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Abstract

The strain energy and spectral (Shannon) entropy distributions in composite lattices made of core and reinforcement components
are investigated by conducting numerical experiments on a set of indefinitely tall lattice strips subjected to a point surface load.
The spectral entropy measures the complexity of the strain energy spectrum as it transforms with distance from the loaded surface.
The spectral entropy behavior is tailored by adjusting the degree of anisotropy in the lattices. Isotropic continuum-like responses
exhibited enhanced spectral entropy decay near the loaded surface and were associated with dispersion of strain energy over a wide
spatial area of the lattice. Highly anisotropic responses showed a slow entropy decay at the surface and the localization of strain
energy. Interestingly, with sufficient distance from the loaded surface, all lattice designs exhibited the same asymptotic rate of
entropy decay, and this rate also was similar to an isotropic continuum material behavior. This implies in practice that any exotic
properties of metamaterials determined by their modal selectivity are generally better pronounced in the vicinity of loads, and that
they tend to diminish on the periphery of these interesting material systems.
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1. Introduction

Mechanical metamaterials are artificial structures that ex-
hibit mechanical properties not typically encountered in con-
ventional materials. They are distinguished by an internal ar-
chitecture, which is a microstructured geometry or topology of-
ten consisting of a periodic arrangement of smaller structural
building blocks [1–3]. The macroscopic response of the meta-
material is assessed based on an effective medium description
without explicitly taking into account internal degrees of free-
dom, inhomogeneities or other components that exist within
the structure. A wide range of mechanical behavior is realized
across the different architectures for example, negative effective
elastic constants [4–7], multistable structures [8–14], reversal
of Saint Venant end effects [10], static non-reciprocity [15, 16]
and other behaviors [17, 18].

Recent work in lattice mechanics demonstrated that the in-
ternal structure of a material affects the exponential decay of si-
nusoidal force distributions that are applied statically at the sur-
face and dissipate internally as wavenumber dependent modes
of deformation [10, 19, 20]. In these analyses, the static re-
sponse of the mechanical metamaterial depends on the spatial
frequency of the pressure wave, which is analogous to the study
of phononic and optical metamaterials where the dynamic re-
sponse is a function of the frequency of sound and light waves
being transmitted [21, 22].

When solving the elasticity equations in the wavenumber do-
main and performing the inverse Fourier transform to obtain
the space domain solution, the displacement field solution to
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an arbitrary loading state is represented as a superposition of
harmonic modes of deformation [20, 23, 24]. In other words,
the internal state of deformation of an elastic body can be lin-
early decomposed into a set of sinusoidal patterns of deforma-
tion each with a decay parameter and phase defined based on
the internal structure. The amplitudes of the Fourier modes can
be determined from the boundary conditions. More recently, it
was shown that the strain energy distribution can also be rep-
resented in the wavenumber domain as spectral strain energies
or strain energy contained in the Fourier modes of deformation
[25, 26].

Anisotropy of mechanical metamaterials is expected to play
a key role in the complexity of the energy spectrum. Earlier
work on highly anisotropic structures showed certain harmon-
ics may decay artificially slowly or be missing due to asymp-
totic bandgaps [10, 26]. Consequently, the spectral strain en-
ergy distribution may be more complex or irregularly shaped at
distances away from the loaded surface even though the spatial
strain energy may decay fast. Therefore, it is interesting to con-
sider the spectral entropy as a measure of the complexity of the
energy spectrum [25],

S (X) = −

∫ ∞

−∞

w̃(X, q) ln w̃(X, q)dq (1)

where w̃ is strain energy density, q is the wavenumber and X is
the material coordinate. The discretized form of the spectral en-
tropy (1) in (8), which will be discussed below, exists on a scale
from zero to one. A narrow energy spectrum (pure harmonic
as the extreme case) has an entropy value of zero while a broad
energy spectrum (flat distribution as the extreme case) has an
entropy value of one. Spectral entropy is analogous to Shannon
entropy in information theory [27] and, therefore, it can also
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be interpreted as a measure of how much information is known
about the surface load ‘signal’ as it transmits inside the mate-
rial. If spectral entropy remains high inside the material then
localized traces of the surface load signal persist in the interior.
Low spectral entropy occurs when strain energy is distributed
uniformly in space, which is the case when details about the
surface load signal are not discernible in the interior. Spectral
entropy could potentially be used in the information processing
of materials deformation, for example, in defect detection. At
the position of the defect there would be an increase in entropy
due to stress concentrations.

The response of the homogeneous isotropic continuum, de-
scribed analytically in [25], is the baseline case that will be
compared with that of the anisotropic periodic structures in this
letter. Spatial and spectral strain energies of the baseline case
follow distinct trends, which are in accordance with phenom-
ena such as the Saint Venant principle. In close proximity to
the loaded surface, the spatial strain energy density is highly
localized with sharp energy gradients or end effects, and the
wavenumber domain is characterized by a harmonically rich,
broad energy spectrum, i.e., mechanical ‘white noise’ and max-
imal spectral entropy that approaches one. Moving along co-
ordinate X into the volume of the material, the spatial strain
energy density becomes more evenly distributed with energy
gradients disappearing concomitant with end effect decay, and
the wavenumber domain is characterized by an energy spec-
trum that narrows around the zeroth harmonic corresponding to
the mechanical ‘pure tone’ of uniform deformation and spectral
entropy that asymptotically approaches zero. As will be shown,
the asymptotic behavior of the entropy is similar in metamateri-
als with very different types of anisotropy, being a major finding
of this letter.

2. Composite lattices

The spatial strain energy and spectral entropy behavior is in-
vestigated for the two types of composite lattices in Figure 1.
Composite lattices are constructed as a combination of a rect-
angular or triangular lattice ‘core’, shown in Figures 1a and
1b, respectively, and rhombic lattice ‘reinforcement’ shown in
Figure 1c. By varying the axial rigidity of the core compared
to the reinforcement it is possible to control the anisotropy of
the structure, which affects the energetic and entropic response.
Depending on the choice of core (either rectangular or trian-
gular) and combination of axial rigidities of the core versus the
reinforcement, the response of the composite lattices can be tai-
lored to range from isotropic continuum-like behavior to highly
anisotropic behavior.

The rectangular lattice is non-rigid and behaves like a folding
mechanism while the triangular lattice is a rigid truss mean-
ing deformation is dominated by axial forces, i.e., stretch-
dominated [28]. When the reinforcement connections are added
to the rectangular and triangular lattices the resulting compos-
ite lattices behave as rigid trusses. The composite lattices are
highly over-constrained or rigid due to the enhanced number
of elastic connections at each node. As will be discussed, the
rhombic lattice elements create direct elastic coupling between

Figure 1: (a) Rectangular and (b) triangular lattices with (c) reinforcing rhom-
bic lattice form the composite lattices in (d,e).

more distant nodes in space compared to the rectangular or tri-
angular lattice nearest neighbor connections. These more non-
local connections facilitate dramatic changes in the response
compared to the homogeneous continuum as well as the sim-
pler two dimensional lattices.

2.1. Unit cell

Unit cells for the composite lattices in Figures 1d and 1e are
shown in Figures 2a and 2b, respectively. Unit cell dimensions
ensure an identical rhombic reinforcing lattice is overlaid on ei-
ther type of the core. When constructing the composite lattices
with the identical reinforcement, there are 1.5 times as many
rectangular unit cells as there are triangular unit cells. The an-
gle α controls the unit cells’ aspect ratio. Setting α = 60◦ pro-
duces a lattice of equilateral triangles. In this case, the height
H of the rectangular cell is equal to 1.5 times its length L and is
equal to the side length of the equilateral triangle.

Primary nodes in the composite lattices are drawn with white
circles and correspond to rectangular or triangular nodes. Sec-
ondary nodes arise at the self-intersections of reinforcement
bars and intersections of reinforcement bars with triangular
bars. Performing a balance of momentum at secondary nodes
reveals they do not affect displacements at primary nodes and
can be neglected in the analysis of rigid lattices. As a result, the
reinforcement bars generate a direct elastic coupling between
distant primary nodes.

2.2. Axial rigidity ratio

Deformation in a rigid frame is dominated by axial tension
and compression in the members. The axial rigidity of a pris-
matic bar is determined as the product of the area cross section
A and Young’s modulus E. Numerical experiments in Section
4 will consider anisotropic composite lattices where the axial
rigidity of the reinforcing rhombic lattice is distinct from that of
the rectangular or triangular core. By varying the relative rigid-
ity between these two components it is possible to control the
internal distribution of strain energy and complexity of the en-
ergy spectrum as measured by the spectral entropy. The rigidity
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Figure 2: Unit cell representation for (a) rectangular and (b) triangular compos-
ite lattices. Associate cell representation for (c) rectangular and (d) triangular
composite lattices.

ratio r is the dimensionless design parameter that controls the
mechanical response of the lattice, and is written as

r =
(EA)reinforcement

(EA)core
(2)

Composites lattices with the same ratio r but different absolute
values of rigidities are related to each other only by a scale fac-
tor. For r > 1 the reinforcing rhombic lattice is more rigid
compared to the core. Overall, the mechanical response of the
composite lattice depends on the choice of the core (triangular
versus rectangular) and relative stiffness of the reinforcement
versus that of the core (soft reinforcement-stiff core verses stiff
reinforcement-soft core).

2.3. Associate cell
The ability of the unit cell to represent all mechanical prop-

erties of a lattice falls short especially when more highly nonlo-
cal connections are considered such as the reinforcing rhombus
connections [26]. In the field of lattice mechanics, the associate
cell is the smallest structural sub unit needed to represent the
periodicity and mechanical properties of a lattice, e.g., [23, 29].
Associate cells are shown for the composite lattices in Figures
2a and 2b. For a deeper discussion of the associate cell and its
application to exact solutions using the discrete Fourier trans-
form see [10, 19, 20, 26].

The associate cell considers a repeating node indexed at
(n,m) and all directly interacting elastic connections to that
node. Elastic connections are defined using a set of stiffness
matrices or K-blocks, found as submatrices of the stiffness ma-
trix for the entire structure. Equilibrium for the associate cell re-
quires the vector of applied forces fnm at the current node (n,m)
be balanced by the sum of all internal forces arising from the

elastic coupling of the current node with all connected nodes
(n′,m′)

fnm = −
∑

n′

∑
m′

Kn−n′m−m′dn′m′ (3)

The range of n′ and m′ depends on the number of elastic con-
nections in the associate cell and how the nodes are indexed.
For instance, equilibrium of the rectangular composite associate
cell in Figure 2a sums from n′ = n − 1 to n + 1 and m′ = m − 1
to m + 1 for a total of nine terms on the right-hand side. Equi-
librium for the triangular composite associate cell in Figure 2b
sums from n′ = n−1 to n + 1 and m′ = m−3 to m + 3 for a total
of eleven terms on the right-hand side. The displacement vector
d at any node can be determined by solving the finite difference
equation (3), which can be solved by a range of numerical and
semi-analytical techniques, e.g., [10, 19, 20, 23, 26, 29].

2.4. Spatial strain energy
Internal forces on the right-hand side of (3) are pre-

multiplied by the conjugate transpose of the corresponding
nodal displacement vector d∗n′m′ and the factor 1/2 to form a
nodal energy term [19, 26, 29]

Wnm =
1
2

∑
n′

∑
m′

d∗n′m′Kn−n′m−m′dn′m′ (4)

Wnm is the spatial strain energy discretized at node (n,m). It is
a half sum of all strain energies Ue of elements that are directly
connected to the node (n,m) in the associate cell, Figure 2. The
spatial energy Wnm gives the volumetric distribution of strain
energy from node to node in discrete lattices and is analogous
to the strain energy density in continuum mechanics. For ex-
ample, performing a finite sum of the spatial strain energy over
all nodes in the lattice

∑
n,m Wnm is like an ‘integration’ over the

volume and is equal to the external work input to the system
(10). After solving for Wnm at each node, the result is a two
dimensional discrete field of nodal energies. A smooth contour
plot can be generated by interpolating that discrete field. Strain
energy contours will be produced from the numerical experi-
ments in Section 4 and reveal qualitatively how strain energy
transforms throughout the lattice interior.

When spatial strain energies are summed over a single index
m for a fixed column index n, the following expression for the
column energy is defined

Πn =
∑

m

Wnm (5)

Πn gives the strain energy in a lattice column formed by all
nodes indexed by m. Dependence of this quantity on the column
index n reveals whether energy is concentrated at the surface or
dispersed throughout the lattice volume. In general, Πn will
decrease monotonically when moving away from the surface of
the applied load. However, the parameter r as well as the type
of core (rectangular or triangular) will influence how quickly
the column energy decays with distance. In the next section, an
equivalent representation of Πn is computed, alternatively by
summing spectral energies over the wavenumber. This is the
basis of the Parseval energy theorem [25, 26].
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3. Strain energy spectral properties

The discrete Fourier transform applied to the vertical index
m decomposes the spatial displacement field dnm into a set of
spectral displacements d̃n(q) (A.2) that are functions of the
wavenumbers q. There are M wavenumbers q that span the
Fourier domain, [−π, π] where M is the nodal height of the
lattice. Each wavenumber is associated with a spatially har-
monic loading profile that in turn induces a harmonic response
or eigenmode within the structure [20]. The zero eigenmode
is a state of uniform deformation associated with a pressure
load over a column of nodes. The finest wavelength eigenmode
q = π occurs when loads of constant magnitude alternate in di-
rection at each subsequent node in the column. By the definition
of the inverse DFT, the displacement solution (A.3) to an arbi-
trary loading state is the superposition of all Fourier modes of
deformation. For a deeper discussion of the theory of DFT and
its application to lattice mechanics see [10, 19, 20, 23, 26, 29].
In the current investigation, spectral displacements are only re-
quired to compute the spectral strain energy and spectral en-
tropy.

3.1. Spectral strain energy
The spectral strain energy W̃n(q) (A.12) gives the distribution

of strain energy contained in the Fourier modes of deformation
at the column n, and is derived from the mechanical Parseval
energy theorem in the form of Appendix A suggested by Kar-
pov and coworkers [25, 26]. The Parseval theorem states that
the strain energy in the column Πn, originally expressed as the
summation of spatial strain energies over the nodal index m,
is equivalently expressed as a summation of the spectral strain
energy modes over the wavenumbers q

Πn =
∑

m

Wnm =
1
M

∑
q

W̃n(q), ∀q ∈ [−π, π] (6)

The column energy Πn is the sum of spatial strain energies Wnm

for all nodes in the column. It is interesting to note that the
spectral representation of the strain energy W̃n(q) is an additive
quantity in terms of the superposition of several harmonic loads.
In contrast, the usual spatial representation of the strain energy
is well known not to be additive.

3.2. Spectral (Shannon) entropy
After obtaining the spectral energy distribution at each col-

umn in the lattice it is possible to write the spectral (Shannon)
entropy hn. First, the normalized fractional energy is written

pn(q) =
1
M

W̃n(q)
Πn

,
∑

q

pn(q) = 1 (7)

where pn(q) normalizes the energy contained in each wavenum-
ber W̃n(q) by the column energy Πn and the factor 1/M such that
at any column the summation of all fractional energies is equal
to a unit. Then the spectral entropy for discrete lattices is

hn = −
1

ln M

∑
q

pn(q) ln pn(q) (8)

where 1/ ln M is a normalization factor such that hn ranges from
zero to one. The spectral entropy (8) is a measure of spectral
complexity of the strain energy in a given position n of the lat-
tice. The rate of decay of the spectral entropy is defined using
the first order forward finite difference as

∆hn

∆X

∣∣∣∣∣
n

=
hn+1 − hn

∆X
(9)

where ∆X is the horizontal distance between neighboring nodes
n and n + 1. Spectral entropy decay (9) is the numerical deriva-
tive or ‘slope’ of the spectral entropy hn (8) at node n with re-
spect to the material coordinate X.

4. Numerical experiment

Triangular and rectangular composite lattices of the types in
Figures 1d and 1e are constructed as tall strips where the ver-
tical height along Y is eight times greater than the horizontal
width along X in order to mitigate the influence of the horizon-
tal boundaries. Both lattices have M = 512 unit cells in the
vertical direction. The triangular lattice has N = 64 unit cells in
the horizontal direction. The rectangular lattice has N = 96 unit
cells in the horizontal direction whose unit cell is 1.5 times nar-
rower than that of the triangular lattice. As a result, the range
of the material coordinate X is from 0 to 96 for both lattices.
The contour plots in Figures 3 and 4 show energy distribution
in the middle square portions of those tall strips. A point load
F is applied at the middle of the left-hand side at (0, 0) while all
other nodes at this end are free of loads or constraints. Right-
hand side node have fixed boundary conditions on both degrees
of freedom.

The response in a composite lattice strip is controlled by a
single design parameter, which is the dimensionless axial rigid-
ity ratio r in (2). This parameter is varied by changing the axial
rigidity of the rhombic reinforcement relative to the rectangular
or triangular core. In the numerical experiments, the parameter
r is first defined for a particular lattice composite strip. Next,
the exact values of axial rigidities (EA)scissor and (EA)core are
chosen so that a unit horizontal force applied at the middle left
node F =

(
1
0

)
generates a unit horizontal displacement u =

(
1
0

)
in the same node. Furthermore, defining axial rigidities such
that a unit force causes unit displacement means the external
work is the same across all test specimens. The energy balance
requires ∑

e

Ue =
1
2

F · u = 0.5 (10)

Work of the external force F is converted into stored strain
energy as the lattice deforms elastically to accommodate the
load. Adding together all element strain energies

∑
e Ue = 0.5

is equal to the external work. The constant work of this amount
employed in all experiments permits a one-to-one comparison
across different lattice designs. Although the total amount of
energy input into each lattice strip is constant, how the strain
energy is distributed in space and over the wavenumbers will
change based on the parameter r as well as the type of lattice
(rectangular or triangular).
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4.1. Spatial strain energy contours

Spatial (volumetric) strain energy contours, the top three
plots in Figures 3 and 4, are produced for three different de-
signs of the rectangular and triangular composite lattices, for a
total of six different lattices. Lattices are subjected to the point
load as described above. Lattices vary from a very rigid core
r = 0.1 case to a very rigid reinforcement r = 100 case. Re-
sults are generated by computing the spatial strain energy Wnm

by (4) at each node and then creating a color-coded contour that
smoothly interpolates the discrete field. To account for the fact
that the rectangular lattice has more nodes per unit volume than
the triangular lattice, its strain energy contours are normalized
by a factor of 1.5.

Starting with the rectangular composite results in Figure 3,
the contour for r = 0.1, which uses a ten times more rigid
rectangular core compared to its reinforcement, shows confine-
ment of strain energy as it focuses along a line in the direction
of the applied load. Stiff rectangular bars along this path ab-
sorb large amounts of volumetric strain energy compared to the
soft reinforcing bars. As will be observed in other designs, the
stiffer or more rigid component is responsible for controlling
the strain energy distribution. This phenomenon is not obvious
from the bar element theory where stiffer bars absorb less strain
energy under the force-response curve for a constant applied
force. However, this argument does not take into account the
nonlocal two dimensional geometry of the problem, which is
the main reason for a stiffer component to absorb strain energy
in a composite lattice.

The second contour r = 3.6 in Figure 3 corresponds to a
rectangular lattice design that optimizes spectral entropy decay
with distance from the loaded surface. The optimal design r
for each type of lattice is defined as the global minimum of the
curves in Figure 5, which will be discussed more in the next
section. In regards to the contours, increasing the rigidity of the
reinforcement promotes the widening or outward deflection of
strain energy while increasing the rigidity of the rectangular ele-
ments promotes the focusing of energy along the line of applied
load. Phenomenologically, the optimized design of these two
components produces a response that disperses or redistributes
strain energy over a wide spatial region of the lattice. It is inter-
esting to observe that the limit cases of a pure rectangular lattice
(r → 0) and rhombus reinforcing lattice (r → ∞) are mecha-
nisms by themselves and thus are unable to disperse strain en-
ergy. However, when combined together the response of the
composite lattice can be engineered to be continuum-like, i.e.,
behaves with enhanced strain energy dispersion and spectral en-
tropy decay. Nevertheless, because the structure is inherently
discrete with deformation restricted to directions along bar ele-
ments, there is still significant outward deflection of strain en-
ergy and non-convex contours, effects that are not present in the
homogeneous isotropic continuum [26].

The third contour r = 100 in Figure 3 has a one hundred
times more rigid reinforcement compared to the rectangular
core. Similar to the r = 0.1 design, the high anisotropy of
this design is associated with strain energy localization. How-
ever, in this case the strain energy is redirected along angles in

Figure 3: Rectangular lattice behavior; strain energy Wnm contours from (4) for
design parameters r = 0.1, 3.6, 100 using (2) (top); column sum of strain energy
Π(X) from (5) (bottom left); spectral entropy h(X) from (8) (bottom middle);
spectral entropy decay ∆h(X)/∆X from (9) (bottom right).

Figure 4: Triangular lattice behavior; strain energy Wnm contours from (4) for
design parameters r = 0.1, 3.2, 100 using (2) (top); column sum of strain energy
Π(X) from (5) (bottom left); spectral entropy h(X) from (8) (bottom middle);
spectral entropy decay ∆h(X)/∆X from (9) (bottom right).

the direction of the reinforcing bars. This deflection of strain
energy is explained mathematically on the basis of interference
of the Raleigh (decaying Fourier) modes of deformation, see
Appendix B. The response is dominated by the rigid reinforce-
ment with minor influence of the soft rectangular core. The soft
core helps to spread out the strain energy within the confined
paths. In practice, the strain energy deflection effect would still
occur if the softer core was another type of lattice such as the
triangular lattice of this paper or even a continuous material
matrix that fills the space between the rigid reinforcement.

Strain energy contours for the triangular lattice are shown in
the top of Figure 4. The biggest difference between the trian-
gular and rectangular contours is the rigid core case r = 0.1,
which approaches to the strain energy distribution of a pure tri-
angular lattice (r → 0) with some minor influence of the soft re-
inforcements. Since the triangular core is rigid, this response is
continuum-like in the sense that strain energy is dispersive and
contours are round and smooth. The middle contour r = 3.2 in
Figure 4 is the mathematically optimized design for spectral
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Figure 5: Spectral entropy behavior h(r) as a function of the lattice design
parameter r in (2) for the rectangular lattice (left) and triangular lattice (right).
Behavior are given for three material coordinates X = 3, 6, 12.

entropy decay and shows enhanced strain energy dispersion.
Since the triangular core is already dispersive, it is surprising
that the most optimal design requires a 3.2 times more rigid
reinforcement. The more rigid reinforcement better disperses
strain energy vertically and widens contours. Finally, the right
contour in Figure 4 is the triangular composite fabricated with
a one hundred times more rigid reinforcement relative to the
core. Strain energy is localized and deflected along angles of
the reinforcement. The result is nearly identical to that of the
reinforcement dominated response in the rectangular lattice in
Figure 3.

4.2. Column strain energy and spectral entropy plots

Figures 3 and 4 graph the column strain energy (6), spec-
tral entropy (8) and spectral entropy decay (9) dependence on
the material coordinate X in the rectangular and triangular lat-
tices. Behavior of the isotropic continuum is plotted for ref-
erence, which is an analytical formulation from [25]. In order
to overview the behavior across all designs, Figure 5 plots the
spectral entropy for each type of lattice but as a function of the
design parameter r on a log scale at fixed material coordinates
X = 3, 6, 12.

Beginning with the rectangular lattice results, which are the
bottom three graphs in Figure 3 and the left plot of Figure 5.
The first key finding is a symmetry in the response about the
the optimal design r = 3.6, which is the design that maximizes
the initial spectral entropy decay, or ‘slope’ of the spectral en-
tropy. This symmetry can be observed as the concave shape of
the h(r) curves in the left plot of Figure 5. The global mini-
mum (mathematical optimization) of these curves occurs at the
‘optimal’ design at r = 3.6.

The Figure 3 graphs of Π(X), h(X) and ∆h(X)/∆X show the
optimal design response (blue curve), which most resembles
the continuum response (dashed curve). The symmetry in the
h(r) behavior about the optimal design in Figure 5 is expected
to be reflected as symmetry in the responses in Figure 3 af-
ter changing the design parameter in either direction. Indeed,
designs r = 0.1 (black curve) and r = 100 (pink curve) are
nearly overlapping in their column energy, spectral entropy and
spectral entropy decay responses. This overarching symmetry
in the rectangular lattice is explained by the fact that the core

dominated response r << 1 and reinforcement dominated re-
sponse r >> 1 are the most anisotropic designs associated with
the greatest degree of strain energy localization either by con-
finement along the midline or deflection along the angles of the
rhombic reinforcement. This symmetry is broken in the triangu-
lar composite because of the rigid nature of the core (triangular)
lattice.

Triangular lattice results are shown in the Figure 4 bottom
graphs and the right plot of Figure 5. The optimal design
r = 3.2 is the global minimum in the h(r) curves. However,
curves are no longer symmetric about this optimal design. In-
stead, using a very rigid triangular lattice core r << 1 main-
tains lower magnitudes of spectral entropy and greater rates
of entropy decay at its surface compared to using a compara-
bly rigid rectangular core. The loss of symmetry is demon-
strated in Figure 4 where the core dominated r = 0.1 response
(black curve) is now distinct from the reinforcement dominated
r = 100 response (pink curve). As expected, the optimal design
(blue curve) exhibits the lowest levels of entropy and the fastest
entropy decay rate at its surface compared to the other designs,
and is the most continuum-like.

Looking at both types of lattices, the Π(X) profiles of all
continuum-like designs exhibit high amounts of energy ab-
sorbed at the surface that quickly dissipates with distance. In
contrast, highly anisotropic designs show flatter column strain
energy profiles where strain energy is less concentrated at the
surface yet penetrates with larger magnitudes into the interior.
Additionally, there is correlation between column energy and
spectral entropy behavior in that an isotropic continuum-like
design has high rates of decay of column energy and spectral
entropy while an anisotropic design has has lower rates of de-
cay of column energy and spectral entropy

Also, all lattices investigated in the numerical experiments
exhibited similar asymptotic behavior of the spectral entropy
decay ∆h(X)/∆X. Figures 3 and 4 show that the spectral en-
tropy decay curves tend to merge together by X = 20. While
initial rates of entropy decay are different for the different de-
signs, as one moves sufficiently far into the material interior,
the slopes level out and appear to converge to each other. To
reiterate, near to the surface load, both the magnitude of the
entropy and its decay rate are distinct across different designs
while far enough away from the surface only the magnitude
of the entropy is distinct. Because large differences in spec-
tral entropy decay behavior between isotropic continuum-like
and highly anisotropic designs coincide with large differences
in spatial strain energy behavior, and this is most pronounced at
the surface of the applied load, this is one argument why using
the decay rate (and not just its magnitude) is better suited for
distinguishing exotic metamaterial phenomena.

5. Conclusion

In this paper, the strain energy distribution and spectral en-
tropy behavior was investigated for the composite lattices of
Figure 1 type. The entropy behavior was tailored depending on
the anisotropy of the lattice, which was controlled by a single
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design parameter. Isotropic continuum-like behavior was asso-
ciated with enhanced entropy decay near the surface and strain
energy dispersion whereas highly anisotropic behavior lead to
slow entropy decay at the surface and strain energy localization.
A surprising result was that given sufficient distance from the
surface load, the asymptotic rate of entropy decay was similar
in all lattice metamaterials including those with high anisotropy,
and was similar to the way entropy decays in isotropic contin-
uum materials. This implies in practice that any exotic proper-
ties of metamaterials determined by their modal selectivity are
generally better pronounced in the vicinity of loads, and that
they tend to diminish on the periphery of these interesting ma-
terial systems.

Appendix A. Parseval theorem

The mechanical version of the Parseval theorem [25, 26] for
discrete lattices states that strain energy in a column of the lat-
tice Πn is expressed either as a summation of volumetric strain
energy over the spatial index m or as a summation of spectral
energy over the wavenumbers q. Equivalence of the volumetric
and spectral representations of the column energy is discussed
below.

Strain energy in a column Πn is computed at a fixed horizon-
tal location n by the summation of volumetric (spatial) strain
energies Wnm (4) over the vertical nodal index m

Πn =
∑

m

Wnm =
1
2

∑
m

∑
n′

∑
m′

d∗n′m′Kn−n′m−m′dn′m′ (A.1)

Starting from (A.1) where the summation is performed over the
spatial index m, the Parseval theorem asserts it is possible to
redefine this expression for Πn so that the summation is per-
formed over the wavenumber q. The derivation is outlined be-
low.

The Fourier image of the displacement vector is defined

d̃n(q) =
∑

m

dnme−iqm (A.2)

The displacement vector can be viewed as the inverse transform
of its own Fourier image

dnm =
1
M

∑
q

d̃n(q)eiqm (A.3)

Likewise, the complex conjugate of the displacement vector
d∗nm is the inverse transform of the complex conjugate of the
same Fourier image

d∗nm =
1
M

∑
q′

d̃∗n(q′)e−iq′m (A.4)

The displacement vector (A.3) and its complex conjugate (A.4)
written at (n′,m′) are substituted into (A.1), which takes the
form upon rearranging

Πn =
1
2

1
M2

∑
q

∑
q′

∑
n′

∑
m

e−iq′meiqmd̃∗n′ (q
′)

∑
m′

Kn−n′m−m′ d̃n′ (q)

(A.5)

At every other index m, the sum over m′ yields the same term
K̃n−n′ d̃n′ (q), where

K̃n−n′ =
∑

m−m′
Kn−n′m−m′ (A.6)

For the rectangular lattice of Figure 1d

K̃−1 = K̃1 = −
K̃0

2
=

 5
√

3r
4 0
0 3

√
3r

4

 (A.7)

For the triangular lattice of Figure 1e

K̃−1 = K̃1 = −
K̃0

2
=

[ r
6 (9 +

√
3) 0

0 r
2 (1 +

√
3)

]
(A.8)

Also, the Fourier mode orthogonality∑
m

e−iq′meiqm = Mδqq′ (A.9)

with the Kronecker delta δqq′

δqq′ =

1, q = q′

0, q , q′
(A.10)

removes the sum over q′ in (A.5). Thus, the strain energy in a
column at nodal index n

Πn =
1
M

∑
q

1
2

∑
n′

d̃∗n′ (q)K̃n−n′ d̃n′ (q) (A.11)

The term after the first sum (over q) is the spectral distribution
of the strain energy

W̃n(q) =
1
2

∑
n′

d̃∗n′ (q)K̃n−n′ d̃n′ (q) (A.12)

W̃n(q) defines a fraction of strain energy contained in a given
Fourier mode of deformation, and is determined at fixed
columns n in the lattice.

A superposition of spectral energies W̃n(q) for all wavenum-
bers q and normalizing by the factor 1/M (A.11) is equal to the
sum of all spatial energy terms Wnm for the periodic nodes m
(A.1). The Parseval energy theorem is then written concisely

Πn =
∑

m

Wnm =
1
M

∑
q

W̃n(q) (A.13)

Appendix B. Modal interference

Figure B.6 is a qualitative illustration of the deflection of dis-
placements which in turn causes the deflection of strain energy.
When the discrete Fourier transform is applied to the displace-
ment field over the vertical index m, the solution is decomposed
into a set of Fourier harmonics or eigenmodes of deformation
each with a wavenumber q and spatial wavelength 2π/q. Eigen-
modes are harmonic profiles of deformation for the column of
nodes in a lattice. If the harmonics are phase shifted by their

7



Figure B.6: Deflection of the displacement solution by modal interference. Ma-
terial coordinates X and Y denote the horizontal and vertical position in the lat-
tice, respectively. a)–d) Eigenmodes of deformation that are phase shifted by
their wavenumber q at each subsequent lattice column located at X. The phase
shift φ = Xq. Eigenmodes at columns located at X = 0 (blue), 4 (purple) and
8 (green) are shown. Adding the positive and negative eigenmodes together
results in an interference pattern that is shifted along angles (red arrows) when
moving horizontally through the lattice. Positive wavelengths a) π/3 and b) π/6
are associated with upward deflection while negative wavelengths c) −π/3 and
−π/6 are associated with downward deflection.

wavenumber at each subsequent column located at material co-
ordinate X as in Figures B.6a–d then the resultant displacement
solution unm shows an interference pattern with strong peaks
that are shifted laterally as in Figure B.6e.

Mathematically, the components of the displacement solu-
tion dnm for a lattice are proportional to sets of cosine terms
each associated with an eigenmode with wavenumber q. For
example, the horizontal displacements,

unm ∝ ρ
n cos(qm + φn) + ρn cos(qm − φn) (B.1)

The displacement field is a function of the horizontal nodal
index n, vertical index m, constant exponential factor ρn and
phase angle φ. The first term on the right hand side corre-
sponds to the positive wavenumber +q Fourier harmonic, e.g.,
q = π/3 or q = π/6 in Figures B.6a–b, while the second term
corresponds to the negative wavenumber −q harmonic, e.g.,
q = −π/3 or q = −π/6 in Figures B.6c–d. Setting the phase
angle φ equal to the wavenumber q of the eigenmode leads to
an interference pattern resulting in the strain energy redirection
due to (4). This represents an interesting analogy to the Bragg
scattering of electromagnetic waves.
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