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Synopsis Bivariate morphological scaling relationships describe how the sizes of two traits co-vary among adults in a

population. In as much as body shape is reflected by the relative size of various traits within the body, morphological

scaling relationships capture how body shape varies with size, and therefore have been used widely as descriptors of

morphological variation within and among species. Despite their extensive use, there is continuing discussion over which

line-fitting method should be used to describe linear morphological scaling relationships. Here I argue that the “best”

line-fitting method is the one that most accurately captures the proximate developmental mechanisms that generate

scaling relationships. Using mathematical modeling, I show that the “best” line-fitting method depends on the pattern of

variation among individuals in the developmental mechanisms that regulate trait size. For Drosophila traits, this pattern

of variation indicates that major axis regression is the best line-fitting method. For morphological traits in other animals,

however, other line-fitting methods may be more accurate. I provide a simple web-based application for researchers to

explore how different line-fitting methods perform on their own morphological data.

Introduction

The morphological scaling relationship between body

and trait size among adults in a species—also called

static allometry—broadly captures the relative size of

structures in the body and therefore characterizes

species shape. Correspondingly, scaling relationships

have been central to the study of morphology for

well over 100 years. Early studies focused on the de-

velopmental mechanisms that underlie morphologi-

cal scaling (Huxley 1924, 1932), but for the last

60 years research has largely concentrated on varia-

tion in scaling within and among species and the

selective pressures that generate this variation.

Morphological scaling relationships among adults

in a population are typically linear on a log–log

scale, and so can be modeled using the allometric

equation log y ¼ log b þ a log x, where x and y

are trait sizes measured in the same dimension,

log b is the intercept and a is the allometric coeffi-

cient (Huxley and Tessier 1936). Log b broadly cap-

tures the size of y relative to x, while a captures how

relative trait size changes with overall size. When a is

1, a condition called isometry, traits scale propor-

tionally with each other, and the size of y relative

to x is maintained across body sizes. In contrast,

when a is greater than or less than 1, called hyper-

allometry and hypoallometry, respectively, trait y

becomes disproportionally larger (a > 1) or smaller

(a < 1) relative to trait x with an increase in body

size. In as much as log b and a capture key aspects of

body proportion, considerable effort has been

invested in describing variation in log b and a
among pairs of traits within a species and among

species for a pair of traits.

Central to the effort to study variation in morpho-

logical scaling is the ability to fit linear relationships

to morphological measurements and extract scaling

parameters. This effort has been complicated by the

existence of various line-fitting methods, which, when

applied to the same data, can generate different slopes

and intercepts. There has, unsurprisingly, been much

debate over which method is “correct,” although no

consensus has been reached (Madansky 1959;

McArdle 1988; Kuhry and Marcus 1977;
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Warton et al. 2006; Smith 2009; Taskinen and

Warton 2011; Carroll and Ruppert 2012; Hansen

and Bartoszek 2012; Pelabon et al. 2013; Kilmer

and Rodriguez 2017). Much of this debate has con-

centrated on the statistical nuances of line fitting,

and in particular the assumptions different methods

make about the error with which morphological

measurements are made (Kilmer and Rodriguez

2017). What is often absent from the discussion is

consideration of the biological phenomenon the scal-

ing parameter is trying to capture, and the efficiency

with which each method achieves this. Here, I use a

well-supported developmental model of how trait

size is regulated to explore which line fitting method

best captures the developmental process that control

the slope of morphological scaling relationships. My

goal is not to provide evidence that one method of

line fitting is superior to another. Instead, my pur-

pose is to facilitate exploration of alternative line

fitting approaches so that researchers can match

their statistics to the biological processes that they

are attempting to model.

The developmental basis for
morphological scaling

Morphological scaling relationships arise because

there is variation in body size among individuals in

a population and covariation in the size of their

morphological traits (Shingleton et al. 2007). This

size variation can be generated through variation in

environmental factors (producing environmental

scaling relationships) or variation in genetic factors

(producing genetic scaling relationships). Regardless

of the mechanism that generates size variation, co-

variation among pairs of traits arises because these

traits are exposed to systemic variation in the same

environmental or genetic size-regulatory factors.

These factors may act directly and autonomously

on growing traits—for example temperature—or in-

directly and systemically—for example via growth

hormones. Intuitively, it is the extent to which a

change in a systemic factor generates a change in

the size of each trait that determines their size co-

variation and consequently the slope of their scaling

relationship. For example, for two traits x and y, if

both traits share the same sensitivity to a size-

regulatory factor, they will scale isometrically to

one another as size varies with that factor (Fig. 1A,

B, D). In contrast, if x is very sensitive to changes in

a size-regulatory factor but y is not, then as size

varies in response to that factor, x will vary more

than y and the slope of their scaling relationship

(x versus y) will be flat (Fig. 1B, C, E). Conversely,

if y is more sensitive than x, then the slope of their

scaling relationship will be steep. From this perspec-

tive, the slope of a morphological scaling relationship

reflects the relative sensitivity of two traits to com-

mon size-regulatory factors (Shingleton et al. 2007).

Empirically estimated scaling relationships are a

property of a population. Trait and body size are

measured for a group of individuals and fit with a

line that describes how trait size changes, on average,

with body size among these individuals.

Consequently, scaling relationships describe the av-

erage relative sensitivity of the two traits to size-

regulating factors among all individuals in the group.

What is lost with this approach, however, is the rel-

ative sensitivity of the two traits for each individual

in a population. It is therefore useful to distinguish

between an individual-level scaling relationship, which

is the theoretical scaling relationship between adult

traits for a single individual across a range of poten-

tial body sizes, and the population-level scaling rela-

tionship, which is the observed scaling relationship

between traits among individual across a range of

realized body sizes (Fig. 2; Dreyer et al. 2016;

O’ Brien et al. 2017).

Problematically, individual scaling relationships

are typically unobservable, since it is not possible

for the same individual to express more than one

final, adult size—the one exception is where multiple

individuals with the same genotype are each exposed

to different levels of the same size-regulatory factor.

In a genetically heterogeneous population, therefore,

each individual will occupy a single point on its oth-

erwise cryptic individual scaling relationship (Fig. 2).

The observed population-level scaling relationship is

that fitted among the observed phenotypes for many

individuals, each a point on a cryptic individual scal-

ing relationship. It is the variation among individuals

in the relative sensitivity of traits to regulatory fac-

tors, manifest as intra-population variation in the

individual-level scaling relationships, that is the ulti-

mate target of selection on population-level scaling

relationships. The pattern of this variation is thought

to affect profoundly the response to selection

(Dreyer et al. 2016). In as much as researchers are

interested in the mechanisms that generate covaria-

tion among traits and how these mechanisms evolve,

the observed population-level scaling relationship is

therefore only an indirect measurement of the actual

relationships of interest: the underlying cryptic indi-

vidual scaling relationships.

If every member of a population had the same

individual scaling relationship, and body and trait

size varied only in response to variation in systemic

factors, be it environmental or genetic, then the
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population scaling relationship would be identical to

all individual scaling relationships. However, in the

real world, there is always scatter around a

population-level scaling relationship, which has the

potential to weaken the link between it and the

underlying individual-level scaling relationship(s).

Different line-fitting methods use different

approaches to deal with this scatter. Thus, it is im-

portant to understand the cause of scatter if we are

to make informed about decision about which line-

fitting method to use.

There are three factors that generate scatter

around the population-level scaling relationship

(Fig. 3). First, variation among individuals in the

relative sensitivity of their traits to a systemic size-

regulatory factor will generate variation in the slope

of their individual scaling relationships and hence

generate scatter around the observed population

scaling relationship (Fig. 3A, B). Second, genetic var-

iation in trait-autonomous size regulators will gen-

erate variation in the intercept of their individual

scaling relationships, uncorrelated with variation in

other traits (Fig. 3C). Third, developmental instabil-

ity, small-scale environmental heterogeneity that

impacts individual traits, and measurement error

will generate genotype-specific variation and also

add to scatter around the population scaling rela-

tionship (Fig. 3D).

Line fitting methods

All regression analyses assume that there is an un-

derlying bivariate relationship between two
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Fig. 1 The slope of morphological scaling relationships reflects relative trait plasticity. Traits vary in the relative sensitivity to changes in

developmental nutrition. In Drosophila melanogaster, some traits, for example the wing (A) and thorax (B), are more sensitive to

changes in developmental nutrition than other, for example the male genitalia (C). Consequently, the slope of the morphological scaling

relationship where both traits are more nutritionally sensitive (D) is steeper than the slope where one trait is less nutritionally sensitive

(E). Data from Shingleton et al. (2009).
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Fig. 2 The relationship between individual and population scaling

relationships. Each individual genotype will express a scaling re-

lationship across a range of environmental conditions (e.g., a

nutritional gradient) (thin black lines). Because each individual’s

genotype is (typically) only exposed to a single developmental

environment, it will sit at a single point on its cryptic individual

scaling relationship. The observed population scaling relationship

(thick black line) is the relationship between these individual

points in the population.
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measurements (x and y), but that error introduces

scatter around this relationship. The regression

therefore attempts to fit a line through the data

that minimize the residuals; that is, the difference

between an observed value and that predicted by

the regression line. There are three primary meth-

ods used to fit lines to bivariate data: ordinary least

squares (OLS), major axis (MA) regression and

standardized major axis (SMA) regression (also re-

ferred to as reduced major axis [RMA] regression)

(Warton et al. 2006; Smith 2009; Hansen and

Bartoszek 2012). These three regression methods

differ in what they use as residuals, and hence

what they are minimizing (McArdle 1988; Warton

et al. 2006). OLS regression fits a line to bivariate

data such that the vertical distance between the re-

gression line and each point squared and summed

across all points is minimized. MA regression fits a

line such that the perpendicular distance between

the regression line and each point, squared and

summed across all points, is minimized. SMA re-

gression fits a line such that the product of the

vertical and horizontal distance from the line to

each point, summed across all points, is minimized.

The SMA is the same as the MA, but the regression

line is fitted to data that are standardized so that

both variables have the same standard deviation,

and then rescaled back to the original axes.

Because OLS regression only minimizes the resid-

uals on one axis (the y axis), the slope of the OLS

for x against y is not the inverse of the slope of the

OLS for y against x. This is not true for MA or

SMA regression, where residuals are minimized

across both axes, and x and y are functionally

interchangeable.

Additional details of the different line-fitting

methods, along with how they are calculated, is pro-

vided in the Supplementary Material.
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Fig. 3 The processes that generate scatter in population scaling relationships. (A) When all individuals in a population have the same

individual scaling relationship, each individual (circles) lies along the observed population scaling relationship (thick black line), which is

identical to the individual scaling relationship (thin black lines, hidden). (B) When there is variation among individuals in the relative

sensitivity of their traits to environmental variation, this generates variation in the slope of the individual scaling relationships (thin

black lines), and generates individual scatter around the population scaling relationship. (C) When there is trait-autonomous genetic

variation in trait size, this will add variation to the intercept of the individual scaling relationships, further increasing individual

scatter around the population scaling relationship. (D) When there is developmental instability, small-scale environmental hetero-

geneity that impacts individual traits, or error in measuring trait size, this will add additional individual scatter around the population

scaling relationship.
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Which line fitting method to use?

Much of the discussion about which line-fitting

method should be used to estimate scaling relation-

ships centers on the nature of the scatter around the

regression line, and in particular, measurement error.

Specifically, several authors have rejected the OLS

method for fitting scaling relationships because it

assumes that the x trait is measured without error,

and therefore biases the slope downward (Ricker

1973; McArdle 1988; Ebert and Russell 1994; Green

1999; Bonduriansky 2007). Others have countered

this argument by demonstrating that measurement

error in x has a marginal effect on OLS slope esti-

mations (Hansen and Bartoszek 2012; Pelabon et al.

2013; Kilmer and Rodriguez 2017). A number of

authors have observed, however, that measurement

error is not the only, and unlikely to be the most

important, factor that causes scatter around a regres-

sion line (Warton et al. 2006; Smith 2009; Hansen

and Bartoszek 2012). As discussed above, in the case

of morphological scaling relationships, scatter is also

generated by variation among individuals in the rel-

ative sensitivity of traits to systemic size-regulators,

and variation in trait-autonomous size-regulators.

While previous authors have acknowledged the exis-

tence of this scatter, referred to as biological deviance,

its impact on the performance of different line-

fitting methods for static allometry has not been

explored.

Here I describe a model of individual and pop-

ulation scaling relationships based on the develop-

mental mechanisms that regulate trait size (Dreyer

et al. 2016). I then used this model to explore how

assumptions about the nature of biological devi-

ance and measurement error impact the ability of

different line-fitting methods to estimate the rela-

tive sensitivities of traits to systemic regulators of

size. Other mechanisms can generate population

scaling relationships—for example, genetic linkage

between alleles that independently regulate the size

of different traits. However, we are explicitly only

interested in developmental processes that regulate

trait size systemically and in a coordinated manner

across the body. These are likely the primary

mechanism generating population scaling relation-

ships and will be the target of selection that gen-

erates variation in scaling among populations and

species.

A model of individual morphological
scaling

The model has been published previously in a paper

exploring the selection pressures that drive

evolutionary changes in morphological scaling rela-

tionships (Dreyer et al. 2016). Briefly, the model

assumes that trait growth is exponential, and that

growth rate is regulated by two factors: systemic fac-

tors, such as circulating growth hormones or tem-

perature, and trait-autonomous factors, such as

morphogens gradients within the trait.

Consequently, within an individual, trait size can

be modeled as:

t ¼ ae Skþið Þd ; (1)

where t is the trait size, a is the initial size of the

trait, S is the level of a systemic growth factor, k is

the sensitivity of the trait to the systemic growth

factor, i is the organ autonomous growth rate, and

d is the duration of growth. Log-transforming the

equation generates the linear equation:

logt ¼ T ¼ loga þ Sk þ ið Þd: (2)

For two traits (x and y) in the same body:

Tx ¼ logax þ ðSkx þ ixÞd: (3)
Ty ¼ logay þ Sky þ iy

� �
d: (4)

When S is an environmental factor, Equations

(3) and (4) describe the reaction norm of trait

size against the environmental variable (e.g.,

Fig. 1A, B). As body size varies in response to

changes in systemic growth factors, the individual

scaling relationship between Tx and Ty can be de-

scribed as:

Ty ¼
ky

kx

Tx þ logay �
ky

kx

logax �
ky

kx

ixd þ iyd: (5)

Note that the slope of the individual scaling rela-

tionship of trait x (x-axis) against trait y (y-axis) is

captured by the relative sensitivity of the two traits

to the systemic growth factor, ky=kx . This is sup-

ported by experimental work in Drosophila that

demonstrates that changes in the sensitivity of a trait

to changes in nutrition alter the slope of its mor-

phological scaling relationship with other traits

among genetically identical individuals, when body

size varies due to diet (Tang et al. 2011; Shingleton

and Tang 2012).

In a genetically heterogeneous population, indi-

viduals will vary in kx, ky, ix, iy, ax, ay, and d. For

simplicity, I will assume that initial trait size does

not vary among individuals in a population. I will

also, initially, assume that there is no variation in

developmental time, although I will return to this

point later in this paper. The size of individual traits

therefore becomes:

Mechanism of morphological scaling 5
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Tx ¼ Skx þ ix ; (6)
Ty ¼ Sky þ iy ; (7)

and the individual scaling relationship between Tx

and Ty can be described as:

Ty ¼
ky

kx

Tx �
ky

kx

ix þ iy : (8)

A model of population morphological
scaling

While Equations (5) and (8) describe the scaling re-

lationship between two traits across a range of S

within an individual, each individual in a population

is only exposed to a single level of S and thus only

occupies a single point on this cryptic individual

scaling relationship. The population-level scaling re-

lationship between Tx and Ty estimated from multi-

ple individuals in a population therefore depends on

population-level variation in kx, ky, ix, iy, and S. We

can model this using Equations (6) and (7), and by

assuming that each individual’s value of kx, ky, ix, iy,

and S is sampled from normal distributions such

that:

X � NðlX ; r
2
XÞ; (9)

where X is the parameter value.

Thus, lS and r2
S are the mean level of the systemic

growth regulator, and its variance among individuals

in a population, respectively; lkx
and r2

kx
are the

mean sensitivity of trait x to the systemic growth

regulator, and variance in this sensitivity among

individuals in a population, respectively, and lix

and r2
ix

are the mean trait-autonomous growth rate

of trait x and variance in the trait-autonomous

growth among individuals in a population, respec-

tively. It is important to note that, for simplicity, r2
ix

incorporates any factor that generates non-correlated

variation in the size of trait x, which includes envi-

ronmental and genetic factors, as well as develop-

mental instability and measurement error. It is also

important to note that r2
S captures variation among

individuals in the level of systemic growth regulators,

which may be genetic or environmental in origin.

When r2
S is solely a consequence of environmental

variation (i.e., when all individuals are genetically

identical), the population-level scaling relationship

is an environmental static allometry (Shingleton

et al. 2007). When r2
S is solely a consequence of

genetic variation, the population-level scaling rela-

tionship is a genetic static allometry (Shingleton

et al. 2007). The parameter values and their meaning

are summarized in Table 1.

Using the mean and variance of the parameter

values, it is possible to calculate the population

mean, variance, and covariance of Tx and Ty and

from them the expected slope and intercept of the

OLS, MA, and SMA regressions for the population

scaling relationship (Supplementary Material). These

equations are shown in Table 2.

Using the model to assess line fitting
methods

As discussed above, we are interested in the devel-

opmental processes that regulate trait size systemi-

cally and in a coordinated manner across the body

and how these processes vary within and between

populations and species. Consequently, we are inter-

ested in how well, and under what conditions, the

different methods of calculating the population scal-

ing relationship capture lky
=lkx

—the relative mean

sensitivity of traits to systemic factors that cause co-

variation in trait size and that generate scaling rela-

tionships. To achieve this, the equations for the OLS,

MA, and SMA slope can be re-arranged to give a

“bias factor” that each slope is multiplied by to

give lky
=lkx

.

For the OLS method, unless r2
ix

(variance in trait-

autonomous growth rate) and r2
kx

(variance in trait

sensitivity to systemic growth regulators) are zero,

which is biologically unreasonable, this bias factor

is always greater than one. Consequently, the OLS

slope always underestimates lky
=lkx

. In contrast,

for the MA and SMA method, the bias factor can

be greater or less than 1, and so they can both po-

tentially perfectly capture lky
=lkx

, although the con-

ditions under which they do so may be biologically

restrictive. Specifically, both aSMA and

aMA ¼lky
=lkx

when r2
kx
¼ r2

ky
, r2

ix
¼ r2

iy
, and lkx

¼
lky

(see Supplementary Material for mathematical

details). That is, both methods will capture the

mean individual-level scaling relationship between

two traits when the traits scale (on average) isomet-

rically, and when they show the same level of

trait-autonomous size variation and variation in sen-

sitivity to systemic growth regulators. Below I exam-

ine how reasonable these conditions are.

For many animals, body proportion appears to be

largely maintained across a range of body sizes, sug-

gesting that most traits scale near-isometrically and

lkx
¼ lky

. However, this may not be the case; a re-

cent meta-analysis of 553 static allometries indicated

that for traits not obviously subject to sexual selec-

tion, the average slope is 0.87 (95% CI: 0.79–0.94)

(Voje 2016). This suggests that slight hypoallometry

is the most common scaling relationship. One caveat

6 A. W. Shingleton
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is that many, if not all, of these slopes were calcu-

lated using an OLS against body size. This will lower

the estimate of the slope whenever there is uncorre-

lated variation in whatever proxy of body size is

used, either due to measurement error or because

of variation in trait-autonomous size-regulators, or

whenever there is variation in the sensitivity of body

size to systemic size-regulators. Thus, it is not clear if

slight to moderate hypoallometry is the norm.

Further, even if most traits scale isometrically,

much of the research on allometry concentrates on

traits that most obviously deviate from isometry, for

example the hyperallometric secondary sexual char-

acteristics of stalk-eyed flies or horned beetle, or the

hypoallometric genitalia of male arthropods. For

these traits, lkx
6¼ lky

:
Both the SMA and the MA can, however, capture

lky
=lkx

even when lkx
6¼ lky

. For the SMA, it can be

seen from Table 2 that as lky
and the slope increase,

the standard deviation of Ty (rTy
) will also increase

but at a slower rate, increasing the extent to which

the SMA underestimates lky
=lkx

: Under these con-

ditions, the SMA slope will only capture lky
=lkx

if

the other factors that contribute to rTy
—that is,

r2
ky

and r2
iy

—increase also. From a biological perspec-

tive, this would imply that the mechanisms that reg-

ulate k; the sensitivity of a trait to systemic growth

regulators, also regulate the population-level variance

of k and of i, the trait-autonomous growth rate.

While it is conceivable that the same mechanism

could regulate the mean and variance of k (e.g.,

Emlen et al. 2012) it is difficult to envision how

this mechanism could also regulate the variance of

i, which by definition acts trait-autonomously. In

contrast, the MA can capture lky
=lkx

when

lkx
6¼ lky

, if r2
kx
¼ r2

ky
and r2

ix
¼ r2

iy
(see

Supplementary Material for mathematical details).

This makes intuitive sense. An assumption of MA

regression is that residual variance in x is equal to

the residual variance in y. This will be true if traits

share the same variation in sensitivity to systemic

growth regulators (r2
ix
¼ r2

iy
Þ, and share the same

level of trait-autonomous variation in growth rate

(r2
ix
¼ r2

iy
Þ: While we know the developmental mech-

anisms that regulate a trait’s sensitivity to at least

one systemic growth regulator (insulin-like

Table 1 Estimated distribution of parameter values for model of trait growth (Equations 6 and 7) based on morphological measure-

ments of 50 males from each of 40 isogenic Drosophila lineages (see Supplementary Material for details)

Parameter Biological meaning Thorax Wing Palp Anal plate Femur Genital arch

lS Mean level of systemic growth regulatora 0

rS SD of level of systemic growth regulatorb 0.165

lk Mean sensitivity to systemic growth regulator 0.842 0.581 0.583 0.431 0.559 0.299

rk SD of sensitivity to systemic growth regulator 0.605 0.818 0.895 0.983 0.889 0.734

li Mean trait-autonomous growth rate 13.945 13.545 9.106 8.884 12.594 8.026

ri SD of trait-autonomous growth rate 0.109 0.105 0.106 0.086 0.083 0.077

aThe mean level of systemic growth regulator is set to unity to allow calculation of the other parameters.
bThis is the standard deviation for the level of S for individuals across all traits and lineages.

Table 2 The expected slopes and intercepts of the population static allometry for population of individuals with trait sizes described

by Equations (6) and (7)

OLS MA SMA

Slope ðaÞ r2
S
lkx

lky

r2
S
r2

kx
þr2

S
l2

kx
þr2

kx
l2

S
þr2

ix

r2
Ty
�r2

Tx

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

Ty
�r2

Tx

� �2

þ4r2
Tx ;Ty

r
2rTx;Ty

rTy

rTx

Intercept (b) lT2
� alTx

Bias factora r2
S
l2

kx
þr2

S
r2

kx
þr2

kx
l2

S
þr2

ix

r2
S
l2

kx

2r2
S
l2

ky

r2
Ty
�r2

Tx

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

Ty
�r2

Tx

� �2

þ 2r2
S
lkx lkyð Þ2

r lky
rTx

lkx
rTy
¼ lky

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

S
r2

kx
þr2

S
l2

kx
þr2

kx
l2

S
þr2

ixð Þ
p

lkx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

S
r2

ky
þr2

S
l2

ky
þr2

ky
l2

S
þr2

iy

� �r

aThe slope of the OLS, MA, or SMA is multiplied by this factor to give lky
=lkx

. If the bias factor is >1, the slope of the OLS/MA/SMA

underestimates lky
=lkx

, while if the bias factor is <1 the slope of the OLS/MA/SMA overestimates lky
=lkx

.
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peptides), and have elucidated many of the develop-

mental mechanisms that regulate organ autonomous

growth, there has been no study to directly measure

genetic variation in these mechanisms regarding trait

size. However, as I discuss below, it is possible to get

an idea of what this level of variation is, at least

indirectly.

Fitting data to the model: a biological
example

The model captures the population scaling relation-

ship based on the pattern of individual scaling rela-

tionships in a population. The parameters of the

model describe concrete biological processes and

so, in principle, it is possible to determine these pa-

rameter values for a population. However, these

parameters can be difficult to measure. In particular,

measuring genetic variation in the sensitivity of

organs to changes in systemic growth regulators

requires rearing the same genotype across environ-

mental conditions that change systemic growth reg-

ulators, for example by varying developmental

nutrition. This in turn requires multiple individuals

of the same genotype, which is possible only in

organisms that reproduce clonally—for example

aphids, and many plants and fungi—or organisms

that have isogenic lineages through artificial or nat-

ural inbreeding—for example Caenorhabditis elegans

and the mangrove rivulus fish Kryptolebias marmor-

atus (Mesak et al. 2015). While this appears to be a

stringent requirement, there are nevertheless pub-

lished data that can be used to estimate the param-

eters of the model for a particular species. For

example, Dreyer and Shingleton (2011) measured

the size of the wing, the femur of the first leg, max-

illary palp, posterior lobe of the genital arch, and

anal plate of 50 males from each of 40 isogenic

Drosophila lineages (Supplementary Fig. S1). The

scaling relationships among trait sizes within a line-

age is the cryptic individual scaling relationship,

while the relationship of mean trait sizes among lin-

eages is the population scaling relationship.

The among-lineage variation in the slopes and

intercepts of individual scaling relationships can be

used to estimate the mean and standard deviation of

the sensitivity of different traits to environmentally-

regulated growth regulators (lk and rk), of trait au-

tonomous growth (li and ri), and of

environmentally-regulated systemic size regulator

(lS and rS). The mathematical details are described

in the Supplementary Material, and the R-scripts to

conduct the analysis are provided on Dryad. When

applied to the Dreyer and Shingleton (2011) data

(Table 2), the analysis indicates that the variances

in trait-autonomous growth and the variances in

trait-sensitivity to changes in systemic size regu-

lators—ri and rk , respectively—do not vary signifi-

cantly among Drosophila traits (Brown-Forsythe test,

P> 0.5 for both [Feltz and Miller 1996]). Based on

the discussion above, these published morphological

data therefore support the application of MA regres-

sion to estimate lky
=lkx

, that is the relative mean

sensitivity of traits to systemic factors that cause

co-variation in trait size and that generate scaling

relationships.

To specifically test the hypothesis that the MA

regression best captures lky
=lkx

in Drosophila, I

used a second data set by Bakota et al. (this volume)

of wing and body (pupal) size of male and female

flies from 87 isogenic lineages (data available on

Dryad). Flies were reared across a nutritional gradi-

ent to generate extensive variation in body size

within each lineage. As for the Dreyer and

Shingleton (2011) data, I used these data to calculate

the ratio of mean nutritional-sensitivity of wing size

relative to the mean nutritional sensitivity of body

size, among lineages; that is lkwing
=lkpupal

. I then ran-

domly sampled one individual from each lineage to

generate a population scaling relationship of wing

size against body size. This was repeated 1000 times

to generate a mean and 95% confidence intervals for

the slope of the population scaling relationship using

each line fitting method. I also generated population

static allometries for the mean size of the wing and

thorax for each lineage, again using OLS, MA, and

SMA regression. For both the “sampled” population

scaling relationship and “mean” population scaling

relationship, the MA was a better estimator of the

lkwing
=lkthorax

among lineages (Table 3). See

Supplementary Material for additional details.

Although both these data sets were generated to

explicitly explore the effect of genetic and environ-

mental factors on trait size (co-)variation, there are

likely other published data that can be used to esti-

mate the parameters of the model in other organ-

isms. What is required is multi-trait measurements

made on multiple individuals, ideally reared across a

range of environmental conditions, from multiple

isogenic lineages. Data from isogenic lineages used

in genome wide association studies should be useful

(e.g., Lafuente et al. 2018), although environmental

variation may be quite low. Studies that look at trait

variation within and between multiple sibling groups

may also be useful. While siblings are not genetically

identical, the scaling relationship within a sibling

group can be used as an individual scaling relation-

ship, and variation in these “sibling scaling
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relationships” could be used to estimate the model’s

parameters.

Exploring the parameter space

While data from Drosophila may support the appli-

cation of MA regression to calculate the slope of

allometric relationships, the same need not be true

for other traits in other organisms. I therefore devel-

oped an interactive interface using shinyapp that

allows a user to determine which line fitting method

(OLS, SMA, MA) best captures the average slope of

individual scaling relationships (lky
=lkx

) in a popu-

lation under different conditions. The application

can be accessed at https://shingletonlab.shinyapps.

io/linefitting/. Alternatively, the R-scripts that run

the application are available on Dryad, which a

user can download and run locally on their

computer.

The application allows the user to explore how

well different line-fitting methods fit simulated data

across a range of model parameter values. At the

bottom of the interface, the user can assign param-

eter values to the model. The user can then select

one of three plots to explore the effect of the param-

eter values on the utility of the different line-fitting

methods. The interface is described in more detail in

the Supplementary Material. The application

assumes the “best” line fitting method is the one

that produces a slope closest to lky
=lkx

.

Unsurprisingly, this depends on the parameters

used to generate the population scaling relationship.

Nevertheless, there are two general trends that are

worth highlighting.

First, the model suggests that it is trait-

autonomous variation in growth rate (ri) and

variation in trait sensitivity to systemic growth reg-

ulators (rk) that have the greatest influence on

which line fitting method best captures lky
=lkx

(Fig. 4A). As outlined above, the MA perfectly cap-

tures lky
=lkx

when rkx
¼ rky

and rix
¼ riy

. However,

when rix
6¼ riy

or rkx
6¼ rky

, which is the better line

fitting method depends on a number of

factors. Broadly speaking, as uncorrelated variation

in the x trait increases (i.e., rix
and rkx

), the OLS,

SMA, and MA estimates of lky
=lkx

decrease.

However, because the OLS slope always underesti-

mates the true slope while the MA and SMA tend

to overestimate the true slope (at least when rix
and

rkx
are small), the result is that the OLS becomes a

less precise estimate of lky
=lkx

, while the MA and

SMA become more precise. This effect is greater

when the true slope is hyperallometric

(lky
=lkx

> 1). In contrast, as uncorrelated variation

in the y trait (i.e., riy
and rky

) increases, there is no

effect of the OLS estimate of lky
=lkx

, while the MA

and SMA estimates increase. The results are that the

OLS becomes the more precise estimator of the true

slope, solely as a consequence of the MA and SMA

estimates becoming less precise. This effect is greater

when the true slope is hypoallometric (lky
=lkx

< 1).

Collectively, therefore, if the y trait scales hypoallo-

metrically to the x trait but is expected to show more

uncorrelated variation in size (e.g., because it is mea-

sured with less precision), then the OLS may best

capture the relative sensitivity of the two traits to

systemic growth regulators (Table 4). In contrast, if

the y trait scales hyperallometrically to the x trait but

is expected to show less uncorrelated variation in

size, then the SMA may best capture lky
=lkx

(Table 4). If both traits are expected to show

more-or-less the same level of uncorrelated variation,

as seen in Drosophila, the MA is the best estimator

(Table 4).

Second, apart from lkx
and lky

, the means of the

other parameter values have comparatively little in-

fluence on how well each line fitting method cap-

tures lky
=lkx

. Specifically, li has no effect on the

regression slope using any line fitting method, which

is unsurprising, since li regulates the intercepts of

the underlying individual scaling relationships but

not the slope. The mean level of the systemic growth

factor, ls, only substantially affects the MA estima-

tion, primarily when ls � 0� ls. The parameter ls

controls the pattern of underlying individual scaling

relationships, specifically where in the range of ob-

served trait sizes the individual scaling relationships

tend to rotate (Fig. 3B). This pattern has important

Table 3 Relationship between lkwing
=lkpupa

and the slope (with 95% confidence intervals) of the OLS, MA, and SMA regression for the

population scaling relationships between wing and pupa size for flies from 87 isogenic Drosophila melanogaster lineages

lkwing
=lkpupa

OLS MA SMA

“Sampled” population scaling relationshipa 1.076 0.948 (0.851–1.041) 1.071 (0.963–1.182) 1.062 (0.967–1.160)

“Mean” population scaling relationshipb 0.840 (0.706–0.975) 1.058 (0.901–1.245) 1.047 (0.921–1.190)

aThe mean population scaling relationship generated using trait sizes from one individual sampled from each lineage, fitted using OLS, MA, or

SMA, and repeated 1000 times.
bThe population scaling relationship generated using mean trait size from each lineage.
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implications for how morphological scaling relation-

ships respond to selection, and is considered in more

detail in Dreyer et al. (2016).

Conclusions and future directions

The goal of this study was to examine the perfor-

mance of different line fitting methods in capturing

the mechanisms that produce covariation in trait size

and generate morphological scaling relationships

within populations. The model highlights that the

phenotype most morphological researchers measure

when studying scaling relationships—the population-

level scaling relationship—is an imperfect represen-

tation of the relationship they are, in many cases,

implicitly most interested in—the individual-level

scaling relationship. The observed population-level

scaling relationship is not generated by a “true” scal-

ing relationship, with individual scatter around this

relationship being a consequence of observation er-

ror or stochastic biological processes. Rather, the

population-level scaling relationship is the observable

part of a population of cryptic individual-level scal-

ing relationships. The key insight is that departure

from the population-level scaling relationship is, in

part, due to variation among the slopes of

individual-level scaling relationships for the group.

It is this variation that evolution acts upon to gen-

erate changes in allometry. Explicitly incorporating

this variation into the model of morphological
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Fig. 4 The influence of different aspects of trait variation on the effectiveness of different line-fitting methods to capture the slope of

morphological scaling relationships. At each point, the method (dark gray: OLS; black: MA; light gray: SMA) that generates a slope

closest to the slope of the average individual scaling relationship lky
=lkx

for the population is displayed. (A) The influence of trait-

autonomous variation in growth rate, ri, on the effectiveness of different line-fitting methods. (B) The influence of variation in trait

sensitivity to systemic growth regulators, rk, on the effectiveness of different line-fitting methods. All parameter values are for the

thorax (x-axis) and wing (y-axis) in Table 1. Broken white line is x¼ y. Solid white lines are the observed values of rk and ri for the

thorax (x-axis) and wing (y-axis) in Drosophila melanogaster, and where they intersect indicates which regression method best captures

lky
=lkx

:

Table 4 Summary of the utility of different line fitting methods for bivariate population scaling relationships, under different model

parameters

Putative relationshipa

Both traits have the same

level of uncorrelated variationb

Uncorrelated variation

greater for y-trait (Ty)

than x-trait (Tx)

Uncorrelated variation

greater for x-trait (Tx)

than y-trait (Ty)

Hypoallometric MA OLS SMA

Isometric MA SMA SMA

Hyperallometric MA SMA SMA

aHypoallometric: lky
=lkx
�1; isometric: lky

=lkx
�1; hyperallometric: lky

=lkx
�1.

bUncorrelated variation is generated by variation in trait-autonomous growth rate (riÞ and/or trait-autonomous variation in sensitivity to a

systemic growth factor (rkÞ.
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scaling not only allows one to better understand how

scaling evolves, but also what statistical methods one

should use to detect when evolution has occurred.

Finally, this study has quantified in Drosophila the

level of genetic variation in key developmental

parameters that regulate morphological scaling, find-

ing no evidence for differences among traits in their

variance.

This is certainly not the first study to explore

which line-fitting method should be employed to

model morphological static allometries. However,

most earlier studies did not fully consider the sour-

ces of variation that generate scatter around scaling

relationships. One important exception is the work

of Hansen and Bartoszek (2012) who applied a sim-

ilar model to explore the interplay between biological

and measurement error in evolutionary regressions,

including evolutionary scaling relationships (i.e.,

morphological scaling relationships among species).

As with this study, they started with the premise that

all line-fitting methods impose bias. However, they

concluded that the bias imposed by OLS regression

is less severe than that imposed by MA and SMA

regression, and therefore favored the OLS method of

line-fitting to evolutionary and static allometric

regressions. Their model did not, however, incorpo-

rate the developmental sources of biological variation

that generate scatter in population scaling relation-

ships. Nevertheless, both Hansen and Bartoszek

(2012)’s and this study reiterate the importance of

considering the sources of variation when applying

regression models to biological data.

Which method the reader uses will depend on the

purpose of their regression and the levels of variation

that generate scatter in their morphological scaling

relationship. If the reader is interested in estimating

the relative mean sensitivity of traits to systemic size-

regulators that generate covariation in size (lky
=lkx

),

then our model suggests that the “best” method for

modeling morphological scaling relationships is most

dependent on the level of uncorrelated variation in

trait size, generated by both autonomous variation in

trait size (ri) including measurement error, and var-

iation in trait-autonomous sensitivity to changes in

systemic growth factors (rkÞ. If these are expected to

be different between the two traits, then the MA

regression may not be the best estimate of lky
=lkx

.

Finally, it is important to note that the insight

provided by any model is limited by how well the

model captures the biological processes it describes.

My model has the advantage of being very simple,

but assumes that traits have linear “reaction norms”

in response to variation in systemic regulators of size

(Equations 6 and 7) (here, “reaction norm” includes

trait response to systemic factors that may be ge-

netic). For many organismal traits, this will not be

true. Nevertheless, even if the trait “reaction norms”

are not linear, they can still generate linear individual

scaling relationships (Fig. 1), as described in the

Supplementary Material. Further, it is possible to

include developmental time in the model

(Equation 5), also detailed in the Supplementary

Material.

Any growth model can be used to explore how

variation in underlying growth parameters affect

the efficiency of different line fitting methods to cap-

ture the values of those parameters. Needless to say,

the more complex the developmental model, the

more difficult it is to mathematically describe the

slopes and intercepts of the population scaling rela-

tionship. Even with the most complex models of

individual growth, however, it is trivial to generate

a simulated population scaling relationship in silico,

and explore how changes in model parameters affect

the slopes and intercept of the population-level scal-

ing relationship when fit using different line-fitting

methods. There are likely multiple developmental

mechanisms that generate co-variation in trait size

among individuals in a population, and a corre-

sponding number of models. As we learn more of

these mechanisms, our statistical methods should be

adapted to better capture their key characteristics. It

is these mechanisms, after all, that are ultimately the

target of selection for changes in morphological

scaling.
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