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Abstract. We consider a coupled system of Schrödinger equations, arising
in quantum mechanics via the so-called time-dependent self-consistent field

method. Using Wigner transformation techniques we study the corresponding
classical limit dynamics in two cases. In the first case, the classical limit is only

taken in one of the two equations, leading to a mixed quantum-classical model

which is closely connected to the well-known Ehrenfest method in molecular
dynamics. In the second case, the classical limit of the full system is rigorously

established, resulting in a system of coupled Vlasov-type equations. In the

second part of our work, we provide a numerical study of the coupled semi-
classically scaled Schrödinger equations and of the mixed quantum-classical

model obtained via Ehrenfest’s method. A second order (in time) method

is introduced for each case. We show that the proposed methods allow time
steps independent of the semi-classical parameter(s) while still capturing the

correct behavior of physical observables. It also becomes clear that the order

of accuracy of our methods can be improved in a straightforward way.

Dedicated to Peter Markowich on the occasion of his 60th birthday

1. Introduction

The numerical simulation of many chemical, physical, and biochemical phenom-
ena requires the direct simulation of dynamical processes within large systems in-
volving quantum mechanical effects. However, if the entire system is treated quan-
tum mechanically, the numerical simulations are often restricted to relatively small
model problems on short time scales due to the formidable computational cost. In
order to overcome this difficulty, a basic idea is to separate the involved degrees
of freedom into two different categories: one, which involves variables that behave
effectively classically (i.e., evolving on slow time- and large spatial scales) and one
which encapsulates the (fast) quantum mechanical dynamics within a certain por-
tion of the full system. For example, for a system consisting of many molecules,
one might designate the electrons as the fast degrees of freedom and the atomic
nuclei as the slow degrees of freedom.

Whereas separation of the whole system into a classical part and a quantum
mechanical part is certainly not an easy task, it is, by now, widely studied in the
physics literature and often leads to what is called time-dependent self-consistent
field equations (TDSCF), see, e.g., [5, 7, 10, 16, 21, 22, 24, 30] and the references
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therein. In the TDSCF method, one typically assumes that the total wave function
of the system Ψ(X, t), with X = (x, y), can be approximated by

(1.1) Ψ(X, t) ≈ ψ(x, t)ϕ(y, t),

where x and y denote the degrees of freedom within a certain subsystem, only.
The precise nature of this approximation thereby strongly depends on the concrete
problem at hand (in particular, on the initial data and on the precise nature of the
coupling between the two subsystems). Disregarding this issue for the moment, one
might then, in a second step, hope to derive a self-consistently coupled system for ψ
and ϕ and approximate it, at least partially, by the associated classical dynamics.

In this article we will study a simple model problem for such a TDSCF system,
motivated by [5, 10, 21, 22, 24], but one expects that our findings extend to other
self-consistent models as well. We will be interested in deriving various (semi-)
classical approximations to the considered TDSCF system, resulting in either a
mixed quantum-classical model, or a fully classical model. As we shall see, this
also gives a rigorous justification of what is known as the Ehrenfest method in the
physics literature, cf. [7, 10]. To this end, we shall be heavily relying on Wigner
transformation techniques, developed in [12, 23], which have been proved to be
superior in many aspects to the more classical WKB approximations, see, e.g. [28]
for a broader discussion. One should note that the use of Wigner methods to study
the classical limit of nonlinear (self-consistent) quantum mechanical models is not
straightforward and usually requires additional assumptions on the quantum state,
cf. [25, 23]. It turns out that in our case we can get by without them.

In the second part of this article we shall then be interested in designing an
efficient and accurate numerical method which allows us to pass to the classical
limit in the TDSCF system within our numerical algorithm. We will be partic-
ularly interested in the meshing strategy required to accurately approximate the
wave functions, or to capture the correct physical observables (which are quadratic
quantities of the wave function). To this end, we propose a second order (in time)
method based on an operator splitting and a spectral approximation of the TDSCF
equations as well as the obtained Ehrenfest model. These types of methods have
been proven to be very effective in earlier numerical studies, see, e.g., [2, 3, 9, 19, 20]
for previous results and [18] for a review of the current state-of-the art of numeri-
cal methods for semi-classical Schrödinger type models.The readers may also refer
to [4, 29] for some recent results on the numerical analysis of Born-Oppenheimer
molecular dynamics with connections to the Ehrenfest model. In comparison to
the case of a single (semi-classical) nonlinear Schrödinger equation with power law
nonlinearities, where one has to use time steps which are comparable to the size of
the small semi-classical parameter (see [2]), it turns out that in our case, despite
of the nonlinearity, we can rigorously justify that one can take time steps indepen-
dent of the semi-classical parameter and still capture the correct classical limit of
physical observables.

The rest of this paper is now organized as follows: In Section 2, we present the
considered TDSCF system and discuss some of its basic mathematical properties,
which will be used later on. In Section 3, a brief introduction to the Wigner trans-
forms and Wigner measures is given. In Section 4 we study the semi-classical limit,
resulting in a mixed quantum-classical limit system. In Section 5 the completely
classical approximation of the TDSFC system is studied by means of two different
limiting processes, both of which result in the same classical model. The numeri-
cal methods used for the TDSCF equations and the Ehrenfest equations are then
introduced in Section 6. Finally, we study several numerical tests cases in Section
7 in order to verify the properties of our methods.
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2. The TDSCF system

2.1. Basic set-up and properties. In the following, we take x ∈ Rd, y ∈ Rn,
with d, n ∈ N, and denote by 〈·, ·〉L2

x
and 〈·, ·〉L2

y
the usual inner product in L2(Rdx)

and L2(Rny ), respectively, i.e.

〈f, g〉L2
z
≡
∫
Rm

f̄(z)g(z)dz.

The total Hamiltonian of the system acting on L2(Rd+n) is assumed to be of the
form

(2.1) H = −δ
2

2
∆x −

ε2

2
∆y + V (x, y),

where V (x, y) ∈ R is some (time-independent) real-valued potential. Typically, one
has

(2.2) V (x, y) = V1(x) + V2(y) +W (x, y),

where V1,2 are external potentials acting only on the respective subsystem and W
represents an internal coupling potential in between the two subsystems. From now
on, we shall assume that V satisfies

(A1) V ∈ C2
0 (Rdx × Rny ), V (x, y) > 0, ∀ (x, y) ∈ Rd+n,

where here and in the following, we denote by C0 the set of continuous functions
vanishing at infinity.

Remark 2.1. For potential bounded below, the requirement V > 0 is not really
an assumption, but merely corresponds to fixing the point 0 on the energy axis.

In (2.1), the Hamiltonian is already written in dimensionless form, such that
only two (small) parameters ε, δ > 0 remain. In the following, they play the role
of dimensionless Planck’s constants. Dependence with respect to these parameters
will be denoted by superscripts. The TDSCF system at hand is then (formally given
by [10]) the following system of self-consistently coupled Schrödinger equations

(2.3)


iδ∂tψ

ε,δ =

(
−δ

2

2
∆x + 〈ϕε,δ, V ϕε,δ〉L2

y

)
ψε,δ , ψε,δ|t=0 = ψδin(x),

iε∂tϕ
ε,δ =

(
−ε

2

2
∆y + 〈ψε,δ, hδψε,δ〉L2

x

)
ϕε,δ , ϕε,δ|t=0 = ϕεin(y),

where we denote by

(2.4) hδ = −δ
2

2
∆x + V (x, y),

the Hamiltonian of the subsystem represented by the x-variables (considered as the
purely quantum mechanical variables) and in which y only enters as a parameter. It
is obtained by substituting the ansatz (1.1) into the original Schrödinger equation
and integrating over y and x respectively, see [10]. As a matter of fact, the TDSCF
systems may take various forms, which are also equivalent to one another by certain
gauge transformations, see [5, 21, 22, 24] for broad discussions. Without loss of
generality, we choose to study the specific TDSCF system (2.3).

For simplicity, we assume that at t = 0 the data ψδin only depends on δ, and that
ϕεin only depends on ε, which means that the simultaneous dependence on both
parameters is only induced by the time-evolution.

Remark 2.2. A typical example of initial data which satisfies this assumption
(and all upcoming requirements of our analysis) is

Ψ(X, 0) ≈ ψδin(x)ϕεin(y) = a1(x)eiS1(x)/δa2(y)eiS2(y)/ε,
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where S1, S2 are some smooth, real-valued phases and a1, a2 some (in general,
complex-valued) amplitudes. In other words, Ψ(X, 0) is assumed to be approxi-
mated by a (two-scale) WKB type initial data in product form.

Finally, the coupling terms are explicitly given by

〈ϕε,δ, V ϕε,δ〉L2
y

=

∫
Rny
V (x, y)|ϕε,δ(y, t)|2 dy =: Υε,δ(x, t),

and after formally integrating by parts

〈ψε,δ, hδψε,δ〉L2
x

=

∫
Rdx

δ2

2
|∇ψε,δ(x, t)|2 + V (x, y)|ψε,δ(x, t)|2 dx =: Λε,δ(y, t).

Throughout this work we will always interpret the term 〈ψε,δ, hδψε,δ〉L2
x

as above,

i.e., in the weak sense. Both Υε,δ and Λε,δ are time-dependent, real-valued po-
tentials, computed self-consistently via the dynamics of ϕε,δ and ψε,δ, respectively.
Note that

(2.5) Λε,δ(y, t) =
δ2

2
‖∇ψε,δ‖2L2

x
+ 〈ψε,δ, V ψε,δ〉L2

x
≡ ϑε,δ(t) + 〈ψε,δ, V ψε,δ〉L2

x
.

Here, the purely time-dependent part ϑε,δ(t), could in principle be absorbed into
the definition of ϕε,δ via a gauge transformation, i.e.,

(2.6) ϕε,δ(x, t) 7→ ϕ̃ε,δ(x, t) := ϕε,δ(x, t) exp

(
− i
ε

∫ t

0

ϑε,δ(s) ds

)
.

For the sake of simplicity, we shall refrain from doing so, but this nevertheless shows
that the two coupling terms are in essence of the same form. Also note that this
gauge transform leaves any Hs(Rd)-norm of ϕε,δ invariant (but clearly depends on
the solution of the second equation within the TDSCF system).

Remark 2.3. For potentials of the form (2.2), one can check that in the case where
W (x, y) ≡ 0, i.e., no coupling term, one can use similar gauge transformations to
completely decouple the two equations in (2.3) and obtain two linear Schrödinger
equations in x and y, respectively.

An important physical quantity is the total mass of the system,

(2.7) Mε,δ(t) := ‖ψε,δ(·, t)‖2L2
x

+ ‖ϕε,δ(·, t)‖2L2
y
≡ mε,δ

1 (t) +mε,δ
2 (t),

where mε,δ
1 , mε,δ

2 denote the masses of the respective subsystem. One can then
prove that these are conserved by the time-evolution of (2.3).

Lemma 2.4. Let V satisfy (A1) and assume that ψε,δ ∈ C(Rt;H1(Rdx)) and ϕε,δ ∈
C(Rt;H1(Rny )) solve (2.3). Then

mε,δ
1 (t) = mε,δ

1 (0), mε,δ
2 (t) = mε,δ

2 (0), ∀ t ∈ R.

Proof. Assuming for the moment, that both ψε,δ and ϕε,δ are sufficiently smooth

and decaying, we multiply the first equation in (2.3) with ψε,δ and formally integrate
with respect to x ∈ Rdx. Taking the real part of the resulting expression and having
in mind that Υε,δ(y, t) ∈ R, yields

d

dt
mε,δ

1 (t) ≡ d

dt
‖ψε,δ(·, t)‖2L2

x
= 0,

which, after another integration in time, is the desired result for mε,δ
1 (t). By the

same argument one can show the result for mε,δ
2 (t). Integration in time in combi-

nation with a density argument then allows to extend the result to more general
solutions in H1, respectively. �
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We shall, from now on assume that the initial data is normalized such that

mε,δ
1 (0) = mε,δ

2 (0) = 1. Using this normalization, the total energy of the system
can be written as

Eε,δ(t) :=
δ2

2
‖∇ψε,δ(·, t)‖2L2

x
+
ε2

2
‖∇ϕε,δ(·, t)‖2L2

y

+

∫∫
Rd+n

V (x, y)|ψε,δ(x, t)|2|ϕε,δ(y, t)|2 dx dy.
(2.8)

Note that in view of our assumption (A1) on V this is well-defined and that Eε,δ(t)
is, in fact, a sum of three non-negative terms.

Lemma 2.5. Let V satisfy (A1) and assume that ψε,δ ∈ C(Rt;H1(Rdx)) and ϕε,δ ∈
C(Rt;H1(Rny )) solve (2.3). Then

Eε,δ(t) = Eε,δ(0), ∀ t ∈ R.

In other words, we have conservation of the total energy, which in itself implies
a bound on the interaction energy (since V > 0) and on the kinetic energies of the
respective subsystems. Note however, that the energies of the respective subsystems
are in general not conserved, unless W ≡ 0, i.e., V (x, y) = V1(x) + V2(y).

Proof. Assuming, as before that ψε,δ and ϕε,δ are sufficiently regular (and decay-
ing), the proof is a lengthy but straightforward calculation. More precisely, using
the shorthand notation

Eε,δ(t) =
δ2

2
‖∇ψε,δ(·, t)‖2L2

x
+
ε2

2
‖∇ϕε,δ(·, t)‖2L2

y
+ 〈ψε,δϕε,δ, V ψε,δϕε,δ〉L2

x,y
,

one finds that

d

dt
Eε,δ(t) = (I) + (II) + (III) + (IV),

where we denote

(I) :=
δ2

2
〈∇x∂tψε,δ,∇xψε,δ〉L2

x
+
δ2

2
〈∇xψε,δ,∇x∂tψε,δ〉L2

x
,

(II) :=
ε2

2
〈∇y∂tϕε,δ,∇yϕε,δ〉L2

y
+
ε2

2
〈∇yϕε,δ,∇y∂tϕε,δ〉L2

y
,

(III) :=〈∂tψε,δϕε,δ, V ψε,δϕε,δ〉L2
x,y

+ 〈ψε,δϕε,δ, V ∂tψε,δϕε,δ〉L2
x,y
,

(IV) :=〈ψε,δ∂tϕε,δ, V ψε,δϕε,δ〉L2
x,y

+ 〈ψε,δϕε,δ, V ψε,δ∂tϕε,δ〉L2
x,y
.

We will now show that (I) + (III) = 0. By using (2.3), one gets

(I) = − δ

2i

〈
∇x
(
−δ

2

2
∆x + 〈ϕε,δ, V ϕε,δ〉L2

y

)
ψε,δ,∇xψε,δ

〉
L2
x

+
δ

2i

〈
∇xψε,δ,∇x

(
−δ

2

2
∆x + 〈ϕε,δ, V ϕε,δ〉L2

y

)
ψε,δ

〉
L2
x

= − δ

2i
〈(∇x〈ϕε,δ, V ϕε,δ〉L2

y
) ψε,δ,∇xψε,δ〉L2

x

+
δ

2i
〈∇xψε,δ, (∇x〈ϕε,δ, V ϕε,δ〉L2

y
) ψε,δ〉L2

x

=
δ

2i

〈
ψε,δ,

[
〈ϕε,δ, V ϕε,δ〉L2

y
,∆x

]
ψε,δ

〉
L2
x

,
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where [A,B] := AB − BA denotes the commutator bracket. Similarly, one finds
that

(III) = − 1

iδ

〈(
−δ

2

2
∆x + 〈ϕε,δ, V ϕε,δ〉L2

y

)
ψε,δϕε,δ, V ψε,δϕε,δ

〉
L2
x,y

+
1

iδ

〈
ψε,δϕε,δ, V

(
−δ

2

2
∆x + 〈ϕε,δ, V ϕε,δ〉y

)
ψε,δϕε,δ

〉
L2
x,y

=
δ

2i

〈
∆xψ

ε,δ, 〈ϕε,δ, V ϕε,δ〉yψε,δ
〉
L2
x
− δ

2i

〈
ψε,δ, 〈ϕε,δ, V ϕε,δ〉y∆xψ

ε,δ
〉
L2
x

=
δ

2i

〈
ψε,δ,

[
∆x, 〈ϕε,δ, V ϕε,δ〉y

]
ψε,δ

〉
L2
x

= −(I),

due to the fact that [A,B] = −[B,A]. Therefore, one concludes (I) + (III) = 0.
Analogously, one can show that (II) + (IV) = 0 and hence, an integration in time
yields Eε,δ(t) = Eε,δ(0). Using a density arguments allows to extend this result to
more general solution in H1. �

2.2. Existence of solutions. In this subsection, we shall establish global in-time
existence of solutions to the TDSCF system (2.3). Since the dependence on ε and
δ does not play a role here, we shall suppress their appearance for the sake of
notation.

Proposition 2.6. Let V satisfy (A1) and ψin ∈ H1(Rdx), ϕin ∈ H1(Rny ). Then

there exists a global strong solution (ψ,ϕ) ∈ C(Rt;H1(Rd+n)) of (2.3), satisfying
the conservation laws for mass and energy, as stated above.

Clearly, this also yields global existence for the system (2.3) with 0 < ε, δ < 1
included.

Proof. We shall first prove local (in-time) well-posedness of the initial value problem
(2.3): To this end, we consider Ψ(·, t) = (ψ(·, t), ϕ(·, t)) : Rd+n → C2 and define
the associated L2(Rd)⊗ L2(Rn) ' L2(Rd+n) norm by

‖Ψ(·, t)‖2L2 := ‖ψ(·, t)‖2L2
x

+ ‖ϕ(·, t)‖2L2
y
,

and consequently set H1(Rd+n) := {Ψ ∈ L2(Rd+n) : |∇Ψ| ∈ L2(Rd+n)}. Using
this notation, the TDSCF system (2.3) can be written as

i∂tΨ = HΨ + f(Ψ),

where

H :=

(
− 1

2∆x 0
0 − 1

2∆y

)
, f(Ψ) :=

(
〈ϕ, V ϕ〉L2

y
ψ 0

0 〈ψ, hψ〉L2
x
ϕ

)
.

Clearly, H is the generator of a strongly continuous unitary Schrödinger group
U(t) := e−itH, which can be used to rewrite the system using Duhamel’s formula
as

(2.9) Ψ(t, ·) = U(t)Ψin(·)− i
∫ t

0

U(t− s)f(Ψ(·, s)) ds.

Following classical semi-group arguments, cf. [8], it suffices to show that f(Ψ)
is locally Lipschitz in H1(Rd+n) in order to infer the existence of a unique local
in-time solution Ψ ∈ C([0, T ), H1(Rd+n)). This is not hard to show, since:∥∥∥〈ϕ1, V ϕ1〉L2

y
ψ1 − 〈ϕ2, V ϕ2〉L2

y
ψ2

∥∥∥
L2
x

6 ‖V ‖L∞‖ϕ1‖2L2
y
‖ψ1 − ψ2‖L2

x
+
∣∣∣〈ϕ1, V ϕ1〉L2

y
− 〈ϕ2, V ϕ2〉L2

y

∣∣∣ ‖ψ2‖L2
x
,
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where we have used the fact that |〈ϕ, V ϕ〉L2
y
| 6 ‖V ‖L∞‖ϕ‖2L2

y
< ∞, because V ∈

L∞, by assumption. Now we can estimate∣∣∣〈ϕ1, V ϕ1〉L2
y
− 〈ϕ2, V ϕ2〉L2

y

∣∣∣ 6 ∣∣∣〈ϕ1 − ϕ2, V ϕ1〉L2
y

∣∣∣+
∣∣∣〈ϕ2, V (ϕ1 − ϕ2)〉L2

y

∣∣∣
6 ‖V ‖L∞(‖ϕ1‖L2

y
+ ‖ϕ2‖L2

y
)‖ϕ1 − ϕ2‖L2

y
.

Together this implies∥∥∥〈ϕ1, V ϕ1〉L2
y
ψ1 − 〈ϕ2, V ϕ2〉L2

y
ψ2

∥∥∥
L2
x

6 2‖V ‖L∞(‖Ψ1‖2L2 + ‖Ψ2‖2L2)‖Ψ1 −Ψ2‖L2 .

An analogous argument can be done for the second part of f(Ψ), since

|〈ψ, hψ〉L2
x
| 6 1

2
‖∇ψ‖2L2

x
+ ‖V ‖L∞‖ψ‖2L2

x
6 C(‖V ‖L∞)‖Ψ‖2H1 .

Combining all these estimates, we conclude

‖f(Ψ1)− f(Ψ2)‖L2 6 C‖V ‖L∞(‖Ψ1‖2H1 + ‖Ψ2‖2H1)‖Ψ1 −Ψ2‖H1 .

The same reasoning can then be applied to ‖∇f(Ψ)‖L2 , by noticing ∇〈ϕ, V ϕ〉L2
y

=

〈ϕ,∇xV ϕ〉L2
y

and

∇〈ψ, hψ〉L2
x
ϕ = ϑ(t)∇ϕ+ 〈ψ, V ψ〉L2

x
∇ϕ+ 〈ψ,∇yV ψ〉L2

x
ϕ,

in view of (2.5). Since V satisfies (A1), these expressions are all well-defined. In
summary, one gets that there exists a C = C(‖V ‖L∞ , ‖Ψ1‖H1 , ‖Ψ2‖H1) > 0 such
that

‖f(Ψ1)− f(Ψ2)‖H1 6 C‖Ψ1 −Ψ2‖H1 .

Using this, [8, Theorem 3.3.9] implies the existence of a T = T (‖Ψ‖H1) > 0 and
a unique solution Ψ ∈ C([0, T ), H1(Rd+n)) of (2.9). It is then also clear, that this
solution satisfies the conservation of mass and energy for all t ∈ [0, T ). Moreover,
the quoted theorem also implies that if T < +∞, then

(2.10) lim
t→T−

‖Ψ(·, t)‖H1 =∞.

However, having in mind the conservation laws for mass and energy stated in Lem-
mas 2.4 and 2.5 together with the fact that we assume w.l.o.g. V (x, y) > 0, we
immediately infer that ‖Ψ(·, t)‖H1 6 C for all t ∈ R and hence, the blow-up alter-
native (2.10) implies global in-time existence of the obtained solution. �

Remark 2.7. Note that this existence result rests on the fact that the term
Λε,δ(y, t) := 〈ψε,δ, hδψε,δ〉L2

x
is interpreted in a weak sense, see (2.5). In order

to interpret it in a strong sense, one would need to require higher regularity, in
particular ψε,δ ∈ H2(Rdx).

3. Review of Wigner transforms and Wigner measures

The use of Wigner transformation and Wigner measures in the analysis of (semi)-
classical asymptotic is, by now, very well established. We shall in the following,
briefly recall the main results developed in [23, 12] (see also [11, 25, 28] for further
applications and discussions of Wigner measures):

Denote by {fε}0<ε61 a family of functions fε ∈ L2(Rdx), depending continuously
on a small parameter ε > 0, and by

(Fxfε)(ξ) ≡ f̂ε(ξ) :=

∫
Rd
fε(x)e−ix·ξdx.
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the corresponding Fourier transform. The associated ε-scaled Wigner transform is
then given by [31]:

(3.1) wε[fε](x, ξ) :=
1

(2π)d

∫
Rd
fε
(
x− ε

2
z
)
fε
(
x+

ε

2
z
)
eiz·ξ dz.

Clearly, one has

(Fξw)(x, z) =

∫
Rd
w(x, ξ)e−iz·ξdξ = fε

(
x− ε

2
z
)
fε
(
x+

ε

2
z
)
,

and thus Plancherel’s theorem together with a simple change of variables yields

‖wε‖L2(R2d) = ε−d(2π)−d/2‖fε‖2L2(Rd).

The real-valued function wε(x, ξ) acts as a quantum mechanical analogue for classi-
cal phase-space distributions. However, wε(x, ξ) 6> 0 in general. A straightforward
computation shows that the position density associated to fε can be computed via

|fε(x)|2 =

∫
Rd
wε(x, ξ) dξ.

Moreover, by taking higher order moments in ξ one (formally) finds

εIm(f
ε
(x)∇fε(x)) =

∫
Rd
ξwε(x, ξ) dξ,

and

ε2|∇fε(x)|2 =

∫
Rd
|ξ|2wε(x, ξ) dξ.

In order to make these computations rigorous, the integrals on the r.h.s. have to
be understood in an appropriate sense, since wε 6∈ L1(Rmx × Rmξ ) in general, cf.

[12, 23] for more details.
It has been proved in [23, Proposition III.1], that if fε is uniformly bounded in

L2(Rd) as ε→ 0+, i.e., if

sup
0<ε61

‖fε‖L2
x
6 C,

where C > 0 is an ε-independent constant, then the set of Wigner functions
{wε}0<ε61 is uniformly bounded in A′. The latter is the dual of the following
Banach space

A(Rdx × Rdξ) := {χ ∈ C0(Rdx × Rdξ) : (Fξχ)(x, z) ∈ L1(Rdz ;C0(Rdx))}

where C0(Rd) denotes the space of continuous functions vanishing at infinity. More
precisely, one finds that for any test function χ ∈ A(Rdx × Rdξ),

〈wε, χ〉 ≡
∫∫

R2d

wε(x, ξ)χ(x, ξ) dx dξ

=
1

(2π)d

∫∫
R2d

(Fξχ)(x, z)fε
(
x− ε

2
z
)
fε
(
x+

ε

2
z
)
dx dz.

(3.2)

Denoting,

‖χ‖A =

∫
Rd

sup
x
|Fξχ|(x, z)dz,

we therefore obtain

|〈wε, χ〉| 6 1

(2π)d
‖χ‖A‖f

ε‖2L2 6 const.,

uniformly in ε. Thus, up to extraction of sub-sequences {εn}n∈N, with εn → 0+ as
n→∞, there exists a limiting object w0 ≡ w ∈ A′(Rdx × Rdξ) such that

wε[fε]
ε→0+−→ µ in A′(Rdx × Rdξ)w − ∗.
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It turns out that the limit is in fact a non-negative, bounded Borel measure on
phase-space µ ∈M+(Rdx×Rdp), called the Wigner measure (or, semi-classical defect
measure) of fε, cf. [23, Theorem III.1].

Remark 3.1. One easily checks that the Schwartz space S is in fact dense in A.
Thus, it would also be possible to state all the convergence results above in terms
of convergence in S ′(Rdx × Rny ). This is the framework used in [12].

If, in addition it also holds that fε is ε-oscillatory, i.e.,

sup
0<ε61

‖ε∇fε‖L2
x
6 C,

then one also gets (up to extraction of sub-sequences)

|fε|2 ε→0+−→
∫
Rd
µ(·, dξ), in M+(Rmx )w − ∗,

i.e., for any test function σ ∈ C0(Rdx):∫
Rdx
σ(x)|fε(x)|2 dx ε→0+−→

∫∫
R2d

σ(x)µ(dx, dξ).

Indeed, the Wigner measure µ is known to encode the classical limit of all physical
observables. More precisely, for the expectation value of any Weyl-quantized oper-
ator Opε(a), corresponding to a sufficiently “nice” classical symbol, say a(x, ξ) ∈
S(Rdx × Rdξ), one finds [12]

〈fε,Opε(a)fε〉L2
x

=

∫∫
R2d

a(x, ξ)wε[fε](x, ξ) dx dξ,

and hence

(3.3) lim
ε→0+

〈fε,Opε(a)fε〉L2
x

=

∫∫
R2d

a(x, ξ)µ(dx, dξ),

where the right hand side resembles the usual formula from classical statistical
mechanics.

In order to describe the dynamics of Wigner measures, we first recall that if
fε ∈ Cb(Rt;L2(Rd)) solves a semi-classically scaled Schrödinger equation of the
form

iε∂tf
ε = −ε

2

2
∆fε + U(x)fε, fε|t=0 = fεin(x),

then the associated Wigner transformed equation for wε ≡ wε[fε] reads

(3.4) ∂tw
ε + ξ · ∇xwε + Θε[U ]wε = 0, wε|t=0 = wεin(x, ξ),

where wεin ≡ wε[ψεin] and Θε[U ] is a pseudo-differential operator describing the
influence of a potential U(x) ∈ R. Explicitly, Θε[U ] is given by [23]:

(Θε[U ]wε)(x, ξ, t) := − i

(2π)d

∫∫
R2d

δUε(x, y)wε(x, ζ, t) eiy·(ξ−ζ) dy dζ.

Here, the symbol δUε is found to be

δUε(x, y) =
1

ε

(
U
(
x+

ε

2
y
)
− U

(
x− ε

2
y
))

,

and, thus, under sufficient regularity assumptions on V , one consequently obtains

δUε
ε→0+−→ y · ∇xU(x).

It consequently follows that the measure µ(x, ξ, t) solves Liouville’s equation on
phase space, i.e.

(3.5) ∂tµ+ divx(ξµ)− divξ(∇xU(x)µ) = 0, µ|t=0 = µin(x, ξ),
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in the sense of distributions. Here, µin is the weak∗ limit of wεin in A′, along sub-
sequences of (εn)n∈N (which, in principle, could all yield different limits).

Remark 3.2. In fact, a more general formula for the asymptotic, or semi-classical
expansion (in powers of ε) of any Wigner transformed Schrödinger-type equation
is available in [12, Proposition 1.8]. This formula will be used in the numerical
algorithm described below.

Finally, we note that for sufficiently regular potential V , one can improve the
convergence statements and show that, indeed, µ ∈ Cb(Rt;M+(Rdx × Rdξ)) satisfy-

ing, for any test function χ ∈ C0(Rdx × Rdξ)),∫∫
R2d

χ(x, ξ)µ(x, ξ, t) dx dξ =

∫∫
R2d

χ(Φt(x, ξ))µin(dx, dξ),

where Φt : R2d → R2d is the Hamiltonian flow associated to (3.5):

(3.6)

{
ẋ(t) = ξ(t), x(0) = x0 ∈ Rd,

ξ̇(t) = −∇xU(x(t)), ξ(0) = ξ0 ∈ Rd.

This allows to prove uniqueness of the weak solution of (3.5), provided the initial
measure µin is the same for all sub-sequences {εn}n∈N of wε[ϕεin], see [23, Theorem
IV.1].

4. The mixed quantum-classical limit

In this section we will investigate the semi-classical limit of the TDSCF system
(2.3), which corresponds to the case ε → 0+ and δ = O(1) fixed. In other words,
we want to pass to the classical limit in the equation for ϕε,δ only, while retaining
the full quantum mechanical dynamics for ψε,δ.

The standing assumption from now on, until the end of this work will be that
the initial data ϕεin ∈ H1(Rny ) and ψδin ∈ H1(Rdx) are such that

(A2) sup
0<ε,δ61

(
Mε,δ(0) + Eε,δ(0)

)
6 const. <∞.

In other words, the initial data are assumed to be such that the initial mass and the
initial energy are uniformly bounded with respect to both ε and δ. In view of Lemma
2.4 and Lemma 2.5 this property consequently holds true for all times t > 0, and
hence, neither the mass, nor the energy can become infinite in the classical limit.
In addition, we will assume, for simplicity, that the individual masses of the two
sub-systems are initially normalized such that

mε,δ
1 (0) = mε,δ

2 (0) = 1.

This normalization is henceforth preserved by the time-evolution of (2.3).
Next, we introduce the ε-scaled Wigner transformation of ϕε,δ in the form

wε[ϕε,δ](y, η, t) =
1

(2π)n

∫
Rn
ϕε,δ

(
y − ε

2
z, t
)
ϕε,δ

(
y +

ε

2
z, t
)
eiz·η dz.

(In this subsection, we thus could, in principle, suppress the dependence on δ com-
pletely, since it is fixed, but given that we will consider the subsequent δ → 0+ limit
in Section 5, we shall keep its appearance within the superscript.) The assumption
(A2), together with the a-priori estimates established in Lemma 2.4 and Lemma
2.5 then implies the uniform bound, for any t ∈ R,

‖ϕε,δ(·, t)‖L2
y

+ ‖ε∇ϕε,δ(·, t)‖L2
y
6 1 + 2Eε,δ(0) 6 C <∞,

where C > 0 is a constant independent of ε and δ. In other words, ϕε,δ(·, t) is ε-
oscillatory for all times and we consequently infer the existence of a limiting Wigner
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measure µ0,δ(y, η, t) ≡ µδ(y, η, t) such that (up to extraction of sub-sequences) for
all t ∈ [0, T ] it holds

wε[ϕε,δ](·, ·, t) ε→0+−→ µδ(·, ·, t) in A′(Rny × Rnη )w − ∗,

together with

(4.1) |ϕε,δ(·, t)|2 ε→0+−→
∫
Rnη
µδ(·, dη, t) in M+(Rny )w − ∗.

The measure µδ encodes the classical limit of the subsystem described by the y-
variables only.

In order to proceed, we will need to strengthen our convergence results with
respect to the t-variable. To this end, we recall that since ϕε,δ solves the second
equation in the TDSCF system (2.3), wε,δ ≡ wε[ϕε,δ] solves the corresponding
Wigner transformed equation

(4.2) ∂tw
ε,δ + η · ∇ywε,δ + Θ[Λε,δ]wε,δ = 0,

where Θ[Λε,δ] is explicitly given by

Θ[Λε,δ]wε,δ(y, η, t) = − i

(2π)n

∫∫
R2n

δΛε,δ(y, z, t)wε,δ(y, ζ, t) eiz·(η−ζ) dz dζ.

The associated symbol δΛε,δ reads

δΛε,δ(y, z, t) =
1

ε

(
Λε,δ

(
y +

ε

2
z, t
)
− Λε,δ

(
y − ε

2
z, t
))

=
1

ε

(
〈ψε,δ, V ψε,δ〉L2

x

(
y +

ε

2
z, t
)
− 〈ψε,δ, V ψε,δ〉L2

x

(
y − ε

2
z, t
))
,

in view of the definition of Λε,δ, given in (2.5). Introducing the short hand notation

(4.3) Vε,δ(y, t) := 〈ψε,δ(·, t), V (·, y)ψε,δ(·, t)〉L2
x
,

one can rewrite

δΛε,δ(y, z, t) =
1

ε

(
Vε,δ

(
y +

ε

2
z, t
)
− Vε,δ

(
y − ε

2
z, t
))
,

and thus Θ[Λε,δ] ≡ Θ[Vε,δ]. In particular, this shows that the purely time-dependent
term ϑε,δ(t) appearing in (2.5) does not contribute to the symbol of the pseudo-
differential operator Θ.

Remark 4.1. The fact that ϑε,δ(t) does not enter in the Wigner equation (4.2)
can also be seen by using the time-dependent gauge transformation (2.6) from the
beginning.

We can now prove the following lemma.

Lemma 4.2. Let Assumptions (A1) and (A2) hold. Then wε,δ is equi-continuous
in time and hence, up to extraction of sub-sequences, we have

wε,δ
ε→0+−→ µδ in L∞([0, T ],A′(Rny × Rnη )w − ∗),

i.e., for any test function χ ∈ A(Rny × Rnη ) it holds

lim
ε→0+

∫∫
R2d

wε,δ(y, η, t)χ(y, η) dydη =

∫∫
R2d

χ(y, η)µ(dy, dη, t),

uniformly on compact time intervals [0, T ] ⊂ Rt.
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Proof. The proof follows along the lines of [23, 12]. In order to infer the assertion
of the Lemma it is sufficient to show that ∂tw

ε,δ ∈ L∞((0, T );A′(Rny × Rnη )). The

latter implies time-equicontinuity of wε,δ and hence, the Arzela-Ascoli Theorem
guarantees that there exists a subsequence {εn}n∈N, with εn → 0+ as n→∞, such
that wεn,δ converges uniformly on compact subsets of Rt.

In order to prove the uniform bound on ∂tw
ε,δ we consider the weak formulation

of (4.2), i.e.

(4.4) −〈∂twε,δ, χ〉 = 〈η · ∇ywε,δ, χ〉+ 〈Θ[Λε,δ]wε,δ, χ〉,
for any test function χ ∈ A(Rny ×Rnη ). We shall only show how to bound the term

〈Θ[Λε,δ]wε,δ, χ〉, since the other term on the right hand of (4.4) can be treated
similarly.

To this end, let χ ∈ A(Rny × Rnη ) be a smooth test function with the property
that its Fourier transform with respect to η, i.e.

(Fηχ)(y, z) ≡ χ̃(y, z) =

∫
Rn
χ(y, η)e−iη·z dη,

has compact support with respect to both y and z. This kind of test functions are
dense in A and hence it suffices to show the assertion for these type of χ only. A
straightforward calculation (cf. the proof of [23, Theorem IV.1]) shows that

〈Θ[Λε,δ]wε,δ, χ〉 =
i

(2π)n
〈wε,δ,Ξε,δ〉,

where

Ξε,δ(y, η, t) =

∫
Rn
χ̃(y, z)eiz·η

1

ε

(
Vε,δ

(
y +

ε

2
z, t
)
− Vε,δ

(
y − ε

2
z, t
))

dz

=

∫
Rn
χ̃(y, z)eiz·η

(∫ 1/2

−1/2

z · ∇yVε,δ(t, y + εsz)ds
)
dz.

Next, we note that Vε,δ defined in (4.3) is uniformly bounded, since

(4.5) |Vε,δ(y, t)| 6 sup
x,y
|V (x, y)| ‖ψε,δ(·, t)‖2L2

x
6 ‖V ‖L∞ <∞,

having in mind that V ∈ L∞, by assumption, and that ‖ψε,δ(·, t)‖L2
x

= 1, ∀ t ∈ R,
due to mass conservation. Since V satisfies (A1), the same argument also applies
to ∇yVε,δ, which by dominated convergence, is simply given by

∇yVε,δ = 〈ψε,δ(·, t),∇yV (·, y)ψε,δ(·, t)〉L2
x
.

Having in mind the computation (3.2), we know that

〈wε,δ,Ξε,δ〉 =
1

(2π)d

∫∫
R2d

(FηΞε,δ)(y, z, t)ϕε,δ
(
x− ε

2
z
)
ϕε,δ

(
x+

ε

2
z
)
dx dz,

where

(FηΞε,δ)(y, z, t) = (2π)dχ̃(y, z)
(∫ 1/2

−1/2

z · ∇yVε,δ(t, y + εsz)ds
)
.

We thus conclude that∣∣〈Θ[Λε,δ]wε,δ, χ〉
∣∣ =

∣∣∣∣ 1

(2π)n
〈wε,δ,Ξε,δ〉

∣∣∣∣ 6 C‖Ξε,δ‖A‖ϕε,δ‖2L2 6 const. <∞,

uniformly in ε and t, since

‖Ξε,δ‖A =

∫
Rd

sup
y
|FηΞε,δ|(y, z, t) dz 6 (2π)n‖∇V ‖L∞

∫
Rd

sup
y
|z||χ̃(y, z)| dz <∞,

due to the compact support of χ̃.
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A similar argument can be done to obtain a uniform bound on |〈η · ∇ywε,δ, χ〉|,
and thus (4.4) implies that

|〈∂twε,δ, χ〉| 6 const.

uniformly in ε and t, and we are done. �

Next, we look at the nonlinear coupling term appearing in the first equation of
our TDSCF system (2.3):

Υε,δ(x, t) := 〈ϕε,δ, V ϕε,δ〉L2
y

=

∫
Rny
V (x, y)|ϕε,δ(y, t)|2 dy.

We first note that, as before,

(4.6) |Υε,δ(x, t)| 6 sup
x,y
|V (x, y)| ‖ϕε,δ(·, t)‖2L2

y
6 ‖V ‖L∞ ,

since, ‖ϕε,δ(·, t)‖L2
y

= 1, for all t ∈ R. Moreover, since V satisfies (A1), we infer that

Υε,δ ∈ C(Rt;C2
0 (Rdx)) and an analogous bound for ∂αxΥε,δ, |α| 6 2. In addition, we

have that Υε,δ is continuous in time, since by triangle inequality

|Υε,δ(x, t)−Υε,δ(x, s)| 6 2‖V ‖L∞‖ϕε,δ(·, t)− ϕε,δ(·, s)‖2L2
y
.

where we have again used the fact that ‖ϕε,δ(·, t)‖L2
y

= 1, for all t ∈ R. In view of

our existence result stated in Proposition 2.6, the right hand side is continuous in
time, and thus Υε,δ(x, ·) is too.

Lemma 4.3. We have that Υε,δ(x, t)
ε→0+−→ Υδ(x, t) point-wise in (x, t) and uni-

formly on compact time-intervals, where Υδ ∈ C(Rt;C2
0 (Rdx)) is given by

Υδ(x, t) =

∫∫
R2n
y,η

V (x, y)µδ(dy, dη, t).

Proof. Having in mind that test functions of the form V (x, y) = γ(x)σ(y) are dense
in C2

0 (Rdx × Rny ), the weak measure convergence (4.1) implies that for all (x, t) it
holds ∫

Rny
V (x, y)|ϕε,δ(y, t)|2 dy ε→0+−→

∫∫
R2n
y,η

V (x, y)µδ(dy, dη, t) = Υδ(x, t),

point-wise for all (x, t) ∈ Rd+1. In addition, the foregoing Lemma shows that the
point-wise convergence, in fact, also holds uniformly on compact time-intervals.
Using that µδ > 0, we find

|Υδ(x, t)| 6 ‖V ‖L∞
∫∫

R2n
y,η

µδ(dy, dη, t) 6 ‖V ‖L∞ lim inf
ε→0+

∫
Rny
|ϕε,δ(y, t)|2 dy 6 ‖V ‖L∞ ,

since ‖ϕε,δ(·, t)‖L2 = 1, for all t ∈ R. (Here we have used [23, Theorem III.1] in the
second inequality.) An analogous bound also holds for ∂αxΥδ and |α| 6 2, since V
satisfies (A1). By applying the push-forward formula (4.8) with χ(x, y) = V (x, y), it
is easy to see that Υδ(t, ·) is continuous in time, yielding Υδ ∈ Cb(Rt;C2

0 (Rdx)). �

The following Proposition then shows that the solution of the first equation
within the TDSCF system (2.3) stays close to the one where the potential Υε,δ is
replaced by its classical limit Υδ.

Proposition 4.4. Let V satisfy (A1) and ψε,δ, ψδ ∈ C(Rt;H1(Rdx)) solve, respec-
tively

iδ∂tψ
ε,δ =

(
−δ

2

2
∆x + Υε,δ(x, t)

)
ψε,δ , ψε,δ|t=0 = ψδin(x),
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and

iδ∂tψ
δ =

(
−δ

2

2
∆x + Υδ(x, t)

)
ψδ , ψδ|t=0 = ψδin(x),

then, for any T > 0

sup
t∈[0,T ]

‖ψε,δ(·, t)− ψδ(·, t)‖L2
x

ε→0−→ 0.

Proof. Denote the Hamiltonian operators corresponding to the above equations by

Hε,δ
1 = −δ

2

2
∆x + Υε,δ(x, t), Hδ

2 = −δ
2

2
∆x + Υδ(x, t).

In view of our assumptions on the potential V and the existence result given in
Proposition 2.6, we infer that H1 and H2 are essentially self-adjoint on L2(Rdx) and

hence they generate unitary propagators Uε,δ1 (t, s) and Uδ2 (t, s), such that

Uε,δ1 (t, s)ψε,δ(x, s) = ψε,δ(x, t), Uδ2 (t, s)ψδ(x, s) = ψδ(x, t).

Therefore, one obtains

‖ψε,δ(·, t)− ψδ(·, t)‖L2
x

=
∥∥Uε,δ1 (t, 0)ψε,δin (·)− ψδ(·, t)

∥∥
L2
x

=
∥∥ψε,δin (·)− Uε,δ1 (0, t)ψδ(·, t)

∥∥
L2
x

=

∥∥∥∥∫ t

0

d

ds

(
Uε,δ1 (0, s)ψδ(·, s)

)
ds

∥∥∥∥
L2
x

,

using (Uε,δ1 )−1(t, s) = Uε,δ1 (s, t). Computing further, one gets

‖ψε,δ(·, t)− ψδ(·, t)‖L2
x

=

∥∥∥∥∫ t

0

( d
ds
Uε,δ1 (0, s)

)
ψδ(·, s) + Uε,δ1 (0, s)

d

ds
ψδ(·, s)ds

∥∥∥∥
L2
x

=

∥∥∥∥∫ t

0

Uε,δ1 (0, s)
(
Hε,δ

1 ψδ(·, s)−Hδ
2ψ

δ(·, s)
)
ds

∥∥∥∥
L2
x

=

∥∥∥∥∫ t

0

Uε,δ1 (0, s)
(
Υε,δ(·, s)−Υδ(·, s)

)
ψδ(·, s) ds

∥∥∥∥
L2
x

.

By Minkowski’s inequality, one therefore has

‖ψε,δ(·, t)− ψδ(·, t)‖L2
x
6
∫ t

0

∥∥(Υε,δ(·, s)−Υδ(·, s)
)
ψδ(·, s)

∥∥
L2
x
ds,

which, firstly, implies continuity of the difference in L2 norm w.r.t. to t ∈ R and,
secondly, we also have

sup
t∈[0,T ]

‖ψε,δ(·, t)− ψδ(·, t)‖L2
x
6 CT sup

t∈[0,T ]

∥∥ (Υε,δ(·, t)−Υδ(·, t)
)
ψδ(·, t)

∥∥
L2
x
.

Now, since Υε,δ is bounded in L∞(Rt × Rnx) uniformly in ε, cf. (4.6), and since(
Υε,δ(x, t)−Υδ(x, t)

) ε→0+−→ 0,

point-wise in x and uniformly on compact time-intervals, Lebesgue’s dominated
convergence theorem is sufficient to conclude the desired result. �

In order to identify the limiting measure µδ we shall derive the corresponding
evolutionary system, by passing to the limit ε → 0+ in (4.2). The main difference
to the case of a given potential V (as studied in, e.g., [12]) is that here Vε,δ itself
depends on ε and is computed self-consistently from the solution of ψε,δ. We
nevertheless shall prove in the following proposition that the limit of Θ[Vε,δ] as
ε→ 0+ is indeed what one would formally expect it to be.
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Proposition 4.5. Let Assumptions (A1) and (A2) hold. Then, up to selection of
another sub-sequence

Θ[Λε,δ]wε,δ
ε→0+−→ F δ(y, t) · ∇ηµδ in L∞(Rt;A′(Rny × Rnη )w − ∗),

where the semi-classcial force F ∈ Cb(Rt;C1
0 (Rny )) is defined by

F δ(y, t) := −∇Vδ(y, t) = −
∫
Rd
∇yV (x, y)|ψδ(x, t)|2 dx.

Proof. Denote Vδ(y, t) = 〈ψδ(·, t), V (·, y)ψδ(·, t)〉L2
x
. Then, we can estimate

|Vε,δ(y, t)− Vδ(y, t)| 6 ‖V ‖L∞
∫
Rd

∣∣|ψε,δ(x, t)|2 − |ψδ(x, t)|2∣∣dx
6 2 ‖V ‖L∞‖ψε,δ(·, t)− ψδ(·, t)‖L2

x
,

where in the second inequality we have used the Cauchy-Schwarz inequality together
with the fact that ||a|2 − |b|2| 6 |a − b|(|a| + |b|) for any a, b ∈ C. The strong L2-
convergence of ψε,δ stated in Proposition 4.4 therefore implies

Vε,δ(y, t) ε→0+−→ V0,δ(y, t) ≡ 〈ψδ, V ψδ〉L2
x
(y, t),

pointwise in y and uniformly on compact time-intervals. Analogously we infer

∇yVε,δ(y, t)
ε→0+−→ ∇yVδ ≡ 〈ψδ,∇yV ψδ〉L2

x
(y, t).

Next, we recall from (4.5) that Vε,δ and ∇yVε,δ are uniformly bounded in ε.
Moreover, by using the Mean-Value Theorem, we can estimate

|∇yVε,δ(y1, t)−∇yVε,δ(y2, t)| 6 |y1 − y2| sup
x,y
|D2V |‖ψε,δ(·, t)‖L2

x
6 C|y1 − y2|.

This shows that F ε,δ := −∇yVε,δ is equicontinuous in y, and hence the Arzela-
Ascoli Theorem guarantees that there exists a subsequence, such that F ε,δ con-
verges, as ε → 0+, uniformly on compact sets in y, t. Recalling from before that
for any χ ∈ A(Rny × Rnη )

〈Θ[Λε,δ]wε,δ, χ〉 =
i

(2π)n
〈wε,δ,Ξε,δ〉,

where

Ξε,δ(y, η) =

∫
Rn
χ̃(y, z)eiz·η

1

ε

(
Vε,δ

(
y +

ε

2
z, t
)
− Vε,δ

(
y − ε

2
z, t
))

dz.

For χ̃ having compact support the uniform convergence of F ε,δ then allows us to
conclude

Ξε,δ
ε→0+−→ i∇yVδ(y, t) · F−1

z→η(zχ̃(y, z))(y, η) = F δ(y, t) · ∇ηχ(y, η),

and since these χ are dense in A the result follows. �

Remark 4.6. One should note that, even though Λε,δ is a self-consistent potential,
depending nonlinearly upon the solution ψε,δ, the convergence proof given above
is very similar to the case [23, Theorem IV.2], which treats the classical limit of
nonlinear Hartree-type models with smooth convolution kernels. In particular, we
do not require to pass to the mixed state formulation which is needed to establish
the classical limit in other self-consistent quantum dynamical models such as [25].

In summary, this leads to the first main result of our work, which shows that
the solution to (2.3), as ε → 0+ (and with δ = O(1) fixed) converges to a mixed
quantum-classical system, consisting of a Schrödinger equation for the x-variables
and a classical Liouville equation for the y-variables.
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Theorem 4.7. Let Assumptions (A1) and (A2) hold. Then, for any T > 0, it
holds that the solutions of the TDSCF system (2.3) satisfy

ψε,δ
ε→0+−→ ψδ in L∞([0, T ];L2

y(Rn)),

and

wε[ϕε,δ]
ε→0+−→ µδ in L∞([0, T ];A′(Rny × Rnη )w − ∗),

where ψδ ∈ Cb(Rt;L2(Rd)) and µδ ∈ Cb(Rt;M+(Rny × Rnη )) solve the following
mixed quantum-classical system

(4.7)

 iδ∂tψ
δ =

(
−δ

2

2
∆x + Υδ(x, t)

)
ψδ , ψδ|t=0 = ψδin(x),

∂tµ
δ + divy(ηµδ) + divη(F δ(y, t)µδ) = 0 , µδ|t=0 = µin(y, η).

Here µin is the initial Wigner measure obtained as the weak∗ limit of wε[ϕεin] and

Υδ(x, t) =

∫∫
R2n

V (x, y)µδ(dy, dη, t), F δ(y, t) = −
∫
Rd
∇yV (x, y)|ψδ(x, t)|2 dx.

Proof. The result follows from Proposition 4.4 and Proposition 4.5. �

4.1. Connection to the Ehrenfest method. Let us introduce the characteristic
flow associated to the second equation in (4.7), via{

ẏ(t) = η(t), y(0) = y0 ∈ Rn,

η̇(t) = F δ(y(t), t), η(0) = η0 ∈ Rn.

These equations are non-autonomous, but one should keep in mind that they are
coupled to the Schrödinger equation in (4.7) with initial data at t = 0. We shall
therefore suppress the second time variable in the associated two parameter semi-
group and define Φδt : R2d → R2d by (y(t), η(t)) = Φδt (y0, η0). Then, for any test
function χ ∈ C0(Rny × Rnη ), we have the push-forward formula

(4.8)

∫∫
R2n

χ(y, η)µδ(dy, dη, t) =

∫∫
R2n

χ(Φδt (y, η))µin(dy, dη).

In particular, if initially µ0(y, η) = δ(y−y0, η−η0), i.e. a delta distribution centered
at (y0, η0) ∈ R2n, this yields µδ(y, η, t) = δ(y − y(t), η − η(t)), for all times t ∈ R.
Such kind of Wigner measures can be obtained as the classical limit of a particular
type of wave functions, called semi-classical wave packets, or coherent states, see
[23]. In this case, we also find

Υδ(x, t) =

∫∫
R2n

V (x, y)µδ(dy, dη, t) = V (x, y(t)),

and the mixed quantum-classical system becomes

(4.9)


iδ∂tψ

δ =

(
−δ

2

2
∆x + V (x, y(t))

)
ψδ , ψδ|t=0 = ψδin(x),

ÿ(t) = −
∫
Rd
∇yV (x, y(t))|ψδ(x, t)|2 dx, y|t=0 = y0, ẏ|t=0 = η0,

with y0, η0 ∈ Rn. This is a well-known model in the physics and quantum chemistry
literature, usually referred to as Ehrenfest method. It has been studied in, e.g, [6, 7]
in the context of quantum molecular dynamics.

Remark 4.8. A closely related scaling-limit is obtained in the case where the
time-derivatives in both equations of (2.3) are scaled by the same factor ε. At
least formally, this leads to an Ehrenfest-type model similar to (4.9), but with a
stationary instead of a time-dependent Schrödinger equation, cf. [7, 10]. In this
case, connections to the Born-Oppenheimer approximation of quantum molecular
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dynamics become apparent, see, e.g., [27]. From the mathematical point of view
this scaling regime combines the classical limit for the subsystem described by the
y-variables with a time-adiabatic limit for the subsystem described in x. However,
due to the nonlinear coupling within the TDSCF system (2.3) this scaling limit is
highly nontrivial and will be the main focus of a future work.

5. The fully classical limit

In order to get a better understanding (in particular for the expected numerical
treatment of our model), we will now turn to the question of how to obtain a
completely classical approximation for the system (2.3). There are at least two
possible ways to do so. One is to consider the limit δ → 0+ in the obtained mixed
quantum-classical system (4.7), which in itself corresponds to the iterated limit
ε → 0+ and then δ → 0+ of (2.3), cf. Section 5.1. Another possibility is to take
ε = δ → 0+ in (2.3), which corresponds to a kind of “diagonal limit” in the ε, δ
parameter space, cf. Section 5.2.

5.1. The classical limit of the mixed quantum-classical system. In this
section we shall perform the limit δ → 0+ of the obtained mixed quantum-classical
system (4.7). To this end, we first introduce the δ-scaled Wigner transform of ψδ:

W δ[ψδ](x, ξ, t) :=
1

(2π)d

∫
Rd
ψδ
(
x− δ

2
z, t

)
ψδ
(
x+

δ

2
z, t

)
eiz·ξ dz.

Assumption (A2) and the results of Lemma 2.4 and Lemma 2.5 imply that ψδ is a
family of δ-oscillatory functions, i.e,

(5.1) sup
0<δ61

(‖ψδ(t, ·)‖L2
y

+ ‖δ∇ψδ(t, ·)‖L2
y
) 6 C(t)

and thus there exists a limiting measure ν ∈ M+(Rdx × Rdξ), such that for all

t ∈ [0, T ]:

W δ[ψδ](·, ·, t) δ→0+−→ ν(·, ·, t) in A′(Rdx × Rdξ)w − ∗.
In addition, we also have

(5.2) |ψδ(·, t)|2 δ→0+−→
∫
Rdξ
ν(·, dξ, t) in M+(Rdx × Rdξ)w − ∗.

By Wigner transforming the first equation in the mixed quantum-classical system
(4.7), we find that W δ[ψδ] ≡W δ satisfies

∂tW
δ + ξ · ∇xW δ + Θ[Υδ]W δ = 0 , W δ

|t=0 = W δ[ψδin](x, ξ).

Having in mind that Υδ ∈ C(Rt;C2
0 (Rdx)), the same arguments as in Lemma 4.2

then allow us to obtain a uniform bound on ∂tW , and hence time-equicontinuity of
W δ, which yields

W δ[ψδ]
δ→0+−→ ν in L∞(Rt;A′(Rdx × Rdξ)w − ∗).

Furthermore, our assumptions one V together with the weak measure conver-
gence (5.2) imply

F δ(y, t) =−
∫
Rd
∇yV (x, y)|ψδ(x, t)|2 dx = −

∫∫
R2d
x,ξ

∇yV (x, y)W δ(dx, dξ, t)

δ→0+−→ −
∫∫

R2d
x,ξ

∇yV (x, y)ν(dx, dξ, t) ≡ F (y, t),

pointwise. By the same arguments as in the proof of Proposition 4.5, we find that
this convergence holds uniformly on compact sets in y, t. With this in hand, we
can prove the following result.
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Proposition 5.1. Let µδ ∈ Cb(Rt;M+(Rny × Rnη )) be a distributional solution of

∂tµ
δ + divy(ηµδ) + divη(F δ(y, t)µδ) = 0,

and µ ∈ Cb(Rt;M+(Rny × Rnη )) be a distributional solution of

∂tµ+ divy(ηµ) + divη(F (y, t)µ) = 0,

such that initially µδ|t=0 = µ|t=0, then

µδ
δ→0+−→ µ in L∞([0, T ];M+(Rny × Rnη ) w − ∗).

Proof. We consider the difference eδ := µδ −µ. Then eδ(y, η, t) solves (in the sense
of distributions) the following inhomogeneous equation:

∂te
δ + divy(ηeδ) + divη(F δ(y, t) eδ) = divη

(
(F (y, t)− F δ(y, t))µ

)
,

subject to eδ|t=0 = 0. By density, it suffices to prove the result for test functions

χ(y, η) ∈ S(Rny × Rnη ) with compact support. In this case, the inhomogeneity on
the right hand side is given by

〈χ,divη
(
(F (y, t)− F δ(y, t)

)
µ〉 =

=

∫∫
R2n

∇ηχ(y, η) · (F δ(y, t)− F (y, t))µ(dy, dη, t),

which goes to zero as δ → 0+, in view of the convergence of F δ discussed above.
This implies that, as δ → 0+, the difference e0(y, η, t) is a weak solution of

∂te
0 + divy(ηe0) + divη(F 0(y, t) e0) = 0, e0

|t=0 = 0.

Using the push forward formula for the associated characteristic flow Φ0
t , then yields∫∫

R2n

χ(y, η)e0(y, η, t) dy dη =

∫∫
R2n

χ(Φ0
t (y, η))e0(dy, dη, 0) = 0,

for any test function χ, and thus e0(y, η, t) = 0. �

To obtain the convergence of the term Θ[Υδ]W δ, we note that with the conver-
gence of the Wigner measure µδ, which is obtained in Proposition 5.1, one gets

Υδ(x, t) =

∫∫
R2n

V (x, y)µδ(dy, dη, t)

δ→0+−→
∫∫

R2n

V (x, y)µ(dy, dη, t) ≡ Υ(x, t)

point-wise, for all x, t. Similar to previous cases, one concludes that, up to ex-
traction of possibly another sub-sequence, Υδ converges, as δ → 0+, uniformly on
compact sets in x, t.

With the same techniques as in the proof of Proposition 4.5, one can then derive
the equation for the associated Wigner measure ν. The classical limit of the mixed
quantum-classical system can thus be summarized as follows.

Theorem 5.2. Let Assumptions (A1) and (A2) hold. Then, for any T > 0, it
holds that solutions of the mixed quantum-classical system (4.7) satisfy

W δ[ψδ]
δ→0+−→ ν in L∞([0, T ];A′(Rdx × Rdξ)w − ∗),

and

µδ
δ→0+−→ µ in L∞([0, T ];M+(Rny × Rnη )w − ∗).
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where ν ∈ Cb(Rt;M+(Rdx×Rdξ)) and µ ∈ Cb(Rt;M+(Rny ×Rnη )) solve the following
coupled system of Vlasov-type equations in the sense of distributions

(5.3)

{
∂tν + divx(ξν)− divξ(∇xΥ(x, t)ν) = 0 , ν|t=0 = νin(x, ξ),

∂tµ+ divy(ηµ) + divη(F (y, t)µ) = 0 , µ|t=0 = µin(y, η).

Here νin is the initial Wigner measure obtained as the weak∗ limit of W δ[ψδin], and

Υ(x, t) =

∫∫
R2n

V (x, y)µ(dy, dη, t), F (y, t) = −
∫∫

R2d

∇yV (x, y)ν(dx, dξ, t).

Remark 5.3. Note that system (5.3) admits a special solution of the form

ν(x, ξ, t) = δ(x− x(t), ξ − ξ(t)), µ(y, η, t) = δ(y − y(t), η − η(t)),

where x(t), y(t), ξ(t), η(t) solve the following Hamiltonian system:
ẋ(t) = ξ(t), x(0) = x0,

ξ̇(t) = −∇xV (x(t), y(t)), ξ(0) = ξ0,

ẏ(t) = η(t), y(0) = y0,

η̇(t) = −∇yV (x(t), y(t)), η(0) = η0.

This describes the case of two classical point particles interacting with each other
via V (x, y). Obviously, if V (x, y) = V1(x)+V2(y), the system completely decouples
and one obtains the dynamics of two independent point particles under the influence
of their respective external forces.

5.2. The classical limit of the TDSCF system. In this section we shall set
ε = δ and consider the now fully semi-classically scaled TDSCF system where only
0 < ε� 1 appears as a small dimensionless parameter:

(5.4)


iε∂tψ

ε =

(
−ε

2

2
∆x + 〈ϕε, V ϕε〉L2

y

)
ψε , ψε|t=0 = ψεin(x),

iε∂tϕ
ε =

(
−ε

2

2
∆y + 〈ψε, hεψε〉L2

x

)
ϕε , ϕε|t=0 = ϕεin(y),

where, as in (2.4), we denote

hε = −ε
2

2
∆x + V (x, y).

We shall introduce the associated ε-scaled Wigner transformations wε[ϕε](y, η, t)
and W ε[ψε](x, ξ, t) defined by (3.1). From the a-priori estimates established in
Lemmas 2.4 and 2.5, we infer that both ψε and ϕε are ε-oscillatory and thus we
immediately infer the existence of the associated limiting Wigner measures µ, ν ∈
M+, such that

wε[ϕε]
ε→0+−→ µ in L∞(Rt;A′(Rny × Rnη )w − ∗),

and

W ε[ψε]
ε→0+−→ ν in L∞(Rt;A′(Rdx × Rdξ)w − ∗).

The associated Wigner transformed system is

(5.5)

{
∂tW

ε + ξ · ∇xW ε + Θ[Υε]W ε = 0 , W ε
|t=0 = W ε[ψεin](x, ξ),

∂tw
ε + η · ∇ywε + Θ[Vε]wε = 0, wε|t=0 = wε[ϕεin](y, η).

By following the same arguments as before, we conclude that, up to extraction of
sub-sequences,

Υε(x, t)
ε→0+−→

∫∫
R2n

V (x, y)µ(dy, dη, t) ≡ Υ(x, t),
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ψδ,ε(t,x), φδ,ε(t,y)

ψδ(t,x), µδ(t,y,η) ν(t,x,ξ), µ(t,y,η)
δ → 0

+

ε → 0
+

ε = δ → 0
+

Figure 1. The diagram of semi-classical limits: the iterated limit
and the classical limit.

and

Vε(y, t) ε→0+−→
∫∫

R2n

V (x, y)ν(dx, dξ, t) ≡ V (y, t),

on compact sets in (x, t) and (y, t) respectively. Consequently, one can show the
convergences of the terms Θ[Υε]W ε and Θ[Vε]wε by the same techniques as in the
proof of Proposition 4.5. In summary, we obtain the following result:

Theorem 5.4. Let Assumptions (A1) and (A2) hold. Then, for any T > 0, we
have that W ε and wε converge as ε → 0+, respectively, to µ ∈ L∞(Rt;M+(Rny ×
Rnη )) and ν ∈ L∞(Rt;M+(Rdx × Rdξ)), which solve the classical system (5.3) in the
sense of distributions.

In other words, we obtain the same classical limiting system for ε = δ → 0+,
as in the iterated limit ε → 0+ and δ → 0+. In summary, we have established
the diagram of semi-classical limits as is shown in Figure 1. (It is very likely that
the missing “upper right corner” within Fig. 1 can also be completed by using
arguments similar to those given above.)

6. Numerical methods based on time-splitting spectral
approximations

In this section, we will develop efficient and accurate numerical methods for
the semi-classically scaled TDSCF equations (2.3) and the Ehrenfest equations
(4.9). The highly oscillatory nature of these models strongly suggests the use of
spectral algorithms, which are the preferred method of choice when dealing with
semi-classical models, cf. [18]. In the following, we will design and investigate time-
splitting spectral algorithms, for both the TDSCF system and the Ehrenfest model,
which will be shown to be second order in time. The latter is not trivial due to the
self-consistent coupling within our equations and it will become clear that higher
order methods can, in principle, be derived in a similar fashion. Furthermore, we
will explore the optimal meshing strategy if only physical observables and not the
wave function itself are being sought. In particular, we will show that one can take
time steps independent of semi-classical parameters if one only aims to capture
correct physical observables.
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6.1. The SSP2 method for the TDSCF equations. In our numerical context,
we will consider the semi-classically scaled TDSCF equations (2.3) in one spatial
dimension and subject to periodic boundary conditions, i.e.

(6.1)


iδ∂tψ

ε,δ =

(
−δ

2

2
∆x + Υε,δ(x, t)

)
ψε,δ , a < x < b , ψε,δ|t=0 = ψδin(x),

iε∂tϕ
ε,δ =

(
−ε

2

2
∆y + Λε,δ(y, t)

)
ϕε,δ , a < y < b , ϕε,δ|t=0 = ϕεin(y),

subject to

ψε(a, t) = ψε(b, t), ϕε(a, t) = ϕε(b, t), ∀t ∈ R.

As before, we denote Υε,δ = 〈ϕε,δ, V ϕε,δ〉L2
y

and Λε,δ = 〈ψε,δ, hδψε,δ〉L2
x
.

Clearly, a, b ∈ R have to be chosen such that the numerical domain [a, b] is
sufficiently large in order to avoid the possible influence of boundary effects on our
numerical solution. The numerical method developed below will work for all ε and
δ, even if ε = o(1) or δ = o(1). In addition, we will see that it can be naturally
extended to the multi-dimensional case.

6.1.1. The construction of the numerical method. We assume, on the computational
domain [a, b], a uniform spatial grid in x and y respectively, xj1 = a + j1∆x,
yj2 = a + j2∆y, where jm = 0, · · ·Nm − 1, Nm = 2nm , nm are some positive

integers for m = 1, 2, and ∆x = b−a
N1

, ∆y = b−a
N2

. We also assume discrete time

tk = k∆t, k = 0, · · · ,K with a uniform time step ∆t.
The construction of our numerical method for (6.1) is based on the following

operator splitting technique. For every time step t ∈ [tn, tn+1], we solve the kinetic
step

(6.2)


iδ∂tψ

ε,δ = −δ
2

2
∆xψ

ε,δ,

iε∂tϕ
ε,δ = −ε

2

2
∆yϕ

ε,δ;

and the potential step

(6.3)

{
iδ∂tψ

ε,δ = Υε,δ(x, t)ψε,δ,

iε∂tϕ
ε,δ = Λε,δ(y, t)ϕε,δ;

possibly for some fractional time steps in a specific order. For example, if Strang’s
splitting is applied, then the operator splitting error is clearly second order in time
(for any fixed value of ε). However, in the semi-classical regime ε → 0+, a careful
calculation shows that the operator splitting error is actually O(∆t2/ε), cf. [3, 19].

Next, let Unj1 be the numerical approximation of the wave functions ψε,δ at

x = xj1 and t = tn. Then, the kinetic step for ψε,δ can be solved exactly in Fourier
space via:

U∗j1 =
1

N1

N1/2−1∑
l1=−N1/2

e−iδ∆tµ
2
l /2 Ûnl1e

iµl1 (xj1−a),

where Ûnl1 are the Fourier coefficients of Unj1 , defined by

Ûnl1 =

N1−1∑
j1=0

Unj1e
−iµl1 (xj1−a), µl1 =

2πl1
b− a

, l1 = −N1

2
, · · · , N1

2
− 1.

Similarly, the kinetic step for ϕε,δ can also be solved exactly in the Fourier space.
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On the other hand, for the potential step (6.3) with t1 < t < t2, we formally find

(6.4) ψε,δ(x, t2) = exp

(
− i
δ

∫ t2

t1

Υε,δ(x, s) ds

)
ψε,δ(x, t1),

(6.5) ϕε,δ(y, t2) = exp

(
− i
ε

∫ t2

t1

Λε,δ(y, s) ds

)
ϕε,δ(y, t1),

where 0 < t2 − t1 ≤ ∆t. The main problem here is, of course, that the mean
field potentials Υε,δ and Λε,δ depend on the solution ψε,δ, ϕε,δ themselves. The key
observation is, however, that within each potential step, the mean field potential
Υε,δ is in fact time-independent (at least if we impose the assumption that the
external potential V = V (x, y) does not explicitly depend on time). Indeed, a
simple calculation shows

∂tΥ
ε,δ ≡ ∂t

〈
ϕε,δ, V ϕε,δ

〉
L2
y

=
〈
∂tϕ

ε,δ, V ϕε,δ
〉
L2
x

+
〈
ϕε,δ, V ∂tϕ

ε,δ
〉
L2
y

=
1

iε

〈
ϕε,δ,

(
V Λε,δ − Λε,δV

)
ϕε,δ

〉
L2
y

= 0.

In other words, (6.4) simplifies to

(6.6) ψε,δ(x, t2) = exp

(
− i(t1 − t2)

δ
Υε,δ(x, t1)

)
ψε,δ(x, t1),

which is an exact solution formula for ψε,δ at t = t2.
The same argument does not work for the other self-consistent potential Λε,δ,

since formally

∂tΛ
ε,δ ≡ ∂t

〈
ψε,δ, hδψε,δ

〉
L2
x

=
〈
∂tψ

ε,δ, hδψε,δ
〉
x

+
〈
ψε,δ, hδ∂tψ

ε,δ
〉
L2
x

=
1

iδ

〈
ψε,δ,

(
hδΥε,δ −Υε,δhδ

)
ψε,δ

〉
L2
x

=
1

iδ

〈
ψε,δ,−δ

2

2
∇xΥε,δ · ∇xψε,δ

〉
L2
x

+
1

iδ

〈
ψε,δ,−δ

2

2
∆xΥε,δψε,δ

〉
L2
x

=
1

2
〈ψε,∇xΥε · (iδ∇x)ψε〉L2

x
+
iδ

2
〈ψε,∆xΥεψε〉L2

x
.

However, since Λε,δ(y, t) = 〈ψε,δ, hδψε,δ〉L2
x
, the formula (6.6) for ψε,δ allows to

evaluate Λε,δ(y, t) for any t1 < t < t2. Moreover, the above expression for ∂tΛ
ε,δ,

together with the Cauchy-Schwarz inequality and the energy estimate in Lemma
2.5, directly implies that ∂tΛ

ε,δ is O(1). Thus, one can use standard numerical
integration methods to approximate the time-integral within (6.5). For example,
one can use the trapezoidal rule to obtain

(6.7) ϕε,δ(y, t2) ≈ exp

(
− i(Λ

ε,δ(y, t2) + Λε,δ(y, t1))(t1 − t2)

2ε

)
ϕε,δ(y, t1).

Obviously, this approximation introduces a phase error of order O(∆t2/ε), which is
comparable to the operator splitting error. This is the reason why we call the out-
lined numerical method SSP2, i.e., a second order Strang-spliting spectral method.

Remark 6.1. In order to obtain a higher order splitting method to the equations,
one just needs to use a higher order quadrature rule to approximate the time-
integral within (6.5).
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6.1.2. Meshing strategy. In this subsection, we will analyze the dependence on the
semi-classical parameters of the numerical error by applying the Wigner transfor-
mation onto the scheme we proposed above. In particular, this yields an estimate
on the approximation error for (the expectation values of) physical observables due
to (3.3). Our analysis thereby follows along the same lines as in Refs. [3, 19]. For
the sake of simplicity, we shall only consider the differences between their cases and
ours.

We denote the Wigner transforms W ε,δ ≡ W δ[ψε,δ] and wε,δ = wε[ϕε,δ], which
satisfy the system

(6.8)

 ∂tW
ε,δ + ξ · ∇xW ε,δ + Θ[Υε,δ]W ε,δ = 0 , W ε,δ

|t=0 = W δ[ψδin](x, ξ),

∂tw
ε,δ + η · ∇ywε,δ + Θ[Vε,δ]wε,δ = 0, wε,δ|t=0 = wε[ϕεin](y, η).

Clearly, the time splitting for the Schrödinger equation induces an analogous time-
splitting of the associated Wigner equations (6.8). Having in mind the properties of
the SSP2 method, we only need to worry about the use of the the trapezoidal rule
in approximating ϕε,δ within the potential step. We shall consequently analyze the
error induced by this approximation in the computation of the Wigner transform.
To this end, we are interested in analyzing two special cases: δ = O(1), and ε� 1,
or δ = ε� 1. These correspond to the semi-classical limits we showed in Theorem
4.7 and Theorem 5.4.

We first consider the case δ = ε� 1, where Wigner transformed TDSCF system
reduces to (5.5). For convenience, we suppress the parameter δ, and write the
potential step for ϕε as,

iε∂tϕ
ε = Λε(y)ϕε, t1 < t < t2,

and the associated Wigner transform wε in the potential step satisfies,

∂tw
ε + Θ[Vε]wε = 0, t1 < t < t2.

In view of (6.7), if we denote the approximation on the right hand side by ϕ̃ε, then
ϕ̃ε is the exact solution to the following equation

iε∂tϕ̃ε = Gε(y)ϕ̃ε, t1 < t < t2,

where

Gε(y) =
1

2
(Λε(y, t1) + Λε(y, t2)).

If one denotes the Wigner transform of ϕ̃ε(y, t) by w̃ε(y, η, t), then, by using the
well known “Wignerization lemma”, see [12, Proposition 1.8], one can show that
w̃ε satisfies

(6.9) ∂tw̃ε −∇yGε · ∇ηw̃ε +O(ε) = 0, t1 < t < t2.

In order to compare wε(y, η, t2) and w̃(y, η, t2), we now consider the following set
of equations

∂tw1 −∇yVε(y, t) · ∇ηw1 = 0, t1 < t < t2,

∂tw2 −∇yGε(y) · ∇ηw2 = 0, t1 < t < t2,

subject to the same initial condition at t = t1:

w1(y, η, t1) = w2(y, η, t1) = w0(y, η).

By the trapezoidal rule,∫ t2

t1

∇yVε(y, s) ds ≈ (t2 − t1)∇yGε(y),
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since ∇yΛε(y, t) ≡ ∇yVε(y, t). Thus, by the method of characteristics, it is straight-
forward to measure the discrepancy between w1 and w2 at t = t2 and one easily
obtains

w1 − w2 = O
(
∆t3

)
.

Furthermore, equation (6.9) implies that, in leading order, w̃ε and w2 share the
same characteristics, i.e.,

η̇(t) = −∇yGε(y(t)), ẏ(t) = 0.

Along these characteristics, we obtain

d

dt
w̃ε(y(t), η(t), t) = O(ε),

d

dt
w2(y(t), η(t), t) = 0.

Hence, we conclude that at t = t2, it holds w̃ε−w2 = O(ε∆t), since 0 < t2−t 6 ∆t.
Similarly, we obtain wε − w1 = O (ε∆t).

In summary, we conclude that for the SSP2 method, the approximation within
the potential step results in an one-step error which is bounded by O(ε∆t+ ∆t3).
Thus, for fixed ∆t, and as ε → 0+, this one-step error in computing the physical
observables is dominated by O(∆t3) and we consequently can take ε-independent
time steps for accurately computing semi-classical behavior of physical observables.
By standard numerical analysis arguments, cf. [3, 19], one consequently finds, that
the SSP2 method introduces an O(∆t2) error in computing the physical observables
for ε� 1 within an O(1) time interval. Similarly, one can obtain the same results
when δ is fixed while ε� 1.

We remark that, if a higher order operator splitting is applied to the TDSCF
equations, and if a higher order quadrature rule is applied to approximate formula
(6.5), one obviously can expect higher order convergence in the physical observables.

6.2. The SVSP2 method for the Ehrenfest equations. In this section, we
consider the one-dimensional Ehrenfest model obtained in Section 4.1. More pre-
cisely, we consider a (semi-classical) Schrödinger equation coupled with Hamilton’s
equations for a classical point particle, i.e

(6.10)


iδ∂tψ

δ =

(
−δ

2

2
∆x + V (x, y(t))

)
ψδ , a < x < b ,

ẏ(t) = η(t), η̇(t) = −
∫
Rd
∇yV (x, y(t)) |ψδ(x, t)|2 dx,

with initial conditions

ψε|t=0 = ψεin(x), y|t=0 = y0, η|t=0 = η0,

and subject to periodic boundary conditions. Inspired by the SSP2 method, we
shall present a numerical method to solve (6.10), which is second order in time and
works for all 0 < δ 6 1.

As before, we assume a uniform spatial grid xj = a + j∆x, where N = 2n0 , n0

is an positive integer and ∆x = b−a
N . We also assume uniform time steps tk = k∆t,

k = 0, · · · ,K for both the Schrödinger equation and Hamilton’s ODEs. For every
time step t ∈ [tn, tn+1], we split the system (6.10) into a kinetic step

(6.11)

 iδ∂tψ
δ(x, t) = −δ

2

2
∆xψ

δ(x, t),

ẏ = η, η̇ = 0;

and a potential step

(6.12)


iδ∂tψ

δ(x, t) = V (x, y(t))ψδ(x, t),

ẏ = 0, η̇ = −
∫
Rd
∇yV (x, y(t)) |ψδ(x, t)|2 dx.
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We remark that, the operator splitting method for the Hamilton’s equations may
be one of the symplectic integrators. The readers may refer to [15] for a systematic
discussion.

As before, the kinetic step (6.11) can be solved analytically. On the other hand,
within the potential step (6.12), we see that

(6.13) ∂tV (x, y(t)) = ∇yV · ẏ(t) = 0,

i.e., V (x, y(t)) is indeed time-independent. Moreover

∂t

(∫
Rd
∇yV (x, y(t)) |ψδ(x, t)|2 dx

)
=
〈
∂tψ

δ,∇yV (x, y(t))ψδ
〉
L2
x

+
〈
ψδ,∇yV (x, y(t))∂tψ

δ
〉
L2
x

+
〈
ψδ, ∂t∇yV (x, y(t))ψδ

〉
L2
x
.

Now, we can use the first equation in (6.12) and the fact that V (x, y(t)) ∈ R to
infer that the first two terms on the right hand side of this time-derivate cancel
each other. We thus have

∂t

(∫
Rd
∇yV (x, y(t)) |ψδ(x, t)|2 dx

)
=
〈
ψδ,∇2

yV (x, y(t)) · ẏ(t)ψδ
〉
L2
x

= 0,

in view of (6.13). In other words, also the semi-classical force is time-independent
within each potential step. In summary, we find that for t ∈ [t1, t2], the potential
step admits the following exact solutions

ψδ(x, t2) = exp

(
i

δ
(t1 − t2)V (x, y(t1))

)
ψδ(x, t1),

as well as

y(t2) = y(t1), η(t2) = η(t1)− (t2 − t1)

∫
Rd
∇yV (x, y(t1)) |ψδ(x, t1)|2 dx.

This implies, that for this type of splitting method, there is no numerical error in
time within the kinetic or the potential steps and thus, we only pick up an error of
order O(∆t2/δ) in the wave function and an error of order O(∆t2) in the classical
coordinates induced by the operator splitting. Standard arguments, cf. [3, 19],
then imply that one can use δ-independent time steps to correctly capture the
expectation values of physical observables. We call this proposed method SVSP2,
i.e., a second order Strang-Verlet splitting spectral method. It is second order in
time but can easily be improved by using higher order operator splitting methods
for the Schrödinger equation and for Hamilton’s equations.

7. Numerical tests

In this section, we test the SSP2 method for the TDSCF equations and the
SVSP2 method for the Ehrenfest system. In particular, we want to test the methods
after the formation of caustics, which generically appear in the WKB approximation
of the Schrödinger wave functions, cf [28]. We also test the convergence properties
in time and with respect to the spatial grids for the wave functions and the following
physical observable densities

ρε(x, t) = |ψε(x, t)|2, Jε(x, t) = εIm(ψε(x, t)∇ψε(x, t)),

i.e., the particle density and current densities associated to ψε (and analogously for
ϕε).
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7.1. SSP2 method for the TDSCF equations. We first study the behavior of
the proposed SSP2 method. In Example 1, we fix δ and test the SSP2 method for
various ε. In Example 2 and Example 3, we take δ = ε and assume the same spatial
grids in x and y.

Example 1. In this example, we fix δ = 1, and test the SSP2 method for various
ε = o(1). We want to test the convergence in spatial grids and time, and whether
ε-independent time steps can be taken to calculate accurate physical observables.

Assume x, y ∈ [−π, π] and let V (x, y) = 1
2 (x+ y)2. The initial conditions are of

the WKB form,

ψδin(x) = e−2(x+0.1)2ei
sin x
δ , ϕεin(y) = e−5(y−0.1)2ei

cos y
ε .

In the following all our numerical tests are computed till the stopping time T = 0.4.
We first test the convergence of the SSP2 method in ∆x and ∆y, respectively.

By the energy estimate in Lemma 2.4, one expects the meshing strategy ∆x = O(δ)
and ∆y = O(ε) to obtain spectral accuracy. We take δ = 1 and ε = 1

1024 . The
reference solution is computed with sufficiently fine spatial grids and time steps:
∆x = ∆y = 2π

32768 and ∆t = 0.4
4096 . We repeated the tests with the same ∆y and

∆t but different ∆x, or with the same ∆x and ∆t but different ∆y. The errors in
the wave functions and the position densities are calculated and plotted in Figure
2, from which we observe clearly that ∆x = O(1) and ∆y = O(ε) are sufficient to
obtain spectral accuracy. Due to the time discretization error, the numerical error
cannot be reduced further once ∆x and ∆y become sufficiently small.

Next, to test the the convergence in time, we take δ = 1, ε = 1
1024 , and compare to

a reference solution which is computed through a well resolved mesh with ∆x = 2π
512 ,

∆y = 2π
16348 and ∆t = 0.4

4096 . Then, we compute with the same spatial grids, but
with different time steps. The results are illustrated in Figure 3. We observe that
the method is stable even if ∆t� ε. Moreover, we get second order convergence in
the wave functions as well as in the physical observable densities. Note that in this
test, the numerical solutions of ψ and ϕ behave qualitatively similarly because the
spatial grids are well resolved, but quantitatively, the numerical error in ϕ is larger
because ϕ is highly oscillatory (in the scale of O(ε)) while ψ is not when δ = O(1).

At last, we test whether ε-independent ∆t can be taken to capture the correct
physical observables. We solve the TDSCF equations with resolved spatial grids.
The numerical solutions with ∆t = O(ε) are used as the reference solutions. For
ε = 1

64 , 1
128 , 1

256 , 1
512 , 1

1024 , 1
2048 and 1

4096 , we fix ∆t = 0.4
8 . The errors in the wave

functions and position densities are calculated. We see in Figure 4 that, the error in
the wave functions increases as ε→ 0+, but the error in physical observables does
not change notably. Note that, in this test, only the numerical error in ϕ increases
significantly with ∆t fixed and ε→ 0+, because ϕ is highly oscillatory (in the scale
of O(ε)) while ψ is not when δ = O(1).

We remark that, although the potential V = 1
2 (x + y)2 does not satisfy As-

sumption (A1), our numerical experiments suggest that the numerical method has
the same asymptotic behavior as those which do satisfy (A1). Intuitively, the nu-
merical solutions in this test can be considered as essentially compactly supported,
and hence the fact that V is unbounded does not sabotage the properties of our
numerical methods. A rigorous analysis on such potentials is in principle possible,
but it remains open.

Example 2. We want to numerically verify the behavior of the TDSCF system
as ε = δ → 0+ compared to the classical limit. To this end, let x, y ∈ [0, 1], and
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Figure 2. Reference solution: ∆x = ∆y = 2π
32768 and ∆t = 0.4

4096 .

Upper picture: fix ∆y = 2π
32768 and ∆t = 0.4

4096 , take ∆x = 2π
16384 ,

2π
8192 , 2π

4096 , 2π
2048 , 2π

1024 , 2π
512 , 2π

256 , 2π
128 , 2π

64 , 2π
32 , 2π

16 , 2π
8 . Lower Picture:

fix ∆x = 2π
32768 and ∆t = 0.4

4096 , take ∆y = 2π
16384 , 2π

8192 , 2π
4096 ,

2π
2048 , 2π

1024 , 2π
512 , 2π

256 , 2π
128 , 2π

64 , 2π
32 , 2π

16 , 2π
8 . These results show that,

when δ = O(1) and ε � 1, the meshing strategy ∆x = O(δ) and
∆y = O(ε) is sufficient for obtaining spectral accuracy.

assume periodic boundary conditions for both equations. Assume V (x, y) = 1, and
choose initial conditions of WKB form

ψεin(x) = e−25(x−0.58)2e−i
ln (2 cosh 5(x−0.6))

5ε ,

ϕεin(y) = e−25(y−0.5)2e−i
ln (2 cosh 5(y−0.5))

5ε .

The tests are done for ε = 1
512 and ε = 1

2048 , respectively. Note that, the potential
V is chosen in this simple form so that the semi-classical limit can be computed
analytically. Indeed, the classical limit yields a decoupled system of two indepen-
dent Liouville equations, similar to the examples in [3, 19, 26]. The formation of
caustics was previously analyzed in [17, 26] and it is known that the caustic is
formed around t = 0.54.
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Figure 3. Reference solution: ∆x = 2π
512 , ∆y = 2π

16348 and ∆t =
0.4

4096 . SSP2: fix ∆x = 2π
512 , ∆y = 2π

16348 , take ∆t = 0.4
1024 , 2π

512 , 2π
256 ,

2π
128 , 2π

64 , 2π
32 , 2π

16 , 2π
8 . These results show that, when δ = O(1) and

ε � 1, the SSP2 method is unconditionally stable and is second
order accurate in time.
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Figure 4. Fix ∆t = 0.05. For ε = 1/64, 1/128, 1/256, 1/512,
1/1024, 1/2048 and 1/4096, ∆x = 2πε/16, respectively. The ref-
erence solution is computed with the same ∆x, but ∆t = ε/10.
These results show that, ε-independent time steps can be taken to
obtain accurate physical observables, but not accurate wave func-
tions.

We solve the TDSCF equations by the SSP2 method until T = 0.54 with two
different meshing strategies

∆x = O(ε), ∆t = O(ε);

and

∆x = O(ε), ∆t = o(1).
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Figure 5. ε = 1
512 . First row: position density and current den-

sity of ϕε; second row: position density and current density of
ψε.

The numerical solutions are then compared with the semi-classical limits: in Fig-
ure 5 and Figure 6, the dashed line represents the semi-classical limits (5.3), the
dotted line represents the numerical solution with ε-independent ∆t, and the solid
line represents the numerical solution with ε-dependent ∆t. From these figures,
we observe the numerical convergence (in the weak sense) to the limit solutions
after caustics formation, and that the numerical scheme can capture the physical
observables with ε-independent ∆t.

Next, we come back to take the harmonic coupling potential V (x, y) = 1
2 (x+y)2,

which ensures in a nontrivial coupling between the two sub-systems. We again want
to test whether ε-independent ∆t can be taken to correctly capture the behavior of
physical observables. We solve the TDSCF equations with resolved spatial grids,
which means ∆x = O(ε). The numerical solutions with ∆t = O(ε) are used as
the reference solutions. For ε = 1

256 , 1
512 , 1

1024 , 1
2048 , 1

4096 , we fix ∆t = 0.005, and

compute till T = 0.54. The l2 norm of the error for the wave functions and the error
for the position densities is calculated. We see in Figure 7 that the former increases
as ε→ 0+, but the error in the physical observables does not change noticeably.

Example 3. In this example, we want to test the convergence in the spatial grid
∆x and in the time step ∆t as ε = δ → 0+. According to the previous analysis, the
spatial oscillations of wavelength O(ε) need to be resolved. On the other hand, if the
time oscillation with frequency O(1/ε) is resolved, one gets accurate approximation
even for the wave functions itself (not only quadratic quantities of it). Unresolved
time steps of order O(1) can still give correct physical observable densities. More
specifically, one expects second order convergence with respect to time in both
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Figure 6. ε = 1
2048 . First row: position density and flux density

of ϕε; second row: position density and current density of ψε.
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Figure 7. Fix ∆ t=0.005. For ε = 1
256 , 1

512 , 1
1024 , 1

2048 , 1
4096 ,

∆x = ε
8 , respectively. The reference solution is computed with the

same ∆x, but ∆t = 0.54ε
4 . These results show that, ε-independent

time steps can be taken to obtain accurate physical observables,
but not accurate wave functions.

wave functions (and in the physical observables), and spectral convergence in the
respective spatial variable.
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Figure 8. Fix ε = 1
256 and ∆t = 0.4ε

16 . Take ∆x = 2πε
32 , 2πε

16 , 2πε
8 ,

2πε
4 , 2πε

2 and 2πε
1 respectively. The reference solution is computed

with the same ∆t, but ∆x = 2πε
64 . These results show that, when

δ = ε � 1, the meshing strategy ∆x = O(ε) and ∆y = O(ε) is
sufficient for obtaining spectral accuracy.

Assume x, y ∈ [−π, π] and let V (x, y) = 1
2 (x+ y)2. The initial conditions are of

the WKB form,

ψεin(x) = e−5(x+0.1)2ei
sin x
ε , ϕεin(y) = e−5(y−0.1)2ei

cos y
ε .

To test the spatial convergence, we take ε = 1
256 , and the reference solution is

computed by well resolved mesh ∆x = 2πε
64 , ∆t = 0.4ε

16 until T = 0.4. Then, we
compute with the same time step, but with different spatial grids. The results are
illustrated in Figure 8. We observe that, when ∆x = O(ε), the error decays quickly
to be negligibly small as ∆x decreases. However, when the spatial grids do not well
resolve the ε-scale, the method would actually give solutions with O(1) error.

At last, to test the convergence in time, we take ε = 1
1024 , and the reference

solution is computed through a well resolved mesh with ∆x = 2πε
16 , ∆t = 0.4

8192 till
T = 0.4. Then, we compute with the same spatial grids, but with different time
steps. The results are illustrated in Figure 9. We observe that the method is stable
even if ∆t � ε. Moreover, we get second order convergence in the wave functions
as well as in the physical observable densities.

7.2. SVSP2 method for the Ehrenfest equations. Now we solve the Ehrenfest
equations (6.10) by the SVSP2 method. Assume x ∈ [−π, π], and assume periodic
boundary conditions for the electronic wave equation.

Example 4. In this example, we want to test if δ-independent time steps
can be taken to capture correct physical observables and the convergence in the
time step which is expected to be of the second order. The potential is again
V (x, y) = 1

2 (x+ y)2 and the initial conditions are chosen to be

ψδ(x, 0) = e−5(x+0.1)2ei
sin x
δ , y(0) = 0, η(0) = 0.1.

First, we test whether δ-independent ∆t can be taken to capture the correct
physical observables. We solve the equations with resolved spatial grids, which
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Figure 9. Fix ε = 1
1024 and ∆x = 2π

16 . Take ∆t = 0.4
32 , 0.4

64 , 0.4
128 ,

0.4
256 , 0.4

512 and 0.4
1024 , respectively. The reference solution is computed

with the same ∆x, but ∆t = 0.4
8192 . These results show that, when

δ = ε � 1, the SSP2 method is unconditionally stable and is
second order accurate in time.

means ∆x = O(δ). The numerical solutions with ∆t = O(δ) are used as the
reference solutions. For δ = 1/256, 1/512, 1/1024, 1/2048, 1/4096, we fix ∆t = 0.4

64 ,

and compute until T = 0.4. The l2 norm of the error in wave functions, the error
in position densities, and the error in the coordinates of the nucleus are calculated.
We see in Figure 10 that the error in the wave functions increases as δ → 0+, but
the errors in physical observables and in the classical coordinates do not change
notably.

Next, we test the convergences with respect to the time step in the wave function,
the physical observables and the classical coordinates. We take δ = 1

1024 , and the

reference solution is computed by well resolved mesh ∆x = 2πε
16 , ∆t = 0.4

8192 till
T = 0.4. Then, we compute with the same spatial grids, but with difference time
steps. The results are illustrated in Figure 11. We observe that, the method is
stable even if ∆t � ε, and clearly, we get second order convergence in the wave
functions, the physical observable densities and the classical coordinates.
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