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ABSTRACT: This Perspective of the published essential medicinal chemistry of
cannabidiol (CBD) provides evidence that the popularization of CBD-fortified
or CBD-labeled health products and CBD-associated health claims lacks a
rigorous scientific foundation. CBD’s reputation as a cure-all puts it in the same
class as other “natural” panaceas, where valid ethnobotanicals are reduced to
single, purportedly active ingredients. Such reductionist approaches oversimplify
useful, chemically complex mixtures in an attempt to rationalize the commercial
utility of natural compounds and exploit the “natural” label. Literature evidence
associates CBD with certain semiubiquitous, broadly screened, primarily plant-
based substances of undocumented purity that interfere with bioassays and have
a low likelihood of becoming therapeutic agents. Widespread health challenges
and pandemic crises such as SARS-CoV-2 create circumstances under which
scientists must be particularly vigilant about healing claims that lack solid
foundational data. Herein, we offer a critical review of the published medicinal chemistry properties of CBD, as well as precise
definitions of CBD-containing substances and products, distilled to reveal the essential factors that impact its development as a
therapeutic agent.

■ INTRODUCTION

CBD is big business. The industry surrounding the use of
cannabidiol (CBD) in products from cosmetics and clothing to
food, beverages, and both over-the-counter supplements and
prescription pharmaceuticals is staggering. With a global market
estimated at $4.6 billion in 20181 and projected CBD sales
surpassing $20 billion in the U.S. alone by 2024,2 the rate at
which the public is consuming or coming into contact with this
chemical has increased steadily. Similar to the expansive
literature surrounding another widely used natural product we
recently reviewed (curcumin and curcumin-containing prod-
ucts),3 getting a handle on the published knowledge
surrounding CBD and CBD-containing products is daunting.
The sheer volume and breadth of information on CBD are a
challenge for consumers and researchers alike as they seek to
understand the true utility and value of both pharmaceutical-
grade CBD and many CBD-labeled products from diverse
sources. Hasty conclusions on the human-health impact of CBD,
stemming from experiments that are often only remotely
connected to biological relevance, add to the confusion. The
health emergency presented by SARS-CoV-2 (and purported
“cures” thereof), which emerged during the writing of this
article, is a stark reminder to the scientific community that we
have a serious responsibility to bring clear evidence about
product composition and quality as well as the safety and efficacy
to any claim for the improvement of human health.
What’s in the Name? As with many natural products, much

conflation and confusion exist between plants (here, cannabis

and/or hemp), products derived from them, and a single
chemical entity (here, CBD). This semantic reductionism
distills one or a few species of plant (here, Cannabis sativa, C.
indica, or C. ruderalis) down to two compounds, Δ9-
tetrahydrocannabinol (THC) and CBD, creating a damaging
assumption that single and/or major ingredients can explain the
ethnobotanical use of an entire plant. Such reductionism ignores
both the whole-plant aspect of ethno-based biological activity as
well as the metabolomic chemistry of the plant, both of which
are key tenets of contemporary pharmacognosy. Recent work
highlights the importance of considering polypharmacology
and/or synergistic mechanisms of dietary and medicinal plant
bioactivity.4−6 Even when only considering cannabinoids (vide
inf ra), the chemodiversity of the CBD-producing plants is
expansive, leaving no justification for semantic (or scientific)
reductionism.
The widespread promotion of CBD as a quasi-synonym for

any Cannabis or hemp product has an exemplary analogy in the
global dietary supplement market, where the term “curcumin” is
widely, and mostly erroneously, used to refer to crude
preparations from the rhizome of Curcuma longa.7 Confusion
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on this level has great potential to interfere with, or even void,
the scientific validity of discussions surrounding CBD, as well as
other erroneously promoted natural product isolates. Despite
this concern, there are stark differences between the case of
Cannabis/THC/CBD and that of Curcuma/curcumin. For
example, little evidence exists that the curcumin molecule itself
has an in vivo effect after it has been consumed by humans. In
comparison, THC has a known, pronounced CNS effect, which
is part of the rationale behind its special status and regulation in
many countries. CBD, while structurally very similar to THC,
does not seem to share THC’s psychoactive properties.8

Aims of This Perspective. The goal of this work is to
summarize the scientific facts known about CBD and provide a
useful reference for anyone wishing to understand the hype
surrounding CBD. This Perspective covers the legal status of
CBD in the U.S., fundamentals of CBD as a natural product and
its potential status as an IMP (invalid metabolic panacea),
natural sourcing of CBD and the challenges of quality control
The synthetic sourcing of CBD is covered in a companion
review (DOI 10.1021/acs.jmedchem.0c00095), the fundamen-
tal chemistry, pharmacology, pharmacokinetics, and pharmaco-
dynamics (PK/PD) of CBD, and an indication-guided analysis
of human clinical trials. Our work is current up toMarch 1, 2020,
and generally relies on information published within the past 5
years. We have steered away from in vivo animal studies because
they are too numerous, difficult to interpret, and subject to
experimental artifacts,9 choosing instead to focus on the
evidence for therapeutic utility presented by well-designed
human clinical trials.
While the verdict on CBD remains to be decided, our

perspective is that it is certainly not the universal panacea that it
is touted to be. Nor is it an innocuous natural substance that
should be unregulated in the marketplace and/or used to fortify
products for credulous human consumption. This Perspective

hopes to clear up some of the smoke clouding the discussion of
CBD by providing essential facts that help cut through themedia
chaos.

Ten Facts about CBD. The following summarizes ten key
facts related to CBD.

(1) CBD is a promoter of DDI (drug−drug interactions) and
potentiates the action of many drugs (5−10 μM).10

(2) CBD is a membrane interactor: it promiscuously affects
ion channels by membrane pressure and direct binding
(0.1−5 μM).11,12

(3) CBD has a strong “meaning effect”: individuals expect it
to work.13

(4) CBD is 6% orally bioavailable by some reports.14

(5) CBD’s typical dose in nonmedicinal products is much
lower than that used in clinical trials and in prescriptions
(25 mg in a typical nonmedicinal product versus 150−
1500 mg/day clinical trials).15

(6) “CBD has the potential to harm you” (similar to other
drugs).16

(7) CBD can be converted to THC by chemical means but
appears not to convert to THC under physiological
conditions (vide inf ra).

(8) CBD is currently considered an illegal supplement (“It is
currently illegal to market CBD by adding it to a food or
labeling it as a dietary supplement”).16

(9) “CBD” is a popular product label but often misleading:
frequently “CBD” products contain many other chemi-
cally complex ingredients in addition to varying, some-
times small, amounts of CBD. Valid CBD label-claims
require rigorous analytical characterization of its identity,
purity, and stability (elements of residual complexity; vide
inf ra) rather than blanket statements such as “pure” or
“natural”.

Figure 1. (A) Tetrahydrodiphenyl skeleton of CBD in the context of the base structures of three other main classes of cannabinoids (dibenzopyrans,
benzopyrans, and acyclic prenyl-olivetols) and (B) five principal structural variations that occur in all cannabinoid classes. Different combinations of
these four classes, with variations such as these presented as well as additional redox-driven metabolic modifications, explain why CBD and THC are
just two molecules within the complex metabolome of cannabinoids.
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(10) CBD has not displayed meaningful activity on its own in a
double-blinded, placebo-controlled clinical trial. Trials
that underlie claims of a wide range of health have
predominantly used CBD as minor ingredient or part of
adjunctive therapy schemes that coadminister other
substances/preparations, often seeking to leverage
“botanical synergy” (also involving residual complexity;
vide inf ra). This is also important considering that CBD
displays strong DDIs (vide inf ra).

■ NATURAL PRODUCT (BIO-)CHEMISTRY OVERVIEW

CBD Is Just One Molecule in the Vast Chemical Space
of Cannabinoids. Formally, CBD can be considered to have a
tetrahydrobiphenyl skeleton: a bicyclic core that represents an
adduct formed by the monoterpene, p-cymene, and the
alkylresorcinol derivative, olivetol (Figure 1). CBD can be
converted into the tricyclic dibenzopyran, Δ9-THC (THC), via
an acid-catalyzed reaction.17,18 While CBD and THC are
prominent members of the cannabinoid family of compounds,
they are just a part of the numerous representatives of the
chemical subspace of the terpenylalkylresorcinol metabolome of
plants of the Cannabis genus.
Irrespective of their close biogenetic relationships (vide inf ra,

Biosynthetic Pathways), the cannabinoids represent a structur-
ally diverse chemical space. While this diversity has been
explored relatively extensively due to the strong general interest
in Cannabis phytochemistry, it offers much untapped structural

potential for reasons that become evident from the following
chemical and biogenic rationales.
The expression of naturally occurring cannabinoids (phyto-

cannabinoids) undergoes dynamic changes during the course of
plant growth19 and consist of four major classes of molecules
with distinct skeletons (Figure 1). All of these major classes
contain an olivetol core (i.e., a resorcinol) in which one hydroxyl
group is replaced by an alkyl chain (C5 in olivetol; with linear
and branched C4 to C7 alkyl chains also known to occur). In
addition to the bicyclic tetrahydrodiphenyl and tricyclic
dibenzopyran classes, benzopyrans (synonym, chromenes;
prototype, cannabichromene [CBC]) and acyclic prenyl-
olivetols (prototype, cannabigerol [CBG])20 are the other key
classes of cannabinoids. Within each, a variety of possible
metabolomic processes in the plant can effect further structural
modifications, expanding the Cannabis metabolome in five
major dimensions: (1) the variation of terpenyl saturation and
linkage; (2) the terpenyl stereochemistry; (3) the presence vs
absence of C-2 carboxylation (“acids”); (4) the variation of
length and branching of the olivetol alkyl chain (e.g.,
homologous cannabinoids);20 (5) the presence and variation
of the monoterpene vs sesquiterpene moieties. Collectively, this
gives rise to a plethora of natural cannabinoid metabolites. The
full breadth of the resulting cannabinoid chemodiversity likely
remains to be explored. Moreover, cannabinoids are only one
family among several phytoconstituent classes in Cannabis
plants.

Figure 2. The biosynthetic pathway of cannabinoids is the result of the intersection of three metabolic pathways in Cannabis sp.
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Biosynthetic Pathways. In the living plant and fresh plant
material, many cannabinoids are present in the form of
carboxylic acids. The underlying biogenic pathways are
sufficiently well-characterized to allow for heterologous
expression of the overall pathway.21 In plant material, CBD
acid and analogous cannabinoids are readily decarboxylated to
their neutral forms in the presence of heat and during other
mechanical manipulation and/or storage. For example, dried
and aged plant material contains both neutral and acidic forms of
CBD. The extent of decarboxylation also depends on the
extraction method and processing that occurs before the CBD
content is measured.
Cannabis sp. are prolific producers of terpenes and terpenoids,

a phenomenon that can also be observed in other plants such as
Eucalyptus sp. that are known to produce hundreds of these
compounds.21,22 It is likely that most of the cannabinoids are
produced at the intersection of three major biosynthetic
pathways: the DXP (deoxyxylulose phosphate, also called
methylerythrol phosphate [MEP]) pathway, the MVA (meva-
lonic acid) pathway, and the fatty acid pathway that feeds a
polyketide synthase (PKS), olivetolic acid synthase (Figure
2).21,23 The diversity of cannabinoids produced by Cannabis sp.
is mainly achieved through nonenzymatic modifications
occurring after the production of a common precursor.21,23

While predictive studies of the kinds of cannabinoids that could
potentially be produced by these plants are unavailable, the
diversity of metabolites arising from these pathways is congruent
with the already hundreds of identified cannabinoids.
CBDResidual Complexity, Purity, Identity, andQuality

Control. When choosing a method of chemical separation of
the cannabinoid metabolome, the occurrence of homologous
alkyl and prenyl side chains, single vs double cyclized
monoterpene rings, and presence vs absence of pyran/chromene
rings (Figure 1) present a chromatographic challenge. These
three structural permutations alone produce a mixture of
molecules with closely similar polarities and overall molecular
shapes. These challenges for the resolution capabilities of
current chromatographic systems apply equally to detection
methods that depend on prior separation such as GC− and LC−
MS, as well as to preparative methods including adsorbent-based
column and countercurrent/centrifugal partition (CCC/CPC)
chromatography that are employed for the targeted purification
of cannabinoids, such as CBD. Accordingly, when working with
Cannabis and related materials, it would be naive to assume that
individual chromatographic peaks arise from single (“pure”)
compounds. Even narrow elution time windows probably
contain residual amounts of congeneric cannabinoids and,
therefore, represent cases of residual complexity (https://go.uic.
edu/residualcomplexity).
Accordingly, CBD, THC, and any other “purified” individual

cannabinoids are subject to the principles of residual complexity
and its analytical implications. This caveat applies even when
high purity has been demonstrated by a rigorous method, such
as a combination of LC−UV/MS and quantitative NMR
(qNMR),24 as the stability of high purity material and/or
chemical changes during biological/clinical testing (i.e.,
dynamic residual complexity) needs to be demonstrated
separately. While thermoanalytical (DSC, TGA) purity assays
for CBD are unavailable in the literature, they have recently been
introduced for cocrystal forms of CBD.25 Extraction methods or
synthetic methodologies used in the preparation of CBD
products have a significant impact on what constitutes the final
preparation labeled with/as “CBD”.

In addition, residual complexity can involve both phytochem-
icals or synthetic reagents present in the original preparation that
can be carried through to the final step, as well as known (e.g.,
decarboxylation) or unanticipated chemical transformations
that may occur under the conditions used for extraction or
purification. Some concern exists that CBD may rearrange to
THC, but this transformation, while chemically feasible (vide
inf ra), is not likely to occur during extraction, separation, or
purification.26

The unique fingerprints of such residually complex materials
can be used to help identify the source and method of
production of a CBD product. Chemical fingerprinting method-
ology, currently used to identify illegal/counterfeit drugs, could
be adopted for cannabinoids to aid with the identification of the
source (material, origin) of various CBD products.27

Considering the permutational variations and resulting close
structural resemblance of natural cannabinoids, authentic CBD,
including CBD reference materials, must undergo rigorous
characterization involving at least HRMS supporting its
molecular formula (C21H30O2), 1D/2D

1H and 13C NMR
assignments, as well as physicochemical determination of its
properties including UV, IR, melting point (66−67 °C, although
this is dependent on polymorph) and boiling point (189 °C,
experimental conditions incl. pressure not reported), and optical
rotation (−125°) (from https://scifinder.cas.org and ref 28).
Ideally, the reference material is crystalline, and its quality is
supported by X-ray diffraction analysis. Universal as well as
simultaneous qualitative and quantitative capabilities24,29 make
NMR a highly versatile analytical method that is particularly
suitable for CBD and cannabinoids in general. This potential
was already recognized in 2004 by Hazekamp, Choi, and
Verpoorte,30 who utilized the relatively simple resonances of the
uncoupled or meta-coupled aromatic hydrogens as well as that
of the olefinic hydrogen in the monoterpene moiety to
determine the purity of isolated cannabinoids, as well as their
quantity, in extracts. A recently published quantitative NMR
(qNMR) method permits the absolute quantitation of CBD
using combined external (crystalline CBD) and internal
(residual CHCl3 signal) calibration.

31

One important feature of the 1D 1H NMR spectra of CBD
that has been underutilized to date pertains to the information
richness of the underlying 1H,1H spin coupling systems.
Considering the cyclic, unsaturated partial structure of CBD, it
can be anticipated that not only geminal and vicinal (2/3J) but
also a wealth of long-range couplings (predominantly 4/5J) are
present in the molecule. This gives rise to numerous fine
splittings in the apparently simple “singlet” signals that reveal
themselves as “multiplet” resonances upon closer inspection.
Another complication of interpreting the 1D 1HNMR spectrum
of CBD, which actually represents a highly characteristic feature
for the identification of the compound, relates to the higher
order coupling effects of closely resonating methylene and
methine hydrogens. Recent advancement in the quantum
mechanics-based computational analysis of 1H NMR spectra
has enabled a full interpretation of such spectra, using an
approach termed HiFSA (1H iterative full spin analysis),32

leading to the extraction of full sets of chemical shifts (δ) and
coupling constants (J).
One major advantage of HiFSA profiles is that they enable the

calculation and comparison of 1H NMR spectra at any field
strength,32 thus covering all practically available NMR instru-
ments from 40 to 900+MHz. Another feature of HiFSA is that it
can utilize digitally archived raw NMR data, as long as they are
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maintained and shared among scientists and practitioners using
FAIR principles.33,34 This enables the comparison of samples
and verification of compound identity over a long period of time,
across multiple laboratories, and without the need for authentic
reference materials. In order to help leverage the capabilities of
HiFSA profiles for future applications and demonstrate the
power of raw data sharing, we have performed a retrospective
HiFSA analysis of a 2004 CBD raw 1H NMR data (FID;
Supporting Information section S1). Figure 3 shows how the
highly characteristic single 1H NMR resonance of H-4″ax (axial)
can serve as a fingerprint signal that represents the entire CBD
molecule. This enables the use of routine 1HNMR spectroscopy
for unambiguous identity assays via comparison of 1H NMR
spectra at any field strength.32 Moreover, due to the inherently
quantitative nature of NMR, appropriately acquired qualitative
data can be utilized for qNMR-based CBD purity analysis that is
independent of identical reference standards.
General identity and purity assays for CBD involve liquid- and

gas-chromatographic comparison with authentic reference

material. However, product purity can deviate substantially
from assumed grades or values, even when quantitatively
measured against authentic standards, as the method is only as
reliable as the characterization of the reference material. The
vastly different abundance of the metabolites in crude
cannabinoid mixtures explains why minor components can go
undetected unless multiple preparative steps and/or orthogonal
separation systems are employed. At the same time, minor
components can be the principal or even sole factors for
biological outcomes, as shown recently for a 0.24% impurity of
an antimycobacterial agent.35 Likewise, a major “pure”
component can exhibit only minor or no real effects. As the
biological potency of individual compounds spans many orders
of magnitude, correlations between compound abundance and
observed potency can be counterintuitive when considered from
a chemical perspective alone.36

Applied to CBD and the other cannabinoids, the concept of
residual complexity has to be considered carefully when using
materials for preclinical biological studies and/or for clinical

Figure 3. Not only is the axial hydrogen, H-4″ax, involved in multiple J-couplings within the monoterpene moiety, but its 1H NMR resonance is also
affected by the close resonance behavior of its coupling partners. The resulting pronounced higher order effects of the ddddddq-type multiplet encode
the spin parameters of half of the molecule in such a way that the H-4″ax resonance alone becomes diagnostic for the entire CBDmolecule. See section
S1, Supporting Information, for the detailed results of the underlying 1H iterative full spin analysis (HiFSA).

Table 1. Key Terms and Definitions38

Material Definition

Cannabis Plant of theCannabaceae family that produces biologically active cannabinoids, some of which are controlled under the
Controlled Substances Act (CSA) since 197039

Marijuana Cannabis plant that produces THC at 20%+ levels
Hemp The plant Cannabis sativa L. and any part of the plant and all derivatives thereof with a THC content of <0.3% (dry

weight).39 Hemp can contain as much as 20% or more CBD.
Hemp seeds/oil Whole seeds or oil, containing fatty acid esters, that is expressed or extracted from seeds. These products contain 0%

THC and trace levels of CBD.
Cannabinoids Family of chemicals that act on the endocannabinoid system. TheCannabis plant synthesizes many cannabinoids, such

as THC and CBD.
THC Δ9-Tetrahydrocannabinol, a cannabinoid used for medicinal purposes and nonmedicinally for its (intoxicating) CNS

effects. CAS no. 1972-08-3
CBD Cannabidiol, a cannabinoid with an undefinedmechanism of action. Biosynthetically related to THC.Not intoxicating

even at high doses. CAS no. 13956-29-1
Cannabis-derived products for medicinal use Medicinal products containing cannabis or cannabinoids derived from the Cannabis plant (e.g., THC and/or CBD in

well-defined proportions)
Synthetic cannabinoids for medicinal use Medicinal products containing synthetically produced cannabinoids that typically mimic the effects of THC
Nonmedicinal CBD products Products containing CBD that are widely sold as herbal remedies but are not regulated as medicinal products
Nonmedicinal cannabis Material from the Cannabis plant that is not regulated as a medicinal product, widely used for its (intoxicating) CNS

effects
Nonmedicinal synthetic cannabinoids Synthetic cannabinoids that are typically not structurally related to naturally occurring cannabinoids and are not

currently recognized for medicinal use (e.g., synthetic cannabinoid receptor agonists, found in products such as
“spice”)
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interventions, including as nutritional supplements, and is
essential for the reproducibility of any studies with such
materials. The recent work by Citti et al. on the production
and purity of CBD as well as the identification of the 3-butyl
homologue as a common impurity confirms the relevance of the
residual complexity for CBD and other cannabinoids.37 In their
article, the authors also highlight the applicability of ICH
guidelines (Q3A(R2)), calling for the impurity analysis of APIs
to the level of 0.10% and 0.05% for daily doses of below and
above 2 g of the API, respectively.37

■ REGULATORY OVERVIEW
As of March 2020, the U.S. Federal Drug Administration (FDA)
had not approved the marketing of cannabis for the treatment of
any disease or condition. The FDA has, however, approved one
cannabis-derived product for medicinal use (Table 1),
Epidiolex, which contains CBD as API and is only available
from a licensed healthcare provider with a prescription.14,40 The
FDA has not approved any other CBD products currently on the
market in the United States. Epidiolex is an oral solution that
contains 100 mg/mL CBD, and the underlying patent refers to
CBD from both Cannabis plant extracts and synthesis as
potential sources. Inactive ingredients in this formulation
include dehydrated alcohol [not less than 98% volume
EtOH], sesame seed oil, strawberry flavor, and sucralose.41

Epidiolex was approved for the treatment of seizures associated
with Lennox−Gastaut or Dravet syndrome in patients 2 years of
age or older.39 Both syndromes are rare forms of treatment
refractory epilepsy that represent <5% of all childhood
epilepsies. Regarding the various products that contain (or
claim to contain42) CBD and are marketed without a
prescription, the FDA has published the following guidance,
which we quote here for clarity.

“Under the FD&C Act [note: Food, Drug, and Cosmetic
Act, 1938], any product intended to have a therapeutic or
medical use, and any product (other than a food) that is
intended to affect the structure or function of the body of
humans or animals, is a drug. Drugs must generally either
receive premarket approval by the FDA through the New
Drug Application (NDA) process or conform to a
“monograph” for a particular drug category, as established
by FDA’s Over-the-Counter (OTC) Drug Review. CBD was
not an ingredient considered under the OTC drug review.
An unapproved new drug cannot be distributed or sold in
interstate commerce. FDA continues to be concerned at the
proliferation of products asserting to contain CBD that are
marketed for therapeutic or medical uses although they have
not been approved by FDA. Often such products are sold
online and are therefore available throughout the country.
Selling unapproved products with unsubstantiated ther-
apeutic claims is not only a violation of the law, but also can
put patients at risk, as these products have not been proven
to be safe or effective. This deceptive marketing of unproven
treatments also raises significant public health concerns,
because patients and other consumers may be influenced not
to use approved therapies to treat serious and even fatal
diseases. Unlike drugs approved by FDA, products that have
not been subject to FDA review as part of the drug approval
process have not been evaluated as to whether they work,
what the proper dosage may be if they do work, how they
could interact with other drugs, or whether they have
dangerous side effects or other safety concerns.”39

In addition to one CBD product, the FDA has approved three
non-CBD cannabis-related drug products (Figure 4). Marinol

and Syndros have both been approved for therapeutic uses in the
United States, including for the treatment of anorexia associated
with weight loss in AIDS patients. Both therapies include
dronabinol as the active ingredient, a synthetic form of THC,
which is considered the psychoactive component of cannabis.
Cesamet is an FDA-approved product that contains nabilone as
the active ingredient, which is synthetically derived and has a
chemical structure similar to THC.
With these four exceptions, no product containing cannabis or

cannabis-derived compounds (either plant-based or synthetic)
have been approved as safe and effective for use in any patient
population, whether pediatric or adult. Going even farther, CBD
containing products are explicitly excluded from being sold as
“dietary supplements”. Following section 201(ff)(3)(B) of the
FD&C Act [21 U.S.C. § 321(ff)(3)(B)], if a substance (here,
CBD) is approved as an active ingredient in a drug product, then
products containing that substance are excluded from the
definition of a dietary supplement.

■ CONVERSION OF CBD TO THC
(−)-CBD was the major phytocannabinoid in extracts of
Cannabis sativa L. plants from which it was first isolated and
structurally characterized in 1940.43,44 Jones subsequently
confirmed the chemical structure by X-ray crystallography in
1977.45 CBD is chemically unstable at room temperature,
undergoes air oxidation to form cannabidiol hydroxyqui-
none,46,47 and can isomerize to other cannabinoids in acidic
environments. Gaoni and Mechoulam reported the isomer-
ization of CBD to THC and other cannabinoids under aqueous
acidic conditions; however this conversion results in amixture of
isomeric THCs in low yields. More recently, in a patented
method, CBD was converted to Δ9-THC in quantitative yield
using boron trifluoride etherate as a Lewis acid in anhydrous
CH2Cl2.

48 The sensitivity of CBD to acidic conditions has led to

Figure 4. Structures of the active ingredients of FDA-approved drugs
containing CBD or related compounds.
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the hypothesis that conversion of CBD toTHCunder the gastric
acidic environment in vivo can cause adverse pharmacological
effects from CBD-based marketed products.49 This conversion
has been debated in the literature, however, and there is no
direct evidence of the conversion of CBD to THC in the human
gut.50 Two in vitro studies have used simulated gastric fluid to
test the plausibility of this conversion. The first study reported
the formation of THC in 2.9% yield along with other
cannabinoid products in artificial gastric fluid without pepsin.51

In 2016, Zynerba Pharmaceuticals reported the formation of
psychoactive cannabinoids (Δ9-THC and Δ8-THC) by
exposing CBD to simulated gastric fluid (SGF),49 showing
98% conversion of CBD to these THC products (∼49% yield)
within 2 h by UPLC−MS analysis (Figure 5).

However, Grotenhermen52 and Nahler50 later refuted the in
vivo relevance of this report by pointing out that the SGF
protocol differs significantly from the physiological conditions
present in the stomach. Furthermore, these follow-up studies
reviewed data from previously conducted clinical trials of CBD
and found no reports of THC or related metabolites. A recent
study by the Lachenmeier group further ruled out the feasibility
of CBD to THC transformation.53 They conducted stability
studies of pure CBD solutions stored in SGF or subjected to a
range of storage conditions, such as heat and light. Mass
spectrometric (LC/MS/MS) and ultrahigh-pressure liquid
chromatographic/quadrupole time-of-flight mass spectrometric
(UHPLC-QTOF) analyses could not confirm the formation of
THC under any of these conditions.
None of the in vitro experiments reviewed herein represent a

sufficiently robust model to predict the in vivo gastric stability of
CBD, and the findings in each case may be a product of the
various experimental conditions employed. The currently
available and always accumulating in vivo data should be used
to rule out the possibility of THC formation, especially studies
where CBD is dosed at high levels. In the simplest in vivo

experiment, if CBD to THC conversion takes place in the
stomach, one would expect to see THC in feces upon high oral
dosing of the CBD. However, this has not yet been reported as
both CBD and THC are excreted unchanged in the feces (vide
inf ra).

■ BIOACTIVITY OF SIMPLE CBD ANALOGS
Inspired by the ethnopharmacology of Cannabis extracts and
potentially driven by reductionist research approaches (vide
supra), natural (−)-CBD has attracted attention as a drug
candidate and as a lead compound for medicinal chemistry
campaigns. However, efforts so far have resulted in few new
compounds as clinical or preclinical candidates. The large
number of such studies make it impossible to review all of the
results herein, but an examination of close CBD analogs will put
this body of work into context. Extensive first-pass metabolism
and the observed polypharmacology of CBDmake it challenging
to relate its therapeutic effects to a precise molecular target (vide
inf ra). This complicates the optimization of compounds
because no one target can effectively drive structure−activity
relationship studies. Synthetic analogues of CBD have been
targeted based on modification of the C3-alkyl chain, the phenol
ring, and the limonene moiety. Biological studies of these
compounds led to identification of compounds with interesting
pharmacological properties (Figure 6).
Hydrogenation of the double bonds in CBD resulted in H2-

CBD and H4-CBD, with reported anti-inflammatory properties,
anticonvulsant properties,54 and moderate affinity for the CB1
receptor.55 Unlike the naturally occurring (−)-CBD, the
enantiomeric (+)-CBD is not found in nature. (+)-CBD and
its analogs have been synthesized and evaluated for CB1/CB2
receptor affinity, showing strong activity below 1 μM.56,57 More
interestingly, evaluation of these compounds in the tetrad group
of assays,58 commonly used for assessing effects on cannabinoid
system, suggests that they do not activate CB1 receptors in the
brain but may have potential to selectively target the peripheral
CB1 receptors for the management of peripheral pain and
inflammation.57 Neuroprotective studies of C-3 alkyl chain
analogs of CBD resulted in the identification of KLS-13019 that
was 50-fold more potent (40 nM vs 2 μM for CBD) and >400-
fold less toxic (therapeutic index of 7500 vs 16) than CBD in
preventing ammonium acetate and ethanol-induced damage to
hippocampal neurons.59 A recently completed preclinical study
concluded that KLS-13019 regulates the mitochondrial
sodium−calcium exchanger-1 (mNCX-1), which is an impor-

Figure 5. Acid instability of cannabidiol as reported by Zynerba
Pharmaceuticals.47

Figure 6. Selected bioactive synthetic analogs of cannabidiol.

Journal of Medicinal Chemistry pubs.acs.org/jmc Perspective

https://dx.doi.org/10.1021/acs.jmedchem.0c00724
J. Med. Chem. 2020, 63, 12137−12155

12143

https://pubs.acs.org/doi/10.1021/acs.jmedchem.0c00724?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.0c00724?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.0c00724?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.0c00724?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.0c00724?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.0c00724?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.0c00724?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.0c00724?fig=fig6&ref=pdf
pubs.acs.org/jmc?ref=pdf
https://dx.doi.org/10.1021/acs.jmedchem.0c00724?ref=pdf


tant therapeutic target for the treatment of chemotherapy-
induced peripheral neuropathy (CIPN).60 Abn-CBD, a
synthetic regioisomer of CBD, and O-1602 have been reported
to engage orphan receptors GPR-18 (no EC50 reported) and
GPR-55 (EC50 2 nM), respectively, that are involved in diverse
physiological processes.61−64

■ PHARMACOLOGY

CBD Receptor Activity. The broad-ranging therapeutic
utility claimed of CBD has been attributed to its reported
pharmacological activity at a number of receptors. Some of the
most frequently highlighted targets of CBD include the
following: ligand-gated ion channels (GlyR, NaV, nAch,
GABAA), TRP channels (TRPV1, TRPV2, TRPA1, TRPM8),
GPCRs (5-HT1A, α1A, μ-OPR, δ-OPR, CB1, CB2, GPR18,
GPR55), enzymes (FAAH, CYP450), and nuclear receptors
(PPARg).65−67 From a careful inspection of the original
publications where these bioactivities are reported, the out-
comes are almost certainly irrelevant to most nonprescription
products given the relatively small dose of CBD that such
products contain and the low bioavailability of CBD (vide inf ra,
Absorption).

Even in the case of high-dose pharmaceutical products, some
in vivo activities of CBD are only supported by brain
concentrations that are achieved if CBD is dosed at 120 mg/
kg in mice.68 For example, the allosteric effects reported for μ-
and δ-opioid receptors were stated by the study authors not to
be of significance because the EC50 values of those interactions
are approximately 100-fold higher than those of the plasma
concentration of 36 ng/mL (approximately 100 nM) in humans
when given a single dose of an oral preparation containing 100
mg of CBD.69 Likewise, CBD only displaced the agonist [3H]-8-
OH-DPAT from the 5-HT1A receptor at EC50 = 8−16 μM and
[3H]-ketaserin from 5-HT2A at EC50 ∼ 32 μM.70 In the case of
ion channels, it has been noted that the channel modulating
effects of CBD are rather promiscuous and may be explained by
a combination of direct interaction of CBDwith the channel and
the impact of CBD on membrane bilayer flexibility.11,12 This is
similar to the membrane disrupting effects seen with many
(overstudied) natural products.71,72

Importantly, it is generally accepted that CBD is 50-fold less
active at the endocannabinoid receptors (Ki of 4350 nM at CB1
and 2860 nM at CB2) than THC (Ki of 40.7 nM at CB1 and 36.4
nM at CB2).

73 This has been used to explain the lack of

Figure 7. Interference profiling of CBD. (A) CBD showsmoderate activity at several receptors.Ki values were reported from testing by PDSP. Full data
are in Supporting Information. (B) CBD shows concentration-dependent, detergent-sensitive inhibition of AmpC in a colloidal aggregation
counterscreen. TIPT, positive aggregation control; 2-BTBA, positive nonaggregator control. Data are the mean ± SD of four intrarun technical
replicates. (C) CBD shows detergent-sensitive inhibition of MDH in an orthogonal aggregation counterscreen. Compounds were tested at 33 or 100
μM final concentrations in either the presence (blue) or absence (magenta) of buffer containing freshly added 0.01% Triton X-100 (v/v). Data are the
mean ± SD of at least three intrarun technical replicates. (D) CBD forms detectible colloidal aggregates at approximately 12.5 μM by DLS. (E) CBD
does not produce detectable H2O2 in a HRP-PR redox-cycling counterscreen. Compounds were assayed at 250 μM final concentrations, 1 mMDTT,
enzyme. H2O2, positive control; NSC-663284 and 4-amino-1-naphthol, positive control compounds. Data are mean ± SD of at least three intrarun
technical replicates.
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psychoactive effects of CBD even at high dosing. Ironically, the
observed therapeutic utility of CBDmay be due to the “meaning
effect” activating this placebo pathway (vide inf ra).74

In an attempt to better understand some of the reported
receptor activities of CBD, we profiled a broad panel of
neurological receptors offered by the Psychoactive Drug
Screening Program at UNC (Supporting Information section
S2). CBD did not show appreciable activity (<50% inhibition at
10 μM) at 37 of the 45 targets assayed. It displayed measurable,
but not significant, inhibition (>50% inhibition at 10 μM) at the
following receptors: 5-HT2C, MOR, KOR, D1, H3, α2b, σ2, α2C,
and DOR (Figure 7A). CBD failed to achieve full inhibition at
any of these receptors, as evidenced by dose−response curves
that do not reach 0% activity at the highest concentrations tested
(see Supporting Information section S2). The reportedKi values
for these nine receptors were all >1 μM. Considering that
pharmacological activity can only be achieved by free or
unbound compound in circulation (the free drug principle75),
the plasma protein binding of CBD becomes important in
relation to these Ki values. CBD is reported as ∼90% plasma
protein bound,76 meaning that in the presence of serum proteins
the Ki may be significantly higher. However, plasma protein
binding alone cannot predict the relevant in vivo concentration
of a compound.77 Therefore, whether or not these activities are
relevant to the in vivo activity of CBD in humans remains to be
further investigated.
Interaction of CBDwith CYPs.Themost relevant observed

bioactivity of CBD as it relates to current therapeutic utility
appears to be its ability to interact with CYPs. This binding has
been demonstrated in numerous settings and leads to the best-
documented activities of CBD, which are drug−drug
interactions (DDIs) or, in the case of herbal products, drug−
herb interactions (DHIs). These DDIs/DHIs cause an increase
of plasma concentration of drugs that are metabolized by the
CYPs, in turn generating a measurable increase in the effect of
said drugs. For example, a bidirectional drug interaction occurs
with the combination epilepsy medication clobazam and CBD.
This results in a 1.7- to 2.2-fold increase in the mean plasma
clobazam concentration in patients receiving clobazam con-
comitantly with 40 mg kg−1 day−1 of CBD oral solution
compared with 10 mg kg−1 day−1 and 20 mg kg−1 day−1.78

In a phase I, open-label pharmacokinetic trial, dosing CBD
concomitantly with clobazam led to an 3.4-fold increase in Cmax

and AUC of N-desmethylclobazam, the major active metabolite
of clobazam.10 CBD treatment of pediatric patients taking
clobazam resulted in higher reporting of side effects that could
be ameliorated by clobazam dose reduction.79 Finally, clinical
trial simulations of the effect of 20 mg kg−1 day−1 CBD on drop-
seizure frequency in patients (some of whom were also taking
clobazam) with Lennox−Gastaut syndrome showed that the
claimed efficacy of CBD may be largely explained by its drug−
drug interaction with clobazam.80 Clobazam is primarily
metabolized in the liver by CYP3A4, with minor involvement
from CYP2C19 and CYP2B6.81 CBD is active at these CYPs at
or below 1 μM(vide inf ra, Toxicology). Therefore, while CBD is
an effective part of the therapy, the mechanism of action of CBD
may be simply to increase the tissue concentration of another
disease-modifying therapeutic. While possessing therapeutically
useful properties as an adjuvant, CBD alone has not, to our
knowledge, been shown to have disease-modifying effects on
epilepsy or any other disease.

■ BIOASSAY INTERFERENCES OF CBD
CBD exhibits bioassay promiscuity. This unwanted effect is
likely due to CBD’s ability to disrupt membranes and its high
lipophilicity, especially when paired with high compound test
concentrations in vitro (i.e., micromolar). Table 2 details several

relevant physicochemical properties calculated for CBD using
ChemDraw Professional 16 (PerkinElmer) and Molinspiration
Property Calculation Service (version 2018.10).82 Compounds
can interfere with assay technologies to produce false-positive
readouts or nonspecifically perturb biological systems by poorly
optimizable mechanisms of action such as redox cycling,
colloidal aggregation, membrane perturbation, and general
cytotoxicity, to name a few.83 This motivated the profiling of
CBD for several common sources of biological assay
interference as part of this study.
In our experiments (see experimental details in Supporting

Information), CBD showed detergent-sensitive inhibition of
two unrelated enzymes, AmpC β-lactamase and malate
dehydrogenase (MDH), at low micromolar concentrations,
which is consistent with nonspecific inhibition by colloidal
aggregation (Figure 7B,C). CBD formed detectable colloidal
aggregates by dynamic light scattering (DLS) at approximately
12.5 μM [Figure 7D; n.b. the critical aggregation concentration
(CAC) can vary several-fold depending on experimental
conditions]. By contrast, CBD did not produce detectable
levels of H2O2 in a counterscreen for redox activity (Figure 7E).
These data suggest that CBD likely forms colloidal aggregates at
low micromolar concentrations, which is significant as
aggregators can nonspecifically perturb proteins in both cell-
free and cellular assays. Along with the noted effects of CBD on
in vitro cellular health (e.g., cytotoxicity, proapoptotic), this calls
into question how to interpret and practically apply studies that
attribute specific bioactivities to CBD when testing concen-
trations were near the approximate CAC (or within ranges that
may adversely perturb cellular health).11,84,85

In our experience with chemical probe validation, tantalizing
readouts and pharmacological models produced under these
conditions can be reproduced by a variety of bad-acting
compounds, pointing to a nonspecific mechanism of action. In
addition, these experiments can lack relevance as the in vitro
conditions would never be achieved in vivo. Cell-based activity
should always be accompanied by biomarker evidence of target

Table 2. Physicochemical Properties of CBD

Property Value

MW 314.47 g/mol
log P 5.91
ClogP 6.64
tPSA 40.46 Å2s
H-bond donors 2
H-bond acceptors 2
rotatable bonds 6
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engagement. Given its ability to injure cells, we would
recommend that future in vitro studies characterize the effects
of CBD on cellular health in parallel to activity studies.

■ ADMET: ABSORPTION, DISTRIBUTION,
METABOLISM, EXCRETION, TOXICOLOGY

Due to the diverse nature of the routes of administration by
which CBD has been studied, its pharmacokinetic (PK) analysis
is more complex than for other therapeutics. In addition to the
traditional oral (i.e., capsule) and parenteral (i.e., intravenous)
routes, CBD has also been studied as oral sublingual drops,
oromucosal spray, or a component of a food product and as an
inhalation agent through an aerosol, nebulizer, vapor, or
cigarettes. All of these varied formulations and routes of
administration carry different propensities for adsorption and
distribution, which then affects the rest of the measured PK
characteristics of the compound.
Absorption. CBD has been studied in a wide variety of

formulations but has generally been administered orally either as
a capsule, dissolved in an oil or other organic solvent, or as an
oromucosal spray.15 Study doses are commonly a single dose in
the 2−20 mg range, with some studies testing doses upward of
800 mg (Table 3). The plasma Cmax generally increases with
increased dose and is slightly increased in the fed vs fasted state;

the Tmax is not significantly impacted by dose. Absorption
appears highest upon inhalation, whether by smoking or other
forms of vaporization. At the time of this article, the only
rigorous bioavailability (F) reported was in a smoking study of
five male participants that reported an average bioavailability of
31%.86 When considering the differences seen in plasma
concentration from oral dosing, it is expected that oral
bioavailability is significantly lower. In an animal study of
CBD oral bioavailability, three dogs led to an F range of 13−
19%.87

Distribution. Complete details of bodily distribution of
CBD are not readily available. In the same study as cited above
on oral bioavailability, the volume of distribution of CBD upon
iv dosing was 2520 L.86 Several studies of volume of distribution
for oromucosal spray formulations report extremely high
volumes of distribution between 26 000 and 31 000 L.88

These data suggest that any CBD that enters systemic
circulation is widely distributed throughout the tissues of the
body. In a study of CBD oral dosing in mice, 120 mg/kg resulted
in a range of maximum brain tissue concentrations of 4−21
μM.89 Another study looked at the concentration of CBD in the
brain ofmice after subcutaneous administration at 10mg/kg and
reported a Cmax of 1−2 μM.68 Not surprisingly, the
concentration of CBD in brain tissue is always measured as

Table 3. Average CBD Dose, Tmax, and Cmax for Human Studies of CBD Administrationa

avg dose (mg) avg Tmax (h) avg Cmax (ng/mL) avg Cmax (nM) F (%) (if reported)

low oral doseb 14 ± 15 1.9 ± 1.2 2.8 ± 2.2 0.9
high oral dosec 525 ± 340 3.1 ± 0.3 131.9 ± 82.5 41.5
inhalation dosed 3.5 ± 5.5 0.3 ± 0.3 35.3 ± 41.3 11.1 31

aAnalysis of 50 reported studies of CBD dosing that included reported plasma levels. bDose range: 1.5−20 mg. cDose range: 100−800 mg. dDose
range: 1.5−20 mg.

Figure 8. Major metabolites of cannabidiol.
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being lower than the correlating plasma concentration. There-
fore, CBD levels in human brain tissue are likely to be lower than
the reported plasma concentrations in humans (see Table 3, <50
nM); however there appears to be no significant barrier to brain
penetration of CBD.
Metabolism. In general, CBD shows similar metabolism to

that of THC, which aligns with their structural similarity (Figure
1A). CBD is subject to a high first-pass effect, similar to THC.90

CBD is affected by extensive oxidative metabolism, with the
most prominent metabolites being allylic hydroxylation
products at the 6- and 7-positions, followed by alkyl
hydroxylation products at all positions along the alkyl chain
(Figure 8).91,92 Several of these metabolites have been identified
in human plasma,93 and at least one report of the analysis of
human urine identifies these and the glucuronides of the
phenolic oxygen species.94 Several in vitro studies have
investigated which cytochrome P450 enzymes are primarily
responsible for these transformations. The allylic hydroxylations
are primarily performed by CYP2C19 and CYP3A4, while the
alkyl hydroxylations can be produced by a wider variety of
enzymes: CYP3A4, CYP3A5, CYP1A1, CYP1A2, CYP2C9, and
CYP2D6. Recent in vitro evidence showed the formation of
decarbonylated metabolites via CYP3A4 activity in human liver
microsomes.95 To date, no literature suggests significant
receptor activity for any of these identified CBD metabolites.
Of great interest is the question of whether CBD can be

converted to THC after dosing. While there is some contested
evidence that highly acidic environments can facilitate this
transformation (vide supra), no evidence in the current literature
suggests that CBD is metabolized into THC in vivo.96−98

Excretion. The half-life of elimination (t1/2) of CBD is
variable and depends especially on its route of administration.
Generally, oral administration via oil, oromucosal spray, or
nebulizer/aerosol leads to a t1/2 of about 2 h.99,100 Admin-
istration via iv, smoking, or chronic oral administration leads to a
significantly longer t1/2 of 24 h, 31 h,86 or 2−5 days,101

respectively.
While CBD and THC are both subject to a strong first-pass

effect, a significant portion of both cannabinoids are excreted
unchanged in the feces.102 This suggests that a large portion of a
CBD dose is not absorbed, which matches the reports of low
bioavailability.14 The families of oxidized and glucuronidated
metabolites are largely excreted by the kidneys and can be
identified in the urine.
The overall plasma clearance of CBD varies depending on the

fed vs fasted state. Oromucosal spray administration of doses
ranging from 5 to 20 mg yields apparent plasma clearance (CL′)
ranging from 2500 to 4700 L/h.88,103,104 This decreases to 533
L/h for the same concentration range in a fed state.103 In
contrast, the mean elimination rate (Kel) does not change
significantly between the fed and fasted states. There is some
variation in elimination rate depending on the route of
administration. Oromucosal spray administration results in Kel
(1/h) values ranging from 0.12 to 0.17. Nebulizer or aerosol
administration, however, results in Kel values of of 0.98 and 0.43,
respectively.99

Toxicology. CBD appears to generally be safe upon
administration via several routes at low doses (<100 mg).
However, studies of CBD use in combination with other drugs,
and animal toxicological studies, raise concerns of DDIs and
other potential adverse effects.
As the metabolism of CBD has been well-studied (vide supra),

the administration of CBD when taking drugs that are known to

inhibit or activate relevant cytochrome P450s will alter the
overall plasma concentration and/or half-life of CBD in the
plasma. In addition, CBD has been shown to inhibit some
cytochrome P450 enzymes at physiologically achievable levels
(Table 4).105 Importantly, CBD interferes with the metabolism

of both hexobarbital106 and, as presented earlier, clobazam79 if
given concomitantly, raising concerns for drug−drug inter-
actions (DDIs).
More recently, several studies have been published warning

about potential adverse effects of CBD administration, as
determined through cellular or animal studies. In 2017, the
hypothesis that CBD can be neuroprotective in neonatal
hypoxic−ischemia was tested in pigs. High-dose (25 or 50
mg/kg) CBD resulted in significant hypotension (mean arterial
blood pressure drop below 70% of baseline), including death by
fatal cardiac arrest in at least one animal. In addition, no
neuroprotective effect was observed in this model as measured
by neuropathology, astrocytic markers, and other plasma
markers.107 In 2018, the pattern of DNA methylation in the
sperm of cannabis users was found to be significantly altered, and
overall sperm concentration was significantly lower as compared
to nonusers.108 These changes were similar to the shift in
epigenetic patterns seen in THC-exposed rats, which raises the
concern for possible inheritable epigenetic changes related to
cannabis use.109 It is not known whether chronic use of CBD
alone can lead to epigenetic changes.
Research into the reproductive toxicity of chronic CBD

exposure in male mice corroborates the potential reproductive
toxicity.110 The authors report that 34 days of 15 or 30 mg/kg
daily dosing resulted in significant changes in several measures of
reproductive health, including testosterone levels, spermato-
genesis, daily sperm production, and increased abnormal sperm
morphology. A 2019 study aimed at determining the potential
hepatotoxicity of CBD evaluated gene expression arrays in mice
after oral dosing of a single high dose (246−2460 mg/kg) or a
chronic lower dose (61.5−615mg/kg for 10 days) of CBD.111 In
this study, gene expression arrays showed alteration of >50 genes
following CBD dosing, relating to oxidative stress responses,
lipid metabolism pathways, and drug metabolizing enzymes.
Finally, a study of CBD exposure in two human-derived cell lines
showed nuclear aberrations and DNA damage consistent with
single and double strand breaks and apurinic sites.112 This
cellular damage was observed at CBD concentrations (0.22 μM)
that are relevant to reported CBD exposure in humans.

Table 4. In Vitro Inhibition of CYP Activity by CBD105

CBD Ki (μM)

CYP1A1 0.16
CYP1A2 2.69
CYP1B1 3.63
CYP2A6 55.0
CYP2B6 0.69
CYP2C9 5.60
CYP2C11 20.7
CYP2C19 0.79
CYP2D6 2.42
CYP3A4 1.00
CYP3A5 0.19
CYP3A7 12.3
CYP17 124
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Clinical Trials. From a thorough analysis of the literature, it
appears that CBD has not shown efficacy as a single substance in
any phase II or III clinical trials. In phase I trials, CBD has been
shown to be generally well-tolerated at single doses up to 6000
mg and multiple doses up to 1500 mg twice daily.93 The most
common side-effects were gastrointestinal disorders, headaches,
and somnolence. CBD has advanced to phase III clinical trials in
certain rare forms of epilepsy. In the pivotal phase III clinical
trials (multicenter, randomized, double-blind, placebo-con-
trolled) that led to the approval of Epidiolex, all patients were
typically taking at least three other seizure medicines along with
CBD: clobazam (47−51%), valproate (all forms, 37−39%),
levetiracetam (30−32%), lamotrigine (26−33%), or rufinamide
(26−34%) (name of the medication, percent of patients taking
the drug across all arms of the trial).113 In this trial, the median
percent reduction from baseline in drop-seizure frequency was
42% in the 20 mg kg−1 day−1 group (the average age of study
participant was 15 years, ∼1000 mg/day) and 17% in the
placebo group.
Although this result was in part responsible for the approval of

Epidiolex in these hard-to-manage forms of epilepsy, the
significance of this result with respect to the pharmacological
action of CBD has been called into question. This is because of
known DDIs between CBD and other antiepileptic drugs,114

which is especially relevant in the case of clobazam and its active
metabolite, N-desmethylclobazam. CBD doses of 20 mg kg−1

day−1 (as were used in the Epidiolex trial) are known to increase
the exposure of N-desmethylclobazam 2- to 6-fold in children
with refractory epilepsy despite clobazam dose reductions.79

This, and other evidence, led Groeneveld to propose that the
effect of CBD on drop-seizure frequencymay be explained solely
on this DDI, without the need to invoke any special epilepsy-
treating pharmacology to CBD.80,115 The American Epilepsy
Society had the following to say about these clinical trials
(quoted here for clarity):

“Recently, there have been several scientifically rigorous,
double-blind, placebo-controlled randomized clinical trials
of one specific pharmaceutical-grade, purified, highly
concentrated CBD for patients with refractory epilepsy
that have been published. Studies evaluating the
pharmacokinetics and potential drug−drug interactions
with this formulation have also been published or presented
at epilepsy congresses. These trials demonstrated that this
one pharmaceutical-grade CBD is moderately effective in the
treatment of patients with seizures in both Lennox−Gastaut
syndrome (LGS) and Dravet syndrome. However, these
studies also showed that CBD has more side effects than
placebo and revealed previously unrecognized drug−drug
interactions.”116

We found several examples of CBD being touted as a remedy
for addiction,117 aging,118 anxiety, arthritis,119 concussion,120

depression, nausea, obesity,121 pain, Parkinson’s disease,122

post-traumatic stress disorder, and psychiatric disorders (among
others).117 However, no evidence of double-blinded, placebo-
controlled clinical trials that supported these claims could be
located. One double-blinded trial, albeit not placebo-controlled,
in patients with schizophrenia reported a clinically significant
reduction in PANSS scores (positive and negative symptoms
scale) of patients treated with 800 mg/day. In this case, the
quality of the CBD used in the trial was not reported.123

Anecdotal claims of CBD therapeutic utility often arise from
what are actually inconclusive studies. For example, some claims
of the therapeutic utility of CBD are based on studies where the

substance being tested was actually cannabis (extract) rather
than CBD; in other studies the size of the trial was too small to
make any conclusive judgements; and in still others the patients
were taking other medications that may be subject to CBD
DDIs. Therefore, it remains blurred whether any clinical trials
have shown CBD alone to be effective for therapeutic use.
Claims to the contrary must ensure the relevance of the
referenced clinical trial by qualifying the following points:

(1) What was the exact identity and purity of the CBD used?
Note that APIs are distinct from crude preparations (such
as plant extracts) and that residual complexity (including
significant content in, for example, THC; vide supra) is
relevant and will confound the study results.

(2) Was the trial placebo-controlled?
(3) Was the trial double-blinded?
(4) Was the statistical analysis plan published before the

trial?124

(5) Did the authors claim significance of the results?
(6) If CBD was used in combination, was the possibility of

DDIs considered? Is the coadministered agent metabo-
lized by CYPs?

It is also important to note that the effective CBD doses used
in most reported clinical trials are typically 800−1000 mg/day.
Putting this into the perspective, commercial “tinctures” or “oils”
commonly found in themarketplace consist of less than 20mg of
CBD per serving. A typical consumer-sized bottle of CBDoil (30
mL) might contain 1000 mg total CBD and cost on the order of
$50−60.125
With respect to anecdotal reports of efficacies of CBD oils and

tinctures, such CBD “personal trials” may be subject to a
“placebo” response based on the cachet of CBD as a well-known
component of (medical) cannabis. The intricate influence of the
placebo effect on the testing of cannabis and cannabinoids has
been discussed; e.g., Gertsch wrote recently,13 “Unlike with other
medicinal plants that have rather questionable ef f icacies and
unknown mechanisms of action, nobody seems to doubt a priori the
therapeutic ef fectiveness of cannabis. Accordingly, patients who use
medical cannabis products have high expectations of benef icial
ef fects (i.e., the plant is meaningful to them).” and “Rather than
being either a placebo or drug, cannabis might be a drug both
conveying and inducing a meaning response.” The anthropologist,
David Moerman, referred to this effect of the conveyed meaning
embodied in the placebo as the “meaning response”.126

Therefore, because CBD has been so conflated with cannabis,
even if CBD has no direct pharmacological effect, its associated
“meaning effect” may activate a secondary pharmacological
effect. Ironically, this meaning effect in CBD trials may occur via
the endocannabinoid CB1 and CB2 pathways, receptors for
which CBD has no intrinsic activity, though they are the primary
mediators of THC’s effects.13,127 Clinical trials of botanical
preparations fail to reject the placebo-based null hypothesis128

and report unexpectedly pronounced placebo effects129,130 more
commonly than API-based trials, which further supports the
relevance of “meaning responses” and “meaning effects”.

■ SUMMARY
Cannabis is a useful therapeutic and source of lead compounds.
At the same time, the reductionist tendencies of Western
medicine have seen certain Cannabis preparations reduced to
the pure compound, CBD. While this study could not find
evidence supporting the numerous and broad health claims
associated with CBD, evidence suggests that CBD can affect
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biological systems in the following ways: (a) through a strong,
physiologically relevant interaction with metabolizing enzymes,
thereby modulating the activity of other substances; (b) via a
strong “meaning effect”; (c) by means of a weak, promiscuous,
and low-level modulation of membrane-bound proteins.
The recent FDA approval of CBD as a drug excludes it from

being used as a dietary supplement in the U.S. If used at low
doses, e.g., as one (minor) constituent of supplements, which
often carry the potentially misleading “CBD” label, CBD most
likely cannot produce any therapeutic effect. When used at high
doses, any therapeutic effect is likely due to either the strong
interaction of CBD with metabolic enzymes, its likely “meaning
effect”, or a result of other components contained in products
labeled as “CBD”. Additionally, at the highest doses, negative
side-effects are likely to become more pronounced, thereby
limiting the utility of this substance.
Unless the purity of CBD is assessed rigorously, or whenever a

chemically complex (crude) material is the component of a
product bearing the “CBD” label, residual complexity can
become amajor disruptor in the logical chain that connects CBD
as an API and pharmacological agent with its role as the key
active component of the preparation: residually complex
materials have a much increased chance of containing other,
especially minor and/or more potent, bioactives.
While many claims have been made about a large variety of

potential health benefits of CBD, the present work uncovers a
lack of scientific foundation to most of these claims. While CBD
can enter systemic circulation at potentially physiologically
relevant levels, there is no clear understanding of the receptor
activity of CBD and an even greater deficiency in terms of
potentially harmful adverse effects. Whereas an FDA-approved
therapeutic regimen containing CBD does exist, the efficacy of
the treatment appears to be related to its DDI mechanisms.
Importantly, unless new biological targets for antiviral and/or
health resilience can be discovered and validated, product claims
that CBD has health effects for treatment or alleviation of SARS-
CoV-2 and analogous viral pathogens should be considered
unsubstantiated and misguided.131

Widely available products with chemically complex ingre-
dients containing various amounts of CBD are a major
confounding factor in distinguishing sound experimental
evidence, including clinical trials and other in vivo outcomes,
from unsubstantiated or anecdotal health claims. This
observation reflects a concerning global trend of obscuring the
lack of quality control parameters and objective health outcomes
of freely available products by associating them with the word
“natural” and similarly implicative terms. More rigorous work
needs to be done to determine what, if any, specific efficacy CBD
may have as a therapeutic agent.
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