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Abstract—Surgical gesture segmentation and recognition are
important steps toward human-robot collaboration in robot-
assisted surgery. In the human-robot collaboration paradigm,
the robot needs to understand the surgeon’s gestures to per-
form its tasks correctly. Therefore, training a computer vision
model to segment and classify gestures in a surgery video is
a focus in this field of research. In this paper, we propose a
2-phase surgical gesture recognition method and we evaluate
empirically the method on JIGSAWS’s suturing video dataset.
Our method consists of a 3D convolutional neural network
to detect the transition between 2 consecutive surgemes and
a convolutional long short-term memory model for surgeme
classification. To the best of our knowledge, ours is the first study
aimed at detecting action transition in a multi-action video and
to classify surgemes using an entire video portion rather than
classifying individual frames. We also share our source code at
https://github.com/jemiar/surgery-gesture-recog

Index Terms—Gesture recognition, video segmentation, robot-
assisted surgery, deep learning, 3D CNN, Convolutional LSTM.

I. INTRODUCTION

Robot-assisted surgery has improved the quality of surgery
and enabled radical innovations such as tele-surgery. Com-
pared to traditional open surgery, robot-assisted surgery results
in smaller incisions, reduced bleeding and infection risk,
shorter hospital stays and speedier recoveries [1], [2]. In
addition, robot-assisted surgery improves surgeons’ dexterity
by providing 7 degrees of freedom on 4 robot arms, reduces
fatigue, and improves precision by eliminating the tremor
inevitably associated with human exertion [1].

However, robot-assisted surgery requires specialized exper-
tise from surgeons. Between 150 and 250 training procedures
are typically needed in order for a surgeon to reach proficiency
in manipulating robotic controls [2]. Due to the lack of haptic
feedback on robot motions as well as the demands of hand-
eye coordination through video, performing common surgical
tasks such as suturing can be tedious and time-consuming [1].

To mitigate these issues, various research efforts seek
to automate simple and repetitive surgical tasks, including
suturing and dissecting. Surgical robots can be taught to
learn from expert demonstration. For instance, Reiley et
al. used Gaussian Mixture Models to capture the trajectory
of surgical effectors, and then generated new trajectories for

the robot using Gaussian Mixture Regression [3]. Schulman
implemented a non-rigid registration to transform a trajectory
from a demonstration scene to a test scene [4]. Finite State
Machines can help teaching a robot about the transition graph
between surgemes [5]. Recently reinforcement learning has
been applied to simple tasks, including tissue manipulation [6],
[7], and needle insertion [8].

While current robots are entirely passive devices under the
control of a human physician, achieving full automation is
quite challenging because (1) surgical robots modify their
working environment by moving organs during procedures
and (2) predicting the interactions between human organs and
surgical effectors is rather difficult. In the current state of the
art, partial automation is a more realistic objective whereby
robots and human collaboratively perform surgical tasks. In
this line of research, Watanabe devised a suturing method in
which a surgeon instructs the robot on the high-level features
of a suturing task (e.g., the locations where suturing starts
and ends) but the low-level sub-tasks (e.g., needle pulling and
hand-over between arms) are performed autonomously by the
robot [9].

Critically for an effective human-robot collaboration in
surgery, the robot must be able to understand the surgeon’s
gestures by using kinematic data measured on the hardware
controls, or video data, or both. JIGSAWS [10] is one of
the best-known and widely used datasets for surgical gesture
recognition as it provides a comprehensive labeled kinematic
and video dataset for robot-assisted surgery. In their litera-
ture review on gesture recognition for robotic surgery [11],
van Amsterdam et al. summarized a many machine learning
approaches in this area: Hidden Markov Models (HMM),
Dynamic Linear System (DLS), Conditional Random Fields
(CRF), reinforcement learning, Convolutional Neural Nets
(CNNs), Recurrent Neural Networks (RNNs) as well as unsu-
pervised and semi-supervised learning techniques.

The deep learning models in [11] mostly used the encoder-
decoder structure and applied it to individual frames. In
this paper, we define a 2-stage deep learning approach to
recognizing surgical gestures from video data in the JIGSAWS
data set. Stage 1 involves determining whether a block of
10 consecutive frames sampled at a frequency of 10 Hz is
a transition block between 2 surgemes or a block belonging978-1-7281-9690-9/20/$31.00 © 2020 IEEE



to the same surgeme using a 3D CNN. In Stage 2, blocks
of frames between transition are classified into 10 kinds of
surgemes using a hybrid model combining a CNN and a Long
Short-Term Memory (LSTM) net. We hypothesize that by
classifying the whole block of frames in Stage 2, our model
can preserve both spatial and temporal information from the
video data, and can properly learn the characteristic of each
surgeme for more precise gesture classification.

This paper is organized as follows. We will introduce related
work in gesture classification and recognition in Section 2.
We will then present our network architectures, experimental
setups, results, and discussion in Sections 3 through 6.

II. RELATED WORK

A. Gesture Classification

Gesture classification solves the problem of classifying
trimmed video or kinematic data, or both into corresponding
classes of surgeme. Haro et al. used LDS, Bag-of-Features
(BoF) and their combination, along with Support Vector
Machines (SVM) to classify surgemes in the JIGSAWS data
set [12]. They then improved their result by using both
video and kinematic data in [13]. Thanks to well-defined
classes of surgemes, in [14] Fard applied k-Nearest Neighbor
(kNN) techniques to kinematic data transformed with Dy-
namic Time Warping (DTW). In the era of Deep Learning,
Luongo et al. used Convolutional LSTMs on real surgery
video data to classify needle-driving vs. non-needle-driving
gestures [15]. With the same Convolutional LSTM architec-
ture, Sarikaya [16] applied multimodal learning by combining
video data and optical flow to classify gestures and tasks on
the JIGSAWS data set.

B. Gesture Recognition

Unlike the gesture classification task, the gesture recognition
task must read the entire recording (video, kinematic or both)
of a surgical procedure, and then try to recognize where each
surgeme starts and ends in that procedure. Initial works in
this area used graphical models, such as HMM and CRF to
learn the transition graph between surgemes, and then use this
graph to classify each frame in the surgery recording [17],
[18]. The development of deep learning models has helped
accelerate works in gesture recognition. Multiple deep learn-
ing architectures based on CNNs, RNNs, their variants, and
hybrid combinations have been proposed and validated on
the JIGSAWS dataset. Studies that used video data as input
for their model usually relied on CNN architecture, such as
3D CNN [19], Temporal Convolutional Networks [20] and
Spatiotemporal CNNs [21]. The RNN architecture was applied
to kinematic data [22]. CNNs and RNNs have been combined
in hybrid models, such as the TricorNet [23]. Despite having
different architectures, these deep learning models shared
an encoder-decoder design, and they all aimed to classify
each individual frame in the surgery recording. Reinforcement
learning has also been applied in surgical gesture recognition.
Liu trained a reinforcement learning model that could learn a
policy to classify frames of a surgical procedure [24].

Our work can be categorized as a deep learning solution
to gesture recognition. In contrast with existing work, our
solution does not use the encoder-decoder design. Instead we
seek to analyze a whole video segment covering a surgical
task, such as an entire suturing action. To facilitate this
process we use a 3D CNN to detect the transition between
surgemes, and then use a Convolutional LSTM to classify each
surgeme. We hypothesize that by classifying each surgeme as
an entity, as opposite to classifying each frame, our network
can preserve both spatial and temporal information, and learn
the characteristic of individual surgemes.

III. NETWORK ARCHITECTURES

We use two distinct architectures for our two goals. The first
architecture seeks to distinguish video segments containing a
transition between two consecutive surgemes from segments
that do not contain such a transition. The second architecture
seeks to classify the video segments between transitions (i.e.,
video segments that do not contain a surgemes) into 10
different classes of subtasks contained in a suturing task. The
two network architectures are discussed next.

A. Gesture Transition Classification Model

For the gesture transition classification model, we first apply
3 layers of a 3D CNN with 8, 16, 32 filters respectively
to the input, as depicted in Figure 1. In our code, each 3D
convolutional layer is accompanied by a max pooling layer.
After the 3 convolutional layers, we use an average pooling
layer to flatten the activation matrix. We then add a dense
layer with 512 nodes before the output layer. Here the input
consists of 10 frames with 5 frames preceding the transition
and 5 frames following the transition from one surgeme to the
next. Frames are sampled at 10 Hz.

Fig. 1. Gesture transition classification model.

B. Gesture Classification Model

Since each gesture has different length, we use a Con-
volutional LSTM net for the gesture classification task as
depicted in Figure 2. For each frame in the input, we apply
a 2D convolutional layer twice. As with gesture transition
classification above, we also have a max pooling layer after
each convolutional layer. After the 2 layers of 2D CNN, we
flatten the outputs before routing them to the LSTM layer.
The output of the last LSTM block is input into a dense layer



with 32 nodes. The output is a dense layer with 10 nodes,
representing the 10 surgemes defined in the JIGSAWS suturing
data set. We use the Keras library and their code examples to
design our 3D CNN and Convolutional LSTM models [25].

Fig. 2. Gesture classification model.

IV. EXPERIMENTS

We used the suturing portion of the JIGSAWS dataset [10]
for our study. The original video data were recorded at 30Hz
with 480x640 pixels per frame. The resulting dataset contains
39 videos total, which were recorded by 8 surgeons with
different levels of proficiency performing the suturing task in
5 trials each. We downsampled the video to 10Hz, and resized
frames to 240x320 pixels to accelerate the training process.

For gesture transition classification, we collected blocks
of 10 consecutive frames. A transition block consists of 5
frames belonging to the first surgeme followed by 5 additional
frames belonging to the next surgeme. A normal block has
all its 10 frames belonging to the same surgeme. Evidently,
our dataset contains many more normal blocks (3940 blocks)
than transition blocks (754 blocks). To address this issue, we
upsampled the transition blocks and downsampled the normal
blocks, resulting in a training dataset of 600 normal blocks and
around 500 transition blocks. We ran the validation process on
200 normal blocks and 150 transition blocks.

In the gesture classification task, we used the transcript
contained in JIGSAWS to clip the video data for each surgeme,
and then fed each surgeme to our classification model. There
are 10 surgemes in the suturing data set. The gestures and their
occurrences are listed in Table I. For gestures that occurred less
frequently, such as G1, G5, G8, G9 and G10, we upsampled
them to around 100 in order to obtain a balanced training
dataset. We kept the original occurrences of gestures in the
validation data set.

We used Leave-One-Supertrial-Out (LOSO) for 5-fold
cross-validation in both tasks, as recommended elsewhere [10].
In gesture transition classification, we used mini-batch gradi-
ent descent with size 16. In gesture classification, we used
Stochastic Gradient Descent (SGD) because the input samples
were of different length. As we dealt with a large video dataset,
we follow well-established procedures [26] to load the video
data into our models.

TABLE I
GESTURES IN THE SUTURING DATA SET

Gesture Gesture Description Occurrences
G1 Reaching for needle with right hand 29
G2 Positioning needle 166
G3 Pushing needle through tissue 164
G4 Transferring needle from left to right 119
G5 Moving to center with needle in grip 37
G6 Pulling suture with left hand 163
G8 Orienting needle 47
G9 Using right hand to help tighten suture 24

G10 Loosening more suture 4
G11 Dropping suture and moving to end points 39

V. RESULTS

After running LOSO cross-validation for the gesture tran-
sition classification task, we achieved a result of around 70%
for accuracy, precision and recall, as shown in Table II.

TABLE II
GESTURE TRANSITION CLASSIFICATION RESULT

Trial Accuracy Precision Recall F1 Score
Trial 1 71.74% 71.01% 68.57% 0.70
Trial 2 69.49% 66.67% 66.13% 0.66
Trial 3 75.89% 71.63% 71.13% 0.71
Trial 4 71.13% 63.69% 74.83% 0.69
Trial 5 77.08% 71.72% 74.29% 0.73

Average 73.07% 68.94% 70.99% 0.70

Similarly, after running the cross-validation for the gesture
classification, we achieved an average accuracy of 76.3%, as
shown in Table III. The precision, recall and F1 score of 10
classes of gestures is presented in Table IV. We were not able
to calculate precision, recall and F1 score for G10 due to low
occurrence frequency.

TABLE III
GESTURE CLASSIFICATION RESULT

Trial Accuracy
Trial 1 72.63%
Trial 2 78.95%
Trial 3 75.32%
Trial 4 73.42%
Trial 5 81.17%

Average 76.30%

VI. DISCUSSION

In this study, we used a 3D CNN and a Convolutional
LSTM to detect transitions between surgical gestures, and
to classify the gestures. We used these models to learn the
movement of each gesture via video data exclusively. We
find our current results quite encouraging in consideration
of the following challenges. First, because the JIGSAWS
dataset included surgeons with different levels of proficiency,
their gesture movements were likely different from each other
which adversely affected our overall accuracy figures. If we



TABLE IV
PRECISION, RECALL, F1 SCORE OF 10 SURGICAL GESTURES

Gesture Precision Recall F1 Score
G1 79.17% 73.22% 0.76
G2 72.01% 83.38% 0.77
G3 86.38% 75.02% 0.80
G4 60.76% 67.69% 0.64
G5 33.33% 27.78% 0.30
G6 86.68% 92.27% 0.89
G8 49.41% 43.28% 0.45
G9 100% 75% 0.88

G10 N/A N/A N/A
G11 93.76% 93.76% 0.94

had a larger dataset from the same surgeon, or from surgeons
with high level of proficiency, we would have been able to
achieve a greater accuracy results. We can also pre-classify
surgeons, using [27] before running our model to get a better
result.

Second, the size JIGSAWS dataset is probably inadequate
from the viewpoint of statistical learning. Some of the 10
surgemes that we classified occurred less frequently than
others in the suturing procedure. The low frequency of these
gestures might have reduced the performance of our models.
When we look at Table I and Table IV, gestures with low
frequency, such as G5, G8 and G10 had a much lower
precision, recall and F1 score than other gestures. In this light,
we find our 76% accuracy benchmark to be quite satisfactory,
considering that this is a first effort in detecting surgical
gesture transitions.

VII. FUTURE WORKS

In this study, we define a 2-stage approach to surgical
gesture segmentation and recognition: Stage 1 detects tran-
sition gestures and Stage 2 classifies video clips into correct
gesture classes. We have achieved an accuracy of over 70%
for both tasks. In the next step, we will seek to improve the
performance of both models by collecting more data and by
applying regularization. We will also combine the 2 stages
together to see how they work and compare their results with
other studies in surgical gesture recognition.
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