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SUMMARY

Variable selection has become an essential element of high dimensional statistical modeling

to yield parsimonious models while keeping high prediction accuracy. High dimensionality

often induces collinearity problems. For instance, studies of environmental mixtures include a

large number of pollutants which are strongly inter-correlated. Regularized variable selection

methods such as LASSO are popular for statistical variable selection, however these methods

often not perform well in presence of strong collinearity in terms of selection and prediction. To

address these challenges a novel method, namely COrrelation LeaRNing for variable Selection

(COLRNS), is developed that is based on iterative correlation learning for cluster detection and

variable selection. The COLRNS is further extended to COLRNS Generalized Linear Model

(COLRNS-GLM) to be applicable in a generalized linear regression setting. The performance

of the methods is evaluated through an extensive set of simulations and real-world applications

to environmental mixtures data. The results show that the methods effectively identify a set of

influential predictors, improve prediction accuracy, and reduce error in parameter estimation in

most simulation scenarios and data applications under strong collinearity in high dimensional

data.

xv



CHAPTER 1

INTRODUCTION

1.1 Challenges of High Dimensional Data Analysis

The rapid advances of technology have allowed us to produce and collect massive amount

of data with relatively low cost in a short time. High dimensional data are characterized by

high dimensionality of variables in the data set. The number of variables can often far exceed

the number of observations. High dimensional data are frequently been collected in a variety

of areas such as health science, biology, geology, economics, and finance. For instance, many

precision medicine studies seek risk factors in diverse types of high dimensional data such as

genomic, clinical, and protein data for complex diseases [Fan and Li, 2006, JingYuan et al.,

2015,Pan et al., 2019].

Analysis of high dimensional data poses many statistical challenges. The classical ordinary

least squares (OLS) estimates that are used for linear regression are not unique, hence no

longer applicable because of the lack of degree of freedom when the number of variables is

higher than the number of observations in the data set [Wang and Leng, 2016]. In addition,

two primary goals of data analysis, prediction and interpretation, are not often satisfied with

the OLS estimates in high dimensional data analysis [Tibshirani, 1996]. For prediction, the OLS

estimate often has low bias but large variance which causes hardships in accurate prediction

of the future observation [Hastie et al., 2015]. It also makes it difficult to interpret and gain

1
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insight into the relationships between the predictors and response because of a large number

of predictors in the regression model. Furthermore, the high dimensionality often induces

collinearity problem [Zou and Zhang, 2009]. The OLS estimate would perform poorly when

collinearity is high among predictors. High collinearity may degrade accurate estimation of

regression coefficients by inflating the standard errors of the coefficient estimators. It induces

larger confidence intervals in statistical inference and also deflates t-test statistics causing false

nonsignificant p-values in hypothesis. Moreover, it reduces accuracy of prediction for future

observations which degrades generalization ability of the model [Hoerl and Kennard, 1970,Hoerl

and Kennard, 1988,Shen and Gao, 2008]. Hence, high dimensional data analysis calls for new

statistical methodologies and theories.

1.2 Challenges of Statistical Modeling of Environmental Mixtures

Environmental mixtures include a large number of environmental pollutants which poten-

tially interact and affect health as mixture components. There are growing efforts to examine

risks from these pollutant mixtures as people are simultaneously exposed to multitude of envi-

ronmental contaminants. Mixtures of concern include air pollution [Kioumourtzoglou et al.,

2013, Billionnet et al., 2012], mixtures of toxic waste [Hu et al., 2007], and mixtures of per-

sistent organic chemicals [Gennings et al., 2010]. Studying chemical mixtures requires one to

identify important individual components of the mixture that are responsible for the health

effects of the mixture [Bobb et al., 2015]. Not only identification of critical pollutants, but

precise estimation of their health effects is also important to examine their harmful effects. In
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addition, a parsimonious well-structured model can be instrumental for health risk prediction

or disease classification.

However, understanding health risks from environmental mixtures presents statistical chal-

lenges. As seen in the correlation matrix of environmental exposures that we use in our data

application (Figure 1), environmental mixtures include a large number of pollutants. Each

pollutant may have weak individual effect that contributes to the overall heath effect of the

mixture. Further, the pollutant measurements are often extremely correlated at levels that are

not generally seen in other areas of science [Bobb et al., 2015]. This is illustrated in Figure 1.

These challenges of high dimensional data analysis may lead to a poorly fitted regression

model [Bobb et al., 2018]. Moreover, in presence of high collinearity, popular variable selection

methods such as LASSO may not perform well when we conduct variable selection to identify

a subset of the mixture components that is responsible for health effects. Hastie et al. [2015]

show that LASSO estimates exhibit erratic behavior not reflecting the importance of the indi-

vidual variables when there are groups of highly correlated variables. Further, when we have

a high dimensional vector of exposures with weak signals, the sparsity principle which is im-

portant in high dimensional data analysis may fail. Under the principle, regression parameters

are frequently assumed to be sparse with only a small number of predictors contributing to the

response [Fan and Lv, 2010]. With sparsity, variable selection can enhance accurate estimation

of parameters by effectively identifying influential predictors and can also improve model inter-

pretability by yielding a parsimonious model [Fan and Lv, 2010], however, the principle does

not hold in environmental mixture studies.
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Figure 1: Pearsons’s correlation matrix of log-transformed exposures
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1.3 Proposed Work

We develop a COrrelation LeaRNing for variable Selection (COLRNS) method to address

the problems of high dimensional variable selection when there is strong collinearity among vari-

ables. The method is based on iterative correlation learning for cluster detection and selection

with the objectives of improved variable selection, accurate parameter estimation, and precise

prediction of future outcomes. The COLRNS and COLRNS-GLM are suited to be applied

to outcomes measured in continuous and binary scales in the setting of linear and generalized

linear models.

This study is organized as follows. In Chapter 2, we introduce various existing methods

for variable selections and their pros and cons. In Chapter 3, we describe the main procedures

and rationales of COLRNS. An extensive set of simulation studies is conducted to evaluate

the performance of the method in three areas: prediction, variable selection, and parameter

estimation. We apply this method to real-world environmental mixtures data and perform a

data-driven nested cross-validation study to examine prediction performance of the method

based on real-world data. In Chapter 4, we introduce COLRNS-GLM, a generalization of

COLRNS in the setting of generalized linear model, that is motivated by the binary outcome of

diabetes incidence in the Great Lakes fish consumer study. A nested cross-validation study that

is based on the data is performed to explore the prediction performance of the method under

dichotomous responses. Concluding remarks and directions for future research are discussed in

Chapter 5. The Appendix includes supplementary matreials such as ROC (receiver operating

characteristic) curves.



CHAPTER 2

VARIABLE SELECTION POSSIBLE SOLUTIONS

2.1 Introduction

Dimension reduction and feature selection play fundamental roles in knowledge discovery

from massive data as an effective way in dealing with high dimensionality [Fan and Li, 2006,

JingYuan et al., 2015]. In reduced dimension, more accurate estimation can be achieved by

incorporating some well-developed lower dimensional methods [Fan and Lv, 2008]. In this

chapter, we introduce four categories of variable selection methods: criterion based, penalty-

based, screening, and Bayesian methods. We discuss properties, advantages, and disadvantages

of these widely applied feature selection methods. In Section 2.3 for penalty-based methods,

we introduce the popular LASSO method, and various extensions of the method. This chapter

also includes the penalized selection methods that are proposed to deal with multiple groups of

correlated predictors. These methods are compared with the method that we propose in Section

3.5. In Section 2.4 for screening methods, we introduce sure independence screening [Fan and

Lv, 2008]. Iterative sure independence screening is also introduced as an extension of sure

independence screening. In section 2.5, Bayesian kernel machine regression is introduced as a

Bayesian variable selection method.

6
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2.2 Criterion Based Variable Selection Methods

Criterion based variable selection methods are classical ways of performing model selection

in statistical models. One of the most well-known and widely used method is stepwise regres-

sion [Breaux, 1967]. It performs variable selection by sequentially adding the predictors or

eliminating them from the model one at a time based on certain criterion. Stepwise regression

can be broadly categorized into forward selection, backward elimination, and stepwise method.

The forward selection adds significant predictors, the backward elimination deletes insignificant

features, and the stepwise method is similar to the forward selection, but it also considers to

remove insignificant predictors at each step as in the backward elimination method [Chong and

Jun, 2005]. These methods can be implemented with various criteria such as p-value, adjusted

R2, AIC (Akaike Information Criterion) [Akaike, 1973], AICc (Akaike Information Corrected

Criterion) [Hurvich and Tsai, 1989], BIC (Bayesian Information Criterion) [Schwarz, 1978],

Mallow’s Cp [Mallows, 1973], or prediction error, etc. The idea of stepwise regression is simple

and it is easy to implement, however, it faces many issues and criticisms. Issues related to

biased estimation and inconsistent selection of stepwise regression have been discussed in many

literatures [Steyerberg et al., 1999,Whittingham and Stephens, 2006,Flom and Cassell, 2007].

2.3 Penalized Variable Selection Methods

Sparsity, which assumes that only a few predictors importantly contribute to the response

[JingYuan et al., 2015], is frequently assumed and used in high dimensional data analysis . Fol-

lowing this general principle, many penalized variable selection methods have been introduced

to estimate the parameters and at the same time to conduct variable selection by penalizing
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loss functions through sparsity inducing penalties [Wang and Leng, 2016]. The penalization

shrinks the values of the regression coefficients, and may set some of them close to zero. This

introduces some bias but decreases the variance of the predicted outcomes, and thus may im-

prove the overall performance of prediction with respect to prediction accuracy measured by the

mean-squared error [Hastie et al., 2015]. Moreover, since the penalized variable selection meth-

ods estimate a sparse model by identifying a smaller subset of predictors that exhibit strong

effects on the response, it enhances interpretability of the model with regard to the relationship

between features and response [Hastie et al., 2015,Pan et al., 2019].

One of the most popular penalized variable selection method is the Least Absolute Shrinkage

and Selection Operator (LASSO) [Tibshirani, 1996] which is inspired from the non-negative

garrote method [Breiman, 1995]. The LASSO uses the l1 penalty for the penalization of the

regression coefficients. Given that we have n samples {(xi, yi)}ni=1 in the regression setting,

where each xi = (xi1, . . . , xip) is a p-dimensional vector of features or predictors, let X =

(x1, x2, . . . , xn)T be an n×p random design matrix of predictors, and let yi ∈ R be the response

variable. The LASSO solution β̂ to the optimization problem is given by

β̂ = arg min
β∈Rp

{ n∑
i=1

(yi − xijβj)2
}

subject to

p∑
j=1

|βj | ≤ t.
(2.1)

The constraint
∑p

j=1 |βj | ≤ t can be written as the l1 norm constraint ‖β‖1 ≤ t. Typically, the

predictors are standardized so the each column of the design matrix is centered ( 1
n

∑n
i=1 xij = 0)



9

and has unit variance ( 1
n

∑n
i=1 xi

2
j = 1). We also assume that the response variable yi is centered

meaning that 1
n

∑n
i=1 yij = 0. Under these conditions, we can rewrite the constrained problem

(2.1) to the following Lagrangian form

β̂ = arg min
β∈Rp

{ n∑
i=1

(yi − xijβj)2 + λ

p∑
j=1

|βj |
}

(2.2)

for some λ ≥ 0. By Lagrangian duality, for each value of t in the range where the constraint

‖β‖1 ≤ t is valid, there is a corresponding value of λ that gives the same solution for the

Lagrangian from (2.2) [Hastie et al., 2015]. The l1 constraint shrinks the small coefficient to

zero while large coefficients are also shrunken, but remain nonzero. Thus, a key property of the

l1 penalty is its ability to generate a sparse solution which makes it useful in analysis of “wide”

data where number of predictors is higher than that of observations [Hastie et al., 2015].

In contrast to the selection property of the LASSO approach, the solution of Ridge regression

[Hoerl and Kennard, 1970] is not sparse. It solves the following optimization criterion

β̂ = arg min
β∈Rp

{ n∑
i=1

(yi − xijβj)2 + λ

p∑
j=1

β2j

}
. (2.3)

The ridge regression addresses collinearity problems in high dimensional data analysis, a topic

that is covered in detail in Section 3.4.1.

There have been many extensions and improvements of the LASSO method to the situations

where LASSO does not perform well. They all share two essential features of original LASSO

which are shrinkage of regression coefficients and selection of variables or groups of variables.
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Zou and Hastie [2005] propose Elastic net by combining the l1 penalty and l2 penalty. It solves

the problem

β̂ = arg min
β∈Rp

{ n∑
i=1

(yi − xijβj)2 + λ
[
(1− α)

p∑
j=1

β2j + α

p∑
j=1

|βj |
]}
.

Elastic net are designed to address the case where there are groups of correlated variables. By

combining the LASSO and ridge penalties, it selects the correlated features together and they

approximately share similar values.

Yuan and Lin [2006] propose Group LASSO to deal with the regression problems in which

the features have a group structure. Suppose that J groups of covariates are involved in

the regression model where the vector Zj ∈ Rpj represents the covariates in the group j, j =

1, . . . , J . Then a linear model for the function E(Y |Z) takes the form
∑J

j=1 Z
T
j θj where θj ∈ Rpj

denotes a group of pj regression coefficients. Given the n samples {(yi, zi1, zi2, . . . , ziJ)}ni=1,

Group LASSO solves the problem

θ̂ = arg min
θj∈Rpj

{ n∑
i=1

(yi −
J∑
j=1

zijθj)
2 + λ

J∑
j=1

‖θj‖2
}

where ‖θj‖ is the Euclidean norm of the vector θj . It enables to omit the features within a

group together by shrinking the entire elements of the vector θ̂j to zero.

In some applications, covariates are measured over contiguous time points or adjacent re-

gions. Fused LASSO is introduced to account for spatial correlation of predictor [Tibshirani
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et al., 2005]. It allows the value of neighboring coefficients to be the same or similar by solving

the following optimization problem

β̂ = arg min
β∈Rp

{ n∑
i=1

(yi − xijβj)2 + λ1

p∑
j=1

|βj |+ λ2

p∑
j=2

|βj − βj−1|
}
.

Here the covariates xij and their coefficients βj are indexed along a certain sequence j where

the neighboring clumping makes sense [Hastie et al., 2015]. The first penalty is the l1 penalty

of the LASSO regression which shrinks the βj towards zero. The second constraint is called a

fusion penalty in that it encourages the neighboring coefficients to be identical or similar, hence

it enhances sparsity in the differences of adjacent coefficients.

Frank and Friedman [1993] propose a generalization of penalized lq regression, called bridge

regression. It involves lq penalty of β which is defined as [Liu et al., 2007]

∥∥β∥∥q
q

=

p∑
j=1

|βj |q. (2.4)

For a fixed real number q ≥ 0, the bridge regression solves the constrained least square opti-

mization problem

β̂ = arg min
β∈Rp

{ n∑
i=1

(yi − xijβj)2 + λ

p∑
j=1

|βj |q
}
. (2.5)

This creates a bridge between best subset regression (q = 0) [Beale et al., 1967, Hocking

and Leslie, 1967] and the ridge regression (q = 2). For q = 0, the term
∑p

j=1 |βj |q counts

the number of nonzero components in β. It is known that classical variable selection criteria
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such as AIC, AICc, BIC, Mallow’s Cp, or the adjusted R2 are variations of the l0 penalized

regression [Desboulets, 2018,Fan and Lv, 2010].

TABLE I: ESTIMATORS FROM Lq PENALTY UNDER AN ORTHONORMAL DESIGN

MATRIX

q Estimator Formula

0 Best subset β̃j · I[|β̃j | >
√

2λ]

1 LASSO sign(β̃j) (|β̃j | − λ)+

2 Ridge β̃j/(1 + λ)

(Source: [Hastie et al., 2015])

As illustrated in Table I, the best subset selection leaves the coefficient as it is if its absolute

value is larger than
√

2λ, otherwise shrinks it to zero. This is refered to as hard thresholding.

The ridge regression yields proportaional shrinkage, and LASSO applies soft thresholding which

translates the coefficient by a constant factor λ and truncates at zero. Figure 2 presents the

constraint regions where
∑p

j=1 |βj |q ≤ 1 is satisfied when there are two predictors [Hastie et al.,

2015]. For q < 1, the constrained region is nonconvex, hence LASSO is the case in that it has

the smallest value of q = 1 that leads a convex optimization problem. When q > 2, the bridge
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regression tends to shrink less for the small coefficients and more for the large ones, thus the

bridge regression does not capture the large signals as well as LASSO does [Fu, 1998].

Figure 2: Constraint regions of
∑p

i=1 |βj |q ≤ 1 for different values of q

The Adaptive LASSO proposed by Zou [2006] assigns weights to coefficients in the penalty

function. Given a pilot estimate β̃, it solves

β̂ = arg min
β∈Rp

{ n∑
i=1

(yi − xijβj)2 + λ

p∑
j=1

wj |βj |
}

(2.6)

where wj = 1/|β̃j |v. Adaptive LASSO performs sparser selection than LASSO. It can be viewed

as an approximation of the lq penalization with q = 1 − v. One merit of Adaptive LASSO is

that the optimization problem (2.5) is convex given that the pilot estimates. Moreover, it is

shown by Zou [2006] that if the pilot estimates are
√
n consistent such as the ordinary least
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square estimator, Adaptive LASSO works better in recovering the true model than the LASSO

approach [Qiao, 2014,Hastie et al., 2015].

There have been selection methods that involve lq penalties (0 ≤ q ≤ 1) as solutions to

the over-shrinking problems of the LASSO regression that may arise in some sparse condi-

tions [Hastie et al., 2015]. However, the nonconvexity brings computational complexity for

which alternative nonconvex penalties have been introduced such as Smoothly Clipped Absolute

Deviation (SCAD) penalty [Fan and Li, 2001] and Minimax Concave Penalty (MCP) [Zhang,

2010]. The general form of the nonconvex optimization problem can be written as

β̂ = arg min
β∈Rp

{ n∑
i=1

(yi − xijβj)2 +

p∑
j=1

P (βj)

}

where the penalty function P (·) is specific to each method. The SCAD penalty on each coor-

dinate is defined by

Pλ,α(β) = λ

{
I(β ≤ λ) +

(αλ− β)+
(α− 1)λ

I(β > λ)

}

where for some α > 2. The MCP penalty is given by

Pλ,γ(β) :=

∫ |β|
0

(
1− x

λγ

)
+

dx

where the nonconvexityy parameter γ ∈ (0,∞). The MCP bridges between LASSO (γ = ∞)

and best subset (γ = 1+). The SCAD penalty does not excessively penalize the large coefficients,
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so the estimates are nearly unbiased for such coefficients [Fan and Li, 2001]. Both concave

optimization problems can be solved by the local quadratic approximation introduced by Fan

and Li [2001], however, the computation is challenging compared to the LASSO type approaches

because fast computation methods such as convex programming approach can not be directly

used to computing the estimator.

Other than Elastic net, Group LASSO, and Fused LASSO, there have also been other pe-

nalized regression methods proposed for grouped predictors. One of possible options is first to

cluster the features based on their correlation structure and to take the averages of the features

in each group as a new set of predictors to perform variable selection on. Park et al. [2007]

introduce that approach by using hierarchical clustering to define the groups and LASSO to

conduct a subset selection of averaged predictors. However, it is sometimes more desirable

to keep all variables in analysis rather than using the averaged predictors in terms of better

prediction performance [Jang et al., 2013]. There are other variable selection methods that in-

corporate graphical structure among predictors such as SRIG (Sparse Regression Incorporating

Graphical structure among predictors) [Yu and Liu, 2016].

The OSCAR (Octagonal Shrinkage and Clustering Algorithm for Regression) [Bondell and

Reich, 2008] and PACS (Pairwise Absolute Clustering and Sparsity) [Sharma et al., 2010] select

groups of correlated features to deal with multicollineairty [Xie et al., 2015]. The methods
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involve novel penalty functions to encourage correlated variables to have identical coefficient

estimates. The OSCAR solves the optimization criterion

β̂ = arg min
β∈Rp

{ n∑
i=1

(yi − xijβj)2 + λ1

p∑
j=1

|βj |+ λ2
∑
j<k

max{|βj |, |βk|}
}
.

The second penalty, a pairwise L∞ norm, can also be represented as
∑

j<kmax{|βj |, |βk|} =∑
j<k

1
2{|βk−βj |+ |βj +βk|}. It makes OSCAR a special case of PACS in that OSCAR assigns

the same weights 0.5 to the difference of pairs of coefficients and the sums of pairs of coefficients.

By adopting the penalties, OSCAR and PACS allow grouping of not only positively, but also

negatively correlated predictors with the octagonal shape of constraint region.

Jang et al. [2013] propose HORSES (Hexagonal Operator for Regression with Shrinkage

and Equality Selection) It solves the following problem

β̂ = arg min
β∈Rp

{ n∑
i=1

(yi − xijβj)2 + λ
[
α

p∑
j=1

|βj |+ (1− α)
∑
j<k

|βj − βk|
]}

where 0 < α ≤ 1. The penalty of HORSES combines the l1 penalty and another l1 penalty

for pairwise differences of coefficients. By accommodating a penalty similar to Fused LASSO

the constraint region of HORSES is of hexagonal shape, hence it encourages the coefficients

of positively correlated predictors to be identical rather than grouping both positively and

negatively correlated features.
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2.4 Feature Screening Methods

While the penalized model selection methods have been widely applied in high dimensional

data analyses, the dimension of data may grow exponentially with the sample size in many

areas. The problem arise frequently in many areas such as genomics, proteomics, tomography,

and biomedical imaging studies where the number of features p can be much more than the

sample size n [Fan and Lv, 2010]. These data are often called ultrahigh dimensional data in

the literature. In this setting, penalized approaches may not work well suffering from high

variance and overfitting caused by the curse of dimensionality [Wang and Leng, 2016, Pan

et al., 2019]. To overcome the challenges associated with ultrahigh dimensionality, many

feature screening methods have been proposed. The main idea of screening methods is to

decrease the dimensionality from huge to moderate scale by filtering out many uninformative

features [Fan and Lv, 2008, Fan and Lv, 2010]. Such reduction of the dimension of candidate

features is an important aspect of variable selection in dealing with ultrahigh dimensional

features space [Desboulets, 2018]. Subsequent to screening, refined penalized methods such as

LASSO, SCAD, MCP, or Adaptive LASSO can be applied to the reduced feature space [Pan

et al., 2019].

2.4.1 Sure Independence Screening

Many commonly used techniques for features screening is based on independence screening.

Independence screening rank features with respect to marginal utility meaning that each feature

is independently used as a predictor to assess its usefulness in predicting the response [Fan et al.,

2009]. Sure Independence Screening (SIS) proposed by Fan and Lv [2008] is one of the most well-
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known independence screening methods and many other methods have been derived from it. It

uses marginal regression coefficients from the linear regression as their marginal utility, and rank

the importance of features in terms of the magnitude of the coefficients [Fan et al., 2009, Fan

and Song, 2010]. In the setting of linear regression, the marginal regression coefficients turn out

to be the sample marginal correlations with the response when the predictors are standardized

and the response is centered. That is, independence screening recruits predictors which have

high marginal utility that corresponds to large marginal correlation with the response [Fan

et al., 2009]. It is also called correlation learning or correlation screening. More precisely, let

w be the p-vector obtained by componentwise regression

w = (w1, . . . , wp)
T = XT y

where each column of n × p design matrix X is assumed to be standardized with mean zero

and variance one. Then w is a vector of marginal correlation between features and the response

which is rescaled by the standard deviation of the response. For any given dn, we take the

submodel given by

M̂d = {1 ≤ j ≤ p : |wj | is among the first largest dn of all}.

The model size of the full model p, which could be lager than the sample size n, is reduced to dn

which can be less the n. The method screens predictors that have weak marginal correlations,

hence can rapidly decrease the dimension of the parameter space. Fan and Lv [2008] show that
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feature screening using correlation ranking possesses a sure independence screening property

which means, with asymptotic probability one, the technique recruits all of the important

variables in the model under certain regularity conditions [Fan et al., 2009].

2.4.2 Iterative Sure Independence Screening

Sure independence screening only uses marginal information of predictors and the sure in-

dependence screening property can be violated when the regularity conditions fail [Fan and Lv,

2010]. One important condition made for sure independence screening is that the marginal cor-

relation of the important variables must be bounded away from zero. However, this assumption

often fail as features are often correlated in high dimensional data sets [Wang and Leng, 2016].

Three potential problems that can arise with SIS are listed in Fan and Lv [2010] as follows.

• False Positive: Unimportant features that are strongly correlated with important pre-

dictors can have higher chance to be selected than important variables that are weakly

correlated with the response.

• False Negative: Important variables that are jointly correlated with the response can

be screened out because of their low marginal correlations with the response.

• Collinearity: Collinearity among the features adds difficulty to the problem of variable

selection.

For these reasons, Fan and Lv [2008] propose Iterative Sure Independence Screening (ISIS) as

an extension of SIS to cover the cases where the regularity conditions may fail. The ISIS is

an iterative procedure that repeatedly applies SIS using the working residuals. Roughly, ISIS
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performs correlation screening followed by a lower dimensional model selection method, and find

the residual based on the fitted model with the selected variables. By updating the residual

as the new response variable, it continues the procedures until the dimension of the recruited

variable is less than the sample size.

More precisely, we first apply SIS screening by using correlation ranking of predictors to

have the [n/log(n)] screened variables. Then we perform penalized variable selection such as

LASSO or SCAD on the set of screened features. Let the set of selected k1 variables be denoted

by A1 = {xi1 , . . . , xik1}. We find the n-vector of residuals by regressing the response y over

xi1 , . . . , xik1 . We treat these residuals as the new responses and repeat the same procedure as

in the previous steps to the remaining p − k1 features. Let the subset of selected k2 variables

from this stage be denoted as A2 = {xj1 , . . . , xjk2}. Fan and Lv [2008] note that by using the

residuals as the new responses, ISIS helps to weaken the priority of unimportant variables that

are highly correlated with the outcome through important variables because when the response

is regressed on the set A1, the residuals are not correlated with the selected features in A1, which

addresses the false positive problem mentioned before. In addition, ISIS reconsiders the missed

important features since those important variables that have weak marginal correlations with

the response only because of the presence of the variables in set A1, should now be related with

the residuals. This addresses the false negative problem. The ISIS allows deletion of variables

as well during the iterative process which can also deal with the false positive issue [Fan and

Lv, 2010]. The procedure is continued until disjoint l subsets A1, . . . , Al are obtained which

satisfy the size d of the union A =
⋃l
i=1Ai is less than the sample size n.
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2.5 Bayesian Variable Selection Methods

In this section, we consider Bayesian Kernel Machine Regression (BKMR) among several

Bayesian variable selection methods that have been proposed. The BKMR is an extended ap-

proach from Kernel Machine Regression (KMR) methods that concentrate on variable selection

and prediction and is developed specifically focusing on estimating health effects of environ-

mental mixtures. It also involves a hierarchical variable selection approach that can account

for the structure of correlated mixture components [Bobb et al., 2015,Bobb et al., 2018]. The

BKMR considers the model given by

yi = h(zi) + xTi β + εi

where yi is a health outcome, zi = (zi1, zi2, . . . , ziM )T is a vector of environmental exposures, xi

is a set of confounders, and εi
i.i.d.∼ N(0, σ2). The high dimensional exposure-response function

is characterized by h(·) which is represented by a kernel function. A kernel function K(z, z
′
)

involves two arguments: z = (z1, . . . , zM )T , the vector for environmental mixtures for one

subject, and z
′

= (z
′
1, . . . , z

′
M )T , the profile of the exposures for a second subject. The function

h(·) can be represented with a positive-definite kernel function K(·, ·) which is named dual form,

with h(z) =
∑n

i=1K(zi, z)αi for some set of coefficients {αi}ni=1. Examples include the linear

kernel K(z, z
′
) = 1+z1z

′
1+· · ·+zMz

′
M , the quadratic kernel K(z, z

′
) = (1+z1z

′
1+· · ·+zMz

′
M )2,

and Gaussian kernel K(z, z
′
) = exp{−

∑M
m=1(zm − z

′
m)2/ρ} with ρ a tuning parameter [Bobb

et al., 2015].
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2.5.1 Componentwise Variable Selection

To incorporate Bayesian variable selection approach, the augmented Gaussian kernel func-

tion is defined which is represented as K(z, z
′
; r) = exp{−

∑M
m=1 rm(zm − z

′
m)2}, where r =

(r1, . . . , rM )T . On the basis of the approaches of Bayesian variable selection for multiple re-

gression problems [George and Mcculloch, 1993], a slab-and-spike prior is assumed on auxiliary

parameters as follows

rm | δm ∼ δmf1(rm) + (1− δm)P0, m = 1, . . . ,M,

δm ∼ Bernoulli(π)

where f1(·) is a density with support on R+ and P0 denotes the density with point mass at

0 [Bobb et al., 2015]. The posteria mean of the indicator δm can be interpreted as the posterior

probability that the exposure m is an important component of the mixture, or as the posterior

inclusion probability of the exposure m [Bobb et al., 2015] which indicates the measure of

importance for each exposure [Bobb et al., 2018].

2.5.2 Hierarchical Variable Selection

The componentwise variable selection may fail when mixture pollutants are strongly corre-

lated since the method treats components exchangeably. In this situation, a hierarchical variable

selection approach is considered that is proposed to incorporate information of the structure of

the environmental mixture into the model [Bobb et al., 2015]. Suppose the mixture components

za, . . . , zM are correlated in multiple groups Gk (k = 1, . . . , q) with high within-group corre-
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lation and low across-group correlation. Then the indicator variables from the slab-and-spike

prior are distributed as follows

δGk
|ωk ∼ Multinomial(ωk, πGk

), k = 1, . . . , q,

ωk ∼ Bernoulli(π)

where δGk
= (δm)zm∈Gk

is the vector of indicator variables and πGk
is the vector of prior prob-

abilities for the mixture elements zm in group Gk. This method enables BKMR to estimate the

posterior inclusion probability for each group of exposures. It provides the posterior inclusion

probability for each pollutant within each group as well given that the group was entered into

the model [Bobb et al., 2018]. This approach allows most of the mixture components in the

same group to be included in the model together at a time [Bobb et al., 2015].



CHAPTER 3

HIGH DIMENSIONAL VARIABLE SELECTION IN PRESENCE OF

COLLINEARITY: LINEAR MODEL

3.1 Introduction

In this chapter, we propose a method for high dimensional variable selection in presence of

collinearity among predictors in the setting of linear models. We conduct simulation studies

to evaluate the performance of the method with respect to multiple performance criteria. We

also apply the method to the National Health and Nutrition Examination Survey (NHANES)

persistent organic pollutants dataset.

3.2 Background

Suppose that we observe (x1, y1), . . . , (xn, yn) where xi = (xi1, . . . , xip)
T is a p-dimensional

predictor and yi is the response variable. We consider a linear regression model

y = Xβ + ε

where y = (y1, y2, . . . , yn)T is an n-vector of responses, X = (x1, x2, . . . , xn)T is an n× p design

matrix of predictors, β = (β1, β2, . . . , βp)
T is a p-vector of parameters, and ε = (ε1, . . . , εn)T is

an n-vector of errors. We assume the column vectors of the predictor matrix are standardized

24
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to have mean 0 and unit variance and the response variable is centered to have mean 0 such

that
n∑
i=1

yi = 0,
n∑
i=1

xij = 0,
1

n− 1

n∑
i=1

xi
2
j = 1, j = 1, 2, . . . , p.

3.3 Major Concepts and Methods

3.3.1 Two Main Procedures

The method consists of two main procedures. We first screen variables by constructing

the lead cluster based on the lead variable which has the highest marginal correlation with

the outcome. Secondly, variable selection is performed in the lead cluster which contains the

variables highly correlated with the lead variable.

These two procedures are iteratively conducted where at each iteration, the outcome is

updated by the residual from the model resulted at the previous iteration. That is, we find

the second lead variable which is the most correlated with the outcome, here the residual,

and construct the second lead cluster with the variables strongly correlated with the second

lead variable. Then variable selection is performed on the set of the selected variables from

the previous selection and the variables contained in the second lead cluster. We repeat the

procedures so that we can choose the model which has the minimum cross-validation error

among the iterations. The detailed steps of the method are introduced in the following section.
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3.3.2 Correlation Learning with the Response

We consider high dimensional data which mean the number of predictors p is high or rela-

tively high in the data set. Feature screening is regarded as an effective strategy for dimension

reduction. We propose to use correlation learning using w = (w1, w2, . . . , wp)
T by component-

wise regression,

w = XT y

where X is n×p design matrix of predictors X1, . . . , Xp and y is a n×1 vector of responses. Each

column of X is standardized, hence w is a vector of marginal correlations between predictors

and the response which is rescaled by the standard deviation of the response.

These p components are ranked based on the magnitudes of absolute value of |wj |, j =

1, 2, . . . , p. We choose the feature with the largest value of this absolute magnitude, and call

it lead variable. The absolute magnitudes indicate the importance of features in terms of their

marginal correlations with the response. That is, the feature of higher value is regarded as more

important according to the ability of predicting the response. Hence, the lead variable chosen

at first out of all features can be considered as the most useful variable among all features with

regard to the marginal relationship with the outcome variable. The 1st lead variable which is

denoted by X [1] can be written as

X [1] = arg max
Xj

{|wj |, j = 1, 2, . . . , p}
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where wj is the marginal correlation of Xj and y.

3.3.3 Correlation Learning with Predictors

After identifying the lead variable, we construct a group of features that are highly correlated

with the lead variable. Since the lead variable is the most marginally related feature with the

response, the features of high correlation with the lead variable can also be reasonably considered

as important features in terms of the relationship with the response. Thus, we call this group

of features lead cluster.

In order to identify the features that are included in the lead cluster, we use the correlation

learning method in the same way we use it to select the lead variable. However, we replace the

response by the lead variable because the relationship that is considered is between the lead

variable and the remaining features. We find a vector ρ = (ρ1, ρ2, . . . , ρp) by componentwise

regression

ρ = XTX [1]

where X [1] is the 1st lead variable. Each component ρj represents the correlation between Xj

and the lead variable because all the features are standardized in the beginning. The vector ρ

can be easily found by taking the jth column or row of the p× p correlation matrix XTX when

Xj is the lead variable, j = 1, 2, . . . , p.
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We sort the p components of ρ in a decreasing order and define the first lead cluster C1 with

the submodel

C1 = {Xj , j = 1, . . . , p : |ρj | > δ}

where δ is a cutoff value. This screening procedure can be viewed as a clustering problem which

is one of typical unsupervised learning methods where we need to set a cutoff for a distance

measure to split data into similar groups. Since we consider features that are moderately or

strongly correlated, we follow a similar approach as in the paper [Xie and Zeng, 2010] that

the cutoff value can be the 0.75th percentile of all pairwise correlations between features or

the correlation coefficient that indicates moderate to high correlation such as the value in the

range of 0.5 to 0.9. We can use the cutoff value that is initially chosen based on the correlation

structure of the data for the whole procedures, but we also devise a cutoff adjustment method

that can be implemented as an option for more efficient selection of features which is described

in Section 3.3.7.

3.3.4 Selection of Predictors

After we screen features by identifying the lead cluster, we perform variable selection on the

screened features in the cluster. As introduced in Chapter 2, ridge regression has been widely

used under conditions of collinearity since it handles collinearity problems by adding a constant

to the diagonal of XTX to improve its condition number [Garćıa et al., 2015,Liu, 2003,Hoerl
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and Kennard, 1970]. The detail of its rationale is addressed in Section 3.4. The ridge estimator

is decided as follows

β̂Ridge = arg min
β

{ n∑
i=1

(yi − xTi β)2 + λ

p∑
j=1

β2j

}

where some λ ≥ 0. However, it does not turn out an easily interpretable model because it

only shrinks the value of coefficients not setting any of them to 0 [Tibshirani, 1996]. As an

alternative, we consider the method that combines the l2 penalization of ridge with another

penalty which allows selection of predictors.

The elastic net is one of famous methods among them which combined the ridge and the

LASSO penalties [Zou and Hastie, 2005]. The estimator of the elastic net is given by

β̂Elnet = arg min
β

{ n∑
i=1

(yi − xTi β)2 + λ
[
(1− α)

p∑
j=1

β2j + α

p∑
j=1

|βj |
]}

where λ ≥ 0 and α ∈ [0, 1] is a parameter that can be varied. The l1 penalization of LASSO

shows poor performance when predictors are strongly correlated. As shown in Zou and Hastie

[2005], the solution paths of LASSO become unstable as the level of collinearity among pre-

dictors increases. Since it is more often to encounter collinearity problems in high dimensional

data, Zou and Hastie[2005] propose the elastic net to improve the performance of LASSO in

high dimensional data analysis [Zou and Zhang, 2009].

The elastic net combines the merits of LASSO shrinkage and the quadratic regularization of

ridge. The l1 penalty of lasso performs variable selection that derives a more simpler model with
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a subset of features by forcing some of weak coefficients to be set to 0 [Tibshirani, 1996,Zou and

Zhang, 2009]. The component of the ridge penalty controls for strong within-group correlations

[Hastie et al., 2015] by stabilizing the solution paths. Hence, when the level of collinearity

becomes high, the elastic net makes a significant improvement in the prediction performance

of LASSO [Zou and Zhang, 2009].

Other than the LASSO penalty, we can also consider other penalties that can be combined

with the ridge penalty. The SCAD [Fan and Li, 2001] penalty or MCP that is introduced

in Chapter 2 can be another option to apply since these penalties are known to have oracle

property when the penalization parameters are carefully chosen [Fan and Li, 2001,Zhang, 2010].

In the implementation of selection methods, there are tuning parameters α and λ that

should be chosen. There are several methods available to decide tuning parameters such as

cross-validation, generalized cross-validation, AIC, and BIC [Zou and Zhang, 2009]. We use

cross-validation method as the book Hastie et al. [2015] suggest for choosing the tuning the

parameters, which is described in more detail in Section 3.3.6.

3.3.5 Iterative Cluster Based Selection: Iterative Correlation Learning

The variables selected in the above approach are representative of only a subset of predic-

tors, the screened features included in the lead cluster. There are potentially other important

predictors that are not considered in the selection because they are not included in the lead

cluster. To fully consider the joint information from all of the predictors, we use an iterative

approach. The key is to iteratively perform correlation screening followed by variable selection

that can tackle collinearity among the screened variables. By doing this, we expect the method
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to find the model which has improved performance in variable selection and prediction. The

conceptual diagram of iterative cluster based selection can be described as in Figure 3.

Figure 3: Conceptual diagram: iterative cluster based selection

The iterative correlation learning and variable selection work as follows. Let us define the

active set Ak that contains variables that can be considered to be a lead variable. In the begin-

ning, the active set A1 includes all of the predictors in the data set as A1 = {X1, X2, . . . , Xp}.

Let C1 and S1 denote the 1st lead cluster and the set of selected variables, respectively. Then,

the set S1 is given by

S1 = {X1j , j = 1, . . . , p1 : |β̂1j | > 0}

where C1 = {X11, . . . , X1p1} and β̂1j is the coefficient estimate of the variable X1j in C1,

j = 1, . . . , p1 using a variable selection method such as elastic net. The lead cluster includes

the predictors that are selected by correlation screening with the lead variable, that is, the
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variable of the largest correlation with the response. The variables included in S1 are selected

by applying the selection method in the lead cluster C1.

We define the residuals of the selected model from this stage as

r(2) = r(1) −XS1 β̂S1

where r(1) is the n-vector of original response variable y, XS1 is the design matrix of variables

in S1, and β̂S1 is the vector of estimated coefficients. Then we have an n-vector of residuals

by regressing the response over the selected variables. In this way, the response is adjusted for

the selected variables which are representative of the lead cluster. We treat the residuals r(2)

as the new responses for stage 2 and conduct the same method as in the previous procedures.

However, we find the next lead variable over the variables in the updated active set defined as

A2 = A1 \ C1.

Since the original response is adjusted for the effects of the lead cluster C1, the variables in

C1 are excluded when we perform correlation learning with the new response. By allowing

the next lead variable to be found out of the lead cluster that was just considered for variable

selection, it blocks the possibility to get stuck in a certain cluster in performing selection of

predictors. Hence, it enables the method to explore the domain of all predictors in term of their

relationship with the response.
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We perform correlation learning with the new response r(2) and the predictors contained

in the new active set A2, which turns out the next lead variable X [2] that has the largest

correlation with the new response. Then we construct the next lead cluster C2 of the features

that are highly correlated with the lead variable X [2] following the same previous method. Since

the new response is not correlated with the selected variables in S1, it can weaken the priority

of unimportant variables that are correlated with the original response through the selected

variables in S1 [Fan and Lv, 2008]. It also enhances the priority of an important variable that

has weak marginal correlations but high joint correlation with the selected predictors [Fan and

Lv, 2008] when we find the next lead variable X [2]. This makes the lead cluster C2 that is

constructed based on X [2] less correlated with the previous lead cluster C1. Now we have a set

of selected variables S1 and the new lead cluster C2, so we conduct selection on the variables

in the union of (S1 ∪ C2).

In a more generalized notation, the kth variable selection is performed on the variables

included in the set (Sk−1 ∪Ck) which produces a set of selected variables Sk where Ck denotes

kth lead cluster, and S0 = Ø. Then we update the (k + 1)th response by

r(k+1) = r(k) −XSk
β̂Sk

where r(1) is the original response variable y, Sk is the set of selected variables from the kth

variable selection, XSk
is the design matrix of variables in Sk, and β̂Sk

is the vector of estimated
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coefficients. The (k + 1)th lead variable X [k+1] is found among the variables in the active set

defined by

Ak+1 = A1 \ (Sk ∪ Ck).

As noted before, updating the response and the active set in this manner permits the next

lead variable chosen outside the union of already selected features or just considered ones for

variable selection. It enables the following lead cluster to be composed of the variables that are

less correlated with the predictors in the union. Additionally, we expect the method to deal

with two issues described in Fan and Lv [2008] in the correlation learning searching for the

next lead variable: It enhances the priority of an important predictor if it is marginally weakly

correlated but jointly correlated with the response through the variables in the union; It also

weakens the priority of an unimportant variable that is jointly correlated with the response

through the variables in the union. Another critical benefit of the iterative method is that

it makes the important variables that are missed in the previous procedures possible to be

included [Fan and Lv, 2008] and allows the unimportant variables that are chosen in the model

to leave the selected set of predictors.

3.3.6 Tuning Parameter Selection

In the implementation of the selection method, the tuning parameters α and λ need to be

chosen. The α represents proportion between ridge and another penalty. For example, in the

case of the elastic net, when α = 1, it reduces to the l1-norm corresponding the LASSO penalty,
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and with α = 0, it reduces to the the square l2-norm equivalent to the ridge penalty. Hastie et

al. [2015] recommend that in practice, α can be regarded as a higher-level parameter, and can

be chosen on subjective grounds. Alternatively, a (coarse) gird of values of α can be used in a

cross-validation scheme.

Cross-validation is the method that can be used to create artificial training and test data sets

by splitting up the given data into roughly equal folds and evaluating the repeated performance

on the test data set. Hastie et al. [2015] describe the details of conducting cross-validation. For

k-folds cross-validation, we first split the data into k folds, k > 1, and designate one fold as the

test set with the remaining k − 1 folds used as the training set. We then fit the model on the

training set at each combination of (α, λ), and let each fitted model predict the response on the

test set. Performance can be evaluated in terms of mean squared prediction errors given by

Ek(α, λ) =
∑

i∈kthfold

(yi − xTi β−k(α, λ))2, k = 1, . . . ,K

where β−k(α, λ) is the vector of regression coefficients from the fitted model using the training

set over a range of each combination of parameters. This process is repeated K times by letting

each fold play the role of the test set. Then we have the K estimates for prediction error, and

the cross-validation error can be obtained by averaging these values such as

CV (α, λ) =
1

K

K∑
k=1

Ek(α, λ).
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We choose (α, λ) which yields minimum cross-validation error. Regression coefficients can be

estimated at these parameters or at the “one-standard-error rule” choice [Hastie et al., 2015]

which means selecting the most parsimonious model which allows its error no more than one

standard error of the cross-validation estimates from the minimum value of cross-validation

error [Hastie et al., 2009,Curto and Pinto, 2014,Hastie et al., 2015]. In the numerical studies,

we use K = 10 as K = 5 or 10 are typical choices [Hastie et al., 2015].

3.3.7 Adaptive Cutoff

In this proposed correlation learning method, the lead cluste is formed based on a cutoff

for the correlation coefficients between the lead variable and the remaining predictors. As

mentioned in Section 3.3.5, kth feature selection is performed on the set (Sk−1 ∪Ck), the union

of predictors that are selected at previous iteration and the ones that are recruited in the current

lead cluster. However, if few variables are contained in the cluster, the set of data on which we

perform selection is barely changed from the set that was considered at previous iteration. In

an extreme, when there is no predictor that is correlated with the lead variable more than the

cutoff value, the lead cluster cannot recruit any other predictor except the lead variable itself.

From this reason, we propose an adaptive cutoff adjustment method that allows to include at

least a certain amount of predictors in the lead cluster. More precisely, when the lead cluster

doesn’t include a certain percentage of predictors, we adaptively update the cutoff so that the

cluster can recruit at least the specified percentage of predictors in the lead cluster.

The SIS method filters d features having the largest marginal correlation with the response.

Fan and Lv [2008] mention that d can be n − 1 or n/log(n) so that it can be less than the
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sample size n, but it can also be greater than the sample size because as it is larger, there is

higher chance the true model can be covered. Zhong and Zhu [2015] suggest d = 2n/log(n)

for its correlation learning based iterative approach. We can adopt either of criterion for the

minimum number of recruited predictors in the lead cluster. For instance, in the simulation

studies where we generate data sets of n = 150 and p = 200, the cutoff is adjusted until we

contain at least 2n/log(n) ≈ 60 predictors in the lead cluster which take 30 percent of the

total number of features. Using this approach, as the predictors are closer to orthogonal, the

proposed method tends to original selection approach such as Elastic net, or SCAD or MCP

combined with the ridge penalty on the entire data set. When the sample size is high, n/log(n)

or 2n/log(n) can be large, even can be greater than p. We generally recommend to use values

such as 20 to 40 percentage so that the method can create various sets of predictors on which

selection is performed while we guarantee the minimum size of the lead cluster.

3.4 Rationales

3.4.1 Measures of Collinearity

High collinearity in the set of predictors induces many problems on inference and prediction

that is based on the regression analysis. When there is complete absence of linear relation among

the predictors, they are called to be orthogonal [Chatterjee, 2012]. When the predictors are

orthogonal, XTX is diagonal. The condition of severe departure from orthogonality is referred

to collinearity or multicollinearity, that is, there exist strong linear relationships among the

predictors in the data. When at least one eigenvalue deviates from 1, especially towards the

value very close to 0, that indicates nonorthogonality exists meaning that multicollinearity is
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present [Vinod and Ullah, 1981, Walker, 1989, Greene, 1993]. When there is a complete linear

relationship among the predictors, the rank of the design matrix X and XTX is below the

number of regression parameters p, that is, rank(X) = rank(XTX) < p. It means the nullity

of the determinant of XTX and the OLS estimators

β̂ = (XTX)−1XT y, ˆV ar(β̂) = s2(XTX)−1, s2 =
eT e

n− p− 1
, e = y −Xβ̂

do not exist [Curto and Pinto, 2007].

There are several measures to investigate collinearity. One quantity is variance inflation

factor (VIF). The variance inflation for the predictor Xj is given by

V IFj =
1

1−R2
j

, j = 1, . . . , p

when R2
j is the coefficient of determination when the predictor Xj is regressed by all the other

predictors. In absence of any linear relation between Xj and the remaining variables, V IFj is 0.

In contrasts, if there is a strong linear relationship, the value of V IFj is large with R2
j close to

1. Hence, as the value of V IFj deviates from 0, there is more departure from orthogonality and

higher tendency toward collinearity. It is often regarded as a signal of collinearity problems if the

value of the variance inflation factor is larger than 10 [Mardikyan and Çetin, 2008,Chatterjee,

2012].
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There are also several measures regarding the condition number which indicates degree of

multicollinearity. Vinod and Ullah [1981] suggest the condition number given by

φ1 =

√
λmax
λmin

where λmin is the smallest eigenvalue and λmax is the largest eigenvalue of XTX. Montgomery

et al. [2012] propose the condition number with the ratio of two eigen values given by

φ2 =
λmax
λmin

.

If the λmin = 0, then the condition numbers φ1 and φ2 are infinite which means complete

multicollinearity among predictors. When the λmin and λmax are equal, the condition numbers

are 1, which indicates predictors are orthogonal. Pagel and Lunneborg [1985] introduce another

version of condition number which is defined by

φ3 =

p∑
j=1

1

λj
.

El-Dereny and Rashwan [2011] mention that if the condition number lies between 5 and 30, it

is conventionally taken as moderate to high collinearity.
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The concept of condition number is introduced by Atkinson [1989] as a measure of stability

for solving a mathematical problem. Let the mathematical problem is given as the form of an

equation

F (x, y) = 0.

The variable x is the unknown quantity that is being sought, and the variable y is data where the

solution x depends on. Atkinson [1989] describes the problem to be stable when small changes

in y lead correspondingly to small changes in x, which is also called well-posed. Otherwise, it is

called unstable or ill-posed. The condition number seeks to measure the possible worst impact

on the solution x when y is perturbed by a small quantity. Let δy denote a small perturbation

of y, and let x+ δx be the solution of the perturbed equation

F (x+ δx, y + δy) = 0.

Then the condition number is defined by

K(x) = sup
δy

‖δx‖/‖x‖
‖δy‖/‖y‖

where the notation of vector norm ‖ · ‖ denotes a measure of size. K(x) is a measure of

sensitivity of the solution x to a small amount of changes in the data y. If K(x) is large,

there exist relatively small changes δy in y that cause relatively large changes δx in x. Such
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problems are ill-conditioned and generally very hard to be solved accurately. If K(x) is small,

say K(x) ≤ 10, small relative perturbations in the data y always induce correspondingly relative

small changes in the solution x.

Atkinson [1989] also describes the stability of a linear system Ax = b following this general

schemata. Let Ax = b, of order n, be uniquely solvable and consider the solution x̃ when r is

a small change in b

Ax̃ = b+ r.

Let e = x̃ − x, then Ae = r and e = A−1r. To examine the stability of Ax = b with the

condition number, we seek to bound the measure

‖e‖
‖x‖
÷ ‖r‖
‖b‖

.

Take norms to obtain ‖r‖ ≤ ‖A‖‖e‖ and ‖e‖ ≤ ‖A−1‖‖r‖, where the matrix norm is the

operator matrix norm induced by the vector norm. Divide by ‖A‖‖x‖ in the first inequality

and by ‖x‖ in the second one to derive

‖r‖
‖A‖‖x‖

≤ ‖e‖
‖x‖
≤ ‖A

−1‖‖r‖
‖x‖

.
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Using the bounds ‖b‖ ≤ ‖A‖‖x‖ and ‖x‖ ≤ ‖A−1‖‖b‖, we obtain

1

‖A‖‖A−1‖
· ‖r‖
‖b‖
≤ ‖e‖
‖x‖
≤ ‖A‖‖A−1‖ · ‖r‖

‖b‖
.

Considering the measure we want to bound, it justifies to put the condition number of A as

follows

cond(A) = ‖A‖‖A−1‖.

The condition number cond(A) can vary according to the the norm being used, however it is

always bounded by one because

1 ≤ ‖I‖ = ‖AA−1‖ ≤ ‖A‖‖A−1‖ = cond(A).

When the condition number is close to 1, as in many common mathematical problems, small

relative changes in b will make correspondingly small perturbations in the solution x. If the the

value of condition number is large, there may exist small perturbations that cause large changes

in x. Since the condition number varies with the choice of norm, we often use another definition

of condition number which is independent of the norm. For an arbitrary square matrix A, it is

known that

max
λ∈σ(A)

|λ| ≤ ‖A‖
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for any operator matrix norm, where σ(A) denotes the set of all eigenvalues of A. We thus have

the result

cond(A) ≥
max
λ∈σ(A)

|λ|

min
λ∈σ(A)

|λ|
≡ cond(A)∗

since the eigenvalues of A−1 are the reciprocals of those of A. A linear system is ill-conditioned

if the solution x is unstable according to the slight changes in b. The condition numbers cond(A)

and cond(A)∗ are fairly good predictors of ill-conditioning. In general, if cond(A)∗ is large, the

linear system Ax = b will have the value b for which the system is sensitive to changes r in b.

3.4.2 Rationale of Ridge Regression

Hoerl and Kennard [1970] introduce ridge regression and described the properties of its

estimator in comparison with the ordinary least square estimator. In this section, we review

ridge regression and its rationale. In a general linear regression model y = Xβ + ε described in

Section 3.2, when X is n× p matrix of rank p, the ordinary least square (OLS) estimate is the

minimum variance unbiased linear estimate and is given by

β̂ = (XTX)−1XT y.

Consider the distance β̂ from β. The mean and variance of the squared distance are given by

E[(β̂ − β)T (β̂ − β)] = σ2tr(XTX)−1

V ar[(β̂ − β)T (β̂ − β)] = 2σ4tr(XTX)−2.
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The average of the squared distance between the estimator and the value of the parameter is

also called mean squared error (MSE). Using the eigenvalues of XTX, they can be described

as follows

E[(β̂ − β)T (β̂ − β)] = σ2
p∑
j=1

(1/λj)

V ar[(β̂ − β)T (β̂ − β)] = 2σ4
p∑
j=1

(1/λj)
2

where the p eigenvalues are denoted by λmax = λ1 ≥ λ2 ≥ · · · ≥ λp = λmin > 0. It thus follows

that the distance from β̂ to β is large when XTX has one or more small eigenvalues. That is, as

XTX deviates from a unit matrix inducing nonorthogonality, it tends to have small eigenvalues

that cause higher condition number and less possibility of a short distance between β̂ and β.

Moreover, the least square estimator β̂ = (XTX)−1XT y is not well defined when p > n because

the rank of the p×p matrix XTX is at most n, hence it is singular and not invertible. It makes

the equation XTXβ = XT y that derives the estimator β̂ do not have a unique solution for

β [Zou and Zhang, 2009].

To tackle the problems associated with the least square estimates, ridge regression was

suggested by Hoerl and Kennard [1970]. The rational of the ridge regression is to add a constant

to the diagonal of XTX to improve its condition number [Liu, 2003]. In linear algebra, this
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is known as Tikhonov regularization [Tikhonov, 1943]. It uses l2 penalization of regression

coefficients in the constrained least square optimization problem

β̂Ridge = arg min
β∈Rp

{ n∑
i=1

(yi − xijβj)2 + λ

p∑
j=1

β2j

}

for some λ > 0. This gives

β̂Ridge = (XTX + λI)−1XT y.

It involves an invertible matrix XTX + λI even when XTX is singular, hence is more stable.

When X is composed of orthonormal variables such that XTX = Ip, the ridge regression

estimator is a down-weighted version of the OLS estimator given by

β̂Ridge = ((1 + λ)I)−1XT y =
1

1 + λ
β̂OLS .

The effect of the quardratic penalization is to constrain the size of regression coefficients by

shrinking them toward zero. In the condition where there are groups of predictors and the level

of collinearity is high within each group, the ridge estimation shrinks the coefficients toward

each other as well as toward zero [Zou and Zhang, 2009].
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3.4.3 Mean, Variance, and MSE of the Ridge Regression Estimator

The expected value of the ridge regression estimator is given by

E[β̂Ridge] = (XTX + λI)−1XTXβ

= [I − λ(XTX + λI)−1]β.

By adding the positive constant to the diagonal of XTX, ridge estimation involves a biased

estimator of the true parameter β. However, ridge estimator has smaller variance than the

OLS estimator. Two quantities can be compared by finding the trace of the variance matrix

of a vector of the estimator which is often called total variance. The total variance of the two

estimators is given by

tr(V ar[β̂OLS ]) = tr(σ2(XTX)−1) = σ2
p∑
j=1

1

λj

tr(V ar[β̂Ridge]) = tr(σ2(XTX + λI)−1XTX(XTX + λI)−1)

= σ2
p∑
j=1

λj
(λj + λ)2

where λj , i = 1, . . . , p are the eigenvalues of XTX. It shows that the ridge regression estimator

has less total variance than the OLS estimator

tr(V ar[β̂OLS ]) ≥ tr(V ar[β̂Ridge]).
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The MSE is the sum of the variance and the squared bias of the estimator. The MSE of the

ridge and OLS estimator are obtained by

MSE(β̂OLS) = E[(β̂OLS − β)T (β̂OLS − β)] = σ2
p∑
j=1

(1/λj)

MSE(β̂Ridge) = E[(β̂Ridge − β)T (β̂Ridge − β)]

= σ2tr(XTX + λI)−1XTX(XTX + λI)−1

+ λ2βT (XTX + λI)−2β

= σ2
p∑
j=1

λj
(λj + λ)2

+ λ2βT (XTX + λI)−2β.

Hoerl and Kennard [1970] prove that there always exists a λ > 0 such that

MSE(β̂Ridge) < MSE(β̂OLS).

That is, the mean squared error of the ridge regression estimator is less than than that of the

OLS estimator.

3.4.4 Rationale of Correlation Learning

As introduced before, correlation learning uses ranking of marginal correlations between the

response and individual predictor to screen important variables. It has a close relationship with
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the ridge regression estimator. Let wλ = (wλ1 , . . . , w
λ
p )T be a p-vector that is given by ridge

regression

wλ = (XTX + λI)−1XT y

where the regularization parameter λ > 0. According to the size of the regularization parameter,

it shows that if λ → 0, then the ridge estimator tends to the OLS estimator. When λ → ∞,

λβ̂ tends to XT y such that

wλ → β̂OLS as λ→ 0

λwλ → XT y as λ→∞.

When the each column of X and the response y are standardized with the mean 0 and unit

variance, 1
nX

T y becomes the vector of sample correlation coefficients between the individual

predictor and the response. This is the rationale of using correlation learning with Pearson

correlation as a marginal utility for feature screening. Especially, when both the jth predictor

Xj and the response y are standardized, the sample correlation between the jth predictor and

the response which is written by

wj =
1

n
XT
j y, for j = 1, . . . , p
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is used as a marginal utility for the importance of each predictor [Fan and Lv, 2008,JingYuan

et al., 2015].

3.4.5 Rationale of Clustering Correlated Predictors

As introduced in Chapter 1, high dimensional data in areas such as genomics and health

sciences tend to have high level of collinearity and its variance-covariance matrix often possess

block-diagonal structure. In the covariance matrix, there are multiple groups where features are

strongly correlated among themselves within each group and the features are weakly correlated

between groups as in the simplified illustration in Figure 4. Based on this, we describe the

insight of conducting feature selection using these clusters of highly correlated predictors rather

than using the set of entire variables. We show advantages of utilizing the clusters in terms of

colinearity level by comparing the condition number of the block versus the whole covariance

matrix.

Figure 4: Illustration of block-diagonal variance-covariance matrix
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Consider the k × k block matrix

C =



A B B · · · B

B A B · · · B

...
...

...
. . .

...

B B B · · · A


= Ik ⊗ (A−B) + 1k1

′
k ⊗B

where k ≥ 2, p ≥ 1, A and B are p × p matrices, and 1k is a 1 × k vector of all ones. We

first find the eigenvalues of the matrix. The determinant of the matrix C can be given by the

theorem

det(C) = det(A−B)k−1det(A+ (k − 1)B). (3.1)

Using this theorem, we can find the eigenvalues of C with the characteristic equation

det(C − λIk) = det((A− λIp)−B)k−1det((A− λIp) + (k − 1)B) = 0.

From this, the eigenvalues of C are the eigenvalues of the matrices A−B and A+ (k − 1)B.
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We assume the structure p× p matrices A and B such that

A =



1 ρ1 ρ1 · · · ρ1

ρ1 1 ρ1 · · · ρ1

ρ1 ρ1 1 · · · ρ1

...
...

...
. . .

...

ρ1 ρ1 ρ1 · · · 1


and B =



ρ2 ρ2 ρ2 · · · ρ2

ρ2 ρ2 ρ2 · · · ρ2

ρ2 ρ2 ρ2 · · · ρ2

...
...

...
. . .

...

ρ2 ρ2 ρ2 · · · ρ2



where 1 > ρ1 � |ρ2| ≥ 0 is assumed for the structure of block-diagonal covariance structure. If

we assume p = 1 for the simplest case, the matrix C is given by

C =

 1 ρ2

ρ2 1

 .

The eigenvalues of C can be obtained from the characteristic equation from the theorem (3.1)

det(C − λI2) = det(1− λ− ρ2)det(1− λ+ ρ2).

It turns out the eigenvalues 1 − ρ2 and 1 + ρ2. If we assume p = 2, then the matrices A − B

and A+ (k − 1)B are written as

A−B =

 1− ρ2 ρ1 − ρ2

ρ1 − ρ2 1− ρ2

 and A+ (k − 1)B =

 1 + (k − 1)ρ2 ρ1 + (k − 1)ρ2

ρ1 + (k − 1)ρ2 1 + (k − 1)ρ2

 .
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Using the theorem (3.1), the eigenvalues of two matrices can be obtained from the characteristic

equations

det(A−B − λI2)
= det((1− ρ2 − λ)− (ρ1 − ρ2))det((1− ρ2 − λ) + (ρ1 − ρ2)) = 0

det(A+ (k − 1)B − λI2)
= det((1 + (k − 1)ρ2 − λ)− (ρ1 + (k − 1)ρ2))det((1 + (k − 1)ρ2 − λ) + (ρ1 + (k − 1)ρ2)) = 0.

This gives the eigenvalues 1− ρ1 and 1 + ρ1 − 2ρ2 for A+B, and 1− ρ1 and 1 + ρ1 + (k− 1)ρ2

for A+ (k − 1)B, respectively. For the whole matrix C, it has the same k − 1 number of each

eigenvalue of A+B, and the two eigenvalues of A+(k−1)B from the theorem (3.1). In general

when p ≥ 2, A+B has p− 1 number of 1− ρ1 and 1 + (p− 1)ρ1 − pρ2, and A+ (k − 1)B has

1− ρ1 and 1 + (p− 1)ρ1 + p(k− 1)ρ2 as their eigenvalues, respectively. In a similar way, we can

obtain the eigenvalues for the matrix C as well.

Now we compare the condition numbers for the diagonal matrix A and the whole matrix

C. For the condition number which is given by the ratio of the maximum to the minimum

eigenvalue is described as

cond(C)∗ =

(
λmax
λmin

)
C

=
1 + (p− 1)ρ1 + p(k − 1)ρ2

1− ρ1

≥ 1 + (p− 1)ρ1
1− ρ1

=

(
λmax
λmin

)
A

= cond(A)∗
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where equality holds when ρ2 = 0, hence it shows the level of collinearity is higher in the whole

matrix than in the block matrix. Moreover, another version of condition number which is the

sum of inverse eigenvalues is given by

( kp∑
j=1

1

λj

)
C

=
k(p− 1)

1− ρ1
+

k − 1

1 + (p− 1)ρ1 − pρ2
+

1

1 + (p− 1)ρ1 + p(k − 1)ρ2

≥ k(p− 1)

1− ρ1
+

k

1 + (p− 1)ρ1
=

( p∑
j=1

1

λj

)
A

× k.

The condition number of A is multiplied by k since we compare the collinearity level from all k

block matrices A with that of the whole matrix C. This can be proven by showing the following

k − 1

1 + (p− 1)ρ1 − pρ2
+

1

1 + (p− 1)ρ1 + p(k − 1)ρ2
− k

1 + (p− 1)ρ1
≥ 0.

The equality holds when ρ2 = 0. This shows that this version of condition number of the whole

matrix C is also greater than the condition number of k number of block matrices A. Otherwise

ρ2 = 0, the condition number is greater in the whole matrix than in the block matrix. This

gives us insight into advantages of performing feature selection on the cluster that has a subset

of predictors rather than on the complete set of features.

3.5 Simulations for Performance Evaluation

We evaluate and compare the performance of the proposed method and other variable se-

lection methods: LASSO, Elastic net, SCAD, MCP, SIS-LASSO, SIS-SCAD, SIS-MCP, Group

LASSO, and OSCAR in an extensive set of simulation studies. A variety of high-dimensional
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settings are considered in the simulations to create diverse scenarios varying parameter val-

ues referring to the literatures [Xie and Zeng, 2010, Bondell and Reich, 2008, Jang et al.,

2013,Ročková and George, 2018]. We consider multiple evaluation criteria to measure the per-

formance of model chosen by the methods: prediction, parameter estimation, and selection of

variables of true signal.

3.5.1 Data Generation Model

For the simulation studies, the data are generated from the regression model described in

Section 3.2

y = Xβ + ε, ε ∼ N(0, σ2)

where we generate predictors xi = (xi1, . . . , xip)
T from a multivariate normal distribution with

mean 0 and covariance
∑

where
∑

j,j= 1 for j = 1, 2, . . . , p. The standard deviation of random

errors is set as σ = 15. The number of observations in the data set n = 150, the number of

predictors in each data set p = 200.

We generate various scenarios by differing the parameters in the data generation model:

the number of groups of strongly correlated predictors, correlation coefficients in the covariance

matrix
∑

, the size of true coefficient values β varying the level of signal-to-noise ratio (SNR),

and the sparsity of the true coefficient values. The signal-to-noise ratio is given by

SNR =
βT

∑
β

σ2
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where β = (β1, β2, . . . , βp)
T ,

∑
is the covariance matrix for X, and σ is standard deviation

of random errors. When there are q number of groups which are denoted by G1, . . . , Gq,

we assume that predictors are strongly correlated within a group with pairwise correlation

Corr(Xi, Xj) = 0.8 for i, j ∈ Gk, k = 1, . . . , q. Otherwise, they are weakly correlated between

groups with pairwise correlation Corr(Xi, Xj) = 0.2. We describe the details of the scenarios

for simulations below.

• Scenario 1: There are twenty groups with each group having 10 variables within a group.

The data generating regression coefficients are sparsely set as

β = (5, 0, · · · , 0︸ ︷︷ ︸
9

) for G1, . . . , G10

β = (0, · · · , 0︸ ︷︷ ︸
10

) for G11, . . . , G20.

The SNR is estimated as 3.11.

• Scenario 2: There are twenty groups as in Scenario 3. The data generating regression

coefficients are smaller and less sparse and are set as

β = (1, · · · , 1︸ ︷︷ ︸
5

, 0, · · · , 0︸ ︷︷ ︸
5

) for G1, . . . , G15

β = (0, · · · , 0︸ ︷︷ ︸
10

) for G16, . . . , G20.

The SNR is 6.07.
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• Scenario 3: There are twenty groups. The data generating regression coefficients are

less sparse and are set as

β = (1, · · · , 1︸ ︷︷ ︸
5

, 0, · · · , 0︸ ︷︷ ︸
5

) for G1, . . . , G10

β = (0, · · · , 0︸ ︷︷ ︸
10

) for G11, . . . , G20.

The SNR is 2.93.

• Scenario 4: There are five groups of strongly correlated predictors with each group,

Gk, k = 1, . . . , 5 having 40 variables within a group. The data generating regression

coefficients are set as

β = (1, · · · , 1︸ ︷︷ ︸
15

, 0, · · · , 0︸ ︷︷ ︸
25

) for G1, G2, G3

β = (0, · · · , 0︸ ︷︷ ︸
40

) for G4, G5.

The SNR is estimated as 3.64.

• Scenario 5: There is one group of strongly equicorrelated predictors. The data generat-

ing regression coefficients are as follows

β = (5, 0, · · · , 0︸ ︷︷ ︸
9

)× 15 for j = 1, . . . , 150

β = (0, · · · , 0︸ ︷︷ ︸
10

)× 5 for j = 151, . . . , 200.

The SNR is 20.33.
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• Scenario 6: There is one group of strongly equicorrelated predictors. The data generat-

ing regression coefficients are smaller and less sparse which are given by

β = (1, · · · , 1︸ ︷︷ ︸
5

, 0, · · · , 0︸ ︷︷ ︸
5

)× 5 for j = 1, . . . , 50

β = (0, · · · , 0︸ ︷︷ ︸
10

)× 15 for j = 151 . . . , 200.

The SNR is 2.24.

• Scenario 7: The data generating regression coefficients are the same as Scenario 1, but

here we have one group of strongly equicorrelated predictors, which are as follows

β = (1, · · · , 1︸ ︷︷ ︸
15

, 0, · · · , 0︸ ︷︷ ︸
25

)× 3 for j = 1, . . . , 120

β = (0, · · · , 0︸ ︷︷ ︸
40

)× 2 for j = 121 . . . , 200.

The SNR is 7.24.

3.5.2 Evaluation Criteria

3.5.2.1 Prediction

We consider the prediction performance measures described in [Tibshirani, 1996] which are

mean squared error (MSE) and prediction error (PE). Suppose that

Y = η(X) + ε
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where E(ε) = 0 and var(ε) = σ2. The definition of mean squared error of an estimate η̂(X) is

given by

MSE = E{η̂(X)− η(X)}2.

A similar measure is prediction error which is defined by

PE = E{Y − ˆη(X)}2.

The relationship between the two measures can be written as

PE = MSE + σ2.

We report simulation results with MSE as in the paper [Tibshirani, 1996] which has the form

MSE = (β̂ − β)TV (β̂ − β)

for the linear models η(X) = Xβ̂ in our context where V is the population covariance matrix

for X.



59

3.5.2.2 Parameter Estimation

We also assess the performance for the estimation of the parameters β = (β1, β2, . . . , βp)
T in

the regression model. The root mean squared error (RMSE) which is the square root of mean

squared error (MSE) is the most widely used measure of estimation accuracy [Li and Zhao,

2001]. The RMSE of the estimator θ̂ is defined by

RMSE(θ̂) =

√
MSE(θ̂) =

√
E(θ̂ − θ)2.

It is known that MSE is the sum of the variance and the squared bias of the estimator [Lebanon,

2010]

MSE(θ̂) = V ar(θ̂) +Bias2(θ̂).

In the case of multivariate estimators θ̂ = (θ̂1, θ̂2, . . . , θ̂d)
T , MSE is can be written as

E(‖θ̂ − θ‖2) = trace(V ar(θ̂)) + ‖Bias2(θ̂)‖2

where V ar(θ̂) is the covariance matrix of θ̂, so its trace is

p∑
j=1

V ar(θ̂j). From this, we measure

RMSE for the estimators of the parameters β̂ = (β̂1, β̂2, . . . , β̂p)
T in the context of our simulation

study which is given by

RMSE(β̂) =

√√√√ p∑
j=1

[V ar(β̂j) + {E(β̂j)− βj}2].
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3.5.2.3 Variable Selection

For the evaluation of the performance of variable selection, we adopt the confusion matrix

which describes information about true and predicted classes [Chong and Jun, 2005]. Ta-

ble XXXI shows the confusion matrix and the meanings of its entries under the context of our

simulation study.

TABLE II: CONFUSION MATRIX

Selection Classes

Selected predictor Not-selected predictor

True Classes Relevant predictor True positive a False negative b

Irrelevant predictor False positive c True negative d

a Relevant predictors identified correctly; b Relevant predictors identified incorrectly;

c Irrelevant predictors identified incorrectly; d Irrelevant predictors identified correctly

In our simulation, the predictor xj is truly relevant when its corresponding true parameter

βj 6= 0 and it is irrelevant when βj = 0 in the data generation model. For the selection classes,

the predictor xj is regarded to be selected when its estimated coefficient β̂j 6= 0 and not-selected

if β̂j = 0 in the chosen model. The ideal variable selection would correctly select predictors of

non-zero signals with 100 percent of accuracy.
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We find the number of predictors corresponding to each cell of the confusion matrix from

the final model chosen by each of the variable selection methods. Then, we assess the measures

known as sensitivity, specificity, false discovery rate (FDR), and false negative rate (FNR) which

can be obtained by

Sensitivity =
Number of true positive

Number of true positive + Number of false negative

Specificity =
Number of true negative

Number of false positive + Number of true negative

False discovery rate =
Number of false positive

Number of false positive + Number of true positive

False negative rate =
Number of false negative

Number of false negative + Number of true positive
.

The sensitivity is the proportion of relevant predictors that are correctly selected by a

selection method. It is a measure of ability to correctly identify the predictors of non-zero

value of parameters. The specificity is the proportion of irrelevant predictors that are correctly

classified. It shows the ability of a method to correctly identify predictors that are not truly

relevant. The false discovery rate is the proportion of the predictors that are not truly relevant,

but selected in the model. The false negative rate is the fraction of the truly relevant predictors

that are not selected.
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3.5.3 Simulation Results

The COLRNS consistently shows the best prediction performance with the lowest Q1, me-

dian, mean, and Q3 values of MSE in all the 7 scenarios. It demonstrates robust prediction

performance with the smallest IQR among all methods in Scenarios 1, 2, 3, and 4 where there

are multiple groups of strongly correlated predictors and also lower IQR compared to Elastic

net in Scenario 5 with one group of equi-correlated predictors of sparse and strong signals.

In Scenarios 1, 2, and 3 with 20 groups, OSCAR presents the worst prediction performance

with the highest descriptive statistics of MSE. The Group Lasso also shows the worst level

performance together with OSCAR in Scenario 4 having 5 groups with similar high median

and Q3 values of prediction error. In Scenarios 1, 2, 3, and 4, SIS-SCAD and SIS-MCP show

higher prediction error compared to the same SIS combined method SIS-LASSO. In Scenario

5, 6, and 7 of equi-correlated one group, the Group LASSO didn’t perform well with very high

prediction error with extremely large variance compared to the other methods.

The COLRNS also depicts good performance in terms of accurate estimation of parameters

in all scenarios by having the lowest level of RMSE. It has the smallest RMSE in Scenario 4

with 5 groups and Scenario 5 having one group with sparse and strong signals. In the other

scenarios, COLRNS has almost the same RMSE as the Elastic net which indicates comparable

performance. In all scenarios except the Scenario 1, COLRNS demonstrates better estimation

performance than LASSO.

In Scenarios 1, 2, 3, and 4 having multiple groups, OSCAR gives the worst performance in

accurate parameter estimation followed by SIS-SCAD and SIS-MCP. In Scenarios 5, 6, and 7
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with 1 group, Group LASSO has the largest error followed by OSCAR. In Scenario 5, MCP

also indicates poor performance in estimation together with Group LASSO and OSCAR.

For the selection performance, OSCAR tends to select all predictors in multiple groups

regardless of the importance of the predictors in terms of their true signals in all scenarios. The

methods even select all the members of the groups where there is no true signal at all, which

results in absolute 1 for sensitivity and 0 for specificity and FNR in every simulated data sets.

Group LASSO chooses all predictors within a group if there is any member with true

signal, which turns out perfect sensitivity 1 without an outlier and 0 for specificity and FNR in

Scenarios 1, 2, 3, and 4 with multiple groups. In one group scenarios, it shows erratic selection

performance by choosing all or none of 200 predictors, which leads excessively high variance for

all of the four selection criteria.

Excluding the two methods of OSCAR and Group LASSO which demonstrate poor selec-

tion performances, COLRNS yields the highest Q1, median, mean, and Q3 of sensitivity in

comparison to the other methods in Scenario 1 and 5 where predictors are sparse with strong

signals. In other scenarios, it gives good sensitivity overall by having higher Q1 and median

sensitivity with smaller IQR than Elastic net in multiple group scenarios, and better median

and Q3 sensitivity in one group scenarios. It can be seen that COLRNS effectively selects

predictors with true signal.

The COLRNS also improves specificity in multiple group scenarios where there are many

predictors of small signal. More specifically, in comparison to Elastic net, it has higher Q1,

median, and mean in Scenario 2, better Q1 in Scenario 3, and superior Q1 and mean specificity
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in Scenario 4. In overall, it improves robustness in ability of filtering out unimportant variables

with smaller IQR level than Elastic net when there are multiple groups of strongly correlated

predictors.

For FNR, COLRNS shows the lowest level of FNR overall. It performs the best with the

lowest Q1, median, mean, and Q3 of FNR when there are predictors of sparse and strong signals

in Scenario 1 and 5. In other multiple group scenarios with numerous small signals, it also gives

lower Q3 FNR than Elastic net in Scenario 2, 3, and 4 and median as well in Scenario 3. In

other one group scenarios with many weak signals, it turns out to have lower median and mean

in Scenarios 6 and 7 and Q1 as well in Scenario 6. Based on the results of the improved FNR, it

can be viewed that COLRNS has lower chance of missing out important predictors. For FDR,

COLRNS has comparable performance across the scenarios.



TABLE III: MSE OF PREDICTION IN SCENARIO 1

COLRNS LASSO ELNET SCAD MCP S-SCAD S-MCP S-LASSO G-LASSO OSCAR

Q1 61.2 73.8 74.3 80.1 77.6 160.4 162.5 65.6 120.8 245.5

Median 69.2 90.9 86.9 94.3 96.5 19.01 200.6 87.7 134.3 278.0

Mean 76.6 95.6 93.0 100.1 100.3 190.7 194.6 90.5 137.5 280.4

Q3 86.9 107.1 105.0 117.2 118.5 223.7 229.8 109.0 149.6 311.7

TABLE IV: RMSE OF PARAMETER ESTIMATION IN SCENARIO 1

COLRNS LASSO ELNET SCAD MCP S-SCAD S-MCP S-LASSO G-LASSO OSCAR

RMSE 13.75 13.36 13.42 16.15 17.63 15.60 27.00 27.30 19.48 33.23
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TABLE V: VARIABLE SELECTION MEASUREMENTS IN SCENARIO 1

COLRNS LASSO ELNET SCAD MCP S-SCAD S-MCP S-LASSO G-LASSO OSCAR

Sensitivity

Q1 0.800 0.600 0.700 0.500 0.300 0.500 0.500 0.500 1.000 1.000

Median 0.800 0.700 0.800 0.600 0.500 0.600 0.600 0.600 1.000 1.000

Mean 0.829 0.726 0.804 0.608 0.460 0.587 0.574 0.610 0.992 1.000

Q3 0.900 0.800 0.900 0.700 0.600 0.700 0.700 0.700 1.000 1.000

Specificity

Q1 0.774 0.889 0.784 0.914 0.947 0.874 0.874 0.888 0.105 0.000

Median 0.800 0.905 0.858 0.926 0.958 0.879 0.879 0.921 0.184 0.000

Mean 0.806 0.902 0.826 0.927 0.955 0.886 0.887 0.914 0.191 0.000

Q3 0.858 0.921 0.889 0.942 0.963 0.884 0.884 0.937 0.263 0.000

False Discovery Rate

Q1 0.770 0.667 0.737 0.624 0.538 0.759 0.759 0.667 0.933 0.950

Median 0.819 0.708 0.794 0.688 0.643 0.793 0.793 0.724 0.941 0.950

Mean 0.803 0.712 0.783 0.687 0.642 0.777 0.774 0.717 0.939 0.950

Q3 0.843 0.769 0.834 0.750 0.750 0.828 0.828 0.783 0.944 0.950

False Negative Rate

Q1 0.100 0.200 0.100 0.300 0.400 0.300 0.300 0.300 0.000 0.000

Median 0.200 0.300 0.200 0.400 0.500 0.400 0.400 0.400 0.000 0.000

Mean 0.171 0.274 0.196 0.392 0.540 0.413 0.426 0.390 0.008 0.000

Q3 0.200 0.400 0.300 0.500 0.700 0.500 0.500 0.500 0.000 0.000
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Figure 5: MSE of prediction in scenario 1

Figure 6: RMSE of parameter estimation in scenario 1
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(a) Sensitivity (b) Specificity

(c) False discovery rate (d) False negative rate

Figure 7: Variable selection measurements in scenario 1



TABLE VI: MSE OF PREDICTION IN SCENARIO 2

COLRNS LASSO ELNET SCAD MCP S-SCAD S-MCP S-LASSO G-LASSO OSCAR

Q1 62.4 79.4 67.5 126.0 120.4 183.0 189.1 116.0 154.8 235.0

Median 74.7 95.7 82.2 145.7 132.4 206.2 219.4 142.9 170.9 260.9

Mean 76.6 101.2 85.5 149.6 139.1 216.7 225.4 144.2 173.9 267.5

Q3 86.4 120.3 99.2 169.4 152.2 246.7 260.1 164.3 190.7 288.9

TABLE VII: RMSE OF PARAMETER ESTIMATION IN SCENARIO 2

COLRNS LASSO ELNET SCAD MCP S-SCAD S-MCP S-LASSO G-LASSO OSCAR

RMSE 10.160 12.530 9.900 19.630 20.530 16.080 28.00 28.77 21.79 32.49
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TABLE VIII: VARIABLE SELECTION MEASUREMENTS IN SCENARIO 2

COLRNS LASSO ELNET SCAD MCP S-SCAD S-MCP S-LASSO G-LASSO OSCAR

Sensitivity

Q1 0.427 0.280 0.397 0.130 0.107 0.173 0.173 0.173 1.000 1.000

Median 0.480 0.313 0.560 0.153 0.120 0.187 0.200 0.187 1.000 1.000

Mean 0.473 0.311 0.538 0.173 0.121 0.193 0.193 0.190 0.995 1.000

Q3 0.520 0.347 0.680 0.213 0.147 0.213 0.213 0.213 1.000 1.000

Specificity

Q1 0.688 0.816 0.598 0.888 0.928 0.872 0.872 0.896 0.080 0.000

Median 0.724 0.848 0.676 0.912 0.936 0.880 0.888 0.908 0.080 0.000

Mean 0.725 0.842 0.693 0.905 0.938 0.885 0.886 0.910 0.094 0.000

Q3 0.768 0.866 0.784 0.928 0.952 0.896 0.904 0.928 0.160 0.000

False Discovery Rate

Q1 0.448 0.403 0.457 0.400 0.373 0.448 0.447 0.375 0.583 0.625

Median 0.489 0.456 0.491 0.476 0.456 0.517 0.483 0.435 0.605 0.625

Mean 0.489 0.456 0.481 0.483 0.459 0.498 0.496 0.439 0.602 0.625

Q3 0.519 0.500 0.511 0.550 0.551 0.552 0.552 0.500 0.611 0.625

False Negative Rate

Q1 0.480 0.653 0.320 0.787 0.853 0.787 0.787 0.787 0.000 0.000

Median 0.520 0.687 0.440 0.847 0.880 0.813 0.800 0.813 0.000 0.000

Mean 0.527 0.689 0.462 0.827 0.879 0.807 0.807 0.810 0.005 0.000

Q3 0.573 0.720 0.603 0.870 0.893 0.827 0.827 0.827 0.000 0.000
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Figure 8: MSE of prediction in scenario 2

Figure 9: RMSE of parameter estimation in scenario 2
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(a) Sensitivity (b) Specificity

(c) False discovery rate (d) False negative rate

Figure 10: Variable selection measurements in scenario 2



TABLE IX: MSE OF PREDICTION IN SCENARIO 3

COLRNS LASSO ELNET SCAD MCP S-SCAD S-MCP S-LASSO G-LASSO OSCAR

Q1 47.6 65.4 57.9 77.9 75.2 161.7 152.7 60.6 106.4 261.8

Median 56.4 76.8 66.9 91.0 86.7 183.8 190.6 76.6 119.2 261.1

Mean 60.2 80.2 71.9 95.0 90.3 188.3 189.2 79.2 121.0 237.8

Q3 65.2 91.2 83.4 108.3 98.1 214.5 223.1 92.5 133.4 287.7

TABLE X: RMSE OF PARAMETER ESTIMATION IN SCENARIO 3

COLRNS LASSO ELNET SCAD MCP S-SCAD S-MCP S-LASSO G-LASSO OSCAR

RMSE 8.54 9.71 8.08 14.4 16.1 13.34 26.78 26.69 16.72 32.02
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TABLE XI: VARIABLE SELECTION MEASUREMENTS IN SCENARIO 3

COLRNS LASSO ELNET SCAD MCP S-SCAD S-MCP S-LASSO G-LASSO OSCAR

Sensitivity

Q1 0.415 0.280 0.360 0.140 0.100 0.200 0.180 0.200 1.000 1.000

Median 0.480 0.300 0.440 0.210 0.120 0.240 0.220 0.240 1.000 1.000

Mean 0.474 0.298 0.499 0.212 0.121 0.229 0.212 0.238 0.996 1.000

Q3 0.540 0.340 0.640 0.280 0.140 0.260 0.260 0.280 1.000 1.000

Specificity

Q1 0.780 0.893 0.740 0.907 0.940 0.873 0.873 0.913 0.133 0.000

Median 0.807 0.907 0.827 0.920 0.953 0.887 0.887 0.927 0.200 0.000

Mean 0.802 0.903 0.809 0.920 0.953 0.888 0.894 0.926 0.235 0.000

Q3 0.833 0.920 0.880 0.933 0.967 0.900 0.900 0.947 0.333 0.000

False Discovery Rate

Q1 0.518 0.439 0.486 0.464 0.417 0.517 0.517 0.400 0.667 0.750

Median 0.550 0.482 0.531 0.525 0.500 0.586 0.586 0.480 0.706 0.750

Mean 0.555 0.490 0.524 0.542 0.526 0.592 0.591 0.478 0.694 0.750

Q3 0.592 0.548 0.563 0.637 0.643 0.655 0.655 0.550 0.722 0.750

False Negative Rate

Q1 0.460 0.660 0.360 0.720 0.860 0.740 0.740 0.720 0.000 0.000

Median 0.520 0.700 0.560 0.790 0.880 0.760 0.780 0.760 0.000 0.000

Mean 0.526 0.702 0.501 0.788 0.879 0.771 0.788 0.762 0.004 0.000

Q3 0.585 0.720 0.640 0.860 0.900 0.800 0.820 0.800 0.000 0.000
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Figure 11: MSE of prediction in scenario 3

Figure 12: RMSE of parameter estimation in scenario 3
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(a) Sensitivity (b) Specificity

(c) False discovery rate (d) False negative rate

Figure 13: Variable selection measurements in scenario 3



TABLE XII: MSE OF PREDICTION IN SCENARIO 4

COLRNS LASSO ELNET SCAD MCP S-SCAD S-MCP S-LASSO G-LASSO OSCAR

Q1 32.1 42.2 39.5 75.5 69.9 145.8 144.8 40.7 218.9 215.2

Median 38.1 54.0 48.0 86.3 86.9 173.2 175.2 50.7 230.1 235.6

Mean 44.0 58.5 52.7 91.2 91.5 170.1 173.3 55.7 240.3 239.9

Q3 52.4 66.5 61.1 106.2 111.3 195.3 203.5 69.2 259.6 263.4

TABLE XIII: RMSE OF PARAMETER ESTIMATION IN SCENARIO 4

COLRNS LASSO ELNET SCAD MCP S-SCAD S-MCP S-LASSO G-LASSO OSCAR

RMSE 7.74 10.15 7.88 17.76 20.13 14.49 28.51 28.41 25.29 33.69
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TABLE XIV: VARIABLE SELECTION MEASUREMENTS IN SCENARIO 4

COLRNS LASSO ELNET SCAD MCP S-SCAD S-MCP S-LASSO G-LASSO OSCAR

Sensitivity

Q1 0.394 0.222 0.333 0.067 0.044 0.200 0.172 0.178 1.000 1.000

Median 0.467 0.244 0.467 0.111 0.067 0.244 0.222 0.222 1.000 1.000

Mean 0.464 0.256 0.500 0.138 0.063 0.236 0.209 0.227 1.000 1.000

Q3 0.556 0.289 0.689 0.200 0.089 0.289 0.267 0.267 1.000 1.000

Specificity

Q1 0.785 0.903 0.715 0.935 0.968 0.877 0.877 0.897 0.000 0.000

Median 0.816 0.916 0.816 0.948 0.974 0.890 0.884 0.929 0.000 0.000

Mean 0.814 0.918 0.803 0.950 0.976 0.894 0.904 0.921 0.080 0.000

Q3 0.847 0.935 0.890 0.963 0.987 0.897 0.910 0.942 0.258 0.000

False Discovery Rate

Q1 0.535 0.471 0.537 0.475 0.400 0.552 0.517 0.450 0.719 0.775

Median 0.576 0.523 0.575 0.556 0.571 0.586 0.621 0.552 0.775 0.775

Mean 0.574 0.522 0.562 0.560 0.543 0.593 0.577 0.538 0.756 0.775

Q3 0.609 0.583 0.598 0.667 0.714 0.655 0.655 0.621 0.775 0.775

False Negative Rate

Q1 0.444 0.711 0.311 0.800 0.911 0.711 0.733 0.733 0.000 0.000

Median 0.533 0.756 0.533 0.889 0.933 0.756 0.778 0.778 0.000 0.000

Mean 0.536 0.744 0.500 0.862 0.937 0.764 0.791 0.773 0.000 0.000

Q3 0.606 0.778 0.667 0.933 0.956 0.800 0.828 0.822 0.000 0.000
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Figure 14: MSE of prediction in scenario 4

Figure 15: RMSE of parameter estimation in scenario 4



80

(a) Sensitivity (b) Specificity

(c) False discovery rate (d) False negative rate

Figure 16: Variable selection measurements in scenario 4



TABLE XV: MSE OF PREDICTION IN SCENARIO 5

COLRNS LASSO ELNET SCAD MCP S-SCAD S-MCP S-LASSO G-LASSO OSCAR

Q1 67.2 80.3 76.2 133.7 226.9 183.4 192.7 95.3 571.0 234.4

Median 78.4 90.2 89.5 161.9 247.6 224.6 224.8 115.0 4575.0 254.2

Mean 80.5 94.5 90.8 174.5 254.9 220.2 225.6 118.4 2707.3 269.0

Q3 91.5 104.9 106.3 189.2 279.1 248.8 252.0 141.7 4575.0 288.5

TABLE XVI: RMSE OF PARAMETER ESTIMATION IN SCENARIO 5

COLRNS LASSO ELNET SCAD MCP S-SCAD S-MCP S-LASSO G-LASSO OSCAR

RMSE 16.56 17.52 16.67 21.40 35.47 23.91 33.11 33.55 39.51 36.68
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TABLE XVII: VARIABLE SELECTION MEASUREMENTS IN SCENARIO 5

COLRNS LASSO ELNET SCAD MCP S-SCAD S-MCP S-LASSO G-LASSO OSCAR

Sensitivity

Q1 0.800 0.600 0.733 0.533 0.133 0.400 0.400 0.400 0.000 1.000

Median 0.867 0.667 0.800 0.667 0.133 0.467 0.467 0.467 1.000 1.000

Mean 0.853 0.686 0.829 0.601 0.149 0.475 0.476 0.487 0.640 1.000

Q3 0.933 0.733 0.933 0.733 0.200 0.533 0.550 0.600 1.000 1.000

Specificity

Q1 0.524 0.854 0.561 0.870 0.984 0.876 0.876 0.880 0.000 0.000

Median 0.662 0.870 0.754 0.886 0.989 0.881 0.881 0.886 0.000 0.000

Mean 0.661 0.867 0.695 0.893 0.988 0.882 0.883 0.889 0.360 0.000

Q3 0.811 0.881 0.832 0.908 0.991 0.886 0.892 0.892 1.000 0.000

False Discovery Rate

Q1 0.749 0.664 0.734 0.630 0.312 0.724 0.690 0.690 0.000 0.925

Median 0.831 0.694 0.798 0.677 0.500 0.759 0.759 0.724 0.925 0.925

Mean 0.805 0.700 0.791 0.668 0.492 0.754 0.750 0.733 0.592 0.925

Q3 0.864 0.750 0.859 0.738 0.600 0.793 0.793 0.793 0.925 0.925

False Negative Rate

Q1 0.067 0.267 0.067 0.267 0.800 0.467 0.450 0.400 0.000 0.000

Median 0.133 0.333 0.200 0.333 0.867 0.533 0.533 0.533 0.000 0.000

Mean 0.147 0.314 0.171 0.399 0.851 0.525 0.524 0.513 0.360 0.000

Q3 0.200 0.400 0.267 0.467 0.867 0.600 0.600 0.600 1.000 0.000
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Figure 17: MSE of prediction in scenario 5

Figure 18: RMSE of parameter estimation in scenario 5
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(a) Sensitivity (b) Specificity

(c) False discovery rate (d) False negative rate

Figure 19: Variable selection measurements in scenario 5



TABLE XVIII: MSE OF PREDICTION IN SCENARIO 6

COLRNS LASSO ELNET SCAD MCP S-SCAD S-MCP S-LASSO G-LASSO OSCAR

Q1 21.0 31.7 27.6 31.7 43.6 139.9 116.5 45.4 505.0 203.1

Median 31.4 40.0 36.0 47.9 48.0 171.9 178.9 70.9 505.0 227.3

Mean 32.9 43.5 38.2 48.9 56.5 172.6 165.2 63.9 526.1 228.6

Q3 40.4 53.5 43.2 63.2 63.9 210.8 205.4 78.5 512.8 250.6

TABLE XIX: RMSE OF PARAMETER ESTIMATION IN SCENARIO 6

COLRNS LASSO ELNET SCAD MCP S-SCAD S-MCP S-LASSO G-LASSO OSCAR

RMSE 6.10 7.61 6.01 13.19 16.53 17.43 29.15 28.38 35.92 33.80
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TABLE XX: VARIABLE SELECTION MEASUREMENTS IN SCENARIO 6

COLRNS LASSO ELNET SCAD MCP S-SCAD S-MCP S-LASSO G-LASSO OSCAR

Sensitivity

Q1 0.200 0.110 0.200 0.040 0.000 0.120 0.040 0.120 0.000 1.000

Median 0.360 0.160 0.320 0.120 0.040 0.160 0.160 0.160 1.000 1.000

Mean 0.368 0.141 0.342 0.110 0.032 0.165 0.148 0.164 0.700 1.000

Q3 0.520 0.160 0.480 0.160 0.040 0.200 0.200 0.200 1.000 1.000

Specificity

Q1 0.606 0.920 0.634 0.930 0.983 0.851 0.857 0.857 0.000 0.000

Median 0.749 0.931 0.803 0.951 0.989 0.863 0.863 0.863 0.000 0.000

Mean 0.746 0.930 0.775 0.951 0.985 0.874 0.894 0.880 0.300 0.000

Q3 0.903 0.943 0.904 0.977 0.989 0.869 0.914 0.881 1.000 0.000

False Discovery Rate

Q1 0.793 0.714 0.783 0.667 0.667 0.793 0.784 0.793 0.000 0.875

Median 0.822 0.782 0.816 0.750 0.750 0.828 0.828 0.828 0.875 0.875

Mean 0.815 0.774 0.806 0.758 0.762 0.825 0.791 0.829 0.612 0.875

Q3 0.857 0.833 0.851 0.833 1.000 0.897 0.897 0.862 0.875 0.875

False Negative Rate

Q1 0.480 0.840 0.520 0.840 0.960 0.800 0.800 0.800 0.000 0.000

Median 0.640 0.840 0.680 0.880 0.960 0.840 0.840 0.840 0.000 0.000

Mean 0.632 0.859 0.658 0.890 0.968 0.835 0.852 0.836 0.300 0.000

Q3 0.800 0.890 0.800 0.960 1.000 0.880 0.960 0.880 1.000 0.000
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Figure 20: MSE of prediction in scenario 6

Figure 21: RMSE of parameter estimation in scenario 6
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(a) Sensitivity (b) Specificity

(c) False discovery rate (d) False negative rate

Figure 22: Variable selection measurements in scenario 6



TABLE XXI: MSE OF PREDICTION IN SCENARIO 7

COLRNS LASSO ELNET SCAD MCP S-SCAD S-MCP S-LASSO G-LASSO OSCAR

Q1 29.6 43.3 35.5 58.3 92.8 162.4 167.7 45.3 552.1 202.6

Median 37.7 51.0 43.5 76.0 100.7 193.4 201.2 74.1 1629.0 228.1

Mean 40.7 55.8 46.0 84.2 100.4 193.0 201.9 71.2 1142.7 230.6

Q3 51.1 68.7 54.0 107.9 106.2 217.7 230.3 92.9 1629.0 256.8

TABLE XXII: RMSE OF PARAMETER ESTIMATION IN SCENARIO 7

COLRNS LASSO ELNET SCAD MCP S-SCAD S-MCP S-LASSO G-LASSO OSCAR

RMSE 7.96 10.84 7.92 15.42 22.20 17.76 30.97 31.73 36.49 33.96
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TABLE XXIII: VARIABLE SELECTION MEASUREMENTS IN SCENARIO 7

COLRNS LASSO ELNET SCAD MCP S-SCAD S-MCP S-LASSO G-LASSO OSCAR

Sensitivity

Q1 0.311 0.156 0.328 0.111 0.022 0.133 0.128 0.111 0.000 1.000

Median 0.533 0.200 0.511 0.156 0.044 0.156 0.156 0.133 1.000 1.000

Mean 0.488 0.200 0.483 0.160 0.040 0.162 0.161 0.140 0.690 1.000

Q3 0.644 0.222 0.644 0.200 0.044 0.200 0.200 0.178 1.000 1.000

Specificity

Q1 0.497 0.871 0.497 0.877 0.981 0.852 0.852 0.858 0.000 0.000

Median 0.587 0.884 0.665 0.897 0.987 0.858 0.861 0.884 0.000 0.000

Mean 0.639 0.884 0.647 0.909 0.985 0.863 0.866 0.894 0.310 0.000

Q3 0.794 0.903 0.802 0.934 0.987 0.871 0.871 0.929 1.000 0.000

False Discovery Rate

Q1 0.685 0.612 0.690 0.570 0.400 0.690 0.690 0.647 0.000 0.775

Median 0.721 0.679 0.717 0.667 0.550 0.759 0.741 0.724 0.775 0.775

Mean 0.708 0.666 0.704 0.629 0.562 0.746 0.732 0.710 0.535 0.775

Q3 0.739 0.726 0.740 0.731 0.750 0.793 0.793 0.788 0.775 0.775

False Negative Rate

Q1 0.356 0.778 0.356 0.800 0.956 0.800 0.800 0.822 0.000 0.000

Median 0.467 0.800 0.489 0.844 0.956 0.844 0.844 0.867 0.000 0.000

Mean 0.512 0.800 0.517 0.840 0.960 0.838 0.839 0.860 0.310 0.000

Q3 0.689 0.844 0.672 0.889 0.978 0.867 0.872 0.889 1.000 0.000
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Figure 23: MSE of prediction in scenario 7

Figure 24: RMSE of parameter estimation in scenario 7
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(a) Sensitivity (b) Specificity

(c) False discovery rate (d) False negative rate

Figure 25: Variable selection measurements in scenario 7
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3.6 Data Application: Leukocyte Telomere Length and Exposure to Pollutants

3.6.1 Introduction

We apply the proposed feature selection method to the 2001-2002 NHANES data [Mitro

et al., 2016,Gibson et al., 2019] used to investigate the association between exposures to per-

sistent organic pollutants (POPs) and leukocyte telomere length (LTL), a biomarker associated

with chronic disease. The authors hypothesize that exposures to POPs such as polychlorinated

biphenyls (PCBs), dioxins, and furans would have association with longer LTL. We analyze

the data to illustrate the application of the method and to demonstrate its performance in

real-world data. By applying the method, we examine the relationship between the exposures

and LTL and also evaluate the performance of the resulting regression model.

3.6.2 Data Description

We use the NHANES data in the 2001-2002 cycle where 11, 039 people were interviewed.

Among the people over 20 years of age who provided a blood sample and consented to the

usage of their DNA, biological samples were available for 4, 260 participants to process telomere

length. We excluded those for whom environmental chemical analysis data were not available

(n = 2, 850) or individuals with missing values on covariates (body mass index (BMI) n = 70,

education (n=2), serum cotinine (n = 8). The participants were further excluded who had

missing information for individual PCBs, dioxins, or furans (n = 327). This resulted in n =

1, 003 participants in the analysis dataset [Gibson et al., 2019].

The data includes 18 POPs (Table XXIV) exposures which were measured using high-

resolution gas chromatography/isotope-dilution high resolution mass spectrometry. All POPs
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measurements were lipid-adjusted by the U.S. Centers for Disease Control and Prevention

(CDC) [Needham et al., 1989, Cawthon, 2002, Lin et al., 2010, Needham et al., 2013, Mitro

et al., 2016]. We include the congeners whose concentrations were detected more than 60

percentage of samples. The limit of detection (LOD) were reported for each sample. The

typical detection limits were 2 ng/g while it was as high as 10.5 ng/g. The samples below

the LOD were replaced by the sample-specific LOD divided by the square root of 2 following

the guideline of CDC. The details of exposure assessment are described in Mitro et al. [2016].

Figure 30 shows Pearson correlation matrix of 18 POPs variables.

Telomere length relative to standard reference DNA (T/S ratio) was measured with the

quantitative polymerase chain reaction (qPCR) method [Cawthon, 2002,Lin et al., 2010]. Each

sample was assayed in duplicate wells for three times producing six data points. The mean T/S

ratio was calculated by averaging them [Needham et al., 2013]. The CDC performed a quality

review before linking the telemore measurements to the NHANES 1999-2002 public usage data

files.

3.6.3 Statistical Analysis

We apply variable selection methods in a multiple regression setting to examine associations

between 18 POPs exposure measurements and relative LTL. Variable selection methods such as

LASSO, Elastic net, and Group LASSO are applied to compare the results from Gibson et al.

[2019] with the results derived from COLRNS. The models are adjusted by covariates that are

included in Mitro et al. [2016] to control for confounding bias. The covariates are age, squared

age, sex, race/ethnicity, educational attainment, BMI, and blood cell count and distribution
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(white blood cell count, percent lymphocytes, percent monocytes, percent neutrophils, percent

eosinophils, percent basophils). Covariates for blood cell count and distribution are included

because LTL is measured in immune cells and the covariates are associated with serum PCBs

[Mitro et al., 2016,Serdar et al., 2014].

The LTL and POPs, and serum cotinine are natural log-transformed for analyses account-

ing for their nonnormal distributions [Mitro et al., 2016]. Figure 26 shows the distribution

of log-transformed relative LTL. Figure 27 presents the histogram of log-transformed POPs

measurements. We use dummy variables representing each category of categorical covariates

for selection purpose. Table XXIV shows the labels of POPs exposures, and Table XXV and

Table XXVI present the labels for continuous and categorical covariates. The distribution of

these variables are illustrated in Figure 28 and Figure 31.

In our application of variable selection methods, we only penalize regression coefficients of

POPs exposures and always include other covariates in the model to control for confounding

bias as in Gibson et al. [2019]. We use the grid of values 0.1, . . . , 0.9 for α, and use 10-fold

cross-validation and minimum cross-validation prediction error for choosing λ and α. The mean

squared error of the resulting model is calculated as

1

n

n∑
i=1

(yi − xTi β̂(α, λ))2
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where yi is log-transformed LTL and xi is a vector of POPs exposures and covariate values for ith

participants, i = 1, . . . , n. We use the package ‘glmnet’ [Friedman et al., 2019] for implementing

LASSO, Elastic net, and COLRNS, and ‘grpreg’ [Breheny, 2020] for Group LASSO.

For analysis of Group LASSO, we divide POPs variables into three groups corresponding

to the grouping method of Mitro et al. [2016] based on toxic equivalency factor (TEF) that

is assigned according to the evidence of toxicity by World Health Organization (WHO). The

three groups are non-dioxin-like PCBs with no TEFs, non-ortho PCBs with high TEFs and

AhR affinity, and toxic equivalent (TEQ) POPs with high TEFs and AhR affinity including

furans, dioxins, and a mono-ortho PCB. The grouping infomration for each exposure is listed

in Table XXIV.

All predictors are standardized before implementing the methods in order to apply the

penalization across all regressors fairly [Tibshirani, 2007]. Before applying all the selection

methods, we first examine the degree of collineariy in the data set and also fit a typical linear

regression model with the same exposures and confounders for purpose of comparison with the

models given by the penalized selection methods.

Figure 26: Density plot of log-transformed outcome
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TABLE XXIV: GROUPS OF ENVIRONMENTAL EXPOSURES

Group Variable

Non-dioxin-like PCBs

PCB74 (ng/g)

PCB99 (ng/g)

PCB138 (ng/g)

PCB153 (ng/g)

PCB170 (ng/g)

PCB180 (ng/g)

PCB187 (ng/g)

PCB194 (ng/g)

Non-ortho PCBs
PCB126 (ng/g), 3,3’,4,4’,5-Pentachlorobiphenyl (PnCB)

PCB169 (ng/g), 3,3’,4,4’,5,5’-hexachlorobiphenyl (HxCB)

Toxic equivalent POPs

PCB118 (ng/g)

Dioxin (pg/g), 1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)

Dioxin (pg/g), 1,2,3,4,6,7,8-Heptachlororodibenzo-p-dioxin (HpCDD)

Dioxin (pg/g), 1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)

Furan (pg/g), 2,3,4,7,8-Pentachlorodibenzofuran (PnCDF)

Furan (pg/g), 1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)

Furan (pg/g), 1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)

Furan (pg/g), 1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)
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Figure 27: Histogram of log-transformed POPs exposures
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TABLE XXV: CONTINUOUS COVARIATES

Variable Label

Age centered Age at screening, centered

Age sq Age at screening, squared

Cotinine Cotinine (ng/mL), log-transformed

White blood cell White blood cell count (SI)

Lymphocyte Lymphocyte percent (%)

Monocyte Monocyte percent (%)

Eosinophils Eosinophils percent (%)

Basophils Basophils percent (%)

Neutrophils Segmented neutrophils percent (%)

TABLE XXVI: CATEGORICAL COVARIATES

Category Variable Label

Gender
Male1 Male

Otherwise Female

Race/Ethnicity

Race cat2 Mexican American

Race cat3 Non-Hispanic black

Race cat4 Non-Hispanic white

Otherwise Other Hispanic or

Race including multi-racial

Body Mass Index

BMI cat2 25 ≤ BMI ≤ 30 (kg/m2)

BMI cat3 BMI > 30 (kg/m2)

Otherwise BMI < 25 (kg/m2)

Education Level

Edu cat2 High school grad/GED or equivalent

Edu cat3 Some college or AA degree

Edu cat4 College graduate or above

Otherwise Less than 9th grade
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Figure 28: Histogram of continuous confounders
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Figure 29: Bar chart of categorical confounders
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Figure 30: Pearsons’s correlation matrix of POPs exposures
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3.6.4 Analysis Results

We first examine the condition number by computing the square root of the ratio of the

maximum to the minimum eigenvalues from the correlation matrix of 18 POPs exposures.

The condition number equals 27.524 which indicates high degree of collinearity among the

exposures. As mentioned in Chapter 3, when there exists strong collineariy in predictors, the

standard errors of the predictors tend to be inflated, thus it often leads to false nonsignificant

p-values by deflating the t-test statistics.

Table XXVII shows results of fitting a linear regression model with 18 POPs exposures

with adjustment of 18 confounders. Among 18 POPs exposures, only Furan, 2,3,4,7,8-PnCDF

is significantly associated with longer log-LTL under a 5% significance level (β = 0.02866). It

can be interpreted as one unit increase in Furan, 2,3,4,7,8-PnCDF is associated with 0.02866

unit increase in log-LTL. In addition, PCB180 presents marginal association with shorter log-

LTL under a significance level of 10% (β = −0.05121). Overall, the regression coefficients of

10 exposures are estimated as negative and 8 as positive, which is different from the results

obtained by the selection methods: LASSO, Elastic net, and COLRNS in Table XLVI where

all of the selected exposures have positive coefficients.

For LASSO, the best λ is estimated as 0.0034 by cross-validation. Under this parameter, the

LASSO selects 4 POPs as important exposures: PCB99 (β = 0.00139), PCB126 (β = 0.01033),

PCB118 (β = 0.00340), and Furan, 2,3,4,7,8-PnCDF (β = 0.02205).

The Elastic net chooses the same 4 exposures with similar coefficients as LASSO estimates,

however, it selects one additional exposure Furan, 1,2,3,4,6,7,8-HpCDF (β = 0.00009) in the
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group of toxic equivalent POPs. The model is estimated under the parameter α = 0.8 and

λ = 0.0039.

The proposed COLRNS approach selects all of the predictors selected by LASSO and Elas-

tic net and one additional PCB: PCB99 (β = 0.00327) in the group of non-dioxin-like-PCBs,

PCB126 (β = 0.01155) and PCB169 (β = 0.00075) contained in the group of non-ortho PCBs,

PCB118 (β = 0.00559), Furan, 2,3,4,7,8-PnCDF (β = 0.02419), and Furan, 1,2,3,4,6,7,8-

HpCDF (β = 0.000221) from the group of toxic equivalent POPs. The size of coefficients

is slightly larger than that estimated by LASSO and Elastic net.

The Group LASSO chooses all exposures in the two groups: the non-ortho PCBs and toxic

equivalent POPs, while screening the other exposures in the group of non-dioxin-like-PCBs to

have zero coefficients. Increases in the two non-orthos PCBs are associated with longer log-LTL

(PCB126 β = 0.01149, PCB 169 β = 0.00756). Increased exposure to five toxic equivalent POPs

are also associated with longer log-LTL (PCB118 β = 0.00331, Dioxin, 1,2,3,4,6,7,8-HpCDD

β = 0.00186, Furan, 2,3,4,7,8-PnCDF β = 0.00870, Furan, 1,2,3,4,7,8-HxCDF β = 0.00248,

Furan, 1,2,3,4,6,7,8-HpCDF β = 0.00544). Increases of the other three toxic equivalent POPs

are associated with shorter log-LTL.

Among the confounders in Table XXVII, male gender, BMI, ethnicity of Mexican American

and Non-Hispanic white, white blood cell count, the distribution of four blood cells (lymphocyte,

monocyte, eosinophils, neutrophils) and increase in age are negatively associated with longer

log-LTL. Higher level of education, ethnicity of non-Hispanic black, increased serum cotinine

and basophils are positively associated with longer log-LTL.
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The mean sqaured error of the resulting models by the penalized selection methods are

shown in Table XXIX. The model resulted from COLRNS has the least error among the four

models derived by the penalized selection methods.
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TABLE XXVII: RESULTS OF LINEAR REGRESSION

Variable Estimate (10−3) t-value p-value

Intercept 4233.00 0.52 0.604

PCB74 -1.51 -0.08 0.940
PCB99 4.02 0.18 0.860
PCB138 -19.40 -0.55 0.585
PCB153 47.39 1.10 0.271
PCB170 17.08 0.46 0.645
PCB180 -51.21 -1.86 0.064
PCB187 -7.75 -0.30 0.765
PCB194 -0.22 -0.01 0.994

Non-ortho PCBs
PCB126 12.57 1.17 0.241
PCB169 19.23 1.18 0.239

Toxic equivalent POPs
PCB118 13.23 0.58 0.564
Dioxin, 1,2,3,6,7,8-HxCDD -9.76 -0.77 0.441
Dioxin, 1,2,3,4,6,7,8-HpCDD -15.11 -0.86 0.390
Dioxin, 1,2,3,4,6,7,8,9-OCDD -21.82 -1.31 0.190
Furan, 2,3,4,7,8-PnCDF 28.66 2.36 0.019
Furan, 1,2,3,4,7,8-HxCDF 11.09 0.57 0.568
Furan, 1,2,3,6,7,8-HxCDF -15.11 -0.86 0.390
Furan, 1,2,3,4,6,7,8-HpCDF 16.89 1.38 0.169

Age (years)
Age -5.87 -7.13 0.000
Age2 -0.03 -1.11 0.266

Sex
Male -40.25 -2.46 0.014

BMI (kg/m2)
25-29.9 -7.67 -0.45 0.650
≥ 30 -22.47 -1.18 0.239

Education
High school graduate 19.55 1.05 0.295
Some college 37.63 2.04 0.042
≥ College graduate 12.84 0.59 0.556

Race/ethnicity
Mexican American -21.44 -0.77 0.442
Non-Hispanic black 13.13 0.45 0.653
Non-Hispanic white -33.50 -1.29 0.197

Serum cotinine (ng/mL) 4.14 1.91 0.057

White blood cell count (SI) -5.64 -1.52 0.128

Blood cell distribution (%)
Lymphocyte -41.71 -0.51 0.609
Monocyte -46.72 -0.57 0.567
Eosinophils -40.56 -0.50 0.619
Basophils -24.69 -0.30 0.765
Neutrophils -40.65 -0.50 0.618
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TABLE XXVIII: REGRESSION COEFFICIENTS FROM THE PENALIZED VARIABLE SE-
LECTION METHODS (10−3)

Pollutants G-LASSO LASSO ELNET COLRNS

Intercept 157.34 117.02 108.12 90.55

Non-dioxin-like-PCBs
PCB74 . . . .
PCB99 . 1.39 1.86 3.27
PCB138 . . . .
PCB153 . . . .
PCB170 . . . .
PCB180 . . . .
PCB187 . . . .
PCB194 . . . .

Non-ortho PCBs
PCB126 11.49 10.33 10.56 11.55
PCB169 7.56 . . 0.75

Toxic equivalent POPs
PCB118 3.31 3.40 3.85 5.59
Dioxin, 1,2,3,6,7,8-HxCDD -3.53 . . .
Dioxin, 1,2,3,4,6,7,8-HpCDD 1.86 . . .
Dioxin, 1,2,3,4,6,7,8,9-OCDD -6.35 . . .
Furan, 2,3,4,7,8-PnCDF 8.70 22.05 22.38 24.19
Furan, 1,2,3,4,7,8-HxCDF 2.48 . . .
Furan, 1,2,3,6,7,8-HxCDF -4.56 . . .
Furan, 1,2,3,4,6,7,8-HpCDF 5.44 . 0.09 2.21

Age (years)
Age -6.10 -6.39 -6.43 -6.60
Age2 -0.01 -0.01 -0.01 -0.01

Sex
Male -40.33 -35.04 -34.78 -34.07

BMI (kg/m2)
25-29.9 -4.20 -5.80 -5.83 -5.75
≥ 30 -18.07 -18.98 -19.16 -19.53

Education
High school graduate 19.55 20.13 20.07 19.95
Some college 36.15 36.34 36.25 36.17
≥ College graduate 15.27 16.48 16.41 16.26

Race/ethnicity
Mexican American -30.20 -33.08 -32.80 -30.89
Non-Hispanic black 9.88 4.94 4.63 2.94
Non-Hispanic white -34.85 -39.39 -39.42 -39.45

Serum cotinine (ng/mL) 3.38 3.32 3.34 3.39

White blood cell count (SI) -6.37 -6.27 -6.25 -6.10

Blood cell distribution (%)
Lymphocyte -1.11 -1.09 -1.10 -1.34
Monocyte -6.03 -6.42 -6.45 -6.80
Eosinophils -0.27 0.07 0.07 -0.15
Basophils 18.55 17.80 17.72 17.27
Neutrophils -0.26 -0.20 -0.20 -0.42
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TABLE XXIX: MEAN SQUARED ERROR OF THE MODELS (10−5)

COLRNS LASSO ELNET G-LASSO

MSE 3928.7 3937.9 3936.1 3947.3

3.7 Cross-validation Study

3.7.1 Methods

In this section, we considered data-driven cross-validation to evaluate and compare the

prediction performance of the selection methods: COLRNS, LASSO, Elastic net, and BKMR.

We apply nested cross-validation to the same NHANES data considerd in section 3.6 which

include 18 environmental exposures and 18 confounders of 11, 039 people. We randomly divide

the data into 10 folds. 9 folds are used as a training set to fit the model and remaining one

fold is set as a test set. In this study, since we focus on evaluating prediction performance, we

penalize not only 18 environmental exposures, but also 18 confounders not forcing them to be

included in the resulting models to increase prediction performance. We evaluate the prediction

performance of the resulting model in the test set by estimating the mean squared error (MSE)

MSE =
1

m

m∑
i=1

(yi − ŷi)2

where m is the number of observation in the test set. Here, ŷi = xTi β̂ where xi is the vector

of environmental exposures and confounders of the ith observation in the test set. For BKMR,

ŷi = ˆh(zi) + xTi β̂ where ˆh(zi) is the posterior mean of the exposure-response function h(·), zi
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is the vector of environmental exposures and xi is a set of confounders of the ith observation

in the test set. The same procedure is repeated to measure MSE by rotating the role of the

training and test set. The 10 values of MSE estimated from each test set are averaged for the

average prediction error across the 10 folds. We conduct the simulation 20 times independently

in the same manner. The descriptive statistics are calculated and box plots are drawn with the

average prediction errors for each method.

3.7.2 Results

Table XXX shows that the descriptive statistics of the average prediction errors from the

20 repetitions of the nested cross-validation procedure. The COLRNS approach presents the

best performance in prediction with the lowest values for all descriptive statistics including

Q1, median, mean, and Q3 of average prediction errors in comparison to other methods. The

LASSO and Elastic net have the similar values, but Elastic net shows higher values for all

descriptive statistics and also larger variability in Figure 31. The prediction performance of

BKMR is the worst among the methods with the highest Q1, median, mean, and Q3 values

and the largest variance of the average prediction errors.

TABLE XXX: AVERAGE PREDICTION ERROR (10−4)

COLRNS LASSO ELNET BKMR

Q1 425.9 429.8 430.0 440.1

Median 427.0 430.3 431.1 444.2

Mean 426.8 430.5 430.8 442.9

Q3 428.0 431.1 431.8 447.6
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Figure 31: Box plot of average prediction error



CHAPTER 4

HIGH DIMENSIONAL VARIABLE SELECTION IN PRESENCE OF

COLLINEARITY: GENERALIZED LINEAR MODEL

4.1 Introduction

In this chapter, we extend COLRNS to be applicable in the setting of generalized linear

model. In the specific setting of binary outcomes, logistic regression is a popular generalized

linear model using logit-tansformation of a binomial parameter. Fitting a logistic regression

model is a popular approach for addressing classification problems which assume that class

labels take values 0 or 1 [Fan et al., 2009]. Hence, the variable selection for binary outcomes

can also be treated as a classification problem aiming at finding a discriminant function that

accurately classifies future observations [Fan and Lv, 2010]. As a traditional variable selection

problem, it also aims to identify all important variables and to precisely estimate the coefficients

of those variables [Fan and Lv, 2010].

4.2 COLRNS-GLM

4.2.1 Generalized Linear Models

We assume that the random variable y is from an exponential family. The probability

density function taking the canonical from is given by

fY (y; θ) = exp

{
yθ − b(θ)

φ
+ c(y, φ)

}

111
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for some known functions b(·), c(·), and unknown function θ. We assume the dispersion pa-

rameter φ = 1 without loss of generality and each predictor is standardized with mean 0 and

variance 1 as before. We consider the problem of estimating β = (β1, . . . , βp) from the following

generalized linear model

E(y|x) = b′(θ(x)) = g−1
( p∑
j=1

βjxj

)

where x = (x1, . . . , xp)
T represents p covariates. When g is canonical link meaning g = (b′)−1,

then θ(x) =
∑p

j=1 βjxj .

Fan et al. [2009] mention that from the form of the likelihood function of a generalized linear

model, it is obvious that modeling the relationship between Y and (X1, . . . , Xp)
T amounts to

minimizing a negative pseudo-likelihood function which has the form

Q(β0,β) =
1

n

n∑
i=1

l(yi,x
T
i β)

where β = (β1, . . . , βp). We have in general that

l(yi,x
T
i β) = {b(θ(g−1(xTi β))− yiθ(g−1(xTi β))}.

If we have the canonical link function, g(·) = θ(·), then it simplifies to

l(yi,x
T
i β) = {b(xTi β)− yiθ(xTi β)}.
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In the logistic regression model with the response taking 0 or 1, we have the form

l(yi,x
T
i β) = {log(1 + ex

T
i β)− yixTi β}.

4.2.2 COLRNS-GLM: Learning with Maximum Marginal Likelihood Estimator

We propose to use learning with the maximum marginal likelihood estimator (MMLE) [Fan

et al., 2009]. The MMLE is defined as the minimizer of the component-wise regression

β̂Mj = arg min
βo,βj

1

n

n∑
i=1

l(β0 + xijβj , yi)

where l(y; θ) = −[yθ − b(θ) − logc(y)] and xi = (xi1, . . . , xip)
T . Here, l can be regarded as

the loss of adopting β0 + xTi β to predict yi. These estimators can be ranked according to the

size of MMLE. As the size is smaller, the corresponding variable is more important to predict

the response. We use the method to figure out the marginal utilities in the generalized linear

model with binary responses. The feature that has the least value of MMLE is chosen as the

lead variable, which is corresponding to the selection of the lead variable through correlation

learning under continuous outcomes in Section 3.3.2.

4.2.3 COLRNS-GLM: Selection

Once we identify the lead variable with the least MMLE, correlation learning with the lead

variable and the remaining predictors are performed to detect the lead cluster. The procedures

are exactly the same as the case of continuous outcomes in Section 3.3.3. After we screen features

by identifying the lead cluster, we perform variable selection on the screened features in the
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cluster using penalized likelihood [Fan et al., 2009]. Let x1, . . . , xd denote a set of variables on

which we perform selection. In the penalized likelihood approach, we aim to minimize

l(β0,β) =
1

n

n∑
i=1

l(β0 + xTi,dβ, yi) +
d∑
j=1

pλ(|βj |)

where pλ(·) is a penalty function, λ > 0 is a regularization parameter, xi,d = (xi1, . . . , xid)
T ,

and β = (β1, . . . , βd)
T . As introduced in Section 3.3.4, we consider combining the l2 penalty

with another penalty. The penalty function pλ(·) can be written as

pλ(|βj |) = λ(1− α)β2j + αqλ(|βj |)

where α ∈ [0, 1] is a parameter that can be varied. The other penalty function can be l1 penalty

qλ(|βj |) = λ|β| [Tibshirani, 1996, Park and Hastie, 2007], SCAD penalty [Fan and Li, 2001],

which is symmetric with qλ(0) = 0 and a quadratic spline whose first order derivative is given

by

q′λ(|β|) = λ

{
I{|β|≤λ} +

(aλ− |β|)+
(a− 1)λ

I{|β|>λ}
}

for some α > 2 and |β| > 0, or MCP penalty [Zhang, 2007], q′λ(|β|) = (λ− |β|/α)+.

4.2.4 COLRNS-GLM: Iterative Feature Selection

We apply iterative cluster based selection that is introduced in Section 3.3.5 to generalized

linear models. For iterative application of cluster based selection in linear model, we utilize

residuals based on the fitted model using variables selected in previous steps. However, such a



115

residual based approach is not immediately generalized in the GLM setting. Let Sk denote a

set of selected variables from the kth implementation of selection, Ck be the kth lead cluster,

and Ak+1 be the active set on which we search for the (k + 1)th lead variable as described in

Section 3.3.5. Instead of residuals, in COLRNS-GLM we consider

β̂
(k+1)
Mj = arg min

β0,βj

1

n

n∑
i=1

l(β0 + xTi,Sk
βSk

+ xijβj , yi)

for j ∈ Ak+1 = {1, . . . , p} \ (Sk ∪ Ck), where xi,Sk
is the sub-vector of Xi corresponding to the

variables in Sk. The estimated coefficient β̂
(k+1)
Mj can be regarded as the additional contribution

of the jth predictor Xj given the existence of the set Sk which contains previously selected

variables. We use the coefficients as marginal utilities and choose the lead variable which has

the smallest marginal utility. Once the new lead variable is identified, we iterate the procedures

of cluster detection and selection as described in the conceptual diagram in Figure 3.

4.3 Simulations for Performance Evaluation

We evaluate and compare performance of COLRNS-GLM with LASSO, Elastic net, SCAD,

MCP, SIS-LASSO, SIS-SCAD, SIS-MCP, and Group LASSO in simulated data sets. The

performance of the model resulted by the methods is evaluated after 100 simulations in three

different areas as in simulations in Chapter 3: prediction, parameter estimation, and selection

of variables of true signal.
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4.3.1 Data Generation Model

For simulations, the data are generated from the generalized linear model described in

Section 4.2.1

E(y|x) = b′(θ(x)) = g−1
( p∑
j=1

βjxj

)

where x = (x1, . . . , xp)
T is p-dimensional covariate and each predictor is standardized with

mean 0 and variacne 1. When g is canonical link meaning g = (b′)−1, then θ(x) =
∑p

j=1 βjxj .

As the outcome is binary, we use the logit link for the canonical link function, that is, g(µ) =

log(µ/(1− µ)) where µ = E(y|x).

The number of observations in the data set is n = 500 which are equally divided into training

and test sets. The training set is used to fit the model and the fitted model is evaluated on

the test set. We consider four scenarios by varying the number of predictors p, the number of

groups of strongly correlated predictors q, and the true coefficient values β = (β1, β2, . . . , βp)
T .

When there are q number of groups which are denoted by G1, . . . , Gq, we assume that predictors

are strongly correlated within a group. The within group pairwise correlation Corr(Xi, Xj) is

taken as 0.6 in Scenario 1, 2, and 4, and 0.8 in Scenario 3. Two predictors from different

groups are weakly correlated with the correlation coefficient 0.2. The details of each simulation

scenario are described as follows.
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• Scenario 1: The number of predictors p = 30. There are three groups where each group

has 10 strongly correlated predictors. The true regression coefficients are given by

β = (0.5, 0.5, 0.5︸ ︷︷ ︸
3

, 0, · · · , 0︸ ︷︷ ︸
7

) for G1, G2, G3.

• Scenario 2: We have three groups of 10 strongly correlated predictors as in Scenario 1.

The data generating regression coefficients are set as

β = (0.5, 0, 0, 0, 0, 0.5, 0, 0, 0, 0) for G1, G2, G3.

• Scenario 3: There are 30 predictors with the three groups of 10 strongly correlated

predictors as the same as in the previous two scenarios. The data generating regression

coefficients are smaller and not sparse which are described as

β = (0.05, · · · , 0.05︸ ︷︷ ︸
5

, 0, · · · , 0︸ ︷︷ ︸
5

) for G1, G2, G3.
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• Scenario 4: The number of predictors p is 100. There are five groups of strongly corre-

lated predictors with each group having 20 variables within a group. The data generating

true regression coefficients are set as

β = (0.06, 0.06, 0.06︸ ︷︷ ︸
3

, 0, · · · , 0︸ ︷︷ ︸
17

) for G1, G2, . . . , G5.

4.3.2 Evaluation Criteria

4.3.2.1 Prediction

As the outcome is binary taking value either 0 or 1, we can create the confusion matrix

Table XXXI by comparing the true value of outcome to the predicted one. Based on this

confusion matrix, we compute prediction accuracy to access prediction performance. Accuracy

is a typical performance metric for classifiers [Hernandez-Orallo et al., 2012]. It indicates

the percentage of the cases that are correctly predicted among all cases. The measurement is

described as follows

Prediction Accuracy =
Number of true positive + Number of true negative

Number of all cases
.
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TABLE XXXI: CONFUSION MATRIX

Predicted Class

1 0

True Class 1 True positive False negative

0 False positive True negative

4.3.2.2 Parameter Estimation

We use the RMSE as descibed in section 3.5.2.2 to assess estimation accuracy of the pa-

rameters β = (β1, β2, . . . , βp)
T in the generalized linear model.

4.3.2.3 Variable Selection

The same metrics described in section 3.5.2.3 are used to evaluate the performance of vari-

able selection: sensitivity, specificity, false discovery rate, false negative rate. These measures

are computed based on the confusion matrix Table XXXI by comparing the true versus pre-

dicted class of each variable.

4.3.3 Simulation Results

The COLRNS-GLM performs the best in terms of prediction performance by having the

highest level of prediction accuracy across all scenarios. It shows the highest Q1, median, mean,

and Q3 of prediction accuracy in Scenario 1 with 3 groups of correlated predictors of relatively

large signals, and also in Scenario 3 with the predictors of less sparse and weak signals. The

results are similar with the largest median, mean, and Q3 in Scenario 2, and the greatest Q3

of prediction accuracy in Scenario 3.
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The SIS-MCP illustrates poor prediction performance with the lowest Q1, median, mean,

and Q3 of prediction accuracy in Scenarios 1, 2, and 3 with 30 predictors in 3 groups, and the

smallest median and Q3 in Scenario 4 having 100 predictors in 5 groups. The LASSO also has

bad performance in prediction with the least Q3 in Scenario 2, and the worst Q1 and mean

accuracy in Scenario 4.

The COLRNS-GLM demonstrates the best ability in accurate estimation of parameters by

obtaining the least RMSE in Scenario 1 and 2 with relatively large sparse signals in comparison

to the other selection methods. In Scenarios 3 and 4 with weak signals, the estimation error is

slightly larger than LASSO, Elastic net, and SIS combined methods, however, it is far less than

MCP, SCAP and Group LASSO which show poor performance in precise parameter estimation.

For variable selection performance, COLRNS-GLM yields high sensitivity across all scenar-

ios. When the true signals are sparse and large, it shows as good performance as Elastic net in

Scenarios 1 and 2. In Scenario 1, it gives the largest Q1, median, and Q3 of sensitivity, and the

greatest Q1 and Q3 in Scenario 2. It also demonstrates its ability of detecting true signals even

when the true signals are weak by having the largest values for all the descriptive statistics of

sensitivity in Scenarios 3 and 4.

In Scenarios 1 and 2, COLRNS-GLM and Elastic net have similar results for sensitivity as

mentioned before, however, COLRNS improves specificity with the larger Q1, median, mean,

and Q3 values compared to Elastic net resulting in more robust outcomes with less IQR values in

both scenarios. Thus, COLRNS-GLM has better ability of screening out unimportant variables

than Elastic net when there are correlated predictors of sparse and large signals.
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In Scenarios 3 and 4, there are some cases where none of important predictors are chosen

because of their weak signals. Table XXXII presents the number of cases in which none of the

predictors are selected for each method out of 100 simulations. The LASSO has the highest

tendency to filter out influential predictors when their signals are weak, which is followed by

Elastic net. There is no case in which the SIS combined methods choose no predictors, however,

their sensitivity measures are not as good as those of COLRNS in both scenarios. Group LASSO

always selects some of variables in Scenario 3, but when the signals of critical predictors are

more sparse and weaker, none are chosen with high probability in Scenario 4. It results in the

largest variability in its variable selection performance.

We remove the cases where no variables are chosen for drawing the plots of FDR since

those cases turn out invalid values with the denominator equal to zero. The COLRNS has the

least level of FNR as Elastic net in Scenarios 1 and 2, however, it improves the Q3 of FDR

compared to Elastic net. In Scenarios 3 and 4 having the predictors of weak signals, COLRNS

still presents the smallest FNR measures while showing comparable FDR values with the similar

median and mean of FDR in comparison to Elastic net, SCAD, and MCP.

TABLE XXXII: THE CASES OF NONE OF THE PREDICTORS ARE CHOSEN

Scenario 3

COLRNS LASSO ELNET SCAD MCP S-LASSO S-SCAD S-MCP G-LASSO

Frequency 4 34 31 4 6 0 0 0 0

Scenario 4

COLRNS LASSO ELNET SCAD MCP S-LASSO S-SCAD S-MCP G-LASSO

Frequency 6 52 38 12 20 0 0 0 33



TABLE XXXIII: PREDICTION ACCURACY IN SCENARIO 1

COLRNS LASSO ELNET SCAD MCP S-SCAD S-MCP S-LASSO G-LASSO

Q1 0.788 0.792 0.784 0.780 0.772 0.780 0.763 0.788 0.776

Median 0.804 0.804 0.804 0.796 0.790 0.794 0.780 0.800 0.792

Mean 0.806 0.802 0.804 0.795 0.790 0.797 0.778 0.801 0.792

Q3 0.824 0.816 0.821 0.816 0.808 0.812 0.800 0.820 0.809

TABLE XXXIV: RMSE OF PARAMETER ESTIMATION IN SCENARIO 1

COLRNS LASSO ELNET SCAD MCP S-SCAD S-MCP S-LASSO G-LASSO

RMSE 1.05 1.08 1.09 1.38 1.50 1.08 1.14 1.27 1.21

122



TABLE XXXV: VARIABLE SELECTION MEASUREMENTS IN SCENARIO 1

COLRNS LASSO ELNET SCAD MCP S-SCAD S-MCP S-LASSO G-LASSO

Sensitivity

Q1 0.889 0.778 0.889 0.667 0.556 0.667 0.444 0.444 1.000

Median 0.889 0.889 0.889 0.778 0.667 0.778 0.444 0.444 1.000

Mean 0.902 0.837 0.924 0.797 0.622 0.787 0.498 0.498 1.000

Q3 1.000 0.889 1.000 0.889 0.778 0.889 0.556 0.556 1.000

Specificity

Q1 0.524 0.714 0.381 0.762 0.857 0.762 0.905 0.714 0.000

Median 0.619 0.786 0.571 0.810 0.905 0.810 0.952 0.810 0.000

Mean 0.601 0.777 0.541 0.796 0.884 0.812 0.940 0.782 0.000

Q3 0.714 0.857 0.714 0.857 0.952 0.857 1.000 0.810 0.000

False Discovery Rate

Q1 0.435 0.333 0.429 0.273 0.167 0.273 0.000 0.333 0.700

Median 0.500 0.364 0.513 0.364 0.293 0.364 0.200 0.364 0.700

Mean 0.494 0.372 0.508 0.352 0.275 0.343 0.211 0.368 0.700

Q3 0.556 0.442 0.602 0.442 0.400 0.417 0.333 0.429 0.700

False Negative Rate

Q1 0.000 0.111 0.000 0.111 0.222 0.111 0.444 0.111 0.000

Median 0.111 0.111 0.111 0.222 0.333 0.222 0.556 0.222 0.000

Mean 0.098 0.163 0.076 0.203 0.378 0.213 0.502 0.176 0.000

Q3 0.111 0.222 0.111 0.333 0.444 0.333 0.556 0.222 0.000
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Figure 32: Prediction accuracy in scenario 1

Figure 33: RMSE of parameter estimation in scenario 1
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(a) Sensitivity (b) Specificity

(c) False discovery rate (d) False negative rate

Figure 34: Variable selection measurements in scenario 1



TABLE XXXVI: PREDICTION ACCURACY IN SCENARIO 2

COLRNS LASSO ELNET SCAD MCP S-SCAD S-MCP S-LASSO G-LASSO

Q1 0.724 0.724 0.728 0.724 0.716 0.719 0.707 0.727 0.720

Median 0.744 0.740 0.744 0.736 0.732 0.736 0.724 0.740 0.732

Mean 0.746 0.741 0.745 0.741 0.736 0.737 0.725 0.740 0.735

Q3 0.764 0.748 0.761 0.757 0.753 0.749 0.748 0.752 0.753

TABLE XXXVII: RMSE OF PARAMETER ESTIMATION IN SCENARIO 2

COLRNS LASSO ELNET SCAD MCP S-SCAD S-MCP S-LASSO G-LASSO

RMSE 0.89 0.90 0.92 1.04 1.12 0.89 0.93 0.98 1.02
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TABLE XXXVIII: VARIABLE SELECTION MEASUREMENTS IN SCENARIO 2

COLRNS LASSO ELNET SCAD MCP S-SCAD S-MCP S-LASSO G-LASSO

Sensitivity

Q1 0.833 0.833 0.833 0.792 0.500 0.667 0.500 0.500 1.000

Median 0.917 0.833 1.000 0.833 0.667 0.833 0.500 0.500 1.000

Mean 0.907 0.852 0.947 0.828 0.675 0.808 0.537 0.537 1.000

Q3 1.000 1.000 1.000 1.000 0.833 0.833 0.667 0.667 1.000

Specificity

Q1 0.583 0.792 0.500 0.750 0.875 0.792 0.917 0.792 0.000

Median 0.667 0.833 0.646 0.833 0.917 0.833 0.958 0.833 0.000

Mean 0.674 0.825 0.615 0.821 0.912 0.842 0.957 0.820 0.000

Q3 0.750 0.875 0.750 0.875 0.958 0.917 1.000 0.875 0.000

False Discovery Rate

Q1 0.538 0.375 0.500 0.375 0.167 0.333 0.000 0.375 0.800

Median 0.583 0.444 0.600 0.444 0.333 0.444 0.250 0.455 0.800

Mean 0.572 0.435 0.578 0.440 0.309 0.422 0.224 0.440 0.800

Q3 0.647 0.500 0.671 0.538 0.429 0.500 0.400 0.500 0.800

False Negative Rate

Q1 0.000 0.000 0.000 0.000 0.167 0.167 0.333 0.000 0.000

Median 0.083 0.167 0.000 0.167 0.333 0.167 0.500 0.167 0.000

Mean 0.093 0.148 0.053 0.172 0.325 0.192 0.463 0.147 0.000

Q3 0.167 0.167 0.167 0.208 0.500 0.333 0.500 0.167 0.000
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Figure 35: Prediction accuracy in scenario 2

Figure 36: RMSE of parameter estimation in scenario 2
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(a) Sensitivity (b) Specificity

(c) False discovery rate (d) False negative rate

Figure 37: Variable selection measurements in scenario 2



TABLE XXXIX: PREDICTION ACCURACY IN SCENARIO 3

COLRNS LASSO ELNET SCAD MCP S-SCAD S-MCP S-LASSO G-LASSO

Q1 0.544 0.512 0.516 0.544 0.535 0.516 0.504 0.516 0.516

Median 0.566 0.540 0.544 0.564 0.564 0.548 0.534 0.548 0.542

Mean 0.566 0.541 0.543 0.564 0.559 0.542 0.533 0.547 0.540

Q3 0.585 0.568 0.576 0.584 0.584 0.568 0.564 0.577 0.572

TABLE XL: RMSE OF PARAMETER ESTIMATION IN SCENARIO 3

COLRNS LASSO ELNET SCAD MCP S-SCAD S-MCP S-LASSO G-LASSO

RMSE 0.26 0.21 0.20 0.62 0.70 0.23 0.21 0.22 0.52
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TABLE XLI: VARIABLE SELECTION MEASUREMENTS IN SCENARIO 3

COLRNS LASSO ELNET SCAD MCP S-SCAD S-MCP S-LASSO G-LASSO

Sensitivity

Q1 0.133 0.000 0.000 0.133 0.067 0.000 0.000 0.000 0.333

Median 0.133 0.067 0.133 0.133 0.067 0.067 0.067 0.067 0.667

Mean 0.199 0.071 0.176 0.162 0.099 0.080 0.044 0.044 0.670

Q3 0.267 0.133 0.267 0.200 0.133 0.133 0.067 0.067 1.000

Specificity

Q1 0.783 0.933 0.800 0.800 0.867 0.933 0.933 0.867 0.000

Median 0.867 1.000 0.933 0.867 0.933 0.933 1.000 0.933 0.333

Mean 0.837 0.947 0.855 0.873 0.929 0.945 0.979 0.927 0.330

Q3 0.933 1.000 1.000 0.933 1.000 1.000 1.000 1.000 0.667

False Discovery Rate

Q1 0.333 0.050 0.333 0.277 0.000 0.000 0.000 0.000 0.500

Median 0.453 0.333 0.462 0.437 0.500 0.333 0.000 0.333 0.500

Mean 0.428 0.400 0.441 0.430 0.390 0.321 0.202 0.342 0.500

Q3 0.556 0.500 0.545 0.600 0.593 0.500 0.375 0.518 0.500

False Negative Rate

Q1 0.733 0.867 0.733 0.800 0.867 0.867 0.933 0.867 0.000

Median 0.867 0.933 0.867 0.867 0.933 0.933 0.933 0.933 0.333

Mean 0.801 0.929 0.824 0.838 0.901 0.920 0.956 0.907 0.330

Q3 0.867 1.000 1.000 0.867 0.933 1.000 1.000 1.000 0.667
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Figure 38: Prediction accuracy in scenario 3

Figure 39: RMSE of parameter estimation in scenario 3
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(a) Sensitivity (b) Specificity

(c) False discovery rate (d) False negative rate

Figure 40: Variable selection measurements in scenario 3



TABLE XLII: PREDICTION ACCURACY IN SCENARIO 4

COLRNS LASSO ELNET SCAD MCP S-SCAD S-MCP S-LASSO G-LASSO

Q1 0.520 0.488 0.496 0.532 0.516 0.495 0.492 0.496 0.503

Median 0.556 0.520 0.528 0.560 0.548 0.520 0.518 0.522 0.524

Mean 0.556 0.521 0.533 0.558 0.546 0.524 0.522 0.528 0.523

Q3 0.584 0.552 0.568 0.581 0.572 0.546 0.544 0.553 0.548

TABLE XLIII: RMSE OF PARAMETER ESTIMATION IN SCENARIO 4

COLRNS LASSO ELNET SCAD MCP S-SCAD S-MCP S-LASSO G-LASSO

RMSE 0.28 0.25 0.24 0.37 0.41 0.25 0.25 0.25 0.38
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TABLE XLIV: VARIABLE SELECTION MEASUREMENTS IN SCENARIO 4

COLRNS LASSO ELNET SCAD MCP S-SCAD S-MCP S-LASSO G-LASSO

Sensitivity

Q1 0.067 0.000 0.000 0.067 0.000 0.000 0.000 0.000 0.000

Median 0.133 0.000 0.067 0.100 0.000 0.000 0.000 0.000 0.400

Mean 0.129 0.036 0.085 0.103 0.047 0.038 0.017 0.017 0.408

Q3 0.200 0.067 0.133 0.133 0.067 0.067 0.000 0.000 0.650

Specificity

Q1 0.847 0.976 0.906 0.906 0.965 0.976 0.988 0.965 0.350

Median 0.924 1.000 0.976 0.929 0.976 0.988 1.000 0.988 0.600

Mean 0.902 0.984 0.945 0.935 0.974 0.983 0.992 0.978 0.592

Q3 0.965 1.000 1.000 0.965 0.988 1.000 1.000 1.000 1.000

False Discovery Rate

Q1 0.701 0.500 0.704 0.692 0.600 0.000 0.000 0.000 0.850

Median 0.800 0.667 0.778 0.778 0.750 0.500 0.000 0.612 0.850

Mean 0.775 0.701 0.756 0.772 0.758 0.475 0.349 0.486 0.850

Q3 0.887 1.000 0.851 0.875 1.000 0.839 1.000 0.800 0.850

False Negative Rate

Q1 0.800 0.933 0.867 0.867 0.933 0.933 1.000 0.933 0.350

Median 0.867 1.000 0.933 0.900 1.000 1.000 1.000 1.000 0.600

Mean 0.871 0.964 0.915 0.897 0.953 0.962 0.983 0.956 0.592

Q3 0.933 1.000 1.000 0.933 1.000 1.000 1.000 1.000 1.000
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Figure 41: Prediction accuracy in scenario 4

Figure 42: RMSE of parameter estimation in scenario 4
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(a) Sensitivity (b) Specificity

(c) False discovery rate (d) False negative rate

Figure 43: Variable selection measurements in scenario 4
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4.4 Data Application: Great Lakes Fish Consumer Study

4.4.1 Introduction

Consumption of fish is a source of exposure to environmental mixtures including persis-

tent organic pollutants such as polychlorinated biphenyls (PCBs), p,p’-diphenyldichloroethene

(DDE), and polybrominated diphenyl ethers (PBDEs). These pollutants have been shown to

potentially cause carcinogenic effects increase, neurologic disorders, and endocrine homeostasis

disruption [Hanrahan et al., 1999]. The Great Lakes Fish Consumer Study (GLFCS) follows a

cohort of 4, 206 frequent and infrequent sport fish consumers collecting longitudinal data since

1994 as part of a health assessment consortium of the Health Departments of Wisconsin, Illi-

nois, Indiana, Ohio, and Michigan [Hanrahan et al., 1999]. The data include information of

PCB, DDE, and PBDE biomarkers, fish consumption, health status and extensive measures

of endocrine and metabolic function of fish consumers. These data have been analyzed using

methods that employ summation of the exposures by chemical group, i.e., PCBs or PBDEs, as

well as analysis of some individual chemicals [Turyk et al., 2009].

4.4.2 Statistical Analysis

We investigate associations between environmental mixtures and diabetes incidence in the

GLFCS cohort. The 598 GLFCS participants donated blood samples: 91 participants in 2001-

2003 and 507 in 2004-2005. We study the endpoint of diagnosed diabetes which is recorded

as a binary indicator 0 (No diabetes) or 1 (Diabetes). The available exposure measurements

in the serum samples contain PCBs (24 congeners), DDE, and PBDEs (6 congeners). The

environmental exposure measurements that are below the Level of Detection (LOD) are imputed
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as LOD divided by the square root of 2 in accordance with the approach taken by the NHANES.

The details of exposure assessment are described in Hanrahan et al. [1999].

We consider 508 participants with non-misssing data on environmental exposure variables.

We exclude three exposures (PBDE49, PBDE85, and PCB128) which show strongly skewed

distributions. The remaining exposure measurements are (natural) log-transformed. The dis-

tribution of the log-transformed exposure measurements are shown in Figure 45 and Figure 46.

We observed moderate to strong positive pairwise correlations among the PBDEs and PCBs,

however, the correlation between the PBDE and the PCB group is found to be negative (Fig-

ure 1). The reason for the negative correlation between the two groups may be caused by

different exposures sources: PCBs from food and fish, and PBDEs from consumer products in

the home.

Among the 508 participants, 64 people (13%) have diagnosed diabetes. Almost 70% of the

participants are male (352 male, 156 female). We analyze these data by applying the following

comparator methods: COLRNS-GLM, LASSO, Elastic net, SCAD, and MCP. The following

variables are taken as confounders adjusted in the analysis model: participants’ gender, age,

BMI, and the level of serum lipids. The distributions of the continuous confounders are shown

in Figure 44. The predictors and confounders are scaled to have mean 0 and variance 1 for

analysis. All 28 environmental exposures (22 PCBs, 1 DDE, 5 PBDEs) and 4 confounders are

penalized by the selection methods to fit the model. We also fit a generalized linear model

(with regularization) for comparison purpose.
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Figure 44: Histogram of continuous confounders

Figure 45: Histogram of log-transformed PBDEs and DDE exposures
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Figure 46: Histogram of log-transformed PCBs exposures



142

4.4.3 Analysis Results

We investigate the degree of collinearity in the 28 environmental exposures by estimating

the condition number from the correlation matrix of the exposures. The condition number

obtained by the square root of the ratio of the maximum to minimum eigenvalues gives 42.526.

It indicates that there exists strong collinearity among the predictors in the data. While usual

(not regularized) generalized linear model analysis in Table XLV finds that among the 28

environmental exposures, only PBDE100 is significantly associated with diabetes incidence, this

analysis may have been affected by this high collinearity and the resulting inflated standard

errors.

Table XLV shows that regularized LASSO, Elastic net, and SCAD methods all select the

same set of exposures: PBDE153, PCB167, DDE. Increase of PBDE153 is negatively associated

with diabetes and increases to PCB167 and DDE are associated positively with diabetes. The

absolute values of the estimated coefficients are highest for Elastic net (PBDE153 β = −0.0878,

PCB167 β = 0.1117, DDE β = 0.1824) followed by LASSO (PBDE153 β = −0.0807, PCB167

β = 0.1108, DDE β = 0.1710) and SCAD (PBDE153 β = −0.0097, PCB167 β = 0.1069,

DDE β = 0.0191). The MCP only chooses PCB167 as a significant exposure having positive

association with diabetes (PCB167 β = 0.1291).

The COLRNS-GLM selects the three exposures chosen by LASSO, Elastic net, and SCAD

(PBDE153 β = −0.1301, PCB167 β = 0.1353, DDE β = 0.2221) and one additional exposure

(PCB196203 β = −0.0424). The absolute coefficients of the three common exposures are greater

than those from Elastic net. The PCB167 and DDE are positively associated with diabetes
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by having odds ratios e0.1353 = 1.145 and e0.2221 = 1.249, respectively. That is, one standard

deviation increase to PCB167 raises odds of diabetes about 15% and it becomes higher about

25% for the increase of DDE.

For confounders, COLRNS-GLM, LASSO, Elastic net choose all four confounders age, sex

female, BMI, serum lipids, however, SCAD and MCP only select age and BMI. The directions

of association are the same across the five selection methods. Increased age and BMI show

positive associations with diabetes, however, being female and higher serum lipids are negatively

associated with diabetes. For COLRNS, the odds ratio of diabetes is e0.5579 = 1.747 and

e0.5837 = 1.793 for one standard deviation increase of age and BMI, respectively. For being

female, the odds ratio is e−0.0986 = 0.906 which means the odds of diabetes is about 9%

decreased for female than male.
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TABLE XLV: RESULTS OF GENERALIZED LINEAR REGRESSION

Variable Estimate z-value p-value

Intercept -2.61 -11.89 0.000

Age 0.64 3.08 0.002
Sex (female) -0.23 -1.06 0.290
BMI 0.73 4.12 0.000
Lipid -0.08 -0.39 0.699

PBDE28 -0.24 -1.17 0.241
PBDE47 -0.48 -1.57 0.115
PBDE99 0.02 0.09 0.925
PBDE100 0.61 1.82 0.069
PBDE153 -0.31 -1.26 0.207

PCB206 0.00 -0.01 0.991
PCB118 0.33 0.94 0.348
PCB132153 -1.96 -1.08 0.282
PCB146 -0.45 -0.87 0.385
PCB74 -0.17 -0.48 0.635
PCB99 -0.03 -0.07 0.948
PCB182187 -0.54 -0.85 0.396
PCB180 0.58 0.60 0.549
PCB194 -0.17 -0.26 0.793
PCB201 1.05 1.49 0.136
PCB138163 1.99 1.22 0.223
PCB170190 -0.63 -1.00 0.319
PCB196203 -0.38 -0.70 0.487
PCB167 0.39 1.40 0.161
PCB66 -0.08 -0.56 0.576
PCB177 0.19 0.31 0.755
PCB202171 0.05 0.12 0.904
PCB172 -0.24 -0.45 0.653
PCB178 0.28 0.50 0.618
PCB183 0.07 0.09 0.927
PCB193 0.17 0.36 0.722
PCB208195 -0.37 -1.39 0.164

DDE 0.40 1.47 0.143
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TABLE XLVI: REGRESSION COEFFICIENTS FROM THE PENALIZED VARIABLE SE-
LECTION METHODS

COLRNS LASSO ELNET SCAD MCP

Intercept -2.2779 -2.2170 -2.2067 -2.3496 -2.3509

Age 0.5579 0.5208 0.4908 0.7906 0.7941
Sex (female) -0.0986 -0.0445 -0.0635 . .
BMI 0.5837 0.5503 0.5313 0.7246 0.7266
Lipid -0.0777 -0.0376 -0.0502 . .

PBDE28 . . . . .
PBDE47 . . . . .
PBDE99 . . . . .
PBDE100 . . . . .
PBDE153 -0.1301 -0.0807 -0.0878 -0.0097 .

PCB206 . . . . .
PCB118 . . . . .
PCB132153 . . . . .
PCB146 . . . . .
PCB74 . . . . .
PCB99 . . . . .
PCB182187 . . . . .
PCB180 . . . . .
PCB194 . . . . .
PCB201 . . . . .
PCB138163 . . . . .
PCB170190 . . . . .
PCB196203 -0.0424 . . . .
PCB167 0.1353 0.1108 0.1117 0.1069 0.1291
PCB66 . . . . .
PCB177 . . . . .
PCB202171 . . . . .
PCB172 . . . . .
PCB178 . . . . .
PCB183 . . . . .
PCB193 . . . . .
PCB208195 . . . . .

DDE 0.2221 0.1710 0.1824 0.0191 .
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4.5 Cross-validation Study

4.5.1 Methods

We conduct cross-validation study with the GLFCS data following an approach similar to

section 3.7. The goal is to evaluate and compare the prediction performance of the selection

methods when the methods are applied in the data with binary outcomes.

We consider nested cross-validation in this study. The data of 508 participants are randomly

split into 5 folds with 4 folds being used as training set and the remaining 1 fold used as a test set.

Penalized selection methods, COLRNS-GLM, LASSO, Elastic net, SCAD, and MCP are applied

in the training set to fit models. The confounders are not forced to be included in the models

so that whether to select each of 32 covariate (28 environmental exposures, 4 confounders)

is depending on each method. We do not forcibly control for confounders to increase the

ability of prediction rather than interpretation of the model in the simulations. The prediction

performance of the resulting model is evaluated in the test set by estimating the measure of

prediction accuracy we use in Section 4.3.2. The same simulation is repeated by alternating

the test and training set. Then the five prediction accuracy measures are averaged. After

performing the same simulation procedures 20 times independently, the descriptive statistics of

the average prediction accuracy are found for each penalized selection method.

4.5.2 Results

Table XXX presents the descriptive statistics of the average prediction accuracy measures

from the simulations. The SCAD and MCP show poor prediction performance by showing

the lowest Q1, mean, median, and Q3 values of the average prediction accuracy compared to
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the remaining three methods: COLRNS-GLM, LASSO, and Elastic net. The two methods

also show very large variance of the average accuracy measures as shown in Figure 47. The

COLRNS-GLM has the highest average prediction accuracy as an outlier across all comparing

methods. Without the outlier, COLRNS-GLM, LASSO, and Elasitc net indicate comparable

performance in prediction, however, COLRNS-GLM still shows the higher mean and Q3 of the

averaged prediction accuracy than LASSO and Elastic net.

TABLE XLVII: AVERAGE PREDICTION ACCURACY

COLRNS LASSO ELNET SCAD MCP

Q1 0.873966 0.873966 0.873966 0.866084 0.866143

Median 0.874005 0.874005 0.874005 0.868152 0.868132

Mean 0.874099 0.874000 0.874000 0.868582 0.868287

Q3 0.874063 0.874034 0.874034 0.872030 0.870127

Figure 47: Box plot of average prediction error
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Figure 48: Box plot of average prediction error without an outlier



CHAPTER 5

CONCLUSION AND DISCUSSION

We develop COrrelation LeaRNing for variable Selection (COLRNS) to handle many sta-

tistical challenges from unstable estimates of regression parameters caused by high dimensional

data analysis that frequently involves strong collinearity among predictors. It performs vari-

able selection using the cluster of correlated predictors that is identified by correlation learning.

The cluster based selection is to leverage the advantage of reduced degree of collinearity in the

cluster in comparison to that in the entire predictors. We especially use the l2 penalization

which is effective for stabilizing the estimates under strong collinearity by combining it with

another penalty to select a subset of variables. The cluster identification and variable selection

are iterated to improve selection performance and to decrease squared error loss of the result-

ing model. As an extension of COLRNS for linear regression setting, COLRNS-GLM is also

developed to apply the method to the generalized linear regression setting, especially to deal

with the data of dichotomous outcomes.

We investigate the performance of COLRNS and COLRNS-GLM in an extensive set of

simulations according to three areas: prediction, variable selection, and parameter estimation.

The methods show better performance in predicting of future outcomes in comparison to other

penalized variable selection methods. They demonstrate great ability of selecting predictors

with true signals by showing high sensitivity and low false negative rate. They also improve the

chance of screening out unimportant variables compared to Elastic net when predictors of many

149
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weak effects are strongly correlated in multiple groups, which increases robustness of variable

selection. They further show good performance in accurate estimation of regression parameters

with low level of error compared to other methods.

The methods COLRNS and COLRNS-GLM are applied to two real-world environmental

data sets which are characterized by having strongly correlated high dimensional environmental

exposures of weak individual effect. The results indicate that the methods are more selective in

choosing key environmental pollutants that are associated with health outcomes compared to

other penalized selection methods with lower error of the resulting model. The selection can also

be applied to confounders. The results indicate that the confounders considered to affect health

outcomes are effectively chosen by the methods. We additionally conduct nested cross-validation

studies with the two real-world data sets to examine the out-of-sample prediction performance

of the methods. Both COLRNS and COLRNS-GLM present greater performance of prediction

than other compared methods by having lower prediction error and higher prediction accuracy,

respectively.

Considering that the risk assessment of multichemical exposures such as hazard identifi-

cation or dose-response assessment are being more widely conducted to address health con-

cerns [Choudhury et al., 2000], the methods can be effectively applied to mixtures studies

where we want to identify risk chemicals and assess their relative associations with health out-

comes. The estimated models from the methods can also be usefully deployed in prediction or

classification of health risk in public health studies. Moreover, the methods can be broadly uti-

lized in other areas of science that involve high dimensional data given that the methods show
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improved performance on the major issues in high dimensional statistical learning: improving

the accuracy of estimated model parameters and reducing the expected loss of the estimated

model [Fan and Li, 2006,Fan and Lv, 2010].

For potential future studies, COLRNS-GLM can be extended to deal with various types of

multicategorical responses in a generalized linear regression setting. As longitudinal data are

more commonly collected in diverse areas, we can also consider the extensions of COLRNS and

COLRNS-GLM that are applicable to longitudinal data.
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APPENDIX

ROC CURVES FOR VARIABLE SELECTION

We evaluated the performance of COLRNS regarding variable selection by examining the

sensitivity, specificity, false discovery rate, and false negative rate in simulations. In this Ap-

pendix, ROC curves are shown for the same scenarios of the simulations in Chapter 3 to further

explore how COLRNS behaves for variable selection in comparison to Elastic net.

As explained before, the key part of COLRNS is that it yields the best model with the

smallest cross-validation error among the models given after iteratively performing the proce-

dures: identification of the lead cluster followed by selection of predictors. In each selection

using the lead cluster, the model is resulted by the two parameters α and λ that are determined

to give the least cross-validation error.

To fully reflect this gist of COLRNS, we adopt a stochastic approach to generate the param-

eter values that are used in each selection step. We use the uniform distribution to generate

the parameters α ∼ U(0.1, 0.9) and λ ∼ U(λmin, λmax) where the minimum and maximum

parameters of the uniform distribution vary according to each scenario. For the parameters of

the uniform distribution to generate λ, we refer to the value λ∗ that results in the final model

when COLRNS applies to each scenario. We set the values of the minimum and maximum pa-

rameters to cover λ∗, but not to have a too wide interval between them so that the parameter

λ is randomly generated and not very far from the value of λ∗ at the same time. The values

of λ∗, λmin, and λmax are provided in Table XLVIII. We apply COLRNS 10, 000 times to the
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APPENDIX (Continued)

data set for each scenario and plot the true positive rate versus false positive rate of variable

selection from the 10, 000 resulting final models. The true positive rate and false positive rate

are obtained by calculating sensitivity and 1− specificity referring to the definition of criteria

in Section 3.5.2.

TABLE XLVIII: PARAMETER INFORMATION FOR GENERATING λ

Scenario λ∗ λmin λmax

1 17.2 5 20

2 17.4 10 25

3 22.0 15 30

4 27.6 15 30

5 8.0 5 20

6 6.0 0.1 15

7 5.3 0.1 15

We investigate the performance of Elastic net over a large domain of parameters α and λ to

use the results as reference. For the parameter values, two dimensional grid is created with 10

values from 0.1 to 0.9 for α and 1, 000 values from 0.1 to λmax for λ according to each scenario

with even intervals. In the same way, the pairs of true positive rate and false positive rate are

plotted from the 10, 000 resulting models which are given by the 10, 000 combinations of the

two parameters on the grid.
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The ROC curves from COLRNS and Elastic net for the 7 scenarios are presented in Figure 49

and Figure 50. In Scenarios 1, 2, 3, and 4 with multiple groups of correlated predictors, the

models from COLRNS tend to have high true positive rate in overall and lower false positive

rate compared to the models given by Elastic net that have the same true positive rate. There

are some models from Elastic net showing high true positive rate which are caused by small

λ values, however, the models have large false positive rate at the same time. In Scenario

5 with one equi-correlated predictors of sparse and strong signals, COLRNS shows similiar

pattern as in Scenario 1 with high true positive rate and relatively low false positive rate.

In Scenario 6 and 7 having equi-correlated predictors with many weak signals, COLRNS and

Elastic net almost overlap in the plots, however, COLRNS still presents relatively large true

positive rate. The points of COLRNS in the plots are located close each other occupying

narrow areas. In overall, the pattern of ROC curves corresponds to the results of simulations

that COLRNS generally shows good performance for detecting important predictors with true

signals improving robustness in variable selection.
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Figure 49: ROC curves for scenarios 1, 2, 3, and 4
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(a) Scenario 5 (b) Scenario 6

(c) Scenario 7

Figure 50: ROC curves for scenarios 5, 6, and 7
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