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Abstract. We consider the mean-field dynamics of Bose-Einstein conden-
sates in rotating harmonic traps and establish several stability and instability

properties for the corresponding solution. We particularly emphasize the dif-

ference between the situation in which the trap is symmetric with respect to
the rotation axis and the one where this is not the case.

1. Introduction

In this note, we consider the dynamics of (harmonically) trapped Bose-Einstein
condensates (BEC), subject to an external rotating force. Because of their ability to
display quantum effects at the macroscopic scale, BEC have become an important
subject of research, both experimentally and theoretically. In particular, the ex-
pression of quantum vortices in rapidly rotating BEC has been an ongoing topic of
interest over the last few decades, see, e.g., [1, 4, 7, 10, 12, 13, 25] and the references
therein. It is well-known that in the mean-field regime, BEC can be accurately de-
scribed by the celebrated Gross-Pitaevskii equation (GP) for ψ, the macroscopic
wave function of the condensate, see [22, 26, 27]. In dimensionless units, the GP
equation with general nonlinearity reads

(1.1) i∂tψ = −1

2
∆ψ + V (x)ψ + a|ψ|2σψ − (Ω · L)ψ , ψ|t=0 = ψ0(x) .

Here, a ∈ R, σ > 0 and (t, x) ∈ R× Rd with d = 2, or 3, respectively. The former
situation thereby corresponds to the case of an effective two-dimensional BEC,
obtained via strong confining forces, see, e.g., [23] for more details. The external
potential V (x) ∈ R is assumed to be harmonic, i.e.,

(1.2) V (x) =
1

2

d∑
j=1

ω2
jx

2
j ,

where the parameters ωj ∈ R \ {0} represent the respective trapping frequencies in
each spatial direction. As we shall see, the smallest trapping frequency denoted by

0 < ω ≡ min
j=1,...,d

{ωj},

will play a particular role in our analysis.
We further assume that the BEC is subject to a rotating force along a given

rotation axis Ω ∈ R3 and denote by

L = −ix ∧∇,
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the quantum mechanical angular momentum operator. Note that in dimension
d = 2, we always have

(1.3) Ω · L = −i|Ω|
(
x1∂x2

− x2∂x1

)
,

corresponding to the case where Ω = (0, 0, |Ω|) ∈ R3.
The nonlinearity in (1.1) describes the mean-field self-interaction of the conden-

sate particles. The physically most relevant case is given by a cubic nonlinearity,
i.e. σ = 1, but for the sake of generality we shall in the following allow for more
general σ > 0. We shall also allow for both attractive a < 0 and repulsive a > 0
interactions, satisfying Assumption 1 below. Vortices are generally believed to be
unstable in the former case (see, e.g., [7, 9, 25]), while they are known to form
stable lattice configurations in the latter [1, 10, 13].

In this work, we shall not be interested in the dynamical features of individual
vortices, but rather study bulk properties of the condensate, as described by (1.1).
To this end, we recall that the natural energy space associated to (1.1) is given by

Σ = {u ∈ H1(Rd) : |x|u ∈ L2(Rd)},

equipped with the norm

‖u‖2Σ = ‖u‖2L2 + ‖∇u‖2L2 + ‖|x|u‖2L2 .

We also impose the following sub-criticality condition on the nonlinearity:

Assumption 1. One of the following holds:

• a > 0 (defocusing) and 0 < σ < 2
(d−2)+

, or

• a < 0 (focusing) and 0 < σ < 2
d .

Under these hypotheses, the existence of a unique global in-time solution ψ ∈
C(Rt; Σ) to (1.1) has been proved in [2]. In particular, the restriction σ < 2

d in the
focusing case (a < 0) ensures that no finite-time blow-up can occur. In addition,
the global solution ψ(t, ·) ∈ Σ is known to conserve the total mass, i.e.

(1.4) N(ψ(t, ·)) =

∫
Rd
|ψ(t, x)|2 dx = N(ψ0), ∀ t ∈ R,

as well as

(1.5) EΩ(ψ(t, ·)) = EΩ(ψ0), ∀ t ∈ R,

where EΩ denotes the associated Gross-Pitaevskii energy:

(1.6) EΩ(ψ) =

∫
Rd

1

2
|∇ψ|2 + V (x)|ψ|2 +

a

σ + 1
|ψ|2σ+2 − ψ(Ω · L)ψ dx.

Note that the last term within EΩ is sign indefinite.
In the following, we shall focus on various stability and/or instability properties

of solutions ψ to (1.1): Our first task will be to study the orbital stability of
nonlinear ground states associated to (1.1). These are solutions to (1.1) given by

ψ(t, x) = e−iµtϕ(x), µ ∈ R,

where ϕ is obtained as a constrained minimizer of the energy functional EΩ(ϕ).
In [20, 26, 27], the onset of vortex nucleation is linked to a symmetry breaking
phenomenon for minimizers of EΩ(ϕ), which is proved to happen for |Ω| above
a certain critical speed Ωcrit > 0, even in the case of radially symmetric traps
V with ω1 = ω2 = ω3 (see Section 3 for more details). In our first main result
below, we shall prove that under Assumption 1 and for |Ω| < ω, the set of all
energy minimizers is indeed orbitally stable under the time-evolution of (1.1). In
turn, this will allow us to conclude several new results of orbital stability for a



(IN-)STABILITY PROPERTIES OF ROTATING BEC 3

class of rotating solutions to nonlinear Schrödinger equations without the angular
momentum term ∝ Ω.

The question of whether the condition |Ω| < ω is only needed for the existence of
ground states, or also has a nontrivial effect in the solution of the time-dependent
equation (1.1), then leads us to our second line of investigation. A theorem based on
the Ehrenfest equations associated to (1.1), shows that in the case of non-istotropic
potentials V , a resonance-type phenomenon can occur for |Ω| > ω. This leads to
solutions ψ whose Σ-norm is growing (forward or backward) in time with a rate
that can even be exponential, depending on the choice of Ω and ωj . Physically, this
can be interpreted as a manifestation of non-trapped solutions of (1.1) whose mass
is pushed towards spatial infinity.

The paper is organized as follows: In Section 2 below we shall prove the exis-
tence of nonlinear ground states. Their orbital stability (and several further con-
sequences) is proved in Section 3. Finally, we turn to the analysis of possible
resonances in Section 4.

2. Existence of ground states

In this section we shall prove the existence of time-periodic solutions ψ(t, x) =
e−iµtϕ(x) to (1.1), which satisfy the following nonlinear elliptic equation

(2.1) µϕ =
(
− 1

2
∆ + V (x)− (Ω · L)

)
ϕ+ a|ϕ|2σϕ.

Note that if ϕ solves this equation, then so does ϕeiθ with θ ∈ R, i.e., we have
symmetry under gauge transformations.

For any given total mass N > 0, a particular class of solutions ϕ ∈ Σ to (2.1),
called ground states, is obtained by considering the following constrained minimiza-
tion problem:

(2.2) e(N,Ω) := inf{EΩ(ϕ) : ϕ ∈ Σ, N(ϕ) = N},

where the infimum can be replaced by a minimum whenever the energy functional
(1.6) is bounded from below. In this case e(N,Ω) > −∞ denotes the ground state
energy. Note that EΩ(ϕ) is well-defined for any ϕ ∈ Σ, since Assumption 1 and
Sobolev’s imbedding imply Σ ↪→ L2σ+2 provided σ < 2

(d−2)+
. Moreover, for any

γ > 0 we have

|〈ψ, (Ω · L)ψ| 6 ‖(Ω ∧ x)ψ‖L2‖∇ψ‖L2 6
1

2γ
|Ω|2‖xψ‖2L2 +

γ

2
‖∇ψ‖2L2 ,(2.3)

which in itself follows by rewriting Ω · L = (Ω ∧ x) · ∇ and employing Young’s
inequality.

The existence and orbital stability of ground state solutions will be proved by the
same method as in [8, 11]. To this end, we shall first show that the energy functional
(1.6) is coercive, provided the angular velocity |Ω| is less than the smallest trapping
frequency:

Proposition 2.1. Let |Ω| < ω and Assumption 1 hold. Then for any ϕ ∈ Σ with
‖ϕ‖2L2 = N , there is a δ > 0 such that

(2.4) EΩ(ϕ) > δ‖ϕ‖2Σ − CN > 0,

Moreover, ϕ 7→ EΩ(ϕ) is weakly lower semicontinuous in Σ, i.e. for {ϕk}∞k=1 ⊂ Σ
such that ϕk ⇀ ϕ ∈ Σ, we have

EΩ(ϕ) 6 lim inf
k→∞

EΩ(ϕk).
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Proof. The coercivity follows from (2.3) and the fact that V (x) > 1
2ω

2|x|2 where
ω > 0 is defined above. Thus one finds, for 0 < γ < 1:

(2.5) EΩ(ϕ) >
1− γ

2
‖∇ϕ‖2L2 +

1

2

(
ω2 − |Ω|

2

γ

)
‖xϕ‖2L2 +

a

σ + 1
‖ϕ‖2σ+2

L2σ+2 .

In the case a > 0, we directly obtain

EΩ(ϕ) >
1− γ

2
‖∇ϕ‖2L2 +

1

2

(
ω2 − |Ω|

2

γ

)
‖xϕ‖2L2 > δ‖ϕ‖2Σ −

N

2
,

where we choose γ ∈ (0, 1) such that |Ω|
2

ω2 < γ < 1, and we set

δ = min

{
1− γ

2
,

1

2

(
ω2 − |Ω|

2

γ

)}
> 0 .

In the case a < 0, we first note from the Gagliardo-Nirenberg inequality that

(2.6) ‖u‖2σ+2
L2σ+2 6 Cσ,d‖∇u‖dσL2‖u‖2+σ(d−2)

L2 ,

with the optimal constant Cσ,d > 0 obtained in [28], i.e.,

Cσ,d =
σ + 1

‖Q‖2σL2

,

where Q satisfies

dσ

2
∆Q−

(
1 +

σ(d− 2)

2

)
Q+Q2σ+1 = 0.

Then applying (2.6) to (2.5) and employing Young’s inequality with

(p, q) =
( 2

dσ
,

1

1− dσ/2

)
yields the following lower bound for any ε > 0:

EΩ(ϕ) >
1− γ

2
‖∇ϕ‖2L2 −

|a|
‖Q‖2σL2

‖∇ϕ‖dσL2‖ϕ‖2+σ(d−2)
L2 +

1

2

(
ω2 − |Ω|

2

γ

)
‖xϕ‖2L2

>
(1− γ

2
− dσ|a|εp

2‖Q‖2σL2

)
‖∇ϕ‖2L2 +

1

2

(
ω2 − |Ω|

2

γ

)
‖xϕ‖2L2

−
|a|(1− dσ

2 )

‖Q‖2σL2εq
‖ϕ‖

2+σ(d−2)

1− dσ
2

L2 .

Now recall p = 2
dσ > 1 and choose γ ∈ (0, 1), as above, such that |Ω|

2

ω2 < γ < 1, and
then ε > 0 such that

dσ|a|εp

2‖Q‖2σL2

=
1− γ

4
.

After recalling that ‖ϕ‖2L2 = N , we find

EΩ(ϕ) =
1− γ

4
‖∇ϕ‖2L2 +

1

2

(
ω2 − |Ω|

2

γ

)
‖xϕ‖2L2 −

|a|(1− dσ
2 )

‖Q‖2σL2εq
N

2+σ(d−2)
2−dσ

> δ̃‖ϕ‖2Σ − C(a, d, σ,N, ‖Q‖2σL2)

where

δ̃ = min

{
1− γ

4
,

1

2

(
ω2 − |Ω|

2

γ

)}
.

Moreover, since the Σ-norm is weakly lower semicontinuous, the estimate (2.4)
directly implies the same holds for EΩ, since its quadratic part together with a
multiple of the L2-norm forms a norm on Σ equivalent to the usual one. �

To proceed further, we recall the following compactness result (see, e.g., [18, 29]).
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Lemma 2.2. For 2 6 q < 2d
(d−2)+

, the embedding Σ ↪→ Lq is compact.

Using this we can prove existence of a (constrained) minimizer.

Proposition 2.3. Let |Ω| < ω and Assumption 1 hold. Then for a given N > 0,
there exists a ϕ∞ ∈ Σ such that ‖ϕ∞‖2L2 = N and

EΩ(ϕ∞) = min
ϕ∈Σ

EΩ(ϕ) = e(Ω, N).

In addition, ϕ∞ is a weak solution to (2.1) with µ ∈ R a Lagrange multiplier
associated to the mass constraint.

Proof. Choose a minimizing sequence {ϕk}∞k=1 ⊂ Σ such that ‖ϕk‖2L2 = N . First
we show {ϕk}∞k=1 is a bounded sequence in Σ. From Proposition 2.1 we know that
0 < EΩ(ϕk) <∞ and the coercivity implies that any minimizing sequence {ϕk}∞k=1

is a bounded sequence in Σ. By Banach-Alaoglu, there exists a weakly convergent
subsequence {ϕkj}∞j=1 ⊂ {ϕk}∞k=1 such that

ϕkj ⇀ ϕ∞ as j →∞,
for some ϕ∞ ∈ Σ. The compact embedding of Lemma 2.2 implies that ϕkj → ϕ∞
strongly (and hence in norm) in L2 and in L2σ+2, provided σ < 2

(d−2)+
. In particular

‖ϕ∞‖2L2 = lim
j→∞

‖ϕkj‖2L2 = N.(2.7)

By the lower semicontinuity of the functional EΩ we have

EN := inf
ϕ∈Σ,‖ϕ‖22=N

EΩ(ϕ) 6 EΩ(ϕ∞) 6 lim
j→∞

inf EΩ(ϕkj ) = EN .

Furthermore, since e(N,Ω) ≡ EΩ(ϕ∞) = limj→∞EΩ(ϕkj ), we see that ‖ϕkj‖Σ →
‖ϕ∞‖Σ, as j →∞. Together with the weak convergence of the minimizing sequence
this implies strong convergence to some ϕ∞ ∈ Σ.

It is then straightforward to compute the first variation 〈 δEΩ

δϕ , χ〉 = 0 to see that

a minimizer ϕ∞ ∈ Σ indeed solves (2.1) in the weak sense, i.e.

µ

∫
Rd
ϕ∞χdx =

1

2

∫
Rd
∇ϕ∞ · ∇χ+ V (x)ϕ∞χ− ϕ∞(Ω · L)χ+ a|ϕ∞|2σϕ∞χdx,

for all χ ∈ Σ. �

Remark 2.4. It is straightforward to generalize all of the results in this section
to GP equations with general confinement potentials V (x) → +∞, as |x| → ∞,
provided an appropriate energy space Σ is chosen.

3. Orbital stability

The set of all ground states with a given mass N will be denoted by

(3.1) GΩ =
{
ϕ ∈ Σ : EΩ(ϕ) = e(N,Ω) and N(ϕ) = N

}
6= ∅.

Recall that, by gauge symmetry, ϕ ∈ GΩ if and only if eiθϕ ∈ GΩ, for some θ ∈ R.
In the case without rotation, i.e., Ω ≡ 0, and for radially symmetric potentials V
with ω1 = ω2 = ω3, one can show that the energy minimizer is indeed radially
symmetric and positive on all of Rd, see [18, 19] and the references therein. In
other words, in this case

(3.2) G0 = {ueiθ, u ≡ u(|x|) > 0, θ ∈ R}.
Moreover, since the action of Ω · L vanishes on radially symmetric functions, any
radially symmetric ϕ ∈ GΩ is also in G0, and hence of the form above. However, the
symmetry breaking results in [26, 27] imply that for |Ω| 6= 0, a minimizer ϕ∞ ∈ GΩ

is in general not radially symmetric. More precisely, it is proved in there that for



6 J. ARBUNICH, I. NENCIU, AND C. SPARBER

|Ω| > Ωcrit > 0 no eigenfunction of the angular momentum operator L can be a
minimizer (and a radial function u is an eigenfunction with zero eigenvalue), even if
the GP functional is invariant under rotations around the Ω-axis. This implies that
ϕ∞ in the case with rotation cannot be unique (up to gauge transforms), since by
rotating a minimizer one obtains another minimizer. In this context, an estimate
for the critical rotation speed Ωcrit in d = 2 can be found in [20]. In summary,
these results show that GΩ, in general, will be a more complicated set than G0.
Moreover, GΩ should also be distinguished from the set of rotationally symmetric
vortex solutions studied in, e.g., [17].

Our first main result is as follows:

Theorem 3.1 (Orbital stability of ground states). Let |Ω| < ω and Assumption 1
hold. Then the set of ground states GΩ 6= ∅ is orbitally stable in Σ. That is, for all
ε > 0 there exists δ = δ(ε) > 0, such that if ψ0 ∈ Σ satisfies

inf
ϕ∈GΩ

‖ψ0 − ϕ‖Σ < δ,

then the solution ψ ∈ C(Rt,Σ) to (1.1) with ψ(0, x) = ψ0 ∈ Σ satisfies

sup
t∈R

inf
ϕ∈GΩ

‖ψ(t, ·)− ϕ‖Σ < ε.

This theorem generalizes earlier results on the orbital stability of standing waves
in nonlinear Schrödinger equations with (unbounded) potential (see, e.g., [8, 14,
15, 18, 29, 30] and the references therein) to the case with harmonic potential and
additional rotation. Note that for Ω = 0, the simple structure of G0, given in (3.2),
allows one to rephrase the infimum over G0 as an infimum over θ ∈ R. Also note
Theorem 3.1 holds for defocusing and focusing nonlinearities satisfying Assumption
1 (see also Remark 3.2 below). In this context, we also mention the papers [14, 16],
in which the authors study various instability properties of standing wave solutions
to focusing nonlinear Schrödinger equations with potentials.

Proof. By way of contradiction, assume that the set of ground states GΩ 6= ∅ is
unstable. Then there exist ε0 > 0, ϕ0 ∈ GΩ, a sequence of initial data {ψk0}k∈N ⊂ Σ
satisfying

‖ψk0 − ϕ0‖Σ → 0 as k →∞,

and a sequence of times {tk}k∈N ⊂ R, such that

inf
ϕ∈GΩ

‖ψk(tk, ·)− ϕ‖Σ > ε0.

Here ψk(t, x) ∈ C(R,Σ) is the unique global solution to (1.1) with initial data ψk0 .
For simplicity set uk(x) := ψk(tk, x). From mass conservation (1.4) we have, as
k →∞:

‖uk‖2L2 ≡ ‖ψk(tk, ·)‖2L2 = ‖ψk0‖2L2

k→∞−−−−→ ‖ϕ0‖2L2 = N.

Moreover, by energy conservation (1.5) it also follows that

EΩ(uk) ≡ EΩ(ψk(tk, ·)) = EΩ(ψk0 )
k→∞−−−−→ EΩ(ϕ0) = e(N,Ω).

Consequently, the continuity in time implies that uk is a minimizing sequence in Σ.
By the proof of Proposition 2.3, there exists a subsequence such that ukj → ϕ∞ ∈ Σ
strongly, as j →∞. Thus

inf
ϕ∈GΩ

‖ψkj (tkj , ·)− ϕ‖Σ 6 ‖ukj − ϕ∞‖Σ
j→∞−−−→ 0,

which contradicts our assumption. �
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Remark 3.2. It is possible to generalize this result to the case of an attractive
(a < 0) mass-critical nonlinearity σ = 2

d , under the assumption that N < ‖Q‖2L2 ,
see, e.g., [30, 31] for analogous results in the case without rotation. We shall not go
into further details here, but note that the associated question of a blow-up profile
as N → ‖Q‖2L2 in the case with rotation has recently been studied in [21].

Theorem 3.1 has the following interesting consequence: Recall that Ω · L is the
generator of rotations around the Ω-axis, in the sense that

etΩ·Lu(x) = u
(
etΘx

)
, ∀u ∈ L2(Rd),

where Θ is the skew symmetric matrix given by

Θ =

(
0 |Ω|
−|Ω| 0

)
for d = 2, and Θ =

 0 Ω3 −Ω2

−Ω3 0 Ω1

Ω2 −Ω1 0

 for d = 3.

Clearly, this is a unitary operator on both L2(Rd) and Σ. It was shown in [2] that
if ψ(t, x) solves (1.1), i.e., the GP equation with rotation, then

(3.3) Ψ(t, x) :=
(
etΩ·Lψ(t, ·)

)
(x),

solves the following nonlinear Schrödinger equation with time-dependent potential:

(3.4) i∂tΨ = −1

2
∆Ψ +WΩ(t, x)Ψ + a|Ψ|2σΨ, Ψ|t=0 = ψ0(x) .

Here, the new potential WΩ is given by

WΩ(t, x) := etΩ·LV (x) ≡ V
(
etΘx

)
.

The global existence result for (1.1) then directly translates to the existence of
a unique global solution Ψ ∈ C(Rt; Σ) to (3.4) (see also [6] for related results).
Moreover, we have that (3.4) conserves the total mass, i.e., N(Ψ(t, ·)) = N(ψ0) for
all t ∈ R. The associated energy, however, is no longer conserved unless V (x) is
rotationally or at least axisymmetric w.r.t. Ω, cf. [2] for more details.

Corollary 3.3. Under the same assumptions as in Theorem 3.1 it holds: For all
ε > 0 there exists δ = δ(ε) > 0 such that if ψ0 ∈ Σ satisfies

inf
ϕ∈GΩ

‖ψ0 − ϕ‖Σ < δ,

then the solution Ψ ∈ C(Rt,Σ) to (3.4) with ψ(0, x) = ψ0 ∈ Σ satisfies

sup
t∈R

inf
ϕ∈GΩ

‖Ψ(t, ·)− etΩ·Lϕ(·)‖Σ < ε.

In other words, we have orbital stability of the set etΩ·LGΩ under the dynamics
of (3.4). To the best of our knowledge, this is the only orbital stability result for
nonlinear Schrödinger equations with a time-dependent potential available to date.

In the particular situation where V is rotationally symmetric, i.e., V (x) =
1
2ω

2|x|2, one finds

WΩ(t, x) = V (x), for any Ω ∈ Rd,
yielding the usual Gross-Pitaevskii equation for (harmonically) trapped Bose gases

(3.5) i∂tΨ = −1

2
∆Ψ +

1

2
ω2|x|2 + a|Ψ|2σΨ, Ψ|t=0 = ψ0(x) ,

In contrast to (3.4), this equation does conserve the associated Gross-Pitaveskii
energy, E0(Ψ(t, ·)) = E0(ψ0), for all t ∈ R. The orbital stability result proved
above then has the following consequence:
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Corollary 3.4. Let Assumption 1 hold and V be rotationally symmetric. Then

O = ∪(Ω∈Rd;|Ω|<ω)

(
etΩ·LGΩ

)
,

is an orbitally stable set of solutions to (3.5).

The usual orbital stability result for ground states associated to (3.5) applies to
G0, see, e.g., [8]. Note that if, for some Ω, all minimizers ϕ ∈ GΩ are rotationally
symmetric, then etΩ·LGΩ = GΩ = G0. However, the results of [20, 26, 27] show
that, in general, ϕ ∈ GΩ is not rotationally symmetric, in which case etΩ·LGΩ, does
not contain stationary solutions to (3.5) given by Ψ(t, x) = Φ(x)eiµt. Again, to the
best of our knowledge, this is the only orbital stability result for (3.5) based on
non-stationary solutions.

4. A resonance-type phenomenon in non-isotropic potentials

All the preceding results are obtained under the condition |Ω| < ω, which is
necessary for the existence of nonlinear ground states. However, one may wonder
(in particular in view of Corollary 3.4) if there are any qualitative changes to the
time-dependent solution of (1.1) for |Ω| > ω. At least in the case of non-isotropic
potentials V (x), we will see below that this is indeed the case.

To this end, we denote for ψ(t, ·) ∈ Σ, the quantum mechanical mean position
and momentum by

X(t) :=

∫
Rd
x|ψ(t, x)|2 dx, P (t) := −i

∫
Rd
ψ(t, x)∇ψ(t, x) dx.

Lemma 4.1. Let ψ ∈ C(Rt; Σ) be a solution to (1.1), then, for all t ∈ R:

(4.1)

X(t) = X(0) +

∫ t

0

P (s)− Ω ∧X(s) ds

P (t) = P (0)−
∫ t

0

∇V (X(s)) + Ω ∧ P (s) ds.

This system can be regarded as a generalization of the results in [24, Section 6],
obtained for Ω = 0. Note that the nonlinearity does not enter in (4.1).

Proof. We shall assume that ψ is sufficiently smooth (and decaying) such that all
of our computations below are rigorous. A classical density argument, combined
with the continuous dependence of ψ on its initial data, then allows us to extend
the result to solutions ψ ∈ C(Rt; Σ).

We start by calculating the time derivative of X:

Ẋ = 2Re〈∂tψ, xψ〉 = 2Re〈i( 1
2∆ψ − V (x)ψ − a|ψ|2σψ + (Ω · L)ψ), xψ〉

= Re〈i∆ψ, xψ〉+ 2Re〈i(Ω · L)ψ, xψ〉+ 2Im 〈V (x)ψ + a|ψ|2σψ, xψ〉︸ ︷︷ ︸
∈R

≡ J1 + J2.

An integration by parts then implies

J1 = Re〈−i∇ψ,∇(xψ)〉 = Im〈∇ψ, x∇ψ〉+ Re〈−i∇ψ,ψ∇x〉 = P.

The term J2 can be rewritten using (Ω ·L) = −i(Ω∧x) ·∇ and integration by parts

J2 = 2Re〈(Ω ∧ x) · ∇ψ, xψ〉 = 2Re

d∑
`,j=1

〈∂xjψ, (Ω ∧ x)jx`ψ〉e`

= −2

d∑
j=1

〈ψ, (Ω ∧ x)jψ〉ej − 2Re〈xψ, (Ω ∧ x) · ∇ψ〉 = −2〈ψ, (Ω ∧ x)ψ〉 − J2,
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which implies that

J2 = −〈ψ, (Ω ∧ x)ψ〉 = −Ω ∧X.
In summary this yields the following equation of motion for X:

(4.2) Ẋ = P − Ω ∧X,

which is the time-differentiated version of the first equation in (4.1).
Next, we calculate the time-derivative of P as:

Ṗ = 2Re〈i∂tψ,∇ψ〉 = 2Re〈V (x)ψ + a|ψ|2σψ − 1
2∆ψ − (Ω · L)ψ,∇ψ〉

≡ I1 + I2 + I3 + I4.

For the first term, a straightforward integration by parts yields

I1 = −2Re〈∇
(
V ψ
)
, ψ〉 = −2

∫
Rd
∇V (x)|ψ(t, x)|2 dx− I1,

which implies

I1 = −
∫
Rd
∇V (x)|ψ(t, x)|2 dx = −∇V (X),

since ∇V (x) =
∑d
j=1 ω

2
jxj . Furthermore, I2 vanishes, since

I2 =
a

σ + 1

∫
Rd
∇
(
|ψ|2(σ+1)

)
dx = 0,

and one also finds I3 = −Re〈∆ψ,∇ψ〉 = 0. Finally, we compute, using standard
vector identities

I4 = −2Re〈(Ω · L)ψ,∇ψ〉 = −2Ω ∧ P − I4,

which implies that

Ṗ = −∇V (X)− Ω ∧ P,(4.3)

i.e., the differential version of the second line in (4.1). �

Given that (4.1) constitutes a closed system for X and P , one can study its solu-
tion independently of (1.1). As a first step, we have the following global existence
result.

Lemma 4.2. For any (X0, P0) ∈ R2d, the system (4.1) admits a unique global
in-time solution (X,P ) ∈ C∞(Rt;R2d) with (X(0), P (0)) = (X0, P0).

Proof. Denote Ξ = (X,P )>, then (4.2), (4.3) are equal to

(4.4) Ξ̇ = MdΞ, Ξ(0) = Ξ0,

where Ξ0 = (X0, P0)>, and

M2 =


0 |Ω| 1 0
−|Ω| 0 0 1
−ω2

1 0 0 |Ω|
0 −ω2

2 −|Ω| 0

 for d = 2,

and

M3 =


0 Ω3 −Ω2 1 0 0
−Ω3 0 Ω1 0 1 0
Ω2 −Ω1 0 0 0 1
−ω2

1 0 0 0 Ω3 −Ω2

0 −ω2
2 0 −Ω3 0 Ω1

0 0 −ω2
3 Ω2 −Ω1 0

 for d = 3.
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Equation (4.4) is a linear matrix-valued ordinary differential equation with constant
coefficients. Thus, (4.4), and equivalently (4.1), admits a unique smooth solution
given by:

Ξ(t) = etMdΞ0, for all t ∈ R.

�

To simplify the following discussion, we shall assume that Ω ∈ R3 is aligned with
one of the coordinate axes, say, Ω = (0, 0, |Ω|)>. In this way, (1.3) automatically
holds and thus the two-dimensional situation is included in what follows.

Proposition 4.3. Let Ω = (0, 0, |Ω|)>. Assume that

(4.5) ω1 6= ω2 and min{ω1, ω2} 6 |Ω| 6 max{ω1, ω2}.
Then for all (X0, P0) ∈ R2d \ H, where H = H(ω1, . . . , ωd,Ω) is a linear subspace
of R2d, it holds

lim
t→+∞

|X(t)| = lim
t→+∞

|P (t)| = +∞, or lim
t→−∞

|X(t)| = lim
t→−∞

|P (t)| = +∞.

Moreover, if both inequalities in (4.5) are strict, this growth is exponentially fast
and dimH = 2(d− 1). If, however |Ω| ∈ {ω1, ω2}, then the growth is only linear in
time and dimH = 2d− 1.

Proof. Observe that for Ω = (0, 0, |Ω|)>, the matrix M3 decomposes as a direct
sum of M2 and the 2× 2 matrix

A =

(
0 1
−ω2

3 0

)
.

Thus the characteristic polynomial of M3 is

det(λ−M3) = det(λ−M2) · det(λ−A) = det(λ−M2) · (λ2 + ω2
3).

Note that λ2 + ω2
3 has purely imaginary roots, leading to bounded oscillations in

the solution of (4.1). Thus, for both d = 2 and d = 3 the characteristic polynomial
of M2 is the only possible source of growth in the solution. One finds that

det(λ−M2) = λ4 + bλ2 + c

with
b = 2|Ω|2 + ω2

1 + ω2
2 and c =

(
|Ω|2 − ω2

1

)(
|Ω|2 − ω2

2

)
.

As a quadratic polynomial in λ2, it has discriminant

D =
(
ω2

1 − ω2
2

)2
+ 8|Ω|2

(
ω2

1 + ω2
2

)
> 0,

and thus λ2 ∈ R. This implies that a necessary condition for the fact that at least
one of the two limits

lim
t→±∞

|Ξ(t)| = +∞,

is that λ2 > 0. This growth occurs on R2d \ H, where H is the orthogonal comple-
ment of the eigenspace corresponding to the real eigenvalue(s) λ.

Computing the roots, we find that since b > 0, the root

λ2 =
−b−

√
b2 − 4c

2
< 0.

In addition, the other root satisfies

λ2 =
−b+

√
b2 − 4c

2
> 0, if and only if c 6 0.

The latter is equivalent to min{ω1, ω2} 6 |Ω| 6 max{ω1, ω2}.
Now if c < 0 then λ2 > 0. Hence, the system has a positive and a negative

simple eigenvalue, implying exponential growth for t → ±∞ and co-dimension of
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H equal to 2. The fact that both X and P grow individually can be seen from
computing the eigenvector V = (v1, v2, v3, v4)> associated to λ. This can be done
using the block structure of M2 to derive a new eigenvalue equation for (v1, v2)>,
given by (

|Ω|2 − ω2
1 −2λ|Ω|

2λ|Ω| |Ω|2 − ω2
2

)(
v1

v2

)
= λ2

(
v1

v2

)
.

In addition, one finds that(
v3

v4

)
=

(
λ |Ω|
−|Ω| λ

)(
v1

v2

)
.

This yields the expression for V after which a straightforward but somewhat tedious
analysis leads to the desired conclusion.

When c = 0 then λ = 0 is a double eigenvalue, in which case one needs to study
the dimension d0 ∈ N of the associated eigenspace. A straightforward computation
shows that if ω1 = ω2 (the axisymmetric case), then d0 = 2 is maximal and hence
the solution does not grow in t. By contrast if ω1 6= ω2, then d0 = 1, and there
exists a linearly independent solution ∝ t, stemming from the eigenvector V =
(1, 0, 0,−|Ω|)>. �

Remark 4.4. In the case without rotation, i.e. |Ω| = 0, one finds

λ2 = −ω
2
1 + ω2

2

2
±
∣∣ω2

1 − ω2
2

2

∣∣,
which implies λ = ±iω1,±iω2, and thus a purely oscillatory solution.

We are now in position to prove the second main result of this work.

Theorem 4.5 (Resonance in non-isotropic potentials). Let Assumption 1 hold and
Ω = (0, 0, |Ω|)>. If condition (4.5) holds and if ψ0 ∈ Σ is such that the associated
averages (X0, P0) 6∈ H, then the solution ψ ∈ C(Rt; Σ) satisfies

lim
t→+∞

‖ψ(t, ·)‖Σ = +∞, or lim
t→−∞

‖ψ(t, ·)‖Σ = +∞.

Proof. Recall that both (1.1) and (4.1) have unique solutions. Thus, if ψ(t, ·) solves
(1.1) with initial data ψ0 ∈ Σ and if X0 = 〈ψ0, xψ0〉 and P0 = −i〈ψ0,∇ψ0〉 are the
initial data to (4.1), then

X(t) = 〈ψ(t, ·), xψ(t, ·)〉, P (t) = −i〈ψ(t, ·),∇ψ(t, ·)〉, ∀ t ∈ R.
By Cauchy-Schwarz

|X| 6 ‖ψ‖L2‖xψ‖L2 , |P | 6 ‖ψ‖L2‖∇ψ‖L2 ,

which together with the results of Proposition 4.3 and the mass conservation prop-
erty (1.4) implies the assertion of the theorem. �

Remark 4.6. The fact that there are nontrivial ψ0 ∈ Σ for which the associated
(X0, P0) 6∈ H, can be easily seen by considering initial data of the form:

ψ0(x) = eip0·xe−(x−x0)2/2, x0, p0 ∈ Rd.
In this case, X0 = πd/2x0 and P0 = πd/2p0 and thus one obtains a growing Σ-norm
of the solution ψ provided (x0, p0) 6∈ H.

Indeed, the proof of Proposition 4.3 shows that if condition (4.5) holds, there
are solutions to (1.1) for which

‖∇ψ(t, ·)‖L2 , ‖xψ(t, ·)‖L2 →∞,
if t→ +∞, or t→ −∞. In other words, these solutions develop frequencies which
are larger than those controlled by the Σ-norm and, in addition, their mass is
transferred to infinity, resulting in a weaker decay of ψ. This is in sharp contrast to
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the case ω1 = ω2 = ω3, where (1.1) is equivalent, up to the time-dependent change
of variables (3.3), to the classical NLS with harmonic trapping (3.5). The latter
conserves the energy E0(Ψ(t, ·)) = E0(ψ0), which in the defocusing case a > 0
directly yields the uniform bound

‖Ψ(t, ·)‖Σ = ‖ψ(t, ·)‖Σ 6 E0(ψ0), ∀ t ∈ R.

Remark 4.7. The growth of (higher order) Sobolev-norms of solutions to nonlinear
Schrödinger equations with time-dependent, quadratic potentials was also studied
in [6]. One can check that (3.4) (obtained from (1.1), via the change of variables)
falls into the class of models for which exponentially growing upper bounds were es-
tablished in [6]. Theorem 4.5 shows that, in general, such exponential growth indeed
occurs, and that this is true even for linear Schrödinger equations. There exponen-
tial growth naturally occurs in the case of (even only partially) repulsive harmonic
potentials. We finally mention that very recently a somewhat similar instabil-
ity phenomenon for linear Schrödinger equations with quadratic time-dependent
Hamiltonian has been established in [3].

It is very likely that additional (in-)stability phenomena appear for general Ω ∈
R3, not necessarily aligned to one of the axis. However, the calculations of the roots
of the associated degree 6 characteristic polynomial become extremely involved, see
also [5]. Since our main goal was to establish an instability result for ψ we do not
investigate the general case in full detail.
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