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Abstract 

This discussion starts with a mechanics version of the Parseval’s energy theorem applicable to 
any discrete lattice material with periodic internal structure: a microtruss, grid, frame, origami 
or tessellation. It provides a simple relationship between the strain energy volumetric/usual and 
spectral distributions in the reciprocal space. The spectral energy distribution leads directly to a 
spectral entropy of lattice deformation (Shannon’s type), whose variance with a material 
coordinate represents decrease of information about surface loads in the material interior. 
Spectral entropy is also a basic measure of complexity of mechanical responses of metamaterials 
to surface and body loads. Considering transformation of the energy volumetric and spectral 
distributions with a material coordinate pointed away from a surface load, several interesting 
anomalies are seen even for simple lattice materials, when compared to continuum materials. 
These anomalies include: selective filtering of surface Raleigh waves (sinusoidal pressure 
patterns), Saint-Venant’s effect inversion illustrated by energy spectral distribution contours, 
occurrence of “hiding pockets” of low deformation, and redirection of strain energy maximum 
away from axis of a concentrated surface load. The latter phenomenon can be significant for 
impact protection applications of mechanical metamaterials.       
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1. Introduction 

The science of mechanical metamaterials emerged at the interface applied mechanics and materials 
engineering, inspired by the earlier research in optics, acoustics and electromagnetism [1-11], to explore 
opportunities for materials with exotic mechanical properties rarely found in the nature. The modern 
research in mechanical metamaterials encompasses design, theoretical, experimental and computational 
studies of material systems with negative Poisson’s ratio [12-14], negative bulk modulus [15-16], negative 
longitudinal stiffness and compliance [17-21], reverse Saint Venant’s effect [22] and other anomalous 
elastic properties. Interesting properties of the metamaterials are defined mostly by their internal 
structure, topology and geometric architecture rather than chemical composition. Design of 
metamaterials properties of by means of stiffness modulations and application of large amounts of 
deformation has been discussed as well [34-35]. Internal structure design of lattice materials, foams, 
granular materials, origamis kirigamis, tessellations, tensegrities and minimal surface may also lead to a 
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range of functional properties, such reconfigurability, multistability, polymorphism, symmetry breaking, 
deformation and strain energy reprogramming [19-30]. 

Strain energy control, reprogramming and redistribution [22,29-30] is one topic, where few studies have 
been done, although mechanical energy bending and deflection away from an obstacle is a typical 
challenge in the closely related field of acoustical metamaterials [8-9]. One possible reason is a lack of 
analytical tools, or a standardized formulation that could unveil a full potential of mechanical materials 
for this type of functionalities. Polymorphic mechanical metamaterials may well perform as 
superdampers [16,21]. Moreover, their unusual quasistatic performances could complement acoustical 
metamaterials for fast aperiodic impact loads, whose frequency spectra extends far beyond any 
reasonable acoustical metamaterial’s bandgap. Such an impact load then could be more efficiently 
damped in a supersonic regime, by controlling instantaneous strain energy distributions in the material 
even before any oscillatory process is established. Therefore, it is important to understand, if mechanical 
metamaterials can provide a mechanism to control the strain energy distribution and transformation. 
Harnessing these mechanisms would also suggest opportunities to employ also spatial profiles of impact 
loads [22,29], in addition to their frequency spectra, for highly efficient damping performance. 

The first objective of this work is to discuss some novel analytical tools and concepts enabling a systematic 
analysis of strain energy transformation in any periodic material system: lattice associate cell and a 
universal strain energy representation, Raleigh decay spectrum, strain energy spectral distribution and a 
spectral theorem that connects the volumetric and spectral distributions, and Shannon’s entropy of lattice 
deformation. Energy spectral theorem is analogous to the Parseval’s theorem, written for squared data 
points, 𝑥𝑥𝑚𝑚, and their Fourier transform, 𝑥𝑥�(𝑞𝑞),  

 1
𝑀𝑀
∑ |𝑥𝑥𝑚𝑚|2𝑀𝑀−1
𝑚𝑚=0 = ∑ |𝑥𝑥�(𝑞𝑞)|2𝑞𝑞         (1) 

  𝑥𝑥�(𝑞𝑞) = ∑ 𝑥𝑥𝑚𝑚𝑒𝑒−𝑖𝑖𝑞𝑞𝑚𝑚𝑀𝑀−1
𝑚𝑚=0 ,    𝑞𝑞 = 2𝜋𝜋𝜋𝜋

𝑀𝑀
,    𝜇𝜇 = 0,1, … ,𝑀𝑀 − 1    (2)     

The squared Fourier transform represents power spectral density of a signal,  

𝑊𝑊� (𝑞𝑞) = |𝑥𝑥�(𝑞𝑞)|2          (3) 

Shannon’s spectral entropy of the signal reads    

𝐻𝐻 = ∑ 𝑤𝑤�(𝑞𝑞) ln𝑤𝑤�(𝑞𝑞)𝑞𝑞 ,      𝑤𝑤�(𝑞𝑞) = 𝑊𝑊� (𝑞𝑞)/∑ 𝑊𝑊� (𝑞𝑞)𝑞𝑞      (4) 

and it is interpreted as purity of the signal or used to distinguish between artificial (low-entropy) and 
natural (high-entropy) signals. A mechanical, strain energy version of the Parseval’s theorem (1) was 
shown earlier in [30] for the case of elastic continuum (homogeneous materials), and here, we 
demonstrate a discrete version of this theorem and information entropy calculation for mechanics of 
architectured materials.  

The second objective of this work is a demonstration of utility of these new analytical tools for a systematic 
analysis of strain energy transformation behavior of materials with periodic internal structure. Qualitative 
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shapes of the Raleigh decay spectrum determine how the material translates the instantaneous strain 
energy of deformation between two points in space. At varying design parameters, the material may 
demonstrate only a few qualitatively different shapes/classes of its Raleigh spectrum, corresponding to 
several distinct and well-defined energy transformation behaviors. A systematic understanding of these 
behaviors can be gained considering a generic problem statement of Figure 1 type, where the sample is 
subjected to an interesting load pattern on the let end and to a smooth reaction at right end. A triangular 
lattice discussed here will have two distinct Raleigh spectra, and an X-braced lattice – three. One of them 
can provide selective surface pressure blockage, and another leads to strain energy redirection out of the 
axis of a concentrated surface load. Such functionalities of mechanical metamaterials can be interesting 
for a range of military, civil and mechanical engineering applications.  

 

 

Fig.1: Generic problem statement with a material sample subjected to an interesting quasistatic 
load/pressure pattern at the left and, a smooth reaction at the right end, and periodic boundary 
conditions on other faces.    

 

2. Strain Energy Distribution in Periodic Materials 

Analysis of the strain energy distribution in engineered materials with periodic internal structure (lattices, 
tensegrities, tessellations and origamis) can be rather involved, compared to the continuum solids, due to 
the fundamental nonlocal nature of discrete material systems. Indeed, in discrete materials, internal 
elastic forces in a point of interest always depend on material deformation in some finite region 
surrounding that point. This nonlocality imposes difficulty defining a representative volume of the lattice 
where the strain energy can be universally written. In simple lattices and most tessellations, a closed unit 
cell may be defined, representing a rigid polyhedron or a group of polyhedrons that repeats in space to 
mosaic the entire material sample. This repetition may occur in one, two or three directions, not 
necessarily mutually orthogonal, for the chain-like, plate-like (2D) and volumetric (3D) lattices. The strain 
energy is then a sum of the unit cell energies:   
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  𝑊𝑊total = ∑𝑊𝑊u.c.         (5) 

 

Fig.2: Periodic lattice materials. A repetitive unit cell cannot be defined in openwork materials with higher 
nonlocality without element cutting. On the contrary, an associate can be introduced for any periodic 
material. 

This approach fails when a closed unit cell cannot be defined and the structural links may protrude out of 
a repetitive cell, as in tensegrities and “braided” lattices, see Figure 2. We call such materials highly 
nonlocal [22] or essentially nonlocal. In this case, a unit cell definition requires imaginary cutting or certain 
structural elements, and it becomes more convenient to introduce an associate cell instead. Associate cell 
is a smallest part of the periodic material, containing a minimal group of distinct structural nodes, and all 
structural elements connected to these nodes. Note that there is only one type of periodic nodes in all 
Figure 2 examples, except for the hexagonal lattice shown in the second row. Here, two distinct types of 
nodes exist; the first type has horizontal members attached on the right side, and the second type has 
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them on the left. As a result, the associate cell shown in second row of Figure 2 contains two such nodes 
and all the members directly connected to these nodes.  

A great feature of this approach is that an associate cell exists for any periodic material, without element 
cutting. Moreover, for materials with one distinct type of periodic nodes and only pair-wise elastic 
elements, the strain energy is simply a half sum of the associate cell energies, 

  𝑊𝑊total = 1
2
∑𝑊𝑊a.c. = ∑ 𝑊𝑊𝑛𝑛𝑚𝑚𝑛𝑛𝑛𝑛,𝑚𝑚,𝑛𝑛       (6) 

Here, a triplet of integer indices, (𝑛𝑛,𝑚𝑚, 𝑙𝑙), is assigned to every periodic node in the material volume, 𝑊𝑊a.c. 
is strain energy of an associate cell centered at the node (𝑛𝑛,𝑚𝑚, 𝑙𝑙). The three-dimensional array 𝑊𝑊𝑛𝑛𝑚𝑚𝑛𝑛 in (6) 
is understood as a discrete function of the integer indices, and it represents a strain energy volumetric 
distribution from node to node in the lattice.  

A wide range of openwork rigid lattice materials and tensegrities can be accurately described with a 
model, where every structural element is simply a pair-wise elastic link with no rotational degrees of 
freedom, such as a metal bar, spring, rubber band, steel cable, etc. Accuracy of the bar-based model of 
periodic materials can be insufficient for rigid-joined lattices, periodic tessellations and origamis. Here, 
models using Euler-Bernoulli and Timoshenko beams, or even 3D finite elements can be utilized 
alternatively. In all cases, a structural stiffness matrix can be evaluated for one associate cell, and it will 
contain the basic matrices of force constants, 𝐊𝐊𝑛𝑛−𝑛𝑛′𝑚𝑚−𝑚𝑚′𝑛𝑛−𝑛𝑛′ , in the rows corresponding to the degrees 
of freedom of the node (𝑛𝑛,𝑚𝑚, 𝑙𝑙). More details on these matrices can be found elsewhere [22,29,31-33], 
and some examples are also shown here in Section 6. They describe intensity of direct elastic interactions 
of a periodic node (𝑛𝑛,𝑚𝑚, 𝑙𝑙) with its neighbors (𝑛𝑛′,𝑚𝑚′, 𝑙𝑙′), so that any external forces or couple moments 
acting at (𝑛𝑛,𝑚𝑚, 𝑙𝑙) can be written as   

𝐟𝐟𝑛𝑛𝑚𝑚𝑛𝑛 = ∑ 𝐊𝐊𝑛𝑛−𝑛𝑛′𝑚𝑚−𝑚𝑚′𝑛𝑛−𝑛𝑛′𝐝𝐝𝑛𝑛′𝑚𝑚′𝑛𝑛′𝑛𝑛′,𝑚𝑚′,𝑛𝑛′       (7) 

Here, 𝐟𝐟 is a vector of the force and/or moment components, and 𝐝𝐝 is a vector of kinematical degrees of 
freedom (displacements and rotations) of the structural nodes. This equation represents a governing 
equation of equilibrium of an arbitrary periodic material [22,29,31-33]. Importantly, every term in the 
right-hand side of (7) is an internal force at (𝑛𝑛′,𝑚𝑚′, 𝑙𝑙′) up to a sign inversion. A total mechanical work done 
by these forces gives energy of deformation stored in the associate cell at the node (𝑛𝑛,𝑚𝑚, 𝑙𝑙), see 
equation (6), and therefore we may write the strain energy volumetric distribution,  

  𝑊𝑊𝑛𝑛𝑚𝑚𝑛𝑛 = 1
2
𝑊𝑊a.c. = 1

2
∑ 𝐝𝐝𝑛𝑛′𝑚𝑚′𝑛𝑛′

∗ 𝐊𝐊𝑛𝑛−𝑛𝑛′𝑚𝑚−𝑚𝑚′𝑛𝑛−𝑛𝑛′𝐝𝐝𝑛𝑛′𝑚𝑚′𝑛𝑛′𝑛𝑛′,𝑚𝑚′,𝑛𝑛′    (8) 

where 𝐝𝐝∗ is a conjugate transpose of the displacement vector.  

 

3. Strain Energy Spectral Theorem 

The energy representation (8) allows also writing a distribution of the strain energy in the direction of a 
chosen spatial index by summing up (8) over two other indices,  
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Π𝑛𝑛 = ∑ 𝑊𝑊𝑛𝑛𝑚𝑚𝑛𝑛𝑚𝑚,𝑛𝑛 = 1
2
∑ ∑ 𝐝𝐝𝑛𝑛′𝑚𝑚′𝑛𝑛′

∗ 𝐊𝐊𝑛𝑛−𝑛𝑛′𝑚𝑚−𝑚𝑚′𝑛𝑛−𝑛𝑛′𝐝𝐝𝑛𝑛′𝑚𝑚′𝑛𝑛′𝑛𝑛′,𝑚𝑚′,𝑛𝑛′𝑚𝑚,𝑛𝑛   (9) 

This discrete function shows how the strain energy is distributed among parallel layers of the material, 
where each layer contains all the 𝑛𝑛-numbered nodes. With this form, derivation of a mechanical version 
of the Parseval’s spectral theorem (1) for lattice materials becomes straightforward. Indeed, we may 
replace the displacement vectors in (9) with the inverse Fourier transforms,  

  𝐝𝐝𝑛𝑛𝑚𝑚𝑛𝑛 = 1
𝑀𝑀𝑀𝑀
∑ �̃�𝐝𝑛𝑛(𝑞𝑞, 𝑟𝑟)𝑒𝑒𝑖𝑖𝑞𝑞𝑚𝑚𝑒𝑒𝑖𝑖𝑖𝑖𝑛𝑛𝑞𝑞,𝑖𝑖       (10) 

  𝐝𝐝𝑛𝑛𝑚𝑚𝑛𝑛
∗ = 1

𝑀𝑀𝑀𝑀
∑ �̃�𝐝𝑛𝑛∗ (𝑞𝑞′, 𝑟𝑟′)𝑒𝑒−𝑖𝑖𝑞𝑞′𝑚𝑚𝑒𝑒−𝑖𝑖𝑖𝑖′𝑛𝑛𝑞𝑞′,𝑖𝑖′        (11) 

of their own partial Fourier images, 

  �̃�𝐝𝑛𝑛(𝑞𝑞, 𝑟𝑟) = ∑ 𝐝𝐝𝑛𝑛𝑚𝑚𝑛𝑛 𝑒𝑒−𝑖𝑖𝑞𝑞𝑚𝑚𝑒𝑒−𝑖𝑖𝑖𝑖𝑛𝑛𝑚𝑚,𝑛𝑛        (12) 

  �̃�𝐝𝑛𝑛∗ (𝑞𝑞′, 𝑟𝑟′) = ∑ 𝐝𝐝𝑛𝑛𝑚𝑚𝑛𝑛
∗ 𝑒𝑒𝑖𝑖𝑞𝑞′𝑚𝑚𝑒𝑒𝑖𝑖𝑖𝑖′𝑛𝑛𝑚𝑚,𝑛𝑛        (13) 

Here, 𝑞𝑞 and 𝑟𝑟 are fractional wavenumber indices (𝑞𝑞 = 2𝜋𝜋𝜇𝜇/𝑀𝑀, 𝑟𝑟 = 2𝜋𝜋ℓ/𝐿𝐿), and 𝜇𝜇 and ℓ are integer 
wavenumber indices (𝜇𝜇 = 0,1, … ,𝑀𝑀 − 1, ℓ = 0,1, … , 𝐿𝐿 − 1). 𝑀𝑀 and 𝐿𝐿 are the total numbers of the Fourier 
harmonics, or ranges of the spatial indices 𝑚𝑚 and 𝑙𝑙 in a domain with periodic boundary conditions, where 
𝐝𝐝𝑛𝑛𝑚𝑚𝑛𝑛 = 𝐝𝐝𝑛𝑛 𝑚𝑚+𝑀𝑀 𝑛𝑛+𝑀𝑀 for any 𝑚𝑚 and 𝑛𝑛. Orthogonality of the Fourier modes,  

∑ 𝑒𝑒−𝑖𝑖𝑞𝑞𝑚𝑚𝑒𝑒𝑖𝑖𝑞𝑞′𝑚𝑚𝑚𝑚 = 𝑀𝑀𝛿𝛿𝑞𝑞𝑞𝑞′ ,      ∑ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑛𝑛𝑒𝑒𝑖𝑖𝑖𝑖′𝑛𝑛𝑛𝑛 = 𝑁𝑁𝛿𝛿𝑖𝑖𝑖𝑖′      (14) 

where 𝛿𝛿 is the Kronecker delta, removes the sums over 𝑞𝑞′ and 𝑟𝑟′ in (9,11) and gives and an alternative 
form of the strain energy distribution,  

Π𝑛𝑛 = 1
2𝑀𝑀𝑀𝑀

∑ ∑ �̃�𝐝𝑛𝑛′
∗ (𝑞𝑞, 𝑟𝑟)𝐊𝐊�𝑛𝑛−𝑛𝑛′(0,0)�̃�𝐝𝑛𝑛′(𝑞𝑞, 𝑟𝑟)𝑛𝑛′𝑞𝑞,𝑖𝑖      (15) 

Here, the matrices, 

𝐊𝐊�𝑛𝑛(0,0) = ∑ 𝐊𝐊𝑛𝑛𝑚𝑚𝑛𝑛𝑚𝑚𝑛𝑛         (16)  

are interpreted as a Fourier transform (2) of the matrices 𝐊𝐊𝑛𝑛𝑚𝑚𝑛𝑛, 

  𝐊𝐊�𝑛𝑛(𝑞𝑞, 𝑟𝑟) = ∑ 𝐊𝐊𝑛𝑛𝑚𝑚𝑛𝑛  𝑒𝑒−𝑖𝑖𝑞𝑞𝑚𝑚𝑒𝑒−𝑖𝑖𝑖𝑖𝑛𝑛𝑚𝑚,𝑛𝑛        (17) 

evaluated at 𝑞𝑞 = 𝑟𝑟 = 0. Finally, we can compare (9) and (15) and write the spectral theorem of mechanics 
of a discrete periodic elastic medium       

  Π𝑛𝑛 = ∑ 𝑊𝑊𝑛𝑛𝑚𝑚𝑛𝑛𝑚𝑚,𝑛𝑛 = ∑ 𝑊𝑊�𝑛𝑛(𝑞𝑞, 𝑟𝑟)𝑞𝑞,𝑖𝑖       (18) 

   𝑊𝑊𝑛𝑛𝑚𝑚𝑛𝑛 = 1
2
∑ 𝐝𝐝𝑛𝑛′𝑚𝑚′𝑛𝑛′

∗ 𝐊𝐊𝑛𝑛−𝑛𝑛′𝑚𝑚−𝑚𝑚′𝑛𝑛−𝑛𝑛′𝐝𝐝𝑛𝑛′𝑚𝑚′𝑛𝑛′𝑛𝑛′,𝑚𝑚′,𝑛𝑛′    (19) 

   𝑊𝑊�𝑛𝑛(𝑞𝑞, 𝑟𝑟) = 1
2𝑀𝑀𝑀𝑀

∑ �̃�𝐝𝑛𝑛′
∗ (𝑞𝑞, 𝑟𝑟)𝐊𝐊�𝑛𝑛−𝑛𝑛′(0,0)�̃�𝐝𝑛𝑛′(𝑞𝑞, 𝑟𝑟)𝑛𝑛′    (20) 
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While the function 𝑊𝑊𝑛𝑛𝑚𝑚𝑛𝑛 of (9) represents a volumetric distribution of the strain energy, the function 
𝑊𝑊�𝑛𝑛(𝑞𝑞, 𝑟𝑟) of (19) is equally interesting. It is a spectral distribution of the strain energy (among the Fourier 
modes) at different spatial locations, 𝑛𝑛, in the material interior.  

There are two useful remarks regarding the spectral theorem (18-20). First, we may rewrite it using the 
normalized energy distributions,  

  ∑ 𝑤𝑤𝑛𝑛𝑚𝑚𝑛𝑛𝑚𝑚,𝑛𝑛 = ∑ 𝑤𝑤�𝑛𝑛(𝑞𝑞, 𝑟𝑟)𝑞𝑞,𝑖𝑖 = 1    (at any 𝑛𝑛)     (21) 

   𝑤𝑤𝑛𝑛𝑚𝑚𝑛𝑛 = 𝑊𝑊𝑛𝑛𝑚𝑚𝑛𝑛/Π𝑛𝑛       (22) 

   𝑤𝑤�𝑛𝑛(𝑞𝑞, 𝑟𝑟) = 𝑊𝑊�𝑛𝑛(𝑞𝑞, 𝑟𝑟)/Π𝑛𝑛      (23) 

Second, a full Fourier transform of the displacement vectors,  

  �̂�𝐝(𝑝𝑝, 𝑞𝑞, 𝑟𝑟) = ∑ 𝐝𝐝𝑛𝑛𝑚𝑚𝑛𝑛 𝑒𝑒−𝑖𝑖(𝑝𝑝𝑛𝑛+𝑞𝑞𝑚𝑚+𝑖𝑖𝑛𝑛)
𝑛𝑛,𝑚𝑚,𝑛𝑛       (24) 

could also be used to give the following equality, 

  𝑊𝑊total = ∑ 𝑊𝑊𝑛𝑛𝑚𝑚𝑛𝑛𝑛𝑛,𝑚𝑚,𝑛𝑛 = ∑ 𝑊𝑊� (𝑝𝑝, 𝑞𝑞, 𝑟𝑟)𝑝𝑝,𝑞𝑞,𝑖𝑖      (25) 

   𝑊𝑊� (𝑝𝑝, 𝑞𝑞, 𝑟𝑟) = 1
2𝑁𝑁𝑀𝑀𝑀𝑀

�̂�𝐝∗(𝑝𝑝, 𝑞𝑞, 𝑟𝑟)𝐊𝐊�(0,0,0)�̂�𝐝(𝑝𝑝, 𝑞𝑞, 𝑟𝑟)    (26) 

where 𝑊𝑊� (𝑝𝑝, 𝑞𝑞, 𝑟𝑟) is an overall spectral distribution of the strain energy in a material sample. However, for 
many practical problems related to mechanical metamaterials, it is interesting to see how the strain 
energy spectral distribution translates into the material volume, or how the shape of the dependence of 
𝑊𝑊�  on 𝑞𝑞 and 𝑟𝑟 transforms at a varying spatial index 𝑛𝑛. Therefore, the result (18-20) or (21-23) is more 
interesting in practice.  

For plate-like lattice models governed by a 2D version of the governing equation (7), 

𝐟𝐟𝑛𝑛𝑚𝑚 = ∑ 𝐊𝐊𝑛𝑛−𝑛𝑛′𝑚𝑚−𝑚𝑚′𝐝𝐝𝑛𝑛′𝑚𝑚′𝑛𝑛′,𝑚𝑚′        (27) 

the spectral theorem reads    

  Π𝑛𝑛 = ∑ 𝑊𝑊𝑛𝑛𝑚𝑚𝑚𝑚 = ∑ 𝑊𝑊�𝑛𝑛(𝑞𝑞)𝑞𝑞        (28) 

   𝑊𝑊𝑛𝑛𝑚𝑚 = 1
2
∑ 𝐝𝐝𝑛𝑛′𝑚𝑚′

∗ 𝐊𝐊𝑛𝑛−𝑛𝑛′𝑚𝑚−𝑚𝑚′𝐝𝐝𝑛𝑛′𝑚𝑚′𝑛𝑛′𝑚𝑚′      (29) 

   𝑊𝑊�𝑛𝑛(𝑞𝑞) = 1
2𝑀𝑀
∑ �̃�𝐝𝑛𝑛′

∗ (𝑞𝑞)𝐊𝐊�𝑛𝑛−𝑛𝑛′(0)�̃�𝐝𝑛𝑛′(𝑞𝑞)𝑛𝑛′     (30) 

or, in terms of the normalized energy densities,   

  ∑ 𝑤𝑤𝑛𝑛𝑚𝑚𝑚𝑚 = ∑ 𝑤𝑤�𝑛𝑛(𝑞𝑞)𝑞𝑞 = 1    (at any 𝑛𝑛)      (31) 

   𝑤𝑤𝑛𝑛𝑚𝑚 = 𝑊𝑊𝑛𝑛𝑚𝑚/∑ 𝑊𝑊𝑛𝑛𝑚𝑚𝑚𝑚        (32) 
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   𝑤𝑤�𝑛𝑛(𝑞𝑞) = 𝑊𝑊�𝑛𝑛(𝑞𝑞)/∑ 𝑊𝑊�𝑛𝑛(𝑞𝑞)𝑞𝑞       (33) 

The partial Fourier transforms in (27) are simply  

  �̃�𝐝𝑛𝑛(𝑞𝑞) = ∑ 𝐝𝐝𝑛𝑛𝑚𝑚 𝑒𝑒−𝑖𝑖𝑞𝑞𝑚𝑚𝑚𝑚         (34) 

  𝐊𝐊�𝑛𝑛(𝑞𝑞) = ∑ 𝐊𝐊𝑛𝑛𝑚𝑚 𝑒𝑒−𝑖𝑖𝑞𝑞𝑚𝑚𝑚𝑚         (35) 

We note that the cost of computation of the strain energy spectral distribution (20,30) is low, being a 
linear function of 𝑁𝑁𝑀𝑀𝐿𝐿 or 𝑁𝑁𝑀𝑀, the total number of unit cells in the lattice, as typical for all Fourier 
transform based methods [32-33]. Such methods essentially block-diagonalize the original governing 
equations or decouple any repetitive degrees of freedom in the lattice structure.  

 

4. Spectral Entropy of Deformation  

The strain energy spectral distribution (20,30) describes how periodic materials translate energy of 
deformation into the reciprocal space. Its normalized form (23,33) emphasizes how the energy spectrum 
(dependence of 𝑤𝑤�𝑛𝑛 on 𝑞𝑞 or 𝑟𝑟) transforms or gets reshaped in the material at various spatial positions 𝑛𝑛.  

We may now introduce a single describer of quasistatic energy-dispersive properties of periodic materials, 
a spectral entropy of deformation, inspired by the Shannon’s definition (4) and using the normalized 
energy distribution 𝑤𝑤�𝑛𝑛(𝑞𝑞, 𝑟𝑟) from (23),   

𝐻𝐻𝑛𝑛 = −∑ 𝑤𝑤�𝑛𝑛(𝑞𝑞, 𝑟𝑟) ln𝑤𝑤�𝑛𝑛(𝑞𝑞, 𝑟𝑟)𝑞𝑞,𝑖𝑖           (36) 

 𝑞𝑞 = 2𝜋𝜋𝜋𝜋
𝑀𝑀

,     𝑟𝑟 = 2𝜋𝜋ℓ
𝑀𝑀

,     𝜇𝜇 = 0,1, …𝑀𝑀− 1,     ℓ = 0,1, … , 𝐿𝐿 − 1    (37) 

Also, a normalized spectral entropy can be introduced,  

ℎ𝑛𝑛 = 1
ln𝑀𝑀𝑀𝑀

𝐻𝐻𝑛𝑛 = −∑ 𝑤𝑤�𝑛𝑛(𝑞𝑞, 𝑟𝑟) ln𝑤𝑤�𝑛𝑛(𝑞𝑞, 𝑟𝑟)𝑞𝑞,𝑖𝑖      (38) 

As a discrete function of 𝑛𝑛, the normalized entropy ℎ𝑛𝑛 varies only from 0 to 1, which is very practical. 
Indeed, the zero corresponds to a Kronecker delta distribution with a single Fourier harmonic in the 
spectrum, and the unit value corresponds to a uniform distribution where all the harmonics contribute 
equally.  

For the plate-like lattice models, entropy calculations use the normalized energy (33), based on (30),  

𝐻𝐻𝑛𝑛 = −∑ 𝑤𝑤�𝑛𝑛(𝑞𝑞) ln𝑤𝑤�𝑛𝑛(𝑞𝑞)𝑞𝑞         (39) 

ℎ𝑛𝑛 = − 1
ln𝑀𝑀

∑ 𝑤𝑤�𝑛𝑛(𝑞𝑞) ln𝑤𝑤�𝑛𝑛(𝑞𝑞)𝑞𝑞        (40) 
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Fig.3: Problem statemen with plane lattices of Figure 4 type. The lattice is loaded with a unit point load at 
the left edge and balanced by a smoothly distributed load on the right edge. The loaded node is selected 
as the origin where the lattice indices, 𝑛𝑛 = 𝑚𝑚 = 0.  Periodic boundary conditions are applied along the 
horizontal edges making the lattice is M-periodic in the direction of the index 𝑚𝑚.   

 

           

Fig.4: The triangular and X-braced plane lattices used in Figure 3 problem statement, and their associate 
cells. For a proper comparison of strain energy distributions, the lattice constant (𝑎𝑎) is made identical for 
both lattices and in both directions, i.e. the triangles in the first lattice are not equilateral. Only one design 
parameter, a ratio of the member stiffnesses 𝜅𝜅 = 𝑘𝑘2/𝑘𝑘1, determine the shape of the Raleigh spectrum.  
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The spectral entropy (39-40) is identical to a numerical spectral entropy introduced in [30] for a 
discretized 2D elastic continuum. The same reference also provides exact analytical forms of the spectral 
entropy for the continuum material, loaded with Gauss-type distributed and concentrated traction forces. 
For the case of lattice materials, analytical results are not expected, but the forms (38,40) are generally 
applicable for numerical calculations of the strain energy spectral entropy in arbitrary periodic materials.  

 

4. Raleigh Wave Solution over Periodic Half-Space Domains 

Predictive design of strain energy transformation in specific lattice materials can be facilitated, using the 
fact the governing equation (7) or (24) allows for a static Raleigh wave fundamental solution, 

𝜆𝜆𝑛𝑛(𝑞𝑞, 𝑟𝑟)𝐡𝐡(𝑞𝑞, 𝑟𝑟)𝑒𝑒𝑖𝑖(𝑞𝑞𝑚𝑚+𝑖𝑖𝑛𝑛)        (41) 

𝜆𝜆𝑛𝑛(𝑞𝑞)𝐡𝐡(𝑞𝑞)𝑒𝑒𝑖𝑖𝑞𝑞𝑚𝑚         (42) 

This solution represents a sinusoidal pressure wave of with an amplitude 𝜆𝜆𝑛𝑛 decreasing in the material 
interior (𝜆𝜆 < 1), and therefore, it is called an exponential decay mode solution [22,29,31]. Consider a 
Figure 1 type problem with periodic boundary conditions, where the material sample is subjected to a 
distributed load at the left end (𝑛𝑛 = 0) and to a smooth reaction at the right end. Then, 
substituting (41,42) into (7,27) and using 𝐟𝐟 = 𝟎𝟎 at 𝑛𝑛 > 0, we find that the Raleigh wave (41,42) can be a 
valid solution, but only if the decay parameter 𝜆𝜆 satisfies the characteristic equations, 

det𝐙𝐙(𝑞𝑞, 𝑟𝑟) = 0,    𝐙𝐙(𝑞𝑞, 𝑟𝑟) = ∑ 𝜆𝜆𝑛𝑛(𝑞𝑞, 𝑟𝑟)𝐊𝐊�𝑛𝑛(𝑞𝑞, 𝑟𝑟)𝑛𝑛     (43) 

det𝐙𝐙(𝑞𝑞) = 0,    𝐙𝐙(𝑞𝑞) = ∑ 𝜆𝜆𝑛𝑛(𝑞𝑞)𝐊𝐊�𝑛𝑛(𝑞𝑞)𝑛𝑛       (44) 

and the vector 𝐡𝐡 belongs to the nullspace of the characteristic matrix 𝐙𝐙, 

𝐙𝐙(𝑞𝑞, 𝑟𝑟)𝐡𝐡(𝑞𝑞, 𝑟𝑟) = 𝟎𝟎        (45) 

𝐙𝐙(𝑞𝑞)𝐡𝐡(𝑞𝑞) = 𝟎𝟎         (46) 

A linear-polynomial solution, 𝐚𝐚 ∙ 𝑛𝑛 + 𝐛𝐛, where 𝐚𝐚 and 𝐛𝐛 are constant vectors of the same size as 𝐝𝐝, will also 
satisfy the governing equations (7,27) with 𝐟𝐟 = 𝟎𝟎. However, such a solution is not interesting for studying 
strain energy transformation in lattice materials, because it may only represent a uniform extension, a 
uniform shear and a rigid-body displacement of the entire lattice.  

Since the force matrices 𝐊𝐊�𝑛𝑛 (17,35), used in (43,44), represent direct interactions between the nodes in 
the lattice structure, they are nonzero for a small range of 𝑛𝑛, such as 𝑛𝑛 = −1, 0, 1, when these interactions 
are limited to the nearest groups of nodes in the 𝑛𝑛-direction. Therefore, evaluation of an entire spectrum 
of the decay parameters 𝜆𝜆(𝑞𝑞, 𝑟𝑟) or 𝜆𝜆(𝑞𝑞)  (for all 𝑞𝑞 and 𝑟𝑟) is straightforward using (43) or (44). A linear 
superposition of the modes (37,38) can be constructed to satisfy an arbitrary displacement or force 
boundary condition at 𝑛𝑛 = 0 [22,29]. Therefore, the decay spectrum 𝜆𝜆(𝑞𝑞, 𝑟𝑟) or 𝜆𝜆(𝑞𝑞) determines how the 
strain energy (19,29) and entropy (38,40) of deformation translates into the material volume at 𝑛𝑛 > 0.  
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Fig.5: Raleigh spectrum (48), strain energy spectral (53) and volumetric (52) densities for a homogenous 
elastic continuum in a state of plane stress or strain, due a concentrated unit load as in Figure 3 problem. 
This basic reference data is compared with the analogous quantities in lattice materials in Figures 6-7.  

 

5. Problem Statement and a Continuum Reference 

A main objective of this work is to demonstrate opportunities for unusual strain energy transformation in 
highly nonlocal metamaterials. For this purpose, we consider a boundary value problem of Figure 3 type 
with two different lattice materials, the triangular and x-braced ones, as described in Figure 4. The lattice 
is loaded with a unit point load at the left edge and balanced by a smoothly distributed load on the right 
edge, see Figure 3. We select the point load, because it creates the narrowest possible strain energy 
concentration at the boundary, or its widest possible spectral distribution, where all Fourier harmonics 
are nearly equally represented. Since every harmonic 𝑞𝑞 has its own decay rate 𝜆𝜆(𝑞𝑞), determined by the 
Raleigh spectrum (44), the initial strain energy distribution at the boundary will transform in the direction 
of the lattice index 𝑛𝑛 pointed away from the boundary and toward the material interior. We will 
investigate this transformation by calculating the normalized strain energies 𝑤𝑤𝑛𝑛𝑚𝑚 and 𝑤𝑤�𝑛𝑛(𝑞𝑞) from (32-
33), based on lattice deformation, and analyzing their contour plots in the coordinates (𝑛𝑛,𝑚𝑚) and (𝑛𝑛, 𝑞𝑞), 
respectively. Consequently, variance of the Shannon’s entropy of deformation (40) with distance to the 
load will also be prescribed by the Raleigh spectrum of the periodic material.   

Referring to Figure 3, a 𝑤𝑤𝑛𝑛𝑚𝑚 data plot can be interpreted as transformation of the strain energy 
distribution vertically in space with a horizontal distance 𝑎𝑎 ∙ 𝑛𝑛 to the point load, where 𝑎𝑎 is a lattice 
constant. In turn, the 𝑤𝑤�𝑛𝑛(𝑞𝑞) plots will show how the strain energy spectral distribution (over the 
wavenumber 𝑞𝑞) transforms with the distance 𝑎𝑎 ∙ 𝑛𝑛 to the load.    

Continuum reference: For a 2D isotropic elastic continuum material in a state of plane stress or plane 
strain, Karpov [22] discussed a Raleigh wave solution, analogous to (37),  

𝜆𝜆𝑥𝑥(𝑞𝑞)𝐡𝐡(𝑞𝑞)𝑒𝑒𝑖𝑖𝑞𝑞𝑚𝑚         (47) 

where the discrete lattice index 𝑛𝑛 is replaced with a continuous material coordinate 𝑥𝑥, and showed that 
the corresponding decay spectrum is simply [22], 
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  𝜆𝜆(𝑞𝑞) = 𝑒𝑒−|𝑞𝑞|         (48) 

Also, Karpov & Danso [30] developed analytical expressions for the strain energy densities and Shannon’s 
entropy of deformation for homogenous continuum materials. When the continuum domain is L-periodic 
in the direction for the vertical coordinate, like the lattice in Figure 3, and is loaded with a concentrated 
unit force at the origin (𝑥𝑥 = 𝑦𝑦 = 0) normal to the boundary line (𝑥𝑥 = 0), the following analytical results 
are valid [30]:  

𝑤𝑤𝑀𝑀(𝑥𝑥,𝑦𝑦) = (𝑒𝑒4𝜋𝜋𝜋𝜋/𝐿𝐿−1)/𝑀𝑀
1+𝑒𝑒4𝜋𝜋𝜋𝜋/𝐿𝐿−2𝑒𝑒2𝜋𝜋𝜋𝜋/𝐿𝐿 cos2𝜋𝜋𝜋𝜋/𝑀𝑀

      (49) 

𝑤𝑤�𝑀𝑀(𝑥𝑥, 𝑞𝑞) = (2−𝛿𝛿𝑞𝑞0)𝑒𝑒−2|𝑞𝑞|𝜋𝜋

2coth2𝜋𝜋𝑥𝑥/𝑀𝑀−1
,    𝑞𝑞 = 2𝜋𝜋𝜋𝜋

𝑀𝑀
,    𝜇𝜇 = 0, ±1, … , ±𝑀𝑀/2   (50) 

𝑆𝑆𝑀𝑀(𝑥𝑥) = − 4ln2
3+𝑒𝑒4𝜋𝜋𝜋𝜋/𝐿𝐿 + ln(2 coth 2𝜋𝜋𝑥𝑥/𝐿𝐿 − 1) + 8𝜋𝜋𝑥𝑥/𝑀𝑀

1−cosh4𝜋𝜋𝑥𝑥/𝑀𝑀+2sinh4𝜋𝜋𝑥𝑥/𝑀𝑀
   (51) 

Here, periodic boundary conditions are applied at 𝑦𝑦 = ±𝐿𝐿/2. We may assume that 𝐿𝐿 = 𝑎𝑎 ∙ 𝑀𝑀, where 𝑎𝑎 is 
the lattice constant and 𝑀𝑀 is a dimensionless integer number, the number of vertically repeating nodes 
in the Figure 3 lattice. Then, numerical calculations (32,33,40) of the strain energy and entropy behavior 
in lattice materials can be directly compared with (49,50,51), viewed as the continuum reference case. 
The Appendix also shows asymptotic cases of the strain energy distributions (49-50) and Shannon’s 
entropy (51) for an infinitely large domain (𝐿𝐿 → ∞), or for a load vicinity (𝑥𝑥 ≪ 𝐿𝐿), which may be useful in 
practice. We plot the continuum Raleigh spectrum (48) and energy distributions (49-50) in Figure 5 for the 
comparisons to follow in Section 6.  

 

6. Examples of Strain Energy Transformation Patterns  

In this section we demonstrate interesting unexpected behaviors and properties of strain energy 
distributions and spectral entropy in specific 2D lattice materials, revealed by systematic analysis of their 
Raleigh spectra. Consider two types of 2D periodic materials, the triangular and X-braced lattices of 
Figure 4, loaded with a unit point load at their left edge and balanced by a smoothly distributed load on 
the right edge, see Figure 3. The triangular lattice of Figure 4 is the simplest rigid plane lattice, which is 
also statically indeterminate [36]. Therefore, a pin-joined version is justified, since response of this lattice 
to all types of loads, except for couple moments concentrated at nodes, is dominated by axial deformation 
of the internodal links. The X-braced lattice is highly interesting in the area of mechanical metamaterial, 
being the first lattice, where reversal of the Saint-Venant’s edge effect was predicted [22]. In below, we 
will see that this behavior is also accompanied by unusual pathways of the strain energy transformation 
in the lattice. The point load, as in Figure 3, is interesting since it represents a quasistatic version of a 
broad-spectrum concentrated impact load. Strain energy spectrum due to such a load is flat initially, at 
the material surface, where all the Raleigh modes are present about equally [29]. In other terms, the point 
load induces the richest possible strain energy spectrum comprised of the Raleigh wave modes (41-42).            
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Matrices of force constants for the pin-joined triangular lattice are 

  𝐊𝐊−11 = 𝐊𝐊1−1 = −𝑘𝑘2
5
� 4 −2
−2 1 � ,    𝐊𝐊−10 = 𝐊𝐊10 = −𝑘𝑘2

5
�4 2
2 1�   (52a) 

  𝐊𝐊01 = 𝐊𝐊0−1 = −𝑘𝑘1 �
0 0
0 1� ,    𝐊𝐊00 = 2 �8𝑘𝑘2/5 0

0 𝑘𝑘1 + 2𝑘𝑘2/5�   (52b) 

and for the X-braced lattice, 

  𝐊𝐊−11 = 𝐊𝐊1−1 = −𝑘𝑘2 �
1 −1
−1 1 � ,    𝐊𝐊−1−1 = 𝐊𝐊11 = −𝑘𝑘2 �

1 1
1 1�   (53a) 

  𝐊𝐊01 = 𝐊𝐊0−1 = −𝑘𝑘1 �
0 0
0 1� ,   𝐊𝐊10 = 𝐊𝐊−10 = −𝑘𝑘1 �

1 0
0 0�   (53b) 

  𝐊𝐊00 = 2 �𝑘𝑘1 + 2𝑘𝑘2 0
0 𝑘𝑘1 + 2𝑘𝑘2

�       (53c) 

and all other 𝐊𝐊𝑛𝑛𝑚𝑚 for these lattices are trivial. Here, 𝑘𝑘1 and 𝑘𝑘2 are elastic stiffnesses of the 
vertical/horizontal and inclined members, respectively.  

 

Fig.6: Two basic types of Raleigh decay spectra (44), strain energy spectral (33) and volumetric (32) 
densities for the triangular lattice, Figure 4, subjected to a unit load at node (0,0), as shown in Figure 3. 
Transition between the heart-shaped (top) and V-shaped (bottom) spectra occurs at 𝜅𝜅 = 1.25. 



P a g e  | 14 
 

The matrices (52-53) are used to calculate numerically the Fourier transforms 𝐊𝐊�𝑛𝑛(𝑞𝑞) and the decay 
spectra 𝜆𝜆(𝑞𝑞) plotted in Figures 6-7, using equations (35,44) for all specific discrete values of the 
wavenumber parameter, 𝑞𝑞 = 2𝜋𝜋𝜇𝜇/𝑀𝑀, 𝜇𝜇 = 0,1, … ,𝑀𝑀 − 1. The nodal displacement vectors, 𝐝𝐝𝑛𝑛𝑚𝑚, are 
evaluated using a direct stiffness matrix method. In all cases discussed below, the lattice size is 4𝑀𝑀 × 𝑀𝑀 
with 𝑀𝑀 = 128 periodic nodes, the node (0,0) is constrained (𝐝𝐝00 = 𝟎𝟎) to provide a reference point for 
the displacements, and periodic boundary conditions are applied along the horizontal edges of the 
material model. Discrete Fourier transform, �̃�𝐝𝑛𝑛(𝑞𝑞) of these nodal solutions are calculated from 𝐝𝐝𝑛𝑛𝑚𝑚 
according to (34). The displacement solution and its Fourier transform are used to calculate the 
normalized strain energy volumetric distribution (32), strain energy spectral distribution (33) and entropy 
of deformation (40). Below we discuss several interesting cases of the decay spectra, 𝜆𝜆(𝑞𝑞), energy 
distributions and entropy behavior for various relative stiffnesses, 

 𝜅𝜅 = 𝑘𝑘2
𝑘𝑘1

           (54) 

where 𝑘𝑘1 and 𝑘𝑘2 are the constants defined in the equations (52-53).     

 The triangular lattice can demonstrate only two qualitatively different shapes of the Raleigh decay 
spectrum, depending on the value 𝜅𝜅 by equation (54), the “heart” shape and the “V” shape, whose 
examples are shown in Figure 6. The Raleigh spectrum, as a dependence of the decay parameter 𝜆𝜆 on the 
wavenumber 𝑞𝑞 was calculated using the condition (44). The heart- and V-shaped spectra obtained here 
represent two distinct patterns of strain energy transformation in the material. The difference in the 
pattern is well seen in the spectral distributions 𝑤𝑤�𝑛𝑛(𝑞𝑞) of strain energy calculated by equation (33): The 
heart-shaped spectrum filters out higher harmonics more efficiently, and the contour lines flatten at 
higher values of the Raleigh wavenumber. However, the V-shaped spectrum gives a spectral distribution 
similar qualitatively to the continuum (Figure 3), where the decay rate is a smooth and monotonous 
function of the wavenumber; the only difference is that the dependence 𝜆𝜆(𝑞𝑞) is slower than that in the 
continuum, and therefore higher harmonics generally propagate deeper into the material volume. The 
volumetric distributions 𝑤𝑤𝑛𝑛𝑚𝑚 of the strain energy calculated by equation (32) do not show qualitative 
differences for the heart-shaped versus V-shaped spectra. However, the both spectra produce small “side 
pockets” of low strain energy seen in deep blue tones at distance 0.1-0.15 𝑛𝑛 ∙ 𝑎𝑎/𝐿𝐿 form the material 
surface, which is qualitatively different to the continuum case. Also, both volumetric distributions 
generally smoothen slower with distance to the surface than in the continuum.     

Availability of the “side pockets” in the volumetric distributions is the most surprising feature of the 
triangular lattice behavior, Figure 6.  Another interesting observation is that the spectral density contours 
follows the lower branch of the heart-shaped spectrum, being a logical consequence of a smaller influence 
of the top branch comprised fast decaying modes. When the bottom branch merges with the top one 
(after 𝑞𝑞 = 2.4 and before 𝑞𝑞 = −2.4), the decay rate 𝜆𝜆(𝑞𝑞) becomes nearly independent of 𝑞𝑞, leading to a 
selective filtering of the Raleigh waves. A triangular lattice with 𝜅𝜅 = 0.186 is a low-pass filter of the Raleigh 
waves with a well-defined cut off wavenumber of about ±2.3.  

 



P a g e  | 15 
 

 

Fig.7: Three basic types of Raleigh decay spectra (44), strain energy spectral (33) and volumetric (32) 
densities for the X-braced lattice, Figure 4, subjected to a unit load at node (0,0), as shown in Figure 3. 
Two branches of real-valued decay parameters in the Raleigh spectrum (as on the top left) occurs for 
values 𝜅𝜅 < 0.25. Then with an increase of 𝜅𝜅, these branches start to merge for smaller 𝑞𝑞 and gradually 
form a simultaneous asymptotic bandgap at 𝜅𝜅 = 0.383, as seen on the middle left. Further increase of 
the design parameter 𝜅𝜅 shifts the asymptotes away and turns the spectrum into the edge-split V-shape 
shown in bottom left. Any further increase of 𝜅𝜅 only decreases the splitting, and the overall V-shape of 
the spectrum persists to dominate. The dark peak-shaped areas in the middle plot reflects filtering out 
Raleigh ways harmonics around 𝑞𝑞 = ±2.5 from the strain energy spectrum in the X-braced lattice, which 
contradicts the classical Saint-Venant’s principle. The bottom right shows redirection of the strain energy 
maxima away from the horizontal load axis (see Figure 3) for an angle 40-45o. 
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The X-braced lattice can demonstrate even more interesting strain energy transformation properties. 
There are three distinct shapes of the decay spectrum, depending on the value 𝜅𝜅 by equation (54), see 
Figure 7, with a single-branch bandgap, dual-branch bandgap, and the V-shaped spectrum. In the first 
case, an asymptotic bandgap [22] occurs only on the top branch. Since energy spectral distribution follow 
the bottom edge of the spectrum, this bandgap does influence notably the energy distribution due to the 
concentrated load, and the spectral distribution resembles the continuum one of Figure 5, in general.  

We note that all cases considered so far, the continuum, triangular lattice heart-shaped and V-shaped 
spectra give energy distributions consistent with the Saint-Venant’s principle, where at least the bottom 
branch of the Raleigh spectrum is a monotonously increasing function of the wavenumber. As a result, 
any higher wavenumber harmonics decays faster with the material coordinate than the lower (coarser) 
harmonics. This trend is violated for the dual-branch bandgap spectrum of the X-braced lattice, see 
Figure 7 (middle). The spectral energy contours, as usually, follow the bottom branch of the spectrum, 
and since the bandgap occurs simultaneously at both branches, the harmonics around 𝑞𝑞 = ±2.4 are 
entirely absent from the spectral distribution even at small distances to the load. This absence is seen as 
the peak-shaped (dark tone) regions on the contour plot 𝑤𝑤�𝑛𝑛(𝑞𝑞). These regions (centered around 𝑞𝑞 =
±2.4) represent very fast decaying modes, while modes with |𝑞𝑞| > 2.4 may decay much slower, which 
contradicts the Saint-Venant’s principle. This is an occurrence of the Saint-Venant’s principle reversal first 
predicted in [22], and the contour plot 𝑤𝑤�𝑛𝑛(𝑞𝑞) of Figure 7 (middle) offers a clear graphical illustration of 
this interesting phenomenon. Thus, the X-braced lattice with 𝜅𝜅 = 0.383 is a mechanical metamaterial 
reversing the Saint-Venant’s edge effect principle, and in practice it may also be viewed as a selective filter 
of Raleigh pressure waves with wavenumbers close to ±2.4.      

The last example shown in Figure 7 (bottom) is a V-shaped decay spectrum occurring for the X-braced 
lattice at 𝜅𝜅 = 2.80. This spectrum type and the corresponding contour plot 𝑤𝑤�𝑛𝑛(𝑞𝑞) may look similar to the 
V-shaped spectrum case of the triangular lattice, Figure 6. However, the volumetric energy distribution 
offers a surprise. As can be seen, the lattice contains a large region of lower strain energy in the direction 
of the surface load, seen there in green tones. Most importantly, areas of maximal strain energy have 
elongated shapes oriented at angle 40-45o to the direction of (horizontal) surface load. Thus, we observe 
a phenomenon strain energy deflection or redirection from the load axis. The V-shaped Raleigh spectrum, 
which a plot of |𝜆𝜆(𝑞𝑞)|, gives no hint about this behavior, unless we consider also the complex phases of 
the parameters 𝜆𝜆(𝑞𝑞). For the V-shaped spectrum of the continuum, Figure 5, we see that arg 𝜆𝜆 = 0 for all 
𝑞𝑞, meaning that the entire decay spectrum happened to be real-valued. For the V-shaped spectrum of the 
triangular lattice, Figure 6 (bottom), the decay parameters (𝜆𝜆1 and 𝜆𝜆2) from the two branches have equal 
absolute values but entirely different complex phases. In contrast, for the V-shaped spectrum of the X-
braced lattice, Figure 7 (bottom), arg 𝜆𝜆1 = − arg 𝜆𝜆2, i.e., all the decay parameters come in complex 
conjugate pairs at every given wavenumber 𝑞𝑞. As result, we observe a special form synergy or collective 
behavior of the Raleigh modes in the X-braced lattice: two Raleigh waves (47) with complex conjugate 
lambdas shift the locations of maximal deformation in the opposite vertical direction, while the middle 
region of the lattice is experiencing a mutual cancelling of these waves. 
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This last observation of strain energy redirection away from the axis of surface load, Figure 7 (bottom), 
due to a synergetic phase shift and self-cancelling of complex conjugate Raleigh waves, is the most 
interesting result of the present study.  

 

 

Fig.8: Behavior of the Shannon’s spectral entropy of deformation (40) in the triangular (left) and X-braced 
(right) lattices, compared to the continuum case (51), for the concentrated load problem of Figure 3 type. 
Different values of the design parameter 𝜅𝜅 from equation (54) are used, as in Figures 6-7 data. 

 

We finally note behavior of the Shannon’s spectral entropy of deformation (40) for the triangular and X-
braced lattices, calculated from the energy spectral distribution data of Figures 6 and 7, and compared 
with the continuum case (51); see Figure 8. As can be seen, the continuum entropy is monotonous and 
convex for all 𝑥𝑥. However, in the lattices it may exhibit more complex behaviors depending on the design 
parameter 𝜅𝜅 defined in (54). We found that the profile of entropy in the triangular lattice exhibits flexure 
points, seen in Figure 8, when 𝜅𝜅 > 0.63; although no local maxima or minima are possible at all. The X-
braced lattice shows flexure points when 𝜅𝜅 > 0.165, as well as local maxima and minima once 𝜅𝜅 > 0.469. 
Interestingly, the phenomenon of strain energy redirection, mentioned above in this section, is seen 
together with the occurrence of these local maxima and minima in the X-braced lattice, i.e. when the value 
of 𝜅𝜅 is greater than 0.469. The triangular lattice shows no stationary points on its entropy profile, and 
logically, no energy redirection behavior. 

Thus, there is a general tendency for the spectral entropy to decay slower in lattices than in the 
continuum, a manifest of the more complex, spectrally richer deformation of the lattice materials. In 
highly nonlocal and highly anisotropic lattices, the entropy of deformation, as function of distance to 
loads, may have flexure points and even local maxima, which may signify highly unusual mechanical 
behaviors. However, in a “no surprise” elastic continuum, the spectral entropy is monotonous and convex. 
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7. Conclusions  

We have discussed several nonstandard analytical tools that could facilitate a systematic analysis of 
arbitrary periodic materials: associate substructure, Raleigh wave solution and decay spectrum, Parseval’s 
energy theorem, strain energy spectral density and Shannon’s entropy of deformation. We showed that 
the Raleigh spectrum is the main material’s characteristic which fully determines its strain energy 
transformation behavior. Considered examples of the triangular and X-braced lattices showed that there 
are only a few distinct types of the Raleigh spectra for a given material, depending on its design 
parameters, making qualitative prediction of its strain energy transformation behaviors systematic and 
comprehensive. Surprising anomalous behaviors were observed for these relatively simple lattices: (a) 
selective Raleigh wave filtering (surface blockage), (b) reversal of the Saint Venant’s edge effect, (c) 
formation of “hiding” side pockets of low deformation, and most interestingly (d) strain energy redirection 
away from the axis a of concentrated surface load. This latter phenomenon arises from a synergetic phase 
shift and self-cancelling of complex conjugate Raleigh wave pairs in a highly nonlocal mechanical 
metamaterial. The energy redirection effect is signified by appearance of stationary points in the spatial 
profile of the strain energy spectral entropy of Shannon’s type, introduced here as a measure of 
complexity of mechanical deformation. Strain energy redirection provides practical opportunities for 
impact energy harnessing and managing earlier stages of shock wave propagation in mechanical and 
acoustical metamaterials, even before any oscillatory motion or wave packet propagation is established.    
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11. Appendix   

Asymptotic cases of the strain energy distributions and Shannon’s entropy of deformation for an infinitely 
large domain (𝐿𝐿 → ∞), or for a close proximity to the load (𝑥𝑥 ≪ 𝐿𝐿), adapted from [30]:     

𝑤𝑤0(𝑥𝑥,𝑦𝑦) = 𝑥𝑥
𝜋𝜋(𝑥𝑥2+𝜋𝜋2)

         (A.1) 

𝑤𝑤�0(𝑥𝑥, 𝑞𝑞) = 𝑥𝑥𝑒𝑒−2|𝑞𝑞|𝑥𝑥         (A.2) 

𝑆𝑆0(𝑥𝑥) = 1 − ln𝑥𝑥         (A.3) 

Relationships between (A.1-A.3) and (52-54):  

𝑤𝑤0(𝑥𝑥,𝑦𝑦) = lim
𝑀𝑀→∞

𝑤𝑤𝑀𝑀(𝑥𝑥,𝑦𝑦)        (A.4) 
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 𝑤𝑤�0(𝑥𝑥, 𝑞𝑞) = 1
2𝜋𝜋

lim
𝑀𝑀→∞

𝐿𝐿 ∙ 𝑤𝑤�𝑀𝑀(𝑥𝑥, 𝑞𝑞𝐿𝐿/2𝜋𝜋)        (A.5) 

 𝑆𝑆0(𝑥𝑥) = lim
𝑀𝑀→∞

(𝑆𝑆𝑀𝑀(𝑥𝑥)− ln𝐿𝐿/2𝜋𝜋)        (A.6) 

  

 


