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A Model for Human–Human Collaborative Object
Manipulation and Its Application to

Human–Robot Interaction
Ehsan Noohi, Miloš Žefran, and James L. Patton

Abstract—During collaborative object manipulation, the inter-
action forces provide a communication channel through which hu-
mans coordinate their actions. In order for the robots to engage in
physical collaboration with humans, it is necessary to understand
this coordination process. Unfortunately, there is no intrinsic way
to define the interaction forces. In this study, we propose a model
that allows us to compute the interaction force during a dyadic co-
operative object manipulation task. The model is derived directly
from the existing theories on human arm movements. The results
of a user study with 22 human subjects prove the validity of the
proposed model. The model is then embedded in a control strat-
egy that enables the robot to engage in a cooperative task with a
human. The performance evaluation of the controller through sim-
ulation shows that the control strategy is a promising candidate for
a cooperative human–robot interaction.

Index Terms—Cooperation strategy, dyadic object manipu-
lation, human–human cooperation, interaction force, physical
human–robot interaction (pHRI).

I. INTRODUCTION

MANY robotic applications require proactive physical in-
teraction between a human and a robot. For instance,

consider a robotic caregiver in the elderly care application. It
has been shown that home care aides are most effective when
they actively involve the elderly in physical activities [1], [2].
That is, it is important that the caregiver does not simply per-
form the task for the elder person, the elderly should be asked
to proactively contribute in performing the task. Cooperative
object manipulation (e.g., moving a table) is another example of
when proactive interaction is necessary. In general, in cases of
cooperative physical interaction, successful completion of the
task requires a coordinated force exchange between the human
and the robot.
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While the human can usually amplify the cooperation perfor-
mance by adjusting to the robot’s actions, in many applications
the human is not capable of such an adjustment. For instance,
in elderly care, rehabilitation, or childcare, the human is either
an elderly person, a physically challenged patient, or a toddler.
In such applications, the human is not expected to adjust to the
robot. Instead, the robot’s actions need to be as natural to the
human as possible. Therefore, modeling the characteristics of
natural human movements and the properties of the exchanged
forces would significantly contribute to designing better robot
control strategies in such applications.

In order to build a model for a natural (human-like) interac-
tion, researchers have studied human–human collaborative tasks
and proposed different models for the exchanged forces between
humans. However, due to the physics of the task, there is an in-
herent ambiguity in trying to recover the interaction forces from
the forces exerted by the humans. In other words, since the in-
teraction force (the portion of the applied force that does not
contribute to the motion of the object) is unknown, obtaining
the effective portion of the applied force for each individual
is challenging. To resolve this ambiguity, different models for
the interaction force have been proposed [3]–[7]. In all of these
models (including ours), the ambiguity is resolved by introduc-
ing additional constraints in the interaction model. For instance,
Williams and Khatib [3] suggest that the interaction force fol-
lows the mechanical internal force. Groten et al. [4] assume that
the human minimizes the energy of the interaction force during
the collaboration. Some of the suggested constraints cannot be
used in a cooperative collaboration setting. The leader/follower
scheme [5] is an example of such constraints. Some other mod-
els have also been proposed, but they are not applicable in an
online physical human-robot interaction setup, as they only pro-
vide a descriptive model for an existing interaction (e.g., [6]).
We will discuss the properties of these models in more detail in
Section III-D.

The existing models compute the interaction force for every
isolated pair of force vectors and ignore the time dependencies
among the force pairs during the task. In contrast, our approach
considers the entire trajectories of the force vectors to compute
the interaction force. More specifically, the interaction force is
obtained by exploiting a computational motion model of the
nominal movement trajectory during the cooperation. In fact,
the knowledge of the motion model serves as the constraint that
resolves the ambiguity.

Our contribution is threefold. First, by exploiting the motion
model associated with the task, we propose a descriptive model
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for the interaction force. The key advantage of the proposed
model compared with other models is that it only requires one
of the applied forces to be measured in order to compute the
interaction force. As a result, during a human–robot collabora-
tive task, the robot can model the interaction force by measuring
only the force applied by the human. In turn, this significantly
simplifies the robot’s controller. Details are given in Section IV.

Second, we propose a controller for the robot that exploits
the interaction force model to determine the force that the robot
should apply. While the robot is aware of the task, the human’s
desired trajectory is unknown to the robot. Using the interaction
force information, the controller responds to the human’s ap-
plied force in such a way that the human’s desired trajectory can
be followed. We refer to this controller as the offline controller,
because the interaction force is computed offline. In Section VII
we statistically analyze the performance of the controller with
and without the interaction force information. We show that
the performance is significantly higher statistically when the
interaction force information is provided.

Finally, we propose an online controller for the robot that
exploits a real-time estimation of the interaction force. The esti-
mation algorithm is based on our proposed model. It also utilizes
a predication of the human’s future actions. In Section VIII we
introduce the online controller in detail and compare it with
the offline controller in simulation. We show that no statisti-
cally significant difference exists in the performance of the two
controllers in these simulations.

The rest of the paper is organized as follows. In Section II we
discuss the relevant literature on the models for the human-arm
movement and on the human–robot interaction. In Section III
we review the models of the arm movement that will be used in
the paper and introduce the necessary background on modeling
forces during cooperative manipulation. Our model for the inter-
action force is introduced in Section IV. To evaluate the model,
we conducted a human study with 22 subjects. The study con-
siders both dyadic (two-person) manipulation and single-person
bimanual (SPB) manipulation. The experimental setup is de-
scribed in Section V. Using the collected data, we compare the
performance of our model with two existing descriptive models
in Section VI. In particular, we show that the proposed model
can distinguish between the dyadic manipulation and the biman-
ual manipulation. In Section VII we investigate the effect of the
interaction force on the performance of the robot. We show that
providing the robot with the interaction force (computed offline)
significantly improves its performance. By further exploiting the
properties of our model we construct an interaction force esti-
mator in Section VIII. The estimator is then incorporated into an
impedance controller that implements the cooperation strategy
for the robot. Finally, we present the performance evaluation
that demonstrates the effectiveness of the proposed controller.

II. RELATED WORK

Human movement has been studied extensively. While for-
mulating a model that accounts for trial-to-trial variations of the
motion trajectory is a challenging research problem, the average
motion trajectory has been successfully described with several

models. It has been shown that many biological movement pro-
files exhibit certain regularities. In a large class of complex
movements, e.g., drawing a curved path, Lacquaniti et al. [8]
showed that the angular velocity and the path curvature are
in a power relation, referred to as the two-third power law. In
grasping and reaching movements, Fitts [9] showed that a lin-
ear relation exists between the movement time and the index of
difficulty (defined in terms of the distance to the target and the
size of the target).

A number of successful models for biological movements
have been proposed that are based on optimal control [10]. These
models suggest that the human sensorimotor system optimizes
a certain cost function in order to perform specific movements.
Anderson and Pandy [11] showed that metabolic energy min-
imization reproduces the salient features of normal gait (for
walking on level ground). Flash and Hogan [12] showed that
a minimum-jerk model accurately describes trajectories of the
reaching movements. This model generates the well-known bell-
shaped velocity profile and can describe the relation between the
velocity and the curvature even more accurately than the two-
third power law [10]. The minimum torque change model has
been proposed as an alternative to the minimum-jerk model [13],
[14]. In this model, the nonlinear dynamics of the arm is con-
sidered and the motion trajectory is obtained by minimizing the
variations of the applied joint torques. The accuracy of the final
position (with respect to the target point) is proposed as another
optimization criterion. Harris and Wolpert [15] suggested that
the optimal trajectory minimizes the final position variance, also
known as the minimum variance model. The model is shown
to be very successful in describing speed profiles of saccadic
eye movements and is consistent with both Fitts’ law and the
power law.

While there exists a rich literature on modeling single arm
reaching movements, bimanual and dyadic movements are stud-
ied less. Tresilian and Stelmach [16] showed that the aperture
and transport components of a single-arm reach-to-grasp task
is very similar to the bimanual performance of the same task.
Garvin et al. [17] studied the bimanual reaching movement and
proposed an extension to the minimum-jerk model by incor-
porating the rotational jerk of the object into the optimization
criterion. Diedrichsen [18] studied bimanual reaching move-
ment in one-cursor and two-cursor conditions and showed that
the change in the control and in the adaptation are both optimal
and task dependent. Noohi et al. [19] have recently shown that
the object’s motion trajectory during the bimanual and dyadic
reaching movements is highly correlated with the minimum-jerk
trajectory.

In addition to the motion trajectory, the cooperation aspect
of dyadic and bimanual movements has been studied as well.
The exchanged forces have been shown to convey rich informa-
tion about the cooperation [20]. Many researchers have studied
the haptic clues as a communication channel that facilitates the
physical interaction. Guiard [21] suggested that in bimanual
tasks, while one arm performs the majority of the workload, the
other arm is responsible for fine tuning and corrections. Reed
et al. [22] observed similar arm specialization in a dyadic task
in which one person is contributing more to the acceleration and
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the other person to the deceleration. Noohi and Žefran [23] char-
acterized the dyadic object manipulation task and proposed a set
of measures that evaluate the performance of haptically coupled
subjects and cross-validated those metrics with the subjects’
self-assessments. Groten et al. [24] suggested that, in a shared
decision making situation, the haptic channel enhances the in-
tention integration and results in a higher performance. Ganesh
et al. [25] reported that haptically coupled subjects demon-
strate better motor performance than a single person in a virtual
pursuit-tracking task. van der Wel et al. [26] show that, in an
object manipulation task, dyads amplify their applied forces to
develop a haptic communication channel. Mörtl et al. [27] stud-
ied the process of role assignment (leader/follower roles) during
the physical cooperation. Feth et al. [28] studied a joint-pursuit-
tracking task and observed that the performance of a dyadic
collaboration is higher than for single individuals. Based on the
asymmetry of energy flow between the subjects, they suggested
that the increased performance was due to the emergence of
different roles. Sawers and Ting [29] have recently provided a
thorough review on this topic, while focusing on the design of
rehabilitation robots.

Many of these models have been adopted by researchers in
assistive and rehabilitation applications in order to improve the
performance of the physical interaction between a robot and a
human. For instance, Corteville et al. [30] proposed an admit-
tance control scheme for fast point-to-point cooperative sliding
of an object. The controller takes advantage of an extended
Kalman filter to estimate the parameters of the motion veloc-
ity. The velocity profile was assumed to follow the minimum-
jerk model. Bussy et al. [31] proposed motion primitives for
cooperative transportation of heavy objects and introduced a
velocity-based algorithm to generate a sequence of such pro-
posed primitive motions. Medina et al. [32] proposed a risk-
sensitive optimal controller that responds to the uncertainty in
the predicted human motion by adapting the robot’s role. They
modeled the human as a process noise that the robot needs to
consider in its optimization cost function.

III. BACKGROUND

A. Motion Trajectory During Reaching Movement

Reaching movement is one of the well-studied human mo-
tions. In this motion, a person moves his/her hand from point
A to point B in a straight line. The motion is fast and happens
over a short distance. When performing the single arm reaching
movement, it has been shown that humans generate a smooth
trajectory with the well-known bell-shaped curve for hand ve-
locity [12]. More specifically, the hand trajectory minimizes the
following cost function:

H(ti , tf , x) =
1
2

∫ tf

ti

∥∥∥∥d3x(t)
dt3

∥∥∥∥
2

dt

x∗(t) = argmin
x(t)

( H(ti , tf , x)) (1)

where x(t) is the position trajectory of the hand, ti is the
start time of the motion, and tf is the end time. If we take

Fig. 1. 2-D histogram of normalized object velocities for bimanual and dyadic
object manipulation during a reaching movement task. The color of each bin
represents the percentage of the samples observed in that bin. (a) SPB, (b) dyadic
cooperation.

the assumption that the hand is at rest at the start and at the
end of the reaching movement (i.e., zero boundary conditions),
the minimum of the cost function would be H∗ = 360L2 and
the optimal trajectory is x∗(τ) = xi + L(6τ 5 − 15τ 4 + 10τ 3).
Here, τ = (t − ti)/(tf − ti) and L = ‖xf − xi‖. In addition,
xi = x(ti) and xf = x(tf ) are the positions of the hand at the
start point and the end point, respectively. Since the cost function
is the sum of the squared jerk along the motion trajectory, this
model is referred to as the minimum-jerk trajectory hereafter.

B. Motion Trajectory of Dyadic Reaching Movement

In a bimanual object manipulation, the object is grasped by
two hands and is moved from a starting point to an ending point.
In SPB manipulation (in which both hands belong to the same
person), it has been shown that the object closely follows an
optimal trajectory [17]. That’s due to the fact that both hands
receive synchronized commands from a common controller (a
person’s brain). Bilateral training methods in rehabilitation ex-
ploit this feature and significant improvements in patients with
poststroke hemiparesis have been reported [33].

In a dyadic reaching movement, however, the imperfect syn-
chronization between the two cooperating persons can introduce
deviation from the optimal trajectory. That is, although the mo-
tion’s start point (xi) and end point (xf ) are known, the persons’
estimation/control of their hands’ positions are different. More
importantly, each person has his/her own preferred speed. We
have recently shown that the object’s motion trajectory during
the dyadic reaching movement is highly correlated with the
minimum-jerk trajectory [19]. More specifically, the Pearson
correlation coefficient between the normalized object velocity
and the velocity profile of a minimum-jerk trajectory is ρ̂ = 0.97
with CI95% = [0.95, 0.98].

Fig. 1 shows the 2-D histogram of normalized object veloci-
ties that are recorded during SPB and dyadic reaching movement
[19]. The velocities are normalized both in time (scaled to 1 s)
and in traveled distance (scaled to 1 m). Since the number of
trials was different in SPB and dyadic modes, the histogram re-
ports the percentage of observed values. In other words, in each
mode, the number of observed samples in each bin is divided by
the total number of the samples in that mode. For more details
please refer to [19].



NOOHI et al.: MODEL FOR HUMAN–HUMAN COLLABORATIVE OBJECT MANIPULATION AND ITS APPLICATION TO HUMAN–ROBOT 883

Fig. 2. Reaching movement under a spring-like force field.

C. Applied Force During Reaching Movement

Disturbing the reaching movement by an external force field
will deviate the hand trajectory from its optimal trajectory. It has
been shown that, after enough learning trials, humans can adapt
to the external force field and return to their original trajectories
[34]–[36]. Consider the situation in which a subject performs
a reaching movement while a spring resists his/her forces (see
Fig. 2). The spring introduces the position-dependent force field
F = −ks (x(t) − x0), where ks is the stiffness of the spring and,
x0 is the position of the spring’s end when no force is applied
to it. After the adaptation period, the subject learns to cancel
the force field and returns to the optimal trajectory, x∗(t), for
the reaching movement [35]. More interestingly, the force that
the subject needs to apply at the end effector (to cancel the
force field) is F ∗(t) = −ks (x∗(t) − x0). In other words, the
applied force follows a smooth minimum-jerk trajectory. Since
d3x(t)/dt3 = (−k−1

s ) d3F (t)/dt3 , we can rewrite (1) as

F ∗(t) = argmin
F

(
1
2

∫ tf

ti

∥∥∥∥d3F (t)
dt3

∥∥∥∥
2

dt

)
. (2)

Equation (2) states that, in a spring-like force field, the applied
force minimizes the squared-jerk cost function. Applying the
calculus of variations techniques on (2), it is easy to show that
the sixth derivative of F ∗(t) is zero [37]. Therefore, the applied
force can be represented as a fifth-order polynomial as

F ∗(t) =
5∑

k=0

ck tk . (3)

Note that, if the hand is at rest at the start and at the end of the
reaching movement, the applied forces are, too. In the general
case that the hand is not at rest, to determine the ck coefficients in
(3) the minimization problem of (2) should satisfy the boundary
conditions.

D. Models for the Interaction Force

Consider a dyadic object manipulation task. Let f1 and f2
refer to the forces that are applied to the manipulated object and
Fsum = f1 + f2 be the resultant force that is associated with the
task. Each applied force can be decomposed into the effective
force (f ∗

1 and f ∗
2 ) and the interaction force (F i) as

f1 = f ∗
1 + F i

f2 = f ∗
2 − F i. (4)

The interaction force can be used to secure the grasp or to
communicate with the other person [26], [38]. It can compress or
stretch the object, but it does not influence the object’s equations
of motion. As a result, all force components that lie in the null

Fig. 3. For a single pair of forces, f1 and f2 , the orthogonal (a) and nonorthog-
onal (b) decompositions are illustrated. Note that the orthogonal decomposition
matches the ME model and the nonorthogonal decomposition matches the VL
model.

space of Fsum (orthogonal to it) are part of the interaction force.
That is

f ∗
1 = αFsum

f ∗
2 = (1 − α)Fsum (5)

and, therefore,

F i = (1 − α)f1 − αf2 (6)

where α denotes the contribution of each person in performing
the task.

Note that (4) is an underdetermined system of equations and
that any arbitrary value of α (0 ≤ α ≤ 1) introduces a valid
decomposition. According to (5) and (6), the only situation in
which the system has a unique solution is when Fsum = 0. In
such instances, F i = f1 = −f2 and f ∗

1 = f ∗
2 = 0. In all other

situations, to be able to uniquely determine the interaction force,
one needs to introduce an additional constraint to the system
(e.g., introducing specific values for α). Note that we take the
general case in which both hands can apply pure torque to the
object and, thus, the direction of the interaction force is not
necessarily aligned with the grasp configuration (no additional
torque constraints).

Fig. 3 shows two possible decomposition examples for a sin-
gle pair of applied forces. Note that in Fig 3(b) the interaction
force has both orthogonal and parallel components (w.r.t. Fsum).
While obtaining the orthogonal component is straightforward,
finding a computational model for the parallel component is
challenging. That is the reason we only focus on the parallel
components of f1 , f2 , and F i in this study. We will refer to
these parallel components as the applied forces (f1 and f2) and
interaction force (F i) hereafter. After the interaction force is
computed, it will be augmented with the orthogonal compo-
nent.

To uniquely determine the interaction force, researchers have
considered different approaches. In the case of the human–robot
collaboration, some researchers tackle this problem by assign-
ing leader/follower roles to the human and the robot (α = 0
or α = 1), e.g., [5]. Mörtl et al. [27] studied the exchange of
the leader/follower roles between the human and the robot,
and observed that dynamic role assignments resulted in a
considerably larger interaction force. Evrard and Kheddar [6]
suggested that a continuous homotopy switching happens be-
tween the leader and the follower roles during the collaboration
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Fig. 4. (a) Force decomposition of the applied forces, based on (b) the VL
model and (c) the ME model. Note that when only one force acts on the object,
the ME model suggests zero interaction force, while VL model does not. (a)
Applied forces, (b) VL, (c) ME. (a) Applied forces, (b) VL, (c) ME.

(for each agent independently). However, they did not identify
the homotopy function for dyadic tasks. Leader/follower
schemes are very successful in the tasks in which the human
steers the task and the robot provides the whole workload and
follows the human.

Unlike leader/follower schemes, in this study we are inter-
ested in cooperative object manipulation task in which both
human and robot are actively contributing in performing the
task. One of the most appreciated approaches is to take the me-
chanical internal force as the interaction force. For instance,
while proposing a hybrid position/force control scheme for two
coordinated robots, Uchiyama and Dauchez [39] described the
interaction between the robots by the internal force/moment
vector. Using this vector, the authors manage to describe the
object deformation (including twisting, bending, and shearing)
during manipulation. Williams and Khatib [3] introduced a more
general framework to properly design the interaction forces for
multicontact robot–robot collaborative tasks, namely the virtual
linkage (VL) model. They suggested that an acceptable inter-
action force would minimize the engineering strain (minimum
deformation of the object). They used the internal forces as the
interaction force in multirobot object manipulation. In the case
of two robots, the force decomposition would become

f ∗
1 = f ∗

2 =
1
2
Fsum

F i =
1
2
(f1 − f2) (7)

or α = 0.5. Taking the difference of the applied forces as the
interaction force, as expressed in (7), is a common practice in
the human–robot interaction literature as well, e.g., [7].

Another interesting assumption in the literature, proposed
by Groten et al. [4], is that a human minimizes the energy
of the interaction force during the collaboration. They studied
the dominance distribution in a dyadic haptic collaboration and
implicitly exploited the minimum-energy (ME) model. The as-
sumption is based on the intuition that when only one force is
applied to an object, the interaction force should be zero. Fig. 4
illustrates this intuitive assumption in comparison with the VL
model. This model finds a solution for (5) and (6) in which the
magnitude of the interaction force is minimum. In other words

α(t) = argmin
α

(
||F i ||

)
. (8)

Fig. 5. Comparison on different assumptions in a 1-D object manipulation
task. (a) Applied forces and the total force. (b) VL assumption. (c) ME assump-
tion. In both (b) and (c), f ∗

1 , f ∗
2 , and F i are dashed, solid, and dotted lines,

respectively.

Fig. 6. Mass-spring system in a cooperative manipulation task. The spring is
assumed to be massless and linear. The force f1 (f2 ) is applied to the mass m1
(m2 ). The position of the center of mass m1 (m2 ) is x1 (x2 ). The system is
one-dimensional; that is, applied forces are parallel with the x-axis.

Fig. 5(a) shows a typical example of a bimanual object manip-
ulation in 1-D. The interaction force before the start of the mo-
tion (t ≤ ti) and after the end of the motion (t ≥ tf ) is F i = 2,
which is the grasp force to hold the object. Fig. 5(b) shows
the interaction force and the effective forces obtained from VL
model. Here, F i = 2 and f ∗

1 = f ∗
2 = 1

2 Fsum. The model suggest
a perfect load-sharing cooperation, which is a likely behavior in
a SPB manipulation. Fig. 5(c) depicts the interaction force and
the effective forces based on the ME assumption. Under this
assumption, the first (second) hand applies the whole required
force (Fsum) to move the object in the acceleration (decelera-
tion) phase of the manipulation, while the other hand applies
zero force (ZF). Taking the accelerating/decelerating roles is
an expected behavior in dyadic collaborative tasks [22]. We
will compare our proposed model with these two models in the
following sections.

IV. PROPOSED MODEL FOR THE INTERACTION FORCE

In this section we first compute the interaction force in a
mass-spring system and then discuss how a mass-spring system
generalizes a rigid body model for a solid body. Next, we pro-
pose our model for the interaction force, using the knowledge
of the task. Finally, we discuss different aspects of the proposed
model and list its key features.

A. Interaction Force in a Mass-Spring System

Consider the cooperative manipulation of the mass-spring
system in Fig. 6. The masses m1 and m2 are coupled with a
spring and the forces f1 and f2 are applied to them, respectively.
The positions of the masses m1 and m2 are referred to by
x1 and x2 (x1 > x2), respectively. The task is to move the
masses from their initial configurations (xi1 and xi2 ) to the goal
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configurations (xf1 and xf2 ) on a straight line (aligned with the
x-axis).

If the position variables are available (or can be measured),
the interaction force that the spring introduces to the system is
computed as

F i(t) = −ks (x1(t) − x2(t) − L0) (9)

where ks is the stiffness of the spring and L0 is the length of the
spring when no force is applied to it.

On the other hand, if x1 and x2 are not available but the
applied forces f1 and f2 are, then the interaction force would
be computed from the equations of motion. For the above mass-
spring system, the equations of motion can be expressed as

m1 ẍ1(t) = f1(t) − F i(t)

m2 ẍ2(t) = f2(t) + F i(t). (10)

By combining the equations in (10), we will have

m1 m2 (ẍ1 − ẍ2) = m2 f1 − m1 f2 − (m1 + m2) F i. (11)

Taking the second derivative of (9) would result in

F̈ i(t) = −ks (ẍ1(t) − ẍ2(t)) (12)

and plugging (12) into (11) would introduce the interaction force
only in terms of the applied forces as

C F̈ i(t) + F i(t) = (1 − α)f1(t) − αf2(t) (13)

where

C = −m 1 m 2
ks (m 1 +m 2 ) and α = m 1

m 1 +m 2
. (14)

Equations (13) and (14) describe the interaction force in the
form of a dynamical equation when f1 , f2 and the system pa-
rameters (m1 , m2 , and ks) are available.

B. Mass-Spring System versus Rigid Body

Modeling objects as a rigid body is a common practice in
many problems, due to its simplicity and effectiveness. It is
based on the fact that deformation of a solid body in response
to small (or moderate) forces is negligible for many materials.
This is especially true when the applied forces are within the
range of a human–human cooperative manipulation. However,
using the rigid body model and ignoring the deformation of the
solid body is in part the source of the ambiguity in computation
of the interaction force (as discussed in Section III-D).

The mass-spring system generalizes the rigid body model
by including object deformation in the model (the spring). For
instance, if we replace the spring with a massless rigid rod (or,
equivalently, ks → ∞ in the spring), the mass-spring system
becomes one rigid object (with two separated masses). Since
the rod is rigid, we have x1 = x2 + L0 and, therefore, (11)
becomes the same as (6), where α is defined in (14).

Although the generalization introduced by mass-spring sys-
tem seems promising, unfortunately neither (9) nor (13) can be
used to compute the interaction force in a solid body. In the case
of (9), although the position variables (x1 and x2) are assumed
to be available, accurate measurement of these variables is prac-
tically infeasible. Furthermore, the value of ks in a solid body

is very large. As a result, any small noise in the measurement
of x1 and x2 would result in a large error in the computation of
F i .

Similarly, exploiting (13) to compute the interaction force in
a solid body is impractical. Here, the large value of ks would
not be a problem and, in fact, it results in a negligible value
for C in (14) and, thus, would transform (13) to be the same
as (6), as expected. The problem is that any arbitrary values for
m1 and m2 would work in the mass-spring system and gener-
ate a valid model for the solid body. For instance, if m1 = m2 ,
we get α = 0.5 in (14) and it would represent the VL model.
Similarly, when m1 = 0 (α = 0), the mass-spring system rep-
resents the leader/follower model in which f1 leads the task. In
other words, the mass-spring system cannot disambiguate the
interaction force model in (6), if (13) is being exploited.

In contrast, we will show that by including the information
about the task we can tackle both aforementioned problems.
That is, the proposed model for the interaction force is both
nonambiguous and robust to the measurement noise. To tackle
the ambiguity issue it implicitly takes advantage of the posi-
tion variables and, to address the noise problem, it exploits the
measurements of the applied forces.

C. Task-Aware Interaction Model: A Polynomial Model

Let us assume that the mass-spring system is being manipu-
lated cooperatively, in a cooperative reaching movement task.
That is, the subjects move the masses from their initial con-
figurations (xi1 and xi2 ) to their final configurations (xf1 and
xf2 ), following a minimum-jerk trajectory. Since each hand ex-
periences disturbing forces through the spring (the interaction
force), the reaching movement is performed inside a force field.
As discussed in Section III-C, after enough learning trials, coop-
erating hands learn to compensate for the force field and return
to their original minimum-jerk motion trajectories

x1(τ) = xi1 + (xf1 − xi1 )(6τ 5 − 15τ 4 + 10τ 3)

x2(τ) = xi2 + (xf2 − xi2 )(6τ 5 − 15τ 4 + 10τ 3) (15)

where τ = (t − ti)/(tf − ti) and ti and tf are the start time
and the end time of the cooperative manipulation. As a re-
sult, Δx(t) = x1(t) − x2(t) would also be a minimum-jerk
trajectory

Δx = δi + (δf − δi)(6τ 5 − 15τ 4 + 10τ 3) (16)

where δi = (xi1 − xi2 ) and δf = (xf1 − xf2 ). Let us rewrite
(9) as F i(t) = −ks (Δx(t) − L0). Similar to the discussions
in Section III-C, when Δx(t) is a minimum-jerk trajectory, the
interaction force would also be a minimum-jerk trajectory

F i(t) = argmin
F

(
1
2

∫ tf

ti

∥∥∥∥d3F (t)
dt3

∥∥∥∥
2

dt

)
(17)

or, equivalently, the interaction force can be expressed as

F i(t) =
5∑

k=0

ck tk . (18)
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For a complete model, we need to determine the coefficients,
ck . As explained in Section III-D, when Fsum = 0, the value
of F i = f1 is known. According to Section III-B, Fsum is as-
sociated with a minimum-jerk trajectory (bell-shaped velocity
profile). That is, it has exactly one zero crossing point, namely
tm . Therefore, Fsum = 0 for t ≤ ti , t = tm and t ≥ tf [see
Fig. 5(a)]. This constructs three constraints for the interaction
force as

F i(ti) = f1(ti)

F i(tm ) = f1(tm )

F i(tf ) = f1(tf ). (19)

Since F i(t) = f1(t) for t ≤ ti and t ≥ tf , we will have
Ḟ i(t−i ) = ḟ1(t−i ) and Ḟ i(t+f ) = ḟ1(t+f ). And since both signals
are smooth signals

Ḟ i(ti) = ḟ1(ti)

Ḟ i(tf ) = ḟ1(tf ). (20)

The five constraints in (19) and (20) determine five coeffi-
cients in (18) and the last coefficient is obtained by solving
the optimization problem in (17). To calculate the coefficients,
let P4(t) denote the fourth order polynomial that satisfies the
constraints in (19) and (20), i.e.,

P4(t) = e4t
4 + e3t

3 + e2t
2 + e1t + e0

P4(ti) = f1(ti) Ṗ4(ti) = ḟ1(ti)

P4(tm ) = f1(tm ) Ṗ4(tf ) = ḟ1(tf )

P4(tf ) = f1(tf ). (21)

Thus, any fifth-order polynomial that satisfies the constraints
in (19) and (20) can be expressed as

P5(t, κ) = P4(t) + κ(t − ti)2(t − tm )(t − tf )2 . (22)

The interaction force is the fifth-order polynomial that satis-
fies (17). Thus, by solving (17) for (22), the optimal value of κ
is obtained as

κ∗ = argmin
κ

(
1
2

∫ tf

ti

∥∥∥∥d3P5(t, κ)
dt3

∥∥∥∥
2

dt

)
(23)

and the interaction force will be

F i(t) = P5(t, κ∗). (24)

Equations (21)–(24) provide the computational model for the
interaction force during a dyadic reaching movement.

D. Discussion

To better understand different aspects of the proposed model
we provide a list of the characteristics of the model.

1) Assumption: As discussed in Section III-D, to uniquely
determine the interaction force one needs to introduce a new con-
straint to the system. The proposed polynomial model (PM) as-
sumes that the characteristics of the task is given in the form of a
computational model for the motion profile (here the minimum-
jerk trajectories). As a result of this assumption, the model does

not depend on the value of the object’s stiffness, k, or the selec-
tion of m1 and m2 .

2) Limitation: The proposed interaction force model is
based on the motion model of the cooperative hands. As a result,
the level of precision of the model is determined by the precision
of the motion model. Since the minimum-jerk model (the mo-
tion model we applied) is the nominal model of hand movement,
the resulting PM describes the nominal profile of the interac-
tion force. This approximating behavior will be observed in
Section VII.

3) Advantage: Unlike the interaction force models dis-
cussed in Section III-D, the PM does not require the whole
trajectory of applied forces (f1 and f2) to obtain the interac-
tion force. More importantly, it can extract the interaction force
based on only one of the applied forces, e.g., f1 in (21). This is
particularly important when the robot engages in a cooperative
task with a human. We will further exploit this in Section VIII.

4) Disadvantage: The interaction force models discussed in
Section III-D can compute the value of F i at time t only by
measuring f1 and f2 at the same time, t. The proposed model,
however, depends on the values of f1 in the future times (i.e., at
boundary points). This would be a major issue when the robot
needs to compute the interaction force in real time. We will
further discuss this in Sections VIII and IX.

5) Extension: The mass-spring model relates the interaction
force to the deformation of the object. Since elastic deformation
appears in many different forms (such as compression, tension,
shear, and torsion), one might suggest a more general form of
linear relation between the interaction force and the deforma-
tion strain. For instance, the model can simply be extended
to a more general case by using a mass-spring-damper sys-
tem. Taking kd as the damping coefficient, the interaction force
would be expressed as F i(t) = −ks (x1(t) − x2(t) − L0) −
kd (ẋ1(t) − ẋ2(t)). It is easy to see that, if the motion profiles of
x1 and x2 are available, the interaction force would be obtained
as a linear combination of these profiles and their derivatives.
In the case of the reaching movement, the resulting interaction
force would again be a fifth-order polynomial.

V. HUMAN STUDY

To be able to evaluate the proposed interaction model we
collected human interaction data for bimanual and dyadic object
manipulation tasks. In SPB mode, the subjects were asked to
grasp an object with both hands and move it horizontally. In
dyadic mode, the subjects were grouped into pairs and asked
to perform cooperative manipulation. In both cases, the grasps
were prehensile and the subjects could apply independent forces
and torques to the object.

A. Experimental Setup

We chose a pot as the object to be carried bimanually. To
collect the forces applied by the subjects, we used two SI-65-5
ATI Gamma force sensors [40]. The force sensors were placed
in between each handle and the pot. The forces are then sam-
pled by a computer through two PCI-6034E NI data acquisition
boards [41] at the frequency of 1 KHz. The acquired data is then
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Fig. 7. Experimental setup. The force sensors are installed between the han-
dles and the container. The IMU is interfaced with a Arduino board and placed in
a box that is glued to the inside bottom of the pot. The sampled data is collected
by a GUI in MATLAB.

transformed to the earth reference frame. This requires the orien-
tation of the pot to be measured. We used a 9DOF-Sensor-Stick
SparkFun IMU to measure the pot’s orientation and accelera-
tion [42]. The sampling frequency for the IMU is set to 100 Hz.
The IMU is interfaced with the computer through an Arduino
Mega microcontroller board [43]. All data collection is man-
aged through a MATLAB GUI that we have developed. Fig. 7
shows the experimental setup and its components. To eliminate
the high-frequency noise, a low-pass FIR smoothing filter with
the cutoff frequency of 12.5 Hz is applied to the signals.

B. Experimental Procedure

Each trial of the experiment consisted of three subtasks; lifting
the pot from the table at the start point (point A), moving the
pot horizontally toward the destination point (point B), and
putting the pot down on the table at the end point. Studies
have shown that gravity plays a significant role in single-arm
vertical reaching movements [44], [45]. Therefore, in this study
we focus on the horizontal movements and discard the first
and last subtasks in each trial. We will consider these vertical
movements in our future works.

To improve the synchronization between the subjects in
dyadic mode, a beep was played at fixed points in time by the
software and the subjects were told to execute each subtask right
after hearing the beep. Therefore, the start time of the motion
was known for both subjects. The start point and the end point
were marked to provide xi and xf . The configurations of the
start points and the end points were designed in such a way that
we have two types of horizontal motions. In type 1 motions, the
direction of the motion is perpendicular to the line connecting
the handles. Therefore, the grasp force has small components
in the motion direction. In type 2 motions, the direction of
the motion is parallel with the line connecting the handles and
grasp force has dominant components in this direction (see
Fig. 8). In addition, the distances between the start points and
the end points were selected such that both short-range and
long-range motions were included. In the short-range motions,
the horizontal distance between the start point and the end point
was 28 cm and in the long-range motions it was 83 cm.

C. Data Collection

According to our IRB protocol, we were allowed to recruit
participants by using flyers and emails. The approved flyers

Fig. 8. (a) Type 1 and (b) type 2 motions. In SPB manipulation, the person
stands behind the table and grabs the handles. In dyadic manipulation, the
subjects stand on the opposite sides of the table and grab the handles. The blue
arrow on the table shows the motion direction and the red double arrow is the
grasp force.

were posted in buildings around the University of Illinois at
Chicago (UIC) campus. In addition, a recruitment email was
sent to the graduate student list server at UIC. As a result, the
participants belonged to the body of the UIC students, staff,
and their acquaintances. Among all volunteers, we recruited 22
adult subjects (12 men and 10 women), ranging in age from 19
to 35.

The data collection was performed in the Robotics Laboratory
at the UIC. The experiments were scheduled over the course of
ten days, according to the participant’s availability. The subjects
were randomly paired and assigned to a specific session. In each
session, after briefing the participants about the project’s goals,
benefits and risks, they signed consent forms. Then the task was
explained and demonstrated to them, including different modes
(bimanual versus dyadic) and different tasks (motion types and
motion ranges).

Next, each subject was given enough familiarization trials
(as many as they needed). Then, he/she performed three trials
in the SPB scenario, including a short-range type 1 motion, a
short-range type 2 motion, and a long-range type 2 motion. The
long-range type 1 motion was skipped, because it was not within
the range of human-arm reachable space. Then, the subjects
were grouped into pairs (dyadic mode). Subjects in each pair
stood on the opposite long-sides of the table and performed three
more trials. The motion direction in all trials is along the length
of the table. To generate different motion types, the pot was
yawed to be parallel with or orthogonal to the motion direction.
In all of the trials no repeated measurements were collected.
Each session took less than an hour and each participant was
paid upon completion of all of the tasks.

D. Data Analysis

We collected 33 trials (11 × 3) in dyadic mode and 63 tri-
als (21 × 3) in bimanual mode (one of the participants refused
to complete the task in this mode). Then, the collected data
were analyzed to identify the measurement errors. The errors
were mainly due to the hysteresis error that the sensors exhib-
ited randomly. We examined the value of Fsum to identify the
measurement error. For instance, if the pot was not moving (ac-



888 IEEE TRANSACTIONS ON ROBOTICS, VOL. 32, NO. 4, AUGUST 2016

Fig. 9. Example of calculating interaction force and effective forces. The solid
green signal is f1 (f ∗

1 ), the dashed blue signal is f2 (f ∗
2 ), the dotted black signal

is Fsum, and the dash-dotted red signal is F i . In this example, ti = 0.46 s,
tm = 1.15 s, and tf = 2.07 s. (a) Applied forces and (b) effective forces.

cording to the IMU readings), a constant large value in Fsum

would indicate the presence of the hysteresis error. As a re-
sult, two trials in dyadic mode and five trials in bimanual were
marked as corrupted signals.

After the corrupted trails were excluded, the data was pro-
cessed to compute the interaction force, F i . That is, first the
PM in (21)–(24) was applied to the collected data (f1 and f2).
Then, the effective forces, f ∗

1 and f ∗
2 , were obtained from (4).

Fig. 9 demonstrates the result of this procedure for a single sam-
ple trial. The collected applied forces and computed interaction
force are shown in panel (a) and the effective forces along with
Fsum are presented in panel (b). It is worth mentioning that the
optimization problem in (23) was solved numerically, using the
optimization toolbox in MATLAB. The above data processing
procedure was performed again, using the VL model and ME
model. Here, F i was computed using (7) and (8), respectively.

VI. EVALUATION OF THE PROPOSED MODEL

In this section, we study the characteristics of the PM in
comparison with the VL model and the ME model. To explore
different features of an interaction force signal, we use five
different quantitative metrics (given in the Appendix). Different
metrics measure different features of a signal, such as average,
energy, and variation rate. Furthermore, since computing either
interaction force (F i), effective forces (f ∗

1 and f ∗
2 ), or α gives

the other two [refer to (4) and (5)], different metrics use different
variables to explore the features space more broadly [see (33)–
(37)]. For more details on the metrics and their properties, refer
to [23].

Recall that each subject performed three trials in each ses-
sion. In addition, recall that for each trial the interaction force
was computed in three different ways (three models). Since for
each computed force we measure five features, a total of 45 ob-
servations are collected per subject. On the other hand, we had
32 subjects (21 participants and 11 pairs) and, therefore, the full
list of observations would have 32 × 45 entries. However, to
deal with the seven missing data (corrupted measurements), we
performed a listwise deletion and, thus, the number of subjects
became 16 participants and nine pairs. We grouped the subjects
according to the cooperation mode. That is, 16 participants were

placed in the bimanual group and nine pairs were placed in the
dyadic group.

We are interested in studying the effects of both the interaction
model and the cooperation mode on the properties of the interac-
tion force. Since the models are based on different assumptions,
it is expected that their interaction force signals, F i(t), show
different properties. In addition, since only one brain controls
both hands in the bimanual mode (versus two brains in the
dyadic mode), it is expected that the properties of F i are dif-
ferent between the two modes. To study these hypotheses, we
set up a repeated measures ANOVA test. The between-subjects
factor (mode) has two levels, bimanual and dyadic. The within-
subjects factors are model (three levels), task (three levels), and
feature (five levels). The test includes a total of 45 repeated
measurements for each of the 25 subjects.

Mauchly’s test of sphericity showed that the assump-
tion of sphericity had been violated (χ2(989) > 10000, p <
.0001) and, therefore, a Greenhouse–Geisser correction (ε̂ =
0.086578) was applied. The repeated measures ANOVA with
a Greenhouse–Geisser correction determined that a statistically
significant interaction exists between the cooperation mode and
the interaction model [F (0.173, 3.983) = 8.666, p < 0.0019].
The significance level was α = 5% in this test. No any other
statistically significant interaction was observed (p > 0.05 for
all). No significant main effect was observed, except for the co-
operation mode [F (0.087, 1.991) = 8.406, p < 0.0081], which
was shadowed by its significant interaction with the interaction
model. To further study the role of these interacting factors, sim-
ple main effect analysis was performed and a pairwise multiple
comparisons posthoc test with the Bonferroni correction was
employed.

To test the first hypothesis, we took the cooperation mode
as the moderator variable. We observed significant differences
between the means of the PM, VL, and ME, when the coopera-
tion mode was bimanual (p < 0.0001 for all). In the case of the
dyadic cooperation, while significant differences between the
mean of VL and the means of the PM and ME were observed
(p < 0.0001 for both), no significant difference was observed
between the means of PM and ME (p > 0.88). The test results
indicate that, regardless of the cooperation mode, VL model
introduces a statistically significantly different F i than PM and
ME. Furthermore, PM and ME introduce statistically signifi-
cantly different F i in bimanual mode. However, not enough ev-
idence existed to draw the same conclusion in the dyadic mode.
This is a fairly expected conclusion, considering the difference
between the assumptions taken by different models.

For the second hypothesis, the interaction model was taken
as the moderator variable. We observed a significant difference
between the means of bimanual and dyadic groups in the
PM model (p < 0.0001), while no significant difference was
observed in the case of VL and ME models (p > 0.76). These
results indicate that the interaction forces (F i) appearing in
the bimanual mode are statistically significantly different from
the ones appearing in the dyadic mode, when the PM model
is employed. For the other two models there is not enough
evidence to draw similar conclusions. This observation does
not strongly support our hypothesis and the test failed to reject
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Fig. 10. Radar charts of the 95% confidence intervals of the means of all
five metrics obtained for different models in different modes. The red and cyan
charts represent the statistics for the bimanual and dyadic modes, respectively.
(a) Polynomial. (b) VL. (c) ME.

the null hypothesis when VL or ME is employed. To better
understand this observation, we have visualized it in Fig. 10.

Panels (a), (b), and (c) in this figure show radar charts for
PM, VL, and ME models, respectively. In all charts, the red
patches are associated with the bimanual mode and the cyan
patches present statistics for the dyadic mode. The depicted
statistics are the 95% confidence intervals of the means for the
measured features. For example, the red interval on I1 axis in
panel (a) shows the 95% confidence intervals of the means of the
I1 samples, when only PM and bimanual levels are considered
in model and mode factors, respectively. Recall that all of the
metrics are bounded between zero and one. Thus, the charts
axes are all between zero and one, with zeros at the center of
the chart.

As illustrated in Fig. 10(a), when the PM model is employed,
bimanual and dyadic modes are statistically significantly differ-
ent in all metrics (except I2). However, when the VL model is
used, no discrepancy exists between the metrics [see Fig. 10(b)].
That is due to the fact that f ∗

1 = f ∗
2 and α = 0.5 when the VL

model is employed [see (7)]. Plugging these values in (33)–
(37) would give a constant value of one for all metrics. Finally,
Fig. 10(c) shows that the confidence intervals in bimanual and
dyadic modes overlap (except for I2) when ME model is used.

The test results suggest an interesting conclusion: PM would
effectively capture the difference between the bimanual mode
and the dyadic mode, VL would always fail to do so, and not
enough evidence existed that ME can do the same. In other
words, considering the existing sample population, the proposed
PM captures the critical information of the interaction better
than the other two models. However, it is important to note that
we based our study on a specific set of metrics. While we did
our best to explore different aspects of the interaction force,
it is possible that this set has not captured all the important
dimensions of the feature space. As a result, the aforementioned
conclusion is under the influence of the metrics defined in the
Appendix.

VII. ROBOT CONTROLLER BASED ON THE INTERACTION FORCE

In this section, we test our hypothesis that the robot performs
more efficiently when it is provided with the interaction force.
We introduce a controller scheme that exploits the interaction
force to generate robot’s applied force. The efficiency of the
robot is evaluated using a measure of position error.

Fig. 11. Control diagram. The interaction force is introduced in a feed-forward
manner.

A. Simulation Setup

To measure the performance of these models, we propose the
following scenario. First, the applied forces during performing a
dyadic (or bimanual) object manipulation task are assumed to be
available (our recorded data). Next, we calculate the interaction
forces based on all three models (offline). Then, we replace one
human (or one hand) with a robot and provide the robot’s con-
troller with the computed interaction force. Finally, we compare
the performance of the human–robot cooperative manipulation
with respect to the human–human dyadic (or bimanual) manip-
ulation, in terms of root-mean-squared error (RMSE).

To make sure that the measured error reflects the difference
between the models (and is not dominated by another factor),
we take the following steps. We assume that the robot has a
full knowledge about the task; that is, xi , xf , ti , tf and the
object’s mass, M , are all known to the controller. We chose the
impedance control over position control to make the controller
responsive to the interaction force. We also assumed that the
robot can be controlled perfectly so that the commanded force
appears at the robot’s end effector identically and immediately.

Since the controller is based on the offline computed interac-
tion force, it is not causal. Particularly, it cannot be utilized for
a real robot that is interacting with a human in an online fash-
ion. Throughout this section, the term “robot” refers to a virtual
agent (or the controller itself), rather than an actual robot. In Sec-
tion VIII we introduce a causal controller to be implemented on
a real robot. The controller exploits an online estimate of the
interaction force instead of the offline computed one.

Fig. 11 shows the block diagram for the offline controller.
The contribution of the robot to the manipulation task is shaped
by the motion profile block. It generates the desired object tra-
jectory xd that is a minimum-jerk trajectory in our case (see
Section III-B). The impedance control block generates the con-
troller force Fctrl, which guarantees a stable tracking of this
desired trajectory. Thus, Fctrl is the contribution of the robot to
the cooperative task. On the other hand, the interaction model
block provides the interaction force Fintrct. Thus, the robot ap-
plied force, FR , is then construed as

FR = Fctrl − Fintrct. (25)

Based on (4), human–human cooperation and human–robot
cooperation can be formulated as

FH = F ∗
H + F i FH = F ∗

H + Fintrct

Fh = F ∗
h − F i FR = Fctrl − Fintrct (26)
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where FH (F ∗
H ) and Fh (F ∗

h ) are the human applied (effective)
forces. More specifically, Fh is the force that we intend to replace
with the robot force (FR ) and FH is the force that the robot wants
to cooperate with.

If we take the calculated human interaction force as the
human–robot interaction force, Fintrct = F i , and if the robot
uses the human–human motion trajectory, xHh , as the desired
trajectory, xd = xHh , the robot’s effective force will follow the
other human’s effective force, Fctrl = F ∗

h . Here, we assume that
the actual motion trajectory of a human–human dyadic manip-
ulation (xHh ) is not available to the robot. Thus, the robot uses
the minimum-jerk model as an estimate of the human–human
motion trajectory and, therefore, Fctrl approximates F ∗

h . The
impedance control that provides robot’s effective force is

Fctrl = M ẍd + Kd(ẋd − ẋ) + Ks(xd − x) − 1
2
M ḡ (27)

where M is the object’s mass, Kd = 5M , and Ks = 6M . The
values of Kd and Ks are selected in such a way that the poles
of the closed-loop system are small (p1 = −2 and p2 = −3). It
allows the robot to interact with the human, while keeping the
tracking error small. The last term in (27) compensates half of
the weight of the object, assuming that the human compensates
the other half. Apply (25), (26), and (27) to the object’s equation
of motion, FR + FH + Mḡ = M ẍ. Therefore

M ë + Kd ė + Ks e = F̃H (28)

where e = x − xd and F̃H are the human’s gravity-compensated
effective force, F ∗

H = F̃H − 1
2 M ḡ. Equation (28) shows that

the controller is BIBO stable and the tracking error is a function
of human effective force.

B. Simulation Results

For each trial of the human study, we consider the applied
forces to the pot (f1 and f2) and calculate the interaction forces
(F i) based on three models: VL, ME, and PM. These interac-
tion forces are used in the interaction model block in the robot
controller in Fig. 11. That is, we apply Fintrct = F i for the above
three models. To study the necessity of including the interac-
tion force in the robot controller, we consider the case in which
Fintrct = 0. We will refer to this model as the zero-interaction-
force (ZF) model.

Fig. 12 illustrates an example of the performance of the robot
for different interaction models. The motion trajectory of the
human–human cooperation (xHh) is considered to be the base-
line for comparing the performance of the models. In Fig. 12(a),
this trajectory is marked with small circles (Hh). The motion tra-
jectories of VL, ME, and PM closely follow the human–human
trajectory. However, the zero-interaction-force (ZF) trajectory
cannot follow xHh. This means that although the impedance
controller attempts to contribute to the task and move the pot
along the desired trajectory, due to the lack of a good model for
the interaction force robot forces conflicts with human’s and the
whole task fails. This is more evident in Fig. 12(b), where the
difference between the xHh and the human–robot motion tra-
jectories (xHR) with different interaction models are illustrated.
While the position error for VL, ME, and PM are very similar

Fig. 12. Example of the performance of the robot, using different interaction
models. (a) Motion trajectory of human–human cooperation (xHh ) is compared
with human–robot motion trajectory (xHR) using the VL, ME, PM, and ZF
models. (b) Robot’s performance in terms of the position error: d = xHh − xHR.
(c) Interaction force (F i ) compared with the human force (FH ). (d) Robot force
(FR ) compared with both humans forces. Fh is the human force that we intend
to replace with the robot force and FH is the human force that the robot wants to
cooperate with. (a) Motion trajectories xHh and xHr, (b) position error xHh-xHR,
(c) interaction forces and FH, and (d) robot forces Fh and FH .

and less than 5 cm, the position error for ZF increases to 28
cm. We will use this error signal to statistically compare these
models with each other in the next section.

Fig. 12(c) shows the human applied force (FH ) and the inter-
action forces generated by different models. As illustrated here,
VL and ME models generate very similar interaction forces and
PM generates a low-order approximation of those interaction
forces. These interaction forces shape the robot’s applied force
(FR ). As it appears in Fig. 12(d), the robot’s force (FR ) follows
the replaced human force (Fh ) in all models, as expected. How-
ever, there exist a distinct difference between FR and Fh , due to
the difference between robot’s desired trajectory and human’s
original trajectory (xd �= xHh ).

C. Statistical Evaluation

We are interested in studying the effect of different interaction
force models (PM, VL, ME, and ZF) on the performance of the
proposed controller. Comparing the performance requires an
evaluation measure to be introduced. Let d(t) be the difference
between the human–human motion trajectory and the human–
robot motion trajectory, d(t) = xHh − xHR. We used the root
mean square of d(t) as the evaluation measure

RMSE =

√
1

tf − ti

∫ tf

ti

‖d(t)‖2 dt. (29)

The measure evaluates the performance of the controller in
terms of the average position error, given the specific interaction
model used. We use the sample population of the RMSE to sta-
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Fig. 13. Average performance of the robot, using different interaction models:
VL model, ME model, PM, and ZF model.

tistically compare the effect of the interaction models. The mean
and standard deviation of the samples for different models are
PM : (2.36 ± 2.31), VL : (2.27 ± 2.35), ME : (2.25 ± 2.32),
and ZF : (9.43 ± 9.09) all in cm. Fig. 13 shows the mean and
standard deviation of RMSE measure when different interaction
models are employed. As illustrated in the figure, the ZF model
generates larger mean error than the other three models and the
average error introduced by PM is not very different from VL’s
error or ME’s error.

In Section VI we discussed that the properties of the interac-
tion force are different among different models. Therefore, it is
expected that the performance of the controller would also be
different between the models. To evaluate this hypothesis, we set
up another repeated measures ANOVA test. The ANOVA model
is very similar to the one described in Section VI. The between-
subjects factor “mode” and the within-subjects factor “task” are
the same as before, but the within-subjects factor “model” has
four levels, PM, VL, ME, and ZF. The test includes a total of 12
(3 × 4) repeated measurements for each of the 25 subjects.

Mauchly’s test of sphericity showed that the assump-
tion of sphericity had been violated (χ2(65) = 894.05, p <
.0001) and, therefore, a Greenhouse–Geisser correction (ε̂ =
0.23046) was applied. The repeated measures ANOVA with
a Greenhouse–Geisser correction determined that the mean
RMSE differed statistically significantly among different mod-
els [F (0.6914, 15.9017) = 25.576, p < 0.0001]. Furthermore,
no statistically significant interaction was observed between
“model” and other factors (p > 0.15 for all). The significance
level was α = 5% in the test. A pairwise multiple comparisons
post-hoc test with the Bonferroni correction was performed. We
observed that the mean RMSE error is statistically significantly
higher when ZF is used (p < 0.0003 for all three pairwise tests).
Moreover, no statistically significant difference was observed
between the means of PM, VL, and ME (p > 0.82 for all tests).
The test results suggest the following two conclusions.

First, informing the controller about the properties of the
interaction force would significantly increase its performance.
This conclusion, which is not surprising, would support the
exploitation of the interaction force models in designing an
online controller (see the next section).

Second, no enough evidence existed to suggest that the perfor-
mances of different controllers (with PM, VL, and ME models)
are statistically significantly different from each other. This is
a surprising conclusion, considering our discussion on the dif-

Fig. 14. Sketch of the control diagram. The position of the pot and the human
applied force are measured and sent to the robot controller.

ferences between the properties of the interaction force among
these models (see Section VI). We speculate that the impedance
controller block would have partially compensated for the dif-
ferences between the interaction models and resulted in this
observation.

VIII. HUMAN–ROBOT COOPERATION STRATEGY

In designing the control scheme in the previous section, we
discussed that taking the human–robot interaction force equal to
the calculated human interaction force (Fintrct = F i) leads to a
human–robot motion trajectory that closely follows the human–
human motion trajectory. Thus, we assumed that the interaction
force between humans was fully known (calculated offline) and
the interaction model block in Fig. 11 was designed in a feed-
forward manner.

In the case of a real-time human–robot interaction, no human–
human interaction exists as a reference and, therefore, the con-
troller needs to calculate the interaction force only based on the
human’s applied force FH . Fig. 14 shows the real-time robot
controller block diagram, in which the interaction model block
measures the human force FH and estimates the interaction
force Fintrct. The design of the rest of the controller is exactly
the same as discussed in the previous section. In the next section,
we introduce an algorithm that estimates Fintrct, by predicting
FH and utilizing the PM.

A. Estimating the Interaction Force

We showed that the PM demonstrates a satisfactory perfor-
mance in an offline controller. We also discussed that while
other interaction models require both human forces (FH and
Fh ) to calculate the interaction force (F i), PM provides a good
approximation for F i , using only one force (FH ). Moreover,
the model requires only five boundary values to identify the
interaction force. As a result, PM is a good candidate for
estimating F i . According to the PM model, (21)–(24), the
interaction force requires the value of FH to be known at times
ti , tm , and tf . However, when the robot is calculating Fintrct(t)
for times t < tm (or t < tf ), the future human force, FH (tm )
[or FH (tf )], is not available yet. Therefore, in order to use PM
model as an estimator of the interaction force, either the bound-
ary values or the whole future human force need to be predicted.
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Fig. 15. Example of estimating Fintrct at time t. Since neither the human force
(FH ) nor the PM interaction force (F i ) is available to the robot after time t, the
controller predicts them (F̃H and F̃ i , respectively). (a) The predicted boundary
conditions are marked with magenta dots and the estimated interaction force at
time t [Fintrct(t)] is marked by a red star. (b) As time increases, the simulated
robot’s estimation of Fintrct evolves (intermediate curves) and F̃ i approaches
F i . (a) Estimating Fintrct (t). (b) Evolution of F̃i .

Let us define the predicted human force F̃H as

F̃H (τ, t) =
{

FH (τ) τ ≤ t
FH (t) τ > t

(30)

where τ is the time variable (0 ≤ τ < ∞) and t represents the
current time. The predictor suggests that human’s applied force
in the future remains constant and equal to the current force
value. While it is the simplest prediction of the future values
of FH , it is motivated by the minimum-jerk constraint. It is
easy to see that (1) minimizes ||ḞH (t)||2 and, thus, ḞH (t) =
0 (or FH (t) = Const.) is the optimal solution. However, this
justification is based on the assumption that the manipulation
task is mainly performed by the robot and the human only
provides a constant interaction force (e.g., grasp force).

If we plug (30) into (21)–(24), the interaction force that is
predicted at time t for the whole task (ti ≤ τ ≤ tf ) would be
obtained as

F̃ i(τ, t) = PolynomialModel
(
F̃H (τ, t)

)
(31)

which is a fifth-order polynomial, satisfying the predicted
boundary values. As a result, the estimated interaction force
at time t would be

Fintrct(t) = F̃ i(τ = t, t). (32)

Fig. 15(a) shows the above procedure for the same human
force (FH ) as we studied in the previous section. The prediction
of human force for t ≥ 1.14, F̃H is shown with a blue solid line
and the boundary values at tm = 1.5 and tf = 2.8 are marked
as magenta dots. The PM model is employed and the predicted
interaction force, F̃ i(τ, t), is calculated and shown with the
green dashed line. The estimated interaction force at time t,
Fintrct(t), is obtained and marked by a red star. Note that the
estimated value is very different from the offline calculated in-
teraction force, F i(t) (red dashed-dotted line). However, as time
increases, F̃ i approaches F i and the estimated value Fintrct(t)
gets closer to F i(t). Fig. 15(b) shows the evolution of F̃ i with
several intermediate curves. As F̃ i curves approach F i , the esti-
mated interaction force values (red stars) get closer to the offline
calculated interaction force.

Fig. 16. Example of the performance of the robot using the cooperation strat-
egy. (a) Simulated online interaction force estimation (Est) is compared with
the offline calculated PM. (b) Motion trajectory of human-human cooperation
(xHh ) is compared with human–robot motion trajectory (xHR) using PM and
estimated interaction force (Est). (a) Interaction Forces. (b) Motion trajectories.

Fig. 16 compares the performance of the online and the
offline controllers. Fig. 16(a) compares the estimated interaction
force with the offline-calculated one. Note that the estimated
force is the same as the red star marks in Fig. 15(b). The
motion trajectories of both online and offline controllers are
also compared with the human–human motion trajectory. As
illustrated in Fig. 16(b), while we use a simple prediction for
human force, the estimated interaction force results in a high
performance. However, it does not mean that the predicted
human force F̃H is a good representative of FH . It only
provides the required information about the boundary values.

Remark 1: In addition to the simplicity and high perfor-
mance, the proposed estimator possesses the following inter-
esting features:

1) The proposed estimator guarantees the smoothness of the
estimated interaction force (subject to the smoothness of
the human applied force).

2) The boundary conditions are always satisfied:
Fintrct(ti) = FH (ti), Fintrct(tm ) = FH (tm ), and Fintrct(tf )
= FH (tf ). Therefore, as t → tf , we have F̃ i(τ, t)
→ F i(τ).

B. Statistical Evaluation

We are implementing the control strategy on a four-DOF
Barrett’s WAM robotic arm [46] as our future work. Thus, to
make sure that the dynamics of the robot and the object will be
modeled precisely during our simulations, we used MathWorks’
SimMechanics simulation environment and the STL files for the
WAM arm (provided by the manufacturer). To be faithful to the
experimental setup, we used a pot as to be the manipulated
object with the same kinematic and dynamic properties as the
actual pot. Fig. 17 shows the simulation setup for the controller
evaluation.

Since the robot has only four DOF, we use a passive ball
joint between the robot and the pot. Therefore, the orientation
of the pot is controlled only by the human. In the simulation, we
used the orientation data that was recorded from IMU during
the experiment to reproduce the correct orientation of the pot.

Similar to the implementation in Section VII-A, we assumed
that the robot has a full knowledge about the task. In addition, we
assumed that no friction or nonlinearity exists in the robot and
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Fig. 17. We used a four-DOF WAM arm to evaluate our proposed model and
test the robot’s controller with the actual humans’ signals. The red arrow at the
free pot handle represents the human applied force.

that it can be controlled perfectly. We implemented the control
diagram in Fig. 14 as the robot controller. The desired trajectory
xd is a minimum-jerk trajectory given by (1). The impedance
controller follows (27) and the interaction model estimator is
described by (30)–(32). To measure the performance of the
online controller, the same scenario as in Section VII-A was
followed. To evaluate the performance of the online controller,
we took the same approach as we discussed in Section VII-C and
utilized the same RMSE measure as in (29). Let “Est” refer to
the population of RMSE error samples obtained in this scenario.
The mean and standard deviation for Est is (2.43 ± 2.37) cm.

Consider Fig. 16(a); while the estimated interaction force
Fintrct follows the offline-calculated interaction force F i , there
is a considerable difference between them. In addition, recall the
poor performance of the controller when no information about
the interaction force is available (discussed in Section VII-C).
These observations suggest that the performance of the proposed
online controller (using the estimator) would be higher than the
ZF model, but probably lower than the PM model. To study this
hypothesis, we set up another repeated measures ANOVA test.
This ANOVA model has the same factors as the one described in
Section VII-C except that the within-subjects factor model has
five levels (PM, VL, ME, ZF, and Est) here. The test includes
a total of 15 (3 × 5) repeated measurements for each of the 25
subjects.

Mauchly’s test of sphericity showed that the assump-
tion of sphericity had been violated (χ2(104) = 1154, p <
.0001) and, therefore, a Greenhouse–Geisser correction (ε̂ =
0.18648) was applied. The repeated measures ANOVA with
a Greenhouse–Geisser correction determined that the mean
RMSE differed statistically significantly among different mod-
els [F (0.7459, 17.1562) = 25.497, p < 0.0001]. Furthermore,
no statistically significant interaction was observed between the
model and other factors (p > 0.15 for all). The significance
level was α = 5% in the test. A pairwise multiple comparisons
post-hoc test with the Bonferroni correction was performed. We

observed that the mean RMSE error is statistically significantly
higher when ZF is used (p < 0.0005 for all four pairwise tests).
Moreover, no statistically significant difference was observed
between the means of PM, VL, ME, and Est (p > 0.61 for all
six tests).

The test results supports our hypothesis in part. That is, the es-
timator provides enough information about the interaction that
the performance of the controller is statistically significantly
higher than ZF model. However, no enough evidence existed
to suggest that the performances of online controller (Est) is
statistically significantly different from offline controllers (with
PM, VL, and ME models). These observations suggest that
the human–robot cooperation strategy, proposed by the con-
trol scheme in Fig. 14, would be a promising candidate for an
effective human–robot cooperative manipulation.

C. Discussion

A key limitation of our simulation approach is that the human
applied forces had been recorded during the experiment (be-
tween humans) and then were played back during simulations
(between human and robot). In other words, we did not model
the possible changes in the human applied forces due to the
robot’s actions in our simulations. In fact, we do not have ac-
cess to a model that fully describes how human behavior varies
in response to an external force. As a result, although the sim-
ulation results are very encouraging, unsatisfactory interactions
may appear during an actual human–robot interaction.

On the other hand, human perception is usually noisy. There-
fore, if the robot’s applied forces are in the range that the human
expects to perceive, it may not influence the human’s behavior.
Based on the promising results observed in the simulations, we
speculate that the online controller will demonstrate a satisfac-
tory performance in practice as well, but to test this hypothesis
one needs to set up a new study and test the online controller in
a real human–robot experiment. We explain our future work on
this matter in the next Section.

IX. CONCLUSION AND FUTURE WORKS

In this paper we studied the properties of the exchanged force
during a dyadic manipulation task. Using the existing theories
of human-hand motions, we proposed a PM for the interaction
force in a dyadic reaching movement. To validate our model,
we conducted a study with 22 subjects. We compared our model
with the VL model and ME model in a 5-D feature space and ob-
served the following things. First, the features of the interaction
force are statistically significantly different among the models
(except between ME and PM in the dyadic mode). Second, while
the PM model would effectively capture the difference between
the bimanual and dyadic types of collaboration, VL would al-
ways fail to do so and not enough evidence existed that ME can
do the same.

Next, we embedded the models in an impedance controller
and observed the following results. First, the performance of
the controller is statistically significantly higher when the in-
teraction force information is provided to the robot (using any
model). Second, no enough evidence existed to suggest that the
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performances of different controllers (using all models) are sta-
tistically significantly different from each other. We concluded
that the proposed model captures the critical information con-
veyed by the interaction force and provides a low-order approx-
imation for it.

To be able to embed the interaction model in an online con-
troller, the model should be causal and should depend only on
the human’s measured force. By applying the PM on a predic-
tion of human’s future forces, we proposed a causal estimator
for the interaction force. We showed that the proposed online
controller demonstrates a high performance similar to the of-
fline controllers. That is, not enough evidence existed to suggest
that their performances are statistically significantly different.
Considering 1) the difference between the estimated and the
offline-calculated versions of the interaction force and 2) the
poor performance of the controller when no interaction force is
provided, we concluded that these encouraging results are due
to an interplay between the impedance controller and the in-
teraction model. Thus, we speculated that the online controller
would be a promising candidate for an effective human–robot
cooperative interaction.

All these promising results have been achieved by applying
our knowledge of the task to the control problem. For instance,
in our case a computational model for the reaching movement
is the core of the proposed controller and estimator. While the
task information is shared between the cooperating agents, the
parameters of the task might not be. For instance, in a dyadic
reaching movement, the initial and final configurations (xi and
xf ) are known for both persons, but they may have different
preferred speeds (different tm and tf ). The learning trials are
used to let the agents negotiate on these parameters and come
to an agreement about the value of these parameters.

Similarly, the robot needs to learn about the human’s pre-
ferred values for these parameters. In the case of the reaching
movement, the robot needs to know the values of ti , tm , and
tf for both generating its desired trajectory (xd ) and estimating
the interaction force (see Sections VII-A and VIII-A). In the
simulations, we used the recorded data to provide these infor-
mation to the robot. For our future experiment with the WAM
arm, we will first let the human performs the task in the SPB
mode. Next, the parameters will be obtained using the person’s
recorded data. Then, the human and the robot will be given
few learning trials to adapt to each other. We speculate that
the human’s satisfaction in this scenario would be as high as
when the task is performed with a human partner. Designing an
adaptation algorithm for these parameters or an online learning
mechanism, using Bayesian approach for instance, would be an
interesting extension to this study.

APPENDIX

To be able to quantitatively assess different aspects of the
signals appearing in the interaction, we employ five performance
metrics as follows. A complete list of related indexes and their
interpretations (according to the associated human assessment)
has been presented in [23]. The variables used in defining the
following indexes (such as α, Fsum, and effective forces f ∗

1 and

f ∗
2 ) are defined in Section III-D. In addition, ti and tf are the

start time and the end time of the cooperative manipulation.
Average Wasted Effort: The index measures the level of dis-

agreement between the applied forces. It is defined as

I1 =
1

tf − ti

∫ tf

ti

M1(t) dt (33)

where

M1(t) =
‖Fsum(t)‖

‖f ∗
1 (t)‖ + ‖f ∗

2 (t)‖ .

Since Fsum = f ∗
1 + f ∗

2 , a higher value of the index indicates less
average wasted efforts. The index is suitably bounded between
zero and one (0 ≤ I1 ≤ 1), see [23].

Energy-Wise Similarity: The index measures the similarity
between the effective forces in terms of the signal-energy. It is
defined as

I2 = 1 −
∣∣∣∣N1 − N2

Nsum

∣∣∣∣ (34)

where ⎧⎪⎪⎨
⎪⎪⎩

N1 =
∫ tf

ti
‖f ∗

1 (t)‖dt

N2 =
∫ tf

ti
‖f ∗

2 (t)‖dt

Nsum =
∫ tf

ti
‖Fsum(t)‖dt.

A higher value of the index indicates smaller differences be-
tween the contributions of the subjects (in terms of signal-energy
of the forces). The index is suitably bounded between zero and
one (0 ≤ I2 ≤ 1), see [23].

Time-Wise Similarity: The index measures the similarity
between the effective forces at each point in time. It is
defined as

I3 =
1

tf − ti

∫ tf

ti

M3(t) dt (35)

where

M3(t) = 1 −
∣∣∣∣‖f

∗
1 (t)‖ − ‖f ∗

2 (t)‖
‖Fsum(t)‖

∣∣∣∣ .

A higher value of the index indicates more symmetry between
the effective forces. The index is suitably bounded between zero
and one (0 ≤ I3 ≤ 1), see [23].

Average of α(t): The index measures the average value of α
during the task and is related to the average of the interaction
force. It is defined as

I4 = 1 − |Nα |
Mα

(36)

where

Nα =
1

tf − ti

∫ tf

ti

(
α(t) − 1

2

)
dt

and Mα is the maximum value of |Nα | for a given set of signals
α(t). A higher value of the index is associated with the average
value of α closer to 0.5. The index is bounded between zero and
one by definition (0 ≤ I4 ≤ 1).
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Average Rate of α(t): The index measures the average rate of
the variations of α. It is defined as

I5 = 1 − Nr

Mr
(37)

where

Nr =
1

tf − ti

∫ tf

ti

‖α̇(t)‖dt

and Mr is the maximum value of Nr for a given set of signals
α(t). A higher value of the index indicates fewer average vari-
ations in α. For instance, I5 = 1 holds only if α(t) = const.
The index is bounded between zero and one by definition
(0 ≤ I5 ≤ 1).
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