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The early days of the 20th century saw the establishment of quantum mechan-
ics as a novel description of our physical world. Ever since its invention, a basic
problem concerns the connection between quantum mechanics and the older, well-
understood theory of classical mechanics. It was accepted early on that classical
mechanics should be understood as an emergent phenomenon of quantum mechan-
ics, i.e., it should be recovered from the underlying quantum mechanical description
when considered over special values of its physical parameters. When trying to fol-
low this basic idea, one immediately faces an obstacle: Quantum mechanics and
classical mechanics are usually treated within two entirely different mathematical
formalisms. While the former is based on the time-evolution of vectors in (infinite
dimensional) Hilbert spaces, the latter is concerned with the dynamics of point
particles on a (finite dimensional) phase space.

Focussing on one of the simplest quantum mechanical systems, we consider the
dynamics of a single quantum particle, say, an electron, under the influence of a
static external force field mediated by a given real-valued potential V (x), where
x ∈ R3 denotes the spatial coordinate. The state of the electron at time t ∈ R is
described by a wave function ψ(t, ·) ∈ L2(R3;C) whose time evolution is governed
by Erwin Schrödinger’s fundamental equation from 1926:
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ε + V (x)ψε, ψε|t=0 = ψε
0(x).

Here we have rescaled the original equation including all physical parameters (mass,
charge, the Planck’s constant ~, etc.) into dimensionless units such that only one
(small) parameter ε > 0 remains. The latter plays the role of a dimensionless
Planck’s constant, having the physical unit of an action, i.e. energy × time. Clas-
sical behavior is expected to emerge from quantum dynamics in the limit ε → 0,
incorporating the basic premise that classical mechanics describes systems that vary
on energy-time scales much larger than ~.

However, a moment’s notice shows that naively passing to the limit ε → 0
in Schrödinger’s equation does not yield anything. Indeed, the classical limit of
Schrödinger’s equation falls into what is known as “singular limits” for differential
equations, a topic with a long history in asymptotic approximation theory. Given
the dispersive nature of Schödinger’s equation, we expect solutions ψε to be rapidly
oscillating functions in both space and time with frequencies of order O(1/ε). In
the case where V ≡ 0, this is directly seen using the Fourier transform, reaffirming
the fact that there is no naive limiting behavior of quantum dynamics as ε→ 0.

In an effort to bypass this problem and give a more direct connection to classical
mechanics, Erwin Madelung in 1926 reformulated Schrödinger’s equation in terms
of a system of equations for the position density ρε = |ψε|2 and the current density
Jε = εIm(ψε∇xψ

ε). The hereby obtained system takes the form of a (singular)
perturbation of the classical Euler equations of compressible fluid dynamics, and
it formally (though not rigorously, in general) converges to the latter in the limit
ε→ 0.
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Inspired by this reformulation, David Bohm offered in 1952 yet another approach
to quantum dynamics: Given any ψε and its associated densities, he postulated that
quantum particles will travel along trajectories t 7→ Xε(t, x) ∈ R3 obtained from
the following dynamical system:

Ẋε =
Jε

ρε
, Xε(0, x) = x,

where the initial data x ∈ R3 is in general not known exactly, but rather distributed
according to the initial probability density |ψε

0|2. Bohm’s interpretation has been
controversial within physics, but from a mathematical point of view, one can give
a precise and rigorous meaning to the dynamical system above and, thus, associate
to any given solution ψε of Schrödinger’s equation a family of “Bohmian trajecto-
ries” Xε. This point of view offers the advantage that it treats both classical and
quantum dynamics on an equal, trajectory-based footing (as Schrödinger’s equation
remains in the background, only used to define the position- and current-densities
at each space-time point). Ideally, one would like to study the Bohmian trajectories
Xε and recover from them the well-known trajectories of classical point particles in
the limit ε → 0. In the situation at hand, these would simply correspond to New-
ton’s second law written in the form: Ẋ = P , Ṗ = −∇V (X), where (X,P ) ∈ R6

denote the position and momentum of the particle at time t.
The study of the classical limit of Bohmian trajectories has, in recent years,

been a topic of intense research for me and several of my colleagues. Unfortunately,
the rather complicated and nonlinear relation between Xε and ψε makes this a
challenging endeavor. Instead of trying to tackle the Bohmian trajectories directly,
we first focused our efforts on a family of phase-space measures βε, which we called
“Bohmian measures” and which are known to be equivariant with respect to the
Bohmian flow. Their classical limit as ε → 0 (defined in a certain weak sense)
can be rigorously studied and one can show that the resulting limiting measure β0

not only concentrates on the classical limit of the Bohmian trajectories, but also
incorporates the classical limits of the densities ρε and Jε. It remains an open
question, however, under which circumstances other physically relevant quantities
are correctly described by the Bohmian measure as ε→ 0.

Returning to study of the classical limit of the Bohmian trajectories themselves,
the only results available to date require additional assumptions on the potential
V and, more importantly, on the considered class of initial wave functions ψε

0.
On the positive side, one can show that for initial data given by semi-classical
wave packets (these are wave functions known to optimize Heisenberg’s uncertainty
principle), the Bohmian trajectories stay within a neighborhood of size O(

√
ε) of

the corresponding classical trajectories for all times t ∈ [0, T ]. Surprisingly, though,
one can also show that for more general initial data of WKB type, the Bohmian
trajectories generically do not converge to the corresponding classical ones. More
precisely, the limit only coincides with the expected classical one, up to a (small)
time t∗ > 0, depending on the initial data. For t > t∗ one can prove that the
limiting Bohmian dynamics differs from the corresponding classical one by means
of a continuity argument (see the figure below for an illustration). A more precise
description of the limit for t > t∗ remains a big open question.
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Figure 1. Left: Bohmian trajectories Xε(t, x) for WKB initial
data and small ε = 10−2. Right: The corresponding classical
trajectories, exhibiting interference for t > t∗ ≈ 0.2. For more
details, see [1].


