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Failure Recovery in Robot-Human Object Handover
Sina Parastegari, Ehsan Noohi, Bahareh Abbasi, and Miloš Žefran

Abstract—Object handover is a common physical interaction
between humans. It is thus also of significant interest for human-
robot interaction. In this paper, we are focused on robot-to-
human object handover. The main challenge in this case is how
to reduce the failure rate, i.e. to ensure that the object does not
fall (object safety), while at the same time allowing the human to
easily acquire the object (smoothness). To endow the robot with a
failure recovery mechanism, we investigated how humans detect
failure during the transfer phase of the handover. We conducted
a human study that showed that a human giver primarily relies
on vision rather than haptic sensing to detect the fall of the
object. Motivated by this study, a robotic handover system is
proposed that consists of a motion sensor attached to the robot’s
gripper, a force sensor at the base of the gripper, and a controller
that is capable of re-grasping the object if it starts falling. The
proposed system is implemented on a Baxter robot and is shown
to achieve a smooth and safe handover.

Index Terms—Object handover, failure recovery, handover
safety, handover smoothness, physical human-robot interaction.

I. INTRODUCTION

OBJECT handover is a common type of interaction be-
tween humans. In a handover, a giver hands the object

off to a receiver. While they both participate in the exchange,
they each have a different goal: the giver wants to safely
release the object while the receiver wants to readily acquire
the control of the object and establish a stable grasp [1].

In a handover task, the most critical phase is the object
transfer phase, in which the object load is gradually transferred
from the giver to the receiver [2]. The transition starts from the
time that the giver makes the decision to open her hand and
release the object, and it ends when the object is fully released
and the giver is no more in contact with the object. The timing
needs to be precisely coordinated between the giver and the
receiver. On the giver’s side, releasing the object too early may
result in the object falling, while releasing it too late results
in high interaction forces [2].

Humans highly benefit from different mechanisms to pre-
vent failure during a handover. Since the focus of our work is
robot-to-human handover, we are primarily interested in what
the giver can do. A human giver may attempt to catch the
object before it hits the ground. In addition, using social-
cognitive reasoning based on haptic information, gaze, the
pose of the receiver’s body, and the configuration of her hand,
humans have a remarkable ability to judge whether the receiver
is ready to grasp the object during the handover. In this
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regard, it is worthwhile noting that haptic interaction during a
handover has been shown to be substantial [2]. In particular,
after the receiver has reached the object and before the object
transfer phase is initiated, if the haptic sensing suggests that
there is a problem, the giver will never release the object and
a potential failure will be avoided.

Object handover has been widely studied in the human-
robot interaction literature as a typical collaboration between
humans and robots. Researchers have studied how to perform
human-like handover [3]–[6] and how to implement smooth
and safe robot-human handover controllers [7]–[10]. While
the performance of the robot-human handover controllers has
steadily improved, the failure rate (the object is dropped) of the
proposed controllers is still high compared to human-human
handovers [2]. Failure detection mechanisms that humans pos-
sess are a challenge for robots: their bulk prevents them from
performing quick movements needed to catch the object, and
their ability to interpret social-cognitive cues from different
sensors is still limited. But compared to humans, they can
process sensory data and react to it much faster. Our goal in
this paper is thus to investigate how robots can take advantage
of their processing speed to compensate for what they lack in
agility and cognition. In particular, we will show that when the
robot is the giver, by judiciously choosing the sensors used for
detecting an impending fall of the object, it can prevent failure
by closing its gripper before the object falls out of reach. This
mechanism also allows the robot to handle collisions during
the handover, which are another significant source of failure
for existing handover controllers.

In the first part of this paper, we investigate how human
givers detect a failure during the transfer phase of the han-
dover. The main question that we want to answer is which
sensory modalities are used by human givers to detect a
failure? We describe a human study designed to investigate
this question. The human study shows that humans primarily
rely on vision; that is they detect the impending fall of the
object by observing its motion. This finding is then used in
the later part of the paper to design a robot handover system
that consists of a motion sensor attached to the robot’s gripper,
a force sensor at the base of the gripper, and a controller that
is capable of re-grasping the object if it starts falling. We show
that the proposed system achieves a safe and smooth handover.

The idea of using object’s motion information to achieve
a safer handover has been explored in the past. In [9], the
object acceleration is continuously measured and the controller
ensures that the acceleration is smaller than a threshold before
releasing the object. While this method improves the object
safety (prevents drops), it cannot recover from a failure once
the object has been released, e.g. if the object slips from the
receiver’s hand. Also, it cannot handle moderate collisions
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between the receiver’s hand and the object. In this work, we
propose a handover scheme for a two finger robotic gripper
that is able to detect an impending failure based on the object
acceleration and recover from it by re-grasping the object. The
system was introduced in our preliminary work [11], but no
analysis was provided regarding its performance under various
task conditions. Our contribution here is threefold: first, we
present a human study that shows that human givers mainly
rely on the object’s motion to detect a failure during the
handover transfer phase and that informs the choice of sensors
used in our implementation. Second, we describe a framework
for a fail-safe handover controller that can detect and prevent
a failure. Finally, a simulation is presented that shows that
the system is robust with respect to the sensor noise, actuator
disturbances and model uncertainties. The proposed handover
system is implemented on a Baxter robot and it is shown that
it can effectively prevent a failure, it allows the receiver to take
the object at a wide range of angles, and it requires a smaller
pulling force compared to the existing handover controllers.

II. RELATED WORK

Different characteristics of human-human handovers have
been studied in the literature. Shibata et al. [12], analyzed
the human hand trajectory during the task. Basili et al. [13],
studied reaching motion of humans and Mason et al. [1],
investigated grip forces applied to the object by the giver and
the receiver.

Many of the proposed handover controllers for robots are
inspired by human-human handovers. Kajikawa et al. [7],
presented a method to generate human-like motion for the
robot to perform the handover. Hendrich et al. [8], presented
a multi-modal robot-human handover controller which tracks
the human motion and detects the beginning of the handover
by combining clues such as visual signals, sounds, etc. Other
works include investigating how to approach a person for a
handover [3], how to choose the location of the handover [4]
and how to present the object to the receiver [6]. In [14], we
proposed a model to select the handover configuration and
the reaching motion trajectory based on what humans do in
human-human handovers.

Strabala et al. [15], proposed a coordination architecture for
the robot-human handover in which three main questions are
addressed: what, when and where. Answering these questions
results in initializing the handover task, establishes the timing
of the handover and specifies the configuration in which the
handover will occur.

Answering the when question is one of the most important
issues in robot-human handovers [15]. In case that the robot is
the giver, there should be an accurate plan when to approach
the receiver. The robot also has to open its hand and release the
object at the right time. Several methods have been proposed
regarding when to release the object. A simple algorithm is
to release the object after a predefined period of time [5],
[16]. This algorithm frequently fails by dropping the object
since there is no coordination between the robot and the
receiver. Deyle et al. [17], proposed an algorithm in which the
robot releases the object once the applied force, measured at

the wrist, exceeds a predefined threshold. Bohren et al. [18]
implemented an impedance controller for the robot, so the
object is released whenever the displacement of the robot’s
hand due to the exerted force by the receiver is more than a
threshold. Another approach proposed by Nagata et al. [10] is
to continuously check the stable grasp condition. The object
is released once the grasp becomes unstable. This approach
requires force/torque sensors at fingertips.

While the aforementioned approaches focus on a smooth
object transfer, they suffer from a high failure rate. A failure
happens when the object is dropped during the handover, often
because of a collision with the receiver’s hand or an obstacle.
Due to such a collision, a similar force or displacement is
measured in the robot’s hand as if the receiver were pulling the
object. So the robot mistakenly releases the object. To solve
this issue, the controller’s robustness to disturbances can be
increased. But as a result, a large force must be applied by the
receiver to take the object. In other words, there is a trade-off
between the handover smoothness and the object safety [9].

In another study, Chan et al. [2] investigated the relation
between the load forces versus the grip forces during human-
human handovers and showed that the grip force exerted by
human givers has a linear relationship with the vertical load
force. Based on this observation, a human inspired handover
controller was proposed and implemented for PR2 robot which
shows smooth performance compared to other approaches [9].
While the proposed algorithm has been shown to be robust
against collisions with the robot’s arm, it only works when the
object is transferred in a vertical direction and the handover
is quasi-static.

In an effort to prevent falling of the object when the object is
grasped by a robotic hand, different slip detection and recovery
methods have been proposed. Vibration sensing [19], optical
tracking of the object [20], [21] and normal and shear stress
sensing [22] are among the proposed slip detection methods.
In [23], tactile and force sensors are used to detect a slip.
In a study in neuro-physiology [24], it is shown that humans
detect slippage of objects based on the firing activity sensed
by high frequency sensors in the fingertips. Once the slip
is detected, the grasp force should be regulated to restrain
the object. Cipriani et el. [25], proposed different hierarchical
control strategies to regulate the grasp force and Yussof et
al. [26], analyzed performance of a tactile based slippage
control algorithm for a robotic hand that performs grasp-
move-twist motion. The aforementioned methods effectively
improve the safety of the object in a grasp. However, they
cannot be employed by a giver in a handover because in the
object transfer phase, there might be slippage when the object
is being released by the giver; this is exactly the opposite
from grasping. To prevent handover failure, the controller
should thus distinguish between undesired slippage caused for
example by a collision versus desired slippage caused by the
receiver pulling the object.

III. HANDOVER FAILURE DETECTION

In a handover, the decision to release the object is made by
the giver once she is confident that the receiver has grasped
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Fig. 1. A simulation of the object transfer phase: the object load is gradually
transferred from the giver to the receiver during ttransfer . (a) The giver load
force (FLG

). (b) The receiver load force (FLR
). The simulation mimics the

forces shown the first panel in Figs. 4 and 5 in [2].

the object or is capable of doing so. The decision is based
on the information provided by the sensors, such as vision
and haptic sensing, but it is also affected by social-cognitive
processes. In [2], it is shown that during the object transfer
phase, the object load is gradually transferred from the giver
to the receiver. The total duration of the object transfer phase
(ttransfer) is also measured and reported to be between 300ms
to 700ms, in an experiment where a baton shaped object with
variable weight of 480g to 680g was handed over between the
participants. Figure 1 shows a simulation of the forces during
the transfer phase of the handover that mimic those presented
in [2]. A simple open-loop controller was used to generate the
simulation.

There are different ways a handover can fail. For example, if
the giver decides to abort the handover because she determines
that the receiver is not ready, this could be considered a failure.
In this paper, by a failure we mean a very specific situation
when the giver has made the decision to open her hand and
let the object go, but for some reason, the receiver fails to
grasp the object so the object starts to fall. In particular, we
are interested in how the giver can detect a failure and react
to it by re-grasping the object. Our motivation for studying
how humans detect failure during the handover is to use
what we learn to design a system that allows a robot giver
to recover from failures. In particular, we need to determine
which sensors should be used by the robot.

We should stress that the focus of our work is on handovers
where the forces during the transfer phase follow Figure 1.
This happens for instance when the giver holds the object by
opposing fingers pressing against vertical faces of the object
(see Figure 4). In this case, a release of the object immediately
results in a fall. In other handover configurations, such as when
passing a plate to another person, after the giver releases the
object, it is still partially supported by her hand so the fall
does not happen immediately and there is more time to react
to a failure.

The only two senses that might help the giver to detect a
failure are vision and haptic sensing (after the fact, a failure
can be detected by hearing the object hit the ground; but at that
point it is too late to react). Humans can always detect a failure
through vision: as they follow the trajectory of the object, if
the object is not in the receiver’s hand, that means a failure
has occured. However, the contribution of haptic sensing is
unclear. Haptic sensing is shown to play an important role in

object grasping [27] and in particular in slip detection when
an object is fully grasped [24]. Slip detection can thus be used
to control the grasp [20], [23], [26], [28]. But in a handover,
in contrast to grasping, it is expected that the object will slip
from the giver’s hand as it is transferred from the giver to the
receiver so the slip does not indicate a failure. The next section
describes a human study that was performed to determine
whether humans in the role of a giver use haptic sensing to
detect a failure during a handover1.

IV. HUMAN STUDY

The human study is conducted with 10 participants (5 men
and 5 women) between ages 21 to 37. The participants are
recruited from students and staff at the University of Illinois
at Chicago (UIC) by posting flyers and sending emails to UIC
graduate students email-list, according to our approved IRB
protocol. The subjects play the role of the giver in the handover
task by keeping an object in their hand. The experimenter plays
the role of the receiver and tries to take the object from the
subject.

A. Experimental Setup and Procedure

The Mug 

IMU + Arduino  

Fig. 2. The object and the
installed equipment.

While blindfolded, each subject
performs the handover task 10
times. The object to be handed
over is an 8cm×8cm×9.5cm mug
(see Fig. 2). In each trial, the par-
ticipant keeps the mug in her hand
and the experimenter attempts to
take the mug. In half of the trials
(5 trials), the experimenter per-
forms the taking, i.e., the object
is completely grasped using three
fingers: the thumb, the index and the middle finger. The mug
is then pulled horizontally out of the participant’s hand (see
Fig. 3a, the direction of pulling is shown by a blue arrow). In
the other 5 trials, the experimenter performs the dropping, i.e.
the object is intentionally dropped by putting the index and
middle fingers inside the mug and pulling it horizontally (see
Fig. 3b, the direction of pulling is shown by a blue arrow).
In order not to give any clue to the subject, the experimenter
tries to touch and pull the mug softly so the participant cannot
realize how many fingers are used. The taking and dropping
actions are interleaved randomly so the participant is neither
aware of the number of repetitions of each action nor the order
of the actions. There is a pillow on the table so in case the
object falls, it won’t make a loud sound. Also, a loud music is
played for the participant through headphones, so she cannot
hear the sound of the object hitting the pillow.

The participant’s role is to tell whether the object is dropped
or taken after each trial. The expectation is that if haptic
sensing contributes significantly to detecting a failure during
the transfer by the giver, the participants should be able to
detect the drop at a rate significantly better than chance (which

1Clearly, for the receiver, haptic sensing with its ability to detect slip is
crucial to securely grasp the object.
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Fig. 3. Pulling action in (a) taking horizontally, (b) dropping horizontally, (c)
taking diagonally and (d) dropping diagonally cases. The blue arrow shows
the horizontal pulling direction. The red arrow shows the diagonal pulling
direction.

would be 50%). Note that the participants are instructed not to
re-grasp the object if they feel it was dropped. To determine the
effect of the direction of pulling, the experiment is repeated
again, but with a different pulling direction. This time, the
object is pulled diagonally (see Figs. 3c and 3d, the direction
of pulling is shown by a red arrow). In total, each subject thus
performs 20 trials.

In order to maintain the consistency between the trials,
we attached a 9 degrees-of-freedom Sensor-Stick SparkFun
Inertial Measurement Unit (IMU) [29] to the mug to measure
its acceleration (see Fig. 2). The IMU is interfaced with a
computer through an Arduino MEGA development kit [30].
For each trial, we make sure that the object’s acceleration in
the direction of pulling falls in the range of 1.5 to 4.5m/s2;
otherwise the trial is disregarded. This range of accelerations
was observed in a pilot study in which several subjects simply
handed over the same mug to each other. The object and the
IMU weigh 420±10g in total.

Note that during the human study, several precautions are
taken to eliminate the human social-cognitive reasoning that
typically takes place during the handover: the experiment is
repeated several times in the same configuration and the giver
cannot see the experimenter (the receiver) nor her hand.

B. Results

The range of the magnitudes of the object acceleration in
the direction of pulling is shown in Table I.

TABLE I
OBJECT ACCELERATION IN THE DIRECTION OF PULLING

Object
Acceleration

Min.
(m/s2)

Max.
(m/s2)

Ave.
(m/s2)

SD
(m/s2)

Pulling
Horizontally 1.6 4.4 3.2 0.7

Pulling
Diagonally 1.8 4.4 3.7 0.6

The performance of the participants is summarized in Ta-
ble II. For example, the first row in the table indicates that
when the experimenter performed the taking action and pulled

TABLE II
PERFORMANCE OF THE PARTICIPANTS. PARTICIPANTS WERE INSTRUCTED

NOT TO RE-GRASP THE OBJECT IF THEY FELT IT WAS DROPPED.

Pulling Direction Action Participant’s Guess
Correct Incorrect

Horizontal
Taking 62% 38%

Dropping 46% 54%

Total 54% 46%

Diagonal
Taking 62% 38%

Dropping 72% 28%

Total 67% 33%

the object horizontally, the success rate was 62%, i.e. in 62%
of the trials, participants could correctly identify the action and
express that the object was taken. The third row in the table
shows that the total success rate of the participants, when the
object was pulled horizontally, was 54%. In order to determine
the role of haptic sensing, we used the data to test whether
or not participants were able to answer correctly significantly
more often than chance (50%).

Let xi, i = 1, . . . , 10, denote the success rate of each
participant when the object is pulled horizontally (one sam-
ple). The average of all the samples is x̄i = 54% and
its standard deviation is SD(xi) = 13%. One-sample t-test
indicates that the performance of the participants does not
significantly differ from the 50% success rate expected by
chance: t = 0.973, p − value = 0.356. To make sure that
the underlying distribution assumptions of t-test do not affect
the analysis, the significance level is also calculated using
a non-parametric test. We use a binomial test [31] on the
overall success rate of all the participants, tested against a
null of 50% success rate. Using binomial test makes sense
here because the action is randomly selected in each trial and
hence the trials are statistically independent. This test also
shows that the success rate does not significantly differ from
chance: p− value = 0.481. Furthermore, the 95% confidence
interval of the success rate is [0.42 , 0.65] which shows that
the correct and the incorrect answers are almost equally likely
to be selected.

The conclusion is that in this setup, the information provided
by haptic sensing is not reliable enough to detect falling of an
object during the object transfer phase. In fact, the participants
stated that they often could not decide with certainty whether
the fall occurred and they just chose a random answer. The
performance of participants is slightly improved when the
object was pulled diagonally, with participants answering
correctly in 67% of trials (row 6 in Table II). We speculate that
this improvement is because of the greater difference between
the object’s motion in taking and dropping scenarios when the
object is pulled diagonally. Even though the success rate in this
case is significantly higher than chance (p − value < 0.01),
the failure rate of 33% is still quite high. Considering that
humans can easily detect the failure with their eyes open, the
data shows that closing the participants’ eyes has significantly
affected their performance.
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V. ROBOT HANDOVER SYSTEM WITH FAILURE RECOVERY

Given the results of the human study, we were motivated to
choose vision instead of a haptic sensor to detect the fall of
the object. In a human-human handover, vision clearly plays a
significant role. The giver watches the receiver reaching for the
object and perceives her readiness to take it. This information
helps the giver to coordinate the time, the location and the
configuration of the handover. On the other hand, during
the transfer phase, both the giver and the receiver visually
monitor the object to ensure the successful completion of the
task. However, visual processing is time consuming, both for
humans and for computers. In order to use the motion of the
object for failure detection, and to allow the robot to react to
the failure, motion needs to be monitored with a sensor that
has a fast response time.

Among the characteristics of the object’s motion, the accel-
eration can be used as an indicator of an impending fall of the
object and this is the modality we used in our work. Object
acceleration can be measured by installing an accelerometer
on the object; however, this is clearly not a solution that
is suitable for implementation on a robot. Instead, the robot
should be equipped with a sensor that can measure the object’s
acceleration with respect to the robot’s hand. We propose to
attach an optical sensor similar to what is used in an optical
mouse, to the finger of the robot. Optical sensors are able
to measure acceleration up to 10g and are fast [32]. They
often have a limited range of operation, i.e. the object should
be in close proximity to the sensor (distance<4mm). But in
our application in which the object is in contact with the
robot’s finger, these optical sensors provide a cost-effective
and practical solution. Also, like any other position based
estimate, our acceleration measurement is subject to high-
frequency noise. But in Section VI, we show that our proposed
controller is highly robust against acceleration measurement
noise.

In the following, a model of a handover system with a two
finger robotic gripper is proposed. Subsequently, we design
a handover controller that includes a re-grasping mechanism.
The re-grasping mechanism relies on the feedback that in-
cludes the acceleration of the object measured by an optical
sensor installed on the gripper, as well as forces measured at
the wrist.

A. System Model

Assume a two finger robotic gripper, grasping an object.
The robot’s wrist is equipped with a force sensor that measures
the forces applied to the object and there is an optical sensor
attached to the gripper that measures the object acceleration
relative to the gripper. A human subject tries to take the object
from the gripper by pulling on it. In Fig. 4, the gripper, the
object and forces applied to the object are shown.
Fp is the pulling force applied by the human, ϕ is the angle

of pulling, W is the object weight, FG is the controlled grip
force (each finger of the gripper applies FG to the object) and
Ff is the friction force between the gripper and the object.
For the sake of simplicity, it is assumed that Fp lies in the
plane that is perpendicular to the grip force FG. Based on the
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Fig. 4. The two finger gripper and applied forces to the object.

configuration of the object and the gripper, the system can
be in one of the three modes: the grasp mode, the slipping
mode and the release mode. Different system modes and mode
switching conditions are shown in Fig. 5 and are explained
below.

1) Grasp mode: The system starts in the grasp mode in
which the object is fully grasped and ax = ay = 0. The
human can pull the object, but as long as the total external
force applied to the object (Fsum) is less than the maximum
static friction force (Ffmax

), the system stays in the grasp
mode. We have Ffmax = µsFG where µs is the static friction
coefficient between the object and the gripper (effectively, µs
is twice the static friction coefficient between the object and
each finger of the gripper).

In the grasp mode we have:

Fp cosϕ = Ff cos θ

W + Fp sinϕ = Ff sin θ
(1)

2) Slipping mode: Once Fsum exceeds Ffmax
, the system

switches to the slipping mode in which the object slips between
the fingers of the gripper. In the slipping mode, the system
equations become:

Ff = µkFG

Fp cosϕ− Ff cos θ = Max

W + Fp sinϕ− Ff sin θ = May
ay
ax

= tan θ

(2)

where µk is the kinetic friction coefficient between the object
and the gripper (twice the kinetic friction coefficient between
the object and each finger of the gripper). It is assumed that
the object moves in a straight line, so the object’s acceleration
is in the direction of motion.

While most of the proposed handover controllers in the
literature have only two modes of operation (complete grasp
and complete release) the slipping mode is essential to our
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Fig. 5. System modes.
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𝐅𝐩 is the pulling force applied by the human, 𝜑 is the angle

of pulling, 𝐖 is the object weight, 𝐅𝐆 is the controlled grip
force and 𝐅𝐟 is the friction force between the gripper and the
object. For the sake of simplicity, it is assumed that 𝐅𝐩 is in the

plane that is perpendicular to the grip force (𝐅𝐆).

Decomposing the applied forces in the 𝑥 and 𝑦 directions 
(see Fig. 4), the equations of motion governing the system 
become: 

𝐹𝑝 cos 𝜑 − 𝐹𝑓 cos 𝜃 = 𝑀𝑎𝑥

𝑊 + 𝐹𝑝 sin 𝜑 − 𝐹𝑓 sin 𝜃 = 𝑀𝑎𝑦 (1) 

where 𝑀 is the object mass, 𝜃 is the angle between the friction 
force and 𝑥 axis and 𝑎𝑥 and 𝑎𝑦 are the components of the

object acceleration in the 𝑥 and 𝑦 directions, respectively. 
Italicized letters are used to show scalars including vector 
norms. 

Let 𝐹𝑠𝑢𝑚 be the magnitude of the vector sum of  𝐖 and 𝐅𝐩:

𝐹𝑠𝑢𝑚 = √(𝑊 + 𝐹𝑝 𝑠𝑖𝑛 𝜑)
2

+ (𝐹𝑝 𝑐𝑜𝑠 𝜑)
2

(2) 

Based on the configuration of the object and the gripper, 
the system can be in one of the three modes: the grasp mode, 
the slipping mode and the release mode. Different system 
modes and mode switching conditions are shown in Fig. 5 and 
are explained below. 

1) Grasp mode:
The system starts in the grasp mode in which the object is

fully grasped and 𝑎𝑥 = 𝑎𝑦 = 0. The human can pull the

object, but as long as the total external force applied to the 
object (𝐹𝑠𝑢𝑚) is less than the maximum static friction force
(𝐹𝑓𝑚𝑎𝑥

), the system stays in the grasp mode. We have 𝐹𝑓𝑚𝑎𝑥
=

𝜇𝑠𝐹𝐺 where 𝜇𝑠 is the static friction coefficient between the
object and the gripper.  

Figure 5.  System modes 

In the grasp mode we have: 

𝐹𝑝 cos 𝜑 = 𝐹𝑓 cos 𝜃

𝑊 + 𝐹𝑝 sin 𝜑 = 𝐹𝑓 sin 𝜃 (3) 

2) Slipping mode:

Once 𝐹𝑠𝑢𝑚 exceeds 𝐹𝑓𝑚𝑎𝑥
, the system switches to the

slipping mode in which the object slips between the fingers of 
the gripper. 

In the slipping mode, the system equations become: 

𝐹𝑓 = 𝜇𝑘𝐹𝐺

𝐹𝑝 cos 𝜑 − 𝜇𝑘𝐹𝐺 cos 𝜃 = 𝑀𝑎𝑥

𝑊 + 𝐹𝑝 sin 𝜑 − 𝜇𝑘𝐹𝐺 sin 𝜃 = 𝑀𝑎𝑦
𝑎𝑦

𝑎𝑥

= tan 𝜃 (4) 

where 𝜇𝑘 is the dynamic friction coefficient between the object
and the gripper. It is assumed that the object moves in a straight 
line, so the object’s acceleration is in the direction of motion. 

While most of the proposed handover controllers in the 
literature have only two modes of operation (complete grasp 
and complete release) the slipping mode is essential to our 
controller. In this mode, the object is allowed to move but it is 
not completely released. Therefore, the object’s downward 
acceleration can be measured and the system can distinguish 
between an unwanted collision and a force applied by the user. 
One of our main contributions in this study is to design a 
controller that keeps the system in the slipping mode in order 
to achieve a smooth and safe handover. 

3) Release mode:
In case that the output of the controller is 𝐹𝐺 = 0, the

friction force would also be zero (𝐹𝑓 = 0) and the object is

released from the gripper.  

B. Controller Design

Here we discuss the general design requirements for a 
handover controller that works based on the model presented 
in Section VI-A. Later in section VII, an instance of such a 
controller is shown and its performance is evaluated through 
simulation. 

The output of the force sensor attached to the robot’s wrist 
(𝐅𝐬) is equal to the friction force between the gripper and the
object: 

𝐹𝑠𝑦
= 𝐹𝑓 sin 𝜃     ,   𝐹𝑠𝑥

= 𝐹𝑓 cos 𝜃 (5)

The controller gets 𝐹𝑠𝑥
, 𝐹𝑠𝑦

 and 𝑎𝑦 as input and returns 𝐹𝐺

as output (See Fig. 6). The design goals for the controller are: 
(a) the robot should not allow the object to fall; and (b) the
handover should happen in a smooth and effortless manner.
These goals can be achieved by controlling the conditions at
which the system switches between the three modes, i.e. grasp
mode, slipping mode and release mode. In the following, we
discuss the required conditions for mode switches.

Figure 6.  The controller loop 
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=
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Fig. 6. The controller loop.

controller. In this mode, the object is allowed to move but it
is not completely released. Therefore, the object’s downward
acceleration can be measured and the system can distinguish
between an unwanted collision and a force applied by the
user. One of our main contributions in this study is to design
a controller that keeps the system in the slipping mode in order
to achieve a smooth and safe handover.

3) Release mode: Once the output of the controller (FG)
becomes zero, the friction force also becomes zero (Ff = 0)
and the object is released from the gripper.

B. Controller Design

Here we discuss the general design requirements for a
handover controller that works based on the model presented
in Section V-A. Later in Section VI, an instance of such a
controller is shown and its performance is evaluated through
simulation.

For a setup similar to Fig. 4, with a two finger robotic
gripper and a force sensor attached to the robot’s wrist, the
output of the force sensor (Fs) is equal to the friction force
between the gripper and the object:

Fsy = Ff sin θ , Fsx = Ff cos θ (3)

It is assumed that the force sensor is calibrated so that the
weight of the gripper is eliminated. The controller gets Fsx ,
Fsy and ay as input and returns FG as output. The control loop
is shown in Fig. 6. We assume that the dynamics of the gripper
is negligible so that the commanded grip force is directly
applied to the object. The plant under control consists of the
gripper and the object. The design goals for the controller are:
(a) the robot should not allow the object to fall; and (b) the
handover should be smooth and feel natural for the human.
These goals can be achieved by controlling the conditions at
which the system switches between the three modes, i.e. grasp
mode, slipping mode and release mode. Please note that these
three modes are different modes of the plant itself, not the
controller. The controller can observe the current mode of the
plant, and it may or may not behave differently in each mode.

We next discuss in detail the control requirements at mode
switches.

1) Switching from the grasp mode to the slipping mode:
Initially, the system is at rest (Fp = 0, ay = 0, Fsy = W ,
Fsx = 0). In order to sustain the object, we should have:

µsFG ≥W (4)

Equation (4) can be satisfied by assigning FG initially to be
equal to or greater than W

µs
. Furthermore, the force overshoot

of the system is determined by the conditions at which the
system switches to the slipping mode. Force overshoot is
defined as the minimum amount of pulling force that the user
has to apply before the object is released. Here we define
the start force threshold (FST (ϕ)) as the minimum amount of
pulling force that the user has to apply in a specific direction
(ϕ) so that the system switches from the grasp mode to the
slipping mode. It is shown later that the force overshoot is
equal to FST . The switching condition (shown in Fig. 5) can
be written as:

µsFG ≤
√
W 2 + FST (ϕ)2 + 2WFST (ϕ) cos(90− ϕ) (5)

In the equation above, FG is to be determined by the controller.
FST can be then computed as a function of ϕ by solving (5)
for a given controller. From the practical point of view, it is
not possible to achieve a zero force overshoot, as choosing
small values for FST results in a very sensitive system that
responds to the measured force noise.

2) Switching back from the slipping mode to the grasp
mode: Once the system switches to the slipping mode, the
desired behavior is not to switch back to the grasp mode unless
the pulling force falls below FST . Otherwise, the system
would exhibit chattering. We define stable force threshold
FBT (ϕ) as the minimum amount of pulling force that the user
has to apply to the object in a specific direction (ϕ) when the
system is in the slipping mode so the system does not switch
back to the grasp mode. FBT can be computed as follows:

µsFG ≥
√
W 2 + FBT (ϕ)2 + 2WFBT (ϕ) cos(90− ϕ) (6)

Please note that FG is to be determined by the controller and
it might have different values in (6) and (5), since the system
is in two different modes. In order to avoid chattering, we
should have:

∀ϕ : FBT (ϕ) < FST (ϕ) (7)

3) Switching from the slipping mode to the release mode:
According to Fig. 5, the system switches from the slipping
mode to the release mode once FG becomes zero. The con-
troller should be designed so that FG converges to zero for a
constant pulling force that caused the system to switch from
the grasp mode to the slipping mode. This ensures that no
larger force than FST is required to take the object from the
robot and FST is indeed the system force overshoot.

4) Switching back from the release mode to the slipping
mode: For a small amount of time after the system switches
to the release mode, it needs to keep monitoring the object so
that it can react in case the object is falling. We call this period
of time the monitoring time (tm). We should make sure that
during tm, the system will switch back from the release mode
to the slipping mode if the object’s downward acceleration is
more than a threshold, namely aymax . In the release mode,
assuming that the object is taken by the user, we have:

ax =
Fp cosϕ

M

ay =
Fp sinϕ+W

M

(8)
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In case we have ay > aymax
, The controller should re-establish

the grasp by increasing FG.

VI. SIMULATION RESULTS

Matlab simulations are carried out to evaluate the perfor-
mance of the controller framework proposed in Section V-B.
An instance of a controller designed based on the procedure
explained in Section V-B is proposed in our previous work
[11], called “fail-safe” (FS) handover controller. We use this
controller in our simulations. For the reader’s convenience, a
review of the FS controller and its parameter tuning procedure
is presented in Appendix A. Furthermore, a detailed stability
analysis of FS controller can be found in Appendix B. The
controller has the same governing control law for all the three
modes of the system:

FG[n+ 1] = ki
(
αFsy [n] + βay[n]−
γFsx [n]− Fmargin) + (1− ki)FG[n] (9)

where n is the time step and α, β, γ, Fmargin and ki are
constants that should be selected based on the object weight,
desired force overshoot, etc. Equation (9) is composed of
several terms: the term αFsy [n] counteracts the load force, so a
heavier object results in a larger grip force. The term βay[n]
balances the object downward acceleration, so the object is
re-grasped if it is falling. The term −γFsx [n] reacts to the
horizontal pulling force. It will be shown in Appendix A that
it allows the user to take the object (pull) at a wider range of
angles ϕ. The term −Fmargin allows the system to tolerate
small values of the object downward acceleration before re-
grasping the object. Finally, the term (1 − ki)FG[n] works
as an integrator which improves the stability of the system.
For details on the design of this controller, how different
parameters can be chosen and the stability analysis please refer
to Appendices A,B and reference [11].

Fig. 7. The object’s load as seen by
the controller in a taking scenario.

We define two different ac-
tions: (a) dropping, and (b) tak-
ing, similar to what we defined
in Section IV. In dropping, a
force is applied to the object,
but the weight of the object
is not compensated, resulting
in the object falling if released
by the robot. This is to test
whether the robot can prevent
a failure. In contrast, in taking,
it is assumed that the object is
taken by a human, so the weight of the object is compensated.
In this case, we want to see whether the controller can achieve
a smooth handover. The two actions are simulated similarly:
in each time step, the pulling force in the desired direction
is applied to the object in addition to FG and W . The
acceleration of the object is then calculated considering the
friction force between the gripper and the object. The only
difference between the two actions is that in a taking scenario,
the object’s weight is canceled out during the transfer phase.

(a) Forces: Taking (b) Forces: Dropping

(c) Acceleration: Taking (d) Acceleration: Dropping

Fig. 8. Applied pulling force and grip force in (a) taking and (b) dropping.
Acceleration of the object in (c) taking and (d) dropping. Red background
indicates the grasp mode, yellow the slipping mode and green the release
mode.

Figure 7 shows the the object’s weight (object’s load) as it is
seen by the controller in a taking scenario.

In the simulations, we selected the object’s mass M =
0.2Kg and µs = 0.6, µk = 0.5. The controller parameters
are selected as follows (refer to Appendix A for details):
the maximum object’s downward acceleration that the system
tolerates is set to 4(m/s2). Based on (17), β is set to 3 and
Fmargin is set to 12. Parameter α is then selected equal to 10
to satisfy (15). Also, based on Fig. 18, γ is set to 5 to achieve
FST (ϕ = 0) < 1N , i.e. force overshoot of less than 1N when
pulling the object horizontally. The system parameters used in
the simulations are summarized in Table III.

TABLE III
SYSTEM PARAMETERS USED IN THE SIMULATIONS

Parameter α β γ Fmargin(N) ki M(Kg) µs µk

Value 10 3 1 12 0.13 0.2 0.6 0.5

In the first simulation, a horizontal pulling force is applied
to the object with ϕ = 0◦. Both the dropping and the taking
actions are performed. Fp starts from zero at T0 = 1s and
reaches 2N at T1 = 1.5s. In the dropping scenario, the pulling
force becomes zero again at T2 = 2.5s. In Figs. 8a and 8b, the
applied pulling force and the controller output are shown for
the taking and dropping actions, respectively. The acceleration
of the object for both actions is shown in Figs. 8c and 8d.
The background colors in the figures indicate the mode of
the system: red corresponds to the grasp mode, yellow to the
slipping mode, and green to the release mode.

As shown in Fig. 8a, in case of taking, FG drops to zero
once the pulling force is applied, which means the object is
released immediately. Also it is shown in Figs. 8b and 8d that
while the pulling force is applied, FG is regulated and ay is
kept below 4m/s2. Furthermore, once applying the pulling
force stops in Fig. 8b, FG rises back to the initial value,
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(a) Force: ϕ = 20◦ (b) Force: ϕ = −20◦

(c) Acceleration: ϕ = 20◦ (d) Acceleration: ϕ = −20◦

Fig. 9. Applied pulling force and grip force in taking with (a) ϕ = 20◦ and
(b) ϕ = −20◦. Acceleration of the object in taking with (c) ϕ = 20◦ and (d)
ϕ = −20◦. Red background indicates the grasp mode, yellow the slipping
mode and green the release mode.

the grasp is re-established and the object’s fall is prevented.
Another observation is that in Fig. 8c, it can be seen that the
object briefly accelerates downward before it is completely
released. The reason is that we intentionally added a slight
delay to the weight compensation algorithm to make sure the
controller can handle a delay in load compensation.

In the next run, the taking action is simulated with two
different angles of pulling. In Figs. 9a and 9b, the applied
pulling force along with the regulated grip force is shown for
taking action with ϕ = 20◦ and ϕ = −20◦ respectively. The
corresponding object accelerations can be found in Figs. 9c
and 9d. In both cases, the object is released immediately; note
that in the case of ϕ = −20◦, the object has negative downard
acceleration after being released because it is pulled upward.

In order to investigate the effect of the friction coefficient
on the behavior of the system, the simulation is repeated with
ϕ = 0◦, this time with two different friction coefficients.
In Figs. 10a and 10b, the object acceleration is shown for
the taking and the dropping actions for a surface with high
friction (µs = 0.9, µk = 0.8). In Figs. 10c and 10d, the
object acceleration is shown for the same actions for a surface
with low friction (µs = 0.3, µk = 0.2). In both of the taking
cases, the object is released immediately after being pulled as
expected. In the dropping cases, the object is not released and
the grasp is re-established after the pulling force is removed,
although the object’s slipping acceleration is higher in the
system with low friction.

The next simulation investigates the sensitivity of the sys-
tem. In Figs. 11a and 11c, the forces applied to the object and
the object’s acceleration are shown for the dropping action
under the presence of a white Gaussian noise (SNR = 3dB)
applied to FG. It can be seen that the object’s downward
acceleration is still maintained below 6m/s2 and the grasp
is re-established after the pulling is stopped. In Figs. 11b
and 11d, the same signals are shown in a dropping action while

(a) Taking: High friction (b) Dropping: High friction

(c) Taking: Low friction (d) Dropping: Low friction

Fig. 10. Acceleration of the object in (a) taking with high friction, (b)
dropping with high friction, (c) taking with low friction and (d) dropping
with low friction grippers. Red background indicates the grasp mode, yellow
the slipping mode and green the release mode.

(a) Force: Noisy FG (b) Force: Noisy ay

(c) Acceleration: Noisy FG (d) Acceleration: Noisy ay

Fig. 11. Applied pulling force and grip force in dropping with (a) disturbance
applied to FG and (b) noise applied to ay . Acceleration of the object in
dropping with (c) disturbance appied to FG and (b) noise applied to ay . Red
background indicates the grasp mode, yellow the slipping mode and green the
release mode.

there is a white Gaussian noise (SNR = 3dB) applied to ay .
The figure clearly shows that the system is able to prevent
the object from falling and re-establishes the grasp after the
pulling is stopped. This shows that the overall performance
of the system is quite robust against the sensor noise and the
gripper disturbance.

VII. IMPLEMENTATION AND EXPERIMENTS

The FS controller is implemented on a Baxter robot [33]
with a parallel gripper [34] installed on one of the robot’s
arms. In order to control the grip force, we used an open-loop
position-based method: a small metal plane is added to one
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Fig. 12. The experimental setup.

of the fingers of the gripper with a linear spring between the
plane and the finger. Therefore, the grip force can be controlled
based on the gripper position:

FG(x) =

{
k(x− x0), x > x0

0, x ≤ x0
(10)

where k is the stiffness of the spring, x is the gripper position
command and x0 is the position at which the gripper touches
the object. The stiffness of the spring (k) was experimentally
determined to be 5(N/cm). The gripper position control loop
operates at 25Hz.

In order to measure the force, a SI-65-5 ATI Gamma force
sensor [35] is added to the robot’s arm between the end
effector and the gripper. The force sensor output is sampled
at 100Hz and the data is transferred to a computer through a
PCI-6034 NI data acquisition board [36]. A 6cm×7cm×17cm
empty box is used as the test object. The object weight is
230±5 mg. The object downward acceleration is measured
through an ADNS-2051 optical sensor [32] installed on one
of the fingers of the gripper. The object, the gripper and the
installed devices on the gripper are shown in Fig. 12.

A. Experiment One: Evaluating the smoothness of the con-
troller

In order to evaluate the smoothness of our FS controller
and to fine-tune the parameters of the controller, we designed
a robot-to-human handover experiment. Baxter would hand the
object over to human subjects, using different controllers. In
each trial, Baxter grasps the object within its electrical gripper.
The handover controller is then activated and a beep sound is
played for the subject. Participants are told to take the object
from the robot, after hearing the beep sound.

1) Handover Controllers: We began with implementing the
Fail-safe handover controller with the same parameters used
in the simulations (see Table III). Prior to experiment one,
we conducted a pilot study with four participants (in addition
to the subjects in experiment one), to see if the controller
can perform the handover task smoothly without dropping
the object. We realized that the system is very sensitive to
measured force noise and in several cases, it dropped the object
before the participants touched it. Therefore, we decided to
increase the force overshoot by decreasing parameter γ, from 5
to 3. Also we increased Fmargin from 12N to 15N to increase
the maximum tolerated object’s downward acceleration.

We used four different handover controllers in experiment
one: (a) first Fail-safe handover controller (FS1) with param-
eters α = 10, β = 3, γ = 3, Fmargin = 15. ki = 0.13. This
controller should have a performance similar to the controller
used in the simulations. According to Fig. 18, with having
γ = 3, the force overshoot is about 2N when pulling forward
(FST (ϕ = 0) ' 2N ); (b) second Fail-safe handover controller
(FS2) with parameters similar to FS1, except that α was
increased to 15. This controller is used in the experiment
to investigate the effect of changing parameter α. According
to (18), this controller has force overshoot about 4N when
pulling forward; (c) third Fail-safe handover controller (FS3)
with parameters similar to the FS1 controller, except that γ
was decreased to 1. this controller is used in the experiment
to investigate the effect of changing parameter γ. The force
overshoot is about 3N when pulling forward; (d) the forth
controller is Human-Inspired handover controller (HI) [9].

The human inspired handover controller was proposed in
[9] and it was shown to have a smooth performance compared
to the other existing handover controllers. We thus wanted to
compare the smoothness of our FS controller to that of the HI
controller. The HI controller regulates the grip force according
to the object’s load force, in a linear fashion:

FG(FL) = mFL + FZLG (11)

where FG is the applied grip force, FL is the object’s gravita-
tional load force acting on the robot’s gripper, m is a constant
slope and FZLG is a non-zero amount of grip force applied at
zero load force that acts as a safety margin [9].

𝐹𝐹𝐺𝐺  

𝐹𝐹𝐿𝐿 

(𝐹𝐹𝐿𝐿𝐿𝐿,𝐹𝐹𝐺𝐺𝐿𝐿) 

−𝜀𝜀 

𝐹𝐹𝑍𝑍𝐿𝐿𝐺𝐺  

Fig. 13. Grip force pro-
duced by the human in-
spired (HI) handover con-
troller [9].

The HI controller output is illus-
trated in Fig. 13. In the figure, FLo
is the total weight of the object sup-
ported by the robot at the begining of
the handover when the robot has sta-
bly grasped the object. At this time,
the robot applies an initial grip force
of FGo that has been properly calcu-
lated so the object does not slip. The
object is completely released only af-
ter a slight upward pulling force of
ε is sensed. The slope parameter (m)
can be calculated based on FLo, FGo
and FZLG. We selected the controller
parameters so that it mimics the behavior of Controller A
introduced in [9], which was shown to be preferred by humans:
ε was set to −1.0N (according to [9], ε should be around 50%
of the object’s weight), FZLG was set to 2N to account for
the sensor measurement errors and FGo was set to 7N , equal
to the initial grasp force selected for FS1 controller so the
comparison would be fair.

2) Experimental Procedure: Each participant compares
three pairs of controllers: (FS1 vs. FS2), (FS1 vs. FS3) and
(FS1 vs. HI). In each comparison, the robot hands over the
object two times with one controller, followed by another two
times using the other controller. After a set of four trials, the
subject is asked to answer a survey evaluating the behavior of
the robot in the first two trials compared to the second two
trials. To eliminate ordering effects, each controller pair was
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(a) (b)

Fig. 14. Robot to human handover experiment: (a) standing case; (b) sitting
case.

presented to the participants in both orders. That results in a
total of 6 pairwise comparisons and 24 trials. To balance the
carryover effects, we used a complete Latin square design [37].

To observe the effect of the pulling direction on the results,
the participants are asked to perform the entire procedure
twice, once while standing and once while sitting, resulting
in a total of 48 trials per participant. We expected that the
participants would pull the object in different direction when
they are sitting compared to standing situation.

We put a table with dimension (L : 75cm;W : 60cm;H :
70cm) at a distance of 70cm in front of the robot. The subject
is sitting/standing across the table at a distance of 15cm
from the edge of the table. The object is transferred at a
height=25cm above the table and at a distance=40cm from
the edge of the table in front of the subject. Fig. 14 shows the
position of the subject and the robot in standing and sitting
cases.

The survey questions are:

1) Rate how easy it was to take the object from the robot
in the first two trials. There are five options, very easy,
easy, moderate, hard and very hard.

2) Rate how easy it was to take the object from the robot in
the second two trials. There are five options, very easy,
easy, moderate, hard and very hard.

3) Do you prefer the robot behavior in the first two trials
or in the second two trials? There are three options, I
prefer the robot behavior in the first two trials, I prefer
the robot behavior in the second two trials, and No
preference.

For the study, 20 participants (13 males and 7 females)
between ages 23 to 32 were recruited from students and staff
at the University of Illinois at Chicago (UIC), by posting flyers
and sending emails to UIC graduate students email-list. Before
starting the experiment and to get familiar with the robot,
each participant performed the handover task 8 times while
standing, including 2 times with each controller in a random
order. Participants were informed that there is no movement in
the robot’s arm during the task. No further instructions were
provided to the participants about how to take the object.

3) Results: We used the sign test [31] to analyze the survey
responses.

a) Standing case: Significantly more participants re-
sponded that they prefer the FS1 controller over HI con-
troller (Z=-2.65,p<0.008) and also over FS2 controller (Z=-
3.86,p<0.0002).
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Fig. 15. (a) Average applied pulling force, (b) average grip force for all of
the controllers - standing trials. Force signals are normalized over time.

Participants’ ratings for how easy it was to take the object
from the robot did not significantly differ between the FS1
controller and the HI controller (Z=-0.99,p<0.324), or be-
tween the FS1 controller and FS3 controller (Z=-1.57,p<0.12).
However, significantly more participants responded that the
object can be more easily taken from the robot with the FS1
controller compared to the FS2 controller (Z=-2.65,p<0.008).

While the system is in the grasp mode, the applied pulling
force can be calculated using (1) and (3). The average applied
pulling force and the average produced grip force for the
standing trials are shown in Fig. 15 for all of the controllers.
The force signals are normalized over time (t = 1 shows
the time that the object is released). Force overshoot for each
controller can be determined from Fig. 15a by measuring the
maximum pulling force applied before the object is released. It
can be seen in Fig. 15a that the FS1 controller force overshoot
(∼2N) is smaller compared to other controllers.

b) Sitting case: We speculated that in the sitting case, a
subject would pull the object almost horizontally as the object
is in front of his/her upper body. Since the HI controller can
only handle vertical object transfer, we predicted the force
overshoot for this controller to be significantly higher when
the user tries to take the object horizontally. We also predicted
larger force overshoot for the FS2 and FS3 controllers in
this case, since FST (ϕ = 0) is larger for these controllers
compared to the FS1 controller. The average applied pulling
force and the average produced grip force for sitting trials are
shown in Fig. 16 for all of the controllers. The force signals
are normalized over time (t = 1 shows the time when the
object is released). It can be seen in Fig. 16a that the FS1
controller force overshoot (∼2N) is smaller compared to other
controllers. In fact in this case, there is a significant difference
between the force overshoot of the FS1 controller and that of
the other controllers.

The survey analysis shows that in the sitting case, sig-
nificantly more participants responded that the object can
be more easily taken from the robot with the FS1 con-
troller compared to the HI controller (Z=-3.268,p<0.0011),
to the FS2 controller (Z=-4.268,p<0.0001), and also to the
FS3 controller (Z=-2.370,p<0.018). Also, significantly more
participants responded that they prefer the FS1 controller
over the HI controller (Z=-3.86,p<0.0002), over FS2 con-
troller (Z=-2.95,p<0.004), and also over FS3 controller (Z=-
2.65,p<0.008). The subject preference ratings can be ex-
plained by the smaller force overshoot of FS1 controller.

In summary, we conclude that the FS1 controller shows
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Fig. 16. (a) Average applied pulling force, (b) average grip force for all of
the controllers - sitting trials. Force signals are normalized over time.

a superior performance compared to the other controllers in
terms of the force overshoot (smoothness) and the subject
preference ratings.

B. Experiment Two: Evaluating the object safety

The second experiment is designed to evaluate the object
safety. Following the same method that we used in Section VI,
a failure is simulated for the robot: a forward pulling force
of specified magnitude is applied to the object without com-
pensating the weight of the object. A rope is attached to the
object with an analog force meter attached to the rope. At
t = 3s the rope is pulled with Fp = 2N and ϕ = 0. For
this experiment we use FS1 controller from Section VII-A
which showed superior performance compared to the other
controllers.

Figure 17 shows the applied pulling force, the generated grip
force and the object downward acceleration. As it is shown in
Fig. 17b, the object downward acceleration ay is kept below
4m/s2 while the pulling force is applied. That means that the
object is not released completely and the system has remained
in the slipping mode, successfully preventing the object from
falling.

VIII. CONCLUSION

We proposed a novel framework for ensuring a safe and
smooth robot-to-human handover. The framework critically
depends on the ability of the robot to readily detect a failure
during the handover and effectively recover from it. This in
turn motivated us to study how humans detect failure when
they play the role of a giver. Towards this goal, we conducted
a human study to investigate which sensing modality is used by
humans to detect failure. In particular, we examined whether

(a) Force (b) Acceleration

Fig. 17. Problematic handover: (a) applied pulling force and the grip force;
(b) the object downward acceleration ay .

haptic sensing plays the dominant role in detecting failure,
or the human givers primarily depend on vision. The results
suggest that at least in some scenarios, haptic sensing is not
reliable enough to determine whether the object is dropped
or successfully taken by the receiver after being released,
and that humans seem to rely on vision. Motivated by this
finding we proposed a robot handover architecture that relies
on measuring relative motion between the object and the
robot hand, provided through an optical sensor, to detect an
impending handover failure. In turn, a handover controller was
proposed that uses the measurement of object acceleration
in the feedback loop to guarantee handover safety. At the
same time, by monitoring the force applied on the object, the
controller achieves smoothness of the handover. The proposed
architecture thus overcomes the shortcomings of the existing
controllers that trade off smoothness for safety, or vice versa.

We provided a detailed analysis of the proposed controller.
The controller is designed to work in three different modes:
grasping, slipping and the release mode. One of our main
conceptual contributions is to explicitly model the slipping
mode. The slipping mode characterizes the transfer phase of
the handover and is therefore critical for both safety and
smoothness. By monitoring the object acceleration and applied
forces, the controller is able to distinguish between a slipping
object that is falling and a slipping object that is being
transferred from the robot’s hand to the human. Performance
of the proposed handover controller was first investigated
through simulation and it was shown that the controller is
quite robust. Also, we showed experimentally and by assessing
human satisfaction that the proposed system demonstrates
significantly higher performance compared to other handover
controllers. Given that the proposed system is inexpensive
and easy to implement on general robot hardware, we believe
that it represents a significant step towards improving physical
human-robot interaction.

APPENDIX A
FAIL-SAFE HANDOVER CONTROLLER

We proposed a “Fail-safe” (FS) handover controller in our
previous work [11] that is designed based on the procedure
explained in V-B. The FS controller regulates the grip force for
a two finger robotic gripper with a force sensor attached to the
robot’s wrist and an optical sensor installed on the gripper that
can measure the object’s downward acceleration. The system
setup and the controller loop are illustrated in Figs. 4 and 6.
Here we present a review of the FS controller.

The controller law is proposed as below:

FG = αFsy + βay − γFsx (12)

where α, β and γ are constant values. The grip force is chosen
based on the vertical load force in a linear fashion. In this way,
the grip force decreases as the user compensates the vertical
load force. It is shown in [2] that the grip force must indeed
decrease monotonically with the vertical load force in order to
achieve a smooth handover. Furthermore, in order to prevent
the object from falling, the object’s downward acceleration
is included in the controller equation. A higher downward
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acceleration of the object will result in a larger grip force.
Also, we want the human to be able to take the object not only
vertically, but in any direction. Therefore, the x component of
the measured force (Fsx )is also included by a negative factor
so as Fsx increases, the grip force will be decreased. Please
note that FG is bounded below by zero (FGmin

= 0).
According to (12), after the object is released from the

gripper (Fsx = Fsy = 0), even a small value of the object’s
downward acceleration results in the grip force becoming non-
zero, so the system will switch back from the release mode
to the slipping mode. In order to solve this issue, a term
−Fmargin is added to the controller that makes the system
tolerate a small downward acceleration:

FG = αFsy + βay − γFsx − Fmargin (13)

It is shown in Appendix B, that Fmargin helps the stability
of the system when the system is in the release mode. In
discrete time, the controller equation becomes:

FG[n+ 1] = αFsy [n] + βay[n]− γFsx [n]− Fmargin (14)

The coefficients α, β and γ in (14) should be selected prop-
erly to regulate the mode switching conditions as described in
Section V-B:

1) Rest condition: in the grasp mode, when the system is
at rest (Fp = 0, ay = 0, Fsy = W,Fsx = 0), in order to
satisfy (4), we should have:

α ≥ 1

µs
+
Fmargin
W

(15)

The above is obtained by substituting FG from (13) into (4).
α should satisfy (15) so the object doesn’t fall in the grasp
mode.

2) Re-grasp Condition: In the release mode we have Fsx =
Fsy = 0. Therefore:

FG[n+ 1] = βay[n]− Fmargin (16)

During the monitoring time (tm), the maximum object’s
downward acceleration that the system tolerates is:

aymax
=
Fmargin

β
(17)

In case we have ay > aymax
, the system will re-establish

the grasp by switching back to the slipping mode.
3) Force overshoot: To calculate FST , we consider the

switching condition from the grasp mode to the slipping
mode at the extreme: Fsum = µsFG. Expanding Fsum and
substituting FG from (13) into (5) we have:

√
FST +W 2 + 2WFST sinϕ = µs[α(W + FST sinϕ)

− γ(FST cosϕ)− Fmargin] (18)

Equation (18), establishes a relation between FST and the
direction of pulling. In Fig. 18, FST is shown with respect to
the pulling angle ϕ for a specific set of parameters specified
in Table III and three different values of γ.
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Fig. 18. FST versus the pulling
angle ϕ, plotted for three different
values of γ.

According to Fig. 18, for a
specific value of γ, there is
a maximum angle (ϕmax) at
which the user can successfully
take the object from the robot
by pulling it in that direction.
For γ = 2.5, we have ϕmax =
55◦. Higher values of γ result
in lower start force threshold
and wider range of angles at
which the user can successfully
take the object.

Besides the procedure explained here, the controller param-
eters can be selected using online learning schemes such as
the one proposed in [38].

APPENDIX B
STABILITY ANALYSIS FOR THE FAIL-SAFE HANDOVER

CONTROLLER

Stability of robots physically interacting with humans has
been extensively studied [39]–[45]. The primary focus of
these investigations are robots that are physically coupled with
humans such as assistive devices and haptic interfaces, where
stability is necessary for safety. The common approach in these
studies is to model the human (and the environment if needed),
either explicitly as an impedance or admittance, or implicitly
as a passive subsystem, and the stability of the overall system
is then examined.

In tasks such as a handover, it is more accurate to charac-
terize the actions of the human as the exogenous inputs for
the robot; the robot needs to generate an appropriate action in
response. As a result, the issue of stability reduces to stability
of the robot controllers implementing specific robot actions
for arbitrary input.

In the case of the handover, the primary response of the
robot is the applied grip force FG. We will assume that the
dynamics of the gripper is negligible so that the commanded
grip force is directly generated by the robot. The stable behav-
ior of the robot thus reduces to two separate conditions: (a) for
a constant pulling force Fp (human input), the grip force FG
should converge to a constant; and (b) for a constant pulling
force Fp, the system should not switch between different
modes (grasp, slipping, release).

Assuming the system is in the grasp mode, we can deter-
mine FG by substituting (1) and (3) into (13):

FG = αW + Fp sinϕ− γFp cosϕ− Fmargin (19)

This shows that in the grasp mode, condition (a) is satisfied.
To prevent consecutive mode switches while Fp is constant,

the stable force threshold (FBT ) should be smaller than the
start force threshold (FST ) as stated in (7), so the system
doesn’t switch back to the grasp mode once it switched to the
slipping mode. To calculate FBT , we find sin θ and cos θ from
(2) and substitute them into (3). Fsx , Fsy and ay can then be
found in terms of FG, Fp and ϕ:
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Fig. 19. FST and FBT with respect to pulling angle ϕ in (a) the primary
controller design and (b) after adding integrator term.

Fsy = µkFG
W + Fp sinϕ

Fsum
, Fsx = µkFG

Fp cosϕ

Fsum

ay =
1

M

(
W + Fp sinϕ− µkFG

W + Fp sinϕ

Fsum

)
(20)

Substituting (20) into (14) we have:

FG[n+ 1] = aFG[n] + b (21)

where:

a =
µk
Fsum

.

[
(W + Fp sinϕ)(α− β

M
)− γFp cosϕ

]
(22)

b =

[
β

M
(W + Fp sinϕ)− Fmargin

]
(23)

For (21) to be stable and produce bounded output, we should
have:

|a| ≤ 1 (24)

so the single pole of the system (z = a) would be inside
the unit circle and the closed loop system becomes stable.
Please note that the dynamics of the gripper is neglected. In
the extreme case when |a| = 1, Fp would be equal to FBT .
This gives us FBT as a function of the direction of pulling. In
Fig. 19a, FBT is shown with respect to pulling angle (ϕ) for a
set of system parameters specified in Table III. As it is shown
in Fig. 19a, FBT is greater than FST . In fact, it can be shown
that the minimum required force to have a stable system is
greater than the start force threshold for any set of system
parameters. As a result, when applying an ascending pulling
force, the system will switch to the slipping mode once Fp
exceeds FST and then it will switch back to the grasp mode
before Fp reaches FBT . This is an unstable situation.

To resolve this issue, we add an integrator term to the
system:

FG[n+ 1] = ki
(
αFsy [n] + βay[n]− γFsx [n]− Fmargin

)
+ (1− ki)FG[n] (25)

Therefore, (22) becomes:

a = ki
µk
Fsum

.

[
(W + Fp sinϕ)(α− β

M
)− γFp cosϕ

]
+ (1− ki) (26)

Again, we put |a| = 1 to calculate FBT . In Fig. 19b, FBT
and FST are shown as a function of the pulling direction.
Fig. 19b shows that the integrator term has pushed the pole
of the system inside the unit circle so the system has become
stable for all values of the pulling force. It can be shown
with further analysis that adding the integrator term not only
satisfies (|a| ≤ 1), but also results in FG to be descending
for a constant pulling force Fp and therefore guarantees the
system to stay in the slipping mode.
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