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Summary 

Elasticity influences flow behavior, processability, and applications of complex 

fluids. Elasticity can be characterized using torsional rheometers by measuring 

normal stresses in steady shear, elastic modulus in oscillatory shear, and stress 

relaxation after step-strain. Complex fluids display flow kinematics, as well as 

instabilities that are quite distinct from Newtonian fluids. However, determining 

the effects of elasticity are not straightforward, as most complex fluids that show 

measurable elasticity, also display rate-dependent viscosity. Simultaneous 

manifestation of these complex fluid phenomena leads to their conflation! To 

resolve this problem, David Boger developed a ‘purely elastic’ fluid that displays a 

constant viscosity. Such fluids, known as Boger fluids, are typically formulated by 

dissolving high molecular weight polymers in relatively high-viscosity solvents, to 

facilitate measurements with torsional rheometry. However, most Boger fluids are 

too viscous to emulate fluids used in coating flows. Though aqueous PEO-PEG 

Boger fluids allow access to these germane viscosities, but characterization of 

elasticity using state-of-the-art rheometers suffers due to the resolution limit of 

torque and normal force transducers, or due to elastic instabilities. Furthermore, 

many coating flows are susceptible to stream-wise velocity gradients associated 

with extensional flows, and hence characterization of extensional rheology 

response is necessary. In this contribution, we investigate the shear and extensional 
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rheology of PEO/PEG Boger fluids. We show that dipping-onto-substrate (DoS) 

protocols that rely on characterization of pinching dynamic allow measurement of 

both relaxation time and extensional viscosity. Even though most studies treat 

Boger fluids as experimental equivalents of Oldroyd-B fluids, the pinching 

dynamics displays terminal viscoelastocapillary regime, illustrating finite 

extensibility effects.  The extensional relaxation time for aqueous PEO/PEG Boger 

fluids shows the concentration-dependent scaling also observed for aqueous PEO 

solutions, where measurements on torsional rheometers show no evidence of 

elasticity. Thus we show the possibility of utilizing aqueous polymer solutions as 

model Boger fluids, with elasticity quantified using DoS rheometry, and illustrate 

the extensional viscosity response exhibits strain-hardening, that could impact the 

coating flows, in addition to elastic effects.  

 



 1

1. Introduction 

 
1.1 Preface   

 A Boger fluid is an elastic fluid with constant viscosity, often formulated by 

adding a dilute amount of high molecular weight polymer to a high viscosity 

fluid.[1,2] The influence of macromolecular dynamics in determining rheological 

response (i.e. response to imposed to deformation and flow) of polymer solutions 

and melts are detailed in many texts[3-5] and reviews[6-9].  Ever since their 

introduction, the Boger fluids are utilized for elucidating the impact of elasticity on 

both viscometric and processing flows and instabilities, and for comparison of 

experiments with theory and simulations.[2, 11-13] Newtonian fluids such as water, 

oils, and organic solvents that display a linear dependence on stress on deformation 

rate are often called simple fluids as their resistance to flow is characterized by 

single material property called viscosity.[14,16,101] For Newtonian fluids, 

extensional viscosity that characterizes resistance to extensional flows associated 

with stream-wise velocity gradients (say in contracting channels or in pinching 

necks formed during drop formation) is three times the shear viscosity that 

characterizes resistance to shear flows that typically arise next to walls.[14] In 

contrast, complex fluids can display non-Newtonian behavior in myriad ways, 

including by displaying rate-dependent viscosity, time-dependent viscosity, and by 

showing elasticity in response to applied stress or deformation.  
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Understanding the relative contribution of elasticity and rate-dependent 

viscosity is essential for developing materials and formulations with controlled 

flow behavior, determining optimal processing parameters, as well as for 

developing more realistic constitutive models to describe the response to imposed 

shear and extensional flow. However, discerning the influence of elasticity and 

rate-dependent viscosity is not obvious or straightforward, as the two phenomena 

are easily conflated. To resolve this dilemma, the Boger fluid, a highly elastic, 

constant-viscosity fluid was developed in 1977 by David Boger.[1] Using Boger 

fluids, direct comparisons of response can be made against a Newtonian fluid of 

matched viscosity, and the differences observed in kinematics, onset and growth of 

instabilities and in pattern formation can be attributed to elasticity.[2]  

Instabilities of viscoelastic fluids impact and arise in a diverse range of 

instances/ application from nature to industry. Examples include beads-on-a-string 

structures formed by glue on spider webs[19,31], elastic instabilities that can 

influence rheological characterization[47] as well as channel flows[48], and 

capillarity-driven pinching flows that arise during drop formation in printing and 

dispensing operations[1-6]. Over time, various formulations of Boger fluids were 

developed, and used to probe influence of elasticity on onset and growth of 

instabilities and study viscoelastic kinematics and behavior predicted by different 

constitutive models.[2] However, the influence response to extensional flows 
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remains relatively less well-explored, due to the well-documented challenges of 

measuring extensional rheology response.[7-15] The formulations of particular 

interest and the primary focus of this dissertation research are the aqueous 

PEG/PEG Boger fluids that are particularly favored in model studies on coating 

instabilities due to the relatively low viscosity and weak elasticity of these fluids, 

that is comparable to coating fluids.[52-56] The PEO/PEG Boger fluids have shear 

viscosity that is at least an order of magnitude lower than most of the other Boger 

fluids.[2] High viscosity Boger fluids pose three challenges (detailed later in the 

document): (i) susceptibility to elastic instabilities, (ii) not representative of fluid 

viscosity and elasticity for many coating flows, and (iii) difficulty in extensional 

rheology characterization under flow rates encountered in processing flows. In this 

introductory chapter, we provide the definitions necessary for describing 

viscoelasticity and typical behavior of polymeric complex fluids, summarize the 

typical methods used for measuring the rheological response (i.e. response to 

deformation and flow) of viscoelastic fluids, and discuss the impact of non-

Newtonian rheological response on representative hydrodynamic instabilities, with 

particular emphasis on deciphering influence of elasticity in response to shear 

deformations, as well as extensional rheology response, on flow behavior and 

instabilities rather than just the impact of rate-dependent steady shear viscosity.  
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The rheological characterization of PEO/PEG Boger fluids, along with a 

discussion of their influence and impact on characterizing viscoelastic instabilities 

are focus of Chapter 2. In this contribution, we utilize Dripping-onto-Substrate 

(DoS) rheometry protocols that involve visualization and analysis of capillarity-

driven pinching of liquid filaments (or necks) created by dripping a fixed volume 

of a fluid onto a substrate. The DoS rheometry protocols characterize pinching 

dynamics as well as facilitate quantitative measurement of non-Newtonian 

extensional rheology response, even for PEO/PEG Boger fluids that show weak or 

no signature of viscoelasticity in conventional shear and extensional rheometry.  

 

1.2 Viscoelasticity   

The response of simple fluids to flow created by applied pressure gradients 

or by drag, next to moving surface, can be analyzed using constitutive equation 

known as Newton’s law of viscosity14,16,101, which states that stress 𝝉 responds 

linearly to the deformation rate {∇𝐯 + [∇𝐯]ற}  and proportionally by a constant 

viscosity 𝜂 

𝝉 = 𝜂 {∇𝐯 + [∇𝐯]ற} (1.1) 

 

Simple fluids like water, glycerol and organic solvents (like toluene) can be 

described using Newton’s law of viscosity; however, complex fluids or non-
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Newtonian fluids (like polymeric liquids) deviate can drastically deviate from this 

relation, instead manifesting their own genre of phenomena[14,16,101], shown 

schematically in Figure 1.  

 

 

Figure 1. The four key rheological phenomena. Schematic illustrating examples 
of non-Newtonian fluid phenomena. (A) Shear thinning can be demonstrated by 
spreading mayonnaise on toast, which has a higher viscosity at rest versus when 
dragged by a knife. (B) Stress relaxation can be demonstrated by silly putty 
bouncing when thrown, such that stress is abruptly stored and released, and 
flowing when slowly moved, such that stress is low and dissipated via viscous flow. 
(C) Normal stress differences can be demonstrated via rotating a rod in a fluid, 
which proceeds to climb the rod, rather than forming a “whirlpool” around the rod. 
(D) Extensional thickening can be demonstrated by the self-syphoning process, 
where a fluid will continue to drain itself, against gravity, because of its enhanced 
resistance or “thickening” when encountering stretching, preventing the fluid 
column from breaking. 
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Many polymeric complex fluids exhibit shear thinning, i.e. steady shear 

viscosity decreases with increase in shear rate, 𝛾̇. Such fluids appear to become 

“thinner”, the faster they flow.[16] Apart from polymer solutions and melts, 

examples include mayonnaise (see figure 1 (A)), blood, foams, decorative 

architectural paints, cosmetics like nail polishes and shampoos, among 

others.[14,16] Since Newton’s law of viscosity is not applicable, often the 

deformation-rate-dependent viscosity is typically incorporated using Generalized 

Newtonian fluid models.[14] The simplest such constitutive equation is the power 

law model that characterizes a fluid using a pre-factor, 𝑚 and power-law index, 𝑛 

𝜂(𝛾̇) = 𝑚𝛾̇௡ିଵ  (1.2) 

 
Generalized Newtonian fluid models like power law model are inadequate to 

describe elasticity. Deformations and recovery of elastic polymeric fluids in the 

limit of small deformations, known as linear viscoelastic response, can be 

considered somewhat analogous to Hooke’s law, and hence the simplest models 

for macromolecular dynamics considers polymer chains as elastic dumbbells: two 

Stokes beads connected by a Hookean spring.14 However, the response to large 

deformations leads to additional considerations for modeling nonlinear 

viscoelasticity including consideration of non-Hookean elastic response, finite 

extensibility, and conformation-dependent drag.[14,16,101] The textbook by Bird, 

Armstrong, and Hasseger provides a comprehensive account of non-Newtonian 
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fluid mechanics and different constitutive models whereas Macosko’s 1994 treatise 

provides a detailed discussion of the rheological characterization methods. In 

addition to rate-dependent viscosity response, modeling and characterization of 

complex fluids aims to describe the following three viscoelastic responses (shown 

schematically in Figure 1) discussed in context of polymeric complex fluids. (I) 

Stress relaxation describes the time-dependent variation in stress after step 

strain[14]. Newtonian fluids show nearly instantaneous transition to stress-free 

state, whereas the stress in viscoelastic fluids decreases or relaxes over time, often 

with a decay constant called shear relaxation time, (generally denoted by 𝜆). Both 

elastic and viscous response can be characterized using small amplitude oscillatory 

shear at a range of frequencies, yielding a storage or elastic modulus (𝐺′) from 

stress-response in phase with oscillatory strain and a loss or viscous modulus (𝐺′′) 

that is /2 out of phase.  

(II) Normal stress differences in shear flow that arise due to entropic 

elasticity of polymer coils in response to perturbations by imposed nonlinear strong 

flows, result in both stream-wise stress 𝑁ଵ = 𝜏ଵଵ − 𝜏ଶଶ and transverse stress 𝑁ଶ =

𝜏ଶଶ − 𝜏ଷଷ.[14] These normal stress differences are responsible for the rod climbing 

phenomena or “Weissenberg effect” depicted in figure 1 (C). (III) Extensional 

thickening that refers to increase in extensional viscosity as a function of 

extensional strain, 𝜀 and extensional deformation rate 𝜀̇, is associated with large 
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increase in drag associated with the dynamics of stretched polymer chains.[14] 

Extensional viscosity 𝜂ா =
ఛభభିఛమమ

ఌ̇
  is defined using the ratio of extensional stress 

to extension rate, and influences contraction channel flows as well as pinching 

dynamics. Though Newtonian fluids display an extensional viscosity that is three 

times the shear viscosity, relatively large values of extensional viscosity, even 103-

105 times shear viscosity can be observed for polymeric fluids[29].  As illustrated 

in figure 1 (D), this enhanced resistance to stretching in fluid column prevents the 

breakup or thinning of the said column, allowing for self-syphoning or tubeless 

siphon, which Newtonian fluids are incapable of manifesting.  

 

1.3 Typical Measured Responses of Polymeric Liquids 

 Most rheological measurements to characterize the properties responsible for 

the aforementioned fluid phenomena are performed in a torsional rheometer, in 

which a controlled stain is applied to sample and its stress is measured via torque 

transduction, or vice versa.[14] Through these measurements, shear viscosity is 

computed via the relation 𝜂 = 𝜏ଵଶ/𝛾̇ . Archetypal Newtonian fluid and shear 

thinning polymeric liquid are displayed in figure 2. The red squares, representing 

the viscosity of glycerin, demonstrate a constant viscosity across a range of shear 

rates characteristic of a Newtonian fluid. Alternately, the blue triangles, 



 9

representing a concentrated polymer solution, demonstrate a decreasing viscosity 

with increasing shear rate, characteristic of a shear thinning response. 

 

Figure 2. Archetypal viscosity measurement of a shear thinning fluid versus a 
Newtonian fluid. Flow curve for a concentrated polyethylene oxide (PEO) 
solution and glycerin; shear viscosity is plotted as a function of shear rate. Glycerin 
(red squares), a Newtonian fluid, shows a constant viscosity response, in contrast 
to the PEO solution (blue triangles), which demonstrates shear thinning or a 
decrease in viscosity with increasing shear rate. Measurements were made in a 
cone-and-plate flow cell on a rheometer at 𝑇 = 22º 𝐶. 
 

Steady shear viscosity was measured as a function of shear rate by using 

cone-and-plate geometry on an Anton Paar MCR 302 rheometer. A fixed shear rate 

was applied to the fluid by controlling the differential angular velocity between the 

cone and the plate Ω, such that the shear rate 𝛾̇ = Ω/𝛽 , where 𝛽  is the angle 

between the cone apex and plate.[16] The torque 𝑀 transferred through the fluid 
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indicates the apparent shear stress 𝜏ଵଶ =
ଷெ

ଶగோయ
, where 𝑅 is the radius of the cone 

and the plate. Apparent shear viscosity (frequently referred to as just “viscosity”) is 

the ratio of shear stress to shear rate and is hence computed 𝜂 = 𝜏ଵଶ/𝛾̇. Since 

viscosity, as well as other rheological properties, are highly sensitive to 

temperature, temperature inside rheometer flow cells are controlled and in the case 

of the measurements reported in figure 2 are held at a constant 𝑇 = 22º 𝐶.  

 Measurement of viscoelastic behavior is also typically carried out using 

torsional rheometers. Linear viscoelastic response is characterized using small 

amplitude oscillatory shear (SAOS) whereas nonlinear viscoelasticity manifested 

as the first (and second) normal stress difference are measured using steady 

shear.[14] The SAOS protocol measures the torque or stress required to impose a 

small amplitude oscillatory strain for fixed amplitude for a range of angular 

frequencies. The oscillatory stress response is measured via torque transduction 

and the wave is decomposed into a real component, known as the storage modulus 

𝐺′, which describes the stress stored by the fluid and an imaginary component, 

known as the loss modulus 𝐺′′, which describes the stress dissipated by viscosity. 

A requisite condition for using SAOS is a relatively high viscosity, sufficient for a 

clean stress signal. Polymer melts satisfy this requirement and a typical dataset is 

shown in figure 3 for a low-density polyethylene (LDPE) melt from literature.[17]  
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Figure 3. Archetypal measurement of elastic and loss moduli. Small amplitude 
oscillatory shear data for a low-density polyethylene melt, showing the elastic 
modulus 𝐺′ (pink circles) and loss modulus 𝐺′′ (green squares) as a function of 
reduced angular frequency aT𝜔. Both moduli increase with angular frequency, the 
elastic modulus increasing about 5 orders of magnitude and the loss modulus 
increasing about 4 orders of magnitude. Initially the loss modulus is larger than the 
elastic modulus, but becomes the lesser after 𝜔 ≈ 3 rad/s. Measurement were 
made using cone-and-plate geometry and time-temperature superposition to extend 
the angular frequency range. Data adopted from Laun. [17] 
 

Measurements were made in cone-and-plate flow cell in a modified 

Weissenberg Rheogoniometer Model R 12/15 rheometer with temperatures 

ranging from 𝑇 = 112 – 190 º𝐶 . The stress measurement is identical to that of 

viscosity measurement; however, instead of continuous rotation, the cone and plate 

oscillate differentially at an angular frequency 𝜔. Since the LDPE polymer melt 

has a viscosity sufficiently high to challenge the maximum torque of the rheometer, 
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time-temperature superposition was used to access and broader range of angular 

frequencies. Since the viscosity and stress (torque) response are inversely 

proportional and related by the proportionality constant 𝑎்; thus, by increasing the 

melt temperature, the stress transduced by the melt is decreased and higher angular 

frequencies are achievable or vice versa with a temperature decrease. Fitting of the 

moduli data using appropriate constitutive model allows the computation of a shear 

relaxation time as a characteristic measure of viscoelasticity.  

The first normal stress difference is measured by applying a steady shear to a 

fluid sample, much like that in steady viscosity measurements (which are typically 

performed simultaneously).[14] The force normal to the direction of flow is 

measured and translated to 𝑁ଵ = 𝜏ଵଵ − 𝜏ଶଶ. For example, in the cone-and-plat and 

plate-and-plate geometries, the first normal stress difference applies a normal force 

which attempts to push the cone and plate or plate and plate apart. In figure 4, the 

same HDPE melt reported in figure 3 is characterized in the cone-and-plate flow 

cell with a steady rotation and normal force transduction. The formal force 

computed into the first normal stress difference is plotting as blue triangles in 

figure 4.  Similarly, to SAOS, first normal stress measurements require a high 

enough viscosity, as well. The first normal stress difference can be sometimes 

determined from SAOS or viscosity data by approximation using several empirical 

expressions, including the AbNormal rule,15 Laun rule, [18] and Cox-Merz 
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rule.[19] In addition to the direct measurement of first normal stress difference for 

the LDPE melt (blue triangles) in figure 4, the values computed using the 

AbNormal rule (red squares) and the Laun rule (green dashed line) are shown for 

comparison. As useful as these approximations may be for melts and concentrated 

polymer solutions, such empirical relations cannot be used for determining N1 in 

Boger fluids.[15] 

 
Figure 4. Archetypal measurement of the first normal stress difference and 
select approximations. First normal stress difference direct measurement (blue 
triangles), approximation via the AbNormal Rule (red squares), and via Luan rule 
(green dashed line) as a function of angular frequency and shear rate for a high-
density polyethylene melt. Measurements were made using cone-and-plate 
geometry for steady shear flow in the case of direct measurement and AbNormal 
rule and via SAOS in the case of Laun rule. Data adopted  from Sharma and 
McKinley. [20] 

 
 Strain hardening or extensional thickening is a phenomenon common to 

polymeric liquid where the extensional viscosity increases as a function of 
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extensional stain and/or extension rate,[14] the latter case which is displayed in 

figure 5, which data was obtained using the opposing jet extensional rheometry 

protocol. This extensional viscosity enhancement arises due to increase in drag 

correlated with dynamics of stretching chains.[7] Due to extreme sensitivity to 

entire deformation history and difficulty in reaching steady extensional rate, the 

characterization of extensional rheology response is considered quite challenging, 

and remains less well explored than shear rheometry. [7-15] 

 
Figure 5. Archetypal measurement of extensional viscosity with strain 
hardening and shear viscosity. Shear viscosity (blue pentagons) and extensional 
viscosity (green squares) as function of shear rate 𝛾̇  and extension rate 𝜀̇ , 
respectively, for a solution of 1% polyacrylamide in glycerin-water. The shear 
viscosity exhibits slight shear thinning after 𝛾̇ ≈ 40 sିଵ. The extensional viscosity 
demonstrates strain hardening, as the extension viscosity increases with extension 
rate after  𝜀̇ ≈ 5 sିଵ . Extensional viscosity measurement was made using the 
opposing jet extensional rheometry protocol. Data adopted from Rheology 
Principles.[16] 
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1.4 Free Surface Flows and Industrial Applications  

 A free surface flow is a flow in which the fluid is affected by a zero shear 

stress boundary condition, frequently about a liquid-gas interface.[21] Free surface 

flows are found in many industrial applications, including dripping, jetting, fiber 

spinning, and coating flows.[12, 22, 23] , as illustrated in figure 6 (B-D). In most 

of these free surface flow processes, the liquid interfaces with air, such that the 

interfacial tension shapes the fluid volume and controls the curvature. In the case 

of roll coating, slot coating and fiber spinning (as displayed in figure 6 (C)) the 

convexity is controlled, while in drop formation (as displayed in figure 6 (B)), drop 

pinch off is controlled. The fluid flowing about the interface experiences a 

stretching action, as displayed figure 6 (A), which produces extensional flows. The 

features of extensional deformation and curved streamlines make free surface 

flows highly potent at exacerbating viscoelasticity, because of strain hardening and 

normal stress behavior.[24] The augmentation of resistance to extensional flow 

will be demonstrated using dripping-onto-substrate (DoS) rheometry with the 

PEO/PEG Boger fluid and elastic instabilities about curved streamlines are 

discussed herein.  
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Figure 6. Examples of free surface flows with extensional deformations. 
Illustrations of various free surface flows, where a fluid flows against a zero shear 
stress boundary, such as a gas. (A) General schematic of elongation flow along a 
free surface where the fluid volumes are stretched. Figure adopted from Graham.  
[23] (B) Dripping schematic showing capillary thinning action as surface tension 
chokes the drop neck and the free surface of the liquid drop interfacing with air 
deforms. Figure adopted from Dinic and Sharma. [22] (C) Coating and filament 
spinning illustrations depicting the presence of free surfaces in roll coating, slot 
coating, and filament stretching, all of which involve an evolving liquid air-
interface. Figure adopted from Graham. [23] (D) Schematic depicting the capillary 
break-up extensional rheometer (CaBER), within which a fluid volume is placed 
between two plates and stretched, placing the fluid in a uniaxial extensional flow, 
with a free surface evolving between the fluid and the air (similarly to figure 11 
(B)). Figure adopted from Anna and McKinley. [25] 
 

1.5 Hydrodynamic Instabilities 

Hydrodynamic instabilities exist in nature as well as engineered systems[26] 

and can often manifest themselves as beautiful or menacing patterns, depending on 

their context. For example, the surface tension-driven instability called Plateau-
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Rayleigh instability that leads to break-up of a fluid jet can be utilized in ink-jet 

printing, [2, 27] including emerging applications that use specialized inks that 

deliver DNA, cells, electronic materials or photonic devices. The same Plateau-

Rayleigh instability is rather undesirable in application that require formation of 

filaments (like fiber spinning). Other common examples of hydrodynamic 

instabilities are: inertia-driven Taylor vortices in a Taylor-Couette flow cell[28] 

and elastic instabilities in certain polymeric flows.[29] Instabilities are often 

analyzed by experimentally and theoretically by recognizing the conditions or 

parameters that can be tuned to trigger growth of perturbations. The study of these 

unstable flows requires careful rheological considerations, especially when dealing 

with polymeric liquids with non-Newtonian behaviors.[24] The caveat of these 

non-Newtonian fluids is their readily unstable nature, which is desirable in 

instability experiments, but poses and impediment for rheological considerations.  

 1.5.1 Taylor Vortices  

 The appropriate place to start the discussion of PEO/PEG Boger fluids and 

their applicability to elastic instability studies is with Taylor vortices, which are 

analogous to elastic instabilities. Taylor vortices are an inertial instability which 

can occur in a Couette flow cell [30], which consists of concentric cylinders with 

fluid in-between, rotating at a differential rate and deforming the fluid by shear 

flow [28],[16]. The Couette flow cell is a staple of viscometer and rheometer 
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manufacturers, but suffers from non-viscometric flow at high deformation rates, 

where inertia is the dominant force. The Reynolds number is the natural measure 

of inertial versus viscous force, which arises from the equation of motion,  

𝑅𝑒 =
𝜌𝑣𝑙

𝜂
 (1.3) 

 
where 𝑣 and 𝑙 are characteristic velocity and length scales, respectively, and 𝜌 and 

𝜂 are density and viscosity, respectively. [28] In pipe flows, turbulent secondary 

flows can occur at 𝑅𝑒 ≅ 2300  [28]; however, the onset of these unstable 

secondary flows necessitates relatively large initial disturbance [30]. For this 

reason, G. I. Taylor sought to investigate and identify an inertial instability with 

more readily reproducible and regular behavior. In 1923, Taylor found such inertial 

instability in the Couette flow cell and characterized the phenomena by its 

production of streamwise vortices (later called “Taylor vortices”) and a steady 

secondary cellular structure [31], as seen in figure 7.  

From the equation of motion, Taylor found the onset of instability was not 

solely driven by inertia, but the product of an inertial term and a geometric term 

which is a measure of streamline curvature. This quantity is currently referred to as 

the Taylor number 

𝑇𝑎 = 2 ൬
𝑏

𝑟୧୬୬ୣ୰
൰ 𝑅𝑒ଶ (1.4) 
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where 𝑏 is the gap length between the concentric cylinders, 𝑟௜௡௡௘௥ is the radius of 

the inner cylinder, and 𝑅𝑒 is Reynolds number. The Taylor number is proportional 

to streamline curvature, 𝑇𝑎 ~ 
ଵ

௥౟౤౤౛౨
, and varies to the square of Reynolds number, 

𝑇𝑎 ~ 𝑅𝑒ଶ. While the Taylor number serves as a good predictor of the onset of 

instability for viscous fluids in the Couette flow cell, it fails to do so with 

viscoelastic fluids, as discussed henceforth.   

 

Figure 7. Inertial instability inside a Couette flow cell. (A) Cross-section 
schematic of the Couette flow cell with Taylor vortices in the fluid contained in the 
annular space between the concentric cylinders. (B) Drawings of flow phenomena 
in a Couette flow cell: (a) laminar flow in the tangential direction, (b) unstable 
flow with Taylor vorticity direction indicated by lines in the tangential direction, (c) 
unstable flow with secondary periodic structure. Figures adopted from Transport 
Phenomena by Bird, Stewart and Lightfoot [28]. 
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1.5.2 Elastic Instability   

 Non-Newtonian fluids can produce complex responses to deformation 

shown in Figure 1, such as (1) rate-dependent shear viscosity, (2) stress 

storage/relaxation, (3) normal stress differences, and (4) rate- and history-

dependent resistance to stretching14, the latter three behaviors of which are 

considered “elastic” because of their spring-like stress responses or fluid “memory.” 

Due to these rheological properties, viscoelastic fluids have different fluids 

mechanics that their Newtonian counterparts, which can be seen kinematically, for 

example, in the Couette flow cell. In 1989, Larson, Muller and Shaqfeh 

characterized the flow behavior of ideal elastic fluids (also known as “Boger 

fluids”) in the Couette geometry[29], and found hydrodynamics instabilities at 

negligible Taylor numbers (see figure 8). Larson et al. argued that the instability in 

the Couette flow cell is not driven by inertia; rather, the instability is driven by 

fluid elasticity. Larson et al. posited that the mechanism for this elastic instability 

can be attributed to a radial perturbation of the macromolecules transverse to the 

streamlines, leading to chain stretching, followed by recoil, which results in an 

unstable secondary flow.  
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Figure 8. Elastic instability inside a Couette flow cell. Flow visualization in a 
transparent Couette flow cell. (a) Unstable Newtonian fluid at a high Taylor 
number, Ta = 3800, producing Taylor vortices. (b) Unstable viscoelastic fluid at a 
negligible Taylor number, Ta = 9.6 10 -8, shortly after onset of instability. (c) 
Fully-developed flow of an unstable viscoelastic fluid at a negligible Taylor 
number. Figure adopted from Larson et al. [29]. 
 

 Shortly thereafter in 1991, McKinley et al. published a similar study of 

elastic instabilities in cone-and-plate and parallel-plate flow cell geometries with 

viscoelastic fluids[32], rather than the Couette flow cell. It is noteworthy that like 

the Couette flow cell, the cone-and-plate and parallel plates flow cells are also 

prolific geometries used is viscometric and rheometric measurements[16]. By 

using a rheometer, McKinley et al. not only visualized the flow, but measured 

apparent viscosity and the apparent first normal stress difference of the fluids, 

which deviation indicated the onset of unstable and non-viscometric flows. 

McKinley et al. employed two dimensionless groups to characterized the onset of 

elastically unstable flow: the Weissenberg number, 𝑊𝑖, and the Deborah number, 
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𝐷𝑒. The Weissenberg number is a dimensionless measure of elasticity scaled by 

deformation rate, which is generally expressed 𝑊𝑖 =
ఒ

௧ౚ౛౜౥౨ౣ
, where 𝜆 is the fluid 

relaxation time (either in shear or extensional flows) and 𝑡ୢୣ୤ is the deformation 

rate (also, either in shear or extensional flows). A high Weissenberg number (Wi > 

1) indicates a predominantly elastic flow, as the fluid is deformed at a faster rate 

than it can relax. Similarly, Deborah number is a dimensionless measure of 

elasticity, but, scaled by process time 𝑡୮୰୭ୡୣୱୱ, generally expressed 𝐷𝑒 =
ఒ

௧౦౨౥ౙ౛౩౩
. In 

the cone-and-plate and parallel-plate geometries, the deformation time scale refers 

to the shear rate and the process time scale refers to the time over which a polymer 

coil stretches transversely to streamlines. Figure 3 displays a viscoelastic fluid in 

the parallel-plate flow cell at a lower Deborah number, prior to instability, and at a 

higher Deborah number, as the instability onsets and evolves temporally. 

McKinley et al. determined the onset of elastic instability in the cone-and-plate and 

parallel-plate geometries depended on the combination of Weissenberg and 

Deborah numbers. 
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Figure 9. Elastic instability inside a plate-and-plate flow cell. Flow of a 
viscoelastic fluid in a parallel-plate flow cell with a transparent plate for imaging at 
different times. (1) Stable, viscometric flow at 𝐷𝑒 = 3.57, (b) onset of elastic 
instability at 𝐷𝑒 = 4.81 with cellular structure, (c) radial propagation of cellular 
structure, and (d) final stage of the instability with time-dependent 3-D flow. 
Figures adopted from McKinley et al. [32]. 
 
 Further refinement of this instability criterion was made in 1996 by Pakdel 

and McKinley[24], who made the connection between the occurrences of elastic 

stabilities in geometries with curved streamlines and G. I. Taylor’s work on inertial 

instabilities. The Taylor number, which predicts the inset of the inertial instability 

in the Couette flow cell, is the product of an inertial driving-force term (𝑅𝑒ଶ) and a 

geometric term (2
௕

௥౟౤౤౛౨
). Pakdel and McKinley postulated that the onset of elastic 

instability (hereafter referred to as the Pakdel-McKinley criterion) occurs when M> 
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Mcrit, where M is the product of an elastic driving-force term (𝑊𝑖 with  𝑡ୢୣ୤୭୰୫ =

1/ 𝛾̇ for a shear flow) and a geometric term (a modified 𝐷𝑒): 

𝑊𝑖 𝐷𝑒 ≥ 𝑀ୡ୰୧୲ 
(1.5) 

  

Unlike the general Deborah number, which is a ratio of time scales, Pakdel 

and McKinley define the Deborah number as a ratio of length scales, rendering the 

Deborah number a geometric measure: 

𝐷𝑒 =
ℓ

ℛ
=

𝑈𝜆

ℛ
 

(1.6) 

 

where ℓ is the length required for a perturbed polymer chain to relax along a 

streamline of velocity 𝑈 and ℛ is the radius of curvature of the streamline. When 

the Deborah number is at or above unity, a perturbed polymer chain does not have 

sufficient length to relax within the streamline along which it is originally flowing, 

causing a transverse migration from said streamline. This transverse migration of 

the polymer causes tension of the chain between the streamlines, as figure 4 

depicts and contrasts with a polymer traveling along a single streamline. The radial 

tension of the polymer chain results in a radial recoil (deviatoric normal stress), 

causing an unstable radial velocity component, secondary to the flow along the 

streamline. Pakdel and McKinley found good agreement of the Pakdel-McKinley 

criterion with 1-D and 2-D base flows in confined geometries. The typical 
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polymeric liquid exhibits shear thinning, which kinematic effects can be conflated 

with that of elasticity, when used in a process; thus, an initial conflict arises: how 

can purely viscoelastic kinematics be achieved to examine the impact of elasticity 

in a process? 

 

Figure 10. Elastic instability mechanism. Schematic of polymer coil (dumbbell 
model) tension and stretching across curved streamlines and a polymer coil 
traveling unperturbed along a streamline, all with radius of curvature ℛ. Figure 
adopted from Pakdel and McKinley [24]. 
 
   

1.6 The Applicability of Boger Fluids  

Boger fluids are elastic fluids with constant shear viscosities.[33] David 

Boger formulated the first Boger fluid, polyacrylamide (PAM) solution in maltose 

syrup, achieving a nearly rate-independent viscosity and an appreciable first 

normal stress difference, as shown in figure 10.[34] The first Boger fluid had a 

relatively high viscosity (104 times water viscosity) and the stress vs. shear rate 

data showed nearly linear slope. Boger’s pioneering study has inspired rheologists 

to create alternative formulations of Boger fluids, and a few representative 

examples are tabulated in table 1. A flexible polymer of relatively high molecular 
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weight (e. g. PAM) is dissolved in a solvent of relatively high viscosity (e. g., 

maltose syrup), which suppresses shear thinning. These Boger fluids have been 

used to investigate viscoelastic constitutive equations (such as Oldroyd-B, 

Giesekus, and FENE-P) and the influence of elasticity on flow kinematics, 

including elastically unstable flows.[33] For a given flow process, elastic 

kinematics can be elucidated from viscous effects by comparing flow of a Boger 

fluid to a Newtonian (control) fluid of like viscosity; thus, the difference in 

kinematics between the Boger fluid and Newtonian fluid is attributable to elasticity. 

In the Table, Boger fluids formulated with dilute amount of high molecular weight 

PEO added to a highly concentrated aqueous solution of PEG (lower molecular 

weight PEO) .  

 

Figure 11. Rheology of the first Boger fluid. (A) Shear viscosity as function of 
shear rate for the original PAM-maltose syrup Boger fluid from 1977/1978. The 
viscosity appears independent of shear rate. (B) Shear stress and first normal stress 
difference as a function of shear rate for the Pam-maltose syrup Boger fluid. A 
shear stress response with power law index of 𝑛 = 0.94 indicates virtually rate-
independent viscosity and the first normal stress difference indicates the fluid 
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viscoelasticity with stresses up to nearly two orders of magnitude greater than 
shear viscosity. Figure adopted from Boger. [34] 

 

 
 
Table 1. Recipes used to formulate Boger fluids and cursory properties describing 
viscoelastic properties.  
High Mw 
Polymer 
/Solvent 

𝜼𝟎 [𝐏𝐚 ∙ 𝐬] 𝜼𝒔  [ 𝐏𝐚 ∙
𝐬] 

𝝀𝒔  [𝐬] Comments  Ref. 

Polyacrylamide 
/ maltose syrup  

22.5 22 4.25  𝑁ଵ  Maxwell model [34] 

Polyisobutylene 
/ polybutene 

2.65 1 0.70 𝑁ଵ , 𝐺′ Oldroyd-B 
model 

[35, 
36]  

Polystyrene / 
oligomeric 
polystyrene 

4 – 12 2 – 9 0.3 – 2.5 𝐺ᇱOldroyd-B model [37] 

Polyethylene 
oxide / 
polyethylene 
glycol  

0.02 – 0.3  

 

0.003– 
0.2 

1.6 – 7.9 𝐺′  Oldroyd-B 
model 

[60]  

Polystyrene / 
dioctyl 
phthalate 

0.6-1 0.5 1-8 𝑁ଵ  Oldroyd-B 
model 

[38] 

 

The use of PEO/PEG Boger fluids facilitates the investigation of elastic 

instabilities and rheological response at relatively high deformation rates 

associated with many coating flows. This Boger fluid recipe was first described by 

Dontula et al., reporting a rate-independent shear viscosity as shown in figure 12 

(A), prior to apparent shear thickening characteristic of elastic instabilities, and 

elasticity measured by SAOS as shown in figure 12 (B).[67] This introduction 

opens the door to many possibilities and challenges, and a thorough examination of 
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the literature on PEO/PEG Boger fluids is presented in next chapter, along with 

experiments and analysis carried out as a part of this dissertation study. Even 

though elastic instabilities limit the characterization of elasticity in torsional 

rheometry, in the next chapter, we utilize understanding of capillarity-driven flows 

and instabilities to determine both relaxation time and extensional viscosity using 

the dripping-onto-substrate (DoS) rheometry protocols.  

  

 
Figure 12. Original PEO/PEG solution rheology. (A) Viscosity as a function of 
shear rate for PEO/PEG solution, for 17.5 wt. % PEG with 0.2 wt. % PEO (blue 
squares) and 37.5 wt. % PEG with 0.6 (green circles) and 0.8 (red inverted 
triangles) wt. % PEO. There is a concentration dependence of viscosity on both 
PEO and PEG. The PEO/PEG solutions show a rate-independent shear viscosity, 
characteristic of Boger fluids, with apparent shear thickening at higher rates. (B) 
Elastic modulus as a function of angular frequency for PEO/PEG solution, for 17.5 
wt. % PEG with 0.2 wt. % PEO (blue squares) and 37.5 wt. % PEG with 0.6 (green 
circles) and 0.8 (red inverted triangles) wt. % PEO. The elastic modulus is 
proportional to both PEO concentration.  
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1. Rheological and Polymer Physics Investigation into PEO-PEG-
based Boger Fluids 

Introduction 

A Boger fluid is an elastic fluid with constant viscosity.[33, 39] Solutions 

and melts of linear, flexible and semi-flexible polymers typically exhibit shear 

thinning response, and show measurable value of first normal stress difference at 

higher rates.[40, 41] Stretching and orientation of polymer coils in response to 

applied shear flow results in decrease in shear viscosity whereas the drive to 

recover entropically-favored conformation of unperturbed coil leads to elastic 

effects including stress relaxation and normal stresses.[40-42] The role of 

macromolecular stretching, orientation, and relaxation in contributing to 

universalities exhibited by polymer solutions and melts in their shear rheology 

response are detailed in many texts[40-42] and reviews.[7, 43-45] In practice, 

significant challenges arise in decoupling the influence of elasticity, typically 

characterized in terms of first normal stress difference, from the effect of non-

Newtonian, rate-dependent viscosity. Ever since their inception in 1977/1978 

paper,[39] the eponymous Boger fluids have been utilized for determining and 

defining the impact of elasticity on torsional flows, instabilities in channel flows as 

well as free surface flows, influence of rate-dependent extensional viscosity in 

mixed flows,[46] and comparison of experiments with theory and simulations.[33, 

47-49] Characterization of elasticity of Boger fluids has typically relies on either 



 30 

the measurement of the first normal stress difference,  in response to steady 

shear flow, or of elastic modulus,  in response to small amplitude oscillatory 

shear (SAOS) using frequency sweep at fixed strain. However, the elasticity 

measurable with typical torsional rheometers is limited by the instrument design in 

terms of torque or normal force range of the transducers,[20, 50] and typical Boger 

fluids have shear viscosity 1 Pas and relaxation times, 1 s. High viscosity Boger 

fluids pose three challenges: (i) susceptibility to elastic instabilities, (ii) not 

representative of fluid viscosity and elasticity for many coating flows, and (iii) 

difficulty in extensional rheology characterization under flow rates encountered in 

processing flows.  

A Boger fluid is said to be model elastic fluid that provides an experimental 

analog for viscoelastic fluids that can be described Oldroyd-B model.[33] One of 

the simplest constitutive equation for viscoelastic fluid, Oldroyd-B model, 

incorporates the polymeric contribution to the stress in response to applied flow 

through the upper-convective Maxwell model, and the solvent contribution using 

Newton’s law of viscosity.[7, 48, 50-52] The upper-Oldroyd-B incorporates two 

material parameters: shear relaxation time and rate-independent shear viscosity, 

and can be derived by modeling polymer as an elastic dumbbell with Hookean 

spring connectors.[52] In addition to the role played by relaxation time, Oldroyd-B 

fluid allows exploration of elastic effects and predicts a finite first normal stress 
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difference as well as linear viscoelastic response in oscillatory shear.[33, 51, 52] 

However, the extensional viscosity values diverge for an Oldroyd-B fluid at 

dimensionless extensional rate or Wissenberg number, and also show 

an unlimited stress growth in response to applied extensional flows. The successes 

and limitations of Oldroyd-B models are discussed in many studies that seek a 

deeper understanding of nonlinear flows and elastic instabilities. For example, drop 

formation during dripping, jetting or spraying invariably involves creation of a 

liquid neck that undergoes capillarity-driven pinching, and stream-wise velocity 

gradients associated with extensional flows spontaneously arise in the pinching 

neck. According to Entov and Hinch,[53] among others,[54-56] the analysis of 

pinching dynamics with Oldroyd-B leads to an elastocapillary response 

characterized by an exponential decay in radius, with decay constant governed by 

relaxation time. However, in practice, the extensional relaxation time and 

extensional modulus extracted from fits to the radius evolution data are quite 

distinct from the shear relaxation time or modulus in Oldroyd-B model (or 

extracted using shear rheometry), and elastocapillary regimes truncates, eventually 

liquid neck pinches-off.[3, 4, 13, 54, 57-61] Models that incorporate conformation-

dependent drag (for example the Giesekus model) or finite extensibility undergo 

finite time pinch-off, but also predict shear thinning.[13, 62-66]  Furthermore, in 

the last stage before pinch-off, FENE-P fluids (described with Finitely Extensible 
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Nonlinear Elastic with Peterlin approximation dumbbels) exhibit a terminal 

viscoelastocapillary (TVEC) regime, with characterized with linear decrease in 

radius that yields measurement of steady, terminal extensional viscosity.[3, 13, 53, 

60, 61, 66] 

In this contribution, we investigate the elasticity, pinching dynamics and 

extensional rheology of relatively low viscosity Boger fluids. Boger fluids are 

often formulated by dissolving a flexible polymer of relatively high molecular 

weight in a relatively high viscosity Newtonian solvent. However, several Boger 

fluids are designed by dissolving a dilute amount of a high molecular weight 

polymer in a matrix phase that is itself a polymer solution, containing higher lower 

molecular weight fraction (see Table 1 for a representative list). [33, 39] Thus the 

inability to characterize elasticity using torsional rheometry restricts the choice of 

Boger fluids to relatively high viscosity systems, and simultaneously makes such 

fluids susceptible to various elastic instabilities than can manifest in secondary 

flows, apparent shear thickening, anti-thixotropic effect, and lead to non-

viscometric flows.  Recognizing that the high viscosity Boger fluids are not a good 

model for many processing operations that utilize polymeric fluids with lower 

viscosity < 1 Pa∙s,  Dontula et al. introduced high molecular weight PEO dissolved 

in aqueous PEG solutions [67] as model Boger fluids of low viscosity. These 

aqueous PEO/PEG Boger fluids have since been used in many studies of effect of 
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elasticity on coating flows, pattern formations and flow instabilities. Examples 

include slot coating,[68] viscoelastic liquid curtain,[69-72] fingering instability,[73] 

flows into capillaries,[74] extensional flows in contracting channels[75-78] and 

fluidic four-roll mill,[79] drops moving on hydrophilic or superhydrophobic 

surfaces,[80, 81], flows over wavy surfaces,[82] and liquid transfer from one 

surface to another.[83] Though several studies rely on relaxation time as an 

estimate for elastic effects by using values determined using CaBER,[71, 80, 81, 

83], the extensional viscosity response is not discussed typically, concentration-

dependent variation in viscoelastic parameters is not characterized or discussed and 

we found no mention of the finite extensibility regime. 

The influence of macromolecular parameters and interactions on the 

response to extensional flows remains relatively less well-understood,[7, 11, 44, 45] 

due to the well-documented challenges of measuring extensional rheology 

response, [7-15] and the challenges involved or identifying constitutive models that 

correlates with experiments as well as dynamics of stretched and orientated 

chains[7, 8, 11, 44, 45, 84-86]. In a series of recent papers, Dinic et al.[1-6] have 

established Dripping-onto-Substrate (DoS) rheometry protocols that involve 

visualization and analysis of capillarity-driven pinching of liquid filaments (or 

necks) created by dripping a fixed volume of a fluid onto a substrate. The DoS 

rheometry protocols characterize pinching dynamics as well as facilitate 
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quantitative measurement of non-Newtonian extensional rheology response, even 

for complex fluids that show no signature of viscoelasticity in conventional shear 

and extensional rheometry.[1-6, 60] In this contribution, we utilize DoS rheometry 

to characterize the pinching dynamics and the extensional rheology of aqueous 

solutions of polyethylene oxide (PEO) in order to elucidate the influence of 

chemical structure (i.e., polymer choice and resulting macromolecular parameters). 

We contrast the concentration-dependent variation in extensional relaxation time 

measured for PEO/PEG Boger fluids against exponents obtained for dilute aqueous 

PEO solutions using DoS rheometry and dripping, and against PEO/PEG Boger 

fluids datasets acquired using alternative techniques including opposed nozzle, 

CaBER.[82]  

2.1 Materials and Methods 

2.1.1 The Boger Fluid 

Poly(ethylene oxide) (PEO) and poly(ethylene glycol) (PEG) of Mw = 5∙106 

Da and 8∙103 Da, respectively, were used to prepare aqueous PEO-PEG solutions. 

PEO and PEG in crystalline form were purchased from Sigma-Aldrich and 

Research Product International, respectively, and each polymer was used without 

additional purification. PEO-PEG solutions were prepared by dissolving individual 

PEO and PEG stock solutions. Both polymer crystals were dissolved by slowly 

adding water and placing the mixture on a bottle roller to accelerate mixing. All 

deformation rates during mixing were kept minimal to avoid chain scission which 
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may occur during strong deformations.  [87] Each stock solution is then mixed and 

diluted to desired concentrations before being placed back on the bottle roller for 

hastened blending. For the PEO-PEG solution, as with other Boger fluids, a high-

viscosity solvent is used to suppress shear thinning, which is typically exhibited by 

high molecular weight polymers in solution or as melts.[33] Aqueous PEG serves 

as the solvent for the PEO-PEG solution, providing the high background viscosity. 

For our PEO-PEG system, aqueous PEG solution with cPEG = 30 wt. % was 

employed as the solvent, producing a solvent viscosity 𝜂௦ approximately 50x water 

viscosity, as demonstrated in figure 1 (A). The PEO concentrations used in the 

PEO-PEG solutions range from cPEO = 0.01 wt. % to 0.09 wt. %, all of which 

augment the soliton viscosity no more than 2𝜂௦  are below c*.  [88] One 

exceptional quality of the water-based PEO-PEG system is a reactively low bulk 

viscosity of O(10-2 Pa s) versus a typical Boger fluid viscosity of O(1 Pa s).  [33] 

Such a viscosity range of the PEO-PEG system allows for achievement of greater 

deformation rates, which is crucial for the study of elastic stabilities. [24] 

2.1.2 Viscometry 

 The shear viscosity response of the PEO-PEG-based Boger fluids was 

characterized using a cone-and-plate (1º cone angle, 50 mm diameter) flow cell on 

an Anton Paar MCR 302 rheometer (torque range 10-5 – 200 mN∙m). Additionally, 

the Boger fluid solvent, aqueous 30 wt. % PEG (Mw = 8,000 Da), was 
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characterized using a concentric cylinder (double gap) flow cell, as a control 

against the addition of high molecular weight PEO (Mw = 5∙106 Da). The steady 

shear viscosity,  was calculated from the measured shear stress, t  from 

imposed shear rates in the range of = 0.01-103 s-1. 

2.1.3 Dripping-onto-substrate (DoS) extensional rheometry  

The extensional rheology response of the aqueous Boger solutions was 

characterized using dripping-onto-substrate (DoS) rheometry. The experimental 

set-up comprises an imaging system, drop dispensing mechanism, and backlight. A 

finite volume of fluid is dispensed through a stainless-steel nozzle, and is deposited 

on a clean glass substrate at a height H below the nozzle. The radius of the nozzle 

is kept constant for all experiments, with outer diameter of 
  D0

= 2R
0
= 1.27mm  and 

inner diameter of
  Di

= 0.838mm . The fluid is pumped at a low and fixed flow-rate (Q 

= 0.02 mL/min) using a syringe pump such that deformation within nozzle is 

minimized and an aspect ratio of H/D0 ≈ 3. The imaging system includes a light 

source, diffuser, and high-speed camera (Fastcam SA3 with A Nikkor 3.1 x zoom 

(18-55 mm) lens). Depending on the duration of pinch-off, frame rates ranging 500 

– 3,000 FPS were used for the PEO-PEG-based Boger fluids. The DoS videos are 

analyzed with ImageJ and specially written MATLAB codes for determination of 

the minimum neck radius as a function of time.  
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DoS rheometry relies on the analysis of pinching dynamics using radius 

evolution data, in analogy with other capillarity-based techniques, including 

commercially-available technique called CaBER (Capillary break-up extensional 

rheometer) [12, 14, 89-91] that analyzes pinching dynamics of a neck created by 

applying step-strain to liquid confined between two parallel plates. Due to the 

finite time and large deformation associated with the application of the initial step-

strain, the CaBER (and its variants) are often found to be unsuitable for 

measurements involving low viscosity ( ), or low elasticity (relaxation 

time, ) fluids, as pinching occurs before initial step-strain stage is 

completed.[14, 92] Likewise, the pinching dynamics for micro-structured materials 

like physical gels, wormlike micellar solutions and polymer-particle mixtures are 

influenced by the magnitude and time of step-strain.[91, 93, 94] Several papers, 

including our previous contributions,[1-6, 60, 95, 96] can be consulted for detailed 

account of the utility and application of DoS rheometry protocols for 

measurements of capillarity-driven pinching dynamics and extensional rheology 

response for a range of complex fluids, including polymer and polyelectrolytes 

solutions,[1-6, 60, 95-100] inks,[2, 27] micellar solutions,[2, 101-103] and yield 

stress fluids[2] including particle suspensions, Carbopol solutions, emulsions, 

foods (mayonnaise and ketchup), and cosmetics.[2]  
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2.2 Results and Discussion 

Characterization of shear rheology response 

Figure 1a shows the shear viscosity, 𝜂(𝛾̇) = 𝜏ଵଶ/ 𝛾̇ that is computed as the 

ratio of shear stress, 𝜏ଵଶ measured in response to a applied shear deformation rate 𝛾̇, 

at a controlled temperature (T = 22 ºC). The aqueous PEG solution, used as matrix 

or solvent in this study, shows a rate-independent viscosity value (solid black dots) 

of  hs = 50 mPa∙s that is approximately 50 times the viscosity of water. Addition of 

high molecular weight PEO to the PEG solution in the concentration range (0.01-

0.09 wt.%) creates solutions with nearly rate-independent shear viscosity in the 

range between 50-100 mPa∙s, in agreement with previous studies.[70] However, 

for the three highest PEO concentration included in Figure 13 (A), an apparent 

shear thickening regime can be observed at high shear rates (>100 s-1). Similar 

results were reported for several Boger fluids, including aqueous PEO/PEG Boger 

fluids and for PAM in glycerin.[104, 105]  Figure 13 (B) and 13 (c) respectively 

show the stress and the first normal stress values as a function of shear rate for 

three polymer solutions. Though flow does not remain viscometric at highest shear 

rates show, the force transducer on the rheometer picks up a measurable normal 

force that shows quadratic dependence on shear rate. Figure 13 (D) shows that the 

first normal stress difference exceeds shear stress at high deformation rates.  
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Figure 13. Steady shear rheological response of PEO/PEG solutions. (A) 
Apparent shear viscosity of PEO-PEG-based Boger fluids for a range of 𝑐௉ாை =
0.01 – 0.09 wt. % and PEG-based solvent for a shear deformation rate range of 
𝛾̇ = 0.1 – 10ଷ sିଵ . The PEO-PEG-based Boger fluids (and PEG-based solvent) 
exhibit virtually rate-independent shear viscosity, a characteristic of Boger fluids. 
Apparent shear thickening occurs at higher PEO concentration Boger fluids at 
shear rates at or above approximately 100 sିଵ , which is attributable to non-
viscometric elastic instability. (B) Shear stress as a function of shear rate for a 
range of 𝑐௉ாை = 0.01 – 0.09 wt. % and PEG-based solvent for a shear deformation 
rate range of 𝛾̇ = 0.1 – 10ଷ sିଵ. The increase in shear stress with shear rate follows 
a slope of 1, indicating a constant shear visocity. Additionally shear stress ranges 
from O(10-3 – 102 Pa). (C) First  normal  stress  difference  as  a function  of  shear  
rate  for the concentration extrema of the PEO-PEG-based  Boger  fluids,  all  
measured  with  ramp  down. There is a PEO concentration dependence on the 
normal stress. The data show a normal stress response of approximately 2 as a 
function of shear rate. (D) The magnitudes of the normal stress can manifest 
themselves over one order of magnitude greater than the shear stress at higher 
deformation rates. 
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Pinching dynamics and extensional rheology 

 The pinching dynamics and underlying extensional rheology response of the 

PEO/PEG solutions was characterized using DoS rheometry protocols shown 

schematically in Figure 14 (A) (see methods section for details). Figure 14 (B) 

shows two image sequences that contrast the neck shape and shape evolution 

captured for 0.03% and 0.09% PEO in PEG solution respective. The radius 

evolution data obtained by analyzing neck diameter as a function of time, t is 

displayed in Figure 14 (C) for concentrations ranging from 0.01–0.09 wt. % PEO 

dissolved in the PEG-based solvent. At least three distinct regimes can be 

identified. The initial radius evolution regime for viscoelastic fluids like polymer 

solutions, can be described by the same response as observed for Newtonian fluids: 

either dictated by a balance of inertial and capillary forces leading to the 

inertiocapillary (IC) response for low viscosity fluids or by a balance of viscous 

and capillary stress, that results in visco-capillary (VC) response [22]. The neck 

radius evolution for IC regime is captured by  

𝑅(𝑡)

𝑅௢
= 𝑅஼ ൬

𝑡௜௖ − 𝑡

𝑡ோ
൰

ଶ/ଷ

 
(2.1) 
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where 𝑡௜௖  is the time scale of a thinning process dominated by inertia, 𝑡ோ  is 

Rayleigh time 𝑡ோ = ඥ𝜌𝑅௢
ଷ/𝜎, where 𝜎 is surface tension, 𝑅஼ is the critical radius, 

defined below. The VC regime shows a linear decrease in neck radius such that  

𝑅(𝑡)

𝑅௢
= 0.07 ൬

𝑡௣ − 𝑡

𝑡௩௖
൰ 

(2.2) 

 

where 𝑡௣  is the pinching process time and 𝑡௩௖  is the visco-capillary time 

𝑡௩௖ = ( 𝜂଴𝑅௢)/𝜎 . The Rayleigh time on IC timescale, 𝑡ோ  does not depend on 

viscosity, whereas viscocapillary time, 𝑡௩௖ increases linearly with increase in upon 

the zero-shear viscosity. Both the matrix phase (PEG solution) and the PEO/PEG 

solutions exhibit an initial VC response, consistent with the relatively high 

viscosity of these solutions compared to solutions made in low viscosity solvent 

like water. The radius evolution data for PEO-PEG-solutions in Figure 14 (C) 

show a stark transition to a second regime that appears linear on a semi-log plot 

indicating an exponential thinning behavior, characteristic of elastocapillary 

response: 

𝑅(𝑡)

𝑅௢
= ൬

𝐺ா𝑅଴

2𝜎
൰ exp ൤−

𝑡 − 𝑡௖

3𝜆ா
൨  

(2.3) 

 

where 𝐺ா is the extensional elastic modulus,𝜆ா is the largest extensional relaxation 

time and onset of elastocapillary regime occurs at 𝑡 = 𝑡௖. The expression differs 
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from the most often cited Entov-Hinch expression[53] in utilizing  lE  and GE rather 

than the values of the longest shear relaxation time,  ls and shear modulus, G. 

Defining the IC/VC to EC transition at tc and fitting the elastocapillary (EC) 

regime using a shifted timescale, (t-tc) provides more physically reasonable values 

for GE.[3] Thus, the pre-factor in equation 2.1 corresponds to a critical radius 

  
R

c
» R

0
G

E
R

0
2s( )1 3

 determined by interplay of viscoelasticity and capillarity.[3, 59] 

 
Figure 14. DoS measurement of the PEO/PEG solution.  (A) Dripping-onto-
substrate (DoS) setup, consisting of an imaging system, drop dispensing 
mechanism, and backlight. (B) Snapshots from an image sequence recorded using 
the DoS protocol for two PEO/PEG Boger fluids of a high and lower PEO 
concentration, the former solution which displays a greater resistance to filament 
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thinning. The first snapshot for both concentrations displays the VC regime, while 
the last snapshot for each concentration displays the FE regime, and all snapshots 
in-between show the EC regime. Scale bars indicate 2 mm. (C) Radius evolution 
profiles as a function of time for PEO/PEG Boger fluids for a range of 𝑐௉ாை =
0.01 – 0.09 wt. % and PEG-based solvent. By adding high molecular weight PEO 
to the PEG solution, the pinching dynamics time scale changes from O(10 ms) to 
O(103 ms). (D) Radius evolution profiles as a function of time after the critical 
time for PEO-PEG-based Boger fluids for a range of 𝑐௉ாை = 0.01 – 0.09 wt. % and 
PEG-based solvent. All solutions exhibit an initial VC regime. The PEG-based 
solvent shows no appreciable EC regime, while the PEO-PEG-based Boger fluids 
show broad EC regimes for 𝑡 > 𝑡஼  and FE regimes. 
 
 In Figure 14 (D), the radius evolution data is replotted using a shifted time 

scale. All PEO/PEG solutions show an initial VC response similar to the PEG-

based solvent, but in the second regime, the slope changes and filament lifespan 

increases, consistent with an increase in resistance to capillarity-driven pinching 

flows. By adding high molecular weight PEO to the PEG-based solvent (thus 

producing the PEO-PEG-based Boger fluid) an enhancement in resistance to pinch 

off and prolonged filament lifespan is observed. Furthermore, after the EC regime, 

the radius evolution profiles of the PEO/PEG Boger fluids exhibit the finite 

extensibility (FE) regime, where polymer chains cannot be stretched further [22].  

The extensional viscosity of the fluid is characterized via the DoS rheometry 

protocol by using the elastocapillary balance between the extensional stress and 

capillary stress using the following equation: 

𝜂ா =
𝜎

𝑅(𝑡)𝜀̇
= −

𝜎

2
𝑑𝑅
𝑑𝑡

 (2.4) 
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where 𝜀̇ = 2
ௗ ୪୬ ோ

ௗ௧
 is the extensional deformation rate. The extensional rate attains a 

constant value for neck pinching in the elastocapillary regime, and diverges in 

finite extensibility regime as pinch-off event is approached. Therefore, the 

extensional viscosity measured using capillarity-driven pinching flows is presented 

in Figure 15 (C) as a function of the Hencky strain, 𝜀 = 2 ln ቀ
ோబ

ோ(௧)
ቁ that steadily 

increases with decrease in neck radius. Extensional viscosity increases with 

increase in PEO concentration, and the absolute value of extensional viscosity is 3-

4 orders of magnitude than the corresponding shear viscosity values. Extensional 

viscosity value progressively increases with strain in the elastocapillary regime, 

signifying increase in drag associated with the influence of stretched chains, and 

increased interchain overlap. The degree to which a polymer chain can be extended 

is finite because the polymer chain is of a finite length [106], thus the drag on the 

polymer chain approaches a maximum in the finite extensibility limit [22], as is 

seen in figure 15 (C) [88]. All extensional viscosity plots show the strain and 

strain-rate independent steady, terminal extensional viscosity, associated with the 

finite extensibility regime in radius evolution plots. From the finite extensibility 

regime, the filament lifespan time 𝑡௙ of the filament is extrapolated and plotted in 

figure 15 (B) as a function of PEO concentration for the PEO-PEG-based Boger 

fluid. The filament lifespan time response to the addition of PEO scales 𝑡௙~𝑐୔୉୓
଴.଺଺, 
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similarly to the scaling behavior of extensional relaxation time. The filament 

lifespan time serves as measure of extensibility of the solution. [107]  

 
Figure 15. Extensional properties of the PEO/PEG solution obtained from 
DoS. (A) Extensional relaxation time as a function of PEO concentration for the 
PEO-PEG-based Boger fluid. The extensional relaxation time response to 
concentration follows 𝜆ா~𝑐୔୉୓

଴.଺଺  and ranges from 89 ms to 459 ms for a 
concentration range of 0.01 wt. % to 0.09 wt. %. (B) Filament lifespan as a 
function of PEO concentration for the PEO-PEG-based Boger fluid. Like 
extensional relaxation time, filament lifespan response to concentration follows 
𝑡௙~𝑐୔୉୓

଴.଺଺, ranging from 896 ms to 3418 ms over the aforementioned concentration 
range. (C) Extensional viscosity as a function of Hencky strain for PEO-PEG-
based Boger fluids for a range of 𝑐௉ாை = 0.02 – 0.09 wt. %. The magnitude of 
extensional viscosity is proportional to PEO concentration. Strain hardening is 
observed and a steady-state extensional viscosity is reach at large strains. (D) 
Steady-state extensional viscosity and terminal Trouton ratio as a function of PEO 
concertation are presented.   
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 At sufficiently high strain the PEO/PEG fluids approach a strain-indent 

extensional viscosity, called the steady-state extensional viscosity or terminal 

extensional viscosity 𝜂ா
ஶ, which is plotted in figure 15 (D) as a function of PEO 

contestation for the PEO/PEG solutions. The steady-state extensional viscosity 

increases 𝜂ா
ஶ~𝑐௉ாை

଴.଻ଷ, which is a similar concentration dependence to the extensional 

relaxation time, as presented further in this work. The associated Trouton ratio 

where 𝜂ா = 𝜂ா
ஶ is defined 𝑇𝑟ஶ = 𝜂ா

ஶ/ 𝜂, which is also plotted as a function of 

concentration in figure 3 (D) for the PEO/PEG solution and increases 𝑇𝑟ஶ~𝑐௉ாை
଴.ହଶ, 

indicating the maximum resistance to stretching of the polymer chains versus the 

resistance to shear flow increases approximately by the square root of PEO 

concentration. The magnitude of the steady-state Trouton ratio ranges from 103 to 

104.  

 The EC regime of the radius evolution profile (from figure 14 (D)) is further 

analyzed using equation 2.3 to determine the extensional relaxation time of the 

PEO/PEG solution, as shown in Figure 15 (A) and Figure 16 (A). Also shown is 

the data for extensional relaxation time for aqueous PEO (MW = 106 Da) from 

Dinic et al.[1, 4, 61] for comparison in the latter figure. The extensional relaxation 

time values for the PEO/PEG solutions range from 89 ms to 459 ms, as compared 

to the aqueous PEO which ranges from 0.9 ms to 1.9 ms. To model the extensional 

relaxation time, consideration of both Rouse time and Zimm time must be made 
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[4]. Both Rouse time and Zimm time serve as time scales over which a polymer 

coil diffuses a distance of the order of its own length and both time scales involve 

the characteristic time scale over which its Kuhn monomer relaxes [41] 

𝜆଴ ≈
𝜁𝑏ଶ

𝑘𝑇
 

(2.5) 

 

where 𝜁  is the Stokes drag on the polymer coil, 𝑏  is the length of the Kuhn 

monomer, 𝑘 is the Boltzman constant, and 𝑇 is temperature. This Kuhn monomer 

relaxation time is a ratio of the drag force area on the polymer to the energy of 

Brownian motion. Where the Rouse time and Zimm time differ, is in Rouse time 

excluded volume (EV) and hydrodynamic interactions (HI) are screened, while in 

Zimm time excluded volume and hydrodynamic interactions are accounted. 

Deciding which time scale is appropriate depends on a screening length 𝜉, above 

which EV and HI are neglected and below which EV and HI are dominant. Within 

a blob, HI can play a role, leading to the relaxation time prediction 𝜆 ≈

𝜆଴𝑁ଶ𝜙(ଶିଷజ)/(ଷజିଵ) , where 𝜐  is the solvent quality scaling exponent, 𝑁  is the 

number of Kuhn monomers in the polymer, and 𝜙 is the polymer volume fraction 

in solution. Considering the extreme cases where EV interactions are included and 

where EV are screened renders the exponent (2 − 3𝜐)/(3𝜐 − 1) to equal 0.31 and 

1, respectively. Jinic et al. predicted the EV interactions and HI to be only partially 
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screen, thus Rouse model is used and the aforementioned exponents are 

geometrically averaged, producing the extensional relaxation time prediction  

𝜆ா ≈ 𝜆଴𝑁ଶ𝜙଴.଺ହ = 𝜆ୖ𝜙଴.଺ହ 
(2.6) 

 

where 𝜆ୖ  is Rouse time. This model predicts a concentration dependence on 

extensional relaxation time of 𝜆ா~𝑐଴.଺ହ, which is in close agreement with both the 

PEO/PEG Boger fluid and aqueous PEO solution in figure 15 (A) and figure 16 (A) 

for both the PEO-PEG-based Boger fluid and the aqueous PEO solution.  

Figure 16. Generalization of rheological properties via scaling laws. (A) 
Extensional relaxation time as a function of PEO concentration for the PEO/PEG 
solutions and for aqueous PEO (MW = 1∙106 Da), which is obtained from the fit of 
the EC regime of the radius evolution profiles. Both the PEO-PEG-based Boger 
fluids and aqueous PEO exhibit an identical extensional relaxation time 
concentration dependence of 𝜆ா~𝑐୔୉୓

଴.଺଺ . (B) Specific viscosity and reduced 
extensional relaxation time as a function of PEO concentration scaled by c* for the 
PEO/PEG-based solution and for aqueous PEO. The specific viscosity profiles of 
the PEO/PEG solution and aqueous PEO (MW = 5∙106 Da) show identical 
dependencies on PEO concertation, with 𝜂௦௣~𝑐୔୉୓

ଵ.଴ଵ indicating both solutions are in 
the dilute regime. The reduced extensional relaxation time data for both the PEO-
PEG-based Boger fluids and aqueous PEO solutions collapse onto a single trend, 
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with a PEO concentration dependence of 𝜆ா,௥~𝑐୔୉୓
଴.଺଺, indicating intrinsically semi-

dilute behavior, [1] thus the excluded volume effects are screened when the 
solutions undergo extensional flow.   
 

To model the shear and extensional rheological responses of PEO/PEG 

fluids, scaling relations for dimensionless polymeric viscosity contribution or 

specific viscosity, defined as 

𝜂௦௣ =
𝜂଴ − 𝜂௦

𝜂௦
 (2.7) 

 

 and reduced extensional relaxation time, defined as the measured extensional 

relaxation time scaled by Rouse time 

𝜆ா,௥ =
𝜆ா

𝜆ோ
 

(2.8) 

 

as function of PEO concentration scaled by the critical overlap concentration of 

PEO  𝑐୔୉୓/𝑐୔୉୓
∗ . 

The specific viscosity of the PEO-PEG-based Boger fluid and an aqueous PEO 

solution is plotted in figure 16 (B). The data for both solutions collapses onto a 

single curve with a specific viscosity response to PEO addition of 𝜂௦௣~𝑐୔୉୓
ଵ.଴ଵ , 

which scaling is commensurate with the behavior of a dilute polymer solution. [88] 

The reduced extensional relaxation time scales the measured extensional relation 

time with Rouse time, which accounts for the length of the high molecular weight 



 50 

polymer (PEO in this case) and its monomer relaxation time, allowing for 

comparisons across molecular weights and solvent viscosities. Much like the 

specific viscosity data, the reduced extensional relaxation time data for both the 

PEO/PEG solutions and aqueous PEO solution collapse onto a single curve. The 

reduced extensional relaxation time response to the addition of PEO follow the 

scaling relationship 𝜆ா,௥~𝑐୔୉୓
଴.଺଺, which does not change from the each solutions’ 

respective extensional relaxation time scaling, shown in figure 16 (A).   

 When formulating a PEO-PEG-based Boger fluid, PEO molecular weight 

and concentration can be tuned, as well as the solvent viscosity (via selection of 

PEG molecular weight and concentration). Choices in formulation will determine 

the solution rheology, both in shear and extensional flows. The scaling 

relationships presented in figure 16 (B) for specific viscosity and reduced 

extensional relaxation time can be used as an empirical model for predicting the 

viscoelastic response of constant viscosity PEO-based fluid formulation, which 

was demonstrated from 30 wt. % to 0 wt. % PEG.  

  



 51 

3. Conclusions and Outlook for Future Work  

In this contribution, the elasticity, pinching dynamics and extensional 

rheology response of PEO-PEG Boger fluids are characterized. The aqueous Boger 

fluids have shear viscosity in the range from 50-100 mPa∙s, making them suitable 

for charactering effect of elasticity in coating flows (for typical coating fluids have 

viscosity in the range 0.001-1 Pa∙s).[52-56]  Although the PEO-PEG-based Boger 

fluid has been used for numerous applications, a sparse number of works 

characterized the extensional rheology, all of which using CaBER. [69, 82, 83, 108] 

Of those works which measured the extensional response, none show consistent 

access of the FE regime and none shows any scaling relationship of extensional 

rheological properties to PEO concentration. For these reasons, the present work 

offers new insight into controlling the shear and extensional rheological responses 

of PEO-PEG-based Boger fluids, which provides a toolkit with which past works 

may be reinterpreted, better constitutive equations may be derived, and elastic 

instabilities may be deciphered.  

 One avenue on which the PEO-PEG-based Boger fluid ought to be utilized 

is in viscoelastic fingering (VEF), which is one of the most relavent interfacial 

instabilities in both industry and academia occurs when an inner less viscous fluid 

𝜂௜௡ displaces an outer more viscous fluid 𝜂௢௨௧  in quasi-two dimensional geometry 

such as Hele-Shaw cell seen Figure 17. Figure 17 (a) is the Hele-Shaw cell set-up 
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which consists of two transparent parallel plates separated by a gap of width, b. 

The displacement of a transparent more viscous fluid by a dyed less viscous fluid 

is captured using a digital camera and light source placed under the cell. Figure 17 

(b) illustrates the top-down view of the Hele-Shaw cell which shows the formation 

of finger-like patterns that occur when their prerequisite conditions are met 

(principally, sufficent velocity, thin gap width, and large viscosity contrast); this is 

known as “Viscous fingering” or Saffman-Taylor Instability. [109] Due to its 

importance in pattern formation and other engineering applications such as 

enhanced oil recovery, carbon sequestration, and other situations that involve 

displacement and/or mixing of fluids with different viscosities, Saffman-Taylor 

instability became a subject of diverse inquery.  [110-115] 

          However, it was only recent that global features of fingers such as shape and 

shape evolution has started to emerge. Experimental studies showed that the inner 

to outer viscosity ratio 𝜂௜௡/𝜂௢௨௧  is a control parameter in setting the large-scale 

features of the fingers pattern. [116, 117] In radial Hele-Shaw cell (as seen in 

Figure 17), two main regions can be identified: a circular stable region, and an 

unstable region identified with fingers. Bischofberger et. al argued that the ratio 

between the lengths of stable and unstable regions is set by the viscosity ratio 

𝜂௜௡/𝜂௢௨௧ , while the number of initially formed fingers is constant. Because the 

results correspond to Newtonian fluids, the main question that needs to be 
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addressed is will the use of complex fluids (in this case viscoelastic) have a role in 

determining the global features of the fingering instability when compared to 

Newtonian fluids. Although many studies have addressed the use of non-

Newtonian fluids in fingering instability, [73, 118-121] sufficient understanding of 

the role of non-Newtonian effects on the large-scale structures and nonlinear 

growth of fingers is not well established. In addition, little or no attention has been 

given to cases where the inner or invading fluid is viscoelastic. Fortunately, Boger 

fluids can serve as a gateway to exploring the role of elasticity alone on interfacial 

instability. By utilizing their constant viscosity and high elasticity, which is the 

topic of this thesis, PEO-PEG aqueous solutions, can be useful in understanding 

how elasticity alters the fingering instability by emulating the experimental work 

done by Bischofberger et. al. By utilizing a viscous and a Boger fluid with equal 

viscosities, the effects that results from elasticity can be isolated and characterized 

carefully.  
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Figure 17. A schematic showing Hele-Shaw cell. The Hele-Shaw cell consists of 
(a) transparent parallel plates separated by a gap of width, b. A light source is 
placed under the cell and a digital camera on top. (b) Top view of the Hele-Shaw 
cell illustrating the invasion of a less viscous inner fluid 𝜂௜௡ into a more viscous 
fluid 𝜂௢௨௧ in confined geometry that can lead to an instability forming finger-like 
pattern known as “Viscous fingering” or Saffman-Taylor instability.  
 

          In figure 18, two montages show the comparison between viscous and 

viscoelastic fingering in radial Hele-Shaw cell is shown. In both cases, the outer 

fluid is pure glycerin and the viscosity ratio 𝜂௜௡/𝜂௢௨௧  and viscosity difference 

∆𝜂 = 𝜂௢௨௧ −  𝜂௜௡ is nearly identical (𝜂௜௡/𝜂௢௨௧ ≈ 0.08 and ∆𝜂 = 1). However, the 

red inner fluid is PEG-water solution and blue fluid is PEO/PEG solution. Next to 

the montage is an evolution map outlining the interfacial evolution. Despite the 

nearly equal 𝜂௜௡/𝜂௢௨௧ which has been suggested in previous works to control the 

instability, a large contrast in the overall pattern is observed when a Boger fluid is 

used as an inner fluid versus a Newtonian fluid. At the onset of the instability 
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where fingers start to form, viscoelastic fluids form much larger number of fingers 

with reduced size. At later stages, the total number of fingers formed by a Boger 

fluid is larger and fingers are thinner. 

  

Figure 18. Comparison between Viscous and Viscoelastic Fingering. Montages 
on the left showing the onset and growth of fingers over time. The column on the 
right is an evolution map of the fingers outlined at each ∆𝑡 = 2 𝑠. Dyed in red is 35 
wt. PEG aqueous solution (𝜂௜௡ = 0.095 𝑃𝑎 ∙ 𝑠) displacing pure glycerin (𝜂௢௨௧ =
1.1 𝑃𝑎 ∙ 𝑠), and 0.15 wt. PEO (Mw = 5 million Da) in 30 wt. PEG (8000 Da) (aq) 
was used as viscoelastic inner fluid (𝜂௜௡ = 0.091 𝑃𝑎 ∙ 𝑠) and pure glycerin was 
used as outer fluid. A noticeable contrast between both patterns is observed, which 
can be seen in the number of initially formed fingers, the reduction in the finger’s 
width, and increase in the number of fingers at the later stages of the instability. 
Injection rate, 𝑄=100 mL/min, cell gap width, b = 1.4 mm, and scale bar is 2cm. 
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Figure 19. Comparison between viscous and viscoelastic fingering with 
varying 𝜼𝒊𝒏/𝜼𝒐𝒖𝒕 . Snapshots show the dependence of the fingers pattern on 
𝜂௜௡/𝜂௢௨௧ when the inner fluid is viscous (red) and viscoelastic (blue). Pure glycerin 
was used as outer fluid in all experiments. The numbers below the snapshots 
correspond to 𝜂௜௡/𝜂௢௨௧ values (𝜂௜௡/𝜂௢௨௧ = 0.049 to 0.126 for PEG-water solutions 
and 𝜂௜௡/𝜂௢௨௧  = 0.051 to 0.082 for PEO-PEG aqueous solutions). Injection rate, 
𝑄=100 mL/min, cell gap width, b = 1.4 mm, and scale bar is 2cm. 
  

           When 𝜂௜௡/𝜂௢௨௧  is varied, purely viscous fingering changes in fingers size 

while the overall number of fingers is nearly constant. However, the tendency of 

how fingering pattern vary with 𝜂௜௡/𝜂௢௨௧ for viscoelastic is different than viscous. 

A comparison between the two cases is presented in Figure 19. PEG-water system, 

shown in red, transitions from formation of long fingers or twigs to reduction in 

finger length as 𝜂௜௡/𝜂௢௨௧ increases while the number of fingers is nearly constant. 
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Shown in blue is PEO/PEG solution used as inner fluid with viscosity ratio ranging 

from 𝜂௜௡/𝜂௢௨௧= 0.051 to 0.082. In PEO/PEG system, as viscosity ratio 𝜂௜௡/𝜂௢௨௧ is 

increased by adding more PEO, elasticity which can be characterized by 

extensional relaxation time is also enhanced. At low 𝜂௜௡/𝜂௢௨௧, the fingering pattern 

is somewhat similar to those in PEG-water aqueous. When more PEO is added, the 

number of fingers increases, and finger narrowing behavior is observed. This 

suggests that other non-Newtonian, in this case elasticity, can effectively play a 

role in altering the fingering growth, and produce patterns that are not explained by 

𝜂௜௡/𝜂௢௨௧  alone. Further detailed studies on the use of Boger fluids in viscous 

fingering instability can reveal more insights about the role of non-Newtonian 

effects on interfacial instabilities.  
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