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A domain adaptation model for early
gear pitting fault diagnosis based on
deep transfer learning network
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Abstract
In recent years, research on gear pitting fault diagnosis has been conducted. Most of the research has focused on feature
extraction and feature selection process, and diagnostic models are only suitable for one working condition. To diagnose
early gear pitting faults under multiple working conditions, this article proposes to develop a domain adaptation diagnos-
tic model–based improved deep neural network and transfer learning with raw vibration signals. A particle swarm opti-
mization algorithm and L2 regularization are used to optimize the improved deep neural network to improve the
stability and accuracy of the diagnosis. When using the domain adaptation diagnostic model for fault diagnosis, it is neces-
sary to discriminate whether the target domain (test data) is the same as the source domain (training data). If the target
domain and the source domain are consistent, the trained improved deep neural network can be used directly for diag-
nosis. Otherwise, the transfer learning is combined with improved deep neural network to develop a deep transfer
learning network to improve the domain adaptability of the diagnostic model. Vibration signals for seven gear types with
early pitting faults under 25 working conditions collected from a gear test rig are used to validate the proposed method.
It is confirmed by the validation results that the developed domain adaptation diagnostic model has a significant improve-
ment in the adaptability of multiple working conditions.
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Introduction

Gears are some common transmission devices in
machinery and widely used in aircraft, automobile,
machine tools, and so on. In addition, due to the harsh
working conditions, the gears have a higher fault rate.
Gear faults include broken teeth, cracked teeth, and
tooth pitting. Gear pitting fault is responsible for 31%
of all faults.1

In recent years, numerous research projects have
been done on the diagnosis of gear pitting, which can
be summarized into two types: model-based methods
and data-driven methods.2 In model-based methods,
experts usually establish a dynamic modeling to simu-
late the system operation and then modify it based on
the error between the actual outputs and the ideal out-
puts.3 Applying a model-based method requires not
only a thorough understanding of the system, but also
multiple parameter adjustments to optimize the model,
and the accuracy of the model directly affect the diag-
nosis result. For example, Park et al.4 used finite ele-
ment models of two gear faults to simulate the gear

operation to obtain transmission error and used it to
identify the different characteristics. Shi et al.5 estab-
lished a double motor torque and rotational speed cou-
pling model to have a detailed simulation analysis on
the situation that the experiment platform is difficult to
realize or test. On the contrary, data-driven methods do
not require much experience with the system, and we
can use a model established by the data to diagnose the
gear faults. The traditional data-driven methods typi-
cally involve three necessary processes: (1) feature
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extraction, (2) feature selection, and (3) pattern recogni-
tion.6 Saravanan et al.7 used wavelet analysis to extract
features from vibration signals and used two pattern
recognition methods, artificial neural network (ANN),
and proximal support vector machine (PSVM), to diag-
nose gearbox faults. Wu and Chan8 used acoustic emis-
sion signals instead of vibration signals for gear faults
diagnosis, and a continuous wavelet transform tech-
nique combined with a feature selection of energy spec-
trum is used to generate the inputs of ANN. In the
study by Samanta et al.,9 statistical features extracted
from time domain signals were applied as the inputs of
ANN and SVM. In addition, the genetic algorithm
(GA) is applied for optimization. Traditional pattern
recognition methods such as ANN and SVM can only
achieve shallow learning tasks, and the diagnosis per-
formance is directly affected by feature selection pro-
cess.10,11 Moreover, the feature selection process is
done manually, largely depending on prior diagnostic
knowledge. And the feature selection method of one
faulty diagnosis issue may not be applicable to another
issue.

In recent years, enthusiasm for deep learning has
been triggered by Hinton et al.12 Deep learning can
overcome the shortcomings of the shallow model.
When it is applied to faults diagnosis, the feature selec-
tion process can be omitted, which can save time and
labor. There are many different methods for deep
learning, and according to the training method, it can
be divided into two types: supervised training and
unsupervised training.13 Methods for supervised train-
ing include deep neural network (DNN)14 and convolu-
tional neural network (CNN).15,16 Methods for
unsupervised training include deep belief network
(DBN)17,18 and autoencoder (AE).19,20 Heydarzadeh et
al.21 applied the discrete wavelet transform (DWT)
results of three common monitoring signals (vibration,
acoustic, and torque) as the inputs of the DNN to diag-
nose the five classes of gear faults. Sun et al.22 applied
a dual-tree complex wavelet transform (DTCWT) to
extract multi-scale features of signals. In addition, the
CNN is applied for gear fault diagnosis. Shao et al.23

also applied DTCWT for feature extraction and used
adaptive deep belief network (ADBN) for fault diagno-
sis. Jia et al.24 used AE technology to pre-train the
parameters of the DNN to diagnose rotating machin-
ery faults. Several of the references presented above
used different deep learning methods to diagnose
mechanical faults, but all include feature extraction
process such as DWT. Manual feature extraction pro-
cess is time-consuming and labor-intensive, and unsui-
table extraction methods will also affect the diagnosis
results. Jing et al.25 proposed an adaptive gearbox
faults diagnosis method based on deep convolutional
neural network (DCNN), and there is no feature
extraction process in the article, and the raw data col-
lected from the experiment were directly applied as the
inputs of the DCNN. Wang et al.26 proposed the adap-
tive deep convolutional neural network (ADCNN)

method to diagnose bearing faults. Qu et al.27 used the
deep sparse autoencoder (SAE) method to diagnose
gear pitting: the authors combined dictionary learning
with sparse coding and then stacked it into the AE net-
work and diagnosed two types of gear conditions
(health, pitting) with raw data as the inputs of deep
SAE.

The domain adaptability of the diagnostic model is
also a key evaluation criterion. Ren et al.28 proposed a
new feature extraction method for diagnosing rolling
bearing faults under varying speed conditions.
Considering the increase in energy when the ball passes
through the fault, the frequency values are divided by
instantaneous speed and corresponding amplitude to
form a new fault feature array, and the Euclidean dis-
tance classifier was used for recognition. Tong et al.29

proposed domain adaptation using transferable fea-
tures (DATF) to solve the diagnosis of different work-
ing conditions. They used maximum mean discrepancy
(MMD) to reduce the marginal and conditional distri-
butions simultaneously during domains across. Cheng
et al.30 first transformed the vibration signal into a
recurrence plot (RP) with two dimensions and then uti-
lized speed up robust feature to extract fault features
considering the visual invariance characteristic of the
human visual system (HVS). Liu et al.31 applied
Hilbert–Huang transform (HHT), singular value
decomposition (SVD), and Elman neural network to
solve the bearing fault diagnosis under variable work-
ing conditions. This method is mainly used to apply the
SVD method to reduce the dimension of the instanta-
neous amplitude matrix and obtain the insensitive fault
feature. Zhang et al.32 applied the method of transfer
learning (TL) to make diagnostic methods quickly
adaptable to other working conditions.

Most of the aforementioned gear pitting fault diag-
nosis methods include feature extraction and feature
selection process. Moreover, the conventional diagnos-
tic model is only suitable for fault diagnosis under one
working condition. This article proposes a newly devel-
oped DNN methodology for diagnosis of early gear
pitting faults. Meanwhile, particle swarm optimization
(PSO) algorithm and L2 regularization are used to
optimize the traditional DNN. In addition, TL is com-
bined to develop a deep transfer learning network
(DTLN) to improve the domain adaptability of the
diagnostic model. The innovation of the proposed
method is that the feature extraction and selection pro-
cess are omitted, and the domain adaptability of the
network is improved. The rest of the article is orga-
nized as follows: in ‘‘The proposed method’’ section,
the methodology of the proposed method is intro-
duced. In ‘‘Experiment setup and data segmentation’’
section, the data collected from the experimental test
rig and preprocess of the collected vibration data are
explained. In ‘‘Results and discussions’’ section, the
validation of proposed method using the collected
vibration data is reported. Finally, ‘‘Conclusions’’ sec-
tion concludes the article.
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The proposed method

The improved deep neural network

Conventional DNN. DNN has a fully connected network
structure: neurons in the adjacent layers are connected
to each other, and neurons in same layer are not con-
nected to each other. The forward propagation process
of DNN is similar to that of ANN. The calculation
principles of data passing through layer m in DNN are
shown in equations (1)–(3)33

umk =
Xn
i=1

wm
kix

m
i ð1Þ

zmk = umk � bmk ð2Þ
ymk = f zmk

� �
ð3Þ

where xmi is the ith input value of layer m, wm
ki is the

weight of layer m, umk is the weighted sum of all
inputs,bmk is bias vector, f() is the activation function,
and ymk is the output of layer m.

There are many activation functions available. The
following introduces two commonly used in DNN sig-
moid function and ReLU function as shown in equa-
tions (4) and (5). Equation (6) is the derivative function
of ReLU34

fsig =
1

e�zk +1
ð4Þ

fReLU =max 0, zkð Þ ð5Þ
d

dz
fReLU=

1, z. 0
0, z40

�
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Both activation functions have their own advan-
tages and disadvantages. The output of sigmoid is
from 0 to 1, so it can control the amplitude change in
the deep learning. But it contains exponential calcula-
tion, so the amount of calculation is large. And when
sigmoid is used as the activation function, with the
increase in number of layers and neurons, the gradient
and sparsity problems cannot be solved well. The
advantage of the ReLU compared to the sigmoid is
that it has better sparseness and can recognize the
fault feature from the multi-scale signal features in
deep learning. The derivative of ReLU is 1 or 0 so that
the network can solve the problems of gradient des-
cent and gradient explosion in a better way. However,
the forced sparsity of ReLU also leads to neuron
‘‘necrosis,’’ resulting in the model that cannot extract
valid features. Moreover, it cannot limit the ampli-
tude like sigmoid activation function.

The last layer of the network has a softmax classifier
as shown in equation (7). We will get the vector y after
inputting the vector x to the DNN network. There
must be an error between the actual output y and the
desired output o, and we can use the error to modify
the network weights and biases. There are two com-
monly used loss function: equation (8) is the mean
square error loss function and equation (9) is the cross-
entropy loss function35

fsoftmax =
eiP
j

ej
ð7Þ

EMSE =
1

2
o� yð Þ2 ð8Þ

Ecross�entropy = � o ln y½ �+ 1� oð Þ ln 1� yð Þð Þ ð9Þ

where o is the ideal output vector, y is the actual output
vector, E0 is the error of output vector.

Equations (10) and (11) modify the network weights
and biases: the loss function partial derivative for the
weights and biases is multiplied with the learning rate.
Equations (12)–(14) demonstrate that the cross-entropy
loss function can train the network faster than the tra-
ditional mean square error loss function

Dw= � h
∂EMSE
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ð10Þ
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∂EMSE

∂b
ð11Þ

∂EMSE
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where Dw is the correction of weights, Db is the correc-
tion of biases, and h is the learning rate.

When the cross-entropy function is chosen as the loss
function and sigmoid as the activation function, the last
layer of weights is corrected as shown in equation (15).
Equation (16) can be obtained by applying equation
(13) to equation (15), and equation (18) obtained after
equation (17) is applied to equation (16). Similarly, the
correction amount of biases Db can be obtained as
shown in equation (19)

Dw= � h
∂Ecross�entropy

∂w
ð15Þ

∂Ecross�entropy
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= � o
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∂w
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∂y

∂w
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Dw= � h y� oð Þx ð18Þ
Db= � h y� oð Þ ð19Þ

Improved DNN. We used the ELU function36 instead of
the activation function ReLU. The ELU function is
shown in equation (20), and equation (21) is its deriva-
tive function. Figure 1 shows the graph of two activa-
tion functions. In Figure 1, X and Y are the input and
output of the activation function, respectively.
Comparing equations (6) and (20), we can see that the
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ELU function has no change when z is more than 0,
and changed when z is less than 0. Therefore, it retains
the advantage of ReLU that prevents the gradient dis-
appearing and saves the partly information of less than
0. Thus, the average of the neurons is closer to 0, and it
can reduce the bias shift of the active unit. Since the
soft saturation characteristic of the function is acti-
vated when the input value is small, the robustness to
noise is improved

fELU =
zk, z. 0

a ezk � 1ð Þ, z40

�
ð20Þ

d

dz
fELU =

1, z. 0
aex, z40

�
=

1, z. 0
fELU zkð Þ+a, z40

�

ð21Þ

In order to avoid overfitting of the DNN, L2 regu-
larization37 is used to correct the loss function, as
shown in equation (22). Equations (23) and (24) reveal
the nature of L2 regularization optimization. The L2
regularization term is added in the error function, and
it will directly affect the network parameter correction.
As shown in equations (23) and (24), the correction of
the bias does not change, but the weight correction
changes. Equation (26) is the final weight update func-
tion. It can be found that after the L2 regularization,
the effect of weight decay is achieved because the weight
is multiplied by a coefficient less than 1
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where E is the output error corrected by L2 regulariza-
tion, l is the coefficient of L2 regularization, and n is
the sample size.

TL and fine-tuning strategy

The improved deep neural network (IDNN) can per-
form fault diagnosis well, but the trained network can
only diagnose faults under one working condition.
When the data under other working conditions are
applied as inputs to diagnose the fault, a new diagnos-
tic model needs to be trained to adapt this working
condition. In practical applications, the working condi-
tions of the equipment change over time. Training a
network for each working condition requires not only a
large amount of time, but also a large number of train-
ing samples. So a diagnostic model adapted to multiple
working conditions is highly desirable.

TL38–40 is a popular approach in machine learning.
It can be applied between two related domains to
reduce training time and save training samples.
Combining IDNN with TL to develop a DTLN can
make the diagnostic model more adaptable to different
working conditions. Figure 2 shows a comparison
between traditional machine learning and TL. In tradi-
tional machine learning, each task or domain requires
separate training of its corresponding diagnostic model.
This not only requires a large number of training sam-
ples for each working condition, but also takes a lot of
time.

The training process of TL shown in Figure 2
includes the source domain Ds and target domain Dt.
The source domain in TL is the same as domain A in
traditional machine learning. When the target domain
is used for training, the pre-trained diagnostic model in
the source domain is transferred to the target domain,
and then the pre-trained model is fine-tuned with a
small number of target domain samples. In this way, a
domain diagnostic model can be used under multiple
working conditions with only a small number of sam-
ples and less training time.

Particle swarm optimization

PSO is a method inspired by the behavior of birds
searching for food, which was proposed by Kennedy
and Eberhart. In previous papers,41,42 PSO algorithm
was analyzed in detail. Similar algorithms include ant
colony optimization (ACO)43 and GA,44 all of which
are inspired by the behavior or laws of biology.

PSO is widely used, since it has a great adaptability,
easy implementation, and few parameters to be set. Its
basic principle can be described as n particles in a P-
dimensional space, and their speed and location chan-
ged over time. The particle i of speed and position can
be expressed by vi =(vi1, vi2, . . . , vip) and
xi =(xi1, xi2, . . . xip), Pf is the fitness of particle, and
the size of the fitness corresponds to the distance
between each bird and food. The extremum of individ-
ual Pb and extremum of population gb can be updated
according to particle fitness, and then we can use the
individual extremum and the population extremum to

Figure 1. Comparison of two activation functions: (a) ReLU
and (b) ELU.
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calculate the particle velocity and position, as shown in
equations (27) and (28)

vij t+1ð Þ= rvij tð Þ+ c1e1 Pbj tð Þ � xij tð Þ
� �

+ c2e2 gbj � xij tð Þ
� �

ð27Þ

xij t+1ð Þ= xij tð Þ+ vij t+1ð Þ ð28Þ

where i is the ith particle; j is the jth dimensional of the
P-dimensional space; c1 and c2 are the learning factor;
c1 is the particle’s own part, expresses its own under-
standing and influence on the optimization; c2 is the
social part, indicates that the particles are affected by
the population; t is the number of iterations; e1 and e2
are random numbers that are evenly distributed
between 0 and 1; and r is the inertia weight of particle,
indicates that it is affected by the last speed.

PSO is used to optimize the parameters in the DNN.
If the DNN contains a total of k parameters, the dimen-
sional space j in equations (27) and (28) is equal to k.
The number of particles is set empirically, and each par-
ticle contains j parameters. Select the best performing
particle after t iterations and attach its j parameters to
the DNN as the initial parameters. The weight deter-
mines the influence of the previous speed of the particle
on the current speed, which plays a role in balancing
the global search and the local search. As shown in
equation (29), the weights are linear decay with itera-
tions. This makes the particle swarm algorithm have
strong search ability at the beginning of the iteration,
and good local search ability in the later stage45

r= rmax �
t

tmax
rmax � rminð Þ ð29Þ

where rmax is the set maximum weight, rmin is the set
minimum weight, and tmax is the maximum number of
iterations.

The position and velocity of the particles all have a
range. When the velocity or position value is out of
range, the processes as shown in equation (30) will be
performed

vij =
vmax vij . vmax

vmin vij \ vmin

�
; xij =

xmax xij . xmax

xmin xij \ xmin

�

ð30Þ

The range of particle velocity cannot be too large,
otherwise the system will be unstable and it is easy to
‘‘skip’’ the optimal solution during particle iteration.
Particle activity range setting is also similar to the speed
setting, and limiting the particles’ position helps find
the optimal solution.

The initial position of the particles is randomly
assigned within a certain range, and the optimal solu-
tion found by the several iteration may not be the glo-
bal optimal solution. Therefore, the position of the
particles should be mutated at a certain probability,
which can increase the diversity of particles and find
optimal solution in a new area. After repeating the
above-mentioned operation several times, the global
optimal solution can be found.

The framework and diagnostic process of DTLN

Figure 3 shows the framework of DTLN. It can be seen
that the overall framework of DTLN is divided into
two parts: (1) when the training and test data are in the
same working condition, perform �1 -�2 (purple circles
marked in Figure 3) and (2) when the test data (target
domain) are different from the training data (source
domain), perform�1 -�3 -�4 -�5.

The detailed diagnostic process of the DTLN is
defined as follow:

Step 1: Select one working condition data from all the
collected data. Then, cut the raw data into n segmenta-
tions with the same amount of points. Finally, divide all
segmentations into two groups, 80% of which is used
for training and the remaining 20% for testing.
Step 2: Set the structure of the IDNN, set the minimum
training error and the maximum epoch of training, and
use the PSO algorithm to generate the initial weight
and bias of IDNN.

Figure 2. Different learning processes between traditional machine learning and transfer learning.
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Step 3: Randomly select a batch of segmentations as
the inputs of the IDNN.
Step 4: Get the actual output through IDNN network,
and use the cost function corrected by L2 regularization
to calculate the error between the actual output and the
ideal output.
Step 5: Compute the gradients of weights and biases in
each layer with the back propagation algorithm, and
update the weights and biases with the learning rate.
Step 6: Change another batch of segmentations to
repeat Steps 3–5 until all the training data are used up.
Step 7: Repeat Steps 3–6 until training epochs reach the
maximum epoch or the output error reaches the mini-
mum set value.
Step 8: Test the trained network with the testing data.
When the test working condition is the same as the
selected working condition in Step 1, the trained net-
work will be directly used for fault diagnosis.
Otherwise, Steps 9–10 will be performed.
Step 9: Transfer the parameters of the trained IDNN to
the new diagnostic model.
Step 10: Fine-tune the new diagnostic network with a
small amount of data (fine-tuning with 1% of all data
has a significant improvement) from the target domain.
Finally, the fine-tuned model is used to diagnose the
fault.

Experiment setup and data segmentation

Experiment setup

The experimental test rig and gear pitting type are
shown in Figure 4. The gearbox is driven by two 45kW
Siemens servo motors: motor 1 is the drive motor and
motor 2 is the load motor. The gearbox contains a pair
of spur gears. The driving gear connected to the motor
1 has 40 teeth, the driven gear connected to the motor
2 has 72 teeth, and the gear module is 3mm. The gear-
box was also equipped with a lubrication and cooling
system, and the vibration sensor is mounted on the
bearing housing of the driven gear.

Table 1 describes the gear pitting condition in Figure
4. Six different early pitting were designed manually by
a drill on the driven gear, and the degree of gear pitting
is gradually increased, as shown in Table 1. The setting
of gear pitting fault simulates the process of gear pitting
from small to large and can also analyze the relation-
ship between pitting type and fault diagnostic accuracy.

This article proposes to establish a gear pitting diag-
nosis model suitable for various working conditions, so
the vibration data of various working conditions are
collected to construct and test the model. In the experi-
ment, vibration signal under five speed conditions and
five torque conditions are collected, a total of 25

Figure 3. The framework of the deep transfer learning network.
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working conditions, as shown in Table 2. Note that the
circles in Table 2 represent the six conditions used in
the mixed working condition diagnosis in ‘‘Diagnosis
results of IDNN under multiple working conditions’’
and ‘‘Diagnostic results with DTLN’’ sections.

Data segmentation

The tri-axial accelerometer was mounted on the bear-
ing housing of the driven gear and collected vibration
signals in all the three directions, with a sampling rate
of 10,240Hz. In this article, the vibration signals of
seven kinds of gears under 25 working conditions are
collected. Comparing the vibration signals of all the
three directions, the amplitude of Z-axis is the largest.
Therefore, we use the Z-axis vibration signal in the
diagnosis of gear pitting faults. The vibration signal in
the Z-axis of 100 r/min-100Nm working condition is
shown in Figure 5(a).

We collected vibration signal five times in each gear
fault type (C1–C7). So there are 35 files in each working
condition and 60,000 data points per file. The number
of data points in each file is too large to be directly used
as input to the DNN, so we cut the raw signal into suit-
able segmentation. The advantage of data segmentation
is that the number of neurons in input layer is reduced,
which in turn reduces the complexity of the DNN struc-
ture and makes the network fit more quickly. On the
contrary, the training sample size and sample diversity
is increased, and the diagnostic accuracy of the network
is improved.

The sampling rate is 10,240Hz and the max rotation
speed is 500 r/min, so approximately 1200 data points
per gear rotation can be computed. We put 300 data
points (quarter of per gear rotation collected data) in
each segmentation.46 So each file is divided into 200
segmentations, a total of 7000 segmentations. About
80% of all data are used for training and the rest is

Figure 5. The vibration signal of 100 r/min-100 Nm: (a) one second signals and (b) one segmentation signals.

Figure 4. (a) Experimental test rig and (b) gear pitting type.
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used for testing. The diagnostic model training matrix
dimension for each working condition is 300 3 5600,
and the testing matrix dimension for each working con-
dition is 300 3 1400.

Results and discussions

Diagnosis results of IDNN under working condition
100 r/min-100 Nm

First, we should decide the structure of the IDNN: the
number of neurons in input layer is equal to the num-
ber of data points in segmentation (300 neurons), seven
neurons in the output layer (corresponding to seven
gear types), and contained three hidden layers (300,
200, and 100 neurons). The minimum training error is
set to 0.01 and the maximum training epochs is set to
150. All samples are randomly branched, and then each
branch is trained in turn, and one training epoch is
completed when all branches are trained.

Figure 6(a) shows the effect of PSO on training. By
comparison, it is found that after PSO optimization,
the initial error is reduced from 25 to 2, and the num-
ber of training epoch is also greatly reduced, which
means that PSO optimization can shorten the training
process and make the training process more stable.

Table 3 shows the effect of PSO algorithm on training
time and training accuracy. The term NAN in the table
indicates that the network does not converge. The PSO
algorithm allows the network to start with good initial
parameters. In this case, it is possible to choose a larger
learning rate and speed up the network convergence.

Figure 6(b) shows the influence of the magnitude of
the L2 coefficient l on the diagnostic accuracy. It can
be seen from the figure that when l is equal to 0, that
is, there is no L2 optimization, the accuracy is about
0.9. As the value of l increases, the accuracy shows an
upward trend. The accuracy reaches the maximum
value of 0.96386 when l is equal to 0.35. As L2 coeffi-
cient l continues to increase, the fluctuation of the
accuracy becomes larger, that is, the stability of the
diagnostic model decreases.

The confusion matrixes of standard DNN (SDNN)
method and IDNN are shown in Figure 7. The activa-
tion function ReLU is used in the standard DNN. It
can be seen that the improved method has a better diag-
nostic accuracy. The misdiagnosis of the two methods
is consistent (case1: C2 misjudge as C4, case2: C2 mis-
judge as C6, case3: C5 misjudge as C6, case4: C6 mis-
judge as C4). The initial judgment of misdiagnosis is
due to the occasional single-tooth engagement of the
gearbox resulting in a change in the type of fault.

The diagnostic accuracy of four methods for diag-
nosing gear pitting faults under the 100 r/min-100Nm
is shown in Table 4. When the SVM and ANN meth-
ods were used, 12 statistical characteristics (mean, root
mean square (RMS), variance, etc.) were extracted
from the time domain and frequency domain. On the
contrary, the standard DNN method and proposed
method used the raw vibration signal as the input.

The fault type of the gear is the type corresponding
to the neuron with maximum value. The diagnostic

Table 1. Driven gear pitting type.

Label Gear pitting type

72nd tooth First tooth Second tooth

C1 Healthy Healthy Healthy
C2 Healthy 10% in middle Healthy
C3 Healthy 30% in middle Healthy
C4 Healthy 50% in middle Healthy
C5 10% in middle 50% in middle Healthy
C6 10% in middle 50% in middle 10% in middle
C7 30% in middle 50% in middle 10% in middle

Table 2. Experimental working conditions.

Speed (r/min)
Torque (Nm)

100 200 300 400

100 s N s N

200 N N N N

300 s N N N

400 N N N N

500 s N N N

Table 3. The effect of PSO on the training time and diagnostic accuracy.

Learning rate PSO time Network computing time Total Accuracy

With PSO 0.1 20.817 s 39.61 s 60.42 s 0.9364
Without PSO 0.1 – NAN NAN 0.1429
Without PSO 0.05 – 136.644 s/stop in max epochs (250) 136.64 s 0.8364

PSO: particle swarm optimization.
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accuracy has not differed when the maximum output
of neurons is 0.5 and 0.99. Therefore, the diagnostic
accuracy cannot fully represent the diagnostic ability of
the network. We perform principal component analysis
(PCA) on the output matrix of the network to further
analyze the diagnostic ability of three methods, and
then used the first two principal components (PCs) of
the PCA results to form a scatter figure, as shown in
Figure 8. The diagnostic accuracy of Figure 8(a) and
(b) is similar, but from the PCA results, we can know
the diagnostic ability of SDNN method is significantly
better than ANN method. Compared with the SDNN
method, diagnostic ability of the IDNN has also
improved significantly.

The parameter setting during training also affects
the diagnostic accuracy. Figure 9 shows the effect of
parameters learning rate and batch size (samples in each
batch). Figure 9(a) and (b) shows that as the learning
rate and batch size increase, the accuracy decreases.

Diagnosis results of IDNN under multiple working
conditions

‘‘Diagnosis results of IDNN under working condition
100 r/min-100Nm’’ section shows the results of apply-
ing IDNN to diagnose gear faults under 100 r/min-
100Nm working conditions. This section applies a vari-
ety of working conditions to verify the adaptability of
IDNN for diagnosing multiple working conditions.
Figure 10(a), (c), and (e) shows the diagnostic accuracy
of the three methods (SVM, ANN, and IDNN) in 25
working conditions (as shown in Table 2). It can be
found from Figure 10(e) that IDNN method has a high
accuracy under each working condition, but it is neces-
sary to retrain the network when the working condi-
tions change. Figure 10(b), (d), and (f) shows the cross-
diagnosis accuracy of six working conditions (labeled
as circles in Table 2) without retraining the network. It
can be seen from Figure 10(f) that the diagnostic

Figure 6. Training error curve of hybrid model: (a) influence of PSO and (b) influence of L2 coefficient l.

Figure 7. Confusion matrixes: (a) SDNN and (b) IDNN.

176 Proc IMechE Part O: J Risk and Reliability 234(1)



accuracy is better only when the training and testing
data are from the same working condition. In other
words, a trained IDNN developed under one working
condition is only applicable to the same working condi-
tion and cannot be used in other working conditions.

Diagnostic results with DTLN

As can be seen from Figure 10, IDNN has a good diag-
nostic accuracy under each working condition.

However, a well-trained IDNN under one working
condition can only diagnose the data under this condi-
tion. In order to improve the working condition adapt-
ability of the diagnostic model, this article proposes a
DTLN based on TL. This section applies six working
conditions (labeled as circles in Table 2) to test the
adaptability of the DTLN. The six working conditions
are as follows: A: 100 r/min-100Nm, B: 100 r/min-
300Nm, C: 100 r/min-500Nm, D: 300 r/min-100Nm,
E: 500 r/min-100Nm, and F: 500 r/min-500Nm.

Table 4. Diagnostic accuracy of four methods.

Method C1 C2 C3 C4 C5 C6 C7 Average

SVM 0.995 0.865 0.975 0.755 0.665 0.765 0.995 0.8594
ANN 0.995 0.895 0.995 0.765 0.845 0.99 1 0.9264
SDNN 1 0.985 1 0.735 0.785 0.945 1 0.9214
IDNN 1 0.955 1 0.89 0.99 0.99 1 0.975

SVM: support vector machine; ANN: artificial neural network; SDNN: standard deep neural network; IDNN: improved deep neural network.

Figure 8. The PCA result of three kinds of network outputs: (a) ANN, (b) SDNN, and (c) improved DNN.

Figure 9. Influence of the network parameter on diagnostic accuracy: (a) learning rate and (b) batch size.
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Figure 11 shows the diagnostic accuracy changes
corresponding to an increase in the training sample size
of both DTLN and IDNN. The horizontal axis is the
target domain sample size used to fine-tune the pre-
trained network. The data in working condition A and
data in working condition B were used as training data
for the results in Figure 11(a) and (b), respectively. The
four curves in Figure 11(a) correspond to four cases:
(1) case 1 (A-A with IDNN, all samples are used): trains
the network with 80% of the data in working condition

A and test with the remaining data in working condi-
tion A; (2) case 2 (A-B with DTLN, with different train-
ing sample size): uses DTLN to diagnose faults, where
the source domain Ds was used as data in working con-
dition A and the target domain Dt as data in working
condition B. As discussed in ‘‘Data segmentation’’ sec-
tion, the number of samples in each working condition
was 7000. Setting the percentage of the data for fine-
tuning from 0.1% to 2%, the fine-tuning sample size
used was changed from seven (7000 3 0.1%) to 140

Figure 10. Diagnostic accuracy of different methods: (a), (b) SVM method; (c), (d) ANN method; (e), (f) IDNN method. The
training data and test data used in (a), (c), and (e) are from the same working condition; the training data and test data used in (b),
(d), and (f) are from different working conditions.
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(7000 3 2%). (3) Case 3 (A-B with IDLN, all samples
are used): trains the network with 80% of the data in
working condition A, and then test the trained network
with 20% data from working condition B. (4) Case 4
(A-A with IDLN, accuracy fluctuates with training
sample size): trains the network with data sample size
from seven to 140 in working condition A, and then
tests the trained network with 20% data in working
condition A. In Figure 11(b), data in working condition
B were used as the source domain and data in working
condition A were used as the target domain. As can be
seen from the figure, the DTLN can achieve high diag-
nostic accuracy with 1% of data for fine-tuning.

Figure 12 shows a comparison of the diagnostic
accuracy of DTLN and IDNN with different target
domains. Taking Figure 12(a) as an example, the data
in working condition A as source domain were used to
train the model and the data in other five working con-
ditions (B to F) were used as the target domain to test
the model. When using the DTLN method, 5% of the
target domain data were used to fine-tune the pre-
trained model. Comparing the diagnostic accuracy of
the two methods, it can be found that the DTLN is sig-
nificantly more adaptable to different working condi-
tions than IDNN. The DTLN method not only
improves the diagnostic accuracy under multiple work-
ing conditions, but also requires fewer training samples
and less training time. The IDNN required 67 s to train
the model with 80% data in working condition A.
When the data in working condition B were used as the
target domain, it took 72 s to develop the model with
80% data in working condition B. However, using the
DTLN method to fine-tune the model required only
6 s, which reduced the training time by a factor of 10.

In summary, DTLN can not only make model adapt to
multiple working conditions, but also save training
time and samples.

Conclusions

In this article, a domain adaptation model for early
gear pitting fault diagnosis based on deep TL was pre-
sented. By combining an IDNN with TL, DTLN was
developed to make the diagnostic model have a good
diagnostic accuracy under multiple working conditions.
The vibration signals for seven types of gears with early
pitting faults under 25 working conditions collected
from a gear test rig were used to validate the DTLN.
Based on the validation results, we can draw the fol-
lowing conclusions:

1. Using PSO optimization to initialize model para-
meters speeds up the training process. L2 regulari-
zation improves the diagnostic ability of the
diagnostic model by weight decay during training.

2. The IDNN has a high diagnostic accuracy when
the target domain (testing data) and the source
domain (training data) are in the same working
condition, and the maximum accuracy can reach
99.93%. However, a diagnostic model developed
with IDNN is only suitable for fault diagnosis
under the same working condition.

3. The DTLN overcomes the shortcomings of IDNN,
and greatly improves the adaptability of the diag-
nostic model to multiple working conditions.
Moreover, to fine-tune the pre-trained model, only
a small number of target samples and less training
time are required.

Figure 11. The accuracy changes corresponding to the changes in training sample size for DTLN and IDNN: (a) source domain:
working condition A, target domain: working condition B; (b) source domain: working condition B, target domain: working condition
A.
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