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Abstract. We present analytical results and numerical simulations for a class
of nonlinear dispersive equations in two spatial dimensions. These equations

are of (derivative) nonlinear Schrödinger type and have recently been obtained
in [11] in the context of nonlinear optics. In contrast to the usual nonlinear

Schrödinger equation, this new model incorporates the additional effects of

self-steepening and partial off-axis variations of the group velocity of the laser
pulse. We prove global-in-time existence of the corresponding solution for

various choices of parameters, extending earlier results of [2]. In addition, we

present a series of careful numerical simulations concerning the (in-)stability
of stationary states and the possibility of finite-time blow-up.
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1. Introduction

This work is devoted to the analysis and numerical simulations for the following
class of nonlinear dispersive equations in two spatial dimensions:

(1.1) iPε∂tu+ ∆u+ (1 + iδ · ∇)
(
|u|2σu

)
= 0, u|t=0 = u0(x),

where x = (x1, x2) ∈ R2, δ = (δ1, δ2)> ∈ R2 is a given vector with |δ| 6 1, and
σ > 0 is a parameter describing the strength of the nonlinearity. In addition, for
0 < ε 6 1, we denote by Pε the following linear differential operator,

(1.2) Pε = 1− ε2
k∑
j=1

∂2
xj , k 6 2.
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Indeed, we shall mainly be concerned with (1.1) rewritten in its evolutionary form:

(1.3) i∂tu+ P−1
ε ∆u+ P−1

ε (1 + iδ · ∇)
(
|u|2σu

)
= 0, u|t=0 = u0(x1, x2).

Here and in the following, P sε , for any s ∈ R, is the non-local operator defined
through multiplication in Fourier space using the symbol

P̂ sε (ξ) =
(

1 + ε2
k∑
j=1

ξ2
j

)s
, k 6 2,

where ξ = (ξ1, ξ2) ∈ R2 is the Fourier variable dual to x = (x1, x2). For s = −1
this obviously yields a bounded operator P−1

ε : L2(R2
x)→ L2(R2

x). In addition, Pε
is seen to be uniformly elliptic provided k = 2. Moreover when ε = 1 and k = 2,
note we can define the L2(R2

x)-based Sobolev spaces for s ∈ R via the norm

‖f‖Hsx =
∥∥P s/21 f

∥∥
L2
x

:=

(∫
R2

|P̂ s/21 f̂(ξ)|2 dξ
) 1

2

.

The inclusion of Pε implies that (1.1), or equivalently (1.3), shares a formal sim-
ilarity with the well-known Benjamin-Bona-Mahoney equation for uni-directional
shallow water waves [3, 4]. However, the physical context for (1.1) is rather differ-
ent. Equations of the form (1.1) have recently been derived in [11] as an effective
description for the propagation of high intensity laser beams. This was part of
an effort to remedy some of the shortcomings of the classical (focusing) nonlinear
Schrödinger equation (NLS), which is obtained from (1.1) when ε = δ1 = δ2 = 0,
i.e.

(1.4) i∂tu+ ∆u+ |u|2σu = 0, u|t=0 = u0(x1, x2).

The NLS is a canonical model for slowly modulated, self-focusing wave propagation
in a weakly nonlinear dispersive medium. The choice of σ = 1 thereby corresponds
to the physically most relevant case of a Kerr nonlinearity, cf. [12, 35]. Equation
(1.4) is known to conserve, among other quantities, the total mass

M(t) ≡ ‖u(t, ·)‖2L2
x

= ‖u0‖2L2
x
.

A scaling consideration then indicates that (1.4) is L2-critical for σ = 1 and L2-
super-critical for σ > 1. It is well known that in these regimes, solutions to (1.4)
may not exist for all t ∈ R, due to the possibility of finite-time blow-up. The latter
means that there exists a time T <∞, depending on the initial data u0, such that

lim
t→T−

‖∇u(t, ·)‖L2
x

= +∞.

In the physics literature this is referred to as optical collapse, see [12].
In the L2-critical case, there is a sharp dichotomy characterizing the possibility

of this blow-up: Indeed, one can prove that the solution u to (1.4) with σ = 1 exists
for all t ∈ R, provided its total mass is below that of the nonlinear ground state,
i.e., the least energy (nonzero) solution of the form

u(t, x) = eitQ(x).

Solutions u whose L2-norm exceeds the norm of Q, however, will in general exhibit
a self-similar blow-up with a profile given by Q (up to symmetries), see [30, 31].
In turn, this also implies that stationary states of the form eitQ(x) are strongly
unstable. For more details on all this we refer the reader to [6, 12, 35] and references
therein.

In comparison to (1.4), the new model (1.3) includes two additional physical
effects. Firstly, there is an additional nonlinearity of derivative type which describes
the possibility of self-steepening of the laser pulse in the direction δ ∈ R2. Secondly,
the operator Pε describes off-axis variations of the group velocity of the beam. The
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case k = 2 is thereby referred to as full off-axis dependence, whereas for k =
1 the model incorporates only a partial off-axis variation. Both of these effects
become more pronounced for high beam intensities (see [11]) and both are expected
to have a significant influence on the possibility of finite-time blow-up. In this
context, it is important to note that (1.3) does not admit a simple scaling invariance
analogous to (1.4). Hence, there is no clear indication of sub- or super-critical
regimes for equation (1.3). At least formally, though, equation (1.3) admits the
following conservation law,

(1.5) Mε(t) ≡ ‖P 1/2
ε u(t, ·)‖2L2

x
= ‖P 1/2

ε u0‖2L2
x
,

generalizing the usual mass conservation. In the case of full-off axis dependence,
(1.5) yields an a-priori bound on the H1-norm of u, ruling out the possibility of
finite-time blow-up. However, the situation is more complicated in the case with
only a partial off-axis variation.

The latter was studied analytically in the recent work [2], but only for the much
simpler case without self-steepening, i.e., only for δ1 = δ2 = 0. It was rigorously
shown that in this case, even a partial off-axis variation (mediated by Pε with k = 1)
can arrest the blow-up for all σ < 2. In particular, this allows for nonlinearities
larger than the L2-critical case, cf. Section 6 for more details. One motivation for
the present work is to give numerical evidence for the fact that these results are
indeed sharp, and that one can expect finite-time blow-up as soon as σ > 2.

The current work aims to extend the analysis of [2] to situations with additional
self-steepening, i.e., δ 6= 0, and to provide further insight into the qualitative in-
terplay between this effect and the one stemming from Pε. From a mathematical
point of view, the addition of a derivative nonlinearity makes the question of global
well-posedness versus finite-time blow-up much more involved. Derivative NLS and
their corresponding ground states are usually studied in one spatial dimension only,
see e.g. [1, 8, 14, 13, 27, 28, 36, 37] and references therein. For σ = 1, the classical
one-dimensional derivative NLS is known to be completely integrable. Furthermore,
there has only very recently been a breakthrough in the proof of global-in-time ex-
istence for this case, see [15, 16]. In contrast to that, [28] gives strong numerical
indications for a self-similar finite-time blow-up in derivative NLS with σ > 1. The
blow-up thereby seems to be a result of the self-steepening effect in the density
ρ = |u|2, which generically undergoes a time evolution similar to a dispersive shock
wave formation in Burgers’ equation. To our knowledge, however, no rigorous proof
of this phenomenon is currently available.

In two and higher dimensions, even the local-in-time existence of solutions to
derivative NLS type equations seems to be largely unknown, let alone any further
qualitative properties of their solutions. In view of this, the present paper aims to
shine some light on the specific variant of two-dimensional derivative NLS given
by (1.3). Except for its physical significance, this class of models also has the
advantage that the inclusion of (partial) off-axis variations via Pε are expected to
have a strong regularizing effect on the solution, and thus allow for several stable
situations without blow-up.

The organization of our paper is then as follows:

• In Section 2, we shall numerically construct nonlinear stationary states
to (1.1), or equivalently (1.3). These also include the well-known ground
states for the classical NLS. For the sake of illustration, we shall also derive
explicit formulas for the one-dimensional case and compare them with the
well-known formulas for the classical (derivative) NLS.

• Certain perturbations of these stationary states will form the class of initial
data considered in the numerical time-integration of (1.3). The numerical
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algorithm used to perform the respective simulations is detailed in Section
3. In it, we also include several basic numerical tests which compare the
new model (1.3) to the classical (derivative) NLS.

• Analytical results yielding global well-posedness of (1.3) with either full or
partial off-axis variations are given in Sections 4 and 6, respectively.

• In the former case, the picture is much more complete, which allows us
to perform a numerical study of the (in-)stability properties of the corre-
sponding stationary states, see Section 5.

• In the case with only partial off-axis variations, the problem of global exis-
tence is more complicated and one needs to distinguish between the cases
where the action of Pε is either parallel or orthogonal to the self-steepening.
Analytically, only the former case can be treated so far (see Section 6). Nu-
merically, however, we shall present simulations for both of these cases in
Section 7.

2. Stationary states

In this section, we focus on stationary states, i.e., time-periodic solutions to (1.1)
given in the following form:

(2.1) u(t, x1, x2) = eitQ(x1, x2).

The function Q then solves

(2.2) PεQ = ∆Q+ (1 + iδ · ∇)(|Q|2σQ),

subject to the requirement that Q(x) → 0 as |x| → ∞. Every non-zero solution
Q(x) ∈ C gives rise to a solitary wave solution (with speed zero) to (1.1). These
solitary waves will be an important benchmark for our numerical simulations later
on. Note that in (2.1) we only allow for a simple time-dependence exp(iωt) with
ω = 1 in (2.1). This is not a restriction for the usual 2D NLS, given its scaling
invariance, but it is a restriction for our model in which this invariance is broken
(see also [13, 27] for the connection between ω and the speed of stable solitary
waves).

For the classical NLS, i.e., ε = 0 and | δ | = 0, there exists a particular solution Q,
called the nonlinear ground state, which is the unique radial and positive solution to
(2.2), cf. [12, 35]. Recall that in dimensions d = 2 the NLS is already L2-critical and
thus, ground states, in general, cannot be obtained as minimizers of the associated
energy functional (which is the same for both ε = 0 and ε > 0, see [11]). As we
shall see below for ε > 0, the regularization via Pε yields a natural modification of
the ground state Q by smoothly widening its profile (while conserving positivity).
We shall thus also refer to these solutions Q as the ground states for (2.2) with
| δ | = 0 and ε > 0. At present, there are unfortunately no analytical results on the
existence and uniqueness of such modified ground states available. However, our
numerical algorithm indicates that they exist and are indeed unique (although, in
general no longer radially symmetric).

The situation with derivative nonlinearity | δ | 6= 0 is somewhat more compli-
cated, since in this case, solutions Q to (2.2) are always complex-valued and hence
the notion of a ground state does not directly extend to this case (recall that
uniqueness is only known for positive solutions). At least in d = 1, however, ex-
plicit calculations (see below) show, that there is a class of smooth δ-dependent
stationary solutions to (2.2), which for | δ | = 0 yield the family of ε-ground states.

2.1. Explicit solutions in 1D. In one spatial dimension, equation (2.2) allows for
explicit formulas, which will serve as a basic illustration for the combined effects of
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self-steepening and off-axis variations. Indeed, in one spatial dimension, equation
(1.1) simplifies to

(2.3) i(1− ε2∂2
x)∂tu+ ∂2

xu+ (1 + iδ∂x)(|u|2σu) = 0.

Seeking a solution of the form (2.1) thus yields the following ordinary differential
equation:

(2.4) (1 + ε2)Q′′ + (|Q|2σ − 1)Q+ iδ(|Q|2σQ)′ = 0.

To solve this equation, we shall use the polar representation for Q(x) ∈ C

Q(x) = A(x)eiθ(x), A(x), θ(x) ∈ R

where we impose the requirement that A(x) > 0 and limx→±∞A(x) = 0. Plugging
this ansatz into (2.4), factoring eiθ out and isolating the real and imaginary part
yields the following coupled system:(

1 + ε2
)
A′′ + (A2σ − 1)A−Aθ′

(
(1 + ε2)θ′ + δA2σ

)
= 0,(

1 + ε2
)(
Aθ′′ + 2θ′A′

)
+ (2σ + 1)δA2σA′ = 0.

Multiplying the second equation by A and integrating from −∞ to x gives

(1 + ε2)θ′ = − (2σ + 1)δA2σ

2(σ + 1)
,

where here we implicitly assume that A2θ′ vanishes at infinity. Using the above,
we infer that the amplitude solves

(2.5)
(
1 + ε2

)
A′′ + (A2σ − 1)A+

(2σ + 1)δ2

4(1 + ε2)(σ + 1)2
A4σ+1 = 0,

while the phase is given a-posteriori through

(2.6) θ(x) = − (2σ + 1)δ

2(1 + ε2)(σ + 1)

∫ x

−∞
A2σ(y) dy.

After some lengthy computation, similar to what is done for the usual NLS, cf.
[12], the solution to (2.5) can be written in the form

(2.7) A(x) =

 2(σ + 1)

1 +Kε,δ cosh
(

2σx√
1+ε2

)
1/(2σ)

,

where Kε,δ =
√

1 + δ2

1+ε2 > 0. In view of (2.6), this implies that the phase function

θ is given by

(2.8) θ(x) = − sgn(δ)(2σ + 1) arctan

(√
1 + ε2

|δ|

(
1 +Kε,δe

2σx√
1+ε2

))
,

where we omitted a physically irrelevant constant in the phase (clearly, Q is only
unique up to multiplication by a constant phase).

Note that in the case with no self-steepening δ = 0, the phase θ is zero. Thus,
Q(x) ≡ A(x) and we find

Q(x) = (σ + 1)1/(2σ) sech1/σ

(
σx√

1 + ε2

)
.

For ε = 0, this is the well-known ground state solution to (1.4) in one spatial
dimension, cf. [12, 35]. We notice that adding the off-axis dispersion (ε > 0)
widens the profile, causing it to decay more slowly as x → ±∞ as can be seen in
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Figure 1. Ground state solution to (2.7) with δ = 0: On the left
for σ = 1 and ε = 0 (blue), ε = 0.5 (green) and ε = 1 (red). On
the right for ε = 1 and σ = 1 (blue), σ = 2 (green) and σ = 3
(red).

Fig. 1 on the left. On the right of Fig. 1, it is shown that the maximum of the
ground state decreases with σ but that the peak becomes more compressed.

Remark 2.1. The (σ-generalized) one-dimensional derivative NLS can be obtained
from (2.3) by putting ε = 0, rescaling

u(t, x) = δ−1/(2σ)ũ(t, x),

and letting δ →∞. Note that ũ solves

i∂tũ+ ∂2
xũ+ (δ−1 + i∂x)(|ũ|2σũ) = 0.

Denoting Q̃ = Ãeiθ̃(x), we get from (2.7) and (2.8) the well-known zero-speed
solitary wave solution of the derivative NLS, i.e.,

Ã(x) =
(
2(σ + 1) sech(2σx)

)1/(2σ)
, θ̃(x) = −(2σ + 1) arctan(e2σx).

The stability of these states has been studied in, e.g., [8, 27, 13].

2.2. Numerical construction of stationary states. In more than one spatial
dimension, no explicit formula is known for Q. Instead, we shall numerically con-
struct Q by following an approach similar to those in [22, 24]. Since we can expect
Q to be rapidly decreasing, we use a Fourier spectral method and approximate

F(Q) ≡ Q̂(ξ1, ξ2) =
1

2π

∫∫
R2

Q(x1, x2)e−ix1ξ1e−ix2ξ2 dx1dx2,

by a discrete Fourier transform which can be efficiently computed via the Fast
Fourier Transform (FFT). In an abuse of notation, we shall in the following use the
same symbols for the discrete and continuous Fourier transform. To apply FFTs,
we will use a computational domain of the form

(2.9) Ω = [−π, π]Lx1
× [−π, π]Lx2

,

and choose Lx1
, Lx2

> 0 sufficiently large so that the obtained Fourier coefficients
of Q decrease to machine precision, roughly 10−16, which in practice is slightly
larger due to unavoidable rounding errors.

Now, recall that for a solution of the form (2.1) to satisfy (1.1), the function Q
needs to solve (2.2). In Fourier space, this equation takes the simple form

Q̂(ξ1, ξ2) = Γ̂εF(|Q|2σQ)(ξ1, ξ2),
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where

Γ̂ε(ξ1, ξ2) =
(1− δ1ξ1 − δ2ξ2)

1 + ξ2
1 + ξ2

2 + ε2
∑k
i=1 ξ

2
i

.

For δ1 = δ2 = 0, the solution Q can be chosen to be real, but this will no longer be
true for δ1,2 6= 0. In the latter situation, we will decompose

Q(x1, x2) = α(x1, x2) + iβ(x1, x2),

and separate (2.2) into its real and imaginary part, yielding a coupled nonlinear
system for α, β. By using FFTs, this is equivalent to the following system for α̂

and β̂: 
α̂(ξ1, ξ2)− Γ̂εF

((
α2 + β2

)σ
α
)

(ξ1, ξ2) = 0,

β̂(ξ1, ξ2)− Γ̂εF
((
α2 + β2

)σ
β
)

(ξ1, ξ2) = 0.

Formally, the system can be written as M(q̂) = 0 where q̂ = (α̂, β̂)> and solved via
a Newton iteration. One thereby starts from an initial iterate q̂(0) and computes
the n-th iterate via the well known formula

(2.10) q̂(n) = q̂(n−1) − J
(
q̂(n−1)

)−1

M
(
q̂(n−1)

)
n ∈ N,

where J is the Jacobian of M with respect to q̂. Since our required numerical res-
olution makes it impossible to directly compute the action of the inverse Jacobian,
we instead employ a Krylov subspace approach as in [34]. Numerical experiments
show that when the initial iterate q̂(0) is sufficiently close to the final solution, we
obtain the expected quadratic convergence of our scheme and reach a precision of
order 10−10 after only 4 to 8 iterations.

As a basic test case, we compute the ground state of the standard two-dimensional
focusing NLS with σ = 1, using the initial iterate

q(0)(x1, x2) = sech2
(√

x2
1 + x2

2

)
on the computational domain (2.9) with Lx1

= Lx2
= 5. By choosing Nx1

= Nx2
=

29 many Fourier modes, we have after seven iterations of (2.10) a residual smaller
than 10−12. The obtained solution is given on the left of Fig. 2. As expected, the
solution is radially symmetric.

Figure 2. Ground state solution to equation (1.1) with σ = 1 and
δ = 0: On the left for ε = 0, in the middle for ε = 1 and k = 1
(partial off-axis dependence), on the right for ε = 1 and k = 2 (full
off-axis dependence).

The numerical ground state solution hereby obtained will then be used as an
initial iterate for the situation with non-vanishing ε and δ, as follows:

Step 1: In the case without self-steepening δ1 = δ2 = 0, the iteration is straight-
forward even for relatively large values such as ε = 1. It can be seen in the middle
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of Fig. 2, that the ground state for ε = 1 and k = 1 is no longer radially symmet-
ric. As an effect of the partial off-axis variation, the solution is elongated in the
x1-direction. In the case of full off-axis dependence, the ground state for the same
value of ε = 1 can be seen in Fig. 2 on the right. The solution is again radially
symmetric, but as expected less localized than the ground state of the classical
standard NLS. This is consistent with the explicit formulas for Q found in the one
dimensional case above.

Step 2: In the case with self-steeping δ1 = δ2 = 1, smaller intermediate steps
have to be used in the iterations: We increment δ, by first varying only δ2 in steps of
0.2, always using the last computed value for Q as an initial iterate for the slightly
larger δ. The resulting solution Q can be seen in Fig. 3. Note that the imaginary
part of Q is of the same order of magnitude as the real part.

Figure 3. The stationary state solution Q to equation (1.1) with
σ = 1, ε = δ1 = 0 and δ2 = 1: On the left, the real part of Q, on
the right its imaginary part.

Step 3: In order to combine both effects within the same model, we shall use the
(zero speed) solitary obtained for ε = 0 and δ 6= 0 as an initial iterate for the case
of non-vanishing ε. In Fig. 4 we show on the left the stationary state for ε = 1,
k = 1, δ1 = 0 and δ2 = 1, when the action of Pε is orthogonal to the self-steepening.
When compared to the case with ε = 0, the solution is seen to be elongated in the
x1-direction. Next, we simulate when Pε acts parallel to the self-steepening, that is
when ε = 1, k = 1, δ1 = 1 and δ2 = 0. The result is shown in the middle of Fig. 4.
In comparison to the former case, the imaginary part of the solution is essentially
rotated clockwise by 90 degrees. The elongation effect in the x1-direction is still
visible but less pronounced.

Step 4: For σ > 1 stationary states become increasingly peaked, as is seen
from the 1D picture in Figure 1. Hence, to construct stationary states for higher
nonlinear powers in 2D, we will consequently require more Fourier coefficients to
effectively resolve these solutions. To this end, we work on the numerical domain
(2.9) with Lx1

= Lx2
= 3 and Nx1

= Nx2
= 210 Fourier modes. We use the ground

state obtained for σ = 1 as an initial iterate for the case σ = 2, 3, and follow the
same program as outlined above.

3. Numerical method for the time evolution

3.1. A Fourier spectral method. In this section, we briefly describe the numer-
ical algorithm used to integrate our model equation in its evolutionary form (1.3).
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Figure 4. Real and imaginary parts of the stationary state Q to
equation (1.1) with σ = 1: On the left for ε = 1, k = 1, δ1 = 0 and
δ2 = 1, in the middle for ε = 1, k = 1, δ1 = 1 and δ2 = 0, and on
the right for ε = 1, k = 2, δ1 = 0 and δ2 = 1.

After a Fourier transformation, this equation becomes

∂tû = −iP̂−1
ε (ξ)

(
|ξ|2û− (1− δ · ξ) ̂(|u|2σu)

)
, ξ ∈ R2.

Approximating the above by a discrete Fourier transform (via FFT) on a compu-
tational domain Ω given by (2.9), yields a finite dimensional system of ordinary
differential equations, which formally reads

(3.1) ∂tû = Lεû+Nε(û).

Here Lε = −iP−1
ε |ξ|2 is a linear, diagonal operator in Fourier space, and Nε(û) has

a nonlinear and nonlocal dependence on û. Since ‖Lε‖ can be large, equation (3.1)
belongs to a family of stiff ODEs, for which several efficient numerical schemes
have been developed, cf. [17, 21] where the particular situation of semi-classical
NLS is considered. Driscoll’s composite Runge-Kutta (RK) method [10] has proven
to be particularly efficient and thus will also be applied in the present work. This
method uses a stiffly stable third order RK method for the high wave numbers of
Lε and combines it with a standard explicit fourth order RK method for the low
wave numbers of Lε and the nonlinear part Nε(û). Despite combining a third order
and a fourth order method, this approach yields fourth order in-time convergence in
many applications. Moreover, it provides an explicit method with much larger time
steps than allowed by the usual fourth order stability conditions in stiff regimes.

Remark 3.1. The evolutionary form of our model (1.3) is in many aspects similar
to the well-known Davey-Stewartson (DS) system, which is a non-local NLS type
equation in two spatial dimensions, cf. [9, 35]. In [21, 23, 25], the possibility of
self-similar blow-up in DS is studied, using a numerical approach similar to ours.

As a first basic test of consistency, we apply our numerical code to the cubic
NLS in 2D i.e. equation (1.4) with σ = 1. As initial data u0 we take the ground
state Q, obtained numerically as outlined in Section 2 above. We use Nt = 1000
time-steps for times 0 6 t 6 1. In this case, we know that the exact time-dependent
solution u is simply given by u = Qeit. Comparing this to the numerical solution
obtained at t = 1 yields an L∞-difference of the order of 10−10. This verifies both
the code for the time evolution and the one for the ground state Q which in itself



10 J. ARBUNICH, C.KLEIN, AND C. SPARBER

is obtained with an accuracy of order 10−10. Thus, the time evolution algorithm
evolves the ground state with the same precision as with which it is known.

For general initial data u0, we shall control the accuracy of our code in two ways:
On the one hand, the resolution in space is controlled via the decrease of the Fourier
coefficients within (the finite approximation of) û. The coefficients of the highest
wave-numbers thereby indicate the order of magnitude of the numerical error made
in approximating the function via a truncated Fourier series. On the other hand,
the quality of the time-integration is controlled via the conserved quantity Mε(t)
defined in (1.5). Due to unavoidable numerical errors, the latter will numerically
depend on time. For sufficient spatial resolution, the relative conservation of Mε(t)
will overestimate the accuracy in the time-integration by 1−2 orders of magnitude.

3.2. Reproducing known results for the classical NLS. As already discussed
in the introduction of this paper, the cubic NLS in two spatial dimensions is L2-
critical and its ground state solution Q is strongly unstable. Indeed, any pertur-
bation of Q which lowers the L2-norm of the initial data below that of Q itself,
is known to produce purely dispersive, global-in-time solutions which behave like
the free time evolution for large |t| � 1. However, perturbations that increase the
L2-norm of the initial data above that of Q are expected to generically produce
a (self-similar) blow-up in finite time. This behavior can be reproduced in our
simulations.

To do so, we first take initial data of the form

(3.2) u0(x1, x2) = Q(x1, x2)− 0.1e−x
2
1−x

2
2 ,

and work on the numerical domain Ω given by (2.9) with Lx1
= Lx2

= 3. We will
use Nt = 5000 time-steps within 0 6 t 6 5. We can see on the right of Fig. 5 that
the L∞-norm of the solution decreases monotonically, indicating purely dispersive
behavior. The plotted absolute value of the solution at t = 5 confirms this behavior.
In addition, the mass M(t) ≡ M0(t) is conserved to better than 10−13, indicating
that the problem is indeed well resolved in time.

0 1 2 3 4 5
t

0.8

1

1.2

1.4

1.6

1.8

2

2.2

||u
||

Figure 5. Solution to the classical NLS (1.4) with σ = 1 and
initial data (3.2): on the left |u| at t = 5, and on the right the
L∞-norm of the solution as a function of t.

Remark 3.2. Note that we effectively run our simulations on Ω ' T2, instead of
R2. As a consequence, the periodicity will after some time induce radiation effects
appearing on the opposite side of Ω. The treatment of (large) times t > 5 therefore
requires a larger computational domain to suppress these unwanted effects.
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Next, for initial data of the form

(3.3) u0(x1, x2) = Q(x1, x2) + 0.1e−x
2
1−x

2
2 ,

we again use Nt = 5000 time steps for 0 6 t 6 2. As can be seen in Fig. 6 on the
right, there is numerical indication for finite-time blow-up. The code is stopped at
t = 1.89 when the relative error in the conservation of mass M(t) drops below 10−3.
The solution for t = 1.88 can be seen on the left of Fig. 6. This is in accordance
with the self-similar blow-up established by Merle and Raphaël, cf. [30, 31]. In
particular, we note that the result does not change notably if a higher resolution in
both x and t is used.

0 0.5 1 1.5 2
t

2.305

2.31

2.315

2.32

2.325

2.33

||u
||

Figure 6. Solution to the classical NLS (1.4) with σ = 1 and
initial data (3.3): on the left |u| at t = 1.88 and on the right the
L∞-norm of the solution as a function of t.

Remark 3.3. We want to point out that there are certainly more sophisticated
methods available to numerically study self-similar blow-up, see for instance [24,
28, 35] for the case of NLS type models, as well as [19, 20] for the analogous
problem in KdV type equations. However, these methods will not be useful for the
present work, since as noted before, the model (1.1) does not admit a simple scaling
invariance, which is the underlying reason for self-similar blow-up in NLS and KdV
type models. As a result, all our numerical findings concerning finite-time blow-up
have to be taken with a grain of salt. An apparent divergence of certain norms of
the solution or overflow errors produced by the code can indicate a blow-up, but
might also just indicate that one has run out of resolution. The results reported
in this paper therefore need to be understood as being stated with respect to the
given numerical resolution. However, we have checked that they remain stable
under changes of the resolution within the accessible limits of the computers used
to run the simulations.

3.3. Time-dependent change of variables in the case with self-steepening.
In the case of self-steepening, the ability to produce an accurate numerical time-
integration in the presence of a derivative nonlinearity (δ 6= 0) becomes slightly
more complicated. The inclusion of such a nonlinearity can lead to localized initial
data moving (relatively fast) in the direction chosen by δ. In turn, this might cause
the numerical solution to “hit” the boundary of our computational domain Ω.

To avoid this issue, we shall instead perform our numerical computations in a
moving reference frame, chosen such that the maximum of |u(t, x)| remains fixed
at the origin. More precisely, we consider the transformation

x 7→ x− y(t),
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and denote v(t) = ẏ(t). The new unknown u(t, x− y(t)) solves

(3.4) i∂tu− iv · ∇u+ P−1
ε ∆u+ P−1

ε (1 + iδ · ∇)
(
|u|2σu

)
= 0.

The quantity v(t) = (v1(t), v2(t)) is then determined by the condition that the
density ρ = |u|2 has a maximum at (x1, x2) = (0, 0) for all t > 0. We get from (3.4)
the following equation for ρ:

∂tρ = v · ∇ρ+ i
(
ūP−1

ε ∆u− uP−1
ε ∆ū

)
+ i
(
ūP−1

ε (ρσu)− uP−1
ε (ρσū)

)
− ūP−1

ε δ · ∇(ρσu)− uP−1
ε δ · ∇(ρσū).

Differentiating this equation with respect to x1 and x2 respectively, and setting
x1 = x2 = 0 yields the desired conditions for v1 and v2.

Note that the computation of the additional derivatives appearing in this ap-
proach is expensive, since in practice it needs to be enforced in every step of the
Runge-Kutta scheme. Hence, we shall restrict this approach solely to cases where
the numerical results appear to be strongly affected by the boundary of Ω. In addi-
tion, we may always choose a reference frame such that one of the two components
of δ is zero, which consequently allows us to set either v1, or v2 equal to zero.

3.4. Basic numerical tests for a derivative NLS in 2D. As an example, we
consider the case of a cubic nonlinear, two-dimensional derivative NLS of the fol-
lowing form

(3.5) i∂tu+ ∆u+ (1 + iδ2∂x2
)
(
|u|2u

)
= 0, u|t=0 = u0(x1, x2).

which is obtained from our general model (1.3) for ε = 0 and δ1 = 0. We take
initial data u0 given by (3.3). Here, Q is the ground state computed earlier for
this particular choice of parameters, see Fig. 3. We work on the computational
domain (2.9) with Lx1 = Lx2 = 3, using Nx1 = Nx2 = 210 Fourier modes and 105

time-steps for 0 6 t 6 5. We also apply a Krasny filter [26], which sets all Fourier
coefficients smaller than 10−10 equal to zero. For δ2 = 1 the real and imaginary
part of the solution u at the final time t = 5 can be seen in Fig. 7 below. Note that
they are both much more localized and peaked when compared to the ground state
Q shown in Fig. 3, indicating a self-focusing behavior within u. Moreover, the real
part of u is no longer positive due to phase modulations.

Figure 7. Real and imaginary part of the solution to (3.5) with

δ2 = 1 at time t = 5 corresponding to u0 = Q+ 0.1e−x
2
1−x

2
2 , where

Q is the stationary state in Fig. 3.

Surprisingly, however, there is no indication of a finite-time blow-up, in contrast
to the analogous situation without derivative nonlinearity (recall Fig. 6 above).
Indeed, the Fourier coefficients of |u| at t = 5 are seen in Fig. 8 to decrease to the



DERIVATIVE NLS TYPE EQUATIONS IN TWO SPATIAL DIMENSIONS 13

order of the Krasny filter. In addition, the L∞-norm of the solution, plotted in the
middle of the same figure, appears to exhibit a turning point shortly before t ≈ 4.
Finally, the velocity component v2 plotted on the right in Fig. 8 seems to slowly
converge to a some limiting value v2 ≈ 2. The latter would indicate the appearance
of a stable moving soliton, but it is difficult to decide such questions numerically.
All of these numerical findings are obtained with Mε(t) conserved up to errors of
the order 10−11.
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t
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||
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t

-3

-2.5

-2
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-1

-0.5

0

v 2

Figure 8. Solution to (3.5) with δ2 = 1 and perturbed stationary
state initial data: The Fourier coefficients of |u| at t = 5 on the left;
the L∞-norm of the solution as a function of time in the middle,
and the time evolution of its velocity v2 on the right.

It might seem extremely surprising that the addition of a derivative nonlinearity
is able to suppress the appearance of finite-time blow-up. Note however, that in all
the examples above we have used only (a special case of) perturbed ground states Q
as initial data. For more general initial data, the situation is radically different, as
can be illustrated numerically in the following example: We solve (3.5) with purely
Gaussian initial data of the form

(3.6) u0(x1, x2) = 4e−(x2
1+x2

2)

on a numerical domain Ω with Lx1
= Lx2

= 2, using Nx1
= Nx2

= 210 Fourier
coefficients and Nt = 105 time steps for 0 6 t 6 0.25. This case appears to exhibit
finite-time blow-up, as is illustrated in Fig. 9. The conservation of the numerically
computed quantity M(t) drops below 10−3 at t ≈ T = 0.1955 which indicates that
plotting accuracy is no longer guaranteed. Consequently we ignore data taken for
later times, but note that the code stops with an overflow error for t ≈ 0.202.

0 0.05 0.1 0.15
t

4

5

6

7

8

9

10

11

12

|u
|

Figure 9. The modulus of the solution to (3.5) with δ2 = 1 for

Gaussian initial data u0 = 4e−x
2
1−x

2
2 , at time t = 0.195. On the

right, the L∞-norm of the solution as a function of time.
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Remark 3.4. These numerical findings are consistent with analytical results for
derivative NLS in one spatial dimension. For certain values of σ > 1 and certain
velosit v, the corresponding solitary wave solutions are found to be orbitally stable,
see [8, 13, 27]. However, for general initial data and σ > 1 large enough, one expects
finite-time blow-up, see [28].

4. Global well-posedness with full off-axis variation

In this section we will analyze the Cauchy problem corresponding to (1.3) in the
case of full off-axis dependence, i.e. k = 2, so that

Pε = 1− ε2∆.

In this context, we expect the solution u of (1.3) to be very well behaved due to the
strong regularizing effect of the elliptic operator Pε acting in both spatial directions.

To prove a global-in-time existence result, we rewrite (1.3), using Duhamel’s
formula,

(4.1) u(t) = Sε(t)u0 + i

∫ t

0

Sε(t− s)P−1
ε (1 + iδ · ∇)

(
|u|2σu

)
(s) ds ≡ Φ(u)(t).

Here, and in the following, we denote by

Sε(t) = eitP
−1
ε ∆

the corresponding linear propagator, which is easily seen (via Plancherel’s theorem)
to be an isometry on Hs for any s ∈ R. It is known that in the case with full off-
axis variation, Sε(t) does not allow for any Strichartz estimates, see [5]. However,
the action of P−1

ε allows us to “gain” two derivatives and offset the action of the
gradient term in the nonlinearity of (4.1). Using a fixed point argument, we can
therefore prove the following result.

Theorem 4.1 (Full off-axis variations). Let ε > 0, k = 2 and σ > 1
4 . Then for

any δ ∈ R2 and any u0 ∈ H1(R2
x), there exists a unique global-in-time solution

u ∈ C(Rt;H1(R2
x)) to (1.3), depending continuously on the initial data. Moreover,

‖u(t, ·)‖H1
x
6 C(ε, ‖u0‖H1

x
), ∀ t ∈ R.

Proof. Let T,M > 0. We aim to show that u 7→ Φ(u) is a contraction on the ball

XT,M = {u ∈ L∞([0, T );H1(R2
x)) : ‖u‖L∞t H1

x
6M}.

To this end, let us shortly denote

(4.2) Φ(u)(t) = Sε(t)u0 +N (u)(t),

where for g(u) = |u|2σu, we write

N (u)(t) := i

∫ t

0

Sε(t− s)P−1
ε (1 + iδ · ∇)g(u(s)) ds.

Now, let u, u′ ∈ XT,M . Using Minkowski’s inequality and recalling that Sε(t) is
an isometry on H1(R2) yields∥∥(N (u)(t)−N (u′)(t)

)∥∥
H1
x
6 ε−2(1 + | δ |)

∫ t

0

‖g(u)− g(u′)‖L2
x
(s) ds.

To bound the integrand, we first note that

(4.3) |g(u)− g(u′)| 6 Cσ(|u|2σ + |u′|2σ)|u− u′|.

If we impose σ > 1
4 , then we have by Sobolev’s embedding that

H1(R2) ⊂ H
(4σ−1)

4σ (R2) ↪→ L8σ(R2) and H
1
2 (R2) ↪→ L4(R2).
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This allows us to estimate further after using (4.3) and Hölder’s inequality in space
to give

‖g(u)− g(u′)‖L2
x
6
(
‖u‖2σL8σ

x
+ ‖u′‖2σL8σ

x

)
‖u− u′‖L4

x

6
(
‖u‖2σH1

x
+ ‖u′‖2σH1

x

)
‖u− u′‖H1

x
.

Together with Hölder’s inequality in t, we can consequently bound∥∥N (u)−N (u′)
∥∥
L∞t H

1
x
6 2ε−2(1 + | δ |)TM2σ‖u− u′‖L∞t H1

x
.

By choosing T > 0 sufficiently small, Banach’s fixed point theorem directly yields
a unique local-in-time solution u ∈ C([0, T ], H1(R2

x)). Standard arguments (see,
e.g., [33]) then allow us to extend this solution up to a maximal time of existence
Tmax = Tmax(‖u0‖H1

x
) > 0 and we also infer continuous dependence on the initial

data.
Next, we shall prove that

(4.4) ‖P 1/2
ε u(t)‖L2

x
= ‖P 1/2

ε u0‖L2
x
, for all t ∈ [0, T ] and T < Tmax.

For ε > 0, this conservation law yields a uniform bound on the H1-norm of u, since

cε‖P 1/2
ε ϕ‖L2

x
6 ‖ϕ‖H1

x
6 Cε‖P 1/2

ε ϕ‖L2
x
, Cε, cε > 0.

We consequently can re-apply the fixed point argument as many times as we wish,
thereby preserving the length of the maximal interval in each iteration, to yield
Tmax = +∞. Since the equation is time-reversible modulo complex conjugation,
we obtain a global H1-solution for all t ∈ R, provided (4.4) holds.

To prove (4.4), we adapt and (slightly) modify an elegant argument given in
[32], which has the advantage that it does not require an approximation procedure
via a sequence of sufficiently smooth solutions (as is classically done, see e.g. [6]):
Let t ∈ [0, T ] for T < Tmax. We first rewrite Duhamel’s formula (4.1), using the
continuity of the semigroup Sε to propagate backwards in time

(4.5) Sε(−t)u(t) = u0 + Sε(−t)N (u)(t).

As Sε(·) is unitary in L2, we have ‖P 1/2
ε u(t)‖L2

x
= ‖Sε(−t)P 1/2

ε u(t)‖L2
x
. The latter

can be expressed using the above identity:

‖P 1/2
ε u(t)‖L2

x
=

= ‖P 1/2
ε u0‖L2

x
+ 2Re

〈
Sε(−t)P 1/2

ε N (u)(t), P 1/2
ε u0

〉
L2
x

+ ‖Sε(−t)P 1/2
ε N (u)(t)‖2L2

x

≡ ‖P 1/2
ε u0‖L2

x
+ I1 + I2.

We want to show that I1 + I2 = 0. In view of (4.2) we can rewrite

I1 = −2Im
〈 ∫ t

0

Sε(−s)P−1/2
ε (1 + iδ · ∇)g(u)(s) ds, P 1/2

ε u0

〉
L2
x
ds

= −2Im

∫ t

0

〈
(1 + iδ · ∇)g(u)(s), Sε(s)u0

〉
L2
x
ds.

By the Cauchy-Schwarz inequality we find that this quantity is indeed finite, since

|I1| 6 2T‖(1 + iδ · ∇)g(u)‖L∞t L2
x
‖Sε(·)u0‖L∞t L2

x
<∞.

Denoting for simplicity Gε(·) = P−1
ε (1 + iδ · ∇)g(u)(·), we find after a lengthy

computation (see [2] for more details) that the integral

I2 = 2Re

∫ t

0

〈
PεGε(s),−iN (u)(s)

〉
L2
x
ds.
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We can express −iN (u)(s) using the integral formulation (4.5) and write

(4.6) I2 = 2Re
(∫ t

0

〈
PεGε(s), iSε(s)u0

〉
L2
x
ds+

∫ t

0

〈
PεGε(s),−iu(s)

〉
L2
x
ds
)
.

Next, we note that the particular form of our nonlinearity implies

Re
〈
PεGε,−iu

〉
L2 = Im

〈
(1 + iδ · ∇)g(u), u

〉
L2
x

= Im ‖u‖2σ+2

L2σ+2
x
− Re

〈
g(u), (δ · ∇)u

〉
L2
x
.

Here, the first expression in the last line is obviously zero, whereas for the second
term we compute

Re
〈
g(u), (δ · ∇)u

〉
L2
x

=

∫
R2

|u|2σRe
(
u(δ · ∇)u

)
dx

=
1

2(σ + 1)

∫
R2

(δ · ∇)(|u|2σ+2) dx = 0,

for H1-solutions u. In summary, the second term on the right-hand side of (4.6)
simply vanishes and we find

I2 = 2Im

∫ t

0

〈
(1 + iδ · ∇)g(u)(s), Sε(s)u0

〉
L2
x
ds = −I1.

This finishes the proof of (4.4). �

5. (In-)stability properties of stationary states with full off-axis
variation

In this section, we shall perform numerical simulations to study the orbital sta-
bility or instability properties of the (zero speed) solitary wave Qeit in the case
with self-steepening | δ | 6= 0 and full off-axis variation k = 2. In view of Theorem
4.1, we know that there cannot be any strong instability, i.e., instability due to
finite-time blow-up. Nevertheless, we shall see that there is a wealth of possible
scenarios, depending on the precise choice of parameters, σ, δ, and on the way we
perturb the initial data.

To be more precise, we shall consider initial data to equation (1.3) with k = 2,
given by

(5.1) u0(x1, x2) = Q(x1, x2)± 0.1e−x
2
1−x

2
2 ,

where Q is again the stationary state constructed numerically as described in Sec-
tion 2. We will use Nx1

= Nx2
= 210 Fourier modes, a numerical domain Ω of the

form (2.9) with Lx1 = Lx2 = 3, and a time step of ∆t = 10−2.
Recall that in a stable regime, the time-dependent solution u typically oscillates

around some time-periodic state plus a (small) remainder which radiates away as
t→ ±∞ (see, e.g., [35, Section 4.5.1] for more details). In our simulations, however,
we work on T2 instead of R2 which implies that radiation cannot escape to infinity.
Thus, we will not be able to numerically verify the precise behavior of u for large
times. Having this in mind, we take it as numerical evidence for (orbital) stability,
if both perturbations (5.1) of Q generate stable oscillations of ‖u(t, ·)‖L∞ , see also
[22, 24] for similar studies.

5.1. The case without self-steepening. Let us first address the case δ1 = δ2 = 0
for nonlinear strengths σ = 1, 2, 3.

For σ = 1, we find that the perturbed ground state is unstable, and that the
initial pulse disperses towards infinity as can be seen in Fig. 10. The modulus of
the solution at t = 10 in the same figure on the right shows that the initial pulse
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disperses with an annular profile. A “ − ” perturbation in (5.1) leads to the same
qualitative behavior and a corresponding figure is omitted.
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Figure 10. Solution to equation (1.3) with σ = 1, ε = 1, k = 2,
δ = 0, and initial data (5.1) with the “ + ” sign: On the left the
L∞-norm of the solution as a function of t, and on the right the
modulus of the solution for t = 10.

The situation is found to be different for σ = 2, where Q appears to be stable,
see Fig. 11. The L∞-norm of the solution thereby oscillates for both signs of the
perturbation.
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Figure 11. L∞-norm of the solution to equation (1.3) with σ = 2,
ε = 1, k = 2, δ = 0, and initial data (5.1): On the left for the “−”
sign, and on the right for the “ + ” sign.

Finally, for σ = 3 we find that the behavior depends on how we perturb the initial
ground state Q. Perturbations with a “+” sign in (5.1) again exhibit an oscillatory
behavior of the L∞-norm, see the right of Fig. 12. However, a “ − ” perturbation
yields a monotonically decreasing L∞-norm of the solution. The latter is again
dispersed with an annular profile.

5.2. The case with self-steepening. In this subsection, we shall perform the
same numerical study in the case with self-steepening, i.e. δ1,2 6= 0. For σ = 1,
the corresponding stationary state Q seems to remain stable, since both types of
perturbations yield an oscillatory behavior of the L∞-norm in time, see Fig. 13.
This is in sharp contrast to the σ = 1 case without self-steepening depicted in
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Figure 12. L∞-norm of the solution to equation (1.3) with ε = 1,
k = 2, σ = 3, δ = 0 and initial data (5.1): On the left for the “− ”
sign, on the right for the “ + ” sign.

Fig. 10 above. In addition, we see that the solution no longer displays an annular
profile.
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Figure 13. Solution to equation (1.3) with ε = 1, k = 2, σ = 1,
δ1 = 0, δ2 = 1, and initial data (5.1): On the left the L∞-norm for
the “ − ” sign, in the middle |u| plotted at the final time, and on
the right the L∞-norm for the solution with the “ + ” sign.

This stable behavior is lost in the case of higher nonlinearities. More precisely, for
both σ = 2 and 3 we find that the behavior of the solution u depends on the sign of
the considered Gaussian perturbation. On the one hand, for the “ + ” perturbation
in (5.1), both σ = 2 and σ = 3 yield an oscillatory behavior of the L∞-norm, see
Fig. 14. On the other hand, the “− ” perturbation for both nonlinearities produce
a solution with decreasing L∞-norm in time (although for σ = 2 this decrease is no
longer monotonically).

Remark 5.1. Our numerical findings are reminiscent of recent results for the
(generalized) BBM equation, see [4]. In there, it is found that for p > 5, the
regime where the underlying KdV equation is expected to exhibit blow-up, solitary
waves can be both stable and unstable and are sensitive to the type of perturbation
considered. The main difference to our case is of course that these earlier studies
are done in only one spatial dimension.

6. Well-posedness results for the case with partial off-axis
variation

From a mathematical point of view, the most interesting situation arises in the
case where there is only a partial off-axis variation. To study such a situation, we
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Figure 14. Solution to equation (1.3) with ε = 1, k = 2, σ = 3,
δ1 = 0, δ2 = 0.1, and initial data (5.1): On the left, the L∞-norm
for the “ − ” perturbation, in the middle |u| plotted at the final
time, and on the right the L∞-norm for the solution with the “+”
sign.

shall without loss of generality assume that Pε acts only in the x1−direction, i.e.

Pε = 1− ε2∂2
x1
.

In this case (1.1) becomes

(6.1) i(1− ε2∂2
x1

)∂tu+ ∆u+ (1 + iδ · ∇)(|u|2σu) = 0, u|t=0 = u0(x1, x2).

When δ = (δ, 0)> and σ = 1, this is precisely the model proposed in [11, Section
4.3]. Motivated by this, we shall in our analysis only consider the case where
the regularization Pε and the derivative nonlinearity act in the same direction.
Numerically, however, we shall also treat the orthogonal case where, instead, δ =
(0, δ)>, see below.

6.1. Change of unknown and Strichartz estimates. In [2], which treats the
case without self-steepening, the following change of unknown is proposed in order
to streamline the analysis:

(6.2) v(t, x1, x2) := P 1/2
ε u(t, x1, x2).

Rewriting the evolutionary form of (6.1) with δ = (δ, 0)> in terms of v yields

(6.3) i∂tv + P−1
ε ∆v + (1 + iδ∂x1

)P−1/2
ε (|P−1/2

ε v|2σP−1/2
ε v) = 0,

subject to initial data

v|t=0 = v0(x1, x2) ≡ P 1/2
ε u0(x1, x2).

Instead of (1.5), one finds the new conservation law

(6.4) ‖v(t, ·)‖2L2
x

= ‖P 1/2
ε u(t, ·), ‖2L2

x
= ‖P 1/2

ε u0‖2L2
x

= ‖v0‖2L2
x
,

where we recall that P
1/2
ε only acts in the x1-direction, via its Fourier symbol

P̂
s/2
1 (ξ) = (1 + ξ2

1)s/2, ξ1 ∈ R.
This suggests to work in the mixed Sobolev-type spaces Lp(Rx2

;Hs(Rx1
)), which

for any s ∈ R are defined through the following norm:

‖f‖Lpx2Hsx1 :=
∥∥P s/21 f

∥∥
Lpx2L

2
x1

:=

(∫
R

(∫
R
|P s/21 f(x1, x2)|2 dx1

) p
2

dx2

) 1
p

.

We will also make use of the mixed space-time spaces LqtL
p
x2
Hs
x1

(I) for some time
interval I (or simply LqtL

p
x2
Hs
x1

when the interval is clear from context), which we
shall equip with the norm

‖F‖LqtLpx2Hsx1 (I) :=

(∫
I

‖F (t)‖q
Lpx2H

s
x1

dt

) 1
q

.
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The proof of (global) existence of solutions to (6.3) will require us to use the

dispersive properties of the associated linear propagator Sε(t) = eitP
−1
ε ∆, which in

contrast to the case k = 2 allows for Strichartz estimates. However, in comparison
to the usual Schrödinger group eit∆, these dispersive properties are considerably
weaker.

In the following, we say that a pair (q, r) is Strichartz admissible, if

(6.5)
2

q
=

1

2
− 1

r
, for 2 6 r 6∞, 4 6 q 6∞.

Now, let (q, r), (γ, ρ) be two arbitrary admissible pairs. It is proved in [2, Proposi-
tion 3.4] that there exist constants C1, C2 > 0 independent of ε, such that

(6.6) ‖Sε(·)f‖
LqtL

r
x2
H
− 2
γ

x1

6 C1‖f‖L2
x
,

as well as

(6.7)

∥∥∥∥∫ t

0

Sε(· − s)F (s) ds

∥∥∥∥
LqtL

r
x2
H
− 2
q

x1

6 C2‖F‖
Lγ
′
t L

ρ′
x2
H

2
γ
x1

.

Here, one should note the loss of derivatives in the x1-direction.

6.2. Global existence results. Using the Strichartz estimates stated above, we
shall now prove some L2-based global existence results for the solution v to (6.3).
In turn, this will yield global existence results (in mixed spaces) for the original

equation (6.1) via the transformation v = P
1/2
ε u.

To this end, we first recall that in the case without self-steepening δ = 0, the
results of [2] directly give:

Proposition 6.1 (Partial off-axis variation without self-steepening). Let σ < 2.
Then for any initial data u0 ∈ L2(Rx2 ;H1(Rx1)) there exists a unique global-in-time
solution u ∈ C(Rt;L2(Rx2

;H1(Rx1
))) to

(6.8) i(1− ε2∂2
x1

)∂tu+ ∆u+ |u|2σu = 0, u|t=0 = u0(x1, x2).

Our numerical findings in the next section indicate that this result is indeed
sharp, i.e., that for σ > 2 global existence in general no longer holds.

Next, we shall take into account the effect of self-steepening, and rewrite (6.3)
using Duhamel’s formula:

v(t) =Sε(t)v0 + i

∫ t

0

Sε(t− s)P−1/2
ε (1 + iδ∂x1)(|P−1/2

ε v|2σP−1/2
ε v)(s) ds

≡Φ(v)(t).

(6.9)

To prove that Φ is a contraction mapping, the following lemma is key.

Lemma 6.2. Let g(z) = |z|2σz with σ ∈ N. For t ∈ [0, T ] denote

(6.10) N (v)(t) := i

∫ t

0

Sε(t− s)P−1/2
ε (1 + iδ∂x1)g(P−1/2

ε v(s)) ds,

and choose the admissible pair (γ, ρ) =
( 4(σ+1)

σ , 2(σ + 1)
)
. Then for ε, δ > 0, it

holds:∥∥N (v)−N (v′)
∥∥
Lγt L

ρ
x2
H
− 2
γ

x1

. ε−2(σ+1)(1 + δ)T 1−σ2
(
‖v‖2σ

Lγt L
ρ
x2
H
− 2
γ

x1

+ ‖v′‖2σ
Lγt L

ρ
x2
H
− 2
γ

x1

)
‖v − v′‖

Lγt L
ρ
x2
H
− 2
γ

x1

.
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Proof. First it is easy to check that

(γ, ρ) =
(4(σ + 1)

σ
, 2(σ + 1)

)
is admissible in the sense of (6.5). Moreover, since γ > 4 we have 2

γ < 1
2 , from

which we infer that H1− 2
γ (R) is indeed a normed Banach algebra, a fact to be used

below. Using the Strichartz estimate (6.7) we have∥∥N (v)−N (v′)
∥∥
Lγt L

ρ
x2
H
− 2
γ

x1

6 C2

∥∥P−1/2
ε

(
1 + iδ∂x1

)(
g(P−1/2

ε v)− g(P−1/2
ε v′)

)∥∥
Lγ
′
t L

ρ′
x2
H

2
γ
x1

.

For simplicity we shall in the following denote u = P
−1/2
ε v, u′ = P

−1/2
ε v′ in view of

(6.2). Keeping t and x2 fixed we can estimate∥∥P−1/2
ε

(
1 + iδ∂x1

)(
g(P−1/2

ε v)− g(P−1/2
ε v′)

)∥∥
H

2
γ
x1

6 ε−1‖
(
1 + iδ∂x1

)(
g(u)− g(u′)

)∥∥
H

2
γ
−1

x1

6 ε−1(1 + δ)‖g(u)− g(u′)‖
H

1− 2
γ

x1

,

where in the last inequality we have used the fact that H1− 2
γ (R) ⊂ H

2
γ (R). Next,

use again (4.3) which together with the algebra property of H1− 2
γ (R) for σ ∈ N

implies

‖g(u)− g(u′)‖
H

1− 2
γ

x1

.
(
‖u‖2σ

H
1− 2

γ
x1

+ ‖u′‖2σ
H

1− 2
γ

x1

)
‖u− u′‖

H
1− 2

γ
x1

. ε−2(σ+1)
(
‖v‖2σ

H
− 2
γ

x1

+ ‖v′‖2σ
H
− 2
γ

x1

)
‖v − v′‖

H
− 2
γ

x1

.

It consequently follows after Hölder’s inequality in x2, that we obtain∥∥N (v)−N (v′)
∥∥
Lρx2H

− 2
γ

x1

. ε−(2σ+1)(1 + δ)
(
‖v‖2σ

Lρx2H
− 2
γ

x1

+ ‖v′‖2σ
Lρx2H

− 2
γ

x1

)
‖v − v′‖

Lρx2H
− 2
γ

x1

.

The result then follows after applying yet another Hölder’s inequality in t. �

This lemma allows us to prove the following global existence result for (6.1).

Theorem 6.3 (Partial off-axis variation with parallel self-steepening). Let σ = 1
and δ = (δ, 0)> for δ ∈ R. Then for any u0 ∈ L2(Rx2 ;H1(Rx1)) there exists a
unique global solution u ∈ C(Rt;L2(Rx2

;H1(Rx1
))) to (6.1).

Here, the restriction σ = 1 is due to the fact that this is the only σ ∈ N (required
for the normed algebra property above) for which the problem is subcritical. Indeed,
in view of the estimate in Lemma 6.2, the exponent 1− σ

2 > 0 yields a contraction
for small times.

Proof. We seek to show that v 7→ Φ(v) is a contraction mapping in a suitable space.
To this end, we denote, as before,

Φ(v)(t) = Sε(t)v0 +N (v)(t),

where N (v) is given by (6.10). Let T,M > 0 and denote

YT,M ={v ∈ L∞([0, T );L2(R2
x)) ∩ L8([0, T );L4(Rx2

;H−
1
4 (Rx1

))) :

‖v‖L∞t L2
x

+ ‖v‖
L8
tL

4
x2
H
− 1

4
x1

6M}.
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The Strichartz estimates (6.6) and (6.7) together with Lemma 6.2 imply that for
any admissible pair (q, r) and solutions v, v′ ∈ YT,M that

‖Φ(v)− Φ(v′)‖
LqtL

r
x2
H
− 2
q

x1

6 ‖Sε(t)(v0 − v′0)‖
LqtL

r
x2
H
− 2
q

x1

+ ‖N (v)−N (v′)‖
LqtL

r
x2
H
− 2
q

x1

6 C1‖v0 − v′0‖L2
x

+ C2

∥∥P−1/2
ε

(
1 + iδ∂x1

)(
g(P−1/2

ε v)− g(P−1/2
ε v′)

)∥∥
L

8
7
t L

4
3
x2
H

1
4
x1

6 Cσ,ε
(
‖v0 − v′0‖L2

x
+ T 1/2M2‖v − v′‖

L8
tL

4
x2
H
− 1

4
x1

)
.

Choosing M = M(‖v0‖L2
x
) and T sufficiently small, it is clear that Φ is a contrac-

tion on YT,M . Banach’s fixed point theorem and a standard continuity argument
thus yield the existence of a unique maximal solution v ∈ C([0, Tmax), L2(R2

x))
where Tmax = Tmax(‖v0‖L2

x
). Continuous dependence on the initial data follows by

classical arguments.
The conservation property (6.4) for v follows similarly as in the proof of Propo-

sition 4.2 in [2] and we shall therefore only sketch its main steps below. By the
unitary of Sε(·) in L2 we obtain

‖v(t)‖L2
x

= ‖v0‖L2
x

+ 2Re
〈
Sε(−t)N (v)(t), v0

〉
L2
x

+ ‖Sε(−t)N (v)(t)‖2L2
x

=: ‖v0‖L2
x

+ I1 + I2.

To show that I1 + I2 = 0, we use (4.2) and rewrite

I1 = −2Im

∫ t

0

〈
P−1/2
ε (1 + iδ∂x1

)g(P−1/2
ε v)(s), Sε(s)v0

〉
L2
x
ds.

By duality in x1 and Hölder’s inequality in t and x2 we find that this quantity is
indeed finite, since

|I1| 6 2‖P−1/2
ε (1 + iδ∂x1

)g(P−1/2
ε v)‖

Lγ
′
t L

ρ′
x2
H

2
γ
x1

‖Sε(·)v0‖
Lγt L

ρ
x2
H
− 2
γ

x1

<∞.

Once again we find, after a lengthy computation (see [2] for more details), that

I2 = 2Re

∫ t

0

〈
P−1/2
ε (1 + iδ∂x1

)g(P−1/2
ε v)(s),−iN (u)(s)

〉
L2
x
ds.

We express −iN (u)(s) using the integral formulation (6.9) and write

I2 = 2Re

∫ t

0

〈
P−1/2
ε (1 + iδ∂x1)g(P−1/2

ε v)(s), iSε(s)u0

〉
L2
x
ds

+

∫ t

0

Im ‖P−1/2
ε v(s)‖2σ+2

L2σ+2
x
− δRe

〈
g(P−1/2

ε v), ∂x1P
−1/2
ε v

〉
L2
x
(s) ds.

Here the second time integral vanishes entirely, and, as in the full off-axis case, the
latter term in the integrand vanishes due to

Re
〈
g(P−1/2

ε v), ∂x1P
−1/2
ε v

〉
L2
x

=
2

(σ + 1)

∫
R

∫
R
∂x1(|P−1/2

ε v|2σ+2) dx1dx2 = 0.

In summary, we find that

I2 = 2Im

∫ t

0

〈
P−1/2
ε g(P−1/2

ε v)(s), Sε(s)u0

〉
L2
x
ds = −I1,

which finishes the proof of (6.4). We can thus extend v to become a global solution
by repeated iterations to conclude Tmax = +∞.

Finally, we use the fact that v = P
1/2
ε u to obtain a unique global-in-time solution

u ∈ C(Rt;L2(Rx2
;H1(Rx1

))) which finishes the proof. �
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Remark 6.4. It is possible to treat the critical case σ = 2 using the same type of
arguments as in [7] (see also [2]). Unfortunately, this will only yield local-in-time
solutions up to some time T = T (u0) > 0, which depends on the initial profile u0

(and not only its norm). Only for sufficiently small initial data ‖u0‖L2
x2
H1
x1
< 1, does

one obtain a global-in-time solution. But since it is hard to detect small nonlinear
effects numerically, we won’t be concerned with this case in the following. We also
mention the possibility of obtaining (not necessarily unique) global weak solutions
for derivative NLS, which has been done in [1] in one spatial dimension.

Theorem 6.3 covers the situation in which a partial off-axis regularization acts
parallel to the self-steepening. At present, no analytical result for the case where
the two effects act orthogonal to each other is available. Numerically, however, it is
possible to study such a szenario: To this end, we we recall that from the physics
point of view, both ε and | δ | have to be considered as (very) small parameters.
With this in mind, we study the time-evolution of (6.1) with σ = 1, Gaussian initial
data of the form (3.6), and a relatively small self-steepening, furnished by δ1 = 0
and δ2 = 0.1. In the case where ε = 0, it can be seen on the left of Fig. 15 that
the L∞-norm of the solution indicates a finite-time blow-up at t ≈ T = 0.1445. In
the same situation with a small, but nonzero ε = 0.1, one can see that, instead,
oscillations appear within the L∞-norm of the solution for t > T .
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Figure 15. L∞-norm of the solution to (6.1) with σ = 1, δ =

(0, 0.1), and initial data u0 = 4 exp−x
2
1−x

2
2 : On the left for ε = 0,

on the right for ε = 0.1.

Note that these oscillations appear to decrease in amplitude, which indicates the
possibility of an asymptotically stable final state as t → +∞. A similar behavior
can be seen for different choices of parameters and also for a full, two-dimensional
off-axis variation (not shown here).

7. Numerical studies for the case with partial off-axis variation

In this section we present numerical studies for the model (6.1) with ε = 1 and
different values of the self-steepening parameter δ, as well as σ > 0. We will always
use Nx1

= Nx2
= 210, Fourier coefficients on the numerical domain Ω given by (2.9)

with Lx1
= Lx2

= 3. The time step is ∆t = 10−2 unless otherwise noted. The
initial data is the same as in (5.1), i.e. a numerically constructed stationary state
Q perturbed by adding and subtracting small Gaussians, respectively.
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7.1. The case without self-steepening. We shall first study the particular situ-
ation furnished by equation (6.8) with ε = 1. It is obtained from the general model
(1.1) in the case without self-steepening δ1 = δ2 = 0:

In the case σ = 1, the ground state perturbation in (5.1) with a “ + ” sign is
unstable and results in a purely dispersive solution with monotonically decreasing
L∞-norm, see Fig. 16. The modulus of the solution at time t = 2.5 is shown on the
right of the same figure. Interestingly, the initial hump appears to separate into
four smaller humps and we thus lose radial symmetry of the solution. The situation
is qualitatively similar for perturbations corresponding to the “ − ” sign in (5.1)
and we thus omit a corresponding figure.
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t
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||u
||

Figure 16. Solution to (6.8) with ε = 1, σ = 1, and initial data
(5.1) with a “ + ” sign: On the left the L∞-norm in dependence of
time, on the right the modulus of u at t = 2.5.

The situation changes significantly for σ = 2, as can be seen in Fig. 17. While the
L∞-norm of the solution obtained from initial data (5.1) with the “−” sign is again
decreasing, the “ + ” sign yields a monotonically increasing L∞-norm indicating
a blow-up at t ≈ 0.64. The modulus of the solution at the last recorded time
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Figure 17. Time-dependence of the L∞-norm of the solution to
(6.8) with ε = 1, σ = 2, and initial data (5.1): On the left, the
case with a “ − ” perturbation; on the right the case with “ + ”
sign.

t = 0.6405 is shown in Fig. 18 on the left. It can be seen that it is strongly
compressed in the x2-direction. The corresponding Fourier coefficients are shown
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on the right of the same figure. They also indicate the appearance of a singularity
in the x2-direction.

Figure 18. Solution to (6.8) for ε = 1, σ = 2 and initial data
(5.1) with the “ + ” sign: On the left the modulus of the solution
at the last recorded time t = 0.6045; on the right the corresponding
Fourier coefficients of u given by û.

These numerical findings indicate that the global existence result stated in The-
orem 6.3 is indeed sharp. It also shows that the two-dimensional model with partial
off-axis variation essentially behaves like the classical one-dimensional focusing NLS
in the unmodified x2-direction (i.e., the direction in which Pε does not act). Recall
that for the classical one-dimensional (focusing) NLS, finite-time blow-up is known
to appear as soon as σ > 2.

7.2. The case with self-steepening parallel to the off-axis variation. In this
subsection, we include the effect of self-steepening and consider equation (6.1) with
ε = 1, δ2 = 0, and δ1 > 0.

For σ = 1, the stationary state Qeit appears to be stable against all studied
perturbations. Indeed, the situation is found to be qualitatively similar to the
case with full off-axis perturbations (except for a loss of radial symmetry) and we
therefore omit a corresponding figure.

When σ = 2, the stationary state no longer appears to be stable. However, we
also do not have any indication of finite-time blow-up in this case. Indeed, given
a “ − ” perturbation in the initial data (5.1), it can be seen on the left of Fig. 19
that the L∞-norm of the solution simply decreases monotonically in time. Notice,
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Figure 19. Solution to (6.1) with ε = 1, σ = 2, and δ = (0.3, 0)>:
On the left, the L∞-norm of the solution obtained for initial data
(5.1) with the “ − ” sign, on the right for the “ + ”, and in the
middle |u| at t = 5 for the “− ” sign perturbation.
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that there is still an effect of self-steepening visible in the modulus of the solution
|u|, depicted in the middle of the same figure. The behavior of the L∞-norm in
the case of a “ + ” perturbation is shown on the right of Fig. 19. It is no longer
monotonically decreasing but still converges to zero.

For σ = 3, a “ − ” perturbation of (5.1) is found to be qualitatively similar to
the case σ = 2 and we therefore omit a figure illustrating this behavior. However,
the situation radically changes if we consider a perturbation with the “ + ” sign,
see Fig. 20. The L∞-norm of the solution indicates a blow-up for t ≈ 0.1555, where
the code stops with an overflow error. In this particular simulation we have used
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Figure 20. L∞-norm of the solution to (6.1) with ε = 1, σ = 3,
δ1 = (0.1, 0)>, and initial data (5.1) with the “ + ” sign. On the
right the modulus of the Fourier coefficients of the solution at time
t = 0.155.

104 time steps for t ∈ [0, 0.17] and Nx1 = 210, Nx2 = 211 Fourier modes (since the
maximum of the solution hardly moved, it was not necessary to use a co-moving
frame). The solution is still well resolved in time at t = 0.155 since Mε(t) remains
numerically conserved up to the order of 10−11. But despite the higher resolution
in x2 used for this simulation, the Fourier coefficients indicate a loss of resolution in
the x2-direction. The modulus of the solution at the last recorded time is plotted
in Fig. 21. Note that |u| is still regular in the x1-direction in which P−1

ε acts, but
it has become strongly compressed in the x2-direction.

Figure 21. The modulus of the solution to equation (6.1) with
ε = 1, σ = 3, δ1 = (0.1, 0), and initial data (5.1) with the “ + ”
sign, plotted at time t = 0.155.
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7.3. The case with self-steepening orthogonal to the off-axis variation.
Finally, we shall consider the same model equation (6.1) with ε = 1, but this time
we let δ1 = 0 for non-vanishing δ2 > 0. This is the only case, for which we do not
have any analytical existence results at present.

For σ = 1, it can be seen that a “−” sign in the initial data (5.1) yields a purely
dispersive solution with monotonically decreasing L∞-norm, see Fig. 22 which also
shows a picture of |u| at t = 20. The “ + ” sign again leads to oscillations of the
L∞-norm in time, indicating stability of the ground state. The situation for σ = 2
is qualitatively very similar and hence we omit the corresponding figure.
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Figure 22. Solution to (6.1) with ε = 1, σ = 1, and δ1 = (0, 1)>.
On the left the L∞-norm of the solution for initial data (5.1) with
the “− ” sign, on the right for the one with “ + ” sign, and in the
middle |u| at time t = 20 for the “− ” sign.

For σ = 3 and a “−” sign in the initial data (5.1), we again find a purely disper-
sive solution. However, the behavior of the solution obtained from a perturbation
of Q with the “ + ” sign is less clear. As one can see in Fig. 23, the solution is
initially focused up to a certain point after which its L∞-norm decreases again.
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Figure 23. Solution to (6.1) with ε = 1, σ = 3, δ1 = (0, 0.1)>,
and initial data (5.1) with the “+” sign: On the left the L∞-norm
of u as a function of time, on the right the Fourier coefficients û at
t = 0.25.

This simulation is done with Nx1 = 210, Nx2 = 211 Fourier modes and Nt = 104

time steps for t ∈ [0, 0.5]. The relative conservation of the numerically computed
quantity Mε(t) is better than 10−10 during the whole computation indicating an
excellent resolution in time. The spatial resolution is indicated by the Fourier
coefficients of the solution near the maximum of the L∞-norm as shown on the
right of Fig. 23. Obviously, a much higher resolution is needed in the x2-direction,



28 J. ARBUNICH, C.KLEIN, AND C. SPARBER

but even near the maximum of the L∞-norm the modulus of the Fourier coefficients
decreases to the order of 10−5. The modulus of the solution at time t = 0.5 can be
seen in Fig. 24. It shows a strong compression in the x2-direction but nevertheless
remains regular for all times. This is in stark contrast to the analogous situation
with parallel self-steepening and off-axis variations, cf. Figures 20 and 21 above.

Figure 24. The modulus of the solution to (6.1) with ε = 1,
σ = 3, δ1 = (0, 0.1)>, and initial data (5.1) with the “ + ” sign,
plotted at t = 0.5.
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tion. Ann. Inst. H. Poincaré Anal. Non Lineaire 23 (2006), no. 5, 753–764.

9. A. Davey and K. Stewartson, On three-dimensional packets of water waves. Proc. R. Soc.

Lond. Ser. A 338 (1974), no. 1613, 101–110.
10. T. Driscoll, A composite Runge-Kutta Method for the spectral solution of semilinear PDEs.

J. Comput. Phys. 182 (2002), 357–367.
11. E. Dumas, D. Lannes, and J. Szeftel, Variants of the focusing NLS equation. Derivation,

justification and open problems related to filamentation. In: CRM Series in Mathematical

Physics, pp. 19–75. Springer, 2016.
12. G. Fibich, The nonlinear Schrödinger equation; Singular solutions and optical collapse.

Springer Series on Appl. Math. Sciences vol. 192, Springer Verlag, 2015.

13. Z. Guo, C. Ning, and Y. Wu, Instability of the solitary wave solutions for the gene-
nalized derivative Nonlinear Schrödinger equation in the critical frequency case. Preprint

arXiv:1803.07700.

14. N. Hayashi and T. Ozawa. On the derivative nonlinear Schrödinger equation. Phys. D 55
(1992), no. 1-2, 14–36.

15. R. Jenkins, J. Liu, P. Perry, and C. Sulem, Soliton resolution for the derivative nonlinear

Schrödinger Equation. Preprint arXiv:1710.03819.



DERIVATIVE NLS TYPE EQUATIONS IN TWO SPATIAL DIMENSIONS 29

16. R. Jenkins, J. Liu, P. Perry, and C. Sulem, Global well-posesedness for the derivative nonlinear

Schrödinger Equation. Preprint arXiv:1710.03810.

17. C. Klein, Fourth-order time-stepping for low dispersion Korteweg-de Vries and nonlinear
Schrödinger Equation. Electronic Trans. Num. Anal. 39 (2008), 116–135.

18. C. Klein, B. Muite, and K. Roidot, Numerical study of blowup in the Davey-Stewartson
System. Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), no. 5, 1361–1387.

19. C. Klein and R. Peter, Numerical study of blow-up in solutions to generalized Kadomtsev-

Petviashvili equations. Discrete Contin. Dyn. Syst. Ser. B 19 (2014), no. 6, 1689–1717.
20. C. Klein and R. Peter, Numerical study of blow-up in solutions to generalized Korteweg-de

Vries equations. Phys. D 304 (2015), 52–78.

21. C. Klein and K. Roidot, Fourth order time-stepping for Kadomtsev-Petviashvili and Davey-
Stewartson equations. SIAM J. Sci. Comput. 33 (2011), no. 6, 3333–3356.

22. C. Klein and J.-C. Saut, A numerical approach to blow-up issues for dispersive perturbations

of Burgers’ equation. Phys. D 295 (2015), 46–65.
23. C. Klein and J.-C. Saut, A numerical approach to Blow-up issues for Davey-Stewartson II

type systems. Comm. Pure Appl. Anal. 14 (2015), no. 4, 1443–1467.

24. C. Klein, C. Sparber, and P. Markowich, Numerical study of fractional Nonlinear Schrödinger
equations. Proc. R. Soc. Lond. Ser. A. 470 (2014) 20140364, 26pp.

25. C. Klein and N. Stoilov, A numerical study of blow-up mechanisms for Davey-Stewartson II
systems, Stud. Appl. Math. (2018), to appear.

26. R. Krasny, A study of singularity formation in a vortex sheet by the point-vortex approxima-

tion, J. Fluid Mech. 167 (1986), 65–93.
27. X. Liu, G. Simpson, and C. Sulem, Stability of solitary waves for a generalized derivative

nonlinear Schrödinger Equation. J. Nonlin. Sci. 23 (2013), no. 4, 557–583.

28. X. Liu, G. Simpson, and C. Sulem, Focusing singularity in a derivative nonlinear Schrödinger
equation. Phys. D 262 (2013), 45–58.

29. M. McConnell, A. Fokas, and B. Pelloni, Localised coherent solutions of the DSI and DSII

equations a numerical study. Math. Comput. Simul. 69 (2005), no. 5/6, 424–438.
30. F. Merle and P. Raphaël, On universality of blow up profile for L2 critical nonlinear

Schrödinger equation. Invent. Math. 156 (2004), 565–672.
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