out of 3741 connectivity links, 3334 (89.1%) are

considered non-significant for both FC and SC (shown in blue), 271 (7.2%) are significant only

for FC measures (shown in orange), 126 (3.4%) are significant only for SC measures (shown

in green), and 10 (0.3%) are considered significant for both FC and SC connectivity measures

(shown in red). We do not observe any simple correlation pattern between the absolute test

statistics for between-group differences in FC and SC measures.

Using the prior distribution for model parameters specified in Section 4.7.2, we run three

Markov chains in parallel where each chain has 325,000 iterations with the first 25,000 iterations

of each chain discarded as burn-in and a thinning interval of 100 after burn-in, so the total

number of iterations is 3,000 for each chain. We have tried different thinning intervals of 10,

50 and 100, and found that by taking every 100th iteration the autocorrelation of the posterior

samples for each model parameter is reduced to an acceptable level. The acceptance rates for

α and γ using the multiple-try Metropolis within Gibbs algorithm are approximately 38% and

30%, respectively, for all three chains. As a rule of thumb, the desired acceptance rate range is

between 25% and 45%. Thus it suggests that the algorithm is efficient.

We perform model convergence diagnostics by checking mixing and stationarity (Gelman

et al., 2013). To assess the mixing of the three Markov chains, the difference between the

chains are analyzed based on the Gelman-Rubin convergence diagnostics (Gelman and Rubin,

1992; Brooks and Gelman, 1997). Potential scale reduction factor, denoted by R̂, is used to

compares the between-chain and within-chain variance estimates for each parameter. As shown
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Figure 20. Scatter plot of the absolute test statistics for the between-group difference in SC
(DTI) vs. for FC (rs-fMRI) from the mixed-effects model for all 3741 connectivity links in
LLD neuroimaging study

The dashed lines indicate the critical value t1−0.025,ν , where ν = 23− 2 = 21 is the degree of freedom.
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in Figure 21a, R̂ for all model parameters are very close to 1.0 indicating that the three chains

have converged to the target posterior distribution. Geweke z-score diagnostics (Geweke, 1992)

provides a formal check of stationarity by comparing the means between the first 10% and the

last 50% of the chain using a modified z-score. In Figure 21b, z-scores for all model parameters

by each chain are within the range of [−2, 2], suggesting that the three chains have reached

stationarity.

Figures 22, 23 and 24 display the overlapped trace, marginal density and autocorrelation

plots of posterior draws of each parameter with different colors by chain, respectively. As

illustrated in Figure 22, three chains have mixed well and each individual chain has achieved

stationarity. Figure 23 shows that estimation of the posterior densities from these three chains

are consistent and each chain has converged to a similar sample space. From Figure 24, lag one

autocorrelations are equal to or slightly larger than 0.5 for α0, β, and σ2
0, and small for α1, γ0

and γ1. We see the autocorrelations decrease quickly with respect to the lag and are near zero

with lag ≥ 8.

By combining the three chains into one long chain with 9,000 iterations in total, we take

the posterior medians as the posterior estimates of each parameter. The posterior inferences

including medians and 95% credible intervals are presented in Table VII. The estimated variance

of the null density (σ̂2
0) is 1.100. The negative coefficient estimate for SC test statistics γ̂1 =

−0.692 indicates that the lower alternative probability (i.e., higher null probability) is associated

with higher value of t
(S)
i . Based on the posterior estimates of the model parameters {α̂, γ̂, β̂, σ̂2

0},

we calculate the posterior probability of each individual link is null given the observed FC and

SC test statistics, ̂BLfdri, i = 1, ..., 3741, by Equation (4.65), and then determine which

connectivity links to be rejected using the oracle procedure for FDR control (Sun and Cai,
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(a) (b)

Figure 21. Plots for model convergence diagnostics

(a) The estimated potential scale reduction R̂. (b) Geweke z-scores.
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Figure 22. Trace plots of posterior draws of each parameter by chain
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Figure 23. Marginal density plots of posterior draws of each parameter by chain
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Figure 24. Autocorrelation plots of posterior draws of each parameter by chain
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2007). For each t
(F )
i , i = 1, · · · , 3741, the estimated weighted null and alternative densities as

well as the mixture density based on the posterior estimates are presented in Figure 25.

TABLE VII
POSTERIOR INFERENCES FOR MODEL PARAMETERS

Parameter Median (95% Credible Interval)a

α0 1.120 (0.362, 1.739)
α1 -0.018 (-0.548, 0.353)
β 2.214 (1.204, 3.359)
γ0 -2.313 (-3.138, -1.484)
γ1 -0.692 (-1.680, -0.055)
σ2

0 1.100 (0.829, 1.283)

a Based on 9,000 posterior samples combined from three parallel Markov
chains, where each chain has 325,000 iterations with the first 25,000 as burn-
in and a thinning interval of 100 after burn-in.

Bayesian multimodal Lfdr method detected 21 connectivity links showing significant FC

difference between LLD group (n1 = 10) and HC group (n2 = 13) at q = 0.2 presented in

Table VIII, where 15 connectivity links have increased FC significantly (hyperconnectivities)

and 6 connectivity links have decreased FC significantly (hypoconnectivities).

To assess the consistency of results between Bayesian multimodal Lfdr and Efron’s Lfdr

method, we compared the significant FC links identified using the two methods. Using Efron’s

Lfdr method by R locfdr package (Efron et al., 2015), the central matching estimates of the

null distribution is f0 = N(µ̂0 = 0.038, σ̂2
0 = 1.250) and the null proportion is p̂ = 0.988.

The estimated null density has a variance of 1.250, which is larger as compared to 1.100 using

Bayesian multimodal Lfdr method, implying that by Bayesian multimodal Lfdr, the estimated
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Figure 25. The estimated weighted null, weighted alternative and mixture densities based on
the posterior estimates of model parameters for the 3741 absolute test statistics obtained from
the mixed-effects model on FC (fMRI) data in LLD neuroimaging study

The blue dots are the weighted null density π0(t
(S)
i |γ̂)f0

(
t
(F )
i | σ̂2

0

)
, the red dots are the weighted alternative

density π1

(
t
(S)
i | γ̂

)
f1

(
t
(F )
i | α̂, β̂, t(S)

i

)
, and green dots are the mixture density π0

(
t
(S)
i | γ̂

)
f0

(
t
(F )
i | σ̂2

0

)
+π1

(
t
(S)
i |

γ̂
)
f1

(
t
(F )
i | α̂, β̂, t(S)

i

)
, where {α̂, γ̂, β̂, σ̂2

0} are the posterior estimates shown in Table VII.
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alternative density with SC statistics incorporated has heavier tail. Efron’s Lfdr method detects

12 significant FC links at q = 0.2, among which 11 links are overlapping with those identified by

Bayesian multimodal Lfdr method. This is expected because the two method are based on the

distributions of test statistics using Bayesian mixture model. The results suggest that Bayesian

multimodal Lfdr method is more powerful as compared to Efron’s Lfdr method as it yields

more findings, which is also expected for it combines and borrows strength across multimodal

neuroimaging data.

In addition, we compared the results with the bivariate linear mixed-effects model to fit

FC data and SC data jointly based on the same LLD neuroimaging study (Zhao, 2014), which

has identified 40 significant links at q = 0.2 using p-value based Benjamini and Hochberg FDR

method. There are only 2 links (the left thalamus proper - the left posterior cingulate, and the

left ventral diencephalon - the right caudal anterior cingulate) overlapping with those found

by Bayesian multimodal method. The two methods have different purposes, since Bayesian

multimodal Lfdr is intended to detect significant FC links using a model for FC statistics

from a univariate mixed-effects model with leverage of complementary SC statistics, while the

bivariate approach in Zhao (2014) utilized a joint modeling to identify connectivity links that

are significant in both FC and SC. Therefore we would anticipate that the results from the

two approaches are different with little overlap. Also we would like to point out two main

limitations of the bivariate approach. First, it may be impractical given the inconsistent overall

structure-function relationship (Koch et al., 2002; Honey et al., 2009). And second, it removed

the excess zero values of SC data resulting in a substantial reduction in the total number of

connectivity links included in the analysis from 3741 to 1433.
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TABLE VIII
TWENTY-ONE DIFFERENTIAL FC LINKS AND THE CORRESPONDING TEST

STATISTICS BY BAYESIAN MULTIMODAL LFDR METHOD AT FDR LEVEL OF 0.2
FOR LLD NEUROIMAGING STUDY

Region 1a Region 2a Test statisticb

Hyperconnectivities:
R thalamus proper (RTP) R caudal middle frontal (RCMF) 4.340 (E)
R pallidum (RP) L inferior parietal (LIP) 4.011 (E)
R pallidum (RP) R caudal middle frontal (RCMF) 4.051 (E)
R accumbens area (RAA) L isthmus cingulate (LIC) 3.890 (E)
R ventral diencephalon (RVD) R fusiform (RF) 4.132 (E)
L isthmus cingulate (LIC) R caudal middle frontal (RCMF) 4.583 (E)
L posterior cingulate (LPC) R rostral middle frontal (RRMF) 3.877 (E)
L posterior cingulate (LPC) R supramarginal (RS) 3.378
L rostral middle frontal (LRMF) R caudal middle frontal (RCMF) 4.074 (E)
L superior parietal (LSP) R pars opercularis (RPO) 3.355
R caudal anterior cingulate (RCAC) R caudal middle frontal (RCMF) 3.855 (E)
R caudal middle frontal (RCMF) R isthmus cingulate (RIC) 3.733 (E)
R caudal middle frontal (RCMF) R posterior cingulate (RPC) 3.598
R pars triangularis (RPT) R rostral anterior cingulate (RRAC) 3.469
R posterior cingulate (RPC) R supramarginal (RS) 3.491

Hypoconnectivities:
L thalamus proper (LTP) L posterior cingulate (LPC) -3.701
L ventral diencephalon (LVD) R caudal anterior cingulate (RCAC) -3.889
R caudate (RCau) L cuneus (LCun) -3.245
L entorhinal (LE) L supramarginal (LS) -3.314
L fusiform (LF) L pars triangularis (LPT) -3.864
L fusiform (LF) L supramarginal (LS) -4.332 (E)

a L = left; R = right.
b Based on between-group comparison in FC, positive value indicates hyperconnectivity, nega-
tive value indicates hypoconnectivity. The 11 FC links also identified by Efron’s Lfdr method
at q = 0.2 are indicated using E in parentheses.
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6.1.2 Discussion

Figure 26 displays the network analysis of the 21 connectivity links showing significant FC

difference between LLD group and HC group by Bayesian multimodal Lfdr method at q = 0.2

based on cortical and subcortical gray matter regions by left and right hemisphere of the brain.

There are two main findings we have learned from the network analysis using Bayesian

multimodal Lfdr method.

First, we identify a primary hub region, the right caudal middle frontal (also known as the

right dorsolateral prefrontal cortex [dlPFC]) that has significantly increased FC to seven other

regions including the left isthmus cingulate, the left rostral middle frontal, the right thalamus

proper, the right pallidum, the right caudal anterior cingulate, the right isthmus cingulate and

the right posterior cingulate in LLD patients as compared to the healthy controls.

The dlPFC (BA 9 and 46) is long known for its critical role within central executive

network (CEN) for cognitive and complex mental processes including emotion modulation,

selective attention and working memory. The dlPFC area has been implicated as the key

neural substrates for MDD from the literature (Grimm et al., 2008; Koenigs and Grafman,

2009; Hamilton et al., 2012). During working memory task, healthy subjects show bilateral

activation in dlPFC and anterior cingulate cortex, while depressed patients exhibit asymmetric

activity in dlPFC where the left dlPFC shows increased activation as reported in a number of

neuroimaging studies (Matsuo et al., 2007; Grimm et al., 2008; Sheline et al., 2009; Perrin et al.,

2012). Alexopoulos et al. (2012) found lower FC in the left dlPFC area in LLD patients relative

to healthy subjects in a rs-fMRI study. The left dlPFC has been the target site of repetitive

transcranial magnetic stimulation (rTMS), a noninvasive procedure using magnetic field pulses

to stimulate nerve cells that was approved by US Food and Drug Administration (FDA) in
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Figure 26. Network analysis of the 21 FC links by Bayesian multimodal Lfdr method at FDR
level of 0.2 based on cortical and subcortical gray matter regions by left and right hemisphere
of the brain

Red line indicates an increase in FC (hyperconnectivity) and blue line indicates a decrease in FC (hypoconnec-

tivity). Red circle denotes the primary hub, and yellow circle denotes the secondary hub. The 11 FC links also

identified by Efron’s Lfdr method are indicated using E in parentheses.

Abbreviations: CEN = central executive network; DMN = default mode network; SN = salience network;

VN/FFA = visual network / fusiform face area; Broca = Broca’s area; RN = reward network;

LCun = left cuneus; LE = left entorhinal; LF/RF = left/right fusiform;

LIC/RIC = left/right isthmus cingulate; LIP = left inferior parietal;

LPC/RPC = left/right posterior cingulate; LPT/RPT = left/right pars triangularis;

LRMF/RRMF = left/right rostral middle frontal; LS/RS = left/right supramarginal;

LSP = left superior parietal; LTP/RTP = left/right thalamus proper;

LVD/RVD = left/right ventral diencephalon; RAA = right accumbens area;

RCAC = right caudal anterior cingulate; RCMF = right caudal middle frontal; RCau = right caudate;

RP = right pallidum; RPO = right pars opercularis; RRAC = right rostral anterior cingulate.
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2008 as a treatment for medication resistant MDD (refer to FDA approval K061053). The

clinical effectiveness of rTMS on the left dlPFC was established in randomized clinical trials

for depression (George et al., 2010; Blumberger et al., 2018). By contrast, our analysis reveals

evidence of the laterization of the right dlPFC with significantly increased FC and therefore

suggests a specific and distinctive FC activation path via the right dlPFC in LLD patients.

The right dlPFC was also found as a key hub of the altered FCs in chronic net pain patients

who are at high risk to experience depression (Elbinoune et al., 2016; Ihara et al., 2019), and

for failed back surgery syndrome patients (Kornelsen et al., 2013). Chronic pain is one of the

most common co-occurring (i.e., comorbid) condition with depression in LLD patients (Aziz

and Steffens, 2013) and thus, the right dlPFC with increase FCs is the key region involved in

both cognition impairment and pain related to LLD.

We noticed an increased FC between the left superior parietal and the right pars opercularis

in LLD. The left superior parietal is also part of CEN, and the right pars opercularis (BA44)

is located within the right interior frontal gyrus. It is not clear about the function of the right

pars opercularis. From the limited literature we have learnt that that the disrupted right pars

opercularis may be related to speech inhibition in a case reported by Herbet et al. (2015), and

hyperconnectivity of the right pars opercularis was observed in adolescents with MDD (Tang

et al., 2018). There is evidence showing that the right interior frontal gyrus especially the right

pars opercularis may be specialized in music neurocognition for (Cheung et al., 2018). It has

been long known that music and emotion are connected, and music therapy has been applied to

treat various psychiatric disorders including depression, autism, etc. (Trimble and Hesdorffer,

2017). Our finding consistently suggests that the right pars opercularis has enhanced FCs in

LLD, and music therapy may be a target treatment to improve the depression symptoms.
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The second main finding is that as compared to healthy subjects, LLD patients exhibit

increased FC pattern comprising the right dlPFC and the right rostral middle frontal within the

CEN, the right caudal anterior cingulate within salience network, bilateral isthmus cingulate,

bilateral posterior cingulate, the right thalamus proper and the right supramarginal within the

default mode network (DMN), and decreased FC between the left posterior cingulate and the

left thalamus proper within the DMN.

The rostral middle frontal (or rostral middle frontal gyrus) is part of dlPFC. The right mid-

dle frontal gyrus is believed to be a converging site of the dorsal and ventral attention networks

by playing a role in reorientation of attention (Japee et al., 2015). The posterior cingulate,

or posterior cingulate cortex (PCC, BA 23 and 31), is considered as the posterior hub of the

DMN and may play a role in emotion, cognition, awareness, arousal and regulatory modulation

(Buckner et al., 2008; Leech and Sharp, 2014; Wang et al., 2019). The DMN is a group of brain

regions with default mode of brain functions for internally directed self-referential cognitions

that are activated at rest and deactivated during cognitive and mental tasks requiring attention

(Raichle et al., 2001) and responsible. The PCC exhibit higher activities when the brain is at

rest (Raichle, 2015). A functional neuroimaging study in healthy subjects has observed task-

related FC decrease in the PCC region during cognitive processing than during resting states

(Greicius et al., 2003). Our results revealed a decreased FC between the left PCC and the left

thalamus proper within the DMN in the left hemisphere, and increased FC in bilateral PCC

regions. Our findings are in line with the previous research with convergent data implicating

disruptions of FC in the DMN in neural mechanisms for psychiatric disorders. A meta-analysis

of rs-fMRI studies in MDD (Kaiser et al., 2015) reported increased FCs within the DMN as-

sociated with MDD. Review on a number of rs-fMRI studies (Leech and Sharp, 2014) showed
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reduced FC in the PCC region in healthy aging subjects, patients with Alzheimer’s disease

(AD) (Binnewijzend et al., 2014), schizophrenia (Li et al., 2019), autism and attention deficit

hyperactivity disorder. A meta-analysis of AD based on 34 selected rs-fMRI studies Badhwar

et al. (2017) found consistent FC decrease in the DMN in AD patients, and both FC increase

and decrease within the DMN in patients with AD, dementia and mild cognitive impairment.

Also increased FC has been reported in the posterior DMN area in major depression (Zhou

et al., 2010) and late-life anxious depression (Andreescu et al., 2011), in PCC region within the

DMN in LLD (Alexopoulos et al., 2012), in the left PCC region of DMN in MDD (Zhao et al.,

2019), as well as in the DMN in autistic children (Uddin et al., 2013).

The supramarginal gyrus (BA 40) is part of the inferior parietal lobe (IPL), a brain region

within posterior DMN that functions in sensorimotor and cognitive domains. We observed an

increased FC between the right supramarginal with the bilateral PCC region in the DMN. In a

recent randomized and controlled clinical trial in LLD that compared multidomain intervention

to supportive therapy to study both the change in depressive symptoms as primary clinical

outcome and the change in FC using rs-fMRI data, the intervention group exhibited statistically

significantly more reduction in the depressive symptoms and decreased FC between the PCC

and the left IPL within the DMN as opposed to the supportive group as control (Roh et al.,

2020). Also increased FC in the posterior DMN regions including the bilateral PCC and the

left IPL was found in unhappy people as compared to happy people in an rs-fMRI study with

healthy young adults (Luo et al., 2016). Together with our results of increased FCs in bilateral

PCC, the left IPL and the left supramarginal gyrus DMN regions in LLD patients, these studies

provide strong evidence suggesting that the intervention to help decrease FC within the DMN

may have beneficial clinical effect as potential treatment for LLD.
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The thalamus proper (or dorsal thalamus) is known as a hub for relaying sensory and

motor signals from the senses to the cerebral cortex and receiving feedback from the cortex

and plays a mediator role in-between cortico-cortical communication processing (Sherman and

Guillery, 2002). Greicius et al. (2007) has found increased FC in thalamus with DMN during

resting state in patients with MDD. A recent study based on a large sample of individuals using

the Autism Brain Imaging Data Exchange also reported that patients with autism spectrum

disorder exhibited hyperconnectivity between prefrontal cortex and thalamus as compared to

healthy controls (Woodward et al., 2017).

The caudal anterior cingulate (also known as dorsal anterior cingulate cortex [dACC], BA

32) and anterior insula are the two major cortical structures of the salience network (SN)

(Seeley et al., 2007; Menon, 2015). The SN is a large-scale brain network involved in detecting,

filtering and integrating external salient stimuli with internal states to orchestrate brain network

dynamics in the service of goal-directed behaviors (Uddin, 2015; Menon, 2015) and motivated

behaviors (Yuen et al., 2014), as well as playing a mediating role in switching between activation

and deactivation of internally directed cognitions of DMN and externally directed cognitions of

CEN (Sridharan et al., 2008). The SN has been identified as a potential locus of dysfunction

in autism spectrum disorder (Uddin and Menon, 2009), and hyperconnectivity within SN was

observed in children with autism (Uddin et al., 2013). Perrin et al. (2012) had found that

electroconvulsive therapy reduces FC between the right anterior cingulate cortex and the right

dlPFC in patients with severe depression. Yuen et al. (2014) investigated the FC pattern of the

SN in a rs-fMRI study to compare LLD with low and high apathy to healthy subjects, while

apathy is a common symptom in major depression. Their results showed that relative to healthy

controls, LLD patients with high apathy had increased FC pattern within SN between the right
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anterior insular cortex and dACC, and increased FC of the right anterior insular cortex to the

right dlPFC within the CEN, and to the right posterior cingulate (BA 31) within the DMN.

Our results show a consistent increased FC between the right dlPFC within the CEN, the right

dACC within the SN and the right PCC within the DMN in LLD patients. Also increased FC

between the right dlPFC and the right anterior insular context was found in chronic neck pain

patients (Ihara et al., 2019). These findings suggest that increased FC of the right dlPFC to

the right regions of the SN may be associated with the neural mechanisms of depression in LLD

and chronic neck pain patients.

Our results show increased FC pattern associated with LLD within and across the major

large-scale neurocognitive brain networks including CEN, DMN and SN, which align with the

previous findings of aberrant FCs among large-scale brain networks in MDD (Kaiser et al.,

2015). Further, Zhao et al. (2019) found disrupted functions in regions of CEN and DMN in

MDD patients. Recent research in AD including autosomal dominant AD, late-onset AD, AD,

dementia and mild cognitive impairment have identified disrupted FCs within DMN, SN, CEN,

dorsal attention network and sensorimotor network, and connectivities between SN and CEN

(Thomas et al., 2014; Dai et al., 2015; Badhwar et al., 2017). Taken together, the results provide

convergent evidence of degeneration of specific hubs within the internally-guided resting-state

networks DMN, SN and CEN (Lee and Franggou, 2017) that may contribute to a deterioration

of memory and cognitive functions in elderly patients with LLD or AD.

The bilateral fusiform (or fusiform gyrus [FG], BA 37) has been reported to be involved in

visual cognition especially facial cognition known as fusiform face area (FFA) (Kanwisher et al.,

1997; Mangun et al., 1998; Kanwisher and Yovel, 2006). Disrupted connectivity of bilateral

FG to other regions may cause dysfunction in face recognition in patients with mild cognitive



140

impairment, along with the development of neurodegenerative disease such as AD (Yetkin et al.,

2006; Cai et al., 2015). The right ventral diencephalon appears to be an important region in

prediction of mild cognitive impairment and dementia in LLD patients (Lebedeva et al., 2017).

We found increased FC between the right FG and the right ventral diencephalon, suggesting

LLD patients show some degree of cognitive impairment especially in facial cognition.

The left pars triangularis (BA 45) and the left pars opercularis (BA 44) constitute Broca’s

area, which has been known for its importance in speech process by integrating and coordinating

information within brain network (Stuhrmann et al., 2015). In an fMRI study with healthy

subjects (Friederici et al., 2000), the left pars triangularis has been observed to activate in

semantic processing. Further, another fMRI study of simultaneous language translation in

healthy interpreters has reported higher activity in the left pars triangularis during backward

translation and hence suggested pars triangularis be considered as a “hub” of the language-

control network (Elmer, 2016). Our results show reduced FC between the left pars triangularis,

the left FG, the left supramarginal and the left entorhinal in LLD group, suggesting potential

functional semantic and facial recognition inhibition in the left hemisphere of brain may be

associated with LLD. A meta-analysis of previous studies on antidepressant (Ma, 2015) found

that the treatments have improved the neural response to positive emotion in the right dlPFC

and the left FG.

In addition, we find eight secondary hubs, which are defined as regions showing at least two

significantly increased or decreased FCs to other regions. These regions are the left fusiform

(FFA), the right pallidum, the right dACC (SN), the left isthmus cingulate (DMN), bilateral

posterior cingulate cortex (DMN) and bilateral supramarginal (DMN). Moreover, significant

FC activities are observed in eight bilateral regions: rostral middle frontal gyrus (CEN), dorsal
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thalamus, ventral diencephalon, fusiform (FFA), pars triangularis, isthmus cingulate (DMN),

posterior cingulate cortex (DMN) and supramarginal (DMN).

We also observe decreased FC between the right caudate and the left cuneous in LLD

group. The right caudate is involved in reward network (RN), in which hypoconnectivity was

detected in depression (Keren et al., 2018). The left cuneous belongs to visual network (VN).

Our present finding aligns with the results of a previous clinical study that the right caudate

has been identified a key region with enhanced neural response to positive emotions in patients

with treatment-resistant MDD following treatment of antidepressant ketamine (Murrough et al.,

2015).

It should also be noted that our results also suggest that LLD patients exhibit decreased

FCs within the left hemisphere (the logical/language side), while increased FCs within the right

hemisphere. This asymmetric FC pattern may be worthy of further investigation.

6.2 Bayesian Dirichlet Process Mixture Model

6.2.1 Results

We analyze the FC data measured by rs-fMRI in the LLD neuroimaging study using the

Bayesian Dirichlet process mixture model specified in Section 5.2.3. The posterior computation

is carried out by the blocked Gibbs sampler using stick-breaking truncation described in Section

5.2.2 that is implemented using R runjags package via Just Another Gibbs Sampler (JAGS)

(Denwood, 2016). The number of significant differential connectivity links are consistently

between 18 and 19 across the different numbers of clusters K ranged from 5 to 12. Hence, we

choose K = 5. Based on the results from 25,000 posterior iterations, taken from one MCMC

chain, which has 1,275,000 iterations with the first 25,000 MCMC iterations discarded as burn-
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in and a thinning interval of 50, we compute the posterior probability of β2i 6= 0 given data for

each connectivity link, denoted by ri,

ri = P (β2i 6= 0 | ·), (6.2)

If the posterior probability ri ≥ c, where c is the threshold, we reject H0,i and claim the link is

significantly differential. Kim et al. (2009) has provided the average of Bayesian FDR and the

associated optimal threshold, which is defined as arg max
c
{c : F̂DR(c) ≤ q}, computed from

simulated datasets, where Bayesian FDR (Genovese and Wasserman, 2002b; Newton et al.,

2004) can be calculated as :

F̂DR(c) =

∑m
i=1 I{ri ≥ c}(1− ri)∑m

i=1 I{ri ≥ c}
, (6.3)

Based on the average of Bayesian FDR and the associated optimal threshold presented in Figure

4 in Kim et al. (2009), we can extrapolate the optimal thresholds that are approximately 0.45

and 0.43 for FDR level (referred to as ”Realized FDR” on the plot) and Bayesian FDR level

both at 0.2 on average, respectively, based on 30 simulated datasets (shown in Figure 27).

Nineteen differential connectivity links are identified by Bayesian DPM model with number

of clusters K = 5 at the threshold 0.43 to control Bayesian FDR level at 0.2, as presented in

Table IX.

6.2.2 Discussion

The network analysis of the 19 FC links by Bayesian DPM model is illustrated in Figure

28, based on cortical and subcortical gray matter regions by left and right hemisphere of the

brain. The main finding aligns with the results by Bayesian multimodal Lfdr method that the
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TABLE IX
NINETEEN DIFFERENTIAL FC LINKS BY BAYESIAN DPM MODEL AT BAYESIAN FDR

LEVEL OF 0.2a FOR LLD NEUROIMAGING STUDY

Region 1b Region 2b β̂2i
c ri

d

Hyperconnectivities:
R thalamus proper (RTP) R caudal middle frontal (RCMF) 0.060 0.583 (B, E)
R ventral diencephalon (RVD) R fusiform (RF) 0.044 0.453 (B, E)
L isthmus cingulate (LIC) R caudal middle frontal (RCMF) 0.052 0.523 (B, E)
L lateral orbitofrontal (LLO) L medial orbitofrontal (LMO) 0.054 0.531
L lateral orbitofrontal (LLO) R medial orbitofrontal (RMO) 0.043 0.445
L postcentral (LPoC) L precentral (LPrC) 0.062 0.606
L posterior cingulate (LPC) R supramarginal (RS) 0.063 0.611 (B)
L precentral (LPrC) R postcentral (RPoC) 0.059 0.576
L precentral (LPrC) R precentral (RPrC) 0.063 0.606
L rostral middle frontal (LRMF) R caudal middle frontal (RCMF) 0.048 0.483 (B, E)
L superior parietal (LSP) R pars opercularis (RPO) 0.043 0.444 (B)
L superior parietal (LSP) R superior parietal (RSP) 0.055 0.552
L superior parietal (LSP) R supramarginal (RS) 0.059 0.579
R caudal middle frontal (RCMF) R posterior cingulate (RPC) 0.049 0.497 (B)
R caudal middle frontal (RCMF) R superior frontal (RSF) 0.057 0.560
R inferior parietal (LIP) R posterior cingulate (RPC) 0.050 0.501
R posterior cingulate (RPC) R supramarginal (RS) 0.047 0.476 (B)

Hypoconnectivities:
R caudate (RCau) R cuneus (RCun) -0.058 0.458
L fusiform (LF) L supramarginal (LS) -0.092 0.635 (B, E)

a Based on Bayesian DPM model with number of clusters K = 5 at Bayesian FDR level of 0.2 with
the threshold c = 0.43 (refer to Figure 27).
b L = left; R = right.
c Denotes the estimate of differential FC effect between LLD group and HC group for the link
from the 25,000 posterior draws, positive value indicating hyperconnectivity while negative value
indicating hypoconnectivity.
d Denotes the posterior probability of β2i 6= 0 given data. The 9 FC links also identified by Bayesian
multimodal Lfdr method at q = 0.2 are indicated using B in parentheses, while the 5 FC links also
identified by Efron’s Lfdr method at q = 0.2 are indicated using E in parentheses.
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Source: Figure 4 in Kim et al. (2009)

Figure 27. The optimal thresholds (i.e., cut-off values) corresponding to FDR and Bayesian
FDR levels

right caudal middle frontal cortex (dlPFC) within the CEN is identified as the primary hub

with enhanced FCs to another CEN region the left rostral middle frontal, as well as four DMN

regions including the right superior frontal, the right posterior cingulate, the right thalamus

proper and the left isthmus cingulate.

Besides, there are two major distinctive findings. One is LLD patients exhibit increased

FCs the left lateral orbitofrontal cortex to the bilateral medial orbitofrontal cortex regions,

which is consistent with the previous findings of increased FC of the lateral orbitofrontal cor-

tex in depression (Cheng et al., 2016; Li et al., 2018; Wang et al., 2018; Rolls, 2019). The

orbitofrontal cortex has been known for its function in affective network (AN), which is as-
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sociated with emotion processing and reward/non-reward system in decision making (Bechara

et al., 2000). Rolls (2016) proposed a “non-reward attractor theory of depression”, in which the

lateral orbitofrontal cortex plays a key role in non-reward and the medial orbitofronal cortex

in reward system.

The other unique finding is that increased FCs of the left precentral gyrus to the right

precentral gyrus, and the bilateral postcentral gyrus within the sensorimotor network (SMN)

are related to LLD. The SMN is constituted by the precentral gyrus for somatosensory functions

and postcentral gyrus or motor functions. Research show that dysfunctions in the SMN may

be linked to depressive and manic phases of bipolar disorder (Martino et al., 2016).

It is worth noting that the FC alterations involved in the resting-state networks for cogni-

tion (CEN), affection (AN) and sensory functions (SMN) associated with LLD are also observed

in chronic pain (Kornelsen et al., 2013; Kolesar et al., 2017). Considering that chronic pain is

one common ailment in the elderly, the results are anticipated and suggest that the disrupted

FCs be related to the underlying pathology of the comorbid depression and chronic pain as well

as the cause of LLD.

6.3 Results Comparison

Among all 3741 connectivities analyzed in this study, a total of 32 differential FC links are

identified using Efron’s Lfdr, Bayesian multimodal Lfdr or DPM model at q = 0.2, including

25 hyperconnectivity links and 7 hypoconnectivity links, as shown in Table X. The rest 3709

(99.1%) links are considered non-differential by the three methods.

Figure 29 presents a Venn diagram showing the overlap of the differential FCs detected

using the three methods. In comparison with the results by Efron’s Lfdr and Bayesian multi-

modal Lfdr methods, there is an overlap of 9 connectivities between Bayesian multimodal Lfdr
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Figure 28. Network analysis of the 19 differential FC links by Bayesian DPM model at
Bayesian FDR level of 0.2 based on cortical and subcortical gray matter regions by left and
right hemisphere of the brain

Red line indicates an increase in FC (hyperconnectivity) and blue line indicates a decrease in FC (hypoconnec-

tivity). Red circle denotes the primary hub, and yellow circle denotes the secondary hub.

The 9 FC links also identified by Bayesian multimodal Lfdr method are indicated using B in parentheses.

The 5 FC links also identified by Efron’s Lfdr method are indicated using E in parentheses.

Abbreviations: CEN = central executive network; DMN = default mode network; VN/FFA = visual network /

fusiform face area; AN = affective network; SMN = sensorimotor network; RN = reward network;

LIC = left isthmus cingulate; LIP = left inferior parietal; LLO = left lateral orbitofrontal;

LRMF = left rostral middle frontal; LF/RF = left/right fusiform;

LMO/RMO = left/right medial orbitofrontal; LPC/RPC = left/right posterior cingulate;

LPoC/RPoC = left/right postcentral; LPrC/RPrC = left/right precentral;

LS/RS = left/right supramarginal; LSP/RSP = left/right superior parietal;

RCMF = right caudal middle frontal; RCau = right caudate; RCun = right cuneus;

RPO = right pars opercularis; RSF = right superior frontal;

RTP = right thalamus proper; RVD = right ventral diencephalon.
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and DPM, 5 between Efron’s Lfdr and DPM, as well as 5 among the three methods. Figure 30

displays the network analysis of the 9 differential FC links identified by both Bayesian multi-

modal Lfdr method and DPM model at q = 0.2 based on cortical and subcortical gray matter

regions by left and right hemisphere of the brain. Among the 9 FC links, 8 are hyperconnectiv-

ities and 1 hypoconnectivity linking left fusiform in FFA and left supramargional in DMN. The

right dlPFC (i.e., the right caudal middle frontal) region in CEN remains a primary hub with

increased connectivity to 4 other regions in DMN and CEN directly, and 2 regions in DMN

indirectly. Three bilateral regions including fusiform in FFA, supramargional and posterior

cingulate in DMN, and the major networks including CEN, DMN and FFA are involved.

Figure 29. Venn diagram showing overlap between differential FC links identified using
Efron’s Lfdr, Bayesian multimodal Lfdr and DPM model at FDR or Bayesian FDR level of
0.2 for LLD neuroimaging study
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TABLE X
THIRTY-TWO DIFFERENTIAL FC LINKS IDENTIFIED USING EFRON’S LFDR, BAYESIAN
MULTIMODAL LFDR OR DPM MODEL AT FDR LEVEL OF 0.2 FOR LLD NEUROIMAGING

STUDY

Region 1a Region 2a Efron’s
Lfdrb

Bayesian
multimodal
Lfdrb

DPM
Modelb

Hypoconnectivities:
R thalamus proper (RTP) R caudal middle frontal (RCMF) X X X
R pallidum (RP) L inferior parietal (LIP) X X
R pallidum (RP) R caudal middle frontal (RCMF) X X
R accumbens area (RAA) L isthmus cingulate (LIC) X X
R ventral diencephalon (RVD) R fusiform (RF) X X X
L isthmus cingulate (LIC) R caudal middle frontal (RCMF) X X X
L lateral orbitofrontal (LLO) L medial orbitofrontal (LMO) X
L lateral orbitofrontal (LLO) R medial orbitofrontal (RMO) X
L postcentral (LPoC) L precentral (LPrC) X
L posterior cingulate (LPC) R rostral middle frontal (RRMF) X X
L posterior cingulate (LPC) R supramarginal (RS) X X
L precentral (LPrC) R postcentral (RPoC) X
L precentral (LPrC) R precentral (RPrC) X
L rostral middle frontal (LRMF) R caudal middle frontal (RCMF) X X X
L superior frontal (LSF) R isthmus cingulate (RIC) X
L superior parietal (LSP) R pars opercularis (RPO) X X
L superior parietal (LSP) R superior parietal (RSP) X
L superior parietal (LSP) R supramarginal (RS) X
R caudal anterior cingulate (RCAC) R caudal middle frontal (RCMF) X X
R caudal middle frontal (RCMF) R isthmus cingulate (RIC) X X
R caudal middle frontal (RCMF) R posterior cingulate (RPC) X X
R caudal middle frontal (RCMF) R superior frontal (RSF) X
R inferior parietal (LIP) R posterior cingulate (RPC) X
R pars triangularis (RPT) R rostral anterior cingulate (RRAC) X
R posterior cingulate (RPC) R supramarginal (RS) X X

Hypoconnectivities:
L thalamus proper (LTP) L posterior cingulate (LPC) X
L ventral diencephalon (LVD) R caudal anterior cingulate (RCAC) X
R caudate (RCau) L cuneus (LCun) X
R caudate (RCau) R cuneus (RCun) X
L entorhinal (LE) L supramarginal (LS) X
L fusiform (LF) L pars triangularis (LPT) X
L fusiform (LF) L supramarginal (LS) X X X

a L = left; R = right.
b The connectivity links identified by each method are indicated using X.
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Figure 30. Network analysis of the 9 differential FC links identified by both Bayesian
multimodal Lfdr method and DPM model at FDR level of 0.2 based on cortical and
subcortical gray matter regions by left and right hemisphere of the brain

Red line indicates an increase in FC (hyperconnectivity) and blue line indicate a decrease in FC (hypoconnec-

tivity). The 5 FC links also identified by Efron’s Lfdr method are indicated using E in parentheses.

Abbreviations: CEN = central executive network; DMN = default mode network; VN/FFA = visual network /

fusiform face area;

LF/RF = left/right fusiform;

LIC = left isthmus cingulate;

LPC/RPC = left/right posterior cingulate;

RPO = right pars opercularis;

LRMF = left rostral middle frontal;

LS/RS = left/right supramarginal;

LSP = left superior parietal;

RTP = right thalamus proper;

RVD = right ventral diencephalon;

RCMF = right caudal middle frontal.



CHAPTER 7

CONCLUSION AND FUTURE WORK

The main focus of my thesis is on FDR control in a cross-sectional, comparative multimodal

neuroimaging study aimed to discover aberrant FCs in patients with psychiatric or neurological

disorder as compared to healthy controls, where the sample size is usually small. Based on

the test statistics from a linear mixed-effects model with heteroscedastic errors at both group

level and connectivity link level, Bayesian multimodal Lfdr method combines and borrows

strength across multimodal neuroimaging data in a Bayesian mixture model framework and

hence increases the sensitivity of testing and helps improve efficiency in FDR control as well as

detection of disrupted FCs. We illustrate Bayesian multimodal Lfdr method with the motivating

multimodal neuroimaging study in LLD with a total of 23 participants (13 healthy subjects

and 10 LLD patients) and conduct a rigorous comparison of its performance with Efron’s Lfdr

method and a non-parametric Bayesian DPM model that consider only FC data.

Bayesian multimodal Lfdr method gives more findings than the other two methods, by

identifying 21 differential FC links, as compared to 12 and 19 by Efron’s Lfdr method and

DPM model, respectively, at the same FDR level of q = 0.2. Out of the findings from the three

methods, a total of 32 (0.9%) differential FC links are detected and the rest 3709 (99.1%) links

are considered non-differential. Though the quantity of differential FC links does not appear

to be substantial, these findings suggest a profound disruption of functional neurocognitive

brain networks including CEN, DMN, SN, SMN, AN, VN/fusiform face area, Broca’s area and

RN is implicated in LLD, providing crucial evidence for researchers to further investigate their

association with clinical outcome in future studies.
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Of the 12 FC links by Efron’s Lfdr method, the vast majority - 11 out of 12 - are overlapping

with Bayesian multimodal Lfdr method, which is expected because the two methods are based

on the distributions of test statistics using Bayesian mixture model. The DPM model, as

a Bayesian multiple comparison method directly on the FC data, has an overlap of 9 with

Bayesian multimodal Lfdr method. These results confirm the robustness and consistency of the

main findings by Bayesian multimodal Lfdr method alone and suggest that it is more powerful

than Efron’s Lfdr method.

We observe disrupted FCs within and between the major neurocogntive brain networks

including CEN, DMN, and fusiform face area that are associated with LLD, with the right

dlPFC region in the CEN identified as a primary bub showing increased FCs to regions in

CEN and DMN. Those findings provide more detailed information on the disrupted FC regions

and patterns involved in the underlying pathology of LLD, and further insights on potential

neuroimaging biomarkers in the future clinical development to treat and prevent LLD.

Bayesian multimodal Lfdr method has its limitations, based on the fact that the current

framework is specifically for a cross-sectional, comparative neuroimaging study that compares

the disease group with the control group using connectivity data measured at one single time

point. This places certain research topics beyond the reach of the methods. First, the mixed-

effects model cannot be applied to neuroimaging data collected at multiple time points. Sec-

ond, the methods do not yet have the capability to incorporate association analysis between

connectivity and disease outcomes based on clinical measurements. Over the past years, the

prospective longitudinal and interventional neuroimaging studies in patients with psychiatric

or neurological disorder have gained popularity. For these studies, the primary objective is to

investigate the association between the connectivity changes and clinical measurement (e.g.,



152

neurobehavioral measurement) changes within and between the intervention group and the

control group and evaluate the effect of intervention group vs. control group. The multimodal

neuroimaging data and clinical data are collected at the baseline and scheduled post-baseline

visits during treatment period on each participant in both intervention and control groups.

Therefore, we have the following suggestions for the future work. To handle the more com-

plex study design and data structure in a prospective and interventional neuroimaging study,

we will need to make substantial extensions to the current framework. The basic ideas include

using a mixed-effects model repeated measure method to analyze the longitudinal connectivity

data and compare the intervention group vs. control group. The subject-level demographics

and baseline characteristics (e.g., age, baseline disease activity such as disease duration) can

be included in the model as covariate(s). The test statistics are then modeled using Bayesian

multimodal Lfdr with other available modality data incorporated. For association between con-

nectivity data and clinical measurement data, one can compute Pearson correlation coefficients

in order to reveal neural connectivity changes from baseline associated with the change from

baseline in clinical measurement related to the intervention group and the control group at each

scheduled post-baseline visits to identify specific connectivities that are correlated with disease

outcome (Pape et al., 2020).

Bayesian multimodal Lfdr method can be expanded to include more resources of data be-

sides SC statistics (e.g., test statistics from analysis of FA measures of SC and/or positron

emission tomography, if applicable) in modeling alternative density shown in Equation (4.39)

and prior probability shown in Equation (4.42). In addition, Bayesian multimodal Lfdr method

can be improved in the following ways. The assumption that all hypotheses tested are inde-

pendent may not hold for neuroimaging data, as the correlations among connectivities within
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and/or between the major brain networks often exist. To better account for the dependencies

among the hypotheses, one can consider using Ising model, a binary Markov random field, for

prior probability of being null (or alternative) to incorporate SC statistics as well as spatial

interaction between the regions, which has been implemented in genome-wide association stud-

ies (Zablocki, 2016). Also, the parametric model using gamma distribution assumed for the

density of alternative hypotheses in the tail regions could be changed when it does not provide

a sufficient goodness of fit for the data in some cases, which may introduce bias as a result of

lack of fit. Zablocki et al. (2017) extended the covariate-modulated Lfdr method by proposing

a semi-parametric approach to offer more flexibility for a genome-wide association study in

Schizophrenia. In this approach, the estimation for null density and prior probability of being

null remain the same, while the alternative density is estimated using a non-parametric method

that utilizes a mixture of B-spline densities with the weights for each B-spline density modeled

using a multinomial logistic regression with functional annotations as covariates. In general,

the parametric model has more power if the model fit is sufficient. Thus, the advantage and

disadvantage of this semi-parametric approach will need to be assessed and compared with the

parametric approach for multimodal neuroimaging studies.

For Bayesian DPM model to analyze the FC data in the motivating LLD neuroimaging

study, we also have a couple thoughts for further extension. First, the SC data can be incorpo-

rated into the logit of prior probability for the spike-and-slab mixture prior shown in Equation

(5.28). Second, it is noted that Bayesian DPM model using MCMC algorithm to obtain the

posterior sampling of the model parameters is computationally demanding, which can be a

problem in case of simulation study. Variational Bayesian approach circumvents this problem

by approximating posterior density using optimization, as an alternative to the direct MCMC
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sampling (Blei and Jordan, 2006; Blei et al., 2017). Particularly, we may consider applying the

spike-and-slab LASSO (least absolute shrinkage and selection operator) method proposed by

Ročková and George (2018) to the spike-and-slab prior for β2i in Equation (5.28) to efficiently

detect the posterior mode of each β2i via coordinate ascent optimization algorithm.

Last but not least, machine learning and classification techniques is another useful tool for

dimensionality reduction in the high dimensional neuroimaging data where there are thousands

of connectivities but only a few subjects (Chén, 2019). Predictive-modeling based variable

selection methods can be applied to neuroimaging data to select connectivities that may dif-

ferentiate the disease group from the control group. The regularization approaches, such as

LASSO (Tibshirani, 1996), ridge (Friedman et al., 2010) and elastic net regression (Zou and

Hastie, 2005), intended to reduce variance at the cost of introducing some bias. These regres-

sion methods shrink the regression coefficients of irrelevant variables by augmenting a penalty

to the ordinary least squares function and then discard those variables with coefficients close to

zero. Briefly, the LASSO regression penalizes the sum of absolute value of the regression coef-

ficients
∑p

j=1 |βj | (known as l1−norm penalty), while the ridge regression penalizes the sum of

squared regression coefficients
∑p

j=1 β
2
j (known as l2−norm penalty), where βj is the regression

coefficient for the jth predictor variable. While performing variable selections simultaneously

with highly correlated variables, LASSO regression tends to do a sparse selection by taking

one with the large coefficient and discarding the rest with almost zero coefficient, while Ridge

regression keeps all as it shrinks coefficients of the correlated variables toward the same.

In presence of correlated variables, the elastic net regression method might be a better

choice, as it provides a compromise to balance between LASSO l1−norm penalty and ridge

l2−norm penalty in the mixture form of
∑p

j=1

[
α|βj |+(1−α)β2

j

]
, where 0 ≤ α ≤ 1 controls the
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mixture proportion of each penalty. Recent rs-fMRI neuroimaging studies have utilized elastic

net logistic regression as a regularization method (Teipel et al., 2017; Bhaumik et al., 2018a).

Algamal and Lee (2015) proposed an adaptive elastic net regularized logistic regression model in

a high dimensional genomics study, which can also be applied to neuroimaging data. Typically,

this is a two-step procedure: First step, divide the dataset into a training dataset (about 2/3)

and a testing dataset (about 1/3); Second step, perform the 10-fold cross-validation using the

training dataset and then evaluate the classification accuracy using the test dataset. Normally

sufficient sample size is required in order to partition the data into two sets one for training

and the other for testing. In the case of the LLD neuroimaging data with small sample size of

23, it will be impractical to split the already small data into even smaller training and testing

data. One solution is to develop data pooling strategies to combine the data with other LLD

neuroimaging study datasets using similar study design (Costafreda, 2009) and then perform

mega-analysis of the pooled data using elastic net method.
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APPENDIX

MAXIMUM MARGINAL LIKELIHOOD PARAMETER ESTIMATES

Below we illustrate steps in details how to find solutions that maximize the marginal log-

likelihood in Equation (3.38) by differentiating it with respect to the parameters in the linear

mixed-effects model in Chapter 3 based on Hedeker and Gibbons (2006); Zhao (2014); Song

(2016).

The first derivative of the marginal log-likelihood function in Equation (3.38) with respect

to β is,

∂ logL

∂β
=

∂

∂β

N∑
j=1

log
[
f(yj)

]
=

N∑
j=1

∂ log f(yj)

∂β

=

N∑
j=1

1

f(yj)

∂f(yj)

∂β

=
N∑
j=1

1

f(yj)

∂
[∫
f(yj | γj)f(γj)dγj

]
∂β

=
N∑
j=1

1

f(yj)

∫
∂f(yj | γj)

∂β
f(γj)dγj

=
N∑
j=1

1

f(yj)

∫
f(yj | γj)f(γj)

∂ log f(yj | γj)
∂β

dγj

=
N∑
j=1

∫
f(yj | γj)f(γj)

f(yj)
XT

j Σ−1
Grpj

(yj −Xjβ −Zjγj)dγj

=

N∑
j=1

∫
f(γj | yj)XT

j Σ−1
Grpj

(yj −Xjβ −Zjγj)dγj

=
N∑
j=1

∫ [
XT

j Σ−1
Grpj

(yj −Xjβ)f(γj | yj)−XT
j Σ−1

Grpj
Zjf(γj | yj)γj

]
dγj
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APPENDIX (Continued)

=

N∑
j=1

[∫
XT

j Σ−1
Grpj

(yj −Xjβ)f(γj | yj)dγj −
∫
XT

j Σ−1
Grpj

Zjf(γj | yj)γjdγj
]

=
N∑
j=1

[
XT

j Σ−1
Grpj

(yj −Xjβ)

∫
f(γj | yj)dγj −XT

j Σ−1
Grpj

Zj

∫
f(γj | yj)γjdγj

]

=
N∑
j=1

[
XT

j Σ−1
Grpj

(yj −Xjβ)−ZT
j X

T
j Σ−1

Grpj
γ̃j

]

=
N∑
j=1

XT
j Σ−1

Grpj
(yj −Xjβ −Zj γ̃j), (A.1)

as
∫
f(γj | yj)dγj = 1 and

∫
f(γj | yj)γjdγj = γ̃j .

Setting Equation (A.1) equal to zero yields

∂ logL

∂β
=

N∑
j=1

XT
j Σ−1

Grpj
(yj −Xjβ −Zj γ̃j) = 0

=⇒
N∑
j=1

XT
j Σ−1

Grpj
Xjβ =

N∑
j=1

XT
j Σ−1

Grpj
(yj −Zj γ̃j)

=⇒ β̂ =

 N∑
j=1

XT
j Σ−1

Grpj
Xj

−1  N∑
j=1

XT
j Σ−1

Grpj
(yj −Zj γ̃j)

 . (A.2)

Note that as γ̃j → 0, the random subject effects are negligible and β̂ is approaching the ordinary

least square estimates
(∑N

j=1X
T
j Σ−1

Grpj
Xj

)−1 (∑N
j=1X

T
j Σ−1

Grpj
yj

)
.

To obtain the variance of β̂, first we rewrite Equation (A.2) as

β̂ =
(
XTΣ−1

ε X
)−1 [

XTΣ−1
ε (y −Zγ̃)

]
, (A.3)

where
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• y is a mN × 1 vector of the connectivity measurement.

y =
[
y1 y2 · · · yN

]T
1×mN

= Xβ +Zγ + ε, (A.4)

y ∼ N
(
Xβ,ZΣγZ

T + Σε

)
,

where yj , X, Z, Σγ , Σε are defined in Equations (3.3), (A.5), (A.6), (A.8) and (A.10),

respectively.

• X is a mN × 2m design matrix for the fixed effects.

X =


X1

X2

...

XN


mN×2m

, (A.5)

where Xj is defined in Equation (3.4).

• β is a 2m× 1 vector of the fixed effects, as defined in Equation (3.5).

• Z is a mN ×N design matrix for the random subject effects,

Z =


Z1 0 · · · 0

0 Z2 · · · 0
...

...
. . .

...

0 0 · · · ZN


mN×N

, (A.6)

where Zj is defined in Equation (3.6).

• γ is a N × 1 vector of random subject effects.

γ =
[
γ1 γ2 · · · γN

]T
1×N

∼ N(0,Σγ), (A.7)
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where γj , j = 1, · · · , N , is defined in Equation (3.7) and the variance of γ Σγ is a N ×N

diagnonal matrix:

Σγ =


σ2
γ · · · 0
...

. . .
...

0 · · · σ2
γ


N×N

= σ2
γIN , (A.8)

• ε is a mN × 1 vector of random errors.

ε =
[
ε1 ε2 · · · εN

]T
1×mN

∼ N(0,Σε), (A.9)

where the variance of ε Σε is a mN ×mN diagonal matrix:

Σε =


ΣGrp1 · · · 0

...
. . .

...

0 · · · ΣGrpN


mN×mN

, (A.10)

where ΣGrpj , j = 1, · · · , N , is defined in Equation (3.9).

Then the variance of β̂ is:

Var(β̂) = Var
{(
XTΣ−1

ε X
)−1 [

XTΣ−1
ε (y −Zγ̃)

]}
=
(
XTΣ−1
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)−1 [
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ε X
] [(
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)−1
]T
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T )−1

[
XTΣ−1

ε

(
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)
Σ−1
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]
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−1)T

= X−1Σε(X
T )−1XTΣ−1

ε

(
ZΣγZ

T + Σε

)
Σ−1
ε XX

−1Σε(X
−1)T

= X−1
(
ZΣγZ

T + Σε

)
(X−1)T

= X−1
(
ZΣγZ

T + Σε

)
(XT )−1
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=
[
XT

(
ZΣγZ

T + Σε

)−1
X
]−1

=
[
XT

(
Zσ2

γIZ
T + Σε

)−1
X
]−1

=
[
XT

(
Zσ2

γZ
T + Σε

)−1
X
]−1

. (A.11)

The first derivative of the marginal log-likelihood function in Equation (3.38) with respect

to the inverse of ΣGrpj is,

∂ logL
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[
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TΣ−1
Grpj

(yj −Xjβ −Zjγj)

∂Σ−1
Grpj

]}
dγj ,

(A.12)

For computational convenience, we apply the following trace trick for quadratic forms and the

fact that the inverse of the determinant of a matrix is the determinant of the inverse of the

matrix to Equation (A.12):
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XTAX = tr[XTAX] = tr[XXTA], (A.13)

|A|−1 = |A−1|. (A.14)

Now Equation (A.12) can be simplified to

N∑
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as

∫
(yj −Xjβ −Zjγj)(yj −Xjβ −Zjγj)

T f(γj | yj)dγj

=
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][
(yj −Xjβ −Zj γ̃j)−Zj(γj − γ̃j)
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=(yj −Xjβ −Zj γ̃j)(yj −Xjβ −Zj γ̃j)
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j
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ZjΣ̃γj |yjZ

T
j

)
, (A.16)

where εj = yj −Xjβ −Zj γ̃j .
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Setting Equation (A.15) equal to zero yields

∂ logL
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where ε̂j = yj −Xjβ̂ −Zj γ̃j .

Finally, the first derivative of the marginal log-likelihood function in Equation (3.38) with

respect to σ−2
γ is,

∂ logL
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Setting Equation (A.18) equal to zero yields
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