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Abstract   

When a usual material is loaded statically at surfaces, fine fluctuations of surface strain 

diminish fast in the material volume with the distance to the surface, a phenomenon widely 

known as the Saint-Venant edge effect. In this paper, highly nonlocal discrete lattices are 

explored to demonstrate structural metamaterials featuring reversal of the Saint-Venant 

edge effect. In these materials, certain coarse patterns of surface strain may decay faster 

than the finer ones. This phenomenon is shown to arise from anomalous behavior of the 

Fourier modes of static deformation in the material, and creates opportunities for blockage, 

qualitative modification and in-situ recognition of surface load patterns. Potential applica-

tions and useful practical techniques of spectral analysis of deformation, density of states 

and phase diagram mapping are outlined.  
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1. Introduction 

The notion of metamaterials refers to an exciting class of man-made material systems with engi-

neered internal structure (embedded resonators, elastic links, metastable elements, etc.) leading to 

a negative or reverse effective material property. Such a property usually occurs due to a nontrivial 

collective behavior of many individual structural elements functioning in a synergistic manner. 

While basic properties of those individual elements can be simple (linear), the interesting collec-

tive behavior is owed to a cooperation between the elements achieved with a proper design of their 

internal structure and interactions. Generally, photonic/electromagnetic, phononic/acoustic and 

mechanical metamaterials are distinguished [1-34].  
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Photonic metamaterials are the earliest known class of metamaterials, where the negative effective 

electrical permittivity (ε) and electromagnetic permeability (μ) are attained simultaneously at the 

expense of a microscopic superlattice resonator structure leading to a dispersive, nonlinear pho-

tonic spectrum. A negative refractive index and the absence of light reflection at an interface of a 

metamaterial with ε < 0 and μ < 0 and a usual media was first predicted in a 1968 publication [1]. 

These basic phenomena, in turn, imply amazing practical opportunities, such as superlense and 

“invisibility cloak” applications [1-7]. One more recent class of photonic metamaterials are plas-

monic systems [8-14] featuring nonlinear spectra of collective electron excitation frequencies. 

Such spectra can provide an efficient generation of higher frequency harmonics, and geometrical 

and spectral localization of the incident photon energy, being key phenomena for the enhanced 

photovoltaics, photocatalytic water splitting and other applications [8-14].  

Phononic and acoustic metamaterials are dynamical material systems with simple constitutive 

properties of the individual elements, but counterintuitive collective properties, such as the nega-

tive effective mass density and others [15-27]. These unusual collective properties can be realized 

from the nonlinear vibration frequency spectra, or dispersion relationships ω(k), where k is the 

Fourier wave vector, obtained by applying Fourier transform in time and space to a structural or 

multi-body dynamics equation. Opportunities for very interesting phenomena, such as acoustic 

shielding and cloaking arise from the gaps between distinct dispersion branches ωi(k), leading to 

a wide range of important applications ranging from sound insulation and vibration energy har-

vesting to nondestructive testing and earthquake engineering.  

Structural & mechanical metamaterials [28-34,46-48] show quasistatic responses to loads that 

can be interpreted as a negative effective elastic modulus or a negative Poisson ratio by a combi-

nation of simple microstructural elements, bars and springs. One recent development [31-34], in-

cluding by this author and a co-worker [33-34], also uses a structural bistability at the unit cell 

level that could deploy a polymorphic type phase transformation in the entire material. If properly 

designed, such a phase transformation can lead to a contraction of the material in the direction of 

an increasing external load, the negative extensibility phenomenon. Origami structures provide 

another interesting type of mechanical metamaterials [46-48] where negative Poisson's ratio, bend-

ing and twisting stiffness are either analytically expressed or numerically observed. The work by 

Silverberg and co-workers [48] is also an example of using bistability of a unit cell to fold repro-

grammable mechanical metamaterials based on origami structures. 



3 

In this paper, we provide a mathematical foundation and demonstrate the paths toward design and 

fabrication of a class of structural metamaterials featuring a Reverse Saint-Venant (RSV) edge 

effect, or shorter the RSV metamaterials. When a usual material or structure is loaded statically at 

surfaces, fine fluctuations of surface strain diminish fast in the material or structure interior with 

distance to the surface, a phenomenon widely known as the Saint-Venant edge effect, e.g. [35-36]. 

In this paper, we have explored some discrete lattices with a higher degree of nonlocality as pos-

sible engineered base structures of the RSV metamaterials. In these lattices, certain coarse patterns 

of surface strain may decay faster than the finer ones. More remarkably, such materials will be 

shown to have an ability to completely block or qualitatively modify certain types of static defor-

mation at surfaces.   

The Saint-Venant edge effect is perceived so naturally that one could hardly imagine any violations 

of it in a material system. Nonetheless, in Section 2, we provide a rigorous proof of concept, fol-

lowed by discussions of interesting practical opportunities in Section 3, including surface arrest of 

static deformation and qualitative modification of strain and stress patterns. Conclusions are given 

in Sections 4. Practical opprtunities of the RSV metamaterials are discussed in the context of the 

density of states calculation, spectral analysis of deformation and phase daigram mapping.  

2. Fourier Modes of Free Static Deformation  

We generally suggest that the Saint-Venant edge effect reversal may occur in materials with inter-

nal micro- or mesostructure featuring nonlocal interactions. Analysis of these interactions and the 

resultant effective material properties requires a discrete nonlocal elastic formulation.  

Below in this section we suggest a formulation leading directly to the desired metamaterial behav-

ior in a simple but rigorous manner. First we will show that in a local isotropic elastic continuum, 

only the usual Saint-Venant behavior is possible, and the nonlocality has to be a necessary condi-

tion for the sought behavior.  

For this discussion, it will be convenient to introduce a nonstandard property of an elastic medium 

or lattice that we may call the Fourier spectrum of deformation decay parameters, or shorter, de-

formation decay spectrum. This spectrum is a key element of the analytical method offered here, 

and it exists for any local or nonlocal continuum or a discontinuous structure. In the further dis-

cussion (Sections 2.2-2.5) we will see that the Saint-Venant edge effect reversal and surface load 
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arrest phenomena would require occurrence of asymptotic bandgaps in the spectrum. In turn, such 

bandgaps will imply nonlinear and non-monotonous spectral behaviors, only possible in nonlocal 

media. This spectrum is somewhat analogous, but not similar to the acoustic wave frequency spec-

trum of a dynamical structure [15-27], where the bandgaps can lead to an acoustic metamaterial.  

2.1 Deformation decay spectrum of a continuum solid   

Consider a state of plain strain in a continuum half-plane for boundary conditions u(0,y) and v(0,y), 

governed by the homogenous Navier’s equations [37] over x > 0, 
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Since any deformation must disappear when x → ∞, it is interesting to consider a fundamental 

solution as a decaying Fourier mode of free static deformation (at real positive η and complex Ci):    

 1 2( , ) , ( , ) , ( , )x iq y x iq yu x y C e e v x y C e e q             (2) 

Here, q is a Fourier parameter of the mode. When necessary, two independent real-valued solutions 

can be constructed by taking separately the real and imaginary parts of (2). 

Substituting (2) into the governing equation (1) gives two characteristic equations, 
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These equations indicate that (2) can be a true solution, indeed, but only if  and ∓ . 

A solution satisfying specific boundary conditions can be obtained as a superposition of the 

modes (2) with the amplitudes determined by standard Fourier methods. The value η should remain 

positive for any q, and therefore, we can write 

| |              (4) 

This relationship between the decay parameter and the Fourier parameter, Fig.1, represents the 

simplest deformation decay spectrum of an elastic medium or structure. It applies to any homoge-

nous and isotropic material governed by (1). We will also call such a relationship the “η-distribu-

tion” below. It will become more sophisticated in the analysis of discrete lattices.    
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Physical meaning of the decaying mode solution (2,4) can be illustrated as follows. Assume there 

is a surface traction at x = 0 leading to the boundary displacements,  

(0, ) cos( ), (0, ) sin( )u y a q y v y a q y            (5) 

Then, the real amplitude a of these displacements will diminish at x > 0 with the factor e–|q|x, and 

all strain and stress components will decrease with the same factor as well. Thus, the value 

  = |q| can be interpreted as a basic exponential decay parameter of the corresponding Fourier 

mode of static deformation occurring at the boundary.    

For the discussion to follow, we note that Fig.1 spectrum is naturally consistent with the usual 

Saint-Venant edge effect: Fourier modes corresponding to higher values q (having shorter distances 

between two nearest maxima or minima) decay faster with x; see Fig.2.  

2.2 Deformation decay spectrum of a discrete lattice 

Consider a periodic elastic system, naturally discrete or discretized one, which can be a network 

of elastic elements or a continuous matrix with internal structure (voids, inclusions, etc.), where 

some important nodal degrees of freedom can be introduced. Assume that a repeating node or a 

set of repeating nodes (n,m) may interact directly with some neighbor sets (n’,m’); see examples 

in Figs.3-4 and also Fig.6. The mechanical response of this material to an external load at (n,m) 

will depend on the state of deformation not only at (n,m), but also in a finite region encompassing 

all the nodes (n’,m’). This latter fact is a manifest of the nonlocal nature of the discrete or structured 

material systems. As we will see below, certain farer reaching interactions being sufficiently strong 

may lead to dramatic changes of the basic mechanical properties, including qualitative changes in 

the deformation decay spectrum. In particular, some systems may show regions with negative de-

cay factors equivalent to e–η in the continuum solution (2), requiring a complex η. Physical mean-

ing and practical importance of the complex η are discussed below in Sections 2.4-2.5.  

The deformation decay spectrum of a periodic lattice or structure with only nodal degrees of free-

dom can be analyzed as the following. We assume a 2D periodicity, where two integer indices 

(n,m) can define a repeating node or set of nodes, and a 3D extension is straightforward. We in-

troduce an associate substructure of the material to include a current node (n,m) and all other 

nodes (n’,m’) interacting directly with (n,m), and write a governing equation of equilibrium of the 

nodes (n,m) using a discrete convolution (∗) operator with a stiffness kernel k,      
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Here, un m and fn m are vectors of displacements/rotations and external forces/moments at (n,m), 

respectively; the summations run over all the neighbor nodes (n’,m’) in the associate cell; and k 

are small matrices that describe the intensity of all possible elastic interactions of the node (n,m) 

with its neighbors [38-39]. The k-matrices can be obtained in practice as respective blocks of some 

bar, beam or solid element stiffness matrices, similar to those used in the finite element analysis. 

The associate cell is a minimal part of the periodic structure that fully represents its mechanical 

properties [38-45]. 

Assume that the material is loaded at nodes with n = 0 only, and an essential boundary condition 

u0,m is known. For a compact discussion, we take 1   in (6), and a more general case can be 

studied similarly by increasing the set (n,m). Then, for the n > 0 half-plane, equation (6) becomes 
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By analogy with (2), we will study a fundamental solution for (7) as decaying Fourier mode of 

free static deformation 

 
( )( ) , ( , )q n iqm

nm C q e e q    u h       (8) 

Here, C is an amplitude, h is a normalized deformation “mode shape” vector, the decay parame-

ter η is analogous to that in (2), and q can take discrete values if the lattice is finite along m.  

Apply the discrete Fourier transform in space over index m in (8) and use the shift and convolution 

theorems (A1-A3) to get a simple algebraic form of the equation (7) in the Fourier domain,  
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Equation (9) can be rewritten in a recurrent form,  
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where H is a q-parametric transfer matrix. Importantly, eigenvectors of such a matrix must have a 

structure, where the bottom half-vector is equal to the top half-vector multiplied by the eigenvalue, 

and all the eigenvalues come in reciprocal pairs {λ,1/λ}. Therefore, the Fourier domain solu-

tion (10) will satisfy (9), if e–η is equal to an eigenvalue λ of the transfer matrix H and h is the 

normalized half-eigenvector: 

( )( ) ( ) Re log | |,
( ) ( ) , ( )

( ) ( ) ( ) ( ) Im arg
qq q

q q q e
q q q q

  
 

   
     

          

h h
H

h h
 (12) 

Also, the Fourier mode (8) will satisfy the space domain equation (7), and it can be further used to 

construct a real-valued Fourier series solution for any specific boundary condition u0,m. 

A full set of values λ(q) or η(q) determined for all q will comprise an intrinsic λ- or η-distribution 

branch of the deformation decay spectrum. The matrix H(q) will give 2S such branches, where S 

is the number of DoF per nodes (n,m), and S physical branches (with |λ| < 1) can be selected.  

Physical meaning of the solution (8) is similar to that of the continuous one (2,4). For example, a 

Fourier mode of the displacement field at n = 0 (a and h are real),  

0 ( ) cos( )m a q q mu h           (13) 

will diminish at n > 0 with the factor e–n(Re η). All the stress and strain components will decrease 

with same factor as well. Thus, the complex value η is a generalized decay parameter of the cor-

responding Fourier mode of free static deformation in the nonlocal medium (7). If the unit cell 

width is selected as a unit of length, Re η can be compared to the real-valued η in (2). 

2.3 Example: Rectangular grid  

The governing equation of equilibrium (7) for a rectangular grid of Fig.3 will include only five 

nonzero k-matrices. For a simple case of one DoF per node they become scalars. For example, if 

stiffnesses of elastic interactions for horizontal and vertical pairs of nodes respectively are κ1 and 

κ2, we may divide the entire equation (7) by κ1, introduce a dimensionless k = κ2/κ1 and write  

       
0 0

1 0 1 0
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The parameter k describes relative stiffness of the vertical interactions with respect to the horizon-

tal ones. The transfer matrix (11) and its physically significant eigenvalue (|λ| < 1 for all q) are: 

0 1
( )

1 2 2 (1 cos )
q

k q

 
     

H                 (15)  

( ) 1 (1 cos ) (1 cos )(2 (1 cos ))q k q k q k q                      (16)  

The λ-distribution (16) is positive for all q and k, and the corresponding η-distribution is nonlinear, 

see Fig.3, in contrast to the continuum case of Fig.1. This result gives an interesting analogy with 

the dynamical systems, where the frequency dispersion branches are linear for infinite continua 

and nonlinear for discrete periodic media [15-27]. On the other hand, the η-distribution of Fig.3 is 

monotonous for the entire range of q and any value k. Therefore, the usual Saint-Venant effect 

(Fig.2) is still valid for this grid, and no particularly interesting behavior can be expected here.   

2.4 Example: X-braced lattice   

Consider the X-braced latticework shown in Fig.4. If the diagonal members are not connected at 

their intersections to form a node, then this structure is a simple example of an essentially nonlocal 

system. Indeed, depending on stiffness of the diagonal links, displacements at (n,m) could lead to 

a greater force effect on a more distant node (n+1,m+1), than on a nearer node (n+1,m) or (n,m+1). 

For a compact discussion, we assume one (horizontal) DoF per node and write seven nonzero 

scalar stiffnesses for equation (7) in a dimensionless form,  
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Here, the parameter k gives a relative stiffness of the diagonal interactions with respect to the 

horizontal ones, and the vertical interactions are absent. The transfer matrix (11) becomes  

0 1

( ) 2 4
1

1 2 cos

q k

k q

 
     

H                (18) 

and its physics relevant eigenvalue (|λ| < 1 for all q) reads  
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Here, the root argument is positive for any q, i.e. this λ-distribution is real. The denominator is 

positive; however, the numerator can be negative at least for some q, provided that k > 1/2. This 

means that in systems with sufficiently strong nonlocal interactions, the λ-distribution can have a 

negative region, see Fig.4. This result is highly significant for the following reasons: 

1) The decay factor e     in equation (8) is also negative, which is not possible for the 

usual continuum (1). This requires an imaginary part of η, according to (12).  

2) Displacement directions of some Fourier modes (8) will be inverted at λ < 0 each time n 

goes from even to odd, or opposite.  

3) Most importantly: a zero eigenvalue exists, when k > 1/2 and  

 arccos 1/(2 )q k         (20) 

4) Thus, a boundary deformation pattern, 

0 1 cos( )mu a qm         (21) 

where a1 is an arbitrary real number and q satisfies (20) will be blocked at n = 0 and will 

not propagate into the material interior at all. 

5) Practically, a range of fast-decaying modes (21) can be identified in the vicinity of (20), 

where the eigenvalue (19) is very small. These modes can be used to reconstruct various 

deformation patterns decaying very close to the boundary.   

6) According to (12), η → ∞ when λ → 0. Thus, sufficiently strong diagonal interactions in 

the X-braced lattice (17) lead to asymptotic bandgaps in its η-distribution, Fig.4. Positions 

of the asymptotes of these stopbands is defined by the equation (20).  

7) Finally, a reversal of the Saint-Venant edge effect may occur due to the non-monotonous 

behavior of the η-distribution introduced by the stopbands (20): denser modes (21) may 

now propagate farer than sparser ones for a range of q, compare Figs.5 and 2. Indeed, by 

Fig.4 data (case k = 3.0), it is possible that 2 1( ) ( )q q  , even though 2 1| | | |q q . 

Thus, a discrete nonlocal medium (17) with Fig.4 internal structure can represent a mechanical 

metamaterial if the condition k > 1/2 holds. This metamaterial can have zero and negative decay 
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factors e    , enabling qualitative modification or processing of static deformation patterns in 

space (blocking at surfaces, filtering and inversion). This provides further analogies with dynam-

ical metamaterials, where the vibration frequencies become complex within a phonon stopband.   

2.5. Farer nonlocalities 

Consider a latticework where the nonlocal interactions extend further in the direction of index m, 

as depicted in Fig.6. For a lattice with one DoF per node, equation (7) will include eleven nonzero 

stiffnesses that can be written in a dimensionless form,  

(1) (2)
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10 10
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11 1 1 11 1 1

(2)
1 2 1 2 1 2 1 2

2 4 4

1,
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k k
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k

k k

k k k k

k k k k

       (22) 

Fig.6 shows the λ- and η-distributions for such a system, where (1) (2)k k k  . Interestingly, this 

system has two distinct bandgaps on each side of the λ-distribution. The maximum possible num-

ber of the bandgaps will generally characterize the order of nonlocality of an RSV metamaterial.  

2.6. Multiple DoFs per node 

Structures with S degrees of freedom per node will feature S different branches in their deformation 

decay spectrum by S physical eigenvalues, | λi(q) | < 1, and therefore S distinct branches in their λ- 

and η-distributions; examples are shown Fig.7. Bandgap availability in at least one of the branches 

indicate that certain deformation patterns determined by the corresponding value q and the mode 

shape vector h(q) in (8) can be blocked in such structures. In some cases, complex values λ may 

occur for a range of q. Then, the modulus |λ| and argument arg λ will show, respectively, the decay 

and phase shift of the mode (8) along the coordinate n. 

2.7. Numerical validation  

A series of numerical experiments were performed to validate the Saint-Venant edge effect rever-

sal and the deformation blockage capabilities in the lattices shown in Figs. 4 and 6, using a com-

mercial FEM software package ANSYS. We constructed rectangular structures of various sizes, 
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 nodes, using linear elastic small-strain bar elements with only translation degrees of free-

dom and constrained vertical displacements of the nodes. Periodic boundary conditions were ap-

plied at the top (m= N) and bottom (m= 0) edges of the rectangular lattice as explained in [38] to 

provide a seamless cyclic model, topologically equivalent to a horizontally placed cylinder, where 

the effect of the top and bottom boundaries is absent. The entire right edge (n= N) of these lattice 

models was free standing in all cases. Various sinusoidal displacement profiles (21), with different 

wave numbers q were imposed as essential boundary conditions at the left edge (n= 0) of the lat-

tices. Numerical solutions of problems with periodic boundary conditions were matching the 1DoF 

version of the analytical solution (8), 

( )
1 cos( ) , 1,2,..., , 1,2,...,q n

n mu a q m e n N m M      (23) 

with an accuracy of 10–6 or better for sufficiently large N. When the parameter q was selected at 

the position of an asymptote in the η-distribution, where η→∞, the deformation was entirely con-

strained at the left edge (n= 0) of the models with periodic boundary conditions, and the displace-

ments unm in the lattice interior (n > 0) were all zeros with at least 10–5 precision.  

In summary to Section 2, we have shown that the nonlocal discrete materials can have negative 

values in their λ-distribution and asymptotic stopbands in the η-distribution, and therefore demon-

strate the following anomalies in the behavior of the fundamental Fourier mode solution (8): (a) 

near-surface deformation arrest or blocking (Re η → ∞) and filtering (large/small Re η), and (b) 

deformation pattern inversion (Im η = π) and phase shift (Im η ≠ 0). These phenomena are accom-

panied by the Saint-Venant edge effect reversal, and they cannot occur in continuous materials or 

simpler lattice structures as one in Fig.3 and similar [49-50]. 

3. Overview of Practical Techniques and Applications 

In this section, we discuss interesting practical opportunities for the unusual mechanical behavior 

of the RSV metamaterials, and outline some useful tools and techniques for accelerated analysis, 

property prediction, design and fabrication of these materials.  

Potential applications of the RSV metamaterials can vary from mechanical actuators, crack growth 

arrest and pressure smoothing in foundation slabs, Fig.8(a), to deformation canceling in building 

trusses, aircraft fuselages and other aerospace applications. For example, it will be possible to 
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design a solid-state pressure sensor triggering a signal, only if a particular load type occurs on the 

material surface, Fig.8(b). This opens a broader possibility for smart material systems with em-

bedded functions for autonomous load pattern processing and recognition, and decision making. 

Other applications include pressure alleviation, stress and strain shielding and bypassing using a 

cloaking layer of the metamaterial around a critical region.   

On the other hand, design and fabrication of the RSV metamaterials requires understanding of 

their basic bandgap engineering principles, including general physical conditions in the lattice 

leading to multiple bandgaps and bandgap widening (slower approaching the asymptotes), and 

approaches to the q-value lowering for the asymptotes enabling coarser modes blockage. The tools 

and techniques outlined below can help to address practical design of the RSV metamaterials: 

density of states calculation, spectral analysis of deformation and phase diagram compilation.   

3.1 Density of states 

In the field of structural dynamics and phononic crystals [15-27], a wave propagation is a state, 

and it is insightful for the bandgap engineering to draw a frequency distribution of these states 

over the first Brillouin zone. Such a distribution is known as density of states (DOS), P(ω), and its 

physical meaning is the probability P(ω)dω for a naturally freely propagating wave to have a fre-

quency in the range ω+dω. By this analogy, we may introduce a density of static states P(η) show-

ing a distribution of all potentially available Fourier modes (8), the states of free static deformation, 

versus their decay parameter η. Analysis of this distribution can provide further insight for the 

RSV metamaterial properties prediction and design.  

One simple way to calculate the density of state P(η) is the numerical histogram approach, where 

the Fourier parameter q is sampled in a step-wise manner over the interval (–π, π), and the count 

numbers of the values η(q) falling into different intervals of width Δη are recorded. The sought 

numerical distribution P(η) is then obtained by normalizing the histogram with the factor NΔη, 

where N is the total number of samples. Fig.9 shows an example of such a distribution evaluated 

for the X-braced lattice described in Fig.4 and Section 2.4. For the case of k = 3.0, corresponding 

to a metamaterial (k > 1/2), we logically see in Fig.9 a long tail of fast decaying states at larger 

Re η, i.e. the deformation blockage opportunity discussed earlier in Section 2. Furthermore, we 

also see a localized peak positioned at a small value, Re η = 0.87, implying existence of a large 
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number of slow decaying modes (8) with Re η around that value. A superposition of such modes 

on the surface (n = 0) will represent a deformation pattern that can propagate deeply into the ma-

terial volume, and therefore a midrange “passband” peak on the P(η) profile represents an oppor-

tunity for in-situ recognition of certain surface load patterns by observing abnormally large defor-

mations in the material interior. Thus, behavior of the density of states function can be a general 

indicator of the available metamaterial capabilities.  

3.2 Spectral Analysis of Deformation   

One attractive feature of the RSV metamaterials is that the standard Fourier series procedures can 

be used to perform spectral analysis of the deformation [38-39,43-45]. Since every Fourier 

mode (8) is characterized by a decay parameter η, it is possible to analyze and predict the spatial 

modification and propagation depth of deformation patterns in the RSV metamaterials. In partic-

ular, one may determine how far a given surface pressure or deformation type can propagate and 

how its profile will change with a distance to the surface. An example of such analysis is shown 

in Fig.10. It is interesting to see that the RSV metamaterial, due to complex values η and resultant 

inversion and blockage of some of the modes (8), can disperse Gaussian deformation patterns, 

even though its constituent structural elements are linear. Such a nonlinear collective behavior is 

impossible for the elastic continuum (1) or even the usual lattice structures. 

3.3 Phase diagrams and design guidelines  

Outcomes of the analytical methods outlined earlier in this paper can be summarized in the form 

of phase diagrams enabling efficient design procedures and guidelines for the RSV metamaterials 

fabrication. The basic lattice structures, as shown Fig.4 and Fig.6 and others, can serve also as a 

reinforcement phase or skeleton for a softer continuous matrix to form a composite metamaterial 

with interesting resultant properties. Phase diagrams can be constructed in the design space of the 

composite or purely structural RSV metamaterials to show suitable combinations of parameters 

leading to the metamaterial behavior. Different possibilities, such as the decay and mode shape 

types, based on Re η, Im η and vector h components, and availability of single or multiple 

bandgaps can be additionally identified within the metamaterial region on these phase diagrams. 

An example of such a diagram for a purely structural material is shown in Fig.11.  
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4. Conclusions  

When a usual material is loaded statically at surfaces, fine fluctuations of surface strain diminish 

fast in the material volume with distance to the surface, a phenomenon widely known as the Saint-

Venant edge effect. In this paper, we have explored highly nonlocal discrete systems to demon-

strate structural metamaterials featuring reversal of the Saint-Venant edge effect due to their spe-

cially designed internal structure. For these materials, certain coarse patterns of the surface strain 

may decay faster than the finer ones. 

The concept of deformation decay spectrum (η-distribution) has been introduced on the basis of a 

transfer matrix eigenanalysis of a discrete lattice in the Fourier domain. Availability of asymptotic 

bandgaps in this distribution is an indicator that the metamaterial behavior is achievable for a given 

structural material. Mathematically, these bandgaps require a complex form and a nonlinear de-

pendence of decay parameter η on the Fourier index q in the fundamental solution (8) of the gov-

erning equation (7). This contrasts the local continuum (1), where the η-distribution is linear and 

real, and even the usual discrete elastic media, where it can be nonlinear but remains real. A com-

plex value η may lead to certain anomalous behaviors of the Fourier modes (8) of deformation in 

the metamaterial, including phase shift and inversion, and blockage at surfaces accompanied by 

the Saint-Venant edge effect reversal mentioned earlier.  

These basic phenomena create opportunities for static deformation cloaking, filtering and inver-

sion. More generally, they enable functional metamaterials for qualitative modification and recog-

nition of static surface load patterns. Practical applications and techniques of the density of states, 

spectral analysis of deformation and phase diagram mapping have been outlined.    
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Appendix 

Let xm be a scalar, vector or matrix function of an integer parameter m. The Discrete Fourier 

transform of xm is defined as a 2π-periodic function of a real-valued parameter p,  

{ } ( )i p m
m p m m

m

F x x e X p
           (A1)  

where the shift theorem holds for any integer m’,  

'
'{ } ( ) i pm

m p m mF x X p e            (A2)  

If ym is another function of the parameter m, then the convolution theorem holds, 

'
'

{ } ( ) ( )i pm
m p m m m

m m

F x y x y e X p Y p
 

 
   

 
       (A3)  

where Y(p) is the discrete Fourier transform of ym. 
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Fig.1: Deformation decay spectrum (the η-dis-

tribution) of the elastic continuum (1). 
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Fig.2: Compliance of Fourier mode solution for 

continua, Eq.(2), with the Saint-Venant end ef-

fect: finer modes (top) decay faster with x. 



 
 

 

 

 

 

 

 

 

 

Fig.3:  Rectangular grid structure: overall geome-

try and associate substructure; λ- and η-distribu-

tions for one DoF per node and various κ in (18). 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4:  X-braced lattice with nonlocal diagonal in-

teractions; λ-distribution with a negative zone and 

η-distribution with bandgaps at larger k in (20). 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

Fig.5: Reversal of the Saint-Venant edge effect 

in Fig.4 lattice: a denser Fourier mode propa-

gates farer than a sparse one, and an intermediate 

mode can be completely blocked at the surface. 



 

 

 

 

 

 

 

 

 
 

 

Fig.6:  Latticework with farer-reaching direct 

interactions between nodes: overall geometry 

and associate substructure; λ-distribution enter-

ing the negative region and η-distribution show-

ing multiple bandgaps at a larger value 

(1) (2)k k k   in equation (22).   



 
 

 

 

 

 

 

 
 

Fig.7:  Examples of η-distribution behavior in 

lattices with two in-plane DoFs per node: 

(a) Fig.4 geometry, and (b) Fig.6 geometry.  



 

 

 

 

 

 
 

 

Fig.8: Concepts for the RSV metamaterials applications: (a) mitigation of surface pressure 

unevenness in structural blocks, and (b) in situ load pattern recognition. 

 

 

 



 

 

 

 

Fig.9:  Density of states for the X-braced lattice 

of Fig.4 compared to an elastic continuum; a tail 

of fast decaying modes and a midrange peak are 

seen for the metamaterial at k = 3.0 in equa-

tion (17).  



 

 

 
 

Fig.10: Dispersion of Gaussian deformation pat-

tern by an X-braced lattice of Fig.4 at k = 9.0, 

compared to a continuum (1) and to itself at 

k < 0.5, where no dispersion occurs.    



 
 

 

 

 

 

Fig.11: Phase diagram of Fig.6 lattice in 

terms of the structural parameters of 

equation (22).   
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