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SUMMARY 

The present study examined the performance of low-cost air monitoring sensors in 

environmental and occupational settings and the performance of these sensors against 

Illinois Environmental Protection Agency (IEPA) monitors at Northbrook, Illinois. The inter- 

and intra-variability of these sensors were assessed in order to gain an understanding of 

their reliability for future exposure assessment studies. The feasibility of employing these 

sensors with participation of citizen scientists (i.e., community members and workers) was 

determined. The understanding of performance characteristics and the feasibility of using 

these new generation sensors would expand the capacity of real-time air quality data for 

personal and sub-regional exposure concentrations. Since these sensors are low-cost and 

they provide real-time exposure data, incorporating them into air quality monitoring would 

similarly revolutionize the field of environmental and occupational exposure assessment 

by enabling access to real-time view of exposure concentrations and devising 

exposure/risk reduction exposures to improve community members’ and workers’ health, 

in addition to increasing the capacity of environmental justice organizations and socio-

economically disadvantages subpopulations for air quality monitoring and air quality data 

interpretation for grassroots level community engagement and empowerment. This study 

provided valuable scientific data on the quality control parameters of these sensors, which 

are needed for exposure monitoring plan developments and exposure data collection 

efforts. 

Our study demonstrates that it is feasible to employ the sensors for local air quality 

assessment in support of citizen science projects, when the citizen scientists are properly 

trained on how to operate and interact with air sensors and a collaborative relationship is 
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SUMMARY (continued)  

established between the research team and community in each phase of the project. In 

addition, it is feasible to employ the sensors for occupational air quality assessment in 

support of personal exposure studies, when the workers are properly trained on how to 

operate and interact with air sensors.  Our collocation study demonstrated that all 

investigated low-cost sensors had a very high degree of precision and sufficient accuracy 

in obtaining air pollutant concentrations at various locations to assess the relative air 

quality. The low-cost sensors had some degree of correlation and agreement with their 

Federal Reference Method/Federal Equivalent Method monitors; therefore, the low-cost 

sensors should not be used for compliance assessment. However, theyThe  are very 

useful tools in determining the hot spots, and for public education, outreach, and advocacy 

efforts. The low-cost sensors were observed to be impacted by the temperature and 

humidity, which vary among locations and time periods; therefore, an additional correction 

of sensor measurements for the specific meteorological conditions need to be investigated 

in order to develop more appropriate and representative correction algorithms for specific 

locations. 



1 
 

 
 

I. INTRODUCTION 

Air pollution is a mixture of natural and anthropogenic substances in the air we 

breathe including both outdoor and indoor. Air pollution was the fifth leading mortality 

risk factor worldwide in 2017 (Health Effects Institute, 2019). Pollutants considered as 

public health concerns include particulate matter (PM), ozone (O3), nitrogen dioxide 

(NO2), and sulfur dioxide (SO2). PM is one of the most known health threats. In 2013, it 

was classified as a human carcinogen by WHO’s International Agency Research on 

Cancer (IARC). Particulate matter is a mixture of very small solid particles and liquid 

droplets in the air. It is typically measured as coarse, fine or ultrafine particles, 

designated as PM10, PM2.5, PM1.0 respectively, where the numeric subscript refers to 

the maximum particle aerodynamic diameter measured in micrometers. Several 

epidemiologic studies suggested PM can cause adverse health outcomes involving 

cardiovascular diseases, respiratory issues, lung cancer, and adverse birth outcomes 

(Brook et al., 2010; Madrigano et al., 2013; Pope et al., 2011; Ristovski et al., 2012; 

WHO, 2018). The Clean Air Act enacted in 1970 mandated USEPA to establish 

National Ambient Air Quality Standards (NAAQS) for six criteria air pollutants i.e., PM, 

ground-level O3, CO, SO2, NO2, and lead which are ubiquitous across the U.S. and 

considered harmful to human health and the environment. These standards are 

periodically reviewed and may be revised according to updated scientific evidence 

(USEPA, 2014).  

Overall, air quality has improved nationally across the U.S. since 1980; however, 

this is still an ongoing matter. Approximately, 137 million people have lived in counties 

with pollution level above the primary NAAQS for one or more pollutants (USEPA, 
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2016). In particular, PM2.5 level decreased by 2.4% from 2009 to 2016 and increased 

by 5.5% from 2016 to 2018, especially among West and Midwest regions (Clay & 

Muller, 2019). In 2017, the percentage of people worldwide living in areas that 

exceeded the most-stringent WHO air quality guideline for PM2.5 (≤10 μg/m3) and the 

least-stringent guideline (≤35 μg/m3) were 92% and 54%, respectively (Health Effects 

Institute, 2019). Creating better policies for a richer quality of life requires reliable 

information about exposure to and impact from air pollutants to meaningfully address air 

pollution concerns. Air quality monitoring has been shifted to more miniaturized and low-

cost sensors due to an inadequate number of traditional fixed-site air monitoring 

stations conducted by government agencies. Some issues related to fixed-site air 

monitoring stations include: limited air quality data collected at high spatial and temporal 

resolutions; high cost and high demanding maintenance; and required technical 

infrastructures and well-trained personnel to properly operate the equipment (Borghi et 

al., 2018; Kumar et al., 2015). The shortage of air monitoring stations has occurred 

globally, including in the U.S. In the past decade, the numbers of air monitoring stations 

have decreased from 84 (in 2010) to 64 (in 2017) across Illinois (Illinois Environmental 

Protection Agency Bureau of Air, 2014; IEPA, 2013; IEPA, 2018). Another issue is that 

most regulatory stations are generally located away from roadsides and congested 

areas. Thus, point-based emission and personal exposure assessment are not feasibly 

and readily determined. The air quality data relies on a limited number of air monitoring 

stations capturing spatial concentrations rather than personal exposure concentrations. 

Within the last ten years, low-cost air monitoring sensors (<$2,500) have been 

commercially available. These low-cost sensors enhance the ability to understand air 
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quality in a wide range of spatial and temporal conditions; in addition to advancing 

personal exposure assessment studies. These sensors will narrow the gap of 

accessibility to air quality data among communities and laypeople (Clements et al., 

2017; Snyder et al., 2013). However, there are several challenges in employing low-cost 

sensors including the development of sensors producing high quality data and the 

evaluation of sensor performances in environmental and occupational settings (Snyder 

et al., 2013). Several studies have assessed performances of these commercial 

sensors in environmental and controlled laboratory settings against Federal Reference 

Method (FRM) and Federal Equivalent Method (FEM) monitors (Lin et al., 2017; Liu, 

Zhang, Jiang, & Chen, 2017; Manikonda, Zíková, Hopke, & Ferro, 2016; Rai et al., 

2017; SCAQMD, n.d.). However, these low-cost mobile sensors have not been used in 

occupational settings and their practicality has not been determined. The present study 

examined the performance of low-cost air monitoring sensors in environmental and 

occupational settings and the performance of these sensors against USEPA monitors. 

The inter- and intra-variability of these sensors were assessed in order to gain an 

understanding of their reliability for future exposure assessment studies. The feasibility 

of employing these sensors was determined. The strengths, weaknesses, and 

limitations of using them in the field were documented. The understanding of 

performance characteristics and the feasibility of using these new generation sensors 

would expand the capacity of real-time air quality data for personal and sub-regional 

exposure concentrations. The new generation of these sensors has facilitated citizen-

science projects with respect to outdoor air pollution characterization across 

communities in the U.S. but have been limitedly used in occupational exposure 
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assessments. Since these sensors are low-cost and they provide real-time exposure 

data, incorporating them into air quality monitoring would similarly revolutionize the field 

of environmental and occupational exposure assessment by enabling access to real-

time view of exposure concentrations and devising exposure/risk reduction measures in 

an expeditious fashion. This is expected to result in improved health and safety for 

community members and workers exposed to air pollutants, in addition to increasing the 

capacity of environmental justice organizations and socio-economically disadvantages 

subpopulations for air quality monitoring and air quality data interpretation for grassroots 

level community engagement and empowerment. Moreover, this study aims to provide 

valuable scientific data on the quality control parameters of these sensors, which are 

needed for exposure monitoring plan developments and exposure data collection 

efforts. The specific aims of this study focused on the following three objectives:  

1. To assess the feasibility of community members to employ the selected low-cost 

air monitoring sensors in local air quality assessment and the low-cost sensor 

performance in the breathing-zone  

2. To assess the performance of the selected low-cost sensors against EPA 

Federal Reference Method (FRM) and Federal Equivalent Method (FEM) 

monitors 

3. To assess the feasibility of workers to employ the selected low-cost air 

monitoring sensors for personal occupational air quality monitoring and the low-

cost sensor performance in the breathing-zone  

 



5 
 

 
 

Cited Literature 

Borghi, F., Spinazzè, A., Campagnolo, D., Rovelli, S., Cattaneo, A., & Cavallo, D. M. 
(2018). Precision and accuracy of a direct-reading miniaturized monitor in PM2.5 
exposure assessment. Sensors, 18(9), 3089. doi:10.3390/s18093089 

 
Brook, R. D., Rajagopalan, S., Pope, 3., C Arden, Brook, J. R., Bhatnagar, A., Diez-

Roux, A. V., . . . Kaufman, J. D. (2010). Particulate matter air pollution and 
cardiovascular disease: An update to the scientific statement from the american 
heart association. Circulation, 121(21), 2331-2378. 
doi:10.1161/CIR.0b013e3181dbece1 

 
Clay, K., & Muller, N. Z. (2019). Recent increases in air pollution.no. 26381. Retrieved 

from http://www.nber.org/papers/w26381 
 
Clements, A. L., Griswold, W. G., Rs, A., Johnston, J. E., Herting, M. M., Thorson, J., . . 

. Hannigan, M. (2017). Low-cost air quality monitoring tools: From research to 
practice (A workshop summary). Sensors (Basel, Switzerland), 17(11), 2478. 
doi:10.3390/s17112478 

 
Health Effects Institute. (2019). State of Global Air 2019. Special Report. Boston, MA: 

Health Effects Institute. Retrieved from 
https://www.stateofglobalair.org/sites/default/files/soga_2019_report.pdf 

 
IEPA (Illinois Environmental Protection Agency). (2013). Illinois annual air quality report 

2012. Springfield, VA: Illinois Environmental Protection Agency, Division of Air 
Pollution Control, Ambient Air Monitoring Section. Retrieved from 
https://www2.illinois.gov/epa/Documents/epa.state.il.us/air/air-quality-
report/2012/air-quality-report-2012.pdf 

 
IEPA (Illinois Environmental Protection Agency). (2018). Illinois annual air quality report 

2017. Springfield, VA: Illinois Environmental Protection Agency, Division of Air 
Pollution Control, Ambient Air Monitoring Section. Retrieved from 
https://www2.illinois.gov/epa/topics/air-quality/air-quality-
reports/Documents/2017%20Annual%20Air%20Quality%20Report%20Final.pdf 

 
Illinois Environmental Protection Agency Bureau of Air. (2014). Illinois ambient air 

monitoring 2015 network plan [PDF]. Retrieved from 
https://www3.epa.gov/ttn/amtic/files/networkplans/ILPlan2015.pdf 

 
Kumar, P., Morawska, L., Martani, C., Biskos, G., Neophytou, M., Di Sabatino, S., . . . 

Britter, R. (2015). The rise of low-cost sensing for managing air pollution in cities. 
Environment International, 75, 199-205.  

 

http://www.nber.org/papers/w26381
https://www3.epa.gov/ttn/amtic/files/networkplans/ILPlan2015.pdf


6 
 

 
 

Lin, C., Masey, N., Wu, H., Jackson, M., Carruthers, J. D., Reis, S., . . . Heal, R. M. 
(2017). Practical field calibration of portable monitors for mobile measurements of 
multiple air pollutants doi:10.3390/atmos8120231 

 
Liu, D., Zhang, Q., Jiang, J., & Chen, D. (2017). Performance calibration of low-cost and 

portable particular matter (PM) sensors. Journal of Aerosol Science, 112, 1-10. 
doi:10.1016/j.jaerosci.2017.05.011 

 
Madrigano, J., Kloog, I., Goldberg, R., Coull, B. A., Mittleman, M. A., & Schwartz, J. 

(2013). Long-term exposure to PM2.5 and incidence of acute myocardial infarction. 
Environmental Health Perspectives, 121(2), 192-196. doi:10.1289/ehp.1205284 

 
Manikonda, A., Zíková, N., Hopke, P. K., & Ferro, A. R. (2016). Laboratory assessment 

of low-cost PM monitors. Journal of Aerosol Science, 102, 29-40. 
doi:10.1016/j.jaerosci.2016.08.010  

Pope, A. C., Burnett, R. T., Turner, M. C., Cohen, A., Krewski, D., Jerrett, M., . . . Thun, 
M. J. (2011). Lung cancer and cardiovascular disease mortality associated with 
ambient air pollution and cigarette smoke: Shape of the exposure-response 
relationships. Environmental Health Perspectives, 119(11), 1616-1621. 
doi:10.1289/ehp.1103639 

 
Rai, A. C., Kumar, P., Pilla, F., Skouloudis, A. N., Di Sabatino, S., Ratti, C., . . . 

Rickerby, D. (2017). End-user perspective of low-cost sensors for outdoor air 
pollution monitoring. The Science of the Total Environment, 607-608, 691-705. 
doi:10.1016/j.scitotenv.2017.06.266  

 
Ristovski, Z. D., Miljevic, B., Surawski, N. C., Morawska, L., Fong, K. M., Goh, F., & 

Yang, I. A. (2012). Respiratory health effects of diesel particulate matter. 
Respirology (Carlton, Vic.), 17(2), 201-212. doi:10.1111/j.1440-1843.2011.02109.x  

 
SCAQMD (South Coast Air Quality Management District). (n.d.). PM sensor 

evaluations. Retrieved (October 23. 2020) from http://www.aqmd.gov/aq-
spec/evaluations/summary-pm 

 
Snyder, E. G., Watkins, T. H., Solomon, P. A., Thoma, E. D., Williams, R. W., Hagler, G. 

S. W., . . . Preuss, P. W. (2013). The changing paradigm of air pollution monitoring. 
Environmental Science & Technology, 47(20), 11369-11377. 
doi:10.1021/es4022602 

 
USEPA (United States Environmental Protection Agency). (2014). Criteria air pollutants. 

Retrieved from https://www.epa.gov/criteria-air-pollutants 
 
USEPA (United States Environmental Protection Agency). (2016). Air quality - national 

summary. Retrieved from https://www.epa.gov/air-trends/air-quality-national-
summary 

http://www.aqmd.gov/aq-spec/evaluations/summary-pm
http://www.aqmd.gov/aq-spec/evaluations/summary-pm
https://www.epa.gov/criteria-air-pollutants
https://www.epa.gov/air-trends/air-quality-national-summary
https://www.epa.gov/air-trends/air-quality-national-summary


7 
 

 
 

WHO (World Health Organization). (2018). Ambient (outdoor) air pollution. Retrieved 
from https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-
quality-and-health 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health


8 
 

 
 

II. BACKGROUND 

A. Citizen Science in Air Quality Monitoring Efforts  

Citizen science/Community-Based Participatory Research (CBPR) approach has 

been increasingly implemented in air pollution studies. McKinley and colleagues defined 

citizen science as the practice of engaging the public, which in most cases are 

volunteers, in a scientific project that is reliable and applicable for scientists, decision 

makers, and the public (McKinley et al., 2017). Citizen science approach incorporates a 

wide range of methodology retrieved from both citizens and scientists to achieve a 

variety of goals. Citizens collaboratively engage in the entire scientific process starting 

with investigation and exploration to address community-defined questions (Woodall et 

al., 2017). Citizen science has been implemented in several fields including pollution 

detection and enforcement, for example, Bucket Brigade; Clean Air Coalition of Western 

New York; and Alabama Water Watch Program (McKinley et al., 2017). According to 

Commodore and colleagues, community participants partook in air pollution studies 

attributable to their concerns for air pollution health risks, proximity to contaminated 

sources, urban sprawl, shortage of air monitoring systems, and knowledge 

improvement. Most community air monitoring systems are fixed-site stations. Therefore, 

more personal, school-based, and occupational samplings are needed (Commodor et 

al., 2017). Emerging sensor technologies empower citizens to create air monitoring 

networks and collect air quality data to better understand their community environment. 

Several collaborative air quality research/projects have been the main focus in many 

countries around the globe.  
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1. Global Efforts in Citizen Science Air Quality Monitoring  

The CITI-SENCE is one of the most notable projects engaging multiple 

metropolitan countries. The CITI-SENSE’s observatories Toolbox provided the public 

with handy information to monitor and understand their neighborhood air quality (CITI-

SENSE, 2015). Another project in Amsterdam, the Netherlands, utilizing a bottom-up 

approach for urban environmental monitoring was the Wagg Society Amsterdam Smart 

Citizen Lab project. Participating citizens provided input about their concerns and 

interests, then developed their test sensor systems to tackle those issues (Jiang et al., 

2016). CleanAir@School is a joint initiative of the European Network of the Heads of 

Environmental Protection Agencies and the European Environment Agency launched in 

April 2018 and ran until the end of 2019. Across several schools in Europe, students 

and their parents monitored air pollution around schools in their neighborhood to better 

understand children’s exposure to nitrogen dioxide (NO2) (Citizen science initiative 

CleanAir@School — European Environment Agency, 2020).  The Clean Air Asia 

consortium is a partnership of multiple   cities in Asia. As an example, several of the 

projects provided the public with the knowledge to improve air quality in India (Clean 

Air Asia, n.d.).  

2. USEPA Efforts in Citizen Science Air Quality Monitoring 

United States Environmental Protection Agency (USEPA) efforts in 

collaboration and facilitation of citizen scientists in air monitoring include: 1) the Village 

Green project, a pilot new real-time air monitoring station for O3, PM, and weather 

condition measurements located in Durham, North Carolina using solar and wind power 

with little or no technical support. The project demonstrated the citizen scientists’ ability 
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to operate the mid-tier technology (~$6000/each) sensors for long-term air monitoring 

sessions with continuously streaming data to the publicly available web-based data 

portal; 2) AirMapper, a portable air sensor developed by EPA researchers that allow 

citizen scientists to map their environment; 3) REal TIme Geospatial Data Viewer 

(RETIGO), a free web-based tool that reduces burden to visualize collected air quality 

data, gears the public to explore air quality and meteorological data from their nearby 

stations; 4) Air Sensor Loan Programs for Communities, programs providing the public 

with new technology air sensors for education; 5) Air Sensor Toolbox for Citizen 

Scientists, an online resource providing information and guidance on new, low-cost 

sensors and how to understand results from monitoring activities (USEPA, 2014; 

USEPA, 2016a; USEPA, 2016c; USEPA, 2020). The Air Sensor Toolbox was 

implemented in Ironbound Community, New Jersey, as a prototype. This pilot study 

offered opportunities to improve future citizen science in air quality monitoring efforts 

(Kaufman et al., 2017).  

3. Other U.S. Agencies’ and Organizations’ Efforts in Citizen 

Science Air Quality Monitoring 

In 2016, Clean Air Carolina launched the “AirKeepers” program in 

Charlotte with volunteers performing both fixed and mobile air monitoring in their 

environment. The collected data is available for the public and is used by scientists 

(Clean Air Carolina, n.d.). California Air Resource Board (CARB) which is one of the 

most active and progressive organizations for community air monitoring networks 

across the U.S. has implemented several projects including San Ysidro Community Air 

Study (CARB, 2020). San Ysidro Community Air Study, in San Diego, is an example of 



11 
 

 
 

a collaborative work among the community, state and local government, and academia. 

The neighborhood air quality data has been collected by low-cost sensors with the full 

community participation (OEHHA, 2017).    

B. Emerging Technologies in Air Quality Monitoring and Their 

Challenges 

The new paradigm for air quality monitoring is shifting to more miniaturized, low-

cost, easy-to-use, and portable air sensors. The collected air quality data will be useful 

for air quality management activities, such as: 1) supplementing regular ambient air 

monitoring networks; 2) providing the public with information and education; 3) 

identifying and characterizing hotspots/local sources; and 4) advancing personal 

exposure assessment studies. Each activity requires different levels of sensor 

performance indicated by several characters i.e., bias, precision, data averaging time, 

and data completeness. For example, sensors employed for the public’s 

education/information purpose require less stringent performance goals than those 

employed for hotspot identification and characterization purpose (Snyder et al., 2013; 

Williams et al., 2014). Morawska and colleagues conducted an intensive review of low-

cost air sensor applications. Their findings provided evidence that exposure monitoring 

has had little progress; in addition, more air monitoring studies at a finer scale are 

needed. This could be explained by the fact that personal exposures require resources 

including electric power and community engagement (Morawska et al., 2018). Emerging 

tools facilitating the citizen science approach are new technologies including mobile 

phone applications, wireless sensor networks, online computers, and video games. 

These technologies advance the citizen science in terms of disseminating knowledge to 
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a broader audience, improving data collection and control, and increasing data 

availability and accessibility for decision making (Newman et al., 2012). Several 

challenges of employing low-cost air sensors in air monitoring networks, such as the 

quality of collected data, have been encountered as currently, there are no standardized 

means of addressing a low-cost sensor performance (Williams et al., 2019; Woodall et 

al., 2017). Nowadays, most commercially available low-cost sensors are predominantly 

optical (e.g., AirBeam, PurpleAir, MetOne neighborhood PM sensors), electrochemical, 

or metal oxide semiconductor (e.g., AeroQual S500 NO2 and O3 sensors). These 

technologies do not generally meet the requirements/standards as the Federal 

Reference Method (FRM) or Federal Equivalent Method (FEM) instruments. The low-

cost sensor measurements may be influenced by several factors such as interfering 

compounds, environmental conditions, and sensor mal-operation. Therefore, it is crucial 

to validate low-cost sensor performances through collocation field tests against FRM 

and FEM instruments before employing them to support the communication of potential 

hazards and public health risk management, as well as regulatory compliance. More 

traditional instrumentation manufacturers have recently invested research capital into 

low-cost sensor areas. However, manufacturers may not have enough technical 

knowledge to test or calibrate their products prior to the market launch, in addition to 

minimizing intra-variability between each unit of sensor associated with production 

quality control (Woodall et al., 2017). Another big challenge is the interpretation of 

sensor readings. Generally, data obtained from these low-cost sensors indicates short-

term measurements and cannot be compared to the NAAQS to draw conclusion on 

health effects associated with exposure concentrations. However, USEPA has piloted a 
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color-coded Sensor Scale for 1-minute PM2.5 and O3 readings (not for regulatory 

purposes) as a high-medium-low tier for better understanding the obtained sensor data 

and the ability to informatively make behavioral decisions for any outdoor activities 

(USEPA, 2016d).  

C. Low-Cost Sensor Applications 

Low-cost sensors have been employed for several purposes, particularly for 

education and raising public awareness; and for supplementing the regulatory air 

monitoring network. Low-cost sensor networks could provide air quality data for more 

spatial and temporal variations. In conjunction with air quality modeling, low- cost 

sensor networks would afford a better understanding of local air quality. Miskell and 

colleagues employed AeroQual S500 for O3/NO2 sensors for personal exposure 

assessment. While wearing the sensor, participants visited different locations. The 

collected data supported land use regression models to investigate the finer-scale air 

quality (Miskell, Salmond, & Williams, 2018; Weissert et al., 2020). Castell et al. 

conducted a comparison study among low-cost sensor data, air quality modeling data, 

and fusion data derived from the first two methods. The results suggested that the low-

cost sensor data and fusion data highly correlated with reference monitor data (r≥0.9), 

while modeling data suggested a lower correlation with reference monitor data (r=0.8) 

because the modeling was not able to capture the local events (Castell et al., 2018). 

This emphasized an important need for air monitoring in small-scale areas. Low-cost 

sensor networks are also beneficial for occupational exposure assessments. Low-cost 

sensor networks have shown a good agreement with the sensors commonly used for 

occupational personal exposure assessment (e.g., pDR and POM) for PM2.5 and CO 
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(Zuidema et al., 2019). Low-cost sensor applications may also facilitate the intervention 

program evaluation. Klepeis and colleagues utilized low-cost sensors i.e., Dylos 

DC11000 to monitor particulate matters generated from smoking at home, before and 

after implementing Smoke-Free Home intervention programs (Klepeis et al., 2013). 

Semple et al. employed a low-cost sensor, Dylos 1700, alongside with Sidepak 

reference sensor, commonly used for indoor aerosol measurement. The results 

suggested good agreement between low-cost and reference sensors. They concluded 

that low-cost sensors may be useful for air quality-based interventions and behavioral 

changes to smoke-free house motivations (Semple et al., 2015).  

D. Performance Assessment of Low-Cost Air Monitoring Sensors  

Reliable air monitoring devices are one of the essential elements in air 

monitoring. At present, there are no existing sensor performance evaluations or 

certification programs for the low-cost air monitoring sensors (Williams et al., 2019). 

However, groups of researchers have conducted studies evaluating low-cost air 

sensors in different conditions i.e., environmental and laboratory settings. Three 

prominent programs/institutes such as the USEPA Office of Research and 

Development (ORD); the Air Quality Sensor Performance Evaluation Center (AQ-

SPEC), operated by the South Coast Air Quality Management District (SCAQMD); and 

the Joint Research Center (JRC), operated by the European Commission’s Science 

and Knowledge Service have also been involved in these studies (Clements et al., 

2017). The low-cost air sensors utilized in the present study including mobile air 

sensors i.e., Air Beam, AirBeam2 (Habitatmap, Brooklyn, NY, USA), Terrier (Qsense 

Inc., Boulder, CO, USA), and Ultrasonic Personal Air Sampler (UPAS) (Access Sensor 
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Technologies, CO, USA); and stationary air sensors i.e. AeroQual S500 (AeroQual 

Limited, Auckland, New Zealand), MetOne Neighborhood Monitor (Met One 

Instruments, Inc., Grants Pass, OR, USA), and PurpleAir (Purple Air, Draper, UT, USA) 

have been tested and reviewed in previous studies. 

1. USEPA’s Research on Sensor Evaluation  

Williams and colleagues conducted an extensive review on low-cost air sensor 

performance studies, and suggested the need for additional information and research to 

determine low-cost sensor operations and their performance for a given purpose 

(Williams et al., 2018). United States Environmental Protection Agency (USEPA) 

performed collocated field evaluations of PM and gaseous pollutant monitoring sensors 

and compared the findings of low-cost sensors with those of reference monitors 

(USEPA, 2016b). Among all tested PM sensors, RTI MicroPEM had the highest degree 

of correlation with the reference monitor (i.e., GRIMM) with R2=0.72 (Williams, Kaufman 

et al., 2014). AirBeam had a moderate correlation and MetOne had a low correlation 

with the reference monitor (i.e., BAM) with R=0.65-0.66 and R=0.32-0.41, respectively 

(Jiao et al., 2016). Across all the tested gas phase sensors, several low-cost air sensors 

highly correlated with reference analyzers. When comparing ozone monitoring with 

reference analyzers, CairClip NO2/O3 USB version had the highest correlation (R2=1) 

(Williams, Long et al., 2014). AeroQual SM50 had a high correlation with R=0.91-0.97 

(Jiao et al., 2016). When comparing NO2 monitoring with reference analyzers, CitiSense 

and AirCasting sensors demonstrated the highest correlation (R2=0.98) (Williams, Kilaru 

et al., 2014). Recently, a 7-month field study conducted in Denver, Colorado evaluating 

the long-term sensor performance suggested that AeroQual had a high percentage of 
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data recovery (80%) while AirBeam had a lower percentage of data recovery (30-60%). 

AeroQual and AirBeam highly and moderately correlated with their respective reference 

monitors with R2=0.85-0.92 and R2=0.53-0.74, respectively. The low-cost sensor 

measurements were found to be more impacted by relative humidity than by wind 

directions (Feinberg et al., 2018). 

2. South Coast Air Quality Management District Research on 

Sensor Evaluation  

South Coast Air Quality Management District (SCAQMD) established the Air 

Quality Sensor Performance Evaluation Center (AQ-SPEC) program aiming to evaluate 

and create performance standards for tested sensors. Sensors are evaluated against 

FRM/FEM instruments in laboratory and field settings. Across all tested PM2.5 sensors, 

PurpleAir had the highest degree of correlation with reference monitors (i.e., BAM and 

GRIMM) with R2=0.93-0.97 (SCAQMD, 2016). AirBeam and AirBeam2 moderately 

correlated with reference monitors i.e., BAM (R2=0.65-0.77) and GRIMM (R2=0.65-

0.75). AirBeam mass data was largely overestimated while the particle count showed a 

good agreement (SCAQMD, 2015a; SCAQMD, 2018). MetOne Neighborhood Monitor 

moderately correlated with both FEM BAM (R2=0.65-0.66) and GRIMM (R2=0.66-0.67) 

(SCAQMD, 2015b). Mean Absolute Error (MAE) between PurpleAir and the FEM BAM 

was 6.7-7.0 µg/m3. MAE between Airbeam and the FEM BAM was 4.4-7.5 µg/m3. 

Moreover, the results suggested that the predominant error associated with AirBean 

and PurpleAir sensors is systematic in nature rather than random (Feenstra et al., 

2019). For gas phase sensor evaluations, CairPol demonstrated the highest correlation 

with the CO reference monitor (R2=0.94). For ozone measurements, AeroQual sensor 
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highly correlated with the reference monitor with R2=0.85 (SCAQMD, n.d.). Another 

study conducted by Collier-Oxandale and colleagues suggested that Personal Ozone 

Monitoring (POM), a UV-based sensor, showed high accuracy across all tested 

temperatures and relative humidity ranges, while AeroQual, a MOS-based sensor, were 

impacted by ambient temperature and humidity since extreme humidity and temperature 

may reduce the sensitivity of the sensor, in addition to degrading the sensor’s hardware 

(Collier-Oxandale et al., 2020; Wang et al., 2010). 

3. Other Sources of Research on Sensor Evaluation 

AirBeam and PurpleAir are two of the most popular low-cost PM2.5 sensors 

utilized in several projects including the present study. The performance of AirBeam has 

been evaluated in several studies and found to be satisfactory. Sousan and colleagues 

found that AirBeam, in the exposure chamber tests measuring particulate matter 

generated from salt, welding and Arizona road dust, moderately correlated with a 

reference instrument i.e., Scanning Mobility Particle Sizer and Aerodynamic Particle 

Sizer tandem (SMPS-APS) with R2=0.70-0.96 (Sousan et al., 2017). Another recent 

study performed by Mukherjee et al. reported that AirBeam demonstrated a high degree 

of precision with R2=0.95-0.99 and a moderate degree accuracy against the FRM 

GRIMM11-R with R2=0.6-0.76 (Mukherjee et al., 2017). AirBeam2 was launched in 

2018 and employed in the present study. AirBeam2 highly correlated with the TSI 

DustTrack tested in the concentrated air pollutant chamber (R2=0.88-0.89) (Heimbinder 

& Lim, 2018). Kelly and colleagues observed that PurpleAir PMS highly correlated with 

research-grade instruments (i.e., TSI DustTrack II and GRIMM) tested in the laboratory 

wind tunnel, as well as with FEM i.e., TEOM tested in ambient conditions (R2=0.82-
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0.87) (Kelly et al., 2017). Recently, DeWitt et al. conducted a 10-month collocated air 

monitoring study in Houston, TX. The results suggested low intra-variability between 

AirBeam units (R2= 0.79-0.98) and low degrees of correlation with FEM (R2= 0.36-0.42). 

They also observed the temporal variability of AirBeam performance in addition to a 

better agreement with FEM with temperatures above 80 degrees Fahrenheit. However, 

AirBeam readings were impacted by relative humidity (DeWitt, Crow, & Flowers, 2020). 

Another PM2.5 sensor employed in the present study was the Ultrasonic Personal 

Aerosol Sensor (UPAS), which has a different operating system compared to the rest of 

PM2.5 sensor counterparts. UPAS, which is developed by Volckens et al., is designed 

for personal PM exposure measurements capturing PM2.5 using time-integrated 

impaction. It does not require calibration, but runs on battery power (battery life is 

greater than 35 hours at the operating flow rate of 1 lpm). The UPAS performance was 

conducted against FEM, i.e., URG cyclone and a Personal Environmental Monitor 

(PEM) widely used in occupational exposure assessment. The findings showed stronger 

correlations between UPAS and FEM (R2=0.99) compared to the correlation between 

PEM and FRM (R2=0.96). The average mass measured by UPAS was in agreement 

with the FEM (7% difference) (Volckens et al., 2017). UPAS is very new and has been 

utilized in very few studies. A previous pilot study conducted by Arku and colleagues 

characterized exposure to household air pollution in multiple urban and rural 

communities by using UPAS and Harvard Impactor. An inter-comparison between these 

two sensors was performed  suggesting a high correlation with R2=0.83 (Arku et al., 

2018). Another recent study among rural Honduran women conducted by Pillarisetti et 

al. observed a strong correlation between UPAS and a commonly used gravimetric 
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pump, cyclone, and filter sampling system with R2= 0.91 in PM2.5 personal exposure 

measurement (Pillarisetti et al., 2019).  

AeroQual S500 sensor, the fixed/mobile gaseous pollutant sensor used in the 

study, was employed to measure ozone or nitrogen dioxide. According to Lin et al., 

AeroQual S500 O3 measurements highly correlated with the UV-absorption reference 

analyzer measurements (R2=0.88-0.96). Whereas, AeroQual S500 NO2 measurements 

poorly correlated with those of the reference chemiluminescence analyzer (R2=0.02) in 

the testing chamber and in environmental settings. Moderate correlation between 

AeroQual S500 NO2 sensor and the reference monitor (R2=0.47-0.89) was observed. 

The findings suggested that the AeroQual S500 NO2 sensor was sensitive to O3 in the 

environmental settings (Lin et al., 2015; Lin et al., 2017). The recent study by DeWitt et 

al. suggested moderate to low intra-variability between AeroQual S500 O3 units 

(R2=0.76-0.81) and moderate to low inter-variability against FEM (R2=0.72-0.85) (DeWitt 

et al., 2020). 

Particulate matter and gaseous pollutant sensing devices, including the AirBeam, 

AirBeam2, Terrier, AeroQual S500, MetOne Neighborhood Monitor, PurpleAir, and 

UPAS, have shown great promise for measuring personal and regional exposures, but 

little is known about the feasibility of employing them in the field. In addition, 

occupational exposure assessment has not utilized these mobile air sensors to date. In 

the present study, these low-cost sensors were employed to characterize the real-time 

personal exposure of community residents (i.e., community members of four 

communities in the Chicago area) and workers (i.e., parking and grounds-keeping 

employees on UIC campus). This work demonstrated the feasibility of utilizing low-cost 
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air monitoring sensors into environmental and occupational settings. Furthermore, the 

utility and reliability of these sensors for environmental and occupational exposure 

assessments were determined.  

E. Significance of Citizen Science in Public Health and Community 

Empowerment 

Citizen science projects have been accepted in three approaches based on 

the participants’ level of involvement including: 1) the Contributory approach, in which 

the community engages in only collecting data; 2) the Collaborative approach, in which 

the community engages in refining research questions, collecting, analyzing, and 

interpreting data; 3) the Co-created approach, in which the community fully works with 

the professional scientists and experts in most of all science research steps ranging 

from gathering information to forming research questions, to concluding and 

disseminating the findings (Bonney et al., 2009; Rowbotham et al., 2019). The main 

goals of citizen science projects include providing scientifically rigorous data, effectively 

communicating with the relevant administrative services, and raising awareness and 

attention from broader audiences and expanding the opportunities to collaborate with 

multi-levels of stakeholders (Van & Huyse, 2019). Citizen science/Community-Based 

Participatory Research (CBPR) is a powerful tool for addressing public health issues 

and empowering the underserved communities to seek environmental justice and health 

equity. One of the successful CBPR projects, the West Oakland Environmental 

Indicators Project (WOEIP), which aimed to reduce diesel exposure in west Oakland, 

California, demonstrated that the community-based research findings could provide 

supported information to further define the problems and increase the number of buy-in 



21 
 

 
 

stakeholders, in addition to pushing the findings to actions including policy 

implementation. The WOEIP partnerships achieved the goal in persuading the City 

Council to pass the truck route ordinance that lessened the burden on community air 

quality. Furthermore, this case study proved that the community works could initiate 

comprehensive scientific researches conducted by highly reliable government agencies 

to further examine the public health concerns in the communities (Gonzalez et al., 

2011). Another project, THE (Trade, Health, Environment) Impact Project, a 

collaborative work between community partners and the University of  Southern 

California and Occidental College addressing the impact of air pollution on community 

health in the massive Los Angeles and Long Beach Ports complex, had a victory on the 

passage of the Clean Air Action Plan (CAAP) of 2006. In addition, the THE Impact 

Project helped incorporate the health-related conversations in the policy making 

decision (Garcia et al., 2013). One of the CBPR projects that recruited the massive 

number of participants on air quality in Antwerp, Belgium, the CurieuzeNeuzen project, 

demonstrated the influences of the CBPR on the policy implementation for improving air 

quality and the increase of the public awareness on the community air quality, as well 

as, motivated their positive attitudes in supporting the environment-friendly activities in 

their communities (Van & Huyse, 2019). Another case study in Tonawanda, NY, proved 

the significance of citizen science in public health. The community residents established 

the Clean Air Coalition and performed air sampling utilizing a DIY sampler to collect 

benzene as they considered the association between the community adverse health 

outcomes and the Tonawanda Coke plant’s release. The citizen science campaign, in 

addition to collaboratively working with the Department of Environmental Conservation 
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resulted in a 92% decrease of benzene levels in the community, and finally the 

complete shutdown of the plant (James-Creedon, 2018; Jerving, 2019). One of the 

major challenges of the community-based project is sustainability. The citizen 

science/CBPR is a robust measure to build the community capacity and empower the 

community ensuring the long-term sustainability of the existing projects and the 

generation of future projects. Furthermore, citizen science has been increasingly 

implemented in public health research as it is an effective means to practically address 

health disparities. This can expand the grant opportunities and promote the community-

based project continuation (Garcia et al., 2013; Gonzalez et al., 2011; Minkler et al., 

2003; Rickenbacker, Brown, & Bilec, 2019). 
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III. FEASIBILITY OF COMMUNITY MEMBERS TO EMPLOY LOW-COST 

SENSORS IN LOCAL AIR QUALITY ASSESSMENT AND LOW-COST SENSOR 

PERFORMANCE ASSESSMENT IN BREATHING-ZONE 

A. Introduction 

Citizen science and/or Community-Based Participatory Research (CBPR) 

approaches have been increasingly implemented in air pollution studies. Citizens 

collaboratively engage in the entire scientific process starting with investigation and 

exploration to address community-defined questions (Woodall et al., 2017). According 

to Commodore and colleagues, community participants partook in air pollution studies 

and communicated their concerns pertaining to air pollution health risks, proximity to 

contaminated sources, urban sprawl, shortage of air monitoring systems, and their lack 

of knowledge and the need for improvement. Most community air monitoring systems 

are fixed-site stations; therefore, more personal, school-based, and occupational 

samplings are needed to assess exposures at community or micro-environment level. 

The citizen science approach incorporates a wide range of methodology retrieved from 

both citizens and scientists to achieve a variety of goals (Commodore, Wilson, 

Muhammad, Svendsen, & Pearce, 2017). Emerging tools that facilitate the citizen 

science approach include new technologies such as mobile phone applications, 

wireless sensor networks, internet, and video gaming. These technologies have 

advanced citizen science in terms of disseminating knowledge to broader audiences, 

improving data collection and control, and increasing data availability and accessibility 

for decision making (Newman et al., 2012). Air monitoring at a finer scale is necessary 

to determine spatial variations of outdoor air concentrations and personal exposures. 
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Reliable air monitoring devices (or sensors) are essential in air monitoring. In addition, 

personal exposure assessment requires logistical resources including electric power 

and community engagement. The quality of collected data might be questionable due to 

the mal-operation of air monitoring sensors, as well as, not having well-established air 

monitoring procedures in place (Morawska et al., 2018).  

The low-cost mobile air monitoring devices or sensors employed in the present 

study include AirBeam/AirBeam2 and Terrier. AirBeam and AirBeam2 use a light 

scattering method to measure PM; while, Terrier measures multiple gaseous pollutants 

using different technologies, i.e., electrochemical (EC) techniques to measure nitric 

oxide (NO) and carbon monoxide (CO) and nondispersive infrared (NDIR) to measure 

carbon dioxide (CO2). These sensors communicate with the AirCasting application 

every one second (for AirBeam/AirBeam2) or every ten seconds (for Terrier) via 

Bluetooth application and the collected air quality data (e.g., PM2.5 concentration data) 

in a single data file are uploaded to the AirCasting website via Wi-Fi for each sampling 

event.  

Several studies have suggested that AirBeam has shown great promise for 

measuring personal and regional exposures. AirBeam performance has been evaluated 

in a number of previous studies. AirBeam sensor has a low degree of intra-variability 

(R2>0.8) and has demonstrated poor to moderate correlations (R2) with the reference 

instruments i.e., Beta Attenuation Method (BAM) and Well Impactor Ninety-Six (WINS) 

monitors with R2=0.21-0.83 in various spatial and temporal conditions (Borghi et al., 

2018; DeWitt, Crow, & Flowers, 2020; Feenstra, Papapostolou, Der Boghossian, 
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Cocker, & Polidori, 2019; Feinberg et al., 2018; Jiao et al., 2016; Mukherjee, Stanton, 

Graham, & Roberts, 2017).  

Terrier sensor used in this study combines the following three sensors: 

Alphasense CO-B4, Alphasense NO-B4, and ELT S300-CO2. In spite of a lack of 

evaluation of Terrier performance in the scientific literature, several studies have 

evaluated the performance of one of its three sensors. Alphasense CO-B4 showed low 

intra-variability (R2>0.9) and moderate to high degree of correlation with the reference 

instruments i.e., FRM and FEM (R2>0.6) (Borrego et al., 2018; Jiao et al., 2016; Smith 

et al., 2017; Sun et al., 2016). Alphasense NO-B4 demonstrated a moderate to high 

correlation with the reference instruments i.e., FRM and FEM (R2>0.7) (Borrego et al., 

2018; Jiao et al., 2016; Lewis et al., 2016). Based on the findings of these studies, there 

is currently little known about the feasibility of employing AirBeam/AirBeam2 and Terrier 

in community settings and their performance for the real-world community-based 

personal exposure assessment studies. The present study aims to fill this critical data 

gap and it consists of two components. The first component, i.e., evaluation of feasibility 

of air quality sensor use by community residents for outdoor air quality investigations 

and personal exposure assessment studies, is an integral component of the Quality 

Assurance and Quality Control (QA/QC) protocol of the Shared Air/Shared Action 

(SASA) project. Another component of the SASA project was the collocation study, 

which was conducted at the Northbrook Illinois Environmental Protection Agency (IEPA) 

air monitoring site from October 6 to December 8, 2017 (see Chapter IV). 

 In this study, the feasibility of employing two low-cost air monitoring sensors 

(AirBeam sensor for PM2.5 measurements; and Terrier sensor for NO/CO/CO2 sensor 
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measurements) under field conditions by community residents was assessed using two 

approaches. The first approach was based on the assessment of compliance of the 

sampling protocol by the community participants using a feasibility assessment tool and 

the second method involved intra-sampler performance evaluation of the two sensors to 

gain insight into their reliability for air quality and exposure assessment studies in 

support of health effects research and policy advocacy and outreach efforts.  

B. Methods 

1.   Air Monitoring Sensors 

The selection of the air monitoring sensors utilized in the SASA project 

was based on an extensive literature review, consultation with the EPA staff, and the 

performance review of the commercially available sensors tested by the EPA and the 

South Coast Air Quality Management District (SCAQMD) in their respective laboratories 

and/or in field settings. This comprehensive review led to selection of the following five 

low-cost air sensors to measure PM and gaseous air pollutants with three operating 

(MetOne, PurpleAir, Aeroqual) at stationary-mode and the remaining two (AirBeam and 

Terrier) enabling personal exposure monitoring and operating at mobile mode.  

• MetOne Neighborhood Monitor (Met One Instruments Inc., Grants Pass, OR, 

USA) measures PM2.5 or PM10  

• PurpleAir (PurpleAir, Draper, UT, USA) measures PM2.5 and PM10  

• AeroQual S500 (AeroQual Limited, Auckland, New Zealand) measures NO2 

or O3 

• AirBeam (HabitatMap, Brooklyn, NY, USA) measures PM2.5 

• Terrier (Qsense Inc., Boulder, CO. USA) measured NO, CO, and CO2 
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The two low-cost personal exposure/mobile air monitoring sensors, AirBeam measuring 

PM2.5 and Terrier measuring NO/CO/CO2, are the sensors utilized by the residents in 

four distinct communities in the Chicago metropolitan area to measure their personal 

exposures to air pollutants during two seasonal sampling (i.e., Summer, 2017 and 

Winter, 2018) sessions with partnership with four community organizations serving each 

of the four neighborhoods (i.e., Little Village Environmental Justice Organization 

(LVEJO), Southeast Environmental Task Force (SETF), People with Community 

Recovery (PCR), and Alliance for a Greener South Loop (AGSL)). During the Winter air 

monitoring sessions, AirBeam2, which was launched in Spring 2018, was employed 

instead of the earlier version of the sensor, AirBeam (which was used by all four 

community organizations in the Summer, 2017 sampling sessions), by the two out of 

four community participants except for those participants within the geographic domain 

of the Little Village Environmental Justice Organization (LVEJO) and the Southeast 

Environmental Task Force (SETF). In addition, Terrier sensor was not employed during 

the Winter, 2018 sampling sessions. AirBeam/AirBeam2 and Terrier mobile air monitors 

were operated on the same platform, i.e., AirCasting application, and the recorded data 

for all sampling sessions were downloaded from the AirCasting website.  

2. Participant Recruitment and Training of the Community 

Organizers 

As aforementioned above, the participants from the four Chicago area 

communities served by AGSL, LVEJO, PCR, and SETF, which are denoted as SL, LV, 

PC, and SE, respectively, in the remaining of this report, participated in the SASA study 

and performed personal exposure monitoring using the AirBeam and Terrier sensors in 



35 
 

 
 

the mobile mode. The geographic locations of these community areas in the Chicago 

metropolitan area are shown in Figure 1. Prior to initiation of the personal exposure 

monitoring activities, community organizers were trained by the research team to 

operate the sensors in a step-by-step fashion in two half-day consecutive training 

sessions. To facilitate this, the research team prepared user guides enclosed in 

Appendix A that documented operation of each sensor in step-by-step sequence. These 

user guides were made available to the community organizers. The SASA study used 

the train-the-trainer approach and community organizers in each of four community 

organizations trained their respective residents who took part in the personal exposure 

monitoring sessions on how to use and operate each sensor appropriately using the 

user manuals developed by the research team. All the training sessions were scheduled 

before assigning the equipment to the communities and before initiation of air 

monitoring activities.   

3. Shadowing the Participants During Mobile Air Monitoring 

Sessions 

The SASA study QA/QC protocol called for shadowing of the participants (i.e., 

(community residents trained on how to operate the sensors and conduct air sampling 

by their community organizers) in 20% of all total mobile air monitoring events in each 

community during each sampling season (i.e., Summer, 2017 and Winter, 2018). The 

participants were shadowed by the research team up to one-hour sampling sessions in 

each season. These shadowing sampling events were initially randomly selected based 

on the master mobile monitoring sampling plan for each community during summer 

(June-September 2017) and winter (January-April 2018). However, due to a host of 
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impediments (raining on the day of scheduled shadowing event, a participant not being 

present for a scheduled shadowing event, etc.), a random master plan could not be 

implemented from the beginning to the end of monitoring activities in each season. 

Instead, shadowing sampling events were scheduled based on availability and 

convenience of participants for many of the shadowing sampling events. During each 

sampling event, as instructed in the sampling protocol, the trained participants were 

expected to wear two of each sensor in the breathing-zone i.e., two AirBeam sensors 

were placed on the right shoulder and two Terrier sensors were placed on the left 

shoulder, as shown in Figure 2. In addition, the participants were trained to record time-

activity data to document air pollution sources they encountered during the mobile 

monitoring session chronologically. The participants collected time-activity data using 

either a manual or a digital method, i.e., either they manually entered the time-activity 

data in a mobile monitoring observation log (shown in Appendix B) or they took a picture 

of an air pollution source and note on their sampling route using their cell phone that, 

then, became an electronic record in the AirCasting application and could be 

downloaded along with the air monitoring data from the AirCasting website. These 

methods allowed the participants to capture environmental conditions/characteristics, 

particularly PM generating activities, encountered during each sampling event. During 

the shadowing mobile air monitoring sessions, the investigators recorded the time-

activity data and shadowed the participants throughout the entire sampling event and 

observed to assess the feasibility of utilizing the low-cost air sensors in community-

based studies using a number of metrics/indicators and to assess the effectiveness of 

the train-the-trainer approach followed in this study to train the participants who 
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performed the personal exposure monitoring. The feasibility of utilizing the low-cost air 

sensors in community-based studies was assessed using the tool shown in Appendix C, 

that captures information pertaining to participant’s compliance with the sampling 

protocol using the following metrics/indicators: correctly placing the sensors in their 

breathing-zone; correctly following the sampling route specified in the master air 

monitoring plan; level of comfortable in using the sensors; periodically checking the 

sensors during the sampling session; utilizing any of measures provided for recording 

air pollution sources; level of compliance for recording of time-activity data which access 

by the calculating the percent agreement between the time-activity data recorded by the 

investigators and those recorded by the participants; and level of compliance with the 

general air sampling procedures.  

4. Data Management and Analyses  

Air quality data for each second and every ten seconds of each sampling 

event collected by  AirBeam/AirBeam2 and Terrier sensors, respectively, were saved at 

the end of each sampling session with a specific file naming nomenclature (e.g., 

LV1_0116AM) and these files containing the data for each sampling session were 

stored on Cloud, AirCasting website. The recorded air monitoring data for each 

sampling session were, then, downloaded in a csv format and further managed on MS 

Excel spreadsheets. The collected data from the time-activity recording effort (i.e., 

manual mobile monitoring observation log record or the digital record documented by 

both investigators and participants) and the feasibility assessment tool explained above 

were entered into Excel spreadsheets for data cleaning and analysis. We observed 

missing 1-second data points only in the AirBeam data files. Consequently, AirBeam 
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data were treated and imputed for the missing 1-second data following the criteria 

delineated in Appendix H. One-minute mean concentration for each pollutant was 

computed and utilized for statistical data analysis including descriptive statistics and 

intra-sampler comparisons. The descriptive statistics of air pollutant concentrations 

were determined for each community and for each season. Furthermore, the spatial and 

temporal variabilities of air pollutant concentrations across communities were analyzed. 

Time-activity pattern/environmental characteristics including the traffic conditions and 

number of Heavy-Duty Vehicles (HDVs) of each sampling event were documented. 

HDV density (counts/minute) was calculated as the total number of HDVs counted 

divided by the sampling duration of each sampling event. The calculated HDV density 

were classified into three categories, i.e., class 1: <0.4 (25thpercentile); class 2: 0.4-1.2 

(between 25th and 75th percentiles); and class 3: >1.2 (75th percentile). The correlation 

between measured 1-minute PM2.5 mean concentration and HDV density was 

investigated utilizing the correlation plot. Traffic conditions were observed and 

classified, based on the justification of the trained investigators, into the following five 

categories, i.e., class 1: light; class 2: light to medium; class 3: medium; class 4: 

medium to heavy; and class 5: heavy. During the sampling sessions, the investigators 

tracked the traffic conditions, including intensity of vehicle lineups at the traffic 

intersections and Light Duty Vehicles (LDVs) congestion. However, the exact number of 

LDVs were not counted due to infeasibility of documenting an accurate manual count of 

LDVs during the entire sampling event in busy urban environment. Due to less frequent 

occurrence of HDVs and their prominent role in air pollution, an effort was expanded 

into counting HDVs during each sampling period.  
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The data collected during each sampling event in response to questions in 

the feasibility assessment tool shown in Appendix C were analyzed to gain insight into 

compliance of sampling protocol by the community participants who partook in the 

sampling effort.  We calculated percent of community residents that complied with each 

measure documented in Appendix C.  

In addition, the correlation between the measured concentrations by two 

units of AirBeam sensor on the right shoulder and by two units of Terrier sensor on the 

left shoulder in the participants’ breathing-zone during shadowing sampling events was 

determined to evaluate sensor intra-variability as an indicator of sensor reliability under 

field conditions. In this evaluation, the following evaluation metrics were used based on 

the coefficient of determination (R2) (i.e., a very strong correlation (R2 ≥0.9), a strong 

correlation (R2=0.7-0.89), a moderate correlation (R2=0.5-0.69), a weak correlation 

(R2=0.3-0.49), a very weak correlation (R2=0.1-0.29), and a no correlation (R2=0.0-

0.09)) and the slope and the intercept of the regression line (Collier-Oxandale et al., 

2020). 

C. Results 

1. Summary of the QA/QC Shadowing Mobile Air Monitoring 

Efforts with Communities 

We shadowed participants during 33 sampling events, i.e., 16 sampling 

events during Summer 2017 and 17 sampling events during Winter 2018. Tables XXXV-

XXXVII in Appendix D summarize the attributes of the shadowing data collected with 

AirBeam and Terrier sensors during Summer 2017 and Winter 2018 sampling sessions. 

As noted above, both AirBeam and Terrier sensors were employed during summer 
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sampling events; however, only AirBeam/AirBeam2 sensor was employed during winter 

sampling events. For AirBeam/AirBeam2 sensors, the percentage of complete sampling 

sessions, which are sessions in which data were acquired from two units operating in 

tandem next to each other on the right side of the shoulder in the breathing-zone of a 

participant , was 42 (33% during summer, 9% during winter). For Terrier sensors, the 

percentage of complete sampling sessions in Summer 2017, which are sessions in 

which data were acquired from two units operating in tandem next to each other on the 

left side of the shoulder in the breathing zone of a participant, was 25 (i.e., 4 sessions 

out of 16 total sessions) (see Appendix D). The rationale for incomplete events 

included: 1) at least one of the AirBeam/Terrier sensors failed to record data during a 

sampling event; 2) the recorded data was missing or not saved; 3) at least one of the 

Terrier sensors had all zero readings for CO/NO measurements; and 4) only one 

AirBeam/Terrier sensor could be operated during air monitoring events due to technical 

or logistical reasons. During winter sessions, the percentage of missing data was higher 

in the collected data of the communities (PC and SL) employing AirBeam2 as compared 

to those of communities (LV and SE) employing AirBeam (see Table III). Among all the 

shadowing sessions (N=33), 58% of the total sessions had only one participant 

(community resident) performing the air monitoring, while 39% and 3% had two and 

three participating community residents performing the air monitoring as a team, 

respectively. During any session in which more than one community resident performed 

the air monitoring, one participant wore the sensors (and/or kept track of the 

timestamp), the other took notes (and/or kept track of the timestamp), and all 

participants collectively counted the PM generating sources encountered along the 
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sampling route, e.g., buses and trucks. In addition, 26% of the total sessions had one 

and 23% had two community organizers accompanying/assisting during the summer 

and winter air sampling efforts.  

2. Descriptive Statistics of PM2.5 and Gaseous Pollutant 

Concentrations in the Communities 

A summary of the 1-minute mean concentration of each pollutant 

measured during each sampling event during the summer air monitoring effort is shown 

in Table I. The 1-minute PM2.5 concentrations observed in Little Village (LV) were the 

lowest (5.5-7.8 µg/m3) and not significantly different among time periods and locations, 

while those of South Loop (SL) and Altgeld Gardens (PC) had more variation with 

concentration range of 6.1-19.6 µg/m3 and 5.6-16.1 µg/m3, respectively. Similar to LV, 

the Southeast side of Chicago (SE) had a low variability with consistent measurements 

for PM2.5 concentrations across different sampling locations and time periods ranging 

from 10.0 µg/m3 to 15.2 µg/m3. The 1-minute CO mean concentrations were not 

substantially different among the locations and time periods in LV and SL communities. 

On the other hand, CO2 and NO mean concentrations varied among the locations in 

each community. For CO2 measurements, the range of mean concentrations were 440-

875 ppm for LV, and 463-923 ppm for SL. For NO measurements, the range of mean 

concentrations were 0.4-1.2 ppb for LV, and 0.5-1.6 ppb for SL. 

Time-activity data for the HDV density, traffic condition, and other PM 

generating sources counted during each sampling session in Summer 2017 are 

summarized in Table II. Across all study times and locations, LV and SL had a medium 

to heavy traffic, while SE and PC had light to heavy traffic. The box plots demonstrated 
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that, at sampling times and locations in SE and SL communities with higher HDV 

density (>1.2 counts/minute), higher PM2.5 concentrations were observed, as 

compared to those communities with lower HDV density (≤1.2 counts/minute). The 

PM2.5 concentrations were not significantly different among sampling events with 

different levels of HDV density in the LV community as shown in Figure 3.  The 1-minute 

mean CO measured concentrations were not significantly different among different 

levels of HDV density in LV, SE, and SL communities. The CO data were not available 

for any of the four sampling events in PC and two sampling events in SE communities 

(Figure 4). The 1-minute NO concentrations were higher at the sampling events with 

higher HDV density as shown in Figure 5, while the 1-minute mean CO2 concentrations 

varied across the sampling events independent of the HDV density (Figure 6).  The box 

plots that explore the relationship between the 1-minute air pollutant concentrations and 

the traffic condition were also generated (see Appendix E). These demonstrated similar 

trend to those observed with the HDV density. During the winter sampling efforts, the 1-

minute PM2.5 mean concentrations in the LV community ranged from 3.3 to 13.7 µg/m3 

across four sampling sessions, while narrower ranges were observed in other 

communities. The box plots suggested that during sampling events with higher HDV 

density (>1.2 counts/minute), higher PM2.5 concentrations were measured as shown in 

Figure 7. However, one sampling event with low HDV density (<0.4 counts/minutes) in 

the LV community was observed to have the highest PM2.5 measured concentration 

(13.7 µg/m3) (see Table III, Appendix E). Based on the correlation plot analysis, we 

observed no correlation between 1-minute measured pollutant (i.e., PM2.5, CO, CO2, 

NO) concentrations and HDV density (the plots are not shown in this report).  
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3. Feasibility of Employing the Sensors by Community Residents 

The feasibility of employing the low-cost sensors in community-based 

air monitoring studies was assessed by utilizing the feasibility assessment tool 

questions. The results of the feasibility assessment survey data collected during the 

shadowing sampling events are summarized in Table IV in Appendix F. Most of the 

participating community residents had properly placed the sensors in the breathing-

zone (61%), had followed the sampling route specified (97%), were highly comfortable 

in using the sensors (80%), had recorded the time-activity pattern during sampling 

sessions (90%), and were in high compliance with the general sampling procedures 

(90%). Among the participants following the sampling route, some followed the route 

reversely from the master sampling plan; some did not follow the exact route but 

covered all areas indicated in the master sampling plan. Furthermore, some routes 

needed to be adjusted during the sampling sessions due to safety. Eighty percent of the 

time-activity records were at the low level of compliance (<50% agreement between the 

investigators’ records vs. community participants’ records). The investigator observed 

some deficiencies pertaining to the time-activity recording of community participants, 

which included one participant not documenting the timestamp of each recorded PM 

generating sources observed during the sampling event; one participant recording only 

PM2.5 readings at specific timestamps but not the time-activity data during sampling; 

and one participant recording only the sampling start time but no other information, in 

addition to inserting the wrong date for the sampling event. The feasibility assessment 

results suggested a significant drop in the percentage of participants who had correctly 

placed the sensors in the breathing-zone complying with the study protocol from 15 
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(summer air sampling events) to 5 (winter air sampling events), mostly participants not 

complying with the study protocol placed one unit of AirBeam sensors on their left 

shoulder and the other on their right shoulder as opposed to place two units tandemly 

on their right shoulder in the breathing-zone as instructed in the study protocol. 

Moreover, the winter time-activity pattern records were missing, with an exception of 

two sessions in LV. These records were retrieved from the AirCasting website.  

4. Performance of Low-Cost Sensors in Community Air 

Monitoring  

The intra-sampler performance of AirBeam and Terrier sensors was 

investigated by examining the correlation between two of the same sensors operating in 

the breathing-zone of the participant in the same side of the shoulder (AirBeam sensor 

on the right and Terrier sensor on the left shoulder) as shown in Figure 8-11 and 

Appendix G. As instructed in the study protocol, each type of sensor was placed 

consistently on the same side of the shoulder across all sampling events not to add 

additional variability to the data collected. However, logistically, among 39% (n=13) of 

participants not complying with the study protocol in correctly placing the sensors in the 

breathing-zone, 15% (n=2) operated only one unit of AirBeam sensor placing on their 

left shoulder in their breathing-zone during the sample sessions, while 77% (n=10) 

placed one AirBeam on their left shoulder and the other on their right shoulder in the 

breathing-zone. The collected PM2.5 concentrations from all sampling sessions with 

two units of AirBeam operated was included in the intra-sampler performance 

assessment. The intra-sampler comparisons suggested, overall, a moderate correlation 

between the two units of AirBeam measuring PM2.5 (R2=0.51), two units of Terrier 
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measuring CO2 (R2=0.51), and two units of Terrier measuring NO (R2=0.67). However, 

a weak correlation between two units of Terrier measuring CO (R2=0.19) was obtained. 

R2 values had variability across the sampling events in each community ranging from 

0.12 for PC to 0.57 for SE (AirBeam), 0.12 for SE to 0.97 for PC (Terrier-CO2), 0.17 for 

SE to 0.98 for PC (Terrier-NO), and 0.06 for LV, 0.93 for SL (Terrier-CO) (see Figure 8 

to 11, Appendix G).  

D. Discussion 

The uniqueness of this study included the full engagement of communities in 

planning and performing air monitoring. The community organizers, who were trained by 

the investigators on how to properly operate the sensors and conduct air monitoring, 

trained their community residents on study protocols, how to perform air monitoring, 

how to record the time-activity data manually and electronically, how to save collected 

data in a file using the AirCasting application on their phone, and how to upload the file 

containing data to cloud for retrieval from the online Aircasting platform. The feasibility 

assessment tool was deployed to obtain an understanding of the practicality of 

employing the sensors among community residents in the Chicago area communities, in 

addition to evaluating the effectiveness of the train-the-trainer approach. The findings 

suggested that, overall, participants were highly comfortable in using sensors and 

complied with the general air sampling procedures. However, some concerns, which 

were observed during the shadowed air monitoring sessions, were noted and these 

included the improper placement of the sensors as instructed in the sampling protocol 

and the low level of participant compliance with recording the time-activity data during 

sampling events. This might be due to having to multi-task during air monitoring that 
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may have distracted the participants from observing and recording the air pollution 

sources. Team sampling may be one of the approaches that can remedy this deficiency 

and improve the compliance with sampling protocol. Approximately 80% of the 

participants preferred documenting time-activity data manually by utilizing the 

observation log sheet rather than taking pictures and notes of the PM generating 

sources along the sampling route and saving this information as an electronic record in 

the AirCasting application. The findings highlight an important need for training of citizen 

scientists to collect representative data for the time-activity pattern recording. We 

observed no correlation between measured PM2.5 personal exposures and the heavy-

duty vehicle density based on the methods utilized. This may be an artifact of: 1) the 

manual heavy duty vehicle counts data collection method used in the study instead of 

digital radar meter, or pneumatic road tube methods that provide more precision and 

accuracy; and 2) the small sample size since the manual traffic count occurred only in 

20% of the total sampling events.   

A study conducted by Matkovic and colleagues observed technical issues during 

sampling events including connecting AirBeam sensors with the AirCasting application 

and data synchronization. In addition, data recording was very demanding as it required 

the participants to start, stop, and properly save the session, as well as to check 

whether the recording had occurred or was disrupted (Matkovic et al., 2017). These 

issues emphasized the critical need for training on how to operate the sensors in a step-

by-step fashion with hands-on experiences and making user-friendly sensor operating 

manuals available to participants. Our results indicate that the thorough step-by-step 

training provided to the community organizers by the research team facilitated a high 
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level of comfort in using the sensors by the participants, which also provide evidence for 

the effectiveness of the train-the-trainer approach followed in the current study. The 

previous study conducted by Duvall et al. reinforced the necessity of training and 

observed the challenges in remembering how to operate sensors due to the lag 

between training and sampling events (Duvall et al., 2016). In the present study, the 

investigators held refreshing training sessions to community organizers prior to the 

second phase (Winter 2018) of sampling efforts to remedy this potential problem. 

During the winter sampling, two out of four communities utilized AirBeam2, the new 

generation of AirBeam; however, the community organizers were not trained by the 

investigators on how to operate the AirBeam2 as they were trained for AirBeam. Even 

though the concept of the sensor operation was not significantly different, apart from the 

update of the AirCasting application display, a high level of comfort was observed 

among the participants using the new generation of AirBeam sensors in the winter 

sampling efforts. Another improvement of the updated version of the AirCasting 

application for the AirBeam sensor was the process of saving the sampling session prior 

to the start of the sampling session as opposed to the end of the sampling session 

employed in the earlier and original model of AirBeam. This would lessen the burden of 

remembering to save the session at the end and preventing losing data unnecessarily. 

However, during the winter sampling, the updated AirCasting application had just been 

launched with some level of instability. The investigators observed the several 

application crashes and disconnections between the sensors and the application. This 

could be one of the main causes of the incomplete events in the winter sampling 

sessions, which was witnessed in the two communities (PC and SL). The present study 
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highlighted and confirmed the value of the train-the-trainer approach which is in 

agreement with the ongoing air quality citizen science programs including the “Los 

Angeles Public Library Air Sensor Loan Program” and the “Engaging youth and 

fostering leadership through the Imperial Air Project youth program” (USEPA, 2018).  

Several studies have attempted to assess the low-cost sensor performance; 

however, only a few of them focused on sensor evaluations for personal exposure 

monitoring, particularly with citizen scientist participation. The current study is the first 

study that evaluated the intra-sampler performance of low-cost sensors in the field 

settings and provided valuable information on the performance of two mobile low-cost 

sensors, one for PM2.5 monitoring (AirBeam) and the other for gaseous air pollutant 

monitoring (Terrier) for personal air monitoring by citizens. Across all sampling events, 

AirBeam had a moderate to high intra-sampler variability, Terrier measuring 

NO/CO/CO2 had a low to high intra-sampler variability. Several previous studies, in 

addition to the SASA collocation study performed as part of this dissertation (see 

Chapter IV), observed a high correlation among units of the AirBeam sensor (R2>0.8) 

(Borghi et al., 2018; DeWitt et al., 2020; Feinberg et al., 2018; Jiao et al., 2016; 

Mukherjee et al., 2017; Mukherjee et al., 2019; SCAQMD, 2015). The findings from the 

84-hour collocated testing for Terrier sensor performances in the SASA study 

suggested Terrier sensor had a low to high intra-sampler variability depending on the 

gaseous pollutant measured. Terrier sensor measuring CO2 had the lowest intra-

variability (R2=0.65-0.92), followed by NO (R2=0.52-0.91) and CO (R2=0.29). The intra-

sampler variability of AirBeam and Terrier sensors observed in this study were greater 

than those of the previous studies. This might be due to the additional variability 
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introduced by operating the sensors in a mobile platform as opposed to a stationary air 

monitoring platform employed in the previous studies. Another cause could be the 

different sampling orientation with respect to the incoming air flow for the two sensor 

units, which operated simultaneously, as the participant recorded concentration data 

along a pre-determined sampling route. The participants’ movement while conducting 

the air monitoring along the sampling route could slightly shift the sampling orientation 

of each unit of the sensors resulting in measurement discrepancies between the two 

units (Mukherjee et al., 2017). No studies have yet reported intra-sampler performance 

data for AirBeam and Terrier sensors operating in the breathing-zone in mobile air 

monitoring. The previous studies assessed AirBeam performance at the stationary 

sampling locations. Terrier sensor has not been evaluated its performance in the field 

conditions prior the SASA collocation study. Thus, there might be a limitation to 

compare our results to those published in the literatures.      

Citizen science is a very powerful tool for addressing public health issues 

including air quality concerns. Citizen science air monitoring provides reliable exposure 

information corresponding to the individuals’ behaviors and activities (Mahajan et al., 

2020). The unequal distribution of exposures across different groups of population, 

which might be due to one’s socioeconomic status, travel behaviors, and living and 

health conditions, emphasizes the need for personal exposure monitoring (Liang et al., 

2019). Engaging in air monitoring sensors can raise awareness and the belief in the risk 

and severity of air pollution (Oltra, Sala, Boso, & Asensio, 2017). This study provides an 

improved understanding on the feasibility of using the low-cost sensors by community 

members and the reliability of the low-cost sensors (AirBeam and Terrier) for the 
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personal exposure assessments in support of exposure and health risk assessment 

studies, environmental equity and justice analysis, community empowerment, and 

public health protection. Moreover, while our study offers information pertaining to 

approaches implemented for assessing the feasibility of employing two low-cost air 

sensors for personal exposure assessment,  it could also be used as a prototype for the 

assessment of the feasibility of employing other low-cost air sensors by community 

organizations in support of citizen science projects focused on community-level air 

quality investigations and exposure assessment studies. 

E. Conclusion 

Our findings demonstrated that the community residents in four communities 

across the Chicago Metropolitan area successfully used the low-cost sensors for 

personal air quality monitoring. We further demonstrated that it is feasible to employ the 

sensors for local air quality assessment in support of citizen science projects with 

careful planning, training, rigorous implementation of QA/QC protocols while working in 

unison with community organizations and resident participants. The two low-cost 

sensors (AirBeam sensor for PM2.5 monitoring; and Terrier sensor for CO/NO/CO2 

monitoring) demonstrated low to high precision in collecting air quality data across 

different spatial and temporal conditions. The low-cost sensors were useful in assessing 

the personal exposures corresponding to time-activity data and addressing public health 

issues pertaining to air quality that warrant the comprehensive evaluation of air pollution 

relevant to certain locations and activities. However, further studies are needed to 

address the knowledge gap and the uncertainties impacting the low-cost sensor 
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performance in mobile air monitoring applications for local air quality assessment and 

policy advocacy and outreach by the citizens and the community organizations. 
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TABLE I. 1-MINUTE MEAN CONCENTRATIONS OF PM2.5/CO/CO2/NO MEASURED 
BY AIRBEAM/TERRIER, SUMMER 2017a 

Sampling 
sessions 

Sampling start 
time 

Sampling stop 
time  

Obs time 
(min) 

PM2.5 (µg/m3) 

    
N %Missing Mean (sd) Min-Max 

LV1 6/21/2017 9:13 6/21/2017 10:33 80 71 11.2 6.4 (8.2) 1.6-54.9 
    

71 11.2 7.8 (7.5) 1.8-47.9 

LV2 6/22/2017 18:09 6/22/2017 19:13 64 64 0.0 5.6 (1.1) 3.1-9.1 
    

64 0.0 5.9 (1.5) 3.4-11.3 

LV3 6/15/17 18:04 6/15/17 19:04 60 60 0.0 7.5 (2.0) 3.4-14.9 
    

60 0.0 6.8 (2.1) 3.1-14.7 

LV4 6/16/2017 19:06 6/16/2017 19:38 32 31 3.1 5.5 (1.8) 3.2-11.2 
    

NA NA NA NA 

SE1 7/21/17 9:53 7/21/17 10:41 48 48 0.0 12.39 (3.7) 6.5-20.9 
    

48 0.0 10.0 (2.6) 5.8-15.7 

SE2 7/19/17 9:03 7/19/17 10:03 60 60 0.0 15.17 (3.0) 11.8-33.4 
    

60 0.0 13.5 (2.8) 8.9-29.2 

SE3 7/21/17 8:43 7/21/17 9:32 49 23 53.1 12.7 (3.9) 8.2-27.1 
    

23 53.1 13.6 (3.8) 8.0-26.9 

SE4 7/19/17 7:35 7/19/17 8:37 62 62 0.0 12.1 (1.7) 9.7-17.4 
    

NA NA NA NA 

PC1 8/28/17 12:26 8/28/17 13:17 51 51 0.0 16.1 (1.8) 12.8-20.9 
    

NA NA NA NA 

PC2 8/16/17 13:49 8/16/17 14:49 60 17 71.7 11.3 (0.6) 10.0-12.6 
    

17 71.7 13.7 (0.6) 12.7-14.4 

PC3 8/18/17 12:34 8/18/17 13:34 60 60 0.0 5.6 (1.0) 3.8-7.8 
    

NA NA NA NA 

PC4 8/18/17 16:05 8/18/17 16:31 26 26 0.0 8.3 (2.1) 5.8-18.1 
    

NA NA NA NA 

SL1 9/25/17 17:03 9/25/17 17:59 56 48 14.3 8.4 (1.6) 6.4-15.7 
    

48 14.3 6.3 (1.2) 3.8-9.0 

SL2 9/25/17 17:13 9/25/17 18:19 66 30 54.5 6.1 (0.8) 4.7-8.5 
    

30 54.5 6.2 (1.1) 4.6-8.9 

SL3 9/22/17 9:00 9/22/17 9:53 53 53 0.0 11.2 (4.7) 1.3-20.1 
    

53 0.0 19.6 (2.4) 10.0-25.2 

SL4 9/22/17 8:51 9/22/17 9:49 58 58 0.0 17.1 (3.7) 6.7-31.8 

    58 0.0 14.4 (3.4) 5.9-31.9 
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TABLE I. 1-MINUTE MEAN CONCENTRATIONS OF PM2.5/CO/CO2/NO MEASURED 
BY AIRBEAM/TERRIER, SUMMER 2017 a (continued) 

Sampling 
sessions 

CO (ppm) CO2 (ppm) 

 
N %missing mean (sd) Min-Max N %missing mean (sd) Min-Max 

LV1 26 67.5 0.4 (0.1) 0.3-0.7 32 60.0 778.4 (304.7) 445.7-1601.0 
 

26 67.5 0.3 (0.1) 0.2-0.5 32 60.0 726.2 (239.3) 507.1-1467.0 

LV2 64 0.0 0.3 (0.1) 0.1-0.6 64 0.0 471.7 (123.4) 346.4-901.8 
 

64 0.0 0.3 (0.1) 0.2-0.6 64 0.0 571.2 (123.5) 440.7-950.6 

LV3 60 0.0 0.3 (0.1) 0.2-0.6 60 0.0 821.7 (225.5) 539.6-1633.0 
 

60 0.0 0.6 (0.1) 0.3-1.0 60 0.0 875.2 (183.9) 575.8-1335.0 

LV4 28 12.5 0.4 (0.1) 0.3-0.6 NA NA NA NA 
 

28 12.5 0.3 (0.1) 0.1-0.5 NA NA NA NA 

SE1 48 0.0 1.1 (-0.6) 0.4-2.1 39 18.7 644.6 (168.8) 500.9-1130.0 
 

NA NA NA NA 39 18,7 499.3 (183.8) 363.7-1314.0 

SE2 NA NA NA NA NA NA NA NA 
 

NA NA NA NA NA NA NA NA 

SE3 NA NA NA NA 25 49.0 648.7 (128.3) 494.8-953.4 
 

23 53.1 0.5 (0.7) 0.2-3.3 31 36.7 632.1 (212.3) 398.4-1121.0 

SE4 NA NA NA NA NA NA NA NA 
 

NA NA NA NA NA NA NA NA 

PC1 NA NA NA NA 51 0.0 557.0 (314.3) 444.3-2413.0 
 

NA NA NA NA 51 0.0 640.1 (503.2) 479.2-522.5 

PC2 NA NA NA NA NA NA NA NA 
 

NA NA NA NA NA NA NA NA 

PC3 NA NA NA NA 56 6.7 494.2 (9.3) 479.2-522.5 
 

NA NA NA NA NA NA NA NA 

PC4 NA NA NA NA NA NA NA NA 
 

NA NA NA NA NA NA NA NA 

SL1 NA NA NA NA 43 23.2 495.1 (132.2) 354.1-936.6 
 

48 14.3 0.3 (0.1) 0.2-0.5 43 23.2 601.5 (138.7) 480.7-1039.0 

SL2 30 54.5 0.3 (0.0) 0.3-0.4 30 54.5 618.3 (76.6) 498.9-822.7 
 

NA 
 

NA NA 17 74.2 923.1 (404.8) 541.9-1969.0 

SL3 53 0.0 0.6 (0.2) 0.3-1.3 53 0.0 635.1 (368.3) 502.9-2656.0 
 

53 
 

0.4 (0.2) 0.3-0.9 53 0.0 463.0 (340.9) 317.5-2242.0 

SL4 58 0.0 0.2 (0.1) 0.2-0.5 58 0.0 739.4 (400.7) 491.7-2435.0 

 58 0.0 0.4 (0.2) 0.2-1.5 58 0.0 729.4 (254.0) 520.1-1875.0 
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TABLE I. 1-MINUTE MEAN CONCENTRATIONS OF PM2.5/CO/CO2/NO MEASURED 
BY AIRBEAM/TERRIER, SUMMER 2017a (continued) 

Sampling 
sessions 

NO (ppb) 

 
N %missing mean (sd) Min-Max 

LV1 26 67.5 0.9 (0.1) 0.8-1.3 
 

26 67.5 1.2 (0.3) 0.9-2.5 

LV2 64 0.0 0.9 (0.2) 0.4-1.3 
 

64 0.0 0.6 (0.1) 0.3-0.8 

LV3 60 0.0 0.4 (0.4) 0.2-2.6 
 

60 0.0 1.0 (1.1) 0.4-7.9 

LV4 NA NA NA NA 
 

NA NA NA NA 

SE1 48 0.0 0.4 (0.4) 0.2-2.5 
 

48 0.0 0.1 (0.1) 0.1-0.6 

SE2 NA NA NA NA 
 

NA NA NA NA 

SE3 31 36.7 0.3 (0.05) 0.2-0.5 
 

31 36.7 0.3 (0.03) 0.3-0.4 

SE4 60 3.2 1.4 (1.7) 0.4-10.3 
 

NA NA NA NA 

PC1 51 0.0 0.8 (1.0) 0.3-5.2 
 

51 0.0 2.0 (2.4) 0.6-13.7 

PC2 NA NA NA NA 
 

NA NA NA NA 

PC3 56 6.7 1.4 (0.6) 0.8-3.3 
 

NA NA NA NA 

PC4 NA NA NA NA 
 

NA NA NA NA 

SL1 44 21.4 0.8 (0.1) 0.6-1.7 
 

44 21.4 1.6 (0.3) 1.2-2.5 

SL2 30 54.5 0.6 (0.1) 0.5-0.8 
 

NA NA NA NA 

SL3 53 0.0 1.0 (1.4) 0.2-7.6 
 

53 0.0 1.5 (1.4) 0.7-7.1 

SL4 58 0.0 1.6 (1.7) 0.7-8.4 

 58 0.0 0.6 (0.5) 0.3-2.7 

 

a NA: not applicable/no records 
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TABLE II. HEAVY-DUTY VEHICLES AND OTHER PM SOURCES COUNTED 
DURING SAMPLING SESSIONS, SUMMER 2017 

Sampling 
sessions 

Observation 
time (min) 

# of 
HDVs 

# of other 
PM 

generating 
sources 

Traffic Conditions HDV 
density 

(counts/min) 

LV1 80 90 0 heavy 1.1 

LV2 64 39 0 medium to heavy 0.6 

LV3 60 18 0 medium 0.3 

LV4 32 27 0 heavy 0.8 

SE1 48 6 0 light 0.1 

SE2 60 76 0 medium to heavy 1.3 

SE3 49 121 0 heavy 2.5 

SE4 62 39 0 medium 0.6 

PC1 51 35 1 light to medium 0.7 

PC2 60 39 0 light to medium 0.7 

PC3 60 869 0 heavy 14.5 

PC4 26 4 0 light 0.2 

SL1 56 31 5 medium 0.6 

SL2 66 22 5 medium to heavy 0.3 

SL3 53 23 1 medium to heavy 0.4 

SL4 58 27 7 medium to heavy 0.5 
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TABLE III. 1-MINUTE MEAN PM2.5 CONCENTRATIONS MEASURED BY AIRBEAM AND HEAVY-DUTY VEHICLES 
AND PM SOURCES, WINTER 2018 

Sampling 
sessions 

Start time Stop 
time 

Obs 
time 
(min) 

PM2.5 (µg/m3) # of 
HDVs 

# of other 
PM 

generating 
sources 

Traffic 
Conditions 

HDV density  
(counts/min) 

    
N %missing Mean 

(sd) 
Min-Max 

    

LV1w 3/23/2018 6:29 7:06 37 31 16.2 7.1 (2.1) 3.5-11.6 31 0 medium to heavy 0.8 

LV2w 3/23/2018 18:00 19:00 60 59 1.7 3.3 (3.3) 1.0-21.2 26 1 medium to heavy 0.4 

LV3w 3/26/2018 7:00 7:38 38 37 2.6 10.0 (1.9) 6.3-14.2 101 0 heavy 2.7 

LV4w 3/26/2018 17:00 18:00 60 60 0.0 13.7 (2.1) 10.9-21.3 18 0 light to medium 0.3 

SE1wa 3/23/2018 11:15 11:45 30 28 6.7 1.9 (1.0) 0.7-4.2 53 0 medium to heavy 1.8 
    

28 6.7 2.1 (1.9) 0.9-4.9 
    

SE2wa 3/23/2018 12:55 13:30 35 35 0.0 3.7 (2.3) 1.2-10.8 84 0 heavy 2.4 
    

35 0.0 3.8 (2.6) 1.0-13.7 
    

SE3wa 3/23/2018 9:55 10:36 41 39 4.9 1.2 (0.3) 0.7-2.1 32 1 medium 0.8 
    

39 4.9 1.0 (0.2) 0.7-1.7 
    

PC1w 5/4/2018 11:10 11:56 46 35 23.9 2.2 (0.6) 1.7-3.6 289 0 heavy 6.3 

PC2w 5/4/2018 12:26 13:10 44 44 0.0 4.1 (1.0) 2.1-7.2 9 0 light to medium 0.2 

PC3w 5/4/2018 13:46 14:31 45 41 8.9 4.5 (1.0) 3.0-8.9 54 0 medium 1.2 

SL1w 4/25/2018 8:35 9:35 60 32 46.7 2.3 (0.7) 1.0-4.1 37 0 medium 0.6 

SL2w 4/25/2018 9:55 10:42 47 15 68.1 2.3 (0.5) 1.6-3.3 22 0 medium 0.5 

SL3w 4/25/2018 11:03 12:10 67 22 67.2 2.2 (0.6) 1.2-3.6 20 0 medium 0.3 

SL4w 4/27/2018 8:49 9:55 66 42 36.4 3.5 (1.1) 2.0-8.6 36 0 medium 0.5 

 

aOnly SE community operated two units of AirBeam sensor and successfully retrieved the data from both units. More detail of the 
successful air sampling event was described in the Appendix F. 
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TABLE IV. PERCENTAGE OF PARTICIPANTS OBSERVED UNDER EACH FEASIBILITY ASSESSMENT METRICa 

Feasibility Assessment Parameters Overall (N=33) Summer (N=16) Winter (N=17) 

n (%) n (%) n (%) 

Correctly Placement of Sensors Yes 20 (61) 15 (94) 5 (29) 

No 13 (39) 1 (6) 12 (71) 

Correctly Following Sampling Route Yes 32 (97) 15 (94) 17 (100) 

No 1 (3) 1 (6) 0 (0) 

Level of Comfortable in Using Sensors High 27 (82) 12 (75) 15 (88) 

Medium 4 (12) 3 (19) 1 (6) 

Low 2 (6) 1 (6) 1 (6) 

Periodically Checking the Sensors  Yes 28 (85) 13 (81) 15 (88) 

No 5 (15) 3 (19) 2 (12) 

Recording During Sampling Period Mobile application 4 (12) 2 (12) 2 (12) 

Observation log 
sheet 

27 (82) 14 (88) 13 (76) 

Mixed 0 (0) 0 (0) 0 (0) 

Not recording 2 (6) 0 (0) 2 (12) 

Compliance for Recording Time-Activity High 2 (6) 1 (6) 1 (6) 

Medium 2 (6) 2 (12.5) NA 

Low 11 (33) 11 (69) NA 

NA 18 (55) 2 (12.5) 16 (94) 

Level of Compliance for Sampling Procedure High 32 (97) 15 (94) 17 (100) 

Medium 1 (3) 1 (6) 0 (0) 

Low 0 (0) 0 (0) 0 (0) 
 

aNA: not applicable/no records 
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Figure 1. Map of study communities in the Chicago metropolitan area 
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Figure 2. Side-by-side air monitoring sensors (two AirBeam (black) and two Terrier 
(purple) sensors in the participant’s breathing-zone 
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Figure 3. 1-minute PM2.5 mean concentrations (µg/m3) by HDV density by each sampling session of each community 
during summer, 2017. Three classes of HDV density i.e., class 1: <0.4 (25th percentile), class 2: 0.4-1.2, and class 3: >1.2 
(75th percentile) counts/minute. 



64 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 1-minute CO mean concentrations (ppm) by HDV density by each sampling session of each community during 
summer, 2017. Three classes of HDV density i.e., class 1: <0.4 (25th percentile), class 2: 0.4-1.2, and class 3: >1.2 (75th 
percentile) counts/minute. 

 

 



65 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 1-minute NO mean concentrations (ppb) by HDV density by each sampling session of each community during 
summer, 2017. Three classes of HDV density i.e., class 1: <0.4 (25th percentile), class 2: 0.4-1.2, and class 3: >1.2 (75th 
percentile) counts/minute. 
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Figure 6. 1-minute CO2 mean concentrations (ppm) by HDV density by each sampling session of each community during 
summer, 2017. Three classes of HDV density i.e., class 1: <0.4 (25th percentile), class 2: 0.4-1.2, and class 3: >1.2 (75th 
percentile) counts/minute. 
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Figure 7. 1-minute PM2.5 mean concentrations (µg/m3) by HDV density by each sampling session of each community 
during winter, 2018. Three classes of HDV density i.e., class 1: <0.4 (25th percentile), class 2: 0.4-1.2, and class 3: >1.2 
(75th percentile) counts/minute.
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Figure 8. The correlation plots between 1-minute PM2.5 mean concentrations 
measured by two units of AirBeam during summer air monitoring efforts by each 
community (a) and across all communities (b). Number of observations: 179 (LV), 131 
(SE), 17 (PC), and 189 (SL).  
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Figure 9. The correlation plots between 1-minute CO2 mean concentrations measured 
by two units of Terrier during summer air monitoring efforts by each community (a) and 
across all communities (b). Number of observations: 158 (LV), 45 (SE), 51 (PC), and 
114 (SL). 
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Figure 10. The correlation plots between 1-minute NO mean concentrations measured 

by two units of Terrier during summer air monitoring efforts by each community (a) and 

across all communities (b). Number of observations: 151 (LV), 80 (SE), 55 (PC), and 98 

(SL). 
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Figure 11. The correlation plots between 1-minute CO mean concentrations measured 

by two units of Terrier during summer air monitoring efforts by each community (a) and 

across two communities (b). Number of observations: 180 (LV), and 54 (SE). 
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IV. LOW-COST AIR SENSOR PERFORMANCE ASSESSMENT IN FIELD 

CONDITIONS AT ILLINOIS ENVIRONMENTAL PROTECTION AGENCY AIR 

MONITORING SITE 

A. Introduction 

Air pollution has been considered as a public health concern since several 

epidemiologic studies demonstrated the association between short-term and long-term 

air pollution exposures, even at low concentrations, and ranges of adverse health 

outcomes such as cardiovascular diseases, respiratory issues, lung cancer, adverse 

birth outcomes, and overall quality of life (Bentayeb et al., 2015; Cohen et al., 2017; Lin, 

H. et al., 2018; Pope et al., 2011; Wu et al., 2016). Overall, air quality has been 

improved across the U.S. However, in many areas, pollution levels still exceed the 

National Ambient Air Quality Standards (NAAQS) of at least one of the six criteria air 

pollutants (USEPA, 2019).  

Air quality monitoring has been shifted to more miniaturized and low-cost 

sensors due to an inadequate number of traditional fixed-site air monitoring stations 

conducted by government agencies. Low-cost sensors enhance the ability to 

understand air quality in a wide range of spatial and temporal conditions; in addition to 

advancing personal exposure assessment studies. These sensors will increase 

accessibility of  air quality data among communities and laypeople (Clements et al., 

2017; Kumar et al., 2015; Snyder et al., 2013; Steinle, Reis, & Sabel, 2013). However, 

there are several challenges in employing low-cost sensors including the development 

of sensors producing high quality data and the evaluation of sensor performances in 

environmental and occupational settings, in addition, no standards and certifications of 
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addressing a low-cost sensor performance exist (Snyder et al., 2013; Williams et al., 

2019; Woodall et al., 2017).  

Several studies have attempted to assess the low-cost air sensor performance 

against their respective Federal Reference Method (FRM) and Federal Equivalent 

Method (FEM) monitors. AirBeam sensor has demonstrated poor to high correlations 

(R2) with the reference instruments i.e., Beta Attenuation Method (BAM) and Well 

Impactor Ninety-Six (WINS) monitors with R2=0.21-0.83 in various spatial and temporal 

conditions (Borghi et al., 2018; DeWitt, Crow, & Flowers, 2020; Feenstra et al., 2019; 

Feinberg et al., 2018; Jiao et al., 2016; Mukherjee et al,, 2017; SCAQMD, 2015a). 

PurpleAir sensor has demonstrated poor to high correlations with FEM BAM, GRIMM, 

and Tapered Element Oscillating Microbalance (TEOM) monitors with R2=0.32-0.95 

(Feenstra et al., 2019; Kelly et al., 2017; Magi et al., 2020; Malings et al., 2020; 

SCAQMD, 2016). MetOne Neighborhood has demonstrated poor to moderate 

correlations with FEM BAM and GRIMM with  R2=0.41-0.67 (Malings et al., 2020; 

SCAQMD, 2015b). AerQual S500 has shown a high correlation with FEM with R2=0.72-

0.96 (DeWitt et al., 2020; Lin et al., 2015; Lin et al., 2017). Terrier sensor used in this 

study combines the following three sensors: Alphasense CO-B4, Alphasense NO-B4, 

and ELT S300-CO2. In spite of a lack of evaluation of Terrier performance in the 

scientific literature, several studies have evaluated the performance of one of its three 

sensors. Alphasense CO-B4 showed low intra-variability (R2>0.9) and moderate to high 

degree of correlation with the reference instruments i.e., FRM and FEM (R2>0.6) 

(Borrego et al., 2018; Jiao et al., 2016; Sun et al., 2016). Alphasense NO-B4 
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demonstrated a moderate to high correlation with the FRM and FEM (R2>0.7) (Borrego 

et al., 2018; Jiao et al., 2016; Lewis et al., 2016).   

Previous studies emphasized the importance of the collocation studies to 

address how low-cost sensors perform compared to the reference instruments 

operating in the fields. This knowledge is essential for establishing field calibration 

parameters to minimize the inter-variability between the measurements of low-cost 

sensors and reference instruments. In addition, the calibration parameters might change 

among different times and locations (Castell et al., 2018; Clements et al., 2019; Malings 

et al., 2020; Mukherjee et al., 2017). Several collocation studies have been done in 

many areas across the U.S. and worldwide; however, three low-cost PM (AirBeam, 

MetOne Neighborhood, PurpleAir) and two low-cost gaseous pollutant (Terrier and 

AeroQual S500) sensors utilized in the present study have not been tested side-by-side 

against the FRM and FEM monitors in the Midwest area. The present study aims to fill 

this critical data gap and it consists of two components. One component was the 

collocation study, which was conducted at the Northbrook Illinois Environmental 

Protection Agency (IEPA) air monitoring site from October 6 to December 8, 2017. 

Another component was evaluation of feasibility of air quality sensor use by community 

residents for outdoor air quality investigations and personal exposure assessment 

studies, is an integral component of the Quality Assurance and Quality Control (QA/QC) 

protocol of the Shared Air/Shared Action (SASA) project (see Chapter III).  

 This collocation study provided valuable information pertaining to low-cost PM 

and gaseous pollutant sensor performance against EPA FRM/FEM monitors. The inter- 

and intra-sampler variabilities of these low-cost sensors were assessed in order to gain 
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an understanding of their reliability in support of future exposure assessment studies. 

These results will facilitate future efforts in the calibration and use of low-cost sensor 

systems in different spatial and temporal conditions. 

B. Methods 

1. Collocated Air Monitoring Efforts at the Illinois Environmental 

Protection Agency (IEPA) Monitoring Site 

All low-cost air monitoring sensors included both mobile and stationary air 

sensors for PM (i.e., PM10 and PM2.5) and gaseous pollutants (CO, CO2, NO, NO2, 

and O3) utilized in the SASA project were selected based on an extensive literature 

review, consultation with the EPA staff, and the performance review of the commercially 

available sensors tested by the EPA and the South Coast Air Quality Management 

District (SCAQMD) in their respective laboratories and/or in field settings. All applied 

low-cost sensors were listed in Table V. The collocation study was conducted at a fixed 

air monitoring site operated by the IEPA located at Northbrook Water Plant, Northbrook, 

IL from October 6 to December 8, 2017. This air monitoring site was selected due to 

being highly equipped with monitors measuring CO, NO/NOy, O3, PM10, PM2.5, PM2.5 

speciation, SO2, VOC, Toxics, and Meteorological conditions in the study region i.e., 

Cook County, IL. At the IEPA air monitoring site, two or three of each study low-cost 

sensors were placed next to their respective EPA FRM/FEM monitors (see Table VI and 

Figure 12) to assess the inter- and intra-variability of low-cost air sensors. The air 

monitoring effort at the IEPA site had to be scheduled based on the availability of the 

study sensors as they were not needed in support of the community air monitoring 

efforts. AeroQual S500 measured ozone during October 6 to 27, 2017 before the sensor 
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was changed to measure NO2 from October 27 to December 8, 2017. In addition, the 

intra-variability performance assessment of MetOne Neighborhood Monitor was limited 

to PM2.5 concentration measurement due to only one unit of MetOne sampler was 

available for PM10 monitoring. AirBeam and Terrier sensors (three units of each) were 

operated for a short period of time denoted as “Sub-Experiment”, which is 

approximately 84 hours during the beginning of the sampling period (October 12 to 20 

2017) alongside with other low-cost sensors and the FRM/FEM instruments. The 

completed two-month sampling period was denoted as “Overall-Experiment”.    

2. Air Quality Data Retrieval and Management  

Air quality data collected by each low-cost sensor were retrieved from 

different platforms. AirBeam and Terrier sensor collected data were transferred from the 

sensors to cloud using manufacturer developed algorithms and were downloaded from 

the AirCasting website. AeroQual S500 collected data was manually downloaded from 

the sensors using the manufacturers’ program. The MetOne Neighborhood collected 

data was transferred to cloud using Comet software developed by MetOne Instruments, 

INC. and downloaded from the manufacturer’s platform, and PurpleAir collected data 

was retrieved from the PurpleAir website. Among the several parameters collected by 

PurpleAir sensor, PM2.5_ATM and PM10_ATM, the average particle density for outdoor 

particulate matter (PM2.5 and PM10, respectively) according to the manufacturer’s user 

guide, were utilized in the analysis since the air monitoring efforts in the present study 

were performed outdoors. The air quality data collected by IEPA FRM/FEM monitors 

were retrieved from the EPA website for specific air pollutants and air monitoring 

timeframes. All retrieved data were cleaned and managed in Microsoft Excel and R 
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version 3.6.3. The missing data of each dataset obtained from each unit of sensor were 

identified. Each sensor measurement, with the exception of AirBeam and Terrier 

sensors, was missing in approximately no greater than 5% of total collected data points. 

To maximize data points included in the data analysis, AirBeam recorded data was 

properly treated and imputed for the missing 1-second data following the criteria 

delineated in Appendix H. PurpleAir sensor records the measurements with two 

channels (A and B) simultaneously. The correlation plots of measurements of each 

PurpleAir channel operated at IEPA Northbrook air monitoring site demonstrated a very 

high degree of correlation for both PM2.5 (R2>0.91) and PM10 (R2>0.94) (see Appendix 

I). Therefore, the average measurement of these two channels was utilized for the data 

analyses.   

3. Air Quality Data Analyses 

The collected air quality data retrieved from each sensor with different 

recording interval time were computed for 1-hour and 24-hour average concentrations 

by each unit and across all units of each type of sensor, which were designated as 

ABaver (for AirBeam), PAaver (for PurpleAir), MOaver (for MetOne Neighborhood), 

AQaver (for AeroQual), and TRaver (for Terrier), were used for descriptive statistical, 

intra- and inter-sampler performance, and regression model analyses. The flow chart 

summarizing data management procedure is shown in Figure 13. The collocated air 

quality data from different sensors was matched for the same timestamps throughout 

the air monitoring duration. Descriptive statistics of pollutant concentrations were 

calculated and documented. The precision of low-cost sensors (intra-sampler 

performance) was evaluated by means of pair-wise correlation plots between the 
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measurements of the different units of each type of sensor e.g., PM2.5 measured 

concentration of AirBeam-1 vs. AirBeam-2 vs AirBeam-3. Linear regression parameters 

including the correlation of determination (R2), slope, and intercept of the regression line 

were employed to determine the agreement between the units of each type of sensor. 

Two main approaches were carried out to determine the accuracy of low-cost sensors 

(inter-sampler performance) i.e., the conventional approach, which is commonly used 

by other researchers and published in the literatures in the air monitoring and exposure 

assessment/characterization studies, and the alternative approach, which is unique to 

the present study employing statistical parameters and modeling analyses. 

a) Conventional Approach 

  The inter-sampler comparisons between low-cost sensors and their 

respective instruments (e.g., PM2.5 measured concentration of MetOne vs. EPA FEM 

and PM2.5 measured concentration of PurpleAir vs. EPA FEM) were analyzed using 

linear regression statistics (slope, intercept, and correlation of determination) and 

measurement errors (Mean Absolute Error (MAE), Mean Bias Error (MBE), and Root 

Mean Square Error (RMSE)). The coefficient of determination (R2), which is accepted as 

a very strong correlation (R2 ≥0.9), a strong correlation (R2=0.7-0.89), a moderate 

correlation (R2=0.5-0.69), a weak correlation (R2=0.3-0.49), a very weak correlation 

(R2=0.1-0.29), and a no correlation (R2=0.0-0.09), in addition to the slope and intercept 

of the best-fit line were investigated (Collier-Oxandale et al., 2020). The slope being one 

and the intercept being zero indicate the perfect agreement between the low-cost 

sensor and the reference monitor measurements. Mean Absolute Error (Equation IV-1) 

is an average of absolute errors which are differences, in the absolute value, between 
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the measurements of the FRM/FEM monitors and the low-cost sensors indicating the 

magnitude of error. Mean Bias Error (Equation IV-2) is an average of bias errors, which 

are differences between the measurements of the FRM/FEM monitors and the low-cost 

sensors indicating whether low-cost sensors overestimate or underestimate the 

pollutant concentrations as compared to the FRM/FEM monitors. Root Mean Square 

Error (Equation IV-3) is a total square error indicating how each error influences the 

total in proportion to its square and how concentrated the data around the best-fit line. 

RMSE is more impacted by larger errors and sensitive to outliers. The ratio of the MBE 

and MAE indicates the proportion of the error due to the systematic error as opposed to 

the random error (Collier-Oxandale et al., 2020). 

Equation IV-1:   𝑀𝐴𝐸 =
1

𝑛
∑ |𝑥𝑡

𝑛
𝑖=1 − 𝑥𝑖| 

Equation IV-2:   𝑀𝐵𝐸 =
1

𝑛
∑ (𝑥𝑡

𝑛
𝑖=1 − 𝑥𝑖) 

Equation IV-3:   𝑅𝑀𝑆𝐸 = [
1

𝑛
∑ (𝑥𝑡 − 𝑥𝑖)

2𝑛
𝑖=1 ]

1/2

 

𝑥𝑡 is the measurement of the FRM/FEM monitor, 𝑥𝑖 is the measurement of the low-cost 

sensor, and 𝑛  is the number of the time-matched data pairs.  

b) Alternative Approach 

The alternative approach for evaluating the agreement between the low-

cost sensors and their respective reference instruments (i.e., FRM and FEM monitors) 

included the Bland-Altman plots (B-A plots) and Lin’s Concordance Correlation 

Coefficient (CCC). Based on B-A plots, the mean of differences between measurements 

of low-cost sensors and the FRM/FEM monitors closing to zero, in addition to having a 

narrow limit of agreement (95% confidence interval), suggest a good agreement 

between the low-cost sensor and FRM/FEM monitor (Bland & Altman, 1999; Bland & 
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Altman, 2010; Giavarina, 2015).  CCC consists of two components i.e., Pearson 

Correlation assessing the precision of measurements, and Bias Correction Factor (Cb) 

assessing the accuracy of measurements. CCC indicates an agreement between low-

cost sensors and the FRM/FEM monitors based on the similar criteria as other 

correlation coefficients including Pearson Correlation Coefficient (Akoglu, 2018): a high 

degree of agreement (CCC≥0.8); a moderate degree of agreement (CCC=0.6-0.8); and 

a low degree of agreement (CCC<0.6). Cb closer to one indicates a high degree of 

agreement between the best-fit-linear regression line and the line of equality between 

the measurements of FRM/FEM instruments and low-cost sensors (Lin Lawrence I-

Kuei, 1989). CCC and Cb were computed using the R version 3.6.3 package DescTools. 

Furthermore, impacts of weather conditions i.e., temperature and % 

relative humidity (%RH) on low-cost sensor performance were investigated employing 

the plots between bias error, which is the difference between the measurements of the 

FRM/FEM monitors and the low-cost sensors, and %RH or temperature. The slope of 

the linear regression line is expected to be zero and located on y=0 axis indicating no 

impacts of temperature or humidity on the sensor performances (Feenstra et al., 2019).  

The Multiple Linear Regression (MLR) coefficient parameters were computed and used 

to develop the correction equations employed to calculate estimated PM and gaseous 

pollutant concentrations based on low-cost sensor measurements adjusted for 

temperature and/or humidity. The inter-sampler comparisons were evaluated between 

the estimated concentrations and the concentration measured by FRM/FEM monitors.  
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C. Results 

1. Summary of Collected Air Quality Data 

The data recovery for 1- and 24-hour mean measured concentrations were 

>90% (for AeroQual) and ≥80% (for MetOne, PurpleAir, and AirBeam), while Terrier 

sensors had approximately 70% data recovery (see Table VII to IX). The AirBeam 

recording time interval is 1 second, while that of other sensors are 10 seconds or more; 

therefore, only AirBeam 1-second missing collected measurements were imputed, if 

required, following a stringent protocol delineated in Appendix H. This protocol 

minimized an inappropriate assumption making for those missing data points preventing 

the artificial under or over estimating of the mean PM concentrations. Less than 2% of 

the total data points (1-second PM2.5 measured concentrations) were imputed. The 

descriptive statistics of imputed and non-imputed datasets of AirBeam measurements 

were performed and no discrepancies between the two datasets were observed (see 

Appendix J). 

2. Descriptive Analysis of PM and Gaseous Pollutant 

Measurements 

The descriptive statistics of PM and gaseous pollutant concentrations, 

temperature, and %relative humidity (%RH) are shown in Table X to XII. Across all low-

cost PM sensors, measurements obtained from each unit of sensor were aligned with 

one another suggesting that study PM low-cost sensors had a low intra-sampler 

variability. The PM2.5 mean concentrations measured by MetOne Neighborhood 

ranged from 1.5 µg/m3 to 36.8 µg/m3 with a mean of 7.7 µg/m3 (1-hour mean), and from 

2.2 µg/m3 to 28.7 µg/m3 with a mean of 7.6 µg/m3 (24-hour mean), which were similar to 
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those measured by FEM and FRM. PM2.5 mean concentrations measured by PurpleAir 

ranged from 0.2 µg/m3 to 58.5 µg/m3 with a mean of 13.0 µg/m3 (1-hour mean), and from 

1.2 µg/m3 to 49.0 µg/m3 with a mean of 13.2 µg/m3 (24-hour mean), which were higher 

than those of FEM and FRM. The PM10 mean concentrations measured by PurpleAir 

were closer to FRM than those of MetOne Neighborhood. During the Sub-Experiment 

sampling effort, AirBeam measurements ranged from 1.4 µg/m3 to 30.9 µg/m3 with a 

mean of 6.2 µg/m3 (1-hour mean).  

Across all low-cost gaseous pollutant sensors, for AeroQual measuring 

NO2, and Terrier measuring CO, the readings obtained from each unit of sensor were 

similar. CO concentrations measured by one unit of Terrier were excluded from the 

analyses since all measured concentrations were zero. The NO2 mean concentration 

measured by AeroQual ranged from 0.4 ppm to 48.9 ppm with a mean of 21.5 ppm (1-

hour mean), and from 7.3 ppm to 36.8 ppm with a mean of 21.7 ppm (24-hour mean). 

The O3 concentrations measured by AeroQual ranging from 0.00 ppm to 0.05 ppm with 

a mean of 0.03 ppm were very similar to those of FEM. 

3. Low-Cost Sensors Performance 

a) Low-Cost PM Sensors Performance 

(1) PM Sensor Performance Evaluations by the 

Conventional Approach 

The correlation plots were generated between the measurements of different 

units of low-cost PM2.5 sensors for the intra-sampler comparison analysis. The low 

intra-variability was observed between the units of each type of PM2.5 sensor (R2=0.96-

1.00) (see Table XIII). The PM2.5 concentration time series plots demonstrated similar 
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trends of the measured concentrations among study PM2.5 sensors and FEM (see 

Figure 14). MetOne sensors were in agreement with the FEM, while PurpleAir sensors, 

in general, overestimated the FEM measurements. The pair-wise correlation plots were 

generated between measurements of low-cost sensors and FRM/FEM instruments for 

the inter-comparison analysis. MetOne and PurpleAir sensors had a moderate to strong 

correlation with FRM (R2=0.66-0.73) and a weak to moderate correlation with FEM 

(R2=0.42-0.59), while AirBeam had a no to very weak correlation with FEM (R2=0.03-

0.12) (see Table XIV). The slope and intercept values demonstrated a high agreement 

between MetOne and FRM with the slope values within -0.25 of the 1.0 perfect value 

and the intercept values within <2 of the 0.0 perfect value. Measurement errors (MAE 

and MBE) indicate the differences between low-cost sensors and FRM/FEM. MetOne 

had the smallest MAE among all study low-cost PM2.5 sensors (MAE=2-4 µg/m3), while 

the MAE of PurpleAir ranged from 4.1 µg/m3 to 7.5 µg/m3 and that of AirBeam was 

approximately 6 µg/m3. The differences between the measurements of AirBeam and 

FRM were not analyzed due to a shortage of collected data since AirBeam sensors 

were operated for a short duration (84 hours). The MBE values suggested that all study 

PM2.5 low-cost sensors, in exception of AirBeam unit 3, were found to overestimate the 

PM2.5 concentrations as compared to the FRM/FEM monitors with MBE values ranging 

from 0.1 µg/m3 to 6.5 µg/m3 (Table XIV). The higher ratios of MBE and MAE of 

PurpleAir (0.8-0.9) compared to those of other PM2.5 low-cost sensors (≤0.3) 

suggested that systematic errors had a lower proportion contributing to MetOne 

measurement error as compared to that of PurpleAir. The RMSE values of MetOne 

were the smallest (RMSE=3.0-5.3 µg/m3), AirBeam and PurpleAir had greater RMSE 
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values, 6.9 µg/m3 to 10.7 µg/m3 (see Table XIV). Overall, among all study PM2.5 low-

cost sensors, MetOne had the best performance. 

Among PM10 low-cost sensors, PurpleAir measuring had a high consistency 

among different units (R2=0.99-1.00) (see Table XIII). The PM10 concentration time 

series plots in Figure 15 demonstrated similar trends of measured concentrations 

among tested PM10 sensors and FRM. Both PurpleAir and MetOne, in general, 

recorded lower PM10 concentrations as compared to those of the FRM. PurpleAir had a 

better agreement with FRM than MetOne. PurpleAir had a high correlation and 

agreement with FRM with R2=0.75-0.76, in addition to, the slope values within -0.05 of 

the 1.0 perfect value and the intercept values within <3 of the 0.0 perfect value. 

PurpleAir had MAE values ranging from 6.5 µg/m3 to 7.0 µg/m3. Both MetOne and 

PurpleAir were found to underestimate the PM10 concentrations as compared to the 

FRM measurements with MBE values, 2.9-3.6 µg/m3 (for PurpleAir) and 9.3 µg/m3 (for 

MetOne). The MBE and MAE ratios of PurpleAir (0.4-0.6) were lower than that of 

MetOne (1.0) (see Table XIV), which suggested that systematic errors had a lower 

proportion contributing to the PurpleAir measurement error as compared to that of 

MetOne. Overall, PurpleAir measuring PM10 had a better performance as compared to 

MetOne; however, this interpretation was based on the limited data retrieved from only 

one unit of MetOne measuring PM10 available during the collocation air monitoring 

effort. 
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(2) PM Sensor Performance Evaluations by the 

Alternative Approach 

The B-A plot parameters, including the mean of differences 

between measurements of FEM or FRM and the low-cost sensor and the limit of 

agreement, in addition to Lin’s Concordance Correlation Coefficient (CCC) were 

employed to determine an agreement between low-cost sensors and FRM/FEM 

instruments.  

       Bland-Altman mean of differences and CCC of measurements between PM2.5 

low-cost sensors and reference monitors are shown in Table XV. MetOne measuring 

PM2.5 was observed to have a small mean of differences (≤0.4 µg/m3). CCC and Cb 

values were aligned with the B-A plot findings. MetOne had a high degree of agreement 

with FRM (CCC=0.81-0.82 and Cb=0.99-1.00) and a moderate agreement with FEM 

(CCC=0.64-0.65 and Cb=0.97-1.00). AirBeam had a mean of differences ranging from 

0.11 µg/m3 to 1.6 µg/m3. PurpleAir had a relatively greater mean of differences 

compared to other tested low-cost PM2.5 sensors, which were approximately 4 µg/m3 

and 6 µg/m3, as compared to FRM and FEM measurements, respectively. CCC 

suggested that AirBeam and PurpleAir sensors had a poor agreement with FEM and 

FRM. 

PurpleAir measuring PM10 had a high agreement with FRM (mean of differences 

<4 µg/m3, CCC=0.82-0.84 and Cb=0.95-0.96), in contrast MetOne had a poor 

agreement with FRM (mean of differences 9.3 µg/m3, CCC=0.38 and Cb=0.0.47). 
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b) Impacts of Weather Conditions on PM Low-Cost Sensor 

Performance  

The plots between bias error and %RH or temperature were generated 

and are shown in Figure 16 to 19. For MetOne measuring PM2.5 sensors, the slope of 

the linear regression line is close to zero and aligned with y=0 axis suggesting MetOne 

measuring PM2.5 sensors were not strongly impacted by humidity and/or temperature 

(see Figure 16). The plots demonstrated that PurpleAir and AirBeam overestimated the 

PM2.5 concentration as the %RH increased without any correlation with the 

temperature (see Figure 17 and 18). The plots shown in Figure 19 illustrated that 

Metone and PurpleAir measuring PM10 sensors were impacted by temperature and 

humidity. The MLR statistics of each corrected model were computed (see Table XVI). 

After applying corrections to low-cost sensor measurements, in case of PM2.5 sensors, 

the measurement errors (MAE, MBE, and RMSE) of the PurpleAir sensor 

estimated/adjusted measurements significantly decreased as compared to those 

unadjusted measurements. On the other hand, for the measurements of MetOne and 

AirBeam, no differences of measurement errors were observed between the unadjusted 

and adjusted measurements. For PM10 measurements, the best improvement of the 

correlation between adjusted low-cost sensor measurements and those of their 

respective reference monitors was observed after applying corrections adjusted for both 

temperature and humidity. The agreements between low-cost PM sensors and FRM 

were significantly improved. R2 increased from 0.65 to 0.91 (for MetOne) and from 0.75 

to 0.89 (for PurpleAir). Moreover, The MAE, MBE and RMSE of the adjusted low-cost 

measurements decreased more than 50% (see Table XVII and XVIII).  
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c)          Low-Cost Gaseous Pollutant Sensor Performance 

(1) Gaseous Pollutant Sensor Performance 

Evaluations by the Conventional Approach 

The intra-comparison analysis suggested various intra-

variabilities among low-cost sensors measuring different gaseous pollutants. AeroQual 

measuring NO2 showed low intra-sampler variability with R2=0.78, while, Terrier 

measuring CO demonstrated the highest intra-sampler variability with R2=0.29 followed 

by NO with R2=0.52-0.91 and CO2 with R2=0.69-0.92 (see Table XIX). The gas pollutant 

concentration time series plots shown in Figure 20 demonstrated that the O3 

concentrations measured by AeroQual were very similar to those measured by FEM. 

The time series plots for Terrier sensors measuring CO/NO shown in Figure 21 and 22 

demonstrated that Terrier sensors measuring both CO and NO were seem to have 

better agreement with the reference monitors in conditions with low %RH than those of 

high %RH, regardless of the temperature conditions. The inter-sampler comparison 

analysis between low-cost sensors and EPA monitors suggested a moderate degree of 

correlation between AeroQual measuring O3 and FEM with R2=0.68. In addition, the 

slope value was within -0.25 of the 1.0 perfect value and the intercept was very close to 

the 0.0 perfect value. Terrier showed a very weak to moderate correlation with FRM for 

CO measurements (R2=0.18-0.64); and a no to very weak correlation with the reference 

monitor (Non-Federal Reference Method) for NO measurements (R2=0.03-0.12). The 

slope and intercept values demonstrated a low agreement between Terrier measuring 

CO/NO and EPA monitors with the slope values being within the range of 0.5-0.7 of the 

1.0 perfect value and the intercept values within the range of 0.1-10 of the 0.0 perfect 
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value. The MAE (0.006 ppm), MBE(-0.002 ppm), and RMSE (0.007 ppm) of AeroQual 

measuring O3 were relatively small, suggesting a small difference between 

measurements of AeroQual and FEM, while the measurement error parameters greatly 

varied among the units of Terrier sensor measuring CO/NO (see Table XX).   

(2) Gaseous Pollutant Sensor Performance 

Evaluations by the Alternative Approach 

The Bland-Altman means of differences suggested that the 

measurements of AeroQual-O3 almost perfectly in agreement with those of O3 FEM with 

the mean of difference being very close to zero (-0.0023 ppm) and the limit of 

agreement being narrow (-0.016,0.001 ppm). Moreover, CCC and Cb suggested a high 

degree of agreement between AeroQual measuring O3 and FEM with CCC=0.81 and 

Cb=0.98. The mean of differences between measurements of Terrier measuring CO and 

FRM ranged from -0.002 ppm to 0.078 ppm. Terrier measuring CO had a poor to 

moderate agreement with FRM (CCC=0.30-0.54 and Cb≥0.2 of the 1.0 perfect value), 

while Terrier measuring NO had a poor agreement with the reference monitor 

(CCC=0.08-0.27 and Cb≥0.3 of the 1.0 perfect value) (see Table XXI). 

d)      Impacts of Weather Conditions on Low-Cost Gaseous 

Pollutant Sensor Performance 

The plots between bias error and %RH or temperature shown in Figure 

23 demonstrated that AeroQual measuring O3 was not significantly impacted by 

temperature and humidity. Terrier measuring CO sensors were impacted by humidity 

and temperature. The bias errors slightly increased as %RH increased, while the bias 

errors decreased as temperature increased (see Figure 24). Terrier measuring NO 
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sensors were also observed to be impacted by temperature and humidity. As humidity 

increased, bias errors were more deviated from y=0 indicating Terrier sensors 

overestimated the NO concentrations (see Figure 25). The MLR statistics of each 

corrected model were computed and documented in Table XXII. After applying 

corrections to AeroQual-O3 measurements, the improvement of R2 between the 

measurements of FEM and AeroQual-O3 was observed in the AeroQual-O3 

measurements adjusted for the temperature, R2 increased from 0.68 (unadjusted 

measurements) to 0.76 (adjusted measurements), in addition, MAE and RMSE 

decreased for approximately 30%. For Terrier sensor, the R2 between CO 

measurements of the low-cost sensor and FRM increased from 0.46 (unadjusted 

measurements) to 0.58 (adjusted measurements) when applying the correction adjusted 

for humidity. On the other hand, no improvement of R2 between NO measurements of 

the low-cost sensor and the reference monitor after applying corrections was observed. 

Measurement error parameters were not significantly different between unadjusted and 

adjusted CO measurements, while the measurement errors of Terrier measuring NO 

were decreased suggesting that correction of low-cost measurements with humidity and 

temperature was needed (see Table XXIII).  

D. Discussion 

 The present study was a collocated testing of several low-cost PM and gaseous 

pollutant sensors at Northbrook Water Plant, Northbrook, IL, a suburb ambient 

environment. The low-cost PM (AirBeam, MetOne Neighborhood, and PurpleAir) and 

gaseous pollutant (AeroQual and Terrier) sensors were operated alongside with the 

EPA FRM/FEM monitors. The precision and accuracy of each sensor were investigated 
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during a two-month sampling period in early October to early December 2017. Due to 

the approximate duration of the sampling period being two months, the long-term 

drifting of the low-cost sensor performance was not addressed in the present study. 

However, a previous study conducted by Dewitt and colleagues observed no significant 

decline in AirBeam and AeroQual accuracy during a 10-month air monitoring session 

(Dewitt et al.,2020). Several factors and uncertainties can influence sensor 

performances, however, in the present study, only temperature and humidity were 

captured. Other factors that can impact sensor measurements including wind speed, 

wind direction, and other pollutants or chemical compounds that are not a target, in 

addition to factors that can specifically impact PM measurements i.e., particle size 

distribution and sampling orientation (Mukherjee et al., 2017) were not investigated in 

this study. The challenges of employing low-cost sensors in the field are not only limited 

to the sensor performances but also include the misinterpretation between the measure 

quantity and mass of PM. Furthermore, managing the large datasets of collected air 

quality data is very demanding (Williams et al., 2019).  

Overall, the low-cost sensors tested in the current study had a high percentage of 

data recovery (≥ 70%). Due to a power shutdown during the Sub-Experiment sampling 

period, the 10-hour data was lost and excluded from the data recovery percentage 

calculation. AirBeam and Terrier sensors had a lower percentage of data recovery 

compared to other low-cost sensors. This might be due to the sensors being operated in 

a mobile mode, instead of a stationary mode since the stationary mode could not be set 

up due to logistical and technical problems including Wi-Fi connection which is essential 

for setting up a communication between sensors and AirCasting platform. A number of 
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metrics have been employed in previous studies for evaluating precision and accuracy 

of sensors including linear regression statistics (intercept, slope, and R2), measurement 

errors (MAE, MBE, RMSE), and coefficient of variation (Sousan et al., 2017; Zheng et 

al., 2018). These metrics were utilized in the current study, in addition to other 

alternative metrics, to determine the agreement between low-cost sensors and the 

reference instruments. The alternative approach includes Bland-Altman plots (mean of 

differences and limit of agreement) and Lin’s Concordance Correlation Coefficient which 

are useful for understanding different aspects of air quality data analysis for assessing 

low-cost sensor performance.  

Among PM low-cost sensors evaluated in the present study, AirBeam was 

observed to have low intra-sampler variability, which bolstered the findings from 

previous studies showing a high degree of correlation among units of the AirBeam 

sensor (R2>0.8). In addition, the investigators observed that AirBeam had a very weak 

correlation with FEM BAM, while other studies reported AirBeam to have a low to high 

degree of correlation with FEM and WINS (R2=0.21-0.83). The summary of 

comparisons between the AirBeam sensor evaluation findings from our and from 

previous published literatures are shown in Table XXIV (Borghi et al., 2018; DeWitt et 

al., 2020; Jiao et al., 2016; Mukherjee et al., 2017; SCAQMD, 2015a). AirBeam 

measurements were impacted by meteorological conditions including temperature and 

humidity since, in general, low-cost sensors do not have the heating system to treat 

sampling air in order to minimize the hygroscopic aerosols, which can increase 

detecting light scatters and measurements (Mukherjee et al., 2019). Feinberg and 

colleagues observed a greater particle count response in higher humidity conditions. 
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The  PM2.5 concentration peaks were noticed under conditions with %RH around 90 

(Feinberg et al., 2018). One limitation of the present study is that AirBeam sensors were 

operated for a short period (approximately 84 hours) which could limit the observation of 

temperature and humidity variations impacting AirBeam sensor performance. The 

present study captured the conditions with relatively low temperature (a mean of 7.6 ºC) 

and high %RH (a mean of 70%). Previous studies that operated AirBeam for longer 

sampling durations suggested that Airbeam sensor had a better performance in 

environments with lower %RH and higher temperature depending on the different times 

of the day and months of the year. AirBeam sensor performance was observed to be 

better during summer sampling events than that of during winter sampling events 

(Borghi et al., 2018; Feinberg et al., 2018; Mukherjee et al., 2019). In addition, particle 

counts showed a better agreement with reference monitors than mass concentrations, 

which suggested that the count-mass conversion algorithms should be revised 

(Mukherjee et al., 2017; SCAQMD, 2015a). As in the present study, the available data 

was particle mass (µg/m3), this could be one explanation of the observed low correlation 

between AirBeam sensor and the reference monitor measurements.  

Fine particulate matter (PM2.5) concentrations measured by both MetOne 

Neighborhood and PurpleAir weakly to moderately correlated with those of FEM and 

moderately to strongly correlated with those of FRM. Furthermore, MetOne 

Neighborhood had a good agreement with FEM and FRM. The findings from the 

present study were in agreement with the previous study conducted by SCAQMD and 

Malings and colleagues. The summary of comparisons between the MetOne and 

PurpleAir sensor evaluation findings from our and from previous published literatures 
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are shown in Table XIV and XXVI, respectively (Malings et al., 2020; SCAQMD, 2015b).  

Previous studies observed a high degree of correlation between PurpleAir and FEM 

monitors (Feenstra et al., 2019; Magi et al., 2020; Malings et al., 2020). In the current 

study, as compared to MetOne Neighborhood sensor, PurpleAir sensor demonstrated a 

lower degree of agreement with the FRM/FEM monitors. As compared to the 

measurements of FRM/FEM monitors, PurpleAir sensor overestimated PM2.5 

concentrations, while MetOne Neighborhood sensor slightly underestimated PM2.5 

concentrations. Malings et al. suggested that the corrected MetOne measurements 

utilizing multiple linear regression models adjusted for temperature and %RH improved 

the correlation (R2) between MetOne sensor and FEM monitor from 0.41 (uncorrected 

measurements) to 0.58 (corrected measurements), and decreased the error and bias by 

more than 50%. In addition, an overestimation of PM2.5 concentrations was observed 

at conditions with %RH being >80 (for PurpleAir) and >85 (for MetOne Neighborhood) 

(Malings et al., 2020), which were also observed in the present study. MetOne was not 

significantly impacted by humidity and temperature. PurpleAir and AirBeam 

overestimated the PM2.5 concentration as the %RH increased without any correlation 

with the temperature. After applying corrections to low-cost measurements, the 

measurement errors of PurpleAir significantly decreased, while no improvement was 

observed in the agreement between the measurements of MetOne and the FRM/FEM 

monitor. These findings suggested that temperature and humidity had less impact on 

MetOne Neighborhood as compared to PurpleAir. One of the potential reasons might be 

due to a 12-Watt, 4-s resident time heating element in the MetOne inlet, which is 

activated when %RH reaches 40. This heating system minimizes the humidity in the 
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sampling air before particulate matters are detected. PurpleAir does not have a heating 

system; however, the Wi-Fi chip in the sensor could slightly elevate the temperature and 

decrease the humidity inside the sensor housing.  

Among gaseous pollutant low-cost sensors investigated in the present study, both 

AeroQual S500 measuring NO2 or O3 and Terrier measuring NO/CO/CO2 had very low 

intra-sampler variability. AeroQual measuring NO2 demonstrated low intra-sampler 

variability (R2=0.78). One limitation of this study was that an inter-sampler comparison 

analysis between AeroQual measuring NO2 and reference monitor could not be 

performed due to the shortage of reference NO2 concentration data at the Northbrook 

air monitoring site since only NO/NOy concentrations were collected (USEPA, 2015). 

The NO2 reference concentration, in addition to O3 concentrations measured by 

AeroQual operated simultaneously adjacent to the AeroQual measuring NO2, are vital 

for correcting the AeroQual-NO2 measured concentrations according to the 

manufacturer’s correction algorithm. The estimation of NO2 concentrations was not 

validated due to missing concentration information on several components of oxides of 

nitrogen including NOz and NOx. AeroQual measuring O3 demonstrated a moderate 

degree of correlation with the IEPA FEM monitor (R2=0.68), which was slightly lower 

than those of previous studies (R2>0.72) (see Table XXVII) (Lin et al., 2015; Lin et al., 

2017). A high degree of agreement between AeroQual measuring O3 and the FEM 

monitor was observed suggesting the reliability of the sensor. AeroQual measuring O3 

was not significantly impacted by temperature and humidity which supported by the 

findings in previous studies conducting the field calibration of AeroQual-O3 

measurements. Their results suggested that no sensor performance differences 
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between uncorrected and corrected (i.e., adjusted for temperature and humidity) 

measurements, while corrected AeroQual-NO2 measurements significantly improved the 

correlation with FEM monitors (Lin et al., 2015; Lin et al., 2017; Masey et al., 2018). 

Terrier sensor measures multiple pollutants i.e., NO, CO, and CO2, simultaneously. Our 

study is the first study that evaluated the Terrier sensor performance in the field 

conditions. Similar to AirBeam, Terrier sensors were operated for a short period 

(approximately 84 hours) which could limit the observation of temperature and humidity 

variations impacting Terrier performance. Terrier sensors demonstrated a wide range of 

precision depending on the measured gaseous pollutants (R2=0.29-0.92) and, in 

general, performed poorly as compared to other sensors that were tested. Terrier 

measuring CO showed highest intra-sampler variability, followed by CO2 and NO. 

Another issue with Terrier was that one out of three units of Terrier sensor recorded 

zero for all CO measurements; thus, data from this specific unit was excluded from all 

analyses. Despite a lack of evaluation of the Terrier performance, a number of studies 

have evaluated the performance of one of its three sensors i.e., Alphasense CO-B4, 

Alphasense NO-B4, and ELT S300-CO2. Alphasense CO-B4 showed a moderate to 

high correlation with FRM instruments (R2>0.6) (Borrego et al., 2018; Jiao et al., 2016; 

Sun et al., 2016). Similarly, Alphasense NO-B4 demonstrated a moderate to high 

correlation with FRM instruments (R2=0.7-0.8) (Borrego et al., 2018; Lewis et al., 2016). 

The findings from previous studies are not aligned with the observations from the 

present study summarized in Table XXVII. This might be due to Terrier sensor 

measuring several pollutants at the same time, its performance for each pollutant may 

not have been calibrated for optimum performance, in addition to the impacts of 
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humidity and temperature. Temperature, humidity, and gas cross-sensitivity are 

common factors that could impact the gaseous sensor performances. Metal Oxide 

Semiconductor (MOS) gaseous pollutant sensors e.g., AeroQual measuring O3, in 

general, are impacted by humidity and temperature. Humidity decreases the sensor 

sensitivity via the intervention of sensor surface-gas interaction and the inhibition of 

electron transmission to sensor sensing layers. Ambient temperature can impact the 

operating temperature to be lower or higher than the optimal operating system, which 

may decrease the response of MOS sensors (Wang, Yin, Zhang, Xiang, & Gao, 2010). 

The performance of electrochemical (EC) gas sensors including Alphasense NO-B4 and 

Alphasense CO-B4, the components of Terrier sensor, could be impacted by 

temperature and humidity. Previous studies reported that EC sensor performance could 

be impacted by temperature and less impacted by humidity, at %RH >75 (Masson, 

Piedrahita, & Hannigan, 2015; Wei et al., 2018). Moreover, the correlation between this 

sensor and FRM monitors decreased in the environment with a temperature higher than 

25ºC (Cross et al., 2017).  

E. Conclusion 

 All tested low-cost sensors showed very high precision and sufficient accuracy in 

obtaining air pollutant concentrations at various locations to assess the relative air 

quality. The low-cost sensors had varying degree of correlation and agreement with 

their respective IEPA FRM/FEM monitors; therefore, the low-cost sensors should not be 

used for compliance assessment. However, they are very useful tools in determining the 

locations with higher concentrations that warrant further evaluation using regulatory 

monitoring tools and methods, and for public education, outreach, and advocacy efforts. 
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In addition, the low-cost sensor measurements were impacted by temperature and 

humidity; therefore, an additional correction of sensor measurements for these 

meteorological conditions should be applied. This suggested more collocated studies in 

diverse temporal and spatial conditions to fill the knowledge gap of the sensor 

performance in different geographic locations and develop more appropriate and 

representative correction algorithms for specific locations that take the impact of 

weather conditions on sampler performance into account. 
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TABLE V. LIST OF STUDY LOW-COST SENSORSa 

Instruments 
Sensor 

Air Pollutants 
Measured 

Air Monitoring 
Mode 

Sensor Technologies/Recording 
Time Interval  

Web Link for the 
Sensor 

AeroQual S500 
(AeroQual Limited, 

Auckland, New 
Zealand) 

NO2 or O3 stationary electrochemical (NO2) or sensitive metal 
oxide semiconductor (O3)/ 

1 minute 

http://www.aeroqual.com
/product/series-500-
portable-air-pollution-

monitor 

AirBeam 
(HabitatMap, 

Brooklyn, NY, USA) 

PM2.5 mobile light scattering/ 
1 second 

http://www.takingspace.o
rg/aircasting/airbeam/ 

MetOne 
Neighborhood 

Monitor (Met One 
Instruments Inc., 
Grants Pass, OR, 

USA) 

PM2.5 or 
PM10 

stationary light scattering/ 
15 minutes 

http://www.metone.com/
?wpfb_dl=591 

PurpleAir (PurpleAir, 
Draper, UT, USA) 

PM2.5 and 
PM10 

stationary light scattering/ 
1 minute 

http://www.purpleair.org/ 
 

Terrier (Qsense Inc., 
Boulder, CO, USA) 

NO, CO, and 
CO2 

mobile electrochemical (NO, CO) and NDIR 
(CO2)/ 

10 seconds  

NA (This product was 
discontinued.) 

   

a NA: not applicable 

 

 

http://www.aeroqual.com/product/series-500-portable-air-pollution-monitor
http://www.aeroqual.com/product/series-500-portable-air-pollution-monitor
http://www.aeroqual.com/product/series-500-portable-air-pollution-monitor
http://www.aeroqual.com/product/series-500-portable-air-pollution-monitor
http://www.takingspace.org/aircasting/airbeam/
http://www.takingspace.org/aircasting/airbeam/
http://www.metone.com/?wpfb_dl=591
http://www.metone.com/?wpfb_dl=591
http://www.purpleair.org/
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TABLE VI. LIST OF EPA INSTRUMENTS RESPECTIVE TO THE STUDY LOW-COST 
SENSORS AT THE NORTHBROOK WATER PLANT, NORTHBROOK, ILLINOIS 

Instruments Method  Air Pollutants Measured 

R & P Model 2000 PM-2.5 Air 
Sampler w/VSCC-Gravimetric 

Reference PM2.5 

Thermo Scientific 5014i or 
FH62C14-DHS w/VSCC-Beta 
Attenuation 

Equivalent PM2.5 

HI-VOL SA/GMW-1200-
GRAVIMETRIC 

Reference PM10 (Total Suspended 
Particles) 

Gas Filter Correlation Thermo 
Electron 48i-TLE 

Reference CO 

ULTRAVIOLET ABSORPTION Equivalent  O3 

Chemiluminescence Thermo 
Electron 42C-Y, 42i-Y 

Non-Federal 
Reference 

NO, NOy (Reactive 
Nitrogen) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



105 
 

 
 

TABLE VII. DATA SUMMARY OF PM2.5 CONCENTRATIONS MEASURED BY LOW-
COST SENSORS AND REFERENCE INSTRUMENTS 

  

Experiment PM2.5 
Sensors 

# of 
missing 

datapoints 

# of data 
available 

total 
expected 

data points 

% of 
missing data 

points 

Overall-Experiment 

24-hr mean 
concentration 

FRM 0 20 20 0.0 

FEM 1 62 63 1.6 

MO1 0 63 63 0.0 

MO3 0 63 63 0.0 

MOaver 0 63 63 0.0 

PA1 1 62 63 1.6 

PA2 1 62 63 1.6 

PA3 1 62 63 1.6 

PAaver 1 62 63 1.6 

1-hr mean 
concentration 

FEM 116 1385 1501 1.6 

MO1 1 1500 1501 0.1 

MO3 24 1477 1501 1.6 

MOaver 1 1500 1501 0.1 

PA1 76 1425 1501 5.1 

PA2 55 1446 1501 3.7 

PA3 56 1445 1501 3.7 

PAaver 53 1448 1501 3.5 

Sub-Experiment 

1-hr mean 
concentration 

MO1 0 71 71 0.0 

MO3 11 60 71 15.5 

MOaver 0 71 71 0.0 

PA1 13 58 71 18.3 

PA2 0 71 71 0.0 

PA3 0 71 71 0.0 

PAaver 0 71 71 0.0 

AB1 16 55 71 22.5 

AB2 12 59 71 16.9 

AB3 9 62 71 12.7 

ABaver 4 67 81 5.6 
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TABLE VIII. DATA SUMMARY OF PM10 CONCENTRATIONS MEASURED BY LOW-
COST SENSORS AND REFERENCE INSTRUMENTS 

Data PM10 
Sensors 

# of missing 
data  

# of data 
available  

# of total 
expected 
data points 

% of 
missing 
data  

1-hr mean 
concentration  

PA1 76 1425 1501 5.1 

PA2 55 1446 1501 3.7 

PA3 56 1445 1501 3.7 

PAaver 53 1448 1501 3.5 

MO2 24 1477 1501 1.6 

24-hr mean 
concentration 

FRM 0 10 10 0.0 

PA1 1 62 63 1.6 

PA2 1 62 63 1.6 

PA3 1 62 63 1.6 

PAaver 1 62 63 1.6 

MO2 1 62 63 1.6 
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TABLE IX. DATA SUMMARY OF GASEOUS POLLUTANT CONCENTRATIONS 
MEASURED BY LOW-COST SENSORS AND REFERENCE INSTRUMENTS 

  Gaseous 
Pollutant  

Air 
monitoring 
sensors 

# of 
missing 
data  

# of data 
available  

# of total 
expected 
data 
points 

% of 
missing 
data  

Overall-Experiment  

1-hr mean 
concentration  

NO2 AQ1 80 925 1005 8.0 

AQ2 89 916 1005 8.9 

AQaver 0 1005 1005 0.0 

NOy EPA non-
federal ref. 
monitor 

5 1000 1005 0.5 

NO EPA non-
federal ref. 
monitor 

4 1001 1005 0.4 

O3 AQ2 16 490 506 3.2 

EPA-UV 
absorption 

4 502 506 0.8 

Sub-Experiment 

1-hr mean 
concentration  

NO TR1 0 70 70 0.0 

TR2 7 63 70 10.0 

TR3 11 59 70 15.7 

EPA non-
federal ref. 
monitor 

0 70 70 0.0 

CO TR2 19 65 84 22.6 

TR3 23 61 84 27.4 

EPA-FRM 2 82 84 2.4 

CO2 TR1 12 72 84 14.3 

TR2 19 65 84 22.6 

TR3 23 61 84 27.4 
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TABLE X. DESCRIPTIVE STATISTICS OF PM CONCENTRATIONS MEASURED BY LOW-COST SENSORS AND 
REFERENCE INSTRUMENTS, TEMPERATURE, %RELATIVE HUMIDITY, OVERALL-EXPERIMENT, OCTOBER 6 TO 
DECEMBER 8, 2017, NORTHBROOK, ILLINOISa 

Parameters Air Monitoring 
Devices 

Number of 
obs (1-hour 

mean) 

1-hr mean 
range (min-

max) 

1-hr mean 
(sd) 

Number of 
observations 

(24-hour mean) 

24-hr mean 
range (min-max) 

24-hr mean (sd) 

Temperature (ºC)   1501 -8.0-24.8 7.6 (6.7) 64 -5.1-20.1 7.5 (6.3) 

%RH  1501 16.0-87.0 69.9 (18.7) 64 46.3-99.0 69.9 (14.3) 

PM2.5 mean 
concentration (µg/m3) 

PA1 1425 0.2-57.9 13.8 (12.1) 62 1.3-49.9 13.7 (10.5) 

PA2 1446 0.1-63.4 12.8 (12.3) 62 1.1-50.5 13.0 (10.7) 

PA3 1445 0.1-56.1 12.6 (11.6) 62 1.1-46.7 12.8 (10.0) 

PAaver 1448 0.2-58.5 13.0 (11.9) 62 1.2-49.0 13.2 (10.4) 

MO1 1500 1.0-40.8 7.8 (6.0) 63 1.3-30.9 7.9 (5.2) 

MO3 1477 2.0-33.5 7.7 (5.0) 63 3.0-26.5 7.7 (4.3) 

MOaver 1500 1.5-36.75 7.7 (5.5) 63 2.2-28.7 7.8 (4.7) 

PM2.5 FEM 1385 -8.5-43.4 7.7 (6.4) 62 1.2-23.6 7.6 (4.5) 

PM2.5 FRM NA NA NA 20 1.5-21.4 7.2 (5.1) 

PM10 mean 
concentration (µg/m3) 

PA1 1425 0.2-72.6 15.5 (14.6) 62 1.5-63.1 15.5 (12.6) 

PA2 1446 0.1-70.8 14.3 (14.2) 62 1.2-61.0 14.5 (12.4) 

PA3 1445 0.1-70.4 14.4 (13.9) 62 1.2-59.1 14.6 (12.0) 

PAaver 1448 0.2-71.0 14.7 (14.2) 62 1.3-61.0 14.9 (12.3) 

MO2 1477 1.5-35.8 9.3 (5.6) 64 2.3-28.9 9.2 (4.9) 

EPA PM10-TSP NA NA NA 11 5.0-42.0 17.6 (12.1) 

a NA: not applicable
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TABLE XI. DESCRIPTIVE STATISTICS OF PM CONCENTRATIONS MEASURED BY 
LOW-COST SENSORS AND REFERENCE INSTRUMENTS, TEMPERATURE, 
%RELATIVE HUMIDITY, SUB-EXPERIMENT, NORTHBROOK, ILLINOIS 

Parameters Air 

Monitoring 

Devices 

Number of 
Observations 

1-hr mean 

range (min-

max) 

1-hr mean (sd) 

Temperature (ºC)  81 9.4-22.5 14.5 (3.2) 

%RH  81 16.0-96.0 60.9 (21.2) 

1-hour PM2.5 

mean 

concentration 

(µg/m3) 

  

  

  

  

  

  

  

  

  

AB1 55 1.4-36.0 7.1 (6.7) 

AB2 59 1.2-30.7 6.7 (5.5) 

AB3 62 1.4-25.9 6.1 (4.7) 

ABaver 67 1.4-30.9 6.2 (5.4) 

PA1 58 0.2-37.0 10.3 (7.9) 

PA2 71 0.2-38.4 8.7 (7.1) 

PA3 71 0.2-37.0 8.9 (7.1) 

PAaver 71 0.2-37.4 8.9 (7.1) 

MO1 71 2.0-14.0 5.6 (3.0) 

MO3 60 2.8-13.0 6.7 (3.0) 

MOaver 1 2.0-13.4 5.7 (3.0) 

PM2.5 FEM 30 -1.6-27.9 9.0 (6.8) 
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TABLE XII. DESCRIPTIVE STATISTICS OF GASEOUS POLLUTANT CONCENTRATIONS MEASURED BY LOW-
COST SENSORS AND REFERENCE INSTRUMENTS, TEMPERATUREM, %RELATIVE HUMIDITY, OVERALL-
EXPERIMENT, OCTOBER 6 TO DECEMBER 8, 2017, NORTHBROOK, ILLINOISa 

Gaseous 

Pollutants 

Air Monitoring Devices Number of 
Observations 

1-hr mean range 

(min-max) 

1-hr mean 

(sd) 

24-hr mean 

range (min-

max) 

24-hr mean 

(sd) 

NO2 (ppm) AQ1 925 3.8-53.4 22.9 (7.8) 8.2-33.6 22.8 (5.5) 

AQ2 916 0.4-57.8 21.1 (10.7) 6.3-42.8 21.1 (8.3) 

AQaver 1005 0.4-48.9 21.5 (9.1) 7.3-36.8 21.7 (6.7) 

O3 (ppm) AQ2 490 0.00-0.05 0.03 (0.01) 0.01-0.04 0.03 (0.01) 

FEM 502 0.00-0.06 0.02 (0.01) 0.02-0.04 0.02 (0.01) 

NO (ppb)* 

  

  

  

TR1 70 0.3-47.2 9.2(9.9)     

TR2 63 0.3-36.7 7.9 (8.3)     

TR3 59 0.4-103.7 12.0 (18.3)     

NOy/NO-non reference 

method 

70 0.4-59.8 3.4 (5.6)     

CO (ppm)* 

  

  

TR2 65 0.1-0.5 0.3 (0.06)    

TR3 61 0.1-0.5 0.2 (0.07)     

FRM 72 0.1-0.7 0.2 (0.10)     

CO2 (ppm)* TR1 72 341.0-461.6  379.7 (30.2)     

TR2 65 478.6-588.1 514.4 (28.5)     

TR3 61 422.0-505.8 452.1 (21.2)     

 

a Sub-Experiment: Terrier sensors were operated in the beginning of the sampling period for 84 hours alongside with other low-cost sensors and 

their respective reference instruments. 
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TABLE XIII. INTRA-SAMPLER COMPARISONS BETWEEN PM MEASURED CONCENTRATIONS OF LOW-COST 
SENSOR UNIT-1,-2,-3, OCTOBER 6 TO DECEMBER 8 2017, NORTHBROOK, ILLINOISa 

Pairs of Sensors Number of 
Observations 

Intercept Slope R2 

PM2.5 
    

MO1 vs MO3 1477 1.3805 0.8029 0.96 

PA1 vs PA2 1420 -0.9731 1.0133 0.99 

PA1 vs PA3 1420 -0.354 0.951 0.99 

PA2 vs PA3 1420 0.5905 0.938 1.00 

AB1 vs AB2* 46 0.2234 0.8544 1.00 

AB1 vs AB3* 46 0.8761 0.7265 0.99 

AB2 vs AB3* 46 0.6822 0.8508 1.00 

PM10 
    

PA1 vs PA2 1417 -0.6629 0.9745 0.99 

PA1 vs PA3 1417 -0.2777 0.956 0.99 

PA2 vs PA3 1417 0.3845 0.9803 1.00 
 

aSub-Experiment: AirBeam sensors were operated in the beginning of the sampling period for 84 hours.  
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TABLE XIV. LINEAR REGRESSION STATISTICS AND MEASUREMENT ERRORS OF MEASUREMENTS BETWEEN PM LOW-
COST SENSORS AND REFERENCE INSTRUMENTSa,b 

Sensors Reference 
monitors 

Number 
of obs. 

R2 Slope Intercept MAE (µg/m3) MBE (µg/m3) MBE/MAE RMSE 
(µg/m3) 

PM2.5 Sensors# 
        

FEM FRM 20 0.89 1.0179 -0.1949 1.0 -0.2 0.2 1.3 

MO1 FEM 1375 0.42 0.6265 3.2946 3.7 -0.5 0.1 5.3 

MO3 FEM 1375 0.43 0.5159 3.926 3.6 -0.2 0.0 4.9 

MOaver FEM 1375 0.43 0.5712 3.6103 3.6 -0.3 0.1 5.0 

PA1 FEM 1319 0.57 1.4382 3.0012 7.5 -6.5 0.9 10.7 

PA2 FEM 1319 0.58 1.4813 1.8152 7.0 -5.6 0.8 10.4 

PA3 FEM 1319 0.59 1.4071 2.1701 6.7 -5.4 0.8 9.6 

PAaver FEM 1319 0.58 1.4422 2.3288 7.0 -5.8 0.8 10.2 

AB1* FEM 28 0.03 0.219 7.4189 5.8 -1.6 0.3 8.8 

AB2* FEM 28 0.09 0.3096 6.3497 5.9 -0.1 0.0 8.2 

AB3* FEM 28 0.12 0.3052 5.2276 5.8 0.6 0.1 7.6 

ABaver* FEM 28 0.09 0.3053 6.5192 5.9 -0.2 0.0 8.2 

MO1 FRM 20 0.68 0.9079 0.6787 2.3 -0.3 0.1 3.2 

MO3 FRM 20 0.66 0.7621 1.9772 2.1 -0.3 0.1 3.0 

MOaver FRM 20 0.67 0.835 1.4686 2.2 -0.3 0.1 3.0 

PA1 FRM 20 0.69 1.6139 -0.188 4.8 -4.2 0.9 7.5 

PA2 FRM 20 0.72 1.6471 -1.2757 4.3 -3.4 0.8 7.0 

PA3 FRM 20 0.73 1.5235 -0.5025 4.1 -3.3 0.8 6.2 

PAaver FRM 20 0.71 1.5948 -0.6554 4.3 -3.6 0.8 6.9 

PM10 sensors 
         

MO2 FRM 11 0.65 0.3497 2.1298 9.3 9.3 1.0 12.3 

PA1 FRM 11 0.75 0.981 -2.5988 6.7 2.9 0.4 7.2 

PA2 FRM 11 0.75 0.9479 -2.9317 7.0 3.8 0.6 7.4 

PA3 FRM 11 0.78 0.973 -3.1182 6.5 3.6 0.6 7.0 

PAaver FRM 11 0.76 0.9673 -2.8829 6.7 3.5 0.5 7.2 

aSub-Experiment: AirBeam sensors were operated in the beginning of the sampling period for 84 hours.  
bMOaver, PAaver, ABaver indicate the average concentration across all unit of sensors.  
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TABLE XV. BLAND-ALTMAN PARAMETERS AND CCC OF MEASUREMENTS BETWEEN PM LOW-COST SENSORS 
AND REFERENCE MONITORSa,b 

Sensors Reference 
monitors 

Number 
of obs. 

B-A plots Lin's Concordance Correlation 
Coefficient    

Mean of differences 
(µg/m3)# 

95%CI (µg/m3) CCC Cb 

PM2.5 Sensors 
     

FEM FRM 20 -0.24 (-2.78,2.31) 0.97 1.00 

MO1 FEM 1375 -0.40 (-10.90,10.09) 0.65 1.00 

MO3 FEM 1375 -0.18 (-9.99,9.64) 0.64 0.97 

MOaver FEM 1375 -0.29 (-10.33,9.75) 0.65 0.99 

PA1 FEM 1319 -6.46 (-23.64,10.72) 0.51 0.68 

PA2 FEM 1319 -5.61 (-23.07,11.85) 0.53 0.70 

PA3 FEM 1319 -5.38 (-21.34,10.58) 0.56 0.73 

PAaver FEM 1319 -5.82 (-22.64,11.00) 0.53 0.70 

AB1* FEM 28 -1.60 (-19.16,15.96) 0.30 0.92 

AB2* FEM 28 -0.11 (-16.73,16.50) 0.30 1.00 

AB3* FEM 28 0.58 (-14.9-,16.06) 0.29 0.99 

ABaver* FEM 28 -0.24 (-16.99,16.50) 0.30 1.00 

MO1 FRM 20 -0.30 (-6.76,6.16) 0.82 0.99 

MO3 FRM 20 -0.26 (-6.35,5.83) 0.81 1.00 

MOaver FRM 20 -0.28 (-6.46,5.90) 0.82 1.00 

PA1 FRM 20 -4.24 (-16.99,8.52) 0.59 0.71 

PA2 FRM 20 -3.39 (-15.88,9.10) 0.63 0.74 

PA3 FRM 20 -3.27 (-14.17,7.62) 0.66 0.77 

PAaver FRM 20 -3.63 (-15.63,8.36) 0.63 0.74 

PM10 sensors 
    

MO2 FRM 11 9.28 (-7.65,26.21) 0.38 0.47 

PA1 FRM 11 2.93 (-10.92,16.78) 0.83 0.96 

PA2 FRM 11 3.85 (-9.44,17.13) 0.82 0.95 

PA3 FRM 11 3.59 (-9.02,16.20) 0.84 0.95 

PAaver FRM 11 3.46 (-9.76,16.67) 0.83 0.96 
a Sub-Experiment: AirBeam sensors were operated in the beginning of the sampling period (October 1 to 20) for 84 hours.  
bMean of differences between measurements of the reference monitor and low-cost sensor (µg/m3) 
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TABLE XVI. MLR STATISTICS OF MODELS FOR ESTIMATING/ADJUSTING LOW-COST MEASURED 
CONCENTRATIONS 

Sensors  Variable included  Number 
of Obs. 

beta0 beta1 beta2 beta3 ANOVA test 
(compare b/w 
models) 

RMSE Adjusted 
R2 

PM2.5 sensors 
      

  
  

MetOne MOaver 1375 1.70213 0.75221 
  

 Reference 4.831 0.43 

MOaver+Temp 
 

1.27865 0.7555 0.5531 
 

p-value=0.001 4.818 0.43 

MOaver+RH 
 

3.368311 0.764872 -0.024907 
 

 NS 4.812 0.43 

MOaver+Temp+RH 
 

3.022892 0.769436 0.061019 -0.026728 p-value=0.001 4.796 0.44 

PurpleAir PAaver 1319 2.37954 0.173085 
  

 Reference 4.179 0.58 

PAaver+Temp 
 

2.520707 0.403082 -0.022099 
 

NS 4.178 0.58 

PAaver+RH 
 

6.103367 0.425378 -0.057565 
 

NS 4.06 0.60 

PAaver+Temp+RH 
 

6.247148 0.426416 -0.022359 -0.05758 NS 4.058 0.60 

AirBeam ABaver 28 6.3433 0.2899 
  

 Reference 6.781 0.05 

ABaver+Temp 
 

7.86392 0.29227 -0.09962 
 

NS 6.91 0.02 

ABaver+RH 
 

3.42892 0.17929 0.06392 
 

NS 6.882 0.03 

ABaver+Temp+RH 
 

4.17817 0.1852 -0.0406 0.06107 NS 7.023 -0.02 

PM10 sensors 
      

  
  

MetOne MO2 11 2.1772 1.8593 
  

 Reference 7.55 0.61 

MO2+Temp 
 

-13.8791 2.524 1.1899 
 

p-value=0.001 4.516 0.86 

MO2+RH 
 

-6.445 1.9998 0.1058 
 

NS 7.957 0.57 

MO2+Temp+RH 
 

6.5633 2.2548 1.3786 -0.282 p-value=0.001 4.23 0.88 

PurpleAir PAaver 11 6.4858 0.785 
  

 Reference 6.263 0.73 

PAaver+Temp 
 

4.1633 0.7973 0.2421 
 

NS 6.459 0.72 

PAaver+RH 
 

25.1343 0.7173 -0.2508 
 

NS 6.059 0.75 

PAaver+Temp+RH 
 

39.6229 0.6779 0.822 -0.5518 Sig (p-value=0.01) 4.738 0.85 
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TABLE XVII. LINEAR REGRESSION STATISTICS AND MEASUREMENT ERRORS OF MEASUREMENTS BETWEEN 
PM2.5 LOW-COST SENSORS AND REFERENCE MONITORS: UNADJUSTED AND ADJUSTED CONCENTRATIONSa 

PM2.5 Sensors Reference 
monitors 

Number 
of obs. 

R2 Slope Intercept MAE (µg/m3) MBE (µg/m3) MBE/MAE RMSE 
(µg/m3) 

MOaver FEM 1375 0.43 0.5712 3.6103 3.6 -0.3 0.08 5.0 

MOaver_M1 FEM 1375 0.43 0.4297 4.4178 3.5 0.0 0.00 4.8 

MOaver_M2 FEM 1375 0.27 0.4464 7.8612 5.4 -3.6 0.66 6.9 

MOaver_M3 FEM 1375 0.43 0.4345 4.3799 3.5 0.0 0.00 4.8 

MOaver_M4 FEM 1376 0.44 0.4386 4.3428 3.5 0.0 0.00 4.8 

PAaver FEM 1319 0.58 1.4422 2.3288 7.0 -5.8 0.83 10.2 

PAaver_M1 FEM 1320 0.58 0.2496 2.7826 4.3 3.1 0.73 5.9 

PAaver_M2 FEM 1321 0.58 0.5804 3.3118 3.1 0.0 0.00 4.2 

PAaver_M3 FEM 1322 0.60 0.6038 3.127 3.0 0.0 0.00 4.1 

PAaver_M4 FEM 1323 0.60 0.6043 3.1228 3.0 0.0 0.00 4.1 

ABaver FEM 28 0.09 0.3053 6.5192 5.9 -0.2 0.04 8.2 

ABaver_M1 FEM 28 0.09 0.0885 8.2332 4.8 0.0 0.00 6.5 

ABaver_M2 FEM 28 0.09 0.09 8.2189 4.7 0.0 0.00 6.5 

ABaver_M3 FEM 28 0.10 0.0973 8.1532 4.6 0.0 0.00 6.5 

ABaver_M4 FEM 28 0.10 0.0976 8.1506 4.6 0.0 0.00 6.5 

 
aAn italicizing indicates the unadjusted model of each sensor. M1 (Sensor), M2 (Sensor+T), M3 (Sensor+RH), and M4 (Sensor+T+RH) represent 

the adjusted low-cost measurements employing the MLR statistics (Table 12).  
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TABLE XVIII. LINEAR REGRESSION STATISTICS AND MEASUREMENT ERRORS OF MEASUREMENTS BETWEEN 
PM10 LOW-COST SENSORS AND REFERENCE MONITORS: UNADJUSTED AND ADJUSTED CONCENTRATIONSa 

PM10 Sensors Reference 
monitors 

Number 
of obs. 

R2 Slope Intercept MAE (µg/m3) MBE (µg/m3) MBE/MAE RMSE 
(µg/m3) 

MO2 FRM 11 0.65 0.3497 2.1298 9.3 9.3 1.00 12.3 

MO2_M1 FRM 12 0.65 0.6502 6.1372 6.2 0.0 0.00 6.8 

MO2_M2 FRM 13 0.89 0.8887 1.952 3.0 0.0 0.00 3.9 

MO2_M3 FRM 14 0.65 0.6547 6.0615 6.0 0.0 0.00 6.8 

MO2_M4 FRM 15 0.91 0.9146 1.4966 2.5 0.0 0.00 3.37 

PAaver FRM 11 0.76 0.9673 -2.8829 6.7 3.5 0.51 7.2 

PAaver_M1 FRM 12 0.76 0.7593 4.2227 4.2 0.0 0.00 5.7 

PAaver_M2 FRM 13 0.77 0.7725 3.992 4.1 0.0 0.00 5.5 

PAaver_M3 FRM 14 0.80 0.7997 3.5161 4.2 0.0 0.00 5.2 

PAaver_M4 FRM 15 0.89 0.8929 1.8775 2.7 0.0 0.00 3.8 

 

aAn italicizing indicates the unadjusted model of each sensor. M1 (Sensor), M2 (Sensor+T), M3 (Sensor+RH), and M4 
(Sensor+T+RH) represent the adjusted low-cost measurements employing the MLR statistics (Table 12).  
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TABLE XIX. INTRA-SAMPLER COMPARISONS BETWEEN GASEOUSE POLLUTANT MEASURED 
CONCENTRATIONS OF LOW-COST SENSOR UNIT-1,-2,-3, OCTOBER 6 TO DECEMBER 8 2017, NORTHBROOK, 
ILLINOISa 

Air 
Pollutants 

Pairs of 
sensors 

Number of Obs. Intercept Slope R2 

NO2  AQ1 vs AQ2 836 -5.5722 1.1902 0.78 

NO TR1 vs TR2 52 0.0996 0.8315 0.91  
TR1 vs TR3 52 1.2138 1.2752 0.52  
TR2 vs TR3 52 -0.7455 1.3066 0.72 

CO TR2 vs TR3 52 0.0162 0.6328 0.29 

CO2 TR1 vs TR2 54 189.13 0.8555 0.92  
TR1 vs TR3 54 255.09 0.5239 0.65  
TR2 vs TR3 54 144.21 0.6028 0.69 

 

aAeroQual sensors (AQ1 and AQ2) were operated from October 27 to December 8, while Terrier sensors were operated 

during the beginning of the sampling event (October 12 to 20) for approximately 84 hours.  
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TABLE XX. LINEAR REGRESSION STATISTICS AND MEASUREMENT ERRORS OF MEASUREMENTS BETWEEN 
GASEOUS POLLUTANT LOW-COST SENSORS AND REFERENCE INSTRUMENTSa 

Sensors Reference 
monitor 

Number of 
obs. 

R2 Slope Intercept MAE 
(ppm/ppb) 

MBE 
(ppm/ppb) 

MBE/MAE RMSE 
(ppm/ppb) 

O3 sensor 
         

AQ2 FEM 486 0.68 0.7496 0.0084 0.006 -0.002 -0.385 0.007 

CO sensors 
         

TR2  FRM 52 0.64 0.4787 0.1369 0.052 -0.002 -0.035 0.070 

TR3  FRM 52 0.18 0.3004 0.1036 0.092 0.078 0.849 0.131 

TRaver FRM 52 0.46 0.3895 0.1202 0.055 0.038 0.692 0.091 

NO sensors 
         

TR1  Non-Federal  
Reference 

53 0.08 0.5153 7.7549 6.397 -4.757 -0.744 10.279 

TR2 Non-Federal  
Reference 

53 0.12 0.5139 6.3859 6.115 -4.270 -0.698 9.046 

TR3 Non-Federal  
Reference 

53 0.03 0.5435 10.591 9.353 -7.928 -0.848 19.144 

TRaver Non-Federal  
Reference 

53 0.06 0.5242 8.2439 6.858 -5.185 -0.756 11.6 

 

aThe unit of O3 and CO concentrations are ppm and the unit of NO concentration is ppb. 
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TABLE XXI. BLAND-ALTMAN PARAMETERS AND CCC OF MEASUREMENTS BETWEEN GASEOUS POLLUTANT 
LOW-COST SENSORS AND REFERENCE MONITORSa,b  

Sensors Reference 
monitors 

Number 
of obs. 

B-A plots Lin's Concordance Correlation 
Coefficient 

    
 

Mean of differences 95%CI (Limits of 
agreement) 

CCC Cb 

O3 sensor 
      

AQ2 FEM 486 -0.0023 (-0.0163,0.00116) 0.81 0.98 

CO sensors 
      

TR2  FRM 52 -0.0018 (-0.14406,0.14049) 0.70 0.88 

TR3  FRM 52 0.0778 (-0.1339,0.2896) 0.30 0.71 

TRaver 
 

52 0.0380 (-0.1280,0.2040) 0.54 0.79 

NO sensors 
      

TR1  Non-Federal 
Reference 

53 -4.7574 (-23.1119,13.5971) 0.22 0.71 

TR2 Non-Federal 
Reference 

53 -4.2703 (-20.3477,11.8071) 0.27 0.76 

TR3 Non-Federal 
Reference 

53 -7.9276 (-43.0781,27.2229) 0.08 0.48 

TRaver Non-Federal 
Reference 

53 -5.1851 (-26.1773,15.8070) 0.18 0.66 

 

aMean of differences between measurements of the reference instrument and the low-cost sensor. 
bThe unit of O3 and CO is ppm and the unit of NO is ppb. 

AeroQual (AQ2) was operated from October 6 to 27, while Terrier sensors were operated during the beginning of the sampling event (October 12 
to 20) for approximately 84 hours. 
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TABLE XXII. MLR STATISTICS OF MODELS FOR ESTIMATING/ADJUSTING GASEOUS POLLUTANT 
CONCENTRATIONS 

Sensors Variable included  Number 
of Obs 

beta0   beta1 beta2 beta3 ANOVA 
test 
(compare 
b/w 
models) 

RMSE Adjusted 
R2 

O3 sensor 
     

  
  

AeroQual AQ2 486 0.000170 0.909370 
  

Reference 0.0069 0.68  
AQ2+Temp 

 
-0.006557 0.754700 0.000766 

 
p-value=0 0.0059 0.76  

AQ2+RH 
 

0.001157 0.808900 -0.000116 
 

NS 0.0066 0.71  
AQ2+Temp+RH 

 
0.001563 0.702500 0.000697 -0.000076 p-value=0 0.0058 0.77 

CO sensor 
     

  
  

Terrier TRaver 52 -0.004768 1.193386 
  

Reference 0.0829 0.45  
TRaver+Temp 

 
0.198828 1.137679 -0.012919 

 
p-value=0 0.0744 0.56  

TRaver+RH 
 

-0.0180513 1.1368604 0.0004293 
 

NS 0.0834 0.45  
TRaver+Temp+RH 

 
0.2267619 1.193483 -0.0138023 -0.0004527 p-value=0 0.0748 0.56 

NO sensor 
     

  
  

Terrier TRaver 53 2.15713 0.13396 
  

Reference 5.032 0.06  
TRaver+Temp 

 
7.58715 0.09095 -0.33227 

 
NS 4.969 0.09  

TRaver+RH 
 

0.99028 0.11422 0.02416 
 

NS 5.051 0.05  
TRaver+Temp+RH 

 
6.97654 0.086307 -0.320359 0.007898 NS 5.005 0.07 
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TABLE XXIII. LINEAR REGRESSION STATISTICS AND MEASUREMENT ERRORS OF MEASUREMENTS BETWEEN 
GASEOUS POLLUTANT LOW-COST SENSORS AND REFERENCE MONITORS: UNADJUSTED AND ADJUSTED 
CONCENTRATIONSa 

Sensors Reference monitor Number 
of obs. 

R2 Slope Intercept MAE 
(ppm/ppb)* 

MBE 
(ppm/ppb)* 

MBE/MAE RMSE 
(ppm/ppb)* 

O3 sensor 
         

AQ2 FEM 486 0.68 0.7496 0.0084 0.006 -0.002 0.385 0.007 

AQ2_M1 FEM 486 0.68 0.6817 0.0078 0.005 0.000 0.000 0.007 

AQ2_M2 FEM 486 0.76 0.7636 0.0058 0.004 0.000 0.001 0.005 

AQ2_M3 FEM 486 0.71 0.712 0.0071 0.005 0.000 0.009 0.007 

AQ2_M4 FEM 486 0.78 0.7759 0.0055 0.004 0.000 0.003 0.006 

CO sensors 
         

TRaver FRM 52 0.46 0.3895 0.1202 0.055 0.038 0.692 0.091 

TRaver_M1 FRM 52 0.46 0.4649 0.1387 0.055 0.000 0.000 0.081 

TRaver_M2 FRM 52 0.58 0.5779 0.1094 0.050 0.000 0.000 0.072 

TRaver_M3 FRM 52 0.47 0.4687 0.1377 0.054 0.000 0.000 0.081 

TRaver_M4 FRM 52 0.58 0.5816 0.1085 0.049 0.000 0.000 0.072 

NO sensors 
         

TRaver Non-Federal Reference 70 0.08 0.5639 6.6211 6.858 -5.185 0.756 11.640 

TRaver_M1 Non-Federal Reference 70 0.08 0.0755 3.0441 3.352 0.000 0.000 4.959 

TRaver_M2 Non-Federal Reference 70 0.11 0.1113 2.9596 3.430 -0.033 0.010 4.861 

TRaver_M3 Non-Federal Reference 70 0.08 0.0822 3.0223 3.329 0.000 0.000 4.941 

TRaver_M4 Non-Federal Reference 70 0.11 0.1124 2.9228 3.399 0.000 0.000 4.860 

 

aAn italicizing indicates the unadjusted model of each sensor. M1 (Sensor), M2 (Sensor+T), M3 (Sensor+RH), and M4 
(Sensor+T+RH) represent the adjusted low-cost measurements employing the MLR statistics (Table 18).  
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TABLE XXIV. COMPARISONS BETWEEN PUBLISHED AIRBEAM SENSOR EVALUATION FINDINGS 

Studies  Study Location Sampling 
Condition 

Reference 
Instruments 

Sensor Performances 

R2 Bias and Precision 

(Sousan et al., 
2017) 

Iowa Laboratory 
exposure 
chamber 

 SMPS-APS 
(Scanning Mobility 
Particle Sizer and 
Aerodynamic 
Particle Sizer 
tandem)  

0.49-0.92 %bias=-36 (for salt) 
and -83 (for welding 
fume)  
%CV= 2-9 

(SCAQMD, 
2015a) 

California Collocation, 8 
weeks 

FEM GRIMM and 
BAM 

0.68-0.70 (vs. GRIMM); 
0.66-0.67 (vs BAM) 

 

(Borghi et al., 
2018) 

Italy  Collocation, 2-
4 weeks 

EPA WINS 0.77-0.83 
 

(Feenstra et al., 
2019) 

California  Collocation, 8 
weeks 

FEM 0.57-0.59 MAE=4.4,6.5,7.5µg/m3 
MBE:  2.9, 5.7, 6.8 
µg/m3 
RMSE=6.6, 10.6, 12.4 
µg/m3 

(DeWitt et al., 
2020) 

Texas Collocation, 10 
months 

FEM BAM 0.36-0.42 
 

(Mukherjee et 
al., 2017) 

California Collocation, 12 
weeks 

FEM BAM and 
GRIMM 

0.21-0.33 (vs. BAM), 
0.62-0.71 (GRIMM) 

 

(Jiao et al., 
2016) 

Atlanta, GA Collocation, 4 
weeks 

FEM BAM  0.42-0.43 
 

(Feinberg et al., 
2018) 

Denver Collocation, 7 
months 

FEM 0.67-0.71 
 

This study 
(SASA) 

Northbrook, IL Collocation, 
84 hoursa 

FEM/FRM 0.03-0.12 MAE=5.8-5.9 µg/m3 
MBE=-1.6-0.6 µg/m3 
RMSE=7.6-8.8 µg/m3 

 

aSub-Experiment: AirBeam sensors were operated in the beginning of the sampling period (October 1 to 20) for 84 hours.  
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TABLE XXV. COMPARISONS BETWEEN PUBLISHED PURPLEAIR SENSOR EVALUATION FINDINGS 

Studies  Study Location Sampling 
Condition 

Reference 
Instruments 

Sensor Performances 

R2 Bias and Precision 

(Feenstra et 
al., 2019) 

California  Collocation, 8 
weeks 

FEM PM2.5: 0.95 MAE=6.7-7.0 µg/m3 
MBE=4.7-5.0 µg/m3 
RMSE=9.7-10.6 µg/m3 

(Magi et al., 
2020) 

North Carolina Collocation, 16 
months 

FEM BAM PM2.5: 0.54 MAE=5.8 µg/m3 
RMSE=7.5 µg/m3 

(SCAQMD, 
2016) 

California Collocation, 8 
weeks 

FEM GRIMM and 
BAM 

PM2.5: 0.91-0.93 (vs. 
GRIMM), 0.70-0.79 
(vs. BAM);  
PM10: 0.43-0.45 (vs. 
GRIMM), 0.32-0.34 
(vs. BAM) 

 

(Malings et al., 
2020) 

Pennsylvania Collocation, 4-
5 months 

FEM BAM PM2.5: 0.58 MAE=4.2 µg/m3  
bias=1.9 µg/m3 

(Kelly et al., 
2017) 

Utah  Collocation, 6 
weeks  

FEM TEOM PM2.5: 0.83,0.86 
 

This study 
(SASA) 

Northbrook, IL Collocation, 2 
months 

FEM/FRM PM2.5: 0.57-0.59 
PM10: 0.75-0.78 

PM2.5:  
MAE=6.7-7.5 µg/m3 
MBE=-6.5to-5.4 µg/m3 

RMSE=9.6-10.7 µg/m3 
PM10:  
MAE=6.5-7.0 µg/m3 
MBE=2.9-3.8 µg/m3 
RMSE=7.0-7.4µg/m3 
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TABLE XXVI. COMPARISONS BETWEEN PUBLISHED METONE NEIGHBORHOOD SENSOR EVALUATION 
FINDINGS 

Studies  Study Location Sampling 
Condition 

Reference 
Instruments 

Sensor Performances 

R2 Bias and Precision 

SCAQMD 
(2015) 

California Collocation, 8 
weeks 

FEM GRIMM and 
BAM 

PM2.5: 0.53-0.56 (vs. 
GRIMM), 0.66-0.67 (vs. 
BAM) 

 

Malings et al. 
(2019) 

Pennsylvania Collocation, 4-
5 months 

FEM BAM PM2.5: 0.41 MAE=4.8 µg/m3 
bias=-3.5µg/m3 

This study 
(SASA) 

Northbrook, IL Collocation, 2 
months 

FEM (PM2.5)/FRM 
(PM10) 

PM2.5:0.42,0.43 
PM10: 0.65 

PM2.5:  
MAE=3.6,3.7 µg/m3 
MBE= -0.2,-0.5µg/m3 
RMSE=4.9,5.3µg/m3 
PM10:  
MAE=9.3µg/m3 
MBE=9.3 µg/m3, 
RMSE=12.3µg/m3 
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TABLE XXVII. COMPARISONS BETWEEN PUBLISHED GASEOUE POLLUTANT SENSOR EVALUATION FINDINGS 

Sensors Studies  Study 
Location 

Sampling 
Condition 

Reference 
Instruments 

Sensor Performances 

R2 Bias and Precision 

AeroQual 
S500-O3 

(DeWitt et 
al., 2020) 

Texas Collocation, 10 
months 

FEM 0.72-0.85; no 
impacts of 
meteorological 
parameters 

 

(Lin, C. et 
al., 2015) 

Edinburgh, 
UK 

Collocation, >2 
months 

O3 UV absorption 
analyzer 

0.91 
 

(Lin, 
Chun et 
al., 2017) 

UK Collocation, 7 
months  

O3 UV absorption 
analyzer 

0.88-0.96 
 

This 
study 
(SASA) 

Northbrook, 
IL 

Collocation, 2 
months 

FEM (O3) 0.68 MAE=0.006ppm 
MBE= -0.002ppm 
RMSE=0.007ppm 

Terrier (i.e., 
Alphasense 
CO-B4, 
Alphsense 
NO-B4) 

(Sun et 
al., 2016) 

Hong Kong, 
China 

Collocation, 3 
days 

Reference analyzer CO: 0.97  ME<0.01 

(Lewis et 
al., 2016) 

UK Collocation, 17 
days 

Chemiluminescence NO: 0.73±0.21 
 

(Borrego 
et al., 
2016)  

Portugal  Collocation, 2 
weeks 

Infrared photometry 
(CO)/Chemiluminesce
nce (NOx) 

CO: >0.8  
NO: 0.8  

 

This 
study 
(SASA) 

Northbrook, 
IL 

Collocation, 84 
hoursa 

FEM /FRM CO: 0.18,0.64 
NO: 0.03-0.12 

CO:  
MAE=0.092,0.052ppm 
MBE=-0.002,0.078ppm 
RMSE=0.070,0.131ppm 
NO:  
MAE=6-9ppb 
MBE=-7 to -4 ppb 
RMSE=9-19ppb 

 

aSub-Experiment: Terrier sensors were operated in the beginning of the sampling period (October 1 to 20) for 84 hours.
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Figure 12. Low-cost sensors were collocated with their respective EPA FRM/FEM 
monitors at Northbrook air monitoring site, Northbrook, IL from October 6 to December 8, 
2017. MO: MetOne PM Neighborhood Monitor, PA: PurpleAir PM sensor, AirBeam: PM 
Sensor, Terrier: Terrier NO/CO/CO2 Sensor, AQ: AeroQual NO2/O3 Sensor. 
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Figure 13. Data management and intra- and inter- comparison analyses flow chart 
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Figure 14. Sample time series of PM2.5 concentrations measured by low-cost sensors and FEM plotted with %RH (a) 
and temperature (b).  
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Figure14. Sample time series of PM2.5 concentrations measured by low-cost sensors and FEM plotted with %RH (a) and 
temperature (b). (continued) 
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Figure 15. Sample time series of PM10 concentrations measured by low-cost sensors and FRM plotted with %RH (a) and 
temperature (b). 
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Figure 16. Impacts of humidity, %RH, (left panel) and temperature (right panel) on bias 
error between measurements of FEM (a) or FRM (b) and MetOne measuring PM2.5. MO1 
and MO3: MetOne unit#1 and #3; MOaver: average measurements across MO1 and MO3. 
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Figure 16. Impacts of humidity, %RH, (left panel) and temperature (right panel) on bias 

error between measurements of FEM (a) or FRM (b) and MetOne measuring PM2.5. MO1 

and MO3: MetOne unit#1 and #3; MOaver: average measurements across MO1 and MO3 

(continued) 
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Figure 17. Impacts of humidity, %RH, (left panel) and temperature (right panel) on bias 
error between measurements of FEM (a) or FRM(b) and PurpleAir measuring PM2.5. PA1, 
PA2, and PA3: PurpleAir unit#1, #2, and #3; PAaver: average measurements across PA1, 
2, and 3.  
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z
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Figure 17. Impacts of humidity, %RH, (left panel) and temperature (right panel) on bias 

error between measurements of FEM (a) or FRM(b) and PurpleAir measuring PM2.5. PA1, 

PA2, and PA3: PurpleAir unit#1, #2, and #3; PAaver: average measurements across PA1, 

2, and 3. (continued) 
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Figure 18. Impacts of humidity, %RH, (left panel) and temperature (right panel) on bias 
error between measurements of FEM and AirBeam measuring PM2.5. AB1, AB2, and 
AB3: AirBeam unit#1, #2, and #3; ABaver: average measurements across AB1, 2, and 3.  
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Figure 19. Impacts of humidity, %RH, (left panel) and temperature (right panel) on bias 
error between measurements of FRM and PurpleAir (a) or MetOne (b) measuring PM10. 
PA1, PA2, and PA3: PurpleAir unit#1, #2, and #3; PAaver: average measurements across 
PA1, 2, and 3; MO2: MetOne unit#2.  
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Figure 19. Impacts of humidity, %RH, (left panel) and temperature (right panel) on bias 

error between measurements of FRM and PurpleAir (a) or MetOne (b) measuring PM10. 

PA1, PA2, and PA3: PurpleAir unit#1, #2, and #3; PAaver: average measurements across 

PA1, 2, and 3; MO2: MetOne unit#2. (continued) 
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Figure 20. Sample time series of O3 concentrations measured by low-cost sensors and FEM plotted with %RH (a) and 
Temperature (b).  
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Figure 20. Sample time series of O3 concentrations measured by low-cost sensors and FEM plotted with %RH (a) and 

Temperature (b). (continued) 
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Figure 21. Sample time series of CO concentrations measured by low-cost sensors and FRM plotted with %RH (a) and 
Temperature (b).  
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Figure 22. Sample time series of NO concentrations measured by low-cost sensors and the reference monitor (Non-
federal reference method) plotted with %RH (a) and Temperature (b).  
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Figure 22. Sample time series of NO concentrations measured by low-cost sensors and the reference monitor (Non-

federal reference method) plotted with %RH (a) and Temperature (b). (continued)
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Figure 23. Impacts of humidity, %RH, (left panel) and temperature (right panel) on bias 
error between measurements of FEM and AeroQual measuring O3. AQ2-O3 indicates 
AeroQual unit#2 measuring O3.  

 

 

 

Figure 24. Impacts of humidity, %RH, (left panel) and temperature (right panel) on bias 
error between measurements of FRM and Terrier measuring CO. TR 2, 3-CO indicates 
Terrier unit#2 and 3 measuring CO. 

 



144 
 

 
 

 

Figure 25. Impacts of humidity, %RH, (left panel) and temperature (right panel) on bias 
error between measurements of the reference monitor (Non-Federal Reference method) 
and Terrier measuring NO. TR1, 2, 3-NO indicates Terrier unit#1, 2, and 3 measuring 
NO. 
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V. FEASIBILITY OF WORKERS TO EMPLOY LOW-COST PARTICULATE 

MATTER SENSORS IN OCCUPATIONAL PERSONAL EXPOSURE ASSESSMENT 

IN BREATHING-ZONE 

A. Introduction 

Particulate Matter (PM) is a mixture of very small solid particles and liquid 

droplets in the air. Particulate matter is typically measured as coarse, fine or ultrafine 

particles, designated as PM10, PM2.5, and PM1 respectively, where the numeric 

subscript refers to the maximum particle aerodynamic diameter measured in 

micrometers. Several epidemiologic studies have suggested that PM can cause 

adverse health outcomes including cardiovascular diseases, respiratory issues, lung 

cancer, and adverse birth outcomes (Brook et al., 2010; Madrigano et al., 2013; Pope et 

al., 2011; Ristovski et al., 2012).  

Motor vehicles are one of the major sources of PM; thus, PM is expected to 

occur anywhere vehicles are operated, including in parking garages and loading docks. 

Workers in these settings may be exposed to PM and other gaseous pollutants. A 

number of studies have suggested that the concentrations of PM and gaseous 

pollutants in parking garages and loading docks are higher than those in ambient air as 

expected because these areas are normally partially or fully enclosed. According to Yan 

and colleagues’ report, the average CO and PM10 concentrations in the indoor parking 

garage were 10.8 ppm and 228 µg/m3, respectively; and that, at times, the 

concentrations exceeded the National Ambient Air Quality Standards of 35 ppm CO and 

150 µg/m3 PM10 (Yan et al., 2017).  Similarly, Samal et al. measured elevated 

concentrations of CO (12-164 ppm) and PM2.5 (100-230 µg/m3) in an enclosed parking 
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area during an 8-hour sampling period and found that concentrations were highest 

during peak hours of vehicle activities (Samal et al., 2013). Furthermore, the 

concentrations of CO and PM varied seasonally, i.e., they were higher during winter 

than other seasons (Debia et al., 2017; Samal et al., 2013; Yan et al., 2017).  

Barriers to measure PM include the cost of instruments, and the time and 

personnel skills required to operate complicated monitoring devices. These issues might 

be solved by using new, low-cost sensors. Recently, several manufacturers have 

offered low-cost air monitoring sensors for real-time monitoring of PM2.5 including 

AirBeam2 sensor (HabitatMap, Brooklyn, NY, USA ) and Ultrasonic Personal Aerosol 

Sampler (UPAS) (Access Sensor Technologies, Fort Collins, CO, USA) which were 

employed in this study. Both devices are suitable for personal exposure assessment 

because they are small, lightweight, easy to operate, and do not interfere with job 

duties.  

Since AirBeam had been discontinued, AirBeam2, the new version of AirBeam, 

launched in spring 2018, was utilized in this study. AirBeam2 and AirBeam have the 

same measurement method and operating systems. However, AirBeam2 measures 

PM1, PM2.5, and PM10, while AirBeam measures only PM2.5. AirBeam/AirBeam2 

sensor measures PM2.5 using the light scattering method without a need of calibration 

before sampling efforts. It can run on either AC or rechargeable battery power (10-hour 

battery lifetime). The collected data can be seen real-time and uploaded to the Cloud 

(Heimbinder & Besser, 2014; Heimbinder & Lim, 2018). The performance of the 

AirBeam has been evaluated in several studies and found to be satisfactory. The South 

Coast Air Quality Management District (SCAQMD) found that, overall, AirBeam 
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measurements had good correlation with FEM instruments i.e., BAM and GRIMM with 

R2=0.66-0.67 and R2=0.68-0.70. AirBeam mass data was largely overestimated, while 

the particle count showed a good agreement (SCAQMD, 2015). Sousan and colleagues 

conducted an AirBeam sensor performance evaluation in laboratory settings to measure 

PM generated from salt, welding, and Arizona road dust; and discovered poor to high 

correlations between AirBeam sensor and Scanning Mobility Particle Sizer and 

Aerodynamic Particle Sizer (SMPS-APS) with R2=0.49-92 (Sousan et al., 2017). 

Another recent study performed by Mukherjee et al. reported that AirBeam 

demonstrated a high degree of precision with R2=0.95-0.99 and a moderate degree 

accuracy against the reference instrument (i.e., GRIMM11-R) with R2=0.6-0.76 

(Mukherjee et al., 2017). A few published studies that have employed AirBeam2 

suggested that AirBeam2 highly correlated with the TSI DustTrack tested in the 

concentrated air pollutant chamber (R2=0.88-0.89) (Heimbinder & Lim, 2018). AirBeam2 

moderately correlated with GRIMM (R2=0.70-0.72), FEM BAM (R2=0.68-0.69), and FEM 

T640 (R2=0.78-0.79) (SCAQMD, 2018). The Ultrasonic Personal Aerosol Sampler 

(UPAS) developed by Volckens and colleagues is designed to measure personal PM2.5 

exposures using time-integrated impaction without requiring calibration. It runs on 

battery power (battery life is greater than 35 hours at operating flow rate of 1 

liter/minute). This filter sampler utilizes an ultrasonic piezoelectric pump to drive flow, as 

opposed to a traditional diaphragm pump, which has the advantage of being small in 

size, light weight, and accompanying low noise (Volckens et al., 2017). The UPAS 

performance was conducted against FEM i.e., URG cyclone and a Personal 

Environmental Monitor (PEM), which is widely used in occupational exposure 
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assessments. The findings showed stronger correlations between UPAS and FRM 

(R2=0.99) compared to the correlation between PEM and FRM (R2=0.96). The 

coefficient of variation was less than 10%, in addition, the average mass measured by 

UPAS was in agreement with FEM (7% difference) (Volckens et al., 2017). UPAS is 

very new and has been utilized in a very few published studies. Arku and colleagues 

conducted a previous pilot study characterizing exposure to household air pollution in 

multiple urban and rural communities by using UPAS and Harvard Impactor. Inter-

sampler comparison analysis between UPAS and Harvard Impactor sensor suggested a 

high correlation between the two sensors with R2=0.83 (Arku et al., 2018). The UPAS 

sensor was employed in the recent household air quality study for measuring the 

personal exposures to PM2.5 among rural Honduran women conducted by Pillarisetti 

and colleagues. UPAS had a high correlation with a commonly used PM sensor with 

gravimetric pump, cyclone and filter sampling system (R2=0.83) (Pillarisetti et al., 2019).  

Particulate matter monitoring sensors, including AirBeam/AirBeam2 and UPAS, 

show great promise for measuring personal exposures, but they have had limited 

applications in occupational exposure assessments to date. In this study, the feasibility 

of employing two low-cost PM2.5 sensors (AirBeam2 and UPAS) under the field 

conditions by University of Illinois at Chicago (UIC) parking and ground-keeping workers 

was assessed using two approaches. The first approach was based on the assessment 

of compliance of the sampling protocol by the participating workers using the feasibility 

assessment tool. The investigators implemented the Relative Compliance Score (RCS), 

which is unique to this study, that captures the attention/interest level of the participants 

which may provide the information about the feasibility of employing the low-cost 
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sensors. The second approach involved intra- and inter-sampler performance 

evaluation of these two PM2.5 low-cost sensors to gain insight into their reliability for air 

quality and exposure assessment studies in support of occupational personal exposure 

assessment studies. In addition, the real-time PM2.5 personal exposures of parking and 

ground-keeping workers on UIC campus were characterized since these two groups of 

participants who work in close proximity to vehicles and heavy engines that potentially 

emitting PM2.5; however, their exposures have not been well-characterized as yet. This 

pilot study provided knowledge to facilitate exposure/health risk mitigation measures for 

improved occupational health and safety on campus (e.g., safer work 

policies/procedures).   

B. Methods 

1. Air Monitoring Sensors  

Two low-cost portable PM2.5 sensors, i.e., AirBeam2 ($250) and UPAS 

($1300) were selected and employed in the study. These two sensors have different 

PM2.5 measurement methods. AirBeam2 sensor measures PM2.5 by using the light 

scattering method while the UPAS uses time-integrated impaction. Prior to the first 

sampling event of each day, sensors and cellphones were fully charged. In addition, 

sampling and blank filters for UPAS were prepared and pre-weighed. Each unit of the 

UPAS was loaded with a pre-weighed filter and measured for the flow rate before the 

first sampling session of each day. AirBeam2 and UPAS sensors were connected to the 

cellphone and operated through the mobile applications i.e., AirCasting (for AirBeam2) 

and UPAS (for UPAS). After completing each air monitoring session, sensors were 

retrieved from the participants and recharged. UPAS was replaced with a new pre-
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weighed filter in preparation for the next air sampling session. The detailed explanation 

delineating the preparation and treatment of sensors and filters is provided in the data 

collection protocol enclosed in Appendix K. 

2. Participant Recruitment  

There was a collaboration with UIC Facilities Management and Campus 

Parking Services to access workers as potential participants. Ten workers (i.e., five of 

each UIC parking and ground-keeping) participated in the study. The study has been 

approved to be exempted by Institutional Review Board under protocol# 2019-0018. 

The IRB approval is enclosed in Appendix L The investigators informed the prospective 

participants about the study with a provided information sheet (see Appendix M). All 

participants provided their informed consents (see Appendix N) before participating. 

Each participant was asked to participate in a 2-hour training session on how to use and 

operate the sensors, in addition to performing six 1-hour air monitoring sessions on six 

different days. During two out of the six 1-hour sampling sessions, the participants were 

shadowed by the investigator while performing their routine work and wearing four units 

of sensors in their breathing-zone. During the other four 1-hour sampling sessions, they 

were asked to perform the air monitoring while wearing two units of sensors in their 

breathing-zone (i.e., two AirBeam2 sensors on their right shoulder, or two UPAS on 

their left shoulder, or one AirBeam2 sensor on their right shoulder and one UPAS on 

their left shoulder).  
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3. Creating the PM2.5 Exposure Assessment Plan using Two 

Low-Cost PM2.5 Sensors and Collecting Air Quality Data  

From April-May 2019, the investigators collaborated with the staff at the UIC 

Facilities Management and Campus Parking Services to finalize the personal exposure 

air-monitoring plan. Initially, air monitoring efforts were aimed to capture time-periods 

and locations of concern for potentially higher PM concentrations and associated 

exposures. Logistically, the air sampling plan was scheduled based on convenience and 

weather. Each participant was scheduled for six 1-hour long air-monitoring sessions 

from May-June 2019. Out of the total six sessions, two (i.e., first and fourth sessions) 

were for the purpose of Quality Assurance/Quality Control (denoted as Q), which each 

participant wore two AirBeam2 units on the right shoulder and two UPAS units on the 

left shoulder in their breathing-zone (see Figure 26) for one hour and was shadowed by 

the investigator. To access the inter-sensor variability, each participant wore both the 

AirBeam2 and UPAS during two of the 1-hour sampling sessions i.e., one AirBeam2 

was placed on the right shoulder and one UPAS on the left shoulder in their breathing-

zone (denoted as X). To access the intra-sensor variability, each participant wore two 

units of AirBeam2 or UPAS during two of the 1-hour sampling sessions i.e., two 

AirBeam2 units were placed on the right shoulder (denoted as Y), or two UPAS units on 

the left shoulder (denoted as Z). Furthermore, each participant was asked to record 

time-activity data at every five-minute interval. In particular, they were asked to 

document any PM2.5 generating activities, e.g., lawn mowing, blowing, fertilizing, 

mulching, cleaning, machine operating, and working nearby the PM generating sources 

including heavy-duty vehicles and machines. 
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4. Training the Participating Workers 

All participating workers were trained on how to operate AirBeam2 and 

UPAS in a step-by-step fashion in one 2-hour in-person training session. To facilitate 

this, the research team prepared user guides enclosed in Appendix O that documented 

operation of each sensor in a step-by-step sequence. These user guides were made 

available to the workers. In addition, the participants were trained on how to record the 

time-activity data documenting PM2.5 generating tasks/activities and air pollution 

sources they encountered during their routine work. The participants collected time-

activity data either manually documented the time-activity data in a mobile monitoring 

observation log (shown in Appendix Q) or took a picture of an air pollution source and 

note on during their sampling sessions using their cell phone that, then, became an 

electronic record in the AirCasting application and could be downloaded along with the 

air monitoring data from the AirCasting website. These methods allowed the workers to 

capture any PM generating tasks/activities, encountered during each sampling event. At 

the beginning of the training session, workers were asked for their age ranges and 

education levels. The age responses included: (1) 18-24, (2) 25-34, (3) 35-44, (4) 45-

54, (5) 55 and over, and (6) do not want to respond; and the education level responses 

included: (1) less than a high school diploma, (2) high school degree or equivalent 

(GED) or some college with no degree, (3) Associated degree, (4) Bachelor’s degree or 

higher, and (5) do not want to respond. The training session was scheduled before 

initiation of air monitoring activities.   
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5. Shadowing the Workers and Observing Time-Activity Patterns 

and Feasibility of Employing the Sensors 

The investigator shadowed and observed each participating worker during 

their first and fourth air-monitoring events. The purpose of these observations was to 

collect qualitative information in the following two components. The first component is 

the participant’s level of comfort and capacity in operating the sensors for personal 

exposure monitoring using the feasibility assessment tool enclosed in Appendix P, that 

captures information pertaining to participant’s compliance with the sampling protocol 

using the following metrics/indicators: correctly placing the sensors in their breathing-

zone; level of comfortable in using the sensors; periodically checking AirBeam sensors 

during the sampling session; periodically checking UPAS sensors during the sampling 

session; and level of compliance with the general air sampling procedures. The second 

component is the participants’ time-activity patterns during their regular work. Time-

activity patterns i.e., time, location, and activities were recorded at every one-minute 

interval using the time-activity observation log (enclosed in Appendix Q), in addition to, 

counts of Heavy Duty Vehicles (HDVs) e.g., trucks, buses, and large SUVs encountered 

during the sampling sessions.  

6. Data Management 

a) PM2.5 Concentration Data 

The PM2.5 exposure concentration data was collected by AirBeam2 sensor 

every one second were saved with a specific file naming nomenclature (e.g., 

P1_0818AM) for each sampling session and these files containing the data for each 

sampling session were transferred from the instrument to the cloud, AirCasting website, 
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using manufacturer developed algorithms. The AirBeam2 collected data were 

downloaded from the AirCasting website in a csv format and further managed on MS 

Excel spreadsheets. We observed missing 1-second data points in the collected 

AirBeam data files. Consequently, AirBeam2 data were treated and imputed for the 

missing 1-second data following the criteria delineated in Appendix H. One-minute 

PM2.5 mean concentrations were computed and utilized for statistical data analysis 

including descriptive statistics and intra-sampler comparisons. 

The filter loaded UPAS sensor was utilized to collect PM2.5 personal 

exposure mass. The sampling filters were collected and post-weighed by the 

investigator. The collected PM2.5 mass was calculated by finding the difference 

between the pre- and post-sampling weights of each filter, then, was corrected by the 

blank filter utilizing two approaches: 1) weight of a blank filter in each run, and 2) 

average weight of all blank filters in all runs each day. The average of UPAS flow rate 

measured before and after the runs of each sampling day was computed (Equation V-

1). Finally, the PM2.5 concentrations collected by UPAS were calculated (Equation V-

2). 

Equation V-1:    𝑉(𝑐𝑢𝑏𝑖𝑐 𝑚𝑒𝑡𝑒𝑟) = 𝑇(min) × 𝐹(𝑐𝑢𝑏𝑖𝑐 𝑚𝑒𝑡𝑒𝑟 𝑝𝑒𝑟 𝑚𝑖𝑛) 

Equation V-2:    𝑃𝑀2.5 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑃𝑀2.5 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 𝑚𝑎𝑠𝑠 (µ𝑔)

𝑉 (𝑐𝑢𝑏𝑖𝑐 𝑚𝑒𝑡𝑒𝑟)
 

𝑉 = volume of air collected by UPAS (m3), 𝑇 = sampling duration (minute), 𝐹 = UPAS 

flow rate (m3/minute) 

After post-weighing the UPAS collected filters, the PM2.5 mass collected by 

UPAS was too small to perform reliable weighing, thus, the UPAS measured PM2.5 
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concentrations were excluded from sensor performance and exposure concentration 

analyses. 

b) Time-Activity Pattern and Feasibility Assessment Data 

The time-activity pattern data collected by the investigator (for only shadowing 

sampling sessions) and the participants (if applicable) was entered into Microsoft Excel 

spreadsheets. The feasibility assessment tool was utilized to assess the feasibility of 

employing AirBeam and UPAS sensors among participating workers. Every answer to 

questions of the feasibility assessment tool were assigned scores (Table XXVIII). For 

each shadowing sampling session, the Relative Compliance Score (RCS) was 

computed. The RCS is a product of the summation of raw scores of all questions 

divided by the total maximum raw scores. RCS was utilized as a tool to determine the 

attention/interest level of the participants, that captures information pertaining to 

participant’s compliance with the sampling protocol using the following 

metrics/indicators described above, as well as the participants’ attention in taking the 

time-activity data during their sampling sessions.   

7. Occupational Exposure and Feasibility of Employing Low-Cost 

Sensor Data Analyses 

a) PM2.5 Personal Exposure Concentrations 

The descriptive statistics of 1-minute PM2.5 personal exposure measured 

concentrations was calculated using ProUCL5.1 (USEPA) and R (RStudio, MA) 

programs. The spatial and temporal variability of PM2.5 personal exposure 

concentrations across were analyzed and documented. The 1-minute mean and 

standard deviation of each real-time PM2.5 personal exposure measured concentration 
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for each sampling session was calculated and summarized by workers, worker types 

(ground-keeping and parking workers), and worker tasks/activities (picking trash and 

cleaning parking lots (PTC); mowing (MW); weeding and grass trimming (WWGT); 

doing cashier work /working in the office (CSOF); and valet parking (VP)). Moreover, the 

number of Heavy-Duty Vehicles (HDVs) of each sampling event were documented. 

HDV density (counts/minute) was calculated as the total number of HDVs counted 

divided by the sampling duration of each sampling event. As shown in Table XXXI, the 

HDV density values across all sampling sessions were relatively low i.e., three sessions 

had HDV density 0.03, 0.08, and 0.09 counts/minute, respectively; while seven sessions 

had a HDV density of 0.00 counts/minute, and four sessions had no records. Since the 

HDV density across the sampling sessions observed were relatively small, the HDV 

density was not included in the analyses as one of concerned sources of the PM2.5 

concentrations measured in this study due to the HDVs were not likely to impact the 

PM2.5 exposure concentrations measured. Therefore, an effort was expanded into 

observing and tracking tasks/activities participants performed during each sampling 

session.  

The collected PM2.5 exposure concentrations did not follow the normal 

distribution assumption; thus, the Wilcoxon rank sum test (R package stats) was utilized 

to determine whether the PM2.5 mean exposure concentrations were different between 

ground-keeping and parking workers. In addition, the Kruskal-Wallis rank test and the 

multiple comparison based on pair-wise rankings analysis were employed to determine 

the median differences between each pair of task groups.  
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b) Sensor Performance Assessment 

                 The correlation between the measured concentrations by two units of 

AirBeam2 sensor on the right shoulder in the participants’ breathing-zone during 

shadowing sampling events was determined to evaluate sensor intra-variability as an 

indicator of sensor reliability under field conditions. A coefficient of determination (R2) 

was utilized as an evaluation metric, which is accepted as a very strong correlation (R2 

≥0.9), a strong correlation (R2=0.7-0.89), a moderate correlation (R2=0.5-0.69), a weak 

correlation (R2=0.3-0.49), a very weak correlation (R2=0.1-0.29), and a no correlation 

(R2=0.0-0.09). In addition, the slope and intercept of the regression line were 

investigated (Collier-Oxandale et al., 2020). Neither the inter-comparison analysis 

between AirBeam2 and UPAS nor the intra-comparison analysis for UPAS were able to 

perform due to a shortage of PM2.5 concentration data measured by UPAS as 

explained previously. 

c) Feasibility of Employing the PM2.5 Low-Cost Sensors 

The data collected during each shadowing sampling event in response to 

questions in the feasibility assessment tool shown in Appendix P were analyzed to gain 

insight into compliance of sampling protocol by the worker participants who partook in 

the sampling effort.  We calculated percent of participating workers that complied with 

each measure documented in Appendix P. Furthermore, the RCS of each shadowing 

session was calculated and reported. The descriptive statistics of RCS were 

documented and analyzed based on the collected demographic information 

(occupations, tasks, age ranges, and education levels). 
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C. Results 

1. Summary of Participants and Personal Air Sampling Events 

Sixty personal air monitoring sessions took place from March 22 to June 21,  

2019 at UIC. The ten participants were UIC ground-keeping or parking employees. Most 

of the participants aged 25-34 (50%) and had a high school degree or equivalent or 

some college with no degree (70%) (see Table XXIX). The complete/incomplete 

sampling events were documented based on the criteria of successfully completing the 

total hour air monitoring and retrieving collected data from two units of AirBeam2 

operated side-by-side during each sampling event. Since the PM2.5 mass, which was 

collected by UPAS, was too small to determine the difference between pre- and post-

sampling weights of each filter, the UPAS measured PM2.5 concentrations were not 

available and the complete sampling events for UPAS could not be evaluated. Based on 

the AirBeam2 collected data (N=50), 48 (96%) of the AirBeam2 total sampling sessions 

were successful. The rationale behind the two incomplete sessions included: 1) data 

was not recorded by one unit of the AirBeam2 or the session was not saved; 2) data 

was not recorded properly by one unit of the AirBeam2 i.e., the sensor discontinuously 

communicated with the AirCasting application resulting in four short period data 

collection with less than one-minute recording sampling duration. 

2. Analysis of PM2.5 Exposure Concentrations Collected by 

AirBeam2 Sensors 

The average of 1-minute PM2.5 mean personal exposure concentrations 

varied from 0.3 µg/m3 to 26.3 µg/m3 (ground-keeping) and 0.0-11.9 µg/m3 (parking) (see 

Appendix R). The variations of PM2.5 exposure concentrations among task groups 
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were observed shown in the bar plots in Figure 27. Overall, workers engaged in mowing 

had the highest 1-minute PM2.5 mean exposures (6.9-26.3 µg/m3); while the exposures 

of parking employees (i.e., cashiers and parking valets) were lower (0.0-6.4 µg/m3). The 

Wilcoxon rank sum test suggested that, at 95% confidence, PM2.5 exposure 

concentrations were significantly different between ground-keeping and parking 

workers. The Kruskal-Wallis rank sum test demonstrated that at 95% confidence, PM2.5 

median concentrations were significantly different among workers engaging in different 

tasks (p-value=0.0002). The multiple comparisons based on pair-wise rankings analysis 

demonstrated that, at 95% confidence, PM2.5 exposure concentrations among workers 

who were mowing (MW) were significantly greater than those who were doing cashier 

jobs and/or working in the office (CSOF), and valet parking (VP). In addition, PM2.5 

exposure concentrations among workers who were picking trash and cleaning parking 

lots (PTC) were significantly greater than those who were doing cashier jobs and/or 

working in the office (CSOF) and valet parking (VP) (see the box plots in Figure 28). 

3. AirBeam2 Sensor Performance 

The sensor performance was analyzed based on the sampling sessions in 

which workers wore two units of AirBeam2 in their breathing-zone i.e., the Q and Y 

sampling sessions during May-June 2019 (N=29). The percentage of the data recovery 

of AirBeam2 recorded measurements was ≥75 with an exception of two units of 

AirBeam2 (26 and 37%, respectively). Approximately 70% of the total sampling 

sessions that two AirBeam2 sensors were operated, excepting nine sampling sessions 

i.e., Q11, Q14, Y13, Q31, Q34, Q44, Q61, Q81, and Q91, two units of AirBeam reported 

similarly 1-minute PM2.5 mean measured concentrations as data shown in Tables XXX 
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and XXXI. The correlation plots between the 1-minute PM2.5 mean concentrations 

measured by two units of AirBeam2 demonstrated a very weak to very strong 

correlation (R2=0.11-0.99) with a moderate correlation (R2=0.64) across all Q and Y 

sampling sessions. Sixty-five percent of the total sampling sessions included in the 

analysis demonstrated strong to very strong correlation between two units of AirBeam2 

(R2>0.7). However, the agreement between the measurements of two AirBeam2 units 

was relatively low as the slope and intercept values deviated from the perfect value of 1 

(for slope) and 0 (for intercept) (see Table XXXII).  The variation of AirBeam2 sensor 

performance was noticed regardless of the occupational or task groups. Although the 

UPAS performance was not determined due to the shortage of collected PM2.5 mass 

data, the documented flow rates demonstrated that the pre- and post-sampling flow rate 

differences were less than 10%. In addition, the UPAS flow rates were less than 4% 

different from the designated flow rate (1lpm) indicating some degree of reliability of the 

UPAS sensor in support of occupational personal exposure assessment in the outdoor 

work environment.  

4. Feasibility of Employing the Low-Cost Sensors 

The feasibility of employing the low-cost PM2.5 sensors among the 

participants was assessed by utilizing the feasibility assessment tool. The results of the 

feasibility assessment survey data collected during shadowing sampling session are 

summarized in Table XXXIII.  All participants (100%) correctly placed the sensors in the 

breathing-zone and complied with the general air sampling procedures. The majority of 

the total participants had a high level of comfort in using the sensors (60%) and 

periodically checked the AirBeam2 sensors (65%) and UPAS (50%) during the sampling 
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sessions. Among the participants who demonstrated a medium and a low level of 

comfort in using the sensors, 42% could not recall the critical steps for operating UPAS 

i.e., configuring devices and starting and stopping the sensors; 33% could not recall the 

critical steps for operating AirBeam2 i.e., pairing the sensor with the AirCasting 

application and starting and saving the recording sessions; and 25% asked a few 

questions pertaining to the sensors e.g., how to check whether the sensors were 

operating. Fifty-five percent of the total participants who took notes during the sampling 

sessions utilizing the AirCasting application (25%) and the time-activity monitoring 

observation log (30%). The calculated RCS for each shadowing sessions (N=20), 

summarized in Table XXXIV, ranged from 0.42 to 1 with a mean of 0.7. Sixty percent of 

the total shadowing sampling sessions demonstrated that participants had a high 

attention/interest level in conducting air monitoring employing the low-cost sensors and 

complying with the sampling protocol using the criterion of RCS greater than 0.7. 

Participants aged ≥45 demonstrated lower RCS values (RCS=0.42-0.58) than those 

aged <45 (RCS=0.58-1). Participants with an associate degree  had higher RCS values 

(RCS=0.67-1) as compared to those with less than a high school diploma (RCS=0.58-

0.67) and those with high school degree or equivalent (GED) or some college with no 

degree (RCS=0.42-0.92). The results suggested the feasibility and the utility of 

employing the AirBeam2 and UPAS sensors in occupational setting following the 

training of the workers on how to operate the sensors and conduct personal exposure 

monitoring. 
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D. Discussion 

The measured PM2.5 personal exposure concentrations were different 

among workers performing various tasks. The highest PM2.5 concentration as 

measured by AirBeam2 was observed among ground-keeping workers engaged in 

mowing (average concentration=12.4 µg/m3); while, low PM2.5 concentrations were 

observed among parking workers (average concentration <3 µg/m3). The 

recommendation based on the findings includes the UIC Facilities Management 

implements personal protection to those workers exposed to higher particulate matter 

during their routine work. PM exposure concentrations among parking workers were 

expected to be high based on previous studies (Debia et al., 2017; Samal et al., 2013; 

Yan et al., 2017) which was not aligned with the results from the present study. This 

could be explained by the low number of vehicles in some parking locations; several 

locations were outdoor parking lots; and most vehicles were cars and rarely pick-up 

trucks, thus the accumulation of PM2.5 in the working areas was less than that 

observed in the previous studies. In addition, in several sampling days, the weather was 

cold and windy; thus, parking workers who were doing cashier jobs closed their booths’ 

doors and/or windows during sampling sessions which could minimize PM2.5 

exposures from outdoors. Parking valets could be exposed to PM2.5 during their routine 

work when picking up and dropping off the vehicles. They walked between the buildings 

and the parking facilities/lots. The sampling sessions might not occur during busy hours 

reflecting low PM2.5 exposure concentrations observed. In addition, during several 

sampling days with cold and windy conditions, the workers cut through the buildings; 

thus, their exposures to PM2.5 was relatively low due to less exposure to the roadside 
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traffic. It was also observed that during their routine work, they did not open the 

vehicles’ windows while driving or idling the vehicles. In the present study, the sampling 

events were based on convenience, weather, as well as, the availability of the sensors. 

The locations and tasks of each participant were announced right before their shifts 

started each working day; as a result, the observation on various tasks was limited. The 

time-activity data was missing in several runs, with the exception of the shadowing 

sessions, which could restrict the discussion about tasks/activities and working 

environment corresponding to PM2.5 exposure concentrations. The participants were 

encouraged to record the time-activity data every five minutes during the sampling 

sessions. However, air quality data recording was very demanding as it required the 

participants to start, stop, and properly save the session, as well as to check whether 

the recording had occurred or was disrupted (Matkovic et al., 2017). These multitasks, 

on top of their regular work, might be an intervening factor in their specific time-activity 

pattern recording. The investigator observed that, in general, the participants’ 

tasks/activities and locations would be similar during a whole hour sampling duration of 

each sampling session. In the current study, the AirBeam2 sensors demonstrated a 

moderate intra-sampler variability (R2=0.64) which was greater than the AirBeam sensor 

performance of the previous studies (R2>0.8) (DeWitt et al., 2020; Feinberg et al., 2018; 

Jiao et al., 2016; Mukherjee et al., 2017; Mukherjee et al., 2019). This might be due to 

the uncertainties occurring during the mobile air sampling since the present study was a 

mobile personal air sampling as opposed to a stationary air monitoring in the previous 

studies. The participants’ movement while conducting the air monitoring could slightly 

shift the sampling orientation of each unit of the sensors resulting in measurement 
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discrepancies between the two units (Mukherjee et al., 2017). However, we could not 

feasibly compare the intra-sampler performance of AirBeam sensor used in community 

setting (see chapter III) and at the IEPA Northbrook Air Monitoring Station (see chapter 

IV) with the AirBeam2 used in this occupational study since AirBeam2 is a modified and 

improved version of AirBeam that was released Spring 2018. Our study, we believe, is 

the first study that attempts to assess intra-sampler performance of AirBeam2 in 

occupational settings with workers working outdoors. Thus, we could not compare our 

results to those reported in the literature in this case. The UPAS pre- and post-sampling 

flow rates were consistent and close to the designated flow rate. The accuracy of the 

flow rate, which is one essential specification pertaining to the air sampling quality, 

suggested some extent of the reliability of the UPAS sensor. Further studies for 

evaluating the UPAS sensor performance will require a longer sampling duration, 

especially in the relatively low concentrations as observed in the current studied 

conditions, to collect adequate PM2.5 mass on the filter for PM2.5 exposure 

characterization. It would be beneficial to determine the background concentrations in 

trial experiments prior to the initiation of the sampling activities to inquire the optimal 

sampling durations which was not feasible in this study due to the logistical reasons.  

Low-cost sensors have facilitated personal exposure assessment in 

environmental and non-occupational settings to support citizen science projects and 

intervention programs (Fletcher et al., 2014; Klepeis et al., 2013; Liang et al., 2019; 

Miskell, Salmond, & Williams, 2018; Semple et al.,, 2015; Steinle et al., 2015). However, 

the use of low-cost sensors in occupational settings has been limited, for example, the 

low-cost sensor networks have been deployed in a heavy-vehicle manufacturing facility, 
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for mapping occupational hazards and estimating personal exposures (Zuidema, 

Stebounova et al., 2019; Zuidema, Sousan et al., 2019). Cattaneo and colleagues 

highlighted an important need for assessing individual exposures in the workplace by 

utilizing low-cost sensors in the participants’ breathing-zone (Cattaneo et al., 2010). 

Personal exposure assessment is very crucial since personal exposure concentrations 

may vary by individual and location (Liang et al., 2019). The advantages of 

implementing the low-cost sensors including an incorporation of real-time air sampling 

and GPS locations which have provided a more accurate time-activity data 

corresponding to measured air pollutant concentrations; in addition to being lightweight, 

small and generating low-noise are properties that improve the feasibility of employing 

the sensors in the personal exposure assessment research which is reinforced by the 

findings from the present study (Koehler & Peters, 2015). The investigator observed a 

moderate to high degree of RCS (RCS=0.42-1.00) reflecting the feasibility of employing 

AirBeam2 and UPAS sensors across all participants. The results underscored an 

importance of the training on how to operate the sensors in a step-by-step fashion with 

hands-on experiences and provided detailed sensor user guidelines. Most of the 

participants were highly comfortable in using the sensors. Overall, the results suggested 

the feasibility and utility of the AirBeams2 and UPAS sensors for personal air quality 

monitoring in ground-keeping and parking workers’ working environments in support of 

occupational personal exposure studies. The data recovery observed was high (≥75%), 

even when the AirBeam2 sensors were operated during routine tasks performed, which 

required excessive body movements and mobilities. The disconnection between 

AirBeam2 sensor and the AirCasting application occurred once when the participant left 
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the phone in their vehicle while performing tasks approximately 20 feet away. The issue 

was easily resolved by carrying the phone and the AirBeam2 sensor at close proximity. 

The connection/data synchronization issue may not be applied to the UPAS sensor 

since the UPAS application has a different connection procedure and purpose from that 

of the AirCasting application i.e., after configuring the UPAS sensors with the UPAS 

application via the phone and starting the sampling session, the phone would not further 

involve in controlling the sensors/collecting the data. This would lessen the burden of 

checking the phone during the sampling session. However, the real-time data cannot be 

retrieved during the sampling session.  

E. Conclusion 

The findings suggested the AirBeam2 and UPAS sensors were feasible to 

employ and facilitate the characterization of the real-time personal exposure of parking 

and ground-keeping workers to PM2.5 on the UIC campus. This study provides 

information on personal exposure concentration characteristics among the ground-

keeping and parking workers. The AirBeam2 sensor demonstrated low to high precision 

in collecting PM2.5 concentrations among different working microenvironments and 

tasks. The low-cost sensors were useful in assessing the personal exposures 

corresponding to time-activity data and addressing the issues pertaining to occupational 

air quality that warrant the comprehensive evaluation of air pollution relevant to certain 

individuals’ locations and activities. However, further studies are needed to fill the 

knowledge gap of the uncertainties impacting the low-cost sensor performance in 

mobile air monitoring applications in occupational settings.  
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TABLE XXVIII. ASSIGNED SCORES OF ANSWERS TO QUESTIONS IN THE 
FEASIBILITY TOOL 

Questions Assigned scores 

Q1. Are the personal exposure sensors 
correctly placed in the breathing zone? (Y/N) 

 

Yes (Y) 1 

No (N) 0 

Q2. Is the participant comfortable in using 
sensors? (L/M/H) 

 

Low (L) 1 

Medium (M) 2 

High (H) 3 

Q3. Has the participant periodically checked 
the cell phone to make sure that the AirBeam 
are collecting data? (Y/N) 

 

Yes (Y) 1 

No (N) 0 

Q4. Has the participant periodically checked 
the cell phone to make sure that the UPAS are 
collecting data and nothing blocking the inlet? 
(Y/N) 

 

Yes (Y) 1 

No (N) 0 

Q5. What is the level of compliance with 
general sampling procedures (e.g., regularly 
working, not smoking, keeping sensor dry)? 
(L/M/H) 

 

Low (L) 1 

Medium (M) 2 

High (H) 3 

How many times they took notes during 
sampling period? 

 

8-12 3 

4-7 2 

1-3 1 

no record  0 

Total (maximum scores) 12 
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TABLE XXIX. SUMMARY OF PARTICIPANTS’ AGE RANGES AND EDUCATION 
LEVELS  

Collected demographic 
parameters 

N % 

Age ranges 
  

18-24 2 20 

25-34 5 50 

35-44 1 10 

45-54 1 10 

55 and over 1 10 

Do not want to respond 0 0 

Education levels 
  

Less than a high school diploma 1 10 

High school degree or equivalent 
(GED) or some college with no 
degree 

7 70 

Associated degree 2 20 

Bachelor's degree or higher 0 0 

Do not want to respond 0 0 
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TABLE XXX. 1-MINUTE MEAN PM2.5 CONCENTRATIONS MEASURED BY AIRBEAM2, Q AND Y SESSIONS, WITH 
TASKS (GROUND-KEEPING) AND HDV DENSITY  

Sampling 
sessions 

Sampling time AirBeam 
unit# 

Sampling 
duration 

(min) 

Obs. 
Number 

%data 
recovery 

1-min mean 
concentration (µg/m3) 

Tasks HDV density 
(units/minute) 

Min-Max Mean (sd) 

Q11 5/22/19 6:39-7:46 1 67 63 94 2.2-16.4 5.6 (4.0) PTC 0.01 

2 67 56 84 0.4-7.4 1.7 (1.5) 

Q14 6/4/19 6:49-7:59 1 70 69 99 5.5-23.5 10.7 (4.6) MW 0.00 

2 70 68 97 0.7-9 3.1 (1.8) 

Y13 5/30/19 11:57-12:55 1 58 58 100 0.0-37.4 7.7 (6.9) MW NA 

2 58 58 100 1.0-76.1 20.0 (13.7) 

Q21 5/22/19 8:52-9:53 1 61 60 98 1.6-22.3 5.9 (3.6) WWGT 0.08 

2 61 58 95 4.6-32.3 10.5 (4.6) 

Q24 6/11/19 6:55-8:10 1 75 74 99 4.9-20.2 6.3 (1.8) PTC 0.35 

2 75 72 96 5.4-20.2 6.7 (1.9) 

Y23 5/30/19 12:03-13:09 1 66 66 100 1.8-51.9 11.5 (9.3) NA 0.03 

2 66 66 100 2.0-53.5 12.1 (10.0) 

Q31 5/22/19 10:08-11:02 1 54 14 26 2.7-5.2 4.1 (0.7) WWGT 0.28 

2 54 54 100 0.0-2.1 0.7 (0.5) 

Q34 6/6/19 6:45-8:02 1 77 76 99 1.1-7.1 3.7 (0.9) PTC 0.00 

2 76 74 97 6.3-24.0 12.7 (2.3) 

Y33 5/30/19 10:02-10:56 1 54 42 78 0.6-21.9 4.1 (3.6) WWGT MA 

2 54 42 78 0.4-25.2 4.6 (4.6) 

Q41 5/23/19 10:09-11:11 1 62 23 37 0.0-1.6 0.2 (0.4) WWGT 0.06 

2 62 61 98 0.0-3.2 0.3 (0.7) 

Q44 6/6/19 8:47-10:07 1 80 78 98 1.8-23.8 6.1 (3.9) MW 0.01 

2 80 79 99 6.95-
43.7 

16.6 (6.9) 

Y43 5/30/19 10:04-10:56 1 52 52 100 0.1-16.0 3.5 (4.7) NA NA 

2 52 52 100 0.0-4.8 0.9 (1.6) 

Q51 5/23/19 7:09-8:08 1 59 59 100 0.0-15.3 2.7 (3.6) WWGT 0.19 

2 59 59 100 0.0-13.3 1.3 (2.5) 

Q54 6/11/19 9:14-10:17 1 63 63 100 2.2-32.3 10.8 (5.9) MW 0.35 

2 63 61 97 3.3-33.6 11.6 (6.4) 

Y53 6/4/19 6:40-7:53 1 73 73 100 3.3-99.3 14.6 (18.4) NA  NA 

2 73 73 100 2.9-97.4 12.9 (16.9) 
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TABLE XXXI. 1-MINUTE MEAN PM2.5 CONCENTRATIONS MEASURED BY AIRBEAM2, Q AND Y SESSIONS, WITH 
TASKS (PARKING) AND HDV DENSITY 

Sampling 
sessions 

Sampling time  AirBeam 
unit# 

Sampling 
duration 

(min) 

Obs. 
Number 

%Data 
recovery 

1-min PM2.5 mean 
concentration (µg/m3) 

Tasks HDV density 
(units/minute) 

Min-Max Mean (sd) 

Q61 5/24/19 10:14-11:00 1 46 46 100 0.0-1.2 0.6 (0.4) CSOF 0.09 

2 46 46 100 1.5-6.3 4.7 (1.5) 

Q64 6/11/19 13:00-14:02 1 62 62 100 0.9-17.1 2.6 (2.5) CSOF 0.00 

2 62 61 98 1.6-19.1 3.2 (2.6) 

Y66 6/12/19 9:21-10:18 1 57 57 100 3.5-7.1 5.5 (0.7) NA NA 

2 57 57 100 2.9-7.4 4.4 (1.0) 

Q71 5/23/19 13:26-14:31 1 65 65 100 0.0 0.0 CSOF 0.08 

2 65 65 100 0.0-0.4 0.01 (0.04) 

Q74 6/10/19 9:09-10:00 1 61 61 100 0.0-1.3 0.6 (0.3) CSOF 0.00 

2 61 59 97 0.1-1.5 0.7 (0.3) 

Q81 5/29/19 14:47-15:50 1 63 63 100 0.1-16.7 4.2 (5.3) VP 0.00 

2 63 61 97 0.0-7.6 1.7 (2.5) 

Q84 6/10/19 11:03-12:07 1 64 64 100 0.0-1.8 0.4 (0.5) VP 0.03 

2 64 60 94 0.0-1.6 0.4 (0.4) 

Y86 6/12/19 11:02-11:53 1 51 51 100 0.0-8.5 1.7 (2.0) VP NA 

2 51 51 100 0.0-11.5 2.1 (2.5) 

Q91 5/24/19 15:05-16:10 1 65 65 100 0.0-1.0 0.2 (0.3) VP 0.00 

2 65 31 48 0.0-5.05 1.5 (2.0) 

Q94 6/11/19 14:59-15:57 1 58 58 100 0.0-4.1 0.6 (1.0) VP 0.00 

2 58 56 97 0.0-4.8 0.7 (1.2) 

Y96 6/19/19 11:18-12:08 1 50 48 96 0.0-7.1 2.3 (2.2) NA NA 

2 50 48 96 0.0-7.8 2.3 (2.2) 

Q101 6/3/19 12:47-13:55 1 68 58 85 0.1-3.5 0.9 (0.5) CSOF 0.00 

2 58 58 100 0.1-4.2 0.7 (0.6) 

Q104 6/11/19 11:16-12:15 1 59 59 100 2.7-14.8 6.1 (3.4) CSOF 0.00 

2 59 59 100 2.5-16.8 6.1 (4.1) 

Y106 6/21/19 10:05-11:02 1 57 57 100 1.4-3.6 2.4 (0.5) NA NA 

2 57 57 100 1.6-3.6 2.5 (0.5) 
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TABLE XXXII. LINEAR REGRESSION STATISTICS OF THE CORRELATION PLOTS 

BETWEEN 1-MINUTE PM2.5 CONCENTRATIONS MEASURED BY AIRBEAM2-1 AND -2 

Occupations Runs Obs. number R2 Slope Intercept 

Ground-keeping 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

Q11 55 0.85 0.3405 -0.0962 

Q14 68 0.91 0.369 -0.7592 

Y13 58 0.96 1.9334 5.0965 

All Part#1 runs 181 0.30 1.1071 -0.456 

Q21 58 0.94 1.2167 3.3459 

Q24 72 0.87 0.9428 0.6818 

Y23 66 0.98 1.0301 0.2934 

All Part#2 runs 196 0.89 0.9866 1.8022 

Q31 13 0.15 0.2741 0.1241 

Q34 74 0.73 2.5207 3.5433 

Y33 42 0.17 0.53 2.4905 

All Part#3 runs 129 0.03 0.475 7.0878 

Q41 21 0.92 1.7692 0.018 

Q44 76 0.92 1.6981 6.2282 

Y43 52 0.98 0.3365 -0.2977 

All Part#4 runs  149 0.52 1.5339 2.0483 

Q51 58 0.83 0.6545 -0.3899 

Q54 61 0.95 1.0544 0.0335 

Y53 73 0.99 0.9166 -0.4596 

All Part#5 runs  192 0.98 0.9311 -0.1645 

Parking 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

Q61 45 0.65 3.0573 2.8946 

Q64 60 0.95 1.0109 0.6118 

Y66 57 0.30 0.7826 0.0433 

All Part#6 runs  162 0.28 0.404 2.7969 

Q71 63 NA NA NA 

Q74 59 0.01 0.0884 0.636 

All Part#7 runs  122 0.50 0.7844 0.1253 

Q81 61 0.69 0.3782 0.044 

Q84 60 0.55 0.5925 0.0831 

Y86 51 0.95 1.1921 0.0966 

All Part#8 runs 172 0.57 0.4278 0.4049 

Q91 32 0.81 6.6285 0.4189 

Q94 56 0.95 1.1876 0.0369 

Y96 48 0.96 0.9836 0.0028 

All Part#9 runs 136 0.70 0.9371 0.4295 

Q101 59 0.56 0.9425 -0.1047 

Q104 59 0.94 1.1321 -0.8116 

Y106 57 0.11 0.3203 1.6914 

All Part#10 runs  175 0.95 1.067 -0.2494 

 Across all runs  1614 0.64 0.9587 1.1947 



176 
 

  
 

TABLE XXXIII. PERCENTAGE OF PARTICIPANTS OBSERVED UNDER EACH 
GROUP OF FESIBILITY ASSESSMENT METRICS 

Feasibility Assessment Metrics 
 

n (%) 

Correctly Placement of Sensors Yes 20 (100) 

No 0 (0) 

Level of Comfortable in Using Sensors High 12 (60) 

Medium 3 (15) 

Low 5 (25) 

Periodically Checking the AirBeam Sensors  Yes 13 (65) 

No 7 (35) 

Periodically Checking the UPAS Sensors  Yes 10(50) 

No 10 (50) 

Level of Compliance for Sampling Procedure High 20 (100) 

Medium 0 (0) 

Low 0 (0) 
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TABLE XXXIV. THE CALCULATED RCS AND COLLECTED DEMOGRAPHIC 
INFORMATION FOR EACH SHADOWING SESSIONa  

Participant 
ID 

Occupation Sampling 
sessions 

Age Education 
level 

Relative Compliance 
Scores (RCS) 

G1 Grounds Q11 25-34 1 0.58 

G1 Grounds Q14 25-34 1 0.67 

G2 Grounds Q21 18-24 2 0.83 

G2 Grounds Q24 18-24 2 0.58 

G3 Grounds Q31 25-34 3 1.00 

G3 Grounds Q34 25-34 3 0.92 

G4 Grounds Q41 18-24 2 0.75 

G4 Grounds Q44 18-24 2 0.83 

G5 Grounds Q51 45-54 2 0.50 

G5 Grounds Q54 45-54 2 0.42 

P1 Parking Q61 55 and 
over 

2 0.50 

P1 Parking Q64 55 and 
over 

2 0.58 

P2 Parking  Q71 25-34 2 0.75 

P2 Parking Q74 25-34 2 0.58 

P3 Parking Q101 25-34 2 0.58 

P3 Parking Q104 25-34 2 0.92 

P4 Parking Q81 35-44 3 0.92 

P4 Parking Q84 35-44 3 0.67 

P5 Parking Q91 25-34 2 0.75 

P5 Parking Q94 25-34 2 0.75 
 

aEducation levels were categorized into four categories: “1” was less than high school 

diploma, “2” was high school degree or equivalent (GED) or some college with no 
degree, “3” was associated degree, and “4” was Bachelor's degree or higher), in 
addition to “do not want to respond” was also available as one of the answers.  
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Figure 26. Side-by-side air monitoring sensors in the participant’s breathing-zone, two 
AirBeam2 (white) and two UPAS (black) sensors 
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Figure 27. The bar chart showing 1-minute personal PM2.5 mean concentrations measured by AirBeam2 sensors by 
each task group by each sampling sessiona among UIC ground-keeping and parking employees (a) and across all 
sampling sessions by each task group (b).  
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Figure 27. The bar chart showing 1-minute personal PM2.5 mean concentrations measured by AirBeam2 sensors by 
each task group by each sampling sessiona among UIC ground-keeping and parking employees (a) and across all 
sampling sessions by each task group (b). (continued) 
 

aSampling sessions included in each task group were indicated in the following list in the order displayed in the bar chart.  
PTC: Q11, Q24, X25, Q34, X35 
MW: Q14, Y13, X32, Q44, X42, Q54, X52 
WWGT: X22, Q31, Y33, Q21, Q41, Q51 
CSOF: Q61, Q64, Q71, Q74, Q101, Q104 
VP: Q81, Q84, X82, X85, Y66, Q91, O94, X92, X95 
NA (not applicable/no record): ground-keeping related tasks (X15, Y23, X45, Y43, X55, Y53); parking related tasks (X72, 
X75, Y76, Y96, X102, X105, Y106)  
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Figure 28. Box plots of 1-min PM2.5 mean concentrations measured by AirBeam2 
sensors by workers’ task groups i.e., doing cashier jobs and/or office work (CSOF), 
mowing (MW), picking trash and cleaning parking lots (PTC), valet parking (VP), 
weeding and grass trimming (WWGT) 
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VI. OVERALL CONCLUSIONS AND RECOMMENDATIONS 

 The air quality monitoring has been shifting to more miniaturized and low-cost 

sensors to provide supplemental air quality data in the finer spatial and temporal scales, 

in addition to advancing personal exposure assessment and characterization. Emerging 

sensor technologies such as mobile phone applications, the Internet of Things, and 

portable low-cost sensors empower citizens to create air monitoring networks and 

collect air quality data to better understand their community and working environments. 

However, several challenges of employing low-cost sensors including the reliability of 

the sensors and the feasibility of employing them have not been fully determined. The 

low-cost sensors do not yet support the regulatory compliance assessment with the 

National Ambient Air Quality Standards (NAAQS) for criteria air pollutants. Their 

performance must be thoroughly tested against their respective EPA FRM/FEM 

monitors both in laboratory and field conditions in different geographic regions across 

seasons leading to development of correction (or scaling factors). These factors 

(approved or adopted by USEPA and its state counterparts and the scientific 

community) could then be applied to low-cost sensor data to assess compliance with 

the NAAQS in the future. The field of performance assessment for low-cost sensors is 

its infancy. Furthermore, new sensors and/or new versions of existing sensors are 

becoming available in the marketplace for consumer use continuously. The continual 

flux in sensor technology and new generation sensors presents a challenge to sensor 

performance assessment studies and their ultimate use for regulatory compliance 

assessment studies. The current study provided valuable information discussing the 

performance of selected low-cost PM and gaseous pollutant monitoring sensors. The 
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collocated testing results suggested that all investigated low-cost sensors had a very 

high degree of precision and sufficient accuracy in obtaining air pollutant concentrations 

at various locations to assess the relative air quality. The low-cost sensors had some 

degree of correlation and agreement with their FRM/FEM monitors; therefore, the low-

cost sensors should not be used for compliance assessment. However, they are very 

useful tools in determining the locations with higher concentrations (hot spots) that 

warrant further evaluation using regulatory monitoring tools and methods, and for public 

education, outreach, and advocacy efforts. The ability to obtain real-time air quality data 

with at a relatively low cost facilitates air quality data collection at neighborhood level, 

empowers community organizations and citizens, and fosters policy advocacy and 

development efforts for improving public health and remedying environmental pollution 

inequities and disparities. 

In order to obtain high quality air quality data, on top of the sensor performance, 

the proper operation of the sensors and compliance with the general sampling protocol 

are indeed required. This key point was addressed in the current study. The community 

residents successfully used the low-cost sensors for personal air quality monitoring in 

each community. Our study demonstrates that it is feasible to employ the sensors for 

local air quality assessment in support of citizen science projects, when the citizen 

scientists are properly trained on how to operate and interact with air sensors and a 

collaborative relationship is established between the research team and community in 

each phase of the project. Moreover, the workers successfully used the low-cost PM2.5 

sensors for personal air quality monitoring in their work environment. Our study 

demonstrates that it is feasible to employ the sensors for occupational air quality 
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assessment in support of personal exposure studies, when the workers are properly 

trained on how to operate and interact with air sensors. The step-by-step training on 

how to operate each sensor provided to the participants resulted in a high level of 

comfort in using the sensors and the ability to conduct air monitoring. However, multi-

tasking of the tasks during sampling events may influence an accuracy and precision of 

the time-activity pattern recording during air sampling efforts. Further training of the 

citizen scientists is necessary to collect representative data for time-activity pattern 

recording. Furthermore, the findings highlighted the significance of implementing the 

effective Train-the-Trainer approach in support of community-based research air 

monitoring projects empowering citizen scientists to perform local air quality 

assessment for addressing their public health concerns pertaining to air quality in their 

neighborhoods. 

Several challenges of employing low-cost sensors under field conditions have 

indicated the need for further studies to address the uncertainties impacting low-cost 

sensor performance. The low-cost sensors were observed to be impacted by the 

temperature and humidity, which vary among locations and time periods; therefore, an 

additional correction of sensor measurements for the specific meteorological conditions 

need to be investigated in order to develop more appropriate and representative 

correction algorithms for specific locations that take the impact of weather conditions on 

sampler performance into account. This suggested more collocated studies in diverse 

temporal and spatial conditions to fill the knowledge gap of the sensor performance in 

different locations. In addition, the long-term reliability of sensors as air monitoring tools 

needs to be determined in longer sampling time duration studies. Another opportunity 
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for further research includes the investigation of the uncertainties impacting the low-cost 

sensor precision in mobile air monitoring in different settings.  
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Appendix A. AirBeam and Terrier operational manual guide 
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Appendix A (continued) 
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Appendix A (continued) 
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Appendix A (continued) 
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Appendix A (continued) 
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Appendix B. Mobile monitoring observation log 

 
   

Community Organization:   CODES FOR SOURCES (use in table below in PM Generating Source column) 

Sampling Date:   Truck=T 
Cigarette/Cigar 
Smoke=CS 

Industry Source=IS (stack emissions ) 

Sampling Time Period:   Car=C Any Other Smoke= OS Construction Dust= CD 

   Bus=B Barbecue=B Any other air pollution source=O 

   Train=TR Lawn Mower=LM   

Session Name:  LV#_mmddAM or LV#_mmddPM  This is for Little Village, where # = route number; mm = two digit month; dd = two 
digit day; AM for morning routes; or PM for afternoon routes; if applicable.  

Important Note: If you see any particulate matter or dust generating activity in your immediate vicinity, please enter applicable code(s) for the 
"PM Generating Source" below as accurately as possible. Accurate documentation of the time of the PM generating source is very 
important.  

Date Time 

PM Generating 
Source Code 
(Enter the Codes 
shown above) Initials Comments/Notes 
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Appendix C. Feasibility assessment tool  
 
Sampling Date:            Sampling Time Period:                Shadowing Time Period: 

Community:                                      

Mobile Monitoring Route Number:    

Participant Number:   

Questions Answer 
Comment
s 

1. Are the personal exposure sensors correctly placed in the breathing-zone? (AirBeam on the right; 
Terrier on the left) Y N   
2. Have the participants followed the sampling route correctly? Y N   
3. Are the participants comfortable in using sensors? 1 L M H  

4. Have the participants periodically checked the cell phone to make sure that the sensors are collecting 
data?  Y N   

5. Has the participant used his/her A) cell phone (AirCasting platform) or B) hard copy Obs Log or C) 
Mixed for time-activity records of air pollution sources on mobile monitoring route?  A B C  

6. What is the level of compliance for recording time-activity data using the codes provided? 2 Y N   
7. What is the level of compliance with general sampling procedures (e.g., walking leisurely, not smoking, 
keeping sensors dry)? 3 L M H  

Notes:  
1 The ease with which participants use AirBeam and Terrier personal exposure sensors will be quantitatively judged by the number of questions 
each participant asks the community organizer and/or other participants on the same route in the following manner: Less than 2 questions asked 
(High-H); 2-5 questions asked (Medium-M); >5 questions asked (Low-L); 
2 The UIC team will qualitatively assess the level of compliance associated with recording time-activity data by the participants in the following 
manner: Less than 2 instances where air pollution sources (e.g., a smoker passed by or construction dust encountered or a truck passed by) are 
not recorded (or missed) by the participant (High-H); 2-5 instances where air pollution sources are not recorded (or missed) (Medium-M); >5 
instances where air pollution sources are not recorded (or missed) (Low-L). The participants are asked to record data on sources of air pollution 
on their route (as they are performing mobile monitoring) either electronically (the AirCasting software for AirBeam/Terrier sensors enable the 
participants taking notes on air pollution sources encountered during mobile monitoring and also taking pictures of these sources and saving 
notes/pictures along the way) or by documenting this information in time-activity data log in hard copy (see Appendix A) that they each will carry in 
their backpack. Each participant will decide what form of time-activity data collection effort they would like to undertake. 
3 The UIC team will qualitatively assess the level of compliance (e.g., walking leisurely instead of running; not smoking  cigarettes or any other 
smoke generating substance while sampling; making sure that the equipment is kept dry while sampling) with general sampling procedures 
outlined in Air Monitoring Check List (see Appendix A) in the following manner: violation of guidelines only once (High-H); violation of guidelines 2-
5 times (Medium-M); violation of guidelines >5 times during sampling (Low-L). 
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Appendix D. Summary of complete/incomplete air sampling events of low-cost sensors with community residents 

TABLE XXXV. COMPLETE/INCOMPLETE SESSIONS OF AIRBEAM SENSOR, SUMMER 2017 

Communities  Sampling 
Date 

Sampling 
Time 
(shadowing 
time) 

Sampling 
Event 

Data Collected 
Using AirBeam1 

Data Collected Using 
AirBeam2 

Rationale for Unsuccessful 
Events 

    
Yes No Yes No 

 

LV 6/15/2017 18:04-19:04 lv4_0615pm X 
 

X 
  

6/16/2017 19:06-19:38 lv1_0616pm X 
  

X One AirBeam did not record data. 

6/21/2017 9:13-10:33 lv2_0621am X 
 

X 
  

6/22/2017 18:09-19:13 lv8_0622pm X 
 

X 
  

SE 7/19/2017 7:35-8:37 se1_0719am X 
  

X One AirBeam did not record data. 

7/19/2017 9:03-10:03 se6_0719am X 
 

X 
  

7/21/2017 9:53-10:41 se4_0721am X 
 

X 
  

7/21/2017 8:43-9:32 se5_0721am X 
 

X 
  

SL 9/22/2017 9:00-9:53 sl2_0922am X 
 

X 
  

9/22/2017 8:51-9:49 sl5_0922am X 
 

X 
  

9/25/2017 17:03-17:59 sl4_0925pm X 
 

X 
  

9/25/2017 17:13-18:19 sl3_0925pm X 
 

X 
  

PC 8/16/2017 1:49-2:49 pc1_0816pm X 
 

X 
  

8/28/2017 12:26-13:17 pc3_0828pm X 
  

X One AirBeam did not record data. 

8/18/2017 12:34-13:34 pc4_0818pm X 
  

X One AirBeam did not record data. 

8/18/2017 16:05-16:31 pc1_0818pm X 
  

X One AirBeam did not record data. 

Total  
(16 runs)  

   
16  
(100%) 

0 
(0%) 

11 
(68.75%) 

5 
(31.25%) 
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Appendix D (continued)  

TABLE XXXVI. COMPLETE/INCOMPLETE SESSIONS OF TERRIOR SENSOR, SUMMER 2017 

Communities  Sampling 
Date 

Sampling 
Time  

Data Collected Using 
Terrier 1 

Data Collected 
Using Terrier 2 

Rationale for Unsuccessful Events 

Yes No Yes No 

LV 6/15/2017 18:04-19:04 X 
 

X 
  

6/16/2017 19:06-19:38 X 
  

X One Terrier did not record data 

6/21/2017 9:13-10:33 X 
 

X 
  

6/22/2017 18:09-19:13 X 
 

X 
  

SE 7/19/2017 7:35-8:37 X 
  

X One Terrier did not record data 

7/19/2017 9:03-10:03 X 
  

X One Terrier did not record data 

7/19/2017 9:53-10:41 X 
  

X One Terrier provided all readings for CO as zero 

7/21/2017 8:43-9:32 X 
  

X One Terrier provided all readings for CO as zero 

SL 9/22/2017 9:00-9:53 X 
 

X 
  

9/22/2017 8:51-9:49 
 

X  X The correlation coefficient was not able to be 
computed since two units of Terrier did not record 
data simultaneously 

9/25/2017 17:03-17:59 X 
  

X One Terrier provided all readings for CO as zero 

9/25/2017 17:13-18:19 X 
  

X One Terrier provided all readings for CO and NO as 
zero 

PC 8/16/2017 1:49-2:49 X 
  

X One Terrier did not record data  

8/28/2017 12:26-13:17 X 
  

X One Terrier provided all readings for CO as zero 

8/18/2017 12:34-13:34 
 

X 
 

X One Terrier provided all readings for CO as zero; 
One Terrier did not record data. 

8/18/2017 16:05-16:31 
 

X 
 

X One Terrier provided all readings for CO as zero; 
One Terrier did not record data. 

Total  
(16 runs)  

  
13 

(81.25%) 
3 

(18.75%) 
4 

(25%) 
12 

(75%) 
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Appendix D (continued)  

TABLE XXXVII. COMPLETE/INCOMPLETE SESSIONS OF AIRBEAM SENSOR, WINTER 2018 

Communities  Sampling 
Date 

Sampling 
Time  

Sampling 
Event 

Data Collected 
Using AirBeam1 

Data Collected 
Using AirBeam2 

Rationale for Unsuccessful 
Events 

Yes No Yes No 

LV 3/26/2018 17:00-18:00 lv8_0326pm X 
  

X Only one AirBeam were utilized 
for air sampling 

3/23/2018 18:00-18:59 lv9_0323am X 
  

X Only one AirBeam were utilized 
for air sampling 

3/26/2018 7:00-7:38 lv1_0326am X 
  

X Only one AirBeam were utilized 
for air sampling 

3/23/2018 6:29-7:06 lv6_0323am X 
  

X Only one AirBeam were utilized 
for air sampling. 

SE 3/23/2018 9:55-10:36 se1_0323am X 
 

X 
  

3/23/2018 12:55-13:30 se3_0323am X 
 

X 
  

3/23/3018 11:15-11:45 se5_0323am X 
 

X 
  

3/23/2018 9:13-9:45 se2_0323am 
 

X 
 

X There was no recorded data file 
in database/no saved session 

SL 4/25/2018 8:35-9:35 sl1_0425amt X 
  

X One AirBeam did not record data 
 

4/25/2018 9:55-10:42 sl2_0425amt X 
  

X One AirBeam did not record data 

4/25/2018 11:03-12:10 sl3_0425amt X 
  

X One AirBeam did not record data 

4/27/2018 8:49-9:55 sl4_0427amt X 
  

X One AirBeam did not record data 

4/27/2018 10:26-10:45 sl2_0427amt X 
  

X One AirBeam did not record data 

PC 5/4/2018 10:13-10:47 pc1_0504amt X 
  

X One AirBeam did not record data 

5/4/2018 11:10-11:56 pc4_0504amt X 
  

X One AirBeam did not record data 

5/4/2018 12:26-13:10 pc8_0504pmt X 
  

X One AirBeam did not record data 

5/4/2018 13:46-14:31 pc9_0504pmt X 
  

X One AirBeam did not record data 

Total  
(17 runs)  

   
16 

(94%) 
1 

(6%) 
3 

(18%) 
14 

(82%) 
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Appendix E. The box plots of 1-minute air pollutant mean concentration measured by AirBeam/Terrier sensors by five 

classes of traffic condition 

 

Figure 29. The box plots of 1-minute PM2.5 mean concentration (µg/m3) measured by AirBeam sensor by five classes of 
traffic condition (class 1: light, class 2: light to medium, class 3: medium, class 4: medium to heavy, class 5: heavy). 
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Appendix E (continued) 

 

Figure 30. The box plots of 1-minute CO mean concentration (ppm) measured by Terrier sensor by five classes of traffic 
condition (class 1: light, class 2: light to medium, class 3: medium, class 4: medium to heavy, class 5: heavy). 
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Appendix E (continued) 

 

Figure 31. The box plots of 1-minute CO2 mean concentration (ppm) measured by Terrier sensor by five classes of traffic 
condition (class 1: light, class 2: light to medium, class 3: medium, class 4: medium to heavy, class 5: heavy). 
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Appendix E (continued) 

 

Figure 32. The box plots of 1-minute NO mean concentration (ppb) measured by Terrier sensor by five classes of traffic 
condition (class 1: light, class 2: light to medium, class 3: medium, class 4: medium to heavy, class 5: heavy)
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Appendix F. Bar charts displaying a percentage of each answer of each feasibility 

assessment tool question (Appendix C) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33. Bar charts displaying percentage of correctly/incorrectly placement of 
sensors (Question 1) among total participating community residents (a) and percentage 
of improper placement of sensors by activities (b)  
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Appendix F (continued)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34. Bar charts displaying percentage of correctly/incorrectly following sampling 
route (Question 2) among total participating community residents  
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Appendix F (continued)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35. Bar charts displaying percentage of each level of comfortable in using 
sensors (Question 3) among total participating community residents  
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Appendix F (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36. Bar charts displaying percentage of periodically checking sensors (Question 
4) among total participating community residents  
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Appendix F (continued) 

 

 

 

 

 

 

 

 

 

 

 

Figure 37. Bar charts displaying percentage of time-activity pattern recording by types 
of tools utilized (Question 5) among total participating community residents  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38. Bar charts displaying percentage of each level of compliance for recording 
time-activity (Question 6) among total participating community residents. All summer 
and two runs of the winter sessions were included in this calculation since the records of 
other winter sessions were missing.  
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Appendix F (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39. Bar charts displaying percentage of each level of compliance for sampling 
procedure (Question 7) among total participating community residents  
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Appendix G. Linear regression line statistics of the correlation plot between the 
measured concentrations of two units of the low-cost sensors 
 
TABLE XXXVIII. LINEAR REGRESSION STATISTICS OF THE CORRELATION 
PLOTS BETWEEN MEASURED PM2.5 CONCENTRATIONS BY AIRBEAM 
SENSORSa 

Sampling 
Sessions 

Sampling 
Date 

Time Obs. duration 
(min) 

AirBeam 1 vs. 2 (PM2.5) 

    
N R2 Intercept Slope 

LV1 6/21/2017 9:13-10:33 80 55 0.02 5.5297 0.17 

LV2 6/22/2017 18:09-19:13 64 64 0.59 -0.3458 1.0989 

LV3 6/15/2017 18:04-19:04 60 60 0.83 -0.5901 0.9827 

LV4 6/16/2017 19:06-19:38 32 NA NA NA NA 

All LV runs 
   

179 0.23 3.4736 0.4807 

SE1 7/21/2017 9:53-10:41 48 48 0.26 5.6028 0.3585 

SE2 7/19/2017 9:03-10:03 60 60 0.78 1.1318 0.8167 

SE3 7/21/2017 8:43-9:32 49 23 0.94 1.5883 0.9499 

SE4 7/19/2017 7:35-8:37 62 NA NA NA NA 

All SE runs 
   

131 0.57 2.8145 0.6892 

PC1 8/28/2017 12:26-13:17 51 NA NA NA NA 

PC2 8/16/2017 1:49-2:49 60 17 0.12 10.164 0.3091 

PC3 8/18/2017 12:34-13:34 60 NA NA NA NA 

PC4 8/18/2017 16:05-16:31 26 NA NA NA NA 

All PC runs 
   

17 0.12 10.164 0.3091 

SL1 9/25/2017 17:03-17:59 56 48 0.16 3.8229 0.2935 

SL2 9/25/2017 17:13-18:19 66 30 0.22 9.7959 -0.5896 

SL3 9/22/2017 9:00-9:53 53 53 0.19 17.112 0.2221 

SL4 9/22/2017 8:51-9:49 58 58 0.87 -0.3991 0.8664 

All SL runs 
   

189 0.31 5.1551 0.6404 

SE1wb 3/23/2018 11:15-11:45 30 28 0.88 1.0657 0.1061 

SE2wb 3/23/2018 12:55-13:30 35 35 0.81 1.0163 0.1017 

SE3wb 3/23/2018 9:55-10:36 41 39 0.10 0.1984 0.7425 

All SE Winter runsb 
  

102 0.87 1.0478 -0.0665 

 

aNA: not applicable/no record 

bOnly SE community operated two units of AirBeam sensor and successfully retrieved the data 

from both units during winter air monitoring efforts.  
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Appendix G (continued) 

TABLE XXXIX. LINEAR REGRESSION STATISTICS OF THE CORRELATION PLOTS BETWEEN MEASURED 
CO/CO2/NO CONCENTRATIONS BY TERRIOR SENSORSa 

Sampling 
Sessions 

Terrier-CO Terrier-CO2 Terrier-NO 

 
N R2 Intercept Slope N R2 Intercept Slope N R2 Intercept Slope 

LV1 27 0.00 0.2848 0.0706 33 0.88 153.18 0.7361 26 0.04 0.7952 0.5184 

LV2 64 0.80 0.1305 0.6834 64 0.92 118.13 0.9606 64 0.92 0.0901 0.5805 

LV3 60 0.63 0.2068 1.1656 61 0.51 396.87 0.5822 61 0.98 -0.1518 2.8138 

LV4 18 0.92 -0.1224 1.0347 NA NA NA NA NA NA NA NA 

All LV runs 169 0.06 0.2757 0.3628 158 0.78 232.2 0.7296 151 0.33 0.0703 1.1472 

SE1 NA NA NA NA 39 0.09 289.82 0.3249 50 0.89 0.0578 0.1808 

SE2 NA NA NA NA NA NA NA NA NA NA NA NA 

SE3 NA NA NA NA 6 0.68 -66.07 1.2006 31 0.84 0.1835 0.5231 

SE4 NA NA NA NA NA NA NA NA NA NA NA NA 

All SE runs NA NA NA NA 45 0.12 255.46 0.4252 80 0.17 0.151 0.1392 

PC1 NA NA NA NA 51 0.97 -270.54 1.5781 55 0.96 0.2857 1.9968 

PC2 NA NA NA NA NA NA NA NA NA NA NA NA 

PC3 NA NA NA NA NA NA NA NA NA NA NA NA 

PC4 NA NA NA NA NA NA NA NA NA NA NA NA 

All PC runs NA NA NA NA 51 0.97 -270.54 1.5781 55 0.96 0.2857 1.9968 

SL1 NA NA NA NA 44 0.0481 715.55 -0.2302 44 0.72 -0.065 1.9669 

SL2 NA NA NA NA 17 0.8482 -2725.9 6.1148 NA NA NA NA 

SL3 54 0.93 0.07 0.6268 53 0.9938 -150.1 0.9228 54 0.97 0.5636 0.9707 

SL4 NA NA NA NA NA NA NA NA NA NA NA NA 

All SL runs 54 0.93 0.07 0.6268 114 0.3825 133.76 0.7584 98 0.94 0.6567 0.9673 

 

aNA: not applicable/no record 
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Appendix H. PM2.5 Concentrations Measured by AirBeam Sensor Data Treatment  

The AirBeam raw data retrieved from the AirCasting website was 1-second 

recorded PM2.5 concentrations which were further computed for 1-minute PM2.5 mean 

concentrations.  Data included in the analysis was required to be at least 75% complete 

in one-minute averaging time intervals. The missing values of air quality data were 

treated based on the following criteria (Figure 40):  

1. The readings of the first and last minutes of each sampling event 

were disregarded, since they were likely to contain partial data for the entire minute 

(and less than 75% complete). For example, the sampling session started at 9:00:50 

and stopped at 13:59:10; therefore, the first and last minutes contained ten 1-second 

recorded data points (16% complete), then these data representing the first and last 

minute of the sampling was disregarded because they were less than 75% complete. 

2. If there were ≥75% complete in 1-minute average data set (1-min 

average data set includes <45 1-second recordings), the 1-second recorded data within 

that minute was discarded. The data were not included in the data set and were 

excluded in further data analysis.   

3. If there were ≥75% complete in 1-minute average data set (1-min 

average data set includes 60 1-second recordings), the 1-second missing data points 

within each minute was determined. If there were 1-second missing data points that 

occurred ≥3 times consecutively, then no imputation was performed.  The missing 1-

second data points within a given minute that occur ≥3 times consecutively were treated 

as missing value (labeled as NA). In summary, we did not make an assumption for 

those missing data points that occur consecutively ≥ 3 times within a minute since it was  
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Appendix H (continued) 

feasible for those missing 1-second data points to be significantly higher or lower as 

compared to before or after 1-second recorded values (thus, artificially under or over 

estimating the mean).  

4. If there were 1-second missing data points that occurred one or 

twice consecutively, the percent difference between before and after one or two 

consecutive missing 1-second data point(s) was determined whether it is ≤10%. If the 

percent difference was >10%, then no imputation was performed. These missing 1-

second data points within a given minute were treated as missing value (labeled as NA). 

In summary, we did not make an assumption for those missing data points if the percent 

difference in before and after missing 1-second data recordings within a given minute 

are >10% since it was feasible for those missing 1-second data points to be significantly 

higher or lower as compared to before or after 1-second recorded values (thus, 

artificially under or over estimating the mean). 

5.  If the percent difference between before and after one or two 

consecutive missing 1-second data point(s) was ≤10%, the 1-second missing data 

point(s) was imputed by the average of the before and after those missing data values 

within that minute.  

 After missing data treated, the completed 1-second PM2.5 concentration data set 

was obtained and calculated for 1-minute and 1-hour PM2.5 mean concentrations, 

which were utilized for further statistical analyses.  
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Appendix H (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 40. AirBeam missing data treatment procedure flowchart 

Raw 1-sec data (from 

AirCasting website) 

 

Discard data for this 1-minute 

because we have <45 1-second 

data recordings within that minute. 

These data are not included in the 

data set and are excluded in further 

data analysis. 

Is there ≥75% 

completeness in 1-min 

average data set (1-min 

average data set includes 

60 1-second recordings)? 

 Discard partial 

data in the first 

and last minute 

of each 

sampling event  

Calculate 

1-min 

average 

conc. data  

NO 

 If the 1-second missing data points within each 

minute occur ≥3 times consecutively, then no 

imputation is performed. The missing 1-second data 

points within a given minute that occur ≥3 times 

consecutively are treated as missing value (labeled 

as NA). In summary, we are not making an 

assumption for those missing data points that occur 

consecutively ≥ 3 times within a minute since it is 

feasible for those missing 1-second data points to be 

significantly higher or lower as compared to before or 

after 1-second recorded values (thus, artificially under 

or over estimating the mean).  

 

YES 

Are there 1-second missing data points 

within each minute that occurred only once 

or twice consecutively?   

Is the percent difference between before and 

after one or two consecutive missing 1-

second data point(s) ≤10%? 

YES 

 
 

NO 

Impute the missing point(s) by taking the 

average of the before and after missing 1-sec 

data values within that minute and assign the 

average conc. value to those missing data 

points within that minute. 

 
 

 
 

NO 

YES  
 

If the percent difference between before and after 

one or two consecutive missing 1-second data 

point(s) >10%, then no imputation is performed. 

These missing 1-second data points within a given 

minute are treated as missing value (labeled as NA). 

In summary, we are not making an assumption for 

those missing data points if the percent difference in 

before and after missing 1-second data recordings 

within a given minute are >10% since it is feasible for 

those missing 1-second data points to be significantly 

higher or lower as compared to before or after 1-

second recorded values (thus, artificially under or 

over estimating the mean).  
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Appendix I. Correlation Plots Between Channels A and B of Each Unit of PurpleAir 

Sensor Operated at Northbrook Air Monitoring Site, IL 

 The correlation plots of measurements of each channel of PurpleAir sensors 

operated at Northbrook air monitoring site demonstrated a very high degree of 

correlation for both PM2.5 with R2>0.91 (Figure 41) and PM10 with R2>0.94 (Figure 42) 

 

Figure 41. Correlation plot between measurements of channels A and B of PurpleAir 
measuring PM2.5. Number of observations were 111095 (PA1), 112183 (PA2), and 
111022 (PA3). 
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Appendix I (continued)  

 

Figure 42. Correlation plots between measurements of channels A and B of PurpleAir 
measuring PM10. Number of observations were 19774 (PA1), 20445 (PA2), and 20449 
(PA3). 
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Appendix J. Analysis of Non-imputed vs. Imputed PM2. 5 Concentrations Measured by 

AirBeam at Northbrook Air Monitoring Site, IL 

The analysis was conducted to determine the discrepancies between non-

imputed and imputed datasets employing the ProUCL 5.1 software. Based on the 

criteria utilizing for AirBeam data treatment (Appendix H), less than 2% of the dataset 

for each sensor unit was imputed (Table XXXIX). Descriptive statistics of 1-second and 

1-minute PM2.5 concentrations suggested that no discrepancies between the non-

imputed and imputed datasets existed (Tables XL, XLI, Figure 43). Thus, we can 

conclude that imputation procedure employed, as documented in Appendix H, did not 

alter the nature of the collected data. Hypothesis testing utilizing Wilcoxon-Mann-

Whitney Test suggested that, at 95% confidence, the mean of 1-second PM2.5 

concentrations of imputed datasets were not statistically significantly different from that 

of non-imputed ones; in addition, the mean of 1-minute PM2.5 concentrations of 

imputed datasets were not statistically significantly different from that of non-imputed 

ones. Intra-comparison analysis using correlation plots employing 1-second and 1-

minute unimputed and imputed data suggested similar R2, slope, and intercept for each 

of the three AirBeam sensors (Figure 44).  
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Appendix J (continued) 

TABLE XL. DATA SUMMARY OF 1-SECOND PM2.5 CONCENTRATION MEASURED BY AIRBEAM, SUB-
EXPERIMENT, NORTHBROOK, ILLINOIS 

  

Sensors Number of total data 
points in non-

imputed/imputed datasets 

Missing data points: N (%) Imputed data points in the 
entire air monitoring data 
set across all sampling 

events: N (%) 

AirBeam1 187200/190692 62318 (25) 3492 (1.4) 

AirBeam2 215708/219615 33810 (13.6) 3907 (1.6) 

AirBeam3 223006/226696 26512 (10.6) 3690 (1.5) 

 

 

TABLE XLI. DESCRIPTIVE STATISTICS OF NON-IMPUTED AND IMPUTED 1-SECOND PM2.5 CONCENTRATION 
MEASURED BY AIRBEAM-1, -2, -3  

 AirBeam 1 AirBeam 2 AirBeam 3 

Parameters Non-
imputed 

(N=187200) 

Imputed 
(N=190692) 

% 
difference 

Non-
imputed 

(N=215708) 

Imputed 
(N=219615) 

% 
difference 

Non-
imputed 

(N=223006) 

Imputed 
(N=226696) 

% 
difference 

P25 3.5 3.4 2.9 3.3 3.3 0.0 3.2 3.2 0.0 

P50 5.7 5.7 0.0 5.2 5.2 0.0 5.1 5.1 0.0 

P75 9.5 9.5 0.0 8.8 8.8 0.0 8.2 8.2 0.0 

P95 15.1 15.2 0.7 13.2 13.2 0.0 12.2 12.2 0.0 

Mean 7.3 7.3 0.0 6.5 6.6 1.5 6.1 6.1 0.0 
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Appendix J (continued) 

TABLE XLII. DESCRIPTIVE STATISTICS OF NON-IMPUTED AND IMPUTED 1-MINUTE PM2.5 CONCENTRATION 
MEASURED BY AIRBEAM-1,-2,-3 

 AirBeam 1  AirBeam 2  AirBeam 3  

Parameters Non-
imputed 
(N=2944) 

Imputed 
(N=2944) 

% 
difference 

Non-imputed 
(N=3412) 

Imputed 
(N=3412) 

% 
difference 

Non-
imputed 
(N=3535) 

Imputed 
(N=3535) 

% 
difference 

P25 3.5 3.5 0.0 3.4 3.4 0.0 3.3 3.3 0.0 

P50 5.4 5.4 0.0 4.9 4.9 0.0 5.0 5.0 0.0 

P75 9.1 9.1 0.0 8.5 8.5 0.0 7.8 7.8 0.0 

P95 15.0 15.1 0.7 12.9 12.9 0.0 11.8 11.8 0.0 

Mean 7.1 7.1 0.0 6.4 6.4 0.0 6.0 6.0 0.0 
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Appendix J (continued) 

 

 

 

 

Figure 43. Plots of descriptive statistics parameters of imputed and non-imputed 1-
second (a) and 1-minute (b) PM2.5 concentrations measured by AirBeam unit#1, 2, and 
3 
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Appendix J (continued) 

 

 

 

 

Figure 44. Correlation plots of intra-sensor comparisons of imputed (a) and non-
imputed (b) 1-minute PM2.5 concentrations measured by AirBeam unit#1, 2, and 3 
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Appendix K. Data collection protocol 

FEASIBILITY OF EMPLOYMENT LOW-COST PM SENSORS PILOT PROJECT 

SAMPLING PROTOCOL 

Note: For QA/QC sampling events use two UPAS and two AirBeam units, and 2 

phones 

1. Prior sampling event  

a. Prepare Filters for UPAS  

i. Clean/unused filters will be placed in plastic petri dishes and 

equilibrated in a desiccator for 72 hours or more with calcium 

sulfate desiccant 

ii. Each filter will be assigned code “FP#-mmdd” # is number of filter 

e.g., 1,2,3,…; mm-dd is a month and date of day that filter is taken 

out from the package and put in the petri dish, then equilibrated 

(document the date and time that start equilibrate the filter) 

iii. Pre-weigh filters after equilibrated for 24, 48, 72 hours, or more 

• 1 sampling filters per sampling event (for QA/QC event, 

there will be 2 sampling filters) 

• 1 field blanks per sampling event 

• 1 Lab blank per weight session 

NOTE: It is expected that the laboratory analyst will be able to duplicate weightings of 

the same filter to within 15 µg. Make sure to fill out the pre-weighing form (Table 1) 

KEEP WEIGHING UNTIL THEIR VARIATION OF THREE CONSECUTIVE WEIGHTS 

ARE LESS THAN 5%. WHEN CALCULATING AVERAGE PRE_WEIGHT, USE THE 

LAST THREE READING WITH SD LESS THAN 5%. 

 

iv. place pre-weighted filter into a cartridge—LOADED CARTRIDGE 

[prepare 1 day prior sampling event] 

v. Each LOADED CARTRIDGE will be placed in a dust-free plastic 

zip-lock bag (one for each bag)  

NOTE: Document cartridge#, make sure it matches with filter#; label a ziplock bag with 

the filter# and cartridge# in the loaded cartridge form (Table 2) 

 

b. Prepare Samplers (UPAS and AirBeam, and two phones) [prepare one 

day prior sampling event] 

i. Fully charged and check to make sure it works properly 

ii. CHECK PRESSURE THREE TIMES (AFTER LOADED WITH 

FILER), then document in the flow rate checking form (Table 4) 
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Appendix K (continued) 

 

c. 1-2 days prior sampling event, confirm with each participant who 

would do air sampling about time and where to meet (ask contact 

from Wanda and Carly?) 

 

2. On sampling day 

a. Sampling Efforts 

i. For shadowing efforts (at 1st and 4th sampling events of each 

participant) 

• Meet with a participant at the site and give them the air 

sampling equipment bag 

note: The air sampling equipment bag consists of chest harness 

attached with two AirBeam and two UPAS units+ a clipboard with a 

time-activity log sheets (participant code, i.e., P# or G# is already 

specified in the obs. log sheet) + pens 

• Shadow the participant for 1-hour sampling session 

(document a time-activity log and feasibility assessment tool) 

• After completing the session, collect all equipment from the 

participant, take the cartridge with used filters out from the 

UPAS and secure them in labeled zip-lock bags (1 

cartridge/bag)  

ii. For general air monitoring (participants do the sampling 

themselves) 

• Meet with a participant at the site and give them the air 

sampling equipment bag 

• After they complete the sampling session, meet with 

participant to collect all equipment from the participant, take 

the cartridge with used filters out from the UPAS and 

secured them in labeled zip-lock bags (1 cartridge/bag)  

• Check whether any issues or problems occurred during 

sampling and whether the sampling session is properly 

saved; all information in the observation log sheet is 

documented e.g., date, time, location 

 

b. Treatment of used filter in the laboratory  

i. In the sampling day right after sampling completed (if applicable), 

take the used filter cartridge to the SPHW325 

ii. CHECK PRESSURE THREE TIMES (BEFORE UNLOADING THE 

USED FILTER OF THE LAST RUNS OF EACH DAY), then 

document in the flow rate checking form (Table 4) 
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Appendix K (continued) 

 

iii. Transfer each used filter to the petri dish (the petri dish is labeled 

with the same code appearing on the zip-lock bag) 

iv. Equilibrate the filters 

Note: document time and date of the start of the equilibrating in the 

post-weighing form (Table 3) 

v. Clean cartridge and UPAS  

 

c. Recharge AirBeam units, UPAS units, Phones 

 

3. After sampling day 

a. Used filter post-weighing  

i. Post-weigh the sample filters after equilibrated for 24, 48, 72 hr (72 

hr is optional) BUT DO NOT EXCEED 72 hr, otherwise need to 

keep in the cold storage. Document post-weights in the post-

weighing form (Table 3)  

ii. Insert all documented information into the spreadsheet (Microsoft 

Excel with same forms i.e., Appendix A to D) 

iii. Keep used filters for 3 days (at least until all information is inserted 

into the spreadsheets) 

b. Download the data from SD card (for UPAS) and AirCasting website (for 

AirBeam) and document Date/Time the files completely downloaded in the 

data retrieving form (Table 5) 

  

References: 

USEPA. (2016). Quality Assurance Guidance Document 2.12. RTP, NC: Air Quality 

Assessment Division, Office of Air Quality Planning and Standards, U.S. Environmental Protection 

Agency. Retrieved from http://purl.fdlp.gov/GPO/gpo69921

http://purl.fdlp.gov/GPO/gpo69921
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Appendix K (continued) 

Table1. The filter pre-weighing log 

Date  Time  Filter# Pre-weight-1 Pre-weight-2 Pre-weight-3 Note/comments 

      Start Equilibrate 
filter 
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Appendix K (continued) 

Table 2. The loaded cartridge log 

Date prepared 
loaded cartridge 

Time Filter# Cartridge# (this number is attached 
to each cartridge) 

Note/comments 
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Appendix K (continued) 

Table 3. The filter post-weighing log 

Date  Time  Filter# Post-weight-1 Post-weight- 2 Post-weight- 3 Note/comments 

      Strat Equilibrate 
filter 
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Appendix K (continued) 

Table 4. The UPAS flow rate recording log 

Date  Time  UPAS# Pre-sampling 
flowrate (lpm) 

Post-sampling 
flowrate (lpm) 

Note/comments 

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

 



226 
 

  
 

Appendix K (continued) 

Table 5. The data retrieving log 

Date  Time  Sample Name (for 
UPAS); Session name 
(for AirBeam2) 

Cartridge# (for 
UPAS) 

Download 
data from 
SD card? 
(Y/N) 

Download data 
from Aircasting 
application? 
(Y/N) 

Note/comments 

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       



227 
 

  
 

Appendix L. Institutional Review Board Approval 
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Appendix L (continued) 
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Appendix M. Information sheet for participant recruitment  
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Appendix M (continued) 
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Appendix N. Informed consent 
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Appendix N (continued) 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



233 
 

  
 

Appendix N (continued) 
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Appendix N (continued) 
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Appendix O. Sensor user guidelines 
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Appendix O (continued)  
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Appendix O (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



238 
 

  
 

Appendix O (continued) 
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Appendix O (continued) 
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Appendix O (continued) 
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Appendix P. Feasibility Assessment Tool 

Sampling Date:                         Sampling Time Period:                          Shadowing Time Period: 

Location:                                      

Occupationa:              

Participant Code:   

Questions Answerb Comments 

1. Are the personal exposure sensors correctly placed in the breathing-zone? (AirBeam(s) is 
placed on the right and UPAS(s) is on the left shoulders) Y N 

  
2. Are the workers comfortable in using sensors? 1 L M H 

 
3. Have the workers periodically checked the cell phone to make sure that the AirBeam2 are 
collecting data?  Y N 

  
4. Have the workers periodically checked the UPAS to make sure that it is running and 
anything block the air inlet?   Y N 

  
5. What is the level of compliance with general sampling procedures (e.g., regularly working, 
not smoking, keeping sensors dry)? 2 L M H 

 
Notes:  

aOccupation: (1) parking lot assistant, or (2) groundskeeper 

bY=Yes; N=No; L=Low; M=Medium; H=High 

1 The ease with which participants use AirBeam and UPAS personal exposure sensors will be quantitatively judged by the number of 
questions each participant asks the investigator on in each sampling session in the following manner: Less than 2 questions asked 
(High-H); 2-5 questions asked (Medium-M); >5 questions asked (Low-L); 

2 The investigator will qualitatively assess the level of compliance (e.g., performing routine work while personal exposure monitoring; 

not smoking  cigarettes or any other smoke generating substance while sampling; making sure that the equipment is kept dry while 

sampling) with general exposure monitoring sampling procedures outlined in the Sampling and Analysis Plan in the following 

manner: violation of guidelines only once (High-H); violation of guidelines 2-5 times (Medium-M); violation of guidelines >5 times 

during sampling (Low-L). 
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Appendix Q. Time Activity Monitoring Observation Log 

 
   

Participant Code (P# or G#):    CODES FOR SOURCES (use in table below in PM Generating Source column) 

Sampling Date:   Truck=T Cigarette/Cigar Smoke=CS 
Industry Source=IS (stack 
emissions) 

Sampling Time Period:   Car=C Any Other Smoke= OS Construction Dust= CD 

Profile Name:  Bus=B Any other air pollution source=O Blower=BL; Fertilizing=FT 

   Train=TR Lawn Mower=LM  Machine Operating= MO 

Session Name:   
P#_mmddAM or P#_mmddPM  This is for parking employee, where # = code number; mm = two digit month; dd = two digit day; AM for morning 
routes; or PM for afternoon; if applicable. For Groundskeeping, working use G#. 

Important Note: Activities will be documented for every five minutes. Any PM generating activities will be recording at any time it happens. 
Accurate documentation of the time of the PM generating source is very important.  

Time 
Activities and/or PM Generating Source Code (Enter the Codes 
shown above) Comments/Notes 
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Appendix R.  

TABLE XLIII. SUMMARY OF PM2.5 CONCENTRATIONS MEASURED BY AIRBEAM2 SENSORS AMONG GROUND-KEEPING AND 
PARKING WORKERSa 

Occ. Sampling 
sessions 

Start time  Stop time  Sampling 
duration 

(min) 

1-min PM2.5 mean 
concentration (µg/m3) 

Tasks/Other comments  

 Min-Max Mean (sd) 
 

Ground-
keeping  

Q11 5/22/19 6:39 5/22/19 7:46 67 1.4-11.3 3.1 (2.0) picking trash, sweeping parking 
facilities and lots (at several 
locations); driving pick-up car from 
to different locations 

Q14 6/4/19 6:49 6/4/19 7:59 70 3.3-16.2 6.9 (3.1) mowing using a ride-on lawn mower 

X12 5/31/19 7:00 5/31/19 8:00 60 NA NA weed whipping 

X15 6/7/19 6:54 6/7/19 8:04 70 7.8-28.9 14.6 (3.9) NA 

Y13 5/30/19 
11:57 

5/30/19 12:55 58 0.5-56.7 13.8 (10.3) mowing using a ride-on lawn mower 

Q21 5/22/19 8:52 5/22/19 9:53 61 3.2-27.3 8.2 (4.1) grass trimming using grass trimmer 
machine (with battery); their co-
worker was blowing  

Q24 6/11/19 6:55 6/11/19 8:10 75 5.1-19.7 6.5 (1.8) picking trash, sweeping at several 
locations; driving a pick-up car from 
one location to others 

X22 5/31/19 9:04 5/31/19 10:06 62 0.0-50.9 3.3 (8.0) garbage picking; weed whipping 

X25 6/12/19 6:53 6/12/19 8:07 74 1.7-18.5 4.3 (2.3) cleaning; sweeping; picking up 
garbage; changing garbage bags at 
several locations 

Y23 5/30/19 
12:03 

5/30/19 13:09 66 2.3-52.7 11.8 (9.5) NA 

Q31 5/22/19 
10:08 

5/22/19 11:02 54 1.7-3.3 2.6 (0.5) weeding, raking, and spading; their 
co-worker was doing grass trimming 
and blowing (portable blower) 

Q34 6/6/19 6:45 6/6/19 8:02 77 3.7-15.3 8.1 (1.5) picking trash, sweeping parking 
facilities and lots (at several 
locations); driving pick-up car from 
one location to others 
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Appendix R (continued)  
 
TABLE XLIII. SUMMARY OF PM2.5 CONCENTRATIONS MEASURED BY AIRBEAM2 SENSORS AMONG GROUND-KEEPING AND 
PARKING WORKERSa (continued) 
 

Occ. Sampling 
sessions 

Start time  Stop time  Sampling 
duration 

(min) 

1-min PM2.5 mean 
concentration (µg/m3) 

Tasks/Other comments 

     Min-Max Mean  

 X32 5/31/19 8:59 5/31/19 10:05 66 0.6-29.5 7.2 (6.6) mowing using a walk-behind mower 

X35 6/7/19 6:48 6/7/19 8:08 80 5.7-26.2 14.0 (3.0) parking lot cleanup; trash collecting 

Y33 5/30/19 
10:02 

5/30/19 10:56 54 0.6-16.6 4.3 (3.4) weed whipping and grass blowing 

Q41 5/23/19 
10:09 

5/23/19 11:11 62 0-2.4 0.3 (0.6) raking, grass trimming using brush 
cutter; their co-worker was doing 
grass trimming using brush cutter 
and blowing (portable blower); 
working by a running ride-on 
mowing  

Q44 6/6/19 8:47 6/6/19 10:07 80 4.4-33.3 11.5 (5.3) mowing using a walk-behind lawn 
mower; their co-workers was 
mowing by using brush cutter 

X42 5/31/19 7:00 5/31/19 8:00 60 3.3-32.2 9.5 (6.4) lawn mowing 

X45 6/12/19 6:58 6/12/19 8:00 62 0.0-13.2 2.7 (3.5) NA 

Y43 5/30/19 
10:04 

5/30/19 10:56 52 0.0-10.4 2.2 (3.1) NA 

Q51 5/23/19 7:09 5/23/19 8:08 59 0-15.0 2.1 (3.2) raking, blowing, grass trimming 
using brush cutter; their co-worker 
was blowing  

Q54 6/11/19 9:14 6/11/19 10:17 63 3.0-32.8 11.3 (6.1) mowing using a ride-on lawn mower 

X52 6/6/19 6:41 6/6/19 8:00 79 8.0-75.3 26.3 (11.5) mowing 

X55 6/12/19 7:08 6/12/19 8:00 52 2.8-53.9 13.1 (11.9) NA 

Y53 6/4/19 6:40 6/4/19 7:53 73 3.3-98.3 13.8 (17.6) NA  
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Appendix R (continued)  
 
TABLE XLIII. SUMMARY OF PM2.5 CONCENTRATIONS MEASURED BY AIRBEAM2 SENSORS AMONG GROUND-KEEPING AND 
PARKING WORKERSa (continued) 
 

Occ. Sampling 
sessions 

Start time  Stop time  Sampling 
duration 

(min) 

1-min PM2.5 mean 
concentration (µg/m3) 

Tasks/Other comments 

Parking  Q61 5/24/19 
10:14 

5/24/19 11:00 46 0.8-3.6 2.7 (0.9) doing cashier inside the booth (the 
booth's window was closed but the 
door was opened.) 

Q64 6/11/19 
13:00 

6/11/19 14:02 62 1.5-18.1 2.9 (2.6) doing cashier inside the booth (the 
booth's window was closed but the 
door was opened.) 

X62 5/29/19 
13:19 

5/29/19 14:19 60 7.4-31.0 11.9 (4.7) NA 

X65 6/13/19 
12:00 

6/13/19 13:00 60 0.0-1.5 0.7 (0.3) NA 

Y66 6/12/19 9:21 6/12/19 10:18 57 3.5-7.0 4.9 (0.8) NA 

Q71 5/23/19 
13:26 

5/23/19 14:31 65 0.0-0.183 0.003 (0.023) doing cashier inside the booth (the 
booth's window and door were 
opened.) 

Q74 6/10/19 9:09 6/10/19 10:10 56 0.2-1.1 0.6 (0.2) doing cashier inside the booth (the 
booth's window and door were 
closed.) 

X72 5/29/19 
12:56 

5/29/19 13:56 60 5.8-7.4 6.4 (0.4) NA 

X75 6/13/19 
12:06 

6/13/19 13:16 70 0.0-2.7 0.7 (0.6) NA 

Q81 5/29/19 
14:57 

5/29/19 15:50 63 0.0-10.7 3.0 (3.8) valet parking  

Q84 6/10/19 
11:03 

6/10/19 12:07 64 0.0-1.4 0.4 (0.4) valet parking  

X82 6/5/19 10:02 6/5/19 11:08 66 0.0-2.1 0.5 (0.5) valet parking  
X85 6/13/19 

12:51 
6/13/19 14:00 69 0.0-0.7 0.0 (0.1) valet parking  
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Appendix R (continued)  
 
TABLE XLIII. SUMMARY OF PM2.5 CONCENTRATIONS MEASURED BY AIRBEAM2 SENSORS AMONG GROUND-KEEPING AND 
PARKING WORKERSa (continued) 
 

Occ. Sampling 
sessions 

Start time  Stop time  Sampling 
duration 

(min) 

1-min PM2.5 mean 
concentration (µg/m3) 

Tasks/Other comments 

Y86 6/12/19 
11:02 

6/12/19 11:53 51 0.0-9.8 1.9 (2.3) valet parking  

Q91 5/24/19 
15:05 

5/24/19 16:10 65 0.0-3.0 0.9 (1.2) valet parking  

Q94 6/11/19 
14:59 

6/11/19 15:57 58 0.0-4.4 0.7 (1.1) valet parking  

X92 5/31/19 
11:00 

5/31/19 12:00 60 0.0-5.6 1.5 (1.5) valet parking  

X95 6/12/19 
11:04 

6/12/19 12:00 56 0.0-6.2 1.4 (2.0) valet parking  

Y96 6/19/19 
11:18 

6/19/19 12:08 50 0.0-7.4 2.3 (2.2) NA 

Q101 6/3/19 12:47 6/3/19 13:55 68 0.2-3.8 0.8 (0.5) working in their office in the parking 
facilities; traffic lineups for parking 
payment 

Q104 6/11/19 
11:16 

6/11/19 12:15 59 2.7-15.8 6.2 (3.9) doing cashier inside the booth where 
more intense vehicles coming in and 
out compared to other locations 

X102 6/10/19 
10:58 

6/10/19 11:27 29 0.2-4.3 1.0 (0.9) NA 

X105 6/17/19 
12:57 

6/17/19 13:51 54 0.0-10.2 4.9 (2.7) NA 

Y106 6/21/19 
10:05 

6/21/19 11:02 57 1.5-3.6 2.4 (0.4) NA 

aNA: not applicable/no record 
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