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SUMMARY 

 

 
     This Thesis research project aims to design a Line-tracking algorithm for a low-cost mini drone through 

Vision-based control with image processing techniques. The design process is the application of the principles 

of Model-based software design, which is a modern technique to design control systems, based on the 

development of a model of the plant and the controller with enough detail to have a realistic representation of 

its behavior to accomplish the specifications. The designed model is tested in a simulation environment 

(Model-in-the-loop phase). Then, if it satisfies the requirements, it is tested in real-time, deploying the 

algorithm on the Hardware to evaluate if its performances are still acceptable or if it requires to be updated.  

    A significant advantage that characterizes this technique is the auto-code generation, which allows us to 

automatically translate the blocks of the model built through Simulink into a C-code executable by the 

hardware, instead of writing it manually. 

    This research project is adapted from a competition organized by Mathworks, which aims to make a drone 

follow a line of a specific color and land at the end of it on a circle. The task should be accomplished in as 

little time as possible but at the same time remaining stable and following the path as precisely as possible 

(within the low-cost limits of the mini drone used). The environment used to design and develop the control 

system is MATLAB, with Simulink and their add-on toolboxes like Aerospace blockset, image processing, 

computer vision, and Hardware support package for Parrot mini drone, which is the specific company that 

made the drone model of this project. 

     Firstly, the preliminary goal is the accomplishment of the stabilization of flight maneuvers through a 

suitable control system architecture and PID controllers tuning.  

     Then, the Flight Control System design proceeds with Image processing and Path planning subsystems 

design. The line-tracking algorithm implementations developed are two. The first one is based on the analysis 

of the pixels of the image acquired from the downward-facing camera and elaboration through image 



xv 

 

processing techniques like color thresholding and edge detection. The path planning logic was implemented 

through Stateflow, which is an add-on tool of Simulink, useful for State machines design. This first designed 

control system also has another simplified version, useful because computationally lighter on the hardware 

compared to the first standard version. The second algorithm, instead, is realized by using user-defined 

functions, like thresholding operation for noise removal in the binary image, or like the function that searches 

and detects the path and the line angles, and by some other already existing functions provided by the computer 

vision toolbox.  

     Finally, their performances were both tested on the hardware and then analyzed and compared. The 

validation phase was discussed, commenting on their limits, and highlighting other issues encountered, not 

previously noticed within the simulation 3D environment during the Model-in-the-loop test.
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 
1.1. Brief History of UAV and Advantages 

 
     The Leonardo da Vinci’s “aerial screw” project in the Renaissance period (Figure 1.1) would have been 

only a progenitor of what has been a continuous technological evolution until now dictated by the greatest of 

man's desires: flying. 

     Today, not only can this action be carried out standardly, but it is also possible to control any aircraft while 

sitting comfortably. 

 
Figure 1.1: “aerial screw” prototype as designed by Leonardo da Vinci [1] 

 

The “main character” that embodies this new concept of flight is the drone, which is a remotely piloted aircraft, 

or more generally a flying device, which is not piloted on board. 

     As often happens in aviation history, the technique and quality of the aircraft have developed first in the 

war field during the two world wars, and the same goes for drones. The progress of technology pushed more 

increasingly during the Cold War, and it allowed us to reduce their sizes progressively up to what we know. 

     Because of the growing commercialization and due to the more excellent usability of the vehicle, the FAA 

(Federal Aviation Administration) has decided to regulate multi-copters based on their features and to overall 

performance: weight, range, and service ceiling are just some of the parameters taken into consideration [2]. 
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Without a driver, the drone can perform certain types of missions between two points through an on-board 

computer or a remote-control system, and for this reason, it is also called RPA (Remote Piloted Aircraft). They 

are also known with other acronyms, many of which are of Anglo-Saxon derivation: in addition to RPA 

(Remotely piloted aircraft) can also be referred to as RPV (Remotely piloted vehicle), UVS (Unmanned vehicle 

system), ROA (Remotely operated aircraft), UAV (Unmanned aerial vehicle), etc. 

     Their use is now consolidated in the military field. It is increasing for civil applications, for example, in fire 

counteraction and critical operations, for reconnaissance, for remote sensing, research, and, in general, in all 

cases where these devices can permit the accomplishment of standardized, time-consuming, or dangerous 

missions. They are often carried out with lower economic costs than traditional air vehicles and do not 

encounter so many ethical issues as it could be expected a few years ago because of their reliability. Depending 

on the range, they can be equipped for long distances with a video camera that allows them to follow in real-

time the movements in first-person: this class is called FPV (First-person view) [3].  

     The drone, thus, has become the everyday aircraft used for playful purposes as well as for professional 

purposes, see aerial footage and surveys, or even short-range air raid. This variety of purposes immediately 

defines its characteristics and construction solutions. In response to these purposes, there are numerous 

advantages of a rotary-wing aircraft over a fixed-wing model, firstly the economic cost. 

     The considerable ease of piloting appears fundamental due to technological developments in 

microelectronics and now reliable control systems, that make possible lots of varieties of missions, previously 

carried out by helicopters with human pilots.  

     Furthermore, the possibility of flying indoors is not negligible, it has been made much safer now by the 

modern control system, and it would have been unthinkable in the past. In recent years, lots of research has 

been carried out all over the world regarding the simulation and the control of these devices. They are different 

according to the requested task, for example, the drone's ability to be a carrier of a load. By realizing systems 

of this form and implementing control systems, it can be possible to carry out missions in which previously 
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manned helicopters were employed. 

     Examples are the meausurement of the magnetic field of the Earth using a drone with a suspended 

magnetometer, or the study of the seabed carried out by a drone with payload immersed in water. 

     Unlike traditional aircraft, RPA can be used in situations characterized by a great danger to human life and 

in areas difficult to reach, also flying at low altitude. For this reason, they can be used during the monitoring 

phases of areas affected by natural or artificial disasters (earthquakes, floods, road accidents, etc.). 

 

1.2     Applications 

 
In recent years, technologies related to the development of RPAs systems have undergone a rapid surge. In 

particular, technological development in the field of sensors made it possible to equip RPAs with many 

different loads, in the visible spectrum (compact digital cameras or professional), infrared (thermal cameras), 

multispectral cameras, up to sensors more advanced such as sensors for monitoring air quality. Here are some 

civil applications for RPAs: 

 The monitoring of Archaeological sites, against the looting and illegal trade. A clear example is the 

monitoring of the ancient necropolis of Fifa in Jordan with drones. It is a logical solution, also considering 

the difficulty of hiring staff in militarily active areas, such as the Middle East. 

 
Figure 1.2: An archaeologist monitoring a historical site [4] 

 

 Monitoring of Thermal power plants and industrial plants. RPAs can also be used to monitor over time 

the electricity production plants, or, more generally, industrial systems, using sensors (thermal imaging 
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cameras, multispectral cameras, etc.). 

 
Figure 1.3: A drone monitoring an industrial power plant [5] 

 

 Remote sensing. It is the technical-scientific discipline or applied science with diagnostic-investigative 

purposes that allows us to derive qualitative and quantitative information on the environment and on 

objects placed at a distance from a sensor through electromagnetic radiation measurements (emitted, 

reflected or transmitted) that interacts with the physical surfaces of interest. Thanks also to the possibility 

of flying at very low altitudes and of having small but suitable sensors available, RPAs classified as “mini-

drones” can be used for applications linked to remote sensing, such as the creation of agricultural crop 

vigor maps and monitoring the health of vegetation. Another remote sensing useful application is in 

creating coverage maps and land-use maps, for the analysis and the support in the phases that follow a 

natural disaster immediately or for the monitoring and mapping of the thermal losses of private and public 

buildings (houses, warehouses, industrial plants). This is very important in this period when there is much 

talk about sustainable development and loss of land to be allocated to areas greens. 

 
Figure 1.4: Airborne Hyperspectral sensor [6] 
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 Aerial photogrammetry and architectural survey: Photogrammetry is a survey technique that allows 

acquiring metric data of an object (shape and position) through a pair of stereometric frames. With the 

advent of small digital cameras (compact or reflex) which can guarantee a high-quality standard 

concerning the image produced, photogrammetry can be approached to the RPA and to their use to create 

digital soil models, for orthophoto production and for the architectural survey of infrastructures and 

buildings to create 3D models. 

 
Figure 1.5: A drone monitoring the construction of a building [7] 

 

 Environmental monitoring and natural disasters: The RPAs have been actively used in monitoring areas 

severely affected by earthquakes and floods. Some examples are the US Global Hawk RPAs that have 

flown over the nuclear power plant in Fukushima Dai-ichi, Japan, entering the forbidden zone to monitor 

the reactors after the explosions caused by the Tōhoku earthquake in 2011, also taking photos with 

infrared sensors. The high radioactivity made the presence of humans impossible. 

 
Figure 1.6: the US Global Hawk model that flew over the nuclear power plant in Fukushima after the 

earthquake, monitoring the reactors [8] 
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 Biodiversity and fauna monitoring: RPAs can be used for monitoring wild animals. There are periodic 

numerical controls of those species which are either endangered or, on the contrary, which have a high 

rate of reproduction that could be a problem, both for the biodiversity of the environment in which they 

live and for the economic damage caused to agricultural production and livestock in the area. 

 
Figure 1.7: Use of Swiss AI and drones to count African wildlife [9] 

 

 Search and Rescue Operations: RPAs can play an essential role in search and rescue operations for quick 

reconnaissance and detection, after the occurrence of emergencies. 

 
Figure 1.8: the DJI - M200 Series during Search and Rescue in Extreme Environments [10] 

 

 Video footage and photographs for general purpose: RPAs in combination with the latest and lightest 

digital video cameras, including general-purpose ones and not only professional, are making themselves 

more and more competitive for all those needs of "aerial" shooting, that substituted other complicated and 

expensive tools such as the dolly shot or at higher altitudes the helicopter.
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CHAPTER 2 

 

 

MODEL-BASED DESIGN AND SPECIFICATIONS 

 

 
 

2.1      Model-based software design  

 
     We can imagine that we should design a controller for an industrial robot, a drone, a wind turbine, an 

autonomous vehicle, an excavator, or a servo motor. If the code is written manually and the search for 

requirements data is document-based, the only way to respond to the previous questions will be through “trial 

and error” procedure and tests on a physical prototype, which can also be expensive.  

     If a single requirement changes, the whole system will have to be redesigned, delaying the delivery of days 

or even weeks. 

 
Figure 2.1: Workflow of Model-based design [11] 

 

     Following the Model-Based design (MBD) procedure (Figure 2.1), instead of developing a hand-written 

code and use hand-written documents, a model of the system can be developed, subdividing it into different 

subsystems of variable complexity. For a control system, they are generally the plant, actuators, sensors, and 

the controller.  
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     Model-Based Design consists of a technique empowering quick and cheap design of dynamic systems, 

control systems, communication systems, and signal processing. In this method, the model of the system is at 

the focal point of the development procedure, beginning from requirements, then implementation, and finally 

testing. It can be continuously refined throughout the development process, and it can be simulated at any time 

to get an instant view of the system behavior. Multiple scenarios can be tested without any risk, without any 

delay and without using any expensive machinery directly. Various techniques can be applied to create the 

mathematical model to be inserted into the Simulink project, and the physical system can be represented as 

much detailed as the task that must be accomplished requires. 

     In this project, the ready-made general model of a quadcopter is provided by MathWorks together to a three-

dimensional graphic simulator that represents the system to be controlled (Simulink 3d environment). 

     In the Figure below (Figure 2.2), the approach that describes Model-based software design is shown, which 

is also known as “V-shaped” development flow. 

 
Figure 2.2: V-shaped Workflow of Model-based design [11] 

 

2.1.1 Model-in-the-loop test  

     In this first stage, both the Plant (systems to be controlled) and the Controller (algorithm controlling the 

Plant) are modeled. The Simulation helps in refining both models and evaluate design alternatives. 

     The model exists entirely in native simulation tools (Simulink and Stateflow), and this phase is useful for 

control algorithm development. 
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Figure 2.3: Model-in-the-loop test [11] 

 

2.1.2 Optimization, code generation, and Software-in-the-loop test  

     In this stage, different transformation rules produce hardware and software. The implementation is co-

simulated with the plant model to test its correctness, and it is still executed on a PC. A portion of the model 

is implemented in the native simulation tool (e.g., Simulink / Stateflow), and another portion as executable C-

code. This phase is suitable to test the controller implementation written in C-code. 

        
Figure 2.4: Optimization, Code generation, and Software-in-the-loop test [11] 

 

2.1.3 Processor-in-the-loop test  

     In this stage, the implementation is deployed and runs on the target hardware (e.g., EVB or ECU). The 

implementation is co-simulated with the plant model to test its correctness. However, the system is not running 

in real-time yet. 

     A portion of the model is implemented in the native simulation tool (e.g., Simulink / Stateflow), and another 

portion as executable C-code, running on target hardware or rapid prototyping hardware. 
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Figure 2.5: Processor-in-the-loop test [11] 

 

2.1.4 Hardware-in-the-loop test  

     In this stage, the controller implementation is co-simulated with the plant model to test its correctness. The 

controller runs on the target hardware, the plant model on rapid prototyping hardware, and the system is 

running in real-time. A portion of the model runs in a real-time simulator, and another portion could be 

implemented as physical hardware (ECU). This phase is suitable to test the interactions with hardware and 

real-time-performance. The controller algorithm is sometimes distributed among two devices: the ECU and 

rapid prototyping hardware. 

           
Figure 2.6: Hardware-in-the-loop test [11] 

 

2.2 Project goals and specifications 

     This Thesis research project aims to study and to design a model-based algorithm on Simulink and Matlab 

through simulation, and to test it by deploying on the Hardware of a Parrot Mambo Fly mini-drone through 

the interfaces provided with its Hardware support package in Simulink. 

     The first goal to be accomplished is to maintain the drone stable during the flight maneuvers adopted to 



11 

 

 

 

follow the path. In addition to the previous objective, the drone should acquire images through its downward-

facing camera, then elaborate them with several image processing techniques and move the drone along the 

track according to a specific path planning control algorithm that receives the vision-based data and elaborate 

them, obtaining in this way an autonomous vision-based control system. 

     The line specifications are adapted from the rules of the competition organized by MathWorks: the 

multinational private company specialized in the production of software for mathematical calculations. Its 

main products are MATLAB and Simulink. In addition to government and industrial purposes, the software 

products made by the company are also used in teaching and research in many universities throughout the 

world. 

     The rules of this competition are based precisely on the same purpose of this Thesis, which is to make the 

drone follow autonomously a path of a particular color (specification useful for the image processing algorithm 

that should have a filter with a threshold). The project in Simulink is the one that Mathworks provided to the 

participants who had to modify the general model of the Quadcopter according to the aim of the competition. 

 
Figure 2.7: a drone flying in the competition arena [13] 

 

Some of the rules describing the track are the following: 

 The line track is about 4 inches in width.  

 The circular landing figure has 8 inches in diameter.  

 The path is made of connected line segments only and does not have any smooth curves at the connections.  

 The end of the path is about 10 inches far from the landing circle.  

 For the Thesis project, it was chosen either a random color like red or, more conveniently, for the image 
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processing algorithm, a white line on a black background to enhance the contrast useful in the image 

processing algorithm. 

 The background is not made by a single color (black), but it has texture (different color papers were used 

in the tests). This texture helps the optical flow estimation algorithm, through which it is possible to 

estimate the speed and the displacement of the drone. This is not necessary for the Simulation 3d 

environment, which does not influence the sensors as the physical environment does in real-time. 

 
Figure 2.8: rules on the path measurements in the competition arena [14] 

 

     The circle is used to land the drone as part of the competition, but for this Thesis project, this specification 

was an optional goal, not necessary to the accomplishment of the main task, which is the line tracking, but it 

is considered only to improve the algorithm.
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CHAPTER 3 

 

 

MODELING AND CONTROL OF QUADCOPTERS 

 

 

 
3.1.      Main Components and Working Principles 

 
     In this chapter, the working principle of a Quadrotor will be explained, and its mathematical model will be 

analyzed, deriving its kinematics and its dynamical equations (useful for the implementation on Simulink). 

The approach followed is the one used by Orsag et al. [16] and Totu [15]. 

     The main components of quadrotors are: 

 The frame, which gives physical support for the other components, consists of a center and four arms. 

 Electronics and a battery in the center of the frame. 

 A motor and a propeller on each arm. 

 
Figure 3.1: Schematic of the model of a quadrotor [15] 

 

     A spinning propeller creates thrust, a force that is perpendicular to the propeller’s rotation plane. Besides 

the thrust force, a spinning propeller produces a turning effect (or torque) on the quadrotor frame. It is in the 

opposite direction to the propeller’s rotation.  

     There are two types of propellers:  

 Type 1, or right-handed propeller, produced thrust in the upward direction when rotating 
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counterclockwise. 

 Type 2, or left-handed propeller, produces thrust in the upward direction when rotating clockwise. 

     A quadrotor has two Type 1 and two Type 2 propellers (figure 3.2). 

               
Figure 3.2: type 1 and type 2 propellers [15] 

 

     The quadrotor is an underactuated system. It has four propellers, but there are six degrees of spatial freedom. 

 Translational degrees of freedom: up/down, forward/backward, left/right. 

 Rotational degrees of freedom: heading, pitch, and roll. 

     Since the actuators (4) are less than the D.O.F. (6), then some directions are not controllable at any given 

time. For example, the quadrotor is not capable of moving right without rotating in that direction. The same 

goes for forward and backward motions as well. 

     It is possible to overcome this underactuation problem by designing a control system that couples rotations 

and thrusts to achieve the overall tasks. 

     The two possible quadrotors configurations are the “Plus” configuration and the “Cross” configuration. 

 
Figure 3.3: “Plus” and “cross” configurations [15] 

 

Let us assume that the frame of the quadrotor is perfectly level with the ground. 

     If the same commands are given to the motors, the overall thrust is in the vertical direction, and it can 
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compensate for the gravity to generate a movement up (Figure 3.4). 

 
Figure 3.4: Forces balance between thrusts and weight while Hovering [15] 

 

If the overall thrust is less than the force of gravity, then the quadrotor will move down. 

     To pitch, i.e., rotate around the left-right axis, we must create an unbalance in the forward-side and 

backward-side forces. Pitching forwards is done by decreasing the force in the forward side and/or increasing 

in the backward side. 

     Pitching backward is done by decreasing the force on the backward side and/or increasing on the forward 

side. 

 
Figure 3.5: Pitch in “Plus” configuration [15] 

 

 
Figure 3.6: Pitch in “cross” configuration [15] 

 

The pitching rotation is coupled with translation on the forward/backward direction. When the quadrotor is 
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pitching forward/backward, it will also move forward/backward. 

 
Figure 3.7: forces balance during Pitch maneuver [15] 

 

     To roll, i.e., rotate around the forward-backward axis, we must create an unbalance in the left-side and 

right-side forces. Rolling right is done by decreasing the force on the right side and/or increasing on the left 

side. Rolling left is done by decreasing the force in the left part and/or increasing in the right part. 

 
Figure 3.8: Roll in “plus” configuration [15] 

 

 

 
Figure 3.9: Roll in “cross” configuration [15] 

 

     The rolling rotation is coupled with translation on the left/right direction. When the quadrotor is rolling 

left/right, it will also move left/right. 
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Figure 3.10: forces balance during Roll maneuver [15] 

 

     Yawing is, instead, the rotation around the up/down direction. It is important to remember that rotating 

propellers are causing an opposite torque/turning effect on the frame. If all propellers were rotating in the same 

direction, the frame would rotate around its up/down axis in the opposite direction, and it would be spinning 

in place. The quadrotor has two types of propellers, such that they rotate in the opposite direction in pairs, and 

the reaction effect is canceled. 

 
Figure 3.11: Torques balance [15] 

 

     The input is increased on the pair of clockwise propellers and decreased on the counterclockwise pair to 

create a controlled counterclockwise yawing rotation, whereas the input is increased on the pair of 

counterclockwise propellers and decreased on the clockwise pair to create a controlled clockwise yawing 

rotation. 

 
Figure 3.12: Yawing maneuver and torques balance [15] 
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     Summarizing it is possible to say that Pitching and forward/backward motion are coupled, Rolling and 

left/right motion are coupled, Up and down motion is independent, and Yawing (changing of heading) is 

independent. 

     It could be useful to implement a motor mixing algorithm that can convert the roll, pitch, yaw, and thrust 

commands into the motor speeds, and which can be useful in the model representation on Simulink. 

The principles to generate Thrust, Roll, Pitch, Yaw maneuvers described before are applied in the same way 

to the MMA (Motor mixing algorithm) according to the convention followed by Douglas [19]. 

motorfront right = thrustcmd + yawcmd + pitchcmd + rollcmd                     (3.1) 

motorfront left = thrustcmd − yawcmd + pitchcmd − rollcmd                       (3.2) 

motorback right = thrustcmd − yawcmd − pitchcmd + rollcmd                      (3.3) 

motorback left = thrustcmd + yawcmd − pitchcmd − rollcmd                        (3.4) 

 

3.2.  Rigid body motion 

 
     A rigid body object can be seen as a system consisting of a vast (in the limit infinite) number of small (in 

the limit infinitesimal) point-mass particles, with the property that the relative positions of the particles relative 

to each other are constant (rigidly). 

     As the following picture (3.13) shows, the Rigid body motion model of the drone is needed to understand 

how from generalized forces in input, it is possible to derive the position and the attitude of the drone in the 

space. 

 
Figure 3.13: Rigid body motion model schematic [15] 

 

3.2.1.     Kinematics 

 
In the Kinematics of the rigid body, there are different concepts introduced and explained. Some of them are 
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the translational and rotational motion, position, linear velocity, and linear acceleration vectors, the rotation 

matrix that defines the body frame attitude relative to a fixed inertial frame, angular velocity, and angular 

acceleration, motion composition between frames, etc. 

     Firstly, the cartesian coordinate system must be defined to describe the geometrical vectors like the position 

vector p. 

 
Figure 3.14: Vector p in the Cartesian reference frame (inertial) [15] 

 

The vector p can be described either through a geometrical description, like the following: 

           𝐩 = px
0𝐢 + py

0𝐣 + pz
0𝐤                                                               (3.5) 

or through an algebraic description: 

        𝐩0 = [

px
0

py
0

pz
0

] , 𝐢0 = [
1
0
0
] ,  𝐣0 = [

0
1
0
] , 𝐤0 = [

0
0
1
]                                                 (3.6) 

     It could be possible to define an inertial cartesian reference frame centered in O, that can be called e-frame 

(for “external”) and to define the points A and C respectively in the propeller center and in the center of mass 

of the drone, which should coincide approximately with the center of the drone frame.  

     Three positions vector could be introduced: 

 Position of C relative to O, p  

 Position of A relative to O, r  

 Position of A relative to C, s  

     Furthermore, it is possible to put in evidence the following relationship between these vectors:   
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               𝐫 = 𝐩 + 𝐬                                                                        (3.7) 

 
Figure 3.15: quadrotor’s position vectors in the inertial frame [15] 

 

     Under a translational motion, there will be a variation of the position vectors r and p, but not of vector s 

that will be constant. 

 
Figure 3.16: translation of the quadrotor [15] 

 

The velocity and acceleration of the quadrotor are the time derivative of vector p: 

                      𝐯P(t) ≜ �̇�(t) =
d𝐩(t)

dt
                                                               (3.8) 

                     𝐚P(t) ≜ 𝐯Ṗ(t) = p̈(t) =
d𝐯(t)

dt
=

d2𝐩(t)

dt
                                             (3.9) 

Now it will be interesting to see how the vector r change in time: 

           𝐯r = �̇� = �̇� + �̇� = �̇� = 𝐯p    ,         𝐯r = 𝐯P                                        (3.10) 

           𝐚r = �̈� = 𝐯ṙ = 𝐯ṗ = 𝐚p     ,         𝐚r = 𝐚p                                       (3.11) 

     Under a translation movement, it can be noticed that all points of the moving object; in this case, the drone 

has the same velocity and acceleration. 

     Under a rotational motion, instead, is possible to observe that p(t) = 0, and a body reference frame, “b-
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frame”,  that rotates together with the quadrotor, around an axis passing through its center of mass, and the 

position vector r defined by OA, which points to a fixed point A on the body frame that could be the propeller 

center. 

 
Figure 3.17: quadrotor’s body reference frame and inertial frame [15] 

 

The goal is to represent the speed and acceleration of vector r. 

     The b-frame can be denoted with respect to the e-frame basis vectors through the following notation: 

                    𝐢b = ib,x
e 𝐢e + ib,y

e 𝐣e + ib,z
e 𝐤e                                                         (3.12) 

    𝐣b = jb,x
e 𝐢e + jb,y

e 𝐣e + jb,z
e 𝐤e                                                         (3.13) 

    𝐤b = kb,x
e 𝐢e + kb,y

e 𝐣e + kb,z
e 𝐤e                                                      (3.14) 

It is possible to express vector r in the b-frame 

              𝐫 = rx
b𝐢b + ry

b𝐣b + rz
b𝐤b                                                            (3.15) 

and to refer this equation in the e-frame: 

             𝐫e = rx
b𝐢b

e + ry
b𝐣b

e + rz
b𝐤b

e                                                            (3.16) 

     The vector r can be represented either in b-frame or in e-frame, and the passage between them is done by 

multiply a rotation matrix R: 

               𝐫e = 𝐑b
e𝐫b                                                                       (3.17) 

Where: 



22 

 

 

 

      𝐫e = [

rx
e

ry
e

rz
e

] ,          𝐫b = [

rx
b

ry
b

rz
b

] ,            𝐑b
e = [

ib,x
e jb,x

e kb,x
e

ib,y
e jb,y

e kb,y
e

ib,z
e jb,z

e kb,z
e

]                              (3.18) 

     The rotation matrix consists of 9 elements, but only three are required to specify a rotation/orientation in 

3D space. Some alternative ways of representing the orientation in a more compact way instead of the Rotation 

matrix are the Unit Quaternions (also known as “Euler parameters”) and the Euler angles. 

     Unit Quaternions are a set of 4 numbers (4D vectors). They are equivalent to rotation matrices, and they 

are the most efficient and numerically stable tool to express orientations and rotations. For this reason, as it 

will be shown in chapter 6, the Simulink quadcopter simulation model also has the unit quaternions 

representation, provided by the Aerospace blockset add-on tool. 

     Quaternions are 4-dimensional vectors, and they are the combination of a 3-dimensional vector with a 

scalar. 

     𝐪 = [
s
𝐯
] = [s v1 v2 v3]T                                                       (3.19) 

It is possible to express a rotation matrix as a function of a quaternion is the following way: 

       𝐫e = [−𝐯 s𝐈3 + [𝐯]x] [
−𝐯T

s𝐈3 + [𝐯]x
] 𝐫b = 𝐑b

e (𝐪)𝐫b                                     (3.20) 

             𝐑b
e (𝐪)𝐫b = [

s2 + v1
2 − v2

2 − v3
2 2v1v2 − 2sv3 2v1v3 + 2sv2

2v1v2 + 2v3s s2 − v1
2 + v2

2 − v3
2 −2sv1 + 2v2v3

2v1v3 − 2sv2 2sv1 + 2v2v3 s2 − v1
2 − v2

2 + v3
2

] =                    (3.21)        

   = 2 [

s2 + v1
2 − 0.5 v1v2 − sv3 v1v3 + sv2

v1v2 + v3s s2 + v2
2 − 0.5 −sv1 + v2v3

v1v3 − sv2 2sv1 + 2v2v3 s2 + v3
2 − 0.5

]                                       (3.22) 

The derivative of the quaternion is the following: 

  �̇� =
1

2
[

−𝐯T

s𝐈3 + [𝐯]x
]ωb =

1

2

[
 
 
 
 
−v1ωx

b − v2ωy
b − v3ωz

b

sωx
b − v3ωy

b + v2ωz
b

v3ωx
b + sωy

b − v1ωz
b

−v2ωx
b + v1ωy

b + sωz
b

]
 
 
 
 

                                     (3.23) 
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The other alternative way to represent orientation is through Euler Angles. They are a set of 3 numbers that 

are equivalent to a rotation matrix, but they have an intrinsic disadvantage because they have singularities in 

operation (divisions by zero in expressions), and these need to be treated as special cases. 

     The rotation of the frame can be split up in a series of three individual rotations around the coordinate 

system axes, that is a product of three 2D rotations 

            𝐑b
e = 𝐑z(φ)𝐑y(θ)𝐑x(ψ)                                                       (3.24) 

where: 

    𝐑z(φ) = [
cφ −sφ 0
sφ cφ 0
0 0 1

],       𝐑y(θ) = [
cθ 0 sθ
0 1 0

−sθ 0 cθ
],       𝐑x(ψ) = [

1 0 0
0 cψ −sψ
0 sψ cψ

]             (3.25) 

The relation between the rotation matrix and the Euler angles can be expressed in the following way:  

             𝐑b
e = [

cθcφ sψsθcφ − cψsφ cψsθcφ + sψsφ
cθsφ sψsθsφ − cψcφ cψsθsφ − sψcφ
−sθ sψcθ cψcθ

]                                    (3.26) 

ψ is the roll angle, φ is the yaw angle, and θ is the pitch angle, and. This intrinsic sequence is also known as 

Cardan angles. 

 
Figure 3.18: Euler angles and rotations [15] 

 

In total, there are 12 extrinsic combinations and 12 intrinsic combinations.   

     As far as the derivation of velocity and acceleration for rotational motion is concerned, it can be observed 

that rb
 is constant (because the b-frame rotates with the drone) and re is changing with time. If the derivative 

of a rotation matrix is used, the linear velocity in the e-frame is written as: 

                𝐯e(t) = 𝐑b
ė (t)𝐫b(t)                                                                (3.27) 

Instead, the derivative of the rotation matrix can be denoted as: 
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       𝐑b
ė (t) = Ωe𝐑b

e (t) = 𝐑b
e (t)Ωb                                                        (3.28) 

Matrices Ω are skew-symmetric, and they have the following form: 

  𝛚 = [

ωx

ωy

ωz

]                       𝛀 = [

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0
] = [𝛚]x                         (3.29) 

     The multiplication by a skew-symmetric matrix is another way to represent the vector cross-product. The 

vector ω is the angular velocity, which is a physical vector. 

     The derivative of the rotation matrix is expressed as: 

     𝐑b
ė (t) = [𝛚e]x𝐑b

e (t) = 𝐑b
e (t)[𝛚b]

x
                with               𝛚e = 𝐑b

e𝛚b                  (3.30) 

     The angular rate in the rotating body frame ωb can be obtained from the measurements of a MEMS 

gyroscope sensor placed on the b-frame. 

     The linear velocity vector is written with the following notation: 

              𝐯e = [𝛚e]x𝐫
e                                                                (3.31) 

The angular acceleration α is the derivative of the angular velocity vector ω, and its unit is [rad/s]. 

     The linear acceleration in the e-frame ae can be written as: 

         𝐚e = [𝛂e]x𝐫
e + [𝛚ⅇ]x[𝛚

e]x𝐫
e                                                (3.32) 

Instead, ab is the output of the quadrotor’s accelerometer sensor: 

             𝐚b = 𝐑e
b𝐚e                                                                 (3.33) 

     Under a roto-translational motion, we have the two motions combined, which is the generalized case, and 

the most important in the drone application. 
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Figure 3.19: quadrotor’s body reference frame and inertial frame [15] 

 
Figure 3.20: roto translation of the quadrotor [15] 

 

The following position vector is obtained, combining translation and rotation and translation motion: 

              𝐫e = 𝐩e + 𝐬e = 𝐩e + 𝐑b
e𝐬b                                                        (3.34) 

Moreover, the following linear velocity of point r relative to e-frame is expressed as 

               𝐕r
e = 𝐕p

e + 𝐑b
e [ωb]

x
𝐬b = 𝐕p

e + [𝛚e]x𝐬
e                                           (3.35) 

The linear acceleration of point r is obtained deriving the linear velocity: 

      𝐚r
e = 𝐚p

e + [𝛂b]
x
𝐬e + [𝛚ⅇ]x[𝛚

e]x𝐬
e                                            (3.36) 

3.2.2 Dynamics 

     The following laws are considered for the derivation of the equations describing the dynamics of the 

quadrotors. 

 Newton’s laws of motion for point masses/particles 

 Euler’s laws of motion for the rigid body (translational and rotational equation of motion) 

     Among the first ones the Second law tells that the sum of forces on a particle object is equal to the mass of 
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the object times the acceleration of the object in an inertial reference frame (in this project the hypothesis is 

that the earth is like as an inertial frame) 

        ftotal = ∑ fk
e

k
= m𝐚e = m�̈�e ⇔ ∑ [

fk,x
e

fk,y
e

fk,z
e

] = m[

ax

ay
e

az
e
]

k

= [

p̈x
e

p̈y
e

p̈z
e

]                                (3.37) 

     According to the Third principle of Dynamics, instead, when a particle applies a force on a second particle 

upon some form of interaction, contact, or at-a-distance), the second particle simultaneously applies a force 

equal in magnitude, but opposite, onto the first particle.  

     The direction of the two forces is along the straight line joining the point masses. If i and j are two particles, 

fij with which particle i acts upon particle j, and ri and rj are position vectors then: 

                        𝐟ij = −𝐟ji                                                                         (3.38) 

       𝐟ij = ±‖𝐟ij‖(𝐫i − 𝐫j)                                                              (3.39) 

     If a system of particles is considered, with fixed distance one each other, that is a rigid body, the Euler’s 

laws of motion tell the dynamics behavior of this system. The resultant of the internal forces applied to these 

particles is, therefore, null and the only nonzero forces are the external ones, that can be thought to act on the 

center of gravity of the object. The resultant of external forces equals the center of gravity acceleration 

multiplied by the total mass of the system. 

                𝐩 =
1

m
∑ mi𝐫𝐢i                                                                      (3.40) 

                   𝐟ext,total
e = m�̈�e = m𝐚p

e                                                               (3.41) 

     Here r is the center of the gravity position vector, and m is the body mass. Forces not only push or pull a 

rigid body (translation) but also tend to rotate it, and the torque expresses this effect. 
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Figure 3.21: torque description [15] 

 

      𝛕O = [𝐬]x𝐟 = ‖s‖‖f‖ sin(θ)𝐧 = ‖f‖ ⋅ d ⋅ 𝐧                                             (3.42) 

If a quadrotor is considered like in the following picture, the external torque about O can be expressed in the 

following way: 

 
Figure 3.22: external force on the quadrotor [15] 

 

         𝛕O,ext = [𝐩]x𝐟total,ext + τC,ext                                                     (3.43) 

     Furthermore, as observed for the resultant of the forces on a rigid body, the torque expression has also only 

the external component, because the sum of internal torque is zero. 

     Combining the last equation with the (3.41), the following equation is obtained: 

           𝛕0
e = ∑ mi[𝐫i

e]x𝐚i
e

i
                                                               (3.44) 

       𝛕O
e − [𝐩e]𝐟total,ext

e = 𝐉eαe + [𝛚e]x𝐉
e𝛚e                                              (3.45) 

     And combining equation (3.43) with (3.45), we can notice that the resultant of Torques about C (center of 

mass of the quadrotor) is a sum of two components as the following expression shows: 

            𝛕C
e = 𝐉eαe + [𝛚e]x𝐉

e𝛚e                                                           (3.46) 

Where: 
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                𝐉e = −∑ mi[𝐬i
e]x[𝐬i

e]xi
                                                          (3.47) 

that is the global inertia matrix. 

     The rotational equation of motion can also be represented in body-frame coordinates: 

               𝛕c
b = 𝐉b𝛂b + [𝛚b]

x
𝐉b𝛚b                                                         (3.48) 

And the global inertia matrix is represented in relation to the body inertia matrix as: 

           𝐉b = 𝐑e
b𝐉e𝐑b

e                                                                    (3.49) 

  𝐉b = −∑ mi[𝐬i
b]

x
[𝐬i

b]
xi

= −∑ mii [

0 −zi yi

zi 0 −xi

−yi xi 0
] [

0 −zi yi

zi 0 −xi

−yi xi 0
]       with      𝒔𝑖

𝑏 = [

𝑥𝑖

𝑦ⅈ
𝑧𝑖

]        (3.50) 

        𝐉b = ∑ mii [

yi
2 + zi

2 −xiyi −xizi

−xiyi xi
2 + zi

2 −yizi

−xizi −yizi xi
2 + yi

2

]                                          (3.51) 

   𝐉b = [

∫ (yi
2 + zi

2)
V

dm ∫ −xiyidm
V ∫ −xizidm

V

∫ −xiyiV
dm ∫ (xi

2 + zi
2)

V ∫ −yiziV
dm

∫ −xizidm
V ∫ −yizidm

V ∫ (xi
2 + yi

2)
V

]                                   (3.52) 

     Furthermore, it can be noticed that while 𝒔𝒆
𝒃

  is variable in time, vector 𝒔𝒊
𝒃 is constant, meaning that Je is 

time-dependent, while Jb in the body frame is time constant. 

     The differential equations of motion can be summarized and put together to form the dynamical model of 

the quadrotor, and they can be written either with the rotation matrix notation: 

                               �̇�e = 𝐯e                                                                         (3.53) 

            �̇�e =
1

m
𝐟total,ext
e =

1

m
𝐑b

e 𝐟total,ext
b                                                     (3.54) 

                        �̇�b
e = 𝐑b

e [𝛚b]
x
                                                                 (3.55a) 

           �̇�b = (𝐉b)
−1

(−[ωb]
x
𝐉b𝛚b + τc

b)                                                    (3.56) 

     Alternatively, with the Unit Quaternion notation, having the equation (3.55a) been replaced by the 

following one: 
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        �̇� = [
�̇�
�̇�
] =

1

2
[

−𝐯T

s𝐈3 + [𝐯]x
]ωb =

1

2

[
 
 
 
 
−v1ωx

b − v2ωy
b − v3ωz

b

sωx
b − v3ωy

b + v2ωz
b

v3ωx
b + sωy

b − v1ωz
b

−v2ωx
b + v1ωy

b + sωz
b

]
 
 
 
 

                           (3.55b) 

3.2.3 Torques and forces generation 

     The following schematic (figure 3.23) shows the part of the system which involves motors and propellers, 

and, in this paragraph, the mechanism of the force generation on the propeller from the motor’s torque will 

be analyzed. 

 
Figure 3.23: Actuators’ model [15] 

 

     Firstly, the code on electronics (firmware/embedded code) sends a digital command to the motors, and then 

it is transformed into an analog PWM (Pulse Width Modulation) signal that commands the coreless motors of 

the quadrotor. This digital command consists of four 16-bit integer numbers (from 0 to 65535), one for each 

motor.  

     The physical principles that regulate the movement of the quadrotor (the same principles are valid for every 

aircraft) are the following ones: 

 Bernoulli's theorem: Daniel Bernoulli experimented that pressure inside a fluid, liquid, or gas, decreases 

as much as the speed of the fluid increases, in other words: "in a moving fluid, the sum of pressure and 

speed in any point remains constant. " 

 Venturi effect: Giovanni Battista Venturi proved experimentally that a fluid particle, passing through a 

narrowing, increases its speed. 

 3rd Newton's Law: there is always an equal and opposite reaction to each corresponding action. 

     The concept of lift can summarize the previous principles applied to an apparatus with an airfoil, for 
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example, a wing or a propeller. If it moves in the air (which has its atmospheric pressure and speed), at a 

certain speed with a specification upward inclination (called the angle of attack), it will pass through an airflow 

splitting this into two flows. The one running along the top of the profile will do it with a higher speed than 

the other, which flows through the lower part (Venturi effect). Moreover, higher speed implies lower pressure 

(Bernoulli's theorem). Therefore, the surface of the upper wing is subjected to a lower pressure than that 

inferior. 

     The airfoil is typically obtained from a body that has a specially designed shape to obtain most of the force 

generated by the speed and pressure variation of the fluid when it is flowing in an air stream. 

 
Figure 3.24: propeller model and air propulsion [17]
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CHAPTER 4 

 

 

HARDWARE DESCRIPTION AND FIRMWARE SETUP 
 

 

 
4.1 Hardware and instrumentation 

 
     The mini drone that was used in this project is the " Mambo " model, produced by the French 

company Parrot. This model can be considered a low-cost drone, considering its cost, from 40 to 80 dollars, 

especially if compared to other models from the same company that can also reach up to 500 dollars. 

         

Figure 4.1: PARROT Mambo Fly minidrone [20] and [22] 

 

The other instruments are the following.  

 Safety goggles ensure safety during the flight.  

 micro-USB cable used both for charging the mini-drone and for uploading the firmware released from 

Mathworks to the drone.  

 USB dongle compatible with Bluetooth Low Energy used to deploy the model from Simulink to the 

hardware and make it run in real-time. 

 USB dongle drivers usually provided on a CD included with the dongle.  

 Additional batteries to be optionally purchased besides the one included with the mini-drone, due to 

their short duration (about 8-10 minutes of flight)  

 Charger.  

It is possible to run the model alternatively also on a PARROT Rolling Spider mini-drone model 

because it is also compatible with the Simulink Hardware support package. 
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Figure 4.2: Safety goggles (left) [24], Bluetooth dongle adapter (center) [25], and USB cable (right) [26] 

 

     The environment is made by background and a path that must be followed by the mini drone. For the 

background, a non-glossy backdrop, like the ones of a photo studio, can be put on the ground. White tape was 

used to create the track such that there is more contrast with the background, and in addition to this, some 

pieces of paper or other casual objects were randomly put on the background to improve the Optical flow 

estimation. 

                                      

Figure 4.3: black background (left and center) [42] and white tape for the track (right) [43] 

 

4.1.1 PARROT mini drones 

 
     PARROT mini drones are tiny and cheap quadrotors (4 motors), which can be commanded through a 

smartphone or a tablet. They are considered among the most stable quadcopters available to buy, because of 

autopilot on their original firmware. However, this will not be used in the project because the new firmware 

supports a customized controller in the Simulink model. They are also very safe, and they can also fly indoor 

thanks to the “cut-out” system, which activates in case of impact and shuts down suddenly the motor. They 

are provided with a 3-axis gyroscope and a 3-axis accelerometer, a down-facing camera useful for optical flow 

estimation and image processing, and a SONAR sensor and a pressure sensor for altitude measurements. 

 

4.1.2 Technical characteristics of MAMBO model and main components 

 
Some of the main technical characteristics [20] will be shown below: 
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 Dimensions: 7.1 x 7.1 in. 

 Weight: 2.22 oz  

 Energy: 

- 660 mAh LiPo battery 

- 8 minutes of autonomy with accessories 

- 30 minutes of charging with a 2.1 Ampere charger 

- 10 minutes of autonomy without accessories 

 IMU sensors: 

- to measure speed and accelerations. The creation of a sensory system capable of perceiving the 

movement of an object in the surrounding environment is a relevant problem in mobile robotics. 

Control algorithms are designed from these sensory data, and their availability and reliability are 

essential requirements.  An inertial navigation system (INS) is a system capable of acquiring the object 

navigation information (linear and angular positions and speeds) in its body frame and of transforming 

it into the fixed (inertial) reference frame. 

 Vertical Stabilization: 

- Ultrasound sensor: SONAR (sound navigation & ranging) systems are used in mobile robotics as a 

low-cost solution for measuring the distance between the robot and the surrounding environment (in 

the case of this project to measure the distance between the drone and the ground). Their working 

principle is based on the calculation of the flight time of an ultrasound wave to travel the distance back 

and forth from the sensor: they are both signal generators and transducers. The quadcopter uses it to 

measure altitude. It emits a high-frequency sound wave, and it measures the time that the wave takes 

to reflect on the ground and to be received back by the sensor. From the measured time, the distance 

between the floor and the drone can be calculated. The maximum altitude that can be estimated is 

about 13 ft. 
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- Pressure sensor: it is an aid to the ultrasonic sensor for calculating the altitude of the drone. As the 

drone increases the altitude, the air pressure decreases. The pressure variation can be used to estimate 

the change in altitude. 

 Horizontal Stabilization: 

- Camera sensor 

 Speed Measurement: 

- 60 FPS (Frame per second) vertical camera 

 SDK (OS of the Firmware): 

- OS Linux 

 
Figure 4.4: top (right) and bottom (left) view of PARROT Mambo Fly model [20] 

 

     On the front of the mini drone, there are the two indicator lights that change color depending on the state 

of the drone: 

 Steady orange: The Parrot Mambo is starting up. 

 Steady green: Parrot Mambo is ready to fly. 

 Steady red: Parrot Mambo has detected a problem. 

 Blinking red: The Parrot Mambo battery is running out. 

     In the upper part of the drone, there is a connector for any external accessories, such as the FPVfirst-person 

view camera and the clamps. 

     It is also possible to protect the propellers by installing the hulls on the appropriate supports.  
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     In the rear part, there is the place that houses the battery, the micro-USB port, together with an LED 

indicator that indicates the charging status (Red: charging; Green: 100% battery). With the same USB port, it 

is possible to communicate the PCB to the computer. 

     In addition to the on and off button, below the drone, there are several sensors: 

 Pressure sensor (black protrusion at the tip of the drone). 

 Ultrasonic sensor (Sonar). 

 60 FPS camera: It uses an image processing technique called optical flow to determine the change in 

shape or translation of objects from a frame and the next one. From these modifications in the position 

of objects and shapes, the drone can recognize horizontal motion and compute speed. 

In figure 4.5, the drone motherboard is shown. It is equipped with the latest SiP6 chipset Parrot with an 800 

MHz ARM A9 (in the gray box of figure 4.5 on the right), which has a size of about 12 × 12 mm. This 

motherboard runs on Linux and is equipped with a pressure sensor, accelerometer, gyroscope, and ultrasonic 

sensor. It also includes a 60 frame-per-second vertical camera. 

                    
Figure 4.5: motherboard of Mambo fly model [27]  

 

     The 6-axis motion detection device (Figure 4.6) is an MPU-6050 from the US manufacturer 

InvenSense. Inside this, there is a Digital Motion Processor (DMP) interacting with a three-axis accelerometer 

and a three-axis gyroscope. The device dimensions are about 0.16 × 0.16 × 0.035 inches. This device is 

mounted just above the processor (in the blue box of Figure 4.6 on the left).  
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Figure 4.6: IMU with gyroscope and accelerometer [28] and [29] 

 

     The axes of the motion sensor (Figure 4.7) are not concordant with the axes of movement of the drone 

(figure 5.32 in the next chapter). 

 
Figure 4.7: IMU reference frame [29] 

 

     To conclude this brief overview of the components of the Parrot Mambo, the motors and their propellers 

are shown (Figure 4.8). An important feature to classify these motors is their spin direction. 

     It can also be noticed that the drone propellers are of two different colors: the white ones are the ones 

mounted in the front while the black ones are in the back. 

             
Figure 4.8: propellers (left) and coreless motors (right) [23] 

 

The drone has two different types of motors (Figure 4.8 on the right): 

 Motor A (Counterclockwise) is identified with a black and white wire together with a circular sign black 

printed on the upper part (where the rotation axis comes out), and it is located on the front right and rear 

left parts. 
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 Motor C (Clockwise) is identified with a red and black wire, and it is located on the front left and right 

rear parts. 

     Both motors are Coreless type and dimensions of 8.5 × 20 mm. Similarly, there are two types of propellers, 

identifiable by the same word "C" (clockwise) and "A" (counterclockwise): 

 Front left and rear right: "C”. 

 Front right and rear left: "A". 

     These plastic propellers have been designed to minimize the electrical consumption of the engines and, at 

the same time, ensure maximum thrust to the engines. 

     To better understand what a Coreless motor is, it is useful to briefly describe a typical DC motor with a 

collector. 

 
Figure 4.9:  DC motor structure and components [30] 

 

It consists of several main parts: 

 Stator: typically composed of a permanent magnet. 

 Rotor: composed of a set of ferromagnetic plates, in the shape of a circular crown where the various 

copper windings are wrapped. 

 Collector: it is a set of blades fixed on a cylindrical drum to the coil terminals. 

 Brushes: made of graphite. They remain in contact with the collector even when it is in rotation, and they 

give the main power to the motor. 
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      In Coreless motors (Figure 4.10 on the left), there are all the components of the previous motor, except for 

the core of laminations in the rotor. The approach used to describe them is adapted from Karnavas et al. [22]. 

               
Figure 4.10: Coreless DC motor structure [30] and rotor winding [29] 

 

      The rotor winding (Figure 4.10 on the right) is wound obliquely, or honeycomb, to form a self-supporting 

hollow cylinder. Since there is no rigid structure that supports it, the windings are covered with epoxy resin. 

     The stator which generates a magnetic field is located inside the rotor and is composed of rare earth 

magnets, such as Neodymium, or Al-Ni-Co (Aluminum, nickel, cobalt), or Sm-Co (Samarium, cobalt). 

     The Coreless motor usually has tiny dimensions: between 6 millimeters to less than 75 millimeters in 

diameter. Their power limit, in general, is around 250 watts or even less.  

     The following properties make Coreless motors valid solutions for different applications: 

 Coreless rotor technology ensures smooth operation (regular dynamics) 

 The rotor has lower inertia than iron-core DC motors, and this leads to more significant accelerations.  

 The absence of iron losses implies higher efficiency (about 85% compared to 50% of the iron-core 

ones), longer life, and less overheating. 

 Lighter than iron-core DC motors. 

 At low speeds, the starting voltage is lower (0.3 V). 

 Faster dynamical response (low mechanical time constant, about 10 ms. 

 Longer life of the brushes and the collector because of a reduced inductance. 
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4.2 SIMULINK Hardware support package and firmware setup  

 
     In this paragraph, the procedure to install the firmware on the drone from the Hardware support package of 

Matlab will be explained. The firmware released by Mathworks makes it possible to deploy the model from 

the Matlab project to the drone board and run it through Bluetooth connection. 

     The material needed for this operation is the following: 

 Parrot Mambo drone (with the charged battery inserted). 

 USB- micro-USB cable. 

 Bluetooth USB Dongle. 

 Bluetooth USB CSR driver already installed. 

 Add-ons: “Simulink Support Package for Parrot Minidrones” installed. 

     The following method explains how to make the drone communicate with the PC via Bluetooth in a 

Windows 10 operating system. From the main MATLAB window, open the Add-Ons Manager (Manage Add-

Ons) and start the procedure by clicking on the gear icon. Connect the drone with the USB cable (Figure 4.11) 

and wait a few moments for it to be recognized by the PC. Click Next and wait for the recognition of the drone. 

Press Next again, the firmware file will be loaded into the drone's memory.  

 
Figure 4.11: recognition of the drone through the USB cable [12] 

 

It is necessary to disconnect the USB cable from the drone to start the setup procedure (figure 4.12). During 



40 

 

 

 

installation, the front LEDs will flash orange. Once completed, the LEDs will flash green (make sure that for 

at least 10 seconds, this last state occurs to proceed with the Setup). 

 
Figure 4.12: Firmware setup [12] 

 

     Reconnect the USB cable to the drone (wait a few moments for it to be recognized) and proceed by 

clicking Next (Figure 4.13). 

  
Figure 4.13: RNDIS driver setup (1) [21] 

 

Before doing Next, the following procedure must be completed to install the RNDIS driver (figure 4.14). 

     Open “Device Manager” and click on “Other devices”. From the list, select “RNDIS” and “Update Driver 

Software...”. 
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Figure 4.14: RNDIS driver setup (2) [21] 

 

     In the new screen, the driver software must be picked from the list of devices. Among the “Common 

hardware types”, select “Network adapters”. 

  
Figure 4.15: RNDIS driver setup (3) [21] 

 

     Look for “Microsoft” among the Manufacturers, “Remote NDIS Compatible Device” among the Models 

(figure 4.16). In the “Update Driver Warning” dialog box, select “Yes”. Once installed, the RNDIS device can 

be found among the devices inside “Network adapters”. Now, it is possible to continue with the Setup 

procedure.  

     By clicking on Next (Figure 4.16), a new window shows up, where there are instructions to connect the 

drone via Bluetooth. First, you must disconnect the USB cable from the drone again.  
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Figure 4.16: firmware checking (left) and Bluetooth radio device setup (center and right) [20] and [44] 

 

     Now, from the file explorer window, click on "This PC" and then double click on "My Bluetooth 

devices". Then, open the "Add device" dropdown and select "All".  

     The search for Bluetooth devices starts. The name of the device to be connected is called "Mambo” 

followed by several numbers (relative to the hardware serial number). It is necessary to choose the one that 

has the icon of a Joystick (figure 4.17); otherwise, the communication between MATLAB and the drone will 

not be possible. 

             
Figure 4.17: Bluetooth pairing [44] 

 

     Once pairing is complete, double click on the device just added (Figure 4.19), and after pressing with the 

right text above the icon accompanied by name Personal Area Networking (NAP), click Connect. 
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Figure 4.18: PAN connection setup [44] 

 

     Now press Next (Figure 4.19), and in the next screen, click on "Test connection" to ping to verify that the 

communication occurs. 

  

 
Figure 4.19: Bluetooth connection test [12] 

 

     Once completed and successful, click Next, and then Finish to end the Setup. This procedure only needs to 

be done once. If we want to connect the drone other times, it must be done via Bluetooth with PAN (Personal 

Area Network) in the services of the device, keeping the Bluetooth dongle plugged in the PC and turned on.
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CHAPTER 5 

 

 

SOFTWARE TOOLS DESCRIPTION AND MODEL CONFIGURATION 

 

 

 
5.1  Description of Software Tools used in the MATLAB environment 

 
     For this Thesis project, the leading software and tools used are MATLAB 2019b, Simulink, Stateflow, and 

some of their add-on tools like Aerospace Blockset, Simulink 3D Animation, which lets us visualize 

simulations in 3D, the Simulink Hardware Support Package for PARROT Minidrones, and Simulink Coder. 

Simulink is an extension of Matlab that allows us to build control systems models with a graphical 

representation through blocks, to simulate them, and to adopt Model-Based Design technique. It provides 

automatic code generation, and hardware test and validation. It also offers solvers for dynamical systems and 

customizable block libraries. 

     MathWorks developed the Simulink support package for PARROT mini drones for various purposes. One 

is to make people interested and aware of the influence of Model-Based Design in modern engineering 

applications. Another reason is to assist developers in the industry in acquiring Model-Based Design 

techniques through an innovative application. Finally, to support instructors and professors in training students 

on this design method through drones as an admired hardware platform [18]. 

     The add-on tools and toolboxes used in Matlab 2019b environment are the following: 

 Simulink Hardware Support Package for Parrot Minidrones: used for firmware setup, for the connection 

of the drone via Bluetooth, and algorithm deployment through MATLAB. It allows us to employ different 

onboard sensors for creation, simulation, and test of flight control algorithms. Through this package, we 

can have a low-cost and ultra-compact drone to conduct experiments with its control system. 

 Aerospace Blockset: for modeling, simulation, and analysis of aerospace vehicles. It provides blocks for 
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modeling and simulation of crewless airborne vehicles, propulsion systems, aircraft, and spacecraft, that 

are subjected to environmental and atmospheric conditions.  

 Optimization Toolbox: a toolbox for solving linear optimization problems, quadratic, integer, and 

nonlinear. 

 Signal Processing Toolbox: for the processing and analysis of signals. 

 Simulink 3D Animation: it allows us to visualize the behavior of dynamic systems in a virtual reality 

environment. 

 Simulink Coder and Matlab Coder: C++ automatic code generation from Simulink models and execute 

them. We can use the generated source code in non-real-time and real-time applications like rapid 

prototyping, simulation, and HIL (hardware-in-the-loop) tests. It can also be used to record flight data. 

 Embedded Coder: C ++ code generation for embedded processors (Extension of Simulink Coder). 

 Simulink Control Design: model linearization and control systems development. 

 Image Processing Toolbox: to use the App Color Threshold. 

 DSP System Toolbox: Design/Simulation of signal processing systems. 

 

5.2   Software configuration, Simulink project overview, and Simulation Model description 

 
      The project should be configured to work on the model design, and for this purpose, the project 

environment of the Mathworks mini-drone competition organized by Mathworks can be used by entering the 

command window the word “ParrotMinidroneCompetitionStart”. 

     Firstly, the project environment must be configured, and once done it, three windows appear:  

 Tree model with all the subsystems and the variables (figures 5.2) of the project named 

“ParrotMinidroneCompetition”. 

 Mini Drone simulation model (figure 5.1). 

 Simulink 3D Animation: visualization of the drone dynamics during the simulation (figures 5.3)  
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Figure 5.1: The Simulation model  
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Figure 5.2: workspace with the variables and constants (left and center) and project folders (right) 

 

             

Figure 5.3: Simulink 3D environment used for simulation 

 

     Within the project framework, we can organize user-defined tasks related to this competition, files, and 

settings. The simulation model (figure 5.1) is constituted by six main blocks that embrace the mathematical 

descriptions of the relative dynamical subsystem: the airframe, the environment, the flight control system 

(FCS), the sensors, and the subsystems used to show a visualization output or to feed input commands during 

the simulation. 

     Four of the six subsystems can be defined as variant subsystems because they allow us to choose between 

different properties of the subsystem. However, the FCS (Flight Control System) block (figure 5.4) should not 

be considered as a variant subsystem, but as a modeled subsystem, because its elements are referred to another 

Simulink model. The FCS subsystem will be explained more deeply in the next chapter. 
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Figure 5.4: Flight Control system  

 

     Furthermore, other blocks in the Simulation model are employed to set the simulation pace. Instead, the 

“Flag” subsystem is used to terminate the simulation if an unwanted flight situation happens (figures 5.5, 5.6, 

and 5.8). 

              
Figures 5.5: Flag block 

 

 
Figure 5.6: Flag subsystem (1) 

 

     The “play” icon must be pressed to run the simulation. The system dynamic behavior can be observed for 

the time defined through “TFinal” variable, and then can be stopped (figure 5.7 on the left). The “set pace” 

option can be used to modify the speed of the simulation (figure 5.7 on the right). 

     
Figure 5.7: Simulation commands (left) and pace settings (right) 

 

     For example, the simulation can be run tenth times slower, and the sample time can be increased to 0.1 ms 

to see the mini drone moving at slow-motion. Once it runs, the mini drone 3D model takes off and hovers. 
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Figure 5.8: Flag subsystem (2) 
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     Other options can be found by double-clicking on the “Flight visualization” subsystem. The signals can be 

output as shown on a cockpit display, provided by Aerospace Blockset toolbox, with some standard flight 

instruments like heading, percent RPM, airspeed and climb-rate indicators, and altimeter. The “extract flight 

instruments” (figure 5.9) subsystem contains the applicable states. 

                 
Figures 5.9: Simulink Visualization block 

 

 
Figure 5.10: Simulink Visualization subsystem 

 

     The “Command” subsystem can be used to change the mini drone input signals in the simulation (figure 

5.11). Four variant subsystems constitute this one: data input, Signal builder, joystick, and spreadsheet file 

reading. 

 
Figure 5.11: Commands subsystem 
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     Signal builder is set as default in the command subsystem, but, in this project, the signals driving the drone 

come from the path planning subsystem in the Flight controller, which receives the data from the image 

processing subsystems. The mode selected to drive the drone is according to position coordinates X-Y-Z and 

yaw, but alternatively, it can be driven by pitch and roll signals coming from the Image processing subsystem. 

However, in this last case, it would become more complex because the camera orientation has to be ensured 

to point right to the track, and this would be easily solved by using position coordinates rather than pitch and 

roll angles. In the Model-Based Design method, the simulation model is the focal point, because it aids to 

improve the control development before deploying it on the hardware, therefore avoiding damages and crashes. 

     A part of the FCS subsystem is adapted from the model of Professor Sertac Karaman, and Fabian Riether 

developed at MIT. Since the project aims to design a flight controller able to track the path while keeping 

stable itself, the controller subsystem is designed tuning the gains of the PID controllers, and the image 

processing and path planning subsystems are designed according to our project goal. 

     Finally, once the FCS is developed and tuned through simulations, the code can be generated and tested on 

the mini-drone hardware. 

 

5.3   Compiler configuration  

 
     To generate the C ++ code to be loaded into the aircraft, the exact compiler must be chosen. What by default 

it does not allow the download of MAT files from the drone, after each flight simulation. 

     This procedure can only be performed from the model window opened automatically after generating the 

code with the "Generate Code" button. Go to the "Modeling" bar (Figure 5.12) and click on the gear icon. It 

will open a window, shown in Figure 5.13. 

 
Figure 5.12: Modeling bar [12] 
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Figure 5.13: Model settings [12] 

 

      Click on "Hardware Implementation", then move the mouse over the three dots to bring up the word 

"Advanced Parameters", click on it to show the menu, then tick the "Use Simulink Coder features" option. 

Complete the configuration by pressing "OK". 

 

5.4    Preliminary Test of the drone motors  

 
     Before performing any flight tests, it is possible to run a test in which the propellers are only moved without 

generating the minimum thrust to flight (figures 5.14). In this test, the model spins the motors 1 and 3 for 2 

seconds and then the motors 2 and 4 for the other 2 seconds.  The test model is a template included in the 

package, and it can be set up by entering the command “parrot_gettingstarted” in Matlab and by selecting 

“Deploy to Hardware” (figure 5.16). 

   
Figure 5.14: FCS subsystem for the actuators test 
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Figure 5.15: Hardware functionalities 

 

      The window called “diagnostic viewer” (figure 5.16) allows us to follow and to troubleshoot the 

compilation, the file transfer, the code generation (figure 5.17), and the execution. There is another way the 

model can be executed: the external mode (“Monitor and Tune”). Through this execution method, some values 

can be updated from the block diagrams throughout its execution, besides building and deploying the model 

on the hardware. It is particularly useful during the test of the image processing algorithm because the real-

time visualization of the images acquired from the downward-facing camera allows us to tune the threshold 

filter for path detection. 

 
Figure 5.16: Code generation [12] 

 

 
Figure 5.17: C code of the model [12] 
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     After the “diagnostic viewer” confirms that code generation has completed, the model can be run on the 

hardware by opening the flight control user interface from the diagnostic viewer, and the flight time can also 

be set as the simulation time (figure 5.18). At this point, to prevent an uncontrolled flight, we should be careful 

not to increase the power gain of the thrust of the propellers (it is recommended to begin by setting the gain at 

the 10% of the rated one). 

     In this test, signals are fed to the motors to ensure that the Bluetooth communication and the toolchain are 

working correctly. 

  

 
Figure 5.18: Flight control interface with flight time settings, stop and end of the test [12] 

 

     If we click on “Stop”, the test can be interrupted, and the flight log and the MAT file with sensor data can 

be downloaded to the working directory. 

     It is useful to remember that the hardware target must be set up correctly (in our case “Mambo” model) 

before deploying the code, and data logging must be enabled to take advantage of Simulink Coder capabilities 

to capture sensor and controller commands signals for inspection. They can be used to plot trajectory, motor 

output, sensor signals, altitude, velocities, orientation, position, optical flow velocities, and percentage of 
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battery charge. The data that can be stored by the mini drone during flight test is limited, and memory allocation 

can be controlled through the flight time variable “TFinal”. The model cannot be executed if there is an excess 

of memory needed beyond the hardware capacity.  

Furthermore, it is possible to list other important guidelines:  

 The space where flight tests are conducted must be large at least 20 feet by 20 feet by 10 feet high to 

avoid damages to the mini drone, the environment, and any observer. 

 Small rooms and specific ground materials (like a carpet) could cause flight stability issues because of 

bouncing or absorption of ultrasound signals.  

 Optical flow estimation algorithm, image processing algorithm, and stability during flight can be 

affected by lighting conditions and shapes on the ground. 

 

5.5 Physical characteristics of the Quadcopter model from Aerospace Blockset 

 
     The following picture (5.19) shows the quadcopter model with its body reference frame, taken from 

Aerospace Blockset. 

 
Figure 5.19: reference frame of Quadcopter model [31] 

 

     The origin of the mini drone reference frame coincides with its center of mass. “VehicleVars” 

folder contains the mass and inertias in the Simulink project.  

Body Frame: 

 The x-axis is oriented in the forward direction. 

 The y-axis is oriented to his right. 

 The z-axis is oriented down. 
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Motors directions convention: 

 Motor 1 spins positively relative to the z-axis, and its position is at -45° from the x-axis.  

 Motor 2 spins negatively relative to the z-axis, and its position is at -135° from the x-axis.  

 Motor 3 spins as motor 1, and its position is at 135° from the x-axis.  

 Motor 4 spins as motor 2, and its position is at 45° from the x-axis. 

The approach used to define the convention is the same as expressed by Prouty [32] and by Ponds et al. [33].
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CHAPTER 6 

 

 

SIMULATION MODEL DESCRIPTION AND CONTROL PROBLEM SETUP  

 

 

 
6.1 Nonlinear and Linear models in Model-based design approach 

 
     In the design flow, nonlinear and linear models are both needed for designing and testing the flight control 

software. The following method is the one treated by Douglas [41]. 

     In figure 6.1, the upper block is the flight control software that represents all the control system 

software.  This code must interface with the rest of the mini-drone firmware, and it has two inputs, the raw 

sensor readings and the reference commands or set points, and two outputs, the motor speed commands, and 

the stop flag.  The reference commands are put inside the flight code. The lower block called ‘Nonlinear model’ 

represents everything else, anything that is not the flight control code.  This includes the rest of the mini-drone 

firmware, the hardware, the atmosphere flying in, etc.  At an elementary level, the model inputs motors 

commands, and the stop flag, then it makes a few calculations and outputs sensor measurements.  In this way, 

the model is wrapping around the flight code and provides the feedback loop. If the model were so accurate 

that it perfectly represents reality, it would be indistinguishable whether the results came from the actual 

hardware or they came from this perfect model. Therefore, the mini drone performance could be simulated 

using the model, and we can be very confident that when the flight code is run after on the actual hardware, it 

would have the same result.  

     However, a perfect model of reality is impossible to create, and it is not necessary to model everything. The 

trick is to figure out what to include in the model and what to leave out. Some of that knowledge comes easily 

by just understanding this system and how it will be operated. For example, the code that turns on and off the 

front LEDs does not need to be modeled. They will not impact the control system.  

     Nevertheless, there are a lot of other things that are not as obvious and knowing what to model requires a 
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little experience and investigation.  One example is whether to model the airframe structure as a rigid body or 

as a flexible body. It is hard to precisely know what to model and what to leave out initially.  Usually, what 

happens is starting with the best guess, and then over time, the fidelity of the model will grow until the match 

between the experimental results and simulation are satisfying. Therefore, simulation is a way to verify the 

system in hard situations or time-consuming to physically test, as long as the model adequately reflects reality. 

The excellent advantage of simulation is that the model can be reset quickly, and the drone can be put in any 

situation of interest, and if it performs poorly, we make the necessary changes, and we do not damage any of 

the hardware in the process. 

     However, a model is also used for control system design, also with the linear analysis tools. Unfortunately, 

the previously created nonlinear model used for simulation does not lend itself to a suitable design and linear 

analysis. Thus, we also need a linear model.  Essentially, we should remove the nonlinear components in the 

model or estimate them as linear components.  The linear model will not reflect reality as accurately as the 

nonlinear model, but it should still be accurate enough that it can be used to design the controllers. 

     Summarizing, two different models are considered: a lower fidelity linear model that is useful for 

determining the controller structure and gains and a higher fidelity nonlinear model that is useful for simulating 

the result and verifying the system. The approach used in the method description 

    
Figure 6.1: Schematics of Feedback Control loop with a nonlinear model for simulation (left) and with a 

linear model for controller design (right) [41] 
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     To summarize, the steps taken to design the flight control software using Model-Based Design techniques 

are the following: 

1. Create a high-fidelity model of everything the flight control software needs to interact with.  This very 

likely will be a nonlinear model. 

2. Verify that the model matches reality with several test cases. 

3. Once had a model that reflects reality, create a linear version. 

4. The linear model and our linear analysis tools are used to design and analyze our control system. 

5. The nonlinear model is used to verify the performance of the control system. 

6. The flight control software can be run with enough confidence in the actual hardware for final 

verification. 

 
Figure 6.2: Model-based design technique schematic [40] 

 

     Instead of thinking about the plant model as a single block or as a monolithic set of calculations, it is 

generally easier to break it up into several smaller models that represent specific and discrete systems.  

     For the mini drone, it might be broken up into the airframe structure, the actuators, the environment, and 

the sensors (figure 6.3). Then, within these models, there are even smaller subsystem models, like the gravity 

model or the IMU model. 
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Figure 6.3: Components of the airframe model [40] 

 

     There are many reasons to approach modeling in this hierarchical way, rather than lumping all the plant 

components together into a single model: 

 For instance, it allows multiple people and teams to build different parts of the model simultaneously. 

 Portions of the model can be upgraded, based on which area needs more fidelity, without impacting the 

rest. 

 Each sub-model can be developed using different modeling techniques. It can be chosen as the modeling 

technique that makes the most sense or is the easiest for each system.  Then when they are put 

all together, there will be an entire model that can be used for wrapping around the flight control 

software and simulating the results.  

 

6.2 Control system architecture (Hovering control) 

     In this chapter, it will be described how to design a control system architecture to control the quadcopter 

during the flight maneuvers needed to accomplish the task. The first goal is to control hovering. It should be 

ensured it is stable while hovering, given a three-dimensional reference, X-Y position, and altitude, which in 

this task are all constant. While tracking the path, the mini-drone will have only a change of reference in the 

X-Y position, which is generated and continuously updated from the Path planning algorithm. If we assume 

that during these motions, the mini drone should maintain the camera faced down almost orthogonally to see 

the track with the right orientation, then there will be low pitch and roll angles, which means that the hovering 



61 

 

 

 

control system architecture can be used for the path tracking task as well. The control system is designed 

according to the approach of Douglas [19]. 

     In this architecture, the mini drone is considered as the plant. It receives as inputs the four motor speeds, 

spinning the propellers and generating forces and torques as plant outputs. The control goal requires the mini 

drone to hover at a specified altitude.  Therefore, the four motors should be controlled autonomously to obtain 

this output. The motor mixing algorithm (MMA) can be used to control yaw, pitch, roll, and thrust directly, 

rather than controlling in terms of the four motor speeds.  

     Thrust is always oriented along the Z-axis of the body frame. If the drone flies at steep roll or pitch angles, 

then, if the thrust is commanded, there is a coupling between the altitude variation and the horizontal motion. 

If a controller for a racing drone must be built, this coupling must be considered because it could fly at steeper 

roll and pitch angles.  However, for this simple hover controller, low roll and pitch angles should be 

assumed. Therefore, a change in thrust only significantly influences the altitude rate. 

     Firstly, we should think of adjusting the altitude through a PID controller that commands the thrusts. The 

drone altitude is the state to measure and to feedback, comparing it to the reference. Then the altitude controller 

determines how to command the thrust through the obtained error. If, for example, the mini drone hovers at a 

lower altitude, the error becomes positive, and the thrust command is split evenly among the four motors, and 

the drone rises.  However, the effect of disturbances, like wind gusts, can cause the drone to roll or pitch a 

little, and so the thrust could also induce to move horizontally, making the drone drift away from the reference 

position. Therefore, the controller is not suitable, and it can be improved through the roll, pitch and yaw angles 

control, keeping them constant at zero degrees, so that thrust can only impact altitude, preventing the drone 

from wandering away.  Thrust, roll, pitch, and yaw commands can be independently controlled because they 

are decoupled.  For this reason, three more feedback controllers can be added respectively for yaw, pitch, and 

roll. Now, these angles are also the plant outputs and the states to estimate and to feedback.  

      Therefore, in this way, altitude is kept fixed, and the mini drone faces forward. This hover controller is 
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improved, but there are still some limits. If, for example, multiple wind gusts, as disturbances, flows in the 

same direction, the controller still allows the drone to meander away slowly.  In this control system 

implementation, the drone is not brought back to its reference position. 

     The improvements can be made by thinking that pitch and roll angles are not necessarily zero, but they can 

also assume non-zero values while hovering.  For example, the mini drone could hover in a strong constant 

wind, and in these conditions, it leans at a certain angle into the wind to keep its reference position. Therefore, 

we should implement a ground position controller that recognizes when the quadcopter wanders off and makes 

the required changes to take it back to the original point in X-Y coordinates.  

     Due to the coupling between forwarding, backward, left, and right movements with roll and pitch 

maneuvers, also position error is coupled with roll and pitch motion. The measured X-Y position should be 

fed back and compared to the reference signal to obtain the position error. If there is no signal having the 

sequence of position points to follow generated by the path-planning algorithm, the reference position may be 

set temporarily to (0, 0).  It corresponds to hovering above the take-off point. The position error is taken as 

input by the position controller, and roll and pitch angles are sent as outputs. These angles are the reference 

signals for the roll and pitch controllers. In this way, the position controller creates them.  

     Summarizing, the roll and pitch controllers in the inner loop receive the reference signals from the position 

controller in an external loop. They are cascaded loops. It should be noticed that also the measured yaw angle 

should be fed into the position controller. The X-Y position errors are expressed relatively to the environment 

reference frame, but pitch and roll angles are expressed relatively to the drone frame. This means that a 

movement in the X and Y world directions can be obtained through pitch and roll only by knowing the yaw 

angle because it is needed by the position controller for the conversion from the drone X-Y frame to the 

environment reference frame.  

     The next picture shows the structure of the architecture described before (figure 6.4). 
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Figure 6.4: Feedback Control loop with a nonlinear model for simulation [34] 

 

     In the next paragraph, where the Simulink model will be described, it can be noticed that the controller 

model has the architecture of the previously explained feedback control system. 

 

6.3 Simulink model structure description   

     In this paragraph, the Quadrotor model used for simulation purposes will be analyzed, focusing on the part 

of the model briefly anticipated in chapter 5. Two main parts are described: Simulation model and Flight 

control system for code generation. 

 

6.3.1 Simulation model 

     The following picture (6.5) represents the subsystems that constitute the simulation model: the multi-copter 

model, the sensors model, the environment model, and the flags to stop the simulation, all wrapped around the 

Flight Control Software.  
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Figure 6.5: Simulation model blocks 

 

     Starting from the multicopter (or airframe) model (Figure 6.6), it can be noticed that the inputs are the 

actuators' signals and the data coming from the environment model, while the outputs are the states that must 

be estimated by state estimator algorithm.  

             
Figure 6.6: Airframe model (nonlinear and linear) 

 

     The airframe model is implemented as a variant subsystem, which means that before the model is run, we 

can select which version of airframe we want to run with: either nonlinear model, that can be used for 

simulating the flight, or the linear airframe model, that can be used to tune the controllers (Figure 6.7). 

     The linear model structure can be represented through the typical state-space description and through the 

blocks corresponding to “trimLinearizeOpPoint” functions that, through Simulink Control Design, turn the 
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mini drone nonlinear model into a linearized one. 

 
Figure 6.7: Quadcopter Linear model 

 
Figure 6.8: Quadcopter Nonlinear model 

 

     Looking inside the nonlinear model (figure 6.8), it can be noticed that there are two main blocks. The AC 

model on the left consists of the actuators models and a model of how the environment disturbances impact 

the system (these subsystems are shown in figure 6.9). 
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Figure 6.9: AC model (actuators) 

 

     Anything that can create a force or torque on the mini drone is calculated in this block. The forces and 

torques are then fed into the 6DOF model. This is a rigid body model that comes with the aerospace blockset. 

It is an example of using an existing model rather than going through the effort of writing out the dynamical 

equations ourselves.   

     However, it is still needed to determine the specific parameters for this rigid system like masses and inertias. 

More than likely, the developer pulled this information from a CAD model of the mini drone, but a physical 

test could be set up to calculate this information, or it could be done through system identification techniques. 

     The following pictures show respectively the block diagrams of the “gravity force calculation” (figure 6.10 

on the left), “drag calculation” (figure 6.10 on the right, and 6.11), “motor forces and torques” (from figure 

6.12 to 6.15) and “applied force calculation” (figure 6.16) of the AC model.  

   
Figure 6.10: Gravity Force calculation (left) and Drag calculation (right) 
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Figure 6.11: Drag calculation subsystem 

 

 
Figure 6.12: Motor forces and torques 

 

 
Figure 6.13: Motor forces and torques (MotorsToW subsystem) 

 

 
Figure 6.14: Motor forces and torques (Matrix concatenation subsystem) 
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Figure 6.15: Motor forces and torques (Matrix concatenation subsystem structure) 

 

 
Figure 6.16: Applied Force calculation 

 

     Instead, the 6DOF model, which can be described either through Euler angles or Quaternions, is shown in 

figure 6.17. This block type is included in the Aerospace blockset add-on tool. The block in figure 6.17 on the 

right models the change of the reference frame from the mini drone’s one to the fixed inertial frame. 

                     
Figure 6.17: 6 DOF model described through Euler angles (left) and change of the reference frame from 

Body to Earth (right)  

     If we consider, instead, the environment block (figure 6.18) at the top level, it is possible to see that this, 

again, is a variant subsystem, and we have the option of choosing constant environment variables or variables 

that change based on position. In this block, different Aerospace Blockset environment models are 

implemented, for example, the atmosphere and gravity models. The “VSS_ENVIRONMENT” value from the 
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workspace can be changed to choose between the two previously described models. 

     However, for this project, the constant variables (figure 6.19) will be selected because things like gravity 

and air pressure are not going to change between ground level and altitude at less than a meter.  Nevertheless, 

if the objective is to simulate how high the mini drone could fly, then selecting the changing environment 

(figure 6.20) will lower air pressure and density as it gets higher, which will eventually stall the drone at some 

maximum altitude. So, choosing one model or another depends on the aim of the test. For our purposes, we 

will use the Constant Environment model. 

           
Figure 6.18: Environment model 

 

 
Figure 6.19: Constant environment 

 



70 

 

 

 

 
Figure 6.20: Variable environment 

 

     Lastly, going into the sensors block (figure 6.21), which is also a variant subsystem, the two alternatives 

to select are either dynamic sensors with noise or feedthrough sensors. The feedthrough option will be select 

for tuning the controllers, but for simulation purpose, the sensors should be chosen to behave as much like the 

real things as possible.  Inside this subsystem, there are some hardcoded sensor calibration data and a block 

called sensor system that houses the models for the camera, the IMU, the ultrasound, and the pressure sensor 

(figure 6.22). As previously explained, the following sensors determine the states of the system. 

 An Inertial Measurement Unit (IMU). It measures the translational accelerations and angular rates. 

(figures 6.23 and 6.25). 

 A down-facing camera. It is needed for Image processing and optical flow estimation (figure 6.24) 

 An ultrasound sensor. It is needed for altitude measurements (figure 6.25). 

The file “sensorVars” contains the sensors’ characteristics. The “VSS_SENSORS” variable in the 

workspace can be changed to consider the sensors’ dynamics in these measurements. 

                   
Figure 6.21: Sensors model 
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Figure 6.22: Sensors’ dynamics 

 

 
Figure 6.23: Sensor system (Sensors’ dynamics subsystem) 

 

     It is a crude simulation of the “optical flow (vx,vy,vz)” function as fed into the c-function 

rsedu_optical_flow() on the mini-drone by internal, inaccessible code of Parrot’s firmware.  This is assumed 

to be far from what “optical flow (vx,vy,vz)” actually is. 

 
Figure 6.24: Camera model 

 

 
Figure 6.25: IMU and pressure sensor models 
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Figure 6.26: HAL acquisition creator model 

 

     The model can also be used to safely simulate a failure and see how the system does.  For example, we 

could go in the sensor block, into the IMU model and change the gyro bias. Let us say we estimated the bias 

poorly, and it is three times worse than expected. Then the simulation can be run. It takes off just about the 

same, but the gyro bias error quickly causes the drone to roll away from level, and then it runs away and 

eventually crashes into the ground.  If the gyro bias is three times worse, the drone will not perform well, and 

if there is worry about being this far off on estimating bias, then the stop flag logic should be changed to 

recognize that it is drifting away and so shut the drone down before the hardware would be hurt. 

 

6.3.2 Flight Control system 

 
     A technique for the implementation of the flight controller could be through hand-written C code, then 

compiling the entire flight code with controller changes and finally deploying the code onto the mini drone 

(Option 1 in figure 6.27). However, this approach has some drawbacks during the development of the feedback 

control software. The controllers cannot be easily tuned because they should be tweaked on the hardware. 
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Moreover, the architecture of control systems realized through C code could be challenging to explain to other 

people, and the impact of changes on the whole system can be harder to understand than using a graphical 

method. Instead, the second approach (Option 2 in figure 6.27) consists of a graphical description of the flight 

controller through block diagrams. In this way, Simulink can be used for development; then, the FCS can be 

turned automatically into C code, can be compiled, and deployed onto the mini drone. 

     The Simulink code is easier to read, as well as the performance simulation, and the controller gains tuning 

through existing tools. Most of the flight code does not have to be written because the Simulink Support 

Package for Parrot Mini drones will be used to design the customized flight control software. In this way, we 

can load a new flight firmware to the device, preserving all the standard operating functions, but allowing us 

to modify only the firmware control part. The same output and input signals should be maintained to ensure 

that any written code will be placed correctly after Simulink programming, and it will interface appropriately 

with the rest of the mini-drone firmware.  

 
Figure 6.27: the two options by which the FCS could be implemented [35] 

 

     During the Hardware-in-the-loop test, the only part that must be deployed on the Hardware is the “Flight 

Control system” block, which is the orange block (Figure 6.28), which is also the block to be customized to 

design the flight controller. 
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Figure 6.28: Flight Control System block 

 

Inside the Flight Control System, there are two subsystems (Figure 6.29): 

 Image Processing System: containing the graphic processing part (the green block). 

 Control System: containing the flight logic (the orange block). 

     The two subsystems work at different rates: The Image Processing System at almost 20 milliseconds (60 

Hz as the camera frame rate), while the Control System at 5 milliseconds (200 Hz). 

     Therefore, they are connected through the "Rate transition" block, which allows the data transfer between 

systems with a different rate.  

 
Figure 6.29: FCS structure and its subsystems 

 

Within the Control system subsystem block, there are other different blocks (Figure 6.30):  

 Path planning: (the orange one) where the logic for the line-tracking algorithm will be designed.  

 Controller: where all the PIDs of the flight controller reside. 

 State estimator: contains the state observer. 



75 

 

 

 

 Crash Predictor Flags: this contains the logic to turn off the drone in case of anomalies in flight. 

On the left, it can be noticed instead of a “constant” block with the value “1” assigned (figure 6.31). 

     It is used to define the type of drone piloting: if equal to 1: the drone will base its movements according to 

the X and Y input values, while if the constant is equal to 0: the drone will be piloted changing the Pitch and 

Roll values. In any case, it is possible to act on the value of the Yaw (in radians). 

 
Figure 6.30: “Control System” subsystem structure  

 

 
Figure 6.31: Control mode (“1” for Position XYZ, “0” for Orientation Roll-Pitch-Yaw) 

 

     The State estimator block is the block shown in the next two figures (6.32 and 6.33).  A complementary 

filter is used for attitude estimation and Kalman filters for position and velocity estimations. The variables 

characterizing the estimator are contained in the “estimatorVars” file. 



76 

 

 

 

 
Figure 6.32: State estimator block 

 

 
Figure 6.33: State estimator model structure with its subsystems 

 

     The acquisition of raw sensor measurements and the state estimation is conducted in two steps. At the first 

stage, the measurements are processed and then blended with filters to estimate the control states. Therefore, 

the first stage is the sensor processing block (figures 6.34 and 6.35). The sensor data group is needed to 

extract the individual sensor values from the sensor bus to manage them in the code (figures 6.36).  

     Firstly, the previously determined bias is subtracted to the gyro and acceleration data to calibrate them. 

Through bias removal, zero measurement results from zero acceleration and zero angular rates. Next, we 

should express the measurements from the sensors’ frame to the drone frame by performing a rotation 

transformation. Finally, the measurements must be low pass filtered to cut off the noise at high frequency. 
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Likewise, we should remove bias from the sonar sensor. The optical flow data is based on a pass/fail criterion: 

if it has a valid position estimate, then the validity flag is set as true by this block.  

     Summarizing the sensor preprocessing consists of bias removal, coordinate transformation, and filtering. 

 
Figure 6.34: Sensor preprocessing subsystem block 

 

 
Figure 6.35: Sensor preprocessing subsystem structure 

 

               
Figures 6.36: Sensor data group subsystem 

 

     After filtering and data calibration, we can proceed with combining measurements for state estimation 

useful for the controller subsystem. The following pictures show the blocks used to estimate the X-Y position 

(from figure 6.37 to 6.46) and altitude (from figure 6.47 to 6.50). It can be noticed they employ a Kalman 

filter to combine the measurements, to predict the dynamical system behavior, and to obtain an optimal 
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estimation.  

 
Figure 6.37: X-Y position estimator block 

 

 
Figure 6.38: X-Y position estimator structure and its subsystems  

 

 
Figure 6.39: velocity estimator subsystem block (part of the X-Y position estimator)  
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Figure 6.40: velocity estimator subsystem structure 

 

 
Figure 6.41: Acceleration Handling subsystem block (part of the velocity estimator) 

 

 
Figure 6.42: Acceleration Handling subsystem structure (part of the velocity estimator) 

 

 
Figure 6.43: Data Handling subsystem block (part of the velocity estimator) 
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Figure 6.44: Data Handling subsystem structure (part of the velocity estimator) 

 

 
Figure 6.45: X-Y position estimator subsystem block (part of the general X-Y position estimator) 

 

 
Figure 6.46: X-Y position estimator subsystem structure 

 

 
Figure 6.47: Altitude (Z position) estimator block 
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Figure 6.48: Altitude (Z position) estimator structure 

 

 
Figure 6.49: Outlier Handling subsystem block (part of the Altitude estimator) 

 

 

 
Figure 6.50: Altitude (Z position) estimator block 

 

     The block in figures 6.51 and 6.52 (subsystems in figures 6.53 and 6.54) is used to estimate roll, pitch, and 

yaw angles through a complementary filter. This type of filter can simply combine measurements from two 

sensors, and it is suitable for the subsystem.  
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Figure 6.51: Complementary filter block for orientation estimation 

 

 
Figure 6.52: Complementary filter structure 

 

 
Figure 6.53: Complementary filter subsystem 1 
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Figure 6.54: Complementary filter subsystem 2 

 

     The complementary filter is a more straightforward solution to implement compared to the very capable 

but intricate Kalman filter, which is often harder to implement on specific microcontrollers. The following 

description of the complementary filter was adapted from Jouybari et al. [38]. 

     The gyroscope and accelerometer measurements are employed for the same objective: determine the 

drone’s angular position. We can achieve this with the integration over time of the gyroscope angular velocity. 

Instead, the angular position can be obtained through the accelerometer, using the gravity vector position. We 

can simply achieve this with the “atan2” function.  However, there are two problems, justifying the need for a 

filter to process data. The first issue concerns the accelerometer. Since it measures all the forces acting on the 

drone, it can also perceive more components than only the gravity vector. All the small forces could disturb 

the measurement. The sensor can also sense the forces driving the drone since the system is actuated. 

Therefore, we should use a low-pass filter because of the reliability of accelerometer measurements exclusively 

in the long term. 

     The second issue affects the gyroscope. We can easily obtain accurate measurements not significantly 

influenced by external forces, but due to the integration over time, there is a tendency of the measurement to 

drift, that is, not coming back to zero value after a return of the system to its original position. Due to this 

tendency of drifting in the long term, gyroscope measurements are reliable only in the short term. 

     Therefore, a complementary filter can be the right tradeoff solution to the two issues. Because of the 

gyroscope precision, not sensitive to external forces, we can use its measurements in the short term. Instead, 
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we can use the accelerometer measurements in the long term, for the absence of drift. The filter can be 

implemented according to the following simple form, adapted from Van de Maele [37]. 

𝑎𝑛𝑔𝑙𝑒 = 0.98 ∗ (𝑎𝑛𝑔𝑙𝑒 + 𝑔𝑦𝑟𝐷𝑎𝑡𝑎 ∗ 𝑑𝑡) + 0.02 ∗ (𝑎𝑐𝑐𝑒𝑙𝐷𝑎𝑡𝑎)                            (6.1) 

     In this way, we integrate the gyroscope measurement (gyrData) every timestep with the current value of 

the angle (angle). Next, we combine it with the filtered measurement from the accelerometer (accelData), after 

processing it with the “atan2” function. The total sum of the constant parameters in the formula should be 1, 

and they should be chosen according to our filter tuning. This function implemented through Simulink blocks 

must be used with a loop. Every cycle, we update the roll and pitch angles with the new measurement from 

the gyroscope with time integration. Then, the angles are updated with the accelerometer measurement 

considering 98% of the actual measurement and summing up 2% of the angle computed from accelerometer 

data. In that way, the measurement is ensured not to drift, and it is accurate in the short term. 

     Figure 6.55 shows a graph created with GNUPlot that represents the signals from gyroscope and 

accelerometers and their estimation through a complementary filter. We can notice that the filtered signal (in 

red) follows the gyroscope (in blue) for quick variations, and it follows the mean value of the accelerometer 

measurements (in green) for slow variations, not sensing the noise and not drifting away too. 

 
Figure 6.55: gyroscope and accelerometer signals and complementary filter estimation [37] 

 

     Now that State estimators have been treated, it can be possible to introduce the controller subsystem (figure 
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6.56). It takes the reference signals generated from the Path planning algorithm and makes a comparison 

between them and the estimated states to obtain the errors. They are fed into the PID controllers to produce 

the actuators’ commands (figure 6.57). We have the X-Y position outer loop controller (figures 6.58 and 6.59), 

sending the signals to the pitch /roll (or attitude) internal loop controller (figures 6.60 and 6.61). Moreover, 

independently of them, there is a yaw controller (figure 6.62) and the height controller (figures 6.63 and 6.64). 

     Overall, the position and the attitude of the mini drone are controlled by 6 PID controllers. 

The “controllerVars” folder includes all the variables relative to the controller. 

 
Figure 6.56: Controller block 

 

 

 

Figure 6.57: Controller model structure 

 

 
Figure 6.58: X-Y position controller block 
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Figure 6.59: X-Y position controller structure 

 

 
Figure 6.60: Attitude controller block 

 

 

 
Figure 6.61: Attitude controller structure 

 

         
Figures 6.62: Yaw controller block and model structure 
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     The altitude controller (figures 6.71 and 6.72) is set up as PID. In this implementation, we multiply the 

proportional gain by the altitude error derived from the sonar sensor, and the derivative gain by the altitude 

rate measurement of the gyroscope, which is a less noisy signal compared to the ones from the ultrasound. It 

would be useful to remember that the z-axis points down in the drone’s coordinates system, so in the control 

system, there will always be a negative sign in front of the altitude number (expressed in meters). 

 
Figure 6.63: Altitude controller block 

 

 

 
Figure 6.64: Altitude controller structure 

 

     Those PID and PD controllers have as outputs the force and torque commands that are subsequently sent 

to the MMA (figure 6.65). It produces the necessary motor thrusts, and, through the blocks in figure 6.66, the 

commands are turned into motors’ speeds. 
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Figure 6.65: Motor mixing Algorithm block and model structure (part 1) 

 

        
Figure 6.66: Motor mixing Algorithm block and model structure (part 2) 

 

 

6.4 Controllers Tuning 

 
     As previously stated, to tune the controllers, we should build a linear model, because nonlinear models are 

not suitable for controller design, despite their accuracy in simulation.  In this example, the “PID tuner” app 

of Simulink will be used for tuning the height controller, and the same approach can be applied for the other 

controllers according to the technique explained by Douglas [35]. 

 
Figure 6.67: Model linearization for Controllers tuning [35] 

 

     Once the system is linearized, we can apply the superposition principle, so it is possible to tweak and adjust 

altitude without influencing yaw, pitch, and roll because the altitude controller is independent of the other 

ones. We can also assume that sensor dynamics and noise effects are negligible in the controller design. 



89 

 

 

 

Therefore, we can remove the state estimation logic and the sensors model. Moreover, we should assume the 

controller knows the actual height.  

     Once the controllers are tuned, they will be tested on the original nonlinear model and check that the 

assumptions were valid.  

 
Figure 6.68: Control system simplification for Altitude controller tuning [34] 

 

We should linearize the altitude controller and adjust the gains to obtain the desired dynamics. 

     After that, the yaw controller will be tuned, with roll, pitch and altitude constant, and a similar procedure 

for pitch and then roll. Then, the outer loop position controller will be tuned while the inner loop controllers 

are working and keeping the orientation. 

     For the linearization of the altitude loop example, we can remove the scope and the sensor block since there 

is a feedback of a perfect altitude state. In the flight controller block, we can keep the altitude reference, the 

controller, the MMA, and the thrust-to-motor command block. The RPY torques are set to 0 to ensure that 

without external forces and torques as disturbances on the drone, it can only increase or decrease altitude. This 

can be assumed because the environment block does not model external disturbances.  

     Finally, the perfect altitude state must be fed back to the altitude controller. The linearized system is shown 

in figure 6.69.  



90 

 

 

 

 
Figure 6.69: Linearized Control system used for Altitude controller tuning [35] 

 

     The altitude controller can be implemented with a PD controller through the relative block in Simulink 

because then it can be used for autotuning. The structure consists of a comparison between the altitude 

reference and the actual altitude, a PD controller that receives the error, and an addition of a feedforward 

gravity term.  

     The last one models the necessary thrust to offset the drone weight. In this way, the controller can simply 

command the altitude positively to rise and negatively to descend. An alternative to the use of this term could 

be the addition of an integral term to the controller. The next figure (6.70) shows the linearized controller 

model used for tuning. 

 
Figure 6.70: Simplified Altitude Controller used for tuning [35] 

 

     The “autotuner” can be run by opening the PD block. Firstly, it linearizes the control loop. Then, the app 

plots the closed-loop response of the linearized version, and it is possible to adjust response time and transient 

behavior of the system (figure 6.71).  
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Figure 6.71: PID Tuner App on Simulink [35] 

 

     The dashed line of the response signal has not the same behavior of simulation because of the removal of 

nonlinear components, but it is still suitable for tuning. After gain selection and a quick test with the hardware, 

it can be noticed that the hardware does not reflect the expected behavior because it cannot take off properly. 

     The problem, in this case, affects the feedforward term. If it is too little, the system believes the drone 

weight is smaller than in reality, or the thrust is higher than the actual one. Therefore, the controller has more 

difficulty in handling the remaining weight because of a reduction of the proportional path, so it cannot take 

off. If the value is raised to about 25%, the drone can finally takeoff. 

     The same tuning procedure could be repeated for the other controllers until not just the simulation 

performances, but also the hardware test performances, are considered acceptable. 

     Table I shows the gains of the six controllers tuned through simulation and real-time tests by following the 

technique explained previously. 
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TABLE I: TUNED GAINS OF CONTROLLERS 

CONTROLLER TYPE GAIN TYPE VALUE (sign according to the 

reference frame convention) 

 P for X coordinate error -0.24 

X-Y position PD controller P for Y coordinate error 0.24 

 D for X coordinate error 0.1 

 D for Y coordinate error -0.1 

 P for pitch error 0.013 

 P for roll error 0.011 

Attitude PID controller I for pitch error for attitude 

loop 

0.01 

(pitch/roll) I for pitch/roll error in the 

altitude loop 

0.24 

 D for pitch error 0.002 

 D for roll error 0.003 

Yaw PD controller P for yaw error 0.004 

 D for yaw error 0.0012 

Altitude PID controller (Z) P for altitude error 0.8 

 D for altitude error 0.5 

 

 

6.5 Hovering Hardware-in-the-Loop Test 

 
     The Hovering test was performed to check the real-time performances after controllers tuning. During the 

test, the drone was pushed slightly, with pulses acting as disturbances on the airframe. The figures on the next 

page show the graphs obtained plotting the data recorded from sensors during flight. They represent the 

trajectory (figure 6.72), the motor speeds (figure 6.73), x-y-z positions with their linear speeds (figure 6.74), 

yaw-pitch-roll angles with their angular velocities (figure 6.75). It is easy to identify on the graphs the moments 

when disturbances occurred (5 times in total), due to a sudden variation in velocities. The signals show that 

the drone comes back to the reference point with a response suitable to our control goals. 
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Figure 6.72: real-time Hovering test– Trajectory (3D view and Top view) 

 

  

  

Figure 6.73: Real-time Hovering test– Motor speeds 
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Figure 6.74: Real-time Hovering test – X, Y, Z Positions (left) and corresponding linear speeds (right) 
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Figure 6.75: Real-time Hovering test – RPY angles (left) and corresponding angular velocities (right) 

 

The performance of the control system response to the disturbances in the HIL test validates the controllers' 

gains tuned in the MIL simulation test, showing that the system is stable. Thus it is possible to proceed with 

the image processing and path planning algorithms design.
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CHAPTER 7 

 

 

1st LINE-TRACKING ALGORITHM DESIGN 
 

 

 

     The path-tracking algorithm to be designed is constituted by the image processing subsystem (figure 7.1) 

and the path planning subsystem within the control system (figure 7.2), which will generate the reference 

commands for the flight controllers. The other components of the Flight Control system like the estimator 

algorithm and the controllers can be left unchanged at this point, after having already tuned those in the 

previous design stage.  

              
Figure 7.1: Image processing (left) and Path planning (right) subsystems 

 

7.1    Image processing algorithm (Color Thresholder app and sub-images analysis approach) 

 
     It is better to use another model to design and test the algorithm that processes images from the camera. A 

new Simulink project can be opened to create it, from the main MATLAB screen, by following the procedure 

explained in the next lines. 

     Firstly, click on "New" and then "Simulink model" (figure 7.3 on the left). 

         
Figure 7.2: template model creation for Image processing 
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     By opening the menu "Simulink Support Package for Parrot Minidrones", select the template "Code 

Generation Template for Image Processing and Control" (figure 7.3 on the right). Through this simplified 

model, it is possible to test the code without flying the drone independently; in fact, it will be possible to 

manually hold it above the path to analyze the behavior of the image processing algorithm. It would be useful 

to download an image of the route from the drone camera.  

     Firstly, the app called “Color Thresholder”, provided by the Computer vision add-on tool in Simulink can 

be used to calibrate a threshold filter that creates a binary mask containing only the path. The tool can be 

opened by typing "colorThresholder" in the Command Window. Once the screen is open, we can select the 

image to be loaded (figure 7.4), or we can look for it inside the PC or from the Workspace. For our purpose, it 

is preferable to upload an image coming directly from the camera of the drone (with at least one route line 

included). 

     After that, we can choose between 4 different spaces: YCbCr, RGB, L*a*b*, and HSV. For our purpose, a 

color space with a very robust control is HSV, but since the algorithm should be made less complicated, it can 

be used merely RGB. HSV is a three-dimensional representation of the color based on the tonality components 

(Hue), Saturation (Saturation), and Luminosity (Value). It was defined in 1978 by Alvy Ray Smith is a 

representation closer to the form in which we humans perceive colors and their properties, unlike RGB, color 

shades are grouped. 

     To the right of the image (in the App window), we have the cursors to adjust the components of the filter. 

Once we reach the desired segmentation (Figure 7.4), we export the function in a .m file. 

                    
Figure 7.3: Color Thresholder app operations 
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Figure 7.4: Color Thresholder app 

 

     This phase can be simplified a lot if the path is made with white tape on a black background, which is 

already a binary scenario. However, if other elements of different colors are added to help and to improve the 

Optical flow estimation algorithm, the threshold filter should be able to cancel those out. 

     After this procedure, we are interested in detecting the edges of the path and their angles. An edge can be 

modeled as a curve that shows a sudden variation in intensity. The "edge" function can be used to detect the 

borders. The function seeks for areas in the picture where there is an abrupt variation in intensity, through the 

following two criteria, as explained by Zhang et al. [39]. 

 The Points where the value of the 1st derivative of the intensity function exceeds a selected threshold. 

 The Points where the 2nd derivative of the same function becomes null. 

     The “edge” function uses different estimators that implement one of the previous methods for identification. 

In some of them, it is possible to define if the action must be sensitive to rather vertical, horizontal, or both 

kinds. The function output is a binary picture assuming “1” close to the object borders, otherwise “0”. 

     Furthermore, another useful line detection method that can be used is the “Canny” method. The peculiarity 

of this technique is the use of two thresholds, one for “strong” and another one for “weak” edges. In particular, 

it highlights the weak ones only if there are connections to strong ones. The advantage of this technique is that 
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it can be influenced less likely by the noise, and it is more likely to find accurate weak contours. 

     For edge detection, we can use the “hough” function. It applies the SHT (Standard Hough Transform), and 

it can be expressed through the following parametric representation: 

𝜌 = 𝑥・𝑐𝑜𝑠(𝜃) + 𝑦・𝑠ⅈ𝑛(𝜃)                                                      (7.1) 

     The parameter “ρ” is the distance between the edges and the reference frame’s origin. “Θ”, instead, can be 

interpreted as the orientation of the line, according to the convention shown in the next picture (Figure 7.5). 

 
Figure 7.5: parametric representation of a line through SHT [45] 

 

The “Hough” function generates an array of parameters θ and ρ, located respectively on the columns and rows 

of the matrix. Once the picture is analyzed with the SHT, the “houghpeaks” function is used in the parameter 

space to detect the peaks, which are potentials lines in the binary image. The “FindAngle” (Figure 7.6 and 

Appendix B for the script) function can be employed to estimate the edges’ angles, which are then fed to the 

path planning algorithm. 

 
Figure 7.6: user-defined function “FindAngle” 

 

     If we look at the next pictures, we can notice that the transform calculates a null angle in the case in which 

the line is oriented as in the picture in the center, whereas it will calculate a negative degree if it is oriented as 

in the picture on the left, vice versa, a positive angle will be sent as output if the line is oriented as in the picture 

on the right. 
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Figure 7.7: Track lines with different angles (positive angle on the right) 

 

 
Figure 7.8: Image processing subsystem 

 

     As can be seen from figure 7.8, as input to the sub-system, we have the Image Data that comes processed 

by the PARROT Image Conversion block, which has an Output with the components of the image, coming 

from the camera, in RGB.  The filter generated by the Color Threshold App has been loaded into a MATLAB 

block Function and has as input the RGB three-dimensional matrix and returns an image to the Output binary 

(in a matrix of size 160 × 120 pixels) containing “1”s where our track is present, while “0”s elsewhere. 

     The image was divided into various sub-matrices to analyze their pixels' binary values. In figure 7.9, it can 

be seen how the image was subdivided into the different areas useful for the path planning algorithm logic.  

 
Figure 7.9: Image subdivision into areas for the path planning algorithm 

 

     Through this technique the path planning logic can establish when the drone should land above the circle. 
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In fact, in every sub-image of the binary image, the number of the “1”s is counted and then compared with a 

constant; therefore, we will have a Boolean value at the output. There are three Boolean signals which are 

conveyed to an AND block. This causes that the condition must be true on all three sub-images. In this case, 

the value of the constant to be compared with the sum of each sub-matrix is low enough to consider the residual 

noise from the filtered image. Through Hardware tests, this value will be adjusted so that the landing happens 

in the right condition. 

     Regarding the orientation, i.e., the part of code that acts on the Yaw angle of the aircraft, two different gains 

are used to control it: the first one has a higher gain to align the orientation with the line approximately, and 

then the second gain lower, to align the drone more precisely above the line (using the Hough transform). 

     However, when the line is positioned horizontally (from the image of the camera), the transform calculates 

an angle that could oscillate rapidly between −90° and 90°. If in input to the X-Y displacement function, we 

give these very oscillating values, the drone will not be able to follow the path. Therefore, a function has been 

placed to align faster the drone as soon as it sees the line and then continues with a more precise alignment. 

Two portions of the image have been dedicated to this function, called “Up_left” and “Up_right” (purple areas 

in Figure 7.9). A Matrix Sum block has been placed in output to the two sub-matrices to count the number of 

pixels; this will tell us how many white pixels of the path are present in that portion. 

     Instead, the portion of the image dedicated to the Hough transform analysis is the one called “ForDirection” 

(blue area in Figure 7.9). 

 

7.2 Path planning algorithm (Stateflow approach)   

 

     Stateflow is a Simulink tool that consists of a schematic language made of truth tables, transition diagrams, 

flow diagrams, and state transition blocks. It allows us to design and develop supervisory logic, communication 

protocols, GUI (user interfaces), state machines, and hybrid systems. Through this powerful tool, it is possible 

to realize the sequential supervisory logic that can be modeled as a subsystem in Simulink. Various checks 
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during modification and execution ensure consistency and completeness of the project before implementation. 

In the part of the movement management system, there are two Stateflow charts, two Bus Selector, two Bus 

Creators, two Switches, two Gain, a Constant block, a Delay block, and a block conversion to "Single" type. 

     A bus arrives from the input states “estim” which is divided by a Bus selector; in this case, there is only 

one way out because we only need the Yaw estimate. The same goes for input Vision-based Data, but the Bus 

selector has multiple outputs: “Land it”, “DegAngle”, “UpLeft” and “UpRight”. 

     In Output, instead, we have another bus that is composed of the input bus ReferenceValueServerCmds 

together with the pos ref and orient ref channels, which respectively receive the values yes set-points x, y, z, 

and those of Yaw, Pitch, Roll via a Bus creator. In this case, being the constant “controlModePosVsOrient” 

(Figure 6.31) equal to 1, the values of Pitch and Roll cannot be given as references. 

     The Delay block, together with the Add block, manages the task of varying the Yaw angle. The block Delay 

keeps in memory the previous value that will be added (Add type block) to the variation provided by Switch1. 

The Switch, instead, activates and deactivates the rotation, varying between the value of the constant (equal to 

zero) and the output value from Chart 2. The operation of the Switch, together with the two Gain, will be 

explained more in-depth in the section dedicated to Chart2. 

     In Chart 1 is implemented the task of managing the drone's x, y, and z coordinates in space. It can be seen 

in figure 7.10 that it is modeled as a State machine and is divided into three states: Take Off Cruise and 

Landing. The picture on the next page (figure 7.11) shows the Path planning subsystem structure. 

 
Figure 7.10: Chart 1 subsystem 
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Figure 7.11: Path planning subsystem 
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     The first state, which is the default one (the first to be performed) with the name “TAKEOFF” has the task 

of raising the drone up to 0.9 meters from the ground and assigns the value False to the variable rot. This 

variable, which will be explained in detail in the section of Chart 2, is used to "activate" the change of heading 

of the drone (i.e., the yaw angle). During the take-off, it is necessary to turn off rotation due to the image 

recorded by the camera when it is too far near the line; with the image completely white or completely black, 

the video processing algorithms are not accurate and could lead the drone to instability. After hovering for 3 

seconds, it switches to the "CRUISE" state (this time it is defined on the body of the arrow that connects the 

“TAKE OFF” state with the “CRUISE” state: "[after (3, sec)]"). During the change, the value "rot" is assigned 

the value True, thus activating the rotation. 

     In the entry part of this state (which is performed only once), they are initialized to zero the variables dx, 

dy, and land. While during, the increase values dx and are calculated dy calculated as follows: 

𝑑𝑥 = 𝑣𝑒𝑙・𝑐𝑜𝑠(𝑦𝑎𝑤ⅈ𝑛)                                                                  (7.2) 

𝑑𝑦 = 𝑣𝑒𝑙・𝑠ⅈ𝑛(𝑦𝑎𝑤ⅈ𝑛)                                                                   (7.3) 

Where the variable speed is a multiplicative constant equal to 4.5 · 10−4. At each iteration, the values “dx” 

and “dy” are added respectively to the variables “xout” and “yout”.  

     In the last three lines, the algorithm checks if the landing flag is active; if this condition occurs, the “land” 

variable is increased. The reason for this variable is intended to delay the landing slightly and not to create 

false landings if the filter does not detect the path for short moments. 

     When the land variable reaches at least the value 150, it enters the LANDING state. During this state, the 

xout and yout variables are reassigned (in a redundant form) their value, to keep the drone in the last assigned 

x, y coordinates. Plus, the value “zout” is increased by 2.5 · 10−3 meters at each iteration; in this way, the 

drone is lowered of altitude more slowly until it touches the floor and land above the circle. 
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Figure 7.12: Chart 2 subsystem 

  

Chart 2 (shown in figure 7.12) realizes the task of aligning the drone above the line of the path. It is divided 

into two states: “General Steerer” and “Fine steerer”. 

     The default state is the GENERAL STEERER. In the "entry" part, the variables: “OUT”, “p” and “r” are 

initialized to zero, and then, “SpeedSelector” will set as False. Instead, in the iterations of this state, two types 

of checks are made: the first acts on a cursor, represented by the variable p, which is decremented if the number 

of pixels present in the upper-left area of the picture (UpLeft) is greater than or equal to 150; conversely, the 

variable p will be incremented if the number of pixels contained in the upper-right area of the picture (UpRight) 

will be greater than or equal to 150. 

     In the second control, the cursor value is analyzed. If the variable p is higher than the threshold value 

(Threshold), the output “OUT” will be equal to 1. On the contrary, if the variable p is less than the threshold 

value, the output “OUT” will be equal to -1. Instead, if it is between the two values −Threshold <p <Threshold, 

the OUT variable will be zero. This state here is used to start the drone spinning, for the Hough transform has 

angle limits. We have a reasonable estimate when the angle is between −77° and 77°. When the line reaches 

an angle between −55° and 55°, the “END” state is activated in the Steerer. Upon entry, the variable “q” is 

initialized to zero, and the variable “SpeedSelector” becomes true. Now the “OUT” variable directly receives 



106 

 

 

 

the angle value calculated from the Hough transform. Finally, a check is carried out, that is, if the drone is 

aligned with the path with an error defined by the “Precision” variable, which is equal to 2°. The 

“SpeedSelector” Flag acts on a switch (Figure 7.12), which selects the suitable gain depending on the state 

assumed in Chart 2. In fact, in the “GENERAL STEERER” state, the variable OUT can only assume the 

values: -1, 0, and 1, while in the “FINE STEERER” state, the variable OUT takes the values between −55° 

and 55°. This method solves the problem of very oscillating values for the Hough transform, and it also makes 

the rotation speed decrease as the error angle decreases, in other words, the smaller the error angle, the more 

the drone turns slowly so as not to exceed the zero angle. To be considered valid, the algorithm must work on 

different path configurations. 

 

7.3 Simplified Version of the previous algorithm   

 
     We can simplify the model by removing the function for angle detection and the Canny method and make 

the image processing algorithm rely just on the pixel count of the left and right sub-images to make the drone 

turn. The next figure (7.13) shows the model of the image processing subsystem. 

 
Figure 7.13: Simplified version of the Image processing subsystem 

 

     We can also simplify the Path planning algorithm, using just one gain for turning with yaw, instead of 

having two (one more precise than the other for small angles). Moreover, the algorithm can allow the drone to 

stop before turning by changing the yaw angle, and in this way, it would be slower but more precise. Figure 

7.14 shows the simplified path planning algorithm.  
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Figure 7.14: Simplified Path planning subsystem  

 

     The next picture (7.15) shows Chart1 and Chart2. In Chart1, we can notice that there is a new state called 

“Rotation,” and it is activated only for half of a second, and it let the drone keep the same coordinates, as we 

said before, without changing the position while turning. It allows for more accurate maneuvers. In Chart 2, 

there is only a general state for steering with just one gain value with two outputs. They give the sign to the 

gain, depending on the direction of turning, if it is left, then “-1”, otherwise “1”.   

                   
Figure 7.15: Chart1 (left) and Chart2 (right)  
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7.4 Model-in-the-loop test (standard and simplified implementations) 

 

     When the two algorithms were tested, they showed a satisfying performance, proving that the drone can 

follow the track until the end, with their design and their parameters tuned. The next pictures represent some 

screenshots taken from the Model-in-the-loop simulation of the standard implementation (first). The drone can 

precisely track the line, and it can deal with curves of different angles. Its performance relies on the tuning 

combination of different parameters that characterize the algorithm. There is the altitude at which the drone 

has to fly to see clearly the path; moreover, there are the sub-images dimensions for steering control coupled 

with the threshold on the pixel sum that activates the command to change yaw orientation (increasing or 

decreasing the angle). Another critical parameter is the drone speed, which has to be set according to the 

previous parameter; otherwise, the drone could oscillate too much or even lose the vision of the path in the 

sub-images. 

   

   
Figure 7.16: Model-in-the-loop test of the first algorithm - standard version 

 

     The simplified model is also able to track the line, but it does so with less fluidity in movements above the 

curves because, as was explained in the previous paragraph. If the steering control activates, the drone stops 

to update the x-y position with increments and change just the yaw angle, having a slower but more precise 

maneuver while tracking the curve. On the next page, there are tables II and III with the tuned values of the 

parameters that characterize the algorithm (respectively, the standard and the simplified). 
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TABLE  II: PARAMETERS VALUE OF THE FIRST ALGORITHM  

SPEED (“VEL” CONSTANT) 4.5 * 10-4 

ALTITUDE (“Z”) 1.1 m (3.61 ft) 

SUB-IMAGES DIMENSION FOR STEERING CONTROL  Up_Left: rows 1-39/columns 1-55 

Up_Right: rows 1-39/columns 103-157 

THRESHOLD ON THE SUM OF TRACK PIXELS (≥) 140 

 

     As we can see in the next pictures (figure 7.17), the simplified algorithm makes the drone follow the curve 

slower and with more precision compared to the standard version.  

    
Figure 7.17: Model-in-the-loop test of the first algorithm – simplified version 
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CHAPTER 8 

 

 

2nd LINE-TRACKING ALGORITHM DESIGN 
 

 

 
8.1 Image processing algorithm  

 

     The 2nd Image processing algorithm implemented is made differently; in fact, it is built mainly with 

functions defined through MATLAB. The functions’ scripts are provided in the Appendix.  The only 

components that this algorithm has in common with the first Image processing algorithm are the first two 

stages. These are the “Binarization” function (figure 8.1 on the left and Appendix A.1.1), done through the 

“Color Threshold App” that allows us to obtain the Binary image together with path and background detection. 

It is followed by another filter (figure 8.1 on the right and Appendix A.1.2) that removes the noise pixels and 

makes the contours of the path smoother and continuous. The aim is to improve the image for the operations 

of the following stages.  

                                  
Figure 8.1: “Binarization” (left) and “Filter” (right) function blocks 

 

     At this point, the image is processed by two different branches: one needed for the path detection and 

tracking, the other one which tells the drone that the path has ended and identifies the landing point that, in 

this case, is a circle. The branch aimed to track the path is made with a function called “Ctrl_Radar” (figure 

8.2 on the left and Appendix A.1.3), which tells the drone the direction to follow, generating the signals 

corresponding to the increments in position, once the shape of the path has been analyzed. During its cycles of 

path analysis, the output signals “x_incr” and “y_incr” are processed through a discrete digital filter and then 
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fed back as inputs for the next analysis. The increments are then normalized (figure 8.2 on the right) before 

being sent to the Path planning algorithm to allow more precision in the movements and a “smoother” 

trajectory.  

                        
Figure 8.2: “Ctrl_radar” function with discrete filter (left) and gains for increments (right) 

 

     The signal “Start_End_Flag” tells us if the path is ended in that direction of movement or not and it is fed 

to the Edge detection subsystem (figures 8.3 and 8.4) that as output has a signal which indicates if the End of 

the line was detected, and it is included in the Bus “Vision-based data” provided as input to Path planning 

algorithm. 

 
Figure 8.3: Edge detection subsystem block 

 

 
Figure 8.4: Edge detection subsystem model 

 

The complete schematic of the Image processing subsystem is shown in figure 8.5 on the following page. 
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Figure 8.5: Image processing subsystem 
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     As previously anticipated, the other branch that takes the filtered binary image as input is used to detect the 

circle to land on and to lead the drone to land safely on the circle. The first stage of this branch is the function 

“Borderless” (figure 8.6 on the left and Appendix A.1.4), which removes the objects that touch the borders of 

the image (only closed shapes in the image will be shown). This is needed when the image has the circle 

centered and the rest of the path line that does not have to influence the path planning algorithm once the path 

has ended, and so during the landing phase, the final portion of the path will not be visible in this image. 

     Then, the function “Filter_C_Det” (figure 8.6 in the center and Appendix A.1.5) is a filter that threshold 

the image removes noise pixels, and detects the final circle when almost centered (in the central area of the 

image).  

     Next, the function “Ctrl_circle” (figure 8.10 on the right and Appendix A.1.6)  counts the pixels of the 

circle, subdividing the image into four quadrants and counts the “unbalanced” pixels between left and right 

halves and between upper and lower halves. So it gives the errors of the X-Y position of the circle center 

compared to the center of the image (this algorithm works with all symmetric shapes like squares or rectangles, 

not just circles). 

                      
Figure 8.6: “Borderless” (left), “Filter_C_Det” (center) and “Ctrl_Circle” (right) functions 

 

     The signal “C_DET” is a boolean value that is true if the circle is detected in the center of the image, and 

it is fed to the Path planning algorithm to activate the landing phase on the circle. The signal “Sum_end” 

represents the sum of the pixels of the circle. 

     Finally, the output signals “x_Last” and “y_Last”, as the increments of tracking function are normalized 

before being fed to the Path planning algorithm, so these signals are multiplied by the gains needed to control 

the X-Y movements more precisely while centering the circle (figure 8.7). 
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Figure 8.7: Gains for positioning phase before landing 

 

8.2 Path planning algorithm  

 
     The 2nd Path planning algorithm is also very different than the 1st solution because the latter was 

implemented through State machine representation and Stateflow, while the following one is implemented 

through user-defined Matlab functions. The Vision-based data bus coming from the Image processing 

algorithm contains the X-Y increments during tracking and the circle increments for positioning during 

landing.  They are filtered with a Butterworth 1st order filter with a cut-off frequency at 0.3 Hz (figure 8.8). It 

is used to filter out the noise from the signals before they are processed in the Path planning subsystem logic. 

 
Figure 8.8: Butterworth Filter implementation 

 

 

     Figure 8.9 on the next page shows the complete schematic of the Path planning subsystem. 
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Figure 8.9: Path planning algorithm 
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     The function “Z_Ctrl” (figure 8.10 and appendix A.2.1) provides a constant Z reference for the drone that 

must hover at a fixed altitude. 

 
Figure 8.10: Altitude planning 

 

 

     After 5 seconds (1000*Ts) the tracking state is activated, and if both the signals “Enab_Go” and 

“End_Track_Detection” are both true (1 if the end of the track is not detected), the tracking function “XY_Ctrl” 

(figure 8.11 and appendix A.2.2) is activated and multiplies the position signals by the gains selected in the 

function. 

 
Figure 8.11: Tracking function 

 

     If the circle is detected for more than 1 second, and the end of the track is detected with the signal becoming 

0 (figure 8.12), the slow movement tracking function is activated to center the circle before and during landing 

(figure 8.13 and appendix A.2.3). 

                   
Figure 8.12: End of line detection (left) and logic for switching to landing phase (right) 
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Figure 8.13: Tracking with slow movements for positioning 

 

     The function “XY_Ctrl” for landing (figure 8.14 and appendix A.2.4) disables the slow movements tracking 

and make the drone reduces the altitude until it touches the ground. 

 
Figure 8.14: Landing control block 

 

     At the end of the path planning stages, all the increments in position signals X, Y, and Z are summed up 

and generates the reference signals for the controller subsystem. 

 
Figure 8.15: position signals generation with increments addition 
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8.3 Model-in-the-Loop test with Simulation  

     The algorithm was tested with a simulation in the Simulink 3d environment, and the next pictures show the 

track used (figure 8.16) and the screenshots taken from the Model-in-the-loop test, showing that this algorithm 

does not rotate the drone but make it track the line just according x-y position. The algorithm can follow the 

line, and it lands on the circle at the end, satisfying the requirements. 

 
Figure 8.16: track of the simulation test for the second algorithm 

 

     

     

Figure 8.17: Model-in-the-loop test of the second algorithm 

 

     The pictures on the next page (figure 8.18) represent the signals over time of filtered increments (dx and 

dy) coming from the image processing subsystem and the position coordinates of the drone relative to the earth 

frame. 
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Figure 8.18: x-y increments signals filtered (top) and x-y-z position coordinates of the drone (bottom)



120 

 

 

CHAPTER 9 

 

 

HARDWARE IN THE LOOP TEST AND VALIDATION 
 

 

 
9.1 Environment setup and HIL test of first design version (with issues explanation) 

 

     The last phase of Model-based design consists of deploying the algorithm on the Hardware and test it in 

real-time. The environment for the test was prepared, as shown in figure 9.1. The only available space has the 

minimum required dimensions to fly the drone safely, and the presence of other objects around the path and 

lighting conditions not easy to adjust has created many difficulties in preparing the tests. This is due to the 

extreme sensitiveness of the ultrasound sensors and camera also because of the low-cost hardware according 

to the project goal. 

 
Figure 9.1: Example of the track in the environment used for the HIL Test  

 

     The path was made with white tape on a black background so that the contrast between these two is 

optimized, and these conditions can favor the Image processing algorithm. The use of the black cloth was also 

justified because initially, the floor was too glossy, and it created too much noise and disturbance for the 

camera and the optical flow estimation algorithm. 

     Moreover, the optical flow estimation was helped by putting the red pieces of paper randomly on the floor 
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to create a pattern that can be a reference for the optical flow algorithm (figure 9.2). In fact, without these 

pieces, the absence of other objects and shapes other than the path could confuse the estimator, and the flag 

can be activated terminating the flight, or if we deactivate the flag previously, we can see the drone drifting 

away from the path. However, the pattern should be filtered out by the image processing algorithm, and the 

binary image must not show the pattern shapes as white pixels. 

 
Figure 9.2: Optical flow estimation [40] 

 

     Dealing with sensors measurements and estimation algorithms in the real-time test is very different than in 

simulation. In the hardware-in-the-loop test, the most problematic aspects are the disturbances on the 

ultrasound sensor that can lead the drone to drift up to the roof or the noise of the low-resolution camera 

coupled with light conditions.  

     While the first design implementation worked satisfactorily in the simulation, the real-time test highlighted 

issues connected with the factors previously treated, and it also showed how sensitive was the image processing 

algorithm to them. This implementation relies on pixels count. As it was explained in chapter 7, the drone only 

turns when the number of pixels overcomes a certain threshold, meaning they are pixels of the track and not 

noise pixels. The issue occurs if the camera detects, for example, a large bright zone of noise due to light 

reflection on an object. It also worsens if we notice that the drone orientation can influence the colors’ shades, 

in our case the white color of the path could appear as grey and can be filtered out by the binary filter (figure 

9.3), or some zones of the pieces of paper of the pattern could appear brighter, and so they could be detected 

instead as part of the path by the image processing subsystem. 
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Figure 9.3: Issue related to wrong filtering of the track due to darker regions of the path 

 

     Another issue is related to altitude estimation. In the model-in-the-loop test, the drone was set to fly at a 

constant altitude. Therefore the parameters, like the threshold value or the dimensions of the sub-images used 

for steering, were tuned accordingly to the path dimensions seen by the camera at that particular altitude. 

     However, during the real-time test, the altitude is subject to variations or oscillations due to the ultrasound 

sensitivity, and so if the altitude changes coupled with pitch and roll motion for disturbances, the track shape 

can be seen very distorted, greater or smaller, especially if the drone hovers too close to the ground. Therefore 

the pixel count technique is less robust, and the assumptions according to which the drone hovers at a fixed 

altitude and roll and pitch angles do not affect path shape could not be valid in this case. Furthermore, the other 

characteristic parameters of the algorithm, like speed, sub-images dimensions, and threshold, are tuned 

according to the altitude. Thus even a small change in altitude could meaningfully affect the performances and 

the effectiveness of the algorithm.  

     The sensor data plots of the real-time test of the first implementation are shown in the pictures on the next 

page (figure 9.4 to 9.6). The trajectory plot from the test data shows that in the first curves of the track, the 

drone approximately follows the path, oscillating frequently and changing yaw attitude in an irregular way 

along the path, resulting in less precision and more time taken to accomplish the task. Furthermore, the drone 

was often shut down during the test by the flag activated due to the wrong altitude estimation of the ultrasound 

sensor for the oscillations in the yaw motion. Therefore, to improve the poor performances in the real-time 

test, it was decided to design another version that tries to overcome the weaknesses of the first algorithm with 
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another implementation of Image processing and Path planning subsystems (2nd line-tracking algorithm 

explained in chapter 8). 

 

TABLE III: ANALYSIS OF THE TIME OF COMPLETION OF THE TRACK (1st ALGORITHM) 

 TIME OF COMPLETION OF THE TRACK    [s] 

  AT LOWER SPEED 

“vel” = 0.00040 

 

AT MEDIUM SPEED 

“vel” = 0.00045 

AT HIGHER SPEED 

“vel” = 0.00050 

TEST 1 60 48 43  

TEST 2 57 50  41  

TEST 3 55 45  46  

TEST 4 59  54  50  

TEST 5 54  49  49  

MEAN VALUE 57  49.2  45.8  

STANDARD DEVIATION 2.28  2.92 3.49  

 

          
Figure 9.4: HIL test with 1st algorithm – Trajectory (3D view and Top view) 
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Figure 9.5: HIL test with 1st algorithm – Motor speeds 

 

 
Figure 9.6: HIL test with 1st algorithm – X, Y, Z Position and Yaw angle 
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9.2 HIL Test of the second design version 

 
     Due to the lower reliability of the first algorithm in the real-time test, the second algorithm was implemented 

according to the technique explained in chapter 8. In this test, the 2nd algorithm revealed to be affected 

minimally by the issues described in the first paragraph, validating the effectiveness and reliability of it 

compared to the first that showed more difficulty to follow the track in a real-time test. 

The next picture (9.13) shows some screenshots taken from a video that proves how the drone is capable of 

following the line, and land at the end of the line on the circle satisfying the project goal.  

                        

                        

Figure 9.7: screenshots of the HIL test with 2nd algorithm 

(Link to the video: https://youtu.be/ehN1Mk-clvs) 

 

The sensor data plots of the real-time test of the first implementation are shown in the next pictures. 
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Figure 9.8: HIL test with 2nd algorithm – Trajectory (3D view and Top view) 

 

  

  
Figure 9.9: HIL test with 2nd algorithm – Motor speeds 
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Figure 9.10: HIL test with 2nd algorithm –X, Y, Z Positions (left) and corresponding linear speeds (right) 

 

 
Figure 9.11: HIL test with 2nd algorithm –RPY angles (left) and corresponding angular velocities (right) 
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Figure 9.11 (continued): HIL test with 2nd algorithm –RPY angles (left) and corresponding angular velocities 

(right) 

 

     The next table (II) shows the time measurements of 5 different tests for 3 different speeds. They are defined 

by the gains corresponding to X and Y increments in the Tracking function block of the Path planning 

algorithm explained in chapter 8 and written in appendix A.2.2. The higher is the gain, the higher is the speed. 

Three different gains were picked. The optimal gain chosen is 0.001, and it was considered as the value in the 

middle, whereas 0.006 and 0.0014 were respectively chosen as the lower and the higher values.  

     During the simulation test, it was already noticed that gains higher than 0.0015 lead the drone to lose the 

track, for example in correspondence of right angles, because the image processing algorithm and the path 

planning algorithm cannot generate the reference signals on time to make the drone slow down and turn 

following the curve.  
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TABLE IV: ANALYSIS OF THE TIME OF COMPLETION OF THE TRACK (2nd ALGORITHM) 

 TIME OF COMPLETION OF THE TRACK    [s] 

  AT LOWER SPEED 

Gains of the increments 

in x and y position 

coordinates = 0.0006 

AT MEDIUM SPEED 

Gains of the increments 

in x and y position 

coordinates = 0.0010 

AT HIGHER SPEED 

Gains of the increments 

in x and y position 

coordinates = 0.0014 

TEST 1 47 41 35  

TEST 2 48  43  36  

TEST 3 46 45  43  

TEST 4 49  40  34  

TEST 5 48  42  41  

MEAN VALUE 47.6  42.2  37.8  

STANDARD 

DEVIATION 

1.02  1.72 3.53  

 

     

 Looking at the mean values, we can notice that the average time of track completion decreases if the gain, and 

therefore the speed, is increased, as it could be easily predicted. However, it could be more interesting to notice 

that the variance and standard deviation increased with speed. It means that at higher speeds, the uncertainty 

on the dynamics during the path tracking grows, and some curves require the drone to slow down to allow to 

follow the path and to oscillate while positioning to center the line. The motions in these conditions take 

additional time, and in some of the tests with higher gain, we can notice that the drone took the same time or 

even longer than in the tests with the medium gain value. This is the reason why the medium gain value was 

chosen as the optimal one for this implementation after the Hardware-in-the-loop test, and the implementation 

was validated. 

     The next figures (9.12 to 9.15) show the results of a test with a higher gain that gave slightly different 

results. In particular, the drone was less precise in tracking, having some issues at the first curve because it 
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was losing the track, but then it recovers oscillating, and it was still able to complete the track. This is the proof 

of the observation made before: a higher gain leads to a higher speed but with less precision in tracking the 

line.    

  

Figure 9.12: 2nd HIL test with 2nd algorithm – Trajectory (3D view and Top view) 

 

 

  
Figure 9.13: 2nd HIL test with 2nd algorithm – Motor speeds 
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Figure 9.14 : 2nd HIL test with 2nd algorithm – X, Y, Z Positions (left) and corresponding linear speeds (right) 
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Figure 9.15: 2nd HIL test with 2nd algorithm –RPY angles (left) and corresponding angular velocities (right).
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CHAPTER 10 

 

 

CONCLUSION AND RESULTS COMPARISON 

 

 
 

     This Thesis project was useful to consolidate the awareness of the importance of a Model-based design 

technique in Control system applications, like the design of a drone Flight Control system, and to show its 

potential and its advantages during the development process. In particular, it was useful to design and tune the 

line-tracking algorithms in a more accessible way, allowing to simulate and test with real-time performances 

the effectiveness and the reliability of the control system.   

     Model-based design method gives the idea of how in the design process, the model performances change 

drastically from simulation to real-time execution, and it shows how each phase is essential to validate the 

control system and to ensure the robustness of the model.  

     The two different implementations with their variants showed how differently the system could behave 

between the simulation and real-time conditions, and especially in the latter, they revealed their weaknesses 

but also their strengths. In this conclusion, a comparison will be made to summarize the project work. 

     The first algorithm shows the advantages of being able to follow the line by changing its yaw angle and its 

orientation. Its image processing subsystem has a balanced load on the Hardware. Simple operations to detect 

the track directions with an analysis of the sub-images, based on the binary pixels count and the comparison 

of this sum with a certain threshold, are combined with the more complex operations of Hough transformation 

and Canny method to detect the values of the angles. The path planning algorithm has an easy way to 

implement the logic using State machine diagrams realized through Stateflow.  

     The second version of the first algorithm is characterized by even less complexity, without having the 

Hough and Canny functions and having a simplified steering control that stops the drone every time it changes 

the yaw angle, allowing more precision but decreasing the fluidity of movements. 
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     However, these implementations have a weakness not to be neglected, which is highlighted in the real-time 

test: they strongly rely on the altitude, and they are susceptible to its little variations. In the Model-in-the-loop 

test, the hovering altitude was set as a constant, and the other parameters, like the drone speed and the sub-

images dimensions, are tuned according to the altitude value. In the Hardware-in-the-loop test, the drone may 

not maintain the same altitude constant due to its estimation based on ultrasound sensors. It means the 

environment has a strong influence on the performances, and if it is not set with the proper condition, the 

algorithm does not work correctly, as it was proved by real-time test observation. 

     This issue does not affect the second algorithm implementation, whose image processing subsystem has a 

more adaptive and reliable way to detect track shape and to guide the path planning algorithm. Small altitude 

variations caused by the ultrasound sensors do not affect its performance significantly as in the first 

implementations, and the second algorithm was realized to overcome this issue that occurs in real-time 

performance. It has a different way of tracking the line, which is only based on x-y position in the space and 

not on yaw angle, as needed in the first algorithm to turn to change orientation in the curves. 

     However, this second version is more complex, and it weighs more on the Hardware computational power. 

Moreover, the second algorithm design is susceptible to the gain that controls the increments of position 

coordinates, meaning that the image processing algorithm is sensitive to speed. If the gain is high, the drone 

can still track the line, but it oscillates more, and it could more likely lose the position on the path if we think 

that in a real-time test, the states are estimated and are not exact as in simulation. 

     Finally, it is possible to conclude that the design satisfies the requirements through the low-cost hardware 

used in the experiments and through the final version of the line-tracking algorithm that can adequately perform 

the tasks even in a noisy environment used for real-time tests. 

 

 

  



135 

 

 

APPENDIX A 

 

 

USER-DEFINED FUNCTIONS IN MATLAB  

 

 

 
     This Appendix contains the codes of all the user-defined Matlab functions of the implemented algorithms 

in Image processing and Path planning subsystems. 

 
A.1     Image processing algorithm for the 2nd software implementation 

 

A.1.1     “Binarization” function (using Color Thresholder App)  

 

function BW = Binarization(R,G,B) 

  

I = cat(3, R, G, B); 

  

% Define thresholds for channel 1 based on histogram settings 

channel1Min = 254.000; 

channel1Max = 255.000; 

  

% Define thresholds for channel 2 based on histogram settings 

channel2Min = 254.000; 

channel2Max = 255.000; 

  

% Define thresholds for channel 3 based on histogram settings 

channel3Min = 254.000; 

channel3Max = 255.000; 

  

% Create mask based on chosen histogram thresholds 

sliderBW = ( (I(:,:,1) >= channel1Min) | (I(:,:,1) <= channel1Max) ) & ... 

    (I(:,:,2) >= channel2Min ) & (I(:,:,2) <= channel2Max) & ... 

    (I(:,:,3) >= channel3Min ) & (I(:,:,3) <= channel3Max); 

BW = sliderBW; 

  

end 

 

A.1.2     “Filter” function 

function BW_F = Filter(BW) 

  

%%%% Tuning Parameters 

% The lower is the Threshold, the more filtered is the image 

Threshold_Filter = 3; 

  

%% 

% Output Image Dimensions 
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Width = 158; 

Height = 118;  

  

BW_F = zeros(Height,Width); 

% Filter with a 3x3 box 

  

for i = 2:(Height + 1) 

    for j = 2:(Width + 1) 

        BW_F(i-1,j-1) = sum(BW(i-1:i+1,j-1:j+1),'all'); 

        if BW_F(i-1,j-1) > Threshold_Filter 

            BW_F(i-1,j-1) = 1; 

        else 

            BW_F(i-1,j-1) = 0; 

        end 

    end 

end 

  

end 

 

A.1.3     “Ctrl_Radar” function 

 
function [x_incr,y_incr,Start_End_Flag] = Ctrl_Radar(BW,xp,yp) 

  

%%%% Tuning parameters  

% Radar case size (must be odd dimensions) 

% The larger is the size, the more robust is the system 

box = 9; 

  

% Detection threshold 

Thrs = box*box/2; 

  

% Search Resolution 

Red_Srch = 1;  %in degrees (1/360) 

  

%% 

  

% Image Dimensions 

Width = 158; 

Height = 118;  

  

Mag_vec = (Height/2)-((box-1)/2); 

  

Angle_detection = zeros(1,(359+1)/Red_Srch);        %it has as many elements as the total 

degrees (360) divided by the resolution 

Angle_detection_centers = zeros(1,(359+1)/Red_Srch); 

  

%Variable for centroid detection 

Start_line = 0; 

  

%square and centered matrix 

BW2 = BW(:,20:139); 

  

% Circular radar search 

for i=0:Red_Srch:359 

     

    y_b_pos = round(Mag_vec*sin(i*pi/180) + Height/2); 

    if y_b_pos+((box-1)/2) > Height 

        y_b_pos = Height-((box-1)/2); 
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    elseif (y_b_pos-((box-1)/2) < 1) 

        y_b_pos = 1 + ((box-1)/2); 

    end 

     

    x_b_pos = round(Height/2 - Mag_vec*cos(i*pi/180)); 

    if x_b_pos+((box-1)/2) > Height 

        x_b_pos = Height-((box-1)/2); 

    elseif (x_b_pos-((box-1)/2) < 1) 

        x_b_pos = 1 + ((box-1)/2); 

    end 

     

    Angle_detection(i+1) = sum(BW2(x_b_pos-((box-1)/2):x_b_pos+((box-1)/2),... 

        y_b_pos-((box-1)/2):y_b_pos+((box-1)/2)),'all'); 

    if Angle_detection(i+1) >= Thrs 

        Angle_detection(i+1) = 1; 

    else 

        Angle_detection(i+1) = 0; 

    end 

end 

  

% Search for line centers 

Angle_detection_Concatenated = [Angle_detection, Angle_detection]; 

  

Off_set = 1; 

while Angle_detection_Concatenated(Off_set) == 1 

    Off_set = Off_set + 1; 

end 

  

Angle_detection_Offset = Angle_detection_Concatenated(Off_set:Off_set+359); 

White_Line = 0; 

  

Pulse_rise = 0; 

Pulse_down = 0; 

  

for i=0:Red_Srch:359 

    if (Angle_detection_Offset(i+1) == 1) 

        White_Line = White_Line + 1; 

        Pulse_rise = 1; 

        if (i == 359) 

            Pulse_down = 1; 

        end 

    elseif (Pulse_rise == 1) && (Angle_detection_Offset(i+1) == 0) 

        Pulse_down = 1; 

        Pulse_rise = 0; 

    else 

        Pulse_rise = 0;    

        Pulse_down = 0; 

    end 

    if (Pulse_down == 1) 

        White_Line = round(White_Line/2); 

        Angle_detection_centers(i+1-White_Line) = 1; 

        White_Line = 0; 

        Pulse_down = 0; 

        Pulse_rise = 0; 

    end 

end 

  

% Detection of all line centers 

Points_detected = 6; 
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x_c_det = 1000*ones(1,Points_detected); 

y_c_det = 1000*ones(1,Points_detected); 

Actual_pount_found = 1; 

for i=0:Red_Srch:359 

    if (Angle_detection_centers(i+1) == 1) 

        x_c_det(Actual_pount_found) = Mag_vec*cos((i + Off_set)*pi/180); 

        y_c_det(Actual_pount_found) = Mag_vec*sin((i + Off_set)*pi/180); 

        Actual_pount_found = Actual_pount_found + 1; 

    end 

    if (Actual_pount_found > Points_detected) 

        break; 

    end 

end 

  

% Distance detection with respect to previous position 

Dist_centers_wrt_previous = 1000*ones(1,Points_detected); 

for i=1:Points_detected 

    Dist_centers_wrt_previous(i) = sqrt((xp - x_c_det(i))^2 +... 

        (yp - y_c_det(i))^2); 

end 

  

% minimum distance 

[Min_dist,Indx_min] = min(Dist_centers_wrt_previous); 

  

if (y_c_det(Indx_min) < 100) && (x_c_det(Indx_min) < 100) 

    y_incr = y_c_det(Indx_min); 

    x_incr = x_c_det(Indx_min); 

else 

    y_incr = 0; 

    x_incr = 0; 

end 

  

if sum(Dist_centers_wrt_previous <= 1000) > 1 

    Start_End_Flag = 1; 

else 

    Start_End_Flag = 0; 

end 

  

end 

 

A.1.4     “Borderless” function  

 
function BW_B_LESS = Borderless(BW_F) 

  

% Figures that touch the edge of the image are removed 

%%%% Tuning parameters 

Border_size = 5; 

  

%%  

BW_B_LESS = BW_F; 

  

% Image dimensions 

Width = 158; 

Height = 118;  

  

% Top edge 

BW_F(1:Border_size,1:Width) = BW_F(1:Border_size,1:Width).*-1; 

% Bottom edge 
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BW_F(Height-Border_size+1:Height,1:Width) = BW_F(Height-Border_size+1:Height,1:Width).*-

1; 

% Left edge 

BW_F(Border_size+1:(Height-Border_size),1:Border_size) =... 

    BW_F(Border_size+1:(Height-Border_size),1:Border_size).*-1; 

% Right edge 

BW_F(Border_size+1:(Height-Border_size),Width-Border_size+1:Width) =... 

    BW_F(Border_size+1:(Height-Border_size),Width-Border_size+1:Width).*-1; 

  

% Left - Right Search 

for i = Border_size+1:(Height-Border_size) 

    for j = Border_size+1:(Width-Border_size) 

        if (BW_F(i,j) == 1) && ... 

                ((BW_F(i-1,j) == -1) || ... 

                (BW_F(i+1,j) == -1) || ... 

                (BW_F(i,j-1) == -1) || ... 

                (BW_F(i,j+1) == -1) || ... 

                (BW_F(i-1,j-1) == -1) || ... 

                (BW_F(i-1,j+1) == -1) || ... 

                (BW_F(i+1,j-1) == -1) || ... 

                (BW_F(i+1,j+1) == -1))     

             

            BW_F(i,j) = -1; 

  

        end 

    end 

end 

  

% Right - Left Search 

for i = (Height-Border_size):-1:Border_size+1  %decreasing 

    for j = (Width-Border_size):-1:Border_size+1  %decreasing 

        if (BW_F(i,j) == 1) && ... 

                ((BW_F(i-1,j) == -1) || ... 

                (BW_F(i+1,j) == -1) || ... 

                (BW_F(i,j-1) == -1) || ... 

                (BW_F(i,j+1) == -1) || ... 

                (BW_F(i-1,j-1) == -1) || ... 

                (BW_F(i-1,j+1) == -1) || ... 

                (BW_F(i+1,j-1) == -1) || ... 

                (BW_F(i+1,j+1) == -1))     

             

            BW_F(i,j) = -1; 

  

        end 

    end 

end 

  

% Down - Top search 

for j = (Width-Border_size):-1:Border_size+1      %decreasing 

    for i = (Height-Border_size):-1:Border_size+1   %decreasing 

    if (BW_F(i,j) == 1) && ... 

                ((BW_F(i-1,j) == -1) || ... 

                (BW_F(i+1,j) == -1) || ... 

                (BW_F(i,j-1) == -1) || ... 

                (BW_F(i,j+1) == -1) || ... 

                (BW_F(i-1,j-1) == -1) || ... 

                (BW_F(i-1,j+1) == -1) || ... 

                (BW_F(i+1,j-1) == -1) || ... 

                (BW_F(i+1,j+1) == -1))     
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            BW_F(i,j) = -1; 

  

        end 

    end 

end 

  

% Top - Down search 

for j = Border_size+1:(Width-Border_size) 

    for i = Border_size+1:(Height-Border_size) 

    if (BW_F(i,j) == 1) && ... 

                ((BW_F(i-1,j) == -1) || ... 

                (BW_F(i+1,j) == -1) || ... 

                (BW_F(i,j-1) == -1) || ... 

                (BW_F(i,j+1) == -1) || ... 

                (BW_F(i-1,j-1) == -1) || ... 

                (BW_F(i-1,j+1) == -1) || ... 

                (BW_F(i+1,j-1) == -1) || ... 

                (BW_F(i+1,j+1) == -1))     

             

            BW_F(i,j) = -1; 

  

        end 

    end 

end 

  

  

for i = 1:Height 

    for j = 1:Width 

        if (BW_F(i,j) == -1)  

            BW_B_LESS(i,j) = 0; 

        end 

    end 

end 

  

end 

 

A.1.5     “Filter_C_Det” function 

 
function [C_DET, BW_FF] = Filter_C_Det(BW_B_LESS) 

  

%%%% Tuning parameters 

% The lower is the threshold, the more filtered is the image 

Filter_Threshold = 3; 

  

% Pixel threshold to detect circle 

C_pixels = 500; 

  

%% 

% Image dimensions 

Width = 156; 

Height = 116;  

  

BW_FF = zeros(Height,Width); 

  

for i = 2:(Height + 1) 

    for j = 2:(Width + 1) 

        BW_FF(i-1,j-1) = sum(BW_B_LESS(i-1:i+1,j-1:j+1),'all'); 
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        if BW_FF(i-1,j-1) > Filter_Threshold 

            BW_FF(i-1,j-1) = 1; 

        else 

            BW_FF(i-1,j-1) = 0; 

        end 

    end 

end 

  

% Circle detection in the center 

if sum(BW_FF,'all') > C_pixels 

  

    C_DET = 1; 

     

else 

     

    C_DET = 0; 

  

end 

  

end 

 

A.1.6     “Ctrl_Circle” function 

 
function [x_Last, y_Last, Sum_end] = Ctrl_Circle(BW_FF) 

  

%Trying to center the circle to land in the center 

% Image dimensions 

Width = 156; 

Height = 116;  

  

y_inc = sum(BW_FF(:,1:(Width/2)),'all');  %upper half sum 

y_dec = sum(BW_FF(:,((Width/2) + 1):Width),'all'); %lower half sum 

x_inc = sum(BW_FF(((Height/2)+1):Height,:),'all'); %right half sum 

x_dec = sum(BW_FF(1:(Height/2),:),'all'); %left half sum 

  

y_Last = y_dec - y_inc; 

x_Last = x_dec - x_inc; 

  

Sum_end = y_inc + y_dec; %whole circle image sum 

  

End 

 

A.2     Path-planning algorithm for the 2nd software implementation 

 

A.2.1     “Z_Ctrl” function 

 
function [z_sp, Enab_Go] = Z_Ctrl(t_in) 

  

%%%% Tuning parameters 

% SP altitude 

Zsp = -0.9; 

  

%% 

  

if (t_in == 1)  

    Enab_Go = 1; 
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else 

    Enab_Go = 0; 

end 

     

z_sp = Zsp; 

end 

 

A.2.2     “XY_Ctrl” function (for Tracking) 

 
function [x_inc, y_inc] = XY_Ctrl(Trck_ena,u) 

  

%%%% Tuning parameters  

Gain_x_dir = 0.001; 

Gain_y_dir = 0.001; 

  

%% 

  

if Trck_ena == 1 

  

    x_inc = u(1)*Gain_x_dir; 

    y_inc = u(2)*Gain_y_dir; 

  

else 

  

    x_inc = 0; 

    y_inc = 0; 

  

end 

  

end 

 

A.2.3     “XY_Ctrl” function (for precision slow movements) 

 
function [x_inc_F, y_inc_F] = XY_Ctrl(Trig_End,U_prev,Circle_Detected,Land_End) 

  

%%%% Tuning parameters 

Gain_x_dir = 0.0005; 

Gain_y_dir = 0.0005; 

  

%% 

  

if (Trig_End == 0) && (Circle_Detected == 0) && (Land_End == 0) 

  

    x_inc_F = U_prev(1)*Gain_x_dir; 

    y_inc_F = U_prev(2)*Gain_y_dir; 

  

else 

  

    x_inc_F = 0; 

    y_inc_F = 0; 

  

end 

end 

 

A.2.4     “XY_Ctrl” function (for Landing) 

 
function [z_final, x_inc, y_inc, Landing_Kill] = XY_Ctrl(u,C_R,u_F,C_B) 
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%%%% Tuning parameters 

  

Last_Gain = 0.00035;  

Z_gain = 0.0005; 

  

Landing_Final_Size_Circle = 3000; 

  

%% 

  

if C_R == 1 && (u_F(1) == 0 && u_F(2) == 0)  

    if C_B <= Landing_Final_Size_Circle 

        x_inc = u(1)*Last_Gain; 

        y_inc = u(2)*Last_Gain; 

    else 

        x_inc = 0; 

        y_inc = 0; 

    end 

    Landing_Kill = 1; 

    z_final = Z_gain; 

  

else 

    Landing_Kill = 0; 

    x_inc = 0; 

    y_inc = 0; 

    z_final = 0; 

  

end 

  

end 

 

A.3     Image processing for the 1st software implementation 

 
function DegAngle = FindAngle(BWimage) 

  
edgedBW = edge(BWimage,'canny'); %Canny; 
[H, T] = hough(edgedBW); %Hough Transform; 
P = houghpeaks(H,2); %peak values; 
DegAngle = mean(T(P(:,2))); %found angle value; 

  
end
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