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SUMMARY

Datasets generated at different stages of cancer diagnosis and prognosis has led to an era

of precision medicine, where clinicians and researchers can now potentially create a tailored

treatment plan for an individual patient. Whether datasets arise from magnetic resonance images,

DNA microarray, or epigenetic markers, the thrust of the challenge is to create a treatment plan

that comprehensively characterizes a patient’s cancer. The prelude to this challenge is identifying

the underlying structure–hidden patterns–of these datasets, and from there understanding how

to utilize these patterns to accurately infer a patient’s diagnosis and prognosis in cancer. Here we

explore machine learning solutions that provide a powerful and elegant framework for improved

characterization of patients by assessing their cancerous lesion.

We begin with analysis of cancerous lesions identified with fluorodeoxyglucose Positron

emission tomography–computed tomography (FDG-PET-CT) and Diffusion Weighted Magnetic

Resonance Imaging (DWI) for predicting a lesion’s treatment response and classifying a lesion’s

histology , respectively. We treat metastatic liver cancer lesions obtained from FDG-PET-CT as

3D shapes and infer if a patient will respond or not-respond to a radiotherapy based on 3D shape

features. Breast cancer lesions obtained from DWI are used to generate distinct parameters that

represent tissue microstructure to differentiate if a lesion is benign or malignant. Situated within

this framework, we illustrate the value of computational and statistical information available

within a lesion image for other downstream tasks. We then move onto the intersection of medical

imaging and genomics with a deep latent variable model that predicts somatic mutations from
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SUMMARY (Continued)

medical images. Unlike traditional computational models that focus on a specific cancer or a

specific set of mutations, we created a model that scaled to incorporate image and mutation data

from all possible cancerous lesion types that are publicly available. A unique property of this

model is that the lesion images are modeled as point clouds instead of three-dimensional images.

Our approach studies the two different yet related datasets as two distinct latent probability

distributions unified by one shared distribution. The shared distribution is implicitly encouraged

to create a connection between the two domains, so that we can faithfully transfer information

from one domain to another. This learning paradigm allows us to predict all possible somatic

mutations within a patient, thereby potentially aiding clinicians to assess effective treatment

solutions for a patient during the initial diagnosis.

As predicting the occurrence of somatic mutations only represents a minutia of the complexity

of cancer biology, we propose a generative probabilistic latent variable model to determine co-

occurrence patterns of somatic mutations. Whereas standard learning methodology uses heuristics

and frequency for modeling somatic mutations, we created a data-driven dependent prior that

enables us to specify a notion of similarity on both positive and negative correlations between

somatic mutations. Our results showed biological processes, total number of somatic mutations,

non-linear mutation-mutation interactions, and cancer type are all latent confounders that play

an important role in influencing the co-occurrence patterns of somatic mutations

Together, our research demonstrates the value of correctly characterizing a cancerous lesion

to generate patterns that provide diagnostic and prognostic insights of a patient’s cancer.

xiv



CHAPTER 1

INTRODUCTION

1.1 Motivation

Through years of retrospective studies in cancer, a small subset of patients with cancer are

characterized by a single clinical feature. For instance, melanoma patients have a phenotypic

feature of abnormal lesions on the skin (4), breast cancer patients have a BRCA2 gene mutation

as a genetic feature, and lung cancer patients have haemoptysis (blood in sputum) (5; 6; 7). Most

scenarios of patient assessment for cancers, however, require extensive quantitative and qualitative

knowledge of a patient’s clinical features that ascribe to a type of cancer (8). Optimal diagnostic

accuracy is achieved by correctly identifying the cancer type from a specific combination of

clinical features (9). The discovery of these combinations, however, is an ongoing and complex

problem from both a biological and clinical perspective. There are millions of cancer patients,

and although many patients may share the same type or subtype of cancer, the patient’s response

to treatment, cancer progression, and mortality can all vary. This has led to a push in precision

medicine (10) or personalized medicine (11) that uses computational models to stratify patients

based on a patient population’s demographics, histology, radiological images, or molecular

datasets.

The popularity of computational models to improve diagnostic accuracy is a natural stepping

stone in scaling current clinical protocols to the patient population and a specific subset of

1
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patients. We can formalize this further as a study of patterns. Humans innately create patterns

for better perception, understanding, and interpretation of the world (12). We often rely on a

distinct or a combination of patterns to identify relationships among phenomena. For instance,

weather patterns are used to predict the chance of precipitation. Mimicking human decision

patterns (13) or creating computational patterns (14) has led to the generation of computational

features for applications in classification, prediction (15), and generative (16) tasks. Similarly,

the increasing availability of medical data in conjunction with powerful computation tools

has resulted in intricate computational features that take into account the individual patient

variability.

The generation of clinical features from medical images is of particular importance as medical

imaging is omnipresent at initial and follow-up stages of patient assessment to noninvasively

diagnose and monitor the cancer’s progression. Clinicians and radiologists have used clinical

features to create diagnostic protocols (17) that allow them to assess and monitor a lesion.

Unfortunately, radiologists are still prone to have a high variance in sensitivity and specificity

when assessing a lesion. For example, in breast, lung, and bladder cancer screenings, radiologists

achieve a 74-90% sensitivity and a 60-76% specificity (18; 19; 20). Ideally, if multiple radiologists

assessed an image, these statistics would increase (21). However, that is implausible.

With increasingly powerful computational models, researchers have created tools to extract

computational features from medical images referred to as medical imaging features (22). Sub-

sequently, imaging features often represent hidden patterns of a patient–patterns that are not

directly discernible like clinical features. A natural step is to then deduce which of these imaging
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features can be parlayed into further optimizing patient diagnosis. Indeed, numerous studies

have shown the effectiveness of medical imaging features (23) to improve lesion characterization,

and thereby a radiologist’s ability to diagnose cancer or assess cancer progression. Many models

concerning medical imaging features are built upon established models within computer vision

such as facial recognition (comparable to lesion classification) (24) and segmentation (contour of

a lesion) (25). This has led to computational tools such as computer-aided diagnosis (CAD) (22)

that use medical imaging features and machine learning to improve cancer screening rates by

reducing interobserver variability and increasing the sensitivity and specificity rates (22).

While these computational models have achieved a few state of the art results (22), they

are still prone to low specificity (high rate of false positives) due to the mischaracterization of

lesion heterogeneity from the imaging modality. As imaging features are reliant on the correct

representation of lesions, small perturbations can dramatically impact imaging features and lead

to decreased performance in machine learning models (26). For example, consider the problem

of predicting the treatment response of a patient with pre- and post-treatment scans. In such

a scenario, the imaging modality would ideally reflect lesion heterogeneity as a function of the

distribution of the voxels within the lesion. Therefore if a lesion is heterogeneous, then different

regions of the lesion would respond differently to the treatment, which should be observed in

the distribution of the parameters (i.e. intensity) of the voxels. Alternatively, emerging imaging

techniques for human cancers as well as computer vision models for 3D object feature generation

(27) offer promise and flexibility in characterizing lesions. Thus with lesion characterization an
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important implication for correct patient assessment, we investigate medical imaging features

that better capture the distribution of voxels in Chapters 3 and 4.

Just as there is a push in computational modeling of patterns within medical images, there is

also a push in computational modeling of generating treatments that are patient specific. Current

and established targeted treatments are often based on the genetic profile of a patient population.

The targeted treatments are designed to target somatic mutations, which are selected on the basis

of mutated gene’s frequency in a patient population. Lesion heterogeneity, however, decreases

the effectiveness of many of the targeted treatments due to the complex genetic environment of

a lesion. Cancer genes and therefore somatic mutations are pleiotropic as Wagner and Altenberg

state (28): a mutation can affect a number of phenotypic characteristics of a cell. We can

directly observe this phenomenon in the various types of subtypes of a distinct cancer type.

For instance, consensus molecular subtype-2 (CMS2) in colon cancer shares many of the same

somatic mutations as in other colon subtypes, but the permutation and the frequency of a

set of mutations create a divergent path during cancer progression (29). Understanding the

co-occurrence patterns of somatic mutations across cancer patients between cancers and within

a cancer is one of the long-standing challenges in cancer biology.

A myriad of statistical models elucidate co-occurring mutations by following three basic

patterns: two mutations occur randomly by following an expected mutation rate (30); mutual

exclusivity (31), when the two mutations are rarely seen in the same tumor; and co-occurrence,

when the two mutations occur together more frequently than expected by chance. A statistical

model may further constrain the co-occurrence patterns by integrating known cellular interactions
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(32) to reflect biological processes. This constraint simplifies another assumption of mutually

exclusivity: two genes that are involved in the same biological process are biologically redundant.

Therefore, the mutually exclusivity assumption defines that a mutation in one of the genes is

sufficient to deregulate the affected biological process. Although these assumptions are intuitively

and biologically sound, they do not always hold in practice. In Pritchard et. al (33) they discuss

that there is no "established approach that explicitly models the generative process of mutual

exclusivity patterns." Therefore co-occurrence patterns in somatic mutations cannot only be

modeled by frequency patterns and known biological interactions. An ideal statistical model

would incorporate fewer assumptions and aim to disentangle the sources of variability within

each a cancer type.

Computational and statistical modeling challenges for identifying confounding variables

in the somatic mutation dataset can be addressed by the confluence of neural networks and

probabilistic modeling. Neural networks allow for possible non-linear generative processes(non-

linear correlations between confounders), while the probabilistic model allows for a more expressive

model to reflect prior knowledge about the dataset. Formally, this paradigm follows generative

probabilistic models that have been successfully deployed to find population structure in genetics

(34), language (35), and recommendation systems (36). Generative probabilistic models contain

three parts: observed data (somatic mutation profiles), hidden structure (confounders), and a

probability function. In our case, this hidden structure represents a set of co-occurring mutations

and the probability function translates to the influence of each set of co-occurring mutations

(factors) within the patient. Generraly, each factor is often interpreted as representing a known
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biological process (36). The modeling challenge of generative probabilistic models is deeply

intertwined with the choice of the priors for the probability function and hidden structure, which

we further discuss in Chapter 2.9. One contribution to this thesis is the creation of a prior

dubbed CoZINB that reflects cancer biology. We show that CoZINB infers the latent confounders

to generate distinct and diverse co-occurrence patterns in somatic mutations for different cancers

in Chapter 6.

In so far we have discussed two distinct datasets (imaging and somatic mutations) separately.

Current studies have tried to bridge this gap with the creation of a nascent research topic

referred to as radiogenomics or imaging genomics. These studies operate the assumption that

lesion heterogeneity is reflected in medical imaging features through patterns of the lesion shape

and contrast. Recent studies have shown correlations and predictive performance of medical

imaging features to identify genetic features such as gene expression and somatic mutations with

a combination of statistical and machine learning-based approaches (37). Given the large size of

the datasets, many of these studies impost restrictions on the number of genetic features. This,

however, can lead to biased results that favor dominant patterns within the patient population of

cancer (38), thus limiting a model’s capacity to reflect a lesion’s complex biological environment.

Instead of limiting a model to correlate or predict a few genetic features, we would like our

model to predict the full somatic mutation profile of a patient. This problem is similar to current

daily activities we perform online such as personalized shopping recommendations on Amazon or

personalized movie recommendations on Netflix. To examine every movie option available is

impractical, so a recommendation algorithm should reflect the user history or users with similar
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search patterns. The somatic mutation profiles and the corresponding lesion images we examine

in this thesis, however, have less repeated patterns due the complexity of cancer biology that

influences lesion heterogeneity. The two distinct datasets are also derived from two very different

domains. There is no inherent relationship between a lesion obtained from an MRI image or a

somatic mutation profile obtained from a gene sequencing test. Whereas, there is an intuitive

relationship between movies regardless of their genres. In such cases, instead of examining the

domains separately, we jointly model the distributions of each domain. There are two benefits of

joint modeling: we can robustly create a distinct but separate representation of each domains

with limited data, while also uncovering relationships among the two domains.

One of our contributions to this thesis builds such a model by using geometric imaging

features and the theory of probabilistic models to create a joint deep latent variable model that

predicts somatic mutations. A motivation of this model is to better capture potential mutations

that are targeted by treatments, which we discuss further in Chapter 5.

The combination of challenges faced in characterizing lesions and genetic profiles can greatly

benefit from further model development. We propose algorithms in this thesis that exploit

features for patient assessment from three different perspectives in human cancers; predicting

patient diagnosis and prognosis from medical images, the integration of medical images and

somatic mutations to predict patient somatic mutation profiles, and inferring the co-occurrence

patterns between somatic mutations.
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Figure 1: An overview of the dissertation for inference on cancerous lesions from three different
perspectives: predicting patient diagnosis and prognosis from medical images, the integration of
medical images and somatic mutations to predict patient somatic mutation profiles, and inferring
the co-occurrence patterns between somatic mutations.

1.2 Contributions

1.2.1 Learning from Medical Images

A standard approach to stratify cancer patients is to grade the severity of a lesion. Clinicians

often grade a lesion by identifying image patterns from various imaging modalities such as MRI

or CT. For instance, the ground-glass opacification image pattern is the difference in contrast

of voxels between adjacent and lesion tissue in a lung CT image. Researchers and clinicians

have created a complete list of guidelines with specific imaging patterns such as in glioblastoma

using MRI (VASARI Research Project (39)), breast cancer using mammograms (BI-RADS)

(40), or lung cancer using CT (LUNG-RADS) (41). The goal of these guidelines is to create

a standardized description for sharing patient diagnosis and prognosis between clinicians (42).
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However, as discussed, the imaging features within the guidelines have low specificity due to

inadequate capture of the lesion heterogeneity present in much of cancer population.

To better probe lesion heterogeneity, clinicians and researchers have implemented the imaging

techniques F-fluorodeoxyglucose (FDG) Positron Emission/Computerized Tomography (FDG

PET/CT) and Diffusion-Weighted Magnetic Resonance Imaging (DWI). These imaging techniques

yield unique parameters from their corresponding images that reflect the tissue microstructure

of a lesion such as vascular permeability, perfusion, and cellularity. Subsequently, the tissue

microstucture is partly a reflection of lesion heterogeneity (43; 44). Liu et al. (45) showed

that the apparent diffusion coefficient (ADC) of DWI in conjunction with a BI-RADS score

from dynamic contrast MRI (DCE-MRI) for breast cancer patients significantly improved the

diagnostic specificity. Hicks et al. (46) showed that FDG PET/CT in lung cancer improved

staging diagnostic accuracy leading to a better assessment of treatment plans in patients.

The versatility of FDG PET/CT and DWI have made these modalities appealing for clinical

management of cancers (47; 48; 49).

The challenge of images from FDG/PET and DWI is how to quantitatively compare param-

eters extracted from the lesion images within a patient population. While the intuitive goal

of comparing parameters is simple, formalizing this task is much more difficult. The standard

approach follows using a single parameter such as the mean of the standard uptake value (SUV)

in FDG PET/CT (50) or the mean of the ADC in DWI (51) to compare patient populations. A

summary statistic of a single parameter, however, disregards the distribution of the voxels and

can lead to false positives (52).
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We, instead, exploit the distribution of the voxel parameters to elucidate quantitative imaging

features within lesion images obtained from FDG PET-CT and DWI. Our approach is based on

modeling the statistical properties shared between voxels using 3D shape features in PET/CT

and statistical histograms in DWI. We show that 3D shape features are powerful in predicting

treatment response of patients with metastatic liver cancer (Chapter 3). We also show that

imaging features created using a statistical histogram have a robust performance of classifying

breast lesion pathology (Chapter 4). These quantitative imaging features have the potential to

improve precision medicine as it may expedite treatment and lead to faster decrease of cancer

progression.

While, medical imaging identifies a patient’s cancer type, a challenge in precision medicine is

that a full treatment plan is generally not created until a biopsy of the lesion is performed (53; 54).

As early treatment is crucial for decreasing cancer mortality (55), researchers and clinicians

have defined imaging features of a cancer lesion’s that correlate with functional, molecular, and

metabolic information of a patient (56; 57; 58). These results suggest that imaging features can

pose as a surrogate for biological information within a lesion.

Despite advancements of the previous studies, the correlations between imaging features and

the biology of a tumor are often limited to providing information about the occurrence of specific

genetic markers (38). Our approach instead posits we can exploit the structure of voxels in

medical imaging to predict the entire somatic mutation profile of patients. There is another set of

challenges that arise. First, cancer imaging datasets are often small, thereby limiting statistical

power of conclusions. Second, selecting the appropriate combination of imaging features to
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predict somatic mutations is not trivial. Third, scaling a small multi-class problem to 20,000

different classes (where each somatic mutation is a distinct class). The question now becomes

how to select the correct subset of classes from an exponential search space. Indeed, as previous

studies have done, one can limit the number of somatic mutations predicted, but this assumption

can lead to false positives in downstream tasks such as treatment planning (38). As the cancer

genome is still incomplete (59), such an assumption is inappropriate for capturing the possible

dependent relationships that influence cancer biology.

In this thesis we develop Lesion Point Cloud to Somatic Mutations LLOST, a multidomain

model in Chapter 5 that exploits the hidden structure of somatic mutations and medical imaging

to predict somatic mutation profiles. LLOST represents lesions as point clouds instead of images

to enable invariance to imaging techniques. The two different domains are jointly modeled with

the utilization of variational autoencoders and invertible neural networks (60; 61). This modeling

choice encourages the patients with the same cancer type to share similar patterns among the

general patient population of multiple cancers. The prediction of somatic mutation profiles, is

potentially useful for clinicians to guide them in creating a patient specific treatment plan.

1.2.2 Learning From Variations of Somatic Mutation Profiles

In our discussion of somatic mutations, we stated that current methodology surmises that

cancer is mostly driven by a few highly frequently occurring somatic mutations and the remaining

somatic mutations are passenger mutations. While, driver mutations may directly promote cancer

angiogenesis, their co-occurrence patterns with passenger mutations have indirect effects that

insofar have not been studied. Therefore, studying the complex patterns of somatic mutations
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requires understanding the processes that influence how mutations are positively and negatively

correlated with each other. We address these challenges in Chapter 6 by introducing a prior called

the Correlated Zero Inflated Negative Binomial Process (CoZINB) in a generative probabilistic

model. This specific choice of prior allows the dynamic creation of diverse sets of co-occurring

somatic mutations that reflects cancer biology. We show that cancer type, the total number

of mutations, biological processes, and mutational processes are all confounding variables that

influence co-occurrence and mutual exclusivity patterns in somatic mutations.

1.3 Dissertation Overview

We begin by reviewing many of the imaging and statistical concepts that are utilized

throughout this thesis. The second chapter starts with an overview of the imaging modalities

used in 3 and 4 and current image feature generation techniques for two and three-dimensional

images. This will serve as a backbone to the reasoning of why we chose specific imaging features

for our tasks in Chapters 3 and 4. In Chapter 2, we also describe methods in generative

probabilistic models and their use in modeling sparse high-dimensional data by presenting latent

variables models that inspire the work in Chapters 5 and 6. Together, these concepts also

enable examination of the importance of prior distributions (the distribution of the unknown

parameters) and the posterior distribution (the updated parameters given the data), which led

us to develop a unique prior distribution in Chapter 6. We conclude the chapter with Bayesian

inference techniques, specifically amortized inference and variational inference.

An overview of the different perspectives we use to analyze cancerous lesions in this dissertation

is shown in Figure Figure 1.
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In Chapters 3 and 4, we present quantitative imaging features for use in FDG PET/CT and

DWI, respectively. Chapter 3 demonstrates the use of quantitative imaging features as a tool for

predicting treatment response in patients with metastatic liver cancer. This work is presented in

(1). Chapter 4 demonstrates the use of quantitative imaging features as a tool to discriminate

lesion pathology in breast lesions. This work is in the submission process and is presented in (2).

In Chapter 5, we address the limitation of the traditional paradigm of learning from medical

images by optimizing the combination of quantitative features that predict all somatic mutations.

We develop LLOST, a deep latent variable model built on dual Variational Autoencoders that

consists of three latent spaces: two specific to the domain and a shared latent space. This model

demonstrates the prediction of somatic mutation profiles from their corresponding images using

publicly available data from The Cancer Genomic Archive and The Cancer Imaging Archive.

Chapter 5 is presented in (3).

In Chapter 6, we present the Correlated Zero Inflated Negative Binomial Process (CoZINB)

based on (62). The CoZINB model consists of parameters that reflect the total number of

mutations, biological processes, and mutational processes, while also incorporating non-linear

interaction between the parameters using neural networks. We use CoZINB in a probabilistic

generative model to characterize the co-occurrence patterns of somatic mutations that better

reflects cancer biology.

Lastly, in Chapter 7, we summarize our discussion and discuss future directions of our work.



CHAPTER 2

BACKGROUND

2.1 Medical Imaging

2.1.1 Positron Emission Tomography - Computed Tomography

Positron emission tomography (PET) is a non-invasive medical imaging technique based on

the detection of positron emissions. The principle of PET is detecting 511 keV of energy after

the collision of positrons with electrons present in neighboring tissue. The captured energy is

reconstructed into an image that provides functional as well as metabolic information related

to the tumor cells. The anatomical information provided by PET, however is low, so imaging

systems have integrated PET with computed tomography (CT) or magnetic resonance imaging

(MRI) to better assess cancer tissue.

A common radiotracer used to create the positron collisions is Fluorine 18 fluorodeoxyglucose

(FDG). The tracer is transported into cells using the same transport enzymes as glucose and

becomes trapped within the cells as it is not dephosphorylated due to the absence of an enzyme

in cancer tissue. The uptake of FDG then represents the glyolic activity of tumor tissue, which is

influenced by lesion histology, lesion aggressiveness, viability of malignant cells, the presence of

14
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hypoxia, and local vascularisation. The conventional method to quantify FDG uptake in lesion

tissue is through the standardized uptake value (SUV) defined as:

SUV =
tissueactivity/ml

administrateddoseofFDG
× bodyweight

. Benign lesions have a declining uptake of over time, whereas malignant lesions have an increase

in FDG uptake over time. The differences between uptake value of benign and malignant tissue

is due to the underlying cellular structure (63). This property was exploited by Cottereau et al.

(64) to correlate a high SUV with the over-expression of MYC and BCL2 genes that promote

cellular proliferation, thereby affecting the cellular structure of the tissue.

The efficacy of FDG PET-CT is best observed in assessing the response of a tumor after

therapy. The primary goal of non-surgical cancer therapy is the eradication of tumor cells,

however, the complexity of tumor biology results in a variety of different responses. The standard

diagnostic tool for measuring treatment response is decrease in tumor size (65) in imaging

modalities such as MRI and CT, however residual masses may exist and can lead to recurrence of

the cancer. In some cancers, decrease tumor size is also not indicative of treatment response (66).

As FDG PET-CT is sensitive to the functional characteristics of tissue, the information derived

from the SUV can be used to manage and modify treatment options. Martini N et. al used (67)

FDG PET-CT to monitor therapy response in non-small cell lung cancer to determine the best

time point for possible surgical intervention. Mikhaeel et al. (68) showed FDG PET-CT was

more accurate in comparison to CT for assessing remission in patients after treatment of Non-
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Hodgkin’s lymphoma. The measurement of glycolic uptake has made FDG-PET an appealing

tool to evaluate lesion heterogeneity and has created new possibilities to assess treatment options

in patients.

2.1.2 Diffusion Weighted Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is an imaging modality based on a patient being placed

in a magnetic field through a magnet that surrounds a gradient coil, which further surrounds a

radiofrequency (RF) coil. The protons in the body absorb and emit back resonance frequencies

which are used to reconstruct and create 3-dimensional images of a region of interest. Contrast

between tissue within the body is created as protons of different tissues return to an equilibrium

state at varying rates. These rates are identified as the longitudinal relaxation time T1 and the

transverse relaxation time T2. By manipulating scan parameters such as the sequence repetition

time (TR) or the echo time (TE), the MRI can produce different levels of contrast referred to as

T1-weighted MRI or T2-weighted MRI. Although invasive, patients can also be injected with

gadolinium chelate to create contrast between tumor and normal tissue using dynamic contrast

enhanced MRI (DCE-MRI) (69) to facilitate functional information of a lesion.

The T1 and T2 weighted images are often used for morphological information of a tissue. For

example, fat has a shorter T2 than water and relaxes more readily than water so T2 weighted

images correspond to lower intensity values of fat in comparison to T1 images. Since benign

tissue often have higher levels of water, T2-weighted images correlated with benign morphology

in breast cancers, especially cysts (70). Conversely T1-weighted images of a patient’s brain can

show tumor enhancement due to abnormally high-intensity areas with the increased fat level.
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Upadhyay et al. (71) used a combination of T1 and T2 weighted images to help grade glioma,

since T2 weighted images identify necrotic tissue, while T1 weighted images identified the fatty

tissue.

To better improve sensitivity rates, clinicians have used DCE-MRI separately or conjointly

with T1-weighted images for better lesion characterization. Similar to FDG PET/CT, cancerous

tissue has a faster uptake of the contrast agent compared to normal tissue (72). This features

reflect angiogenesis of the tumor and as the tumor microcirculation causes increased interstitial

pressure to relieve the contrast back into the tissue (72). Hara et al. (73) showed that when

DCE-MRI is used conjointly with T2 weight images the sensitivity of prostate cancer detection

increased to 93%. While the increased performance of DCE-MRI has increased detection rates,

the high variance of specificity in DCE-MRI is of a concern as it leads to false positives. This is

because the rate of contrast uptake does accurately reflect the properties within the local tumor

tissue (74). Lee et al. (75) estimated that for 65-year old women, around 7% of all invasive

screen-detected cases will be overdiagnosed, whereas for 75-year old women around 13% will

be overdiagnosed. This new understanding strongly implies the tissue microenvironment and

therefore lesion heterogeneity is an importance factor to understand the underlying mechanism

of cancer and to create effective treatment strategies (76).
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MRI also has the ability to probe tissue microstructures by investigating the diffusion

behaviour of water molecules within the tissue. The diffusion weighting signal is represented

with a simplified mono-exponential model introduced by LeBihan et al. as

M

M0
= e−bD

(77). The parameter b is known as the b-value or the diffusion-weighting strength and D is

the diffusion coefficient. The b-value determines the degree of diffusion-weighting, where a

large b-values generally indicates higher signal intensity due to restricted diffusion within the

tissue. This property creates a contrast in images referred to as Diffusion Weighted Images

(DWI) based on the unique diffusion properties of the microenviornment within tissue caused by

macromolecules, fibers, and cells. The goal of DWI is appealing as the correct quantification of

the tumor microenviornment would allow for clinicans to grade lesions at the voxel level, thus

avoiding invasive biopsies, radiation as in FDG PET/CT, and contrast agents as in DCE-MRI.

In cancer imaging, DWI has been shown to be sensitive to cell density (cellularity) through

its restriction of diffusion both in the intra- and extra-cellular spaces, which is important in

analyzing the aggressiveness of the tumor as well as in treatment response (78). The most

common quantitative marker to measure diffusion is known as the apparent diffusion coefficient

(ADC) calculated using a mono-exponential function with two different b-values,

ADC =
ln M2

M1

b1 − b2
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where M1 and M2 are the b-values at different signals of b1 and b2 respectively. Guo et al. (79)

showed there is a significant statistical difference of the ADC value between malignant and

benign breast lesions and recommended that ADC is a completementary tool for DCE-MRI to

help decrease. Muraoka et al. (80) demonstrated a statistically significant lower mean ADC

value in cancerous tissue of the pancreas, which was a result of collagenous fibers within the

tissue.

Despite the various diffusion tissue properties that DWI probes, the information provided by

the ADC is limited to probing the density of cells in a tissue (81). Advanced methods have been

developed to quantify and assess the tissue microenvironment such as the intravoxel incoherent

motion (IVIM) (82) and continuous time random-walk (CTRW) (83). The IVIM method fits

a biexponential model as a function of increasing b-values to separate cellular and vascular

components with three distinct parameters

S

S0
= fe((−b(Ddiff+Dperf ))) + (1− f)e(−bDdiff )

. The perfusion parameter (Dp) and microvascular volume fraction f probe the vascular

components, and the diffusion parameter Ddiff probes the diffusion within the tissue. With an

optimal fitting, IVIM parameters can correlate with the tissue microstructure such as increased

blood flow, which in turn can indicate aspects of tumor aggressiveness or malignancy. IVIM has

gained traction in characterizing lesions with the growing use of DWI for predicting treatment

response (84), grading lesion tissue (85), and differentiating between malignant and benign
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tissue (86). CTRW fits a non-Gaussian multi-parametric function at increasing b-values to also

create three parameters that represent the temporal (α) and spatial (β) cellular structure within

a voxel and the anomalous diffusion coefficient (Dm) that is analogous to the ADC. What is

beneficial about IVIM and CTRW models is that we can correlate the different parameters with

micro-vascular and micro-structural properties of the tissue that in turn aid in assessing lesion

malignancy. In Chapter 4 focus we examination of combination of the parameters from IVIM

and CTRW models that optimally characterize a breast cancer lesion for differentiating a benign

or malignant.

2.2 Lesion Heterogeneity

Lesion heterogeneity is a hallmark of cancer that has confounded researchers and clinicians

in understanding the complexities of cancer. While genetic heterogeneity can refer to a diverse

patient population, lesion heterogeneity reflects the cellular and molecular differences that define

a cancer type as shown in Figure Figure 2. In his overview of cancer, Foulds (87) demonstrates

that tumor angiogensis was not a simple linear process, but an evolution of cellular fitness

through positive and negative selection. This is analogous to population genetics, where the

study of the evolution of genes is measured through generations of positive and negative selection,

cancer evolution instead is on a much smaller time scale. Heppler (88) expands on Foulds

discussion, articulating that cells within a tumor that confer advantage are dependant on the

microenvironment created by the organ or of regional differences in oxygen supply, acidity,

nutrition supply, and to the bane of clinicians the therapy itself. Other non-genetic causes lesion

heterogeneity include epigenetic changes (89), mutational processes (90), and differentiation
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of stem cells (91). Therefore, lesion heterogeneity describes the existence of distinct cellular

populations with specific phenotypic features.

Subclonal evolution within the cancer cells allows for multiple subtypes of a distinct cancer,

and at a molecular level it is impossible for two patients to have the same genetic mutations that

result in the cancer. The mechanisms that cause subclonal alterations are still actively researched,

but researchers and clinicians have determined there is a need to investigate both synergistic

and antagonistic interactions between subclones during tumour evolution. The motivating factor

is that subclonal cell population often have a different genetic makeup and is the main reason

why systemic treatments (chemotherapy, radiation, and surgery) for cancer are still the standard

protocol as targeted treatment tends to confer resistances or leaves residual tissue that leads

to cancer recurrence. Even systemic treatments fail due to selective pressure on cells that are

resistant systemic therapy and potentially drive disease progression (92). An example of positive

selection is observed in patients with EGFR mutated lung adenocarcinoma. These patients

acquire resistance to due to positive selection of cells with the co-occurring mutation T790M in

the EGFR gene (92) as the targeted treatment tyrosine kinase inhibitor (TKI) gefitinib targets

exons 18 and 19 of the EGFR gene. Similarly, Sasaki et al. (93) showed patients treated with

panitumumab for EGFR coloretcal tumors found an emergence of KRAS mutations during the

course of therapy resulting in acquired resistance. Sasaki et al. showed that there were divergent

evolving tumor cells that harborded KRAS mutations before treatment, and that under the

selection pressure of anti-EGFR therapy, the cells with KRAS mutations rapidly expanded to

cause tumor progression. Therefore, cancer recurrence and progression can be attributed to a
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Selection 
Pressure and 

Treatment

Genetic Heterogeneity Lesion Heterogeneity Treatment Resistance and Cancer 
Progression

a) b) c)

Figure 2: a) Patients rarely share the same genetic makeup a lesion making cancer specific
treatments more difficult to create b) Lesions are also heterogenous, where different cells have
different genetic profiles c) If a treatment only targets a specific cellular profile, selective pressure
will increase for cells that are resistant to treatments, which can lead to cancer progression

small population of tumor cells with different mutations primary tumour lends and as a result

causes the development of multiple mechanisms of resistance in the same patient under selection

pressures from targeted therapies.

Since it is not yet feasible to genetically profile an entire tumor, researchers have relied

on medical imaging or tumor mutation load (TML) to quantify tumor heterogeneity. TML is

a measurement of the total number of mutations within a tumor and has been studies have

suggested it as a potentially biomarker for immunotherapy such as Goodman et al. (94) who

showed a higher TML can partially represent tumor heterogenity due to the overall characteristics

of genetic environment of a tumor. Similarly, a multi-region sequencing study of Caucasian lung

adenocarcinoma patients by Hanjani et al. (95) indicated high smoking-associated mutational
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burden for clonal mutations correlated with low intratumoral heterogeneity. Unfortunately, TML

is only one of the causal links to tumor heterogeneity and there is no established genetic marker

that can quantify tumor heterogeneity.

Medical imaging can evaluate lesion heterogeneity by exploiting the properties of the imaging

phenotype that reflect the inner organization of the tumor (96). Specifically, we assume that

lesion heterogeneity is a confounder that influences the the tissue microstructure (structural

heterogeneity) of a lesion captured by medical imaging (97). This structural heterogeneity is

probed using metrics based on texture features, quantitative markers such as SUV in FDG

PET/CT or parameter values in DWI. The texture and SUV metrics evaluate the spatial

dissemination of cells within a tissue. Kwon et al. (98) created a metric to evaluate structural

heterogeneity in oral cavity cancers as the derivative over the volume of a tumor as a function

SUV that significantly correlated with patient prognosis. The parameters of DWI that probe

cellularity in ADC or vascularity in IVIM can also correlate with structural heterogeneity in

a lesion. For instance, Iima et al. (99) showed that the difference of the ADC at different

b-values is higher in malignant areas of the lesion than benign. This potentially indicates the

presence of cellular proliferation or cell apoptosis (81). In the context of lesion heterogneity,

this can potentially correlate with the over-expression of oncogenes (100). While a one-to-one

correspondence between a tumor’s image voxel and a tumor’s cell is currently unavailable, the

analysis of tumors with medical imaging provides a non-invasive tool capturing the genetic

landscape of a lesion as a function of the tissue microstructure (101).
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2.3 Metastatic Cancer in the Liver

Cholangiocarcinoma (CCA) and Colorectal cancer (CRC) are the second and third most

primary hepatic (liver) malignancies worldwide respectively (102). Tumors that arise due

to CCA are associated with the "ductular epithelium of the biliary tree, either within the

liver (intrahepatic cholangiocarcinoma) or more commonly from the extrahepatic bile ducts

(extrahepatic cholangiocarcinoma)" (103). Malignant tumors in the liver from CRC, unlike other

metastatic tumors (metastatic breast or lung cancers) arise due to the propensity of CRC tumors

to spread to the liver. There is a reported rate of 70% of all patients with CRC develop some

form of liver metastases (102). Patients who are suspected to have the cancers are diagnosed

using computed tomography (CT) or the conjunction of CT and fluorine 18 fluorodeoxyglucose

positron emitted tomography (FDG-PET). A prognosis of the patient is then made by identifying

the number of tumors, satellite lesions, age, and primary tumor stage (104).

Surgical resection is the most effective treatment approach for both metastatic CCA and

CRC. Unfortunately only a minority of patients (15%) are suitable for surgery (102) due to

limited ability to preserve minimum functional liver function after surgery. Patients who could

not have surgery to remove the tumor received systemic chemotherapy where the median survival

time ranged from 12 to 20 months and 5-year survival rates of less than 5% (102). A greater

survival rate is achieved through radiotherapy such as Yttrium-90 (Y90) microspheres that

carries radiation to the tumor, thus preserving normal liver tissue. Current retrospective studies

have reported 5 year survival rates to nearly 58% after resection of the liver once radiotherapy is

completed due to decreased tumor size and/or number of tumors (105).
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The management of the disease is monitored through CT or FDG PET/CT. The latter has

shown to have superior performance in identifying residual tumors after treatment. Specifically,

FDG PET/CT allows a clinician to monitor the tumor metabolism by measuring the glucose

uptake (66) to identify local tumor ablation, which is not observed through CT. As early and

subsequent treatment is key in increasing the survival rate of CCA or CRC, FDG PET/CT is a

significant tool in assessing patient prognosis.

2.4 Breast Cancer

Breast cancer is a malignant tumor originated in the cells of the ductal tissue and is the

second leading cause of cancer death in women (106). The average lifetime risk of developing

breast cancer is 1 in 8 (106) and the associated 5-year breast cancer survival rate is 98% for local

tumor, 84% for regional disease and 23% for metastatic tumors (106). The increased survival

rate is attributed to early detection of breast cancer and is crucial for management of the disease

(106). Most clinicians recommend annual self-breast examinations and annual bilateral screening

of the breasts after the age of 40 (106). Unless a patient is at high-risk breast cancer susceptible

due to a family of breast cancer and/or mutations in the BRCA1/2 genes, screening is done

using mammograms. For screening at high-risk patients or once a lesion is established, the gold

standard for prognosis is dynamic contrast enhanced MRI (DCE-MRI) that uses an injection of

gadolinium chelate to create contrast between tumor and normal tissue.

The contrast enhancement patterns of DCE-MRI are related to tumor angiogenesis as Szabo

et al., Mussuarkis et al., and Bone et al. found a significant correlation between tumor grade

and rim-like enhancement patterns (107; 108; 109). From a machine learning perspective,
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imaging features from breast lesion DCE-MRI images have been used to predict molecular

subtype (110) and predict treatment response (111; 112). While these studies have achieved high

accuracy performances, they are prone to false positives due to mischaracterization of tumor

heterogeneity as discussed in Section 2.1.2. Moreover, like many cancers, breast cancer comprises

of heterogeneous tumors with different characteristics that can lead to a variety of different

treatment options. As early detection decreases mortality rate, better understanding of breast

cancer lesions has opened up an avenue for DWI to better evaluate the tissue microenvironment.

Research studies have mainly evaluated the potential use of ADC and IVIM to differentiate

between malignant and benign breast lesions using machine learning (113; 114) or statistical

tests (115). The CTRW model has not yet been explored in breast lesions, but offer a promising

approach to characterize lesions as it improved the diagnostic accuracy of differentiating low-grade

and high-grade pediatric brain tumors (116). We therefore analyze breast cancer lesions using

both IVIM and CTRW models as they probe different properties of the tissue microstructure.

2.5 Somatic Mutations

The mutations in cancer occur at vastly different scales, from a single base in a genome

to entire chromosome arms, and are broadly classified as single nucleotide variants and small

insertions and deletions (SNVs), copy number aberrations (CNAs), and structural variants (SVs).

At the smallest scale of mutations in cancer are single nucleotide variants (SNVs) where a

single base or sequence is changed in the DNA sequence by insertion or deletion of a single or

series of bases. If these mutations occur in the coding region of the genome, they can be further

classified as synonymous or nonsynonymous. A synonymous mutation is one that does not change
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the protein sequence encoded by the mutated region of DNA, while a nonsynonymous mutation

does cause a protein sequence change. Nonsynonymous mutations are further classified by the

type of protein sequence change they cause. Common classifications include missense mutations,

which cause a protein sequence change and nonsense mutations, which insert a premature stop

codon into the protein sequence. Both types of proteins result in changing the biological function

of the protein (117).

Another type of mutations are copy number aberrations, which are a special type of structural

variants. The copy number of a region of DNA in a healthy human cell is two, because the human

genome is diploid (has two copies of each chromosome). Copy number aberrations (CNAs) occur

when a region of DNA is either amplified (copied) or deleted, thus changing the copy number.

Copy number aberrations are also often called using next-generation sequencing technology,

although SNP arrays were popular until relatively recently as well. Because CNAs can span

multiple genes, some of these methods perform target selection to identify the gene that is the

most likely target of CNAs in a given region (118).

For the purposes of this thesis, we consider all somatic mutations on a gene equal and only

consider the number of times a gene was mutated as an input to our methods in Chapters 5 and

6.

2.6 Machine Learning

This section introduces some basic concepts about machine learning. A machine learning

model is classified as supervised, semi-supervised, reinforcement, or unsupervised learning
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depending on the application. For this thesis we focus on supervised and unsupervised learning

methods that were used in this dissertation.

Supervised learning consists of a training dataset with annotated data (segmentation labels,

lesion histology) and the data’s corresponding features. A common way to represent a training

data is using two matrices, Dtrain = {XNxM , YNxL}N , where X is the feature matrix with M

features and Y is the target matrix with L targets (annotated data), respectively, and N is the

number of samples. A parameterized function fθ(X) maps X to the target Y using a learning

objective. The learn objective is framed as a convex optimization problem to find the best

parameter or parameters θ∗ that minimizes a loss function L(Y, Y ∗n ) where Y ∗n is the predicted

continuous or binary values of the nth sample. This loss function is visualized as decision

boundaries between the possible targets, or more formally:

θ∗ = argmin
θ

1

N

N∑
n=1

L
(
fθ(X

(n)), Y (n)
)
. (2.1)

For classification tasks, the target is denoted by a binary variable for classifying two classes

or an one-hot vector t ∈ Rd over d predefined classes, where the lth column of Yn is 1 if the

target is the class-t and all the other columns are zero. For a regression task, such as linear

regression the target is often a continuous value y ∈ R. There are different distance metrics

available as a loss function such as the most commonly used squared L2 distance:

squaredL2
(Y ∗, Y ) = ||Y ∗ − Y ||22 =

N∑
n=1

(Y ∗n − Yn)2. (2.2)
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There are a number of frameworks for supervised learning such as Support Vector Machines

(SVM), Gradient Boosted Learning (GB), and deep learning, which at present is one of the

most popular frameworks. Each framework has an advantage or disadvantage and relies on the

availability of training data as well as the application of interest.

Unsupervised machine learning models do not rely on the target variables and instead create

decision boundaries based on the observational data itself XNXM . The canonical example is

clustering that categorizes observational data into groups based on a distance metric (another

convex optimization problem). The popular clustering algorithm, k -means (119), partitions

N samples of a dataset into a pre-defined k number of clusters, where each sample belongs to

one of the k clusters. The distance metric is based on the center of cluster called centroids

(initialized randomly) and each centroid is updated over a number of iterations based on the

mean of all samples assigned to cluster k. For example, a researcher could use k -means clustering

differentiate benign and malignant lesions based on the size of the lesions. Unsupervised learning

is especially appealing in medical datasets, because target variables such as annotations of a

lesion’s histology are difficult to obtain.

2.7 Medical Imaging Features

Beside clinical imaging features such as volume, geometry, or ADC and SUV discussed

previously, clinicians and researchers have utilized computational techniques to create unique

imaging features. These features are based upon the foundation of classifying faces (120), which

uses the difference in texture to differentiate between faces. Texture in this application refers to

the evaluation of gray-level intensity and the position of voxels within a medical image.
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2.7.1 First and Second Order Statistics

First-order statistics are defined as the distribution of the voxel intensity values in an image

disregarding any spatial relationships between voxels. These statistics can be captured by using

a histogram dividing the voxel intensities in an image into equally spaced bins and computing

the proportion of voxels within each bin. From this histogram a practitioner can calculate the

mean and variance statistics to describe the distribution of the voxels. Dhawan et al. (121) used

a first order histogram features to quantify microcalcifications in breast cancer for differentiating

between malignant and benign lesions. Likewise similar studies were performed for lesions from

lung cancer using CT (122), liver cancer using CT (123), and glioblastoma using DCE-MRI

(124).

A weakness of first-order histogram features is that they ignore the spatial distribution

of voxels. As discussed before, lesion heterogeneity may only occur in certain areas of the

lesion. Haralick et al. (125) improves upon first-order statistics by constructing a second-order

histogram called the gray-level co-occurrence matrix (GLCM) that characterize both the spatial

relationships and intensities between voxels in image regions. The GLCM matrix is constructed

by calculating the summation of voxels consisting of various intensity combinations in an image

over a defined window. The property of the window controls the neighborhood distance and

connectivity, including the directionality of connectivity such that different GLCM matrices can

be constructed to describe a certain image. There are several texture properties that can be

extracted from the GLCM and is one of the reasons why it has become one of most popular

tools for creating imaging features in medical imaging (126). Features that describe lesion
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heterogeneity include change in entropy, homogeneity, and the maximum correlation coefficient.

For example, Kim et al. showed lesions with higher entropy from MRI had a higher rates of

mortality (127).

2.7.2 Automated Feature Generation

With the increasing availability of data, researchers are moving towards computational

methods that do not rely on pre-defined mathematical models to create medical imaging features

(128). A subsequent benefit of such models is increased reproducibility of imaging features at the

cost of interpretability. So while one may define entropy from the GLCM as the randomness of

neighboring pixels, there is no established definitions for automatic generated features. The most

common technique is to use convolution neural networks (CNN) in a deep learning framework,

often for prediction of a lesion as malignant or benign. Although CNN are not as interpertable,

the imaging features they create are not dissimilar to texture features created by the GLCM (129).

Specifically, the hypothesis is that CNNs combine low-level features (entropy) to increasingly

complex shapes (geometry of lesion) until the lesion is correctly classified as benign on or

malignant. The number of CNN layers in a deep learning framework represents the abstraction

of the lesion, where LeCun et al. (130) describe that intermediate CNN layers recognise “parts

of familiar objects, and subsequent layers [...] detect objects as combinations of these parts."

This has led to an explosion of deep learning tools medical imaging in cancer where McKinney

et al. (131) showed a deep learning framework in comparison with radiologists had a statistically

significant increase in performance of diagnosing breast cancer in mammographs.
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2.8 Three Dimensional Object Features

The representation of a three dimensional (3D) object with geometrical features is a heavily

researched area in computer vision (132). Applications of this research has included pedestrian

detection (133), pose estimation (134), 3D object classification (132), assisted driving (135), and

3D object retrieval (132). 3D regions of interest (ROI) obtained from MRI or CT scans are

analogous to 3D objects. This similarity allow us to to examine the unique geometrical patterns

of a 3D ROI from a perspective of 3D object classification.

Methods used to classify 3D objects and shapes are: feature-based methods, graph-based

methods, and view-based methods. For this dissertation we focus on feature-based methods

where the goal is to identify common salient features between lesions. Early work on 3D feature

generation focused on global features and global feature distribution such as the distribution

of volume and second-order moments (analogous to 2nd order texture features). Sadjadi et al.

(136) calculated the moments of a 3D object to create an invariant feature descriptor immune to

change in rotation of an object for face detection. Osada et al. created a histogram which is

a probability distribution that measures the difference of the 3D object to a standard shapes

such as a cube, sphere, or cylinders (137) for object detection. The global feature methods,

however, have difficulty discriminating between 3D objects are of a similar shape (box versus a

car) resulting in research towards local 3D feature methods.

Local features represent the 3D object as a mesh or a point cloud. Local feature methods then

randomly select points on the surface of an object to create 3D shape feature descriptors. Shilane

et al. (138) calculated spherical harmonic moments of randomly sampled points at four different
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scales for classifying natural objects such as planes. Other local feature descriptors include the

Heat Kernel Signature (HKS) (139) that uses a random walk to model the distribution of points

on a surface to calculate correspondences between similarly shaped 3D objects. The common

theme of these local 3D features is that they encode certain statistical properties of points, while

being invariant to certain transformations. Unfortunately, as with texture features discussed in

Chapter 2.7 it is not trivial to find the optimal feature combination for the application at hand.

With a large enough dataset, deep learning circumvents the feature selection problem by

creating neural networks specific for point clouds or meshes. PointNet (140) is the first work that

introduced an architecture to process a point cloud. Many variants modified the architecture

of PointNet to to exploit spatial structure (141) or within a community of points (142). These

methods remained computational efficient while having superior performance in classification

tasks. This is because the architecture of these methods includes both local and global shape

features that can discriminate between different regions of a point cloud (140).

2.9 Latent Variable Models

2.9.1 Overview

Latent variable models are a Bayesian unsupervised learning technique that creates structure

in observational data through a practitioner’s prior beliefs. The standard latent variable model

seen in Figure Figure 3 consists of the observed data x = (x1, x2, ..., xn), the hidden structure

(latent variable) z, the global hidden variables (latent variable) θ, and a joint probability

distribution, P (x) =
∑

z P (x, z, θ), over the hidden variables and data using the law of total

probability. By examining the model, we can observe how the data is generated through the



34

X

zθ

n

Figure 3: A generic construction of the latent variable model

factorization of the joint distribution with the product rule such that P (x, z, θ) = P (x|z, θ)P (z, θ).

A practitioner’s prior beliefs are reflected in how P (z, θ) is specified (i.e. the generative process)

and is the foundation of many type of latent variable models not limited to probabilistic matrix

factorization (143) , mixed-membership models (latent Dirichlet allocation (35)), mixture models

(Gaussian mixture models (144)), and latent feature models (Indian buffet process (145)).

To further contextualize latent variable models, we examine the Gaussian mixture model

(GMM) seen in Figure 4b. In the Gaussian mixture model each sample potentially comes

from one of K latent classes which is explicitly encoded in the latent variable zn that takes

on of the K possible values. The factorization of the joint probability leads to P (xn, θzn) =∏n
i=1 P (xn|zn, θ)P (zn|θ) that describes the probability of the prior, P (z), of selecting a class

K and P (xi|zi = k, θ) denotes the likelihood of the nth sample belongs to one of the Gaussian

distributions with the parameter θ i.e. Gaussian(xn;µk, σk). What makes latent variable models

more appealing than other unsupervised algorithms like k -means is that the latent variable

corresponds to an intuitive assumption of how the observed data was generated or as the name
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Observed Data

(a)

Gaussian Mixture Model

(b)

Figure 4: Gaussian Mixture Models. a) Observed sample data with five different classes generated
from a mixture of Gaussian distributions b) Using a Gaussian mixture model, a practitioner can
fit the data with a potential set of class memberships that correspond to Gaussian distributions.

ascribed to them suggest the generative process of the underlying data. For the GMM the

generative process is:

While a GMM is a simple and powerful model, the discrete prior limits a sample to belong

to only one of the K possible classes. By relaxing this constraint such that a sample belongs to

multiple classes while the the probability of the class assignments of a sample still sums to one is

referred to as a mixed-membership model (35; 34). For example, from a mutation can belong to

a number of biological process. This feature of mixed-membership models has attracted many

studies to decompose biological datasets given that a biological process involves multiple actors
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Algorithm 1 GMM Generative Process
for Each sample j : 1, ..., J do
Sample a discrete latent variable allocationzi ∼ discreteK(π)
Sample data point given the latent variablezi, x ∼ P (xi|θzi)

end for

in a coordinated formation. There are many subtle differences between these various models,

but they all estimate the probability of a biological process being influenced by an biological

such as a gene or protein as reviewed in Allison et al. (146).

2.9.2 Decomposing Matrices with Latent Variable Models

From another perspective latent variable models are similar to matrix decomposition or

dimensionality reduction models that aim to reduce the size of the dataset X with n samples

and D features . Features can be anything from parameters of the dataset such as the mean or

variance, or the expression values of genes from a microarray dataset. One of the most common

techniques for matrix decomposition is principal component analysis (147) that decomposes a data

matrix into a latent representation using the singular value decomposition (SVD) X = Φθ(Z).

Analogous to latent variable models, Z (principal components) is the latent variable that describes

the effect of a class k on sample n through a mapping function Φ with parameters θ. Since PCA

cannot model prior beliefs about the dataset, Tipping et al. (148) extended PCA by allowing a

practitioner to choose a prior on the latent variables. Therefore, each latent variable can now

be interpreted as some type of generative process that influences the data. Using a Gaussian

framework, we describe the generative process as:
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Figure 5: Hypothetical matrix decomposition of a dataset where the features are the mean, µ
and variance σ of a population are decomposed in a binary latent matrix Z of dimensions N ×K.
Then each class k has parameters of a Gaussian distribution depicted by the feature matrix θ
with dimensions K ×D

P (zn,k) ∼ discrete(πk)xn,d ∼ N (
K∑
k=1

zn,k, θk,d) (2.3)

If every column in θ is the mean, µk, of the kthe class, then Z is a binary matrix where every

column indicates if that sample zn belongs to class k as seen in Figure Figure 5. There are a

number of probabilistic matrix decompositions to infer greater complexity within the dataset such

as the Variational Autoencoder (VAE) (60) that is used in this thesis. In the standard VAE the

prior on the latent variable z is a normal distribution and the parameters, θ, are inferred using

neural networks. Recent extensions to the VAE prior distributions have created more expressive

models for exploring the hidden structure of gene expression (149) and protein structure (150).

2.9.3 Latent Feature Models

Mixture models and mixed-membership models are excellent models across a wide variety of

data, but in some cases they are still too restrictive. The latent representation created by mixture
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models implies that the total probability mass of a class assignment of a sample must sum to

one. However, in a case of modeling patients’ possible diseases, they can belong equivalently to

having both cancer and diabetes. Latent feature models (145) circumvent this issue by creating a

vector that indicates if a sample belongs to a specific class. In our example of a patient’s disease,

xn = [1, 1] corresponds to patient xn having both cancer and diabetes. Latent feature models

generalize the prior on the matrix Z in matrix decomposition by creating a prior that generates a

matrix instead of individual elements in a matrix. More specifically, each row in a latent feature

model still corresponds to a distinct sample, but now the columns correspond to distinct class

and each sample may belong to a number of the classes. This is unlike probabilistic matrix

factorization, where each row must sum to one. The trade-off between latent variable models

and latent feature models is that the latter is more mathematically complex and computationally

demanding due to the underlying generative process. As such there has been limited adaptation

of latent feature models in genetic data, but researchers have showed their value such as Knowles

et al. (151) identified unique gene expression patterns in drosophila using a sparse latent feature

model.

2.10 Modeling Choices for Latent Feature or Variable Models

As we have discussed, the choice of priors in a latent feature or variable model defines the

interpertability and expressive of the model. In our example of the GMM, we used a simple

discrete distribution that was represented as a K-dimensional one hot vector (only one class is

selected). Alternatively, one can stack priors to create a hierarchy such that latent variables share

parameters with latent variables higher up in the hierarchy akin to hierarchical clustering. A
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more popular approach is use a stochastic process such as the Dirichlet Process (DP) (152) that

is a non-parametric Bayesian prior to support all discrete distributions of any dismensionality. A

DP-GMM allows a mixture model to have an unbounded number of classes and removes the

difficulty of determining the optimal number of classes in a generic GMM (153). The success of

Dirichlet process has led to other priors for Bayesian nonparametric in latent feature models

that we describe and use in this thesis.

2.10.1 De Finetti’s Theorem

Models built upon Bayesian non-parameterics exploit the properties of exchangeability and

we discuss the concept for motivating the priors we use in this thesis.

Definition 2.10.1. A finite set of random variables x1, ..., xn is exchangeable if every permutation

of x1, ..., xn has the same joint distribution as every other permutation of the random variables

(154)

This definition simply states that the order of the features is inconsequential to the underlying

generative process that describes the data.

For Bayesian non-parameterics this definition is extended for an infinite number of features

called De Finetti’s Theorem.

Definition 2.10.2. An infinite set of random variables x1, ..., xinf is infinitely exchangeable if

and only if there is a random probability measure P with respect to x1, ..., xinf are conditionally

individual and identically distributed with distribution P(θ) has the same joint distribution as

every other permutation of the random variables (154)
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Therefore a latent matrix is exchangeable then there is a distribution P known as the De

Finetti mixing distribution such that, conditional on θ drawn from the probability measure P

x1, ..., xinf are conditionally individual and identically distributed. The priors we use in this

thesis are based on the probability measures created using the completely random measure.

2.10.2 Completely Random Measure

A random measure M is a stochastic process that is indexed on a measurable space A.

A completely random measure (CRM) (155) is a random measure ρ such that collection of

finite disjoint sets A1, ..., An ∈ A are independent random variables ρ(A1), ..., ρAn . Since De

Finetti’s theorem from Definition 2.10.1 describes that any infinitely exchangeable sequence can

be described as a mixture of i.i.d. distributions, a CRM can be used as the De Finetti mixing

distribution. Kingman et al. (155) showed that a CRM can be decomposed into three parts:

the existence of a feature (atom a), the weight (w), and an ordinary component deterministic

component. What is of particular interest to practitioners is the atom and the weight described

as:

M(A) =

∞∑
n

wnδan(A) (2.4)

Kingman et al. (155) further characterizes this as a joint measure ν(dw, da) and the goal is to

identify ν. In latent feature and variable models researchers have identified ν as the Levy process

which has independent and stationary events with mean measure ν(dw). A Poisson process is an

example of a Levy process as every interval in t− s is independently Poisson distributed with

mean λ(t− s) i.e. ν(dw) = λ(t− s). This leaves nu(da), which is referred to as the base measure
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or more formally H(A). H is some kind of probability distribution on A. For example, in a

non-parametric GMM the base measure is the Dirichlet Process (156) to allow for an unbounded

number of possible classes. Griffths et al. (145) created the Indian Buffet process (IBP) that is a

distribution over exchangeable binary matrices using a CRM where th. The CRM that creates

the IBP has the Levy measure of the Bernoulli process and the base measure of the Beta process

(157) to generate a infinite collection of k classes in a binary matrix. Other CRM include the

gamma process (152), poisson process (155), and the beta process (158).

2.10.3 Gamma Process

The Gamma Process (GP) is a CRM we use often in thesis. The GP has a levy measure

ν(dw) = c e
−cw

w where c is a concentration parameter. We can show that M ∼ GP (H, c) is a

CRM since the random measure M(An) on any set An ∈ A are disjoint gamma distributions.

We can therefore write M(An) ∼ Gamma(H(An), c) such that H(An) is the shape and c is

the rate (152). The gamma process has an infinite number of atoms but we can still have a

finite sum if the base measure is finite (H(A) <∞) because we know the mean of the gamma

distribution, E[M(A)] = H(A)
c . The advantage of using a Gamma Process as a prior for a latent

feature model is that the matrix is integer-valued instead of a binary vector since a Gamma

distribution generates weights that lie in the space of [0, inf]. Since much of the genetic data

is count based, a GP is an appealing prior on latent feature models to model genetic data. As

a note, the famous Dirichlet Process is constructed by normalizing the gamma process (152).

The Dirichlet Process, however, is not a CRM since not every set is disjoint due to the fact that

weights are constrained to sum to 1 (i.e. weights are normalized).
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2.10.4 Learning Via Variational Inference

The Bayesian part of latent variable models comes from decomposing the joint distribution

using Baye’s rule:

P (θ, z|x) =
P (x|z, θ)p(z, θ)

p(x)
(2.5)

The posterior distribution P (θ, z|x) is what allows one to explore the data and interpret the

hidden structure. The posterior inference, however, is generally intractable with the exception of

simple models due to the normalizing constant of p(x). A common technique is to utilize Markov

Chain Monte Carlo (MCMC) (159) that creates a Markov Chain over the latent variables until

the chain converges to a stationary distribution. Unfortunately as the complexity of a model

increases or the dataset size, the computational burden increases when using MCMC.

The algorithms utilized in this thesis follows the paradigm of variational inference to approxi-

mate the posterior distribution. Variational inferences posits a family of variational distribution

q(z, θ) such that a scoring function minimizes the distance between the variational distribution

and the true posterior. Whereas MCMC creates samples from the Markov chain to converge to

a posterior distribution, variational inference transforms the posterior inference problem as an

optimization problem by exploiting Jensen’s inequality:
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log p(x) = log

∫
z,θ
p(x, z, θ)dzdθ

= log

∫
z,θ
q(z, θ)

p(x|z, θ)
q(z, θ)

dzdθ

≤
∫
z,θ
q(z, θ) log

p(x|z, θ)
q(z, θ)

dzdθ

= Eq[log(p(x|z, θ)]− Eq[log q(z, θ)]

This results in a log-likelihood of p(x) that we are interested in optimizing or more commonly

referred to as the evidence lower bound (ELBO), since it is a lower bound on the data itself p(x).



CHAPTER 3

A LESION BASED RESPONSE PREDICTION MODEL USING

PRETHERAPY PET/CT IMAGE FEATURES FOR Y90

RADIOEMBOLIZATION TO HEPATIC MALIGNANCIES

This chapter is published as Mehta, Rahul, Kejia Cai, Nishant Kumar, M. Grace Knuttinen,

Thomas M. Anderson, Hui Lu, and Yang Lu. "A lesion-based response prediction model

using pretherapy PET/CT image features for Y90 radioembolization to hepatic malignancies."

Technology in cancer research & treatment 16, no. 5 (2017): 620-629.

3.1 Motivation

Yttrium-90 radioemboliszation (Y90-RE) is recommended for unresectable, chemorefractory

liver-dominant primary or metastatic hepatic disease with a life expectancy of 3 months or longer

(160). Accumulated studies demonstrate that Y90-RE can improve overall outcome of disease

progression, from being unresectable to resectable or covert incurable disease to transplantable

and potentially curable in patients with colorectal carcinoma (CRC) liver metastasis (161),

neuroendocrine liver metastasis (162), primary hepatocellular carcinoma (163), or intrahepatic

cholangiocarcinoma (164). If a patient, however, is unresponsive to the Y90-RE, the expensive

and technical demanding treatment will result in unnecessary risk and cost to the patient.

Clinical decisions regarding the treatment response of Y90-RE rely on imaging assessment

at various stages of the treatment process and is pivotal for patient management. As patients

44
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who are referred for Y90-RE generally have advanced, unresectable, and chemo-refractory liver

malignancies, fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography and computed

tomography (FDG PET/CT) has been widely used in clinical practice for preprocedural workup.

FDG PET/CT can depict tumor metabolic activity of the tumors as well as certain anatomic

features including tumor size and lesion density. European Organization for Research and

Treatment of Cancer (EORTC) (165) criteria and PET Response Criteria in Solid Tumors

(PERCIST) use the change in tumor standardized uptake value (SUV) to determine tumor

response and subsequently analyze patient outcome (166). CT assessments can use size-based

revised Response Evaluation Criteria in Solid Tumors (RECIST 1.1) (167) or tumor necrosis

based Choi criteria (65). Recent reports have shown that FDG PET/CT were useful in predicting

overall survival after Y90-RE in patients with FDG-avid liver metastases (168; 169), or primary

liver cancers (170) especially cholangiocarcinomas (171).

The objective of this study is to create a model that predicts patient treatment response from

the pretherapy FDG PET/CT scan alone. Since FDG uptake has been found to be correlated

with microenviromental tumor characteristics, such as hypoxia, cell proliferation and blood

flow, we hypothesize baseline FDG PET/CT scans contain unique imaging features that are

shared across the patient population (172). Toward this goal, several studies have evaluated the

effectiveness using conventional methods such as the maximum of the baseline SUV (SUVmax)

for analyzing the prediction of therapy response. However, the predictive power in these studies

remains considerably low, thus limiting SUVmax as a prospective predictive tool for patient

treatment options (173; 174).
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In contrast, machine learning and pattern classification techniques trained on imaging features

based on the texture of a tumor have yielded better results in predicting patient response (175).

However, the predictive performance of these features are still limited by the mischarcterization

of lesion heterogeneity and the influence of lesion transformations such as orientation or scale.

For instance, a small tumor may still be a malignant and a tumor may only be a partial responder

due to heterogeneity.. The ideal scenario to compare lesions would be able to use imaging markers

that are dependent only on the lesion morphology as described by the distribution of the voxel

properties within the lesion.

To address the above challenge, we build a model that extracts invariant texture and shape

imaging features from lesions to identify common imaging features. We assume each lesion is

a mixture of these imaging feature and the contribution of a distinct feature can be used to

differentiate between responders and non-responders. A Multinomial Naive Bayes classifier is

utilized to investigate the accuracy of the imaging features. The classifier is trained on the

extracted imaging features of the tumor from pre-therapy FDG PET/CT and we test if the

classifier can predict treatment response of a separate distinct lesion. The framework is general

and can be applied to classify other lesions and the corresponding treatment response. Our results

show that the computerized machine vision predication algorithm based on extracted pretherapy

FDG PET/CT imaging features is able to predict a patient as a responder or non-responder to

Y90-RE with an Area Under the Curve (AUC) of .848 and a sensitivity of 0.791.
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Patient Characteristics Values

Age,years
Median 62.5
Mean 63
Range 30-77

Sex
Male 6
Female 6

Tumor volume, mm3

Mean ± standard deviation 54.9 ± 11.8
Range 30.4-91.5

TABLE I: Characteristics of Eligible Patients for this Study

3.2 Materials and Methods

3.2.1 Patients

This retrospective study has been approved by University of Illinois Hospital and Health

Sciences System Institutional Review Board. A total of 173 Y90-RE procedures were performed

between January 2011 and June 2014 in our institution. Patients who underwent both pre- and

post-therapy FDG PET/CT scans with at least 3 months clinical follow up were included. For

patients who received multiple consecutive Y90-RE therapies, we treated each patient’s follow-up

scan as a pre-therapy scan for the next Y90-RE treatment. There are were a total of 12 patients

(8 with liver metastases from colon cancer and 4 patients with cholangiocarcinoma) with 30

Y90-RE procedures that met our selection criteria (Table Table I). Patients with complete and

partial response are were combined into responders (R) while stable and progression of disease

are were combined into non-responders (NR). On lesion-based analyses (Table Table II), our data
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Tumor Response EORTC (165) and PERCIST (166)
Based PET criteria

Choi criteria (65)
based on tumor necrosis RECIST1.1 (167)-Based Size Criteria

Complete Response (CR) Resolution of metabolic active lesions Complete necrosis Disappearance of all lesions
no new lesions

Partial response (PR) 25% and 0.8U decrease of
SUVmax of the most intense lesions More than 15% decrease in tumor density 30% decrease in sum diameters

of the target lesions

Progression disease (PD) Greater than 25% increase in SUVmax
or more than 20% increase in extent Not applicable 20% increase of sum diameter

of the target lesions

Stable disease (SD)
Increase of less than 25%
or decrease of less than 15% of SUVmax
or no visible increase in extent

Not applicable
<30% decrease,
or <20% increase of sum diameter
or the target lesions

TABLE II: Combined Imaging Criteria for Assessment of Treatment Response.

set was decided determined to have 17 responders and 13 non-responders. Of the 17 responders, 4

cases were from 3 patients with cholangiocarcinoma, and remaining 13 cases were from 8 patients

with metastatic colon cancer. Out of the 13 non-responders, 4 cases were from 3 patients with

cholangiocarcinoma, and the remaining 9 cases were from 7 patients with metastatic colon cancer.

Representative FDG PET/CT cases of responder and non-responder for Y90-RE. are shown in

Figure Figure 6.

3.2.2 Patient Treatment

All patients underwent hepatic arteriography with Tc-99m macroaggregated albumin (MAA)

to detect extrahepatic shunting 7 to 14 days before prior to Y90-RE. To correct for flow into

extrahepatic organs, we used coil embolization of shunting vessels or catheter positioning. All

patients had less than 20% lung shunt fraction, or lung exposure more than 30 Gy in a single

Y90-RE procedure, or more than 50 Gy in multiple Y90- RE sessions that are contraindicated to

Y90-RE.
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Y90-RE procedures were performed according to the published protocols (176). The lobar

branch of the hepatic artery supplying the tumors was used to supply the Y90 resin microspheres

(SIR-Spheres; Sirtex Medical, Lane Cove, Australia). The Y-90 dose was prescribed based on a

published body surface area (BSA) method (160). The tumor and total liver volume ratio was

calculated using CT.

3.2.3 Patient Imaging

The 18F-FDG PET/CT scan examinations werewas performed within 2 weeks before treat-

ment and, at 4 weeks and 3 months after treatment. 18F-FDG PET/CT was performed on a

GE Discovery 690 PET/CT scanner (GE Medical Systems, Milwaukee, WI) using a standard

protocol. Following Miller et al. (177), patients fasted for at least 4 hours before scanning

and had a blood glucose level <200mg/dl at the time of FDG injection. Dedicated PET /CT

scans from the skull base to the upper thighs were obtained 60-90 minutess after IV injection

of 10-13mCi of FDG. with CT parameters of: 120 kV, 120 mAs, pitch 0.813, 16 x x1.5mm

collimation; and. PET parameters: of 3 minutes bed/position. Additionally, FDG PET/CT

examinations were performed within 2 weeks before treatment, at least 30 days after treatment,

and at 3 months intervals subs as recommended by Miller et al. (177).

3.2.4 Clinical Evaluation of Treatment Responses

The FDG PET/CT imaging studies scans were analyzed retrospectively on a dedicated AW

PACS workstation (GE Medical Systems, Milwaukee, WI). Lesion-based treatment response

on FDG PET/CT waswere clinically evaluated according to a combined criteria: (PET- based

EORTC (165) and PERCIST (166) criteria, tumor necrosis based Choi criteria (65) and tumor
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Figure 6: Representative FDG PET/CT cases of responder and nonresponder for Y90-RE.
Patient 1 with liver metastases from colon cancer is a responder to Y90-RE with (a1) Pretherapy
FDG PET/CT (a2) Fusion FDG PET/CT image showing multiple hypermetabolic bilobar liver
metastases (b1) Posttherapy FDG PET/CT MIP CT (b2) Posttherapy FDG PET/CT image
demonstrating resolution of hypermetabolic liver metastases. Patient 2 with liver metastases
from colon cancer is a nonresponder to Y90-RE with (c1) Pretherapy FDG PET MIP image
(c2) Fusion FDG PET/CT image showing multiple hypermetabolic bilobar liver metastases (d1)
Posttherapy FDG PET/CT image demonstrating progression of hypermetabolic liver metastases
(d2) Additional multiple new hypermetabolic intraperitoneal metastases also developed (d1,
arrows).
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Figure 7: (a) Representative 3 FDG PET/CT avid liver metastases with different morphology
in a patient with metastatic colon cancer each marked with a distinct color. (b) The region of
interests (ROIs) of the 3 liver metastatic tumors are extracted using spatial fuzzy clustering and
then used to interpolate into 3D space. (c) The 3D rendering of the lesions.

size based RECIST1.1 (167), (Table Table II), with the consensus among physicians. Lesions

density, size and metabolic lesion volume changes were correlated with the changes in SUVmax

on FDG-PET. In the conflicting cases, the criteria with the best response were used to determine

patient response. For example, SUV change within 25% (stable on PERCIST), but decreases

in size by 30% (partial response on RECIST), or necrosis by 50% (partial response on necrosis

criteria), was considered partial response. We considered a patient as a complete responder

based on a resolution of FDG avidity and/or complete necrosis of treated lesions regardless of

changes in lesion size. Cancer progression was attributed to an occurrence of new lesions in the

treated liver lobe regardless of changes in SUV, necrosis or lesion size.
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3.2.5 Quantitative Analysis

Three-dimensional lesion extraction. For every FDG PET/CT slice, the lesion cross-

section was separated using the Spatial Fuzzy C-Means Clustering algorithm (SFCM) (178; 179).

This technique automatically assigned assigns image voxels to a cluster based on their relative

distance to each other and the correlation between their intensities. The subsequently optimized

clusters based on both spatial and intensity characteristics filters out lesions with partial volume

effect (PVE) or voxels of noise (179). The three-dimensional (3D) representation of an extracted

lesion was then rendered by interpolating image slices along the aligned cross-section directions

using cubic spline interpolation (Figure Figure 7). To improve computational efficiency, lesions

were stored in a 41x41x41 cube as this e were excluded. This semi-automated algorithm

allowed us to analyze much more information than manual contouring, while being effective in

segmenting lesions in PET/CT(21).. Once a lesion was extracted from FDG PET/CT image

slices, we interpolated relative to the total number of slices containing the lesion and created a

3D representation of the lesion (Figure 2). Every lesion was set to a resolution of 41x41x41, as

this cube size was size is able to incorporate all the various lesion sizes (although matrix sizes

were kept the same, larger lesions took much more space of the cube than smaller lesions).

Image feature extraction techniques. As any lesion can be described as a 3D object in

the disease process, we use these 3D computer vision methods to find the common patterns

within the lesions. These methods have found success in comparing natural 3D shapes such as

buildings (180) as well as shape analysis of proteins (181). In the computer-aided FDG PET/CT

image analyses, we used 3D Spherical Gabor filter (3DSG) as the texture feature to find probe
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the spatial interrelationships and arrangement of the basic elements of the tumor (182), 3D

Zernike Descriptor (3DZD) to find extract co-occurring geometric patterns (181), and Wave

Kernel Signature (WKS) for the shape features (183). Details on each algorithm are described

as follows.

A 3DSG filter is the product of a 3D Gaussian and a complex exponential function representing

a sinusoidal plane. We created multiple filters by changing the shape σ, rotation (θ, φ), and

central frequency (F ) of the Gaussian. A representation pf 3D lesion was obtained by convolving

the original 3D lesion, I(x,y,z) with each filter. As a result of the convolution, each representation

describes how many voxels does a cycle of periodically repeating intensity variations occurs in

the 3D lesion. The parameters used for creating the filters were based on obtaining a set of

Gabor filters that could acquire the largest variation within the voxels which were determined to

be .125 cycle/voxel for the highest frequency and .03125 cycle/voxel for the lowest frequency.

Given these criteria, the following parameters that achieve the best performance are:

F = π2
i+2
2 , θ = kπ/8, φ = jπ/8]

Where i = 2, 3, 4, 5, 6, j = 0, ..7, and k = 0, . . . , 7. In addition we set the shape of the envelope

by setting σ = 1
F . The resulting filter bank contained 320 3D Gabor kernels (5x8x8) of size

41x41x41 that were convolved with the original 3D image of the lesion, I(x,y,z). To obtain

rotation and scale invariant features we calculated the 3D Discrete Fourier Transform (DFT) of

the mean and standard deviations of the convolved images as the magnitude of the DFT has
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been shown to be shift-invariant. Each lesion was then represented with a feature vector of size

1x640.

Wave Kernel Signature (WKS). The WKS feature descriptor provides robust analysis

to non-isometric perturbations of the surface (183). This is imperative in our work as tumors

have no predefined shape and are anisotropic (grow in many directions). Furthermore, the

key advantage of WKS is that it is able to differentiate between the small structures between

shapes that also appear often within lesions. The main goal is to find correspondences between

similarly shaped lesions that also have the same treatment response. Specifically, each signature

describes a unique property of the lesion. We adopted parameters that are found the original

implementation of the WKS to generate 100 signatures, resulting in a feature vector dimension

1x100.

3-Dimensional Zernike Descriptor (3DZD). The advantage of 3DZD is its ability to

describe non-spherical like shapes, a property that also describes tumor shapes (181). The 3DZD

was achieved by first converting the original image Cartesian coordinates, I(x, y, z), into a set of

spherical coordinates I(r, θ, φ), and then evaluating the Zernike Polynomial at that point with

parameters n,m, and, l. We use the reported optimal parameters (184) of n, m, and l as 20, 14,

and -14 respectively, with a resulting feature vector size of 1x122.

Spatially Sensitive Bag of Features (SSBoF) and Visual Words. Given the large

size of the feature vectors in comparison to the size of our dataset and the lack of interpretability

of the features, we used SSBoF to summarize the features into meaningful information. The

SSBof aggregates the shape features by clustering a pair of features such each cluster encodes
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the spatial distance between two shape features. We can intuit this as a shape feature for a

box should be much closer in space to a rectangle than a circle. Each cluster is referred to as a

"visual word" and frequency pattern of how often a visual word occurs represents a 3D lesion

(185). Therefore each 3D lesion is represented by a histogram, where each bin signifies a visual

word and the counts indicate how often a specific visual word occurs in the 3D lesion.

We created a SSBoF vector for each of the original feature descriptors (3DSG, WKS, and

3DZD) by finding the the optimal number of number of visual words (codebook) that represent

a 3D lesion and provide the best predictive performance. We also created a SSBoF vector that

combines all the original feature descriptors to determine if performance can be improved. To

remove any potential bias caused by our assumption that a patient’s follow-up FDG PET/CT

scan can act as a pretherapy scan for subsequent Y90-RE treatment, we added a visual word to

all histograms denoting if a patient had received a previously received 90-RE therapy.

3.2.6 Predictive Performance and Statistical Analyses

We used a Multinomial Naïve Bayes (MNB) classifier to predict if patients are responders or

non-responders (186). The MNB classifier is an extension of the Naive Bayes (NB) classifier that

uses a multinomial distribution for each of the features to remove the conditional Independence

assumption used in a NB classifier. A multinomial distribution is more appealing in our model

since our feature vector is a count of the visual words that described each lesion. Our training

set was 22 FDG PET/CT scans, with 13 responder cases and 9 non-responder cases; our test set

size was 8 with 4 responder cases and 4 non-responder cases. In order to overcome the small size

dataset size, we used bagging to create multiple training sets by sampling the training set with
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Features Recall Precision

SUVmax (S) 0.485 0.760
Tumor Volume (V) 0.583 .631
3D Gray Level CoCurrence Matrix (C) 0.53 0.77
3D Spherical Gabor (G) 0.716 0.795
WKS (W) 0.763 0.833
3D Zernike Descriptor (Z) 0.611 0.811

TABLE III: Recall and Precision of the different feature groups.

replacement (187). A MNB classifier was then trained on each new training set and we predicted

a patient as a responder or non-responder based on averaging the output class probabilities

computed by each MNB.

Performance of the classifier was evaluated using a precision/recall characteristic. Precision,

or positive predictive value, is the number of correct predicted responders (true positives)

divided by the total number of predicted responders (sum of true and false positives). Recall, or

sensitivity, is the number of correct predicted responders (true positives) divided by the total

number of clinical defined responders (sum of true positives and false negatives). We also used

the Kruskal-Wallis test to assess if there was a significant difference in the performance of the

classifier when using different feature descriptors, and the Dunn test to compare between the

responder and non-responder groups.

3.3 Results

The experiments were geared towards decreasing unnecessary procedures and patient risk, so

we chose parameters that would minimize the number of false responders, i.e., false positive rate
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Fused Features Recall Precision

G + W + Z 0.791 0.839
G+ W + Z + S 0.758 0.763
G + W + Z + C 0.683 0.717
G + W + Z + V 0.821 0.844

TABLE IV: Various fused feature groups and the resulting Precision and Recall.

(FPR). Given this condition, we found the optimal size of our codebook being to be 17, 8, and 11

for 3DSG, WKS, and 3DZD respectively (p < .05). The precision and recall results were are listed

in Table Table III. The WKS feature descriptor provided the best recall (0.763) and precision

(0.833) in comparison to 3DZD (p < .05), and marginal improvement in comparison to 3DSG.

The receiver operating characteristic (ROC) curve, show similar predictive performance between

WKS, 3DSG, and 3DZD in Figure Figure 8. Therefore measuring the spatial distributions of

voxels in terms of frequency and shape allows us predict patient treatment response.

To test whether the new imaging features enrich lesion analysis, we compared our imaging

features with SUVmax, 3D Gray Level Co-occurrence Matrix (3DGLCM), and tumor volume.

Both SUVmax and 3DGLCM ROC Figure Figure 8 is similar to previous research (175; 188).

Furthermore Table Table III, shows tumor volume or SUVmax as a sole predictors resulted a

recall of 0.485 and 0.583, and a precision of 0.76 and 0.631 respectively, significantly lower than

(p < .05) those of 3DZD, 3DSG and WKS. Similarly, features from the 3DGLCM had a recall

of 0.53 and a precision of 0.77, indicating that the contrast between voxel intensity does not

accuractely capture lesion heterogenity.
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Figure 8: ROC Plot of the distinct features: SUVmax, 3DZD, WKS, 3DGLCM, and 3DSG, as
well as the best before fused features of 3DSG, WKS, 3DZD, and volume.

We hypothesized combinations of the various features would improve the results. Using the

same conditions as before we obtained an optimum codebook size of 14 when combining When

combing 3DZD, 3DSG, and WKS as one feature descriptor (G+W+Z). The resulting descriptor

is also concatenated with SUVmax, 3DGLCM, and tumor volume (TableTable IV). We omitted

the models with different combination features that did not show additional performance gains.

With the addition of tumor volume as a feature (G+W+Z+V), there was a significant

increase (p < .05) in recall (0.821) comparing with that of G+W+Z (recall 0.791). Adding the

3DGLCM or SUVmax as a feature did not offer more insight into patient response and decreased

predictive power. The difference between the various combinations of features illustrates the
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value of volume as a distinct global feature to improve the performance. The analysis of the

visual words can provide important information regarding the most distinctive features that are

shared among different the non-respond and responder patient groups.

We analyzed the visual words of the 3DSG, 3DZD, and WKS to determine which visual word

is shared among the different patient groups (Figures Figure 9,Figure 10). The average visual

words histograms for responders and non-responders were computed using the corresponding

histograms obtained from the model. We then assessed the visual word that is distinctive among

the two patient groups. We found that the 10th bin for 3DSG, 5th bin for 3DZD, and 2nd and 7th

bin for WKS were the most pronounced in responders (p < 0.05). In the case of non-responders,

the 4th bin for 3DSG, 3rd bin for 3DZD, and 1st and 8th bin for WKS were found to be most

pronounced (p < 0.05). These results suggest that there are common imaging patterns that

differentiate the responder and non-responder patient groups.

3.4 Discussion

To have the ability to predict the outcome of a treatment based on pretherapy FDG PET/CT

may avoid unnecessary patient risks and expensive, invasive procedures, along with the potential

to provide precision treatments. Our study focuses on using pretherapy FDG PET/CT data to

establish a Y90-RE treatment response prediction model. Imaging analysis of a patient’s lesion

characteristics is important for tumor response evaluation after therapy. Exploration of commonly

used image features such as lesion size, tissue density, and lesion SUVmax on FDG PET/CT in

predicting tumor response have found them to be limiting. Meanwhile, computer-aided imaging

analyses in evaluation of tumor response have been showing promising results. Tixier et al.
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Figure 9: Average visual words for responders (top) and nonresponders (bottom): 10th bin for
3D spherical Gabor filter (3DSG), 5th bin for 3D Zernike descriptor (3DZD), and 2nd and 7th
bin for wave kernel signature (WKS) were the most pronounced in responders, whereas the 4th
bin for 3DSG, 3rd bin for 3DZD, and 1st and 8th bin for WKS were found to be most pronounced
for nonresponders. These visual words can be used to determine patients who are more likely to
respond to treatment.
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Figure 10: The most common visual words (left column) for the corresponding largest tumor
lesions (right column) in the representative responder (upper row) and nonresponder (lower row).
In the case of 3D spherical Gabor filter, the high occurrence of the 10th bin indicates a likely
patient response, as shown in responder 2 (upper row); the high occurrence of the fourth bin
describes a tumor that will not respond, as shown in nonresponder 3 (lower row).
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(188) used local homogeneity as a texture feature to identify patients who would respond to

chemoradiotherapy with an Area Under the Curve (AUC) of .7 in comparison to SUV, which

that had an AUC of .59. Similarly, Tan et al. (175) showed a tumor with a greater score in

homogeneity is more likely to respond to therapy.

The preliminary success of using textures features in tumor imaging analyses indicates there

is a large amount of information in a radiological image that is not discernaible by conventional

tools. We demonstrate that a predictive algorithm based on 3D imaging features extracted from

pre-therapy FDG-PET/CT scans is able to predict patients as responders or non-responders of

Y90-RE. We also showed that SUVmax as an imaging feature has little predictive power. Upon

further analyses of individual image features (Table Table III), the commonly used clinical image

features, SUVmax and tumor volume, were associated with the lowest predication recall and

precision. This is probably due to the fact these are global features and do not fully capture the

distribution of voxels within a lesion. Specifically these features do not reflect the heterogeneity

within a lesion (180). Moreover, we found texture features derived from 3DGLCM also had low

prediction power because it is reliant on voxel intensity and is unable to detect subtle differences

between tumors. The WKS feature descriptor in particular provided the highest recall and

precision (p < .05) in predicting a patient’s response to Y90-RE as it describes the irregular

shape of tumors. This finding is consistent with Waclaw et al. (189) that a distribution the

shape of a tumor effect it’s response to a treatment.

When combining different feature descriptor groups, we found that the best group of features

in improving optimal precision and recall is the combination of the 3D invariant features (3DSG,
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3DZD and WKS) and tumor volume (p < .05). As each feature adds a unique element to the

classifier, it is understandable that the performance of the feature group is superior to individual

features alone. Of particular interest is the feature of tumor volume. When used alone in the

predication model, tumor volume had a low predicative power. However, in combination with

the invariant imaging features, the performance increased significantly. This is probably likely

due to the factor invariant images ignore scale when finding patterns among lesions, yet the

volume of a tumor is still a critical factor in determining the prognosis of a patient. Therefore,

an improved model should modify the imaging features so they are not invariant to volume.

We envision that, insofar as tumor heterogeneity is concerned, there is certain tumor homo-

geneity, or common features, that are related with underlying gene profiling within the tumor

and tumor microenviroment. Beyond the potential to stratify patients further with respect

to imaging features, as we observ in Figures Figure 9 and Figure 10, unique visual words are

associated with patient response to Y90-RE. Therefore, it is possible to select patients that

have the potential to respond to response to Y90-RE based on their pretherapy FDG PET/CT

imaging features.

A major limitation of this study is the small number of cases. A although, we attempted

to overcome the limitation of a small dataset by using a bootstrapped model, a larger dataset

would surely will sure provide us with a more robust learning schema as itand could improve

performance. Upon validating our model further on a larger dataset, we hope to provide a

disease- and treatment-specific prediction model based on pretherapy FDG PET/CT image

features.
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3.5 Conclusion

In summary, we developed a model that predicts Y90-RE therapy response in patients with

primary and secondary liver cancers, based on lesion’s invariant texture and shape imaging

features extracted from pretherapy FDG PET/CT scans. Our approach utilized utilizes computer

vision techniques of 3D Spherical Gabor, Wave Kernel Signature, and 3D Zernike Descriptors

to find regions of tumors that were similar locally even if they have global differences such as

volume. By using a Spatially Sensitive Bag of Features to describe imaging features as visual

words, we were able to find unique image features that were common within responders and

non-responders. We showed the benefit of using the invariant techniques that were resistant to

change in scale, transform, and rotation in assessing Y90-RE treatment response in comparison

to routine clinical used image features such as SUVmax and tumor volume. The model improved

improves when combining our image features with tumor volume, indicating imaging features

invariant to scale are not necessary when describing lesions. While our model will need further

validation on a large dataset, the proposed method is general and can be potentially applied to

any lesion from a different disease model.



CHAPTER 4

DISCRIMINATION OF MALIGNANT AND BENIGN BREAST LESIONS

USING MACHINE LEARNING ON MULTI-MODAL DIFFUSION MRI

PARAMETERS

4.1 Motivation

Breast cancer is the second cause of female cancer death in the US1. An accurate charac-

terization of breast lesions is important for efficient risk assessment and optimized treatment

planning. Magnetic resonance imaging (MRI) techniques have been used to evaluate suspicious

breast lesions due their increased sensitivity over ultrasound and mammography2. Dynamic

contrast-enhanced MRI (DCE-MRI), for example, is the primary MRI technique used for breast

cancer diagnosis (190; 191; 192). Although the reported sensitivity of DCE-MRI is as high as 94%-

100%6, its specificity has been found to be varying from 37% to 97%6–10. This variable specificity

is a major limitation of DCE-MRI as a false positive diagnosis results in unnecessary biopsies.

Moreover, the use of exogenous contrast in DCE-MRI is potentially problematic in patients with

compromised kidney functions, cardiac failure, respiratory disorders, or pregnancy11.

With its sensitivity to probe underlying tissue microstructure, the use of diffusion weighted

magnetic resonance imaging (DWI) has increased for characterizing breast lesions (193; 194; 195)

using the apparent diffusion coefficient (ADC). Numerous studies have reported lower ADC

values in malignant breast lesions due to increased cellularity compared to the benign lesions

65
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(194; 196). For differentiation between malignant and benign breast lesions, ADC has been shown

to achieve a sensitivity of 85–95%7–10,16 and a specificity ranging from 50% to 90%7–10,16. To

improve diagnostic performance, clinicians have used DWI with ADC as an adjunct technique to

the DCE-MRI (197). While the conjunction of the two MRI techniques has improved breast

lesion characterization, the ADC has not been fully established as an imaging marker for breast

lesion characterization18. This is partly because the mono-exponential model, from which ADC

is derived, assumes that the diffusion displacements in a homogeneous medium follow a Gaussian

distribution. This assumption, however, does not accurately represent the complex phenotypic

and functionally distinct cell populations observed in breast tissue. Specifically, the complexity

of breast tissue is further pronounced in lesions, benign or malignant, due to hypercellularity,

angiogenesis, and other factors (198). As such, a simple ADC, which has been associated with

tissue cellularity (199), cannot adequately reflect the complex water diffusion process in biological

tissues (200).

While cellularity is an important measure for tissue characterization, breast tissue has many

other properties, such as vascularity and heterogeneity. Recent studies have indicated that

these properties can be probed by utilizing a specific portion of the b-value “spectrum” in DWI

(200). For example, by utilizing relatively lower b-values ( 0-200; and 800 s/mm2), intravoxel

incoherent motion (IVIM) model can reveal tissue cellularity and micro-vascularity through

diffusion coefficient (Ddiff), pseudo-diffusion coefficient (Dperf), and perfusion fraction (f) (see

Chapter 2) (199). Researchers have reported the IVIM model to produce potential imaging

markers that provide information on the functional properties of breast cancers without a contrast
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agent (201; 202; 203; 201; 204; 205; 206; 207). Recent studies have also shown the feasibility and

the added value of IVIM parameters with conventional ADC for differentiation between benign

and malignant breast lesions (208; 209). Other studies have recently proposed a high b-value

(> 3000 s/mm2) non-Gaussian model, continuous-time random-walk (CTRW) model (210; 211)

that recognizes the intra-voxel diffusion heterogeneity in time and space (212; 213; 214). The

CTRW model introduces two new parameters related to temporal (α) and spatial (β) intravoxel

tissue heterogeneity and an anomalous diffusion coefficient, Dm. Prior research has shown that

the CTRW model or its predecessor fractional order calculus model (212; 213) is sensitive to

tissue microstructural changes in the diseases of brain such as adult (215) and pediatric brain

tumors (210; 216) and of body such as gastrointestinal stromal tumor (217). Within breast

imaging, however, only a few studies have used a high-b-value DWI model (218; 219). Moreover,

the use of a full b-value spectrum to probe a variety of tissue properties such as cellularity,

vascularity, and heterogeneity, has not been explored for breast tissue characterization.

Irrespective of the model used to fit the diffusion signal, the most common approach for

lesion characterization is to calculate the mean or median values of the estimated parameters

using a region-of-interest (ROI)-based analysis. These values are then used in conjunction

with a statistical model such as logistic regression, to determine whether a lesion is benign

or malignant (220; 221). While simple, this approach artificially homogenizes the voxel-level

functional information revealed from heterogenous tumor tissue (222). The shortcomings of

using only median or mean values have led to recent diffusion MRI studies that use machine

learning (113; 223) and quantitative features (224) obtained from the ADC or IVIM model
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parameter maps to determine molecular subtype (113) or breast lesion malignancy (201; 225).

These studies have shown that a histogram analysis can provide additional information by parsing

the statistical distribution of the DWI parameters. The quantitative features obtained from the

parameters can ameliorate the characterization of the specific tissue properties (i.e. vascularity,

heterogeneity, and/or cellularity), probed by the IVIM and CTRW models. The challenge is to

distinguish which of the extracted quantitative features offer the best discriminative performance.

In this study, we investigate the histogram-based quantitative markers obtained from the

parameters of a low-b-value IVIM model and a high-b-value CTRW model for differentiating

malignant and benign breast lesions using a machine learning paradigm. We identify the benefits

of using a multi-parametric approach for breast lesion characterization by determining the top

quantitative features using area-under the curve (AUC), F1-score, and accuracy obtained from a

variety of machine learning models such as decision trees (DT), support vector machine (SVM),

and gradient boosted (GB) classifiers. We demonstrate that a combined set of parameters from

the IVIM and CTRW models translate to a robust predictive performance for discrimination

between benign and malignant breast lesions.

4.2 Material and Methods

4.2.1 Patient Characteristics

The institutional review board approved this retrospective study, and written informed

consent was obtained from all participating patients. Between May 2017 and March 2018, 31

patients (age range: 27 to 86) with a total of 40 pathologically verified breast lesions were enrolled.

The inclusion criteria were as follows: (1) aged 18 years or older, (2) no previous neoadjuvant
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chemotherapy or radiotherapy, and (3) ACR BI-RADS 4 or 5 (suspiciously malignant or highly

suggestive of malignancy) and ACR BI-RADS 2 or 3 (benign or probably benign) lesions detected

on breast MRI validated with a tissue biopsy.

4.2.2 Diffusion-weighted Image Acquisition

MRI was performed on a 3T scanner (GE Healthcare, Discovery MR750) with an 8-channel

breast coil (Invivo Corp., Gainesville, FL) DWI with 11 b-values of 01, 501, 1001, 3002, 5002,

8002, 11004, 15004, 20006, 25006, and 30008 s/mm2 (subscripts denoting the number of averages)

was carried out using a single-shot spin-echo echo planar imaging (EPI) sequence. Other image

acquisition parameters were as follows: TR/TE = 7000/78 ms, slice thickness = 5 mm, FOV =

32 cm x 32 cm, and image matrix size = 256 x 256. Following Karaman et al. (83) trace-weighted

images are generated by applying the Stejskal-Tanner diffusion gradient along the x, y, and z

direction at each non-zero b-value to minimize the effect of diffusion anisotropy.

4.2.3 Diffusion-weighted Image Analysis

We first analyzed the multi-b-value diffusion-weighted (DW) images with the CTRW model

using the following diffusion-attenuated MR signal:

S

S0
= Eα(−(bDm)β) (4.1)

, where Dm (in mm2/ms) is an anomalous diffusion coefficient, the parameters α and β (unitless)

relate to temporal and spatial diffusion heterogeneities, respectively, and Eα is a Mittag-Leffler
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function (210). We also analyzed the DW images using the IVIM model which has the following

diffusion-attenuated MR signal (226):

S

S0
= fe((−b(Ddiff+Dperf ))) + (1− f)e(−bDdiff ) (4.2)

where f is the perfusion fraction, Ddiff is diffusion coefficient in mm2/s, and Dperf is the pseudo-

diffusion coefficient. The CTRW model parameters, Dm, α, and β, and the IVIM model

parameters, f, Ddiff, and Dperf, were estimated by fitting Equations Equation 4.1 and Equation 4.2

respectively. Each fit used a nonlinear least-squares estimation with an iterative Levenberg-

Marquardt method in Matlab (MathWorks, Inc., Natick, MA) on a voxel-by-voxel basis, where

thereafter a noise filtering and Rician noise correction was performed (212; 227). The nonlinear

fitting proceeded with two major steps for the CTRW model fitting: (a) estimating Dm by

a mono-exponential model using low b-values (b ≤ 1100 s/mm2) diffusion images and (b)

simultaneously estimating α and β from all images (b-values = 0–3000 s/mm2) after fixing each

voxel’s Dm at its estimated value (83). For the IVIM model fitting, a “segmented” approach

was employed in three steps (228): (a) estimating Ddiff by a mono-exponential model using

the diffusion images at mid-range b-values (200-800 s/mm2) with the assumption that the

pseudo-diffusion is negligible in this regime, (b) extrapolating the mono-exponential fit to b=0

to estimate f, and (c) constraining Ddiff and f in the bi-exponential fit for Equation Equation 4.2

to obtain Dperf.



71

Figure 11: Workflow of our model from left to right with corresponding parameter maps and
histograms from starting from Dm to f, bottom to top.



72

4.3 Data Analysis

Our full model pipeline is shown in Figure Figure 11.

4.3.1 Pre-Processing

A single slice region of interest (ROIs) were manually drawn by a radiologist including only

the solid region of the tumor. The ROIs were then extracted from the individual maps of the

CTRW parameters, Dm, α, and β; IVIM parameters, f, Ddiff, and Dperf; and max-min normalized

into a range of [0, 1] as seen in Figure 2. The parameter ROIs were then randomly cropped,

flipped, and rotated to prevent overfitting55 and increase the effective size of the dataset from

40 samples to 120 samples.

4.3.2 Feature Extraction

A histogram of the voxel values within the ROI was generated for each diffusion parameter,

Dm, α, β, Ddiff, Dperf, and f to calculate histogram features. These features included: kurtosis,

skewness, variance, mean, median, interquartile, 10% quantile, 25% quantile, and 75% quantile

values of the histogram. Since there are nine features for each of the six parameters, we have a

total of 54 quantitative features for the machine-learning analysis.

A key parameter in generating the histograms is setting the number of the bins or the bin

width. We investigated the impact of the bin width on the predictive performance of breast

lesion differentiation by using various number of bins: 40, 60, 80, 100, and 120. Various machine-

learning classifiers, as explained in more detail in Statistical Analysis section, were then trained

by using the distinct set of features generated by a histogram with a specific number of bins.
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For each classifier, the optimal number of bins was chosen by determining which bin size yielded

the best predictive performance.

4.3.3 Feature Selection

A recursive feature selection was performed by using the Boruta algorithm (229) combined

with a modified two-stage multiple testing methodology process. At every iteration, feature

importance was determined for all features with respective to the class classification (benign

or malignant). The Benjamin Hochberg FDR test was used to test whether a feature performs

better than expected by random. This was followed by a Bonferroni correction to account for

multiple iterations of using the same set of features.

4.3.4 Statistical Analysis

The ability of the top features to predict a lesion as benign or malignant was compared using

Kernel Methods, Ensemble Methods, and Naive Bayes. Kernel methods included SVM (230) and

Gaussian Processes (GP) (231). Ensemble methods included techniques that make predictions

based on either bagging (i.e. training individual parallel smaller models such that each model is

trained on a subset of the data) such as DT (232) and Random Forest (233) (RF); or boosting

(i.e. training sequential individual models such that the next model minimizes the prediction loss

from the previous model) such as GB (234) or adaBoost (235) (AB). The respective parameters

of each classifier are given in our code .

We split our training set and an independent test set to a ratio of 80/20, respectively.

Additionally, we constricted the test set to not include any augmented samples so that the

classifier only tests on unseen samples. The classifier parameters are fine-tuned using grid search
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with a stratified cross-validation of 10 repeated 5-folds such that it splits the training set into

five folds ten times to minimize variance and bias (236). To account for a slightly imbalanced

dataset, we under-sampled the majority class during each grid search so that every fold contains

an equal representation of each class.

Optimization of parameters including histogram bin width was performed by maximizing the

ROC curves during the cross-validation stage. To compare models in the testing stage we used

AUC, F1-Score, and accuracy metrics65 with 10000 bootstrapped samples to confidence intervals.

A comparison of quantitative features was done using a Mann-Whitney U-test to generate a

p-value.

4.4 Results

4.4.1 Diffusion Parameter Maps

Figures Figure 12a-Figure 12c show the maps of CTRW model parameters Dm, α, and β

while Figures Figure 12d-Figure 12f show the maps of IVIM model parameters Ddiff, Dperf,

and f from one representative malignant (left column) and benign patient (right column). The

malignant lesion exhibited lower values in all parameters. The difference was more prominent in

the CTRW parameters Dm and α and IVIM parameters Ddiff and f. The malignant lesion also

showed increased variance of the parameters within the ROI in comparison to benign lesion.

4.4.2 Comparison of Features

The assessment of the top 18 features with 95% confidence intervals of their relative importance

are shown in Figure 3a. Of those features we examined, the top 8 features that carry the most

weight in classification were determined as the median of β (βmedian), skewness of β (βskewness),
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a)

b)

c)

d)

e)

f)

Benign Malignant

Figure 12: Diffusion parameter maps from a benign patient (left column) and malignant patient
(right column). The CTRW parameter maps are given in a) Dm, b) α, and c) β; IVIM parameter
maps are in d) Ddiif, e) Dperf, and f) f.
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mean of β (βmean), third quartile of f (fQ3) , third quartile of Ddiff (DQ3
diff ), kurtosis of Dperf

(Dkurtosis
perf ), third quartile of Dm (DQ3

pm), and median of Dm (Dmedian
m ). The boxplots and the

descriptive statistics (mean and standard deviations) of these top features for both the benign

and malignant groups are given in Figure Figure 13b. These top features were found to be

statistically significantly different between the malignant and benign lesions (p-value< .01) with

respect to the Mann-Whitney-U test. In addition, although (βmean and (βkurtosis are relatively

the same in terms of feature importance (Figure Figure 13a), we found classifier performance

increased with (βmean and decreased with (βkurtosis.

4.4.3 Number of Histogram Bins Comparison

Figures Figure 14a-h show the ROC curves generated by using a various number of histogram

bins for linear SVM, radial basis function (RBF) SVM, GP, DT, RF, AB, GB, and NB classifiers,

respectively. Varying the number of histogram bins yielded no significant impact on predictive

performance, besides the GP classifier as seen in Figure Figure 14c. For the remaining classifiers,

we determined the optimal number of histogram bins as the one that minimizes the variance

within the ROC curves, which was found to be 80 for all classifiers with a p-value < .05 with

respect to the Mann-Whitney-U test. In the case of the GP classifier, features are extracted

from a histogram that uses 40 bins.

4.4.4 Comparison of Classifier Performance

A comparison of the machine learning classifiers: linear SVM, RBF SVM, GP, DT, RF,

AdaBoost, and NB, and GB, in the cross-validation stage is shown in Figures 5 and 6a-6c. The

comparison between the ROC curves given in Figure Figure 15 shows that the GB classifier
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a)
b)

Figure 13: a) Feature importance plot of the top 18 features by feature rank with their respective
confidence intervals. b) Paired box plots of the malignant and benign groups and the top 8
features selected from the feature importance paradigm.
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Figure 14: Comparison of histogram bin widths across the ROC of all classifiers: a) Linear
SVM, b) RBG SVM, c) Gaussian Process, d) Decision Tree, e) Random Forest, f) AdaBoost, g)
Gradient Boosted, and h) Naïve Bayes.
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Figure 15: The ROC curves of the classifiers for differentiation between the benign and malignant
breast lesions in the cross-validation stage. The curves were generated by using the optimal
number of histogram bins for each classifier. The colored area denotes the standard error.

performs better than the other classifiers as it converges faster towards an optimal tradeoff

between the true positive ratio (TPR) and the false positive ratio (FPR). The swarm plots given

in Figures Figure 16a-c describe the performance metrics of all the classifiers. The GB and

RF classifiers provided the most robust performance for at a p-value < .05 with respect to the

Mann-Whitney-U test across all the metrics.

Similar results were observed in the performance metrics of the classifiers obtained during

the testing stage. The box plots of AUC, accuracy, and F1 score of all classifiers are given in

Figures Figure 17a-c. The GB classifier provided the best performance with the highest mean
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a) b) c)

Figure 16: The swarm plots of AUC (a), accuracy (b), and F1 Score (c) metrics of each classifier
during the cross-validation stage.

AUC of 0.942 (p-value< .05) with a 95% confidence interval of [0.904, 0.981]. Additionally, the

GB classifier produced a mean accuracy of 0.833 with a 95% confidence interval of [0.8, 0.9] and

a mean F1 score of 0.872 with a 95% confidence interval of [0.824, 0.967].

4.5 Discussion

We have shown that a combination of quantitative features from the parameters of the CTRW

and IVIM diffusion models obtained from a full b-value spectrum can accurately discriminate

malignant and benign breast lesions with a machine-learning-based approach. Specifically, we

have demonstrated that a combination of the model parameters aid in the discrimination of breast
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a) b) c)

Figure 17: The box plots AUC (a), accuracy (b), and F1 Score (c) metrics of each classifier
during the testing stage.
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lesions with their sensitivity to probe a specific tissue property such as vascularity, heterogeneity,

or cellularity. Altogether, a multi-modal DWI approach highlights the importance of capturing

the distinct statistical distributions of the voxels in the parameter maps.

To use the CTRW and IVIM parameters for classification, we relied on quantitative features

generated from statistical histograms, since traditional quantitative features are not applicable

as the voxel values are analogous to multivariate continuous distributions rather than voxel

intensity66. In total, we extracted nine reproducible quantitative features generated for each of

the six parameter maps. Our analysis showed that there is a relationship between the quantitative

features β (βmedian), skewness of β (βskewness), mean of β (βmean), third quartile of f (fQ3)

, third quartile of Ddiff (DQ3
diff ), kurtosis of Dperf (Dkurtosis

perf ), third quartile of Dm (DQ3
pm), and

median of Dm (Dmedian
m ) and lesion histology such that the model can differentiate between

benign and malignant lesions. We showed that the combination of quantitative features with a GB

classifier provides a robust classification performance of lesion malignancy with a mean accuracy

of 0.833. As lesion heterogeneity greatly influences patient diagnosis (237), a comprehensive

analysis of multi-parametric information provided by the IVIM and CTRW models offers a

unique perspective to the characterization of underlying breast tissue as well as a powerful

framework for discrimination of lesion malignancy.

The most important quantitative feature for differentiating malignant and benign lesions in

our study was the third quartile value of the CTRW model’s diffusion coefficient parameter, Dm,

which was found to be lower in malignant lesions than the benign ones. This outcome is consistent

with previous studies(237; 194) which showed that malignant breast lesions exhibit lower ADC
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values due to the decreased water diffusion. Our study, however, differs from earlier studies in

its model assumption, use of higher b-values, and evaluation of multiple features obtained from

diffusion coefficient for discriminating benign and malignant lesions. Our results showed that

the third quartile of Dm, which may have a higher sensitivity to detect focal regions of higher

cellularity, overperformed the mean Dm, that was not among the top performer features. The

other two CTRW model parameters, α and β, on the other hand, have not been investigated in

breast before. Mean, median, and skewness of the spatial heterogeneity parameter, β, have been

found to be sensitive to changes in malignant breast lesions. β’s sensitivity to intra-voxel tissue

heterogeneity, which is known to increase in malignant tissue, has been reported in previous

studies using CTRW and its predecessor fractional order calculus model (210; 115). Although

quantitative features from β were among the top performers, the exact biophysical underpinning

for the favorable performance of β is unknown; and should be investigated in future studies.

Our analysis of the IVIM model showed that kurtosis of the pseudo-diffusion coefficient,

Dperf, the third quartile of the perfusion fraction, f, and the third quartile of diffusion coefficient,

Ddiff were among the top performing features to discriminate benign and malignant lesions. The

features from f and Ddiff were significantly higher in benign lesions (p-value < .05), whereas

features from Dperf was significantly higher in malignant lesions (p-value < .10). Similar studies

have reported the use of features from f and Ddiff to discriminate breast lesions (115). Unlike

our results, these studies showed features generated from f were higher in malignant cases. Our

results are the reverse, and this is attributed to the max-min normalization process in our model.

Specifically, the area of the malignant lesions in our dataset is significantly larger (p-value < .01)
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and f map parameter values in the malignant lesions are concentrated to have lower values (i.e.

high skewness). Therefore, the max-min normalization further increases the influences of the

lower values in the f parameter maps in the malignant cases. Before normalization, the values in

the f parameter maps in our study were consistent with established literature (113; 115). The

underlying biological implications from the IVIM parameter maps indicate that only certain

areas of a lesion are malignant, and as a result have higher vascularity. The different regions of a

lesion having different properties recapitulates cancer causes lesion heterogeneity. Moreover, this

posits that size of a lesion is a significant confounder that influences the distribution of values

within the parameter maps.

It is worth noting that no feature alone performed better than random when using the GB

classifier (or any other classifier), which indicates that a combination of quantitative features

provides a superior characterization of a lesion. This is consistent with previous studies which

showed improved model performance with a combination of quantitative features from DWI

model parameters (113; 114; 115) in comparison to a single feature. Further research to examine

the distribution at the individual voxel level as distinct features themselves could elucidate even

more the nuance differences between the parameter maps and lesions. Hence, analysis of diffusion

parameter maps offers the potential to represent breast lesions from another prescriptive and

further subtype patients, which can be of an interest in precision medicine.

With computational power easily accessible, we used multiple machine learning algorithms

with the extracted quantitative features. Vidic et. al (113) used a RBF SVM classifier with

a combination of four features from IVIM model and ADC to classify breast lesions with an
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accuracy 0.96. The RBF SVM classifier using our quantitative features from the IVIM and CTRW

models performed poorly with a mean accuracy of only 0.563. The training set accuracy, however,

was higher with a mean of 0.734, indicating that the SVM classifier is prone to overfitting with

these quantitative features. The difference in our results and Vidic et. al (113) is suspected to be

caused by batch effects due to acquisition and fitting strategies. Our results showed that the GB

and RF classifiers are the most robust in classification performance as they provide the highest

metrics for F1-score and AUC. Moreover, neither of the classifiers underfit or overfit as the error

in the independent test set is similar to the error in the cross-validation set.

We must acknowledge the following study limitations. First, this study was a retrospective

analysis of patients at a single institution with a small dataset. We circumvented this issue in this

study by augmentation of our dataset through random transformations; and removed the chance

of overfitting. Using a larger population would increase the statistical power of quantitative

features as imaging biomarkers. Although our quantitative features are reproducible, we are

uncertain if the GB classifier can account for variations in machines and imaging. This problem

again can be solved by correcting for batch effects as well as acquisition and fitting protocols

being pushed towards a more standardized process (115). Finally, our study only evaluated

lesion features from a single representative slice. Although the CTRW model probes intra-voxel

tissue heterogeneity, single-slice analysis may miss important features because of intra-lesion

heterogeneity. A comparison of the CTRW model parameters between a volumetric lesion and

a slice would validate the ability of the parameters to probe lesion heterogeneity. Similarly,
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a histogram analysis of the lesion volume for all model parameters may potentially improve

discrimination between malignant and benign lesions.

4.6 Conclusion

In conclusion, we showed that IVIM and CTRW model parameters can characterize the

underlying tissue in a lesion. Specifically, our approach showed that the quantitative features

obtained through modeling the IVIM and CTRW model parameters as histogram distributions

can differentiate malignant and benign lesions. This showed the benefit of combining quantitative

features that potentially explain lesion heterogeneity in contrast to using a single feature such

as the mean or median. Finally, when these quantitative features are used in conjunction with

a GBM classifier, they predicted lesion malignancy with a mean accuracy of 0.833. Therefore,

a combining lesion characterization from multiparametric DWI models parameters can be a

powerful tool for discriminating breast lesions.



CHAPTER 5

MAPPING OF LESION IMAGES TO SOMATIC MUTATIONS

This work is published in Mehta, Rahul and Lu, Yang and Muge Karaman. "Mapping

of Lesion Images to Somatic Mutations." Data and Text Mining in Biomedical Informatics

(DTMBIO 2020), 2020, Galway, Ireland.

5.1 Motivation

Targeted cancer therapies, those based on identifying the genetic makeup of a legion, are often

more effective and can incur fewer side effects than traditional therapies (238). Unfortunately,

the efficacy of these treatments is highly dependent on early detection and treatment and so

delayed turnaround time of genetic analyses can result in catastrophic consequences for survival

rate. To bypass the time-consuming process of biopsy and genetic analysis, computational models

can exploit quantitative and qualitative information derived from medical images of lesions to

obtain cancer imaging features1 in order to predict the specific genetic markers present in the

individual patient. These imaging features can then be leveraged to project patient prognosis

and determine targeted treatment options.

A design challenge in computational models that predict genetic markers from imaging

features is the the inherent imaging and genetic heterogeneity of cancerous lesions. Current

models overcome this limitation by enforcing imaging features to discriminate between a specific

1For the remainder of the paper we refer them as imaging features

87
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set or cluster of genetic markers (239; 56; 240). This design choice, however, incurs false positives

in downstream tasks for patient prognosis (241). While a model may correctly predict the

presence of a genetic marker, it is often the confluence of many genes that influence cancer

progression (242). For example, patients recommended for EGFR TKI targeted therapy in

Non-Small Cell Lung Cancer (NSCLC) became resistant to the treatment due to a distinct

secondary mutation in the EGFR gene, EGFR-T790M (243). As cancerous lesions are from a

combination of genetic and epigenetic changes within a patient, imaging features must predict all

possible genetic markers (244) to accurately assess the correct treatment options for a patient.

The idea of exploiting computational cancer imaging features from lesion images for patient

analysis goes back decades (245). The general framework for the task of prediction using imaging

features is posited as: given a black box model (e.g., a neural network) that converts a medical

image into a set of imaging features, we can map the imaging features onto a function (e.g.,

Softmax) which learns parameters that optimizes the prediction accuracy of a set of labels of

interest. Following the same paradigm, we would like our model to map the image of a lesion

onto a patient’s full somatic mutation profile. The learning task is unfortunately, impeded by

the overwhelming size of the output space, i.e., the somatic mutation profile.

Our goal of mapping a lesion image to a somatic mutation profile is analogous to many methods

in domain mapping (246) where a high-dimensional input is mapped to a high-dimensional output

as in text translation, image to image translation, and image captioning. Current approaches

in these applications have leveraged deep latent variable models (247; 248; 61) to enforce a

shared latent space (249) or a cyclical structure (250). The main objective in these models is
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to minimize the loss when translating between domains such that model can recover the data

from the original domain, i.e. domain A to domain B back to domain A. The key advantage of

deep latent variable models is that the neural architecture can conserve complex correlations

among different domains by constraining the loss functions. For example, in image captioning,

the neural network architecture can conserve the shape features of a mountain across populations

(height, peak, width), while also changing these correlations respective to mutable semantic

characteristics such as "snowy" or "volcano." We can apply the same concepts in the biological

domain, however, we must consider two specific challenges:

1) Many models featuring cancer imaging features use a single slice of a lesion, however, we

cannot follow the same assumption since the exact location of the lesion biopsies are unknown.

Additionally, lesion images come from multiple imaging modalities such as computerized tomog-

raphy (CT) or magnetic resonance imaging (MRI). Our model must incorporate all of the lesion

slices during inference, while also remaining invariant to the imaging domain.

2) Somatic mutation datasets, like most genetic datasets, are discrete and high-dimensional.

Complexity is further increased due to sparsity, that is, the data are characterized by few

frequently occurring mutations and a long-tail of rare mutations. Therefore, the model must use

a function that mitigates the underfitting of the data.

In this paper, we construct, Lesion Point Cloud to Somatic Mutations, LLOST, with dual

variational autoencoders (VAE) (60) where each encoder/decoder architecture represents the

domains of interest: the lesion image and the somatic mutations. To include the challenges

of the biological domain, each VAE has it’s own architecture. For the lesion VAE, we use a
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point-cloud encoder/decoder architecture, which allows us to use a compact representation of

a volumetric lesion. For the somatic mutation VAE, we use a Negative-Binomial likelihood to

model the sparsity and high dimensionality of the dataset. The two VAEs are coupled together

with a single invertible neural network conditioned on the cancer type to unify the two domains

in a shared latent space. Each VAE also consists of their own domain specific latent space with

conditional normalizing flows priors as a way to model the complexity of the two very different

distributions (251; 252). The main idea is to use one domain to generate the other by using a

series of normalizing flows conditioned on features learned in the shared latent space. Hence,

by virtue of the LLOST’s framework, we can transfer features from the lesion domain via the

shared latent space to create a mutation specific latent space from the conditional prior. The

concatenation of the two latent spaces then generate a prediction of how many times each distinct

gene is mutated i.e., a full somatic mutation profile of a patient.

Our choice of utilizing somatic mutation profiles in comparison to other cancer genetic

markers is that the somatic mutation profiles provide two immediate applications for clinicians.

One use for clinicians is the identification of co-occurring somatic mutations of interest for early

targeted treatment such as immunotherapies (253). The other is to predict a patient’s tumor

mutational load (TML), a sum of the total number of mutations in a lesion, which current

research has proposed as a potential biomarker for determining patient prognosis and sensitivity

to targeted treatments (254).

To analyze LLOST, we use the somatic mutation and lesion imaging data from The Cancer

Genomic Archive and The Cancer Imaging Archive, respectively, for inference and prediction.
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We analyze the predicted somatic mutation profiles using perplexity and distance measurements.

A ramification of our work is a better assessment of treatment options for patients at earlier

stages of diagnosis, as well as the possibility of further downstream tasks such as prognosis of

patients using tumor mutational load.

5.2 Background

In this section we discuss the necessary background on the components of our model: point

cloud data, high dimensional discrete data, and normalizing flows. We use uppercase notation

to describe the lesion and mutation domains, M and I, respectively. We use bold lowercase

notation to describe latent space parameters, where the subscripts depict a specific domain (M ,I)

or sample (n), and unbolded lowercase notation to denote values assumed by the variables.

5.2.1 Point Clouds

Point clouds have gained traction in the analysis of 3D objects with the increasing availability

of 3D sensors and acquisition technologies. Point clouds are particularly amenable in describing

arbitrary shapes as each point is simply a (x, y, z) coordinate in Euclidean space, thereby offering

a compact representation of surface geometry. Recent deep learning models are built upon

the nascent ideas introduced in PointNet (140), which operate directly on the point cloud,

and therefore follow a more data-driven approach of extracting features. Several studies have

extended PointNet for different applications in shape completions, 3D segmentation, and 3D

classification, and point cloud generation (255). The synergistic component within these models

is the feature vector that aggregates global and local features of the point cloud. Depending on
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the neural network architecture, the feature vectors can include descriptions of shape, volume,

surface topology, object geometry, and the relationship between individual points.

5.2.2 Normalizing Flows

Normalizing flows (NF) (251; 248) is a type of likelihood based deep latent variable model that

aims to map a simple base density, p(ε), to a complex density, p(z), through several invertible

parametric transformations with tractable Jacobians. An example of such a density is:

pz(z; θ) = pε(fθ(z))

∣∣∣∣detdfθ(z)

dz

∣∣∣∣ (5.1)

where f : RD 7→ RD is an invertible function with parameters θ.

Due to their simplicity in inference using maximum likelihood estimation, NF have become a

popular choice to enrich the VAE posterior for image generation (252) or as a prior in VAE for

discrete sequences (256).

Another advantage of NF is it’s inherent invertible construction that allows training in the

forward and the reverse directions. Recently, (257) exploited this mechanism for inverse sampling

problems when both distributions are arbitrarily complex. The model, however, must be able to

sample from both distributions and evaluate the forward and and backward processes. These

requirements are easily satisfied using neural network architecture based on current literature

such as in RealNVP (251) and Autoregressive Flows (258). Since our data comes from two

complex distributions, NF provide an intuitive method to move between distributions and uncover

distinct properties of the latent space.
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5.2.3 High Dimensional Discrete Data

Parameter estimation of discrete count data is often done using latent variable models (LVM)

p(x) =
∫
z p(x|z)p(z)dz where p(x) is the distribution of the original data, p(z) is the prior for

the latent distribution and p(x|z) is some probability distribution. A caveat of LVMs is that the

practitioner must determine which distributions to use for p(z) and p(x|z) to correctly capture

the underlying distribution of the data (259).

Thanks to numerous genomics studies (260), the Negative-binomial (NB) distribution has

emerged as the probability distribution of choice to estimate count data often seen in genetic

datasets. We exploit the inference methods of VAE to learn the parameters of the NB distribution,

(261) by rewriting the VAE generative process as:

zM ∼ N (0, 1); rM ∼ exp(fθr(zM));

pM ∼
1

1 + exp(−fθp(zM))
;Mn ∼ NB(rM,pM)

(5.2)

That is, we draw a Gaussian random vector zM , pass it through a neural network architecture

parameterized by fθr to generate the vector for the dispersion parameter, rM , via an exponential

function. Similarly, the vector for the mean parameter, pM, is generated by passing zM through

a neural network architecture parameterized by fθp via a sigmoid function. Finally, we can

generate a sample Mn from the NB distribution with parameters pM and rM . We can also

use the the NB parameters to generate binary labels, i.e., we would instead predict if a specific

somatic mutation occurs in a patient rather than the number of times it occurs. The likelihood

follows a Bernoulli distribution:
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(a) (b)

Figure 18: a) Shows the amount of sparsity in the TCGA Pan Cancer dataset, where the total
number of genes is 21900 (column) and number of patients is 10295 (rows). Each white dot
represents a the existence of a somatic mutation. b) Shows examples of lung cancer lesions from
different patients as points clouds respective of the axial plane. The points were generated by
interpolating along with z-axis, with respect to the individual lesion slices.

M b
n ∼ Bernoulli(1− (1− pM)rM) (5.3)

As discussed earlier, an important design choice in LVMs is the choice of the distribution of

the prior. In the previous example of equation Equation 5.2 we used a VAE with a univariate

Gaussian prior for the latent space, but that can become incongruous as datasets become more

complex (259). There are several priors available to us to increase the effectiveness of LVMs.

What we need acknowledge, is the ability to perform efficient inference and the flexibility to

learn the distributions of two very different datasets.
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5.2.4 Related Work

Early techniques for multimodal learning or domain mapping framed the learning paradigm

as information retrieval, finding the best domain match from a pool of embeddings in a shared

latent space (262). These are now superceded by deep latent variable models (DLVM) such as

VAE or General Adversial Networks (247) (GAN) that scale to larger datasets, but they still

employ a strategy of sharing a latent space. A popular choice for multimodal learning in DLVMs

is the conditional variational autoencoder (CVAE) where a shared latent space is generated by

concatenating the observed labels with the latent space.

A limitation of CVAE is that the learned latent space tends to encourage a distribution that

encompasses dominant patterns of the data. Since labels are not available during test time, a

CVAE model will only predict labels that approximate the original training distribution. Many

authors circumvent this issue by modifications of CVAE via modification of the prior for the

latent space (263; 258). While the results of various CVAE models are impressive, sharing the

latent space removes domain specific features (264) and leads to limited diversity in the latent

structure. To counteract this issue, (265) created a separate shared latent space along with a

domain specific latent space to generate a more diverse latent structure for image captioning.

Similarly, (266) used a separate embedding layer that better model semantically similar texts.

Inspired by these models, LLOST creates a distinct shared latent space, which is augmented by

conditioning it on the cancer type.
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5.3 Dataset

We use the Pan Cancer Dataset from TCGA (267), which contains the unique somatic

mutation profiles for 10295 patients. We convert this into a matrix format where each row is

a patient and each columns is a unique gene so that the total number of columns is 21332. A

snapshot of the matrix is shown in Figure 18a. We then find the corresponding lesion image(s)

of each patient from TCIA database (from any modality). If a cancer type had less than 10

patient samples we did not include it in our dataset. The final dataset consists of 1342 patients

from 18 cancer types each with a lesion image and a corresponding somatic mutation profile as

shown in Table Table VI.

5.3.1 Lesion as a Point Cloud

A key decision in building our dataset concerned the context of how our model could extract

diverse and specific information from the lesion image regardless of cancer type. There is no

explicit way to compare lesions as they are are highly irregular and heterogeneous among samples.

We propose to use point clouds as a way to model the intrinsic antisotropic and heterogeneous

nature of lesions. Point clouds offer a rich interpretation of lesions as discussed in Section 5.2.1,

and have several other attractive properties that pertain to the medical imaging dataset. In

particular, since point clouds are a set of un-ordered points, they are modality independent (CT

or MRI) compared to a set of pixels where each pixel intensity depends on the imaging modality.

Furthermore, a point cloud lesion decreases the computational footprint since each lesion is now

represented as a 2D matrix in comparison to a volumetric lesion which is a 3D matrix.
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To create the lesion point clouds, we first extract the lesions from individual slices using the

segmentation labels provided by TCIA. If segmentation labels were not available, a radiologist

delineated the lesions within the slice. Since lesions come from a different number of scanners

and modalities, we transform the lesions onto their real-world coordinates using the information

stored within their respective DICOM files. As shown in Figure 18b, the voxels within a lesion

volume are then interpolated to create a point cloud following the model in (268). Finally, for a

specific lesion point cloud In, each point in In is a set of coordinates from R3 uniformly sampled

from the surface of the full lesion point cloud.

5.3.2 Somatic Mutations Representation

Somatic mutations are represented as a count matrix, M , where each row in M is a patient,

and each column is a distinct gene. A single element in the matrix indicates the number of times

a gene is mutated. This is analogous to Bag of Words for text datasets (269). In our case, the

vocabulary, V , is the set of all the genes (21332), N is the total number of samples, and Mn

is a vector of counts of the nth sample. A binarized version of matrix, where each vector, Mn,

indicates the occurrence of a matrix is shown in Figure 18a.

5.4 Model

Given the above machinery, we represent our full dataset as N patients, where each patient

n is associated with a point cloud In, a count vector Mn, and one hot vector label, y identifying

cancer type. Our goal is to learn the conditional distribution p(M |I, y, z) where z is a stochastic

latent variable.
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Figure 19: Model Architecture of LLOST. During training, the approximate posterior distribution
of the domain specific embedding tries to match the true posterior with a learnable prior
conditioned on the shared latent spaces. The shared latent space is trained by matching the
distribution of the domain, so that it maps shared embeddings to domain specific embeddings.
The model is trained bidirectionally to maximize the ELBO, which is a sum of reconstruction
loss, the KL divergence of the conditional NF, and the MMD loss of the shared latent space. For
clarity we drop the subscripts referring to the individual neural network parameters.
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5.4.1 Lesion Point Cloud to Somatic Mutations

The Lesion Point Cloud to Somatic Mutation (LLOST) learns the conditional distribution

p(M |I, y, z) using two VAEs for each domain, XI (lesion) and XM (mutation). Each VAE

embeds the data into a lower dimensional latent space zI and zM , respectively. Instead of

using a single latent for each domain, we propose to use two domain specific latent spaces and a

shared latent space. We denote zM0 for the mutation specific latent space, zI0 for the lesion

specific latent space, z∗M for the shared mutation latent space, and z∗I for the shared lesion latent

space. So zI = [z∗I , zI0 ] and zM = [z∗M , zM0 ]. The conditional distribution of the domains is

then p(M, I|y,zM0 , z
∗
M , zI0 , z

∗
I ) and is learned by approximating the latent variables using a

variational posterior q(z∗M , z∗I , zI0 , zM0 |M, I, y).

To learn our conditional distribution we must first define our priors. Whereas the original

VAE uses a fixed standard Gaussian prior for the latent space, we instead use a trainable prior

via a conditional NF to model the complexity of the distributions of each domain (256). Having

a trainable prior allows us to adapt the shape of the prior based on the data, and avoids fewer

modeling assumptions (248; 270). Using Equation Equation 5.1, our conditional NF prior for the

image domain is then constructed as pηI (zI0 |z∗I ) = pε(fηI (zI0 |z∗I ))
∣∣∣detdfηIdz ∣∣∣, where ηI are the

parameters of the neural network. This formulation allows the model to push the prior towards

matching the approximate posterior during training. Therefore during test time, LLOST samples

from the trained prior pηI (zI0 |z∗I ) and the shared latent space p(z ∗I0 |y), unlike CVAE that

samples from the variational posterior for prediction tasks.
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We take advantage of the conditional NF architecture again in the shared latent space, where

the base distribution is instead the latent space q(z∗M |M). The shared latent space is modeled

as a single invertible neural network, fθIM (61; 257) conditioned on the cancer type label, y.

When optimized correctly, the encoded distribution q(z∗M |M) will match the distribution of the

shared latent space p(fθIM (z∗I |y)). Intuitively, we are taking advantage of the invertibility of the

NF architecture to let the cancer label type guide the distribution of the image domain to the

distribution of the mutation or vice versa.

We can then predict a somatic mutation profile using these steps:

1. Input the lesion point cloud into XI to generate zI , which we use to create z∗I

2. The network of the shared latent space f−1θIM given the cancer type label is then used to

map z∗I to z∗M

3. Generate domain specific latent space zM0 conditioned on z∗M (from the above step) via

the trained conditional NF prior p(zM0 |z∗M )

4. Generate the parameters rM and pM of the NB likelihood using zM = [zM0 , z
∗
M ] from

the previous steps

5. Predict the mutation profile Mn ∼ NB(rM ,pM )
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Since the two domains are independent with respect to the latent spaces, we can summarize the

generative model above as a joint distribution and factorize:

p(M, I,y, zI0 , zM0 , z
∗
I , z

∗
M ) =

pθM (M |zM0 , z
∗
M )pθI (I|zI0 , z

∗
I )

pηI (zI0 |z
∗
I )pηM (zM0 |z∗M )pθIM (z∗I |y)pθIM (z∗M |y)

(5.4)

where p(zI0 |z∗I ) and p(zM0 |z∗M ) are the conditional NF priors. The distributions, p(z∗I |y)

and p(z∗M |y), are of the shared latent space. The subscripts η and θ indicate the distinct network

parameters for each domain. Similarly, we can factorize the approximated latent posterior:

q(z∗M , z∗I , zI0 , zM0 |M, I) =

qφM (zM0 |M)qφI (zI0 |M)

qφM (z∗M |M)qφI (z
∗
I |I)

(5.5)

Note that the cancer type label, y, is not involved in the latent posterior approximation since

it is not involved in the encoder architecture of the model.

5.4.2 Variational Objective

We first consider the standard learning objective of the VAE with a Gaussian prior and a

latent space zM . This objective is optimized by maximizing the Evidence Lower Bound (ELBO)

with encoder and decoder parameters θ and φ respectively:
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ELBO(θ, φ) = Ep∗(M) Eqφ(zM |M)[logθ p(M |zM )+

log p(zM )− log qφ(zM |M)].

(5.6)

The first term is the reconstruction loss of the original data, p∗(M). The last two terms act

as a latent space regualizer, which is also referred to as the Kullback Libler (KL) divergence

between the approximate posterior distribution qφ(z|M) and the prior p(z). We extend this to

our model and the resulting posterior factorization is:

ELBO(Ω) =

EpfIM (z∗
M |y)qφM (zM0

|M)[logθr,θp(M |zM0 , z
∗
M )]

EpgIM (z∗
I |y)qφI (zI0 |I)

[logθI (I|zI0 , z∗I )]

+Lz∗
M

+ Lz∗
I

−KL[qφM (zM0 |M,z∗M )|pηM (zM0 |z∗M )]

−KL[qφI (zI0 |I, z
∗
I )|pηI (zI0 |z

∗
I )]

(5.7)

Thus, the overall objective can be considered a hybrid of the standard VAE objective and

maximum likelihood estimation (MLE) with respect to the neural network parameters Ω. The

first two terms in Equation Equation 5.7 are the reconstruction errors of the original data. The

middle two terms are losses of matching the shared latent space with latent space from the

encoder discussed in Section 5.4.3. Lastly, the KL divergence of the domain specific latent space

is a MLE with respect to the conditional NF prior with an entropy regularizer as shown in
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Equation Equation 5.8. Using Equation Equation 5.1 we can rewrite the KL divergence for the

lesion domain as:

KL[qφI (zI0 |I, z
∗
I )|pηI (zI0 |z

∗
I )] =

−EqφI (zI0 |I)[pε(fηI (zI0 |z
∗
I ))

+ log(det(
dfηI
dz

))] +H(qφI (zI0 |I)).

(5.8)

The last term, H, is the entropy of the approximate posterior distribution from the encoder.

The first and second terms are the log-likelihood of zM0 under the prior distribution modeled by

the conditional NF. Note that we can simply sample from qφI (zI0 |I) to calculate the entropy.

5.4.3 Optimization of Shared Latent Space

To encourage sharing of information, we want the shared latent space, p(z∗I |y), to match

the generated latent space q(z∗I |I) after the flow transformation f−1θIM . Instead of using the KL

divergence to optimize the loss, we use the Maximum Mean Discrepancy (MMD). The MMD

divergence confers two advantages. First, we can explicitly fit the distribution of z∗I without any

assumptions about a prior. Secondly, if convergence is reached, we can sample from the shared

latent space after the respective flow transformation and disregard the need to generate random

samples from a fixed prior during test time. The only requirement is that the size of |z∗M |

matches the size the |z∗I |. This optimization procedure is similar to ones used in Adversarial

Autoencoders (271), where the divergence function is instead the Jensen Shannon divergence,

which scales to higher dimensions. Since we can control the size of the shared latent space,
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we are not limited by the scaling issues of MMD. We achieved best results with the inverse

multiquadtratic kernel:

Lz∗
M

= k(z∗M , ˜z∗M ) = 1/(1 +
∥∥∥(z∗M − ˜z∗M )/h

∥∥∥2) (5.9)

where ˜z∗M is the distribution from the forward process of fIM . This is also applied in the reverse

direction to calculate Lz∗
I
. We can conceptualize this as mapping the shared latent space to

domain specific embeddings of the somatic mutation profile.

5.4.4 Implementation Details

Figure Figure 19 shows the architecture and distinct latent spaces of LLOST. We adopt

the encoder-decoder structure proposed in (272) for the point cloud VAE with the size of the

latent space zI as 512. The encoder-decoder structure of the VAE for somatic mutations is a

set of symmetric multilayer perceptron (MLP) with dimensions [1000, 500, 300] when using a

NB-likelihood and [800, 500] for the Bernoulli likelihood, where the last dimension indicates size

of the embedding space, zM .

Our model architecture for the latent spaces follows the NF architecture of realNVP (251),

where one flow with a single affine coupling block for brevity is shown in Figure Figure 20. The

input to the coupling layer is the partition of the input z = [z1, z2]. The output of one coupling

layer is then y2 = z2 and y1 = z1 ⊗ exp(s(z2, c)) + t(z2, c)) where functions s and t are neural

networks, and c is the specific condition. Conditioning c onto s and t does not affect invertiblility,

since the s and t are never inverted, therefore the functions can utilize any neural network
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architecture. We use 12 flow steps each with two affine coupling blocks for domain specific latent

space, and we use 24 flow steps with 3 coupling blocks for the shared latent space.
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Figure 20: An example of a conditional coupling block where s and t are neural networks. Here
c is the condition that is simply concatenated to each neural network.

To learn the parameters of the encoder, decoders, and the latent space we optimize the

negative of Equation Equation 5.7 via bidirectional training. Before we update any parameters,

we calculate the loss of the invertible networks in the forward and reverse directions given a

sample from both domains. This technique encourages both domains to influence the parameters

of the shared latent space and the learnable priors.
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5.5 Experiments

We use 70% of the dataset to train, 15% to validate, and 15% to test our model for accurate

reconstruction and prediction of a somatic mutation profile.

We compare two versions of LLOST, one with a NB likelihood, LLOSTNB, and another with

the Bernoulli likelihood, LLOSTB, along with the three baseline CVAE models. For the baseline

models, CVAEr, uses the ResNet (273) architecture to extract imaging features from a single

lesion slice with a NB likelihood decoder. The CVAEp and CVAEpb models both use the point

cloud architecture from our model, but CVAEp has an NB likelihood decoder and CVAEpb has a

Bernoulli likelihood decoder. We then follow the CVAE methodology by concatenating both the

somatic mutation profile matrix and the cancer type matrix with the output of the encoders and

decoders. The baseline models use a NF prior for the latent space. Testing is done by generating

the latent embeddings for the lesion and then concatenating it with random samples from the

latent space.

Our experiments on the shared latent space are done via an ablation study, where we remove

the conditioning by the cancer type label. We also study the effect of increasing the width of the

shared latent space.

5.5.1 Comparison Metrics

We use log perplexity, − 1
NΣN

n
1
Ln

log p(Mn|zm0 , z
∗
m), to compare the goodness-of-fit of our

models and the baseline models evaluated over 35 epochs. The perplexity metric is a function of

the reconstruction error, log p(Mn|zm0 , z
∗
m), total number of mutations in a sample, Ln, and the

number of the samples, N .
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As our goal is the prediction of the count of somatic mutations, we use the root mean squared

error (RMSE) and TML to measure the prediction error of the models with NB likelihoods. The

RMSE shows the average error for the count of mutations for each distinct gene. TML is a

relatively recent biomarker used for determining sensitivity to targeted treatments (274) and

is simply the sum of all mutations within a sample. We calculate the prediction error of TML

using a simple point estimate, TML∗ − TML, where ∗ indicates our predicted value.

We use the F1-score and Positive Predictive Value (PPV) metrics to assess the Bernoulli

likelihood model. Specifically, we use the F1-score to compare the experiments on the shared

latent space. The PPV metric is used to determine the predictive accuracy of LLOSTB for

specific cancer types. To calculate this metric we use 15% of the samples of a specific cancer

type for testing, while the remaining samples are used for training.
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Figure 21: a) Log Perplexity (lower is better) of CVAEp, CVAEpb, CVAEr, LLOSTr, and
LLOSTB, viewed as a function of epochs b) A comparison of the F1 score during testing with
two sizes of z∗L or z∗M and no label in the shared latent space.
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5.5.2 Results

Figure 21a displays the overall log-perplexity scores over 35 epochs, where after the models are

asymptotic and in the case of CVAEp, the model begins to collapse. We observe that LLOST has

the best performance in predicting the original somatic mutation profile. Specifically, LLOSTB

is the best in recreating the original distribution of the somatic mutation profile. This also shows

that learning the occurrence of a specific mutation is much easier compared to learning the count

of a specific mutation, since CVAEpb also out-performs the other CVAE baselines, which have a

NB likelihood. When comparing the CVAEp and CVAEr, we see that the point cloud features

provide additional information that aids the model to predict the counts of each mutation. The

key insight is that the shared latent space along with domain specific embeddings allow for better

predictive performance of the somatic mutation profiles.

In Table Table V we show the RMSE of the models with NB likelihoods. Once again, the

baseline models do not have enough representation power in their latent space to accurately

describe the underlying distributions of the two domains. As the CVAE is simply a concatenation

of the encoder with the somatic mutation matrix, the approximate posterior distribution cannot

scale to incorporate such a high dimensional dataset. Although LLOSTNB still has high RMSE,

there is over a 50% increase in performance of predicting the TML. This supports our hypothesis

that learning distinct and shared latent spaces for very different domains is beneficial for high

dimensional prediction tasks.

We examine why the LLOSTNB has a high RMSE in Figure Figure 22. We observe the NB

likelihood favors over-counting mutations. The average prediction error of TML is 54 in samples
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Model RSME

CVAEr 855.45
CVAEp 731.37
LLOSTNB 315.15

TABLE V: RSME of Models with the NB likelihood

with less than 400 TML. When qualitatively assessing the predicted somatic mutation profiles,

we observe that genes with the most frequent mutations are predicted to occur almost at least

once such as TP53, KRAS, and BRCA1. This pattern continues and is abundantly apparent

when TML is larger than 1000, such that commonly occurring mutations occur at least once.

In Figure 21b we observe that there is no significant difference between the sizes of the shared

latent space for predicting the somatic mutation profiles using LLOSTB, with 50 having .79

and 200 having 0.81 F1-scores. More precisely, this shows LLOSTB has a lower false positive

rate in comparison to LLOSTNB, so it is not as influenced by the frequency of commonly

occurring mutations. This is attributed to parameterization of the Bernoulli likelihood via the

NB parameters. Since frequently occurring mutations have a lower variance, they will be only

assigned a probability when a mutation is actually present in a somatic mutation profile.

Figure 21b also shows an ablation study of the cancer type label, y in LLOSTB. Without the

label, the performance of LLOSTB degrades significantly. We suspect that the label encourages

the distribution from the lesion domain to match the structure of the distribution of the mutation

domain, akin to supervised machine learning models. Without the label, the decoder is most
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likely using lesion specific features, which to the decoder is essentially noise and therefore the

output distribution is also noisy.

We observe in Table Table VI the PPV of individual cancer types using LLOSTB. As expected

the cancers with a higher number of samples are better able to predict a somatic mutation profile

from a corresponding medical images of a lesion. This table also demonstrates that LLOSTB

does not overfit or underfit, since the PPV varies across all cancer types. PPV scores for some

cancers with lower samples (LUAD, LUSC, COAD, UCEC, and CESC) are higher than expected.

This highlights that LLOSTB can learn the underlying structure of the somatic mutation profiles

through the latent representations of domain specific and shared features.

Figure Figure 23 displays the shared latent space in the forward direction. We see that some

of the cancers overlap such as LUAD with LUSC and UCEC with COAD. This is also evident in

cancer biology as LUAD and LUSC share similar somatic mutations, where LUSC tends to have

a higher TML (260). Similarly, cancer biology indicates UCEC and COAD also share somatic

mutations (260). This shows LLOSTB can map features from the lesion domain and orient them

to match the features of the somatic mutation domain.

5.6 Discussion

Overall, our results indicate that a distinct shared latent space greatly improves the learning

of two very different datasets, especially when one dataset is sparse and high-dimensional. Here

we further investigate some of our design choices.

LLOSTNB generally overestimates the count of somatic mutations. We hypothesize this is

because of an imbalanced dataset where cancer types with larger samples propagate the phenom
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Cancer Type Total Samples (15%) PPV
Bladder Cancer (BLCA) 119 (18) 0.805± 0.117

Breast Cancer (BRCA) 139 (21) 0.834± 0.319

Cervical Squamous Cell Carcinoma (CESC) 54 (8) 0.726± 0.172

Colorectal Cancer (COAD) 21 (3) 0.710± 0.067

Esophageal Carcinoma (ESCA) 16 (2) 0.513± 0.196

Glioblastoma Multiforme (GBM) 91 (14) 0.645± 0.043

Head and Neck Cancer (HNSC) 159 (24) 0.840± 0.124

Kidney Chromophobe (KICH) 15 (2) 0.264± 0.015

Kidney Renal Clear Cell Carcinoma (KIRC) 186 (28) 0.829± 0.175

Kidney Renal Papillary Cell Carcinoma (KIRP) 34 (5) 0.565± 0.293

Brain Lower Grade Glioma (LGG) 110 (17) 0.732± 0.023

Liver Hepatocellular Carcinoma (LIHC) 95 (14) 0.776± 0.149

Lung Adenocarcinoma (LUAD) 41 (6) 0.719± 0.271

Lung Squamous Cell Carcinoma (LUSC) 36 (5) 0.735± 0.043

Ovarian Serous Cystadenocarcinoma (OV) 103 (15) 0.749± 0.386

Prostate Adenocarcinoma (PRAD) 14 (2) 0.394± 0.039

Stomach Adenocarcinoma (STAD) 46 (7) 0.672± 0.086

Uterine Corpus Endometrial Carcinoma (UCEC) 63 (10) 0.713± 0.261

TABLE VI: Positive predictive value of predicting if a distinct Somatic Mutation occurs in the
specific cancer types. The number of test samples for each cancer type is indicated in Column 2
within the parentheses. The PPV is the mean Positive Predicted Value with standard deviation
indicated by ± using bootstrapping with a 1000 runs.
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of cross-excitation (275). Specifically, if two mutations co-occur together frequently, then the

presence of one will excite the other if one is not present. One method of decreasing this phenom

is to increase the dataset size, so that the conditional probabilities of co-occurrance decrease.

Another avenue, is to change the likelihood to a Zero-Inflate Negative Binomial distribution,

which has a superior performance with datasets containing many zeros (absence of mutations).

A major benefit of our model is the use of a distinct shared latent space as it allows us to

move from the imaging domain to the mutation domain. In our original hypothesis, we stated

we can use domain specific features along with partial correspondence from the shared latent

space to improve prediction accuracy. We observe this in the high PPV score of COAD even

with limited samples. This is most likely is due to the shared somatic mutations between COAD,

UCEC, and BLCA, as reported in (260), thereby highlighting the influence of domain specific

features.

As discussed previously, the correlations between domains is observed in LUAD and LUSC,

which both have less than 40 samples. Although, LUAD and LUSC share very similar somatic

mutation profiles, the geometric properties from the lesion domain in conjunction with the cancer

type are correlated with features from the mutation domain to allow for enough discrimination

between the two samples. We also observe this again in the uterine based cancers where there is

significant overlap between UCEC and COAD due to their shared geometrical properties.

With further optimization, it is possible to use LLOSTB to aid clinicians, since somatic

mutations themselves are a strong genetic marker for patient prognosis, subtyping, and treatment

planning. For example, BRAF is a somatic mutation targeted in metastatic colon cancer, (276),



113

which our model predicted in COAD with a F1 score of 0.7601. At initial diagnosis, the cancer

may not seem metastatic, but with the aid of, LLOSTB, the indication of the BRAF mutation

could suggest the clinicians to focus on specific treatment plans that target aggressive types of

COAD.

By predicting a full mutation profile, LLOSTB can also aid clinicians in determining ineffective

treatment plans. For example, the occurrence of TRIM27 and EGFR together in LUAD is

associated with poor response to anticancer therapy in EGFR-mutated lung cancers (243).

Among the LUAD samples, our model predicts TRIM27 and EGFR with an F1 score of .791

in the full mutation profile, thereby these patients could be recommended to receive a different

treatment.

There are a number of avenues we can take on improving this model. A short term goal is to

determine a more effective optimization strategy for the shared latent space, such as including

a loss to model reconstruction of the cancer type label in the shared latent space. A clear

extension to this model is incorporation of established radiological and imaging texture features

or other genetic domains such as RNA-SEQ. Neither of these are trivial extensions as it requires

a significant change to neural network architecture as we must account for the unordered nature

of point clouds and manipulation of the shared latent space. We also recognize, that due to the

resolution of medical imaging modalities, achieving a high predictive power of somatic mutations

1Note this is not the overall F1 score for all mutations in COAD.
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would be very difficult; regardless, we hypothesize our model may at least aid clinicians in quickly

determining an effective treatment plan.

5.7 Conclusion

We presented, LLOST, a deep latent variable model for the prediction of a somatic mutation

profiles of patients based on their corresponding image using dual variational autoencoders joined

together with a separate latent space. We have shown that it is possible to predict somatic

mutation profiles without reducing the dimensionalality of the dataset. We also showed that

shared correlations between the imaging and mutation domain help predict mutation profiles

when there are a limited amount of samples in the training set. The LLOSTB in specific has

several attractive features: point cloud representation of a lesion, sharing of a latent space across

two significantly different domains, a flexible training objective, and prediction of distinct somatic

mutations.
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Figure 22: Point prediction error of TML. The top plot shows the point estimate error in
predicting the TML using LLOSTNB in the test samples. The bottom plot is a zoomed in of
the top plot, where samples with less than 400 TML is reported. X-axis is the expected TML.
Y-axis is the difference in TML of predicted and expected.
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Figure 23: A TSNE of the shared latent space in the forward direction after a test batch of
lesions images. Best viewed digitally.



CHAPTER 6

CORRELATED MIXED MEMBERSHIP MODELING OF SOMATIC

MUTATIONS

This work is published in Mehta, Rahul, and Muge Karaman. "Correlated Mixed Membership

Modeling of Somatic Mutations." 2020 International Joint Conference on Neural Networks (IJCNN

2020), 2020, Glasgow, UK.

6.1 Motivation

Discerning the relationships between somatic mutations in cancers is the foundation for

targeted treatment and patient subtyping. Since somatic mutations in cancer genomes are

often heterogeneous and sparse, where two patients with the same cancer may share only one

mutation among thousands, models summarize the high-dimensional interactions into a simpler

form. This requires a model that incorporates multiple confounding variables to determine

relationships between somatic mutations. Based on current literature (277; 278) mutually

exclusive and co-occurring mutations are influenced by non-linear relationships between gene

mutation frequencies, biological processes, cancer (sub)types, total number of mutations in a

tumor (TML), and positive selection for mutations. The combination of multiple confounding

variables and the inherent sparsity of somatic mutation data poses a challenge to understand the

underlying co-dependencies between mutations.

117
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Statistical and computational models that try to discover relationships between somatic

mutations often decompose a patient’s mutation profile into a set of higher-level structures that

closely resemble known biological processes. This approach (279; 280) generally follows a random

walk on an existing biological interaction network. This networks can be modeled as a graph,

G = (V,E), where each vertex, V is a gene, and the edge, E denotes the interaction among

genes. The network is then modified into a weighted graph, with edge weights representing

probability of interactions and vertex weights corresponding to the frequency of a mutation in a

gene. A walk is then simulated by starting at a mutated gene and moving to another gene based

on the probabilities of edge and vertex weights. The end result is a smaller subnetwork called a

functional network that represents an altered biological process. While functional networks have

been validated to discover some aberrant genes and pathways, they often result in false positives

due to the inherent assumptions made.

The most common compendium of interaction networks widely used to generate functional

networks is the Kyoto Encyclopedia of Genes and Genomes (KEGG) (281). The KEGG interaction

networks specify genetic pathways, which are complex graphical networks with directed and

undirected edges connecting genes based on their physical and biochemical properties. The

genetic pathways are then ascribed to specific biological processes. For example, the biological

process of cell apoptosis (cell death) is controlled by two known genetic pathways compromising

of a multitude of different genes. The networks within the KEGG database, however, are diverse

and recapitulate a disease free patient. Functional networks therefore, assume the interaction

networks are also cancer-relevant and disease-specific. As a result, functional networks are
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generalized to a common patient population and struggle to discriminate between different cancer

types (282).

The second assumption is how functional networks take advantage of mutual exclusivity

in somatic mutations. The process of mutual exclusivity in somatic mutations describes how

mutations do not occur together if they are in the same genetic pathway (31). In functional

networks, accounting for mutual exclusivity corresponds to the frequency of a mutation, which

is the weight of a vertex Vi in the graph. Theory, however suggests that there are multiple

confounding factors that cause mutual exclusivity (277). For example, the mutual exclusivity

of mutations in the TP53 and MUC16 genes are better explained by cancer type and TML in

cororectal cancer (277).

The last assumption is of preprocessing somatic mutation data to a limited number of

mutations. Although preprocessing is done in numerous studies beyond genetics, there is no

gold standard for somatic mutations. Furthermore, due to the high dimensionalality of somatic

mutation data and the limited number of samples, preprocessing will be biased towards frequently

occurring mutations (283). So while a model can identify novel co-occurring mutations within

the functional networks, it may only reflect the model’s preference for a specific paradigm. For

example, HotNet2 (279) removes samples with more than 400 somatic mutations, however,

overdispersion of a gene and TML are both significant factors that influence the relationship

between mutations.

From a machine learning perspective we can describe the problems faced by functional

networks as overfitting. This is elucidated by the false positives produced from functional
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networks. Specifically, functional networks memorize the parameters of the interaction network

instead of learning the parameters of the somatic mutation dataset. So while, functional

networks may reproduce valid biological processes, they do not necessarily capture cancer-

relevant relationships between mutations. For example, functional networks validated targeted

treatment drugs erlotinib or gefitinib for mutations in the EGFR gene. Since the EGFR is

omnipresent in genetic pathways and as a mutation, functional networks constrain a patient to

be mainly influenced by the EGFR mutation. From the previous example, these treatments,

however, are only temporarily effective and a relapse often occurs due to the presence of a

co-occurring mutation in the same genetic pathway that had equal cancerous potential (284).

So, although functional networks correctly identified the EGFR mutation, it is the interplay

between many mutations that influences cancer biology.

In this paper, we propose to exploit the inherent latent structure of a somatic mutation

dataset with a generative probabilistic model. Instead of relying on interaction networks a priori,

we use a prior based on a correlated random measure (CoRM). The CoRM enables the model to

specify a notion of similarity on the possible latent distributions of the somatic mutations. In

our case, we would like the latent distributions to correspond to two unique characteristics of the

somatic mutation data: mutual exclusivity and cancer-related biological processes. Specifically,

the CoRM assigns probabilities to particular configurations of latent distributions via a Zero

Inflated Negative Binomial Process (ZINB) and enforces mutual exclusivity via a correlation

structure through the conjunction of the Beta-Bernoulli Process and neural networks.
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The main contributions of this work are as follows. We propose the Correlated Zero

Inflated Binomial Process, CoZINB, a novel generative latent variable model with an implicit

dependency structure and latent parameters that represent the sparsity of a somatic mutation

dataset. Therefore, CoZINB avoids biases from frequency and interaction networks that confound

functional network methods. The CoZINB is used to factorize a somatic mutation profile to infer

positively and negatively correlated latent factors1 that consist of co-occuring mutations and

represent biological processes. We create a computationally efficient inference scheme with the

confluence of stochastic variational inference and amortized variational inference (285; 286; 287).

Our experiments on the pan cancer dataset from The Cancer Genomic Archive (TCGA) verify

the benefits of our model to uncover co-occurring mutations while maintaining rules of mutual

exclusivity and cancer specific processes.

6.2 Background

6.2.1 Negative Binomial Distribution

The dispersion parameter r of the Negative Binomial (NB) distribution allows models self-

excitation (275), an amenable property in biology, such that if a distinct cancer mutation occurs

in a tumor, it is likely to occur again in the tumor. Another intuitive way to express the NB

distribution is to model it as a Poisson-Gamma mixture distribution. The NB distribution is then

a weighted mixture of Poisson distributions, where the rate parameter is an unknown gamma

distribution. Thus, an NB distribution is analogous to an overdispersed Poisson distribution.

1There are a number of ways to describe sets based on the current nomenclature (clusters, factors,
and topics). For the remainder of the paper we refer to the latent space of our model as factors.
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Research in differential expression analysis (288; 289), regression, and clustering of single-cell

data (149) has shown superior performance of NB distribution.

6.2.2 Mixed Membership Modeling

Algorithm 2 Latent Dirichlet Allocation a Mixed Membership Model
for Each cluster k : 1, ...,K do
Sample φk ∼ DirichletM (η1, . . . , ηm)

end for
for Each sample j : 1, ..., J do
Sample θj ∼ DirichletK(α1, . . . , αK)
for Each data point xj ,m in sample j do

Sample Cluster zj,m ∼ DiscreteK(θj)
Sample data point xj,m ∼ DiscreteM (φzj,m)

end for
end for

Mixed-membership modeling is essentially a soft clustering problem. In contrast to hard

clustering where a data point is assigned to one and only one cluster, each data point in a

mixed-membership model is associated with a number of clusters. It is the interaction among

these clusters that gives rise to an observed data point. In the context of cancer biology, mixed-

membership models allow us to remove the restrictive assumption that mutations are mutually

exclusive across clusters (290).

The generative process of LDA follows Algorithm 2. What specifically matters, is how

choosing the priors: the factor score matrix, θ and the factor loading matrix, φ for different
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Sample Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6 Gene 7 Gene 8

A 0 1 1 0 1 1 1 0

B 1 1 0 0 1 1 0 0

C 1 1 1 0 0 1 1 0

D 0 1 1 0 0 0 0 0

E 1 1 1 0 1 0 1 1

F 1 0 0 1 0 0 1 0

G 0 1 0 0 1 0 1 0

H 0 1 1 1 1 1 1 1

I 1 1 0 0 0 0 1 0
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Figure 24: CoZINB models multiple cofounding variables to determine co-occurring mutations
and mutually exclusive mutations. (a) Is an example of a set of binarized somatic mutation
profiles represented as a matrix, where 1 indicates that a gene is mutated (b-c) There is a complex
relationship between cancer, biological processes, and the development of mutations. (277) (d)
These relationships are modeled via a correlated Beta-Bernoulli Process and an independent
Gamma process as seen in Equations Equation 6.2 and Equation 6.4, where njk is the number
of times the kth factor appears in sample j. (e) CoZINB learns a diverse latent structure of
somatic mutation profiles, with positively and negatively correlated factors that contain a set of
co-occurring mutations

generative models. For example, if we change the priors in Algorithm 2 to Gamma distributions

and the likelihood to a Poisson distribution we can obtain Poisson Factor Analysis (PFA) (275).

Another extension are hierarchical mixed-membership models, which increase model capability

by stacking stochastic processes such that algorithm infers the number possible clusters within a

dataset (291).
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Though powerful, mixed-membership models are limited as they do not explicitly model

the correlations between the mixing proportions of any two clusters. Using science articles as

an example, the LDA topic model cannot capture that the presence of a topic on cells is more

positively correlated with a topic on cancer in comparison to a topic on astronomy. Recent

innovations in joint modeling of correlation and mixture proportions has resulted in improved

prediction and interpretability of the topics as seen in (292) and an hierarchical extensions in

(285; 287; 286). Continuing in the context of topic modeling, these methods inject a Gaussian

covariance into the θ such that the factor score matrix takes into account the correlation between

topics. Our model follows this format, where the bottom stochastic process is based on correlated

random measures.

6.2.3 Latent Space as a Correlated Random Measure

Homogenous completely random measure (CRM) (155) is built upon a joint measure as

v(da, dw) = H(da)vw(dw) where H(da) is the base measure and vw(dw) is the mean measure

(levy measure). As an example, the Gamma Process (ΓP) has a mean measure of v(da, dw) =

H(da)e−cw/wdw. Intuitively, we can think of the base measure as defining the existence of

factors and the rate measure assigning a weight to each factor. This definition allows us to have

an infinite number of factors, but a finite mass, and is a foundation of many of the non-parametric

Bayesian statistical models.

A correlated random measure (CoRM) is created by augmenting a CRM into a higher space to

include locations such that the mean measure is now v(da, dw, dl) = H(da)vw(dw)vl(dl), where

vl(dl) is a vector of locations in Rd. We can then draw correlated weights x via a transformation
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function as x ∼ T (·|w,F (l)), given the uncorrelated weights, w, and a random kernel function

on the locations F (l). Based on Proposition 1 from (286) the transformed levy measure is now

ṽ = v(da, dw, dl)p(dx|F (l), w) The transformation distribution, like a homogeneous CRM, is

restricted to have finite mass to guarantee generation of useful statistical models.

6.3 Model

6.3.1 Correlated Zero Inflated Negative Binomial Process

The Correlated Zero-Inflated Negative Binomial Process (CoZINB) is a correlated hierarchical

Bayesian model for learning the latent representations of somatic mutation profiles. We take

advantage of neural networks for the random function F (l) to model non-linear correlations of

somatic mutations. The transformation distribution based on the Beta-Bernoulli Process (BeBP)

is then used to enforce sparsity of the globally shared latent factors. We describe this is as a

draw from the CoZINB, Xj ∼ NB(RBj , p) with a mean measure ṽ:

H(da)vl(dl)αw
−1(1− w)w−1p(dx|F (l), w)R0(dr)dw

so Bj is a draw from the transformation distribution p(dx|F (l), w) and R is an independent

ΓP. By deriving a latent representation with an unsupervised correlation structure, we use the

inherent information shared across the somatic mutation profiles to ensure we capture mutual

exclusivity between factors.

As shown in Figure Figure 24, by using CoZINB we can model 1) the excessive amount of

mutations that do not occur in a patient, 2) non-linear interactions of somatic mutations 3)
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implicit cancer subtype based on the factors 4) total number of mutations in a somatic mutation

profile. We will show in our experiments the latent factors follow a pattern of co-occurrence that

is also observed in cancer biology.

6.3.2 Generative Structure

We represent our dataset as a bag of words commonly seen in text corpus, X ∈ NJ×M ,

where J and M are the number of patients and distinct number of mutations, respectively. As in

many factor models we also introduce an additional latent variable, zjm, indicating the factor

assignment for mutation m. The mutation profile of each patient is realized as a mixture of

latent factors (φzjm) shared by all patients. Specifically, we model a distinct mutation count in a

patient as:

njmk =

Nj∑
i=1

δ(zji = k,mji = m)

njk ∼ NB(rkbjk, pj).

(6.1)

From a biological perspective njk is the number of times a k biological process occurs in patient

j. The count njmk corresponds to the contribution of underlying biological process k to the

count of mutation m in sample j. The total number of mutations in patient j is then Nj . The

shape parameter rk captures the popularity of the biological process k across all patients. The

probability parameter pj models the patient specific somatic mutation profile. Specifically, pj

accounts for heterogeneity among the patient population. To enable sparsity and correlations

within the latent factors, we introduce Bernoulli latent variables bjk. When bjk = 1, the latent

factor k is present in patient j, otherwise irrelevant. The correlations within the binary random
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variables are produced via a transformation of the BeBP as discussed in 6.2.3. A transformed

distribution follows (286) as

bjk ∼ Bernoulli(σ(σ−1(πk) + F ()̇))

πk ∼ Beta(α/K,α(1− 1/K))

(6.2)

where σ is the sigmoid function. As a result, the proposed model assigns positive probability

only to a subset of factors, based on the correlation structured created in F ()̇.

Inspired by Variational Autoencoders (VAE) (60) to model nonlinear correlations we use a

deep neural network to create a kernel F ()̇ is:

f(hj , lk) ∼ N(uf (hj , lk), σ
2
f (hj , lk))

hj ∼ N(0, aI), lk ∼ N(0, bI).

(6.3)

where hj is a patient specific vector as the output of an inference network of a VAE. The locations,

lk, are then concatenated with hj as in input the decoder of a VAE to create the kernel. Unlike

the standard VAE decoder which aims to recreate the input of a encoder, the decoder in our

model supplies prior information to F ()̇. This paradigm of generating the kernel is similar to

Empirical Bayes (293), where we use the structure of the data as a prior to generate F ()̇.

Building upon the above equations, the full generative structure of the CoZINB topic model

follows the paradigm of the Gamma-Poisson construction of a NB process:
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Figure 25: Correlated Zero Inflated Negative Binomial Process Topic Model

xjm ∼ Discrete(φzjm), zjm,k ∼ φmkθjk

φk ∼ Dirichlet(η01M ), Nj =
K∑
k=1

njk,

njk ∼ Poisson(θjk)θjk ∼ Gamma(rkbjk, pj),

rk ∼ Gamma(γ0, 1/α), γ0 ∼ Gamma(e0, 1/f0),

pj ∼ Beta(a0, b0), Ljk ∼ CRT (njk, rkbjk),

L
′
k ∼ CRT (

J∑
j=1

Ljk, γ0)

(6.4)

and bjk follows Equation Equation 6.2. To aid in inference of rk, we introduce a data

augmentation latent variable, Ljk based on the Chinese Restaurant Table as in (275). The full

model plate is shown in Figure Figure 25.
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6.3.3 Inference

Given the set of observed mutation profiles, X and their corresponding mutation counts m,

our goal is to infer the factors zjm, the factor score matrix, θjk, the factor loading matrix, φmk,

and the factor locations lk. For a biological analogue, θjk is the proportion of the biological

process k in sample j, φmk is the proportion of each mutation in factor k, and lk is correlation

between a set of co-occurring mutations. Denote njk =
∑Nj δ(zjm) = k, where K is some finite,

but large, truncation level, we posit the fully factorize variational scheme:

q(θ,φ,π, Z,R, P, l, L, h) =
K∏
q(lk)q(rk)q(πk)

q(φk)q(γ0)
J∏[

q(hj |X)q(pj)
K∏
q(bjk)q(θjk)q(Ljk)

q(L
′
k)

Nj∏
m=1

q(zjm)

] (6.5)
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The variational distribution for each latent variable is associated with it’s own variational

parameter(s) as follows

q(lk) = δl̃k , q(γ0) = δγ̃0 ,

q(φk) = Dirichlet(η̃)

q(πk) = Beta(τk1, τk2)

q(rk) = Gamma( ˜rk1, ˜rk2)

q(pj) = Beta(ãj , b̃j)

q(bjk) = Bernoulli(νjk)

q(θjk) = Gamma( ˜θjk1, ˜θjk2)

q(Ljk) = δL̃jk

q(L
′
k) = δ ˜

L
′
k

q(zjm) = Multinomial(ψjm)

We let q(hj |Xj) = δg(Xj) where g is the inference network of a VAE.

To update the variational parameters we can use stochastic variational inference (SVI) that

assumes we subsample Jt ∈ J patients at every iteration t and optimize the noisy variational

objective:

Lt = E[ln p(l, r, φ, γ0, π)]+

J

Jt

∑
j∈Jt

E[lnhj , θj , zj , pj , bj , Lj , Xj ] +H[q(φ]+

J

Jt

∑
j∈Jt

H[q(θj , zj , bj , pj)]

(6.6)
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At each iteration t, we update the local variables, z, θ, b, and, p using closed form equations,

while the remaining variables, with the exception of φ are updated via stochastic gradient descent

via a decreasing step size (294). The complete conditional updates are summarized in Table 1. 1

Latent Variable Update Type Variational Update Variational Parameter
φk Closed η +

∑
J∈Jt

∑Nj
n=1 ψjm(k) ∗ 1(Xjm = m̃) ηkm̃

πk Closed α/K +
∑J νjk τk1

πk Closed α(1− 1/K) + J −
∑J νjk τk2

rk Closed γ0 +
∑J E[Ljk] rk1

rk Closed α−
∑J E[bjk] ln 1− pj rk2

pj Closed a0 +Nj ã

pj Closed b0 +
∑K E [rk]E [bjk] b̃

bjk Closed E[π̃k2](E[π̃k2] + 1− E[πk1])
−1 νjk

θjk Closed E [rk]E [bjk] +
∑M ψjm(k) ˜θjk1

θjk Closed E [ pj ] ˜θjk2
zjm Closed log θjk + log φkm ψjm

γ0 Gradient Ascent
∑K ∇γ0 E[p(γ0)] +

∑J∑K ∇γ0 E
[
p(L

′
k|Ljk, γ0

)
] δγ0

lk Gradient Ascent
∑K ∇l E [ln p(lk)] +

∑J∑K ∇l E [p(bjk|πk, hn, lk] δlk
hn Gradient Ascent

∑J ∇h E [ln p(hj)] +
∑J∑K ∇h E [p(bjk|πk, hn, lk] δhj

Ljk Gradient Ascent
∑J∑K ∇L E [p(Ljk|njk, bjk, rk] δLjk

TABLE VII: A summary of the update information for the Variational Parameters.

6.4 Experiments

To show the importance of modeling sparsity we consider two latent variable models as

comparisons:

1Note that E[π̃k2] = E[πk1](1− pj)E[rk].
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PRME is a hierarchical mixed membership model based on the Dirichlet Process and the

correlations are induced through neural networks with a Gaussian kernel, so

θjk ∼ Gamma(rk, f(hj , lk))

. Where rk is a stick-breaking Dirichlet Process instead of a Gamma Process as in CoZINB.

Prod-LDA (295) is an extension of LDA to deep generative models. It replaces the Gaussian

Prior in a VAE with a Dirichlet distributed prior to better learn the latent structure of text data.

To compare CoZINB’s latent factors with functional networks, we use the HotNet2 model.

Hotnet2 is used in a discriminate approach to compare functional networks with CoZINB.

We train two distinct linear support vector machine (SVM) classifiers (296) with the subnetworks

learned by Hotnet2 (279) and the factors from CoZINB as features. The SVMs are used to

predict the cancer type of a patient given the features. Additionally we compare the correlation

between functional networks and biological process and the correlation between factors from

CoZINB and biological processes

Architecture encoder and decoder follow simple multilayer preceptrons (MLP) with dimensions

shown in Table Table VIII. The hyperparameters for PRME and CoZINB are set as a = 1, b =

1, α = 1, η = 0.2, a0 = .001, b0 = .001, e0 = .001, f0 = .001, M = 21332, and a truncation level

K as 100 for all models. All gradient updates are done via Adam (297) with a learning rate of

1e− 3.
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We use the pan cancer dataset from the TCGA consisting of 10296 tumor samples (J) and

21332 distinct mutations (M). For training the models we select 70% of the dataset, setting

20% for validation of parameters, and 10% for testing. The only pre-processing we do is remove

’abParts,’ which is not represented in any database.

6.4.1 Comparison Metrics

Per-heldout-word perplexity

exp(
1

|XTest|
∑

m∈XTest

ln p(Xjm|Xj,T rain))

is used to measure the utilization of the latent dimensions of the two other latent variable models.

Precision@1 measures the influence of the factors on determining the correct count of one

distinct (@1) held-out mutation as TML increases. This is calculated by

1

N

N∑
1

δ( ˜Xjm = Xjm),

where ˜Xjm is the predict count of mutation m.

Specificity is used to compare the discriminative power of the functional networks and the

latent factors of CoZINB in predicting the correct cancer type Lung Adenocarcinoma (LUAD),

Colon Cancer (COAD), Ovarianc Cancer (READ), Stomach Cancer, and Breast Cancer (BRCA).

Spearman-rho is used to assess how well the factors produced from CoZINB match with

biological processes.
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Qualitatively we analyze the biological implications of the factors obtained by CoZINB for

a subset of the TCGA dataset in LUAD and COAD. We chose these subsets as there are an

established number of studies identifying co-occurring and mutual exclusive somatic mutations

within these cancers.

6.5 Results

6.5.1 Quantitative

Perplexity@H Encoder Sizes Decoder Sizes

Prod-LDA

@0 1986.30
@100 1091.33
@200 1297.19
@400 1691.76

[M × 100]
[100× 100]
[100× 100]

[100× 100]
[100× 100]
[100×M ]

PRME

@0 1151.96
@100 721.42
@200 997.19
@400 1091.76

[M × 1000]
[1000× 1000]
[1000x1000]
[1000× 40]

[40× 80]
[80× 80]
[80× 80]
[80× 2]

CoZINB

@0 779.69
@100 721.77
@200 699.35
@400 709.34

[M × 1000]
[1000× 1000]
[1000× 1000]
[1000× 40]

[40× 80]
[80× 80]
[80× 80]
[80× 2]

TABLE VIII: Perplexity of the held-out test Pan Cancer dataset and architecture of Prod-LDA,
PRME, and CoZINB. The @H indicates if the models were trained with only the top frequently
occurring mutations i.e., @100 is a training set with only top 100 frequently mutations, @0 = no
mutations were held out

As Table Table VIII shows, CoZINB performs better than PRME and Prod-LDA when there

are a excessive number of zeros in the dataset. Specifically, we show the importance of using
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a prior that can incorporate sparsity, by only using the top occurring mutations at levels of

100, 200, and 400 during. As we limit the amount of mutations the models need to learn, the

perplexity of all models begin to improve. The sparsity of mutations, therefore poses a significant

challenge in the learning paradigm. CoZINB achieved the best performance due to the use of

selector variables bjk. Specifically the selector variables assigns a finite number of latent factors

for each sample and an explicit zero mass to the rest. Any random signals then will receive

a zero probability, wheres the baseline models will assign some small probability to the latent

factor resulting in a poor local optima.

In Figure Figure 26 we observe the influence of the CoZINB shape and probability parameters.

The PRME limits the distribution of the factor score matrix, θjk, to the frequency of latent

factors. In comparison, CoZINB models the count data as the frequency of the latent factors in

rk and the probability of a count of somatic mutations in pj . More precisely, the expected count

of mutation m in sample j is proportional to pj
1−pj and the factor score matrix.

Our assertion that functional networks via Hotnet2 are not specific to cancer types and overfit

to the structure of interaction networks is shown in Figure Figure 27. There is a significant

variance in predicting cancer type when using the functional networks, especially for LUAD. The

poor performance for HotNet2 in LUAD is likely due to the similarities of mutation profiles of

LUAD and LUSC cancers, where LUSC generally has a higher TML. In contrast, CoZINB factors

preserved cancer type information, especially in BRCA where it achieves an average specificity

of 0.83. This suggests that interaction networks, while valuable, have much less influence in

determining the relationship between mutations.
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Figure 26: Precision@1 for CoZINB is higher than PRME as it takes account into the sparsity of
the dataset through the Negative-Binomial process

In Figure Figure 28 we show the interplay of latent factors in LUAD, COAD, READ, and

BRCA. Each bar represents how many times a latent factors occurs in a tissue. We can see there

are distinct factors that only correspond to specific cancers. We use the spearman-rho coefficient

to assess if the latent factors 11, 12, 39, 40, 47, and 52 from BRCA represent a biological process.

We compare it against the spearman-rho coefficient between functional networks of BRCA and

biological processes. Using the existing database provided by KEGG, CoZINB has a ρ of 0.67

for the latent factors of BRCA, while HotNet2 is significantly more correlated with a ρof 0.78.

This not unexpected since HotNet2 is built on the prior information from interaction networks.
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Figure 27: Number of times a factor occurs for all the patients with Lung Adenocarcinoma
(LUAD), Colon Cancer (COAD), OV (Ovarian Cancer), STAD (Stomach Cancer),and Breast
Cancer (BRCA).

A key insight from Figures Figure 26, Figure 27, and Figure 28 is that we observe CoZINB’s

robust grouping of frequently occurring mutations into a few factors. The frequently occurring

mutations incur a large penalty due to the ZINB process and the optimization procedure prevents

the probability mass of frequently occurring mutations to spread across factors. Thereby, the

remaining factors are more diverse and allow for better discriminative power between TML and

cancer type. We see this again in the case studies below, where frequently occurring mutations

are grouped into Factors 1-4.
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6.5.2 Lung Adenocarcinoma Case Study

A well studied mutual exclusive set of somatic mutations in LUAD are KRAS and EGFR

where in a significant fraction of LUAD patients, these two mutations are rarely if-ever observed

together in the same tumor (298). The general assumption of limited co-occurrence patterns

between EGFR and KRAS is that there is no selective pressure to favor cells with both mutations

over cells with a single mutation since both mutations activate similar biological processes This

behavior is reproduced in CoZINB, where in the most common factors 0-4, KRAS and EGFR

are at the opposite spectrum, with a mean distance of 7185.

The factors that are more unique to LUAD, Figure 28 in our model are identified by factors

27 with top 5 mutations as: [DNAH5 PCLO ANK3 TTN TP53BP2] and 37 which include the

mutations: [ USH2A TTN TSHZ2 DNAH3 MUC16]. To confirm this computationally, we use a

simple Random Forest (RF) for classification of cancer type across all patients using the counts

the top performing factors as features. With a significance of p < 0.05 RF gives the ranks factors

27 and 37 as the most important features for LUAD, thereby, verifying our model can also

implicitly determine patient cancer type.

Figure Figure 29 shows the unique factors in every patient with LUAD as TML increases.

Specifically LUAD with high TML will have some form of the background somatic mutations

captured in factors 0 to 3, however as, TML begins to increase, occurrences of factors that contain

mutually exclusive mutations will appear. Examining the top underlying somatic mutations of

Factor 30 (MUC16, FLG, LRP1B, ZFHX4 CSMD3, RYR) and Factor 1 (PIK3CA, PTEN, TP53,

MUC16, MAP3K1,), we observe mutual exclusivity of the MUC16 and TP53 genes as discussed
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in section 5.1. CoZINB also identifies the known pattern of mutual exclusivity of the EGFR,

KRAS, and BRAF genes in LUAD. CoZINB, additionally shows that Factor 7 with both KRAS

and BRAF are, however, co-occurring at higher TML. Cisowskia et al. (299) hypothesized that

a BRAF mutated lesion that confers an additional KRAS mutation hyperactivates a mutated

biological process that further promotes mutations on both BRAF and KRAS.

6.5.3 Colon Cancer Case Study

Figure Figure 28 shows Factor 6 is unique to the 408 COAD tumor samples within the

dataset, with top 5 mutations: [PMVK, BAZ2B, STARD3, SESTD1, KLHL4]. Using the same

methodology as before, a RF classifier ranks factors 6 and 41 as the most significant (p < .05)

features for determining if a patient has Colon Cancer. Moreover, these specific mutations are

also known to commonly occur together as passenger mutations (300).

COAD also has specific factors associated with increasing TML in Factors 8 and 21 (p < .01)

with mutations: [MUC16, DNAH5, TTN, PCLO, ANK3] and [BRCA2, CTNNAL1, DDX52,

NAH10, AK9]. Of note are the occurrences of MUC16, PCLO, and BRCA2, which are all

hypermutated in colon cancers. Similar to LUAD we can see Factor 8 is mutually exclusive with

factors that include the TP53 mutation with increasing TML.

6.6 Discussion and Future Work

The CoZINB, unlike existing methods for assessing co-occurring somatic mutations, is

unsupervised and infers a latent structure in a sparse and complex dataset. A major concept

shown in our model is that we can probabilistically capture mutual exclusivity between somatic

mutations as a non-linear transformation of multiple latent variables. We also show that to
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correctly represent cancer biology and patterns of mutual exclusivity and co-occurrance in somatic

mutations, a model needs to incorporate tumor mutational load, cancer type, and non-linear

mutation correlations as confounding variables.

Although, we argued against the use of interaction networks, they might have a place in a

semi-supervised framework. For example, it would be useful to understand the causal relationship

of somatic mutations and unaltered genes, analogous to link-prediction in community network

detection. This learning paradigm, however, is a complex combinatoral problem, considering the

possible exponential search space of somatic mutation interactions.
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Figure 28: Number of times a factor occurs for all the patients with Lung Adenocarcinoma
(LUAD), Colon Cancer (COAD), Renal Cancer (READ), and Breast Cancer (BRCA).
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Figure 29: A pattern of mutual exclusivity in LUAD. The X-axis represents a factor, while
the Y-axis the total number of mutations in a tumor. As tumor mutation load increases, more
unique factors appear such as Factor 7 which has both KRAS and BRAF which are known to be
mutually exclusive, but can co-occur together in some subtypes.
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Figure 30: A pattern of mutual exclusivity in COAD. The X-axis represents a factor, while the
Y-axis the total number of mutations in a tumor. As tumor mutation load increases, more unique
factors appear, specifically Factors 8 and 21 that contain MUC16 and BRCA2 respectively.



CHAPTER 7

CONCLUSIONS

In this dissertation, we applied the tools of machine learning and probabilistic latent variable

models to improve the characterization of cancerous lesions. The core challenge of modeling

cancerous lesions stems from heterogeneity. Within a patient population of the same cancer,

genetic heterogeneity leads to a unique genetic profile of the cancer for each patient. While,

clinicians and researchers have tackled the challenge of genetic heterogeneity with precision

medicine it is hampered by heterogeneity within a lesion itself. The underlying biology of a

lesion, where each cell potentially has a distinct mutation, is complex and it is often difficult to

identify the phenomena that influences the state of the lesion. This dissertation details the use

of machine learning and probabilistic latent variable models to probe patterns that account for

lesion heterogeneity for improved differentiation and characterization of lesions.

7.1 Contributions of Thesis

In Chapter 3, we motivated 3D shape features as a tool for exploiting the spatial distribution

of voxels in FDG PET/CT images for predicting a patient’s treatment response in metastatic

liver cancer. We posited that delineation of a lesion explained by the uptake of FDG is potentially

controlled by the structure of the lesion tissue, and that non-responding or responding parts

of a lesion share similar shape features across the patient population. Formally, structural

heterogeneity of lesion tissue is a consequence of lesion heterogeneity. With shape features that

144
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are invariant to deformations and transformations, we captured correspondences between similar

patients regardless of artifacts created by the imaging modality or the volume of a lesion. We

investigated the performance of shape features and showed that shape features offered better

characterization of a lesion’s treatment response in comparison to texture or radiological features.

We also showed that while invariance to volume improves correspondence between shape features,

volume is a critical adjunct measurement to differentiate between responders and non-responders

of treatment.

We continued with theme of the distribution of voxels in Chapter 4 by using a histogram to

study how the probabilistic distribution of voxels in DWI parameters can differentiate benign

and malignant lesions in breast cancer. The IWIM parameters Dp, f ,and Ddiff probe tissue

microstructure and vascularity. The CTRW parameters α and β probe the intra-cellular space

within a voxel, while Dm probes the cellular density within a tissue. These parameters therefore

exhibit aspects that reflect cancer progression such as cellular proliferation which has properties

of increased cell density and blood flow. Using the kurtosis, skewness, variance, mean, median,

interquartile, 10% quantile, 25% quantile, and 75% quantile values of the histogram for each

parameter, we determined which metric had the most significance in identifying lesion histology.

We presented that the Gradient Boosted Classifier with β (βmedian), skewness of β (βskewness),

mean of β (βmean), third quartile of f (fQ3) , third quartile of Ddiff (DQ3
diff ), kurtosis of Dperf

(Dkurtosis
perf ), third quartile of Dm (DQ3

pm), and median of Dm (Dmedian
m ) as features gave the best

performance to differentiate benign and malignant lesions in breast cancer with an F1-score of

0.872.
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We developed a deep generative latent variable model LLOST in Chapter 5 with two distinct

deep latent variable models (DLVM) to predict somatic mutations from the lesion’s 3D image.

One DLVM leverages point clouds to create modality invariance of lesion’s 3D image, while

retaining shape and geometrical properties to extract imaging features. The other DLVM used

a Negative Binomial likelihood to capture the sparsity that is present in somatic mutations.

The DLVMs are then coupled with an invertible neural network that allows for transfer from

one domain to the other domain with a Maximum Mean Discrepancy loss function. Moreover,

each DLVM uses Normalizing Flows as a prior to model the unique distributions of each of the

domains. We trained and tested LLOST on data from The Cancer Genomic Archive (TCGA)

and The Cancer Imaging Archive. Our results showed that we can predict somatic mutations

from a lesion’s 3D image even if our training dataset consists of a only a few cases a cancer due

to correspondence between the image features and co-occurrance patterns of somatic mutations.

We further demonstrate the versatility of LLOST by demonstrating the prediction of the entire

somatic mutation profile, in comparison to current approaches that predict only a specific subset

of somatic mutations.

Using a correlated Bayesian non-parametric model dubbed the CoZINB in Chapter 6, we

capture a complex web of variables that reflects the co-occurrence patterns of somatic mutations

in cancer. In particular by applying CoZINB to pan-cancer somatic mutation dataset from the

TCGA, we demonstrated that augmenting the latent spaces with a latent space that represented

non-linear correlations across a set of somatic mutations shows co-occurrence patterns of somatic

mutations are influenced by the total number of mutations (TML), biological processes, and
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mutational processes. We showed that it is important to take account genetic and lesion

heterogeneity across a patient population of cancer and restrict prior knowledge, otherwise a

model is prone to under-fitting and over generalizes co-occurring somatic mutations. Specifically,

CoZINB creates sets of co-occurring somatic mutations that are distinct to specific a cancer

type. We also discussed the biological interpretation of co-occurrence patterns with a perspective

from TML in lung (LUAD) and colon (COAD) adenocarcinoma. We showed that TP53 and

MUC16 genes in COAD are not mutually exclusive due to biologically redundancy, but due to

a increased mutational load (p − value < 0.01). Hence, if a treatment only targets the TP53

gene, the MUC16 mutation will still confer a selective advantage to cancer progression leading to

metastasis. IN LUAD, KRAS and BRAF are generally known to be mutually exclusive mutations

but we showed that both mutations co-occur at higher TML. The co-occurrence pattern is not

due to biological redundancy, but due to an underlying biological process suspected to be cell

cycle arrest and senescence, which leads to a hyper-mutations and increased TML.

7.2 Future Directions

There are a variety of challenges in characterizing cancerous lesions, and we discuss future

work that would seek to create a bridge between medical imaging and the genomic profile of a

patient.

Firstly, Chapters 3 and 4 introduced imaging biomarkers that correlated with patient

treatment response or lesion histology using a small dataset. Statistical power needs to be

increased by increasing the dataset size before considering these imaging biomarkers as an

effective diagnostic tool. Another goal is understand the biological mechanisms that influence the
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tissue microstructure that is reflected in the imaging features. This would require collaborations

of pathologists such that the lesion image is co-registered with a lesion’s tissue sample, which

is not trivial. Helfrich et al. (301) applied such a paradigm to show low apparent diffusion

coefficient (ADC) values reflect the dense cell growth pattern associated with high ratios of

malignant glands in prostate cancer.

The lesion point cloud to somatic mutations (LLOST) model of Chapter 5 could readily

be extended to capture other aspects of the genomic profile, such as DNA methylation and

gene expression. From an exploratory perspective, it would also be insightful to capture the

non-linear correlations between genetic data that influence the geometry and shape of a lesion.

For instance, a mutation in the EGFR gene often leads to low expression of various negative

regulators for EGFR (302). By extending LLOST to include gene expression data as another

domain, we would be able predict somatic mutations and gene expression data. The LLOST

framework could potentially benefit from a structured prior for the genetic data, such as the

one explored in Chapter 6 to evaluate lesion heterogeneity. We envision that this would directly

aid clinicians for determining patients that would not respond to treatment due to presence of

secondary mutations that also drive cancer.

There is a key trade-off in utilizing prior information in generative probabilistic latent variable

models. The sets of co-occurring mutations created by the Correlated Zero Inflated Negative

Binomial Process (CoZINB) in Chapter 6 do not always represent biological processes, which

impedes biological validation. Extending CoZINB to mix weak prior information such as an

interaction network, with the assumption that the interaction network is incomplete would
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possibly allow for a more biological interpretation of results. Such an approach falls under the

framework of semi-supervised machine learning which is an active area of development. For

example, CoZINB can be extended with the idea that somatic mutations appear as a graph with

evolving interactions between sets of somatic mutations as well as the arrival and departure

dynamics of individual somatic mutations in different sets during cancer progression.

The value of building machine learning models hinges on creating patterns within medical

images and genetic data and beyond that mirror the underlying biological process. This requires

the collaboration of multiple fields, which could occur as a result of recent advances in obtaining

and sharing of medical data. We therefore anticipate that machine learning and latent variable

models will provide new ways to ameliorate unique characterization of patients.
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Appendix A

COPYRIGHT OF CHAPTER 3

You may use the Final Published PDF (or Original Submission or Accepted Manuscript, if

preferred) in the following ways:

• In relation to your own teaching, provided that any electronic distribution maintains

restricted access

• To share on an individual basis with research colleagues, provided that such sharing is not

for commercial purposes

• In your dissertation or thesis, including where the dissertation or thesis will be posted in

any electronic Institutional Repository or database
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copyright line.
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If a substantial portion of the original paper is to be used, and if you are not the senior

author, also obtain the senior author’s approval.

Full-Text Article

If you are using the entire IEEE copyright owned article, the following IEEE copyright/

credit notice should be placed prominently in the references. Reprinted, with permission, from

[author names, paper title, IEEE publication title, and month/year of publication]

Only the accepted version of an IEEE copyrighted paper can be used when posting the paper

or your thesis on-line. In placing the thesis on the author’s university website, please display the

following message in a prominent place on the website:

In reference to IEEE copyrighted material which is used with permission in this thesis,

the IEEE does not endorse any of University of Illinois at Chicago’s products or services.
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