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SUMMARY

In recent years, digital media have been used as indisputable evidence of a crime, and it is therefore

important to ensure the reliability of these digital media. Unfortunately, digital media can be forged

by using the advent of powerful and easy-to-use media editing tools. A forged digital medium is often

eye-deceiving and appears in a way that is realistic, hence believable. A fundamental challenge is to

determine whether a digital medium is authentic or not. This task is particularly challenging due to the

lack of ground truth bases that can be used to verify the originality and integrity of digital media content.

In this thesis, we investigate digital media forgery, particularly image and video forgery, and propose

novel approaches to detect and localize digital media forgery.

The first part of the thesis is devoted to image forgery detection. We propose a novel approach

that uses dictionary learning and sparse coding to detect digital image forgery. We also propose a new

matching criterion that is performed using dictionary atoms instead of traditional matching criteria.

We conduct our experiments using two popular data sets to determine how effectively and efficiently

our approach detects digital image forgery compared to previous approaches. The experimental results

show that our approach outperforms state-of-the-art approaches and leads to robust results against com-

pression and rotation attacks. Furthermore, our approach detects forgery significantly faster than these

approaches since it uses a sparse representation that dramatically reduces dimensions of feature vectors.

The second part of the thesis is devoted to object removal video forgery detection. We propose a

novel approach based on sequential and patch analyses to detect object removal forgery and to localize

forged regions in videos. Sequential analysis is performed by modeling video sequences as stochas-

xiv



SUMMARY (Continued)

tic processes, where changes in the parameters of these processes are used to detect a video forgery.

Patch analysis is performed by modeling video sequences as a mixture model of normal and anomalous

patches, with the aim to separate these patches by identifying the distribution of each patch. We localize

forged regions by visualizing the movement of removed objects using anomalous patches. We conduct

our experiments at both pixel and video levels to determine the effectiveness and efficiency of our ap-

proach to detection of video forgery. The experimental results show that our approach achieves excellent

detection performance with low-computational complexity and leads to robust results for compressed

and low-resolution videos.

The third part of the thesis is devoted to facial manipulation detection. We propose a novel approach,

dubbed FaceMD, based on fusing three streams of convolutional neural networks to detect facial manip-

ulation. The proposed FaceMD incorporates spatiotemporal information by fusing video frames, motion

residuals, and 3D gradients to improve facial manipulation detection accuracy. We combine these three

streams using different fusion methods and places to best use this spatiotemporal information, hence

increasing detection performance. The experimental results show that the proposed FaceMD achieves

state-of-the-art accuracy using two different facial manipulation data sets.

xv



CHAPTER 1

INTRODUCTION

1.1 Introduction

Recently, digital media have become essential for security applications used to monitor many or-

ganizations and locations. Many legal institutions have also used digital media as legal evidence for

judgments. Therefore it is important to ensure the reliability of these digital media. Unfortunately,

digital media can be forged by using the advent of powerful and easy-to-use media editing tools. If a

digital medium is manipulated, it could lead to many critical problems that are related to public security

or legal evidence. This manipulated digital medium is often eye-deceiving and appears in a way that is

realistic and believable. Media are sometimes tricked and used fake digital media as if they are real. As

a result, digital media should be carefully analyzed to ensure their originality and integrity.

In general, digital media forgery can be divided into two categories: image and video forgeries.

Image forgery can also be divided into two categories: image splicing and image copy-move forgeries.

Image splicing is a process of combining regions from two or more images to form a forged image [4,5].

Image copy-move forgery is created by copying a part of an image and pasting this part in another region

of the same image [6]. This copy-move forgery is more common than splicing forgery because a forger

uses only one image to make a forgery.

Video forgery can be divided into three categories: frame-based forgery, object-based forgery, and

facial manipulation [7]. Frame-based forgery is created by deleting frames from a video scene, inserting

1
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frames into the video scene, or duplicating frames in the video scene. This forgery is easy to perform

by using any of the basic editing tools because a manipulator needs only to divide a video into frames to

create a video forgery. Object-based forgery is created by adding new moving objects to a video scene

or removing existing moving objects from the video scene. It is difficult to add moving objects without

leaving invisible traces since videos might expose different motions and illuminations. Hence, object-

based video forgery often refers to removing objects from a video. This forgery is more complicated

to perform compared to frame-based forgery because a forger needs to manipulate specific regions in

video frames while maintaining temporal consistency between these frames.

Facial manipulation can be divided into two categories: facial identity manipulation and facial ex-

pression manipulation. Facial identity manipulation is created by replacing a person’s face with another

person’s face. The most common facial identity manipulation approaches are FaceSwap [8] and Deep-

Fakes [9]. Facial expression manipulation is created by replacing a person’s expressions with another

person’s expressions while maintaining facial identity. The most common facial expression manipu-

lation approaches are Face2Face [10] and NeuralTextures [11]. FaceSwap and Face2Face approaches

are based on computer graphics techniques, whereas the DeepFakes and NeuralTextures approaches are

based on deep learning techniques.

Creating an automatic approach to detect digital media is a very difficult problem due to the lack

of truthful bases that can be used to verify the originality and integrity of digital media contents. A

forged digital medium may not only be attacked by one of digital media forgeries, but also could be

attacked by other complex processes, including compression, resizing, and rotation. These processes

make forgery detection more challenging. Furthermore, if a forger removes an object (e.g., person)
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from a video scene, it becomes difficult to detect forged regions due to the high correlation between

these forged regions and original regions. As a result, it is challenging to ensure the originality and

integrity of digital media content.

1.2 Research Contributions

We summarize the main contributions of this thesis as follows:

1. We propose a novel approach that uses dictionary learning and sparse coding to detect digital

image forgery (Aloraini et al., 2019 [1]).

2. We propose a novel approach based on sequential and patch analyses to detect object removal

forgery and localize forged regions in videos (Aloraini et al., 2019 [2], and Aloraini et al., 2020

[3]).

3. We propose a novel approach, dubbed FaceMD, based on fusing three streams of convolutional

neural networks to detect facial manipulation. This work is submitted to IEEE Transactions on

Circuits and Systems for Video Technology.

1.3 Thesis Outline

The rest of the thesis is organized as follows: In Chapter 2, we provide related works of detecting

image and video forgeries. Chapter 3 presents dictionary learning and sparse coding for digital image

forgery detection. Chapter 4 presents sequential and patch analyses for object removal video forgery

detection and localization. Chapter 5 presents FaceMD: convolutional neural network-based spatiotem-

poral fusion facial manipulation detection. Chapter 6 concludes this thesis and discusses possible future

works.



CHAPTER 2

RELATED WORKS

2.1 Image Forgery Detection

Most of the existing image splicing forgery detection approaches can be divided into four categories:

illumination-based, noise-based, camera-based, and feature-based. The illumination-based approaches

use inconsistencies of an illuminant color that is estimated from different regions of an image as evidence

of unoriginality [12, 13]. The noise-based approaches use local noise inconsistencies as an indication

of image forgery [14–16]. The camera-based approaches use artifacts that are generated from using

different camera lenses and sensors to detect forgery [17, 18]. The feature-based approaches start by

extracting specific features from an image and then use a classifier to classify between two classes:

authentic vs. forged [19, 20].

Current existing approaches for image copy-move forgery detection can be divided into two cate-

gories: block-based and keypoint-based approaches [21]. First, block-based approaches divide an image

into patches and then detect forgery by looking for similar patches. The representative approaches are

DCT [22], PCA [23], DWT with KPCA [24], and Zernike moment [25]. Second, keypoint-based ap-

proaches begin with extracting interest points (keypoints), such as edges and corners from an image,

and then finding similarities between these points [26]. The representative approaches are SIFT [27,28]

and SURF [29].

4
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Other works combine block-based with keypoint-based approaches to enhance detection results

[30–32]. Jian Li et al. introduced an expectation-maximization (EM) stage after segmenting an im-

age into patches to reduce transform estimation error between copy and original areas [30]. Although

this stage improves detection results, it imposes a high computational cost because of the EM algo-

rithm’s iterative procedure. Ferreira et al. combined different detector approaches and extended behav-

ior knowledge space representation fusion, to enhance detection accuracy [32]. However, this approach

is computationally expensive since it combines many detection approaches.

2.2 Video Forgery Detection

We divide this section into two parts. We first discuss related works of detecting frame-based and

object-based forgeries. Then, we present related works of facial manipulation and facial manipulation

detection.

2.2.1 Detection of Frame-Based and Object-Based Forgeries

Although several works have been conducted to review video forensic approaches [33–37], most

of these works focused on detecting frame-based forgery [38]. These works can be divided into three

categories: motion-based [39–43], correlation-based [44–47], and compression-based [48–52]. First,

motion-based approaches use inconsistencies of motion vectors as an evidence of a frame deletion or

insertion. A drawback of these approaches is that the detection accuracy decreases when compression

increases. Second, correlation-based approaches use high correlation between suspicious frames as an

indication of a frame duplication. These approaches fail to detect the frame duplication when the frame

duplication occurs in static background frames or performs in a different order. Third, compression-

based approaches declare video forgery by detecting double compression. These approaches are not
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applicable when a complete group of pictures (GOP) is removed, or recompression is occurred without

video tampering.

Only a few works have been conducted to detect object-based forgery compared to frame-based

forgery [53]. These works tackle two types of object-based forgery: object insertion video forgery

and object removal video forgery. The following works are proposed to detect object insertion video

forgery [54–60]. Some approaches use correlation between blurring features [54], or edge features [55],

to detect blue screen compositing. The forgery is detected by examining changes in correlation patterns

between these features. These approaches fail to detect video forgery if the background of a video is

green or blue. Other approaches use DCT coefficients [56], or luminance and contrast [58], as local

features to measure the similarity between foreground and background. The forgery is detected by

identifying inconsistencies in these features between foreground and background. A limitation of these

approaches is that the detection accuracy decreases when the bit rate of videos decreases. Conotter et

al. proposed an approach that uses projectile motion to identify falsified objects [59]. D’Avino et al.

presented an approach that uses deep learning to learn an intrinsic model of an original video, where a

video is classified as forged if it does not fit the learned model [60].

Object removal video forgery is achieved by using inpainting algorithms [61–63]. The following

works are proposed to detect object removal video forgery [64–72]. Zhang et al. developed an approach

that uses ghost shadow artifact to identify inconsistencies between foreground mosaic and trajectory

of moving foreground [64]. Hsu et al. introduced an approach that uses temporal correlation of noise

residues to identify irregular changes in the correlation of noise residues throughout video frames [65].

A similar approach uses correlation of Hessian matrices to detect object removal forgery [67]. Richao
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et al. presented an approach that uses object contour features with a support vector machine (SVM) al-

gorithm to detect removed moving objects with static background [69]. Another approach uses stegan-

alytic features, which are extracted from motion residual matrices, with ensemble classifiers to classify

a frame into three categories: pristine, forged, and double compressed [70]. Lichao et al presented an

approach based on compressive sensing to detect removed moving objects with static background [71].

All of the above works can detect video forgery, but they cannot localize forged regions in videos. Lin et

al. introduced an approach based on spatiotemporal coherence analysis to detect and localize tampered

regions [72]. A limitation of this approach is that detection performance drops significantly when tam-

pered videos are saved in compressed formats. Deep Convolutional Neural Networks (CNNs) require

large data sets for training to achieve excellent results [37]. However, there are a few object removal

forgery data sets that are publicly available [36,37]. As a result, CNNs are not ideal to tackle the object

removal forgery problem.

2.2.2 Facial Manipulation and Facial Manipulation Detection

Facial manipulation approaches are divided into two categories: computer graphics-based and learning-

based approaches [73–75]. Computer graphics-based approaches reconstruct and track a 3D model of

source and target faces, and transfer identity or expressions from the target face to the source face [76].

The following works are based on computer graphics to create facial manipulation videos [10, 77–79].

Dale et al. used a 3D multilinear model to create face swap manipulation by replacing the source face

with the target face [77]. Garrido et al. proposed a 2D warping strategy to swap facial identity while

keeping the original expressions [78]. Thies et al. introduced the first real-time facial expression ma-
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nipulation using a consumer-level RGB-D camera [79]. Thies et al. proposed Face2Face that creates an

advanced real-time facial reenactment of monocular videos [10].

Learning-based approaches track source and target faces and then use deep convolutional neural

networks to swap facial identity or expression [74]. The following works are based on deep learn-

ing [9, 11, 80, 81]. DeepFakes introduced using two autoencoders with a shared encoder to create facial

identity manipulation videos [9]. Doublicat is a similar approach that uses Generative Adversarial Net-

work (GAN) to perform face swap manipulation [80]. Kim et al. proposed an approach that uses a

generative neural network with a space-time architecture to replace a 3D head position, face expression,

and eye blinking [81]. Thies et al. developed NeuralTextures that uses a rendering network with a U-Net

architecture to create facial expression manipulation [11].

Computer graphics-based and learning-based approaches create independent facial manipulation

frames, hence this facial manipulation causes spatiotemporal artifacts. In particular, these approaches

start by dividing source and target videos into sequences of video frames. Then, they transfer facial

identity or expression from each frame in the source video to the corresponding frame in the target

video. Finally, they combine these frames to form a facial manipulation video. As a result, this video

manipulation would cause temporal inconsistency between adjacent frames because video frames are

generated independently. Furthermore, This video manipulation could produce edges at unexpected

edge regions due to different sizes of different faces, or it couldn’t produce edges at expected edge

regions due to blurring artifacts. Therefore, this video manipulation causes spatial artifacts in addition

to temporal artifacts.
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Figure 1: Current facial manipulation detection pipeline.

Some facial manipulation detection approaches use specific artifacts as an indication for manipula-

tion [13, 82–88]. Agarwal et al. proposed an approach that uses facial action units to detect deepfake

manipulation of world leaders [82]. Yang et al. developed an approach that uses inconsistencies in a

3D head pose estimation to detect face swap manipulation [83]. Tien et al. introduced an approach

that uses facial expressions variation to detect computer-generated faces [84]. Carvalho et al. used in-

consistencies in the illumination map to detect facial identity manipulation [13, 85]. Li et al. used eye

blinking to detect face swap manipulation and showed that the first generation of fake faces either didn’t

blink or didn’t blink at the expected frequency [88]. All of these works are now less effective because

these works detect specific artifacts that have been solved in the next generation of facial manipulation

approaches.

Other facial manipulation detection approaches propose a deep neural network that uses general

artifacts as an indication for manipulation [89–96]. Current facial manipulation detection approaches

follow the detection pipeline that is shown in Fig.1. These approaches start by tracking an input face,

extracting face region, followed by a learned classification network that predicts whether the input face



10

is original or fake. Afchar et al. proposed MesoNet that is inspired by Inception [97] to detect both

identity and expression manipulation [89]. David et al. combined a convolutional neural network with

a Long Short Term Memory network to detect deepfake manipulation [90]. Zhou et al. proposed two-

stream neural networks that only use spatial information by combining face classification stream with

patch triplets stream to ensure patches of an image are close in the embedding space [91]. Raghavendra

et al. used VGG19 and AlexNet networks to detect morphed face images [92]. Li et al. introduced

a network to detect wrapping artifacts of deepfake manipulation [95]. Stehouwer et al. used a deep

convolutional neural network with an attention map to detect facial manipulation [96]. All of these

works are not robust against simple attacks such as additive noise, compression, and resizing [76].

However, these attacks are common in real-world scenarios; for example, a shared video in social media

is usually compressed.



CHAPTER 3

DICTIONARY LEARNING AND SPARSE CODING FOR DIGITAL IMAGE

FORGERY DETECTION

Parts of this chapter have been presented in (Aloraini et al., [1]). Copyright c© IS&T Elec-
tronic Imaging, Media Watermarking, Security, and Forensics 2019.

In this chapter, we investigate the image copy-move forgery problem, i.e., a part of the image is

copied and pasted in another part of the same image to add or hide objects. Two examples of image

copy-move forgery are illustrated in Fig.2. We also investigate the computational cost and propose a

novel approach that is based on a sparse representation of keypoint descriptors to reduce the dimen-

sionality of these descriptors and to remove noisy features from them. We utilize sparse coding,i.e.,

an unsupervised algorithm aim to learn set of overcomplete basis vectors (atoms) to represent data ef-

ficiently. We use sparse coding instead of traditional dimension reduction techniques such as PCA for

two main reasons. First, sparse coding is able to learn overcomplete atoms and doesn’t require these

atoms to be orthogonal. Second, sparse coding has been widely used in image classification and pattern

recognition and it has achieved promising performance. Thus, it is suitable for image forgery problem

since it is binary classification, i.e., tampered vs. authentic image.

3.1 Contributions

The contributions of this chapter can be summarized as follows:

11
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Figure 2: Two examples of image copy-move forgery. Two horses are cloned on the left image and one car is
cloned on the right image. Cloned sections are squared in different colors.

1. We propose a novel matching criterion based on dictionary atoms that results in a more effective

and efficient forgery detection approach when compared to the original SIFT matching model

[27].

2. Our approach is robust against compressions and rotations attacks since it uses sparse representa-

tions that better fit features’ descriptors of an image.

3. Our approach is scalable since its computational complexity is significantly reduced by using

low-dimensional feature vectors of an image.

The rest of this chapter is organized as follows: Our proposed approach is described in Sec. 3.2.

Feature extraction is presented in Sec. 3.2.1. Sparse coding is presented in Sec. 3.2.2. The sparse

matching is explained in Sec. 3.2.3. Geometric transformation estimation is presented in Sec. 3.2.4.

The experimental results are provided in Sec. 3.3.
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Figure 3: Flowchart of the proposed approach.

3.2 Image Copy-Move Forgery Detection

We briefly describe our approach in the following steps, as illustrated in Fig.3. First, we extract

Scale Invariant Feature Transform (SIFT) [98] from an image. Second, K means-Singular Value De-

composition algorithm (K- SVD) [99] is utilized to obtain a sparse representation of SIFT descriptors.

Third, the matching process is performed by finding similarities between these sparse features. Next, ag-

glomerative hierarchical clustering [100] is applied on spatial locations of the matched points to identify

possible cloned areas. Finally, geometric transformation estimation is obtained between these cloned

areas by using RANdom SAmple Consensus algorithm (RANSAC) [101]. An image is forged if a

uniform transformation matrix can be obtained between any two matched areas.

3.2.1 Features Extraction

A scale invariant feature transform algorithm (SIFT) [98] is used for keypoint detection and de-

scription since SIFT is more robust against scaling, rotating, and illumination. The SIFT algorithm

starts with generating 4 octaves (i.e., images with the same size) each of which has 5 images with 5 dif-

ferent blur levels(scales). In each octave, any two consecutive images are subtracted to obtain Difference
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of Gaussian (DoG) images. Then, maxima and minima (i.e., keypoints) in DoG images are detected by

comparing neighboring pixels in the same scale and neighboring scales. If any keypoint has an intensity

below a predefined threshold or lies along an edge, it is rejected. Subsequently, a 16× 16 window is

taken around the keypoint and broken into a 4×4 window. Then, gradient magnitudes and orientations

are calculated to generate an 8-bin histogram, which is used to form 128(4×4×8) elements as a feature

vector,i.e., descriptor.

3.2.2 Sparse Coding

Sparse representation is a method of representing data via a linear combination of dictionary atoms

(columns). Given Y ∈ R128×N as SIFT descriptors of an image,the goal is to find a dictionary with K

atoms D ∈ R128×K and a representation X ∈ RK×N such that Y ≈ DX and X is sparse enough ( 3.1). We

use an adaptive dictionary learning method called K-SVD [99] that has two stages: sparse coding and

dictionary update. First, the K-SVD starts with initializing random dictionary D. Then, during sparse

coding stage, it finds the best sparse representations X using an orthogonal matching pursuit algorithm

[102], given the current dictionary D. Next, during dictionary update stage, it updates dictionary atoms

one at a time by using the current sparse representations X. Then, it iterates until the algorithm converges

or reaches a predefined number of iterations.

min
D,X
{‖Y −DX‖2

F} s.t. ∀i,‖xi‖0 ≤ S (3.1)

F denotes the Frobenius norm, and ‖ · ‖0 is the L 0 pseudo-norm that counts the non-zero entries.

By using the K-SVD algorithm, we approximate SIFT features (128 elements) based on just 6

dictionary atoms
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3.2.3 Sparse Matching

We have experimentally observed that similar keypoints tend to use the same dictionary atoms in

their sparse representations but with different sparse coefficients. For this reason, we propose a novel

matching criterion to detect multiple copies of the same features (keypoints), where a keypoint matches

other keypoints if their sparse representations are obtained by using the same dictionary atoms. In other

words, if ai is a vector that locates non zero entries in xi ∈ RK which is a sparse representation of a

keypoint descriptor yi ∈ R128 for a keypoint i, then the keypoint i matches another keypoint j if and

only if ai = a j. We obtain the set of matched keypoints by iterating over sparse representations of the

keypoints descriptors in an image.

3.2.4 Geometric Transformation Estimation

Given the matched keypoints in an image, we employ agglomerative hierarchical clustering [100]

on spatial locations of the keypoints. Hierarchical clustering begins with one keypoint in each cluster,

then it combines the closest pair of clusters into a single cluster, and computes the distances between the

new cluster and all the other clusters. The clustering process is repeated until a threshold condition is

reached to segregate original regions from copy regions. After clustering is performed, we estimate the

affine transformation matrix H between any pair of matched clusters. Let xi and x′i be the homogenous

coordinates of the matched keypoints in the copy region and original region, respectively. Then the

geometric relationship between them is defined as follows:

x′i = Hxi (3.2)
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Considering the existence of outliers (mismatched keypoints), we perform matrix estimation using the

RANSAC algorithm [101]. The algorithm estimates the matrix H by randomly selecting three matched

pairs, and then it transforms all other points using H. A pair of matched keypoints is an inlier if the

distance between the keypoint and the corresponding transformed one is less than a predefined threshold.

The process is repeated until a predefined number of iterations is achieved. Finally, the estimated matrix

H, which results in a large number of inliers, is elected.

3.3 Experimental results

We conduct our experiments on two public data sets. The first data set is the Image Manipulation

Data set (IMD) [21], which consists of 48 original images, 48 plain CMF images, and 1392 images that

have a single attack, i.e., rotation or noise addition, or JPEG compression. The second data set is MICC-

F600 [27], which contains 440 original images and 160 forged images. The 160 forged images consist

of 40 images that have one duplicated region, 40 images that have two or three duplicated regions,

40 images that have one duplicated region with 30◦ rotations, and 40 images that have one duplicated

region with 30◦ rotations and 120% scaling. We have chosen these two data sets because they are used

in the validation of a recent work [30] and according to Amerini et al. [27], the MICC-F600 data set is

the most challenging data set among the other data sets that were constructed by them.

3.3.1 Evaluation Metric

By defining TP as the correctly detected forged images, FP as original images that have been incor-

rectly detected as forged and FN as falsely missed forged images, we compute Precision, Recall, and

F1 as follows:
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Precision =
TP

TP +FP
(3.3)

Recall =
TP

TP +FN
(3.4)

F1 = 2× Precision×Recall
Presision+Recall

(3.5)

Precision shows the probability that a detected forgery is truly a forgery, Recall indicates the probability

that a forged image is detected, and F1 score combines precision and recall in a single value.

3.3.2 Comparison of Detection Results

We compare our approach with three different approaches on the two data sets. One recent work,

Segmented SIFT [30], which was introduced briefly in the first section, in addition to G2NN-SIFT

[27], which handles multiple matches using g2NN, are selected for comparison. We also impliment

PCA-SIFT [103] that reduces the dimension of the feature vector to 20 elements. We have chosen

these approaches to compare with a recent work, SIFT-based approach, and dimensionality reduction

approach. All these approaches including the proposed approach are implemented on a machine with

an Intel Core i7 with 8-GB RAM. Readers are referred to [104] for more details about our implantation

and source code.

3.3.3 Sparsity Settings

We randomly choose 10% of the data sets to tune the sparsity parameter of our test to achieve the

lowest possible feature dimension that leads to high performance. We empirically choose the dictionary

with 512 atoms. The receiver operating characteristic curve that is illustrated in Fig.4 suggested that
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Figure 4: ROC curve: True positive vs. false positive rates for different sparsity parameter settings using a
dictionary with 512 atoms.

the best tradeoff between the true positive and false positive rates can be achieved when feature size (S)

equals 6.

3.3.4 Results on IMD Data Set

First, we evaluate the ability of our approach and the other approaches to detect plain CMF, i.e., a

part of the image is copied and pasted in another part of the same image without any attack. An example

of detection results on an image is shown in Fig.5. The detection results and average computation
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(a) (b)

(c) (d)

Figure 5: Detection results on an image from IMD data set. (a) Forged image with three tampered regions. (b)
Detection result of G2NN-SIFT and PCA-SIFT. (c) Detection result of Segmented SIFT. (d) Detection result of
the proposed approach.

times in seconds are shown in Table I. We observe that our approach not only outperforms the other

approaches but also results in low computational time due to its low-dimensional feature vectors, i.e., 6.

Next, we evaluate the detection ability of our approach and the other approaches against three dif-

ferent attacks, including noise addition, JPEG compression, and rotation. The experimental results are
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TABLE I: COMPARISON RESULTS OF PLAIN CMF DETECTION AND AVERAGE COMPUTATION
TIMES PER IMAGE IN SECONDS FOR OUR PROPOSED APPROACH AND OTHER APPROACHES

USING IMD DATA SET.

Method Precision (%) Recall (%) F1 Time (s)
G2NN-SIFT [27] 88.4 79.2 83.5 610
PCA-SIFT [103] 81.8 75.0 78.3 214
Segmented SIFT [30] 70.2 83.3 76.2 719
Proposed 93.6 91.7 92.6 146

shown in Fig.6, which summarizes the detection results for different attacks. We observe that our ap-

proach drops linearly when large amounts of noise are added. However, our approach is more robust

against JPEG compression and rotation, and it outperforms the other approaches.

TABLE II: COMPARISON RESULTS FOR OUR PROPOSED APPROACH AND OTHER APPROACHES
USING MICC-F600 DATA SET.

Method Precision (%) Recall (%) F1
G2NN-SIFT [27] 84.6 69.0 76.0
PCA-SIFT [103] 83.2 66.3 73.8
Segmented SIFT [30] 86.4 88.1 87.2
Proposed 94.7 94.4 94.5
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Figure 6: Performance comparison between our approach and the other approaches against three different attacks,
which are adding noise, JPEG compression, and rotations. The three columns are corresponding to Precision,
Recall, and F1 results, respectively. The three rows are corresponding to adding noise, JPEG compression, and
rotations, respectively.

3.3.5 Results on MICC-F600 Data Set

We select this data set to evaluate the detection ability of our approach against combined attacks

and large rotation angle, i.e., 30◦. The detection results are shown in Table II in terms of Precision,
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Recall, and F1 , which suggests that our approach achieves superior performance compared to the other

approaches. The average computation time is not reported in this table since the sizes of the images in

the two data sets are the same.



CHAPTER 4

SEQUENTIAL AND PATCH ANALYSES FOR OBJECT REMOVAL VIDEO

FORGERY DETECTION AND LOCALIZATION

Parts of this chapter have been presented in (Aloraini et al., 2019 [2], and Aloraini et al., 2020
[3]). Copyright c© IS&T Electronic Imaging, Media Watermarking, Security, and Forensics
2019. Copyright c© IEEE Transactions on Circuits and Systems for Video Technology 2020.

In this chapter, we study the object-based video forgery problem, particularly removing objects from

a video scene, as shown in Fig.7, and propose a novel approach based on sequential and patch analyses to

detect object removal forgery and localize forged regions in videos. We perform sequential analysis by

modeling video sequences as stochastic processes, where changes in the parameters of these processes

indicate a video forgery. Patch analysis is performed by modeling video sequences as a mixture model

of normal and anomalous patches, with the aim to separate these patches by identifying the distribution

of each patch. Finally, we localize forged regions in videos by visualizing a movement of removed

objects using anomalous patches.

4.1 Contributions

The contributions of this chapter can be summarized as follows:

1. We address a new and challenging object removal forgery problem when compared to frame-

based forgery problem.

2. We model video sequences as multivariate processes to improve the detection accuracy.

23
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Figure 7: An example of object removal video forgery: Images on the top row indicate frames from the original
video; Images on the bottom row indicate corresponding frames from the tampered video where the man in the
red box has been removed from the scene.

3. We model our patch analysis approach as a mixture model of normal and anomalous patches to

further improve the detection accuracy.

4. We use the multivariate sequential and patch analyses to exponentially reduce the computational

complexity. As a result, our approach is scalable.

5. We conduct our experiments at pixel and video levels. Hence, we further localize forged regions

in videos.

The rest of this chapter is organized as follows: Our data model is explained in Sec. 4.2. Our pro-

posed approach is described in Sec. 4.3. The spatiotemporal filter is presented in Sec. 4.3.1. Univariate

and multivariate sequential analyses are presented in Sec. 4.3.2. Our patch analysis approach is ex-

plained in Sec. 4.3.3. Object removal visualization is described in Sec. 4.3.4. The experimental results

are discussed in Sec. 4.4.
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4.2 Data Model

We propose an approach based on sequential and patch analyses. Our approach requires the follow-

ing assumptions about video sequences. First, video sequences are assumed to be captured by a static

camera. Our approach aims to detect changes between video frames due to objects removal. When a

camera is moving, it will generate video frames with different backgrounds. Thus, it would be hard to

distinguish between changes due to movement of a camera or objects removal. Therefore, our approach

mainly focuses on surveillance video clips where the camera is static. Second, video frames must be

well-registered into a common reference frame prior to performing video forgery detection. We assume

well-registered frames to eliminate changes due to non-registered frames.

In general, a pixel’s intensity is corrupted by three sources of additive noise: photon counting noise,

readout noise, and quantization noise [105, 106]. Photon counting noise comes from a discrete random

number of photons striking the sensor and is modeled as a Poisson process. Readout noise is produced

by the amplifier and is modeled as a Gaussian process. Quantization noise results from the selection

of discrete pixel values and is modeled as a uniform distribution. It is extremely difficult to find the

exact distribution of the additive noise that is added to pixel intensities [107]. Many previous works

approximate this additive noise to be normally distributed [108]. Therefore, we assume pixels’ values

are drawn from a normal distribution, independent and identically distributed, and the variance remains

constant throughout video frames while the mean is dependent on the scene.

The following notation and definitions will be used throughout this chapter. Scalars are written

as lowercase letters, vectors are written as underlined lowercase letters, and matrices are written as

uppercase letters. A block is defined as a group of spatially adjacent pixels, and it is described by a
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Figure 8: A flowchart of the proposed approach to object removal video forgery detection and localization.

feature vector. A patch is defined as a set of temporally adjacent blocks, and it is described by a set of

feature vectors.

4.3 Object Removal Video Forgery Detection and Localization

We briefly describe our approach in the following steps, as illustrated in Fig.8. First, we apply spatial

decomposition (i.e., Laplacian pyramid) to the video frames, followed by temporal high pass filter to

detect edges spatially and highlight variations temporally. Then, we perform sequential analysis by

modeling video sequences as stochastic processes, where changes in the parameters of these processes

indicate a video forgery. If the patch analysis is performed, we model video sequences as a mixture

model of normal and anomalous patches. These patches are subsequently separated by identifying if

they have been generated by the normal or anomalous distribution. Finally, we localize forged regions

by visualizing a movement of removed objects using anomalous patches.
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Figure 9: An overview of the proposed spatiotemporal filter.

4.3.1 Spatiotemporal Filter

We apply the spatiotemporal filter, which is presented in Fig.9, for two reasons. First, we use the

spatiotemporal filter to expose traces (edges) that are left at a removed object boundary due to structure

inpainting, texture inpainting, or a combination of the two. Second, we apply the spatiotemporal filter

to zero out pixels’ values at static regions, as shown in Fig.10. As a result, this filtering process enables

sequential and patch analyses to accurately detect changes (i.e., anomalous) in forged videos.

Since the size of the removed objects is unknown, a video is divided into frames, and Laplacian

pyramid decomposition [109] (spatial filtering) is applied to each frame to detect edges in all possible

scales. The Laplacian pyramid decomposition subtracts each frame from its blurred version to form a

video scale, down-samples each frame by half, and repeats this process until the minimum resolution of

a frame is reached. This process constructs multiscale videos that represent edges at different scales, as

shown in Fig.9. We perform temporal filtering at each scale by using the pixels’ values throughout time

in a frequency band and apply a high-pass filter to remove static edges.
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(a) (b)

(c) (d)

Figure 10: Intensity traces through video frames for (a) an authentic pixel before using the spatiotemporal filter
(b) a forged pixel before using the spatiotemporal filter (c) an authentic pixel after using the spatiotemporal filter
(d) a forged pixel after using the spatiotemporal filter.

4.3.2 Sequential Analysis

The spatiotemporal filter results in multiscale videos as shown in Fig.9, hence applying sequential

analysis in each scale would result in very high computation time. Therefore, we first reconstruct the

Laplacian pyramid to transfer multiscale videos to one video scale (i.e., the input video scale) [109].

The Laplacian pyramid reconstruction upsamples and blurs each frame in the lowest scale of Laplacian

pyramid decomposition, adds the upsampled and blurred version to the next lowest scale to obtain the

approximation of each frame at the next scale, and repeats this process until the input video scale is
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reached. Then, we apply the following univariate or multivariate sequential analysis to the input video

scale.

4.3.2.1 Univariate Analysis

We model the object removal forgery as an additive change in the mean value of probability density

function associated with a pixel sequence in a video. We begin the analysis by introducing a null

hypothesis H0 that states there is no change in a pixel’s mean value, and an alternative hypothesis H1

that states there are changes in a pixel’s mean value. The mean before the change µ0 is assumed to be

known, and the mean after the change µ1 is assumed to be completely unknown but different than µ0.

We formulate the null and alternative hypotheses as follows:

H0 = {µ : µ = µ0,n < t}

H1 = {µ : µ 6= µ0,n≥ t}
(4.1)

where n is the frame index, and t is the true change time. Based on our assumption that pixels’ values

are drawn from a normal distribution, independent and identically distributed as discussed in Sec. 4.2,

we form the null and alternative likelihoods as follows:

`H0
k (xi) = p(xk, ...,xn|H0) =

1√
2πσ2

n

∏
i=k

e
−(xi−µ0)

2

2σ2 (4.2)

`H1
k (xi) = sup

µ1

p(xk, ...,xn|H1) = sup
µ1

1√
2πσ2

n

∏
i=k

e
−(xi−µ1)

2

2σ2 (4.3)
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where xi represents values of a pixel throughout video frames; µi and σ2 are the mean and variance of

the pixel, respectively. Using (4.2) and (4.3), we form log-likelihood ratio as follows:

Λ
n
k = ln

supµ1
p(xk, ...,xn|H1)

p(xk, ...,xn|H0)
(4.4)

= ln
supµ1 ∏

n
i=k e

−(xi−µ1)
2

2σ2

∏
n
i=k e

−(xi−µ0)
2

2σ2

(4.5)

The unknown mean is replaced by its maximum likelihood estimate (MLE) as follows:

x̂n
k =

1
n− k+1

n

∑
i=k

xi. (4.6)

Then, the log-likelihood ratio becomes

Λ
n
k =

1
2σ2

[
n

∑
i=k

(xi−µ0)
2−

n

∑
i=k

(xi− x̂n
k)

2

]
(4.7)

=
1

2σ2

n

∑
i=k

[
(xi−µ0)

2− (xi− x̂n
k)

2
]

(4.8)

=
n

∑
i=k

[
(x̂n

k−µ0)xi

σ2 +
µ2

0 − x̂n2

k
2σ2

]
. (4.9)

Then, the generalized log-likelihood gn
k and alarm detection τ become

gn
k = max

1≤k≤n
Λ

n
k

(4.10)
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τ = min{n≥ 1 : gn
k ≥ hu}. (4.11)

In (4.11), τ is a frame index where a change occurs, n is the discrete time index (frame index), and

hu is a threshold.

Let us summarize the univariate analysis. First, µ0 and σ2 are assumed to be known. In fact, they

can be estimated using a pixel’s values throughout all video frames. x̂n
k is calculated sequentially by

using all previous values of a pixel as described in (4.6). Finally, a change is declared if gn
k exceeds a

certain threshold hu and this change is located at frame index τ .

4.3.2.2 Multivariate Analysis

We model the object removal forgery as an additive change in the mean parameter of probabil-

ity density function associated with feature vectors that are extracted from dividing video frames into

distinct blocks. We assume feature vectors are drawn from a Gaussian distribution, independent and

identically distributed, with the following probability density function

p(y
i
) =

1√
(2π)r|Σ|

e−
1
2(yi−µ)

T
Σ−1(yi−µ) (4.12)

where µ and Σ are the mean vector and covariance matrix of feature vectors, respectively; r is the

dimension of the feature vector.

We begin with a general case [110] where the mean vector before the change µ0 is limited by an

upper bound, and mean vector after the change µ1 is limited by a lower bound. Then, the null and

alternative hypotheses become
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H0 = {µ : ||µ−µ0||2Σ ≤ a2,n < t}

H1 = {µ : ||µ−µ0||2Σ ≥ b2,n≥ t}
(4.13)

where ||µ − µ0||2Σ =
(

µ−µ0

)T
Σ−1

(
µ−µ0

)
; t is the true change time; n is the frame index; a < b.

Then, the log-likelihood ratio becomes

Λ
n
k = ln

sup||µ−µ0||Σ≥b ∏
n
i=k p(y

i
)

sup||µ−µ0||Σ≤a ∏
n
i=k p(y

i
)

(4.14)

= ln
sup||µ−µ0||Σ≥b e−

1
2 ∑

n
i=k(yi−µ)

T
Σ−1(yi−µ)

sup||µ−µ0||Σ≤a e−
1
2 ∑

n
i=k(yi−µ)

T
Σ−1(yi−µ)

(4.15)

= sup
||µ−µ0||Σ≥b

{
− 1

2

n

∑
i=k

(
y

i
−µ

)T
Σ
−1
(

y
i
−µ

)}
− sup
||µ−µ0||Σ≤a

{
− 1

2

n

∑
i=k

(
y

i
−µ

)T
Σ
−1
(

y
i
−µ

)}
.

(4.16)

The unknown parameter is replaced by its maximum likelihood estimate (MLE) as follows:

ŷn
k
=

1
n− k+1

n

∑
i=k

y
i
. (4.17)

Then, the log-likelihood ratio becomes
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2
n− k+1

Λ
n
k =



−(Zn
k −b)2, Zn

k < a

−(Zn
k −b)2 +(Zn

k −a)2, a≤ Zn
k ≤ b

(Zn
k −a)2, Zn

k > b

(4.18)

where Zn
k is given by

Zn
k = [

(
ŷn

k
−µ0

)T
Σ
−1
(

ŷn
k
−µ0

)
]1/2. (4.19)

We set a = b = 0 in (4.18) because we are interested in the case where the mean vector before the

change µ0 is assumed to be known and the mean vector after the change µ1 is assumed to be completely

unknown but different than µ0. Then, the generalized log-likelihood gn
k and alarm detection τ become

gn
k = max

1≤k≤n

{n− k+1
2

(Zn
k )

2} (4.20)

τ = min{n≥ 1 : gn
k ≥ hm}. (4.21)

Let us summarize the multivariate analysis. First, µ0 and Σ are assumed to be known. In fact, they

can be estimated using feature vectors of a particular block throughout all video frames. ŷn
k

and Zn
k

are calculated sequentially by using all previous feature vectors of a particular block as described in
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(4.17) and (4.19), respectively. Finally, a change is declared if gn
k exceeds a certain threshold hm and this

change is located at frame index τ .

The current formulation of univariate and multivariate analyses enables us to detect only a single

change in the whole time (frame) series. However, we need to detect multiple changes, hence we use

binary segmentation [111]. Binary segmentation starts by detecting a single change in the complete time

series. If there is a change, it splits the time series around this change into two sub-series and repeats

this process until no changes are detected. By using binary segmentation, the time series that represents

video frames will be divided into segments.

A segment is considered as a forged segment (removed object segment) if two conditions are met:

(1) the mean of this segment exceeds a certain threshold to identify whether this segment belongs to a

background or a removed object, and (2) the length of this segment is less than a certain threshold based

on our definition that removed objects are moving as discussed in Chapter 1.

4.3.3 Patch Analysis

We model the object removal forgery as a mixture model of normal and anomalous patches. A

patch is defined as a set of temporally adjacent blocks, and it is described by a set of feature vectors.

We assume that all feature vectors in a patch are either normal or anomalous. Some patches that are

located at the border between forged and original regions may contain feature vectors that belong to both

normal and anomalous sets. However, these patches are few because forged regions are generally small

compared to the original regions in a video. Hence, we neglect patches at the border and consider only

patches that contain either normal or anomalous feature vectors. We also assume that normal features
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Figure 11: Illustration of the proposed patch analysis approach. Top sequence shows video frames that are divided
into non overlapping blocks with a selected gray block to apply patch analysis; bottom sequence indicates patch
size p= 5 with overlapping step s= 1. Patch analysis starts by calculating the log-likelihood under the assumption
that all blocks belong to normal set. Then, it calculates the log-likelihood under the assumption that P1 belongs to
anomalous set. If the difference between these two log-likelihoods is less than a threshold hp, P1 is moved from
normal set to anomalous set. Otherwise, P1 remains in the normal set. The analysis is repeated for P2, P3,. . . ,PN−p.

are drawn from a Gaussian distribution, and anomalous features are drawn from a uniform distribution

because anomalies are often assumed to be uniform [112, 113]. The probability density functions for

normal pN(y) and anomalous pA(y) feature vectors are defined as

pN(yi
) =

1√
(2π)r|Σ|

e−
1
2(yi−µ)

T
Σ−1(yi−µ) (4.22)

pA(yi
) =


1

(b−a)r ,yi
∈ (a,b)r

0,Otherwise

(4.23)

where µ and Σ are the mean vector and covariance matrix of feature vectors, respectively; r is the

dimension of the feature vector; a and b are the minimum and maximum values of arbitrary feature

vectors, respectively. We let Nk and Ak be the sets of normal and anomalous feature vectors, at frame
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index k, respectively. Initially, all feature vectors of a particular block are put in a normal set while an

anomalous set is empty.

We begin with a general case where the null hypothesis H0 states that there is at least one feature

vector y
i
in a patch belongs to a normal set and an alternative hypothesis H1 states that all feature vectors

y
i
in the patch belong to an anomalous set. We formulate the null and alternative hypotheses as follows:

H0 = {∃yi
∈C,y

i
∼ pN(yi

)}

H1 = {∀yi
∈C,y

i
∼ pA(yi

)}
(4.24)

where C = {yk+1, ...,yk+p} is a patch that consists of p feature vectors. By assuming that the patches are

generated in an independent manner, the likelihood of null (`H0
k (y)) and alternative (`H1

k (y)) hypotheses

of the entire feature vectors for a particular block at an arbitrary frame k are as follows:

`H0
k (y) = ∑

ci∈(P(C)−{C})
(1−λ )|Nk−1−ci| ∏

yi∈(Nk−1−ci)

pN(yi
) (4.25)

(
(λ )|Ak−1∪ci| ∏

yi∈(Ak−1∪ci)

pA(yi
)
)

= (1−λ )|Nk−1| ∏
yi∈Nk−1

pN(yi
)(λ )|Ak−1| (4.26)

∏
yi∈Ak−1

pA(yi
) ∑

ci∈(P(C)−{C})
(

λ

1−λ
)|ci| ∏

y j∈ci

pA(y j
)

pN(y j
)

(4.27)
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`H1
k (y) = (1−λ )|Nk−1−C|

∏
yi∈(Nk−1−C)

pN(yi
) (4.28)

(
(λ )|Ak−1∪C|

∏
yi∈(Ak−1∪C)

pA(yi
)
)

= (1−λ )|Nk−1| ∏
yi∈Nk−1

pN(yi
)(λ )|Ak−1| (4.29)

∏
yi∈Ak−1

pA(yi
)
(
(

λ

1−λ
)|C| ∏

yi∈C

pA(yi
)

pN(yi
)

)

where P(C) is the power set of C, which is the set of all subsets of C; | · | is the cardinality of a set; and

λ is the expected fraction of anomalies. Then, the likelihood ratio becomes

Λk =
`H0

k (y)

`H1
k (y)

= (
1−λ

λ
)|C| ∏

yi∈C

pN(yi
)

pA(yi
)

(4.30)

+ ∑
ci∈(P(C)−{C,{}})

(
1−λ

λ
)|ci| ∏

y j∈ci

pN(y j
)

pA(y j
)
.

Based on our assumption that all feature vectors in a patch are either normal or anomalous, the

probability of the second term in (4.30) to occur is zero. Hence, the likelihood and log-likelihood

become

Λk = (
1−λ

λ
)|C| ∏

yi∈C

pN(yi
)

pA(yi
)

(4.31)

ln(Λk) = |C| ln(
1−λ

λ
)+ ∑

yi∈C
pN(yi

)− ∑
yi∈C

pA(yi
)

H0
≷
H1

hp (4.32)
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where hp is the decision threshold.

Let us summarize patch analysis as described in Algorithm 1. Initially, all feature vectors of a

particular block are put in a normal set while an anomalous set is empty. A patch is chosen in an

overlapping manner with overlapping step s = 1. Then, we calculate the likelihood and log-likelihood

using equations described in (4.31) and (4.32), respectively. If the log-likelihood is less than a threshold

hp, this patch is declared as an anomaly and it is moved from the normal set to the anomalous set.

Otherwise, this patch remains in the normal set. The main steps of patch analysis approach are illustrated

in Fig.11.

4.3.4 Object Removal Visualization

We construct a binary video where a pixel equals one in frames that belong to anomalous sets

(changed segments) and equals zero in frames that belong to normal sets (unchanged segments). A video

forgery is detected if a number of consecutive frames hF have an area that is larger than a threshold hA

and contains only ones. In the experiment, we set hF to 25 frames and hA to 500 pixels based on the

results of ROC curve shown in Fig.12b.

We localize the movement of removed objects by constructing another binary video where a pixel

equals one in a frame where a change occurs until the last video frame and equals zero in the other

frames; essentially, once a pixel’s value becomes one, it maintains that value until the last video frame.

This process will create paths of removed objects; these paths can be visualized by plotting the last

spatiotemporal XT slice (width vs. time), which is a bird’s-eye view of a video as shown in Fig.8.
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Algorithm 1 Object Removal Forgery Detection and Localization Based on Patch Analysis

Require: V . Input video
1: b . Block size
2: p . Patch size

Ensure: M . Object removal visualization result
3: N f ← NumberO f Frames
4: R← EmptyArray . Size of R is the same as size of V
5: Apply spatiotemporal f ilter on V
6: Divide R and f iltered V into distinct blocks b×b
7: for each block (BVi) in V do
8: {y

1
, ...,y

N f
}← GetAllFeatureVectorsT hrough V

9: Initialization : k = 0, N0 = {y1
, ...,y

N f
}, A0 = {}

10: while k ≤ N f − p do
11: C = {yk+1, ...,yk+p}
12: Compute likelihood ratio Λk based on (4.31)
13: Compute log− likelihood ln(Λk) based on (4.32)
14: if ln(Λk)< hp then
15: Nk = Nk−1−{yk+1, ...,yk+p}
16: Ak = Ak−1∪{yk+1, ...,yk+p}
17: k = k+ p . C is an anomalous patch, hence k is increased by

p
18: else
19: Nk = Nk−1
20: Ak = Ak−1
21: k = k+1 . C is a normal patch, hence k is increased by 1
22: end if
23: end while
24: BRi← BinaryArray . Explained in Sec.4.3.4
25: end for . BRi ≡ Corresponding block in R
26: M← RemovalVisualization . Explained in Sec.4.3.4
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4.4 Experimental analysis

In this section, we describe the data set and detection performance measurements. We also analyze

the results of our approach and compare our approach with state-of-the-art approaches. We carry out

our experiments using a MacBook Pro with 2.9 GHz Intel dual core i7 CPU and 8 GB RAM.

4.4.1 Data Set

To the best of our knowledge, the only available video forgery data sets are SULFA [114] and

SYSU-OBJFORG [70]. SULFA is a frame-based forgery, which is beyond the scope of this work.

Therefore, we use SYSU-OBJFORG, where all videos are extracted from a static surveillance camera

with a resolution of 1280×720 and 25 frames per second. This data set consists of 100 original videos

and 100 object-based forged videos; each video is approximately 11 seconds in duration. According to

the authors of [70], SYSU-OBJFORG is the largest object-based forged video data set in the literature.

However, most of the forged videos are not realistic because the counterfeit regions can be identified

using the naked eye. In other words, object-based forgery is performed in the middle of frames, e.g., a

walking person is removed before leaving a video scene, so this person is seen for a couple of seconds

and suddenly disappeared from the video scene. Hence, we use SYSU-OBJFORG data set to generate

realistic object removal forged videos by using two recent inpainting algorithms [61, 63]. Fig.13 shows

three examples of object removal forgery from the data set.

To evaluate the effectiveness of our approach, we generate three video sets from the data set. The

first set is an uncompressed video set, which has object removal forged videos without compressing

these videos. The second set is a compressed video set, which has object removal forged videos with
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compressing these videos using H.264/MPEG-4 with 1 Mbps. The third set is a low-resolution video

set, which has object removal forged videos with reducing the original resolution by half, i.e., 640×360.

4.4.2 Evaluation Metric

We evaluate object removal forgery detection on video and pixel levels. The most important aspect

in practice is to determine whether a video is forged or not, i.e., video level performance. However, the

effectiveness of an algorithm is determined by how accurately the tampered regions can be identified in

a video, i.e., pixel level performance. We measure the performance at video level by defining TP as the

correctly detected forged videos, FP as original videos that have been incorrectly detected as forged, and

FN as falsely missed forged videos. Then, Precision, Recall, F1, and Intersection over Union (IoU)

are as follows:

Precision =
TP

TP +FP
(4.33)

Recall =
TP

TP +FN
(4.34)

F1 =
2TP

2TP +FP +FN
(4.35)

IoU =
TP

TP +FP +FN
(4.36)

Precision shows the probability that a detected forgery is truly a forgery, Recall indicates the prob-

ability that a forged video is detected, F1 score shows the average performance, and IoU score shows

the worst case performance.
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We measure the performance at pixel level by defining TP as the correctly detected forged pixels, FP

as original pixels that have been incorrectly detected as forged, and FN as falsely missed forged pixels.

Then, we compute Precision, Recall, F1, and IoU as in (4.33), (4.34), (4.35), and (4.36) respectively.

4.4.3 Feature Selection

There are several feature extraction approaches that have been used to detect image forgery such as

SIFT [115], and SURF [116]. However, these approaches lead to a high dimensional feature vector that

reduces detectability of changes, especially if this vector contains irrelevant features [117]. One way to

overcome this problem is to use one of dimension reduction approaches such as PCA [118], but these

approaches often result in loss of relevant features. Since feature vectors are required to be relevant with

small size, we experimentally observe that mean and variance are relevant features to our model. In

particular, we observe that removed object traces that are exposed by the proposed spatiotemporal filter

disrupt mean and variance of video frame blocks. Therefore, we believe that mean and variance are

appropriate features for our model. As a result, we compute the mean and variance for each block in

video frames and use them as feature vectors throughout multivariate and patch analyses.

4.4.4 Threshold Settings

Initially, we choose 10% of the dataset to tune threshold values of univariate (hu), multivariate

(hm), and patch (hp) analyses. The receiver operating characteristic (ROC) curves that are illustrated in

Fig.12a suggest the best tradeoff between the true positive and false positive rates at pixel level for the

three analyses can be achieved when hu = 15, hm = 35, and hp = 10. Thus, we choose these threshold

values based on the results of ROC curves.
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Figure 12: ROC curves: True positive vs. false positive rates at (a) pixel level for different change thresholds
using univariate, multivariate, and patch analyses, and (b) at video level using different thresholds for the number
of consecutive frames (hF ) and areas (hA).

We also tune threshold values for the number of consecutive frames (hF ) and areas (hA) that are used

to declare forgery at video level. We start with hF = 5 with an increment of 10 frames and hA = 300

with an increment of 100 pixels. The ROC curve that is shown in Fig.12b suggests the best tradeoff

between the true positive and false positive rates can be achieved when hF = 25 and hA = 500. Thus,

we selected these threshold values for all experiments.

4.4.5 Detection Results

We evaluate detection results at both pixel and video levels using sequential analysis, followed by

patch analysis.

4.4.5.1 Results of Sequential Analysis

We evaluate both the effectiveness of (1) the univariate analysis when the block size equals one, and

(2) the multivariate analysis with changes in block size.
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Detection results of the uncompressed video set at pixel and video levels for different block sizes

are shown in Table IIIa. We observe that Recall and F1 values at the pixel level increase when the block

size increases until they reach their largest values at the block size equals 10. Then, these values slightly

decrease, which suggests that the optimal block size is 10. Similarly, Recall and F1 values at the video

level follow the same pattern with better detection results because detecting only one forged second (i.e.,

25 frames) is enough to declare that a video is forged as discussed in Sec.4.4.4.

Detection results of the compressed video set at pixel and video levels for different block sizes are

shown in Table IIIb. We observe that the largest Precision value at the pixel level occurs at the block

size equals one, which indicates that the false positive rate increases when the block size increases.

The largest F1 and IoU scores at both pixel and video levels happen at the block size equals 15, which

suggests that the optimal block size is 15. Furthermore, we notice that detection results are still high

even though videos in this video set are compressed, which indicates that the sequential analysis is

robust against compressed videos.

Detection results of the low-resolution video set at pixel and video levels for different block sizes

are shown in Table IIIc. We observe that the smallest Precision value at both pixel and video levels

occurs at the block size equals five. However, the largest Recall and F1 values at both pixel and video

levels happen at the block size equals five, which suggests that the optimal block size is five. Moreover,

we notice that detection results are still high even though videos in this video set have low resolutions,

which indicates that the sequential analysis is also robust against lower resolution videos.

We observe that detection results at video level are better than detection results at pixel level. This

result is expected because it is enough to detect a small number (i.e., 25) of consecutive forged frames to
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TABLE III: DETECTION RESULTS AT PIXEL AND VIDEO LEVELS OF OBJECT REMOVAL VIDEO
FORGERY USING SEQUENTIAL ANALYSIS WITH DIFFERENT BLOCK SIZES AND DIFFERENT

VIDEO SETS.

(a) DETECTION RESULTS OF UNCOMPRESSED VIDEO SET.

Block size
Pixel level Video level

Precision (%) Recall (%) F1 (%) IoU (%) Precision (%) Recall (%) F1 (%) IoU (%)
1 76.54 78.79 77.65 63.47 93.33 93.33 93.33 87.49
5 73.68 82.48 77.84 63.72 91.40 94.44 92.90 86.73
10 73.62 85.80 79.25 65.63 93.48 95.56 94.51 89.58
15 73.01 85.26 78.66 64.83 92.22 92.22 92.22 85.57
20 74.51 82.45 78.28 64.31 94.25 91.11 92.66 86.32

(b) DETECTION RESULTS OF COMPRESSED VIDEO SET.

Block size
Pixel level Video level

Precision (%) Recall (%) F1 (%) IoU (%) Precision (%) Recall (%) F1 (%) IoU (%)
1 75.78 78.50 77.11 62.75 92.22 92.22 92.22 85.57
5 74.26 80.69 77.34 63.05 89.36 93.33 91.30 84.00
10 73.29 84.15 78.34 64.39 91.30 93.33 92.31 85.71
15 74.00 83.23 78.35 64.41 92.39 94.44 93.41 87.63
20 75.31 81.03 78.07 64.03 93.18 91.11 92.13 85.42

(c) DETECTION RESULTS OF LOW-RESOLUTION VIDEO SET.

Block size
Pixel level Video level

Precision (%) Recall (%) F1 (%) IoU (%) Precision (%) Recall (%) F1 (%) IoU (%)
1 76.06 75.89 75.97 61.25 92.86 86.67 89.66 81.25
5 71.30 84.77 77.45 63.20 89.36 93.33 91.30 84.00
10 73.02 82.07 77.28 62.97 90.11 91.11 90.61 82.83
15 75.61 75.63 75.62 60.80 91.86 87.78 89.77 81.44
20 75.16 72.82 73.98 58.70 92.77 85.56 89.02 80.21

declare forgery at video level (i.e., video forgery detection) as discussed in Sec.4.4.4, whereas detecting

forgery at pixel level requires to detect all forged pixels, which is often significantly large, to localize

forged regions in a video (i.e., video forgery localization).
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In summary, we observe that the optimal block sizes of uncompressed, compressed, and low-

resolution video sets are ten, fifteen, and five, respectively, because these block sizes lead to the highest

detection performance (F1 score). We also consider ten as the optimal block size of compressed video

set because F1 scores are almost the same at block sizes equal ten and fifteen. Therefore, the opti-

mal block size of uncompressed video set is the same as the optimal block size of compressed video

set because these video sets have the same resolution (i.e., 1280× 720). The optimal block size of

low-resolution video set is half of the optimal block size of uncompressed video set, which is expected

because the resolution of low-resolution video set is reduced by half compared to the resolution of un-

compressed video set. The highest detection performance is achieved when using the uncompressed

video set, and then it slightly decreases throughout the compressed and low-resolution video sets. The

overall detection performance (F1 score) of the three video sets is improved when using the multivariate

analysis compared to the univariate analysis, which is one of our key contributions. We believe the

reason for this improvement is that forged regions in a video are always larger than one pixel, hence ap-

plying multivariate analysis, which is based on blocks, increases detection results throughout the three

video sets.

4.4.5.2 Results of Patch Analysis

We need to fix the block size while the patch size is varied in order to evaluate the effectiveness

of the patch analysis. We notice that the optimal block size is not the same for the three video sets.

However, the difference between the largest F1 score and the other F1 scores at the block size equals

10 is very small across the three video sets. Hence, we set the block size to 10 throughout the patch

analysis.
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Detection results of the uncompressed video set at pixel and video levels for different patch sizes

are shown in Table IVa. We observe that the Recall value at the pixel level peaks when the patch size is

eight, and then subsequently decreases, indicating that the false negative rate increases as the patch size

increases. The largest F1 and IoU scores at both pixel and video levels happen at the patch size equals

12, which suggests that the optimal patch size is 12. We also notice that when the detection results at the

pixel level improve, the detection results at the video level improve as well, which is expected because

the pixel is a fundamental unit of videos.

Detection results of the compressed video set at pixel and video levels for different patch sizes are

shown in Table IVb. We observe that the largest Recall value at the pixel level occurs at the patch size

equals four, which indicates that the true positive rate does not improve when the patch size increases.

The largest Precision value at both pixel and video levels occurs at the same patch size, which is 12.

However, the largest F1 score at pixel and video levels happens at the patch sizes equal 12 and eight,

respectively. Hence, the optimal patch size at pixel level is not the same as the optimal patch size at

video level.

Detection results of the low-resolution video set at pixel and video levels for different patch sizes

are shown in Table IVc. We observe that Precision value at both pixel and video level increases when

the patch size increases until it reaches its largest value at the patch size equals eight. Then, its value

slightly decreases, which indicates that the false positive rate increases when the patch size increases

beyond eight. The largest F1 score at pixel and video levels happens at the patch sizes equal eight and

twelve, respectively. However, at the pixel level, the difference between F1 score at patch size equals

eight and twelve is very small. Hence, the optimal patch size at both pixel and video levels is 12.
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TABLE IV: DETECTION RESULTS AT PIXEL AND VIDEO LEVELS OF OBJECT REMOVAL VIDEO
FORGERY USING PATCH ANALYSIS WITH DIFFERENT PATCH SIZES AND DIFFERENT VIDEO SETS.

(a) DETECTION RESULTS OF UNCOMPRESSED VIDEO SET.

Patch size
Pixel level Video level

Precision (%) Recall (%) F1 (%) IoU (%) Precision (%) Recall (%) F1 (%) IoU (%)
4 70.32 88.82 78.49 64.60 90.63 96.67 93.55 87.88
8 74.17 89.19 80.99 68.05 92.55 96.67 94.57 89.69
12 74.49 88.90 81.06 68.15 95.65 97.78 96.70 93.62
16 73.52 86.94 79.67 66.21 93.41 94.44 93.92 88.54
20 72.57 85.38 78.45 64.54 94.32 92.22 93.26 87.37

(b) DETECTION RESULTS OF COMPRESSED VIDEO SET.

Patch size
Pixel level Video level

Precision (%) Recall (%) F1 (%) IoU (%) Precision (%) Recall (%) F1 (%) IoU (%)
4 71.31 87.91 78.74 64.93 89.58 95.56 92.47 86.00
8 74.80 87.35 80.59 67.49 93.55 96.67 95.08 90.63
12 75.17 87.08 80.69 67.63 95.51 94.44 94.97 90.43
16 74.53 85.18 79.50 65.98 94.38 93.33 93.85 88.42
20 73.36 82.58 77.70 63.53 90.11 91.11 90.61 82.83

(c) DETECTION RESULTS OF LOW-RESOLUTION VIDEO SET.

Patch size
Pixel level Video level

Precision (%) Recall (%) F1 (%) IoU (%) Precision (%) Recall (%) F1 (%) IoU (%)
4 78.94 78.88 78.91 65.17 92.05 90.00 91.01 83.51
8 79.38 81.57 80.46 67.31 94.38 93.33 93.85 88.42
12 78.58 82.38 80.44 67.28 93.48 95.56 94.51 89.58
16 78.19 79.77 78.97 65.25 91.40 94.44 92.90 86.73
20 77.67 78.94 78.30 64.34 91.21 92.22 91.71 84.69

As can be seen from Table IV, the pixel level performance of our patch analysis approach (which

is currently one of few approaches available for detection of object removal video forgery) achieves a

detection rate of only 81.06%, therefore the data set employed provides a challenging framework for

evaluation of the detection of object removal video forgery.
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In summary, we consider that the optimal patch size of uncompressed, compressed, and low-resolution

video sets is twelve because this patch size leads to the highest detection performance (F1 score). We

observe that there are no significant differences between the largest F1 scores in the three video sets.

Hence, our patch analysis approach is robust against compressed and lower resolution videos. We be-

lieve that there are two reasons for this robustness. First, the proposed spatiotemporal filter is able to

expose traces that are left at a removed object boundary even though videos are compressed or have

low resolutions. Second, compression or low resolution is applied to all video frames, hence all patches

are compressed or have low resolutions. As a result, our patch analysis can distinguish between nor-

mal and anomalous patches in a video if the attack (e.g., compression) is applied to all patches. The

highest detection performance is achieved when using the uncompressed video set, and then it slightly

decreases throughout the compressed and low-resolution video sets. The overall detection performance

(F1 score) of the three video sets is further improved when using our patch analysis approach, which

is another major contribution of this work. We believe the reason for this improvement is that object

removal forgery always happens in temporally adjacent regions, hence applying patch analysis, which

is based on temporally adjacent blocks, increases detection results throughout the three video sets.

4.4.5.3 Comparison Between Sequential and Patch Analyses

We set the block size to 10 and the patch size to 12 in this comparison because these values are

optimal for block and patch sizes based on the results in Table III and Table IV.
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(a)

(b)

(c)

Figure 13: Three examples of visualization results of a removed object movement using the univariate, multivari-
ate, and patch analyses. In each example, images on the top row indicate frames from the original video; images
on the middle row indicate the corresponding frames from the tampered video where the object in the red box
has been removed from the scene; images on the bottom row (from left to right) indicate the ground truth of the
removed object movement, the movement visualization using the univariate analysis, multivariate analysis, and
patch analysis, respectively.
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We compare forgery detection between sequential and patch analyses by plotting receiver operat-

ing characteristic (ROC) curves. Fig.12a shows ROC curves for different change thresholds (hu, hm,

hp) using univariate, multivariate, and patch analyses. We observe that our patch analysis outperforms

univariate and multivariate analyses throughout different change thresholds, which is expected because

detection results in Table IV are better than detection results in Table III. We believe that our patch

analysis outperforms sequential analysis because our patch analysis is based on spatiotemporal analy-

sis, whereas sequential analysis is based on spatial analysis. Hence, our patch analysis detects object

removal forgery, which is always created using temporally adjacent frames, better than sequential anal-

ysis.

We compare forgery localization between sequential and patch analyses by visualizing a movement

of removed objects. Fig.13 shows three examples for visualization results of a removed object movement

using univariate, multivariate, and patch analyses. We observe that our patch analysis localizes the

removed object movement more accurately compared to univariate and multivariate analyses, which is

expected because detection results using patch analysis at the pixel level are improved as discussed in

Sec.4.4.5.2. However, the false positive rate of patch analysis is higher than the false positive rates of

univariate and multivariate analyses as shown in Fig.7c, which is expected because the largest Precision

value in Table IVa is less than the largest Precision value in Table IIIa.

4.4.6 Computational Complexity

We will use the following notation throughout this section. N is the number of frames in a video, M

is the number of pixels in each frame, B is the number of pixels in each block, and P is the number of

blocks in each patch.
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Univariate analysis detects additive changes that are associated with a pixel sequence in a video

using the binary segmentation algorithm. We know that the computational complexity of the binary

segmentation is O(N log(N)) [111]. Therefore, the computational complexity of univariate analysis is

O(MN log(N)) because univariate analysis detects changes in each pixel. We also show the average

computation time per video in seconds for the three video sets using univariate analysis in Fig.14a.

We observe that the average computation time for low-resolution video set is much less than the av-

erage computation time for uncompressed and compressed video sets, which is expected because the

resolution of this video set is reduced by half compared to the other video sets.

Multivariate analysis detects additive changes associated with feature vectors that are extracted from

dividing video frames into non overlapping blocks. Each block requires O(NB) computations to extract

feature vectors throughout video frames and O(N log(N)) computations to detect changes using the

binary segmentation algorithm. As a result, the computational complexity of multivariate analysis is

O(M/B(NB+N log(N))). We also show the average computation time per video in seconds for the

three video sets using multivariate analysis in Fig.14b. We observe that the average computation time is

exponentially reduced for the three video sets. The reason is that the multivariate analysis is performed

for each block instead of each pixel, hence the average computation time is dramatically decreased when

the block size increases.

Patch analysis detects anomalous patches, which are temporally adjacent blocks, throughout video

frames by examining each patch in an overlapping manner with overlapping step equals one. The

computational complexity of patch analysis is similar to multivariate analysis. The only difference is that

calculating the log-likelihood of overlapping patches throughout video frames requires O((N−P)N)
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Figure 14: Average computation time per video in seconds for the three video sets using (a) univariate analysis,
(b) multivariate analysis with different block sizes, and (c) patch analysis with different patch sizes.

computations. As a result, the computational complexity of patch analysis is O(M/B(NB+(N−P)N)).

We also show the average computation time per video in seconds for the three video sets using patch

analysis in Fig.14c. We observe that the average computation time does not significantly change when

the patch size increases because our patch analysis approach is performed based on overlapping patches

instead of non overlapping patches.

We conclude that by using either the multivariate or patch analysis not only improves the detection

performance compared to univariate analysis as discussed in Sec.4.4.5, but also results in much less

computational time, which is another major contribution of this work.

4.4.7 Comparison Results with other Approaches

We compare our approach with five recent approaches [2, 69–72]. We refer to [2] as UniSeq, [69]

as StatFeat, [70] as StegFeat, [71] as CompSen, and [72] as STCA throughout the comparison results.

Detection results at video level for our patch analysis approach and the other approaches using dif-

ferent video sets are shown in Table V. We set the patch size to 12 across the three video sets to have a



54

TABLE V: COMPARISON RESULTS OF OBJECT REMOVAL FORGERY DETECTION AT VIDEO LEVEL
FOR OUR PATCH ANALYSIS APPROACH AND OTHER APPROACHES USING DIFFERENT VIDEO

SETS.

Approach
Precision (%) Recall (%) F1 (%) IoU(%)

Uncompressed Compressed Low-resolution Uncompressed Compressed Low-resolution Uncompressed Compressed Low-resolution Uncompressed Compressed Low-resolution
StatFeat [69] 82.61 72.34 78.49 84.44 75.56 81.11 83.52 73.91 79.78 71.70 58.62 66.36
STCA [72] 89.66 77.78 80.00 86.67 75.27 79.12 88.14 76.50 79.56 78.79 61.95 66.06
CompSen [71] 90.80 79.51 81.91 87.78 73.34 77.78 89.21 76.30 79.79 80.52 61.68 66.37
StegFeat [70] 97.80 95.45 96.59 98.89 93.34 94.45 98.34 94.38 95.50 96.73 89.36 91.39
UniSeq [2] 93.33 92.22 92.86 93.33 92.22 86.67 93.33 92.22 89.66 87.49 85.56 81.26
Our approach 95.65 95.51 93.48 97.78 94.44 95.56 96.70 94.97 94.51 93.62 90.43 89.58

fair comparison with the other approaches. We observe that detection results of our approach are con-

sistent across the three video sets. We also observe that StegFeat achieves slightly better performance

compared to our approach throughout uncompressed and low-resolution video sets. However, our ap-

proach outperforms all five approaches in compressed video set. This result indicates that our approach

is more practical because most of the online videos are compressed. Moreover, our approach not only

detects forgery but also localizes forged regions, unlike other approaches [2, 69–71]

Detection results at pixel level for our patch analysis approach and the STCA approach using dif-

ferent video sets are shown in Tables VIa to VIc. We compare with the STCA approach only because

the other approaches are not able to detect pixel level forgery. We observe that our approach outper-

forms the STCA approach throughout the three video sets. We also observe that detection results of our

approach are consistent across the three video sets.

4.4.8 Generalization

To evaluate the generalization of our approach using different data sets and different inpainting algo-

rithms, we use the data set that is introduced by Lin et al. [72]. This data set consists of 26 object removal
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TABLE VI: COMPARISON RESULTS OF OBJECT REMOVAL FORGERY DETECTION AT PIXEL LEVEL
FOR OUR PATCH ANALYSIS APPROACH AND THE STCA APPROACH USING DIFFERENT VIDEO

SETS.

(a) DETECTION RESULTS OF UNCOMPRESSED VIDEO SET.

Approach Precision (%) Recall (%) F1 (%) IoU (%)
STCA [72] 78.68 75.35 76.98 62.57
Our approach 74.49 88.90 81.06 68.15

(b) DETECTION RESULTS OF COMPRESSED VIDEO SET.

Approach Precision (%) Recall (%) F1 (%) IoU (%)
STCA [72] 72.70 68.26 70.41 54.33
Our approach 75.17 87.08 80.69 67.63

(c) DETECTION RESULTS OF LOW-RESOLUTION VIDEO SET.

Approach Precision (%) Recall (%) F1 (%) IoU (%)
STCA [72] 73.18 71.40 72.28 56.59
Our approach 78.58 82.38 80.44 67.27

(d) DETECTION RESULTS OF LIN’S VIDEO SET.

Approach Precision (%) Recall (%) F1 (%) IoU (%)
STCA [72] 78.40 72.10 75.12 60.15
Our approach 77.28 91.87 83.95 72.33

forged videos that are generated using two inpainting algorithms: temporal copy-and-paste [119] and

exemplar-based texture synthesis [120]. This data set contains forged videos with multiple removed

objects as shown in Fig.15. All videos in this dataset are compressed using MPEG-4 with 3Mbps and a

resolution of 320×240. We refer to this dataset as Lin’s video set throughout the comparison results.

Detection results at pixel level for our patch analysis approach and the STCA approach using Lin’s

video set are shown in Table VId. We observe that STCA achieves a slightly better Precision score
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(a)

(b)

Figure 15: Two examples of visualization results of removed objects’ movement using our patch analysis approach
and STCA approach. In each example, images on the top row indicate frames from the original video; images
on the middle row indicate the corresponding frames from the tampered video where the objects in the red box
have been removed from the scene; images on the bottom row (from left to right) indicate the ground truth of
the removed objects’ movement, the movement visualization using the STCA approach, and our patch analysis
approach, respectively.

compared to our approach. However, our approach outperforms STCA in terms of Recall, F1, and IoU

scores. This result confirms that our approach can detect and localize object removal forgery in forged

videos with multiple removed objects for different data sets and inpainting algorithms.
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Two examples of localization results for our patch analysis approach and the STCA approach are

shown in Fig.15. We observe that our patch analysis localizes the removed objects’ movement more

accurately compared to STCA. In fact, our patch analysis correctly localizes three removed objects in

Fig.15b. However, the STCA localizes only one removed object in Fig.15b. We believe that our patch

analysis can detect and localize multiple removed objects because patch analysis detects all anomalous

patches of a particular block by investigating all overlapping patches of this block as shown in Fig.11.

For example, if there are two removed objects that pass through a block in video frames, then patch

analysis would detect two anomalous segments for this block.



CHAPTER 5

FACEMD: CONVOLUTIONAL NEURAL NETWORK-BASED SPATIOTEMPORAL

FUSION FACIAL MANIPULATION DETECTION

In this chapter, we study the facial manipulation problem, particularly facial identity and facial

expression manipulations, as shown in Fig.16, and propose a novel approach, dubbed FaceMD, based

on fusing three streams of convolutional neural networks to detect facial manipulation. The proposed

FaceMD incorporates spatiotemporal information by fusing video frames, motion residuals, and 3D

gradients. We select motion residuals and 3D gradients in addition to video frames because motion

residuals and 3D gradients expose spatiotemporal artifacts that are created during video manipulation.

The exposure of these spatiotemporal artifacts improves facial manipulation detection accuracy. We

combine the three streams using different fusion methods and places to best use the spatiotemporal

information, hence increasing detection accuracy.

5.1 Contributions

The contributions of this chapter can be summarized as follows:

1. For the first time, we apply spatiotemporal analysis to detect facial manipulation videos.

2. We analyze motion residuals and 3D gradients of video frames, and experimentally show that

they improve facial manipulation detection accuracy.

3. We adapt the Xception model with multiple inputs for facial manipulation problems to enhance

detection accuracy.

58
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(a)

(b)

Figure 16: Two types of facial manipulation. (a) Facial identity manipulation using FaceSwap and DeepFakes
approaches. (b) Facial expression manipulation using Face2Face and NeuralTextures approaches.

4. Our proposed FaceMD achieves a new state-of-the-art performance on FaceForensics++ [76] and

Google-JigSaw [121] data sets.

The rest of this chapter is organized as follows: Our proposed FaceMD is described in Sec. 5.2. The

motion residual extraction is presented in Sec. 5.2.1. The 3D gradient extraction is described in Sec.

5.2.2. The network architecture is provided in Sec. 5.2.3. The fusion methods are explained in Sec.

5.2.4. The experimental results are discussed in Sec. 5.3.
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5.2 Spatiotemporal Fusion Facial Manipulation Detection

We briefly describe our proposed FaceMD in the following steps. First, We manually extract a face

region from each frame to eliminate miss detection due to face-tracking failure. Then, we extract mo-

tion residual and 3D gradient frames (streams) from the input video to expose spatiotemporal variations

between adjacent frames. We use video frames, motion residuals, and 3D gradients as inputs of a con-

volutional neural network to guide the network to find discriminative features from the spatiotemporal

information. We combine these three streams using different fusion methods and places to best use the

spatiotemporal information, hence increasing detection accuracy. We detect facial manipulation based

on the output prediction of the network.

5.2.1 Motion Residual Extraction

In general, video frames are divided into local temporal windows. These local temporal windows

contain strongly correlated frames. Each frame in these local temporal windows consists of a static part

and a motion part. The static part is identical to the first frame in a local temporal window, whereas the

motion part represents a motion residual relative to the first frame in this local temporal window. The

motion residual contains temporal information because it shows temporal variations between adjacent

frames. As a result, the motion residual becomes one of our main analyses to expose temporal incon-

sistency that is created during video manipulation. In practice, a local temporal window is presented by

a Group Of Pictures (GOP). This GOP consists of three types of frames: I-frames (Intra coded frames),

P-frames (Predictive coded frames), and B-frames (Bipredictive coded frames). The I-frame represents

the first frame in each local temporal window, while P-frame and B-frame are motion residuals relative

to the I-frames. However, the GOPs have a flexible structure in advanced video coding, hence it is not
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feasible to use P-frame and B-frame as motion residuals. Therefore, we use collision operators to extract

motion residuals in our approach [70, 122, 123]. Let us assume that a video clip consists of N frames as

follows:

V = {F(1),F(2), . . . ,F(N)},F(k)
i, j ∈ [0,255]3 (5.1)

where F(k) represents the kth video frame that is an 8-bit RGB image with size m×n×3. Then, a mean

collision is defined as follows:

C(k) =
k+l

∑
n=k−l

F(n)

2l−1
(5.2)

where C(k) is the colluded result of a local temporal window that is centered at frame F(k), and l is the

number of left (right) neighbors of F(k). In our experiment, we set this number to 9. Then, the motion

residual of F(k) becomes

R(k) = |F(k)−C(k)| (5.3)

where | · | is the absolute value. Note that F(k)
i, j −C(k)

i, j ∈ [−255,255]3, hence the absolute value is essential

to keep the motion residual values between 0 and 255. We extract motion residual from red, green, and

blue channels of video frames, hence the size of the motion residual frame is m×n×3.

Video manipulation creates independent facial manipulation frames, as discussed in Sec.2.2.2. This

manipulation would cause temporal inconsistency between adjacent frames. This temporal inconsis-
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(a)

(b)

Figure 17: Sample frames from original and manipulated videos with the corresponding frames from motion
residuals. (a) Three arbitrary frames from an original video and the corresponding motion residual frames. (b)
Three arbitrary frames from a facial identity manipulation video and the corresponding motion residual frames
where the red boxes show temporal artifacts caused by facial manipulation.

tency can be exposed by extracting motion residual frames. In particular, we experimentally observe

that motion residual shows abnormal motion when a video frame is manipulated, as shown in Fig.17.

This figure (Fig.17a) shows three arbitrary frames from an original video and the corresponding motion

residual frames. These motion residual frames show normal motion that appears around eyes, nose, and

mouth regions. The other figure (Fig.17b) shows three arbitrary frames from a facial identity manip-
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ulation video and the corresponding motion residual frames. The red boxes in motion residual frames

show abnormal motion caused by video manipulation. These abnormal motion appear above the eyes

and nose regions. This result indicates that the motion residual can expose facial manipulation artifacts.

Therefore, the motion residual becomes one of our main analyses to detect facial manipulation.

5.2.2 3D Gradient Extraction

A 3D gradient is a directional change in the intensity of video frames. The gradient in x- and y-

directions measures horizontal and vertical changes in the intensity, respectively, while the gradient in

z-direction measures temporal changes in the intensity. These changes represent edges in the x-, y-, and

z-directions, hence the 3D gradient detects spatial and temporal edges (changes). As a result, the 3D

gradient becomes one of our main analyses to expose spatiotemporal changes (artifacts) that are created

during video manipulation. We use a simple but effective Sobel gradient operator [124]. This operator

convolves a 3-by-3-by-3 kernel with video frames to approximate the 3D gradient. The 3D gradient of

a video frame is as follows:

∇F(x,y,z) =


∂F
∂x

∂F
∂y

∂F
∂ z

=


Gx

Gy

Gz

 (5.4)

where Gx, Gy, and Gz are given by
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Gx =


1 0 −1

2 0 −2

1 0 −1

∗F(x,y,z−1)+


2 0 −2

4 0 −4

2 0 −2

∗F(x,y,z)+


1 0 −1

2 0 −2

1 0 −1

∗F(x,y,z+1) (5.5)

Gy =


1 2 1

0 0 0

−1 −2 −1

∗F(x,y,z−1)+


2 4 2

0 0 0

−2 −4 −2

∗F(x,y,z)+


1 2 1

0 0 0

−1 −2 −1

∗F(x,y,z+1)

(5.6)

Gz =


1 2 1

2 4 2

1 2 1

∗F(x,y,z−1)+


0 0 0

0 0 0

0 0 0

∗F(x,y,z)+


−1 −2 −1

−2 −4 −2

−1 −2 −1

∗F(x,y,z+1) (5.7)

where F(x,y,z) represents the zth video frame that is an 8-bit gray-scale image with size m× n; Gx,

Gy, and Gz represent the gradient in x-, y- and z-directions, receptively; ∗ represents the convolution

operation. We stack Gx, Gy, and Gz in the channel dimension, hence the size of the 3D gradient frame

is m×n×3.
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(a)

(b)

Figure 18: Sample frames from original and manipulated videos with the corresponding frames from 3D gradient
in the z-direction. (a) Three arbitrary frames from an original video and the corresponding 3D gradient frames
in the z-direction. (b) Three arbitrary frames from a facial expression manipulation video and the correspond-
ing 3D gradient frames in the z-direction where the red boxes show spatiotemporal artifacts caused by facial
manipulation..

Facial manipulation causes spatiotemporal artifacts, as discussed in Sec.2.2.2. These artifacts can be

exposed by extracting 3D gradient frames. In particular, we experimentally observe that when a video

frame is manipulated, the 3D gradient either doesn’t detect edges at expected edge regions or detects

edges at unexpected edge regions, as shown in Fig.18. This figure (Fig.18a) shows three arbitrary frames
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from an original video and the corresponding 3D gradient frames in the z-direction. These 3D gradient

frames detect all edges at expected edge regions. The other figure (Fig.18b) shows three arbitrary

frames from a facial expression manipulation video and the corresponding 3D gradient frames in the

z-direction. We observe that edges at mouth and nose regions are not detected, as shown in the first and

third gradient frames due to blurring artifacts. We also observe large gradient values above the eyes,

ears, and nose regions in the second gradient frame, which is not expected. This result indicates that the

3D gradient can expose facial manipulation artifacts. Therefore, the 3D gradient becomes one of our

main analyses to detect facial manipulation.

5.2.3 Network Architecture

We could use 3D Convolutional Neural Networks (3D ConvNets) for video manipulation detec-

tion because these networks seem to be a natural approach for this manipulation. However, these 3D

ConvNets have the following limitations. First, the 3D ConvNets require large memory and more GPUs

because these networks take as an input a large batch of frames; hence these networks need more compu-

tational resources that are not always available [125]. Second, the 3D ConvNets have significantly more

parameters than 2D ConvNets; therefore training the 3D ConvNets requires a large data set. Further-

more, the 3D ConvNets have shown promising results on video classification problems, but these results

are not competitive with state-of-the-art results [126]. As a result, We adapt the Xception model, which

is a 2D ConvNets, with three inputs for facial manipulation detection [127]. The three inputs are video

frames that represent spatial information, motion residual frames that represent temporal information,

and 3D gradient frames that represent spatiotemporal information.
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Figure 19: The proposed architecture to facial manipulation detection.

The adapted Xception architecture is shown in Fig.19. We notate layers in this figure as “{layer’s

type}{kernel size}-{number of channels}”. For example, “conv3-32” represents a convolutional layer

with kernel size equals 3x3, and the number of channels is 32. As can be seen from Fig.19, each input

goes through the entry and middle flows that consist of 31 convolutional layers to extract features from

each of the three inputs. Then, these three inputs are combined using different fusion methods that
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will be introduced in Sec. 5.2.4. The resultant steam goes through the exit flow that consists of five

convolutional layers, followed by a fully connected layer whose output is a two-dimensional vector.

Note that all convolutional layers are followed by batch normalization.

5.2.4 Fusion Methods

We use different fusion functions to fuse three feature maps coming from three streams that are video

frames, motion residuals, and 3D gradients [128]. We fuse these three streams at a particular layer by

combining feature maps at the same pixel location in the three streams. We perform the fusion to guide

the ConvNet to find discriminative features from spatial (video frames), temporal (motion residuals),

and spatiotemporal (3D gradients) information. In general, a fusion function fuses N feature maps as

follows:

f : x(1),x(2), . . . ,x(N)→ y (5.8)

where x(n) ∈RHn×Wn×Dn and y∈RH×W×D; H, W , and D are the height, width, and the number of channels

of a particular feature map, respectively. For simplicity we assume that Hn =H, Wn =W , Dn =D. Then,

we define the sum, average, max, and concatenate fusions as follows:

5.2.4.1 Sum Fusion

This function calculates the sum of N feature maps at the same spatial and channel locations as

follows:

yi, j,k =
N

∑
n=1

x(n)i, j,k (5.9)
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where i≤ 1≤ H, j ≤ 1≤W , k ≤ 1≤ D and x(n),y ∈ RH×W×D.

5.2.4.2 Average Fusion

This function computes the average of N feature maps at the same spatial and channel locations as

follows:

yi, j,k =
1
N

N

∑
n=1

x(n)i, j,k (5.10)

where all variables are defined as in (5.9).

5.2.4.3 Max Fusion

This function returns the largest value in N feature maps at the same spatial and channel locations

as follows:

yi, j,k = max
1≤n≤N

{x(n)i, j,k} (5.11)

where all variables are defined as in (5.9).

5.2.4.4 Concatenate Fusion

This function stacks N feature maps at the same spatial locations across the channels as follows:

yi, j,N×k = [x(1)i, j,k;x(2)i, j,k; . . . ;x(N)
i, j,k] (5.12)

where y ∈ RH×W×ND and the other variables are defined as in (5.9).
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In the next section, we will evaluate the performance of these four fusions. We will also evaluate

our model at different fusion layers representing early-fusion, mid-fusion, and late-fusion. The early-

fusion represents fusing the three streams after the entry flow. The mid-fusion represents fusing the

three streams after the middle flow. The late-fusion represents fusing the three streams after the exit

flow (the last convolution layer).

5.3 Experimental analysis

In this section, we describe facial manipulation data sets and evaluation measurements. We also

present implementation settings and analyze the detection results of the proposed FaceMD. Then, we

compare FaceMD with state-of-the-art approaches.

5.3.1 Facial Manipulation Data Sets

We conduct our experiments on FaceForensics++ [76] and Google-JigSaw [121] data sets. The

FaceForensics++ consists of 1000 original videos that have been manipulated with four facial identity

and facial expression manipulations. The facial identity manipulation is created using FaceSwap [8] and

DeepFakes [9]. The facial identity expression is created using Face2Face [10] and NeuralTextures [11].

All manipulation videos are categorized into four groups based on manipulation types. Therefore, this

data set evaluates our approach to detect specific types of facial manipulation. The Google-JigSaw con-

tains 3000 manipulated videos that are recorded from 28 actors in different scenes. These manipulated

videos are created using different facial identity and facial expression manipulations without categoriz-

ing these videos based on manipulation types. Therefore, this data set evaluates our approach to detect

general types of facial manipulation.
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Figure 20: A sample frame from each category of facial manipulation in the two data sets: Images on the top row
indicate sample frames from each type of facial manipulation; Images on the bottom row indicate corresponding
frames from the original video.

The FaceForensics++ and Google-JigSaw data sets consist of original and manipulated videos with

different qualities that are raw, high-quality, and low-quality to represent real-world videos. The raw

videos represent videos without compression. The high-quality videos represent videos that have been

compressed using the H.264 codec with a quantization equals 23. The low-quality videos represent

videos that have been compressed using the H.264 codec with a quantization equals 40.

We randomly select 100 videos that contain 100 frames from each category in the FaceForensics++

and Google-JigSaw data sets because we have limited computational resources. We also select these

100 videos to have the same number of videos in each category since each category has a different

number of videos. The FaceForensics++ has five categories that are original, DeepFakes, FaceSwap,

Face2Face, and NeuralTextures, hence we have 500 videos that contain 50,000 frames for each video
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quality. The Google-JigSaw has two categories that are original and DeepFakeDetection; thus we have

200 videos that contain 20,000 frames for each video quality. As a result, we have 210,000 frames to

evaluate our approach using the FaceForensics++ and Google-JigSaw data sets. Fig.20 shows a sample

frame from each category of facial manipulation in these two data sets. We split these data sets into 60%

for training, 10% for validation, and 30% for testing.

5.3.2 Evaluation Metric

We evaluate facial manipulation detection based on frame classification. We measure the perfor-

mance by defining TP as the correctly detected forged frames, TN as the correctly identified original

frames, FP as original frames that have been incorrectly detected as forged, and FN as falsely missed

forged frames. Then, Accuracy is as follows:

Accuracy =
TP +TN

TP +TN +FP +FN
(5.13)

The Accuracy measures how many frames, both original and fake, are correctly classified. We also

evaluate the performance of facial manipulation detection using Area Under the Curve (AUC). The AUC

measures the trade-off between true positive and false positive rates.

5.3.3 Implementation Settings

We implement our model using the TensorFlow framework [129] and train our model on a NVIDIA

P100 GPU. We train our model using a batch size equals 10 with a frame size of 299×299×3. We use

the Stochastic Gradient Descent (SGD) optimizer with a constant learning rate of 0.001 and a momen-
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TABLE VII: DETECTION RESULTS OF THE LOW-QUALITY DEEPFAKES USING DIFFERENT FUSION
METHODS.

Fusion method Accuracy (%) AUC (%) Parameter count
Sum 85.35 94.69 48,848,186
Average 83.50 91.26 48,848,186
Max 77.65 86.47 48,848,186
Concatenate 80.75 88.52 51,412,202

tum of 0.9. We train our model for 40 epochs and choose the best model based on the validation set.

The detection results are reported using the test set.

5.3.4 Detection Analysis

We select the low-quality DeepFakes to analyze the detection results of our model using different

fusion methods and places. We select this low-quality category to evaluate our model on the worst

quality video set.

5.3.4.1 Detection Results of Fusion Methods

Detection results of the low-quality DeepFakes using different fusion methods are shown in Table

VII. We observe that Sum and Average fusions perform better than Max and Concatenate fusions. Sum

fusion achieves the highest detection accuracy and AUC with less number of parameters compared to

Concatenate fusion. Sum, Average, and Max fusions have the same number of parameters because

these fusions do not increase the number of output channels, whereas Concatenate fusion increases the

number of output channels.
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Figure 21: ROC curves: True positive vs. false positive rates for different fusion methods using the low-quality
DeepFakes video set.

We also compare facial manipulation detection of different fusion methods by plotting receiver

operating characteristic (ROC) curves, as shown in Fig.21. We observe that Max fusion achieves the

lowest detection performance. We think the reason is that max fusion returns the largest value of the

three streams, hence this fusion considers only one (the largest) stream in the following layers. Sum

fusion achieves the highest detection performance that is slightly better than the detection performance

of Average fusion. Therefore, we use Sum fusion in our model to combine the three streams.
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TABLE VIII: DETECTION RESULTS OF THE LOW-QUALITY DEEPFAKES USING DIFFERENT FUSION
PLACES.

Fusion place Accuracy (%) AUC (%) Parameter count
Early-fusion 82.30 90.39 23,024,570
Mid-fusion 85.35 94.69 48,848,186
Late-fusion 82.74 90.84 62,424,954

5.3.4.2 Detection Results of Fusion Places

We evaluate our model at different fusion places representing early-fusion, mid-fusion, and late-

fusion. The early-fusion represents fusing the three streams after the entry flow. The mid-fusion repre-

sents fusing the three streams after the middle flow. The late-fusion represents fusing the three streams

after the exit flow (the last convolution layer). Detection results of the low-quality DeepFakes using dif-

ferent fusion places are shown in Table VIII. We observe that mid-fusion achieves the highest detection

accuracy and AUC, which suggests that using a deeper network before the fusion enhances detection

performance. However, late-fusion achieves relatively low detection performance. We think the reason

is that the convolution layers after the fusion are essential to extract features from the resultant steam.

We also observe that late-fusion has the highest number of parameters, which is expected because its

network before the fusion is deeper than the networks before the fusion of early- and mid-fusions.

We also compare facial manipulation detection of different fusion places by plotting receiver oper-

ating characteristic (ROC) curves, as shown in Fig.22. We observe that early-fusion achieves detection

performance similar to the detection performance of late-fusion. Mid-fusion achieves the highest detec-
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Figure 22: ROC curves: True positive vs. false positive rates for different fusion places using the low-quality
DeepFakes video set.

tion performance because it consists of a deep network before the fusion to extract features from each

stream, followed by five convolution layers to extract features from the resultant steam. As a result, we

combine the three streams after the middle flow that is mid-fusion, as shown in Fig.19.

5.3.5 Comparison Results with other Approaches

We compare our proposed FaceMD with three recent approaches: Xception [127], MesoNet [89],

and Two-stream [91]. We compare with Xception and MesoNet approaches because these approaches
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achieve the highest detection performance using FaceForensics++ data set [76]. We compare with the

Two-stream approach because this approach uses two streams of neural networks, hence it is similar

to our approach. However, these streams are based on spatial information. We evaluate the proposed

FaceMD and the other approaches using the sub data sets that are discussed in Sec. 5.3.1. We also

evaluate these approaches to detect specific and general types of facial manipulation.

5.3.5.1 Specific Manipulation Detection

We evaluate our proposed FaceMD and the other approaches to detect each type of facial identity

manipulation and facial expression manipulation. We use FaceForensics++ data set to evaluate specific

manipulation detection because this data set contains manipulated videos that are categorized into four

groups based on manipulation types.

5.3.5.1.1 Detection of Facial Identity Manipulation

We evaluate our proposed FaceMD and the other approaches to detect DeepFakes and FaceSwap

manipulations.

Detection results of DeepFakes manipulation for our proposed FaceMD and the other approaches

using different video qualities are shown in Table IX. We observe that MesoNet and Two-stream have

similar detection performance that is less than the detection performance of Xception. The FaceMD

achieves the highest detection accuracy and AUC throughout the three video qualities. We also ob-

serve that the FaceMD achieves the highest detection performance using the raw video set, and then

it decreases throughout the high-quality and low-quality video sets. This result indicates that motion
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TABLE IX: COMPARISON RESULTS OF DEEPFAKES DETECTION FOR OUR PROPOSED FACEMD
AND OTHER APPROACHES USING DIFFERENT VIDEO SETS.

(a) DETECTION RESULTS OF RAW VIDEO SET.

Approach Accuracy (%) AUC (%)
Xception [127] 89.60 96.94
Two-stream [91] 87.26 95.68
MesoNet [89] 86.94 95.23
Proposed FaceMD 93.80 98.31

(b) DETECTION RESULTS OF HIGH-QUALITY VIDEO SET.

Approach Accuracy (%) AUC (%)
Xception [127] 84.90 93.75
Two-stream [91] 80.63 88.33
MesoNet [89] 81.19 90.40
Proposed FaceMD 88.48 96.32

(c) DETECTION RESULTS OF LOW-QUALITY VIDEO SET.

Approach Accuracy (%) AUC (%)
Xception [127] 80.70 90.29
Two-stream [91] 75.46 85.12
MesoNet [89] 77.51 86.83
Proposed FaceMD 85.35 94.69

residual and 3D gradient streams improve detection results of DeepFakes videos with different quali-

ties.
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Detection results of FaceSwap manipulation for our proposed FaceMD and the other approaches us-

ing different video qualities are shown in Table X. We observe that the FaceMD achieves less detection

performance compared to the detection performance of the FaceMD using DeepFakes. We also observe

that detection accuracy and AUC of the FaceMD decrease when video quality decreases. However, the

FaceMD outperforms the other approaches throughout the three video qualities of FaceSwap manipula-

tion. This result confirms that the extracted features from the spatiotemporal streams enhance detection

accuracy and AUC of FaceSwap videos with different qualities.

In summary, our proposed FaceMD outperforms the other approaches using the two types of facial

identity manipulation with significantly high detection accuracy and AUC. We observe that the AUC

of FaceMD is decreased by only 4% when using the low-quality video set of the two types of facial

identity manipulation. Hence, the FaceMD is robust against different video qualities of facial identity

manipulation. We believe that the FaceMD is robust for two reasons. First, the adapted model is

able to extract discriminative features even though videos have low-quality. Second, reducing video

quality might conceal spatial artifacts, but it will not conceal temporal artifacts that are exposed by

extracting motion residual frames. We also observe that combining video frames, motion residuals, and

3D gradients improves detection performance compared to Xception that is the backbone of our model.

5.3.5.1.2 Detection of Facial Expression Manipulation

We evaluate our proposed FaceMD and the other approaches to detect Face2Face and NeuralTex-

tures manipulations.
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TABLE X: COMPARISON RESULTS OF FACESWAP DETECTION FOR OUR PROPOSED FACEMD AND
OTHER APPROACHES USING DIFFERENT VIDEO SETS.

(a) DETECTION RESULTS OF RAW VIDEO SET.

Approach Accuracy (%) AUC (%)
Xception [127] 88.32 95.22
Two-stream [91] 85.76 93.41
MesoNet [89] 83.91 92.73
Proposed FaceMD 91.62 96.92

(b) DETECTION RESULTS OF HIGH-QUALITY VIDEO SET.

Approach Accuracy (%) AUC (%)
Xception [127] 83.24 92.36
Two-stream [91] 80.13 89.50
MesoNet [89] 79.43 87.84
Proposed FaceMD 87.56 95.78

(c) DETECTION RESULTS OF LOW-QUALITY VIDEO SET.

Approach Accuracy (%) AUC (%)
Xception [127] 79.68 88.15
Two-stream [91] 76.33 85.47
MesoNet [89] 74.92 82.66
Proposed FaceMD 82.84 91.20

Detection results of Face2Face manipulation for our proposed FaceMD and the other approaches us-

ing different video qualities are shown in Table XI. We observe that the Two-stream approach achieves
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TABLE XI: COMPARISON RESULTS OF FACE2FACE DETECTION FOR OUR PROPOSED FACEMD
AND OTHER APPROACHES USING DIFFERENT VIDEO SETS.

(a) DETECTION RESULTS OF RAW VIDEO SET.

Approach Accuracy (%) AUC (%)
Xception [127] 85.12 92.88
Two-stream [91] 83.76 91.57
MesoNet [89] 83.07 91.18
Proposed FaceMD 86.98 94.92

(b) DETECTION RESULTS OF HIGH-QUALITY VIDEO SET.

Approach Accuracy (%) AUC (%)
Xception [127] 82.54 90.73
Two-stream [91] 79.36 87.66
MesoNet [89] 78.83 86.97
Proposed FaceMD 84.42 92.39

(c) DETECTION RESULTS OF LOW-QUALITY VIDEO SET.

Approach Accuracy (%) AUC (%)
Xception [127] 79.62 88.50
Two-stream [91] 75.95 85.34
MesoNet [89] 75.27 84.71
Proposed FaceMD 80.89 89.08
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detection performance slightly better than the detection performance of MesoNet. The difference be-

tween the detection performance of FaceMD and detection performance of Xception becomes small

because this manipulation is hard to detect compared to facial identity manipulation. Even though the

difference is small, the FaceMD outperforms the other approaches, including Xception, throughout the

three video qualities. This result indicates that combining spatiotemporal streams with video frames

stream improves detection results of Face2Face videos with different qualities.

Detection results of NeuralTextures manipulation for our proposed FaceMD and the other approaches

using different video qualities are shown in Table XII. We observe that Xception achieves slightly better

detection performance compared to FaceMD using the low-quality video set. The FaceMD achieves

slightly less detection accuracy and AUC because this manipulation is harder than Face2Face manip-

ulation, and this video set has the lowest video quality. However,the FaceMD outperforms the other

approaches, including Xception, throughout the raw and high-quality video sets. This result indicates

that motion residual and 3D gradient streams improve detection results of NeuralTextures videos that

have high-quality.

In summary, our proposed FaceMD detects the two types of facial expression manipulation with

high detection accuracy and AUC. We observe that the FaceMD achieves less detection performance

compared to the detection performance of the FaceMD using facial identity manipulation, which is

expected because facial expression manipulation only replaces the facial expression while the facial

identity remains the same. As a result, it is hard to detect facial expression manipulation. Even though

the detection performance of the FaceMD decreases when video quality decreases, it outperforms the

other approaches throughout the raw and high-quality video sets of the two types of facial expression
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TABLE XII: COMPARISON RESULTS OF NEURALTEXTURES DETECTION FOR OUR PROPOSED
FACEMD AND OTHER APPROACHES USING DIFFERENT VIDEO SETS.

(a) DETECTION RESULTS OF RAW VIDEO SET.

Approach Accuracy (%) AUC (%)
Xception [127] 80.39 88.23
Two-stream [91] 76.82 85.66
MesoNet [89] 74.65 82.75
Proposed FaceMD 81.46 90.58

(b) DETECTION RESULTS OF HIGH-QUALITY VIDEO SET.

Approach Accuracy (%) AUC (%)
Xception [127] 78.24 87.60
Two-stream [91] 73.51 81.45
MesoNet [89] 71.33 79.29
Proposed FaceMD 78.86 88.12

(c) DETECTION RESULTS OF LOW-QUALITY VIDEO SET.

Approach Accuracy (%) AUC (%)
Xception [127] 72.78 82.85
Two-stream [91] 65.16 75.73
MesoNet [89] 64.81 75.28
Proposed FaceMD 71.63 80.47
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manipulation. This result confirms that fusing spatiotemporal information that is extracted from video

frames enhances the detection performance of facial expression manipulation.

5.3.5.2 General Manipulation Detection

We evaluate our proposed FaceMD and the other approaches to detect general types of facial manip-

ulation. We know that the most important aspect in practice is to determine whether a video is manip-

ulated or not. Therefore, we evaluate the ability of FaceMD to discriminate between fake and original

videos regardless of the type of facial manipulation. We use Google-JigSaw (DeepFakeDetection) data

set to evaluate general manipulation detection because this data set contains manipulated videos that

are created using different facial identity and facial expression manipulations without categorizing these

videos based on manipulation types.

Detection results of DeepFakeDetection manipulation for our proposed FaceMD and the other ap-

proaches using different video qualities are shown in Table XIII. We observe that the FaceMD achieves

the highest detection performance using the raw video set, and then decreases throughout the high-

quality and low-quality video sets. The FaceMD outperforms the other approaches throughout the three

video qualities. We believe that the FaceMD achieves the highest detection performance because fus-

ing spatiotemporal information guides our model to find discriminative features that improve detection

performance. This result confirms that our proposed FaceMD is able to correctly identify manipulated

frames without knowing specific types of facial manipulation.
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TABLE XIII: COMPARISON RESULTS OF GENERAL MANIPULATION DETECTION FOR OUR
PROPOSED FACEMD AND OTHER APPROACHES USING DIFFERENT VIDEO SETS.

(a) DETECTION RESULTS OF RAW VIDEO SET.

Approach Accuracy (%) AUC (%)
Xception [127] 86.76 94.26
Two-stream [91] 82.48 90.85
MesoNet [89] 81.17 88.32
Proposed FaceMD 88.83 95.41

(b) DETECTION RESULTS OF HIGH-QUALITY VIDEO SET.

Approach Accuracy (%) AUC (%)
Xception [127] 83.24 91.52
Two-stream [91] 80.46 88.19
MesoNet [89] 78.73 87.64
Proposed FaceMD 85.31 93.80

(c) DETECTION RESULTS OF LOW-QUALITY VIDEO SET.

Approach Accuracy (%) AUC (%)
Xception [127] 76.70 85.84
Two-stream [91] 75.92 83.31
MesoNet [89] 73.68 81.57
Proposed FaceMD 80.54 88.26
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Figure 23: Sample frames from Peele’s video and Hader’s video: Images on the top row indicate a sample frame
from Peele’s video where he ventriloquizes Obama, followed by three sample frames from the manipulated video;
Images on the bottom row indicate a sample frame from Hader’s video where he talks to Letterman, followed by
three sample frames from the manipulated video.

5.3.6 Real-World Cases

We evaluate our proposed FaceMD on two real-world cases. The first case was made by Jordan

Peele’s production company in 2018. In this video, Peele makes former US president Barack Obama

voice his opinion on different topics by synthesizing Obama’s mouth. The second case was uploaded

to the YouTube channel Ctrl Shift Face in 2019. This video is a clip from a conversation between Bill

Hader and David Letterman on his Late Show in 2008. In this video, Hader’s face shifts into Seth

Rogen’s face when Hader is doing an impression of Rogen. Fig.23 shows sample frames from the two

manipulated videos.

We observe that our proposed FaceMD detects facial manipulation of Peele’s video with an accuracy

of 72.18%. This result confirms that the FaceMD is able to identify facial manipulation even though

this video is only manipulated by synthesizing the mouth region while the other face regions remain the



87

same. We also observe that our proposed FaceMD detects facial manipulation of Hader’s video with an

accuracy of 54.39%. The detection accuracy is low because this video is attacked by facial identity and

facial expression manipulations at the same time without leaving visible traces. Furthermore, this video

has a lower quality than the original video. Therefore, detecting such a manipulated video with high

accuracy becomes very unlikely for any facial manipulation detection approach.



CHAPTER 6

CONCLUSION AND FUTURE WORK

We investigated digital media forgery and proposed novel approaches to detect and localize digital

media forgery. Chapter 3 presented a novel approach based on the sparse representation of keypoint

descriptors to detect image forgery. We proposed a new matching criterion that is performed using

dictionary atoms instead of ratios between SIFT descriptors. By using this matching criterion, we

eliminate efforts of adjusting a threshold. The experimental results show that our approach not only

outperforms the-state-of-the-art approaches, but it is also efficient and robust against compression and

rotation attacks.

Chapter 4 presented a novel approach based on sequential and patch analyses to detect video forgery

and localize forged regions by visualizing a movement of removed objects. We modeled video se-

quences as stochastic processes, where changes in the parameters of these processes indicate a video

forgery. We also modeled video sequences as a mixture model of normal and anomalous patches, with

the aim to separate these patches by identifying the distribution of each patch. We evaluated detection

performance at pixel and video levels, unlike most of the existing approaches that evaluated detection

performance at video level only without localizing forged regions. The experimental results show that

the detection performance is improved by using multivariate sequential analysis compared to univariate

sequential analysis. Furthermore, our patch analysis approach not only achieves excellent detection per-

formance with low computational complexity, but also leads to robust results against compressed and

lower resolution videos.
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Chapter 5 presented a novel approach (FaceMD) based on fusing three streams of convolutional neu-

ral networks to detect facial manipulation. We incorporate spatiotemporal information by fusing three

streams that are video frames, motion residuals, and 3D gradients. We combine these three streams using

different fusion methods and places to best use the spatiotemporal information, hence increasing detec-

tion accuracy. The experimental results show that the detection performance is significantly improved

by using spatiotemporal information of video frames. Furthermore, our proposed FaceMD outperforms

state-of-the-art approaches to detecting both specific and general types of facial manipulation.

In the future, we will investigate non-additive change models such as changes in covariance or cor-

relations using the asymptotic local hypotheses to detect object removal video forgery. In the sequential

analysis, we modeled video sequences as an additive change in scalar and multidimensional parameters.

The detection result at the video level is superior, but the detection result at the pixel level can be further

improved. Hence, using non-additive change models may lead to better detection performance.

Furthermore, we plan to extend our approach to detect object removal forgery with a moving back-

ground. We start by segmenting a video into groups so that the camera motion within each group is

smaller than a predefined threshold. Then, we perform frame registration for each group to recover the

spatial alignment between the frames within the group. Subsequently, we apply sequential and patch

analyses in each group.

Moreover, we plan to perform a spatiotemporal similarity test to overcome object deletion by frame-

based forgery. If an object removal happens by copying a group of adjacent frames and place it on frames

where the object exists, our sequential or patch analysis approach will not be able to detect a forgery

because we can not detect abnormal changes within video frames. In this problem, the fundamental
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challenge is to discriminate between static frames and duplicated frames. We will try to find artifacts

that may occur during frames duplication to discriminate between these frames.

We also plan to design a more discriminative network architecture to detect facial manipulation. Our

proposed FaceMD achieves high detection accuracy, but it can be further improved. We will investigate

different network architectures using 3D convolutions. We think that 3D convolutions will improve the

detection accuracy of facial manipulation because 3D convolutions extract features from adjacent video

frames. Therefore, 3D convolutions would be able to expose spatiotemporal artifacts that are created

during facial manipulation.
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