
IP: 198.54.106.172 On: Tue, 21 Jul 2020 01:01:50
Copyright: American Scientific Publishers

Delivered by Ingenta

Copyright © 2019 American Scientific Publishers
All rights reserved
Printed in the United States of America

Journal of
Low Power Electronics

Vol. 15, 388–409, 2019

A Power-Driven Stochastic-Deterministic Hierarchical

High-Level Synthesis Framework for Module

Selection, Scheduling and Binding

Xiuyan Zhang, Ouwen Shi, Jian Xu, and Shantanu Dutt∗

Dept. of ECE, University of Illinois at Chicago, Chicago, IL, 60607, United States

(Received: 21 February 2018; Accepted: 7 August 2018)

We present a power-driven hierarchical framework for module/functional-unit selection, scheduling,

and binding in high level synthesis. A significant aspect of algorithm design for large and complex

problems is arriving at tradeoffs between quality of solution and timing complexity. Towards this

end, we integrate an improved version of the very runtime-efficient list scheduling algorithm called

modified list scheduling (MLS) with a power-driven simulated annealing (SA) algorithm for module

selection. Our hierarchical framework efficiently explores the problem solution space by an exten-

sive exploration of the power-driven module-selection solution space via SA, and for each module

selection solution, uses MLS to obtain a scheduling and (integrated) binding (S&B) solution in which

the binding is either a regular one (minimizing number of FUs and thus FU leakage power) or

power-driven with mux/demux power considerations. This framework avoids the very runtime inten-

sive exploration of both module selection and S&B within a conventional SA algorithm, but retains

the basic prowess of SA by exploring only the important aspect of power-driven module-selection

in a stochastic manner. The proposed hierarchical framework provides an average of 9.5% FU

leakage power improvement over state of the art (approximate) algorithms that optimize only FU

leakage power, and has a smaller runtime by factors of 2.5–3x. Further, compared to a sophisti-

cated flat simulated annealing framework and an optimal 0/1-ILP formulation for total (dynamic and

leakage) FU and architecture power optimization under latency constraints, PSA-MLS provides an

improvement of 5.3–5.8% with a runtime advantage of 2x, and has an average optimality gap of

only 4.7–4.8% with a significant runtime advantage of a factor of more than 1900, respectively.

Keywords: Power Optimization, High-Level Synthesis, Operation Scheduling, Module Selection,

Operation Binding, Simulated Annealing, Dynamic Power, Leakage Power.

1. INTRODUCTION
Power optimization is one of the most important issues

at all levels of the hardware design hierarchy. The reduc-

tion of semiconductor size and the increase of clock fre-

quency allow more components to be integrated into a

unit area, and this causes power consumption per chip

to be increased. The two significant categories of power

consumption are dynamic (DP) and leakage power (LP).

According to the study in Ref. [1], leakage power takes up

to 42% of total power. Thus, both leakage and dynamic

power significantly affect total power consumption. In this

paper, the target is the optimization of dynamic plus leak-

age power, i.e., total power (TP) optimization. In high-

level synthesis (HLS), power optimization is one of the

main objectives. Some recent surveys213 regarding low

∗Author to whom correspondence should be addressed.

Email: dutt@uic.edu

power designs in HLS studied and categorized low power

design techniques and algorithms proposed in the last

two decades. Most existing power-driven design tech-

niques in HLS for module selection can be categorized

into exact/optimal-techniques, constructive-heuristic tech-

niques, and stochastic-heuristic techniques. Furthermore,

some post-HLS techniques like clock gating,29 power

gating,30 and thermal-aware floorplanning31 are also dis-

cussed in Ref. [2]. Since in this paper we focus on

the problem of module selection, scheduling, and bind-

ing (MSB), once we generate a complete MSB solu-

tion, the aforementioned post-HLS techniques, which are

largely independent of the MSB solution generation algo-

rithm, can also be applied to our MSB solution for further

optimization.

With the significant increase chip design sizes, exact

algorithms, like 0/1 integer linear programming (0/1-ILP),4

are not able to obtain optimal solutions within a reason-

388 J. Low Power Electron. 2019, Vol. 15, No. 4 1546-1998/2019/15/388/022 doi:10.1166/jolpe.2019.1584



IP: 198.54.106.172 On: Tue, 21 Jul 2020 01:01:50
Copyright: American Scientific Publishers

Delivered by Ingenta

Zhang et al. A Power-Driven Stochastic-Deterministic Hierarchical HLS Framework for Module Selection, Scheduling and Binding

able runtime. Thus, to efficiently and effectively explore
a problem solution space is the prime importance for the
optimization problems. As a result, a large number of well-
studied heuristics have been developed that can efficiently
handle the optimization problems for large-size designs.

Constructive-heuristic approaches, like ASAP, ALAP,
list scheduling (LS),5 and force-directed scheduling
(FDS)6 have high efficiency in obtaining reasonable
scheduling and binding (S&B) results. For the objec-
tive of power optimization in module selection in HLS,
there are different constructive-heuristic approaches that
can be broadly categorized into using multiple supply
voltage (multi-Vdd5 or multiple threshold voltage (multi-
Vth5 assignments for functional units (FUs). The multi-
Vdd approaches7–13 are used to reduce to mainly dynamic
power and the multi-Vth approaches,

14–17 are used to reduce
leakage power.

For dynamic power (DP) optimization, the technique
discussed in Ref. [7] is a network flow based dual-Vdd

binding algorithm that aims to reduce switching activity
on interconnects between FUs. Chang et al.8 proposed a
dynamic programming based algorithm. It provides opti-
mal scheduling solutions for trees in pseudo-polynomial
times, but sub-optimal for general directed acyclic graphs.
A force-directed scheduling (FDS) algorithm based two-
stage power optimization approach with multi-Vdd assign-
ments was presented in Ref. [10]. In the first stage, it
generates a S&B solution by a modified FDS algorithm to
minimize the dynamic power. In the second stage, it inves-
tigates all operations with high-Vdd and tries to re-assign
certain operations to low-Vdd to reduce power without
increasing the number of FUs determined in the previous
stage.

For leakage power (LP) optimization,14 proposed a max-
imum weighted independent set (MWIS) heuristic with
dual-Vth’s. MWIS replaces a set of FUs in an initial S&B
solution from low-Vth to high-Vth to achieve LP reduction.
However, the quality of solutions (QoS) of final results
is correlated to the QoS of the initial synthesis solution,
which limits the solution space. Wang et al.15 presented a
min-cut flow based technique with dual-Vth assignments.
It initially assigns all operations with high-Vth, and the
result that the corresponding latency of the design could
be larger than a given latency constraint. In this case, the
technique re-assigns certain operations to low-Vth to fix
timing violations such that the resulting power increase is
minimized.

There are some design approaches that involve multi-
Vdd and multi-Vth techniques to reduce both DP and LP,
which is equivalent to the goal of total power (TP) opti-
mization in this paper. In Ref. [13], a system of differ-
ence constraints (SDC) based simultaneous scheduling and
module selection technique is presented for power mini-
mization, but there is no explicit specification about which
type of power is being optimized. They have two differ-
ent types of power minimization objectives: (i) One based

on only operation power (which can thus be interpreted

as FU DP for executing the operations). Also, they can

obtain an optimal solution in polynomial time using lin-

ear programming (the SDC’s) for this formulation due to

the constraint matrix being totally unimodular, implying

that linear programming yields integral solutions of sched-

ule time variables. (ii) A second objective based only on

FU power independent of operations executing on them

(which can thus be interpreted as FU LP). However, for

the FU LP formulation, there is no binding or estima-

tion of the number of FUs of each speed/delay-power type

needed within the SDC mathematical programming frame-

work. Binding seems to be done using a separate technique

from Ref. [10], possibly as a pre-processing step to gener-

ate non-overlapping execution range constraints for oper-

ations bound to the same FU that is needed in their SDC

framework. This lack of simultaneous binding in the SDC

framework implies a potential sub-optimality. Their system

is integrated with Magma tools, for both, final power esti-

mation, and for performing lower-level gate sizing (appar-

ently to further improve FU LP). It is thus also unclear how

much of the power optimization they obtain is due to their

SDC-based technique and how much due to the Magma

tool’s gate sizing, and also whether they perform the same

gate-sizing optimizations for other techniques like optimal

ILP that they compare to (their results are 6% from opti-

mal). Finally, they use an FU library for which explicit

speed-power values are not given (only continuous speed-

power plots are specified), and internal DFG benchmarks

that are not publicly available. Due to these issues, it is not

possible to compare our technique in an apples-to-apples

manner to the SDC-based technique of Ref. [13]. Mohanty

et al.18 presented an ILP-based power optimization tech-

nique with multi-Vdd’s for TP minimization. The technique

proposed in Ref. [9] is a two-stage power minimization

approach. In the first stage, it minimizes DP with a min-

cost-flow-based technique that assigns most operations to

the low-Vdd. Then, it uses a simple power gating scheme

to reduce LP at the post-HLS stage. Both Refs. [9] and

[10] optimize power in multi-steps where the QoS of the

second step is limited by the QoS of the initial step and

thus, the QoS of the final solution is tied to the initial step.

Hence, for constructive-heuristics, the QoS is limited by

the lack of solution space exploration.

For the purpose of improving the combined mod-

ule selection and S&B QoS, stochastic-heuristics, like

genetic algorithm,19 simulated annealing (SA),20124 and

ant colony,21 apply controlled random exploration of a

large solution space which, however, leads to a dramatic

increase in runtime.

To obtain good QoS coupled with efficient runtime, this

paper proposes a hierarchical framework with the objective

of total power (dynamic and leakage power) optimization

under given latency constraints. This framework integrates

a significantly improved version of the list scheduling

J. Low Power Electron. 15, 388–409, 2019 389



IP: 198.54.106.172 On: Tue, 21 Jul 2020 01:01:50
Copyright: American Scientific Publishers

Delivered by Ingenta

A Power-Driven Stochastic-Deterministic Hierarchical HLS Framework for Module Selection, Scheduling and Binding Zhang et al.

(called modified list scheduling or MLS) algorithm with

a modified power-driven simulated annealing algorithm

(called PSA) for the most important power-driven explo-

ration, that of module selection. The PSA generated mod-

ule selection is followed by a S&B solution from MLS

that satisfies the module selection configuration. The main

concepts of the proposed hierarchical frameworks are:

1. Stochastic- and constructive-heuristics have com-

plementary characteristics. Stochastic-heuristics, as the

explorer in this hierarchical framework to obtain partial

(module selection) solutions, have a greater potential in

exploring the solution space of designs than constructive-

heuristics have. Then, constructive-heuristics efficiently

generate and provide reasonably good complete solutions

to evaluate the stochastic-heuristic’s partial solutions to

improve the convergence runtime while still achieving a

good QoS.

2. This framework has a high flexibility of integrating dif-

ferent techniques at the two levels of this optimization

hierarchy. On the other hand, this framework also has

the capability to be applied to various applications and

objectives.

The rest of the paper is organized as follows: Section 2

defines our problem, gives various power models and for-

mulations, and discusses the motivation for performing

module selection for power optimization. The proposed

hierarchical framework is presented in Section 3. Section 4

discusses a competitive flat simulated-annealing based

power-driven module selection, scheduling and binding

algorithm to compare to our hierarchical framework.

Finally, Sections 5 and 6 provide the experimental results

and conclusions, respectively.

2. MOTIVATION AND BASIC FORMULATIONS
In this paper, our goal is total (dynamic+ leakage) power

optimization for the power consumed primarily by func-

tional units and secondarily (as an option) by muxes and

demuxes connected to them. We formulate our power min-

imization problem as the follows.

Input: (1) A data flow graph (DFG), G(V, E), where

V is the operation set of all operations and E is the arc

set that represents the precedence dependency among all

operations. An arc from operation u to v represents the

fact that u is the immediate predecessor of v (u’s output

is one of v’s input operands) and v is the immediate suc-

cessor of u. We define parent(u) as the set of immediate

predecessors of u and child(u) as the set of immediate

successors of u. Moreover, we define Pr(u) as the set of

all predecessors of u, and Su(u) as the set of all succes-

sors of u. (2) A multiple design-based or multiple-Vdd/Vth

based functional-unit (FU) library lib which contains pos-

sibly multiple module instances or FUs with different

speed-power characterizations for each functional type.

(3) An upper bound latency constraint lc.

Output: A module selection, scheduling, and binding

(MSB) solution that minimizes either total power (TP)
consumed internally by FUs, or internally by FUs and

muxes plus demuxes connected to them, and satisfies the

upper-bound latency constraint lc and all data dependen-

cies of G(V, E). Thus, in this paper, by the term “qual-
ity of solution (QoS),” we will mean quality in terms of

minimizing the aforementioned power metric for the case

of interest (FU only or FU+mux+ demux power) for

constraint-satisfying solutions.

2.1. Power Model Preliminaries

Both dynamic and leakage power models are well known.

As in Ref. [23], the dynamic power consumption of a logic

gate is a function of switching probability (�5, load capac-
itance (CL5, supply voltage (Vdd5, and clock frequency (f ),

and is given by:

dp=
1

2
·� ·CL ·V

2
dd · f (1)

The leakage power consumption of a logic gate is a func-

tion of leakage current (Ileak5, and supply voltage (Vdd5,
and is given by:

lp = IleakVdd (2)

Based on the early Berkeley short-channel insulated-gate
field effect transistor model,27 the leakage current of an

nMOS transistor when Vgs = 0 is:

Ileak = �0Cox

(

W

L

)

Vte
108e4Vgs−Vth5/nVt 41− e−Vds/Vt 5 (3)

where �0 is the effective carrier mobility, Cox is the effec-

tive gate capacitance, W/L is the ratio of channel width to

length of the transistor, Vt is the thermal voltage, and n is
the sub-threshold slope coefficient. According to Ref. [13],

the power-delay tradeoff can be captured as a convex

curve. Theoretically, by adjusting parameters such as Vdd,

Vth, and gate sizing (W/L) or using different design imple-
mentations (like the previous example of RCA and CLA),

for each function type, it is possible to have a hardware

implementation of a functional unit (FU) for every point on

the tradeoff curve. Thus, we can unify the multiple design-
based and multi-Vdd/Vth-based libraries by considering the

multiple design-based FU library only. Therefore, we only

consider the function type, delay (speed type) and power

characteristics of an FU for our power model which will
be discussed shortly.

Beyond scheduling and binding (S&B), module or

functional-unit selection is an additional dimension of the

design space in HLS. Dynamic power (DP) is consumed
only during the period of operation execution, i.e., we con-

sider the dynamic power consumed internally in FUs dur-

ing the computation only. Thus, DP is related to which

speed-power-type FU each individual operation is bound
to, i.e., to unit dynamic power per clock cycle (cc), denoted

390 J. Low Power Electron. 15, 388–409, 2019



IP: 198.54.106.172 On: Tue, 21 Jul 2020 01:01:50
Copyright: American Scientific Publishers

Delivered by Ingenta

Zhang et al. A Power-Driven Stochastic-Deterministic Hierarchical HLS Framework for Module Selection, Scheduling and Binding

by dp, and delay of the FU that an operation is bound to.
Leakage power, LP, is related to the number of FUs of each
functionality-speed type used in a design, and specifically
to the unit leakage power per cc, denoted as lp, of each FU
used, the number of FUs with the same lp that is used, and
the entire latency of the design. Note that, various other
power optimization processes that are not directly related
to MSB considerations, like power and clock gating, are
post-HLS transformations of the design and need a number
of considerations beyond the MSB framework. For exam-
ple, power-gating requires formation of power islands of
FUs with largely intersecting idle times that is difficult to
address fully during regular HLS, and no work has done
this to the best of our knowledge. We thus do not consider
this issue in this paper, and assume that all FUs remain
powered on for the entire duration of the design latency,
including during their idle periods. Using different speed-
power characterized FU design-based libraries can afford
larger and more flexible optimization spaces than multi-
Vdd/Vth based FUs by offering a large range of speed-power
parameters to assign to various operations. With the selec-
tion from a diverse set of FU designs, we can obtain a
minimal power synthesis solution for a DFG. For example,
an n-bit ripple carry adder (RCA) and an n-bit Kogge-
Stone based carry lookahead adder (KS-CLA) have differ-
ent speed and power parameters. Theoretically, to execute
one operation with two n-bit inputs, an RCA has ä(n) unit
delay whereas a KS-CLA has ä4logn5 unit delay. To sim-
plify the analysis for the power parameters for different
designs, we assume for the purpose of this discussion that
both DP and LP are proportional to the total number of
inputs across all gates in the FU (this is related to the num-
ber of transistors used in the FU—each transistor expends
dynamic power when conducting, and the number of leak-
age paths within a gate or logic cell with a small input size
is generally proportional to the number of transistors in it),
which is ä(n) for an RCA and ä4n logn5 for a KS-CLA
(we note that in the FU library we use for our experiments,
the power and delay for different FUs are actually obtained
more specifically via simulation of actual designs using
Synopsys’s Design Vision35). Therefore, an n-bit KS-CLA
has ä4n4logn)) units of dynamic power and ä4n logn5
units of leakage power. Similarly, an n-bit RCA has ä(n)
units of dynamic power and ä(n) units of leakage power.
Furthermore, as analyzed in Ref. [22], a HLS design with
fewer KS-CLAs can be used to replace k RCAs by a factor
roughly proportional to their delay ratio of ä44logn5/n5, if
the replacement does not cause any violation of the latency
and precedence constraints (scheduling an operation only
after all its parent operations finish execution). In terms
of total power, whether a set of RCAs or CLAs is better
for a group of operations depends on the ratios of their
total power consumed per cc, precedence constraints, i.e.,
the DFG structure, available slacks for these operations,
and the fragmentation of available cc’s that they impose
on these FUs.

In general, considering a mix of CLAs and RCAs

(and more generally, slow/low-power and fast/high-power

FUs for each function type) should provide more power-

efficient solutions under given latency constraints. Figure 1

illustrates an example of one CLA replacing three RCAs,

where the CLA (fast FU) has a delay of 2 clock cycles

(cc’s) and an RCA (slow FU) has a delay of 4 cc’s.

Figure 1(a) shows a scheduling and binding solution using

only RCAs for four operations u, v, w, x. The prece-

dence constraint w→ x and other precedence and the given

latency constraint, which translate to the asap (the ear-

liest schedule time) and alap (the latest schedule time)

constraints shown for each operation executing on RCAs,

necessitates the scheduling shown, resulting in the min-

imum allocation of 3 RCAs for this purpose. However,

these operations can be scheduled and bound to only one

CLA as shown in Figure 1(b), as the asap and alap con-

straints become more flexible (asap may decrease and alap

increase)—for simplicity, only the alap for w on a CLA is

shown. Hence, even if leakage power of one CLA is 2.5

times that of one RCA, the solution in Figure 1(b) still

saves 0.5× of the leakage power consumption of an RCA.

2.2. Component-Level Power Consumption and

Architecture Generation

Here we discuss leakage and dynamic power consumption

formulations for the major components of an HLS archi-

tecture: FUs, muxes, demuxes and registers.

2.2.1. FU Power Consumption

To evaluate the module selection, scheduling, and bind-

ing (MSB) solution for a design for the objective of total

power optimization, obtaining both dynamic and leakage

power from the corresponding MSB solution is required.

Fig. 1. An example of power reduction by utilizing a faster FU. The

colors represent different operations, and they are bound to FUs that are

represented by the larger white rectangles.

J. Low Power Electron. 15, 388–409, 2019 391



IP: 198.54.106.172 On: Tue, 21 Jul 2020 01:01:50
Copyright: American Scientific Publishers

Delivered by Ingenta

A Power-Driven Stochastic-Deterministic Hierarchical HLS Framework for Module Selection, Scheduling and Binding Zhang et al.

In the following, for notational and estimation conve-

nience, by power of any type (leakage, dynamic, and total),

we will mean energy per clock cycle, as opposed to energy
per second (the two are related to each other by a factor,

the clock frequency, and in any case, our power definition,

is energy per some unit time, and thus, consistent with

the standard meaning of power). We define a configura-

tion c(i) of an operation i as c(i)= (ti, si5, where ti is the

function type of this operation and si represents the speed

type of the FU that operation ui is to be bound to. Each

MSB solution includes a configuration for each operation
ui. For example, for a dual-speed lib, si is defined as:

si =

{

0 if operation ui is bound to slow FU

1 if operation ui is bound to fast FU
(4)

Moreover, we define a module selection solution for

all operations for a DFG, as a speed vector SV =

6s11 s21 0 0 0 1 si1 0 0 0 1 sn], where si is the speed type of FU

that operation ui is to be bound to, and n is the num-
ber of operations of the given DFG. In practice, a multi-

ple design-based library can have a heterogeneous number

of speed types for different functional types. Further, for

a functional type t that only has a single speed-type, all

operations with function type t have only one option for

their speed type s, and the corresponding entries in SV are

constants (set to 0 and not subject to change during MS

solution space exploration). We initialize SV with all oper-
ations assigned to the fastest possible speed-type FUs in

the given FU library. Based on a specific speed vector SV

that represents a module selection solution, we can com-

pute the dynamic power consumption of FUs, denoted as

DPFU as:

DPFU = fD4c4151 0 0 0 1 c4n55=
n
∑

i=1

dp4c4i55 ·d4c4i55

l
(5)

where dp(c(i)) and d(c(i)) are the dynamic power (dynamic

energy per cc) and delay of operation ui when bound to

an FU of speed type si ∈ c4i5, respectively. l ≤ lc is the

achieved latency of a design.

Furthermore, based on an SV, we generate a S&B solu-

tion by using a constructive algorithm called modified list

scheduling or MLS (this is a much better optimized ver-

sion of classical list scheduling). From the corresponding
set of required FUs in the S&B solution, we can compute

the total leakage power consumption of all FUs, denoted

as LPFU, of an MSB solution as:

LPFU = fL4N11N21 0 0 0 1Nm5=
m
∑

i=1

lp4libi5 ·Ni (6)

where m is the number of FUs of different functionality-

speed types (slow adder, fast adder, slow multiplier, faster

multiplier, etc.) that are denoted by libi’s, i.e., FUs of
functionality-speed type i = 4si1 ti5, lp(libi5 is the leakage

power (leakage energy per cc) of a libi FU, and Ni is the
number of libi FUs used. As we mentioned earlier, we
assume that all FUs remain powered on during the entire
design latency and thus, the leakage power of FUs is con-
sumed over the entire design latency including the idle
periods of FUs.
Thus, the total power consumed by FUs, i.e., the total

power of an MSB solution, denoted as TPFU, is:

TPFU = DPFU+LPFU (7)

We obtained the values of dp(c(i)), d(c(i)) and lp(libi5
for each functional-speed type FU by describing the cor-
responding designs using Verilog, followed by synthesis
and power, delay report generation using Synopsys Design
Vision;35 these are reported in Table I in Section 5. Pre-
sumably Design Vision uses the transistor and gate level
leakage and dynamic power models along the lines of
those described in Eqs. (1)–(3) in Section 2.1 to obtain the
aforementioned FU power and delay parameters.

2.2.2. Final Architecture Generation

Once we have a complete MSB solution, we can obtain
the corresponding architecture to determine the power
consumption of muxes, demuxes, and registers (dynamic
power consumed on interconnects cannot be considered
without layout/floorplanning the design and thus not con-
sidered here). From a complete MSB solution, we gen-
erate a corresponding architecture by performing register
binding. In this paper, since we focus on the MSB prob-
lem and TP minimization of FUs, we use a tie-breaking
variation of the basic left-edge algorithm25 (either inte-
grated with scheduling or post-regular-MSB in which only
the basic left-edge algorithm is integrated with scheduling)
that keeps the FUs used in the design to the exact number
determined by the scheduling solution, but within this con-
straint, maximizes sharing of interconnects between FUs
in order to reduce mux and demux sizes needed, and thus
their power. Register allocation is also performed but post
the above processes, and also uses the left-edge algorithm
for minimizing the number of registers needed given the
MSB solution.

Table I. Four-speed FU library via [23].

Function unit designs (16-bit) d6cc7 dp [uW] Ip [uW]

Adder Kogge-Stone 1 40506 1102

Brent-Kung 2 14907 802

CarrySelect (RCA) 3 6908 508

RCA 6 2300 308

Multiplier CarrySave-Tree-RCA 3 97209 8003

CarrySave-Tree-CSA 4 54806 6004

Dadda-Kogge-Stone 5 43205 5905

Wallace-CSA (RCA) 7 29308 5606

Divider Radix-8 (Kogge-Stone) 8 56006 12304

Radix-4 (Kogge-Stone) 12 21003 6905

Radix-8 (Brent-Kung) 16 20407 9001

Radix-4 (Brent-Kung) 24 8609 5704

392 J. Low Power Electron. 15, 388–409, 2019



IP: 198.54.106.172 On: Tue, 21 Jul 2020 01:01:50
Copyright: American Scientific Publishers

Delivered by Ingenta

Zhang et al. A Power-Driven Stochastic-Deterministic Hierarchical HLS Framework for Module Selection, Scheduling and Binding

Thus, we have two flows for obtaining a HLS

architecture:
(1) Regular FU-power-driven MSB (binding integrated

with scheduling but only to keep FUs used at the

exact number determined by scheduling) → Post MSB
tie-breaking left-edge-based FU re-binding to minimize

mux+ demux power but which also keeps FUs used at

the exact number determined by scheduling→ Left-edge

based register allocation to minimize the number of regis-
ters used, assuming a register-architecture in which sepa-

rate register banks are used for different FUs, i.e., registers

in a bank store outputs of multiple FUs that are inputs to

the concerned FU, and are thus shared by multiple input
operands of the this FU. This phase also provides us the

size of input muxes to registers as opposed to input muxes

to FUs that we explicitly optimize in the aforementioned
second stage of this flow.

(2) FU+mux-demux power-driven MSB (binding with

mux-demux size/power considerations integrated with

scheduling that also keeps FUs used at the exact num-
ber determined by scheduling)→ Left-edge based register

allocation to minimize the number of registers used as in

flow 1.

Note that in flow 1, we explicitly only minimize TPFU but

report total architecture (FU+FUs’ mux-demux+registers

and their input muxes) power. In flow 2, we explicitly

minimize FU+ FUs’ mux-demux power and also report
total architecture power as in flow 1. Flow 2 provides

lower architecture power solutions than flow 1, and our

motivation to implement both flows are: (a) Flow 1 is a

more standard flow in the research literature,32 and enables
us to directly compare its results to previous techniques

employing the same flow (Section 5.2 and Section 5.3).

(b) The QoS difference in architecture power (Section 5.4)
between the two flows show the benefit yielded by the

non-standard and more sophisticated integrated binding of

flow 2 compared to the more common integrated binding

of flow 1, albeit at an appreciably higher runtime (note
again that the number of FUs of each libi type are the

same in the final solutions of both flows). (c) The two

flows provide a runtime-to-QoS tradeoff that allows a chip

designer the flexibility of using the option the best fits
his/her requirements.

Then, with the architecture, we can determine the com-

plete interconnect information which includes information
about which interconnects are connected to which muxes,

demuxes and registers. Based on this, we compute power

consumption of muxes, demuxes, and registers as follows.

2.2.3. Mux and Demux Power Consumption

Dynamic power is consumed in an FU or register mux
when input data is generated due to the execution of an

operation whose output is destined for the corresponding

FU, since the data has to pass through a register mux and
an FU mux for the FU. Thus, for a design with k muxes

allocated in total with M(i) the number of inputs of the
i’th mux, the total dynamic power DPmux consumed by

muxes is:

DPmux =
k
∑

i=1

T 4i5 · �logM4i5� ·dp21mux ·d21mux

l
(8)

where T(i) is the number of times that new input data for
an FU passes through the i’th mux (which is either an

input mux for one its input registers or is a mux directly
connected to one of its inputs), �logM4i5� is the maxi-
mum number of 2-to-1 muxes in any path of this mux

that is assumed to have a binary tree-structured design
with 2-to-1 muxes as its nodes—data passes through

exactly one such path of the mux. dp21mux and d21mux are
the dynamic power and delay of a 2-to-1 mux, respec-
tively. Similarly, we can determine the total dynamic

power DPdemux consumed by demuxes—a demux con-
sumes dynamic power whenever its source FU executes a

new operation and thus generates a new output data. We
define DPmux/demux = DPmux+DPdemux.
Moreover, the leakage power of a mux (demux) is

related to the number of inputs (outputs) of this mux
(demux), and the unit leakage power of a 2-to-1 mux
(1-to-2 demux), denoted as lp21mux (lp12demux5, An m-to-1

mux (1-to-m demux) has m–1 2-to-1 muxes (1-to-2
demuxes). Similar to the assumption for LPFU, all muxes

and demuxes remain powered on over the entire design
latency whether they are idling or not. Thus, for a design
with k muxes and M(i) the number of inputs of the i’th

mux, the total leakage power LPmux consumed by all
muxes is:

LPmux =
k
∑

i=1

4M4i5−15 · lp21mux (9)

Similarly, we can determine the total leakage power
LPdemux consumed by all demuxes. We define LPmux/demux =

LPmux+LPdemux.

Thus, the total power TPmux/demux consumed by muxes
and demuxes is:

TPmux/demux = DPmux/demux+LPmux/demux (10)

2.2.4. Register Power Consumption

The dynamic power of a register is related to the total
number of input data stored in it, the unit dynamic power
of a register, denoted as dpreg, and the delay of a register,

denoted as dreg. For a design with q registers and R(i) the
total number of input data stored in the i’th register, the

total register dynamic power DPreg is:

DPreg =
q
∑

i=1

R4i5 ·dpreg ·dreg

l
(11)

Moreover, the leakage power of registers in a design is
related to the total number of registers are allocated and the

J. Low Power Electron. 15, 388–409, 2019 393



IP: 198.54.106.172 On: Tue, 21 Jul 2020 01:01:50
Copyright: American Scientific Publishers

Delivered by Ingenta

A Power-Driven Stochastic-Deterministic Hierarchical HLS Framework for Module Selection, Scheduling and Binding Zhang et al.

unit leakage power of the register, denoted as lpreg. Again,
we assume that all registers remain powered on over the

entire design latency whether or not they are idling. For
an architecture with q registers the total leakage power

LPreg is:
LPreg = q · lpreg (12)

Thus, the total power TPreg consumed by all registers is:

TPreg = DPreg+LPreg (13)

Therefore, the total power of an architecture, denoted as

TParch, is:

TParch = TPFU+TPmux/demux+TPreg (14)

We synthesized 16-bit 2-to-1 mux, 1-to-2 demux, and
register using Synopsys Design Vision35 and obtained

the following delay and power parameters. They all
have delays in picoseconds (much smaller than a cc),

dp21mux/12demux = 0.312 uW, lp21mux/12demux = 1.347 uW,
dpreg = 1.19 uW, and lpreg = 3.6 uW.

3. POWER-DRIVEN HIERARCHICAL
FRAMEWORK

Here we discuss our power-driven hierarchical framework
for module selection, scheduling and binding called PSA-

MLS (Power-driven Simulated Annealing with Modified
List Scheduling algorithm).

In this paper, one of the core techniques is called mod-

ified list scheduling (MLS). We develop MLS as a signif-
icantly augmented and sophisticated version of the very

runtime-efficient list scheduling (LS) algorithm. The basic
LS algorithm (which also performs binding) is given in

Figure 2 with a slight modification for scheduling and
binding an operation on an FU of a pre-selected speed

type. MLS is given as part of our hierarchical framework’s
flowchart in Figure 3. Another main method is called

Fig. 2. Simultaneous scheduling and binding using list scheduling and

left-edge binding with a given speed vector SV.

Fig. 3. The flow chart of our power-driven hierarchical HLS framework

using power-driven simulated annealing for module selection and modi-

fied list scheduling for scheduling and binding.

power-driven simulated annealing (PSA) which combines

with MLS to form the proposed hierarchical framework
PSA-MLS.

Figure 3 shows the HLS design flow with our power-
driven hierarchical framework PSA-MLS. The design pro-

cessing starts from generating an initial module selection,
scheduling, and FU binding (MSB) solution, where this

initial MSB solution is the start point of the solution space
that PSA-MLS will explore. To generate the initial MSB

solution, any techniques and methods can be applied since
theoretically, the initial MSB solution does not affect the

QoS of the final complete MSB solution due to the fact
that the randomness of PSA can explore the complete solu-

tion space of module selection (will be discussed shortly).
In this paper, the initial MSB solution is generated as fol-

lows: (1) Module selection (initialization of SV): all oper-
ations are assigned to the fastest speed-type FUs in the

given multiple design-based FU library lib. (2) Scheduling

and Binding (S&B): The S&B result is generated by the
proposed modified list scheduling. We tested four differ-

ent initial SVs with all operations are assigned to: (a) the
fastest speed; (b) the slowest speed; (c) mid-level speed;

(d) random speed. According to our results, there is no
significant power and runtime result difference among dif-

ferent initial SVs.
After generating the initial MSB solution, PSA-MLS

starts to explore the solution space and generate the final
complete MSB solution. From the final MSB solution, we

do register allocation and binding as the post-MSB pro-
cessing to obtain the complete architecture for obtaining

the entire architecture power. Note that, the goal in this
paper is the total power (dynamic+ leakage) optimization

where the total power is consumed by FUs only. Once
the scheduling and module selection solution has been

394 J. Low Power Electron. 15, 388–409, 2019



IP: 198.54.106.172 On: Tue, 21 Jul 2020 01:01:50
Copyright: American Scientific Publishers

Delivered by Ingenta

Zhang et al. A Power-Driven Stochastic-Deterministic Hierarchical HLS Framework for Module Selection, Scheduling and Binding

generated, the QoS of the scheduling and module selec-
tion solution is already determined in that they specify
an achievable lower-bound on the number of FUs needed
for each function and speed-type combination. This lower
bound can be exactly obtained by an optimal binding
(assigning operations to particular FUs to pertain to the
scheduling and module selection solution) algorithm such
as the left-edge algorithm. Since we don’t consider the
power of muxes, demuxes and registers in this version of
MLS (a later version in the in-Bind approach discussed
in Sec. 5.4 does), no more optimization step is required
e.g., some binding techniques like maximum weighted
clique covering26 can be applied for minimizing the power
of interconnects (or muxes). However, post PSA-MLS (and
thus outside of MLS), we used a modified left-edge (MLE)
algorithm discussed in Section 3.3 for FU re-binding to
minimize FU plus mux/demux power, and simple left-edge
for register binding in a post-Bind (post-MSB binding)
step shown in Figure 3. Next, we discuss the details of
PSA-MLS.

The basic issue in module selection from multi-speed-
power characterized FUs is what speed type an opera-
tion should be assigned so that the QoS of the final solu-
tion after scheduling and binding will be good. Since the
speed vector (SV) captures the issue of speed type or
module selection, with a given SV, the MSB problem is
transformed to a variation of the standard S&B problem
wherein the S&B solution needs to respect the operation
assignments to speed-types specified in the SV.

To capture the issue of generating SVs and the cor-
responding S&B solutions, we employ a two-pronged
approach in which there is a stochastic exploration of mod-
ule selection space interspersed by an efficient construc-
tive algorithm to perform S&B for the module selection
solution. In this paper, we use a power-driven simulated
annealing (PSA) algorithm to generate SVs and a modified
list scheduling (MLS) algorithm to obtain the correspond-
ing S&B solutions.

This framework called PSA-MLS avoids the very
runtime-intensive problem of conventional SA for simul-
taneous module selection and S&B (i.e., for exploring a
much larger solution space than that of module selection)
to obtain good solutions, and also, maintaining the essen-
tial superiority of stochastic exploration of an important
sub-space of the entire problem solution space. The flow
chart of the two-pronged proposed hierarchical framework
is given in Figure 3. The general procedures of the pro-
posed PSA-MLS are the follows and all details will be
discussed later:
1. PSA initializes the starting and final temperature.
2. PSA randomly generates a new module selection solu-
tion, SV′.
3. Invoke an efficient constructive S&B algorithm, like list
scheduling (LS) in Figure 2, to extend SV′ with S&B for
a new complete MSB solution p′ that satisfies the speed-
type assignments in SV′ with a corresponding total power

consumption TP′. Note that, the simultaneous scheduling

and binding (by left-edge algorithm) is described by line

11 to line 13 in Figure 2.

4. PSA decides the acceptance or rejection of p′ based on

the aforementioned power consumption TP′ by an accep-

tance probability, which is denoted as prob(p′). prob(p′5=

min811 e−4TP′−TP5/T 9, where TP is the total power of

the current complete solution p, and T is the current

temperature.

5. Repeat step 2 to 4 until the system reaches the equilib-

rium state is reached (solution cost has not changed much

over a certain number of moves—we set this limit of the

number of moves to be equal to n, the number of opera-

tions in a given DFG), or the number of feasible moves

(accepted+ rejected) equals a threshold value of M.

6. Exit if current temperature T reaches to the freezing

temperature Tf . Otherwise reduce the temperature accord-

ing to a cooling rate and repeat steps 2 to 5.

3.1. Power-Driven Simulated Annealing

The power-driven simulated annealing algorithm (PSA)

attempts to obtain the lowest power speed vector for the

problem of speed-assignment for each operation (mod-

ule selection) for power minimization. Starting from the

initial MSB solution as mentioned before, PSA itera-

tively generates new random SVs by FU-centric moves

(to be discussed shortly). For each new SV, denoted by

SV′, S&B is performed by MLS to obtain a new com-

plete MSB solution p′ for the corresponding SV′. Then,

we compute the total power consumption TP′ for p′ by

Eqs. (5) and (6). After that, PSA either accepts or rejects

this SV′ by the acceptance probability of p′, prob(p′5 =

min811 e−4TP′−TP5/T 9.

3.1.1. Initial and Freezing Temperature

One of our innovations in PSA is that it adaptively com-

putes the initial and freezing temperature Ti and Tf based

on the given DFG. The idea is that an average cost-

increasing move at temperature T= Ti should be accepted

with a probability of 0.99 and with a probability of 0.01 at

T= Tf . Accordingly, we choose moves from our move set

(to be described shortly) according to their pre-assigned

probabilities in a non-SA framework. The pre-assigned

probability of selecting a move from the move set is uni-

formly distributed. Then, we compute the average power

change ãCavg due to these moves over n random moves

from some current solution as ãCavg = 1/n
∑i=n

i=1 Ci where

Ci is the power change of the i’th move. Based on ãCavg,

and the acceptance probability of e4ãCavg/T5, we choose Ti

and Tf such that the acceptance probabilities at these tem-

peratures are 0.99 and 0.01, respectively. We use a cooling

rate rc = 0.95, which seems to be sufficient for a reason-

ably comprehensive search of the solution space.

J. Low Power Electron. 15, 388–409, 2019 395



IP: 198.54.106.172 On: Tue, 21 Jul 2020 01:01:50
Copyright: American Scientific Publishers

Delivered by Ingenta

A Power-Driven Stochastic-Deterministic Hierarchical HLS Framework for Module Selection, Scheduling and Binding Zhang et al.

3.1.2. Move Set for Speed Vector Generation

PSA has four types of moves to generate SV′, which is

used to decide the speed type of an FU that an opera-

tion will be bound to. In general, for a given multiple

design-based FU library lib, we define Qt as the number of

speed types for each function type t. As discussed before,

a library can have heterogeneous speed types in which Qt

may be different across function types t. The speed type su
for operation u with function type t is defined as su = j if it

is bound to (or to be bound to) the (j+1)’th fastest FU of

the functional type that u has, where 0 ≤ j ≤ Qt −1. Note

that, for function types t with Qt = 1, since all operations

with function type t has only one possible speed type FU

that they can be bound to, function type t is not involved in

the SV generation by PSA Thus all such operations with

function type t have a fixed speed type.

We now discuss the four different move types in PSA.

The probability of selecting a move type is uniformly dis-

tributed to be 1/4.

• Move 1: Randomly choose one FU of speed type

s< Qt −1 and increment s of these operations as well

as that of the corresponding FU by 1. The probability of

selecting a speed type s is 1/Q where Q is the sum of the

Qt’s across all function types with Qt > 1. Having selected

a speed type s to increment, the probability of selecting an

FU of speed type s is 1/m where m is the number of FUs

with speed type s.
• Move 2: Randomly choose one FU with s> 0 and decre-

ment s of the operations bound to that FU by 1. Both

probabilities of selecting a speed type and selecting an FU

of that speed type are the same as in Move 1.

• Move 3: Randomly choose two FUs with different speed

types s1 and s2. Randomly select the same number, k, of

operations in both FUs, and swap the speed types of these

operations (i.e., an operation with speed-type s1 is changed

to speed-type s2 and vice versa). The probability of select-

ing an FU with speed type s1 is 1/m where m is the total

number of FUs have been allocated across all functional-

speed types with Qt > 1. The probability of selecting an

FU with speed type s2 is 1/m′ where m′ is the number

of the FUs with different speed-types than s1 and with

Qt > 1. The probability of selecting a value for k is 1/k,

where k is the minimum value between the two numbers

of operations bound to each FU.

• Move 4: Randomly choose a number k in 611n7 with a

probability of 1/n, where n is the total number of oper-

ations in a DFG. Then, randomly choose a contiguous

sequence of k elements in the current SV (randomly choos-

ing the starting index for this sequence in 611n−k+17) by

the probability of 1/(n–k+ 1)), and change their s values

randomly. For each selected element with function type t,

the probability of selecting a new s value is 1/(Qt −1).

For simplicity of exposition, we illustrate the moves for

the dual-speed case, i.e., with Qt = 2 for all function

types t with Qt > 1. For a dual-speed lib, 0 and 1 rep-
resent slow and fast speed types, respectively. Figure 4.
shows examples of the first three moves. Assuming the
current speed vector SV = [01001010 0 01], operation 1,
3, 4 are in one slow FU with s value is 0, whereas
operation 2, 5 are in one fast FU with s value is 1.
Figure 4(a) shows that by Move 1, the new SV, SV′ =
61111101 0 0 017, while Figure 4(b) shows that by Move

2, SV′ = [00000010 0 01], and Figure 4(c) shows that by
Move 3, SV′ = [10110010 0 01]. Finally, with k= 5, starting
from operation 3 by Move 4, SV′ = [01110100 0 01].

Obviously, Move 1 to 3 are FU-centric speed-type
changes and thus, SV′ would generally lead to a solution
with a small power change, i.e., the new complete MSB
solution p′ is truly obtained incrementally from the solu-
tion p with the current speed vector SV. Move 4 is not FU-
centric as other types of moves, and it may lead to large
“jumps” in the solution space. The apparent randomness
of the distribution of a subsequence of operations among
different FUs is an interesting point in Move 4. This ran-
domness will lead Move 4 to generate significant jumps
for either better or worse from the current solution. Based
on Move 4, it is possible to obtain any SV from the current
module selection solution, and thus, using all the types of
moves, the module selection solution space is connected,
a desirable property for a simulated annealing algorithm.

3.2. Modified List Scheduling Algorithm

We develop and use a modified version of the very
runtime-efficient list scheduling (LS) algorithm, called
modified list scheduling (MLS), to obtain the S&B solution

for a given SV generated by PSA. The basic list schedul-
ing (LS) algorithm, which minimizes the total number of
FUs used, has been well studied in HLS. The version of
LS that respects a given SV is shown in Figure 2; hence-
forth, by LS, we will mean this version of LS. LS assigns
a priority to all available operations (operations whose par-
ent operations, if any, have finished execution) of a given
DFG. The slack slu of an operation u is defined as:

slu = talu − t (15)

Fig. 4. Examples of: (a) Move 1; (b) Move 2; (c) Move 3.

396 J. Low Power Electron. 15, 388–409, 2019



IP: 198.54.106.172 On: Tue, 21 Jul 2020 01:01:50
Copyright: American Scientific Publishers

Delivered by Ingenta

Zhang et al. A Power-Driven Stochastic-Deterministic Hierarchical HLS Framework for Module Selection, Scheduling and Binding

where talu is the alap time (as-last-as-possible or the lat-

est time to schedule to meet the latency and precedence

constraints) of operation u and t is the current clock

cycle (cc).

LS proceeds chronologically by cc, and in each cc, for

each functionality-speed type (t, s) in lib, where libi is the

i’th combination of (t, s) in lib, LS schedules operations u

whose c(i) = libi(u) in an order that is inversely propor-

tional to its slack. In case slu = 0, this operation must be

scheduled immediately to meet the latency constraint on

an available FU (that are not executing any operation in the

current cc) of libi, or a newly-allocated FU of libiif there

is none available. After all 0-slack operations are sched-

uled, if there are any available FUs of libi, the remaining

unscheduled operations are scheduled in the current cc and

bound to them in order of increasing slack (minimal slack

first).

On the other hand, the FU binding by left-edge algo-

rithm can be done simultaneously within the processing

of LS. Once LS makes a scheduling decision, binding the

just-scheduled operation to an available FU or newly allo-

cated FU, as the case may be, of the right functionality

speed type is equivalent to binding done post-scheduling

by the left-edge binding algorithm (line 12 in Fig. 3).

However, the basic LS has well-known deficiencies

compared to other scheduling algorithms. For example,

unlike the force-directed scheduling algorithm,6 LS does

not have a global or semi-global view of S&B possibilities

for resource/FU minimization (which is strongly correlated

to leakage power minimization). In a greedy manner, LS

performs the scheduling only based on the priorities of the

operations that are available for scheduling in the current

cc, and in many instances, schedules an operation only in a

cc in which its slack= 0 even though it was available ear-

lier. This creates a scheduling “jam” in many cc’s where

too many operations than available FUs need to be sched-

uled, leading to new FU allocations at that point; these

new FUs will have low usage as they will be idle in all

preceding cc’s. Hence, LS can allocate a very high num-

ber of FUs, where many of these FUs have low usage,

i.e., have only a small number of operations bound to

them.

It is possible to reschedule such jammed-up 0-slack

operations in an earlier cc by allocating new FUs earlier

leading to higher utilization for them, and thus, as a corol-

lary, have fewer FUs allocated in the final solution. We

define the utilization rate as urw(libi(w)) of an FU w with

the functionality-speed type libi(w) as:

urw4libi4w55=
Ow ·d4libi4w55

l
(16)

where Ow is the number of operations that FU w has

bound to it, d(libi(w)) is the delay of FU of functionality-

speed type libi that w is bound to, and l ≤ lc is the

achieved latency of a design. Thus, the overall utilization

rate UR(libi5 for the FUs of type libi is:

UR4libi5=
m
∑

j=1

ur j4libi5 (17)

where m is the total number of FUs allocated with libi. The

overall utilization rate for type libi is a lower bound for the

number of total FUs that will be used over the scheduling

process if all needed FUs are allocated in cc 1 and thus

better utilized (note that LS allocates only 1 FU of each

speed-function type at the beginning). We define Sinit(libi5

as the initial allocation for functionality-speed type libi
at the beginning of each new iteration of a modified LS

algorithm (MLS) which is shown in Figure 3. We define

Sfin(libi5 as the final allocation result for functional-speed

type libi in the currently complete scheduling iteration of

MLS. Since we do not know the exact number of FUs that

will be allocated in the final solution, at the beginning of

each new iteration of MLS, we determine Sinit(libi5 as:

Sinit4libi5 = �UR4libi5/min41141+�5URavg4libi51

URSinit
avg 4libi55� (18)

where URavg(libi5 = UR(libi5/m and URSinit
avg 4libi5 = the

average utilization of FUs allocated in Sinit(libi5 in the

currently completed scheduling iteration of MLS. Note

again that UR(libi5 is a lower bound on the number of

FUs of libi that will be needed in any MSB solution, and

41+�5URavg(libi5 is the expected increase in the average

utilization rate due to a better initial allocation of FUs of

libi; we use �= 0.2 in our experiments. Further, it is rea-

sonable to expect that the utilization of all FUs of type

libi used in the final solution will not exceed the current

utilization of all FUs of libi that were allocated in Sinit
in the current iteration, since these FUs have a relatively

high utilization given that: (a) they were available for use

starting from cc 1, and (b) in each cc, the ratio of the

number of available operations to available FUs of libi
should more or less be the maximum relative to future

iterations of MLS in which Sinit allocations either increase

or remain unchanged for libi FUs—the larger this ratio,

more is opportunity for better scheduling decisions among

more available operations on a smaller set of FUs (due

to a larger diversity of available operation slacks) thus

increasing FU utilization. Hence, it is appropriate to use

min411 41+�5URavg4libi51UR
Sinit
avg 4libi55 as an estimate of

the average utilization expected in FUs of type libi in the

next MLS iteration. This term is thus used in the denom-

inator of the Sinit(libi5 formulation for the next MLS iter-

ation to provide a more realistic initial allocation of FUs

than the lower bound of UR(libi5 needed FUs. This gives

us a reasonably good estimation of FUs needed in the final

solution and facilitates faster convergence (requiring fewer

scheduling iterations) to a good solution.

J. Low Power Electron. 15, 388–409, 2019 397



IP: 198.54.106.172 On: Tue, 21 Jul 2020 01:01:50
Copyright: American Scientific Publishers

Delivered by Ingenta

A Power-Driven Stochastic-Deterministic Hierarchical HLS Framework for Module Selection, Scheduling and Binding Zhang et al.

Compared to LS, MLS (Fig. 3) has the above extra pro-

cessing steps of initial FU re-allocation and final FU usage

evaluation to improve the QoS of basic S&B solution, and

extra scheduling iterations that terminate when the initial

and final FU allocations converge. The overall runtime of

MLS versus LS increases by a small average factor of

2.4× that is almost constant across DFG sizes, with MLS

providing much better QoS—our experiments show that

MLS has an average improvement of the total number of

FUs used of 51.6% compared to LS.

3.2.1. Power-Driven Modified List Scheduling

To achieve the goal of power optimization in PSA-MLS,

we minimize power with equations in Section 2 in a

power-driven MLS (in which we can use different power

metrics, e.g., leakage power, total power, FU power, archi-

tecture power.). As discussed before, MLS generates a

S&B solution based on the module selection solution pro-

vided by PSA, where the functionality-speed type, for

every operation has been fixed. Regular MLS attempts to

minimize the numbers of FUs used for each functionality-

speed type and this is related to total FU leakage power.

However, in the mechanism of MLS, discussed earlier, we

have two ways to reach a low power design: (1) by the

original MLS termination criteria for minimizing number

of FUs and thereby FU leakage power and (2) a more

explicit way to minimize the total leakage power (Eq. (6))

across all functionality-speed types in which an increase in

the number of some functionality-speed types is traded-off

with a decrease in others so that total FU leakage power

(or any other power metric mentioned above that can be

estimated within MLS) is reduced.

The original MLS terminates when Sfin ≤ Sinit in the

current iteration. This condition is involved in the mini-

mization of the number of FUs used for each functionality-

speed type, since the Sfin ≤ Sinit is a vectorized comparison

which holds only when each element of the Sfin and Sinit
vectors satisfy the ‘≤’ relation. Thus a smaller Sfin always

represents a lower power result. However, this is not the

only way to obtain a lower power result. For example, a

larger Sfin does not necessarily mean a larger power result

because of the existing trade-off between power consump-

tion of different functionality-speed types (as, for example,

discussed and illustrated in Section 2). In fact, because of

such a tradeoff a solution not satisfying Sfin ≤ Sinit may

have lower power than one that does, say, at a later itera-

tion. Thus, to optimize power more directly, we define the

following two OR conditions as the new termination cri-

teria for MLS: (1) The original MLS condition, Sfin ≤ Sinit.

(2) There have been k-consecutive MLS iterations such

that the power result P of a current MLS iteration has a

small factor difference of � (we use � = 0.1 to limit run-

time increase) compared to the best power result Pbest in

the current MLS processing (note that this is not neces-

sarily the global best power result so far over the entire

PSA-MLS processing). Besides allowing for a tradeoff
in the power consumption across different functionality-
speed type FUs (to reach an overall lower power solution),
another idea of the second condition is that if we see small
improvements over several consecutive iterations, it most
probably means that the solution has at least reached close
to a local minima and we will not see any more signifi-
cant improvement. Moreover, to limit the extra runtime of
additional iterations, k should be a small value, and in our
experiments reported in this paper, we use k= 2.

3.3. Power-Driven FU Binding with Consideration of

Mux and Demux Power

As mentioned before, the left-edge-based FU binding can
be done simultaneously within the processing of LS and
thus also MLS. LE-based FU binding obtains the exact
number of FUs of each functionality-speed type that MLS-
based scheduling yields, and thus it does not affect the
QoS related to FU power. Once we have a complete MSB
solution, we can generate the corresponding HLS archi-
tecture including needed interconnects, muxes, demuxes
and registers to obtain the power consumption of muxes,
demuxes, and registers. However, the LE-based binding
will bind an operation to any available FU in the cc it
is scheduled in. As a result, the increase of intercon-
nects among FUs (equivalently, the increase of total mux
and demux sizes) are not considered. Thus, the basic LE
algorithm for FU binding is not appropriate for power
optimization.
Therefore, we apply a simple modification on the basic

LE algorithm (called MLE) for achieving the goal of min-
imizing the power of muxes and demuxes as a part of the
goal of achieving a low power HLS architecture without
changing the FU allocation results provided by an MSB
solution.
The core idea of MLE is to select in the scheduling cc

t of each operation u, the best operation-FU pair (u, F)
from all available operation-FU pairs in cc t to bind such
that F has the maximum number of existing fanin connec-
tions to F from all FUs that the parent(u) have been bound
to. Thus, the increase of input mux size for F and out-
put demux sizes of FUs to which parent(u) are bound to
bind u to an available FU in cc t is minimized. After bind-
ing the selected (u, F), the interconnects and mux/demux
sizes are of the affected FUs are updated, and the process
repeated to bind the next best operation-FU pair in cc t,
and so forth until all such pairs are bound. The binding
them proceeds to operations scheduled in cc t+ 1. Thus,
MLE achieves the goal of HLS architecture power mini-
mization by minimizing the sizes of muxes and demuxes
used. The power consumption of muxes and demuxes are
computed by Eqs. (8) and (9). MLE can be used as a post-
MSB step for performing FU re-binding (called post-Bind)
as shown in Figure 3, or it can replace the LE-based FU
binding step within MLS (called in-Bind), as discussed
further in Section 5.

398 J. Low Power Electron. 15, 388–409, 2019



IP: 198.54.106.172 On: Tue, 21 Jul 2020 01:01:50
Copyright: American Scientific Publishers

Delivered by Ingenta

Zhang et al. A Power-Driven Stochastic-Deterministic Hierarchical HLS Framework for Module Selection, Scheduling and Binding

4. A COMPETING FLAT
SIMULATED-ANNEALING BASED
POWER-DRIVEN MSB ALGORITHM

For the purpose of comparing a good and flat simu-

lated annealing technique for power-driven MSB to PSA-

MLS, we developed an extended version of SALSA,20

a well-known resource-minimizing scheduling and bind-

ing technique using simulated annealing, with the addi-

tional dimension of module selection called MS-SALSA

(SALSA augmented with module selection moves and

the goal of power optimization). MS-SALSA solves the

module selection, scheduling, and binding (MSB) prob-

lem with the same objective as PSA-MLS but does it in

a conventional flat (1-level) manner in a purely simulated

annealing framework instead of a hierarchical framework

employed by PSA-MLS.

We incorporated the move set of scheduling moves

called sch-set (to be elaborated shortly) from SALSA and

the move set for module selection in PSA called spd-

set to expand conventional SALSA so that MS as well

as S&B can be performed in a flat simulated annealing

framework. We note that in the context of MS-SALSA,

this move set, unlike in PSA, where it operates on a speed

vector, operates on a complete MSB solution to essentially

obtain another complete MSB solution. From the current

MSB solution p, which has a complete scheduling, module

selection and FU binding assignment for every operation,

we can generate a new MSB solution p′ with a move from

either sch-set or spd-set. A sch-set move only changes the

scheduling solution in p for some operation(s), while the

MS solution remains the same. A spd-set move changes

the MS solution for some operation(s), while the schedul-

ing solution in p is generally not changed (there are dif-

ferent scenarios that will be discussed shortly). Once we

have the new scheduling solution from a sch-set move or

a new MS solution from a spd-set move, as mentioned

before, the QoS of p′ in terms of FU power is already

determined in that they specify an achievable lower-bound

on the number of FUs needed for each function and speed-

type combination. We then use the left-edge FU binding

algorithm to achieve this lower bound. Furthermore, for

the changed parts of the new scheduling and MS (S&MS)

solution resulting from one of the aforementioned moves,

the optimal binding of operations to FUs can be done in

linear time by using the left-edge algorithm incrementally

only on functionality-speed types one or more of whose

FUs have had their bound operations or their scheduled

times changed. Unlike PSA, where a spd-set move only

generates a new speed vector but not a schedule (and PSA

thus performs S&B at a second-level hierarchy to further

optimize and obtain a complete MSB solution p′), such

a move in MS-SALSA only requires binding to be com-

pleted without any further optimization considerations (the

optimization consideration is only within the simulated

annealing based decision of accepting or rejecting the new

MSB solution). Thus, both types of MS-SALSA moves
generate complete new MSB solutions in a conventional
1-level simulated annealing framework.
Besides the two moves from SALSA in sch-set, we

added one more scheduling move from another simulated-
annealing based S&B technique.24 Thus, the three moves
in sch-set are: (1) randomly select an operation and incre-
ment its schedule time by 1 cc.20 (2) randomly select
an operation and decrement its schedule time by 1 cc.20

(3) randomly select an operation and move it to a ran-
dom cc inside its mobility range;24 this randomness leads
to large jumps in the solution space leading to a better
exploration of the solution space within a given number of
moves.
It is important to note that a move from either spd-set or

sch-set may cause precedence violations in which case it
is an infeasible move. A precedence violation occurs when
an operation u has an execution range ER(u) that overlaps
the execution range of any predecessor (in predecessor set
Pr(u)) or successor (in successor set Su(u)) operation of u.
For an operation u, scheduled in cc j, with functionality-
speed type libi(u), ER(u) = [j, j+ d(libi(u))− 1], where
d(libi(u)) is the delay of a libi FU that u is bound to.
Aspd-set move that changes a set of operations from a
faster speed to a slower speed may cause precedence vio-
lations, since some operation(s) in Pr(u) or Su(u) of such a
changed operation u can result in the overlapped ERs with
a larger-delay u. Similarly, a sch-set move that changes the
schedule time of an operation u may also cause precedence
violations where the new scheduling assignment of u can
cause overlapped ER ranges among u and Pr4u5∪Su(u).
To fix precedence violations caused by sch-set moves, a

greedy technique was presented by SALSA,20 while other
simulated annealing based techniques (e.g., Ref. [24])
discarded the infeasible move which leads to a signifi-
cant runtime increase to find a feasible move. To fix the
precedence violation, starting from the operation whose
schedule time is changed by the move, SALSA recur-
sively checks all predecessor and successor operations in a
breadth-first manner, and shifts all the operations that are
involved in precedence violations to the nearest available
cc (nearest cc from its current schedule time that does not
overlap the ERs of any predecessor or successor), allo-
cating new FUs if needed. SALSA will stop fixing viola-
tions when either there is no violation (either precedence
or latency constraint violation) exists or any operation vio-
lates the latency constraint to fix the precedence violation,
i.e., for an operation u with a functionality-speed type
libi(u), the nearest available cc j is outside the mobility
range [tasu 1 talu 7 for operation u, where tasu is the asap time
of u and talu is the alap time of u. tasu and talu of an operation
u that is either unscheduled or whose schedule is being
changed are defined as:

tasu =max8tasw +d4libi4w55 � w ∈ parent4u59 (19)

talu =min 8talw �w ∈ child4u59−d4libi4u55 (20)

J. Low Power Electron. 15, 388–409, 2019 399



IP: 198.54.106.172 On: Tue, 21 Jul 2020 01:01:50
Copyright: American Scientific Publishers

Delivered by Ingenta

A Power-Driven Stochastic-Deterministic Hierarchical HLS Framework for Module Selection, Scheduling and Binding Zhang et al.

where libi(w) is the functionality-speed type of operation

w and d(libi(w)) is the delay of FU of type libi that w

is bound to. Note also that if an operation w is currently

scheduled, then tasw and talw are its scheduled time. If an

available cc within the mobility range of u is not available,

then this obviously leads to an infeasible solution (latency

constraint will be violated), and the corresponding move

is discarded.

To fix an infeasible spd-set move, we develop and test

two different violation fix techniques (to be discussed

shortly) that are applicable in different scenarios, called

Viol-fix1 and Viol-fix2. Similar to the failure scenario of

the violation-fixing process of SALSA, an infeasible spd-

set move cannot be rectified when latency constraint vio-

lations occur during the process of rectifying the initial

violations.

If precedence violation(s) are introduced after making a

move from either spd-set or sch-set and this move cannot

be rectified by either of our aforementioned techniques,

then this infeasible move is discarded, and another move

of the same type (in spd-set or sch-set) is chosen.

Once we have a feasible or rectified move from either

spd-set or sch-set, and the new S&MS solution is gener-

ated, then we can obtain the new complete MSB solution

and the corresponding power by performing binding as

discussed above. We then proceed along the same steps

(4 to 6) as in PSA. It is important to note that, for the

new S&MS solution, a native feasible spd-set move which

causes 0 violation only changes the MS solution in p while

the scheduling solution remaining the same. However, a

rectified spd-set move not only generates a new MS solu-

tion but also leads to a new scheduling solution. On the

other hand, in both, a native feasible or rectified sch-set

move, only the scheduling solution is changed and the MS

solution remains unchanged.

We next discuss our two violation fixing techniques in

MS-SALSA, Viol-fix1 and Viol-fix2.

Viol-fix 1: Viol-fix1 rectifies infeasible sch-set moves by

using the same technique as in SALSA with the added

constraint that we can increase the number of FUs of each

functionality-speed type by only one. Furthermore, to rec-

tify infeasible spd-set moves, Viol-fix1 uses an extended

version of the SALSA technique as follows. It is important

to note that, a spd-set move generally changes more than

one operation simultaneously, and thus can cause many

precedence violations by having overlapped ERs with their

predecessor and successor operations. Therefore, all such

operations are required to be processed for fixing all vio-

lations. For a given DFG G(V, E), we define the operation

set V′ as the set of operations whose speed type has been

changed by a spd-set move and all their predecessor and

successor operations. It is necessary to start checking for

and fixing precedence violations from the operation(s) with

the earliest asap time in V′, and then, for each operation

that is involved in precedence violations, Viol-fix1 uses the

same technique as SALSA (with the aforementioned added

constraint) to fix violations.

However, Viol-fix1 is neither very effective nor runtime-

efficient for fixing precedence violations resulting from

a spd-set move as only local corrections are made for

each detected violation without consideration of other vio-

lations, and also since the process is iterated for each

violation detected in an isolated way, resulting in poten-

tially multiple schedule changes for several operations. To

improve these shortcomings of Viol-fix1, we developed a

second technique called Viol-fix2.

Viol-fix2: Viol-fix2 rectifies infeasible sch-set moves by

using the same technique as in Viol-fix1. To rectify infeasi-

ble spd-set moves, Viol-fix2 performs list scheduling (LS)

on the sub-DFG graph G′(V′, E′) induced in the DFG G(V,

E) by V′ (E′ is the arc set that represents precedence depen-

dency among all operations in V′) with the caveat that

precedence relations in arcs in E–E′ that are incident on

operations in V′ are respected, and the information of FUs

that are busy in each cc executing operations in V–V′ (in

addition to operations in V′) is accounted for in scheduling

operations in V′ and allocating new FUs if needed. Since

this invocation of LS does not schedule any operations in

V–V′, their schedules remain unchanged from those in the

current MSB solution. Furthermore, as in Viol-fix1, here

too we allow at most one extra FU of each functionality-

speed type to be allocated by LS compared to the current

MSB solution p; if LS needs to add more than one FU of

each functionality-speed type, then the violation fix pro-

cess fails.

Let R be a vector of numbers of each functionality-

speed type FUs used in the current MSB solution p. We

define Rc = R+a as the resource constraint for both Viol-

fix1 and Viol-fix2 for the new MSB solution p′ where a is

a vector of the upper bound increases in the number of

FUs allowed for each functionality-speed type. We tested

different values for the upper bounds in a in the range of

Refs. [1, 4] (all upper bounds in each tested a are uni-

form in our experiments). We also tested infinite values

in a which is the same as conventional SALSA in not

having any limit on the allocation of extra FUs for fixing

violations. In our experiments, a = all-1 vector provides

the best tradeoff between QoS and runtime: it provides

an average total power improvement of 17% with only an

average factor of 1.1× slower runtime compared to other

a vectors we tested. Thus, in the rest of our experiments,

we use a= all-1 vector to limit the allocation of extra FUs

for p′ compared to the current MSB solution p.

Finally, all the initial parameters, solution acceptance

and rejection criteria in MS-SALSA are the same as PSA-

MLS. Further, as in PSA-MLS, the upper bound on the

number of feasible moves (both accepted and rejected

moves) for a particular temperature is M = h · n, where n

is the total number of operations in the input DFG, and h

is a constant to control the size of M and thus the runtime.

400 J. Low Power Electron. 15, 388–409, 2019



IP: 198.54.106.172 On: Tue, 21 Jul 2020 01:01:50
Copyright: American Scientific Publishers

Delivered by Ingenta

Zhang et al. A Power-Driven Stochastic-Deterministic Hierarchical HLS Framework for Module Selection, Scheduling and Binding

5. EXPERIMENTAL RESULTS
The proposed hierarchical framework (PSA-MLS) and two
competing state-of-the-art power-driven module selection
algorithms MWIS14 and Min-Cut15 were implemented in
C++. All the runs were performed on an Intel Core i7-
4710HQ Processor at 2.50 GHz with 16 GB RAM. We
tested 13 media-bench DFGs from Ref. [33].

We constructed 2- and 4-speed 16-bit FU libraries,
denoted by 2-lib and 4-lib respectively, based on vari-
ous arithmetic FU designs in Ref. [12] for 32 nm CMOS
technology. We described these designs using Verilog,
and synthesized them and obtained their delay and power
parameters via Synopsys Design Vision.35 We use 0.33 ns
as the clock period which is the delay of the fastest adder.
Table I shows the design parameters of 2/4-libs for the
main operation functional types: addition, multiplication,
and division; 2-lib has only the slowest and fastest speed
types of 4-lib. For non-arithmetic operations (e.g., left
shift, mux, demux), we only create one functionality-speed
type with a delay of 1 cc, since for these simple opera-
tions there is not much design diversity that changes their
delay and power significantly. We also synthesized 16-
bit 2-to-1 mux, 1-to-2 demux, and register in Synopsys
Design Vision and obtained the following delay and power
values: they all have delays in picoseconds (much smaller
than a cc), dp21mux/12demux = 0.312 uW, lp21mux/12demux =
1.347 uW, dpreg = 1.19 uW, and lpreg = 3.6 uW. The trends
of the relative result differences among the techniques that
we shortly present should hold for any given library as
we have also seen for other analyzed or derived-from-
literature libraries.

As mentioned before, the main goal of this paper is
minimizing total (dynamic+ leakage) power consumption
that is consumed by functional units, and that compar-
ison is presented here. Furthermore, within the context
of minimizing only FU power, we also obtain the total
architecture power for each MSB solution generated using
different techniques and compare this as well. As we men-
tioned before, to obtain the total architecture power, we
first generate the corresponding design of an MSB solu-
tion by performing post-MSB binding, post-Bind, (Fig. 3).
Based on a given MSB solution, we use the proposed
modified left-edge FU binding (MLE) to perform post-
MSB FU re-binding (a default binding is performed dur-
ing the earlier stage of module-selection and scheduling—
MS&S) for reducing the sizes and hence power of muxes
and demuxes. Then, we use the basic left-edge algorithm
to perform register binding. Finally, we obtain the corre-
sponding total architecture power TParch for the given MSB
solution according to Eq. (13).

5.1. FU Total (Dynamic+Leakage) Power

Comparison Among PSA and MS-SASLA with

Viol-fix1 and Viol-fix2

We first discuss the FU power and runtime results among
different simulated-annealing based techniques using the

4-speed library 4-lib. We also obtain the FU total power

(TPFU5 results of an optimal 0/1-ILP formulation18 that is

executed using CPLEX34 as the baseline for TPFU result

comparison among three simulated-annealing based tech-

niques: MS-SALSA with Viol-fix1 and Viol-fix2, and PSA-

MLS. We use lc = 1.2× las−slow, where las−slow is the ASAP

latency (critical path latency) with all operations assigned

to their slowest speeds; the coefficient 1.2 provides a mod-

erately large solution space for the MSB problem for

the purpose of exercising the different algorithms to a

reasonable degree. Figure 5 and Table II show percent-

age increase in overall TPF U of the simulated-annealing

techniques compared to 0/1-ILP for different h values

across all the DFGs from Ref. [33] (these are specified

in Table III) except the largest DFG (inv-matrix), since

for 4-lib, 0/1-ILP failed to generate TPFU solution for inv-

matrix due to insufficient memory. Since MS-SALSA has

better TPFU results and a small runtime disadvantage of

3% over all h values with Viol-fix2 than withViol-fix1, we

use the results of MS-SALSA with Viol-fix2 to represent

the results of MS-SALSA for all subsequent result com-

parisons. Further, when we henceforth refer to MS-SALSA

we will mean MS-SALSA with Viol-fix2.

We next compare MS-SALSA and PSA-MLS under

three criteria: Equal h values, equal/similar runtime, and

equal/similar QoS (TPFU in this case). We use PSA-MLS

result with h = 4 (M= 4n) as the baseline and determine

execution parameters for MS-SALSA that provide equal

or nearest possible values of the aforementioned metrics

for the desired comparisons:

(1) Equal h value: The corresponding equal h value for

MS-SALSA to compare to the aforementioned baseline

PSA-MLS is h = 4. PSA-MLS has a TPFU advantage of

8.3% and about a 2× runtime advantage compared to MS-

SALSA. Furthermore, Figure 5 also shows that for dif-

ferent h values, PSA-MLS has significantly better power

results than MS-SALSA.

(2) Equal/Similar runtime: This comparison corresponds

to MS-SALSA with h = 2 for which its runtime

is 165.22 seconds versus PSA-MLS’s runtime of

Fig. 5. Percentage increase of total power compared to 0/1-ILP of PSA,

and MS-SALSA with Viol-fix1 and Viol-fix2 for different h values.

J. Low Power Electron. 15, 388–409, 2019 401



IP: 198.54.106.172 On: Tue, 21 Jul 2020 01:01:50
Copyright: American Scientific Publishers

Delivered by Ingenta

A Power-Driven Stochastic-Deterministic Hierarchical HLS Framework for Module Selection, Scheduling and Binding Zhang et al.

Table II. Percentage increase of FU total power compared to 0/1-ILP and runtime results of MS-SALSA with viol-fix 1 and viol-fix2, and PSA-MLS

for different h values for 4-lib.

% Increase of total power versus 0/1-ILP Runtime [s] Runtime ratio (vs. PSA)

MS-SALSA MS-SALSA MS-SALSA MS-SALSA MS-SALSA MS-SALSA

h value viol-fix 1 viol-fix 2 PSA-MLS viol-fix 1 viol-fix 2 PSA-MLS viol-fix 1 viol-fix 2

1 22071 21018 14095 73075 6806 40041 1083 107

2 18001 15074 9027 181051 165022 88092 2004 1086

4 16036 13008 4077 300009 291061 15104 1098 1093

8 12062 9065 1026 656004 590005 287055 2028 2005

16 8003 6002 1007 110208 95008 458037 2041 2007

N 4017 3061 0081 695004 707504 3813003 1082 1086

4N 4002 3046 0063 3121101 3013807 1247306 205 2042

Avg. 12096 10039 4068 5782024 5611048 2473033 2034 2027

151.4 seconds for h = 4. In this configuration, PSA-MLS

has 11% TPFU improvement over MS-SALSA.

(3) Equal/Similar QoS: For a similar QoS result compared

to PSA-MLS with h = 4 (4.77% from optimal), we con-

sider MS-SALSA’s results with h= 16 (6.02% from opti-

mal). PSA-MLS has 6× runtime advantage compared to

MS-SALSA.

Therefore, PSA-MLS has comprehensive advantages over

MS-SALSA: (1) Computational efficiency: For similar

QoS’s as well as for similar solution space as represented

by equal h values, PSA-MLS is several factors faster than

MS-SALSA (in the range of [4, 45] for equal/similar

QoS’s, and in the range of [1.7, 2.5] for equal h values).

(2) QoS Efficacy: Much better QoS is obtained by PSA-

MLS than MS-SALSA under similar runtime limits.

5.2. FU and Architecture Leakage Power

Comparisons

Next, we compare PSA-MLS to two constructive state-of-

the-art heuristic techniques (MWIS14 and Min-Cut15) for

leakage power (LP) minimization, which the latter two

techniques perform For these comparisons, we choose h=

4 for both MS-SALSA PSA-MLS which provides a good

tradeoff between QoS and runtime. We first compare total

FU leakage power (LPFU5 results among different tech-

niques (0/1-ILP, MS-SALSA, MWIS, Min-Cut, and PSA-

MLS) with 2-lib, since MWIS and Min-Cut techniques

obtain leakage power and work for two speeds only (to

extend these techniques to work with a 4-speed library,

will need significant changes to the original algorithms

to the extent that these extensions become quite differ-

ent algorithms). For the comparison to MWIS, which is

mainly a power-driven module selection technique, we

implemented the algorithm, and as in Ref. [14], experi-

mented with different initial S&B solutions that it needs.

For the comparison to Min-Cut, there is a requirement that

lc < las-slow but such that it is satisfiable by using faster FUs

in the library. We use lc = 0.6× las-slow, which satisfies the

above requirements for library 2-lib. For both MS-SALSA

and PSA-MLS, the results correspond to an h value of 4.

Table III shows the LPFU and runtime results for 5 tech-

niques for all the DFGs from Ref. [33] with 2-lib and

lc = 0.6× las-slow. Compared to MS-SALSA, PSA-MLS

has an average LPFU improvement of 7.1% with a run-

time advantage of 2× (recall that the earlier comparison

to MS-SALSA was for 4-lib, lc = 1.2× las-slow, and total

power minimization). Compared to MWIS and Min-Cut,

PSA-MLS has 11.2% and 7.8% LPFU improvement, while

having runtime advantages of 2.5× and 3×, respectively.

Compared to 0/1 ILP, PSA-MLS has an average optimality

gap of 9.7% with a runtime advantage of 209×.

Next, we generate the architecture using post-Bind for

the MSB solutions for each technique and compare the

total leakage power of the HLS architecture among all

techniques. In Table IV, the leakage power of registers

(LPreg5, mux and demux (LPmux/demux5, and the total leakage

power of the architecture (LParch =LPFU (from Table III)+

LPreg + LPmux/demux5 are presented. The power results in

Table IV show that: (a) compared to other approximate

techniques, the LParch power improvement of PSA-MLS

are similar to its LPFU power improvements over them, and

(b) PSA-MLS’s gaps for LParch and LPFU with respect to

the 0/1 ILP method are similar. Note that the runtime of

the left-edge-based post-Bind is extremely fast, and thus

we do not show the post-Bind runtime in Table IV (for the

largest size DFG, the runtime for post-Bind is less than

one second).

5.3. FU and Architecture Total Power Comparisons

We also ran 0/1-ILP, MS-SALSA, and PSA-MLS for min-

imizing total FU total power TPFU. Then, we generate

the HLS architecture using post-Bind for each technique

and obtain also the total power of the architecture (TParch5

among all techniques. Table V shows the total power

of FUs (TPFU5, registers (TPreg5 (Eq. (13)), muxes and

demuxes (TPmux/demux5 (Eq. (10)), and the entire architec-

ture (TParch5 for the above techniques with 4-lib and a

latency constraint of lc = 1.2× las-slow (note that MWIS

and Min-Cut do not optimize DPFU and are thus not

included in these comparisons). For both MS-SALSA and

PSA-MLS, the h value is 4. For 4-lib, 0/1-ILP cannot

402 J. Low Power Electron. 15, 388–409, 2019



IP: 198.54.106.172 On: Tue, 21 Jul 2020 01:01:50
Copyright: American Scientific Publishers

Delivered by Ingenta

Z
h
a
n
g
et

a
l.

A
P
ow

er-D
riv

en
S
to
ch
astic-D

eterm
in
istic

H
ierarch

ical
H
L
S
F
ram

ew
o
rk

fo
r
M
o
d
u
le

S
electio

n
,
S
ch
ed
u
lin

g
an
d
B
in
d
in
g

Table III. FU leakage-power (LPFU) results for 0/1-ILP,18 MS-SALSA, MWIS,14 Min-Cut,15 and PSA-MLS for 2-lib. lc = 006× las-slow. h = 4 for MS-SALSA and PSA-MLS. A positive (negative) %

improvement indicates power reduction (increase).

LPFU results for 2-lib [mW] % LPFU imp. of PSA-MLAS versus others Runtime [secs]

Late # of 0/1- MS- Min- PSA- 0/1- MS- Min- 0/1- MS- Min- PSA-

DFG const. nodes ILP SALSA MWIS cut MLS ILP (%) SALSA (%) MWIS (%) cut (%) ILP SALSA MWIS cut MLS

hal 9 11 0.23 0.23 0.23 0.23 0.23 000 000 000 000 0014 0013 0011 0014 0007

arf 30 28 0.15 0.18 0 19 0.17 0.17 −1302 500 909 −009 0046 1030 104 102 0063

motion 16 32 0.30 0.31 0.30 0.30 0.31 −407 100 −407 −407 0049 1017 107 105 005

ewf 52 34 0.08 0.09 0.10 0.09 0.09 −902 000 1404 208 1305 202 408 309 009

feedback 17 53 0.30 0.35 0.36 0.33 0.32 −709 704 1102 203 1601 201 805 804 0096

epic 19 56 0.36 0.38 0.44 0.37 0.36 000 308 1706 300 2000 109 904 707 008

bmp 18 106 0.23 0.29 0.34 0.31 0.29 −2508 000 1401 508 3101 506 603 508 207

aux 21 108 0.46 0.52 0.59 0.51 0.51 −809 109 1401 001 3704 600 1008 806 209

mul 27 109 0.39 0.48 0 55 0.46 0.42 −706 1201 2300 709 12503 701 1401 1007 303

idcot 44 114 0.17 0.24 0.26 0.24 0.21 −2400 1001 1901 1009 14608 905 1307 1203 401

jpeg 39 134 0.24 0.36 0.38 0.35 0.27 −1403 2207 2609 2006 332704 1605 2203 2001 703

smooth 30 197 0.61 0.72 0.79 0.76 0.66 −609 903 1701 1400 364608 2601 2904 1908 1004

inv-matrix 33 333 1.10 1.33 119 1.40 1.23 −1202 700 −305 1109 641902 5808 7905 6503 3105

Total 355 1315 4.62 5.46 5.71 5.50 5.07 −907 701 1102 708 1378407 13804 20200 16505 6601

J
.
L
o
w

P
o
w
e
r
E
le
c
tro

n
.
1
5
,
3
8
8
–
4
0
9
,
2
0
1
9

4
0
3



IP: 198.54.106.172 On: Tue, 21 Jul 2020 01:01:50
Copyright: American Scientific Publishers

Delivered by Ingenta

A
P
ow

er-D
riv

en
S
to
ch
astic-D

eterm
in
istic

H
ierarch

ical
H
L
S
F
ram

ew
o
rk

fo
r
M
o
d
u
le

S
electio

n
,
S
ch
ed
u
lin

g
an
d
B
in
d
in
g

Z
h
a
n
g
et

a
l.

Table IV. Architecture leakage-power (LParch) results for 0/1-ILP, MS-SALSA, MWIS, min-cut, and PSA-MLS for 2-lib lc = 006× las-slow h = 4 for MS-SALSA and PSA-MLS.

LP results for 2-lib with post-bind LParch % imp. of PSA versus other

LPreg [mW] LPmug/demux [mW] LParch [mW] LParch % imp. of PSA versus other

0/1- MS- Min-

Late. # of 0/1- MS- Min- PSA- 0/1- MS- Min- PSA- 0/1- MS- Min- PSA- ILP SALSA MWIS cut

DFG const. nodes ILP SALSA MWIS cut MLS ILP SALSA MWIS Cut MLS ILP SALSA MWIS cut MLS (%) (%) (%) (%)

hal 9 11 0.008 0.008 0.008 0.008 0.008 0.001 0.001 0.001 0.001 0.001 0.23 0.23 0.23 0.23 0.23 000 000 000 000

arf 30 28 0.014 0.013 0.015 0.013 0.015 0.005 0.004 0.004 0.005 0.004 0.17 020 021 0.19 0.19 −1108 308 808 −104

motion 16 32 0.021 0.023 0.024 0.023 0.024 0.005 0.005 0.003 0.004 0.003 0.32 0.34 0.32 0.32 0.34 −407 100 −402 −404

ewf 52 34 0.011 0.011 0.009 0.011 0.011 0.006 0.006 0.005 0.006 0.006 0.10 0.11 0.12 0.11 0.11 −706 000 1005 204

feedback 17 53 0.032 0.030 0.037 0.035 0.033 0.009 0.009 0.008 0.008 0.008 0.34 0.39 0.41 0.37 0.36 −701 602 1008 206

epic 19 56 0.017 0.023 0.020 0.020 0.019 0.007 0.005 0.007 0.006 0.007 0.38 0.40 0.46 0.40 0.39 −004 401 1608 207

bmp 18 106 0.061 0.069 0.075 0.071 0.069 0.016 0.019 0.010 0.010 0.019 0.31 0.38 0.43 0.39 0.38 −2209 000 1006 209

aux 21 108 0.061 0.020 0.068 0.072 0.047 0.021 0.005 0.020 0.020 0.014 0.55 0.54 0.68 0.60 0.57 −307 −408 1602 502

mul 27 109 0.038 0.072 0.047 0.042 0.050 0.016 0.009 0.147 0.014 0.015 0.44 0.56 0.74 0.51 0.48 −901 1303 3404 504

idcot 44 114 0.048 0.071 0.054 0.057 0.048 0.014 0.012 0.014 0.016 0.014 0.23 0.32 0.33 0.31 0.27 −1703 1402 1700 1200

jpeg 39 134 0.051 0.057 0.064 0.054 0.061 0.019 0.015 0.020 0.023 0.024 0.31 0.43 0.46 0.42 0.36 −1505 1509 2109 1500

smooth 30 197 0.083 0.091 0.088 0.093 0.107 0.036 0.033 0.034 0.034 0.031 0.73 0.85 0.91 0.89 0.79 −803 603 1301 1008

inv-matrix 33 333 0.121 0.131 0.137 0.133 0.120 0.053 0.048 0.047 0.052 0.053 1.27 1.50 1.37 1.58 1.41 −1005 606 −203 1102

Total 355 1315 0.568 0.620 0.644 0.632 0.612 0.207 0.170 0.321 0.198 0.199 5.40 6.25 6.67 6.33 5.88 −900 508 1109 701

4
0
4

J
.
L
o
w

P
o
w
e
r
E
le
c
tro

n
.
1
5
,
3
8
8
–
4
0
9
,
2
0
1
9



IP: 198.54.106.172 On: Tue, 21 Jul 2020 01:01:50
Copyright: American Scientific Publishers

Delivered by Ingenta

Z
h
a
n
g
et

a
l.

A
P
ow

er-D
riv

en
S
to
ch
astic-D

eterm
in
istic

H
ierarch

ical
H
L
S
F
ram

ew
o
rk

fo
r
M
o
d
u
le

S
electio

n
,
S
ch
ed
u
lin

g
an
d
B
in
d
in
g

Table V. Architecture total power (TParch) results of for 0/1-ILP, MS-SALSA and PSA-MLS for 4-lib. lc = 102× las-slow. h= 4 for MS-SALSA and PSA-MLS.

TP (DP+LP) results for 4-lib % TP imp. of PSA-MLS versus

TPFU [mW] TPreg [mW] TPmux/demux [mW] TParch [mW] TPFU [mW] TParch [mW] Runtime [secs]

Lat. # of 0/1- MS- PSA- 0/1- MS- PSA- 0/1- MS- PSA- 0/1- MS- PSA- 0/1-ILP MS-SALSA 0/1-ILP MS-SALSA 0/1- MS- PSA-

DFG const. nodes ILP SALSA MLS ILP SALSA MLS ILP SALSA MLS ILP SALSA MLS (%) (%) (%) (%) ILP SALSA MLS

hal 19 11 0.883 0.883 0.883 0.008 0.008 0.009 0.001 0.001 0.001 0.892 0.892 0.892 000 000 000 000 303 005 002

arf 61 28 0.740 0.886 0.710 0.015 0.013 0.013 0.005 0.003 0.005 0.759 0.903 0.757 1605 003 1601 602 200 104

motion 32 32 1.268 1.342 1.300 0.025 0.025 0.026 0.005 0.005 0.005 1.298 1.371 1.431 −205 301 −205 300 1404 205 103

ewf 104 34 0.271 0.354 0.285 0.008 0.007 0.008 0.005 0.005 0.004 0.284 0.366 0.497 −503 1904 −408 1807 2105 300 107

feedback 31 53 1.473 1.671 1.494 0.036 0.035 0039 0.009 0.009 0.009 1.518 1.716 1.542 −104 1006 −106 1001 2307 506 300

epic 39 56 0.866 1.318 0.953 0.026 0.026 0.026 0.007 0.008 0.074 0.899 1.352 1.052 −1001 2707 −1703 2200 17903 604 304

bmp 37 106 0.485 0.667 0.726 0.063 0.063 0.060 0.017 0.016 0.014 0.565 0.746 0.800 −4907 −809 −4107 −703 21707 2809 1308

aux 42 108 2.531 2.782 2.633 0.070 0.073 0.076 0.020 0.020 0.020 2.624 2.875 2.729 −309 503 −400 501 62304 2804 1309

mull 55 109 2.123 2.239 2.180 0.047 0.043 0.050 0.016 0.017 0.015 2.186 2.299 2.245 −207 206 −207 203 16031 2901 1604

idcot 88 114 0.954 1.025 0.988 0.066 0.064 0.050 0.018 0.018 0.015 1.038 1.106 1.053 −306 306 −105 409 ∗86.4k 3907 2104

jpeg 79 134 1.370 1.599 1.424 0.065 0.064 0.058 0.024 0.023 0.024 1.459 1.687 1.506 −309 1100 −302 1008 ∗86.4k 5909 2903

smooth 60 197 3.244 3.495 3.354 0.094 0.089 0.103 0.034 0.036 0.034 3.372 3.619 3.491 −304 400 −305 306 ∗86.4k 11203 5609

inv-matrix 66 333 ∗∗ 6.690 6.540 ∗∗ 0.136 0.148 ∗∗ 0.055 0.053 ∗∗ 6.881 6.741 ∗∗ 202 ∗∗ 200 ∗∗ 35409 17501

Total-1 650 952 16.21 18.26 16.96 0.52 0.51 0.52 0.16 0.16 0.22 16.89 18.93 17.70 −406 701 −408 605 27603k 31801 16206

Total-2 716 1315 – 24.95 23.50 – 0.65 0.67 – 0.22 0.27 – 25.81 24.44 – 508 – 503 – 67300 33707

Note: These DFGs for 0/1-ILP stopped at the upper-bound runtime of 24 hours, and thus the runtime results are 86.4 k seconds.

J
.
L
o
w

P
o
w
e
r
E
le
c
tro

n
.
1
5
,
3
8
8
–
4
0
9
,
2
0
1
9

4
0
5



IP: 198.54.106.172 On: Tue, 21 Jul 2020 01:01:50
Copyright: American Scientific Publishers

Delivered by Ingenta

A
P
ow

er-D
riv

en
S
to
ch
astic-D

eterm
in
istic

H
ierarch

ical
H
L
S
F
ram

ew
o
rk

fo
r
M
o
d
u
le

S
electio

n
,
S
ch
ed
u
lin

g
an
d
B
in
d
in
g

Z
h
a
n
g
et

a
l.

Table VI. Architecture total power (TParch) for MS-SALSA and PSA-MLS with post-Bind and in-Bind for 4-lib. lc = 102× las-slow. h = 4 for MS-SALSA and PSA-MLS.

TP (DP+LP) results for 4-lib with post-blind TP (DP+LP) results for 4-lib with in-blind

% Imp. % Imp. PSA TPsum % Imp.

TPFU TPreg TPmux/demux TParch PSA versus TPFU TPreg TPmux/memux TParch versus in-bind Runtime with

[mW] [mW] [mW] [mW] MS-SALSA [mW] [mW] [mW] [mW] MS-SALSA versus post-bind in-bind [Secs]

Lat. MS- PSA- MS- PSA- MS- PSA- MS- PSA- TPFU TParch MS- PSA- MS- PSA- MS- PSA- MS- PSA- TPFU TParch MS-SALSA PSA-MLS MS- PSA-

DFG const. SALSA MLS SALSA MLS SALSA MLS SALSA MLS (%) (%) SALSA MLS SALSA MLS SALSA MLS SALSA MLS (%) (%) (%) (%) SALSA MLS

bal 19 0088 0088 0.008 0.009 0.001 0.001 0089 0089 000 000 0088 0088 0.008 0.008 0.001 0.001 0089 0089 000 000 000 000 1.1 0.74

arf 61 0089 0074 0.013 0.013 0.003 0.005 0090 0076 1605 1601 0094 0076 0.014 0.013 0.004 0.003 0095 0078 1804 1803 −507 −300 7.2 5.13

motion 32 1034 1030 0.025 0.026 0.005 0.005 1037 1033 301 300 1038 1036 0.028 0.024 0.004 0.005 1042 1039 200 202 −303 −401 7.7 4

ewf 104 0035 0029 0.007 0.008 0.005 0.004 0037 0030 1904 1807 0031 0032 0.013 0.008 0.006 0.005 0033 0033 −200 000 807 −1203 10 6.8

feedback 34 1067 1049 0.035 0.039 0.009 0.009 1071 1054 1006 1001 1062 1057 0.038 0.038 0.008 0.009 1067 1062 302 301 207 −409 19.8 5.9

epic 39 1032 0095 0.026 0.026 0.008 0.074 1035 1005 2707 2200 0092 0091 0.025 0.026 0.008 0.008 0095 0095 007 005 2906 1001 26.2 8.5

bmp 37 0067 0073 0.063 0.060 0.016 0.014 0075 0080 −809 −703 0064 0053 0.061 0.063 0.013 0.016 0072 0061 1800 1502 401 2402 107.5 31.1

aux 42 2078 2063 0.073 0.076 0.020 0.020 2087 2073 503 501 2073 2059 0.079 0.073 0.020 0.020 2083 2068 501 502 106 107 94.3 33.5

mul 55 2024 2018 0.043 0.050 0.017 0.015 2030 2025 206 203 2016 2014 0.052 0.047 0.016 0.016 2022 2020 008 009 303 109 111.2 65.7

idcot 88 1003 0099 0.064 0.050 0.018 0.015 1011 1005 306 409 1005 0099 0.055 0.064 0.017 0.017 1012 1007 505 403 −009 −105 165.7 101.4

jpeg 79 1060 1042 0.064 0.058 0.023 0.024 1069 1051 1100 1008 1046 1044 0.065 0.068 0.022 0.024 1055 1053 103 009 804 −107 253.5 115.5

smooth 60 3050 3035 0.089 0.103 0.036 0.034 3062 3049 400 306 3065 3051 0.103 0.093 0.034 0.035 3079 3064 400 401 −407 −401 442 211.2

inv-matrix 66 6069 6054 0.136 0.148 0.055 0.053 6088 6074 202 200 6044 6024 0.148 0.137 0.52 0.058 6064 6044 301 301 305 405 1037.5 479.2

Total 716 24095 23050 0.646 0.666 0.217 0.217 25081 24014 508 503 24018 23024 0.689 0.662 0.207 0.218 25008 24012 309 308 208 103 2283.7 1068.7

4
0
6

J
.
L
o
w

P
o
w
e
r
E
le
c
tro

n
.
1
5
,
3
8
8
–
4
0
9
,
2
0
1
9



IP: 198.54.106.172 On: Tue, 21 Jul 2020 01:01:50
Copyright: American Scientific Publishers

Delivered by Ingenta

Zhang et al. A Power-Driven Stochastic-Deterministic Hierarchical HLS Framework for Module Selection, Scheduling and Binding

generate optimal results for three large DFGs in the given
runtime bound of 24 hours, and thus we took the near
optimal solution determined at this upper-bound runtime,
which are labeled with a ‘∗’ suffix in Table V. Also, 0/1-
ILP failed to generate solutions for the largest DFG (inv-
matrix) due to insufficient memory, and this situation is
labeled by “∗∗”. Furthermore, for comparing to 0/1-ILP,
TPFU and runtime results of all three techniques are pro-
vided in the row, called “Total-1,” of Table V that does not
include the largest DFG (inv-matrix). Moreover, for com-
paring between MS-SALSA and PSA-MLS, the results
of MS-SALSA and PSA-MLS, which include all DFGs,
are shown in the row called “Total-2” of Table V. For
TPFU which all techniques compared here directly optimize
PSA-MLS compared to 0/1-ILP has an average optimality
gap of 4.7% with a runtime advantage of 1900× (similar to
the prior LP comparison section, the runtime results in this
table only consider the runtime of MSB processing since
the post-Bind processing is extremely fast). Compared to
MS-SALSA, PSA-MLS obtains 5.8% smaller TPFU with
a runtime advantage of 2×. For TParch, PSA-MLS has an
average optimality gap of 4.8% compared to 0/1-ILP and a
5.3% TParch advantage compared to MS-SALSA. The sim-
ilarity of the comparative results among the techniques for
TPFU and TParch results show that optimizing FU power is
strongly related to the architecture power optimization.

5.4. Results from Simultaneous Minimization of

FU and Mux, Demux Power

Recall that the optimization function in PSA-MLS with
post-Bind in the previous subsection is FU power only
Now we consider directly optimizing the entire archi-
tecture power within the two simulated annealing tech-
niques, PSA-MLS and MS-SALSA with changes that
involve performing both power-driven LE-based FU bind-
ing and LE-based register binding in the evaluation step of
a simulated annealing move (this binding process is called
in-Bind since it is done within the optimization wrapper,
rather the after it). This way, the entire architecture power
is determined for each move, and thus each simulated
annealing technique optimizes this power function. To
make PSA-MLS address architecture power minimization,
the changes needed are: (1) The basic left-edge binding in
MLS is replaced by the power-driven modified left-edge
binding (MLE) that was described in Section 3.3. Thus,
the power consumption of muxes and demuxes (or, equiva-
lently, the total size of muxes and demuxes) can be consid-
ered simultaneously within the scheduling result of each
MLS iteration. (2) Before the power evaluation step in
PSA, we perform basic left-edge-based register binding for
the scheduling and FU binding solution returned by MLS
for the current move.

Similarly, to make MS-SALSA address architecture
power minimization, MLE-based FU binding, and LE-
based register binding are processed after each new MSB
solution has been generated for the current move.

We compare the TParch power results for both PSA-
MLS and MS-SALSA between in-Bind and post-Bind

approaches (i.e., between directly optimizing TParch and
TPFU only, respectively) in Table VI. For both PSA-MLS

and MS-SALSA, with the consideration of overall archi-
tecture power (in-Bind), TParch results are further improved

by 2.8% and 6.2% over optimizing TPFU only (post-
Bind) but with runtime increases by factors of 3.39×

and 3.16×, respectively (note that PSA-MLS’s power is
still appreciably lower than MS-SALSA’s using in-Bind).
The runtime increases significantly as the binding steps

have significant-enough complexity (linear in the num-
ber of operations in the DFG) that have to be incurred

for every move unlike they being only incurred once in
the post-Bind approach. The small TParch improvements

using in-Bind show that optimizing TPFU only (wherein
we use post-Bind) has a strong correlation to optimizing

TParch, and given the post-Bind based approach’s signifi-
cantly more efficient runtime, it is a much more attractive

strategy within PSA-MLS for optimizing the total archi-
tecture power.

6. CONCLUSIONS
In this paper, we presented a hierarchical framework
for the purpose of efficiently and effectively exploring a

reasonably extensive functional-unit (FU) power solution
space for the HLS problem of combined module selec-

tion, scheduling and binding (MSB). With a hierarchical
framework using a stochastic-constructive algorithm com-

bination, PSA-MLS efficiently explores module (speed)
selection solutions using simulated annealing, while, for

each such solution, an effective constructive algorithm,
MLS, provides a good scheduling and binding solution to

obtain a complete MSB solution. The proposed framework
can obtain optimal or near-optimal power solutions with

very efficient runtimes compared to an optimal 0/1-ILP
formulation. For comparison, we also developed a good
flat simulated annealing technique MS-SALSA for the

power-driven MSB problem by combining and signifi-
cantly extending prior simulated annealing techniques for

the scheduling and binding problem. PSA-MLS also pro-
vides significantly better FU as well as complete HLS

architecture (FU+mux/demux+ register) power solutions
at faster runtimes than competing state-of-the-art approx-

imate algorithms like MWIS. Min-Cut, and MS-SALSA.
PSA-MLS’s appreciable power and runtime advantages

over MS-SALSA also underscores the basic thesis of this
paper about the advantage of a hierarchical stochastic-

deterministic algorithm combination over a flat stochastic-
only algorithm. We also showed that optimizing FU power

within PSA-MLS is strongly correlated to optimizing the
HLS architecture power, and explicitly optimizing the
architecture power within PSA-MLS only provides small

improvements in the architecture power compared to opti-
mizing FU power only, but has a significant enough

J. Low Power Electron. 15, 388–409, 2019 407



IP: 198.54.106.172 On: Tue, 21 Jul 2020 01:01:50
Copyright: American Scientific Publishers

Delivered by Ingenta

A Power-Driven Stochastic-Deterministic Hierarchical HLS Framework for Module Selection, Scheduling and Binding Zhang et al.

runtime increase that it does not provide a good tradeoff
between QoS and runtime.

Acknowledgment: This work has in part been made
possible by NSF grant CCF-1248945. We also thank the

anonymous reviewers for their comments, which have

improved the paper.

References
1. ITRS Working Group, 2011 International Technology Roadmap for

Semiconductors (ITRS): Design, Semiconductor Industry Associa-

tion, Washington, DC, August (2011).

2. Z. Zhang, D. Chen, S. Dai, and K. Campbell, High-level synthe-

sis for low-power Design. IPSJ Transactions on System LSI Design

Methodology 8, 12 (2015).

3. S. M. Logesh, D. S. Ram, and M. C. Bhuvaneswari, Survey of high-

level synthesis techniques for area, delay and power optimization.

International Journal of Computer Applications 32, 3935 (2011).

4. W. T. Shiue and C. Chakrabarti, ILP-based scheme for low-power

scheduling and resource binding, Proc. Int. Symp. Circuits and Sys-

tems (2000), Vol. 3, pp. 279–282.

5. A. M. Sllame and V. Drabek, An Efficient List-Based Scheduling

Algorithm for High-Level Synthesis, Proc. of IEEE Euromicro Sym-

posium on Digital System Design: Architecture Methods and Tools,

September (2002), pp.316–323.

6. P. G. Paulin and J. P. Knight, Force-directed scheduling for the

behavioral synthesis of ASICs. IEEE Transactions on Computer

Aided Design of Integrated Circuits and Systems 8, 661 (1989).

7. D. Chen, J. Cong, Y. Fan, and J. Xu, Optimality study of resource

binding with Multi-Vdds. Proc. DAC 580 (2006).

8. J. M. Chang and M. Pedram, Energy minimization using multiple

supply voltages. IEEE Transactions on VLSI 5, 436 (1997).

9. D. Chen, J. Cong, and J. Xu, Optimal module and voltage assign-

ment for low-power. ASP-DAC 850 (2005).

10. A. K. Allam and J. Ramanujam, Modified force-directed schedul-

ing for peak and average power optimization using multiple supply-

voltages. ICICDT’06 2006, 1 (2006).

11. Z. Gu, Y. Yang, J. Wang, R. P. Dick, and L. Shang, TAPHS:

Thermal-aware unified physical level and high-level synthesis, Pro-

ceedings of ASP-DAC, IEEE (2006).

12. H. Liu, W. Lee, and Y. Chang, A provably good approximation algo-

rithm for power optimization using multiple supply voltages, DAC,

IEEE (2007).

13. W. Jiang, Z. Zhang, M. Potkonjak, and J. Cong, Scheduling with

integer time budgeting for low-power optimization, ASP-DAC, IEEE

(2008).

14. X. Tang, H. Zhou, and P. Banerjee, Leakage power optimization

with dual-Vth library in high-level synthesis, Proc. DAC (2005),

pp. 202–207.

15. N. Wang, S. Chen, and T. Yoshimura, Min-cut based leakage power

aware scheduling in high-level synthesis, ISQED 164 (2013).

16. K. S. Khouri and N. K. Jha, Leakage power analysis

and reduction during behavioral synthesis. IEEE Transactions

on Very Large Scale Integration (VLSI) Systems 10.6, 876

(2002).

17. Y. Chen, Y. Xie, Y. Wang, and A. Takach, Minimizing leakage power

in aging-bounded high-level synthesis with design time multi-Vth

assignment, ASP-DAC, IEEE (2010).

18. S. P. Mohanty and N. Ranganathan, Simultaneous peak and aver-

age power minimization during datapath scheduling. IEEE TCAS

52, 1157 (2005).

19. A. Sengupta, R. Sedaghat, and P. Sarkar, A multi structure genetic

algorithm for integrated design space exploration of scheduling and

allocation in high level synthesis for DSP kernels. Swarm and Evo-

lutionary Computation 7, 35 (2012).

20. J. A. Nestor and G. Krishnamoorthy, SALSA: A new approach to

scheduling with timing constraints. IEEE Transactions on Computer-

Aided Design 12, 1107 (1993).

21. F. Ferrandi, C. Pilato, D. Sciuto, and A. Tumeo, Mapping and

scheduling of parallel C applications with ant colony optimiza-

tion onto heterogeneous reconfigurable MPSoCs, ASP-DAC (2010),

pp. 799–804.

22. S. Dutt and O. Shi, Co-exploration of unit-time leakage power and

latency spaces for leakage energy minimization in high-level synthe-

sis. J. Low Power Electronics 12, 295 (2016).

23. P. Behrooz, Computer Arithmetic: Algorithms and Hardware

Designs, New York, Oxford University Press (2000) Vol. 19,

pp. 512583–512585.

24. J. C. Alves and J. S. Matos, A simulated annealing approach for

high-level synthesis with reconfigurable functional units, Proc. of the

38th Midwest IEEE Symposium (1995), pp. 314–317.

25. A. Hashimoto and J. Stevens, Wire routing by optimizing channel

assignment within large apertures, 8th DAC Workshop (1971).

26. J. Midwinter, Improving interconnect for the behavioral synthesis of

ASICs, M.Sc. Thesis, Carleton University, April (1988).

27. B. J. Sheu, D. L. Scharfetter, P.-K. Ko, and M.-C. Jeng, BSIM:

Berkeley short-channel IGFET model for MOS transistors, IEEE J.

Solid-State Circuits 22, 558 (1987).

28. D. Chen, J. Cong, and J. Xu, Optimal simultaneous module and mul-

tivoltage assignment for low power. ACM Trans. on Design Automa-

tion of Electronic Systems 11, 362 (2006).

29. S.-H. Huang, W.-P. Tu, and B.-H. Li, High-level synthesis for

minimum-area low-power clock gating. Journal of Information Sci-

ence and Engineering 28, 971 (2012).

30. D. Dal and N. Mansouri, Power optimization with power islands

synthesis. TCAD 28, 1025 (2009).

31. D.-C. Juan, Y.-L. Chuang, D. Marculescu, and Y.-W. Chang, Statis-

tical thermal modeling and optimization considering leakage power

variations, Proc. DATE (2012), pp. 605–610.

32. D. Gajski, N. Dutt, A. Wu, and S. Lin, High-Level Synthesis, Intro-

duction to Chip and System Design, Kluwer Academic Publishers,

Norwell, MA (1992).

33. ExPRESS benchmark, http://express.ece.ucsb.edu/benchmark.

34. CPLEX–IBM, https://www.ibm.com/software/commerce/optimiza

tion/cplex-optimizer/.

35. Design Vision (A GUI version of Design Compiler), https://www

.synopsys.com/support/training/rtl-synthesis/design-compiler-synth

esis.html.

408 J. Low Power Electron. 15, 388–409, 2019

http://www.ingentaconnect.com/content/external-references?article=0018-9200(1987)22L.558[aid=6889409]
http://www.ingentaconnect.com/content/external-references?article=0018-9200(1987)22L.558[aid=6889409]
http://www.ingentaconnect.com/content/external-references?article=0018-9200(1987)22L.558[aid=6889409]
http://www.ingentaconnect.com/content/external-references?article=1546-1998(2016)12L.295[aid=11323452]
http://www.ingentaconnect.com/content/external-references?article=0278-0070(1989)8L.661[aid=7078156]
http://www.ingentaconnect.com/content/external-references?article=0278-0070(1989)8L.661[aid=7078156]
http://www.ingentaconnect.com/content/external-references?article=0278-0070(1989)8L.661[aid=7078156]
http://express.ece.ucsb.edu/benchmark


IP: 198.54.106.172 On: Tue, 21 Jul 2020 01:01:50
Copyright: American Scientific Publishers

Delivered by Ingenta

Zhang et al. A Power-Driven Stochastic-Deterministic Hierarchical HLS Framework for Module Selection, Scheduling and Binding

Xiuyan Zhang

Xiuyan Zhang received his B.S. degree in electrical engineering from University of Illinois at Chicago in 2013. He is currently working

toward the Ph.D. degree at the Department of Electrical and Computer Engineering, University of Illinois at Chicago. His research

interests include CAD for VLSI and optimization algorithms.

Ouwen Shi

Ouwen Shi was a Ph.D. student and received M.S. degree in electrical and computer engineering from University of Illinois at Chicago

in 2017. He is currently a software engineer at Cadence Design Systems working on timing- and power-driven optimization in physical

design automation, with a focus on routing congestion and instance density monitoring, and layer assignment.

Jian Xu

Jian Xu received the Ph.D. degree (F’12-S’19) in Computer Engineering from University of Illinois at Chicago.

Shantanu Dutt

Shantanu Dutt is a professor at the Department of Electrical and Computer Engineering, University of Illinois at Chicago. He received

his Ph.D. in computer science and engineering from the University of Michigan, Ann Arbor, his M.Tech. in computer engineering from

Indian Institute of Technology, Kharagpur, and his B.Tech. in electronics and communication engineering from the M.S. University of

Baroda, India. Professor Dutt was awarded a Research Initiation Award by the National Science Foundation. He has received a Best-

Paper award at the Design Automation Conference (DAC), 1996, a Most-Influential-Paper award from the Fault-Tolerant Computing

Symposium (FTCS) in 1995 (for an FTCS’88 paper), a Best-Paper nomination at DAC 2004, and was a featured speaker (1 of 2) at

the Int’l Conference on CAD (ICCAD), 2006. His research is or has been funded by NSF, DARPA, AFOSR and companies like Xilinx

and Intel. He has published about 80 papers in well-recognized archival journals and refereed conferences in all the above areas. His

current technical interests include CAD for sub-micron VLSI circuits, optimization algorithms, fault-tolerant computing, and testing

and trusted design for VLSI and FPGA systems. He has been part of various conference committees, and recently has been the EDA

TPC Chair of the ICCD’19 conference, and the panel chair of the SLIP’19 workshop that was held in conjunction with the DAC’19

conference.

J. Low Power Electron. 15, 388–409, 2019 409


