
IEEE RELIABILITY SOCIETY SECTION

Received January 13, 2020, accepted February 19, 2020, date of publication February 27, 2020, date of current version March 10, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2976595

A Bayesian Optimization AdaBN-DCNN Method
With Self-Optimized Structure and
Hyperparameters for Domain Adaptation
Remaining Useful Life Prediction
JIALIN LI 1 AND DAVID HE 2
1School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
2Department of Mechanical and Industrial Engineering, The University of Illinois at Chicago, Chicago, IL 60607, USA

Corresponding author: David He (davidhe@uic.edu)

ABSTRACT The prediction of remaining useful life (RUL) of mechanical equipment provides a timely
understanding of the equipment degradation and is critical for predictive maintenance of the equipment.
In recent years, the applications of deep learning (DL) methods to predict equipment RUL have attracted
much attention. There are two major challenges when applying the DL methods for RUL prediction:
(1) It is difficult to select the prediction model structure and hyperparameters such as network depth, learning
rate, batch size, and etc. (2) The developed prediction model is domain dependent, i.e., it can only give good
prediction performance in one data domain (one particular type of working conditions and fault modes).
In order to meet the challenges, a novel RUL prediction method developed using a deep convolutional
neural network (DCNN) combined with Bayesian optimization and adaptive batch normalization (AdaBN) is
presented in this paper. The proposed RUL prediction model is validated by the turbofan engine degradation
simulation dataset provided by NASA. The prediction results show that the proposed prediction model
provides better prediction results than model structures obtained by random search and grid search. The
results also show that the domain adaptation capability of the prediction model has been improved.

INDEX TERMS Remaining useful life prediction, Bayesian optimization, adaptive batch normalization,
domain adaptation.

I. INTRODUCTION
In recent years, mechanical equipment has become more and
more complicated with the development of new sciences and
technologies. Therefore, the prognostics and health manage-
ment (PHM) of mechanical equipment is becoming a more
attractive topic. PHM provides a comprehensive management
solution such as remaining useful life (RUL) prediction for
maintaining the health ofmechanical systems [1]. Over recent
years, the research on developing data-driven RUL predic-
tion methods has attracted much attention [2], [3]. Deep
learning (DL) methods as a type of data-driven methods can
achieve nonlinear mapping between training data and targets.
Papers on developing DL based RUL prediction approaches
have reported its superiority over other traditional data-driven
approaches such as statistical approaches and so on [4], [5].

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhaojun Li .

However, there are some challenges when using DL for RUL
prediction such as network structure selection, hyperparame-
ter optimization, and domain dependent etc. The purpose of
the proposed method is to address these challenges.

Ren et al. [6] proposed a novel feature extraction method
spectrum-principal-energy-vector to obtain the eigenvector.
A deep convolution neural network was used to predict
bearing RUL. Yu et al. [7] proposed an autoencoder based
on a bidirectional RNN to convert multi-sensor data into
low-dimensional data in an unsupervised way. It was then
used to construct a one-dimensional HI to reflect the degra-
dation process of the device. Because learning features from
a fixed window size may result in changes in local features
and therefore may affect the prediction results, Zhao et al. [8]
proposed a RUL prediction method based on the trend feature
of the total time series representing degradation. An empirical
mode decomposition (EMD) method was used to decompose
and reconstruct the signals to obtain trend features. And then,

41482 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-9940-179X
https://orcid.org/0000-0002-5703-6616
https://orcid.org/0000-0002-2673-9909

J. Li, D. He: Bayesian Optimization AdaBN-DCNN Method With Self-Optimized Structure and Hyperparameters

the conditional neural processes were used to evaluate the
trend features. Finally, the RUL was predicted using the
best trend features as an input to the RNN. In order to
extract as much information as possible from the observed
sequence, Elsheikh et al. [9] proposed a bidirectional hand-
shaking long short-term memory (LSTM) to predict the RUL
of a turbofan engine. Wu et al. [10] applied vanilla LSTM
for RUL estimation of engineering systems, and proposed a
dynamic differential technique to extract inter-frame infor-
mation to enhance the cognitive ability of the degradation
process model. Rigamonti et al. [11] used echo state networks
(ESNs) to predict the RUL of industrial components such
as turbofan engine. The innovation of the proposed method
is to use a separate ESN memory capacity to aggregate
ESNs results in a dynamic process and an additional ESN
to estimate RUL by the mean variance estimation (MVE)
method. Yang et al. [12] proposed an Elman neural net-
work (ENN) basedmethod to predict the RUL of an ultrasonic
motor. The principal component analysis (PCA) was used to
extract the motor degradation index from themonitoring data.
An improved particle swarm optimization algorithm (IPSO)
was used to improve the prediction accuracy of the ENN.
Li et al. [13] used short-time Fourier transform (STFT) to
extract time-frequency domain information from the rolling
bearing dataset. A convolutional neural network (CNN) was
used to achievemulti-scale feature fusion and intelligent RUL
prediction. Zhu et al. [14] applied wavelet transform (WT)
to obtain useful information, and then used a bilinear inter-
polation method to reduce the features. A multiscale con-
volutional neural network (MSCNN) model structure was
proposed to save global and local information simultaneously
to predict the RUL.

Among the DL based methods for mechanical equipment
RUL prediction mentioned above, two important aspects
related to model development need to be addressed:
(1) selection of the model structure and hyperparameters
(e.g. learning rate, batchsize, momentum etc.), and
(2) domain adaptability of the developed model. The network
structure and hyperparameter selection methods include:
manual search, grid search, random search, and advanced
optimization methods [15]. Most of the existing approaches
develop and train the prediction model using manual search
strategy [16], [17]. The model structure and training hyper-
parameters were chosen manually based on an understanding
of the prediction methods and the experience of previous
researchers. The grid search method is to equidistantly select
several parameter values within the range to develop the
models separately. Then the model with the best predicted
result is selected as the target model. The references [8]–[10]
applied the grid search method to select the optimal structure
of themodel. The random searchmethod is to randomly select
several sets of parameters within the range formodel develop-
ment. It has been empirically and theoretically proven that the
random search is more effective for the hyperparameter opti-
mization than for the grid search [18]. The domain adaptabil-
ity of the prediction model is also an important performance

quality indicator for model evaluation. In order to improve
the domain adaptability of the developed prediction model,
many attempts have been made by the researchers. Transfer
learning (TL) [19], [20] strategy has proven to be effective
for improving the adaptability of the model in many cases.
A sufficient number of degraded samples for data-driven
prediction are difficult to obtained, Zhang et al. [21] proposed
a bi-directional long short-term memory (BLSTM) based
TL method to predict RUL. The prediction model trained
on one dataset can be used to predict the relevant target
dataset by fine-tuning the TL strategy. In addition, adaptive
batch normalization (AdaBN) [22], [23] algorithm can also
be used to improve the domain adaptability of the prediction
model. Initially, batch normalization (BN) was used to help
stochastic gradient descent (SGD) optimization by adjusting
the distribution of each layer of the output in the network [24].
It was later found that domain adaptation can be achieved by
retraining the offset parameters in the BN unit.

To address the two issues encountered in developing DL
based prediction methods mentioned above, this paper pro-
poses a RUL prediction method based on deep convolutional
neural network (DCNN) combined with Bayesian optimiza-
tion [25] and AdaBN algorithm. The Bayesian optimization
method is used to automatically select the network struc-
ture and hyperparameters. The AdaBN algorithm is used to
improve the ability of predictive models to adapt to different
data domains (DDs). The main contributions of this paper are
summarized as follows:
(1) This paper provides an optimization strategy for pre-

diction network structure and hyperparameters based on
data-driven method. The Bayesian optimization method
is used to realize the self-selection of the network struc-
ture and hyperparameters. Compared with manual search
and grid search, the proposed method can develop a RUL
prediction model with better performance in a shorter
time.

(2) In this paper, the BN unit is added in the DCNN, and the
prediction tasks of different DDs are adapted by mod-
ifying the offset parameters of the BN unit. Compared
with the commonly used domain adaptation algorithm-
TL, the AdaBN method requires fewer parameters to
be fine-tuned in different DDs, which means that the
calculation effort is reduced and the adaptation time is
shortened.

The rest of the paper is organized as follows. In Section II,
related background knowledge is provided. The proposed
method is explained in Section III. In Section IV, the
C-MAPSS dataset and validation results are described.
Finally, Section V concludes the paper.

II. BACKGROUNDS
A. BAYESIAN OPTIMIZATION
The data-driven deep learning methods are more attractive
because they are not affected by the physical structure
of the system and can be developed rapidly. However, the
hyperparameters of the deep learning network such as

VOLUME 8, 2020 41483

J. Li, D. He: Bayesian Optimization AdaBN-DCNN Method With Self-Optimized Structure and Hyperparameters

TABLE 1. Procedure of the Bayesian optimization for deep learning
hyperparameters.

the learning rate, batchsize, and the number of network
layers, have a great influence on the network capabil-
ity. This paper uses Bayesian optimization [26] to search
for the best hyperparameters. First of all, one needs to
select the hyperparameters to be optimized

{
hp1:mεχ

}
. It is

assumed that the hyperparameters and the deep learning
error (DLE) can be expressed by the black-box function f ,
i.e., DLE = f (χ). As shown in Equation (1), the purpose
of Bayesian optimization is to find the point xbest with the
minimal DLE value.

xbest = argminxεχ f (x) (1)

The steps of Bayesian optimization procedure for deep
learning hyperparameters are shown in Table 1.

The Bayesian optimization mainly repeats the two
steps of Gaussian process regression and acquisition func-
tion. Bayesian optimization includes two processes of
‘‘exploitation’’ and ‘‘exploration’’. The posterior distribu-
tion of the objective function is updated by successively
adding observation sample points until the posterior distri-
bution substantially conforms to the true distribution. The
acquisition function can consider both ‘‘exploitation’’ and
‘‘exploration’’ to determine the next observation point xbest.
In Step 1, the selection of the initial observation points x1:i

FIGURE 1. Example of 1-D Gaussian process with 3 observations.

within the range of values is global exploration. In Step 2,
the distribution probability of f (xi+1) is calculated according
to the observation points f (x1:i) and the rule of joint Gaussian
distribution. Then, the position of the next observation point
can be obtained in combination with the acquisition function.
In Step 3, calculate f (xi+1) and update the prediction function
f ′1:i+1. Finally, repeat Steps 2 and 3. The hyperparameter set
corresponding to the minimum value in all observation points
is the best set.

Next, Gaussian process priors with Gaussian noise are
introduced in Section II-A-1), kernel function options
in Section II-A-2), and acquisition functions options in
Section II-A-3).

1) GAUSSIAN PROCESS PRIORS
The Gaussian process (GP) [27] is a set of random variables
so that any finite numbers of random variables have a joint
Gaussian distribution. The GP can be represented entirely
by the mean function and covariance function. The mean
function m(x) and covariance function k(x, x ′) are expressed
in Equations (2) and (3) as:

m (x) = E[f (x)] (2)

k(x, x ′) = E[(f (x)− m (x))(f (x ′)− m(x ′))] (3)

Therefore f (x) obeys the GP can be expressed as:

f (x) ∼ GP[m (x) , k
(
x, x ′

)
] (4)

Fig. 1 shows a simple one-dimensional (1-D) GP with
3 observations.

The function f (x) is a GP, and the three observation points
are x1o , x

2
o , and x

3
o , respectively. So the joint distribution of the

variables f (x1o), f (x
2
o), and f (x

3
o) is a Gaussian distribution.

The solid black line in Fig. 1 is the mean of the function
f (x) predicted by the GP through the observation point. The
shaded area represents the 95% confidence interval for the
Gaussian distribution of the function f (x). It ranges from
m(x) − 1.96σ (x) to m(x) + 1.96σ (x), which m(x) and σ (x)
are prediction GP mean and standard deviation. x1 and x2 are
two randomly selected points in the range of x, and the dotted
line is a normal distribution of the f (x) value. x+ is the point

41484 VOLUME 8, 2020

J. Li, D. He: Bayesian Optimization AdaBN-DCNN Method With Self-Optimized Structure and Hyperparameters

at which the f (x) value is the minimum for all observation
points.

A commonly used squared exponential covariance
function is shown in Equation (5). More other covariance
functions are described in details in Section II-A-2). It can
be known from Equation (5) that when the two points x1 and
x2 are close, the k(xi, xj) value approaches 1, i.e., the mutual
influence of the two points is larger. On the contrary, when
the two points are far away, the k(xi, xj) value approaches 0,
i.e., the interaction between the two points is weak.

k
(
xi, xj

)
= exp[−

1
2

(
xi − xj

)2] (5)

When Gaussian priors are performed on n observation
points, it is known D1:n = {x1:n,f (x1:n)}, and the function
values f (x1:n) are obey to a multivariate normal distribution,
i.e., f (x1:n) ∼ N (m(x1:n),K). And the kernel matrix of
multivariate normal distribution is expressed as:

K =

 k(x1, x1) · · · k(x1, xn)
...

. . .
...

k(xn, x1) · · · k(xn, xn)

 (6)

The optimization is achieved by continuously increasing
the observation points and performing repeating the Gaussian
process prior until the prediction model is close to the real
function f (x). Therefore, the choice of the location of the
observation point x is crucial. It is known that there has n
observation points D1:n = {x1:n, f (x1:n)}. Then one needs
to consider the next observation point xn+1 and the corre-
sponding function value f (xn+1). According to the principle
of GP distribution, f (x1:n) and f (xn+1) obey the joint Gaussian
distribution as:[
f (x1:n)
f (xn+1)

]
∼ N

(
m
([

x1:n
xn+1

])
,

[
K k∗
kT∗ k(xn+1, xn+1)

])
(7)

where k∗ can expressed as:

k∗ = [k (xn+1, x1) , k (xn+1, x2) · · · k(xn+1, xn)] (8)

According to the mention above, the probability distribution
of f (xn+1) can be easily obtained as:

P((f (xn+1 |D1:n, xn+1)) ∼ N (µ(xn+1), σ 2(xn+1)) (9)

where µ (xn+1) and σ 2 (xn+1) can be expressed as:

µ (xn+1) = = kT∗ K
−1f (x1:n) (10)

σ 2 (xn+1) = k (xn+1, xn+1)− kT∗ K
−1k∗ (11)

The derivation of the above equations is based on a
noise-free environment. However, a noise-free environment
in practical applications is rare. For example, applying a
Gaussian process to fit the relationship between DLE and
hyperparameters. Setting the same hyperparameters for mul-
tiple trials may result in different results. This shows that it
is a noisy data environment. As shown in Equation (12), y is
the signal after noise addition, where noise ε∼N (0, σ 2

noise).

And the kernel matrix of multivariate normal distribution in
Equation (6) is changes as shown in Equation (13).

y = f (x)+ ε (12)

K =

 k(x1, x1) · · · k(x1, xn)
...

. . .
...

k(xn, x1) · · · k(xn, xn)

+ σ 2
noiseI (13)

Similarly, the probability distribution of f (xn+1) in a
noisy environment is also changed, and can be expressed as
Equations (14-16) as:

P((f (xn+1 |D1:n, xn+1))

∼ N (µ (xn+1) , σ 2 (xn+1)+ σ 2
noise) (14)

µ (xn+1) = kT∗ [K + σ
2
noiseI]

−1
f (x1:n) (15)

σ 2 (xn+1) = k (xn+1, xn+1)− kT∗ [K + σ
2
noiseI]

−1
k∗ (16)

2) KERNEL FUNCTION OPTIONS
The kernel function [28] has a crucial influence on the GP,
which can affect the smoothness of the fitted curve. Equation
(5) shows the standard squared exponential kernel. It can
be seen from the equation that the points xi and xj with the
same distance have the same covariance for different data
environments. Therefore, when faced with a variety of com-
plex prediction tasks, the standard squared exponential kernel
is actually a little naive. An effective improvement method
is to add hyperparameters in the kernel function to play a
better role in a variety of data environments. The vector θ
can be applied to parameterize the kernel function, which can
be expressed as k

(
xi, xj|θ

)
. In general, the parameterization

of the kernel function is adjusted by parameters the signal
standard deviation σf and the characteristic length scale σl .
The characteristic length scale briefly defines the distance
that the input value becomes irrelevant to the response value.
By defining θ1 = logσl and θ2 = logσf , the parameters σl
and σf can be enforced greater than 0.
The improved squared exponential kernel: the results of

parameterizing the kernel function in Equation (5) are as
follows:

k
(
xi, xj|θ

)
= σ 2

f exp(−
(xi − xj)2

σ 2
l

) (17)

where σl is the characteristic length scale, and σf is the signal
standard deviation.

In addition, other kernel functions commonly used for
Bayesian optimization are the Matern class. The kernel
Matern 3/2 and Matern 5/2 are defined as:

k
(
xi, xj|θ

)
= σ 2

f (1+

√
3 r
σl

)exp(−

√
3r
σl

) (18)

k
(
xi, xj|θ

)
= σ 2

f (1+

√
5 r
σl
+

5r2

3σ 2
l

)exp(−

√
5 r
σl

) (19)

where r =
√
(xi − xj)

2.

VOLUME 8, 2020 41485

J. Li, D. He: Bayesian Optimization AdaBN-DCNN Method With Self-Optimized Structure and Hyperparameters

3) ACQUISITION FUNCTIONS OPTIONS
The Bayesian optimization process is accomplished by con-
tinuously adding observation points and performingGaussian
process priors. Therefore, the choice of observation points
will directly affect the performance of the GP, further affect-
ing the distribution of predicted function f . A ‘‘goodness’’
observation point can shorten the number of Gaussian pro-
cess iterations, so that the Gaussian posterior distribution
is closer to the actual function f . Based on the observation
points D1:n = {x1:n, f (x1:n)} and the posterior distribution
functionQ, the acquisition function is applied to find the next
observation point xnext.
As shown in Equation (20), the next observation point xnext

at which the acquisition function Acq(x) has the maximum
value, i.e., the point having the best potential tomake the xbest.

xnext = argmaxxεχAcq(x) (20)

There are many types of acquisition functions [29],
and the three commonly used include confidence bound
criteria, probability of improvement (PI), and expected
improvement (EI).

The confidence bound criteria contains: lower confidence
bound (LCB) and upper confidence bound (UCB). The LCB
is used to find the minimum value of the function, and
the UCB is used to find the maximum value. They can
expressed as:

AcqLCB (x) = kσQ (x)− µQ (x) (21)

AcqUCB (x) = kσQ (x)+ µQ (x) (22)

where µQ is the posterior mean, σQ is the posterior standard
deviation, and k ≥ 0.

The PI is to maximize the probability of improvement
over the minimum value of all observation points. When
using the PI method to find the next point, it is a pure
exploitation process compared to balanced ‘‘exploitation’’
and ‘‘exploration’’. In order to increase its ‘‘exploration’’
ability, the parameter ξ is added in the equation. The PI can
be expressed as:

AcqPI (x) = PQ
(
f (x) < f

(
x+
)
− ξ

)
= 8(

f
(
x+
)
− µQ (x)− ξ

σQ(x)
) (23)

where 8(·) is the cumulative distribution function of the
standard normal, x+ is the point with the minimum f value
among all observation points, and ξ is a trade-off parameter
slightly greater than 0.

The EI method considers not only the possibility of
improvement, but also the room for improvement. So the
‘‘exploration’’ capability of the EI method is more than the
PI method. The EI can be expressed as:
AcqEI (x) = EQ

(
max

(
0, f

(
x+
)
− f (x)− ξ

))
=

(
f
(
x+
)
− µQ (x)−ξ

)
8(Z)+σQ (x) φ(Z) ,

σQ (x) > 0
0, σQ (x) = 0

(24)

where φ(·) is probability density function of the standard
normal, and Z =

(
f
(
x+
)
− µQ (x)− ξ

)/
σQ (x).

To further compare the three acquisition functions, the GP
with three acquisition functions is applied to find xbest =
argminxy(x) in Equation (25) as:

y = 2− [e−(x−2)
2
+ e

−(x−6)2
10 +

1
x2 + 1

] (25)

The GP prediction process with the three acquisition
functions is shown in Fig. 2. The three columns (a), (b),
and (c) correspond to the three acquisition functions LCB, PI,
and EI. The initial observation points are set at x = −1 and
x = 7, and the subsequent 7 observation points are obtained
according to the three acquisition functions, corresponding to
graphs Fig. 2(a)-2 to Fig. 2 (a)-8, Fig. 2(b)-2 to Fig. 2(b)-8,
and Fig. 2(c)-2 to Fig. 2 (c)-8. Each graph in Fig. 2 contains
two parts: the GP (upper) and the acquisition function curve
(lower). The red solid line in the upper part is the objective
function y, the black dotted line is the mean of the Gaussian
posterior distribution, and the green shaded area represents
the 95% confidence interval of the predicted distribution.

Comparing the search for xbest point process of the three
acquisition functions, the methods LCB and PI are all ‘‘sink’’
in the local minimum. However, there is a difference between
the two methods. The PI method can jump out to search for
other ranges after several times around the local minimum,
while the LCB method is always search for the xbest point
around the local minimum. Compared with the first two
methods, the results of the PI method are ideal. The Gaussian
process with 9 observation points selected by PI method can
find the best point.

B. DEEP CONVOLUTIONAL NEURAL NETWORK
The DCNN [30] is a stack by several CNN layers. The
CNN is derived from the neocognitron model proposed by
Japanese scholar Fukushima in 1980 [31]. The development
of neocognitron model was inspired by the animal’s visual
cortex, which consists of the S-layer (consist of simple cells)
and C-layer (consist of complex cells). The theory of the
S-layer and C-layer continue to evolve into convolution layer
and pooling layer in the CNN. In the next 20 years, however,
CNN has not been greatly developed due to the limitations of
computing power at that time and the rise of algorithms such
as HMM and support vector machine (SVM).

Until the upsurge of deep learning research caused by
Hinton [32] in 2006, the CNN has regained widespread
attention. And with the rapid development of computing
devices, the recognition accuracy of CNN method on large-
scale visuals far exceeds other methods. The algorithm
based on CNN has won many awards in the ImageNet
large scale visual recognition challenge (ILSVRC) since
2012, such as AlexNet, ZFNet, VGGNet, GoogLeNet, and
ResNet. The CNN can use two-dimensional data as input,
and also has the characteristics of weight sharing. This
paper applies CNN to fuse multi-sensor signals to pre-
dict the RUL of mechanical equipment. The CNN typically

41486 VOLUME 8, 2020

J. Li, D. He: Bayesian Optimization AdaBN-DCNN Method With Self-Optimized Structure and Hyperparameters

FIGURE 2. Influence of acquisition function on Gaussian process: (a) lower confidence bound, (b) probability of improvement, and
(c) excepted improvement.

VOLUME 8, 2020 41487

J. Li, D. He: Bayesian Optimization AdaBN-DCNN Method With Self-Optimized Structure and Hyperparameters

FIGURE 3. Operation of 2D-convolution.

includes convolution operation, activation operation, pooling
operation, and dropout operation for overfitting prevention.

1) CONVOLUTIONAL OPERATION AND ACTIVATION
OPERATION
The convolution operation [33] consists of input data, convo-
lution kernels, and the resulting feature maps. Fig. 3 shows
a two-dimensional (2D) convolution operation in which the
input data is 2D data consisting of signals collected by n
sensors.

The convolution filter extracts multiple matrixes by sliding
over the input data. The size of the data extracted each time
by convolutional filter is the same as the size of the con-
volution kernel. The three shaded portions in the input data
are the three adjacent data extractions of the sliding convolu-
tional filter. The element-wise multiplication was performed
between the each data matrix extracted by the convolution
filter and the convolution kernel. Then all the elements in the
result are summed and plus an offset to obtain an element in
feature map. As the convolutional filter slides continuously
to extract the data matrix, a complete feature map can be
obtained. By repeating the above convolution operation on
the m convolution kernels, m feature maps can be obtained.
As shown in Fig. 3, the vertical axis of the input data is

the length of the time sequence Ls, and the horizontal axis
is signals collected by n sensors. The convolution filter and
the convolution kernel are the same size, i.e., filter_size =
kernel_size = [k1, k2]. The sliding step of the convolution
filter is [S1, S2]. The number of convolution kernels and
the number of feature maps are equal to m. The size of
the feature map is [(Ls − k1)/S1 + 1, (n − k2)/S2 + 1].
As described above, it is known that the larger the sliding
step of the convolution filter, the smaller the feature map
obtained. In order to increase the size of feature map and
extract the edge information of the input data, the input edge
padding process is performed. If the padding dimension is
p, the feature map size obtained after data edge padding is
[(Ls − k1 + 2p)/S1 + 1, (n − k2 + 2p)/S2 + 1]. Therefore,
the obtained feature map size can be adjusted by the padding
dimension p. It should be noted that the obtained feature
map size should be an integer. The data used for padding
is usually 0, which is called zero-padding. Other data can
also be used for padding the input data. The mathematical

FIGURE 4. Operations of dropout layer and pooling layer.

expression of the convolution operation and the activation
operation are as follows:

hmij = sum
(
Wm � Fcij

)
+ bm (26)

ymij = ϕ(h
m
ij) (27)

where Wm is the m-th kernel matrix, Fcij is the data matrix
extracted by the sliding convolutional filter,� is the element-
wise multiplication, bm is the offset of the m-th convolution
kernel, hmij is the m-th feature map, i and j are the stride of the
convolutional filter in the vertical and horizontal directions,
sum(&) is a process to sum all of elements in &, ϕ() is an
activation function, and ymij is the output of activation.

2) DROPOUT OPERATION AND POOLING LAYER
The purpose of dropout operation [34] for neurons in the
hidden layer is to avoid the network overfitting. It randomly
makes the hidden layer neurons to zero based on the dropout
probability dp. When the dropout operation is not performed,
all parameters of the network are fine-tuned at each epoch of
training. Multiple iterations training under the same network
structure resulted in a very low training loss, but the testing
results are usually not as expected. By randomly dropout part
of the neurons in the hidden layer, the numbers of the neurons
involved in each training epoch are different. The dropout
layer is usually placed after the convolution layer. As shown
in Fig. 4, the output of the activation function is randomly
zeroed according to the dropout probability dp. The role of the
dropout layer is to randomly reset some values in the feature
map to zero. The symbol ⊗ in Fig. 4 represents the neuron
reset to zero.

The mathematical expression of the dropout operation
is shown in Equation (28). The dropout operation is only
used during the training process. However, all neurons are
active when the network is used for testing. Therefore,
the coefficient 1

/
(1− dp) was used to correct the difference

between training and testing in dropout operation, as shown
in Equation (29).

R = rand (size (Y)) > dp (28)

Ỹ = (R� Y)
/
(1− dp) (29)

where rand() function randomly generated numbers between
0 to 1, size() extracts the dimensions of the matrix Y, R is
dropout mask containing only 0 and 1, Ỹ is the output of
dropout layer.

41488 VOLUME 8, 2020

J. Li, D. He: Bayesian Optimization AdaBN-DCNN Method With Self-Optimized Structure and Hyperparameters

Following the dropout layer, the pooling layer [35] is used
to reduce the dimension of the data and extract the data
characteristics. The pooling filter size is [k3, k4] and the
sliding step of the pooling filter is [S3, S4]. Unlike the con-
volution operation, only the data extracted by the filter itself
performs some pooling processing. Commonly used pooling
operations are maximum pooling (Max_pooling) and aver-
age pooling (Average_pooling). TheMax_pooling selects the
maximum value of the data extracted by the filter, and the
Average_pooling averages all the data extracted by the filter.
So the number of output elements is equal to the number of
filters in the pooling layer.

The mathematical expressions of the Max_pooling
operation and Average_pooling operation are as follow:

ypij = Max_pooling(Fpij) (30)

ypij = Average_pooling(Fpij) (31)

where Fpij is the data matrix extracted by the sliding pooling
filter, ypij is the p-th output of pooling layer, i and j are
the stride of the pooling filter in the vertical and horizontal
directions.

C. ADAPTIVE BATCH NORMALIZATION
A DL based RUL prediction model can be developed based
only on data. The dataset used to develop a model with
different working conditions and fault types is called the data
domain (DD). The prediction models developed in different
DDs are often not universal to each other. In order to make
the developed prediction model have a better adaptability
to various DDs, this paper applies the AdaBN algorithm
[36]. AdaBN is a novel transfer learning strategy based on
batch normalization (BN). A BN layer normalizes each input
channel across a mini-batch. It is usually placed between the
convolution operation and the activation operation. The BN
layer can speed up the network training process and reduce
the sensitivity of the convolution operation on the output
data. In the training process, all the samples are divided into
severalmini-batches for separate training. If the sample size is
represented by s and the number of samples included in each
mini-batch is represented by b, then the number of batches
nb is equal to s/b. As shown in Equation (32), the BN layer
first normalizes the output of each channel by subtracting the
mean of the mini-batch and dividing by standard deviation
of the mini-batch. However, the normalization results are
trapped in the linear activation interval of the sigmoid and
tanh activation functions. Therefore, the normalized results
shift by the learnable offset βc and scale by the learnable
scale factor γ c. Moreover, when βc = µ(Xc

1:b) and γ
c
=

σ 2
(
Xc
1:b

)
, it is equivalent to keeping the original state of the

input data Xc
j unchanged.

X̂
c
j =

Xc
j − µ(X

c
1:b)√

σ 2
(
Xc
1:b

)
+ ε

(32)

Y cj = γ
c
∗ X̂

c
j + β

c (33)

where xcj is j-th (j = 1, . . . , b) input in a mini-batch of
channel c, µ(Xc

1:b) and σ
2
(
Xc
1:b

)
are the mean and variance

of one mini-batch in channel c, ε is a very small positive
number for improving numerical stability when σ 2

(
Xc
1:b

)
is

very small, and γ c, βc are scale factor and offset.
The test data is not batch-processed and input into the

network at one time. Therefore,µ and σ 2 in Equation (32) are
replaced by the µtest and σ 2

test as shown in Equations (34-35).

µtest = E(µ1:nb) (34)

σ 2
test =

nb
nb − 1

E(σ 2
1:nb) (35)

where nb is the number of batches in training process, and
E() is the average operation.

When the prediction DD is different but similar to the
training DD, the transfer learning method is commonly
used to retrain the network. The traditional transfer learning
method retrains part of the weights and bias in the network
to adapt to the different DDs. In this way, not a large amount
of parameters need to be retrained. Only the retrained layers
in the network play a predictive role. The AdaBN method
applied in this paper keeps the weights and biases of the
network unchanged, and only retrains the scale factor γ c and
offset βc in the BN layer. Of course, µ and σ 2 should also be
replaced with µtarget and σ 2

target.

X̂
c
j =

Xc
j − µtarget√
σ 2
target + ε

(36)

Y cj = γ
c
retrain ∗ X̂

c
j + β

c
retrain (37)

where µtarget and σ 2
target are mean and variance of target

domain, γ cretrain and β
c
retrain are retrained scale factor and offset

with target data.

III. THE PROPOSED METHOD
In this paper, the proposed RUL prediction method based on
DCNN combined with Bayesian optimization and AdaBN
algorithm is explained. The Bayesian optimization method
is used to select the optimal network structure and training
hyperparameters. The AdaBN algorithm is used to improve
the adaptability of the network in multiple data domains. The
challenge in combining Bayesian optimization and DCNN is
that the network testing results should be used as the basis
for finding new observation points for Bayesian optimization.
However, the test results of the predictionmodels trainedmul-
tiple times with the same hyperparameters are not the same.
Therefore, a Gaussian process fit with ‘noise’ is used to adapt
to this situation. The combination with the AdaBN algorithm
needs to add several BN units in the DCNN. In addition, when
processing different test domains, the parameter scale factor
and offset in the BN unit must be fine-tuned.

The hyperparameters are parameters set during network
training such as learning rate, batchsize, momentum, etc. The
hyperparameters is difficult to select and has a large impact
on the prediction results. It is usually based on the experience

VOLUME 8, 2020 41489

J. Li, D. He: Bayesian Optimization AdaBN-DCNN Method With Self-Optimized Structure and Hyperparameters

FIGURE 5. Framework of the Bayesian optimization AdaBN-DCNN RUL prediction model with uncertain structures.

TABLE 2. Hyperparameters selected by Bayesian optimization method.

of the researcher to select the best hyperparameters through
multiple trials. Table 2 shows the parameters selected by
Bayesian optimization method, including structural parame-
ter and training parameters. The range of parameters is chosen
empirically. The Bayesian algorithm selects the parameters
with the best prediction result through multiple iterations
within the set range.

The structural parameter ‘network depth’ will be
introduced below in conjunction with the framework graph
of the proposed method. This paper uses a piecewise learning
rate. First set an initial learning rate, then the learning rate
gradually decreases by the amount determined as a certain
number of training epochs multiplying with a certain fac-
tor. The number of epochs for dropping the learning rate
is represent by ‘learning rate drop period’, and the factor
for dropping the learning rate is represent by ‘learning rate
drop factor’. The learning rate drop period and learning rate
drop factor are set to 10 and 0.5 respectively. The training
samples will be divided into several mini-batches for training.
The sample size contained in each batch is represented by
batchsize. The batchsize represents an integer number of
samples. The standard gradient descent (SGD) algorithm
with momentum is used to updates the network parameters
(weights and biases) and minimizes the loss function. The
SGD algorithm can oscillate along the steepest descending
path to the optimum, and the momentum term can reduce this
oscillation. Adding the L2 regularization term for the weights
is one way to reduce over-fitting.

Fig. 5 shows the framework of the Bayesian optimization
AdaBN-DCNN RUL prediction model with uncertain struc-
tures. The prediction method proposed in this paper is based

on DCNN, which includes several convolutional layers, one
pooling layer and two fully connected layers. The uncertain
structure in the prediction model is determined by 3 dotted
boxes. The number of dotted boxes represents the ‘network
depth’ in Table 2. The same number of convolutional layers
contain in the three dotted boxes.

And the number of dashed boxes that make up the
prediction model is determined by Bayesian optimization.
In order to improve the network’s ability to adapt to multiple
DDs, BN units have been added in the convolutional layer
and the fully connected layer. When dealing with different
predicted DDs, only the green BN unit in Fig. 5 needs
to be retrained to make a better prediction result. The fil-
ters of multiple convolutional layers in the same dashed
boxes have the same size, stride and numbers. The fil-
ter size in the three dashed boxes are [6 1], [4 1] and
[2 1] respectively. All the filters have the same stride
[2 1]. The same number of filters is used for all the
convolution layers in the same dashed box. The initial
number of filters can be determined by Equation (38).
The number of filters used for the convolution layer in
the three dashed boxes are NumFilters, 2× NumFilters, and
3× NumFilters respectively.

NumFilters = round(10
/√

nd) (38)

where nd is the ‘Network depth’, round() is a function round
to nearest integer, and NumFilters is the initial number of
filters.

There is a pooling layer and two fully connected
layers after the convolutional layers. The Average_pooling
operation is used in the pooling layer. The pooling filter
size is [1 2], and the stride of the pooling filter is [1 1].
The number of neurons in the two fully connected layers is
30 and 1 respectively. The activation function used in the
prediction network is ReLU. The activation function is not
shown in Fig. 5, and it should be placed behind the green
BN unit. The output of the last fully connected layers is the
predicted RUL.

Table 3 shows the overall flow of the proposed RUL
prediction method. The purpose of the proposed method is

41490 VOLUME 8, 2020

J. Li, D. He: Bayesian Optimization AdaBN-DCNN Method With Self-Optimized Structure and Hyperparameters

TABLE 3. An overall procedure of the proposed RUL prediction method.

to construct a prediction model with self-optimizing structure
and hyperparameter selection. It improves domain adaptabil-
ity of themodel. The first step is to segment and normalize the
training and test data. Step 2 builds an AdaBN-DCNNmodel
for prediction. The function f between various hyperparam-
eters and test errors is also developed. Step 3 is the process
of searching for the best hyperparameter set using Bayesian
optimization. Step 4 is to use AdaBN strategy to improve
prediction accuracy with changing test data domains.

IV. VALIDATION OF THE PROPOSED METHOD
A. C-MAPSS DATASET DESCRIPTION
The simulated turbofan engine run to failure data was used
to validation the proposed prediction model. The simulated
data was produced using a model based simulation program
C-MAPSS developed by NASA [37]. This section provides
a detailed description of 5 parts: simulated signal selection,
time window (TW) processing, data normalization, RUL
function correction, and model evaluation method. As shown
in Fig. 6, the structure of the simulated turbofan mainly
consists of 5 parts: fan, low pressure compressor (LPC),

FIGURE 6. A simplified diagram of the simulation engine in C-MAPSS.

TABLE 4. Description of the C-MAPSS dataset.

high pressure compressor (HPC), combustor, high pressure
turbine (HPT), and low pressure turbine (LPT). Symbols
N1 and N2 in Fig. 6 represent the core shaft and the fan shaft,
respectively.

The C-MAPSS datasets contains multiple sets of run to
failure data from different engine states. It is divided into
4 sub-datasets according to the simulated operating condi-
tions and fault modes. Each sub-dataset contains independent
training data and test data which consists of several sets of
data from different engine run to failure health conditions. For
example, FD001 contains 100 sets of training engine data and
100 sets of test engine data. In order to test all the data in the
test dataset, the TW length should be less than or equal to the
minimum number of cycles in the test dataset. More details
on the C-MAPSS dataset are given in Table 4.

The description of the 21 collected engine simulation sen-
sor outputs is provided in Table 5. As the operating state of the
engine changes, some of the collected data show a significant
trend of increasing (↑) or decreasing (↓), while others show a
fluctuating trend (∼). In order to meet the prediction require-
ments, only 14 simulation output signals with a significant
trend were selected as inputs to the predictive model.

14 signals with regular trends in Table 5 were selected
to evaluate the RUL of the engine. The RUL of the engine
is measured in cycles. Each data point in each cycle of the
engine contains 14 features. Normally, one would use the
14 features as inputs to predict the RUL. Since the signals
don’t change consistently with RUL of the engine and the
time series data cannot directly fed into a CNN, the method
proposed uses a period of time data to predict the RUL of the

VOLUME 8, 2020 41491

J. Li, D. He: Bayesian Optimization AdaBN-DCNN Method With Self-Optimized Structure and Hyperparameters

TABLE 5. 21 sensor outputs of the simulation engine running.

engine as the RUL of the last time point in this period. The
sliding TW method was used to cut an entire time series data
into several segments. The time series length is Ts, the TW
length is Ltw, and the sliding step of the TW is Sl . Then the
obtained number of data segments is (Ts − Ltw)/Sl + 1.
As a result of the pre-processing, 14 engine-related features

were generated from the 14 selected sensor output signals.
The values of these features vary from zero to hundreds.
In order to use these features uniformly as input to the
predictive model, it is necessary to normalize the feature
values. In this paper, the z-score normalization processing
was applied to process each feature separately, as shown in
Equation (39):

yn = (xn − µx)/σx (39)

where xn is the n-th feature vector,µx is the average of feature
vector xn, σx is the standard deviation of feature vector xn, and
yn is the normalized data.

The first engine of the FD001 training set contains 192
cycles. The selected 14 engine related features were normal-
ized as shown in Fig. 7(a). It can be seen that the 14 signals
either increase or decrease with engine degradation. The
predictive model predicts the RUL of the engine based on
changes in parameters during engine degradation. However,
it can be seen from Fig. 7 that the features remain relatively
unchanged at the beginning of the engine operation. Based on
this observation, the standard output of the prediction model
was modified. The commonly used linear RUL function was
replaced by the piecewise linear RUL function. According to
the literature [38], the maximum service life of the engine is
set to 125. As shown in Fig. 7(b), a piecewise linear RUL
function is obtained by replacing RUL > 125 in the linear
RUL function with 125.

To measure the RUL prediction accuracy, both late
prediction and early prediction errors have to be considered.

FIGURE 7. Engine #1 in FD001 sub-dataset: (a) normalized 14 signals and
(b) piecewise linear RUL function.

When the predicted RUL is greater than the actual RUL,
it is called late prediction, and the opposite is called early
prediction. In order to evaluate the predictive ability of the
model, two commonly used evaluation methods are adopted
in this paper, as shown in Equations (40) and (41). Comparing
the two evaluation methods, it can be found that ERMSE in
Equation (40) has the same penalty for both the late prediction
and the early prediction, while Escore in Equation (41) has a
greater penalty for the late prediction.

ERMSE =

√
(
∑m

i=1
(ypi − y

a
i)

2)
/
m (40)

Escore =
∑m

i=1
di, di =

{
e−(y

p
i −y

a
i)/13, ypi − y

a
i < 0

e−(y
p
i −y

a
i)/10, ypi − y

a
i ≥ 0

(41)

where ERMSE is the root mean square error of the prediction
result, Escore is a prediction result evaluation method, ypi is the
predicted RUL of i-th test engine, yai is the actual RUL of i-th
test engine, and m is the number of test engines.

B. RESULTS AND ANALYSIS
1) PREDICTION RESULTS WITH BAYESIAN OPTIMIZATION
The advantage of the proposed method is that it can optimize
the structure and select hyperparameters by itself. Therefore,
only the range of the parameters needs to be determined dur-
ing network training, as shown in Table 2. As shown in Fig. 5,
the network includes three types of layers: convolutional
layer, pooling layer, and fully connected layer. The filter sizes
of the convolutional layers in the three dashed boxes are [6 1],
[4 1] and [2 1], respectively. All the filters have the same
stride [2 1]. The pooling filter size is [1 2], and the stride of
the pooling filter is [1 1]. The number of neurons in the two
fully connected layers are 30 and 1. The standard gradient
descent (SGD) algorithmwith momentumwas used to update
the network parameters. The maximum number of training
epochs was set to 40. The number of epochs for dropping
the learning rate was represent by ‘learning rate drop period’,

41492 VOLUME 8, 2020

J. Li, D. He: Bayesian Optimization AdaBN-DCNN Method With Self-Optimized Structure and Hyperparameters

TABLE 6. Bayesian optimization for multiple iterations to search for the best parameters in FD001.

and the factor for dropping the learning rate was represent by
‘learning rate drop factor’. The learning rate drop period and
learning rate drop factor were set to 10 and 0.5, respectively.

The results of predicting FD001 sub-dataset of the
C-MAPSS using the proposed prediction model are provided
in Table 6. The information for the 30 iterations in the table
include: evaluation result, running time, ERMSE, best ERMSE,
and selected 5 hyperparameters. There are three measures for
the evaluation results: ‘Best’, ‘Accept’, and ‘Error’. The eval-
uation results are based on ERMSE. When the obtained ERMSE
is the current minimum, the measure of the evaluation results
for this iteration is ‘Best’.When the obtainedERMSE is not the
minimum value and the result of this iteration is accepted by
Bayesian optimization, the measure of the evaluation results
for this iteration is ‘Accept’. When the result cannot be used
for the subsequent Bayesian optimization, the measure of the
evaluation results is ‘Error’. ERMSE is the evaluation result of
themodel tested by the test dataset. Smaller testERMSE values
indicate that the corresponding model has better prediction
capacity. ‘Best ERMSE’ shows the best ERMSE obtained by the
existing iterations. The 5 parameters, such as network depth
and initial learning rate (LR) etc., were selected in the range
by the Bayesian optimization.

The proposed prediction method was used on the
4 sub-datasets of C-MAPSS, and the results obtained are
shown in Table 7. It contains the test ERMSE result, the run-
ning time and the hyperparameters corresponding to the best
ERMSE. It can be seen from Table 4 that the time window

length of the 4 datasets are different. The obtained sample
size is also different. Therefore, the sliding step of the CNN
filter for different sub-dataset is different. The sliding step
of the FD001 and FD002 datasets is [2, 1], the sliding step
of FD003 is mixed with [2, 1] and [1, 1], and the sliding
step of FD004 is [1, 1]. Therefore, the running time of the
proposed method on the 4 sub-datasets is also quite different
as shown in Table 7.

Fig. 8 shows the prediction results of the predictionmethod
in the FD001 dataset. Fig. 8(a) shows the prediction RUL
curve and the actual RUL curve for 100 test engine units
in FD001. The prediction capability of the network can be
roughly seen from Fig. 8(a). In order to display the prediction
results more intuitively, the 100 prediction engine units were
sorted by the actual RUL as shown in Fig. 8(b). The red
line is the sorted actual RUL, the black triangle label is
the distribution of predicted RUL, and the colored area is
the error band. The prediction error of the engines can be
directly observed by the distribution of prediction RUL in the
error band. The prediction error distribution histogram of the
FD001 test sub-dataset is shown in Fig. 8(c). It can be seen
from Fig. 8(c) that the number of engines with a prediction
error between [−10, 10] is 69%, and between [−20, 20] is
89%. Similarly, Fig. 9 - Fig.11 show the test results of the
FD002, FD003, and FD004 test datasets.

The two measures shown in Equations (40) and (41) were
used for evaluating the prediction results. In order to show
the prediction capability of the proposed method, the results

VOLUME 8, 2020 41493

J. Li, D. He: Bayesian Optimization AdaBN-DCNN Method With Self-Optimized Structure and Hyperparameters

TABLE 7. The best parameters selected by the Bayesian optimization for the 4 sub-datasets.

FIGURE 8. Test results of FD001 sub-dataset: (a) comparison of actual RUL curve and prediction RUL curve, (b) prediction results error band, and
(c) distribution histogram of prediction error.

FIGURE 9. Test results of FD002 sub-dataset: (a) comparison of actual RUL curve and prediction RUL curve, (b) prediction results error band, and
(c) distribution histogram of prediction error.

FIGURE 10. Test results of FD003 sub-dataset: (a) comparison of actual RUL curve and prediction RUL curve, (b) prediction results error band, and
(c) distribution histogram of prediction error.

of the proposed method along with the prediction methods
using C-MAPSS for validation in the past 4 years reported in
the literature are presented in Table 8. Although the ERMSE
and Esorce evaluation measures are slightly different, both
represent a good prediction result when their value is small.
In order to highlight the best prediction method, the best
results for each comparison are bolded in the table. As shown

in the table, the predicted results of the proposed method are
the best except for the Esorce result of the FD004 sub-dataset.

2) INFLUENCE OF THE HYPERPARAMETERS
ON PREDICTION RESULTS
The Bayesian optimization method searches for the best com-
bination of parameters by continuously adding observation

41494 VOLUME 8, 2020

J. Li, D. He: Bayesian Optimization AdaBN-DCNN Method With Self-Optimized Structure and Hyperparameters

FIGURE 11. Test results of FD004 sub-dataset: (a) comparison of actual RUL curve and prediction RUL curve, (b) prediction results error band, and
(c) distribution histogram of prediction error.

TABLE 8. Comparison of the prediction results with other methods.

points and repeating the Gaussian process. The selection of
the next observation points is based on the fitting curve by
the Gaussian process. As the number of added observation
points increases, the curve fitted by the Gaussian process will
approach the actual distribution of the function.

The Gaussian optimization was used to optimize the
hyperparameters such as initial learning rate, batchsize,
momentum, and L2 regularization respectively. When one
hyperparameter is being optimized, the other hyperparame-
ters are set as in Table 7. Fig. 12 shows the Gaussian process
for 4 hyperparameters with 30 observation points for the
FD001 sub-dataset. The horizontal axis corresponds to the
search range of the hyperparameters, and the vertical axis
represents the ERMSE value of using the FD001 test dataset
for validating the predictionmodel. The effects of the 4 hyper-
parameters value on the prediction capacity of the developed
model are shown in Fig. 12. The red line in Fig. 12 is the
predictive function mean obtained by Bayesian optimiza-
tion. The 30 blue dots are the 30 observation points for the
Gaussian process. The larger black dot is the position of the
next observation point selected according to the acquisition
function. And the red star point is the point with the lowest
function mean. The prediction results by the CNN-based
prediction model performed multiple times under the same
hyperparameter setting are different. Therefore, it conforms
to the Bayesian optimization under the noisy environment.
Fig. 12 increases the noise error bars compared to Fig. 1, and
the error at the observation point is not 0.

Fig. 12 shows the effect of a single hyperparameter on
the prediction model. Next, the effect of the two hyper-
parameters on the predictive model will be discussed.

There are 5 hyperparameters discussed including network
depth, learning rate, momentum, batch size, and L2 regu-
larization. Two of the five hyperparameters were randomly
selected as a group, and there were 10 groups. Fig. 13 shows
the effect of 10 different groups of parameters on the pre-
diction model. The red surface shown in Fig.13 is model
mean representing the effect of two hyperparameters on the
predictive model. The blue dots, black dots, and red star
points have the same meaning as in Fig. 12. The z-coordinate
of Fig. 13 represents the ERMSE value of the FD001
sub-dataset test results, and RMSE is used in the
figure instead.

The network depth in the 5 hyperparameters is a discrete
integer containing only 1, 2, and 3. The other hyperparame-
ters are consecutive numbers in the range. Therefore, the sur-
face of Fig. 13(a), Fig. 13(b), Fig. 13(c), and Fig. 13(d)
containing the network depth has a fracture phenomenon.
And the surface of other graphs is continuous. The contoured
lines on the bottom of the graphs correspond to changes of
the red surface, whereas the blue color represents a smaller
value and the yellow color represents a larger value.

Next, the results obtained by the Bayesian optimization is
compared with the grid search and the random search. The
results of finding the best hyperparameters using the
Bayesian optimizationmethod have been provided in Table 6.
Tables 9 and 10 are the results of using grid search and
random search methods, respectively. The tables contain 5
hyperparameters: learning rates (LR), network depth (Depth),
momentum (Mo), batch size (Bs), and L2 regularization
(L2). The number of iterations is denoted by #. The test
ERMSE of the FD001 test dataset is also shown in the table.

VOLUME 8, 2020 41495

J. Li, D. He: Bayesian Optimization AdaBN-DCNN Method With Self-Optimized Structure and Hyperparameters

FIGURE 12. The influence of single hyperparameters on prediction model: (a) Initial learning rate, (b) Batchsize,
(c) Momentum, and (d) L2 regularization.

TABLE 9. Grid search for multiple iterations to search for the best parameters in FD001.

The grid search method selected several values within the
range of each hyperparameter and then selected a value
for each hyperparameter to form a parameter combination.
Finally, all the parameter combinations were used for training
and testing and the parameter combination with the best
prediction result was selected. In Table 9, the network depth

has three values of 1, 2, and 3; the learning rate has two values
1E-3 and 5E-3; the momentum has two values 0.4 and 0.8; the
batch size has two values 400 and 600; the L2 regularization
has two values 1E-3 and 1E-6. Therefore, there are a total
of 48 (3 × 2 × 2 × 2 × 2 = 48) parameter combinations.
The 48 parameter combinations and their corresponding test

41496 VOLUME 8, 2020

J. Li, D. He: Bayesian Optimization AdaBN-DCNN Method With Self-Optimized Structure and Hyperparameters

FIGURE 13. The influence of two kinds of hyperparameters on prediction model: (a) Network depth-Initial learning rate, (b) Network
depth-Batchsize, (c) Network depth-Momentum, (d) Network depth-L2 regularization, (e) Initial learning rate-Batchsize, (f) Initial learning
rate- Momentum, (g) Initial learning rate-L2 regularization, (h) Batchsize-Momentum, (i) Batchsize-L2 regularization, and
(j) Momentum-L2 regularization.

ERMSE values are shown in Table 9. The minimum pre-
diction ERMSE of 12.56 was obtained by #33 parameter
combination. When the random search method was used,

each hyperparameter value was randomly generated within
the range for training. The random parameters training and
results of 30 times are shown in Table 10. The network

VOLUME 8, 2020 41497

J. Li, D. He: Bayesian Optimization AdaBN-DCNN Method With Self-Optimized Structure and Hyperparameters

TABLE 10. Random search for multiple iterations to search for the best parameters in FD001.

TABLE 11. The best parameters selected by the Bayesian optimization with the TW length 18.

TABLE 12. The Cross Prediction results of the 4 sub-datasets.

depth is an integer and contains only 3 values. Therefore,
the grid search was adopted when selecting the network
depth. And 10 trials were performed in each network depth.
The minimum prediction ERMSE of 12.32 was obtained by
#28 parameter combination in the random search. Comparing
the three parameter selection methods in Table 6, Table 9,
and Table 10, the Bayesian optimization method is the best,
and the random search method is slightly better than the grid
search method.

There are m hyperparameters, and each hyperparameter
selects n values, then there are a total of nm kinds of parameter
combinations for the grid search. The disadvantage of the
grid search method is that all the parameter combinations
are tried, and each attempt takes a lot of time and effort.
Therefore, in order to avoid excessive computational times,
it is necessary to reduce the number of values of each hyper-
parameter. However, too few values for each hyperparameter
will affect the optimization results. The experimental results
show that the random searchmethod is better than grid search.
However, there is no correlation between any two trials in
the random search, so the stability of the search is poor.

Compared to the above two parameter-finding method,
Bayesian optimization can determine the next trial param-
eters based on the existing results. This allows for better
predictions with fewer trials.

3) PREDICTION RESULTS IN DIFFERENT DATA DOMAINS
The application of data-driven prediction methods does
not require a deep understanding of the mechanical equip-
ment, relying solely on data to develop a prediction model.
However, when the test data differs greatly from the data
used for the training model, the accuracy of the prediction is
low. Retraining the model is time consuming and laborious,
so the ability of the model to adapt to different DDs is very
important. In this paper, the BN unit is added to the model.
When the test DD changes, adjusting the offset and scale
factor in the BN unit can quickly adapt the model to the new
DD. The 4 sub-datasets in CMAPSS were used to test the
ability of the proposed prediction model to adapt to different
DDs. In order to make the input data size of the 4 sub-datasets
consistent, the window length during data processing was
all set to 18. Table 11 shows the results of hyperparameter

41498 VOLUME 8, 2020

J. Li, D. He: Bayesian Optimization AdaBN-DCNN Method With Self-Optimized Structure and Hyperparameters

FIGURE 14. Comparison of the improvement of AdaBN in cross prediction: (a) FD001→FD002, (b) FD001→FD003, (c) FD001→FD004,
(d) FD002→FD001, (e) FD002→FD003, (f) FD002→FD004, (g) FD003→FD001, (h) FD003→FD002, (i) FD003→FD004, (j) FD004→FD001,
(k) FD004→FD002, and (l) FD004→FD003.

selection for Bayesian optimization of 4 sub-datasets with the
WT length of 18. This section is intended to discuss the ability
of the prediction model to predict different DDs. The sliding
steps of the 4 sub-datasets convolution filters were all set to
[2, 1]. Hence, the running time of the 4 datasets was similar.
Since the input data time series length was shortened to 18,
the diagnostic ERMSE in Table 11 is slightly larger than that

in Table 7. And the 5 hyperparameters were selected in the
same way as above.

Table 12 shows the results of cross prediction of 4
sub-datasets. The source domain was the data used to train the
prediction model, and the target domain was the data domain
used in the test. The prediction results include both ERMSE
and Esorce. It also compares the results of the fine-tuning

VOLUME 8, 2020 41499

J. Li, D. He: Bayesian Optimization AdaBN-DCNN Method With Self-Optimized Structure and Hyperparameters

the network with or without the AdaBN method. It can
be seen from the Table 12 that the prediction results can
be improved after the fine-tuning by the proposed AdaBN
method. In particular, the ERMSE fine-tuned by the AdaBN
method in the 4 cases of FD002→FD001, FD002→FD003,
FD004→FD001, and FD004→FD003 is reduced by nearly
10 times. In addition, the ERMSE fine-tuned by the AdaBN
method in the 4 cases of FD001→FD002, FD001→FD004,
FD003→FD002, and FD003→FD004 is reduced by nearly
2 times. In other cases, the improvement effect of AdaBN is
also obvious.

Fig. 14 compare the results of the cross DD prediction
with or without the AdaBN fine-tuned network. The three
graphs in Fig. 14(a-c) are based on FD001 as the source
domain training model, and the other 3 sub-datasets are used
as target domains for testing. The prediction results in the
three cases in Fig. 14(a) are: (1) prediction of the RUL of the
FD002 using the model trained by FD001 without AdaBN;
(2) prediction of the RUL of the FD002 using the model
trained by FD001 with AdaBN; (3) prediction of the RUL
of the FD002 using the model trained by FD002. It can be
seen intuitively from Fig. 14 that the prediction results after
AdaBN fine-tuning have been significantly improved. And it
is close to the prediction results that are trained and tested
with the same DD. Fig. 14(a-c) correspond to the FD001 col-
umn in Table 11. The following Fig. 14(d-f), Fig. 14(g-i), and
Fig. 14(j-l) are cross-predictions with FD002, FD003, and
FD004 as the source domains, respectively. Table 4 shows
that FD001 and FD003 contain fewer fault modes and oper-
ating conditions, and more fault modes and operating con-
ditions are included in FD002 and FD004. Combined with
Table 12 and Fig. 14, it can be concluded that AdaBN per-
forms better when predicting the DD with fewer fault modes
and operating conditions using models trained in a DD with
more fault modes and operating conditions.

V. CONCLUSION
This paper presented a novel RUL prediction model devel-
oped using a DCNN combined with Bayesian optimization
and AdaBN. The model has a self-optimized structure and
hyperparameters of DCNN. The Bayesian optimization was
integrated into DCNN to achieve automatic structure and
hyperparameter selection. In addition, in order to improve
the ability of the prediction model to adapt to multiple DDs,
BN units and AdaBN fine-tuning strategy were also inte-
grated. The proposed prediction method was validated by the
CMAPSS simulated turbofan engine dataset. The prediction
performance of the proposed method was compared with
other predictionmethods validated by the CMAPSS dataset in
the past 4 years. The comparison results show that the perfor-
mance of the proposed prediction method is better than other
methods. The following conclusions can also be obtained:

(1) The 4 sub-datasets in CMAPSS were all used to test the
proposed self-optimization prediction method. The pre-
diction results of the FD001 and FD003 sub-datasets with
fewer operating conditions and fault modes are better.

Both ERMSE and Esorce show that the overall prediction
results of the proposed method are better than other
prediction methods in the past 4 years.

(2) The Bayesian optimization method finds the best
combination of hyperparameters through multiple itera-
tions. Comparing the grid search and the random search,
the Bayesian method can obtain better prediction results
with fewer iterations. And the Bayesian optimization
method can intuitively reflect the relationship between
the hyperparameters and the prediction results through
the fitted curve or surface.

(3) Adding BN units to the model and fine-tuning the
network through the AdaBN method when predicting
different DDs canmake the predictionmodel work better.
The proposed AdaBN fine-tuning strategy can avoids the
loss of time and effort in retraining the model. And the
results obtained are close to the prediction results of train-
ing and testing using the same DD. In addition, it can be
concluded that AdaBN performs better when predicting
simple DD using models trained in complex DD.

REFERENCES
[1] K. L. Tsui, N. Chen, Q. Zhou, Y. Hai, and W. Wang, ‘‘Prognostics and

health management: A review on data driven approaches,’’Math. Problems
Eng., vol. 2015, pp. 1–17, May 2015, doi: 10.1155/2015/793161.

[2] Y. Cao, W. Wei, C. Wang, S. Mei, S. Huang, and X. Zhang, ‘‘Probabilis-
tic estimation of wind power ramp events: A data-driven optimization
approach,’’ IEEE Access, vol. 7, pp. 23261–23269, 2019.

[3] L. Liu, Q. Guo, D. Liu, and Y. Peng, ‘‘Data-driven remaining useful life
prediction considering sensor anomaly detection and data recovery,’’ IEEE
Access, vol. 7, pp. 58336–58345, 2019.

[4] D. N. T. How,M. A. Hannan,M. S. H. Lipu, and P. J. Ker, ‘‘State of charge
estimation for lithium-ion batteries using model-based and data-driven
methods: A review,’’ IEEE Access, vol. 7, pp. 136116–136136, 2019.

[5] R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang, and R. X. Gao, ‘‘Deep
learning and its applications to machine health monitoring,’’
Mech. Syst. Signal Process., vol. 115, pp. 213–237, Jan. 2019, doi:
10.1016/j.ymssp.2018.05.050.

[6] L. Ren, Y. Sun, H. Wang, and L. Zhang, ‘‘Prediction of bearing remaining
useful life with deep convolution neural network,’’ IEEE Access, vol. 6,
pp. 13041–13049, 2018.

[7] W. Yu, I. Y. Kim, and C. Mechefske, ‘‘Remaining useful life estimation
using a bidirectional recurrent neural network based autoencoder scheme,’’
Mech. Syst. Signal Process., vol. 129, pp. 764–780, Aug. 2019, doi:
10.1016/j.ymssp.2019.05.005.

[8] S. Zhao, Y. Zhang, S. Wang, B. Zhou, and C. Cheng, ‘‘A recurrent neural
network approach for remaining useful life prediction utilizing a novel
trend features construction method,’’Measurement, vol. 146, pp. 279–288,
Nov. 2019, doi: 10.1016/j.measurement.2019.06.004.

[9] A. Elsheikh, S. Yacout, and M.-S. Ouali, ‘‘Bidirectional handshaking
LSTM for remaining useful life prediction,’’ Neurocomputing, vol. 323,
pp. 148–156, Jan. 2019, doi: 10.1016/j.neucom.2018.09.076.

[10] Y. Wu, M. Yuan, S. Dong, L. Lin, and Y. Liu, ‘‘Remaining useful
life estimation of engineered systems using vanilla LSTM neural
networks,’’ Neurocomputing, vol. 275, pp. 167–179, Jan. 2018, doi:
10.1016/j.neucom.2017.05.063.

[11] M. Rigamonti, P. Baraldi, E. Zio, I. Roychoudhury, K. Goebel, and S. Poll,
‘‘Ensemble of optimized echo state networks for remaining useful life
prediction,’’ Neurocomputing, vol. 281, pp. 121–138, Mar. 2018, doi:
10.1016/j.neucom.2017.11.062.

[12] L. Yang, F. Wang, J. Zhang, andW. Ren, ‘‘Remaining useful life prediction
of ultrasonic motor based on elman neural network with improved particle
swarm optimization,’’ Measurement, vol. 143, pp. 27–38, Sep. 2019, doi:
10.1016/j.measurement.2019.05.013.

[13] X. Li, W. Zhang, and Q. Ding, ‘‘Deep learning-based remaining useful life
estimation of bearings usingmulti-scale feature extraction,’’ Rel. Eng. Syst.
Saf., vol. 182, pp. 208–218, Feb. 2019, doi: 10.1016/j.ress.2018.11.011.

41500 VOLUME 8, 2020

http://dx.doi.org/10.1155/2015/793161
http://dx.doi.org/10.1016/j.ymssp.2018.05.050
http://dx.doi.org/10.1016/j.ymssp.2019.05.005
http://dx.doi.org/10.1016/j.measurement.2019.06.004
http://dx.doi.org/10.1016/j.neucom.2018.09.076
http://dx.doi.org/10.1016/j.neucom.2017.05.063
http://dx.doi.org/10.1016/j.neucom.2017.11.062
http://dx.doi.org/10.1016/j.measurement.2019.05.013
http://dx.doi.org/10.1016/j.ress.2018.11.011

J. Li, D. He: Bayesian Optimization AdaBN-DCNN Method With Self-Optimized Structure and Hyperparameters

[14] J. Zhu, N. Chen, and W. Peng, ‘‘Estimation of bearing remaining use-
ful life based on multiscale convolutional neural network,’’ IEEE
Trans. Ind. Electron., vol. 66, no. 4, pp. 3208–3216, Apr. 2019, doi:
10.1109/TIE.2018.2844856.

[15] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, ‘‘Algorithms for
hyper-parameter optimization,’’ in Proc. Neural Inf. Process. Syst. Conf.,
Granada, Spain, 2011, pp. 2546–2554.

[16] D. Sen, A. Aghazadeh, A. Mousavi, S. Nagarajaiah, R. Baraniuk, and
A. Dabak, ‘‘Data-driven semi-supervised and supervised learning algo-
rithms for health monitoring of pipes,’’ Mech. Syst. Signal Process.,
vol. 131, pp. 524–537, Sep. 2019, doi: 10.1016/j.ymssp.2019.06.003.

[17] Z. Tian, L. Wong, and N. Safaei, ‘‘A neural network approach for remain-
ing useful life prediction utilizing both failure and suspension histories,’’
Mech. Syst. Signal Process., vol. 24, no. 5, pp. 1542–1555, Jul. 2010, doi:
10.1016/j.ymssp.2009.11.005.

[18] J. Bergstra and Y. Bengio, ‘‘Random search for hyper-parameter optimiza-
tion,’’ J. Mach. Learn. Res., vol. 12, pp. 281–305, Feb. 2012.

[19] S. J. Pan and Q. Yang, ‘‘A survey on transfer learning,’’ IEEE Trans.
Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010, doi:
10.1109/TKDE.2009.191.

[20] B. Yang, Y. Lei, F. Jia, and S. Xing, ‘‘An intelligent fault diagnosis
approach based on transfer learning from laboratory bearings to locomotive
bearings,’’Mech. Syst. Signal Process., vol. 122, pp. 692–706, May 2019,
doi: 10.1016/j.ymssp.2018.12.051.

[21] A. Zhang, H. Wang, S. Li, Y. Cui, Z. Liu, G. Yang, and J. Hu, ‘‘Trans-
fer learning with deep recurrent neural networks for remaining useful
life estimation,’’ Appl. Sci., vol. 8, no. 12, p. 2416, Nov. 2018, doi:
10.3390/app8122416.

[22] J. Wang, S. Li, Z. An, X. Jiang, W. Qian, and S. Ji, ‘‘Batch-normalized
deep neural networks for achieving fast intelligent fault diagnosis
of machines,’’ Neurocomputing, vol. 329, pp. 53–65, Feb. 2019, doi:
10.1016/j.neucom.2018.10.049.

[23] D. Xiao, Y. Huang, C. Qin, H. Shi, and Y. Li, ‘‘Fault diagnosis of
induction motors using recurrence quantification analysis and LSTM
with weighted BN,’’ Shock Vib., vol. 2019, pp. 1–14, Jan. 2019, doi:
10.1155/2019/8325218.

[24] L. Bottou, ‘‘Stochastic gradient descent tricks,’’ inNeural Networks: Tricks
Trade, vol. 7700, G. Montavon, G. B. Orr, and K.-R. Müller, Eds. Berlin,
Germany: Springer, 2012, pp. 421–436, doi: 10.1007/978-3-642-35289-
8_25.

[25] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas, ‘‘Tak-
ing the human out of the loop: A review of Bayesian optimization,’’
Proc. IEEE, vol. 104, no. 1, pp. 148–175, Jan. 2016, doi: 10.1109/
JPROC.2015.2494218.

[26] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning. Cambridge, MA, USA: Massachusetts Institute of Technology,
2006. [Online]. Available: https://www.GaussianProcess.org/gpml

[27] C. E. Rasmussen, ‘‘Gaussian processes in machine learning,’’ in Advanced
Lectures on Machine Learning, vol. 3176, O. Bousquet, U. von Luxburg,
and G. Rätsch, Eds. Berlin, Germany: Springer, 2004, pp. 63–71, doi:
10.1007/978-3-540-28650-9_4.

[28] J. Snoek, H. Larochelle, and R. P. Adams, ‘‘Practical Bayesian optimiza-
tion of machine learning algorithms,’’ in Advances in Neural Information
Processing Systems, 2012, pp. 2951–2959.

[29] E. Brochu, V. M. Cora, and N. de Freitas, ‘‘A tutorial on Bayesian opti-
mization of expensive cost functions, with application to active user mod-
eling and hierarchical reinforcement learning,’’ 2010, arXiv:1012.2599.
[Online]. Available: http://arxiv.org/abs/1012.2599

[30] W. Wang, J. Shen, and L. Shao, ‘‘Video salient object detection via fully
convolutional networks,’’ IEEE Trans. Image Process., vol. 27, no. 1,
pp. 38–49, Jan. 2018, doi: 10.1109/TIP.2017.2754941.

[31] K. Fukushima, ‘‘Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in posi-
tion,’’ Biol. Cybern., vol. 36, no. 4, pp. 193–202, Apr. 1980, doi:
10.1007/BF00344251.

[32] G. E. Hinton, S. Osindero, and Y.-W. Teh, ‘‘A fast learning algorithm for
deep belief nets,’’Neural Comput., vol. 18, no. 7, pp. 1527–1554, Jul. 2006,
doi: 10.1162/neco.2006.18.7.1527.

[33] X. Li, Q. Ding, and J.-Q. Sun, ‘‘Remaining useful life estimation in prog-
nostics using deep convolution neural networks,’’ Rel. Eng. Syst. Saf.,
vol. 172, pp. 1–11, Apr. 2018, doi: 10.1016/j.ress.2017.11.021.

[34] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, ‘‘Dropout: A simple way to prevent neural networks
from overfitting,’’ J. Mach. Learn. Res., vol. 15, pp. 1929–1958, 2014.

[35] D. Hutchison, ‘‘Evaluation of pooling operations in convolutional
architectures for object recognition,’’ in Artificial Neural Networks,
vol. 6354, K. Diamantaras, W. Duch, and L. S. Iliadis, Eds. Berlin,
Germany: Springer, 2010, pp. 92–101, doi: 10.1007/978-3-642-15825-
4_10.

[36] Y. Li, N. Wang, J. Shi, X. Hou, and J. Liu, ‘‘Adaptive batch normalization
for practical domain adaptation,’’ Pattern Recognit., vol. 80, pp. 109–117,
Aug. 2018, doi: 10.1016/j.patcog.2018.03.005.

[37] A. Saxena, K. Goebel, D. Simon, and N. Eklund, ‘‘Damage propagation
modeling for aircraft engine run-to-failure simulation,’’ in Proc. Int. Conf.
Prognostics Health Manage., Denver, CO, USA, Oct. 2008, pp. 1–9, doi:
10.1109/PHM.2008.4711414.

[38] J. Wang, G. Wen, S. Yang, and Y. Liu, ‘‘Remaining useful life estimation
in prognostics using deep bidirectional LSTM neural network,’’ in Proc.
Prognostics Syst. Health Manage. Conf. (PHM-Chongqing), Chongqing,
China, 2018, pp. 1037–1042, doi: 10.1109/PHM-Chongqing.2018.00184.

[39] G. S. Babu, P. Zhao, and X.-L. Li, ‘‘Deep convolutional neural network
based regression approach for estimation of remaining useful life,’’ in
Database Systems for Advanced Applications, vol. 9642, S. B. Navathe,
W. Wu, S. Shekhar, X. Du, X. S. Wang, and H. Xiong, Eds. Cham,
Switzerland: Springer, 2016, pp. 214–228, doi: 10.1007/978-3-319-32025-
0_14.

[40] S. Zheng, K. Ristovski, A. Farahat, and C. Gupta, ‘‘Long short-term mem-
ory network for remaining useful life estimation,’’ in Proc. IEEE Int.
Conf. Prognostics Health Manage. (ICPHM), Dallas, TX, USA, Jun. 2017,
pp. 88–95, doi: 10.1109/ICPHM.2017.7998311.

[41] C. Zhang, P. Lim, A. K. Qin, and K. C. Tan, ‘‘Multiobjective deep belief
networks ensemble for remaining useful life estimation in prognostics,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 10, pp. 2306–2318,
Oct. 2017, doi: 10.1109/TNNLS.2016.2582798.

[42] J. Li, X. Li, and D. He, ‘‘A directed acyclic graph network combined with
CNN and LSTM for remaining useful life prediction,’’ IEEE Access, vol. 7,
pp. 75464–75475, 2019, doi: 10.1109/ACCESS.2019.2919566.

JIALIN LI was born in Shenyang, China. He
received the B.E. degree from the School of
Mechanical Engineering, Shenyang University
of Technology, China, and the M.S. degree
from the School of Mechanical Engineering
and Automation, Northeastern University, China,
where he is currently pursuing the Ph.D. degree
with the School of Mechanical Engineering and
Automation. His current research interests include
data-driven methods to fault diagnosis, pattern

recognition, deep learning, and remaining useful life estimation and their
applications to critical components of mechanical equipment.

DAVID HE received the B.S. degree in metallurgi-
cal engineering from the Shanghai University of
Technology, China, the M.B.A. degree from the
University of Northern Iowa, and the Ph.D. degree
in industrial engineering from the University of
Iowa, in 1994. He is currently a Professor and the
Director of the Intelligent Systems Modeling and
Development Laboratory, Department of Mechan-
ical and Industrial Engineering, The University of
Illinois at Chicago, Chicago. His research areas

include machinery health monitoring, diagnosis and prognosis, complex sys-
tems failure analysis, quality and reliability engineering, and manufacturing
systems design, modeling, scheduling, and planning.

VOLUME 8, 2020 41501

http://dx.doi.org/10.1109/TIE.2018.2844856
http://dx.doi.org/10.1016/j.ymssp.2019.06.003
http://dx.doi.org/10.1016/j.ymssp.2009.11.005
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1016/j.ymssp.2018.12.051
http://dx.doi.org/10.3390/app8122416
http://dx.doi.org/10.1016/j.neucom.2018.10.049
http://dx.doi.org/10.1155/2019/8325218
http://dx.doi.org/10.1007/978-3-642-35289-8_25
http://dx.doi.org/10.1007/978-3-642-35289-8_25
http://dx.doi.org/10.1109/JPROC.2015.2494218
http://dx.doi.org/10.1109/JPROC.2015.2494218
http://dx.doi.org/10.1007/978-3-540-28650-9_4
http://dx.doi.org/10.1109/TIP.2017.2754941
http://dx.doi.org/10.1007/BF00344251
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1016/j.ress.2017.11.021
http://dx.doi.org/10.1007/978-3-642-15825-4_10
http://dx.doi.org/10.1007/978-3-642-15825-4_10
http://dx.doi.org/10.1016/j.patcog.2018.03.005
http://dx.doi.org/10.1109/PHM.2008.4711414
http://dx.doi.org/10.1109/PHM-Chongqing.2018.00184
http://dx.doi.org/10.1007/978-3-319-32025-0_14
http://dx.doi.org/10.1007/978-3-319-32025-0_14
http://dx.doi.org/10.1109/ICPHM.2017.7998311
http://dx.doi.org/10.1109/TNNLS.2016.2582798
http://dx.doi.org/10.1109/ACCESS.2019.2919566

