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Abstract 
 
A mechanics-based description of motion-trajectory (MT) curves is used in this investigation to 
introduce Frenet oscillations. These oscillations define the time-varying orientation of the motion 
plane that contains the absolute velocity and acceleration vectors in terms of three Frenet-Euler 
angles; the curvature, vertical-development, and bank angles, referred to as the Frenet angles for 
brevity. The Frenet bank angle and the associated Frenet super-elevation of the motion plane, 
which measure the deviation of the centrifugal inertia force from the horizontal plane, can be used 
to shed light on the definition of the balance speed used in practice. The concept of the pre-super-
elevated osculating (PSEO) plane is introduced and Rodrigues’ formula is employed to develop 
an orthogonal rotation matrix that provides a geometric interpretation of the PSEO plane. A new 
inverse-dynamics problem that utilizes experimentally or simulation recorded motion trajectories 
(RMT) is used to define the Frenet inertia forces and demonstrate their equivalence to the 
Cartesian form of the inertia forces. New expressions for the curvature vector in terms of the 
velocity and acceleration, limit on the magnitude of the tangential acceleration for a given forward 
velocity, condition required for the centrifugal force to remain horizontal, and condition of 
curvature singular points that corresponds to zero absolute acceleration are derived. The Frenet 
bank angle can be used to prove the existence of the normal vectors at the curvature singular points. 
It is shown that the inertia force can assume different forms, depending on the curve parameter 
used, and if the arc length parameter is not used as the curve parameter, the inverse-problem 
equation can include a quadratic-velocity inertia force vector. The results of a simple analytical 
curve demonstrate the concept of the Frenet oscillations and importance of distinguishing between 
the highway-ramp and railroad track bank angles and super-elevations, which are time-invariant, 
and the Frenet bank angle and super-elevation, which are motion-dependent. 
 
Keywords: Frenet oscillations; Frenet-Euler angles; motion trajectories; curvature singularity; 
centrifugal inertia forces; recorded motion trajectories.  
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1. Introduction 
 
Linear and nonlinear vibrations are motion characteristics of a wide class of physics and 

engineering systems [1 – 7]. For this reason, understanding and controlling these vibrations have 

been the subject of many investigations [8 – 12]. Nonetheless, in the performance evaluation of 

physics and engineering systems, the actual forces that produce the oscillations during the system 

functional operations are not a priori known. Therefore, experimentally-and computer-simulation-

recorded motion trajectories (MT) will become increasingly important for understanding the 

motion of complex systems and for providing interpretation of the actual forces that produce this 

motion. Sophisticated equipment and sensors in modern vehicles and machines and advanced 

computer-simulation technology allow obtaining accurate recorded-motion trajectories (RMT) 

using sensor measurements or credible and detailed virtual-prototyping computer models. 

 The analysis of the RMT curves, therefore, can contribute to better understanding and proper 

interpretation of the forces that produce the actual motion. Such an analysis lies at the intersection 

of two important fields; nonlinear dynamics and computational mechanics. The qualitative 

nonlinear-dynamics techniques can be used effectively in the analysis of large amount of data 

obtained using computational algorithms. Furthermore, techniques of differential and 

computational geometry are needed to properly interpret the RMT-curve geometries [13 – 18]. 

This is particularly important because forces such as the inertia forces can have different 

interpretation depending on the generalized coordinates used [19 – 24]. D’Alembert-Lagrange 

principle leads to different definitions and interpretations of the inertia forces depending on the 

coordinates used to formulate the dynamic equations of motion. 

 To better understand RMT data, physics-based interpretation of the geometry is required. To 

this end, Frenet-Euler angles, called Frenet angles for brevity, are used to describe arbitrary curve 
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geometries, and are explicitly defined in terms of the curve derivatives which can be determined 

from recorded coordinates, velocities, and accelerations. As discussed in this paper, any curvilinear 

motion, regardless of the geometry of the highway road or railroad track, leads to centrifugal forces 

that do not appear in the classical Newton-Euler equations in their Cartesian form. Balancing these 

forces can be crucial in ensuring stability and safe operation of vehicle systems. Understanding 

direction of the inertia forces and extracting useful information from RMT data require using new 

concepts and definitions such as the Frenet super-elevation and Frenet bank angle, which vary 

with time and define orientation of the osculating motion plane that contains the velocity and 

acceleration vectors.  

 To demonstrate the need for the analysis of the RMT-curve geometry, the method used to 

define the vehicle operating speeds during curve negotiations is considered. To ensure a safe 

operation of highway and railroad vehicles during curve negotiations, a super-elevation is used to 

define a balance speed at which the vehicle must operate. The goal is to create a lateral gravity 

force that balances the lateral component of the centrifugal inertia force [24 – 26]. This lateral 

force balance is based on the assumption that the vehicle strictly traces a circular curve that lies in 

a plane parallel to the horizontal plane. Figure 1 shows such a curve, denoted as curve C , which 

has normal vector Cn  that defines the direction of the centrifugal force under the above-mentioned 

condition. Such a condition of circular curve, however, cannot be met in realistic motion scenarios 

because of a lateral vehicle motion. If the vehicle traces another curve D , with normal Dn  different 

from Cn , the centrifugal force does not lie in a plane parallel to the horizontal plane and the 

assumption used in defining the balance speed is violated. Such curve examples demonstrate the 

value of the RMT curve analysis in identifying root causes of accidents and derailments. 
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 This paper is focused on addressing the important issue of the RMT curve analysis, and 

developing mechanics-based interpretation of the curve geometry. The specific contributions and 

organization of the paper are summarized as follows: 

1. The paper generalizes the concept of the Frenet angles for the description of arbitrary curve 

geometry by building on previous recent investigations [25 – 26]. In Sections 2 and 3, the 

Frenet angles, which are the curvature, vertical-development, and bank angles, are expressed 

in terms of the derivatives of the curve defined in its parametric form to give them a geometric 

interpretation. It is shown that the curvature vector that defines the direction of the centrifugal 

force can be written as a linear combination of two orthogonal unit vectors that define the 

normal and curvature vectors before performing the Frenet bank rotation. To this end, the 

concept of the pre-super-elevated osculating (PSEO) plane is introduced. Rodrigues’ formula 

is used to obtain the rotation matrix required to perform the orthogonal transformation that 

explains the PSEO-plane orientation.  

2. The condition required for the centrifugal force to remain in a plane parallel to the horizontal 

plane and the condition of curvature singularities are discussed in Section 4. It is shown that a 

curve can be Frenet vertically-elevated but not Frenet super-elevated. Because the curve 

curvature is defined to be the magnitude of the curvature vector, the existence of the normal 

vector at the curvature singular point is an issue that can be addressed using the Frenet angles. 

A proof of the existence of the normal vector at the curvature singular points is provided. 

3. A new inverse problem based on experimentally or simulation recorded motion trajectories 

(RMT) is defined. The Frenet inertia forces are defined and their equivalence to the Cartesian 

form is demonstrated in Section 5. The curve geometric description is used to define the 

tangential and normal inertia-force components which lie in the osculating plane. In the special 
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case of constant forward velocity, new expressions for the curvature vector in terms of the 

velocity and acceleration are presented and the limit on the magnitude of the tangential 

acceleration for a given forward velocity is derived. Discussion on the assumption of horizontal 

centrifugal force used to define the balance speed is also provided in Section 5. 

4. The forms of the equations of motion used in the inverse problem based on the RMT curves 

are developed. It is shown that the inertia force can assume different forms, depending on the 

curve parameter used. As demonstrated in Section 6, if the arc length parameter is not used as 

the curve parameter, the inverse-problem equation can include a quadratic-velocity inertia 

force vector, shedding light on the importance of proper interpretation of the inertia forces 

when different coordinates are used. 

5. A new procedure is introduced in Section 7 to explain the steps required to extract the geometry 

and force variables from the RMT curves. It is shown that the RMT curves can be used to 

obtain different forms of the equations of motion and the forces that appear in these equations. 

The centrifugal force in its totality can be determined, and the lateral and vertical components 

often used to study railroad vehicle derailments are readily available from the information 

extracted from the RMT curves. 

6. Regardless of the geometry and orientation of the highway roads and railroad tracks, lateral 

vehicle displacements can result in tracing motion curves with large curvature and sharp radius 

of curvature that can be smaller than the minimum track radius of curvature mandated by 

federal regulations. To better explain the problem, an analytical curve is used to demonstrate 

the concept of the Frenet oscillations in Section 8. The time-varying oscillations of the Frenet 

osculating plane, due to the change in the Frenet bank angle, define the direction of the 

centrifugal forces; shedding light on the limitations of the method used in practice to define 
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the balance speed based on the assumption of a horizontal centrifugal force, an assumption 

often violated. The results presented in Section 8 also explain the importance of distinguishing 

between the track bank angle and super-elevation, and the Frenet bank angle and super-

elevation of the osculating (motion) plane, respectively. While tangent tracks are designed with 

zero track super-elevation, motion-dependent Frenet super-elevation cannot be avoided on 

tangent tracks because of the hunting oscillations [24]. 

Section 9 provides more discussion on the Frenet bank angle and the curvature singularity, and 

explains relationship between the analysis presented in this investigation and previous studies. 

Summary and conclusions drawn from this study are provided in Section 10. While an analytical 

curve is used in Section 7, future investigations will be concerned with developing more detailed 

railroad vehicle models to explain the importance of distinguishing between the oscillatory Frenet 

angles and the time-invariant Euler angles used in the description of the railroad track geometry.  

 

2. General curve geometry 

Without any loss of generality, the relationship between the Cartesian form and the Frenet form 

of the inertia forces can be explained using the spatial curve written in its parametric form as 

( ) ( ) T
x y x z x=   r . The curve is defined using the parameter x , which is assumed different 

from the curve arc length s . Basic geometry equations that are repeatedly used in this paper are 

summarized in Section 2.1. 

2.1  Tangent and curvature vectors 

The tangent vector is defined as [ ]1 T
x x y z′ ′= ∂ ∂ =r r , where y y x′ = ∂ ∂  and z z x′ = ∂ ∂ . The 

norm of this vector is ( ) ( )2 21x y z′ ′= + +r . Therefore, the unit tangent to the curve is defined as 
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     [ ]1 T
s xs y z′ ′= ∂ ∂ =r r r      (1) 

Furthermore, one has the differential relationship xds dx= r , or alternatively 

( ) ( )2 21xs x y z′ ′∂ ∂ = = + +r .  It follows that ( ) ( ) 31 x xx y y z z′ ′′ ′ ′′∂ ∂ = − +r r . 

 The curvature vector is [ ]( )( )( )2 2 1 T
ss xs y z x x s′ ′= ∂ ∂ = ∂ ∂ ∂ ∂r r r , which can be written 

using the equation 1 xx s∂ ∂ = r  as ( ) [ ]( )( )1 1 T
ss x xy z x′ ′= ∂ ∂r r r . This equation yields 

( ) ( ) ( )( )

( )
( )
( )

2 2
4

4 2

1 0
1 1

1 1

ss
x

c

c
x x

c

y y z z y y z y
z z

y y z z
y z y z y z y y
z y z y z y z z

α
α
α

    
    ′ ′′ ′ ′′ ′ ′ ′ ′′= − + + + +    
 ′ ′′       

′ ′′ ′ ′′− + −   
   ′′ ′ ′′ ′ ′ ′′ ′′ ′= + − = −   
 ′′ ′ ′′ ′ ′ ′′ ′′ ′ + − −  

r
r

r r

   (2) 

where ( ) 2
c xy y z zα ′ ′′ ′ ′′= + r . The curvature κ , magnitude of the curvature vector, is defined as 

   
( ) ( ) ( ) ( )

( ) ( )( ) ( )

22 2 2

2 22 2 2

c c c x

c x x

x y y z z

y z

κ κ α α α

α

′′ ′ ′′ ′= = + − + −

′′ ′′= + −

r

r r
    (3) 

This equation for the curvature can be written as 

   

( ) ( ) ( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( )

2 22 2 2

2 32 2 2

32 2 2 21 1 2

c x x

x x

x

x y z

y z y y z z

y z z y y z y z

κ κ α′′ ′′= = + −

′′ ′′ ′ ′′ ′ ′′= + − +

′′ ′ ′′ ′ ′ ′ ′′ ′′= + + + −

r r

r r

r

   (4) 

Using this equation, the radius of curvature of the curve at an arbitrary point x  can be written as 

( ) ( )1R R x xκ= = . The unit tangent vector sr  and the unit normal vector ss κ=n r  define the 



9 
 

osculating (motion) plane which is the plane of the velocity and acceleration vectors that enter into 

the definition of the inertia forces.  

 To define the torsion, the bi-normal vector must be determined and differentiated with respect 

to the arc length. The bi-normal vector can be determined as the cross product of the unit tangent 

and normal vectors. The definition of the torsion in terms of Euler angles was provided in [25]. 

The curve torsion, however, does not play a role in the development presented in this paper.  

2.2  Geometric interpretation 

One can also show that the curvature vector ssr  can be written as a linear combination of two 

orthogonal vectors 1n  and 2n  as 

  
( ) ( ) ( )

1 2 2 2
2

1
1 10 1

h v
ss h v

x

y z
y z

y y y

κ κκ κ

 ′ ′− −     ′ ′= + = + −  ′ ′  + +  ′  +  

r n n
r

    (5) 

 where  

   

( )

( )( )( ) ( )( )
( )( )[ ]

( )( ) ( )

2 2

32 2

2
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2 2
2

1 ,

1 1 ,

1 1 1 0 ,
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h x

v x

T

T
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y y

z y z y y y

y y

y z y z y

κ

κ

′′ ′= + 


′′ ′ ′ ′ ′′ ′= + − + 



′ ′= + − 

 ′ ′ ′ ′ ′= + − − +   

r

r

n

n r

    (6) 

It is worth mentioning that the vectors 1n  and 2n  are functions of the first derivatives only and do 

not depend on the second derivatives of the curve. Using the definitions of the preceding equation, 

and the orthogonality of the unit vectors 1n  and 2n , the curve curvature can be written as  

  ( ) ( )
( ) ( )( )( )

( )

222 2

2 2

3 2

1

1

x

h v

x

y z y z y y

y
κ κ κ

′′ ′′ ′ ′ ′ ′′+ + −
= + =

′+

r

r
     (7) 
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It can be shown that this expression of the curvature is the same as the expression previously 

obtained in this section. The two curvature expressions demonstrate that the curvature can assume 

different forms in terms of the first and second derivatives of the curve coordinates. The analysis 

presented in this section can also be used to write the normal vector as 

     ( ) ( )1 2h vκ κ κ κ= +n n n       (8) 

This equation will be used in the following section to introduce the Frenet angles. 

2.3  Curvature singular points 

In the classical differential geometry, a point on a curve is called a singular point if 0x =r  or 

equivalently 0s =r . Based on the analysis presented in this section, a curvature singular point is 

defined as a point at which 0y z′′ ′′= = . At curvature singular points, ( ) 2 0c xy y z zα ′ ′′ ′ ′′= + =r , 

and 0h vκ κ κ= = = . It will be shown that at the curvature singular points of RMT curves, the 

tangential acceleration s is equal to zero, that is 0s = . It is worth mentioning that the condition 

0y z′′ ′′= =  is derived with the assumption that x  is the curve parameter. If another curve 

parameter is selected, this condition can assume a different form. It is also worth mentioning that 

zero curvature does not imply that the derivative of the curvature is zero, that is, 0κ =  does not 

always imply that 0κ′ = . At the curvature singular points, the unit vector normal to curve cannot 

be determined by dividing the curvature vector ssr  by the curvature κ . In the numerical 

implementation, the curvature singularities can be alleviated using extrapolations or by selecting 

a time step that does not coincide exactly with the curvature singular points. This can always be 

achieved because the RMT-curve analysis is performed at a post-processing step. However, by 

using the Frenet angles, a proof of existence of the unit normal n  can be provided since the Frenet 

bank angle always exists regardless of the magnitude of the curve curvature. 
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3. Frenet bank, vertical-development, and curvature angles  

In this section, the Frenet angles are introduced using the general curve geometry described in the 

preceding section. This serves to provide geometric interpretations of these angles and to 

generalize the more specialized analysis presented in the literature [25, 26]. 

3.1  Frenet bank angle 

The Frenet frame is defined by the three unit vectors ,sr n , and b , where s= ×b r n  is the bi-normal 

vector [13 – 18 ]. The s −r n  plane is the osculating plane in which the velocity and acceleration 

vectors lie, and for this reason, it is referred to in this study as the motion plane. The bi-normal 

vector b  is orthogonal to the motion plane and serves as its normal. The centrifugal force in its 

totality is always along the normal vector n . The s −r b  plane is the rectifying plane which 

contains the velocity vector and the tangential component of the acceleration vector, and has n  as 

its normal. The −n b  plane is the normal plane which contains the normal component of the 

acceleration vector, and has the unit tangent sr  as its normal. 

 Important in this investigation is a recognition that the normal plane can be defined by the two 

orthogonal unit vectors n  and b , or alternatively, by the two unit vectors 1n  and 2n . This is clear 

because the unit tangent vector sr  is orthogonal to the two −n b  and 1 2−n n  sets of vectors. That 

is, these two sets of vectors lie in the same planar surface, and they differ by a single rotation about 

sr  unit vector. This rotation is the Frenet bank angle φ , which defines the Frenet super-elevation 

of the motion-trajectory curve. As shown in the preceding section, ( )1 ssκ=n r , and 1n , and  2n  

are defined in Eq. 6,  where κ  is the RMT-curve curvature. Therefore, the following two equations 

define the Frenet bank angle 
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   ( ) ( )1 2cos , sinh vφ κ κ φ κ κ= ⋅ = = ⋅ = −n n n n      (9)  

In this study, hκ  is referred to as the Frenet horizontal curvature since it is defined along the unit 

vector 1n  which lies in a plane parallel to the horizontal plane, while vκ  is referred to as the Frenet 

vertical-development curvature , referred to for brevity as the vertical curvature, because it is 

along the vector 2n  which is vertical if the motion plane is not vertically elevated ( 0z′ = ). The 

frame formed by the three vectors 1,sr n , and 2n  is referred to in this study as the Frenet pre-

super-elevated frame, and the 1s −r n  plane is referred to as the pre-super-elevated osculating plane 

(PSEO). It is important to observe that while the two vectors 1n  and 2n  lie in the normal plane, 

the planar surface defined by these two vectors remains perpendicular to the unit tangent sr  

regardless of the Frenet bank angle rotation, which is an Euler rotation performed along an axis in 

the direction of sr . 

3.2  Frenet vertical-development angle 

The unit vector 1n , defined in Eq. 6, lies in a plane parallel to the horizontal plane and it forms, 

with the unit tangent vector sr , the Frenet PSEO plane. Nonetheless, the PSEO plane is not, in 

general, a planar surface that is parallel to the horizontal plane. This is clear from the general 

definition of the unit tangent vector sr . Using the definition of the vector 1n  which lies in a plane 

parallel to the horizontal plane, it is clear that the PSEO plane differs from the horizontal plane by 

a single rotation θ  about the 1−n  vector, where the negative sign is used to keep the notations 

consistent with what is used in the railroad vehicle literature [24 – 26]. The angle θ  is referred to 

in this study as the Frenet vertical-development angle. Without this Frenet-Euler rotation, the unit 

tangent vector lies in the horizontal plane and is defined by the equation 
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[ ] ( )21 0 1T
sb y y′ ′= +r , which is a unit vector orthogonal to 1n . In this special pre-vertical-

development configuration, the vector 2n  occupies a position defined by the equation 

[ ]2 1 0 0 1 T
b sb= × = =n r n k , which is a unit vector along the vertical Z  axis. Therefore, 

recalling that ( )( ) ( )2 2
2 1 1 1

T

x y z y z y ′ ′ ′ ′ ′= + − − + n r , the Frenet vertical-development 

angle is defined by the following two equations: 

     ( )
( )

2
2

1

cos 1

sin
x

x

y

zθ

θ

θ

′= ⋅ = + 


′= = 

k n r

A k r
     (10)  

where subscript one refers to the first element in the product θA k  and θA  is the orthogonal 

transformation matrix defined using Rodrigues formula with 1−n  as the axis of rotation as [24]  

     ( ) ( )2 2
1 1sin 2 sin 2θ θ θ= − +A I n n      (11)  

where I  is the 3 3×  identity matrix and 1n  is the skew-symmetric matrix associated with the unit 

vector 1n . It is clear from the definition of the Frenet vertical-development angle θ  that if 0z′ = , 

this angle is zero, and 0vκ =  justifying calling vκ  Frenet vertical curvature. It is important to 

keep in mind that derivatives in the equations presented in this section are defined with respect to 

the curve coordinate x  and not with respect to an arc-length coordinate. Using the definitions 

presented in this section, the derivative of the Frenet vertical-development angle θ   can be written 

as ( )( )( ) ( )( )22 21 1xz y y y z yθ ′ ′′ ′ ′ ′′ ′ ′= + − +r . In Appendix A of the paper, more discussion on 

the vectors 1n  and 2n  is provided. 

3.3  Frenet curvature angle 
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Before the Frenet super-elevation or Frenet vertical-elevation, the curve unit-tangent vector is 

defined by the equation [ ] ( )21 0 1T
sb y y′ ′= +r . This equation describes a planar curve on 

the horizontal plane. The Frenet curvature angle ψ  is defined by the two equations 

    ( ) ( )2 2cos 1 1 , sin 1y y yψ ψ′ ′ ′= + = +    (12) 

Using these definitions, the vector sbr  can be written as [ ]cos sin 0 T
sb ψ ψ=r , which shows 

that the angle ψ  can be considered as a rotation about the vertical Z  axis that brings the vector 

[ ]1 0 0 T  to the vector [ ]cos sin 0 T
sb ψ ψ=r . One can also show that ( )( )21y yψ ′ ′′ ′= + . 

The curvature vector of the planar curve is defined as ( )[ ]sin cos 0 T
ssb xψ ψ ψ′= −r r , which 

shows that the curvature of this planar curve is ( )( )( )21x xy yψ ′ ′′ ′= +r r , which is the same as 

the Frenet horizontal curvature if 0z′ = , which is the case of the planar curve considered. The 

equation for ψ ′  can then be written as ( )( )21y yψ ′ ′′ ′= + . 

 

4. Normal vector and curvature singularity 

The design of the rail-track or highway-ramp super-elevations are based on the assumption that 

the vehicle strictly traces a circular curve that lies in a plane parallel to the horizontal plane. This 

case corresponds to non-zero rail-track or highway-ramp bank angle and to a zero Frenet bank 

angle. This assumption is violated in most realistic motion scenarios because of the vehicle lateral 

displacements. Such assumption of zero Frenet bank angle can only be made if, for example, a rail 

vehicle slides up or down and maintains continuous contact with the high or low rail, respectively. 

This situation, often encountered in practice, is not desirable for two main reasons. First, it is an 
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indication that the condition of the balance speed fails to keep the vehicle centered on the track. 

Second, because of the continuous wheel/rail contact, the high or low rail is subjected to high 

flange contact forces that can lead to deterioration and wear of the wheel and rail surfaces, 

undesirable track movements, and the possibility of wheel climbs and derailments. Computer 

simulations and observations of realistic motion scenarios have shown that indeed the balance 

speed does not always maintain the vehicle centered and does not prevent wheel/rail flange contact 

with significantly high impact forces. 

4.1  Direction of the normal vector  

The condition required for a vehicle to trace a curve that lies in a plane parallel to the horizontal 

plane can be met only under certain geometric restrictions. From the definition of the curvature 

vector ssr , it is clear that the centrifugal force remains in a plane parallel to the horizontal plane if 

the condition ( ) 0z y z y z y′′ ′ ′′ ′ ′ ′′+ − =  is satisfied. That is, 

      ( )( )21z z y y y′′ ′ ′′ ′ ′= +     (13)  

If this condition is satisfied, the normal vector and the centrifugal force remain in a plane parallel 

to the horizontal plane. Furthermore, this condition shows that the centrifugal force can remain in 

a plane parallel to the horizontal plane (zero Frenet super-elevation) for non-zero vertical-elevation 

(non-zero Frenet vertical-elevation).  

 The helix curve is an example in which the condition of Eq. 13 is satisfied. The helix is curved, 

twisted, vertically-elevated, but not Frenet super-elevated [25, 26]. The equation of the helix is 

( ) [ ]cos sin Ts a a bα α α=r , where 2 2s a bα = + , s  is the arc length parameter, a  is the 

helix radius, ( ) ( )2 2r a b= + , and b a  is the slope of the helix. The helix curvature κ  and torsion 
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τ  are constant and defined, respectively, as ( )2 2a a bκ = +  and ( )2 2b a bτ = + . Using the 

equation ( )cos cosx a a s rα= = , one has 

( )
( )

2cos , sin 1

sin

x a x a

dx a r ds

α α

α

= = − 


= −     
    (14) 

Using these identities, the vector xr  is defined for the helix as   

( ) [ ]
( )1 1 tan sin

T
x s

T

s x x y z

b aα α

′ ′ ′= ∂ ∂ =

= − −  

r r
     (15) 

This equation defines 

( ) ( )
( )( )( )23 3

1 tan , sin , sin

1 sin , cos sin

xy z b a r a

y a z b a

α α α

α α α

′ ′ = − = − = 


′′ ′′= − = − 

r
   (16) 

To check the condition ( )( )21z z y y y′′ ′ ′ ′′ ′= + , one has ( )2cos sinz z aα α′′ ′ = , 

4cos siny y aα α′ ′′ = , ( )2 21 1 siny α′+ = , and ( )( ) ( )2 21 cos siny y y aα α′ ′′ ′+ = , which 

demonstrates that indeed the condition ( )( )21z z y y y′′ ′ ′ ′′ ′= +  is satisfied, implying that the 

curved, twisted, and vertically-elevated helix has a normal that always lies in a plane parallel to 

the horizontal plane. This fact can be simply demonstrated by directly differentiating the unit 

tangent vector sr  to obtain the curvature vector ( )[ ]2 2 2 cos sin 0 T
ss s a r α α= ∂ ∂ = −r r . 

Therefore, a vehicle negotiating a helix has a centrifugal inertia force that always lies in a plane 

parallel to the horizontal plane, and such a force cannot be balanced by the vertical gravity forces 

if the helix geometry is not altered. The helix example also demonstrates that the centrifugal force 
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can remain in a plane parallel to the horizontal plane for a vertically-elevated curve which has non-

zero vertical-development angle θ , that is, 0θ ≠ . 

4.2  Existence of the unit normal vector 

The unit vector n  normal to the curve is defined using the curvature vector ssr  as ss κ=n r . At 

the curvature singular points, the curve curvature κ  is equal to zero, and therefore, the unit normal 

vector cannot be defined using the equation ss κ=n r . The Frenet angles can be used to prove the 

existence of the unit normal vector and provide a definition of this vector regardless of whether or 

not the value of the curve curvature is zero. It is clear from the analysis presented in this section 

that the Frenet curvature and vertical-development angles depend on the first derivatives and are 

not function of the curvature. The Frenet bank angle, on the other hand, which defines the Frenet 

super-elevation, depends on the curvature and is defined by the equations ( )1tan v hφ κ κ−= − , 

which shows that ( )1tan 0 0φ −= . Using the definition of vκ  and hκ , the condition of the curvature 

singular points 0y z′′ ′′= = , and L’Hopital’s rule, one can show that the Frenet bank angle can be 

defined from the curvature ratio  

( )( )( ) ( )21v h xz y y z y yκ κ ′′′ ′ ′ ′ ′′′ ′′′= + − r     (17) 

Because all the Frenet angles exist and using their definitions, the unit vector n  normal to the 

curve can always be written in terms of the Frenet angles as [24 – 26] 

sin cos cos sin sin
cos cos sin sin sin

cos sin

ψ φ ψ θ φ
ψ φ ψ θ φ

θ φ

− + 
 = + 
 − 

n      (18) 

This expression for the normal vector is defined at all curve points including the curvature singular 

points. Therefore, the direction of the centrifugal inertia force is well defined even at the curve 
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points at which the curvature is zero. This is demonstrated by the analytical example considered 

in a later section in which a curve with curvature singularities is considered. 

 

5. Frenet inertia forces 

Experimentally or simulation recorded motion trajectory (RMT) curves can be used to define an 

inverse problem in which the inertia force can be expressed in terms of the curve parameters. To 

distinguish this form of the inertia force based on a Cartesian representation, the curve-based 

definition of the inertia forces is referred to as the Frenet inertia forces. Differentiating ( )s=r r  

once and twice with respect to time leads, respectively, to the velocity and acceleration vectors 

ss=r r   and [ ] ( )( )2T
sx y z s R s= = +r n r     , where ss ssRκ= =n r r  is the unit normal vector. 

Therefore, the inertia force vector of a vehicle with mass m  tracing a curve can be written as 

    [ ] ( )( )( )2T
i sm m x y z m s R s= = = +F r n r         (19) 

where ( )R R s=  is the curve radius of curvature.  

5.1  Velocity, acceleration, and curvature vector 

If the vehicle has arbitrary forward velocity x , the tangential velocity s  along the tangent sr  is 

  ( ) ( )2 21 xs s t x y z x′ ′= ∂ ∂ = = + + =r r      (20) 

This equation shows that ( )ds dt x dx= =r r   . The component of the acceleration s along the 

tangent to the curve can be obtained by differentiating s  as ( ) ( )x xs s ds ds x x d dt= = +r r     . 

This equation leads to 

 
( ) ( )( ) ( )( )( )

( )( ) ( )( )

2 4 32 2

2 2 2

x x x x

x c x c x

s x x y y z z x y y z z s

x s x xα α

′ ′′ ′ ′′ ′ ′′ ′ ′′= + + = + +

= + = +

r r r r

r r r

    

   

    (21) 
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which shows that if x  is constant, s is not zero and s  is not constant since the tangent vector 

varies as function of x , or equivalently as function of t . It is clear from the definition of s that at 

a curvature singular point defined by the condition 0y z′′ ′′= = , xs x= r   because 

( ) 2 0c xy y z zα ′ ′′ ′ ′′= + =r , as previously mentioned, 

 Using the definitions of s  and s,  one has the following identities: 

    
( ) ( ) ( )

( )( ) ( ) ( )( )
22 2 2

2 2

1 xy z s x

y y z z s x sx sx x

′ ′+ + = = 


′ ′′ ′ ′′+ = − 

r  

    

    (22) 

The second identity shows that, at the curvature singular points, the following relationship between 

the tangential and forward velocities and acceleration is satisfied 

       s s x x=          (23) 

Furthermore, in the case of constant forward velocity x V= , the same identities can be used to 

show that the curvature vector can be written in terms of s  and s in the following different forms: 

   

( ) ( ) ( )( )

( )
( ) ( )

( )

( )
( ) ( )
( ) ( )

( )

( )

2 2
4

2
22

2
2 22

2

1 0
1 1

0 1
1

1

ss
x

x
x

x

x
x

x

y y z z y y z y
z z

V y s y
V z z

s s s
VV y s y Vy s
sV

V z s z

    
    ′ ′′ ′ ′′ ′ ′ ′ ′′= − + + + +    
 ′ ′′       

    
    ′′ ′= −    
 ′′ ′       
 − − 
 ′′ ′ ′′= − = −
 
 ′′ ′− 

r
r

r
r

r

r
r

r





 

  





( )
( )

s y
Vz s s z

 
 ′ 
 ′′ ′−  

   (24) 

In this special case, the curvature κ  is defined as the magnitude of the above curvature vector as 

    ( )( ) ( ) ( ) ( )( ) ( )2 2 2 2 2V s V y z s Vκ ′′ ′′= + −      (25) 
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The fact that sr  is a unit vector implies that 0s ss⋅ =r r , which when used with the above definition 

of the curvature vector ssr  shows that, when x  is constant, ( )( )( )32
xs y y z z s′ ′′ ′ ′′= + r  ; an 

expression that can be obtained from the general definition of s. Using the definition of the 

curvature in the special case of constant forward velocity and recognizing that the curvature is 

positive, the limit on the maximum acceleration of vehicle negotiating a curve can be obtained as  

   ( ) ( ) ( )( ) ( ) ( ) ( )4 2 2 2 2 2s V y z V y z′′ ′′ ′′ ′′≤ + = +     (26) 

This equation defines the limit on magnitude of s, which depends on the forward velocity V . 

5.2  Cartesian- and Frenet-representation of the inertia forces 

The Cartesian and Frenet forms of the inertia force are equivalent. The Cartesian form is often 

used in a forward-dynamics problem, while the Frenet form can be used in an inverse-dynamics 

problem if the RMT curves are available from experimental measurements or computer 

simulations. The inertia force in its Cartesian form, for an arbitrary x , can be written as 

    [ ] ( )( )2T
i x xxm x y z m x x= = +F r r        (27) 

The component of this force along the tangent vector is defined using the definition of s as 

  
( )( )

( ) ( )( )( )( )
2

2

it i s x s xx s

x x

m x x

m x x y y z z ms

= ⋅ = ⋅ + ⋅

′ ′′ ′ ′′= + + =

F F r r r r r

r r

 

  

    (28) 

This result is consistent with the equation ( )( )( )2
i sm m s R s= = +F r n r   . Equation 2 shows that 

2
x ss c x xxα= − +r r r r . Using this identity and the fact that ss κ=r n  and xs x= r   , the component of 

the inertia force along the normal to the curve is defined as  
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( ) ( )( )
( ) ( ) ( ) ( )( )

2

22 2 2

in i i s s x xx s

xx c x x

m x x ms

m x m x m s Rα κ

= − ⋅ = + −

= − = =

F F F r r r r r

r r r n n

  

  

  (29) 

This equation defines the centrifugal force in its totality when the vehicle negotiates a curve. The 

preceding two equations demonstrate the equivalence of the Cartesian and Frenet forms of the 

inertia force vector and also show that the norm of the acceleration vector can be written as 

( ) ( ) ( )( )22 2s sκ= ⋅ = +r r r     .     

5.3  Centrifugal force and horizontal plane 

In practice, track super-elevations are designed with the assumption that the centrifugal force 

remains in a plane parallel to the horizontal plane [26]. Using this assumption, the balance speed 

is determined by equating the lateral components of the gravity and centrifugal forces. According 

to this assumption, the vehicle strictly follows a circle that lies in a plane parallel to the horizontal 

plane, a condition that cannot be met in realistic motion scenarios because of the lateral 

displacements. The actual motion trajectories can represent sharp curves with large curvature 

values. The orientation of the osculating (motion) plane that contains the velocity and acceleration 

vectors, defines the direction of the centrifugal force. If the osculating plane is not Frenet super-

elevated, the centrifugal force remains in a plane parallel to the horizontal plane. To show that the 

condition ( )( )21z z y y y′′ ′ ′ ′′ ′= +  implies zero Frenet bank angle φ , one can rewrite 

  
( ) ( )( )
( ) ( )( )( ) ( )( )

2 2

32 2

cos 1 ,

sin 1 1

h x

v x

y y

z y z y y y

φ κ κ κ

φ κ κ κ

′′ ′= = + 

′′ ′ ′ ′ ′′ ′= − = − + − +


r

r
   (30) 

These two equations show that if ( )( )21z z y y y′′ ′ ′ ′′ ′= + , sin 0φ =  and cos 1φ = , providing a 

proof that under this condition the osculating plane is not Frenet super-elevated. 
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6. Coordinate selection and inertia forces 

While the vehicle motion is described in terms of a large number of coordinates, an RMT curve is 

one dimensional, and consequently, the motion of the center of mass of a vehicle component, as 

represented by one RMT curve, is described in terms of one coordinate if the curve geometry is 

known from experimentally or simulation recorded data. Use of RMT curves is equivalent to using 

an inverse-dynamics problem in which the motion is assumed to be partially or fully prescribed 

and the goal is to determine the forces that produce this motion. Therefore, the nonlinear-dynamics 

analysis approach used in this paper is different from the classical inverse problem in which the 

prescribed motion is used to determine constraint forces that produce the motion. In this paper, on 

the other hand, the assumption is made that the forces exerted on the vehicle are the actual forces, 

and such forces are not determined with the goal of producing specified motion. The RMT curves, 

therefore, are the solution of a forward-dynamics problem in which the applied forces are not pre-

computed and should not be viewed as control forces. Nonetheless, such RMT curves have all 

motion characteristics and can be used to extract information that cannot be obtained or easily 

understood using other approaches. 

 If the motion of the vehicle center of mass is described using the three-dimensional vector 

[ ]Tx y z=r , the coordinates ,x y , and z  in the forward dynamics problem can be considered 

as independent if they are not related by constraint equations. However, RMT curve can be written 

in terms of one parameter, which can be time t , arc length s , or any other parameter including the 

curve coordinates ,x y , and z . For example, if the curve longitudinal coordinate x  is used as the 

curve parameter, one can write ( ) ( ) ( ) T
x x y x z x= =   r r . This equation implies that the 
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motion in the inverse problem is subjected to two kinematic constraints ( )y y x=  and ( )z z x= . 

If the equation of motion of the vehicle center of mass is written in the forward-dynamics problem 

in response to a force vector F  using the Cartesian coordinates as m =r F , this equation can be 

described in the inverse-dynamics problem using the RMT curve in terms of one parameter only. 

To this end, one can write, as previously described, [ ]1 Tx y z′ ′=r  , if the coordinate x  is used 

as the curve parameter. This equation leads to 

    
[ ] ( ) [ ]

( )

2

2

1 0T T

di

x y z x y z

x x

′ ′ ′′ ′′= +

= +

r

B v

  

 

    (31) 

In this equation, [ ]1 T
di x y z′ ′= =B r  is a velocity transformation that reduces to the tangent 

vector, which is not in general a unit vector; and [ ]0 Ty z′′ ′′=v  is a vector that lies in the lateral 

y z−  plane. Substituting the preceding equation into the three equations of motion m =r F  and 

pre-multiplying by the transpose of the transformation matrix diB , one obtains a single equation 

of motion which can be written as ( ) ( )( ) ( ) ( )2 2 21 T
xm y z x m x y y z z′ ′ ′ ′′ ′ ′′+ + = − +r F  . By using 

another coordinate y  or z  as the curve parameter and following a similar procedure, one obtains 

a similar equation associated with the other parameter. Therefore, one has the following different 

forms of the equation of motion if the vehicle traces the curve: 

  

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

2 2 2

2 2 2

2 2 2

1 ,

1 ,

1 ,

T
x

T
y

T
z

m y z x m x y y z z a a x

m x z y m y x x z z a a y

m x y z m z x x y y a a z

′ ′ ′ ′′ ′ ′′ ′+ + = − + = ∂ ∂

′ ′ ′ ′′ ′ ′′ ′+ + = − + = ∂ ∂ 

′ ′ ′ ′′ ′ ′′ ′+ + = − + = ∂ ∂


r F

r F

r F

 

 

 

   (32) 
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Which shows that when ,x y , or z   is selected as the curve parameter, there is a quadratic-velocity 

inertia force defined by the term ( ) ( )2 , , ,a aam a a x y z− ⋅ =r r . If the gravity is the only force applied 

to the vehicle, the preceding equation reduces to 

    [ ] ( ) ( )2 20 0 , , ,T
a a a aam a mg m a a x y z= − − ⋅ =r r r r     (33) 

where g  is the gravity constant. 

 It was shown previously that ( )( )2
ss s R= +r r n    , where in this case the velocity 

transformation matrix becomes di s=B r . Using this velocity transformation and following the 

procedure used with the coordinate x , one can show that the equation of motion when s  is selected 

as the curve parameter is given by T
sms = r F . Because sr  and ssr  are orthogonal vectors, the 

equation T
sms = r F  does not show any quadratic-velocity inertia forces, shedding light on the effect 

of the selection of the coordinates in the inverse-dynamics problem on the interpretation of the 

inertia forces. The centrifugal force ( )( )2m s R  is a quadratic-velocity inertia force, but such a 

force does not appear in the equation of motion T
sms = r F  because the motion is not allowed along 

the normal or the bi-normal to the curve. 

 

7. Recorded motion trajectories (RMT) 

Using computational dynamics algorithms or experimental measurements, the motion trajectories 

of the vehicle components can be recorded and used in an inverse problem to extract the geometry 

and force equations presented in the preceding sections. The steps of the procedure for 

accomplishing this goal can be summarized as follows: 
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1. The position, velocity, and acceleration vectors defined, respectively, by the vectors ,r r , and 

r  are recorded as function of time. That is, ( ) [ ]Tt x y z= =r r , ( ) [ ]Tt x y z= =r r     , and 

( ) [ ]Tt x y z= =r r     . Experimental measurements or computer simulations based on the 

solution of a forward dynamics problem can be used to determine the position, velocity, and 

acceleration curves. 

2. The curve arc length s  can be determined by integrating the equation ds dt= r  and the 

absolute velocity of the vehicle component along the tangent vector can be determined from 

the equation s = r . If the forward velocity of the vehicle x  is different from zero, 0s = >r . 

This condition is satisfied as the vehicle continues to move forward, which is the assumption 

made in this paper. 

3. The unit tangent vector to the curve sr  is determined from the equation  

  [ ]Ts x s y s z s= ∂ ∂ ∂ ∂ ∂ ∂ =r r r       (34) 

It is also clear that 

    [ ]1 T
x y z x′ ′= =r r       (35) 

This equation can be used to define y′  and z′ . Because x  is known from the recorded velocity, 

the vector xr  can be determined. A similar procedure can be used to determine yr  and zr  if the 

velocities y  and z  are different from zero. 

4. Because ( )( )2
ss s R= +r r n    and because sr  and n  are orthogonal vectors, the acceleration s 

can be defined using the equation ss = ⋅r r  and the radius of curvature R  is determined from 

the equation ( ) ( )2R s= ⋅r n , where n  is computed in the following step. The equation 
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( ) ( )2R s= ⋅r n  should be used with care at the curvature singular points. The curvature of the 

RMT curve is defined as 1 Rκ = . 

5. The equation ( )( )2
ss s R= +r r n    shows that the unit normal vector n  is parallel to the vector 

( )( )( )2
sR s s= −n r r  . That is,  

    ( )s ss s= − −n r r r r        (36) 

6. Using the recorded velocities and accelerations, and the equations previously developed in this 

study, one can show that 

   [ ] ( )( )( )20 1T
xy z x x′′ ′′ = −r r       (37) 

That is, the second derivative with respect to the parameter x  can be determined. Using these 

second derivatives, the vertical curvature vκ  and the horizontal curvature hκ  can be computed. 

As check, the curvature κ  can be written in the alternate form ( ) ( )2 2
v hκ κ κ= + . 

7. The RMT Frenet-Euler angles can then be determined from the equations 

 

( ) ( )

( )

( ) ( )( )
( ) ( )( )( ) ( )( )

2 2

2

2 2

32 2

cos 1 1 , sin 1 ,

cos 1 , sin ,

cos 1 ,

sin 1 1

x x

h x

v x

y y y

y z

y y

z y z y y y

ψ ψ

θ θ

φ κ κ κ

φ κ κ κ

′ ′ ′= + = + 


′ ′= + = 


′′ ′= = + 

′′ ′ ′ ′ ′′ ′= − = − + − + 

r r

r

r

   (38) 

8. The PSEO plane is defined by the two orthogonal vectors 1n  and 2n  of Eq. 6, which can be 

determined using the derivatives defined by the RMT data.  

9. The inertia forces on the vehicle component can be determined in the global Cartesian 

coordinate system as mr . The projection of this inertia force along the RMT normal n  can be 
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determined as ( )2m m s R⋅ =r n  , while the projection of the inertia force along the tangent 

vector sr  is determined using sm ms⋅ =r r  . 

10. Because the gravity force can be written in the global coordinate system as 

[ ]0 0 1 T
g mg= −F , an estimate of other forces eoF , including constraint forces, acting on 

the vehicle component can be written as eo gm= −F r F . In the case of tangent track sections, 

the elements of the vector eoF  define forces in the longitudinal, lateral, and vertical directions. 

The vector eoF can be projected along the axes of the Frenet frame to define the components 

,eo s eo⋅ ⋅F r F n , and eo ⋅F b . Because, there is no inertia force along the bi-normal vector b , one 

must have ( ) 0eo g+ ⋅ =F F b . If the effect of the gravity is not considered, 0eo ⋅ =F b . 

Using the steps and equations of this procedure is demonstrated in the numerical-example section 

using an analytical space curve which has curvature singular points. 

 

8. Frenet oscillations and numerical results 

In this section, a numerical example of an analytical space curve is considered to demonstrate use 

of MT data to obtain the geometry and force equations developed in this study. The example is 

used to demonstrate that simple MT curves give rise to centrifugal forces, and such forces are not 

attributed to road or track geometry, but to the MT geometry. The example considered also 

demonstrates how the Frenet-Euler angles can be determined using RMT-curve data.  

8.1  Curve geometry 

The three-dimensional MT curve, which is assumed to represent a vehicle travelling with a 

constant forward velocity V , is defined as 
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[ ] ( ) ( )

( ) ( )

sin sin

sin sin

TT
h h ho h h

T
h h ho h h

x y z Vt Y t Z Y t

x Y x V Z Y x V

ω γ ω

ω γ ω

= = +  

= +  

r
    (39) 

where hY  and hZ  are given amplitudes, hω  is the frequency, x Vt= , and V x t= ∂ ∂ . In this 

example, 0.02hY =  m, 15V =  m/s, 1/ 20γ = , 5.9 rad/s 0.939 Hzh hVω α= = = , 0.3935hα =  m, 

and 2hoZ =  m. It is clear from the definition of the curve that the coordinate z  is related to the 

curve coordinate y  by the linear relationship hoz Z yγ= + , and hoz Z=  when 0y = . For 

simplicity, the results are reported in this section using time t  as a parameter. 

 The curve velocity vector is 

   
[ ] [ ]
[ ]

cos cos

1 cos cos

T T
t h h h h h h

T
h h h h h h

x y z V Y t Y t

V Y t Y t

ω ω ω γ ω

α ω α γ ω

= = =

=

r r   

   (40) 

Using this velocity vector, one has  

    ( ) ( )( )2 2 21 1 cosh h hs V Y tα γ ω= = + +r     (41) 

This equation shows that the velocity s  along the tangent to the MT curve is always larger than 

the velocity x V=  along the curve parameter x . The velocity s  is maximum at the peaks of the 

curve when , 1, 2,h ht x V n nω ω π= = =  . At these points, 19.000465s =  m/s. It is also clear that 

s x V= =   when ( )1 2, 0,2,4,h ht x V n nω ω π= = + =  . Figure 2 shows the velocity s  as a 

function of time. The oscillatory nature of s  is clear from the results presented in this figure. 

 Using the MT velocity vector r  and the computed velocity s , one can write  

    

[ ]
[ ]

( ) ( )( )2 2 2

1

1 cos cos

1 1 cos

T
x

T
h h h h h h

x h h h

y z V

Y t Y t

Y t

α ω α γ ω

α γ ω

′ ′= = 


= 

= + +


r r

r



    (42) 
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The unit tangent vector sr  can be determined using the RMT vector as  

    ( )[ ]1 cos cos T
s h h h h h hs V s Y t Y tα ω α γ ω= =r r      (43) 

Figure 3 shows the X-elements of the unit tangent vector sr , which is the dominant component. 

While other elements of the tangent vector were found to be very small, the three elements of the 

unit tangent sr  are oscillatory. The absolute acceleration vector for the curve considered in this 

section is  

   [ ] ( ) [ ]2 0 sin sinT T
h h h hd dt x y z Y t tω ω γ ω= = = −r r        (44) 

Using the acceleration vector r , the acceleration s along the tangent to the curve can be evaluated 

using the equation 

    ( ) ( ) ( )( )( ) ( )3 2 21 2 sin 2s h h hs Y s tω γ ω= ⋅ = − +r r     (45) 

Figure 4 shows s as a function of time. It is clear that while the forward velocity V  is constant, s 

is not zero and it is oscillatory with a small amplitude. The acceleration s is the acceleration 

component along the tangent to the curve. The curvature κ  of a curve is defined to be the 

magnitude of the curvature vector, and in the case of a spatial curve is assumed to be positive. In 

the case of planar curves, a sign can be given to the curvature to indicate how the normal vector is 

oriented. Figure 5 shows the curvature κ , the horizontal curvature hκ , and the vertical curvature 

vκ . The results presented in this figure show the curvature singular points which are points of 

discontinuities of the curvature κ . The radius of curvature R  at an arbitrary point can be 

determined from the equation 1R κ= . The results presented in Fig. 5 demonstrate that, even 

simple oscillations can result in curves with very small radius of curvatures. Federal railroad 
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regulations, for example, put limit on the radius of curvature of the tracks. Such limits, however, 

cannot be imposed on MT curves which are not a priori known. 

8.2  Force analysis 

The direction of the centrifugal force is defined by the direction of the unit vector n  normal to the 

curve. The results obtained using the example considered in this section shows that the Y-

component of the normal vector is dominant, while the other two components are oscillatory, but 

with small amplitudes. The results presented in Fig. 6, which shows the Y-component of the normal 

vector, explain the dominance of the lateral component. Figure 7 shows the Frenet bank angle φ  

which defines the Frenet super-elevation of the motion (osculating) plane which contains the 

velocity and acceleration vectors as well as the centrifugal-force vector. At the point 0t = , which 

is a curvature singular point, one can use the L’Hopital’s rule as described in the paper to show 

that at this point, 2.862φ ≈ − ° .  A Frenet bank angle in the range of 3°  is not considered small 

when the projection of forces of heavy vehicles are considered since a small error can lead to 

significant unbalance force. Figure 8 shows the Frenet curvature angle ψ  and vertical-

development angle θ  for the space curve considered in this section. 

 Small oscillations with very large inertia are not uncommon in vehicle system applications. 

For example, in the case of railroad vehicle systems, 100-ton car of a freight train experiences 

hunting oscillations with amplitude that can be less or exceed the amplitude considered in this 

example. The frequency 5.9 rad/s 0.939 Hzh hVω α= = =  considered in this section corresponds 

to a forward velocity of 15 m/s which is a relatively low speed for both passenger and freight 

trains. While the analytical space curve considered in this section does not duplicate the actual 

behavior of a railroad vehicle whose complex motion requires use of the techniques of constrained 

multibody system (MBS) dynamics, the qualitative analysis using such an analytical curve can 
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shed light on the significance of the Frenet oscillations introduced in this study. Figure 9 shows 

the magnitude of the centrifugal force  ( )2m s R  for a 100-ton car tracing the curve used in this 

section. This is the total magnitude of the centrifugal force which has the same direction of the 

unit vector n  normal to the curve. The figure also shows the projection of the magnitude of the 

centrifugal force on the horizontal plane as defined by the equation ( )( )2 cosm s R φ  and the 

vertical component as defined by ( )( )2 sinm s R φ . It is clear from the results presented in this 

figure that the vertical component is small and the horizontal component is dominant. 

 As discussed in this paper, oscillatory centrifugal forces arise in cases the highway roads or 

rail tracks are not super-elevated. Even in these cases, the gravity force can have a component that 

opposes the centrifugal force which is in the direction of the unit vector n  normal to the curve. In 

many application, particularly in the case of conical railroad wheelsets, the conicity produces self-

steering that leads to geometric self-centering as the result of force self-balancing. Figure 10 shows 

the component of the gravity force g ⋅F n  along the normal to the curve. It is clear from the results 

presented in this figure that gravity force has a component that lies in the motion (osculating) plane 

of the curve, and such a gravity component is in a direction opposite to the direction of the 

centrifugal force.  

 

9. Discussion and relationship to previous work 

As discussed in this paper, the Frenet bank angle φ  defines deviation of the plane of the centrifugal 

force from the horizontal plane regardless of the geometry of the railroad track or the highway 

road. If the Frenet bank angle φ  is equal to zero, the centrifugal force and the vector normal to the 

curve lie in a plane parallel to the horizontal plane. This angle also defines the magnitude of the 
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component of the gravity force that opposes the centrifugal force in its totality. For example, a 

curve can be vertically elevated (developed), but is not Frenet super-elevated. The helix is a good 

example of such a curve. If a particle traces a helix curve, the gravity force cannot balance the 

centrifugal force. Therefore, the Frenet bank angle φ  in addition to having a clear geometric 

meaning, it also has a clear physical interpretation. More investigations are needed to study the 

impact of these new definitions on the interpretation of the forces that produce the motion. 

 The analysis presented in this paper shows clearly that Eq. 9 should not be used to determine 

the Frenet bank angle φ  in case of zero curvature. The angle φ  can be determined at the singular 

curvature point using Eq. 17. The results presented in Fig. 7 for a curve with a large number of 

zero-curvature points demonstrate that the Frenet bank angle is continuous and the unit vector 

normal to the curve is well defined. Equation 17, therefore, provides a proof that the normal to the 

curve is well defined at the points of zero curvatures. Consequently, there is no discontinuity in 

the definition of the Frenet frame. This proof could be developed using the concept of the 

horizontal and vertical curvatures used in the railroad vehicle literature and the definitions of the 

Frenet angles.  

 As previously stated, this investigation builds on previous studies [25, 26], which were not 

concerned with the analysis of recorded motion trajectories and the curvature singularities. This 

paper presents new derivations and identities, establishes a data-driven science approach and 

algorithm for utilization of recorded motion trajectories to interpret motion and forces, provides a 

proof that demonstrates that the Frenet frame does not suffer from any discontinuities at zero-

curvature points, and develops a simple analytical curve to obtain new results that demonstrate 

concepts that have not previously discussed in the literature. The three-dimensional curve analysis 

presented in this paper is also different from the analysis presented in a newly published study 
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which is focused on x y−  curve which has zero Frenet vertical-development angle θ  and zero 

Frenet bank angle φ  [27]. 

 

10. Conclusions 

Computer simulations and physical measurements can be used to record positions, velocities, and 

accelerations of moving bodies. The RMT curves, which are the results of actual forces or 

nonlinear virtual prototyping of credible computer models, have information that can shed light on 

the system nonlinear dynamics. In this paper, a mechanics-based description of the curve geometry 

is developed and used to introduce the Frenet oscillations, which define the time-varying 

characteritics of the motion plane. The motion (osculating) plane contains the absolute velocity 

and acceleration vectors and its orientation can be systematically described in terms of the three 

Frenet-Euler angles; the curvature, vertical-development, and bank angles. The Frenet super-

elevation of the motion plane measures the deviation of the direction of the centrifugal inertia force 

from the horizontal plane. The paper uses Frenet angles to introduce a method to determine the 

unit vector normal to a curve at the curvature singular points. The definition of this normal vector 

is necessary in order to define the correct direction of the centrifugal force. To better understand 

the motion-plane oscillations, the concept of the pre-super-elevated osculating (PSEO) plane is 

introduced. A new inverse-dynamics problem that utilizes experimentally or simulation recorded 

motion trajectories (RMT) is formulated and used to define the Frenet inertia forces. The 

equivalence of the Frenet inertia forces and the Cartesian form of the inertia forces is shown. The 

Frenet inertia forces can include a quadratic-velocity inertia force vector if a curve parameter 

different from the arc length is used. The recorded velocity and acceleration vectors can be used 

to obtain new expressions for the curvature vector. The paper defines the limit on the magnitude 
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of the tangential acceleration for a given forward velocity and the condition that must be met for 

the centrifugal force to lie in a plane parallel to the horizontal plane. The results obtained using a 

simple analytical curve example demonstrate the Frenet oscillations and the importance of 

distinguishing between the highway-ramp and railroad track bank angle and super-elevation, 

which are time-invariant, and the Frenet bank angle and super-elevation, which are oscillatory. 

The latter defines the correct direction of the centrifugal forces. While an analytical MT curve is 

considered to demonstrate the Frenet oscillations and curvature singular points, more detailed 

MBS models will be the subject of future investigations focused on the hunting oscillations of 

railroad vehicle systems and the interpretation of the Frenet-Euler angles and Frenet oscillations 

in complex motion scenarios. 

 The sequence of rotations , ,Z Y X− −  used in this investigation is the sequence adopted by the 

transportation industry for the construction of the geometry and layout of highway roads and 

railroad tracks. This sequence when applied to the recorded motion-trajectory curves allows 

introducing concepts of the horizontal curvature, vertical-development, and super-elevation used 

in the description of the track geometry by the railroad industry. Use of this sequence, therefore, 

allows comparing and distinguishing the geometry of the motion trajectories from the geometry of 

the road and the track because similar concepts are used. Nonetheless, many of the equations and 

identities presented in this paper can have counterparts that may assume different forms if another 

sequence of rotations, including the Bishop frame, is used [28]. For example, Tait-Bryan angles 

widely used in vehicle and flight dynamics as well as the , ,Z X Z  sequence used by Euler to study 

the gyroscopic motion can be used to provide similar development and identities that will assume 

different forms depending on the sequence used. While, nonlinear relationships between different 

angles based on different sequences of rotations can always be developed, the Tait-Bryan sequence 
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and the , ,Z X Z  sequence used by Euler do not provide the simple geometric interpretation 

provided by the sequence of rotations adopted in this paper. Furthermore, the Frenet-angle 

sequence used in this study demonstrates clearly that the curve can be completely defined using 

two independent angles, which serve as alternatives to the curvature and torsion in defining the 

curve geometry. The coordinates of a curve r  can be determined by integrating the equation 

sd ds=r r , demonstrating that the curve coordinates can be expressed in terms of the two 

independent angles. Use of another angle sequence can lead to a unit tangent expressed in terms 

of three angles instead of two and such angles may not have the same geometric interpretation as 

the one used by the rail industry.  

 
  



36 
 

Appendix A 

Pre-super-elevated-osculating (PSEO) plane 

One can show that the two orthogonal vectors 1n  and 2n  can be obtained by, respectively, applying 

the following two transformations, which are not necessarily orthogonal, to the unit tangent sr : 

  
( ) ( )

1 22 2

0 1 0 0 0 1
11 0 0 , 0 0

1 10 0 0 1 0

x z
y y y

− −   
   ′= = −   ′ ′+ + ′      

r
T T    (A.1) 

That is, the two orthogonal unit vectors 1n  and 2n  can be determined using the first derivatives 

that appear in the tangent vector. In this case, the scalars hκ  and vκ  can be determined, 

respectively, using the dot products 1h ssκ = ⋅r n  and 2v ssκ = ⋅r n . These two curvature components 

can be used to determine the curve curvature and radius of curvature. It is also important to note 

that the three vectors 1,sr n , and 2n  are three orthogonal vectors, as discussed in the paper. 

 The two vectors 1n  and 2n  have an interesting geometric interpretation. These two vectors lie 

in a plane whose normal is defined by the unit tangent vector sr  which represents the axis of 

rotation of the Frenet bank angle φ . This means that any other vector that lies in the plane formed 

by the two vectors 1n  and 2n  can still be written as a linear combination of the two orthogonal 

vectors 1n  and 2n  before or after the Frenet bank angle rotation φ . As discussed in the paper,  the 

two orthogonal vectors 1n  and 2n  are the normal and binormal vectors of the Frenet frame before 

performing the Frenet bank-angle rotation. Furthermore, the projection of the inertia forces along 

the two orthogonal unit vectors 1n  and 2n  can be used to conveniently define the centrifugal force, 

as explained in the paper. 
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Figure Captions 
 
Figure 1 Frenet oscillations [26] 

Figure 2 Velocity s   

Figure 3 X-component of the unit tangent to the curve 

Figure 4  Acceleration s 

Figure 5 Curve curvatures ( Black-triangle: Curvature κ ;  Red-square: Horizontal curvature 
hκ ; Blue-circle: Vertical curvature vκ ) 

 
Figure 6 Y-coordinate of the unit normal vector 

Figure 7 Frenet bank angle φ  

Figure 8  Frenet vertical-development and curvature angles (Black-triangle: θ ; Red-square: 
ψ ) 

 
Figure 9  Centrifugal force (Black-triangle: ( )2m s R ; Red-square: ( )( )2 cosm s R φ ; Blue-

circle: ( )( )2 sinm s R φ ) 

 
Figure 10 Component of the gravity force in the osculating plane 
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Figure 1 Frenet oscillations [26] 
 

 
Figure 2 Velocity s  
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Figure 3 X-component of the unit tangent to the curve 
 

 
 

Figure 4 Acceleration s  
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Figure 5 Curve curvatures ( Black-triangle: Curvature κ ;  Red-square: Horizontal curvature hκ ; 
Blue-circle: Vertical curvature vκ ) 

 
 

 
Figure 6 Y-coordinate of the unit normal vector 
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Figure 7 Frenet bank angle φ  

 

 
Figure 8 Frenet vertical-development and curvature angles (Black-triangle: θ ; Red-square: ψ ) 
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Figure 9 Centrifugal force ( Black-triangle ( )2m s R ; Red-square: ( )( )2 cosm s R φ ; Blue-circle: 

( )( )2 sinm s R φ ) 

 
 

 
Figure 10 Component of the gravity force in the osculating plane 
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