
Automatic Enemy Item Detection  
 

Using Natural Language Processing  
 
 
 
 

 
 

 
BY 

 
FANG PENG 

B.A., Tsinghua University, 2010 
M.A., Tsinghua University, 2013 

 
 
 
 
 

 
 
 

DISSERTATION 
 

Submitted as partial fulfillment of the requirements  
for the degree of Doctor of Philosophy in Educational Psychology  

in the Graduate College of the  
University of Illinois at Chicago, 2020 

 
Chicago, Illinois 

 
 

 
 
 
 

 
Defense Committee: 

 
  Everett V. Smith, Chair and Advisor 

Kirk A. Becker, Pearson VUE 
Ken A. Fujimoto, Loyola University Chicago 
Yue Yin 
Rebecca M. Teasdale 

   



ii 
 

 
This dissertation is dedicated to my beloved parents, and to everyone who have supported 

me throughout my education.  

Thank you for walking with me through this journey. 

   

 

  



iii 
 

 
ACKNOWLEDGEMENTS 

 
 

First and foremost, I would like to express my heartfelt gratitude to my advisor, 

Prof. Everett Smith, for the continuous support of my doctoral studies and research. Your 

patience, inspiration, and insight has guided me throughout this research and writing of 

this dissertation. I can still remember the excitement you shared when we first talked 

about this research, and your invaluable insight has made it possible for me to transform a 

loose collection of ideas into a worthy research project. I could not have come this far 

without your mentoring and guidance.  

Besides my advisor, I would like to thank each member of my dissertation 

committee. Dr. Kirk Becker, you not only showed me the door to this research topic, but 

also shared your inspiring ideas and suggestions with me generously, which shaped the 

foundation of this research. Thank you for lending your expertise and knowledge to my 

research. Prof. Yue Yin, you have always been an amazing supporter of my doctoral 

study. You are a great teacher and mentor who prepared me with knowledge in 

psychometrics and encouraged me to think more independently as a young researcher. 

Prof. Ken Fujimoto, you were one of my first friends and teammates as I started my 

journey at UIC. I have always looked up to your expertise in psychometrics and enjoyed 

your great personality throughout my doctoral years. Thank you for continuously sharing 

your insights and wisdom with me, both in research and in life. Prof. Rebecca Teasdale, 

thank you for offering your valued expertise, advice, and constructive feedback, which 

have greatly improved my research design and dissertation writing.  



iv 
 

I would like to thank Prof. Rachel Gordon for continuously supporting me and 

training me in research throughout numerous projects. You taught me what it meant to be 

a knowledgeable, organized, and meticulous scholar, and I am deeply indebted to you for 

your coaching and support.  

I would also like to thank my colleagues at NCSBN for their support of this 

research, especially to Dr. Xiao Luo, Dr. Hong Qian, Dr. Doyoung Kim, and Dr. Shu-

chuan Kao, for helping me formulate this research project and offering continuous data 

support. I want to give my sincere thanks to our subject matter experts, Jose, Julie, and 

Kristin, for their diligence in reviewing the enemy item pairs and their invaluable insights 

on enemy relationship identification. This research would not have been possible without 

all of your support.  

Finally, I would like to thank my family for your unconditional love and support 

through everything. Mom, Dad, Ryan, Carrie, David – you are my world.   



 

v 
 

TABLE OF CONTENTS 
 
CHAPTER PAGES 
 

1.  INTRODUCTION .............................................................................................................. 1 

1.1   Enemy Items ............................................................................................................... 1 

1.2   Current Practice for Identifying Enemy Items ............................................................... 2 

1.3   Automatic Enemy Item Detection................................................................................. 4 

1.4   Research Objectives and Significance........................................................................... 6 

2.  REVIEW OF LITERATURE .............................................................................................. 7 

2.1   Background of Natural Language Processing ................................................................ 7 

2.2   Natural Language Processing in Testing ....................................................................... 8 

2.2.1   Automated Essay Scoring................................................................................... 8 

2.2.2   Automatic Item Generation (AIG) .................................................................... 10 

2.2.3   Item Bank Management and Maintenance......................................................... 11 

2.2.4   Item Similarity ................................................................................................. 12 

2.3   Overview of NLP Techniques for Measuring Textual Similarities ............................... 14 

2.3.1   Vector Space Model......................................................................................... 14 

2.3.2   Latent Semantic Analysis ................................................................................. 18 

2.3.3   Latent Dirichlet Allocation ............................................................................... 21 

2.4   Classification Modeling ............................................................................................. 24 

2.4.1   Logistic Regression Classifier .......................................................................... 26 

2.4.2   Artificial Neural Network Classifier ................................................................. 27 

2.5   Summary of Literature and Proposed Study ................................................................ 29 

3.  METHOD ........................................................................................................................ 31 

3.1   Item Data .................................................................................................................. 31 

3.2   Data Transformation .................................................................................................. 33 

3.3   Computation of Similarity Indices Using NLP Techniques .......................................... 36 

3.3.1   Cosine Indices Based on the Vector Space Model ............................................. 36 

3.3.2   Cosine Indices Based on the Latent Semantic Analysis...................................... 37 

3.3.3   Cosine Indices Based on the Latent Dirichlet Allocation.................................... 38 

3.4   Enemy Item Pair Classification .................................................................................. 40 

3.4.1   Synthetic Minority Over-Sampling for Imbalanced Data ................................... 41 



 

 
 
 
 

vi 
 

3.4.2   Logistic Regression Classification .................................................................... 43 

3.4.3   Artificial Neural Network Classification ........................................................... 44 

3.5   Model Evaluation ...................................................................................................... 47 

3.6   SME Review and Retraining of Classification Models ................................................ 50 

3.7   Summary of Methods and Research Questions............................................................ 52 

4.  RESULTS ........................................................................................................................ 55 

4.1   Item Data Transformation .......................................................................................... 55 

4.2   Results from NLP techniques ..................................................................................... 59 

4.2.1   Vector Space Model......................................................................................... 59 

4.2.2   Latent Semantic Analysis ................................................................................. 61 

4.2.2.1   Determining the Number of Concepts .................................................. 61 

4.2.2.2   Fitting the Final LSA Model ................................................................ 62 

4.2.3   Latent Dirichlet Allocation ............................................................................... 66 

4.2.3.1   Determining the Number of Topic........................................................ 66 

4.2.3.2   Fitting the Final LDA Model ............................................................... 67 

4.3   Results from the First Round of Classification ............................................................ 71 

4.3.1   Constructing Classification Dataset .................................................................. 71 

4.3.2   Application of Synthetic Minority Over-sampling on Training Dataset .............. 74 

4.3.3   Application of Logistic Regression Classifier and the Artificial Neural Network 
Classifier.................................................................................................................... 77 

4.3.4   ROC Curve and Precision-Recall Curve Analyses ............................................. 80 

4.3.5   Evaluation of the Classification Performance Metrics........................................ 85 

4.4   SME Review ............................................................................................................. 91 

4.5   Results from the Second Round of Classification ........................................................ 93 

4.5.1  Updated ROC Curve and Precision-Recall Curve Analyses ................................ 94 

4.5.2  Updated Classification Performance Metrics ...................................................... 99 

5.  DISCUSSION ................................................................................................................ 104 

5.1   Summary of Findings by Research Questions ........................................................... 104 

5.1.1  Research Question 1 ....................................................................................... 104 

5.1.2  Research Question 2 ....................................................................................... 107 

5.1.3  Research Question 3 ....................................................................................... 108 

5.1.4  Research Question 4 ....................................................................................... 110 



 

 
 
 
 

vii 
 

5.2   Implications............................................................................................................. 111 

5.3   Strength and Limitations .......................................................................................... 115 

5.4   Future Studies.......................................................................................................... 117 

5.5   Conclusion .............................................................................................................. 119 

APPENDICES .................................................................................................................... 122 

REFERENCES.................................................................................................................... 127 

VITA .................................................................................................................................. 138 

 
 
 
 



 

 
 
 
 

viii 
 

LIST OF TABLES 
 

TABLE PAGES

I. EXAMPLE CONFUSION MATRIX ......................................................................................................................48 

II. BLUEPRINT SPECIFICATIONS AND CONTENT AREA DISTRIBUTION ..................................................56 

III. SUMMARY OF DEFAULT STOP WORDS AND ITEM BANK SPECIFIC STOP WORDS.........................58 

IV. DESCRIPTIVE STATISTICS OF COSINE SIMILARITY INDICES FROM THE VSM ................................60 

V. TOP CONCEPTS AND ASSOCIATED TERMS FROM THE LATENT SEMANTIC ANALYSIS ...............64 
VI. DESCRIPTIVE STATISTICS OF COSINE SIMILARITY INDICES FROM THE LSA..................................65 

VII. MOST PROBABLE TOPICS AND ASSOCIATED TERMS FROM THE LATENT DIRICHELET 
ALLOCATION .........................................................................................................................................................69 

VIII. DESCRIPTIVE STATISTICS OF COSINE SIMILARITY INDICES FROM THE LDA .................................71 
IX. DESCRIPTIVE STATISTICS OF VARIABLES IN THE FIRST ROUND OF CLASSIFICATION...............73 
X. DESCRIPTIVE STATISTICS OF VARIABLES IN THE TRAINING DATASET AFTER SMOTE 

APPLICATION (BEFORE SME REVIEW) ..........................................................................................................76 

XI. RESULTS OF LOGISTIC REGRESSION (BEFORE SME REVIEW)...............................................................78 
XII. DISTRIBUTION OF PREDICTED ENEMY PROBABILITIES (BEFORE SME REVIEW)...........................79 

XIII. PROBABILITY CUTOFFS AT THE TARGET VALUES OF TPR AND FPR BEFORE SME REVIEW .....84 

XIV. CLASSFICATION RESULTS BEFORE SME REVIEW .....................................................................................90 

XV. CLASSFICATION RESULTS ON THE WHOLE DATASET (CUTOFF=0.60) BEFORE SME REVIEW ...92 

XVI. PROBABILITY CUTOFFS AT THE TARGET VALUES OF TPR AND FPR AFTER SME REVIEW ........99 

XVII. CLASSFICATION RESULTS AFTER SME REVIEW..................................................................................... 103 

  



 

 
 
 
 

ix 
 

LIST OF FIGURES  
 

FIGURE PAGES 
 

1.   Document-term matrix constructed from m documents with n unique terms ....................... 15 

2.   Vector representation of documents in a vector space ........................................................ 16 

3.   Mathematical representation of truncated Singular Value Decomposition .......................... 20 

4.   A conceptual representation of Latent Dirichlet Allocation ................................................ 22 

5.   Structural representation of an Artificial Neural Network for binary classification.............. 28 

6.   Latent Semantic Analysis Model Selection ....................................................................... 62 

7.   Latent Dirichlet Allocation Model Selection ..................................................................... 67 

8.   Scatter plots of cosine indices grouped by enemy status before and after SMOTE .............. 75 

9.   ROC Curves Before SME Review .................................................................................... 81 

10. Precision-Recall Curves Before SME Review ................................................................... 83 

11. Updated ROC Curves After SME Review......................................................................... 96 

12. Updated Precision-Recall Curves After SME Review........................................................ 97 



 

x 
 

LIST OF ABBREVIATIONS 
 

AES  Automated Essay Scoring 

ANN  Artificial Neural Network 

AUC  Area Under the Curve 

CAT  Computerized Adaptive Testing 

CBT  Computer-Based Testing 

FN  False Negative 

FP   False Positive 

FPR  False Positive Rate 

IRT  Item Response Theory 

LOFT  Linear on-the-fly Testing 

LSA  Latent Semantic Analysis 

LDA  Latent Dirichlet Allocation  

MLE  Maximum Likelihood Estimation  

MSE  Mean Square Error 

NLP  Natural Language Processing 

PLSA  Probabilistic Latent Semantic Analysis 

ROC  Receiver Operator Characteristic 

SME  Subject Matter Expert 

SMOTE  Synthetic Minority Over-sampling Technique 

SVD  Singular Value Decomposition 

TF-IDF  Term Frequency-Inverse Document Frequency 

 



 

xi 
 

LIST OF ABBREVIATIONS (CONTINUED) 
 

TN  True Negative 

TP  True Positive 

TPR  True Positive Rate 

 

 

 

 
 
 
 
 
  
  



 

xii 
 

SUMMARY 
 
 

This study explores the effectiveness of using Natural Language Processing (NLP) 

techniques in automatically detecting enemy item pairs within item banks. The overarching goal 

was to compare and evaluate the performance of various automatic enemy item detection 

procedures using an operational item pool. To answer the research questions, this study 

examined the classification results across three conditions: (a) NLP techniques, including Vector 

Space Model, Latent Semantic Analysis, and Latent Dirichlet Allocation; (b) classification 

algorithms, including the logistic regression classifier and the Artificial Neural Network 

classifier, and (c) probability cutoffs ranging from .60 to .90. The classification results were 

further evaluated by subject matter experts (SMEs), and the models were re-trained using the 

input from the SMEs.  

The findings from this study showed the robustness of the NLP techniques in automatic 

identification of enemy item pairs. The automatic detection process successfully identified 

additional enemy relationships previously untagged in the item bank. The classification results 

from the numerous conditions suggested that the LSA and the VSM models consistently 

outperformed the LDA models and yielded optimal results at the cutoff of .90. Integrating 

feedback from SMEs further improved the performance. This iterative process greatly reduced 

the time and manual labor needed for enemy relationship monitoring and offered flexibility for 

SME review. 
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1.  INTRODUCTION 
 

Computer-based testing (CBT) is dramatically shaping how we construct and deliver 

educational assessments and licensure examinations. Compared to traditional paper-and-pencil 

testing, CBT meets the demand for continuous assessment, and it is able to integrate multiple 

media and support innovative item formats. Computerized adaptive testing (CAT) also has the 

capacity to tailor the test to the examinee’s level of ability and to increase measurement accuracy 

of test scores (Van der Linden, 2010).  

The demand for more timely and frequent testing requires that testing programs maintain 

a sufficient item bank in order to (a) ensure the coverage of test contents and difficulty levels, (b) 

support dynamic test construction and administration process, and (c) increase test security for 

repeated testing. An operational item pool for large testing programs usually consists of 

thousands of items, making item bank management an onerous task.   

1.1   Enemy Items 

One of the crucial aspects of item bank management is monitoring the inter-item 

dependencies (VeldKamp & Van der Linden, 2010), which includes flagging enemy item sets. 

Some enemy item sets occur when two or more items share such similar content that they 

become duplicative in nature (Gibbons et al., 2016). Others are considered enemy items, because 

one may provide clues about the answer to another (Ackerman & Spray, 1986). It is beneficial to 

produce and retain such enemy item sets in the item bank, as the variation of items allows test 

developers to use equivalent yet not identical items across test forms which helps prevent 

unwanted memorization of items (Woo & Gorham, 2010). However, it is important to ensure 
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that enemy item sets are not administered together on one test to the same examinee, as this 

compromises the measurement precision and diminishes the test validity.  

Inclusion of enemy items on the same test violates the local independence assumption of 

Item Response Theory (IRT), which governs most computer-based testing (Lai & Becker, 2010; 

Muckle & Becker, 2018). The local independence assumption requires that items be 

conditionally independent of each other; that is, the response to one item should not be 

contingent on the response to another item after controlling for the underlying trait (Embretson & 

Reise, 2000). Enemy items introduce this inter-item dependency, as the examinee has an 

increased probability of answering correctly or incorrectly to enemy sets on the same test. 

Consequently, using responses to enemy items as independent information for estimating the 

examinee’s ability will bias the resulting score, which undermines the measurement precision.  

Enemy items also introduce threats to the test validation process, as enemy items ask 

almost the same question. The inclusion of such items will place too much weight on one domain 

of knowledge or competency, thereby reducing the breadth of the test. Sometimes enemy items 

can affect test validity in a more subtle way. Receiving similar items on a single test may lead 

the examinee to perceive the items as redundant and, thus, to question the credibility of the test 

(Kane, 2006). The resemblance of enemy items may cause confusion or distraction during the 

test, which introduces construct-irrelevant variance to test scores (Downing & Haladyna, 2006).  

1.2   Current Practice for Identifying Enemy Items 

Typically, the identification of enemy items for testing programs has relied on the manual 

efforts during item writing, item review, and test form assembly process (Drasgow et al., 2006). 

Processing the text in an item bank is time-consuming and labor-intensive. Using manual effort 

to review enemy items is also susceptible to subjectivity and human error. For large-scale testing, 
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the sheer volume of item banks makes it an unrealistic expectation that human reviewers will 

catch and flag each enemy item pair correctly. For an item bank consisting of n items, the 

number of item pairs in the bank amounts to 𝑛𝑛(𝑛𝑛−1)
2

. When the size of the item bank increases, it 

becomes impossible for human reviewers to compare each item to every other item. In addition, 

items are being written and added to the item bank periodically, making enemy item monitoring 

an iterative process.  

The manual processes of enemy item review also create challenges for testing programs 

that have not fully implemented adaptive testing. It precludes any type of dynamic or adaptive 

testing form construction or administration, such as linear on-the-fly testing (LOFT) or CAT, 

because enemy item pairs are sometimes identified after forms have been constructed, and 

additional time is then used to substitute replacement items for enemy sets before form 

publication or test administration. The lack of enemy item identification in the item bank, 

coupled with the time-consuming manual process of enemy item review, creates significant 

limitations to the test construction and administration.  

Others statistical approaches were proposed for identifying enemy item pairs. Ackerman 

and Spray (1986) proposed a general model for detecting violations of local independence by 

analyzing the shift in item characteristic curves and item parameter estimates. Yen’s Q3 statistic 

(Yen, 1984) can also be used to detect local item dependencies which may indicate an enemy 

association (Pommerich & Segall, 2008). However, such approaches must be conducted after the 

test administration. At the time of confirming enemy items, the test forms have been exposed to 

the examinees. In addition, these post hoc statistical methods are limited to items that have been 

administered together and are unlikely to fully capture the enemy relationships across the item 

bank.  
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Thus, it is desirable to develop an automatic process to create a system that can process 

the text of an entire item bank and generate probabilistic statistics that indicate item pairs that are 

likely to be enemy sets. This automatic process can assist human reviewers by providing a list of 

potential enemy pairs and significantly reducing the time and resources required for manual 

review.  

1.3   Automatic Enemy Item Detection 

An item bank is essentially a large corpus consisting of text, phrases, and concepts from 

test items. Recent advances in the field of Natural Language Processing (NLP) have made it 

possible to process, analyze, and index large text corpora with the assistance of computer 

programs. Modern applications of NLP in testing include automated essay scoring (Shermis & 

Burstein, 2003) and automatic item generation (Gierl & Haladyna, 2013). Some studies have 

been designed to explore the capability of NLP for test development and item bank maintenance, 

including item difficulty modeling (Sheehan et al., 2006; Belov & Knezevich, 2008; McLeod et 

al., 2015), verifying exposed items (Becker & Kao, 2009), assisting subject matter experts 

(SMEs) in item writing (Becker & Olsen, 2012), identifying reference works of test items 

(Becker & McLeod, 2013), and enemy item detection (Lai & Becker, 2010; Peng et al., 2018; 

Weir et al., 2018; Peng et al., 2019).  

Studies of automatic enemy item detection using NLP techniques typically involve two 

stages. In stage one, text-vectorization methods are used to transform a pool of items into 

mathematical representations, allowing the item text to be easily processed and analyzed 

systematically. Similarity indices are then computed between each item pairs based on the NLP 

technique used. In the second stage of the analysis, the similarity indices and other item meta-

data are included as input of a classification model to predict the enemy status of each item pair. 
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The model prediction of enemy membership is compared with the true enemy status in the item 

pool to evaluate the accuracy of the classification results.  

A number of factors determine the accuracy of this automatic detection process. First, 

various NLP techniques can be used for analyzing the transformed text corpus and calculating 

similarity indices. Some methods focus on measuring the lexical and syntactic similarities 

between items (Lai & Becker, 2010), and others on semantic similarities using topic modeling 

methods (Peng et al., 2018; Weir et al., 2018; Peng et al., 2019; Weir, 2019). Second, the choice 

of classification algorithm could have an impact on the classification results. Researchers have 

applied the logistic regression model (Peng et al., 2018; Peng et al., 2019), random forest model 

(Weir et al., 2018; Weir, 2019), and artificial neural network (ANN) model (Lai & Becker, 2010; 

Peng et al., 2019) in the predicative stage of enemy item detection. These methods use different 

underlying algorithms in computing the class membership probabilities. In addition, the 

classification results could vary depending on what probability cutoff is used to determine enemy 

item classification. The existing studies to date have evaluated the classification results at various 

probability cutoffs. The determination of an optimal cutoff often takes into account the accuracy 

of classification results, the practical goal of the enemy item classification, and resources 

allocated for enemy item review.  

This study also aims to investigate whether the automatic enemy item detection 

procedure will help reveal more true enemy items previously not identified in the item pool and 

provide guidance for SME review. The classification results will be further evaluated by SMEs 

in order to detect more enemy relationships previously not flagged in the item bank due to the 

challenges of manual review. The enemy status between item pairs will be updated accordingly 

to improve the enemy relationship monitoring in the item bank.  
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Little research has been devoted to a systematic evaluation of various NLP techniques, 

classification models, probability cutoffs used for the classification, and whether the automatic 

procedure improves the enemy item identification in the item bank. Furthermore, existing studies 

for such automatic processes were each conducted on a different item pool, making it unfeasible 

to evaluate the relative performance of the automatic detection methods.  

1.4   Research Objectives and Significance  

The purpose of this research is to investigate and evaluate the performance of various 

automatic enemy item detection procedures using a single operational item pool. The study will 

compare the classification results across different conditions, varying the choice of NLP 

technique, classification algorithm, and classification cutoff. The results will be evaluated by 

SMEs in order to detect more enemy item pairs in the item bank. This research aims to provide 

findings on the effectiveness of the automatic enemy item detection process.  

While the automatic enemy item detection process will not replace human SMEs in 

identifying and confirming enemy item relationships, it will provide SMEs with guidance and 

directions in enemy item review and thereby reduce the burden of enemy relationship monitoring 

in large item banks.  

The research on item similarity will also offer insights into how the applications of NLP 

can address various challenges for bank management and maintenance for large-scale testing, 

such as identifying the topic coverage of the item bank and automatically detecting exposed test 

items.  
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2.  REVIEW OF LITERATURE 
 

2.1   Background of Natural Language Processing 

Natural Language Processing is devoted to deciphering, understanding, and constructing 

the natural language for achieving human-like language processing for a wide range of 

applications (Liddy, 2009; Kurdi, 2016). First introduced for machine translation in the 1940s, 

the early application of NLP has urged the development of revolutionary language theories 

(Quillan, 1963; Chomsky, 1965, 1967; Fillmore, 1968) that enabled the translation of natural 

language into formal representations that are usable by computers. NLP prototypes were 

developed and demonstrated effectiveness in analyzing, replicating, and generating natural 

language (Weizenbaum, 1966; Woods, 1970; Winograd, 1971). However, these earlier 

applications of NLP were restricted to particular principles and are limited to isolated solutions.  

Until the 1980s, the majority of NLP systems used complex, manual-defined rules that 

were not easily generalizable to broader applications in real-world contexts. A shift of focus 

from the closed domains of the earliest NLP research to open domains was made possible by the 

increasing availability of computational power, extensive textual resources of the internet, and 

digitalization of large-scale text corpora. The field began to move towards relying on empirical 

methodologies rather than theory-driven generalizations of natural language.  

During recent decades, there was also a major shift in the understanding of the 

fundamental goal of NLP. It was discovered that a system that aimed to understand each and 

every word and extract the complete meaning of every input often resulted in complete success 

or complete failure. On the other hand, a system that tried to extract partial meaning from every 

input turned out to be more successful for real-world application (Bates, 1995). The field started 



 

 
 

8 

to accept this “partial correctness” as a meaningful and useful approach to NLP. At the center of 

this shift lies the understanding that the nature of language processing is too complex to be 

captured by hand-written rules. Rather, statistical processing and machine learning methods 

allow computer programs to infer patterns about sampled textual data and make predictions 

about new data, which could accomplish some language analysis tasks at a level comparable to 

human performance. Statistical techniques have become standard practices of NLP because they 

succeeded in handling many problems in computational linguistics (Hirschberg & Manning, 

2015).  

2.2   Natural Language Processing in Testing 

2.2.1   Automated Essay Scoring 

As modern testing made its rapid transition to computer-based testing, researchers began 

to adopt NLP methods in assisting various aspects of testing. Page (1966) developed the first 

automated essay scoring (AES) system to emulate human raters in evaluating and scoring essays. 

The goal of AES was to create a cost-effective method that could provide timely feedback on the 

writing performance and prevent drawbacks of human assessment (e.g. subjectivity, fatigue, 

speed) (Page, 2003; Myers, 2003). Page’s method used measures derived from the surface 

features of the essay, such as average word length and counts of punctuation, as an estimate of 

intrinsic quality of writing (Chung & O’Neil, 1997; Rudner & Gagne, 2001). This method 

received criticism for neglecting the semantic aspect of writing and focusing on superficial 

structure (Kukich, 2000; Chung & O’Neil, 1997).  

Subsequent scoring engines took advantage of NLP and Artificial Intelligence to capture 

more sophisticated features of essay writing. Landauer, Laham and Foltz (2003) developed the 

Intelligent Essay Assessor, a software application that uses the Latent Semantic Analysis (LSA) 
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to score the quality of conceptual content in the essay. LSA is a natural language processing 

technique that allows comparisons of the semantic similarity between textual documents. Using 

matrix algebra technique, LSA analyzes a corpus of texts in similar content and size and 

constructs a high-dimensional semantic space. Each piece of textual data is mapped onto this 

space, and the distance/similarity between any two pieces can be computed on a semantic level 

(Berry et al., 1995; Landauer & Dumais, 1997; Landauer et al., 1998; Foltz et al., 1999). To 

assess the quality of essays, LSA was applied to a corpus of domain-representative text. Domain-

representative text involved materials (textbooks, articles, etc.) from which a student learned 

their vocabulary, concepts, and knowledge about the content domain. The written essay was then 

compared with texts of known quality with regard to their conceptual similarities. Compared to 

other methods that focus on mechanical and syntactic features, LSA demonstrates superiority 

with its capability to evaluate written essays on semantic aspects such as content, style, 

comprehensibility, and relevance. An overview of LSA is presented in section 2.3.2.  

Meanwhile, the Electronic Essay Rater (E-rater) was developed to evaluate the quality of 

written essays and short answers using a corpus-based approach (Burstein et al.,2001; Burstein, 

2003; Shermis & Burstein, 2013). Its scoring features a syntactic module, a discourse module, 

and a topical analysis module, each focusing on different aspects of the quality of writing 

(Burstein et al., 1998; Burstein, 2003; Shermis & Burstein, 2013). E-rater used part-of-speech 

tagging technique (Brill & Pop, 2000) to capture the syntactic variety of the essay. The output 

from the syntactic module was further utilized by the discourse module to annotate the discourse 

relations of the arguments presented in the essay (e.g. contrast relation, parallel relation). The 

discourse annotations were then used in the subsequent topical analysis to evaluate the content of 

the essay. The core of the topic analysis is based on the Vector Space Model (VSM) commonly 
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applied in information retrieval (Salton, 1989). E-rater used a representative collection of human 

scored sample essays as training essays, which were converted into vectors of word frequencies. 

To score each test essay, it was vectorized in a similar fashion, and a search was performed to 

identify sample essay most similar to the test essay through their cosine similarity indices. The 

test essay was assigned a score based on the quality of the closest matches among the training 

essays. An overview of Vector Space Model and cosine similarity measure is provided in section 

2.3.1. 

2.2.2   Automatic Item Generation (AIG)  

Following its earlier application in automated essay scoring, NLP has been an 

increasingly active research area for automatic item generation. To reduce the time and cost of 

manual item writing, AIG was proposed to efficiently generate items for timely item bank 

replenishment. The previous application of AIG was focused on item modeling in which SMEs 

played a crucial role in organizing and structuring the content required for item generation using 

a cognitive item model. Based on the cognitive item model, an algorithmic process is derived to 

generate new item instances (Bejar et al., 2003; Embretson, 2002; Embretson & Yang, 2007; 

Gierl et al., 2008; Gierl & Lai, 2013, 2015; Embretson & Kingston, 2018).  

Recent developments of AIG have utilized the strength of NLP to offer an alternative 

method of item generation. Mitkov and Ha (2003) proposed an NLP-based approach for 

automatic construction of test items. This approach identified important terms from instructive 

text (e.g. textbook chapters and encyclopedia entries), and transformed declarative sentences into 

questions to form the item stem. Lexical database1 (e.g. WordNet2) was used to mine for terms 

 
1 A lexical database records lexical information and semantic relationships of a  large collection of words (e.g. part 
of speech, synonym, antonym).  
2 WordNet is one of the largest publicly available lexical databases for the English language.  
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which are semantically close to the correct answer to create distractors3. Subsequent studies have 

extended this method to combine a corpora-based approach featuring topic modeling techniques4 

and a graphic-based approach featuring lexical databases and ontologies5, to identify 

semantically close terms. The NLP-based methods that focused on identifying semantic 

similarity were shown to be successful in automatically generating valid test items with 

homogenous distractors (Mitkov et al., 2009; Aldabe & Maritxalar, 2014; Susanti et al., 2015; 

Liu et al., 2018; Shin et al., 2019).   

The latest AIG research has utilized the deep learning approach, which is commonly used 

in the NLP application. Von Davier (2018) analyzed over three thousand publicly accessible 

personality items using the recurrent neural network model, and he found that the resulting 

automatically generated items are comparable with those selected from a manually generated 

item pool. This suggests that deep learning models could be a valuable source for replenishing 

item pools.  

2.2.3   Item Bank Management and Maintenance  

NLP techniques have also been adopted in emerging research areas for test development 

and item bank management/maintenance. Sheehan et al. (2006) applied Latent Semantic 

Analysis to link critical item stimulus to specific required skills targeted at different difficulty 

levels. Belov and Knezevich (2008) used semantic similarity measures computed based on 

WordNet to predict the item difficulty efficiently. Becker and Olsen (2012) applied Latent 

Semantic Analyisis in identifying the coverage of textbook content and glossary terms in the 

 
3 The distractors refer to the incorrect options in a multiple-choice item. 
4 A topic modeling technique is an algorithm for extracting the abstract topics in a collection of documents. It is 
frequently used for discovering hidden semantic structure in textual data. 
5 Ontology refers to a database designed to categorize sets of concepts in a content area and to show their 
definitions, properties, and the relationships between them. 
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item bank in order to facilitate targeted, evidence-centered item writing. This study showed that 

LSA was efficient in detecting the gap in content coverage for the item bank, which helped 

provide specific targeted topics for SMEs in item writing. McLeod et al. (2015) found that some 

linguistic features such as readability, sentence structure, parts of speech, and tense significantly 

predicted item difficulty.  

2.2.4   Item Similarity  

To address the time-consuming and resource-intensive process of manual review on large 

item banks, Becker and Kao (2009) proposed an NLP-based approach for automatic 

identification of similar item sets. The Vector Space Model was applied to produce a word-

embedding matrix from a pool of items, and based on this, the cosine similarity measures 

between each item pair can be calculated. The resulting cosine measures were used as key 

indices in evaluating the degree of between-item similarity. This automated approach has shown 

promise in addressing several challenging tasks presented by large-scale item bank management 

and test security concerns. It was used to compare allegedly exposed items with the actual item 

bank of a national exam, and it successfully flagged a number of potentially compromised items 

for further SME review. This approach was also applied to detect enemy and duplicate items in 

an item bank. The study found that 98% of enemy item pairs were identified above the mean of 

the cosine similarity indices. In the same study, the authors also explored using the resulting 

cosine measures in predicting the content area of each sampled item. The results successfully 

matched 74% of the items to their actual content area classification in the item bank.  

A series of subsequent studies was devoted to the automatic detection of enemy items. 

Lai and Becker (2010) extended the research by utilizing a deep learning model known as 

Artificial Neural Network (ANN) for the classification process and including additional 
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structural linguistic similarity measures, such as word-overlap and longest common subsequence, 

as major predictors of enemy status.  

The automatic approach based on Vector Space Model mainly relied on the matching of 

words between items and was limited in capturing the conceptual similarity between item pairs. 

Since enemy item pairs typically contain different terms pertaining to the same concept, 

measuring item similarity on a semantic level remained a challenge. Li et al. (2012) utilized a 

lexical database and a specialized medical ontology database to calculate the semantic similarity 

between items in a medical examination. The study suggested that though these similarity indices 

cannot replace human reviewers, they were able to assist them in detecting enemy items through 

iterations. Peng et al. (2018) made use of Latent Semantic Analysis to explore the possibility of 

measuring semantic similarity between items. The findings suggested that LSA was able to 

extract meaningful semantic concepts from the item pool data. The automatic approach using 

semantic similarity measures computed from LSA successfully recovered 76% of enemy item 

pairs in the bank. Some of the false positive item pairs were sent to SMEs for enemy status 

review, and the majority were confirmed to be true enemy pairs that were not previously flagged 

in the item bank. An extended study (Peng et al., 2019) examined the effectiveness of LSA 

technique on a different item pool and compared classification results across various statistical 

and deep learning models. The study found consistently high recall and precision rate for the 

classification results across the models. The model using an ANN classifier appeared to out-

perform that with a logistic regression classifier when using a higher probability cutoff for 

classification, but the performance was reversed at a lower probability cutoff. An overview of 

logistic regression and Artificial Neural Network model is presented in section 2.4. 
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Some studies have derived semantic similarity measures using another NLP topic 

modeling technique called Latent Dirichlet Allocation (LDA) and utilized the random forest 

model as the predictive method (Weir et al., 2018; Weir, 2019). LDA was shown to demonstrate 

promising capability in extracting meaningful topics from the item pool data. The classification 

results showed high recall rate, predicting over 70% of the true enemy items in the sample.  An 

overview of Latent Dirichlet Allocation is provided in section 2.3.3.  

2.3   Overview of NLP Techniques for Measuring Textual Similarities  

This section reviews the three NLP techniques featured in this study for deriving the 

similarity indices between items: Vector Space Model, Latent Semantic Analysis, and Latent 

Dirichlet Allocation.  

2.3.1   Vector Space Model  

Vector Space Model is an algebraic model commonly used for computing text similarity 

in information retrieval (Salton, 1968, 1989; Salton et al., 1975; Manning et al., 2008) and 

natural language processing (Levy & Bullinaria, 2001; Lowe, 2001; Padoo & Lapata, 2004). The 

basic premise underlying VSM is that the meaning of a document can be derived from the key 

words constituting the document (Aswani et al., 2012), and that the context surrounding a word 

contribute valuable information to its meaning (Harris, 1968). The popularity of Vector Space 

Model lies in its ability to represent large textual data by using distributional statistics. Using 

matrix algebraic techniques, VSM analyzes a corpus of text containing vocabulary, concepts, and 

knowledge relevant to the content area, and it constructs a high-dimensional vector space where 

every word and text document are mapped in relation to the conceptual components found in the 

corpus. The similarity between any two documents can be estimated by comparing their relative 

positions in the vector space.  
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2.3.1.1   Document-Term Matrix 

Like most NLP techniques, VSM requires that the text data be transformed into formal 

representations that can be processed and analyzed by computer (Jurafsky & Martin, 2000). In 

this step, textual documents from a corpus are projected onto a vector space by mapping the 

distributional patterns of word co-occurrence. This information is typically captured in a 

frequency matrix, where each row represents a piece of textual information in the corpus, 

commonly referred to as a document, and each column corresponds to a unique word in the 

corpus, commonly referred to as a term. Each element in this frequency matrix represents the 

frequency of a given term that occurs in a given document. The document-term matrix is also 

known as the word embedding matrix (Bengio et al., 2003; Collobert & Weston, 2008; Mikolov 

et al., 2013). It presents text documents in a multidimensional space where each term 

corresponds to a dimension. An example vector space constructed from m documents with n 

unique terms defined by a matrix A is given as follows:  

    𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
↓ 

 

             A = �

𝑥𝑥11 𝑥𝑥12 … 𝑥𝑥1𝑛𝑛
𝑥𝑥21 𝑥𝑥22 ⋯ 𝑥𝑥2𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑥𝑥𝑚𝑚1 𝑥𝑥𝑚𝑚2 ⋯ 𝑥𝑥𝑚𝑚𝑚𝑚

�       ←𝑚𝑚 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 

Figure 1   Document-term matrix constructed from m documents with n unique terms 

 

Each row in this document-term matrix corresponds to a document (𝑑𝑑𝑖𝑖) in the corpus and 

can be represented by a vector with n dimensions:  

𝑑𝑑𝚤𝚤���⃑ = �𝑥𝑥𝑖𝑖1,𝑥𝑥𝑖𝑖2,𝑥𝑥𝑖𝑖𝑖𝑖,…  , 𝑥𝑥𝑖𝑖𝑖𝑖�                                                  (1) 
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Each element 𝑥𝑥𝑖𝑖𝑖𝑖 represents the frequency of the 𝑗𝑗𝑡𝑡ℎ unique term observed in the 

𝑖𝑖𝑡𝑡ℎ document. In the context of an item bank, an item can be treated as a document and a unique 

word observed in the item bank as a term, based on which a document-term matrix can be 

constructed to form a vector space. Each item vector can be projected onto the multi-dimensional 

vector space. Figure 2 shows an example of vector space constructed from a hypothetical item 

bank with three items (vectors) and three unique terms (dimensions).  

Figure 2   Vector representation of documents in a vector space 
 

2.3.1.2   Cosine Similarity Index 

As depicted in Figure 2, item 1 (𝑑𝑑1����⃑ ) and item 2 (𝑑𝑑2����⃑ ) are more likely to be similar 

compared to item 3 (𝑑𝑑3����⃑ ), as their vectors appear to be closer to each other. There are different 

ways to measure vector similarity. Commonly used measures of vector distance include 

Euclidean distance, Manhattan distance, Hellinger, Bhattacharya, and Kullback-Leibler. One 

popular method for computing the similarity of two frequency vectors in NLP is the cosine 

similarity measure. Bullinaria and Levy (2007) compared cosine similarity measure with the five 

distance measures on a number of tasks involving word similarity and found that the cosine 

t1 

t2 

t3 

𝑑𝑑1����⃑ = {𝑥𝑥11,𝑥𝑥12,𝑥𝑥13} 

𝑑𝑑2����⃑ = {𝑥𝑥21,𝑥𝑥22,𝑥𝑥23} 

𝑑𝑑3����⃑ = {𝑥𝑥31,𝑥𝑥32,𝑥𝑥33} 

𝜃𝜃 
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similarity measure out-performed the rest. In other words, the inner angle between two vectors in 

the document space conveys essential information about the similarity between them. The cosine 

of the angle 𝜃𝜃 between two n- dimensional vectors 𝑑𝑑𝚥𝚥���⃑  and  𝑑𝑑𝑘𝑘����⃑  is calculated as follows:  

cosine (𝜃𝜃)  =  
𝑑𝑑𝚥𝚥����⃑  ∙  𝑑𝑑𝑘𝑘�����⃑

�𝑑𝑑𝚥𝚥����⃑ ��𝑑𝑑𝑘𝑘�����⃑ �
  = 

∑ 𝑑𝑑𝑖𝑖𝑖𝑖  𝑑𝑑𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1

�∑ 𝑑𝑑𝑖𝑖𝑖𝑖
2𝑛𝑛

𝑖𝑖=1 �∑ 𝑑𝑑𝑖𝑖𝑖𝑖
2𝑛𝑛

𝑖𝑖=1

                             (2) 

The cosine similarity is the dot product of the two vectors, scaled by their magnitude. 

Cosine similarity measure ranges from −1 to 1. When two vectors are highly similar, with the 

inner angle between their vectors approaching 0 degree, their cosine index will approach 1. 

When two vectors are unrelated, the inner angle between their vectors will be close to 90 degrees 

and their cosine index will approach 0. When the two vectors are pointing in different directions 

(with an inner angle larger than 90 degrees), the cosine index will be negative.   

2.3.1.3   Bag-of-Words Approach 

It is worth noting that the Vector Space Model and the other two NLP techniques (Latent 

Semantic Analysis and Latent Dirichlet Allocation) that will be applied in this study are all based 

on the “bag-of-words” assumption. That is, the order or structure of the terms in a document is 

insignificant (Harris, 1954). This assumption implicitly treats documents as a mixture of ideas 

and, as such, some topic models can be generated based on this structure (Steyvers & Griffiths, 

2007). The bag-of-words approach is simple to understand and implement. It offers flexibility for 

comparing text documents as well as the concepts behind them. Therefore, bag-of-words models 

are suitable for the purpose of this study to detect item similarity. However, the bag-of-words 

method suffers from the drawback that some context and meaning can be stripped from the 

document with this form of representation.  
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2.3.2   Latent Semantic Analysis 

Latent Semantic Analysis is a topic modeling NLP method based on the Vector Space 

Model (Furnas et al., 1988; Dumais, 1994), aimed at addressing the limitations that plagued the 

Vector Space Model. Consider the following sentences:  

The flight departs around noon.  

 The plane leaves at twelve o’clock.  

These sentences use different words to convey essentially the same meaning, but a classic 

VSM would have difficulty detecting the similarity between them because of the word 

difference. Different words can be associated with the same concept, and most words have 

multiple meanings (Deerwester et al., 1990). Therefore, the similarities between two pieces of 

textual information cannot be fully captured when comparing lexical features6 such as 

vocabulary and punctuation (Furnas et al., 1988). LSA was developed to capture the semantic 

aspect of documents. It assumes that natural language has a latent structure which is often 

obscured by word usage (e.g. synonym, polysemy7) and aims to acquire a mathematical 

representation of the relationships among words, documents, and concepts through statistical 

computations based on a large corpus (Landauer et al., 2003). Using statistical methods, LSA has 

the ability to extract the latent semantic structure underlying the textual data and derive the 

similarity between texts on a conceptual level. Not only does LSA identify synonyms, it also 

recognizes polysemes (i.e. words with multiple meanings). When appropriately trained, LSA is 

able to distinguish fly as a verb and fly as a noun, thereby associating its different meanings with 

separate semantic concepts.  

 
6 Lexical features refer to words or vocabulary of a language.  
7 Polysemy refers to a word with multiple meanings.  
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To extract semantic concepts underlying the text, LSA applies a core mathematical 

operation known as Singular Value Decomposition (SVD) on the document-term matrix. Similar 

to Principal Component Analysis, SVD conducts dimension reduction on the matrix and is more 

efficient for a sparse matrix such as a document-term matrix. Any rectangular matrix A with 

𝑚𝑚 × 𝑛𝑛 dimensionality can be decomposed into the product of three other matrices:  

𝐴𝐴 =  𝑈𝑈 Σ 𝑉𝑉𝑇𝑇                                                                            (3)                    

where 𝑈𝑈 is an 𝑚𝑚 × 𝑟𝑟 matrix having the 𝑚𝑚 document as its rows and 𝑟𝑟 factors (factorized 

dimensions) as its columns, 𝑉𝑉𝑇𝑇  is an 𝑟𝑟× 𝑛𝑛 matrix having the 𝑟𝑟 factors as its rows and the 𝑛𝑛 

terms as its columns, and Σ is an 𝑟𝑟× 𝑟𝑟 diagonal matrix having the singular values 𝜎𝜎1 ≥ 𝜎𝜎2 ≥

 ⋯  ≥ 𝜎𝜎min (𝑟𝑟,𝑟𝑟) of the factors in order along its diagonal.  

Matrix U is a lower rank matrix with each row representing a document and each column 

representing a factorized dimension. Substantively, this is analogous to grouping 𝑚𝑚 terms into 𝑟𝑟 

semantic concepts and representing each item with these 𝑟𝑟 concepts.  

On the other hand, each element of the matrix 𝑉𝑉𝑇𝑇  represents the score, or loading, of a 

given document on a given concept. Matrix 𝑉𝑉𝑇𝑇represents each of the 𝑟𝑟 concepts as a 

combination of the 𝑛𝑛 terms. It shows the score of a given term on each of the 𝑟𝑟 concepts.  

The singular values on the diagonal of matrix Σ represent the strength of the factors, and 

it can be used to calculate the variance explained by each concept. This information is helpful in 

determining the number of the 𝑟𝑟concepts to include (or exclude) in the analysis. In LSA, the 

three matrices produced by SVD are truncated to retain 𝑘𝑘 concepts/dimensions explaining the 

most variance in the textual data, so that noises are excluded from the reduced matrices. The 

number of retained concepts/dimensions 𝑘𝑘 can be chosen arbitrarily, but it was suggested that 

selecting about 300 to 1000 dimensions, depending on the size of the corpus, results in good 
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performance for LSA (Landauer & Dumais, 1997). The reduced matrix U with 𝑘𝑘 concepts is 

considered a sufficient approximation of the original matrix 𝐴𝐴. Figure 3 illustrates the 

mathematical representation of truncated SVD retaining 𝑘𝑘 concepts.  

Figure 3   Mathematical representation of truncated Singular Value Decomposition 

 

Matrix U is a crucial product of LSA, based on which the similarity index between any 

two documents can be derived. In our case, each row of matrix U is a k-dimension vector 

corresponding to an item in the item bank. The cosine similarity measure can be calculated 

between any two item vectors in a similar fashion as in Vector Space Model. The resulting 

similarity measures capture the semantic similarity because it is based on the conceptual factors 

derived through dimensional reduction. In other words, LSA has the ability to recognize the 

similarity between two different terms with similar meanings through the underlying semantic 

structure derived from SVD. LSA can also recognize a term with multiple meanings, because the 

term will have separate scores on different associated concepts. Furthermore, LSA can identify 

terms frequently co-occurring and closely associated with a concept. For example, the terms bow 

𝐴𝐴𝑚𝑚×𝑛𝑛 

n terms 

m documents ≈ 𝑈𝑈𝑚𝑚×𝑘𝑘 

k concepts  

Σ𝑘𝑘×𝑘𝑘 𝑉𝑉𝑘𝑘×𝑛𝑛
𝑇𝑇  × × 

n terms k singular values 

k concepts 

𝐴𝐴𝑚𝑚×𝑛𝑛  = Document-term matrix 
𝑈𝑈𝑚𝑚×𝑘𝑘 = Document-concept matrix 
Σ𝑘𝑘×𝑘𝑘  = Singular values 
𝑉𝑉𝑘𝑘×𝑛𝑛
𝑇𝑇   = Concept-term matrix 

 

𝑚𝑚 = Number of documents 
𝑛𝑛 = Number of terms 
𝑘𝑘 = Number of concepts retained 
 



 

 
 

21 

and arrow will both have higher scores on an extracted concept labeled archery and thus appear 

to be closer in the semantic space.  

Compared to the Vector Space Model, Latent Semantic Analysis has the advantage of 

capturing conceptual similarities between the terms and documents. Simulation studies have 

shown that LSA closely reflects human cognitive phenomena, such as sorting and categorization 

of words and judgement of word similarities (Landauer et al., 1998).  

2.3.3   Latent Dirichlet Allocation 

Latent Dirichlet Allocation is another topic modeling technique that takes a generative 

probabilistic approach towards capturing the semantic topics underlying the textual data (Blei et 

al., 2003). It perceives each document as a mixture of several latent topics and assumes that topic 

distribution in all documents share a common Dirichlet prior. Each latent topic in the LDA 

model is also represented as a mixture of terms and the term distributions of topics share a 

common Dirichlet prior as well.   

As a generative approach, LDA takes into account how observed data is generated in 

order to build a model. It attempts to synthesize the observed information (e.g. word frequencies) 

using an approximated generation procedure to uncover hidden topics without any labels. The 

generative process of LDA consists of three layers. Given a corpus 𝐷𝐷 consisting of 𝑀𝑀 

documents, with document 𝑑𝑑 having 𝑁𝑁𝑑𝑑 terms:  

(a) For each topic 𝑘𝑘 = 1, …  ,𝐾𝐾, draw a multinomial distribution over a vocabulary of terms from 

a Dirichlet distribution with parameter 𝛽𝛽, 𝜙𝜙𝑘𝑘~𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑙𝑙𝑙𝑙𝑙𝑙(𝛽𝛽);  

(b) For each document 𝑑𝑑 = 1, … ,𝑀𝑀, draw a multinomial distribution over topics from a 

Dirichlet distribution with parameter α,  𝜃𝜃𝑑𝑑~ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(α); 

(c) For each term 𝑡𝑡𝑛𝑛 (𝑛𝑛 = 1, … ,𝑁𝑁𝑑𝑑) in document 𝑑𝑑,  



 

 
 

22 

(i) draw a topic 𝑧𝑧𝑛𝑛~ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (𝜃𝜃𝑑𝑑);  

(ii) generate a term from the corresponding distribution over terms, 𝑡𝑡𝑛𝑛~ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (𝜙𝜙𝑧𝑧𝑛𝑛).  

In this generative process, terms in documents are the only observed variables while others 

are latent variables (𝜙𝜙 and 𝜃𝜃) and hyper parameters (α and 𝛽𝛽). The probability of observed data 

D is computed and obtained as follows:  

𝑃𝑃(𝐷𝐷|α,𝛽𝛽) = ∏ ∫𝑃𝑃(𝜃𝜃𝑑𝑑|α) �∏ ∑ 𝑃𝑃(𝑧𝑧𝑛𝑛|𝑧𝑧𝑛𝑛
𝑁𝑁𝑑𝑑
𝑛𝑛=1 𝜃𝜃𝑑𝑑 ) 𝑃𝑃(𝑡𝑡𝑛𝑛|𝑧𝑧𝑛𝑛,𝛽𝛽)� 𝑑𝑑𝜃𝜃𝑑𝑑  ,𝑀𝑀

𝑑𝑑=1                        (4) 

where α is a parameter of topic Dirichlet prior and the distribution of terms over topics is drawn 

from the Dirichlet distribution with parameter 𝛽𝛽. Figure 4 shows a graphical representation of 

LDA. 

 

Figure 4   A conceptual representation of Latent Dirichlet Allocation 
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The training of LDA requires the input of two symmetrical priors (α𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  and 𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝). 

The α𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is equivalent to the inverse of the number of topics (dimensionality 𝐾𝐾 of the 

document-topic distribution), which assumes that each of the topic has an equal chance of being 

selected in a document prior to the LDA training.  The number of topics (𝐾𝐾) is assumed to be 

known and fixed. The 𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝is equivalent to the inverse of the number of terms (dimensionality 

𝑁𝑁𝑑𝑑 of the topic-term distribution), which is known after obtaining the document-term matrix. 

This indicates that each of the terms has an equal chance of being selected in a topic prior to the 

LDA training. Once the number of terms and the number of topics are determined, a topic 

distribution is specified (e.g., 45% psychology, 35% neurology, and 20% education). Next, a 

topic is drawn from the topic mixture distribution and a term is selected according to the topic 

distribution over words. The LDA repeats this process until all the terms are generated for each 

document.  

 With this process, LDA aims to compute a posterior distribution of the latent variables in 

a document to discover the structure of hidden topics. Due to an enormous number of possible 

topic distribution, computing the probability of specific terms under a certain topic becomes 

extremely difficult. To address this problem, LDA uses Gibbs sampling (Griffiths & Steyvers, 

2004; Porteous et al., 2008) to conduct conditional distribution sampling. It starts the process by 

randomly assigning each term in the document to one topic, which produces an initial guess of 

the term-topic and term-document distribution. Next, it makes successive attempts to find the 

conditional distribution of a term’s topic assignment conditioned on the rest of the topic 

assignments bay updating the assignment of the current term. This conditional sampling is 

repeated until a stationary state of assignment is reached, which is then used to estimate the topic 
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mixtures for each document. The cosine similarity measure between any two documents can be 

calculated based on the topic distributions of two given documents.  

2.4   Classification Modeling 

 At the second stage of the automatic enemy item detection, the cosine similarity measures 

between items, obtained from the NLP methods described above, are entered into a classification 

model to predict the enemy status. Classification modeling takes the input variables and attempts 

to generate discrete output through a mapping function. Predicting the enemy status of item pairs 

is a binary classification problem where the outcomes may take two values: 1 (enemy) and 0 

(non-enemy).  

In a typical scenario of statistical or machine learning classification, the data are split into 

a training set and a test set. The training set of data contains measurements for a set of objects (in 

our case, item pairs) with known class membership. A prediction model is fit on the training 

data. This step is often referred to as training or learning in machine learning. Successively, the 

fitted model is applied to the test set of data to predict the outcome for new unseen objects 

(Hastie et al., 2009; Alpaydin, 2014).  

Once the prediction model fit the training data, a probability 𝑃𝑃(𝑦𝑦|𝑋𝑋) was calculated for 

each object where 𝑋𝑋 represents the measures/predictors of the objects and 𝑦𝑦 represents the class 

membership (often represented by 0 or 1 for binary outcomes). We may establish a classification 

rule based on this class membership probability, for example:  

𝑦𝑦� = �1          if 𝑃𝑃(𝑦𝑦 = 1|𝑋𝑋) > .50,
0          if 𝑃𝑃(𝑦𝑦 = 1|𝑋𝑋) ≤ .50.                                                            (5) 

This rule assigns the object as a member of class 1 if the probability exceeds .50, and 

otherwise as a member of class 0. The probability cutoff can be chosen arbitrarily, and it often 
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varies depending the goal of the classification. In many cases, the classification model does not 

produce a perfect classification in which every object in the sample is assigned to the class to 

which they truly belong. Some errors are likely to occur during the approximation of the 

predictive model, in which objects are assigned to a wrong class. In a binary classification 

model, these errors are referred to as false positives and false negatives. False positives represent 

cases incorrectly reported to be positive, but are in fact negative. For example, a classification 

model may return a positive result indicating that a pair of items are enemies even if they are not 

flagged as enemies in the item bank. Similarly, false negatives refer to cases incorrectly reported 

to be negative. 

Given the fact that most items in a given item bank do not have an enemy relationship, 

the number of true non-enemy item pairs is typically very large. Therefore, existing studies 

usually found a Type I error rate of under 1%. However, the number of false positive item pairs 

could still amount to hundreds or thousands (Lai & Becker, 2010; Li et al., 2012; Peng et al., 

2018; Peng et al., 2019; Weir, 2019). In the context of this study, because the flagging of enemy 

relationships in large item banks is likely to be incomplete, the false positive item pairs would 

ideally undergo SME review to determine if the enemy status flagging was previously incorrect 

or overlooked. The goal of the automatic detection process is to identify as many true enemy 

item pairs as possible while keeping the number of misclassified cases manageable for content 

review. The decision of the probability cutoff often reflects a balance between classification 

accuracy and cost for manual review. In existing studies which have employed SMEs in 

subsequent review of high-probability enemy item pairs predicted by the model, the probability 

cutoff selected to qualify item pairs for SME review ranged from .50 to .90 (Li et al., 2012; Peng 

et al., 2019; Weir, 2019). Based on the result of the review, newly confirmed enemy 
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relationships can be updated in the item bank. Each iteration of this process increases the 

accuracy of enemy item flagging in the item bank.   

The classification model utilizes an algorithm that maps input data to a class. The 

algorithm that implements the classification is known as a classifier. No one algorithm is 

superior to the others for every problem. Therefore, it is common to apply different classifiers on 

the training data and then use the test set of data to evaluate performance for the purpose of 

selecting the best classifier. The following sections will provide an overview of the two 

classifiers evaluated in this research.  

2.4.1   Logistic Regression Classifier 

The logistic classifier is perhaps the most popular for solving binary classification 

problems (Hosmer et al., 2013). The logistic classifier is designed to estimate the probability of 

class membership as a logistic function of linear combinations of predictors (Hardle & Simar, 

2012).  

Consider the vector y of observations on a binary response variable. The logistic model 

assumes that the probability for observing 𝑦𝑦𝑖𝑖  = 1 on a particular vector of 𝑥𝑥𝑖𝑖 = (𝑥𝑥𝑖𝑖1,𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖𝑖𝑖)𝑇𝑇 

is given by the logistic function of a linear combination of 𝑥𝑥: 

𝑃𝑃(𝑥𝑥𝑖𝑖) = 𝑃𝑃(𝑦𝑦𝑖𝑖 = 1|𝑥𝑥𝑖𝑖) =
exp (𝛽𝛽0+∑ 𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖)𝑝𝑝

𝑗𝑗=1

1+exp (𝛽𝛽0+∑ 𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖)𝑝𝑝
𝑗𝑗=1

 .                                           (6) 

This entails the probability of the absence of the trait:  

1 −𝑃𝑃(𝑥𝑥𝑖𝑖) = 𝑃𝑃(𝑦𝑦𝑖𝑖 = 0|𝑥𝑥𝑖𝑖) = 1
1+exp (𝛽𝛽0+∑ 𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖

𝑝𝑝
𝑗𝑗=1 )

 ,                             (7) 

which implies  

 log � 𝑃𝑃(𝑥𝑥𝑖𝑖)
1−𝑃𝑃(𝑥𝑥𝑖𝑖)

�=𝛽𝛽0 +∑ 𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖
𝑝𝑝
𝑗𝑗=1  .                                                    (8) 
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The estimates of 𝛽𝛽𝛽𝛽 can be obtained by Maximum Likelihood Estimation (MLE) 

(Eliason, 1993). The logistic classifier will then produce the probability of possessing the trait 

𝑃𝑃(𝑦𝑦𝑖𝑖 = 1|𝑥𝑥𝑖𝑖) for each subject, and the class membership can be determined with the 

classification rule defined by Eq. (5).  

2.4.2   Artificial Neural Network Classifier 

In logistic regression, classification is achieved as the result of a linear transformation. 

However, the classification of certain data is not linearly separable. The artificial neural network 

classifier is another tool with the capability of solving complex nonlinear classification problems 

(Rumelhart et al., 1986). ANN is also known as the multilayer perceptron algorithm. It is 

inspired by the biological neural system immanent in the human brain and therefore designed to 

mimic the complex process of human learning and classifying (McCulloch & Pitts, 1943). The 

ANN algorithm has been applied to solve problems in speech processing (Gorin & Mammone, 

1994), pattern recognition (Jain et al., 2000), clustering and classification (Zhang, 2000), and 

function approximation (Selmic & Lewis, 2002), etc. An artificial neural network consists of a 

large collection of units, commonly referred to as neurons (nodes), that are interconnected to 

allow communication between the neurons. Each neuron relates to other neurons through 

connection links that carries information about the input signal. These connections are analogous 

to the synaptic links8 that exchange information between neurons through a neural system. A 

weight is associated with each connection that usually excites or inhibits the signal that is 

passing through. Each neuron has an activation function that processes the input signals with an 

activation rule to produce the output signals that may be sent to other neurons.  

 
8 A synaptic link is a  connection that permits a  neuron to pass an electrical or chemical signal to another neuron in a 
neural system.  
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The neurons are organized into three types of layers: input layer, hidden layer(s), and 

output layer. The architecture of an ANN is illustrated in Figure 5. The predictor variables enter 

the network as input nodes, which form the input layer. Each node is capable of processing and 

passing the information forward through the connecting weights to the nodes in the next layer.  

 

 

Figure 5   Structural representation of an Artificial Neural Network for binary classification 

 

The hidden layer(s) lie between the input layer and output layer. A neural network can 

have multiple hidden layers depending on the complexity of the problem. The nodes in the 

hidden layers receive the information coming through the connecting weights from the previous 
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layer and calculate an output to pass on to nodes in the next layer. The output of a node 𝑦𝑦𝑖𝑖  is 

computed as:  

𝑦𝑦𝑖𝑖 = 𝜑𝜑𝑖𝑖 �∑ 𝑤𝑤𝑗𝑗𝑖𝑖𝑧𝑧𝑗𝑗𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑛𝑛𝑖𝑖
𝑗𝑗=1 �,                                                   (9) 

where  𝑛𝑛𝑖𝑖  is the total incoming connections, 𝑧𝑧𝑖𝑖  is the input, 𝑤𝑤𝑖𝑖  is the weight associated with the 

input, 𝑏𝑏𝑖𝑖 is the bias, and 𝜑𝜑𝑖𝑖(∙) is the activation function. The node calculates a weighted sum of 

the incoming input, adds a bias, and uses the activation function to evaluate whether the node 

should be activated. Based on the activation function and the threshold it applies, a neuron’s 

output rate is controlled. The activation function eliminates weak connections between neurons 

and limits the rate the information passes through the hidden layers. Eventually, the resulting 

neurons in the output layer yield the class membership probability. 

 ANN is optimized by minimizing the difference between the desired output (𝑦𝑦𝑖𝑖) and the 

model output (𝑦𝑦�𝑖𝑖) using a cost function. One algorithm typically used to compute the set of 

weights that minimizes the cost function is the gradient descent method (Dreyfus, 1990; Kingma 

& Ba, 2015). Backpropagation is then used to iteratively update the weight of neurons based on 

the steepest descent direction (Rumelhart et al., 1986; Werbos, 1994).  

2.5   Summary of Literature and Proposed Study 

This study aims to evaluate various approaches for identifying enemy item pairs. Three 

NLP methods for measuring text similarities will be compared as a component of the 

classification model: Vector Space Model, Latent Semantic Analysis, and Latent Dirichlet 

Allocation. The Vector Space Model is a simplistic approach used to measure the attributional 

similarity of words. Latent Semantic Analysis enhances the VSM approach by dimensionality 

reduction to extract meaningful concepts for measuring semantic similarity between texts. LSA 

is one of the many methods for extracting semantic dimensions from sparse, noisy frequency-
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based data. Researchers have applied Probabilistic Latent Semantic Analysis (PLSA) (Hofmann, 

1999), Non-negative Matrix Factorization (Lee & Seung, 1999), and Iterative Scaling (Ando, 

2000) to this problem. Results showed that none of these methods performs substantially better 

than LSA scaled up to large matrix sizes (Turney, 2006). Latent Dirichlet Allocation is a 

generative probabilistic approach to measure text similarity based on the Probabilistic Latent 

Semantic Analysis. It is a special case of PLSA in which the mixture probabilities follow the 

Dirichlet multinomial distribution. LDA is generally recognized as an improvement over PLSA 

(Blei et al., 2003; Fernandez-Beltran & Pla, 2018). Therefore, PLSA will not be covered in this 

study.  

 This study will also compare two classifiers in the classification stage of enemy status by 

comparing the popular logistic regression algorithm to the machine learning algorithm 

commonly used in the field of natural language processing. The classification results produced 

from each combination of the NLP methods and classifiers will be examined at different 

probability cutoffs. Previous studies have evaluated the classification results at multiple cutoffs 

(Lai & Becker, 2010; Li et al., 2012; Peng et al., 2018; Weir et al., 2018; Peng et al., 2019; Weir, 

2019). Given the limited number of studies comparing the NLP methods and classification 

models at different probability cutoffs for the purpose of automatic detection of enemy item 

pairs, additional research is required to evaluate the merits of each. 

This research will contribute useful implications to the field of large-scale testing on the 

relative strength of these approaches for item bank management and maintenance. Additionally, 

the findings may be beneficial to examination contexts outside of licensure and certification. 
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3.  METHOD 
 

The chapter describes the methods employed in this study to address the following 

research questions:  

a) Do natural language processing techniques adequately capture item similarity?  

b) Compared to a logistic regression classifier, does the Artificial Neural Network 

classifier improve the accuracy of classifying enemy item pairs? 

c) What probability cutoff is considered optimal for classifying a sufficient number of 

existing enemy item pairs while keeping the number of falsely classified item pairs manageable?  

d) Does the automatic enemy item detection procedure help reveal more true enemy 

items previously not identified in the item pool? Does retraining the model, using the input from 

SME review of false positive item pairs, help improve the accuracy of classifying enemy item 

pairs?  

3.1   Item Data 

The National Council of State Boards of Nursing provided the item data used in this 

study and access to the SMEs who offered feedback on the results of enemy item pair prediction. 

The test items aim to test the capability of examinees to manage and fulfill specific medical care 

needs, including concepts and processes fundamental to the work performed by nurse aides. The 

main role of a nurse aide is to provide basic care to patients under the supervision of registered 

nurses or licensed practical nurses, including assisting patients in their daily activities, such as 

bathing, dressing, and moving the patients; measuring and monitoring vital signs and 

intake/output of the patients; ensuring bed safety and sanitization, as well as answering call 

lights. The requirements for nurse aide candidacy vary from state to state. Typically, a candidate 
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is required to have a high school diploma or a certificate of General Educational Development. 

To be qualified to take the examination, a candidate also must undergo a training that includes 

coursework and clinical practice hours, which can take four to 14 weeks to complete.  

The data consists of 1,461 multiple-choice items from the item bank of a national 

licensure examination for nurse aides. On average, each of the multiple-choice items contains 2 

to 3 sentences in the item stem, with approximately 7.5 words per sentence (before the NLP data 

processing and transformation). Each item provides four response options, including one correct 

answer key and three distractors, with the average length being 5 words per option. The test plan 

requires that the readability of an operational item pool should not exceed 1,200 Lexiles based on 

the Lexile Framework for Reading, which is equivalent to high school graduate level 

(MetaMetrics Inc., 2020). Only entry level cognitive ability (Bloom et al., 1956) is required to 

solve the majority of items, which involves memorization and recall of care protocols, and the 

main objective of the items is to test the candidates’ knowledge to recall, execute and abide by 

these protocols.   

Some enemy item relationships have been previously identified within the item bank 

through item review and test form assembly processes. A total of 453 items have at least one 

enemy item within the sample. However, it is unlikely that all enemy item relationships were 

captured in the sample, because the items were not systematically compared with each other and 

scrutinized for enemy item relationships prior to this study.  

Each multiple-choice item in the sampled item bank consists of an item stem, an answer 

key, and three distractors. These item components were the initial input data for the natural 

language processing methods. The dataset also includes information regarding the content area 
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and difficulty parameter of each item, which were later entered into the classification model as 

predictors along with the calculated similarity indices.  

3.2   Data Transformation 

To facilitate the item similarity analysis, the text of the sampled items was transformed 

into a document-term matrix, which is required by the three proposed NLP approaches as the 

initial input matrix. To enable the calculation of different similarity indices between each item 

pair, the stem and answer key were treated as separate documents in the document-term matrix. 

Four cosine similarity indices were calculated for each item pair: stem to stem similarity, key to 

key similarity, the stem of the first item and the key of the second item, and vice versa. These 

distinctive types of similarity indices captured different characteristics of enemy relationships. 

For example, the similarity between the stem of an item and the answer key of another item 

captured enemy relationships due to clueing. The distractors of each item were not included in 

this study as they are not typically considered strong indicators of enemy relationships and are 

not evaluated in the enemy item screening. A previous study by Becker and Kao (2009) also 

showed that the exclusion of distractors increased the similarity estimates of clueing enemy 

items. As a result, a total of 2,922 documents were included in the document-term matrix, 

including 1,461 item stems and the corresponding 1,461 answer keys. The four similarity indices 

described above were calculated between each item pair. These similarity indices were later 

matched with each item pair and were used as key predictors in the classification stage.    

The data transformation process included multiple steps of text cleaning and processing. 

The first step was parsing the text of each document into distinct terms. This step also removed 

the punctuation and case for each term. Next, each document was pruned of stop words. Stop 

words refer to common words such as articles, pronouns, adjectives, adverbs, and prepositions. 
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These words are so common in the English language that they do not provide useful information 

for deriving the meaning of the documents. In addition to the common stop words, frequent 

words and phrases in the given content domain were identified and added to the list of stop 

words. For example, many items in this bank contained the words “client” and “nurse aide”. 

Therefore, these words did not contribute useful information to the distinct meaning of the item. 

Some common phrases, or templates, were used in the item stems. For example, phrases such as 

“what is the best response” and “which of the following” were commonly used as the prompt. 

These words or phrases were filtered out so that they would not artificially inflate the similarity 

between items using the same templates.  

The next step of the data transformation was lemmatization, which converted the 

remaining terms into their lemmas, thereby reducing different variations (e.g. tenses and forms) 

of a word to its dictionary form. For grammatical purposes, some words have several inflected 

forms that convey the same meaning, and the word that usually represents this set of words in the 

dictionary is the lemma. For example, runs, ran, and running all share the same lemma, run. 

Lemmatization is closely related to stemming, which was commonly used in the previous studies 

of enemy item identification (Becker & Kao, 2009; Lai & Becker, 2010; Weir, 2019). The main 

difference between lemmatization and stemming is that lemmatization takes into account the 

intended part of speech and meaning of a word, while stemming simply converts a word into its 

root form by applying a series of inflection rules without knowledge of the context (e.g. 

removing the prefix or suffix of a word). For instance, lemmatization will recognize the 

difference between happy and happiness and keep them as they are, but stemming will convert 

both into the same root happi; lemmatization will convert both geese and goose to goose, while 

stemming will convert geese to gees and goose to goos. In general, lemmatization is more 
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precise than stemming, because it will always return a meaningful dictionary word that is 

appropriate for the context, but this accuracy comes at the sacrifice of speed. The NLTK package 

in Python 3.7 was used to lemmatize the terms, utilizing the WordNet corpus to identify the 

lemma of each word (Bird et al., 2009). Eventually, each document was represented by a shorter 

list of lemmas capturing the essential meaning of the document.  

The above steps produced a list of unique terms occurring across the documents. These 

terms were then mapped onto the document-term matrix in which each row represented a 

document and each column represented a unique term in the item bank. The frequency of 

occurrence for each unique term in each document was recorded as elements within the matrix. 

Next, a technique known as Term Frequency–Inverse Document Frequency (TF-IDF) weighting 

was applied to the raw frequency. The rationale of TF-IDF transformation lies in the fact that the 

raw frequency of a term does not necessarily reflect its importance to a document. The more 

prevalent a term is across the whole corpus, the less contribution it will make to distinguish 

certain individual documents from the remainder of the collection. In the context of a nurse aide 

examination, terms such as care, assist, and help are commonly observed across the items 

because they describe the routine work of a nurse aide. These terms may occur more frequently 

in certain documents than other terms, but their raw frequencies do not provide much 

information on the similarity (or difference) between the items. The less frequent terms across 

the collection, on the other hand, are more helpful in discriminating certain documents from the 

other documents. This implies that the importance of a term should take into account both its 

frequency in a document and its frequency across the whole collection. Therefore, TF-IDF 

becomes a common method to adjust the weight of the terms based on the term frequency and 

inverse document frequency. The TF-IDF weight consists of two statistics. The first part is the 
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normalized term frequency (TF), which is the number of times a term appears in a document 

divided by the total number of terms in that document. This normalized term frequency is then 

offset by the inversed document frequency (IDF), which is the logarithm of the number of the 

documents across the corpus divided by the number of documents in which the specific term 

appears. The TF-IDF weight is calculated as the product of TF and IDF. The TF-IDF 

transformation was applied on the raw document-term matrix to adjust the raw frequency values 

based on each term’s occurrences in the documents as well as its frequency across the entire item 

bank. The resulting weighted document-term matrix was passed to the three NLP approaches as 

initial input. This matrix contained 2,922 rows, with each row representing an item stem or an 

item key. Each column in this matrix corresponded to a unique term in the item bank.  

3.3   Computation of Similarity Indices Using NLP Techniques 

3.3.1   Cosine Indices Based on the Vector Space Model 

The similarity indices between each item pair for vector space model were computed 

based on the weighted frequencies in the transformed document-term matrix. To compute the 

similarity measures of 𝑖𝑖𝑡𝑡ℎ and 𝑗𝑗𝑡𝑡ℎ  items, the program first identified the stem vectors and key 

vectors of the two items. The cosine similarity measures were calculated between the stem 

vectors of both items, between the key vectors of both items, between the stem vector of the 

𝑖𝑖𝑡𝑡ℎ item and the key vector of the 𝑗𝑗𝑡𝑡ℎ item, and vice versa, resulting in four cosine similarity 

indices: cosine�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 ,𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑗𝑗�, cosine�𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖 , 𝑘𝑘𝑘𝑘𝑘𝑘𝑗𝑗�, cosine�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 ,𝑘𝑘𝑘𝑘𝑘𝑘𝑗𝑗�, and 

cosine�𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗�.  
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3.3.2   Cosine Indices Based on the Latent Semantic Analysis 

Latent Semantic Analysis was performed on the document-term matrix, which applies the 

Truncated Singular Value Decomposition on the document-term matrix. Semantic concepts were 

extracted through this dimension reduction process.  

Selecting the optimal number of concepts/dimensions retained from LSA has always 

been an open research issue. A low value of k dimensions is not sufficient to capture the 

relationships between the terms and documents, whereas a large value induces noise or irrelevant 

details. Some studies have suggested to select the optimal number of dimensions empirically. 

Deerwester et al. (1990) examined the prediction performance over varying numbers of 

dimensions for a collection of 1,033 medical abstracts with 5,823 unique terms. They found that 

the mean precision more than doubled as the number of dimensions increases from 10 to 100 and 

peaked at 100. Bradford (2008) explored the effects of varying dimensionality in large 

collections of up to five million documents and suggested that the optimal number of dimensions 

ranged from 300 to 500. This study also used a scree plot (Cattell, 1966) to identify where the 

singular values stabilize. The results indicated that there was relatively little gain when 

increasing the number of dimensions over 300. The proportion of variance explained by each 

dimension can also be calculated from the singular values and be used to determine the number 

of dimensions to retain. Existing literature suggested that a cumulative proportion of 70% to 90% 

variance explained usually indicates sufficient representation of the original data (Jolliffe, 2002; 

Cangelosi & Goriely, 2007).  

To ensure that the k extracted concepts are representative of the document-term matrix, a 

minimum of 300 dimensions were retained from the Latent Semantic Analysis. The singular 

values of dimensions were graphed in a scree plot to identify the location where the values 
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stabilized. The cumulative proportion of variance explained by the dimensions were examined at 

varying numbers of k to ensure that at least 70% percent of the variance in the document-term 

matrix was preserved.  

Once the optimal number of concepts was selected, LSA produced the loadings of each 

documents on all of those concepts (document-concept matrix), as well as the loadings of each 

term on those concepts (concept-term matrix). The extracted concepts which explained the most 

variance in the data were examined. The first five terms with the highest loadings on each of 

these concepts were scrutinized to ensure that the LSA extracted meaningful concepts.   

Similarly, the four cosine similarity indices for each item pair were calculated based on 

the document-concept matrix produced from the LSA. Each document vector used for this 

calculation consisted of the document’s scores on each extracted concept rather than on each 

term.  

3.3.3   Cosine Indices Based on the Latent Dirichlet Allocation 

The document-term matrix was also analyzed with the LDA to identify the topics within 

the item bank. The probability distribution over these topics was produced for each document. 

Deriving the probability distribution involves computing posterior distribution on a large discrete 

state space because of the sparseness of the document-term matrix. This problem was addressed 

by using a Gibbs sampling procedure which is easy to implement, requires little memory, and is 

competitive in speed and performance compared to other approximation methods such as 

variational Bayes or expectation propagation (Griffiths & Steyvers, 2004). Gibbs sampling is a 

Markov chain Monte Carlo algorithm widely applicable to calculating a complex posterior 

distribution. A Markov chain is constructed to converge to the target distribution, and samples 

are then taken from that Markov chain. In each state of the chain, a set of values are assigned to 
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variables being sampled, and transitions between states follow a rule. With Gibbs sampling, the 

next state is reached by sequentially sampling all variables from their distribution when 

conditioned on the current values of all other variables and the data. To ensure that stationary 

distribution of the Markov chain was reached, Gibbs sampling was run with a burn-in period of 

1,000 iterations.   

As described in the previous section 2.3.3 regarding the generative process of the LDA, 

the number of latent topics 𝐾𝐾 is assumed to be known a priori. Therefore, an empirically 

determined alpha prior equivalent to the inverse of the number of topics (𝛼𝛼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1
𝐾𝐾

 ) is 

typically used. This will provide a starting point for the LDA with the assumption that only one 

topic is likely to contribute to any given document. Based on existing literature discussing the 

appropriate range of number of topics for LDA models, studies have shown that the optimal 

results can be achieved with as few as 20 topics, and the number of topics typically would not 

exceed 100 topics even for large text corpus with thousands of documents (Tang et al., 2014; 

Zhao et al., 2015; Weir, 2019). Zhao et al. (2015) examined the meaningfulness of topics at 

various specifications of number of topics. This study found that when the number of topics 

exceeded 100, a larger number of topics was judged to be less meaningful such that the topics 

were unable to represent a unique and salient theme, compared to LDA models with fewer 

topics. While there is no one best way to determine the optimal number of topics, this study will 

use an empirical approach to assess the fit of several models across a range of specified topics. 

The perplexity of each model will be evaluated at varying number of topics K. Perplexity is a 

standard measure of how well a probability model predicts a sample and can be used to compare 

the performance of LDA models (Griffiths & Steyvers, 2004; Zhao et al., 2015). Perplexity is 
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defined as the reciprocal geometric mean of the term likelihoods in the documents (𝐷𝐷) given the 

model: 

perplexity(𝐷𝐷) = exp �− ∑ log𝑃𝑃(𝑡𝑡𝑚𝑚)𝑀𝑀
𝑚𝑚=1
∑ 𝑁𝑁𝑚𝑚𝑀𝑀
𝑚𝑚=1

�                                    (10) 

Lower values of perplexity indicate lower misrepresentation of the terms by the topics. The 

model perplexity was examined over a varying number of topics to determine the most 

reasonable number of topics, which was then used to determine the prior of the final LDA model. 

Once the LDA model was fit to the data, a document-by-topic matrix was generated where each 

row represented the topic distribution of a given document in the item bank.   

 To validate the meaningfulness of the topics extracted by the LDA, the top five most 

likely terms associated with each topic were inspected. The substantive meaningfulness of the 

topics was evaluated by the SMEs as another indication of goodness of fit of the LDA.   

The four cosine similarity indices for each item pair were calculated based on the 

document-topic matrix generated from the LDA. Each document vector used for this calculation 

consisted of the likelihood of each topic occurring in this document.  

3.4   Enemy Item Pair Classification  

 In the classification stage, the enemy status for each of the item pair was predicted using 

the logistic regression and Artificial Neural Networks classifiers. The classification dataset 

included 1,066,530 item pairs (based on the 1,461 multiple-choice items available in the bank), 

with some enemy relationships pre-determined by SMEs through previous test form review. The 

enemy status of each item pair, as indicated in the item bank, was the outcome variable in the 

classification model.  

The key predictor variables were the four cosine similarity indices computed from the 

NLP models. The average length of each item pair was also calculated and included as a 
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predictor. The total number of lemmas identified in the stem and key of each item was first 

calculated, and the average number of lemmas between each item pair was computed as the 

average length. In the previous literature, the item length was shown to be related to the 

prediction of enemy probability. In addition, two other predictors were calculated based on the 

item meta data: the content area and the item difficulty level. The content area of each item was 

available in the dataset. Typically, each item was assigned to the most relevant content area on 

the test blueprint during the initial item development process, and the categorization into the 

same content area may be an indicator of between-item similarity. The item difficulty, on the 

other hand, was calibrated based on pretest data later in the item development process, prior to its 

inclusion to the operational item pool.  The content area information is universally available for 

test items because the assignment of content area takes place in the initial stage of item 

development, while the difficulty parameters are only available after the items have successfully 

undergone the pretesting stage and were calibrated using the data obtained during pretesting. In 

other words, item difficulty information is specific to operational items. This study utilized an 

operational item pool, and therefore the absolute difference in the calibrated difficulty level (b 

parameter) of each item pair was also included as a predictor. In the context of adaptive testing, 

enemy items with large difference in calibrated difficulty parameters may not be as threatening 

as items with a smaller difference, as it is very unlikely that two items with great difference in 

difficulty level are administered in the same adaptive test (Lai & Becker, 2010).  

3.4.1   Synthetic Minority Over-Sampling for Imbalanced Data 

 The outcome variable of the classification model was the binary enemy status pre-

determined by SMEs. Among the 1,066,530 item pairs, a total of 327 were enemy pairs, and the 

rest were non-enemies. Given the characteristics of an item bank, the proportion of enemy item 
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pairs was expected to be very low, and the majority of the item pairs will not be enemies, which 

leads to an imbalanced dataset in which the majority class (non-enemies) significantly out-

numbers the minority class (enemies). Such imbalanced data is commonly seen in many real 

applications of medical diagnosis, fraud detection, and defect prediction, etc. (Wei et al., 2013; 

Belarouci & Chikh, 2017; Han et al., 2019; Malhotra & Kamal, 2019). Traditional classification 

techniques tend to be overwhelmed by the majority class and ignore the minority class, when in 

many cases, the prediction of minority class is of much more interest. Research found that 

classifiers tend to provide a severely imbalanced degree of accuracy between the majority and 

minority classes, with the majority class having close to 100% accuracy and the minority class 

having an accuracy of 0 to 10% (Woods et al., 1993; Chawla et al., 2002).  

 Resampling techniques were proposed to counter the challenges presented by imbalanced 

data through over-sampling the minority class or under-sampling the majority class. However, 

random over-sampling is prone to overfitting, whereas random under-sampling is also likely to 

remove observations that are important to classification performance (Komori & Eguchi, 2019). 

The Synthetic Minority Over-sampling Technique (SMOTE) was developed to improve the 

over-sampling technique and has been proved to be effective in dealing with class imbalanced 

problems (Chawla et al., 2002). It generates a certain number of artificial minority class samples 

based on the similarities between existing minority examples to balance the distribution between 

the samples of majority and minority class. The process of SMOTE is as follows:  

a) For each minority sample 𝑥𝑥𝑖𝑖 ∈ 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, compute 𝑘𝑘 nearest neighbors with minority class 

samples according to Euclidean distance;  

b) Select a neighbor 𝑥𝑥𝑗𝑗 randomly from the 𝑘𝑘 nearest neighbors of 𝑥𝑥𝑖𝑖 ; 

c) Compute the difference 𝑑𝑑𝑑𝑑𝑑𝑑 =  𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖 ; 
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d) A new minority sample is generated between 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 according to  

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑥𝑥𝑖𝑖 + 𝛿𝛿 ∙ 𝑑𝑑𝑑𝑑𝑑𝑑                                                    (11) 

where 𝛿𝛿 ∈ [0, 1] is a random parameter used to control the position of the new generated sample.  

 Since the distribution of enemy and non-enemy item pairs was highly imbalanced in the 

study data, the SMOTE technique was applied to increase the accuracy of the minority class 

prediction. Synthetic enemy item pairs were generated to balance the distribution of enemy and 

non-enemy item pairs. The data were divided into 80% training data and 20% test data. The 

SMOTE technique was applied on the training data. The classifier was trained on the training 

data, and the fitted model was applied on the test data to predict the enemy status. It is worth 

noting that none of the previous studies have employed the SMOTE technique to address the 

data imbalance issue. When the SMOTE was applied in this study to generate a balanced 

classification dataset, the variance of the variables was inevitably altered. As a result, the 

predicted probabilities appeared different from the results of the previous studies. Therefore, the 

optimal range of classification cutoffs needed to be re-examined and determined empirically 

based on the classification results of this study.  

3.4.2   Logistic Regression Classification 

  The four cosine similarity indices and the average item length derived from the NLP 

models, along with the difference in difficulty parameters and content overlap indicator, were 

entered as predictors for the classifiers to predict the enemy relationship between each item pair.  

The parameters of logistic regression were estimated using maximum likelihood 

estimation. The estimation procedure begins with an expression for the likelihood of observing 

the enemy status (𝑦𝑦𝑖𝑖 = 1) and non-enemy status (𝑦𝑦𝑖𝑖 = 0) in the data:  

Likelihood Function = ∏ {𝑃𝑃(𝑥𝑥𝑖𝑖)𝑦𝑦𝑖𝑖 ∙ (1− 𝑃𝑃(𝑥𝑥𝑖𝑖))1−𝑦𝑦𝑖𝑖}𝑛𝑛
𝑖𝑖=1                            (12) 
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where 𝑝𝑝(𝑥𝑥𝑖𝑖) is the likelihood of observing enemy status and 1 −𝑝𝑝(𝑥𝑥𝑖𝑖) is the likelihood of 

observing non-enemy status as illustrated in Eq. (6) and Eq. (7). The product of the likelihood of 

observing the enemy status of each item pair becomes the joint likelihood of observing the 

dataset. The goal of maximum likelihood estimation is to identify a set of 𝛽𝛽 values that maximize 

the likelihood of observing the dataset, which involves taking the derivative of the likelihood 

function and setting it to zero. This process can be simplified by taking the derivative of the log 

likelihood, since log is a monotonically increasing function.  

Maximizing the log likelihood can sometimes be an unsolvable problem in closed form. 

An iterative procedure could then be used to fit a new set of parameters through each iteration. 

This process continues until the increase in the log likelihood function from choosing new 

parameters becomes so small that little gain comes from continuing any further.  

The logistic regression was applied on the post-SMOTE training dataset. Once the MLE 

estimation converged through the iterations, the logistic regression classifier produced a set of 

parameters for each predictor, and the probability of observing the enemy relationship for each 

item pair was generated. The probability values were used to produce the classification results 

for further evaluation.  

3.4.3   Artificial Neural Network Classification  

 The data were also trained on the ANN classifier. The structure of an ANN consists of 

several neurons (nodes) arranged in a layer-by-layer network, and the neurons in each layer have 

connections (weights) from the neurons in the previous layer. The predictors were entered as 

neurons on the input layer of the neural network, and the weighted connections pass forward the 

information through the hidden layers where the data were processed.  
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3.4.3.1   Number of Hidden Layers and Neurons 

 The specification of hidden layers and neurons has been one of the major challenges of 

neural networks. According to the universal approximation theorem, any continuous function can 

be uniformly approximated by an ANN with a single hidden layer containing a finite number of 

neurons (Cybenko, 1989; Funahashi, 1989), and an ANN with two hidden layers can represent 

any arbitrary decision boundary in classification and approximate any smooth mapping to any 

accuracy (Hornik et al., 1989; Hornik, 1991). Therefore, neural networks with one and 

occasionally two hidden layers are widely used to model complex problems. The choice of 

number of hidden neurons also has an impact on the performance of the network. If an 

inadequate number of neurons is used, the network will be unable to model complex problems. 

Excessive hidden neurons, on the other hand, will result in over fitting, causing the neural 

network to over-estimate the complexity of the problem (Ke & Liu, 2008). Some rule-of-thumb 

methods were proposed for determining the sufficient number of hidden neurons (Heaton, 2008): 

a) the number of hidden neurons should be between the number of input neurons and output 

neurons; b) the number of hidden neurons should be 2/3 the size of the input neurons plus the 

size of the output neurons; c) the number of hidden neurons should be less than twice the size of 

the input neurons.  

In the previous studies of enemy item detection using ANN classifier, Lai and Becker 

(2010) used one hidden layer of 19 neurons for approximately 30 input neurons to derive the 

binary output of enemy status; Peng et al. (2019) assigned five neurons in the first hidden layer 

and three in the second hidden layer for a network of eight input neurons and a binary output 

neuron.  
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Based on the literature, the current study employed two hidden layers in the ANN 

structure, which were sufficient to approximate any arbitrary classification decision to any 

accuracy. The seven predictors entered the input layer. The ANN model was configured to have 

four neurons in the first hidden layer and three neurons in the second hidden layer, as illustrated 

in Figure 5. The connecting weights ran from one layer to the next and carried the output of each 

neuron to the neurons in the next layer. Eventually, the network predicted the probability of 

enemy status for each item pair.  

3.4.3.2   Activation Function for Neurons 

 As previously illustrated in Eq. (9), the output of a neuron is governed by an activation 

function 𝜑𝜑𝑖𝑖(∙). This activation function controls the amplitude of the neuron’s output into a 

certain range. Two popular activation functions are the step function and the sigmoid function 

(Haykin, 1999; Du & Swamy, 2019). Let 𝑥𝑥𝑖𝑖 denote the original unscaled output of a neuron 𝑖𝑖:  

 𝑥𝑥𝑖𝑖 = ∑ 𝑤𝑤𝑗𝑗𝑖𝑖𝑧𝑧𝑗𝑗𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑛𝑛𝑖𝑖
𝑗𝑗=1 .                                                    (13) 

The step function determines that 

 𝜑𝜑(𝑥𝑥𝑖𝑖) = �1           if 𝑥𝑥𝑖𝑖 ≥ 0,
0           if 𝑥𝑥𝑖𝑖 < 0.                                              (14) 

This implies that the step function is a hard limiter that turns the neuron “on” or “off”. The 

sigmoid activation function, on the other hand, is a logistic function:  

𝜑𝜑(𝑥𝑥𝑖𝑖) = 1
1+𝑒𝑒−𝛽𝛽𝑥𝑥𝑖𝑖

 ,                                                      (15) 

where 𝛽𝛽 is a gain, typically selected as unity, and is used to control the steepness of the 

activation function (Du & Swamy, 2019). The sigmoid activation function controls the output 

rate of the neuron.   
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In this study, the step function was used as the activation function for neurons in the 

hidden layers to eliminate weak connections, and the sigmoid function was used for the final 

neuron in the output layer to produce the probability of enemy status.  

3.4.3.3   Optimization of Artificial Neural Network Classification 

The goal of ANN is to find a set of weights that can minimize the cost function; that is, 

the Mean Square Error (MSE) of the neural network:  

MSE = 1
𝑁𝑁
∑ (𝑦𝑦�𝑖𝑖𝑁𝑁
𝑖𝑖=1 − 𝑦𝑦𝑖𝑖)2,                                                      (16) 

where 𝑁𝑁 is the total sample size. In order to minimize the cost function, a gradient descent 

procedure was used to locate the minimum point of the cost function. This method calculates the 

slope of the function and then adjusts the weights and biases accordingly to achieve a lower loss 

through iterations. Each iteration is an attempt to move closer to the minimum of the cost 

function. This is analogous to descending an object on a surface in the weighted space. At any 

point of the descent, one can calculate the slope and take steps towards the descending direction 

of the slope. Each step moves towards the bottom of the surface until a stable minimum point is 

reached. To avoid finding the local minimum of the cost function, the gradient descent procedure 

was conducted multiple times in order to find the global minimum. In machine learning, each of 

these gradient descent procedures is termed an epoch. In this study, the ANN classifier was run 

for 20,000 epochs until the MSE was below 0.001.  

3.5   Model Evaluation  

The classification results will be evaluated and compared across models at various 

probability thresholds. Based on the literature, the optimal classification results of enemy status 

tend to occur at a lower probability threshold (Becker & Kao, 2009; Li et al., 2012; Peng et al., 

2018; Peng et al., 2019). Since this study applied the SMOTE technique to achieve a balanced 
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classification dataset that was not employed in any of the previous studies, the probability cutoffs 

suggested by previous literature were not applicable to this study. The probability distribution 

was re-examined, and the classification results were evaluated based on the following metrics.  

Given a probability cutoff for the classification (i.e. ≥ .50 as enemy, and < .50 as non-

enemy), the number of item pairs correctly classified and/or misclassified by the model for each 

enemy class can be calculated and presented in a confusion matrix showing:  

 

TABLE I 

EXAMPLE CONFUSION MATRIX  

Predicted Status 

Actual Status in Item Pool 

Enemy  Non-Enemy 

Enemy True Positive (TP)  False Positive (FP) 

Non-Enemy False Negative (FN)  True Negative (TN) 
 

 A series of classification performance metrics can be calculated based on this matrix. 

Below are the formulas for four commonly used classification metrics:  

Recall/Sensitivity = TP
TP+FN

                                                      (17) 

Precision = TP
TP+FP

                                                       (18) 

Specificity = TN
TN+FP

                                                      (19) 

Accuracy = TP+TN
TP+TN+FP+FN

                                              (20) 

Another performance metric closely tied to the precision and recall rates is the F1 score. 

F1 score is the weighted average of precision and recall:  

F1 Score =  �Recall
−1+Precision−1

2
�
−1

= 2 × Precision×Recall
Precision+Recall

                            (21) 
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An F1 score reaches its best value at 1 and worst score at 0. An F1 score is usually used 

when imbalanced class distribution exists. Although the SMOTE technique was employed to 

adjust for the class imbalance for the training dataset, a large number of cases are still expected 

to be True Negatives when the prediction is made on the test dataset. In this study, an F1 score is 

a better reference for model evaluation.  

To determine a reasonable range of probability cutoffs to compare across, a Receiver 

Operator Characteristic (ROC) curve analysis was performed. An ROC curve is generated by 

plotting the False Positive Rate (FPR) against the True Positive Rate (TPR), also known as the 

recall rate and sensitivity rate, at various threshold settings.  

FPR  =  FP
FP+TN

                                                       (22) 

TPR/Recall/Sensitivity =  TP
TP+FN

                                                       (23)  

The FPR is equivalent to 1 −𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. Therefore, the ROC curve illustrates the 

tradeoff between the sensitivity and specificity. In this study, the ROC curve was conducted as 

an initial search for the range within which the optimal probability cutoff was located.  

In addition to the ROC curve analysis, this study also examined the Precision-Recall 

Curve (PRC). A Precision-Recall Curve plots the recall rate against the precision rate and 

visualizes the tradeoff between precision and recall rates for every possible cutoff. The 

Precision-Recall Curve is informative for this study since the calculation of both recall and 

precision rates is based on True Positive, True Negative, and False Positive cases.  

The area under the curve (AUC) for both ROC and PRC was also examined. The AUC 

evaluates the global performance of a classification model in terms of the metrics plotted in the 

ROC or the PRC over the full range of possible cutoff values. The AUC measure can be used to 

compare across competing classification models. An AUC of .5 represents a classification test 
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with little discriminating ability, while an AUC of 1.0 represents a test with perfect 

discrimination. 

Based on the results from the ROC and PRC analyses, four probability cutoffs within the 

optimal range were determined for further examination. The identification of the optimal 

probability cutoff typically required a simultaneous assessment of sensitivity, precision, 

specificity, accuracy, and F1 score of the classification models. Depending on the goal of the 

study, the evaluation may focus on different performance metrics. In this study, the goal was to 

identify as many enemy item pairs as possible, while keeping the false negative cases at a 

manageable number for further SME review. Therefore, this study focused on performance 

metrics based on the True Positive cases and False Positive cases. Given that the proportion of 

enemy item pairs was low and the majority of the item pairs were not enemies, accuracy and 

specificity were expected to be high regardless of the classifier, due to the large number of true 

negative cases. On the other hand, sensitivity (the TPR), precision, and the F1 score were 

considered more important indicators of fit in the context of this study.  

3.6   SME Review and Retraining of Classification Models 

Since the enemy item pairs flagged in this dataset were only identified during the test 

assembly process by SMEs, it is likely that some enemy pairs were never reviewed and identified 

in the dataset. That is, because enemy item pairs were only labeled as enemies if they had been 

assessed by SMEs and unlabeled if they had not, the full truth about the enemy relationships 

among the items is unknown. As a result, the initial classification results are likely to be 

imprecise, and some of the False Positive item pairs could indeed be true enemies.  

After training the classification model, the False Positive item pairs that were predicted to 

have a high probability of being enemies were sent to SME review. A list of these False Positive 
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item pairs, sorted by the predicted enemy probability from high to low, were presented to two 

SMEs with item review experience. As the volume of False Positive cases tends to be large, it is 

unrealistic to review all the False Positive item pairs. A stopping rule was thereby employed to 

control the workload of the review. Within the descending order of enemy probability, the False 

Positive item pairs were grouped into sets of 20 item pairs. The SMEs conducted the review 

from higher probability sets to lower probability sets and determined true enemy relationships 

for each item pairs. The SMEs were asked to stop the reviewing process when they encountered 

less than 10% (only one) true enemy pair(s) within a 20-item pair set.  

The two SMEs who conducted the enemy item review both have a background in nursing 

and have over five years of experience working in the test development for the National Council 

of State Boards of Nursing. They were trained to look for characteristics of enemy item pairs, 

such as degree of content overlap and presence of clueing. They both have over four years of 

experience screening for enemy item pairs within the operational item pools of national nursing 

licensure tests. The SMEs will conduct the enemy item review independently and compare their 

enemy relationship decisions. When disagreement of enemy status for certain item pairs arises, a 

discussion will take place between the SMEs to finalize the enemy status for these item pairs.  

After the SME review, the enemy status for those newly confirmed enemy item pairs was 

updated in the item bank, as well as in the classification dataset. The updated dataset reflected 

more accurate enemy relationships among item pairs. The models were retrained on the updated 

dataset, and the classification results were re-evaluated. This iterative process provided insight as 

to whether the proposed automatic detection process can improve the enemy relationship tagging 

and monitoring in the item bank.  
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3.7   Summary of Methods and Research Questions 

To address the research questions, this study used a crossed 3 (NLP) × 2 (Classifier) × 4 

(Probability Cutoff) design with a total of 24 experimental conditions to evaluate the 

performance and accuracy of each combination of methods for detecting enemy item pairs within 

an operational item bank. The methods employed in this study were summarized and linked to 

each research question below.  

At the first stage of the study, the three NLP techniques were applied to the document-

term matrix. The concepts and topics within the item bank were extracted from the two topic 

modeling NLP approaches–the Latent Semantic Analysis and the Latent Dirichlet Allocation, 

respectively. The optimal number of concepts/topics was evaluated based on the appropriate 

statistical criteria described above. In addition, SMEs reviewed the associated terms with the top 

concepts/topics to ensure these topic modeling approaches captured substantially meaningful 

concepts/topics. Each NLP technique produced the cosine similarity indices for all the item pairs. 

At the second stage, the similarity indices, along with other item meta data predictors, 

were entered into the logistic regression classifier and the Artificial Neural Network classifier to 

predict the probability of enemy status for each item pair. The classification models were trained 

using the training data and then made prediction on the test data. The classification results were 

first evaluated with the ROC curve analysis, which provided an initial indication on the range of 

optimal probability cutoffs. Four probability cutoffs were chosen within the range for further 

examination. The classification performance metrics were evaluated across the models. 

At the third stage, the most probable False Positive enemy pairs underwent SME review 

in order to detect additional enemy relationships that were not previously flagged in the item 

bank, based on which the enemy status of the item pairs was updated. The models were re-
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trained based on the updated data, and the classification results under each condition were re-

evaluated.  

Research question a): Do natural language processing techniques adequately capture 

item similarity? The distributions of the cosine similarity indices from the three natural language 

processing techniques were examined across the enemy and non-enemy item pairs. Furthermore, 

the classification performance of the three NLP approaches were compared across the classifiers 

and probability cutoffs. The meaningfulness of the concepts and topics extracted served as 

additional evidence of the ability of the NLP techniques in capturing conceptual similarity.  

Research question b): Compared to a logistic regression classifier, does the Artificial 

Neural Network classifier improve the accuracy of classifying enemy item pairs? This study also 

compared the classification results from the logistic regression classifier and the Artificial Neural 

Network classifier across the probability cutoffs to address the research question of whether the 

ANN classifier improves the accuracy of enemy relationship classification over the traditional 

logistic regression classifier.  

Research question c): What probability cutoff is considered optimal for classifying a 

sufficient number of existing enemy item pairs, while keeping the number of falsely classified 

item pairs manageable? The ROC curve analysis revealed a reasonable range of probability 

cutoff values, based on which four probability cutoffs were chosen for further evaluation. 

Numerous classification performance metrics were evaluated at each of these cutoffs to 

determine the optimal cutoff point. The evaluation criteria of the optimal cutoff focused on 

increasing the recall rate of enemy item pairs and keeping the number of False Positive item 

pairs manageable for SME review.  
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Research question d): Does the automatic enemy item detection procedure help reveal 

more true enemy items previously not identified in the item pool? Does retraining the model, 

using the input from SME review of false positive item pairs, help improve the accuracy of 

classifying enemy item pairs? Two SMEs reviewed the False Positive item pairs classified by the 

automatic detection procedure and identified additional true enemy item pairs. The results of the 

SME review were summarized to inform whether the automatic process can help catch more 

enemy items previous not identified in the item pool. After the SMEs’ review, the enemy status 

was updated, and the analysis was re-run. The updated classification results under each condition 

were re-examined in order to provide insight into whether this iterative process helps improve 

the accuracy of enemy item pair classification. 

  



 

 
 

55 

4.  RESULTS 
 

This chapter describes the results found in the process of 1) item data transformation, 2) 

the application of the three NLP methods, 3) classification of item pairs, 4) SME review of False 

Positive item pairs, and 4) the re-training and re-evaluation of models.  

4.1   Item Data Transformation 

The item data consisted of 1,461 multiple-choice items from the operational item bank of 

a national licensure examination for nurse aides. The data included the text of the stem, key, and 

distractors of each item. The enemy associations between items, if previously identified through 

item review and test assembly process, were also recorded in the data. Also available were the 

content area code of each item and its difficulty parameter, calibrated from the IRT model.   

The sample item bank covered 17 specific content areas laid out in the test blueprint. A 

test blueprint reflects the test objectives by specifying the proportion of each content area 

covered in the test. Items are selected from the item bank for test form construction based on the 

test blueprint. Therefore, the item bank needs to maintain enough items to ensure that multiple 

test forms meeting the test blueprint specifications can be constructed. Table 2 illustrates the 

content area proportions specified in the test blueprint and the distribution of the content areas 

within the actual item bank used in this study. The table lists the names of content areas 1-17 in 

the item data and their test blueprint target proportions in parentheses. The content areas were 

summarized into higher-level content domains in the test blueprint. The Physical Care Skills 

domain was assigned a higher weight in the test and was broken down into three sub-domains 

and 11 content areas. This domain differed from the other domains in that the test blueprint 
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targets were specified at the three sub-domain levels rather than at the content area level. The 

two columns on the  

TABLE II 

BLUEPRINT SPECIFICATIONS AND CONTENT AREA DISTRIBUTION  

Content Area (Blueprint %)  Item Bank N Item Bank % 

I. Physical Care Skills   

A. Activities of Daily Living (14%)  15.26 

1. Hygiene 75 5.13 

2. Dressing and Grooming 23 1.57 

3. Nutrition and Hydration 50 3.42 

4. Elimination 34 2.33 

5. Rest/Sleep/Comfort 41 2.81 

B. Basic Nursing Skills (39%)  37.30 

6. Infection Control 92 6.30 

7. Safety / Emergency 131 8.97 

8. Therapeutic and Technical Procedures 166 11.36 

9. Data Collection and Reporting 156 10.68 

C. Restorative Skills (8%)  8.42 

10. Prevention 39 2.67 

11. Self Care / Independence 84 5.75 

II. Psychosocial Care Skills   

12. Emotional and Mental Health Needs (11%) 152 10.40 

13. Spiritual and Cultural Needs (2%) 49 3.35 

III. Role of the Nurse Aide   

14. Communication (8%) 131 8.97 

15. Client Rights (7%) 96 6.57 

16. Legal and Ethical Behavior (3%) 38 2.60 

17. Member of the Health Care Team (8%) 104 7.12 

Total 1,461 100.00 
 Note. Values in bold are aggregated percentage of corresponding content domains.    
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right show the number of items from each content area and the corresponding proportions in the 

item bank data. While the item bank does not strictly match the proportions allocated in the test 

blueprints, the table indicates that the item bank data generally aligns with the test blueprint 

specifications. 

 The item bank provided the initial text corpus for this study, which included 1,461 item 

stems and 1,461 item keys. These text documents were processed using the NLP data 

transformation technique to derive the document-term matrix. Each document was first parsed 

into distinct terms and stripped of punctuation and case. Next, stop words were removed from 

the documents. This study used a default list of stop words offered by the NLTK package in 

Python 3.7. This list of stop words includes 221 English words with little lexical content; their 

presence does not add to the semantic meaning of the document. Upon analyzing the items, eight 

item bank specific words and phrases were identified as additional stop words. The words nurse 

aide and client appear in most of the items. As a result, they do not contribute to the distinction 

between items. Moreover, phrases such as which of the following, what is the best response, and 

what is the most appropriate are commonly used in the item stems. During the item development 

process, editorial review was conducted to standardize the word usage across items, and these 

templates were employed in the item stem to prompt the response options. These words and 

phrases were also removed from the document so that they do not artificially inflate the 

similarity between documents using the same editorial templates.  

Table 3 summarizes the types of stop words employed in this study. Both default stop 

words in the English language as well as item bank specific stop words are illustrated with 
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examples in the table. The most common type of stop words (28%) were prepositions, 

conjunctions, and/or adverbs. Compounds such as pronoun and verb (e.g. you’re), verb and 

negation (e.g. isn’t), and auxiliary and negation (e.g. shouldn’t) were also typical stop words 

(24%). Some other common words in the English language, such as one, many, and never, were 

also included in the default stop words (18%). A total of 229 stop words were removed from the 

documents.  

TABLE III 

SUMMARY OF DEFAULT STOP WORDS AND ITEM BANK SPECIFIC STOP WORDS 

Type   Examples N % 

Default    

Articles a, the 3 1.31 

Auxiliaries would, could 4 1.75 

Common Words one, many, never 42 18.34 

Compounds she’s, haven’t 55 24.02 

Prepositions, Conjunctions, Adverbs* between, but, again 63 27.51 

Pronouns you, himself 38 16.59 

Verbs have, do 16 6.99 

Item Bank Specific    

Common Words within Item Bank client, nurse aide,  
he/she, and/or 

4 1.75 

Templates which of the following,  
best response 

4 1.75 

Total  229 100.00 
Note. The overlap among prepositions, conjunctions, and adverbs is so common that separate 
classification is unnecessary.    

 

 After the stop words removal, lemmatization was performed to convert each word into its 

dictionary form. As a result, a total of 2,147 unique lemmas were identified across the item bank. 
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On average, an item stem document after the lemmatization had nine lemmas, and an item key 

document had three lemmas. The occurrences of all unique terms for each document were 

mapped onto the document-term matrix, resulting in a 2922 × 2147  matrix in which each row 

represented an item stem or an item key, and each column represented a unique term/lemma in 

the item bank. TF-IDF transformation was applied on the document-term matrix to normalize the 

raw frequency based on each term’s occurrence across the item bank and its occurrence within 

each document.   

4.2   Results from NLP techniques 

4.2.1   Vector Space Model 

Computing similarity indices between items was straightforward for the Vector Space 

Model. For any given item pair 𝑖𝑖 and 𝑗𝑗, the program first identified their corresponding stem and 

key vectors in the document-term matrix. Four cosine similarity indices were then calculated 

based on different components of the item pair: cosine�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 ,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗�, cosine�𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖 ,𝑘𝑘𝑘𝑘𝑘𝑘𝑗𝑗�, 

cosine�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 ,𝑘𝑘𝑘𝑘𝑘𝑘𝑗𝑗�, and cosine�𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗�.  

Table 4 shows the descriptive statistics of the four cosine indices across all item pairs. 

There were a total of 1,066,530 item pairs between 1,461 items, among which 327 were flagged 

as enemy item pairs and 1,066,203 as non-enemy item pairs in the item bank. The cosine indices 

were grouped by the enemy status of item pairs in Table 4. The cosine indices for the VSM 

approach were computed from normalized term frequencies. As a result, the cosine indices all 

range from 0 to 1. On average, the cosine indices were higher within enemy item pairs than 

within non-enemy pairs. The average cosine between stems and the cosine between keys were 

both above .280 for enemy item pairs, with standard deviations of.266 and 0.334. In comparison, 

both the cosine between stemi and keyj (M=.075, S.D.=.169) and the cosine between keyi and 
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stemj (M=.101, S.D.=.192) were roughly one third of the value, which was not surprising, as 

clueing is not a common type of enemy association.  

The cosine indices were consistently low within non-enemy item pairs, with average 

values ranging from .003 to .007. The standard deviations across the cosines were also similar 

within non-enemy pairs, with a range between .026 and .036.  

An independent t-test assuming unequal variances was conducted between the enemy and 

non-enemy groups for each of the cosine indices. The results showed that the enemy item pairs 

have significantly higher values on all four of the cosine similarity indices compared to the non-

enemy item pairs with a p-value less than .001.  

TABLE IV 

DESCRIPTIVE STATISTICS OF COSINE SIMILARITY INDICES FROM THE VSM 

Similarity Index   N Mean S.D.  Min. Max. 

Enemy       

cosine�stem𝑖𝑖 , stem𝑗𝑗 � 327 .320 .266 .000 1.000 

cosine�key𝑖𝑖 , key𝑗𝑗� 327 .280 .334 .000 1.000 

cosine�stem𝑖𝑖 , key𝑗𝑗� 327 .075 .169 .000 1.000 

cosine�key𝑖𝑖 , stem𝑗𝑗 � 327 .101 .192 .000 1.000 

Non-Enemy      

cosine�stem𝑖𝑖 , stem𝑗𝑗 � 1,066,203 .007 .035 .000 1.000 

cosine�key𝑖𝑖 , key𝑗𝑗� 1,066,203 .004 .036 .000 1.000 

cosine�stem𝑖𝑖 , key𝑗𝑗� 1,066,203 .003 .027 .000 1.000 

cosine�key𝑖𝑖 , stem𝑗𝑗 � 1,066,203 .003 .026 .000 1.000 
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4.2.2   Latent Semantic Analysis 

4.2.2.1   Determining the Number of Concepts 

Model selection was first performed to determine the optimal number of concepts to 

retain for the Latent Semantic Analysis. As the literature suggested, a large text corpus typically 

contains over 300 distinct concepts. Therefore, this study fit the LSA model at varying number 

of concepts ranging from 300 to 1000.   

Figure 6 plots the proportion of variance explained by the LSA model and the singular 

value associated with each concept against the number of concepts. The proportion of variance 

explained is a cumulative measure of how much variance in the data is accounted for by the 

retained concepts. As seen in the figure, the proportion of variance explained increased steeply 

between 0 and 200 concepts but slows down after 300 concepts. The percentage of variance 

explained reached 70% at 455 concepts and gradually increased to 90% at 955 concepts.  

The singular value associated with each concept is also plotted on the dash line. These 

singular value estimates were obtained from the singular value decomposition of LSA, indicating 

how important each concept is. These values were sorted in a descending order, and each value 

corresponds to the singular value estimate of the nth concept on the x-axis. The singular value 

started at a maximum of 0.0067 and dropped rapidly to less than 15% of the maximum (0.0009) 

at the 300th concept. The value stabilized after the 450th concept, after which point each 

additional concept added little gain to the model.  

Existing literature suggested that a cumulative proportion of 70% to 90% variance 

explained usually indicates sufficient representation of the original data (Jolliffe, 2002; 

Cangelosi & Goriely, 2007). The above observations provided reasonable justification to select 
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455 as the optimal number of concepts to retain from the LSA model, at which point 70% of the 

variance was explained, and the singular value stabilized.  

 

Figure 6   Latent Semantic Analysis Model Selection 

 

4.2.2.2   Fitting the Final LSA Model  

Once the optimal number of concepts was determined at 455, a final LSA model was 

applied to the document-term matrix. The document-term matrix was decomposed into the 

product of three matrices in Eq. (3). The left matrix (𝑈𝑈) is a document-concept matrix based on 

which the cosine similarity indices between documents can be calculated. The middle singular 

value matrix (Σ) indicates the importance of each extracted concept and can be used to calculate 
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the percentage variance explained by each concept. The right matrix (𝑉𝑉𝑇𝑇) is a concept-term 

matrix that records the associations, or loadings, of each term on the concepts. Table 5 lists the 

top 10 concepts extracted from the LSA model and the top five terms associated with each 

concept. This table was produced by first obtaining the top 10 concepts with highest singular 

values and then sorting the terms by their loadings in descending order within each concept. The 

SMEs reviewed these concepts and suggested tentative labels for each concept based on the 

associated terms. The suggested labels were attached with each concept in this table.  

As shown in Table 5, the extracted concepts appear to be substantively meaningful and 

conceptually distinct from each other. For example, the first concept explaining the largest 

proportion of the variance pertains to routine practices encompassing the nurse aide profession, 

and the associated terms are commonly observed in most test items. The second concept taps into 

the nurse aide’s responsibilities of abnormality monitoring and incident reporting, which is one 

of nurse aide’s main responsibilities. Certain concepts target specific skills, such as assisting a 

patient to bed, providing emotional support, and monitoring a patient’s intake and output, as 

would be expected in a nurse aide licensure examination. These concepts also correspond to 

various content areas specified in the test blueprint in Table 2.  
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TABLE V 

TOP CONCEPTS AND ASSOCIATED TERMS FROM  

THE LATENT SEMANTIC ANALYSIS 
 

Concept 1 (0.78%) 
Routine Work 

Concept 2 (0.67%) 
Report of Abnormality 

Concept 3 (0.69%) 
Bed Safety 

Concept 4 (0.56%) 
Emergency 

Concept 5 (0.57%) 
Emotional Support 

report .51 notify .48 bed .73 emergency .49 talk .65 
charge .50 incident .42 position .25 call .40 encourage .19 
care .43 abnormal .14 move .14 light .21 feeling .07 
provide .18 finding .06 head .13 ambulate .18 listen .07 
plan .17 observation .04 linen .12 activity .17 provide .06 
 
Concept 6 (0.55%) 
Family Inquiry 

Concept 7 (0.51%) 
Infection Prevention 

Concept 8 (0.49%) 
Standard Precaution 

Concept 9 (0.48%) 
Monitoring Intake 

Concept 10 (0.45%) 
Catheter care 

ask .60 hand .93 glove .40 intake .48 change .54 
family .29 wash .21 wear .31 fluid .25 bag .43 
speak .12 glove .14 standard .28 food .25 bladder .22 
member .10 prevent .11 precaution .19 record .21 urinary .21 
need .09 infection .09 universal .18 measure .19 drainage .15 
 
Note. Values in the parentheses are percentages of variance explained by each concept. The values associated with the terms are 
concept-term loadings.  
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The four cosine indices were calculated for each pair of documents based on the 

document-concept matrix (𝑈𝑈) from the Latent Semantic Analysis. Table 6 summarizes the 

cosine indices computed from the LSA within both enemy non-enemy item pairs. Some negative 

values were observed, indicating that the item pair conveyed distinct or opposite concepts. The 

cosine values ranged from − .079 to 1.000 within the enemy item pairs. Compared to the results 

from the VSM model, the four cosine values from the LSA model were generally higher on 

average. The differences in average cosine values were more pronounced within enemy item 

pairs, with the largest difference being .153 for enemy pairs and .005 for non-enemy pairs. The 

standard deviations were slightly higher compared to the results from VSM models, with a range 

of .233 to .380 within enemy pairs and .046 to .062 within non-enemy pairs. The result from the 

independent t-tests also showed that the enemy item pairs have significantly higher values on all 

cosine indices than the non-enemy item pairs with a p-value less than .001.  

TABLE VI 

DESCRIPTIVE STATISTICS OF COSINE SIMILARITY INDICES FROM THE LSA 

Similarity Index   N Mean S.D.  Min. Max. 

Enemy       

cosine�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 ,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗� 327 .473 .318 − .036 1.000 

cosine�𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖 , 𝑘𝑘𝑘𝑘𝑘𝑘𝑗𝑗� 327 .366 .380 − .079 1.000 

cosine�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 ,𝑘𝑘𝑘𝑘𝑘𝑘𝑗𝑗� 327 .115 .233 − .054 1.000 

cosine�𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗� 327 .149 .254 − .057 1.000 

Non-Enemy      

cosine�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 ,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗� 1,066,203 .012 .057 − .258 1.000 

cosine�𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖 , 𝑘𝑘𝑘𝑘𝑘𝑘𝑗𝑗� 1,066,203 .006 .062 − .993 1.000 

cosine�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 ,𝑘𝑘𝑘𝑘𝑘𝑘𝑗𝑗� 1,066,203 .006 .047 − .989 1.000 

cosine�𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗� 1,066,203 .006 .046 − .988 1.000 
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4.2.3   Latent Dirichlet Allocation  

4.2.3.1   Determining the Number of Topic 

The fitting of the LDA model required that the number of latent topics be specified 

beforehand. To determine the optimal number of topics, this study examined the perplexity of 

various LDA models with the number of topics ranging from two to 160. To train the model, 

Gibbs sampling was used with a burn-in period of 1,000 iterations. The perplexity of the LDA 

model was plotted against the number of topics in Figure 7.  

The perplexity reflects how well the data are represented by the probability model, and a 

lower value of perplexity indicates less misrepresentation by the specified number of topics. The 

dash line in Figure 7 shows that the perplexity was perpetually low (less than 0.0004) across the 

number of topics. However, the size of perplexity decreased about 90% as the number of topics 

increased to 20. Due to the small value of perplexity score, the log perplexity was also plotted on 

the solid line to better illustrate the change of perplexity with the number of topics. As expected, 

the log perplexity echoed the same decreasing trend as the number of topics increased. In 

addition, several peaks were observed on the log perplexity line, indicating that the model fit 

became worse and bounced back at some points. It was not until the topic number reached 75 

that the trend of perplexity score stabilized and began monotonically decreasing thereafter. 

Although the perplexity score continued to decline after 75 topics, I decided against settling on a 

higher number of topics because previous literature has found many topics to be less meaningful 

when the number of topics exceeded 100 (Tang et al., 2014; Zhao et al., 2015; Weir, 2019). 

Therefore, I considered setting the number of latent topics at 75 to be a reasonable starting point.  
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Figure 7   Latent Dirichlet Allocation Model Selection 

 

4.2.3.2   Fitting the Final LDA Model  

Having decided on 75 topics, a final LDA was applied to the document-term matrix. An 

alpha prior equivalent to the inverse of the number of topics (𝛼𝛼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1
𝐾𝐾

 ) was specified. As in 

the prior step, a Gibbs sampling approach with a burn-in of 1,000 iterations was used to fit the 

model. 
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The final LDA model produced the following results. The alpha was estimated to 

be .076. The final estimation of alpha, multiplied by the specified number of topics (K), provided 

an estimate of the number of topics contributing to a document—in this case, about six topics.  

A term-topic matrix was also generated from the LDA model, which provided the topic 

probability distributions over terms. Table 7 illustrates the 10 most probable topics across the 

documents and the distribution of the five most likely terms within each of these topics. The 

values in the parentheses show the marginal distribution of these topics in the sample item bank, 

which ranged from .016 to .024. SMEs were also asked to review these topics and provide 

tentative labels for each of the topics. According to the SMEs’ feedback, the topics from the 

LDA were judged to be more general compared to those produced by the LSA. For some of these 

topics, the SMEs encountered more difficulty in distinguishing and labeling the topics. For 

example, both topic 5 and topic 6 pertain to various care routines performed by nurse aides and 

the standard precautions to be taken with these routines, such as skin care, body alignment, 

choke prevention, and putting on protective equipment. The SMEs expressed a higher level of 

uncertainty in providing labels for three of the topics (indicated by the asterisks). As mentioned 

above, topic 5 and topic 6 seemed to fall under the same general theme and, therefore, generating 

discriminating labels became difficult. Moreover, the SMEs were uncertain that “Emotional 

Support” was a proper label for topic 7, because some terms under this topic (i.e. begin, collect) 

seemed to detract from this theme.  
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TABLE VII 

MOST PROBABLE TOPICS AND ASSOCIATED TERMS FROM  
THE LATENT DIRICHELET ALLOCATION 

 

Topic 1 (.024) 
Main Responsibilities 

Topic 2 (.019) 
Incident Report 

Topic 3 (.018) 
Use of Call Light 

Topic 4 (.017) 
Pain Management 

Topic 5 (.017) 
Care Routine* 

charge .18 immediately .10 call .11 plan .11 skin .08 
report .12 activity .10 light .08 sore .06 personal .06 
restraint .06 tell .06 bowel .04 face .06 communicate .05 
speak .05 supervisor .05 blood .03 prevent .05 equipment .04 
request .04 dementia .04 cradle .03 pressure .05 protective .04 
 
Topic 6 (.017) 
Care Routine* 

Topic 7 (.017) 
Emotional Support* 

Topic 8 (.016) 
Manner and Patience 

Topic 9 (.016) 
Task Performance 

Topic 10 (.016) 
Bed Care 

choke .07 begin .08 time .13 task .10 remove .12 
meal .07 encourage .08 allow .10 perform .10 linen .07 
proper .06 feeling .08 give .09 procedure .09 transfer .06 
exercise .05 express .06 important .05 step .06 soil .05 
alignment .04 collect .05 name .04 include .04 bed .12 
 
Note. Values in the parentheses represent the likelihood of observing each topic across the documents. The values associated with 
the terms represent the likelihood of observing the term within the topic. The asterisks indicate SMEs’ uncertainty with the labels 
provided.  
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 The four cosine indices were also computed based on the document-concept distribution 

matrix. The cosine computation followed the same procedure as that of the LSA model. The only 

difference was that the vectors used for the calculation consist of probabilities of observing the 

topics in a document instead of term-to-concept loadings. Table 8 summarizes the descriptive 

statistics of the four cosine indices calculated from the LDA model within both enemy pairs and 

non-enemy pairs. As expected, the cosine indices were all positive, as they were calculated based 

on probability distributions. On average, the cosines computed from the LDA models had the 

highest values across all NLP models, except for the cosine between item stems within enemy 

item pairs. Similarly, the cosine between stems and the cosine between keys were relatively 

higher than the cosines between stem and key within the enemy item pairs. The average cosine 

values within the non-enemy pairs were lower compared to those within the enemy pairs, but 

their values were about five times the size of the cosines from the VSM and LSA models. The 

variation of the cosine values from the LDA model was also the highest across all NLP 

approaches. The independent t-tests showed significant between-enemy group differences for all 

the cosine similarity indices with a p-value less than .01.   
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TABLE VIII 

DESCRIPTIVE STATISTICS OF COSINE SIMILARITY INDICES FROM THE LDA 

Similarity Index   N Mean S.D.  Min. Max. 

Enemy       

cosine�stem𝑖𝑖 , stem𝑗𝑗 � 327 .425 .375 .012 1.000 

cosine�key𝑖𝑖 , key𝑗𝑗� 327 .390 .418 .013 1.000 

cosine�stem𝑖𝑖 , key𝑗𝑗� 327 .144 .253 .013 1.000 

cosine�key𝑖𝑖 , stem𝑗𝑗 � 327 .164 .262 .013 1.000 

Non-Enemy      

cosine�stem𝑖𝑖 , stem𝑗𝑗 � 1,066,203 .051 .114 .009 1.000 

cosine�key𝑖𝑖 , key𝑗𝑗� 1,066,203 .059 .121 .010 1.000 

cosine�stem𝑖𝑖 , key𝑗𝑗� 1,066,203 .054 .116 .009 1.000 

cosine�key𝑖𝑖 , stem𝑗𝑗 � 1,066,203 .054 .114 .009 1.000 
 

 

4.3   Results from the First Round of Classification  

4.3.1   Constructing Classification Dataset 

 Having completed the NLP analysis and calculated the cosine indices for each item pair, 

the study moved forward to the classification stage. The dataset for classification was 

constructed with all 1,066,530 item pairs. The dependent variable was based on the enemy status 

flagged in the item bank, with the value of 1 indicating enemy item pair and a value of 0 

indicating non-enemy item pair. The predictors included the cosine similarity indices produced 

from the NLP approaches, the average item length, the difference in item difficulty parameters, 

and a dummy indicator of content overlap. Although all 12 cosine indices from the three NLP 

approaches were gathered in the classification dataset, only four cosine indices from the same 
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NLP approach were included in each run of the classification later in the study. The average 

length of each item pair was generated by first calculating the total number of lemmas identified 

in both the stem and the key for each item and then taking the average between the item pair. In 

addition, two other predictors were calculated based on the item meta data. The absolute 

difference in the calibrated difficulty level (b parameter) of each item pair was also included as a 

predictor. The dummy indicator of content overlap was derived by comparing the test blueprint 

content areas between each item pair. This indicator took the value of 1 if the content areas 

matched, and 0 if not matched. Like the cosine similarity indices, these additional predictors are 

between-item pair variables and are agnostic to the order of the items.  

 The data were randomly split into 80% training dataset and 20% test dataset. As a result 

of random splitting, the enemy pairs and the non-enemy pairs were split into the same 

proportion. The resulting training dataset consisted of 853,224 item pairs, and the test dataset 

consisted of 213,306 item pairs. Table 9 summarizes the descriptive statistics of all variables 

included in the classification. The table not only shows the descriptive statistics for the whole 

dataset but also for the training and test datasets. This table confirms that the splitting of data did 

not lead to significant alternation across variables and that the enemy pairs, as well as the non-

enemy pairs, were split proportionally. The descriptive statistics for the training dataset and the 

test dataset were highly similar compared to the original dataset. As expected, the enemy status 

was highly skewed because there were so few enemy item pairs (327 enemy pairs out of all 

1,066,530 pairs). All mean cosine similarity indices were low (ranging from .003 to .059), 

because most item pairs were not enemies. The average item length is approximately 12. The 

average absolute difference in difficulty parameters was about 1.51 logits. Only about 7.5% of 

the item pairs shared the same content area.  



 

 
 

73 

TABLE IX 

DESCRIPTIVE STATISTICS OF VARIABLES IN THE FIRST ROUND OF CLASSIFICATION  
 

 Whole Dataset  Training Dataset  Test Dataset 

Variables N Mean S.D. Min. Max.  N Mean S.D. Min. Max.  N Mean S.D. Min. Max. 

Enemy status 1,066,530 .001 .018 .000 1.000  853,224 .001 .018 .000 1.000  213,306 .001 .017 .000 1.000 

VSM cosine (stemi, stemj) 1,066,530 .007 .036 .000 1.000  853,224 .007 .036 .000 1.000  213,306 .007 .036 .000 1.000 

VSM cosine (keyi, keyj) 1,066,530 .004 .036 .000 1.000  853,224 .004 .036 .000 1.000  213,306 .004 .037 .000 1.000 

VSM cosine (stemi, keyj) 1,066,530 .003 .028 .000 1.000  853,224 .003 .028 .000 1.000  213,306 .003 .028 .000 1.000 

VSM cosine (keyi, stemj) 1,066,530 .003 .027 .000 1.000  853,224 .003 .027 .000 1.000  213,306 .003 .026 .000 1.000 

LSA cosine (stemi, stemj) 1,066,530 .012 .058 − .258 1.000  853,224 .012 .058 − .258 1.000  213,306 .012 .058 − .165 1.000 

LSA cosine (keyi, keyj) 1,066,530 .006 .063 − .993 1.000  853,224 .006 .063 − .993 1.000  213,306 .006 .064 − .986 1.000 

LSA cosine (stemi, keyj) 1,066,530 .006 .048 − .989 1.000  853,224 .006 .048 − .989 1.000  213,306 .006 .047 − .984 1.000 

LSA cosine (keyi, stemj) 1,066,530 .006 .046 − .988 1.000  853,224 .006 .047 − .988 1.000  213,306 .006 .045 − .974 1.000 

LDA cosine (stemi, stemj) 1,066,530 .051 .115 .009 1.000  853,224 .051 .114 .009 1.000  213,306 .051 .115 .009 1.000 

LDA cosine (keyi, keyj) 1,066,530 .059 .121  .010 1.000  853,224 .059 .121 .010 1.000  213,306 .059 .122 .010 1.000 

LDA cosine (stemi, keyj) 1,066,530 .054 .116 .009 1.000  853,224 .054 .115 .010 1.000  213,306 .054 .117 .009 1.000 

LDA cosine (keyi, stemj) 1,066,530 .054 .114 .009 1.000  853,224 .054 .114 .009 1.000  213,306 .054 1.000 1.000 1.000 

Average item length 1,066,530 11.826 2.133 5.000 30.500  853,224 11.827 2.133 5.000 30.500  213,306 11.824 2.133 5.000 30.000 

Difference in difficulty 1,066,530 1.507 1.167 0.000 12.920  853,224 1.506 1.168 0.000 12.920  213,306 1.510 1.166 0.000 12.250 

Content overlap 1,066,530 .075 .264 0 1  853,224 .075 .264 0 1  213,306 .075 .263 0 1 
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4.3.2   Application of Synthetic Minority Over-sampling on Training Dataset 

The SMOTE technique was applied to the training dataset to counter the effect of data 

imbalance. There were initially 265 enemy item pairs and 852,959 non-enemy item pairs in the 

training dataset. The SMOTE technique generated 852,694 synthetic enemy item pairs based on 

attributes of the existing minority sample. The updated training dataset included 852,959 item 

pairs for each enemy class.  

Figure 8 illustrates the distribution of two example cosines for both enemy classes, before 

and after the application of SMOTE. Each subplot is a scatter plot of the cosine between stems 

and the cosine between keys. The darker dots represent enemy item pairs, and the lighter dots 

represent non-enemy item pairs. The LSA plots have a different scale due to the negative 

cosines. As can be seen in the top row of subplots in Figure 6, the data imbalance issue was 

evident before the SMOTE application. The majority of lighter dots cluster around the lower left 

corner of the coordinates, indicating that the non-enemy item pairs typically had lower cosine 

values. Darker dots scatter sparsely in the plots due to the small number of enemy item pairs, but 

they mostly occupy the upper right corner representing higher values of both cosines. Comparing 

the pre-SMOTE cosine distribution across all three NLP models, the polarized pattern is more 

pronounced in the VSM and LSA model. The non-enemy pairs tend to have higher values on 

both cosine indices in the LSA plot, while the cosine values of non-enemy pairs seem to have a 

denser formation around the lower range (.00 to .20) in the VSM plot. For the LDA plot, the 

darker dots appear to be most scattered, which corresponds to the higher variation of cosine 

indices in Table 8. Although the majority of both cosine indices clustered around .00 in the LDA 

model, there was a substantial amount of cases where the cosine measures between keys were 

located around .20 - .30, while the cosines between stems did not show such cluster. 
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Figure 8   Scatter plots of cosine indices grouped by enemy status before and after SMOTE 
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The bottom row of Figure 8 shows the data distribution after SMOTE was applied. 

Synthetic enemy item pairs (indicated by the darker dots) was generated based on the existing 

enemy sample to produce a balanced dataset. After the SMOTE application, the polarized cosine 

values between enemy and non-enemy pairs become more evident, with enemy item pairs filling 

the upper right space associated with higher cosine values. This polarized pattern can be easily 

observed in the LSA plots. In the VSM and LDA plots, some enemy pairs have low cosine 

values, but non-enemy pairs still predominantly occupy the lower left of the coordinates.  

TABLE X 

DESCRIPTIVE STATISTICS OF VARIABLES  
IN THE TRAINING DATASET AFTER SMOTE APPLICATION (BEFORE SME REVIEW) 

Variables N Mean S.D. Min. Max. 

Enemy status 1,705,918 .500 .500 .000 1.000 

VSM cosine (stemi, stemj) 1,705,918 .161 .229 .000 1.000 

VSM cosine (keyi, keyj) 1,705,918 .139 .264 .000 1.000 

VSM cosine (stemi, keyj) 1,705,918 .033 .104 .000 1.000 

VSM cosine (keyi, stemj) 1,705,918 .049 .133 .000 1.000 

LSA cosine (stemi, stemj) 1,705,918 .242 .308 − .258 1.000 

LSA cosine (keyi, keyj) 1,705,918 .183 .315 − .993 1.000 

LSA cosine (stemi, keyj) 1,705,918 .053 .151 − .989 1.000 

LSA cosine (keyi, stemj) 1,705,918 .072 .179 − .988 1.000 

LDA cosine (stemi, stemj) 1,705,918 .239 .316 .009 1.000 

LDA cosine (keyi, keyj) 1,705,918 .224 .346 .010 1.000 

LDA cosine (stemi, keyj) 1,705,918 .086 .166 .010 1.000 

LDA cosine (keyi, stemj) 1,705,918 .104 .190 .009 1.000 

Average item length 1,705,918 11.581 2.227 5.000 30.500 

Difference in difficulty 1,705,918 1.211 1.022 0.000 12.920 

Content overlap 1,705,918 .467 .499 0 1 
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Table 10 shows the descriptive statistics of variables in the training dataset after the 

SMOTE application. The balanced training dataset included 1,705,918 item pairs, with equal 

number of enemy and non-enemy item pairs. The addition of 852,694 synthetic enemy item pairs 

increased the means for all cosine indices and the proportion of between-item content overlap 

across the training dataset. The average difference in difficulty parameters was lowered by 0.30 

logits. The average item length stayed around eight. All these changes in the basic descriptive 

statistics were expected from the SMOTE application.  

4.3.3   Application of Logistic Regression Classifier and the Artificial Neural Network Classifier 

The logistic regression and the Artificial Neural Network classifiers were both applied on 

the post-SMOTE training data to predict the enemy status of the item pairs in the test data. Table 

11 showed the results from the logistic regression classification. The table presents the log odds 

coefficient for each predictor, its standard error in parentheses, and its significance level as 

asterisks. The results showed that the four cosine indices, the average item length, the difference 

in difficulty, and the content overlap indicator were all significant predictors of the item pair’s 

enemy status (p < .001 for all predictors). The cosine between item stems was the strongest 

predictor across all NLP models. The effects of the cosine indices are more pronounced in the 

VSM and the LSA models than in the LDA model. Controlling for all other predictors, a .01 

increase in the cosine between stems would increase the odds of the item pair’s enemy status by 

27% for the LSA model (e.23697= 1.267) and by 16% for the VSM model (e.15191= 1.164), whereas 

for the LDA model the same increase in the cosine between stems would only result in a 6% 

increase in the odds of enemy status (e.05667= 1.058). The other cosine indices also showed strong 

influences on the prediction of enemy status, indicating significant positive associations between 

cosine indices and enemy status.  
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TABLE XI 
RESULTS OF LOGISTIC REGRESSION (BEFORE SME REVIEW) 

Variables VSM LSA  LDA 

Cosine (stemi, stemj) 15.191*** 23.697*** 5.667*** 

 (0.042) (0.070) (0.018) 

Cosine (keyi, keyj) 6.672*** 10.186*** 3.511*** 

 (0.034) (0.062) (0.018) 

Cosine (stemi, keyj) 5.858*** 7.253*** 1.326*** 

 (0.051) (0.088) (0.017) 

Cosine (keyi, stemj) 8.211*** 12.721*** 2.162*** 

 (0.047) (0.081) (0.001) 

Average item length −0.428*** −0.374*** −0.297*** 

 (0.001) (0.001) (0.001) 

Difference in difficulty −0.438*** −0.532*** −0.613*** 

 (0.004) (0.004) (0.003) 

Content overlap 2.004*** 2.165*** 2.883*** 

 (0.009) (0.008) (0.006) 

N 1,705,918 1,705,918 1,705,918 

Adjusted R-squared .811 .929 .660 

Note. *** p < .001    
  

The average item length had a negative association with the enemy status. With each unit 

of increase in item length, the odds of the item pair’s enemy status would decrease by 35%–54% 

across the NLP models when all other predictors were controlled. On the other hand, the more 

different the item pairs are in terms of their difficulty levels, the less likely they would be 

predicted as enemies. Each unit of increase in the difference in difficulty levels was associated 

with of 35%–46% of decrease in the odds of the enemy status. The content overlap was also a 

strong predictor of the item pair’s enemy status. Holding other variables constant, an item pair 
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from the same content area had 6–17 times higher odds of being enemies than an item pair from 

different content areas.  

 The R-squared statistics showed that the classification model with the LSA cosine indices 

as predictors explained the most variance in the enemy status of item pairs (93%), followed by 

the model utilizing the VSM cosine indices (81%), while the model using the LDA cosine 

indices explained the least proportion of the variance (66%).  

 The distributions of the predicted enemy probabilities across all classification models 

were presented in Table 12, grouped by the enemy status in the item bank. In general, flagged 

enemy item pairs had a much higher average predicted enemy probability than the non-enemy 

item pairs across all models.  

TABLE XII 
DISTRIBUTION OF PREDICTED ENEMY PROBABILITIES (BEFORE SME REVIEW) 

Model   N Mean S.D.  Min. Max. 

Enemy       

VSM Logistic 62 .938 .197 .028 1.000 

LSA Logistic 62 .939 .194 .042 1.000 

LDA Logistic 62 .920 .164 .050 1.000 

VSM ANN 62 .929 .230 .005 1.000 

LSA ANN 62 .930 .227 .000 1.000 

LDA ANN 62 .917 .165 .047 1.000 

Non-Enemy      

VSM Logistic 213,244 .065 .134 .001 1.000 

LSA Logistic 213,244 .059 .138 .000 1.000 

LDA Logistic 213,244 .128 .190 .001 1.000 

VSM ANN 213,244 .052 .155 .005 1.000 

LSA ANN 213,244 .054 .151 .000 1.000 

LDA ANN 213,244 .130 .185 .032 1.000 
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4.3.4   ROC Curve and Precision-Recall Curve Analyses 

Altogether, this study explored six classification models which consisted of the 

combination of two classifiers and three sets of cosine indices from the NLP approaches. The 

four cosine indices from each NLP model, along with the average item length, the difference in 

difficulty parameters, and the indicator for content overlap were used to predict the enemy status 

of item pairs. For each of the NLP × Classifier combinations, the classification model was fitted 

on the post-SMOTE balanced data, and the parameters estimated from the training data were 

used to make predictions for the enemy probability for each item pair in the test data.  

An ROC curve analysis was first performed to assess the global performance of each 

classification model and to identify the range of optimal cutoff point. To plot the ROC curve, 

213,306 (equivalent to the sample size of the test dataset) probability cutoffs with equal intervals 

between .00 and 1.00 (range of probability threshold) were identified. The FPR and TPR were 

computed at each of these probability cutoffs. Figure 9 shows the resulting ROC curves by 

plotting the FPR against the TPR at each of the probability cutoffs. An ROC curve shows the 

change in both rates when the probability threshold is gradually relaxed from 1.00 to .00. A 

higher probability threshold implies a stricter classification criterion (i.e. an item pair is only 

classified as enemies if the predicted probability is .95 or higher), and vice versa. As the 

probability threshold relaxes, the TPR and FPR are expected to increase as more cases are 

classified as positive.  
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Figure 9   ROC Curves Before SME Review 

 

The ROC curves in Figure 9 show the rate of increase of both TPR and FPR as the cutoff 

threshold decreases. The general trends of the ROC curves were very similar across all models. 

The FPR increased slowly in the beginning, while the TPR quickly rose up to above .85 as the 

probability cutoff gradually relaxed, which suggests that most of the enemy item pairs in the item 

bank were correctly classified by the model at a higher probability cutoff. The inflection point on 

the ROC curve, which typically suggests the optimal balance point between the TPR and FPR, 

occurred when the TPR is above .85 and the FPR was below .10 across all models.  
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The two classification models using LDA cosine indices appeared to have a relatively 

lower TPR when the FPR was held constant across the models. This under-performance was also 

reflected by the lower scores on the Area Under the Curve. The area under the ROC curve 

ranged from .970 to .986 across all classification models. Within the same classifier, the model 

utilizing LSA cosine indices showed slightly better global performance (AUC=.986) across all 

models. However, the differences were very small (≤.01).  

I next turned to the Precision-Recall Curves in Figure 10 for additional information on 

the model performance. As expected, the curves present a negative association between the recall 

and precision as the cutoff threshold decreased from 1.00 to .00. However, the pattern of the 

curves did not point to an obvious reflection point which would reveal the location of optimal 

cutoff that balances the recall and the precision rates. The change rates for the recall and the 

precision appeared to be consistent across the cutoffs. Therefore, the Precision-Recall Curve 

analysis was not informative in providing guidance for the cutoff selection in this case. Due to 

the large difference between the numbers of enemy and non-enemy item pairs, the number of 

False Positive cases were expected to be substantially higher than the number of True Positive 

cases. A low precision rate was commonly observed in classification study with class imbalance. 

The low precision rate also made it difficult to gaze at the pattern of the Precision-Recall Curve 

when the class imbalance was extreme.  
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Figure 10   Precision-Recall Curves Before SME Review 

 

The area under the Precision-Recall Curve across the models was lower than .50, 

indicating weak discriminating power in terms of the Precision and Recall rates. The models 

using the LSA cosine indices consistently showed better performance within the same classifier 

(AUG=.358 with logistic regression classifier; AUG=.366 with ANN classifier). Models using 

the VSM cosine indices followed closely behind (AUG=.353 with logistic regression classifier; 

AUG=.344 with ANN classifier). The LDA models fell short in terms of the area under the 

Precision-Recall Curve measure, with less than half of the value compared to other models.  
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The ROC curve analysis provided general guidance for the range of the optimal cutoff. 

Since the Precision-Recall Curves showed an unclear pattern of results and were not very 

informative in revealing an inflection point, I used the ROC curve analysis to select the probability 

cutoffs for further evaluation. To identify a reasonable range of probability cutoffs, I first set the 

target values for each of the classification metrics based on the location of the inflection points on 

the ROC plot. The target of TPR was set at .85, where the ROC curve started to reach the 

inflection point, and 85% of the enemy item pairs were detected by the model. In terms of FPR, 

due to the large number of True Negative cases included in the calculation of FPR, it became more 

sensible to set the target for the number of False Positive cases rather than for the FPR. After 

consulting with the SMEs, the maximum number of False Positive cases was set at 4,000, which 

corresponded to an FPR of around .02. The corresponding values of the probability cutoff can be 

obtained at these target values of TPR and FPR.  

TABLE XIII 

PROBABILITY CUTOFFS AT THE TARGET VALUES OF TPR AND FPR 
BEFORE SME REVIEW 

Variables Cutoff (FPR = .020) Cutoff (TPR = .850) 

VSM Logistic .456 .931 

LSA Logistic .521 .952 

LDA Logistic .753 .858 

VSM ANN .629 .960 

LSA ANN .644 .963 

LDA ANN .745 .855 

Average .625 .920 
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Table 13 shows the probability thresholds at the target values of the TPR and the FPR. 

The middle column shows the cutoff values corresponding to an FPR of .020 for each model. 

The model will produce 4,000 or fewer False Positive item pairs when the probability cutoff is 

set above this cutoff threshold. Similarly, the last column shows the cutoff values corresponding 

to a TPR of .850. A model with probability cutoff at or below this value will correctly identify 

85% of the enemy item pairs. Based on this table, the average cutoff that limited the FPR at or 

below 2% was around .60, and the average cutoff that achieved a TPR at or above 85% was 

around .90. This range of cutoff provided guidance on the location of the optimal cutoff 

threshold that met both the target values of TPR and FPR (i.e. FPR ≤ .02; TPR ≥ .85). 

Therefore, it is sensible to focus model evaluation within the cutoff range of .60 to .90. Due to 

the scope of this research, this study only examined the model performance at four probability 

cutoffs within this range – .60, .70, .80, and .90 – in hope of revealing the approximate location 

of the optimal cutoff.  

4.3.5   Evaluation of the Classification Performance Metrics 

Having settled on the four probability cutoffs within the optimal range, the confusion 

matrix was derived at each of the cutoff points, based on which multiple performance metrics 

were calculated across all classification models. Table 14 presents the classification results 

across all models at each of the cutoffs. The numbers of item pairs identified as True Positives, 

False Negatives, False Positives, and True Negatives are shown in the table, followed by various 

resulting performance metrics: recall, precision, specificity, accuracy, and F1 score.  

In general, most of the item pairs in both enemy classes were correctly classified across 

all models and cutoffs. Out of the 62 enemy item pairs in the test dataset, 47 to 59 were correctly 

classified. This large proportion of enemy item detection was reflected by the high recall rate, 
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ranging from 75.8% to 95.2%. Most of the non-enemy item pairs in the item bank were also 

correctly detected by the model, which was indicated by the high specificity rate at or above 95% 

across the table. The False Positive cases, though sometimes quite large in practical terms, 

remained at under 5% of the non-enemy item pairs. This high degree of correct classification 

also led to the high accuracy rate across the models and cutoffs.  

The classifications exhibited excellent discriminating ability for both enemy classes 

based on the high degree of correct classification and low misclassification, and the class 

imbalance still transferred to the distributions of some performance metrics. The difference in 

size between the True Positive cases and False Positive cases caused the precision rate to be low 

across the conditions, with a range of .005 to .027. As a result, F1 score also turned out to be low 

because of the large difference between the recall and the precision rates.  

It was not surprising to observe small differences in the specificity rates and the accuracy 

rates across models due to the skewed distribution of enemy classes. By contrast, recall, 

precision, and F1 score were the metrics that would be most fluctuated by an improvement in 

classification in this context. 

Comparison across the NLP approaches 

After observing the general patterns of the classification results, the model performance 

was compared within each condition of the designed (NLP × Classifier × Cutoff). When 

comparing across the NLP approaches, the LDA models stood out with a substantial number of 

False Positive cases. At a lower cutoff, LDA models produced more than twice the number of FP 

cases (as many as 10,913) as other models. When the cutoff increased, this difference narrowed 

down to about 10% of the FP cases, but the LDA models still produced over 257 more FP item 

pairs than other NLP models at the cutoff of .90. The LDA models also showed some degree of 
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under-performance in terms of enemy item detection ability. The LDA models identified fewer 

enemy associations out of the 62 enemy item pairs, showing a lower recall rate across conditions. 

This lack of identification became more evident as cutoff increases to .80 or above, with a 10%-

20% lower recall rate. The lower number of True Positive cases and higher number of the False 

Positive cases translated to lower precision rates for the LDA models. Similarly, the higher 

proportion of misclassification in both enemy classes resulted in worse performance in terms of 

specificity, accuracy and F1 score compared to other NLP models.  

Comparing between the VSM and the LSA models, the enemy item recall rate remained 

identical until the cutoff was increased to .90 where the LSA identified one more enemy 

association. However, the difference in recall rate was small (1%). In terms of the classification 

performance of non-enemy item pairs, the VSM models show better performance with more 

correctly classified non-enemy item pairs and fewer false positive cases. The LSA models 

produced 222-489 more False Positive cases than the VSM models across the classifiers and 

cutoffs. Although the differences in the precision and specificity rates between the two NLP 

approaches were below 0.3%, the additional False Positive cases could potentially place extra 

burden on the SMEs review. The difference in accuracy metric was also small (between 0.1% to 

0.3%). On the other hand, these two NLP models showed larger differences in terms of F1 score 

favoring the VSM models, though the differences remained under 0.5%.  

Comparison across the Classifiers  

Based on Table 14, the performance of the two classifiers appears to interact with the 

NLP approaches and cutoffs. For the VSM models, the logistic regression classifier performed 

better than the ANN classifier at the cutoffs of .60 and .70, with higher values across all 

performance metrics. However, at the cutoffs of .80 and .90, the recall rates of ANN classifier 
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surpassed that of the logistic regression models, though the differences were minor (one 

additional enemy item pair correctly classified). For the non-enemy item pairs classification, the 

logistic regression classifier achieved better classification results for the VSM models, which 

were indicated by fewer False Positive item pairs and better specificity rate across all cutoffs. 

The precision, accuracy, and F1 score were consistently higher with the logistic regression, 

though this advantage diminished when the cutoff reached .90.  

The performance comparison between the two classifiers showed a different pattern for 

the LSA models. The logistic regression classifier produced better results than the ANN 

classifier on all performance metrics at the cutoffs of .60 and .70. However, when the cutoff was 

increased to .80, the ANN classifier started to gain a slight advantage in the recall rate by 

correctly identifying one more enemy item pair, with the rest of the metrics still out-performed 

by the logistic regression classifier. At the cutoff of .90, the performance was completely 

reversed, with the ANN performing better on all the metrics.  

Comparing the two classifiers within the LDA models, the ANN classifier produced 

fewer false positive items across all cutoffs, showing overall better classification results for the 

non-enemy class. For enemy class identification, the recall rate remained identical between the 

two classifiers until the cutoff reached .90, where the logistic regression identified 5% more 

enemy item pairs than the ANN classifier. As a result, the precision rate and F1 score for the 

ANN classifier suffered slightly at the cutoff of .90.  

Comparison across the Cutoffs 

Comparing the model performance across the cutoffs, the recall rate was relatively stable 

when the cutoff was between .60 and .80. At least 55 out of the 62 enemy item pairs in the test 

dataset were detected by the models as enemies at the cutoff of .80, corresponding to a minimum 
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recall rate of 89%. The most dramatic change in the recall rate occurred when the cutoff was 

increased from .80 to .90 for the LDA models, as the LDA Logistic model suffered an 8% drop 

and the LDA ANN model a 13% drop. Each increase in the cutoff threshold led to a substantial 

decrease in the number of False Positive cases in practical terms. The number of False Positive 

cases was decreased by approximately 80% for the LDA models and by at least 50% for the 

VSM and the LSA models across the cutoffs. Although this difference in the non-enemy 

classification was not evident in the change of specificity due to the large base of non-enemy 

item pairs, it is much more sensible to choose a higher cutoff if the false positive items were to 

be reviewed by human SMEs. As discussed previously, the precision rate and the F1 score are 

more sensitive to the improvement in the model performance when class imbalance exists. As 

can be observed from the table, both metrics more than doubled as the cutoff increased from .60 

to .90.  

In summary, the overall performance across the models showed that the LDA models 

were less efficient in classifying both enemy and non-enemy item pairs under all conditions. The 

performance metrics for both the VSM and the LSA models improved greatly at minimal cost of 

the recall rate when the threshold was set at a higher value. The LSA ANN model at the cutoff 

of .90 appeared to be the best performing model, as all performance metrics were maximized at 

no cost of recall. The VSM ANN model was also a competing option with equivalent 

performance metrics except a 3% lower recall rate. Although the LSA Logistic model produced 

slightly inferior classification metrics, a logistic regression classification took significantly less 

time and computing power to converge than an ANN model. Therefore, the LSA Logistic may 

also be a sensible choice when computing time and hardware limitation are considered. 
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TABLE XIV 

CLASSFICATION RESULTS BEFORE SME REVIEW 

Model TP FN FP TN Recall Precision Specificity Accuracy F1 

Cutoff = .60          

VSM Logistic 59 3  4,113   209,131  .952 .014 .981 .981 .028 

LSA Logistic 59 3  4,622   208,622  .952 .013 .978 .978 .026 

LDA Logistic  57 5  10,913   202,331  .919 .005 .949 .949 .010 

VSM ANN 58 4  5,774  207,470  .935 .010 .973 .973 .020 

LSA ANN 58 4  6,067   207,177  .935 .009 .972 .972 .018 

LDA ANN  57 5  10,774   202,470  .919 .005 .949 .949 .010 

Cutoff = .70          
VSM Logistic 59 3  3,422   209,822  .952 .017 .984 .984 .033 

LSA Logistic 59 3  3,829   209,415  .952 .015 .982 .982 .030 

LDA Logistic  56 6  6,373   206,871  .903 .009 .970 .970 .018 

VSM ANN 58 4  4,447   208,797  .935 .013 .979 .979 .026 

LSA ANN 58 4  4,534   208,710  .935 .013 .979 .979 .026 

LDA ANN 56 6  6,181   207,063  .903 .009 .971 .971 .018 

Cutoff = .80          

VSM Logistic 57 5  2,751   210,493  .919 .020 .987 .987 .039 
LSA Logistic 57 5  3,046   210,198  .919 .018 .986 .986 .035 

LDA Logistic  55 7  4,495   208,749  .887 .012 .979 .979 .024 

VSM ANN 58 4  3,307   209,937  .935 .017 .984 .984 .033 

LSA ANN 58 4  3,257   209,987  .935 .017 .985 .985 .033 

LDA ANN  55 7  4,327   208,917  .887 .013 .980 .980 .026 

Cutoff = .90          

VSM Logistic 55 7  2,018   211,226  .887 .027 .991 .991 .052 

LSA Logistic 56 6  2,240   211,004  .903 .024 .989 .989 .047 
LDA Logistic  50 12  2,497   210,747  .806 .020 .988 .988 .039 

VSM ANN 56 6  2,033   211,211  .903 .027 .990 .990 .052 

LSA ANN 58 4  2,088   211,156  .935 .027 .990 .990 .052 

LDA ANN  47 15  2,370   210,874  .758 .019 .989 .989 .037 
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4.4   SME Review 

As discussed in the previous chapter, the enemy association between the item pairs was 

not completely identified due to the sheer volume of the item bank. Only a small portion of the 

item pairs were reviewed by the SMEs during the item review and test form building process. 

Among the limited number of item pairs reviewed, only those that were confirmed to be enemy 

item pairs were recorded in the item bank. Therefore, it is likely that some enemy items in the 

item bank were never assessed by SMEs, and their enemy relationships were never recorded. In 

the initial classification, these unidentified enemy items were used to train the classifiers as 

though they are not enemies. To address this issue, an SME review was conducted to assess the 

high probability enemy item pairs classified as enemies by the models but not recorded in the 

item bank as enemy item pairs (i.e. False Positive item pairs).  

A subset of item pairs was identified for the SME review. Based on the model training 

results in the initial classification, predictions were made on the entire dataset (including training 

dataset and test dataset) using all models. All false positive item pairs above the cutoff of .60 

were then merged across the models to form the subset of item pairs for SME review. Table 15 

shows the numbers of True Positive, False Negative, False Positive, and True Negative cases 

when the predictions were made on the whole dataset using a cutoff of .60. The models utilizing 

the LDA cosine indices produced the largest number of False Positive cases (54,581 and 53,760 

item pairs, respectively). All the False Positive item pairs across the models were merged for the 

SME review. All together, there were 83,939 FP item pairs at the cutoff of .60 across the models. 

For each item pair in this subset, the predicted probabilities across the models were averaged to 

generate an overall enemy probability. These FP item pairs were then sorted by this overall 
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enemy probability in a descending order. Within the descending order, the false positive item 

pairs were grouped into sets of 20 item pairs.  

 

TABLE XV 

CLASSFICATION RESULTS ON THE WHOLE DATASET (CUTOFF=.60) 

BEFORE SME REVIEW 

Model TP FN FP TN 

VSM Logistic 302 25 20,971 1,045,232 

LSA Logistic 302 25 23,236 1,042,967 
LDA Logistic  287 40 54,581 1,011,622 

VSM ANN 307 20 28,942 1,037,261 

LSA ANN 307 20 30,497 1,035,706 

LDA ANN  287 40 53,760 1,012,443 
 

The two SMEs conducted the review from higher probability sets to lower probability 

sets and determined true enemy relationships for each item pairs. For every 20 items, the SMEs 

recorded the number of items confirmed to be true enemies. The SMEs terminated the review 

when they encountered only one true enemy item pair (less than 10%) within a set of 20 item 

pairs. During the review process, the two SMEs compared their enemy relationship decisions 

every 200 item pairs to check for agreement. When their decisions did not agree for any item 

pair, the SME resolved the disagreement through discussion and finalized the enemy status for 

these item pairs. As a result, the SMEs completed the review of a total of 1,040 FP item pairs in 

three consecutive days, among which 469 (45%) were confirmed to be true enemy item pairs. 

The average value of the overall enemy probabilities of these confirmed enemy item pairs 

was .95, with a minimum enemy probability of .92. In other words, the SMEs encountered the 
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first set of 20 item pairs that contained less than 10% true enemy item pairs below the overall 

probability of .92. The SME review was therefore terminated at this probability cutoff.  

Within these newly confirmed enemy item pairs, the number of uniquely identified item 

pairs for each model was examined. We found that the numbers of unique identifications from 

the same NLP method (but different classifiers) are relatively similar, with variation of between 

2 to 5 item pairs. The majority (80%) of these new enemy item pairs were flagged across all or 

two (LSA or LDA) of the NLP approaches. The LSA Logistic and LSA ANN models uniquely 

identified 23 and 25 of these true enemy pairs, respectively. This number was smaller for the 

VSM models (15 by VSM Logistic model; 16 by VSM ANN model). The LDA models uniquely 

identified one true item pair across the two classifiers.   

4.5   Results from the Second Round of Classification 

Based on the SMEs feedbacks, the 469 confirmed enemy relationships were updated in 

the classification dataset. The updated dataset included 796 enemy item pairs and 1,065,734 non-

enemy item pairs.  

Another iteration of classification was then conducted, in which the models were 

retrained to produce the updated results. The re-run of classification followed the same 

procedures as the previous round. The data were split into 80% training dataset and 20% test 

dataset, resulting in 647 enemy item pairs and 852,577 non-enemy item pairs within the training 

dataset, and 149 enemy pairs and 213,157 non-enemy pairs within the test dataset. The 

descriptive statistics of all variables in the whole dataset, the training dataset, and the test dataset 

for the second round of classification are presented in Appendix A. Except for the update on the 

dependent variable (enemy status), no changes were made to other variables in the dataset, as the 

cosine similarity indices and the item meta data remained the same. The slight variation in the 
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descriptive statistics of predictors in the training and test datasets was attributed to the random 

assignment during the data splitting. Although the SME review more than doubled the enemy 

item pairs, the mean of the updated enemy status variable still showed that the updated dataset 

included less than 0.1% enemy item pairs. The standard deviation of enemy status increased due 

to the addition of enemy item pairs.  

Likewise, the SMOTE technique was applied to the updated dataset to generate 851,930 

synthetic enemy item pairs. The final training dataset after the SMOTE application included a 

total of 1,705,154 item pairs (852,577 in each enemy class). Appendix B shows the descriptive 

statistics of variables in this training dataset after the SMOTE application. As expected, the 

addition of synthetic enemy item pairs increased the means for all cosine indices and the 

proportion of between-item content overlap across the training dataset. The average difference in 

difficulty parameters was lowered by .25 logits. The average item length remained around 8.  

4.5.1  Updated ROC Curve and Precision-Recall Curve Analyses 

The models were retrained on the updated training dataset, and predictions were made on 

the test dataset. Results from the logistic regression classifier are shown in Appendix C, in which 

all predictors remained significant and an increase in R-squared statistics was observed. The 

predicted probabilities across all models grouped by enemy status are presented in Appendix D. 

Figure 11 shows the updated ROC curves from the second round of classification. Compared to 

the ROC curves from the previous round, some improvements on the model performance can be 

identified. First, the figure suggests a greater coverage of the area under the ROC curves, 

especially for the VSM and the LSA models. A closer comparison at the global measures 

confirmed that the AUG improved by at least .01 for all models. Although the .01 improvement 

in the AUG measure may not seem substantial, a sharper reflection on the curves became 
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evident. As the probability threshold gradually relaxed, the TPR rapidly increased to as high as 

90% at a relatively strict cutoff threshold. The inflection points on the curves were more 

identifiable for the VSM and LSA models, which occurred when the TPR was above .90 and the 

FPR below .05.  

Another visible change in the ROC curves is that the difference in performance between 

the classifiers was minimized, which was indicated by the narrower distance between curves 

within the same NLP approach across cutoffs. For models within the LSA or the LDA approach, 

the difference in the AUG measure between the logistic regression and the ANN classifiers was 

negligible (≤.01), as the curves overlapped with each other. The difference in AUG were larger 

(.08) for the two models within the VSM approach, with the logistic regression classifier model 

outperforming the ANN classifier model.  

With the narrowing of performance across the classifiers, the difference in the NLP 

approaches became more evident. The LDA models showed a .20 under-performance of the 

AUG measure, which was also reflected by the shape of the curves and the relatively ambiguous 

inflection points.  
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Figure 11   Updated ROC Curves After SME Review 

 

Next, the Precision-Recall Curves are presented in Figure 12. Compared to the same      

figure from the previous round, the updated Precision-Recall Curves show significant changes in 

terms of global performance. The area under the Precision-Recall Curve measures for VSM and 

LSA models all rose above .50, showing great improvement in the discriminating ability of the 

classifications. Although there was a significant increase in the AUG measures for the LDA 

models as well, the AUG measures remained under .50, which indicated weaker discriminating 

ability of the classification models. 
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Figure 12   Updated Precision-Recall Curves After SME Review 

 

Similar to the findings from the ROC curves, the difference in model performance 

between the two classifiers became smaller, as the distance between the curves within the same 

NLP approach tightened across the cutoffs. On the other hand, the difference between the NLP 

approaches became more pronounced in this figure. We can see a clear separation of the LDA 

models from other models, indicating a substantial degree of under-performance compared to the 

VSM and LSA models. Across the probability cutoffs, the LDA models exhibited much lower 

precision when controlling for the recall rate.  
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I then examined the cutoffs at the target values of TPR and FPR (see Table 16). The 

target values were re-assessed due to the changes in the model performance. Judging from the 

updated ROC curves, the inflection point occurred when the TPR reached above .90 and the FPR 

below .05. In addition, the FPR is required to stay below .018 in order to control the False 

Positive cases under 4,000 cases. Table 19 shows the corresponding cutoff thresholds across the 

models at the FPR of .018 and the TPR of .900. We can see a downshift in the cutoff thresholds 

at the target FPR value, indicating that the updated classifications produced fewer False Positive 

cases at the same cutoff. The cutoffs that achieved the TPR of 90% was located around .90 to .95 

across the models, with an average value of .934.  
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TABLE XVI 
PROBABILITY CUTOFFS AT THE TARGET VALUES OF TPR AND FPR 

AFTER SME REVIEW 

Variables Cutoff (FPR = .018) Cutoff (TPR = .900) 

VSM Logistic  .295 .960 

LSA Logistic  .303 .984 

LDA Logistic  .744 .838 

VSM ANN  .396 .963 

LSA ANN  .217 .973 

LDA ANN  .796 .884 

Average  .459 .934 

4.5.2  Updated Classification Performance Metrics 

For the purpose of comparison, the classification results at the same four cutoffs 

(.60, .70, .80, and .90) are presented in Table 17. The updated results consistently show a high 

degree of correct identification in both enemy classes, characterized by high recall, specificity, 

and accuracy rates. Compared to the classification results in the first round, the updated results 

showed substantial improvement in the recall, precision, and F1 score across all conditions. 

Overall, the updated classifications were able to correctly detect 1%-12% more true enemy item 

pairs, with the largest improvement in recall occurring at the cutoff of .90.  

As expected, the improvement in the specificity rates was less evident due to the large 

number of True Negative cases. However, the number of False Positive item pairs were 

significantly reduced in practical terms. For both the VSM and the LSA models, the numbers of 

False Positive item pairs were nearly halved compared to the previous round. Driving this 

change was the decreased number of non-enemy item pairs with the addition of enemy 
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associations, as well as the improvement in the correct classification of non-enemy item pairs. 

Although the FP item pairs were greatly reduced in the updated classification results, new item 

pairs have surfaced as potential enemy pairs which were not previously predicted in the initial 

round of classification. Further examination revealed that there were 23-45 such predicted enemy 

item pairs revealed across the models in the updated classification results. When the item bank 

tagging is updated to reflect more accurate enemy relationships after each iteration of enemy 

item pair review, it is expected that more of such new FP item pairs will be unveiled during the 

earlier iterations as the model updates the dependent variable and recalibrates.   

Comparison across the NLP approaches 

Comparing across the models utilizing different NLP approaches, the VSM and the LSA 

models continued to out-perform the LDA models with better performance metrics across all 

conditions. The LSA models produced the highest recall rates for classifying enemy item pairs 

and, under most circumstances, achieved the best specificity rate across the NLP models. The 

only exceptions occurred when the LSA approach was paired with a logistic regression classifier 

at the cutoffs of .60 and .70, in which cases the VSM models yielded fewer False Positive cases 

and higher specificity. Comparing the classification results between the two rounds of 

classification, a major improvement in non-enemy item pairs classification for the LSA models 

was observed. As we recall, the LSA models consistently produced more False Positive cases 

and lower specificity rates than the VSM models in the first round of classification, while in the 

second round of classification, the LSA models exhibited fewer misclassifications of non-enemy 

class in most conditions.  

Comparison across the Classifiers  
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 The two classifiers continued to show different performance patterns across the three 

NLP approaches. However, the patterns changed in the updated classification results. This was 

characterized by an increase in performance of the ANN classifier for the LSA models and, by 

contrast, a decrease in performance of the ANN classifier for the VSM and LDA models.  

When pairing with the VSM or the LDA approach, the logistic regression classifier 

outperformed the ANN classifier on all performance metrics. However, this effect was reversed 

when pairing with the LSA approach, where the ANN classifier consistently yielded better 

classification results across all cutoffs.  

Comparison across the Cutoffs  

 The pattern of performance change across the cutoffs was similar to results from the 

previous round of classifications. The recall rates across the models was relatively stable at the 

lower cutoffs, but started to separate at the higher cutoffs. The recall rates of the VSM ANN 

model and the LDA ANN model suffered at the cutoffs of .60 and .80.  

Similarly, there was a substantial decrease in the number of False Positive cases in 

practical terms each time the cutoff was raised. The number of False Positive cases was reduced 

greatly across the cutoffs (an approximately 80% drop for the LDA models; at least a 50% drop 

for the VSM and the LSA models). The updated results continue to show superior classification 

performance at a higher cutoff for the VSM and LSA models, with a significant increase in the 

precision and the F1 score (approximately 50%) at a minimal cost of recall rate (1%-5%).  

As the cutoff increased, the difference in performance across the models becomes more 

pronounced. The LDA models consistently showed underperformance across the cutoffs. The 

differences between the VSM and LSA models were negligible (under 1%) at the lower cutoffs 

of .60 and .70. However, the advantage of the LSA ANN model emerged as the cutoff increased. 
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At the cutoff of .90, the LSA ANN model yielded the best classification results with a 3%-9% 

higher recall rate, a 2%-9% higher precision rate, and a 5% to 15% higher F1 score.  

 The updated results continued to favor the LSA ANN model as the best performing 

model, with all performance metrics moderately higher than the other models at all cutoffs. At 

the cutoffs of .90, the LSA ANN model showed superior detection of enemy item pairs (96% 

identified) and produced as few as 877 False Positive item pairs. The VSM ANN model was no 

longer a competing model due to its less ideal recall rate at the same cutoff. Instead, the LSA 

Logistic model and the VSM Logistic model turned out to be the runner-up options.  
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TABLE XVII 

CLASSFICATION RESULTS AFTER SME REVIEW 

Model TP FN FP TN Recall Precision Specificity Accuracy F1 

Cutoff = .60          

VSM Logistic 144 5  2,217   210,940  .966 .061 .990 .990 .115 

LSA Logistic 145 4  2,270   210,887  .973 .060 .989 .989 .113 

LDA Logistic  140 9  8,367   204,790  .940 .016 .961 .961 .032 

VSM ANN 143 6  2,883   210,274  .960 .047 .986 .986 .090 

LSA ANN 145 4  1,849   211,308  .973 .073 .991 .991 .135 

LDA ANN  141 8  11,148   202,009  .946 .012 .948 .948 .025 
Cutoff = .70          

VSM Logistic 143 6  1,862   211,295  .960 .071 .991 .991 .133 

LSA Logistic 143 6  1,890   211,267  .960 .070 .991 .991 .131 

LDA Logistic  138 11  4,411   208,746  .926 .030 .979 .979 .059 

VSM ANN 142 7  2,418   210,739  .953 .055 .989 .989 .105 

LSA ANN 144 5  1,528   211,629  .966 .086 .993 .993 .158 

LDA ANN 138 11  5,725   207,432  .926 .024 .973 .973 .046 

Cutoff = .80          
VSM Logistic 142 7  1,512   211,645  .953 .086 .993 .993 .158 

LSA Logistic 143 6  1,499   211,658  .960 .087 .993 .993 .160 

LDA Logistic  141 8  3,095   210,062  .946 .044 .985 .985 .083 

VSM ANN 136 13  1,826   211,331  .913 .069 .991 .991 .129 

LSA ANN 143 6  1,221   211,936  .960 .105 .994 .994 .189 

LDA ANN  136 13  3,774   209,383  .913 .035 .982 .982 .067 

Cutoff = .90          

VSM Logistic 139 10  1,135   212,022  .933 .109 .995 .995 .195 
LSA Logistic 139 10  1,053   212,104  .933 .117 .995 .995 .207 

LDA Logistic  129 20  1,821   211,336  .866 .066 .991 .991 .123 

VSM ANN 135 14  1,160   211,997  .906 .104 .995 .994 .187 

LSA ANN 143 6  877   212,280  .960 .140 .996 .996 .245 

LDA ANN  130 19  2,203   210,954  .872 .056 .990 .990 .105 
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5.  DISCUSSION 
 

This chapter summarizes the findings from this study and the practical implications. I 

first discuss the findings by addressing each research question. I also summarize the practical 

implications of the findings for automatic enemy item detection and make recommendations to 

testing organizations employing the automatic detection procedure. I then point out the strengths 

and limitations of this study. Finally, I offer suggestions on other relevant research directions of 

automatic enemy item detection that future studies may pursue.  

5.1   Summary of Findings by Research Questions 

5.1.1  Research Question 1 

Do natural language processing techniques adequately capture item similarity?  

This study compared the four cosine similarity indices produced by each NLP approach 

between the enemy and non-enemy item pairs. The results showed that the cosine indices for the 

enemy item pairs were consistently and significantly higher than those found in the non-enemy 

item pairs within each NLP approach, both before and after the SME review. Figure 8 further 

confirmed that the distributions of cosine indices showed distinct patterns across the NLP 

techniques, with the enemy item pairs consistently having higher cosines than the non-enemy 

item pairs.  

The logistic regression results showed that all predictors, including the four cosine 

indices produced by the NLP models, were strong significant predictors of the enemy status 

between item pairs (p < .001). The logistic regression coefficients indicated that the changes in 

the cosine indices have the most impact on the probability of enemy status, compared to other 

predictors which included the average item length, the difference in item difficulty parameters, 
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and a dummy indicator of content overlap. The classification models utilizing the cosine indices 

from the VSM and the LSA approaches were able to account for over 80% of the variance in the 

item pairs’ enemy status (81% and 92%, respectively). By contrast, the model with the LDA 

cosine indices did not explain as much variance in the enemy status (66%).   

SMEs helped review the concepts/topics extracted from the LSA and the LDA 

approaches. Their feedback showed that both NLP approaches have the ability to extract sensible 

concepts/topics that reflect the underlying semantic structure of natural language. The SMEs 

were able to assign meaningful labels to the concepts/topics according to their associated terms, 

which implies that the extracted concepts/topics are comparable to the human perception of 

conceptual similarities. However, the SMEs also noted some differences between the LSA 

concepts and the LDA topics. The concepts extracted from the LSA analysis appeared to be 

conceptually distinct from one another, as each concept was associated with a different content 

area or procedure that is likely to be assessed in a nurse aide licensure test. In comparison, the 

topics extracted from the LDA approach seemed to be more general and ambiguous. The SMEs 

sometimes had difficulty assigning a substantive label to some of the concepts. Some topics 

seemed to fall into the same content area, while others had conceptually different terms.  

This study also examined the classification results before and after the SME review of 

false positive item pairs. The classification metrics showed that, in general, the accuracy of the 

classification models for the three NLP approaches were high (at or above .95) across the cutoffs 

and classifiers. A large proportion of enemy and non-enemy item pairs were correctly identified 

by all NLP models. When comparing the three NLP approaches, the LSA and the VSM models 

consistently outperformed the LDA models on all classification metrics. Before the SME review 

of FP item pairs, both the VSM and LSA models produced competing recall rates of enemy item 
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pairs, and the VSM models produced fewer FP item pairs than the LSA model. However, among 

the FP item pairs predicted across all models, more item pairs were confirmed to be true enemies 

from the LSA models, which also had the largest number of uniquely identified true enemy item 

pairs. This indicates that, although the LSA approach produced more FP item pairs initially, it 

was able to detect true enemy pairs that were not flagged by the VSM and LDA models. After 

the SME review and the enemy status update, the performance of the LSA models improved 

greatly and produced better recall rates and fewer false positive item pairs than the VSM models 

under most conditions.  

In contrast to the previous study in which the LDA approach achieved satisfactory 

classification results (above .90 recall rates both before and after the review) and was sensitive to 

the enemy status update after the SME review (Weir et al., 2019), the under-performance of 

LDA model found in this study is thought-provoking. Although it may not be possible to confirm 

the root cause of such difference through study replication due to test security reasons, a number 

of reasons can be speculated. First, the item characteristics between the two studies differed. The 

average item length after the NLP transformation was 35 in Weir’s (2019) study, while it was 

approximately 12 in the current study. Traditionally, the LDA techniques were developed and 

applied to longer documents (i.e.  paragraphs, articles, and movie reviews). The length of the 

document could affect the stability of the LDA model. It can be challenging to achieve stable 

estimation of topic-document distribution and topic-term distribution with shorter documents. 

Because the item keys were considered separate documents in this study and they typically 

contained fewer terms especially after the NLP transformation, the performance of the LDA 

model may suffer from the short length, making it difficult to estimate the document-topic 

distributions for these documents. This may explain the floor effect of the LDA cosine measures 
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between item keys observed in Figure 8. Moreover, the breadth and depth of item content varied 

across the studies. In the current study, the job description of nurse aides determined that there is 

a limited number of tasks/procedures a nurse aide is qualified to perform. On the other hand, the 

other study included test items that assessed more complex medical knowledge which involved 

comprehension of medical procedures and diagnostic processes. In addition, the test items 

employed a simpler structure and mainly required basic level of cognitive processing. The lack 

of diversity in the item content and cognitive level may undermine the performance of the LDA.  

Regarding research question 1, all three of the NLP techniques have shown promising 

ability in capturing the item similarity. The overall classification performance of the LDA 

models were less efficient in classifying both enemy and non-enemy item pairs under all 

conditions. The LSA models were more sensitive to the update/correction of enemy status, as the 

performance of LSA models improved and surpassed the VSM models after the SME feedbacks 

were incorporated to update the enemy status. The LSA models turned out to be the most 

efficient in capturing item similarity and classifying enemy item pairs.  

5.1.2  Research Question 2 

Compared to a logistic regression classifier, does the Artificial Neural Network classifier 

improve the accuracy of classifying enemy item pairs? 

The results of the study showed that the performance of the two classifiers interacted with 

the NLP approaches and cutoffs. The update of enemy status based on the SME feedbacks also 

had a significant impact on the performance of the classifiers.  

Before the SME review of false positive item pairs and the update of enemy status, the 

patterns of performance for the two classifiers differed for each NLP approach. For the VSM and 

LDA models, the logistic regression classifier performed better at lower probability cutoffs, but 
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the ANN classifier gained more advantage when the probability cutoff was increased. For the 

LSA models, the ANN classifier consistently yielded better classification accuracy than the 

logistic regression classifier. However, the recall rate suffered for the ANN classifier at the 

cutoff of .90.  

After the SME feedback was incorporated into the updated dataset, the ANN classifier, 

when combined with the LSA approach, consistently outperformed the logistic regression 

classifier on the recall rates. The LSA ANN classifier yielded substantially fewer false positive 

item pairs than the LSA logistic regression classifier. However, the same performance pattern 

was not observed when combined with the VSM or the LDA models: the ANN classifier’s 

ability to identify non-enemy item pairs was less ideal when compared with the logistic 

regression classifier, which was reflected by higher numbers of false positive items and lower 

specificity rates of the VSM ANN and the LDA ANN models.  

5.1.3  Research Question 3 

What probability cutoff is considered optimal for classifying a sufficient number of 

existing enemy item pairs while keeping the number of falsely classified item pairs manageable?  

As the probability cutoff increased, fewer enemy item pairs were classified by the model 

due to stricter classification criterion. As a result, the recall rate inevitably suffered, whereas the 

precision rate improved due to a reduced number of false positive item pairs. Comparing the 

classification performance across the cutoffs (both before and after the SME review), the 

performance metrics of all models produced the best results at the cutoff of .90 except for the 

recall rates. A closer examination of recall rates showed that, when the cutoff increased from .60 

to .90, the recall rates suffered by 0-11% across the models. For the LSA and VSM models 

which consistently produced better performance metrics, the reduction in recall rates was smaller 
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(between 0% to 5%). Even at the cutoff of .90, the models were able to achieve high levels of 

recall: all models correctly identified more than 75% of enemy item pairs before the SME review 

was conducted, and the recall rates were improved to above 86% after the SME feedback of 

enemy status was incorporated into the classification. More specifically, the LSA models and the 

VSM models yielded higher recall rates (89% - 96%) than the LDA models (76% - 87%). This 

level of recall was found to be higher than or comparable to the recall rates from previous studies 

(Peng et al., 2018; Weir et al., 2018; Peng et al., 2019; Weir, 2019).  

The number of false positive item pairs was more than halved as the cutoff increased 

to .90, which, in substantive terms, reduced the burden of SME review by over a thousand item 

pairs when comparing with the results at the cutoff of .60. The resulting number of item pairs 

that required review was manageable (approximately 2000-2500 for the first round of 

classification and 900-2000 after the SME review), given that the SMEs completed the review of 

approximately 1,000 item pairs within three days.   

The accuracy rates of all models peaked at the cutoff of .90, indicating the fewest cases of 

enemy status misclassification. In addition, the F1 score, which is an indication of the tradeoff 

between the recall and the precision rates, also yielded the best values when the cutoff was set 

at .90.  

To summarize, the models consistently produced optimal results at the cutoff of .90. Over 

76% of the enemy item pairs were classified at this cutoff and the recall rate was improved to 

above 86% after the SME review and update of item bank enemy status. The number of false 

positive item pairs that required further SME review were also manageable at this cutoff.  
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5.1.4  Research Question 4 

Does the automatic enemy item detection procedure help reveal more true enemy items 

previously not identified in the item pool? Does retraining the model, using the input from SME 

review of false positive item pairs, help improve the accuracy of classifying enemy item pairs?  

The automatic detection procedure has shown promising ability to predict item pairs’ 

enemy status. The first round of classification revealed high probability enemy item pairs that 

had not been flagged in the item bank. Guided by this result, the SMEs reviewed approximately 

1,000 item pairs in a reasonable time frame, and a high percentage (45%) of the reviewed pairs 

were successfully confirmed as enemies.  

The feedback of the SME review was then incorporated to update the enemy status of 

item pairs which, in return, improved the accuracy of the dependent variable used for the 

classification model. As a result, all the performance metrics were markedly improved across the 

models in the re-trained classification, especially in the precision rate, the accuracy rate, and the 

F1 score. The number of false positive item pairs was also remarkably reduced, easing the burden 

of further SME review. This iterative process helped strengthen the enemy relationship 

monitoring of the item bank and efficiently reduced the time and resources allocated to enemy 

item pair detection.  

Given the successful identification of additional enemy item pairs, a supplemental 

analysis was conducted in which SMEs also reviewed the FN item pairs in Table 15 which were 

predicted to have enemy probabilities below .60 but were tagged as enemy item pairs in the item 

pool. Although these item pair were highly likely to have been reviewed during previous test 

assembly processes, human errors could occur during manual management of the item bank, and 

the definition of enemy items may also shift overtime which calls for re-evaluation of existing 
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enemy associations. Upon gathering the FN item pairs across all models in the entire item bank, 

a total of 53 unique FN item pairs were sent to further review in which two SMEs reviewed all 

these item pairs and verified the enemy status of each pair. The review result confirmed that one 

out of these FN items pair was in fact a non-enemy item pairs. The SME review determined that 

the contents of the two items within this pair did not warranty the enemy relationship – one item 

pertaining to addressing the emotional need of the patient and the other related to the nurse aide’s 

response to the emergency call light. The SMEs suspected that this item pair was likely assigned 

an enemy association due to operational errors made during the item bank management process. 

Furthermore, this item pair was identified as non-enemy pair by the LSA Logistic model and the 

LSA ANN model but not detected by the rest of the models. Upon closer inspection, these two 

items have two overlapping words, which possibly infatuated the similarity indices produced by 

the VSM and the LDA models. This additional analysis showed that not only did the automatic 

enemy detection process reveal additional enemy relationships within the item pool, it can also 

help verify the existing enemy relationships and identify incorrectly flagged enemy relationships.  

5.2   Implications 

The following section discusses the implications of this study as well as the operational 

recommendations implied by this study.  

The results of this study showed robustness of the proposed enemy detection process 

utilizing Natural Language Processing techniques and classification approaches for the automatic 

identification of enemy relationships in the item bank. The topic modeling NLP techniques 

successfully extracted meaningful concepts/topics from the item text. The feedback from the 

SME review implied that the LSA approach was able to extract more refined and distinct 

concepts compared to the LDA approach. The relatively poor LDA model’s performance was 
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also reflected in the classification results, where the classification metrics consistently favored 

the VSM and the LSA models. The VSM Logistic model showed advantages in the precision, 

accuracy, and F1 score in the initial round of classification, while the LSA ANN model achieved 

better performance when the enemy relationships were more accurately reflected in the updated 

classification dataset. The models yielded the optimal classification results at the cutoff of .90, 

with a high proportion of enemy item pairs successfully detected and a manageable number of 

false positive item pairs for review. The SME review of the false positive item pairs confirmed 

that approximately 45% of the reviewed pairs to be true enemies, which helped identify 

additional enemy associations in the item bank. After the new enemy relationships were updated 

in the dataset, the performance metrics of all models were significantly improved, and the 

numbers of misclassified item pairs were markedly reduced.  

Although this automatic process is not intended to replace the human SME review, it will 

narrow down the number of item pairs to be reviewed and provide a helpful starting point for the 

enemy relationship screening. This process will minimize the repetitive manual efforts needed 

for item bank maintenance. In addition, this study implies that the effectiveness of this automatic 

process will continuously improve throughout the iterative process of human SME review and 

re-classification. As more and more enemy associations are identified from the review of false 

positive item pairs, the accuracy of enemy relationship flagging in the item bank will be 

enhanced. Item pairs with confirmed enemy status can also be marked and excluded from future 

reviews.    

This automatic detection process not only allows screening of enemy item pairs within 

the entire item bank, but it also offers operational flexibility to control the time and resources 

allocated for this task. For example, this process can be performed on smaller item pools for 
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faster iteration time. SMEs can modify the stopping rules of the false positive item pair review 

process to focus on item pairs with higher estimated enemy probabilities. The stopping point 

where the SME review concluded indicates the probability cutoff below which fewer enemy item 

pairs were encountered. It can be used as an informative reference cutoff for the next iteration of 

enemy search and SME review. In addition, as time is of the essence in the enemy item pair 

identification, practitioners need to consider the computing time and hardware limitation when 

selecting the model. The topic modeling approaches, especially the LDA method, which employs 

MCMC sampling, involve additional analytical steps compared to the VSM models and thus 

require longer time to converge. Moreover, the machine learning classifier requires more 

computing power than the logistic regression classifier due to the gradient descent and 

backpropagation procedures. The entire automatic detection procedure, when using logistic 

regression as the classifier, typically finishes within 15 minutes. When performing models with 

the ANN classifier, this study utilized a GPU accelerated server, and the computing time of the 

models took approximately 30-50 minutes.   

Although this study was focused on the application of the automatic detection process in 

the nurse aide licensure examination, it can be applied to a variety of other testing contexts. For 

large scale testing programs having employed fully adaptive computerized testing, there is 

constant demand to monitor and screen for enemy items as required by continuous and frequent 

testing. The automatic process will provide human reviewers with helpful indices of enemy 

relationships and greatly reduce the manual effort needed for this onerous task. For testing 

programs utilizing fixed-form assessments, equivalent test forms are usually generated through 

automatic test assembly algorithms and the test forms need to be screened for enemy item pairs 

before the test publication. More often than not, enemy items would be identified within the 
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same test forms which would call for the replacement of items. Multiple iterations of such form 

review would usually be carried out until the test forms could be verified to be free of enemy 

items. With the help of this automatic enemy item detection approach, the enemy items can be 

screened and identified in advance, which reduces the likelihood of selecting enemy item sets to 

the same test form. Depending on the availability of the item-meta data, the model can be 

modified to include additional predictors to improve the enemy classification. Some item banks 

include various methods for the categorization of item content which may further inform the 

enemy relationships. The automatic approach can also be applied to pretest items. Even though 

the difficulty parameters are not available for pretest items, the NLP techniques can still analyze 

the item text and serve the purpose of item similarity screening.  

The updated classification results indicated that the model performance will be improved 

as more iterations of this automatic detection procedures are conducted in the item bank. It is 

expected that the enemy status would be stabilized over time when the enemy relationships in the 

item bank are exhaustively scrutinized and verified throughout the iterations. As a result, there 

would be fewer FP item pairs to review after each iteration. However, it is necessary to routinely 

conduct such iterations of the automatic enemy detection procedure in real-world testing context. 

As more test items are added periodically to the item bank, the text corpus is constantly updating, 

and the topics themselves are changing. Moreover, the topics and standards of care evolve over 

time due to advancements in the field. Re-training the automatic detection model on a routine 

basis accounts for such shifts and ensures that measures of between-item similarities are accurate 

snapshots of the testing period. Since large testing programs typically rotate different item pools 

for test security purposes, it is prudent to conduct this automatic procedure before each test 

publication to ensure that enemy relationships are scrutinized within the item pool. It is 
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important that the enemy relationships within the item bank are constantly monitored and 

screened, as having enemy item sets on the same test diminishes the measurement precision and 

test validity. The thorough identification of enemy relationships also improves the test form 

assembly process for testing organizations, as much time and resources are devoted to finding, 

tagging, and replacing enemy item sets after the test forms are assembled. Furthermore, the 

enemy relationship identification would ensure that the examinees are not administered enemy 

item sets on the same test, which avoids the confusion of receiving duplicative items on the same 

test and potential interference in the examinee’s ability estimation.  

5.3   Strength and Limitations  

A major strength of this study is that it examined and compared the effectiveness of the 

automatic enemy detection process across various NLP approaches and classifiers based on a 

single, entire operational item bank. Previous studies have been focused on one or two of these 

methods and utilized different item pool data, whereas this study allows direct comparisons of 

performance to be made between various models across a wide range of possible cutoffs, which 

provides useful insights to practitioners on the model selection. Additionally, the item sample of 

this study includes approximately 1,500 operational items. Compared to the previous studies 

(Becker & Kao, 2009; Peng et al., 2018; Weir et al., 2018; Peng et al., 2019), this research offers 

a larger database that ensures adequate training of the topic modeling NLP approaches and the 

ANN machine learning method.  

However, certain limitations of the study must be noted. First, when resampling was 

applied to address the imbalanced data issue using a traditional frequentist approach SMOTE, the 

variance of the data were artificially altered and modeled, which might lead to questions about 

the validity of the classification results. Therefore, the implications of the recommended cutoffs 



 

 
 

116 

from this study are not applicable to studies that do not implement the SMOTE adjustment. 

Some alternative methods could be applied without altering the dataset. For example, a Bayesian 

approach could be an alternative method to address the data imbalance issue by applying a 

balancing informative prior and weighting the data in favor of the smaller subset so that the 

influence of imbalance to the overall prediction could be minimized. Second, this study used the 

point estimates to calculate the cosine similarity indices without taking the associated error terms 

into account. This might have introduced bias in the classification results and caused additional 

item pairs to be misclassified. Third, this study assumed stop words could limit the false positive 

cases but did not further investigate the validity of this assumption. The results could vary to 

some degree if a different list of stop words were used, and the extent of how this would 

introduce error is unknown to this study. In addition, given the large size of the item bank, the 

true number of concepts/topics is unknown. While this study used the proportion of variance 

explained and singular value for determining the number of concepts in the LSA model and 

perplexity score for the LDA model, there are various other methods to select the ideal number 

of latent concepts/topics. In addition, due to the scope of the research, only four probability 

cutoffs were examined with an increment of .10 to provide an approximate location of the ideal 

cutoff. Finding the optimal cutoff requires a more exhaustive search of probability thresholds, 

especially at the higher end of the scale (between .90 and 1.00).  

The SME review of the FP item pairs conducted in this study has focused on the highest 

enemy probability item pairs, and the review was terminated when fewer enemy pairs were 

encountered. This stopping rule was chosen mainly due to operational reasons, because it 

appeared to be the most cost-effective approach to identify as many enemy pairs as possible 

while limiting the number of item pairs the SMEs need to review. However, it is likely that true 
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enemy item pairs still exist below the stopping point. This automatic approach will inevitably 

miss some true enemy item pairs and some bias may have been introduced due to this stopping 

rule. When time and resources allow, human reviewers are encouraged to apply more exhaustive 

review rules which will increase the number of enemy item pairs being identified through each 

iteration of SME review. As aforementioned, the accuracy of the model is bound to improve over 

time when more enemy relationships are unveiled and tagged in the item bank.  

Another potential limitation lies within the generalizability of this study. Due to the 

diversity of testing programs, the item type mixture and availability of item-meta data differ 

drastically. For instance, some of the predictors used in this study may not be readily available in 

a different item pool. A number of factors may have an impact on the classification performance 

of the automatic approach, which include, but are not limited to, item type, item length, size of 

item pool for training, model selection of the NLP methods, content area and cognitive levels 

involved within the items. This study used a heuristic approach where the enemy probabilities 

across all models were averaged and then sorted for the SME review. If a single model was 

applied, the stopping point of the review may have been different. Moreover, due to the 

confidential nature of test items, the majority of this type of studies cannot be replicated by 

researchers outside of the testing organization.  

5.4   Future Studies  

This study has revealed other directions of future research. First, the research design 

described in this study can be expanded to include additional classifiers. For example, k-nearest 

neighbor classifier and random forest classifier have also been applied for item text classification 

in other studies. Second, the results from this study suggested that the models achieved better 

performance at the higher probability cutoffs. Future research could explore additional 
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probability cutoffs between .90 and 1.00 to further refine the optimal cutoff. Third, while there is 

no best way to determine the number of latent concepts/topics for the models, future studies 

could explore other methods, such as using the coherence score, to select the ideal number of 

concepts/topics. Furthermore, future research could examine the refinement of stop words and 

their effect on the classification performance, as this topic is not well documented in the 

literature. 

The approaches used in this study could also prove useful for other tasks related to test 

development and item bank maintenance. For example, the NLP methods can be applied to 

extract topics from the item bank for analysis of content coverage. This information can be used 

to identify content areas requiring item replenishment and provide targeted guidance for item 

writing. Moreover, the measurement of between-item similarity can help testing organizations 

investigate allegedly leaked or stolen test items by comparing them to the item bank. The NLP 

approaches could also help with the quality control of the newly developed items. It can be used 

to analyze various linguistic features and syntax structure of the newly developed items and 

compare them with items with known quality.  

In addition, future research could explore the possibility of incorporating online lexical 

databases or ontologies in computing the similarity indices. The strength of Natural Language 

Processing lies within the ability to process and analyze enormous amount of data, and the model 

performance benefits from additional input of items, text, and contents. Some existing lexical 

databases or ontologies offer pre-trained word embeddings that mathematically describe the 

lexical proximity between words/terms, which are generated from analyzing large corpus not 

limited to the sample item data used in this study. Utilizing these pre-trained word embeddings 

could help enhance the efficiency and performance of the automatic enemy detection process.   
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While this study used multiple-choice items with a simpler, shorter item structure that do 

not require complex cognitive abilities, future research could explore the generalizability of this 

automatic approach when applied to different item pools. With the evolution of modern testing, 

many testing programs are starting to include a diverse mixture of item types. For example, a 

number of licensure examinations and educational assessments already incorporated more 

sophisticated items which assess the examinees’ ability to analyze, diagnose and generalize. 

These types of items may describe a more detailed and complex problem (i.e. patient vignette, 

clinical indices) and require multiple higher-level cognitive processes to arrive at the solution. 

They can also be presented in a variety of formats (i.e. matrix response items, drag and drop 

items, short answer items) and even be organized into testlets with a series of context dependent 

items. Future investigation into how this automatic detection process can be expanded to address 

different item types will contribute to the refinement of the methods.  

5.5   Conclusion 

This study helps to show the robustness of the Natural Language Processing techniques 

in automatic identification of enemy item pairs. The findings from this study may assist testing 

organizations in making decisions regarding how they screen for enemy item pairs and which 

model and cutoff to use for this process. The most significant difference between this research 

and the previous studies is that this study systematically investigated the classification 

performance from the numerous conditions across the NLP techniques, classifiers, and 

probability cutoffs. More specifically, it examined the ability of topic modeling NLP approaches 

in capturing conceptual similarity between item pairs and the potential of using a machine 

learning classifier for the enemy item pair classification. The results showed that the LSA 

approach was able to extract refined distinct concepts from the item bank that emulated human 
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perceptions of conceptual similarities. The classification results from the numerous conditions 

indicated that the LSA models and the VSM models consistently outperformed the LDA models 

and yielded optimal results at the cutoff of .90.  

With the input of the SMEs, the automatic detection process helped identify additional 

enemy relationships previously untagged in the item bank. This process also greatly reduced the 

time and manual labor needed for enemy relationship monitoring and offered flexibility for SME 

review. After the SME feedback was incorporated into the item bank enemy flagging, the 

performance of the re-trained models was significantly enhanced based on all classification 

metrics. The LSA ANN model yielded the best results after the model retraining. However, the 

LSA Logistic model and the VSM Logistic model still produced compelling performance with 

less computing time. Therefore, I recommend that testing organizations focus the resources for 

enemy identification on the highest probable enemy item pairs predicted by the models and 

choose the logistic regression classifier if the available computing power is limited, as the enemy 

status review and update are more likely to have the most impact on the enemy relationship 

identification in the item bank. Finally, this study helped reveal many promising future research 

directions.  

Within the parameters of this study, we can conclude thus far that the proposed automatic 

enemy detection process is effective in identifying enemy item pairs in the item bank, and it 

helps reduce the time and resources required by this daunting task. The findings of this study 

offer practical implications to testing organizations in item bank monitoring and maintenance. 

The improvement in enemy item identification is crucial for ensuring the measurement precision 

and test validity, especially for high-stake licensure examinations.  
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While this research showed promising results from the applications of the Natural 

Language Processing techniques for automatic enemy item pair detection, there are still many 

areas that need to be explored by future studies, particularly in the contexts in which topic 

modeling and machine learning approaches have been newly implemented.  
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APPENDIX A 

DESCRIPTIVE STATISTICS OF VARIABLES IN THE SECOND ROUND OF CLASSIFICATION  

 

 Whole Dataset  Training Dataset  Test Dataset 

Variables N Mean S.D. Min. Max.  N Mean S.D. Min. Max.  N Mean S.D. Min. Max. 

Enemy status  1,066,530  .001 .027 .000 1.000   853,224  .001 .028 .000 1.000   213,306  .001 .026 .000 1.000 

VSM cosine (stemi, stemj)  1,066,530  .007 .036 .000 1.000   853,224  .007 .036 .000 1.000   213,306  .007 .036 .000 1.000 

VSM cosine (keyi, keyj)  1,066,530  .004 .036 .000 1.000   853,224  .004 .036 .000 1.000   213,306  .004 .037 .000 1.000 

VSM cosine (stemi, keyj)  1,066,530  .003 .028 .000 1.000   853,224  .003 .028 .000 1.000   213,306  .003 .028 .000 1.000 

VSM cosine (keyi, stemj)  1,066,530  .003 .027 .000 1.000   853,224  .003 .027 .000 1.000   213,306  .003 .026 .000 1.000 

LSA cosine (stemi, stemj)  1,066,530  .012 .058 − .258 1.000   853,224  .012 .058 − .258 1.000   213,306  .012 .058 − .165 1.000 

LSA cosine (keyi, keyj)  1,066,530  .006 .063 − .993 1.000   853,224  .006 .063 − .993 1.000   213,306  .006 .064 − .986 1.000 

LSA cosine (stemi, keyj)  1,066,530  .006 .048 − .989 1.000   853,224  .006 .048 − .989 1.000   213,306  .006 .047 − .984 1.000 

LSA cosine (keyi, stemj)  1,066,530  .006 .046 − .988 1.000   853,224  .006 .047 − .988 1.000   213,306  .006 .045 − .974 1.000 

LDA cosine (stemi, stemj)  1,066,530  .051 .115 .009 1.000   853,224  .051 .114 .009 1.000   213,306  .051 .115 .009 1.000 

LDA cosine (keyi, keyj)  1,066,530  .059 .121 .010 1.000   853,224  .059 .121 .010 1.000   213,306  .059 .122 .010 1.000 

LDA cosine (stemi, keyj)  1,066,530  .054 .116 .009 1.000   853,224  .054 .115 .010 1.000   213,306  .054 .117 .009 1.000 

LDA cosine (keyi, stemj)  1,066,530  .054 .114 .009 1.000   853,224  .054 .114 .009 1.000   213,306  .054 .113 .009 1.000 

Average item length  1,066,530  11.826 2.133 5.000 30.500   853,224  11.827 2.133 5.000 30.500   213,306  11.824 2.133 5.000 30.000 

Difference in difficulty  1,066,530  1.507 1.167 0.000 12.920   853,224  1.506 1.168 0.000 12.920   213,306  1.510 1.166 0.000 12.250 

Content overlap  1,066,530  .075 .264 0 1   853,224  .075 .264 0 1   213,306  .075 .263 0 1 
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APPENDIX B 

 
DESCRIPTIVE STATISTICS OF VARIABLES  

IN THE TRAINING DATASET AFTER SMOTE APPLICATION (AFTER SME REVIEW) 

Variables N Mean S.D. Min. Max. 

Enemy status  1,705,154  .500 .500 .000 1.000 

VSM cosine (stemi, stemj)  1,705,154  .182 .244 .000 1.000 

VSM cosine (keyi, keyj)  1,705,154  .180 .299 .000 1.000 

VSM cosine (stemi, keyj)  1,705,154  .037 .102 .000 1.000 

VSM cosine (keyi, stemj)  1,705,154  .044 .118 .000 1.000 

LSA cosine (stemi, stemj)  1,705,154  .269 .312 − .258 1.000 

LSA cosine (keyi, keyj)  1,705,154  .232 .352 − .993 1.000 

LSA cosine (stemi, keyj)  1,705,154  .061 .154 − .989 1.000 

LSA cosine (keyi, stemj)  1,705,154  .070 .170 − .988 1.000 

LDA cosine (stemi, stemj)  1,705,154  .254 .328   .009 1.000 

LDA cosine (keyi, keyj)  1,705,154  .242 .346 .010 1.000 

LDA cosine (stemi, keyj)  1,705,154  .090 .168 .010 1.000 

LDA cosine (keyi, stemj)  1,705,154  .103 .184 .009 1.000 

Average item length  1,705,154  12.817 2.290 2.000 24.500 

Difference in difficulty  1,705,154  1.264 1.041 0.000 12.920 

Content overlap  1,705,154  .508 .500 0 1 
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APPENDIX C 
 

RESULTS OF LOGISTIC REGRESSION (AFTER SME REVIEW) 

Variables VSM LSA LDA 

Cosine (stemi, stemj) 14.458*** 23.192*** 5.689*** 

 (0.050) (0.082) (0.018) 

Cosine (keyi, keyj) 7.174*** 11.369*** 4.395*** 

 (0.041) (0.072) (0.016) 

Cosine (stemi, keyj) 4.410*** 5.533*** 0.609*** 

 (0.068) (0.116) (0.025) 

Cosine (keyi, stemj) 7.662*** 11.510*** 2.161*** 

 (0.057) (0.092) (0.021) 

Average item length −0.584*** −0.374*** −0.409*** 

 (0.002) (0.001) (0.001) 

Difference in difficulty −0.899*** −0.532*** −0.877*** 

 (0.007) (0.004) (0.004) 

Content overlap 2.882*** 2.165*** 4.355*** 

 (0.014) (0.008) (0.008) 

N 1,705,154 1,705,154 1,705,154 

Adjusted R-squared .913 .935 .779 

Note. *** p < .001    
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APPENDIX D 
 

DISTRIBUTION OF PREDICTED ENEMY PROBABILITIES (AFTER SME REVIEW) 

Model   N Mean S.D.  Min. Max. 

Enemy       

VSM Logistic 149 .962 .154 .004 1.000 

LSA Logistic 149 .964 .151 .006 1.000 

LDA Logistic 149 .937 .155 .009 1.000 

VSM ANN 149 .964 .161 .001 1.000 

LSA ANN 149 .958 .160 .004 1.000 

LDA ANN 149 .946 .144 .010 1.000 

Non-Enemy      

VSM Logistic 213,157 .028 .103 .000 1.000 

LSA Logistic 213,157 .024 .100 .000 1.000 

LDA Logistic 213,157 .073 .177 .000 1.000 

VSM ANN 213,157 .023 .108 .001 1.000 

LSA ANN 213,157 .019 .090 .001 1.000 

LDA ANN 213,157 .080 .190 .004 1.000 
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